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This work introduces a new Gaussian variational mean field approximation for inference in dynamical systems
which can be modeled by ordinary stochastic differential equations. This new approach allows one to express
the variational free energy as a functional of the marginal moments of the approximating Gaussian process.
A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces
the complexity of approximate inference for stochastic differential equation models and makes it comparable
to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter
estimation for non-linear problems with up to one thousand dimensional state vectors and compares the
results empirically with various well known inference methodologies.
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I. INTRODUCTION

Stochastic differential equations (SDEs) arise naturally
as descriptions of continuous time dynamical systems,
such as geophysical, chemical and biological systems1.
The continuous time interpretation can be important in
both the details of the dynamics and the ability to em-
ploy physical understanding in developing such dynamic
models. Such models are commonly used in a range of
applications from system biology2, to data assimilation
in weather prediction3. Despite the increasing compu-
tational power of modern computers, efficient inference
in high dimensional dynamical systems still poses as a
major challenge with significant implications in scientific
and engineering applications. Exact inference is com-
putationally hard and often infeasible, therefore a range
of approximation methods have been developed over the
years4.

From a Bayesian perspective, inference in dynami-
cal systems essentially consists of updating ones beliefs
about the distribution of state or parameters within the
SDEs, conditioning on observations. Inference in dynam-
ical systems is often considered at two levels: direct in-
ference on the state which is variously described as data
assimilation, filtering or smoothing; and inference on the
parameters within the SDE. Inference on the state is
widely used in applications such as weather and environ-
mental forecasting, where knowledge of the current state
of the system approximated by the SDEs can be used to
predict future conditions. For longer term predictions,
such as climate modeling or in systems biology applica-
tions it is the parameters in the SDEs that are often of
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more interest, requiring inference to estimate not just the
system state, but also distributions or point estimates of
the system parameters.

Existing methods for state and parameter estimation
in non-linear systems have explored a range of approaches
including a variety of Markov chain Monte Carlo
(MCMC) methods5, sequential Monte Carlo6, a range
of Kalman smoothers7, Maximum A-Posteriori (MAP)
approaches based on classical variational techniques8 and
mean field conditional analysis of the SDEs obtained with
moment closure methods9. These inference and estima-
tion methods introduce a range of approximations and
computational complexities. Monte Carlo based methods
introduce sampling error, have issues with convergence
and assessment of convergence10–12. The computational
cost of Monte Carlo means such methods are only re-
ally applicable to relatively low dimensional systems, but
many physical systems are described using a large num-
ber of state variables, often discretised over some spatial
context. However recent advances13, show that the uti-
lization of graphics processing units GPUs can speed up
these methods by several orders of magnitude. Kalman
filters/smoothers on the other hand are fast, but can suf-
fer from numerical instabilities and have approximation
errors due the linearisation or statistical linearisation of
the non-linear differential equations14,15.

Other hybrid techniques have been proposed, based
primarily on the aforementioned methods, by combining
the ensemble and variational approaches16,17, with the
hope to bring more non–linearity into the data assimila-
tion problem. All methods are very challenging to apply
to parameter estimation, mainly due the inherent cou-
pling of state and parameters, which in particular makes
state augmentation approaches require very careful tun-
ing.

New techniques of approximate inference, originally
developed in the field of statistical physics, have been



2

applied to the problem of inference for such models.
As shown in18,19, the Variational Gaussian Process Ap-
proximation (VGPA) approximates the posterior pro-
cess over states by a non-stationary Gaussian process,
which is induced by a SDE with a time-varying linear
drift. The method minimizes a variational free energy
using similar approximations to path integrals in quan-
tum statistics20,21. The parameters in the drift func-
tion, which are the variational (functional) parameters of
the approximation, are a D dimensional time dependent
‘mean’ vector and a D ×D dimensional time dependent
‘covariance’ matrix, where D is the dimensionality of the
state vector.

Although this approximation reduces inference in
SDEs to solving ordinary differential equations (ODEs),
rather than partial differential equations (PDEs) that
arise for exact inference, the matrices contribute a fac-
tor of O(D2) to the overall computational complexity.
This makes the algorithm slow for larger systems. One
also has to deal with the infinite dimensional nature of
the variational parameters by discretising the ODEs in
time which introduces an additional factor O(N) into
the complexity of the algorithm, N being the number of
time points used in the discretization, which is typically
large for numerical stability.

A. Main ideas and contribution

In this work a new framework is presented that ex-
tends the VGPA developed by18, allowing for a signif-
icant speed-up of approximate inference for SDEs. It
is based on the great advantage of variational approxi-
mations over other ad-hoc approximation schemes; one
can tune their computational complexity to the compu-
tational resources available. The three key ideas of this
new approach are as follows:

• First, we adopt to a Gaussian Mean Field (MF) ap-
proximation. This means that we further restrict
the approximating Gaussian measure to be factor-
izing in the individual components of the D dimen-
sional state vector. This reduces the complexity
from O(D2) to O(D).

• Secondly, within the new MF approximation, we
show that the original variational parameters can
be eliminated analytically and expressed in terms of
the marginal moments of the approximating Gaus-
sian, thus removing the need of forward–backward
integrations.

• Finally, since the free energy is now expressed as
a functional of the marginal moments alone (which
are the new functional variational parameters), we
can further reduce the complexity of the approxi-
mation by a restriction to the subclass of functions
defined by a finite set of parameters. We choose

piecewise (low order) polynomials where the pa-
rameters are fixed between two subsequent obser-
vations. This reduces the complexity from O(N)1

to O(K), where K is the number of observations,
with K � N typically. Moreover this parameteri-
sation removes any errors associated with time dis-
cretisation.

The overall complexity of the proposed approximate
inference scheme for a continuous time Markov process
is now comparable to inference for a discrete time hidden
Markov model, thus making the new algorithm practi-
cally applicable to higher dimensional systems where the
previous variational algorithm was realistically infeasible.

B. Outline

The rest of the paper is structured as follows: Section
II introduces inference for stochastic differential equa-
tions. The basic setup is provided along with the appro-
priate notation. In addition we briefly review the VGPA
scheme, as the new mean field framework extends this
algorithm. In Section III, we develop the new mean
field approximation and discuss its implementation de-
tails in Section IV. Numerical experiments and compar-
isons with other inference approaches are presented in
Section V and we conclude in Section VI with a discus-
sion.

II. STATISTICAL INFERENCE FOR DIFFUSIONS

Diffusion processes are a special class of continuous
time Markov processes with continuous sample paths22.
The time evolution of a general, D dimensional, diffusion
process {xt}t∈T can be described by a stochastic differ-
ential equation (here to be interpreted in the Itō sense):

dxt = f(t,xt;θ) dt+ Σ(t,xt;θ)
1
2 dwt , (1)

where dwt ∼ N (0, dtI), xt = [x1t , . . . , x
D
t ]> is the latent

state vector, f(t,xt;θ) ∈ RD is the (typically) non-linear
drift function, that models the deterministic part of the
system, Σ(t,xt;θ) ∈ RD×D is the diffusion or system
noise covariance matrix and dwt is the derivative of a D
dimensional Wiener process {wt}t∈T , which often models
the effect of faster dynamical modes not explicitly repre-
sented in the drift function but present in the real system,
or ‘model discrepancy’. T = [t0, tf ] is a fixed time win-
dow of inference, with t0 and tf denoting the initial and
final times respectively. The vector θ ∈ Rm is a set of
parameters within the drift and diffusion functions.

1 N = |tf − t0|/δt, is the number of discrete time points in a
predefined time interval [t0, tf ], with δt time step.
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Equation (1) defines a system with multiplicative
(i.e. state dependent) system noise. The VGPA frame-
work considers diffusion processes with additive system
noise23,24. At first this might seem restrictive, how-
ever re-parametrization makes it possible to map a class
of multiplicative noise models into this additive class22.
Moreover there are many examples of models of physical
systems (e.g. the atmosphere), where constant diffusion
SDEs are considered as an advanced representation of the
system, and reasonable approximations to ‘model error’
or ‘discrepancy’ component. Hence, the following SDE is
considered:

dxt = f(xt;θ) dt+ Σ
1
2 dwt , dwt ∼ N (0, dtI) , (2)

where the notation is the same as in (1), with the only
exception being the noise covariance matrix Σ ∈ RD×D

which for simplicity is assumed state independent and
diagonal (i.e. Σ = diag{σ2

i } for i = 1, 2, . . . , D). Also
the explicit dependency of the drift function f(xt;θ) on
time ‘t’ has been suppressed for notational convenience.

A. Observation model

The stochastic process {xt}t∈T is assumed to be ob-
served at a finite set of discrete times {tk}Kk=1, leading to
a set of discrete time observations {yk ∈ Rd}Kk=1. In ad-
dition the observations are corrupted by i.i.d. Gaussian
white noise, as is typically the case in the applications
we consider. Therefore:

yk = h(xtk) + εk , εk ∼ N (0,R) , (3)

with h(·) : RD → Rd representing the (potentially) non-
linear observation operator and R ∈ Rd×d being the ob-
servation noise covariance matrix. Moreover, it is fur-
ther assumed (unless stated otherwise) that the dimen-
sionality of the observation vector is equal to the state’s
vector (i.e. d = D) and that the discrete time measure-
ments are “direct observations” of the state variables (i.e.
yk = xtk + εk). This assumption simplifies the presen-
tation of the algorithm and is the most common case in
practice. Adding arbitrary observation operators or in-
complete observation to the equations only affects the
system in the observation energy term in (6) and can be
readily included if required.

B. Approximate inference

Inference in our algorithm is performed on the poste-
rior distribution, i.e. the distribution of the state vari-
ables conditioned on the observations. Setting Y = y1:K ,
for notational convenience, this posterior measure over
paths X ≡ {xt}t∈T , is given by:

p(X|Y,θ,Σ) =
p(X|θ,Σ)

p(Y|θ,Σ)

K∏
k=1

p(yk|xtk) , (4)

where K denotes the total number of noisy observations,
p(X|θ,Σ) represents the prior measure over paths, as de-
fined by (2) and p(yk|xtk) is the likelihood for the obser-
vation at time tk from (3). p(Y|θ,Σ) is the normalizing
marginal likelihood or partition function of the problem,
computed as an integral:

p(Y|θ,Σ) =

∫
dp(X|θ,Σ)

K∏
k=1

p(yk|xtk) , (5)

over all paths of the diffusion process. Path integrals
of this type can be explicitly represented in terms of the
Wiener measure and can be reduced (when the drift func-
tion is the gradient of a potential) to expressions well
known in quantum statistical mechanics for which varia-
tional approximations have been successfully applied.

In the variational approximation of statistical physics,
an exact probability measure (e.g. the ‘true’ posterior)
is approximated by another that belongs to a family of
tractable ones, in our case a Gaussian. This is done by
minimizing the so called “variational free energy”, de-
fined as:

F(q(X|Σ),θ,Σ) = −
〈

ln
p(X|Y,θ,Σ)

q(X|Σ)

〉
q(X|Σ)

− ln p(Y|θ,Σ) , (6)

where q is the approximate posterior measure and
〈.〉q(X|Σ) denotes the expectation with respect to

q(X|Σ). The first term, on the right hand side, is the rel-
ative entropy (or Kullback–Leibler divergence) between
q and the posterior p. This can be brought into a more
standard form, better known in statistical physics, if we
define:

p(X|Y,θ,Σ) =
1

Z
µ(X)e−H(X) , (7)

q(X|Σ) =
1

Z0
µ(X)e−H0(X) , (8)

Z = p(Y|θ,Σ) . (9)

Here µ(X) is a reference measure over paths, which we
take to be the Wiener measure and H(X) is a Hamil-
tonian which can be derived from Girsanov’s change of
measure theorem25,26. Inserting these definitions into
(6), and using the fact that the relative entropy is non-
negative we get the well known variational bound:

− lnZ = − ln p(Y|θ,Σ) ≤ F(q(X|Σ),θ,Σ) (10)

= − lnZ0 + 〈H(X)〉q − 〈H0(X)〉q , (11)

for the exact free energy of the model. Note, that for this
bound to be finite the system noise covariance (i.e. Σ),
for both measures p and q must be the same18.

1. Optimal approximate posterior Gaussian process

Gaussian variational approximations for path integrals
of the form (11) have been extensively studied in statisti-



4

cal physics and quantum mechanics since Feynman’s cel-
ebrated work on the Polaron problem20,21. The Hamil-
tonian H can be explicitly computed using Girsanov’s
change of measure theorem for diffusion processes25, as
the sum of an ordinary integral over time and an Ito–
integral and is given by:

H(X) =
1

2

∫ tf

t0

{
f(xt;θ)>Σ−1f(xt;θ) dt

− 2f(xt;θ)>Σ−1 dxt

}
−

K∑
k=1

ln p(yk|xtk) .

(12)

If the “trial Hamiltonian” H0 is chosen to be a combina-
tion of a linear and a quadratic functionals inX, q(X|Σ)
becomes a Gaussian measure over paths. The usual ap-
proach would then be to choose a simple parametric form
of the trial ‘harmonic oscillator’ Hamiltonian H0 and op-
timize these parameters by minimizing the variational
bound (11).

In18 a different, non-parametric approach was cho-
sen, in order to accommodate the fact that through
the observations the posterior is non-stationary and thus
should be approximated by a non-stationary Gaussian
process. This method also avoids an explicit introduc-
tion of Hamiltonians H and H0. We have thus assumed
that the trial Gaussian measure q is generated from an
approximating linear SDE which is defined as:

dxt = g(xt) dt+ Σ1/2 dwt , (13)

where g(xt) = −Atxt + bt, with At ∈ RD×D and
bt ∈ RD define the time varying linear drift in the ap-
proximating process, and {wt}t∈T is a D dimensional
Wiener process. Both of these variational parameters
At and bt are time dependent functions that need to
be optimized as part of the estimation procedure. We
work directly with the expression (6) for the variational
free energy and use the fact that the prior process and
the Gaussian approximation to the posterior are Markov
processes. Using a time discretisation of paths and an
explicit representation of path probabilities as products
of transition probabilities (which have a simple Gaussian
form for short times), we have been able to derive the fol-
lowing expression of the variational free energy as a sum
of three cost functions (which we will also term ‘energies’
in the following):

F(q(X|Σ),θ,Σ) = E0 +

∫ tf

t0

Esde(t)dt+

K∑
k=1

Eobs(tk) ,

(14)
where t0 and tf again define the initial and final times
of the total time window (i.e. T = [t0, tf ]). These three
energies can be interpreted in the following manner.

• Initial state (t = 0) cost:

E0 =

〈
ln
q(x0)

p(x0)

〉
q(x0)

(15)

• Prior process (SDE) cost:

Esde(t) =
1

2

〈
‖f(xt;θ)− g(xt)‖2Σ

〉
qt

(16)

• Discrete time observations (likelihood) cost:

Eobs(tk) =
1

2

〈
‖yk − xtk‖2R

〉
qt

+
D

2
ln(2π)

+
1

2
ln |R| , (17)

where the state of the system at initial time (t = 0) is
assumed to have a prior x0 ∼ N (µ0, τ0I), with I ∈ RD×D

being the identity matrix and the notation ‖u − v‖2M
denotes the squared distance of vectors u and v, weighted
by the inverse of matrix M. To keep the paper self-
contained, we have included the main arguments of the
derivation in Appendix A.

2. Gaussian process posterior moments

The averages in the above cost functions are over the
Gaussian marginal densities of the approximating process
at given times t defined as:

q(xt) = N (xt|mt,St) ,with t ∈ T , (18)

where mt ∈ RD and St ∈ RD×D, are respectively the
marginal mean and covariance at time ‘t’. The time evo-
lution of this general time varying linear system in (13),
is described by two well known ordinary differential equa-
tions (ODEs), one for the marginal means mt and one
for the marginal covariances St

1,22:

ṁt = −Atmt + bt , (19)

Ṡt = −AtSt − StAt
> + Σ , (20)

and thus become functionals of At and bt, where ṁt ∈
RD and Ṡt ∈ RD×D denote the time derivatives. We
emphasize that Eq. (19) and (20) are hard constraints
to be satisfied ensuring consistency in the variational
approximation18,23. One way to enforce these con-
straints, within a predefined time window [t0, tf ], is
to introduce additional Lagrange multipliers λt ∈ RD,
Ψt ∈ RD×D; one for (19) and one for (20) respectively.
These are also time dependent functions that need to be
optimized during the estimation process. For more in-
formation on the formulation of this approach and its
algorithmic solution see27.

III. MEAN FIELD APPROXIMATION

The computational complexity of this approach caused
by the matrices St and At leads to an impractical al-
gorithm, when the SDEs are high-dimensional. Hence,
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here we make a mean field assumption that further re-
stricts the approximating posterior process q. This ap-
proximation is equivalent to assuming a diagonal ma-
trix At = diag{a1(t), . . . , aD(t)}. Since Σ is also as-
sumed to be diagonal, the marginal covariance inherits
the same property (i.e. St = diag{s1(t), . . . , sD(t)}).
The corresponding factorization of the approximating
measure q allows the individual processes of the dimen-
sions (xit ,∀ i = 1, . . . , D) to be treated independently, al-
though critically dependencies among the mean and vari-
ances of the state variables are still maintained through
the drift function f(xt;θ).

Setting mt = [m1(t), . . . ,mD(t)]>, as in the original
variational approach and st = [s1(t), . . . , sD(t)]>, a vec-
tor containing only the diagonal elements of the covari-
ance matrix St, the ODEs (19) and (20) simplify to:

ṁi(t) = −ai(t)mi(t) + bi(t) ,

ṡi(t) = −2ai(t)si(t) + σ2
i , ∀ i = 1, . . . , D . (21)

Hence, we can expect that the dimensionality enters the
complexity linearly, as O(D). This allows us to express
the initial variational problem in terms of the functions
mt and st alone.

A. Mean field free energy

To make this more clear consider the ODEs (19 and
20), for At diagonal:

ṁt = −Atmt + bt , (22)

Ṡt = −2AtSt + Σ . (23)

Solving (23) for At and replacing the result in (22) leads
to:

At =
1

2
(Σ− Ṡt)S

−1
t , (24)

bt =
1

2
(Σ− Ṡt)S

−1
t mt + ṁt . (25)

Substituting (24) and (25) into the linear drift of (13)
provides a new form of the drift function that depends
only on the marginal values of the means mt and vari-
ances St, at each time ‘t’:

g(xt) = ṁt −
1

2
(Σ− Ṡt)S

−1
t (xt −mt) , (26)

where Σ and St are now both diagonal matrices. This
expression of the linear approximation gives rise to a new
formulation of the Esde(t) function (16), hence the vari-
ational free energy (14). This is given by

Esde(t) =
1

2

D∑
i=1

1

σ2
i

{〈
(fi(xt)− ṁi(t))

2
〉
qt

+

(ṡi(t)− σ2
i )2

4s2i (t)
+ (σ2

i − ṡi(t))
〈
∂fi(xt)

∂xit

〉
qt

}
.

(27)

It is clear from the above that since the constraints
(Equations 22 and 23) are eliminated in the optimiza-
tion problem there is no need to introduce additional
Lagrange parameters. Hence the problem reduces to es-
timating the optimal mean and variance functions mi(t)
and si(t), ∀i = 1, . . . , D.

A direct functional minimization of the free energy
with respect to mt and St would lead to Euler-Lagrange
equations which are ODEs of second order. These would
be of mixed boundary type: while mi(t) and si(t) are
given at initial time t = t0 (assuming that the density q0
of the initial state is optimized later in an outer loop),
their first derivatives are not. On the other hand, sta-
tionarity of the functional imposes conditions on mi(t)
and si(t) at the final time t = tf . We will not pursue
this route here, but introduce a further approximation
which entirely avoids ODEs and the need to deal with
ODEs and their time discretization.

IV. POLYNOMIAL APPROXIMATION OF THE
MARGINAL MOMENTS

Instead of using direct discretization of the mean and
variance functions over time, which would prohibit the
use of the algorithm in very high dimensional systems,
we take an important step to speed up the variational
approximation by suggesting a further restriction of the
variational parameters. We minimize the free energy
functional in the subspace of functions mi(t) and si(t)
defined by a finite number of parameters. Note, that this
approach strongly relies on the remarkable fact that the
ODEs (21) are hard-coded in our new approach: a finite
parametrization of the original variational functions At

and bt alone, would not have led to a finite parametriza-
tion of the resulting mt and st

19. Since mi(t) and si(t)
must be continuous18, but their time derivatives jump at
the observations, we will use piecewise low-order (in time
t) local polynomial approximations.

Here, we assume third order polynomials for the mean
functions and second order polynomials for the variance
functions, i.e.:

mi(t) = mi,0 +mi,1t+mi,2t
2 +mi,3t

3 ,

si(t) = si,0 + si,1t+ si,2t
2 .

There is no theoretical constraint on the order of the
polynomials, for each function. However, if we restrict
the solution to families of low orders, then the desired
integrals of the new cost function (27) are easier to com-
pute analytically. When drift functions f(xt;θ) are poly-
nomials in xt, expectations over Gaussian marginals can
be performed in closed form and finally all time integrals
can be computed analytically.
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A. Practical implementation

The aforementioned polynomial approach has two ob-
vious constraints that need to be satisfied for all times
‘t’. These are: (a) the functions mi(t) and si(t), must be
continuous (even though they may not be differentiable
at observation times tk) and (b) the variance functions
must stay positive over the whole time window of infer-
ence (i.e. si(t) > 0 ,∀ t ∈ [t0, tf ]).

To fulfill these constraints simultaneously, avoiding the
use of additional parameters that would increase the
complexity of our algorithm, we followed the approach
of representing the piecewise polynomials by their La-
grange formula analogue (i.e. using four points for the
3’rd order mean and three points for the 2’nd order vari-
ance functions, per time-interval). Lagrange’s interpola-
tion formula28 provides us with an explicit expression of
the polynomials in terms of the function values at given
points. In numerical analysis this is also known as the
polynomial of the least degree; that means given a finite
set of C points there exists a unique polynomial of least
degree (C − 1), that interpolates exactly these C points.
Therefore, the optimization now consists of estimating
the optimal positions of these points rather than the co-
efficients of the functions.

B. Lagrange polynomial form of the mean functions

For the mean function mj
i (t) which is defined on the

j’th interval [tj , tj+1], since we have chosen a 3’rd order
polynomial, we need at least four points to represent this
polynomial uniquely. These are:

M j
i =

{
mj

i (tj),m
j
i (tj + h),mj

i (tj + 2h),mj
i (tj+1)

}
,

where h =
tj+1−tj

3 is the spacing between the points.
Here, without loss of generality, we assume that the
points are evenly spread within the time interval
[tj , tj+1], although this is only to simplify the presen-
tation of the algorithm.

The Lagrange polynomial formula that exactly inter-
polates the above points is given by:

mj
i (t) =

3∑
k=0

mj
i (tj + kh)

 ∏
0≤l≤3
l 6=k

t− (tj + lh)

tj − (tj + lh)


 ,

(28)

where tj+1 has been replaced with (tj + 3h).

C. Lagrange polynomial form of the variance functions

In a similar manner the assumption of the 2’nd order
for the variance function sji (t), implies that we need at

t0 t1 t2

m1(t)

m2(t)

m1(t1) = m2(t1)

Mid-points 1st interval Mid-points 2nd interval

h h h h h h

(a)Mean polynomial illustration.

t0 t1 t2c c c c

Mid-point on 1st interval Mid-point on 2nd interval

S1(t1) = S2(t1)

S1(t)

S2(t)

(b)Variance polynomial illustration.

FIG. 1. Construction of the mean (a) and variance (b) func-
tions using local polynomials. Notice how the end-point of
the first polynomial coincides with the start-point of the sub-
sequent polynomial (pointed red arrows), ensuring continuity
over the whole time domain.

least three points to represent this polynomial uniquely
within the predefined time interval [tj , tj+1]. These are:

Sj
i =

{
sji (tj), s

j
i (tj + c), sji (tj+1)

}
,

where c =
tj+1−tj

2 is the spacing between the points (in
this case the mid-point). The Lagrange polynomial for-
mula that exactly interpolates the above points is given
by:

sji (t) =

2∑
k=0

sji (tj + kc)

 ∏
0≤l≤2
l 6=k

t− (tj + lc)

tj − (tj + lc)


 ,

(29)

where tj+1 has been replaced with (tj + 2c).

D. The algorithm

For these parameterizations the infinite dimensional
inference problem reduces to optimizing the positions
of 4 × D × J points for the mean functions, together
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with 3 × D × J points for the variance functions (with
J = K + 1, the total number of time intervals de-
fined by the K observations). For real problems where
the true underlying process {xt}t∈T is sparsely observed
we anticipate that the number of optimized variables
(7×D×J)� N . The minimization is performed using a
scaled conjugate gradient algorithm, although a Newton-
type minimization could also be applied taking advantage
of the sparsity of the Hessian matrix. Hence, the opti-
mization becomes fast and efficient exploiting the fact
that the integrals on each dimension i can be computed
in parallel.

The benefits of our approach are twofold. First, as
shown in Fig. (1), the continuity constraint is satisfied
by requiring that the last point of each function on the
j’th time-interval will be identical with the first point of
the function of the following (j+ 1)’th time interval (e.g.

mj
i (tk) = mj+1

i (tk), where i represents the spatial dimen-
sion, j the time interval, in which the function exists and
tk is an observation time).

Second, the positivity constraint is satisfied by op-
timizing the logarithm of the variance points (e.g.

log(sji (tk)) instead of sji (tk)), making the appropriate ad-
justments to the gradient functions. Since the variance
functions are parabolas if the three points that define
the function are positive, then all other points within the
time interval will also be positive.

V. SIMULATION RESULTS

This section explores experimentally the properties of
the new MF approximation in comparison with a range of
other approximate inference techniques used in stochastic
processes. The new approach is validated on two non-
linear dynamical systems. The first system considered
is a stochastic version of the three dimensional chaotic
Lorenz ’63 (hereafter L3D) system29, described by the
following SDE:

dxt =

 σ(yt − xt)
ρxt − yt − xtzt
xtyt − βzt

 dt+ Σ
1
2 dwt , (30)

where xt = [xt, yt, zt]
> ∈ R3 is the state vector rep-

resenting all three dimensions, θ = [σ, ρ, β]> ∈ R3,
is the drift parameter vector, Σ ∈ R3×3 is a (diag-
onal) covariance matrix and wt ∈ R3 is an uncorre-
lated multivariate Wiener process. The parameters used
in the simulations are the standard settings that pro-
duce the chaotic behavior2. Additional noise is added
to the original deterministic equations with noise coeffi-
cient Σ = diag{σ2

i = 10 | i = 1, 2, 3} and the process
is observed fully every ∆τ = 0.2 time units, with error

2 the values are θ = [10, 28, 2.6667]>.

covariance R = diag{ρ2i = 2 | i = 1, 2, 3}. The simula-
tion time used was T = [0, 20]. This system was chosen
since it is both challenging in terms of non-linearity and
exhibits chaotic behavior often seen in real physical sys-
tems, but has sufficiently low dimension that a range of
methods including MCMC approaches can be contrasted
on it.

The second system considered is a stochastic version
of the Lorenz ’96 system, with drift function:

f(xt; θ) = [f1(xt; θ), . . . , fD(xt; θ)]
> , (31)

where

fi(xt; θ) = (xi+1
t − xi−2t )xi−1t − xit + θ ,

with cyclic index i ∈ {1, 2, . . . , D} and θ ∈ R, as the forc-
ing (drift) parameter. The diffusion is again an uncorre-
lated multivariate Wiener process, with Σ = diag{σ2

i =
10 | i = 1, . . . , D} and R = diag{ρ2i = 2 | i = 1, . . . , D}.

These equations simulate advection, damping and forc-
ing of some atmospheric variable xit, therefore it can be
seen as a simplistic, yet manageable “weather forecasting
like” model30. When the forcing parameter θ < 0.895,
solutions decay to a steady state solution, i.e. x1t = · · · =
xDt = θ; when 0.895 ≤ θ < 4.0; solutions are periodic
and when θ ≥ 4.0, solutions are chaotic31. Finally, to
test the efficiency of the new MF approach on a higher
dimensional system, where sampling approaches such as
the MCMC are not efficient, the model (31) is extended
toD = 1000 (or L1000D). Table (I) summarizes the setup
for the systems considered in the simulations.

A. State estimation

In the first set of experiments we focus on state in-
ference. We compare the results to Hybrid Monte Carlo
(HMC) path sampling5, the variational Gaussian pro-
cess approximation (VGPA)18, an unscented Kalman
smoother (UnKS)7, an ensemble version of the forward-
backward Kalman smoother (with very large number of
ensemble members Mens = 1000) and a weak constraint
4DVar method8, which is a popular variational approach
to MAP estimation in diffusion processes, widely used in
weather forecasting.

Figure 2 shows an example of smoothing (state infer-
ence) for the xt variable of the L3D system, over a central
part of the time window considered [0, 20], applying all
the algorithms to the same set of simulated observations.
It is clear that visually the results appear rather similar.
There are subtle differences, but qualitatively the differ-
ences are minor, the main issue being that the 4DVar
does not provide an estimate of posterior uncertainty as
it is a MAP estimate. Also shown on the figures is the
elapsed CPU time in seconds for each algorithm to run
on the full 20 time unit window. Evidently HMC (25,000
samples, 5,000 burn-in, hand tuned to best performance),
which one might consider a reference solution, takes or-
ders of magnitude longer to run. The MF algorithm on



8

System D d t0 tf δt θ σ2
i ρ2i No

Lorenz’63 3 3 0 20 0.01 [10, 28, 2.66667] 10 2 5 (∆τ = 0.2)
Lorenz’96 1000 350 0 4 N/A 8 4 1 8 (∆τ = 0.125)

TABLE I. Experimental setup that generated the data (trajectories and observations). System dimension is denoted by D,
while observation dimension by d. The time windows are defined by the initial times (t0) and final times (tf ), whilst δt is
the time discretization step that was used by the other algorithms with which we compare our new method. The vector θ
contains the parameters related to the drift function, while σ2

i and ρ2i represent the noise variances of the driving noise and
the observations accordingly, per i’th dimension. In this example the variances are identical for all dimensions. No defines the
number of available i.i.d. observations per time unit (i.e. observation density), which without loss of generality is measured at
equidistant time instants.
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FIG. 2. The mean (solid line) and marginal variance (shaded region, plotted at +/- 2×std) for state estimation of xt variable
for an example of the L3D system for the methods HMC, MF, VGPA, 4DVar, UnKS and EnKS (from top left to right).
Observations are plotted as black crosses.
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this example is 3 times faster than VGPA, and only twice
as slow as 4DVar, although the results depend on the
available computational resources (for this set of exper-
iments we used an eight core desktop PC). The UnKS
is significantly faster than all methods on this low di-
mensional system, since a very small number of particles
(Ens = 2 × D + 1 = 7) are needed in the low dimen-
sional system, while the EnKS took a little longer but we
should emphasize the unusually high number of ensemble
members that is used here (Mens = 1000) for the forward
filtering pass. A coarse time discretization of δt = 0.01
was used, for all but the MF algorithm, to permit HMC
to run in reasonable time.

To quantify the differences in the methods we gener-
ate 50 random trajectories of the L3D system, with sim-
ulated noisy observations. The time window is [0, 20],
with observation density No = 5 per time unit, which
is representative of the observation frequency in realis-
tic settings. This observation frequency was chosen to
be similar to that expected in operational weather fore-
casting applications. We apply the smoothing algorithms
(UnKS, EnKS, MF, 4DVar, VGPA and HMC) and com-
pare the Root Mean Square Errors (RMSE) and the Root
Residual Square Errors (RRSE) in Figure 3(a) and 3(b)
respectively, averaged over all the system dimensions.
The errors are defined as follows:

RMSE =
1

D

D∑
j=1

√√√√ 1

K

K∑
k=1

(yj(tk)−mj(tk))2 , (32)

RRSE =
1

D

D∑
j=1

√√√√ 1

K

K∑
k=1

(xj(tk)−mj(tk))2

sj(tk)
, (33)

where D is the system dimension, K is the total number
of observations, yj(tk) is the noisy observation on the j’th
dimension at time tk and xj(tk), mj(tk) and sj(tk) are
the true signal, the marginal mean and variance at the
same time instant.

We note that we are comparing the estimated mean
(mode for 4DVar) state with noisy observations to com-
pute the RMSE, so with observation variance set at 2, we
would expect a value of around 1.4 for the RMSE. The
plot shows that both the UnKS and EnKS systematically
over-fit to the noisy observations. The other methods
also show some over-fitting but are in essence very sim-
ilar, although the MF method did show a rather poor
fit in one simulation. The MF method is both robust
and fast, producing an uncertainty estimate that is not
available from 4DVar. One issue we have observed, and
requires further investigation, is that the MF approach
appears to underestimate the marginal variances with re-
spect to HMC, as shown in the left plot of Figure 3(b),
where for the RRSE we would expect a value close to
one. Nevertheless, this underestimation does not seem
to affect the mean estimates significantly.

Since one of the goals of this new MF approach is
the application of the proposed variational framework to
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FIG. 3. A comparison of the root mean square error (a) and
the root residual square error (b) of the smoothing methods
on 50 realizations of the L63 system. Note the box plots
describe the statistics of the 50 different error estimates.

high dimensional systems as a first step we applied the
new method on the Lorenz’96 system with D = 1000.
To make the simulation more challenging, but at the
same time more realistic, unlike the previous experiments
where for simplicity we assumed that the observed vector
has the same dimensions as the state vector (i.e. D = d),
here we assume that we measure only d = 350 from the
total D = 1000 with the locations picked at random. The
partial observation in addition to the discrete time nature
of the observation process makes inference for such sys-
tems a very difficult task. In this case we apply a linear
operator H with number of rows and columns [350×1000]
such as, yk = Hxtk + εk. This matrix has zero ele-
ments everywhere except from the predefined observed
locations, in the diagonal, which are set to one. This
way the expression for the energy term from the obser-
vations Eobs(tk) (Eq. 17) remains unchanged. In the
case of an arbitrary (non-linear) operator, the expecta-
tion

〈
‖yk − h(xtk)‖2R

〉
qt

would have to be approximated

(e.g. with unscented transformation methods32).

Figures 4(a) to 4(d) show the variational marginal
mean and variance, of the MF algorithm, applied on a
typical example of the L1000D system. As expected,
when the MF algorithm “observes” a dimension it pro-
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FIG. 4. The marginal mean (solid red line) and variance (shaded region, plotted at +/- 2×std) for state estimation of the 8’th,
20’th, 22’nd and 23’rd dimension of the L1000D system. Dashed lines show the true trajectory {xt, t ∈ T} that generated the
observations (crosses). Note that only (b) includes observations.

vides a good match between the posterior mean with the
observations and the path that generated them and the
variance is tighter than in dimensions where we do not
have observations. When the algorithm does not have ob-
servations then it can either fail to track the true trajec-
tory, as shown in Figure 4(a), or it can successfully track
the true trajectory, see Figures 4(c) and 4(d). Because of
the couplings of the Lorenz’96 model that occur in space
domain (i.e. (xi+1

t − xi−2t )xi−1t − xit), when many sub-
sequent dimensions are not observed the MF algorithm
can fail to follow the true signal. In this example, the
closest observed state variable to the 8’th dimension was
the 17’th; which within the given time-window it was not
close enough to recover the “truth”. However, close to
measured dimensions the algorithm recovers the “reality”
quickly, with quite broad error-bars, and a better initial-
ization can improve tracking of unobserved dimensions.

B. Parameter estimation

The main benefit of our MF approach is not in the state
estimation, but in the stability of the hyper-parameter
estimation. By hyper-parameters we mean the set of pa-

rameters that exist in the model equations (drift), the
diffusion coefficient matrix (or function) and also in the
observation process model. In real world problems we
might have prior beliefs over their values, but ideally we
would like to estimate, or update our beliefs about them,
using information from the available observations. This
section presents results displayed as marginal profiles, al-
though a gradient based estimation has also been im-
plemented. We compute the free energy, from both MF
and VGPA algorithms, at convergence of the (state infer-
ence) smoothing procedure, varying only one parameter
at a time to plot the bound on the marginal likelihood.
In this work we do not provide a comparison with other
estimation techniques because this has already been pre-
sented in19 for the original VGPA algorithm.

1. Drift parameters

Most of the results presented here are from simulations
of the L3D system, mainly because of its low dimensional-
ity which allows the application of other techniques such
as the HMC sampling algorithm. Figures 5(a) to 5(c),
contrast the profiles from both MF and VGPA when es-
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timating the drift parameters of the L3D system. It is
obvious that both approaches provide smooth results and
there are subtle differences in their final minimum found
(indicated with ?), which we ascribe to the the different
nature of the MF approximation compared to VGPA.
However, as Figure 10 shows, MF was on average three
times faster than VGPA, for the given settings and avail-
able computational resources.

To illustrate the difficulty of estimating parameters in
stochastic chaotic models, even in low dimensional sys-
tems such as the L3D, we include here results of posterior
estimates obtained by the HMC algorithm which can be
assumed to provide reference solution. The approach we
followed here augments the state vector with the parame-
ter that is estimated and then the sampling is performed
jointly. Figure 6 (from left to right) shows the histograms
of the posterior samples of σ, ρ and β parameters of the
L3D drift function. It is apparent that even though the
parameters are sampled marginally (i.e. the other pa-
rameters that are not sampled are fixed to their true
values) there are still biases that shift the distributions
away from the correct values.

2. Diffusion parameters

Unlike the previous section where the estimation for
the drift parameters was achieved, within reasonable un-
certainty, by both algorithms, when estimating the dif-
fusion coefficients the message is not so clear. As Fig-
ures 7(a) to 7(c) show, there are cases where both VGPA
and MF fail to provide a clear minimum (inside the test
range) and other cases where one algorithm or the other
does provide a minimum close to the true value. One
reason for this behavior can be the relative low obser-
vation density that we used in this example (No = 5,
per time unit). As shown in19, to estimate this crucial
parameter one needs very dense observations (No > 10)
regardless of the inference method used. Another expla-
nation is that these profiles were generated by a single
realization, therefore we cannot generalize any conclu-
sions definitively, that is the results are only illustrative.
Nevertheless, one thing we can argue is that the MF is
consistently faster than VGPA, as shown in Figure 7(d).
However, the problem of estimating diffusion coefficients
is far from easy, as even MCMC sampling approaches fail
to estimate these noise parameters for the settings used
in this paper.

3. Observation process

Even though estimation of the parameters related to
the observation process is a natural extension of any pa-
rameter estimation framework, these results are the first
time that both MF and VGPA are put to the test. For
this example we use a relatively low, but realistic, obser-
vation noise variance (ρ2 = 1) and test the performance

of both algorithms with two different observation densi-
ties, keeping all the other model parameters to their ‘cor-
rect’ values. Figures 8(a) and 8(b) present the marginal
profiles with No = 5, for the xt and yt dimensions re-
spectively, of the L3D, whereas Figures 9(a) and 9(b)
illustrate the same experiment with No = 10.

Both algorithms are able to identify the correct min-
imum quite accurately, although MF seems to be a bit
more confident (narrower profile around the minimum)
especially when the observation density increases to 10
per time unit. Observation noise estimation on zt di-
mension had similar behavior and was not included here.
What is more impressive here is that the speed-up of the
MF approximation, in obtaining these profiles, was much
higher than the other estimation simulations. Figure 10
shows that MF was seven times faster than VGPA with
No = 5 and roughly four times faster with No = 10.
This can be explained by the fact that by increasing the
observation density we actually increase the number of it-
erations in the parallel loop that the MF uses to compute
the free energy (when the parallelization of the algorithm
is on the time domain). Therefore we do expect the al-
gorithm to slow down slightly (given fixed computational
resource).

VI. DISCUSSION

The new MF algorithm presented herein provides ro-
bust approximate inference for the state and parameters
in SDE models. We show how the variational framework
enables us to control the computational complexity of the
algorithm. The inclusion of a mean field approximation
is critical in allowing us to completely re-cast the algo-
rithm without a forward-backward approach, producing
a significantly different algorithm compared to the origi-
nal VGPA algorithm18, which is both more scalable and
more robust. This introduces the potential to under-
take approximate likelihood based parameter inference
in SDEs using very large (long time window) data sets in
high dimensional systems. The ability to work in contin-
uous time removes the need for time discretization and
thus eliminates any associated discretisation errors. The
mean field method is inherently parallelizable and scales
linearly with respect to state vector dimension opening a
way for treating very large systems which have previously
not been amenable to Bayesian approaches.

Experimental results show the method to be both ro-
bust and comparable to the computationally more ex-
pensive MCMC methods in terms of the accuracy of state
inference given sufficient observations. In particular com-
pared to the original VGPA algorithm18, the results are
more robust and can be computed at lower computational
expense. We are able to run the MF approximation on
very long time windows, which is important if the aim
is estimation of the parameters in the SDE. The profiles
of free energy, which bound the marginal likelihood for
the parameters in the SDE, are very smooth and can be
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FIG. 5. (a) to (c) are the marginal profiles of the drift parameters. The vertical dashed line indicates the true parameter value,
while the star symbol (?) denotes the minimum found by each algorithm. (d) summarizes the timings (in seconds) for each
algorithm to generate the profiles.
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FIG. 6. Histograms of posterior samples for the σ, ρ and β (from left to right) drift parameters of the L3D system obtained
with the HMC algorithm.

obtained without any algorithm tuning, something that
is not true for the other methods employed in this paper,
which required careful tuning to produce reliable results.

The MF approximation suffers from the same limita-
tions as the original VGPA and is most suitable for in-
ference in systems where there are sufficient observations
to uniquely identify the state of the system, since the
approximation will break down for multi-modal poste-
rior distributions. In the case of multi-modal posteri-

ors over paths in very large systems we expect that no
methods would work practically, although recent devel-
opments in particle filtering claim some success15. Also
the fact that the new MF was not able to consistently
estimate diffusion parameters requires further investiga-
tion. One possibility to improve on the MF assumption
could be the so–called linear response corrections33,34,
which can yield a useful approximation to the neglected
correlations. Such correction would be computed after
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FIG. 7. (a) to (c) are the marginal profiles of the diffusion coefficients in each dimension. The vertical dashed line indicates the
true parameter value, while the star symbol (?) denotes the minimum found by each algorithm. (d) summarizes the timings
(in seconds) for each algorithm to generate the profiles.

convergence of the MF algorithm and would require an
extra linearization of the MF equations.

In the experiments described in this paper the observa-
tion density was rather low, compared to the timescales
in the system, and thus it is not surprising that the MF
approximation is unable to estimate the variance of the
driving noise process. All inference methods find this
challenging in practice. Implementing the algorithm is
also quite complex3, but can be largely automated using
symbolic manipulation tools.

There are several interesting directions for further re-
search. Parallelization is only partially exploited using
8 cores on a desktop machine, and is possible in sev-
eral places. Which to use depends on the dimension of
the state vector, the frequency of the observations and
the order of polynomials used in the approximation. For
very long time windows it might be possible to further
approximate the marginal likelihood using a factorizing
assumption on the free energy, splitting the long time
window into sub-time intervals. Given sufficiently long

3 An implementation of the algorithm in MATLAB is available
upon request.

time sub-intervals the approximation will not be signifi-
cantly affected. It is also interesting to consider the prac-
tical application of the method, and the degree to which
it can be applied to really high dimensional systems such
as those used in weather forecasting, where the state vec-
tor is of the order of 107 dimensions. In these applica-
tions the ability to use parallel computation is essential,
and the flexibility of the variational framework we put
forward, which allows us to match computational com-
plexity to available computational resource, makes the
method particularly attractive.
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noise estimation (variance component) on xt dimension. The
vertical dashed line shows the true value of the parameter
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Appendix A: Derivation of the Variational Gaussian
Approximation

We aim at approximating the posterior measure over
paths X = {xt}t∈T , for the posterior process, with an-
other process which is governed by an SDE:

dxt = g(xt) dt+ Σ1/2 dwt ,

with different drift function g(xt) and with measure q,
which belongs to a family of tractable ones. The “good-
ness” of fit between the true posterior p and the approx-
imating one q is given by the variational free energy

F(q(X|Σ),θ,Σ) = −
〈

ln
p(X|Y,θ,Σ)

q(X|Σ)

〉
q

− ln p(Y|θ,Σ)

=

〈
ln
q(X)

p(X)

〉
q

− 〈ln p(Y|X)〉q (A1)

where q is a shorthand notation for q(X|Σ) and the de-
pendence on the drift and diffusion parameters θ and Σ
has been suppressed for brevity. p(Y|X) is the probabil-
ity density of the discrete time observations and p(X)
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FIG. 9. Same as 8(a) and 8(b), but with increased observation
density (No = 10).

denotes the prior measure over paths generated from
the SDE (1). We will compute the variational free en-
ergy by a discretization of the sample paths in time (i.e.
X = {xk}k=0,...,N ) and then taking appropriate limits.

Using an Euler–Maruyama discretisation of the prior
SDE and the posterior approximation we get:

δxk+1 = f(xk;θ)δt+
√

Σδt εk ,

δxk+1 = g(xk)δt+
√

Σδt εk , (A2)

where δxk+1 = xk+1 − xk , δt is a small time step and
εk ∼ N (0, I). Since both processes are Markovian, the
joint probability densities of the discretized paths can be
written as products of their transition densities:

p(x0:N ) = p(x0)

N−1∏
k=0

p(xk+1|xk) ,

q(x0:N ) = q(x0)

N−1∏
k=0

q(xk+1|xk) , (A3)

where x0:N is shorthand notation for (x0,x1, . . . ,xN ).
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FIG. 10. (a) and (b) summarize the timing results for both algorithms to attain the profiles, with different observation densities.
All results are presented in seconds.

Using the factorization of Eq. (A3), we get:〈
ln
q(x0:N )

p(x0:N )

〉
q

=

〈
ln
q(x0)

p(x0)

〉
q

+

〈
N−1∑
k=0

ln
q(xk+1|xk)

p(xk+1|xk)

〉
q

(A4)

For short times δt the transitions densities for both pro-
cesses can be approximated by Gaussian densities:

p(xk+1|xk) ' Z−1p exp

{
− 1

2δt
‖δxk+1 − f(xk;θ)δt‖2Σ

}
,

q(xk+1|xk) ' Z−1q exp

{
− 1

2δt
‖δxk+1 − g(xk)δt‖2Σ

}
.

(A5)

Because the noise covariances Σ are identical for both
processes the normalization constants are equivalent
Zp = Zq. Note that the same is true even if the noises
were time dependent. Therefore, using Eq. (A5) and
taking the limit of δt→ 0, Eq. (A4) reduces to:〈

ln
q(x0:N )

p(x0:N )

〉
q

=

〈
ln
q(x0)

p(x0)

〉
q

+

1

2

∫ tf

t0

〈
‖f(xt;θ)− g(xt)‖2Σ

〉
qt
dt. (A6)

The last term in Eq. (A1), assuming that the discrete
time observations have a Gaussian error distribution, i.e.
p(yk|xtk) = N (yk|xtk ,R), becomes:

−〈ln p(Y|X)〉q = −

〈
ln

K∏
k=1

p(yk|xtk)

〉
q

= −

〈
K∑

k=1

lnN (yk|xtk ,R)

〉
q

=
1

2

K∑
k=1

〈
‖yk − xtk‖2R

〉
qt

+ const . (A7)
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