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Abstract 

In the majority of production processes, noticeable amounts of bad byproducts or bad outputs are 

produced. The negative effects of the bad outputs on efficiency cannot be handled by the 

standard Malmquist index to measure productivity change over time. Toward this end, the 

Malmquist-Luenberger index (MLI) has been introduced, when undesirable outputs are present. 

In this paper, we introduce a Data Envelopment Analysis (DEA) model as well as an algorithm, 

which can successfully eliminate a common infeasibility problem encountered in MLI mixed 

period problems. This model incorporates the best endogenous direction amongst all other 

possible directions to increase desirable output and decrease the undesirable outputs at the same 

time. A simple example used to illustrate the new algorithm and a real application of steam 

power plants is used to show the applicability of the proposed model. 

 

Keywords: Data Envelopment Analysis, Directional Distance Function, Eco-Efficiency Change 

1 Introduction 

One of the most popular methodologies for measuring efficiency of Decision Making Units 

(DMUs) is the non-parametric frontier mathematical programming approach called Data 

Envelopment Analysis (DEA). The concept behind DEA is measuring efficiency using 

production function as initiated in Farrell (1957), and later extended to cases with multiple-inputs 

multiple-outputs by Charnes et al. (1978), after which many empirical studies followed (Cook 

and Seiford, 2009; Emrouznejad et al., 2008; Seiford, 1996).  
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In measuring efficiency normally inputs have to be minimized and outputs, in vice versa, are 

maximized. However, in some cases, some (good) outputs should be maximized or some (bad) 

outputs should be minimized simultaneously. Literature in DEA refers to bad outputs as 

undesirable factors (Seiford and Zhu, 2002). One can find a number of undesirable output 

examples in the empirical literature such as delayed flight (Coli et al., 2011), poverty rate (Bruni 

et al., 2011), patient deaths (Yawe and Kavuma, 2008), power interruptions and emissions such 

as SOx (Burnett and Hansen, 2008; Korhonen and Luptacik, 2004; Zhou et al., 2007), SO2, NOx 

and CO2 (Kortelainen and Kuosmanen, 2007; Sueyoshi and Goto, 2013; Tyteca, 1997), NOx 

(Oggioni et al., 2011; Tyteca, 1996) COx gases (Oude Lansink and Bezlepkin, 2003; Zaim and 

Taskin, 2000). 

One of the variations in DEA studies is the incorporation of undesirable factors in the efficiency 

measurement, which is termed as eco-efficiency measurement. The incorporation of undesirable 

factors can be classified into two categories - direct and indirect approaches (Scheel, 2001). The 

indirect approaches change or customize undesirable factors to include them in the DEA model. 

On the other hand, the direct approaches treat undesirable as a regular input or output but modify 

the measurement model. There are several indirect approaches such as taking the additive inverse 

of undesirable factors (Berg et al., 1992), treating the undesirable output as an input (Tyteca, 

1997), using multiplicative inverse (Knox Lovell et al., 1995), etc. In contrast, the direct 

approaches use some theoretical developments such as hyperbolic efficiency model (Boyd and 

McClelland, 1999), slacks-based measure (SBM) model (Tone, 2001), range adjusted measure 

(RAM) model (Zhou et al., 2006) and directional distance function (Chung et al., 1997; Färe and 

Grosskopf, 2000). Perhaps the most popular approach is the directional distance function (DDF) 

that has been used in many applications (Färe and Grosskopf, 2010a; Färe et al., 2007; Picazo-

Tadeo et al., 2005)2. In spite of its popularity, DDF is known to encounter a problem of 

infeasibility when it is implemented in types of longitudinal studies to calculate Malmquist-

Luenberger index (MLI) (Chung et al., 1997; Färe et al., 2001). The infeasibility problem can 

occur in mixed period models when a DMU is located beyond the frontier of a different period. 

Hence, this paper aims to introduce a method to overcome the infeasibility problem of mixed-

period DDF models.  

                                                 
2 A comprehensive overview about the ways of treating undesirable outputs can be found in Sahoo et al. (2011) 
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The remainder of the paper is organized as follows. In the next section, related literature to DDF 

models is reviewed and the infeasibility problem is discussed. Section 3 introduces a model with 

an algorithm to enable DDF type Malmquist Index for handling DMUs, which are beyond the 

efficiency frontier. Section 4 illustrates the proposed algorithm using a numerical example on a 

real application of steam power plants over eight years. We discuss the results in Section 5. 

Conclusions and suggestions for future research are given in Section 6. 

2 Background and motivation 

2.1 Directional Distance Function 

In the DEA literature, one of the popular series of models introduced for measuring 

efficiency/inefficiency is Directional Distance Function (DDF). Using definition of distance 

Shephard et al. (1970) function incorporating undesirable outputs as below: 

Do(x, y, b)=inf {: (( 𝑦, 𝑏)/)𝑃(𝑥)} (1) 

where xI, yJ and bK are inputs, outputs and bad outputs of Decision Making Units 

(DMUs), and  denotes the expansion or contraction ratio of good and bad outputs, and Do 

expands good outputs and contracts bad outputs simultaneously as much as feasible. P(x), 

production possibility set, is defined as: 

𝑃(𝑥) = {( 𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 ( 𝑦, 𝑏)} (2) 

However, Chung, et al. (1997) defines Do as: 

𝐷⃗⃗ (x, y, b;g) = sup{: ( 𝑦, 𝑏) +  𝑔𝑃(𝑥)} (3) 

where  plays the same role as  in (1). Here, g is a vector of directions and is defined as 

g=(y,-b), using (3), good outputs can be expanded while bad outputs are contracted. Thus, weak 

disposability implies: 

(y, b) P(x) and 0≤≤1 imply (y, b) P(x) (4) 
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But this contradicted with the concept indicting in (3) since weak disposability as in (4) means, 

to remain feasible, good outputs should be decreased with the same proportion as bad outputs3. 

Free disposability is also written as below: 

(y,b)P(x) and y≤y imply (y,b) P(x) (5) 

This also implies that good and bad outputs are freely disposable. In addition, it is also assumed 

that good and bad outputs are produced jointly namely “null-joint”, which means, it is not 

possible to produce good output without producing any bad output.  

Now according to Chung et al. (1997) P(x) can be rewritten as below to be compatible with (2), 

(3), (4), and (5): 

𝑃(𝑥) = {( 𝑦, 𝑏): ∑ 𝑧𝑛𝑥𝑖𝑛
𝑁
𝑛=1 ≤ 𝑥𝑖𝑜   𝑖 = 1,2,… , 𝐼;      ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁
𝑛=1 ≥ 𝑦𝑗𝑜 + 𝜃𝑦𝑗𝑜  

 𝑗 = 1,2, … , 𝐽;   ∑ 𝑧𝑛𝑏𝑘𝑛
𝑁
𝑛=1 = 𝑏𝑘𝑜 − 𝜃𝑏𝑘𝑜        𝑘 = 1,2, … , 𝐾;  𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁} (6) 

here zn are intensity variables. According to (6) the following linear programming model can be 

used to find 𝐷⃗⃗ (x, y, b;g), g=(y,-b): 

𝐷⃗⃗ 𝑜 (𝑥, 𝑦, 𝑏; 𝑔) = 𝑀𝑎𝑥   (7) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 ;   𝑖 = 1,2,… , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 + 𝜃𝑦𝑗𝑜 ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑏𝑘𝑛

𝑁

𝑛=1
= 𝑏𝑘𝑜 − 𝜃𝑏𝑘𝑜 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁 

Chambers et al. (1996) defined a similar model without considering undesirable outputs as 

formulated in Model (8) below: 

                                                 
3 Economic implications of the weak disposability axiom is further discussed in Kuosmanen and Kazemi Matin 

(2011). 
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𝐷⃗⃗ 𝑜 (𝑥, 𝑦; 𝑔) =  𝑀𝑎𝑥   (8) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 − 𝜃𝑥𝑖𝑜;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 + 𝜃𝑦𝑗𝑜 ;   𝑗 = 1,2, … , 𝐽 

𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁 

Here g equals (y,-x). It is worthwhile to note that, third series of constraints in Model (7) (which 

are corresponding to the bad outputs, b’s) are similar to the first series of constraints in Model (8) 

(which are corresponding to inputs, x’s) whereas in Model (7) third series of the constraints are 

equalities. 

As indicated in Fukuyama and Weber (2009) and Zhou et al. (2012) a conventional DDF model 

may overestimate the efficiency when non-zero slacks appears in the efficiency measures, hence, 

a new generation of non-radial DDF model has been introduced to the DEA literature (Fukuyama 

et al., 2011) and have been successfully applied in many applications (Fukuyama and Weber, 

2010; Mahlberg and Sahoo, 2011; Sahoo et al., 2011; Wang et al., 2013; Zhou et al., 2012). DDF 

models have also been applied in many disciplines including energy efficiency (Färe  et al., 

2007), assessment of banks (Barros et al., 2012), agriculture (Blancard et al., 2006). Recently 

Färe and Grosskopf (2013) have investigated affine data translation properties of DDF models. 

In section 3 we discuss the non-radial DDF Models in details. 

2.2 Malmquist-Luenberger index 

Based on the Malmquist index approach for efficiency and technology change, Chung et al. 

(1997) developed the Malmquist-Luenberger index (MLI). The MLI incorporates undesirable 

outputs, to evaluate productivity change when a longitudinal study is conducted4. In the same 

manner as Malmquist index which is calculated using a series of DEA models (Färe et al., 1994); 

the MLI deploys Directional Distance Function to solve various linear problems for 

decomposing MLI to technology and productivity change during the period of study. 

                                                 
4 It should be noted that MLI is not the only index for evaluating productivity change in longitudinal studies in the 

presence of undesirable factors, researchers have introduced alternative Malmquist indexes, such as Malmquist CO2 

emission performance index (MCPI) (Zhou et al., 2010) or Environmental Performance Index (EPI) (Kortelainen, 

2008). 
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Now we address how Model (7) can be used to calculate the following components of MLI in the 

longitudinal studies: 

𝑀𝐿𝑡
𝑡+1 = [

(1+𝐷𝑜
𝑡(𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑦𝑡,−𝑏𝑡))

(1+𝐷𝑜
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑦𝑡+1,−𝑏𝑡+1))

  ×   
(1+𝐷𝑜

𝑡+1(𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑦𝑡,−𝑏𝑡))

(1+𝐷𝑜
𝑡(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑦𝑡+1,−𝑏𝑡+1))

]

1
2⁄

  (9) 

where t=1,…,T denotes periods of study. In other words, 𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡; 𝑦𝑡 , −𝑏𝑡), for example, 

represents the distance function for frontier in period t+1 while assessing a DMU from period t. 

Therefore, the linear programs corresponding to 𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡; 𝑦𝑡 , −𝑏𝑡) and 

𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; 𝑦𝑡+1, −𝑏𝑡+1) are named mixed period models, since the DMU under 

assessment and the frontier are from different periods. This can lead to an infeasibility problem, 

which is discussed further in Section 2.4. 

2.3 Slacks-Based Measure of Inefficiency 

The slacks-based measure of inefficiency as introduced by Tone (2001) is one the most common 

model applied in DEA. Tone (2010) has also deployed the slacks-based measure and its 

variations to measure productivity factors. Further, Färe and Grosskopf (2010b) have introduced 

the following model: 

𝐷⃗⃗ 𝑂(𝑥, 𝑦, 𝑏) = 𝑀𝑎𝑥  𝛼1 + ⋯+ 𝛼𝐼 + 𝛽1 + ⋯+ 𝛽𝐽 (10) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜−𝛼𝑖 . 1  ;   𝑖 = 1,2, … , 𝐼 

 ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 + 𝛽𝑗 . 1;   𝑗 = 1,2, … , 𝐽 

𝑧𝑛 ≥ 0 ; 𝛼𝑖 ≥ 0; 𝛽𝑗 ≥ 0;  𝑛 = 1,2, … , 𝑁;  𝑖 = 1,2, … , 𝐼;  𝑗 = 1,2, … , 𝐽 

where, 𝛼1, … , 𝛼𝐼  and  𝛽1, … , 𝛽𝐽 are variable. Here we adapt Model (10) to include bad outputs as 

below: 
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𝐷⃗⃗ 𝑂(𝑥, 𝑦, 𝑏) = 𝑀𝑎𝑥  𝛽1 + ⋯+ 𝛽𝐽 + 𝛾1 + ⋯+ 𝛾𝐾 (11) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 ;   𝑖 = 1,2, … 𝐼;  

 ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 + 𝛽𝑗 . 1 ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑏𝑘𝑛

𝑁

𝑛=1
= 𝑏𝑘𝑜 − 𝛾𝑘 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛 ≥ 0 ; 𝛾𝑘 ≥ 0; 𝛽𝑗 ≥ 0;  𝑛 = 1,2, … , 𝑁;  𝑗 = 1,2, … , 𝐽;   𝑘 = 1,2, … , 𝐾 

where,  𝛽1, … , 𝛽𝐽 and 𝛾1, … , 𝛾𝐾 are variable. Model (10) still suffers from infeasibility problem 

when it is applied for measuring Malmquist-Luenberger index. Later in Section 3 we customize 

this model in order to tackle the infusibility problem. 

2.4 The infeasibility problem 

As explained in the previous section, in order to calculate 𝑀𝐿𝑡
𝑡+1 or 𝑀𝐿𝑡+1

𝑡  a number of mixed 

period models have to be solved. This can lead to situations of infeasibility since in some cases 

one or more DMUs are located beyond the efficiency frontier and g=(y,-b) or any other arbitrary 

directions, which are the same for all DMUs, cannot project those DMUs to the frontier5 (Chung 

et al., 1997). One can find an illustration of this problem in Färe et al. (2001). Many studies are 

capable of facing the same problem like what Chung et al. (1997), Färe et al. (2001), and Oh 

(2010) have done on Swedish pulp and paper industry, American coal-fired power plants, and 26 

countries, respectively. The same problems can occur when super efficiency is calculated using 

DDF DEA models. Here it is important to note that, non-radial DDF with undesirable output are 

vulnerable of this infeasibility problem, when they are employed for ML index measurement 

(Wang et al., 2013).  

To tackle this problem, a number of strategies have introduced. Färe et al. (2001) used just t+1 

frontier as the reference technology, however in addition to the possibility of infeasibility which 

still exist when reference technology at period t locates over t+1 frontier, this approach is an 

arbitrary strategy and just one reference technology is deployed. Färe et al. (2007) have 

                                                 
5 This problem only happens in the presence of undesirable outputs and when DDF is employed to measure ML 

index. In the absence of undesirable outputs, constant return to scale (CRS) form of DDF models or Model (8), will 

always be feasible, even if it is used for super-efficiency measurement, see Ray (2007) and Chen et al. (2013). 



8 

employed a joint technology reference from t and t+1 period, where the data from t+1 is added 

to t reference technology. Although this approach can eliminate the infeasibility problem but the 

frontier is arbitrary yet. By using global ML index of Oh (2010) the infeasibility problem does 

not occur, however again, global ML follows the approach that Färe et al. (2007) have taken for 

two consequent periods where they used meta frontier analysis. 

Two simple examples, in Appendix, show inefficiency of other approaches introduced to tackle 

the infeasibility problem. 

In the next section, we use DDF to introduce a method that the infeasibility would not happen. 

3 An approach to eliminate the infeasibility problem 

When a DMU falls beyond the frontier, there is a possibility of infeasibility when measuring the 

efficiency. This could be due two main reasons. First is the case that good outputs and bad 

outputs are expanding and contracting, respectively, with the same proportion. Second, because 

in a standard DDF model the same direction, g=(y,-b), is applied to all DMU’s. Thus, we define 

a new direction function based on a new set; P(x), for the DMU’s which lie above the boundary 

as below: 

P(x)= {( 𝑦, 𝑏): ( 𝑦, 𝑏) 𝑃(𝑥), ( 𝑦, 𝑏) ≥ 0}  (12) 

𝐷⃗⃗ 𝑂
′ (𝑥, 𝑦, 𝑏; 𝑔) = 𝑖𝑛𝑓 {|𝜏|: (𝑦, 𝑏) +  𝜏 𝑔𝑃(𝑥)}  (13) 

where 𝜏 represents the minimum contraction of both good and bad outputs, which can project the 

DMU to the boundary. Therefore, we can reformulate model (11) for these DMUs as follows: 
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𝐷⃗⃗ 𝑂
′ (𝑥, 𝑦, 𝑏) = 𝑀𝑖𝑛 𝛽1 + ⋯+ 𝛽𝐽 + 𝛾1 + ⋯+ 𝛾𝐾  (14) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 ;   𝑖 = 1,2, … , 𝐼 

 ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 − 𝛽𝑗 . 1 ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑏𝑘𝑛

𝑁

𝑛=1
= 𝑏𝑘𝑜 − 𝛾𝑘. 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛 ≥ 0 ;  𝛾𝑘 ≥ 0; 𝛽𝑗 ≥ 0;  𝑛 = 1,2, … ,𝑁;  𝑗 = 1,2,… , 𝐽;   𝑘 = 1,2, … , 𝐾 

where α={𝛽1, … , 𝛽𝐽 , 𝛾1,, … , 𝛾𝐾,}. Model (14), unlike (11), seeks for the nearest direction toward 

frontier, since the DMUs below and above the frontier follows different paradigms. For the 

DMUs located below the frontier, those closer to the frontier are evaluated as being more 

efficient, however for the DMUs above the frontier regarded as being less efficient. In other 

words, in this case the DMU located furthest away from the frontier is the most efficient. 

According to Färe and Grosskopf (2010a) for finding the direction vector we can reformulate 

Model (13) to the following model: 

𝐷⃗⃗ 𝑂
′ (𝑥, 𝑦, 𝑏) =Min 𝜂 (15) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 ;   𝑖 = 1,2,… ;  

 ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 − 𝑔𝑦𝑗 . 𝜂 ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑏𝑘𝑛

𝑁

𝑛=1
= 𝑏𝑘𝑜 − 𝑔𝑏𝑘. 𝜂 ;   𝑘 = 1,2,… , 𝐾 

∑ 𝑔𝑦𝑗

𝐽

𝑗=1
+ ∑ 𝑔𝑏𝑘

𝐾

𝑘=1
= 1 

𝑧𝑛 ≥ 0 ; 𝑔𝑦𝑘 ≥ 0; 𝑔𝑏𝑗 ≥ 0;  𝑛 = 1,2, … ,𝑁;  𝑗 = 1,2, … , 𝐽;   𝑘 = 1,2, … , 𝐾 

Let 𝑔𝑦𝑗 . 𝜂 = 𝛽𝑗  and 𝑔𝑦𝑘. 𝜂 = 𝛽𝑘  it can easily be verified that Model (14) and Model (15) are 

equivalent, therefore optimal solution of Model (14) equals 𝜂∗ for an identical DMU under 

assessment. 
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Now, we indicate how the optimal direction for Model (15), (or later for Model (19)) can be 

obtained through solving Model (14), (or later through Model (11)). It is trivial that, if DMUo, is 

placed on the frontier then G=(𝑔𝑦1, … , 𝑔𝑦𝐽, 𝑔𝑏1, … , 𝑔𝑏𝐾), the direction vector, can be any 

direction, otherwise by solving Model  (13) and assuming  𝑔𝑦𝑗 . 𝜂
∗ = 𝛽𝑗

∗ and 𝑔𝑏𝑘. 𝜂
∗ = 𝛽𝑘

∗ we 

conclude: 

𝜂*=
𝛽1

∗

𝑔𝑦1
=

𝛽2
∗

𝑔𝑦2
= ⋯ =

𝛽𝐽
∗

𝑔𝑦𝐽
=

𝛾1
∗

𝑔𝑏1
=

𝛾2
∗

𝑔𝑏2
= ⋯ =

𝛾𝐾
∗

𝑔𝑏𝐾
 (16) 

Hence, 

𝛽1
∗. 𝑔𝑦2 = 𝛽2

∗. 𝑔𝑦1, 𝛽2
∗. 𝑔𝑦3 = 𝛽3

∗. 𝑔𝑦2, … , 𝛽𝐽
∗. 𝑔𝑏1 = 𝛾1

∗. 𝑔𝑦𝐽,…, 𝛾𝐾−1
∗ . 𝑔𝑏𝐾 = 𝛾𝐾

∗ . 𝑔𝑏𝐾−1  (17) 

Next we achieve: 

𝛽1
∗. 𝑔𝑦2 − 𝛽2

∗. 𝑔𝑦2 = 0, 

𝛽2
∗. 𝑔𝑦3−𝛽3

∗. 𝑔𝑦2 = 0, 

…, 

𝛽𝐽
∗. 𝑔𝑏1 − 𝛾1

∗. 𝑔𝑦𝐽 = 0, 

…, 

𝛾𝐾−1
∗ . 𝑔𝑏𝐾−𝛾𝐾

∗ . 𝑔𝑏𝐾−1 = 0  

∑ 𝑔𝑦𝑗
𝐽
𝑗=1 + ∑ 𝑔𝑏𝑘

𝐾
𝑘=1 = 1 (18) 

Where (18) is a system of equation with first similar J+K-1 equations and J+K unknowns. Thus, 

together with ∑ 𝑔𝑦𝑗
𝐽
𝑗=1 + ∑ 𝑔𝑏𝑘

𝐾
𝑘=1 = 1 we have J+K equations and J+K unknowns with first 

J+K-1 pairwise linearly independent equations. Furthermore, no linear combination of the first 

J+K-1 equations can generate the last equation, since first J+K equations have zero in their RHS 

but the last equation has unity in the same place. Therefore, this is a system of linear equations 

with a unique solution, which is G= (𝑔𝑦1, … , 𝑔𝑦𝐽, 𝑔𝑏1, … , 𝑔𝑏𝐾). As a result, by solving (14) and 

(18) we can achieve optimal directions. 

Here, we illustrate this case with a very simple example of single input and two outputs – one 

good and one bad. Here efficiency score is (1- D). 
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Table 1: A simple example, data and efficiency scores 

DMU Data Efficiency Score 

 Good Output Bad Output Model (7) Model (11) 
Model (14) 

using MLIA 

 t t+1 T t+1 t t+1 t t+1 t+1 

1 1 4 1 4 .667 Na .75 Na* 1.5 

2 2 2 1 1 1 1 1 1 1 

3 3.5 3.5 2 2 1 1 1 1 1 

4 3 3 3 3 1 1 1 1 1 

5 1 3.5 2 3.5 .4 Na .625 .625 1.25 
*Na refers to not available 

Figure 1 is a graphical presentation of Table 1, where P(x) is the production possibility set, in 

period t, and DVt+1,1,7=(yt+1,1, -bt+1,1)=(4,-4) and DVt+1,5,7=(yt+1,5, -bt+1,5)=(3.5,-3.5) are the 

direction vectors assigned to DMU1 and DMU5 in period t+1 by model (7), respectively. In 

addition, in Figure 1, DVt+1,5,11=(gy, -gb)=(0,-1) and DVt+1,5,14=(gy, -gb)=(-0.5,-0.5) are the 

direction vectors corresponding to DMU5 in period t+1 calculated by Model (11) and Model 

(14), respectively6. Here DVt+1,1,7, refers to the direction vector corresponding to the period t+1.  

As can be seen in this Figure 1, by deploying Model (7), the DVt+1,5,7 does not intersect P(X). 

Therefore Model (7) is infeasible for this DMU; while deploying Model (14), using (-0.5,-0.5) as 

the optimal direction, DMUt+1 5 is drawn to DMUt 4 on the border of P(X) and the model is 

feasible for this DMU. 

Now consider calculating 𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) using Model (7), we get infeasible solution for 

DMUt+1 5, while using Model (14) the efficiency score of 1.25 is achieved. In this particular 

case, Model (11) is feasible for DMUt+1 5 and it is projected to DMUt 3. However, as can be seen 

in the Figure 1, Model (14) evaluates its distance value in a more reasonable way since the 

distance to the frontier is minimized.  

Focusing on Figure 1, one can see that Model (7) and Model (11) yield infeasible solution for 

DMUt+11, since for model (7), (4,-4) does not intersect P(x) and Model (11) cannot find any 

feasible direction to intersect P(x). However, employing Model (14) the projected point is 

DMUt4, -0.5 and 1.5 can be achieved for the distance value and the efficiency score, 

respectively. 

 

                                                 
6 According to equation (16) or (17)  gy= 𝜂*/𝛽𝑗

∗, -gb= 𝜂*/𝛽𝑘
∗, where 𝜂* is the corresponding optimal value of Model 

(14) which equals to the same amount of Model (11) for each DMU, since Model (14) and Model (11) are 

equivalent. 
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Figure 1: A graphical presentation of DMUs in Table 1 

Thus, we propose the following 3 steps algorithm to avoid infeasibility problem in calculating 

MLI: 

1. Examine if there are  DMUs that are located beyond the efficiency frontier 

2. If so, deploy Model (14) to calculate 𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1), and 𝐷𝑜

𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡) for the 

same DMUs.7 

3. Otherwise deploy Model (11) to compute 𝐷𝑜
𝑡(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡), 𝐷𝑜

𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1), 

𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡) and 𝐷𝑜

𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) for all DMUs. 

In the rest of this paper we refer to this algorithm as MLIA (Malmquist-Luenberger Index 

Algorithm). It also should be noted that the same approach can be applied to eliminate the 

similar infeasibility problem in MLI measurement using non-radial DDF models by applying 

Model (14) for the DMUs that are located beyond the frontier when a non-radial DDF model is 

employed to measure ML index. 

3.1 Feasibility conditions considerations 

One last thing to be proved is the model feasibility. Toward this aim, we have the following 

theorem: 

                                                 
7 𝐷𝑜

𝑡(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡) 𝑎𝑛𝑑 𝐷𝑜
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) are calculated using (11) 

b 

y 

DMUt1 

DMUt2 

DMUt3 

DMUt4 

DMUt5 

P(x) 

DMUt+15 

DMUt+11 

DVt+1,5,7 

DVt+1,1,7 

DVt+1,5,7 DVt+1,1,7 

DVt+1,5
 ,

14
 

DVt+1,5,11 

DVt+1,5,14 

DVt+1,5 ,11 
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Theorem: If (y1, b1) P(x) then Model (14) is feasible for (y1, b1). 

Proof: To prove this, it is sufficient if we find at least one vector like (Z, Β, 𝛤), which satisfies all 

constraints in Model (14). In order to do so, let us assume P(x)≠ so there is at least one (y0, 

b0)P(x) and (y0, b0) is on the frontier, so if we take (y1, b1)P(x) then y1> y0 or b1 b0. In fact, 

since (0,0) P(x) (null jointness property), b1 b0 result in b1>b0, otherwise 0<b1<b0 which 

means 0<b1. Hence, if y1> y0 or b1>b0, if y1=(y11,.., yJ1) and b1=(b11,.., bK1), there exist at least 

one yj1>yj0 or bk1>bk0 or if 0<b1< b0 then 0<bk1<bk0. Thus, (0, y1, b1) with y10 and b10 

satisfies all the constraints, means model (14) is feasible. 

Therefore, if Model (11) (or even Model (7)) has an infeasible solution for any particular DMU, 

using model (14) we can find its distance to the frontier and consequently calculate inefficiency, 

efficiency, and MLI measures. 

3.2 Advantages of the new slacks-based models 

Similar to Model (14) (and Model (15)), it can simply be shown that Model (11) is equivalent to 

the following model: 

𝐷⃗⃗ 𝑂(𝑥, 𝑦, 𝑏) = 𝑀𝑎𝑥 𝜂 (19) 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1
≤ 𝑥𝑖𝑜 ;   𝑖 = 1,2, … ;  

 ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1
≥ 𝑦𝑗𝑜 + 𝑔𝑦𝑗 . 𝜂 ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑏𝑘𝑛

𝑁

𝑛=1
= 𝑏𝑘𝑜 − 𝑔𝑏𝑘 . 𝜂 ;   𝑘 = 1,2, … , 𝐾 

∑ 𝑔𝑦𝑗

𝐽

𝑗=1
+ ∑ 𝑔𝑏𝑘

𝐾

𝑘=1
= 1 

𝑧𝑛 ≥ 0 ; 𝑔𝑦𝑘 ≥ 0; 𝑔𝑏𝑗 ≥ 0;  𝑛 = 1,2, … , 𝑁;  𝑗 = 1,2, … , 𝐽;   𝑘 = 1,2, … , 𝐾 

With the same proof as in the previous section, it can be shown that G=(𝑔𝑦1, … , 𝑔𝑦𝐽, 𝑔𝑏1, … , 𝑔𝑏𝐾) 

is an optimal direction which can be calculated by solving Model (11). In other words, G projects 

each inefficient DMU to the farthest point in the feasible region by increasing the good outputs 

and decreasing the bad ones, simultaneously. In this sense, the new models, Model (11) and 
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Model (14), give a better value of inefficiency in comparison to the other conventional DDF 

models, which employ g=(y,-b) as an arbitrary direction. 

Model (19) and its equivalent Model (11), are seeking for the best direction to project the under 

assessment inefficient DMU to the farthest point on the efficient frontier by simultaneously 

expanding the good outputs and contracting the bad outputs, proportionally, whereas non-radial 

DDF models minimize the slacks remained in the efficiency by expanding the goods and 

contracting the bads, simultaneously, however non-proportionally. Model (19) and Model (11), 

find the optimal direction endogenously (see Equations 16, 17, and 18). These models are more 

proper for the situations with less information about the technology. However non-radial models 

like those are employed by Zhou et al. (2012) and Wang et al. (2013) are more appropriate for 

efficiency measurement in the presence of comprehensive information and when the stress is on 

compliance with the exogenous rules instead of flexibility of efficiency measurement models. 

Next section exhibits applicability of MLIA and Model (11) and (14) by applying them in a real 

application. 

4 An Application in Power Plants 

To illustrate applicability of MLIA, we deploy this algorithm to calculate ML productivity index 

for 18 steam power plants in Iran over an eight years period of restructuring to provide analytical 

reports for power industry authorities of the restructuring success or failure. The steam power 

plants have a 28% contribution in the countrywide generation of electricity. Therefore these 

reports are necessary since one of the main objectives of restructuring in Iran’s power industry is 

to enhance the efficiency of power facilities (Ghazizadeh et al., 2007). In line with this, inputs 

and outputs of our models have been chosen as Table 2.  
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Table 2: Definitions of input-output variables  

Inputs Definition 

1. Installed or Effective Capacity This factor which is used as a proxy for capital is nameplate capacity in Mega 

Watts. This value is the summation of all operational turbines capacity which 

can be found in their catalog. 

Effective capacity is the actual power of the power plants which can be 

generated by its turbines.* 

2. Fuel Consumption Since a heat turbine can consume different types of fuel and each fuel has 

different heating value, this factor is calculated by the summation of the calorie 

which each type of consumed fuel could produce in a year.* 

Outputs Definition 

Undesirable: 

1. SO2, Nox, Cox emission 

Tones of emission factors which are produced by a power plant in a year ** 

2.Operational availability/ Deviation 

from Generation plan 

It is the summation of daily rates of generated energy to the energy which was 

supposed to be generated by national dispatching in peak hour in a year, Mega 

Watt Hours. *** 

Desirable: Generated Energy Amount of Mega Watt Hours energy which has been generated by a power plant 

and has been injected to national power network in a year* 

Source: * http://www.tavanir.org.ir/ 
** TAVANIR8 Environment Bureau 

*** IRAN National Dispatching 

This selection is based on a comprehensive literature review on the previous similar studies. 

Golany et al. (1994), one of the first papers using DEA as efficiency measurement tool, chose 

installed capacity, fuel consumption and manpower as inputs, while the bad outputs were SO2 

emission and deviation from operational parameters and the good outputs were generated power 

and operational availability. In another study, Athanassopoulos et al. (1999) took fuel, 

controllable costs and capital expenditure as inputs; generated pollution and accidents incurred as 

bad outputs, and electricity produced and plant availability as good outputs while (Burnett and 

Hansen, 2008) deployed capital, fuel costs, and operating costs as inputs, SO2 emission as bad 

output and generated power as good output. In a very similar study to ours, Färe et al. (2005) 

employed labor, installed capacity, and fuel as inputs and SO2 emission and generated power as 

undesirable and desirable outputs, respectively. More recently, Sueyoshi and Goto (2011) used 

generation capacity, number of employees, coal, oil, and LNG9 as inputs, CO2 emission as bad 

output and generation as good output for their study. 

                                                 
8 Iran Generation, Transmission, and Distribution Holding Company 
9 Liquefied Natural Gas 

http://www.tavanir.org.ir/
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Table 3: Results for Deploying Model (14) to tackle infeasibility problem in Model (10) 

Power 

Plants 

Codes 

𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) Results of Model (11) Power 

Plants 

Codes 

𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) Results of Model (14) using MLIA 

2003-

2004 

2004-

2005 

2005-

2006 

2006-

2007 

2007-

2008 

2008-

2009 

2009-

2010 

2003-

2004 

2004-

2005 

2005-

2006 

2006-

2007 

2007-

2008 

2008-

2009 

2009-

2010 

St_1 0.089 0.294 0.159 0.169 0.107 0.459 0.214 St_1 0.089 0.294 0.159 0.169 0.107 0.459 0.214 

St_2 0.360 0.348 Na Na 0.354 0.674 0.504 St_2 0.360 0.348 -0.020 -0.002 0.354 -0.036 0.504 

St_3 0.177 0.162 0.108 0.267 0.411 0.182 0.150 St_3 -0.014 0.162 -0.017 0.267 0.411 0.182 0.150 

St_4 0.440 0.465 0.391 0.418 0.497 0.653 0.775 St_4 0.440 0.465 0.391 0.418 0.497 0.653 0.775 

St_5 0.220 0.161 0.291 0.188 0.029 0.196 0.184 St_5 0.220 -0.002 0.291 0.000 -0.014 0.000 -0.001 

St_6 Na 0.073 0.169 0.141 0.115 Na 0.026 St_6 -0.093 0.073 0.169 0.141 0.115 -0.321 0.026 

St_7 0.088 0.150 0.160 0.304 0.055 0.095 0.165 St_7 0.088 0.150 0.160 0.304 0.055 0.095 0.165 

St_8 0.074 0.155 0.101 0.239 0.203 0.147 0.131 St_8 0.074 -0.001 0.101 0.239 0.203 0.147 -0.005 

St_9 Na 0.732 0.380 Na Na Na 0.297 St_9 -0.004 0.000 -0.001 -0.043 -0.032 -0.020 -0.005 

St_10 Na Na Na Na Na 0.085 0.122 St_10 -0.025 -0.005 -0.013 -0.025 -0.019 0.085 0.122 

St_11 0.163 0.278 0.201 0.199 0.147 0.141 0.192 St_11 -0.007 0.278 0.201 0.199 0.147 0.141 -0.003 

St_12 Na 0.144 0.186 Na Na 0.096 0.175 St_12 -0.101 0.144 0.186 -0.223 -0.114 0.096 0.175 

St_13 0.095 Na 0.222 0.138 Na Na 0.091 St_13 0.095 -0.033 0.222 0.138 -0.016 -0.011 0.091 

St_14 0.598 0.558 0.454 0.545 0.369 0.275 0.236 St_14 -0.159 -0.001 -0.004 -0.148 -0.006 -0.013 -0.036 

St_15 0.164 0.049 0.427 0.382 0.294 0.222 0.299 St_15 0.164 -0.012 0.000 0.382 -0.027 0.222 0.000 

St_16 0.108 0.069 0.154 Na 0.108 Na 0.117 St_16 0.108 0.069 0.154 -0.180 0.108 -0.002 0.117 

St_17 0.317 0.169 0.310 0.254 0.139 0.277 0.319 St_17 0.317 0.169 0.310 0.254 0.139 0.277 0.319 

St_18 0.182 Na Na Na Na 0.032 0.344 St_18 0.182 -0.018 -0.007 -0.014 -0.240 0.032 0.344 

 
𝐷𝑜

𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡) Results of Model (10) 
 

𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡) Results of Model (13) using MLIA  

St_1 0.192 0.080 0.249 0.155 0.146 0.183 0.429 St_1 0.192 0.080 0.249 0.155 0.146 0.183 0.429 

St_2 0.277 0.366 0.335 Na 0.161 0.373 0.667 St_2 0.277 0.366 0.335 -0.026 0.161 0.373 -0.023 

St_3 0.341 0.178 0.155 0.102 0.261 0.426 0.137 St_3 0.341 0.178 0.155 -0.015 0.261 0.426 -0.020 

St_4 0.449 0.469 0.406 0.411 0.387 0.576 0.619 St_4 -0.013 0.469 0.406 0.411 0.387 0.576 0.619 

St_5 Na 0.226 0.147 0.294 0.182 0.056 0.188 St_5 -0.017 0.226 -0.003 0.294 0.182 -0.017 0.000 

St_6 Na Na 0.038 0.179 0.124 0.174 Na St_6 -0.009 -0.236 0.038 0.179 0.124 0.174 -0.215 

St_7 0.144 0.108 0.115 0.171 0.291 0.115 0.125 St_7 0.144 0.108 0.115 0.171 0.291 0.115 0.125 

St_8 0.127 0.092 0.131 0.112 0.223 0.250 0.170 St_8 -0.010 0.092 -0.004 -0.028 0.223 0.250 0.000 

St_9 Na Na Na 0.294 Na 0.304 Na St_9 -0.075 -0.032 -0.024 0.294 -0.025 -0.001 -0.066 

St_10 Na 0.022 Na Na Na 0.088 0.058 St_10 -0.010 0.022 -0.101 -0.027 -0.025 0.088 0.058 

St_11 0.250 0.161 0.276 0.201 0.199 0.150 0.144 St_11 0.250 -0.006 0.276 0.000 0.199 0.150 -0.005 

St_12 0.110 Na Na 0.174 0.009 0.139 0.160 St_12 -0.022 -0.260 -0.184 0.174 0.009 -0.013 0.160 

St_13 Na 0.141 Na 0.014 0.116 0.127 Na St_13 -0.034 0.141 -0.197 0.014 0.116 0.127 -0.004 

St_14 0.489 0.599 0.557 0.453 0.545 0.371 0.278 St_14 -0.003 -0.059 -0.146 -0.005 -0.278 -0.149 -0.057 

St_15 0.070 0.167 0.046 0.423 0.381 0.307 Na St_15 -0.004 0.000 -0.003 -0.002 -0.002 -0.011 -0.016 

St_16 Na 0.132 Na 0.130 0.013 0.144 0.033 St_16 -0.028 0.132 -0.106 0.130 0.013 0.144 0.033 

St_17 0.298 0.333 0.152 0.291 0.249 0.179 0.298 St_17 0.298 0.333 0.152 0.291 0.249 0.179 0.298 

St_18 Na 0.047 Na 0.051 0.196 Na Na St_18 -0.095 0.047 -0.016 -0.012 0.196 -0.040 -0.101 

We ran the models to find MLI for steam power plants over an eight years period, from 2003 to 

2010, of restructuring in Iran power industry but we just exhibit the results for two mixed period 

DEA models to calculate 𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡) and 𝐷𝑜

𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) in Table 3. To maintain 

confidentiality of the results, power plants names have been coded to St_1 to St_18. In order to 

distinguish between the DMU which have been located beyond the frontier we have shown their 

distance value by negative sign. 

As can be observed from the right hand side of Table 3, the infeasibility problem is fully tackled 

in the power plant case. Every infeasible solution is denoted by ‘Na’. As can be seen in Table 3, 

the corresponding value for each ‘Na’ in the left hand side of the Table is a negative value on the 

right hand side. Moreover, one can see some feasible values in the left hand side obtain a 

negative value in the right hand side; these are the DMUs that are located over the frontier and 
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had feasible solution using Model (11). However, as we justified in Section 3, it is more 

reasonable if model (14) is deployed to measure the distance value for them. Furthermore, in 

order to calculate MLI we have (1 + 𝐷𝑜
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡)) and (1 + 𝐷𝑜

𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)) which are 

calculated using mixed period DEA models; the negative sign for the DMUs locating beyond the 

frontier make the value less than unity and for other DMUs greater or equals to 1. 

5 Discussion 

Focusing on Table 3, one can see that every infeasibility denoted by ‘Na’ in left side of the table 

has been eliminated by MLIA, so the model in addition to the algorithm can be deployed for 

studies using MLI to evaluate the trend of productivity change over a period. 

It is also clear in Table 3 that every infeasibility has been replaced with a negative value for the 

distance function. To calculate the eco-efficiency value we use 1-D, hence we obtain a value 

more than unity for these DMUs acting better than the contemporary technology or have been 

located beyond the eco-efficiency frontier. In addition, Model (14) gives a reasonable value for 

the eco-efficiency, since based on its nature Model (14) assigns a larger eco-efficiency score to 

DMUs which are located further away from the frontier. 

Moreover, as mentioned in Section 3, by using Model (14) and Model (15) one can determine the 

optimal direction for every DMU. Figure 1 shows these directions graphically, and depict which 

direction a DMU can be projected to the frontier of Model (11) and Model (14). However, using 

Model (14), the DMU has a choice to choose different directions and to project to different 

frontiers in order to minimize the distance and obtain the best eco-efficiency scores.  

Finally, the MLIA, Model (11), and Model (14) together, not only they solve the problem of 

infeasibility and give a reasonable value for eco-efficiency, but also they are not of arbitrary 

choice of the frontier for the mixed period problems, as proposed in Section 2.4. Therefore, the 

algorithm together with the model can provide a reliable approach for the further studies 

involving distance functions with mixed period mathematical programming models. 
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6 Conclusions 

The infeasibility problem is prevalent in Malmquist-Luenberger Index (MLI) evaluation process. 

Researchers have taken a number of strategies to overcome it but all has been arbitrary. In this 

paper, we introduced a model as well as an algorithm based on a slacks-based measure, which 

can eliminate this infeasibility problem as well as render a non-arbitrary frontier. The new model 

incorporates an optimal direction to increase good outputs and decrease bad outputs, 

simultaneously. Deploying the introduced model, we presented an algorithm for finding 

efficiency scores of mixed period problems. The proposed algorithm is applicable for both radial 

and non-radial DDF models. Using a simple example we illustrated the algorithm and its 

workability. To show the applicability of the new MLI algorithm was implemented on a power 

plant panel dataset, the results clearly demonstrated that the infeasibility problem was 

successfully eliminated. 
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Appendix  

Example 1 

Contemporaneous Malmquist-Luenberger index and Global Malmquist-Luenberger index are 

indeed different measures with their own applications, so comparing these two measures may be 

seriously questionable. 

We use a set of 6 DMU’s with equal inputs and just one good and one bad output as exhibited in 

the following table: 

Table A1: A Set of 6 DMU's used to show the global ML deficiencies 

Period 

DMU 

1 2 

z y z y 

1.  2 1 3 3 

2.  
10 − 4√5

5
 

4√10√5 + 4

5
 

10 − 4√5

5
 

4√10√5 + 4

5
 

3.  3 − √2 3 + √2 3 2 

4.  5 6 8 4 

5.  8 6 7 3 

6.  10 5 10 5 

Using DDF model (Model (7)), and DMU’s presented in Table A1, we can draw the following 

diagram: 
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Figure A1: Graphical presentation of DMUs in Table A1 using DDF frontiers 

In Figure A1, the frontier composed of DMU1,22, DMU13, DMU14, DMU15, and DMU1,26 

(black line) represents the technology frontier for period 1, and the frontier composed of 

DMU1,22, DMU21, and DMU1,26 (blue dotted line) represents the technology frontier for period 

2. By using the DDF technique to compute the Global ML index for DMU1 for both periods, 

distance (D) to the frontier provides an index equal to 1. Thus, we obtain the following: 

MLG = √
1 + 2

1 + 2
= 1 

On the other hand, in the case of the contemporaneous ML, 𝑀𝐿1
2  we have: 

ML1
2 = √

1 + 2

1 + 0
.
1 + 2

1 + 2
= √3 = 1.73 

As it is obvious from the data, DMU1 has had a clear improvement from period 1 to period 2 

because in period 1 it has produced more bads in comparison with goods whereas in period 2 it 

z 

y 

DMU11 
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DMU13 

P(x) 

DMU
2
1 

DMU
2
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DMU
1
4 

DMU
2
4 

DMU
1
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DMU
1,2
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DMU
2
5 

D=2 

D=2 
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has produced as much bads as goods. In addition, in period 1, DMU1 was inefficient, but in 

period 2 it is efficient. Therefore, on both counts, DMU1 has improved, but the Global 

Malmquist-Luenberger index has failed to show this improvement indicating no change in eco-

efficiency. 

To summarize, Global Malmquist-Luenberger index is not a proper measure to compute the 

contemporaneous Malmquist-Luenberger and to show the trend. In fact, these are two different 

measures, and the approach in Oh (2010) cannot be a proper solution for the infeasibility 

problem. 

Example 2 

We borrow the example drawn in Aparicio et al. (2013) and customize it to show the 

shortcoming of the approach introduced to tackle the infeasibility problem in the same paper.  

Table A2: Data 

DMU x y b 

At 1 7 2 

Bt 1 5 5 

At+1 1 6.5 1 

Bt+1 1 5.5 3 
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Figure A2: Output sets in t and t + 1 (good and bad outputs) 

As can be seen in the above Figure, Model (7) will be infeasible when ML𝑡+1
𝑡  for Bt and At are 

calculated. Now, if we deploy the approach introduce by Aparicio et al. (2013), we can draw the 

problem in the following Figure. 

 

Figure A3: New output sets in t and t + 1 from new approach 

It is clearly seen in Figure 3, although ML𝑡+1
𝑡  is feasible for Bt, but it still infeasible for At, since 

the direction arrow corresponding to At does not intersect any of the production possibility sets in 
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period t+1. In fact, the approach fails to build nested production possibility sets corresponding to 

the consecutive periods as argued in this paper. 

In addition in Figure , Ct=(7,5) is a feasible DMU (virtual) by the approach introduced in 

Aparicio et al. (2013). Ct in comparison to At=(7,2) produces significantly more undesirable 

output (5-2=3) using same amount of input and producing same amount of desirable output. This 

situation clearly contradicts the null jointness property. Ct indicates 3 units of extra undesirable 

outputs produced accompanying with the 0 amount of extra output, which is not happened in the 

real world using the existing technology which is used by A and B in two consecutive periods, t 

and t+1. This is while, Ct and its convex combination with At are employed to form the 

efficiency frontier. 

Furthermore, using the approach proposed in Aparicio et al. (2013) it clear that Bt, which used to 

be an efficient DMU, is determined as an inefficient DMU (as it is compared with a frontier that 

is drawn based on convex combination of two DMU’s in which one of them, Ct, is unreal 

hypothetical DMU). Indeed, Ct in comparison to Bt use the same amount of input and produces 

the same quantity of undesirable output accompanying more 2 units of good output, which is not 

possible using the concurrent technology deployed by A and B in two consecutive periods, t and 

t+1. 
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