Elsevier Editorial System(tm) for The Spine Journal Manuscript Draft

Manuscript Number: SPINEE-D-13-00152R2

Title: Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by co-culture with bone marrow stromal cells

Article Type: Basic Science

Section/Category: Basic Science/Physiology

Keywords: Bone marrow stromal cells; Spinal motor neurites; Glial scar nerve inhibitors; Spinal cord injury

Corresponding Author: Dr. Karina Wright,

Corresponding Author's Institution: Keele University

First Author: Karina Wright

Order of Authors: Karina Wright; Kenzo Uchida; Jennifer Bara; Sally Roberts; Wagih El Masri; William Johnson

Abstract: BACKGROUND CONTEXT: Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear.

PURPOSE: To characterise spinal cord motor neurite interactions with human bone marrow stromal cells (MSC) in an in vitro model of spinal cord injury (SCI).

STUDY DESIGN/SETTING: Previously we have reported that human MSC promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar which are attributed with inhibiting axonal regeneration following SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model which is more relevant to the SCI situation.

METHODS: We have developed and characterised a novel spinal cord culture system. Human MSC were co-cultured with spinal motor neurites in substrate choice assays containing glial scar associated inhibitors of nerve growth. In separate experiments MSC conditioned media was analysed and added to spinal motor neurites in substrate choice assays. This study was funded by the corresponding author's institution; there are no conflicts of interest.

RESULTS: As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/ spinal cord co-cultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors which stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A.

CONCLUSIONS: These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation where glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises of motor neurons via immunocytochemical

characterisation. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states.

- 1 Title: Spinal motor neurite outgrowth over glial scar inhibitors is enhanced
- 2 by co-culture with bone marrow stromal cells
- 3 Authors names and affiliations: Karina T. Wright^{a,e}, Kenzo Uchida^c, Jennifer J.
- 4 Bara^{a,e}, Sally Roberts^{a,e}, Wagih El Masri^{b,e} and William E. B. Johnson^d.
- ⁵ ^aCentre for Spinal Studies; ^bMidlands Centre for Spinal Injuries: Robert Jones
- and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK, SY10 7AG.
- ⁷ ^cUniversity of Fukui, Department of Orthopaedics and Rehabilitation Medicine,
- 8 Fukui, Japan.^dLife and Health Sciences, Aston University, Aston Triangle,
- 9 Birmingham, UK, B4 7ET. ^eInstitute for Science and Technology in Medicine,
- 10 Keele University, Keele, Staffordshire, ST5 5BG, UK.
- 11 **Corresponding author:** Dr Karina T. Wright, Centre for Spinal Studies, Robert
- 12 Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK SY10
- 13 7AG. Tel: +44 (1691) 404699; Fax: +44 (1691) 404170; Email:
- 14 Karina.Wright@rjah.nhs.uk.

Re: SPINEE-D-13-00152R2

Title: Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by co-culture with bone marrow stromal cells. Wright KT et al.

13 Dec. 13

Dear Editor,

Thank you for your consideration of the above manuscript for consideration of publication in The Spine Journal; the following points are made in response to the comments of Reviewer 3:

We are grateful to the reviewer for considering our submission further. It seems that the main (only) issue for the Reviewer is because of the evident quality of the images that have been supplied in the Figures for the paper. In particular, the Reviewer is concerned that the spinal neurons being examined may not have an appropriate morphology for spinal motor neurons. In fact, we have used SC1 immunolocalisation as a marker for motor neurons because this marker has previously demonstrated specificity for motor neurons (as documented in the script) and because morphology alone is a poor indicator of function. Furthermore, we have used isolation and culture techniques that also have been demonstrated to successfully obtain motor neurons from chick spinal cords.

Hence, whilst we understand the point that has been made, we would refute the Reviewer's concern in the first instance. However, if you think this remains an issue of note, then we would be happy to consider addressing the terminology applied to the neurons being examined, i.e., to describe them as spinal neurons rather than motor neurons, and include in the text that we have demonstrated that they are SC1 immunopositive. We hope that you agree with us that this edit is not necessary.

To solve the issue, it may be possible to improve the quality of the final figures by sending individual powerpoint files, or the tiff or jpeg files that constitute each Figure proper. Indeed, the Figures have now been submitted as Power point files to optimise resolution, which we have uploaded to the website, but because of potential difficulties of submitting in this manner, we have also sent the individual files (powerpoint files for each Figure proper) to The Spine J., along with the individual constituent tiffs for each Figure. We hope that the new files will have solved the problem of figure resolution.

Thank you for reconsidering this submission to The Spine Journal, which would be an excellent journal in which to disseminate this work. However, we would like to reiterate that it is not possible to repeat these studies.

1 Title: Spinal motor neurite outgrowth over glial scar inhibitors is enhanced

- 2 by co-culture with bone marrow stromal cells
- Abstract 3

21

4 **BACKGROUND CONTEXT:** Transplantation of bone marrow cells into spinal 5 cord lesions promotes functional recovery in animal models and recent clinical 6 trials suggest possible recovery also in humans. The mechanisms responsible for 7 these improvements are still unclear. 8 **PURPOSE:** To characterise spinal cord motor neurite interactions with human 9 bone marrow stromal cells (MSC) in an *in vitro* model of spinal cord injury (SCI). 10 STUDY DESIGN/SETTING: Previously we have reported that human MSC 11 promote the growth of extending sensory neurites from dorsal root ganglia 12 (DRG), in the presence of some of the molecules present in the glial scar which are attributed with inhibiting axonal regeneration following SCI. We have adapted 13 14 and optimized this system replacing the DRG with a spinal cord culture to 15 produce a central nervous system (CNS) model which is more relevant to the SCI 16 situation. 17 **METHODS:** We have developed and characterised a novel spinal cord culture 18 system. Human MSC were co-cultured with spinal motor neurites in substrate 19 choice assays containing glial scar associated inhibitors of nerve growth. In 20 separate experiments MSC conditioned media was analysed and added to spinal

- motor neurites in substrate choice assays. This study was funded by the
- 22 corresponding author's institution; there are no conflicts of interest.

1	RESULTS: As has been reported previously with DRG, substrate-bound
2	neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth,
3	but these inhibitory effects were abrogated in MSC/ spinal cord co-cultures.
4	However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition
5	to substrates of myelin associated glycoprotein. In addition, the MSC secretome
6	contained numerous neurotrophic factors which stimulated spinal neurite
7	outgrowth, but these were not sufficient stimuli to promote spinal neurite
8	extension over inhibitory concentrations of neurocan or Nogo-A.
9	CONCLUSIONS: These findings provide novel insight into how MSC
10	transplantation may promote regeneration and functional recovery in animal
11	models of SCI and in the clinic, especially in the chronic situation where glial
12	scars (and associated neural inhibitors) are well established. In addition, we have
13	confirmed that this CNS model predominantly comprises of motor neurons via
14	immunocytochemical characterisation. We hope that this model may be used in
15	future research to test various other potential interventions for spinal injury or
16	disease states.

1 Introduction

2 Injury to the central nervous system (CNS) usually initiates a poor intrinsic 3 regenerative response for a number of reasons. Immune reactions, which in 4 other tissues may help to recruit reparative cells, often have a devastating effect 5 on CNS tissue function. Inflammation and ensuing secondary cascades can 6 cause extensive neuronal and glial cell death, as well as glial cell activation and 7 hypertrophy [1]. In an effort to restore the blood brain barrier, astrocytes at the site of injury become reactive and synthesise a proteoglycan rich matrix [2]. 8 9 Myelin debris associated molecules, including Nogo-A and myelin associated 10 glycoprotein (MAG), are also released from damaged neural tissues [3]. These 11 events combine to produce a hostile environment for nerve re-growth [2-6]. 12 There has been extensive interest world-wide in the development of cell 13 transplantation strategies for the treatment of CNS damage, in particular spinal 14 cord injury (SCI). Many diverse potential cell therapies have been tested, each 15 targeting different distinct stages of SCI and mechanisms of spinal cord repair [7-16 10]. Allogeneic embryonic stem cells (ES cells) and umbilical cord-derived cells, 17 as well as possible autologous cell sources, including adult neural stem cells, 18 Schwann cells and olfactory ensheathing cells have been shown to promote 19 axonal regeneration and restore function in animal models of SCI [11-17]. These 20 types of cell are thought to act in a number of ways depending on the cell type 21 transplanted, including replacing dead or damaged neurons and glia, re-22 establishing neural networks, remyelinating demyelinated axons and reducing the 23 hostile nature of the SCI lesion.

1 Autologous cell therapies derived from bone marrow have also been 2 shown to enhance functional recovery in animal models of SCI and possibly in the clinic [10], but the repair mechanisms responsible are still largely unclear. 3 4 Some controversial evidence exists which suggests that bone marrow cells, 5 including marrow stromal cell (MSC) and hematopoietic stem cell fractions, may 6 transdifferentiate to replace lost neurons and glia, in a manner similar to that 7 proposed for ES cells and neural stem cells [18-22]. However, the consensus of 8 opinion seems to be that for MSC transplantation at least, the most likely mode of 9 activity is an induction of a diverse myriad of paracrine anti-inflammatory 10 pathways and directly restorative cell-matrix and cell-cell interactions [23-29]. 11 Previously we have used growth substrate choice assays to examine how 12 human MSC influence neurite outgrowths from explants of chick dorsal root ganglia (DRG). We have demonstrated that MSC help neurites to overcome the 13 14 effects of some of the major nerve inhibitory molecules found in SCI lesions, 15 including neural proteoglycans, Nogo-A and MAG [30]. This established model of 16 sensory nerve growth provided an excellent platform to examine in real-time 17 possible cell-matrix and cell-cell interactions that may occur in the SCI milieu. In 18 the current study, we have adapted and refined our system by replacing DRG 19 explants with spinal cord cultures to provide a more relevant model of CNS nerve 20 growth. We envisage that the establishment of a novel spinal nerve growth substrate assay, which comprises characterized motor neurons and relevant 21 22 neural matrix molecules, will provide an invaluable research tool for testing SCI

- 1 therapeutics, which will have further applications in the broader fields of CNS
- 2 tissue engineering and repair.

1 Materials and methods

2 Ethics Statement

All research involving human participants was completed with written informed consent and Local Research Ethics Committee (LREC) approval: Shropshire & Staffordshire Strategic Health Authority, Reference Number: 04/02/RJH. Ethical approval and a Home Office project license for the study were not required under the United Kingdom Animal (Scientific Procedures) Act of 1986 because chicks were killed by decapitation (which is an appropriate method under Schedule 1 of the Act).

10 Human bone marrow stromal cell (MSC) culture

11 Bone marrow aspirates or bone chips were harvested from the iliac crest of 12 individuals undergoing spinal fusion in the treatment for lumbar degenerative disorders (n=5; ages 29-53). Bone marrow aspirates and bone chips were kindly 13 14 collected by spinal surgeons from the Centre for Spinal Disorders and sent to the 15 Spinal Studies research laboratories for processing (both based at the RJAH 16 Orthopaedic Hospital, Oswestry, UK). 17 Bone chips were perfused with Dulbecco's Modified Eagle's Medium (DMEM/F12), supplemented with 10% fetal bovine serum (FBS) and 1% penicillin 18

and streptomycin (P/S) (Invitrogen Life Technologies, Paisley, UK). Mononuclear

20 cells isolated by density gradient centrifugation at 900g for 20 minutes over

21 Lymphoprep[™] (Fresenius Kabi Norge, AS) were plated out in DMEM/ 20% FBS

+ P/S medium (Invitrogen Life Technologies) at a seeding density of 20×10^6

cells per flask. After 24 hours, non-adherent cells were removed and the

1 adherent cell populations were cultured in monolayer and were maintained in a humidified atmosphere of 5% CO₂ at 37⁰C through to passage II-III in DMEM/ 2 3 10% FBS + P/S medium. MSC cultures used in this study were characterised 4 according to the MSC CD immunoprofile criteria published by the International 5 Society for Cellular Therapy [31]. 6 Embryonic chick neuronal cultures 7 Spinal cords were dissected from E4.5 hybrid brown chicks as described 8 previously [32] and cut into 10-20 pieces per cord, such that all were of 9 approximately equal size. These were then digested in 20μ l of trypsin (2.5% w/v; 10 final concentration 0.05%) in PBS (Invitrogen Life Technologies) for 15 minutes 11 at 37°C whilst agitating frequently. The trypsin supernatant was removed and 12 replaced by 900 µl of neuronal culture medium (NCM: L-15 culture medium 13 supplemented with 1% (v/v) insulin, transferrin and selenium, 1% (v/v) P/S (L-15/ 14 ITS-X/ P/S medium, Invitrogen Life Technologies), 1% (v/v) horse serum and 15 1.5mg/ml glucose) (Sigma-Aldrich, Poole, UK) and 100μ l of 4% (w/v) bovine serum albumin (BSA; Sigma-Aldrich). The spinal cord tissue was homogenized 16 using a pipette and spinal cord motor neurons were isolated by density gradient 17 centrifugation at 500g for 15 minutes over a warmed 1.5ml cushion of 6.8% (v/v) 18 19 Nycodenz® (Serva, Heidleberg, Germany). Dissociated cells were seeded into 24-well tissue culture plates (Co-star, Corning Inc, NY) pre-coated with nerve-20 permissive and nerve-inhibitory molecules (see below) in NCM supplemented 21

22 with 0.4% (v/v) N2-supplement and 10ng/ml basic fibroblast growth factor (bFGF)

1 (Invitrogen Life Technologies) at a seeding density of 3×10^5 cells per well and

were maintained in a humidified atmosphere of 5% CO_2 at 37⁰C for 72 hours.

3 Optimisation of chick neuronal culture growth substrata

4 Briefly, some wells were pre-coated with a thin layer of protein-binding 5 nitrocellulose (BA85, Schleicher & Schuell, Dassel, Germany). Pre-coated and 6 uncoated plates were then further incubated with either PBS or 25µg/ml laminin 7 (derived from Engelbreth-Holm-Swarm mouse tumour, BD Biosciences, Oxford, 8 UK) in PBS. After coating, all wells were washed repeatedly with PBS prior to 9 seeding with neuronal cultures. Control DRG plates for SC1 immunostaining 10 were established using embryonic chick day 10 DRG as described previously 11 [30].

12 MSC/ neuronal co-cultures

MSC were labelled with Cell TrackerTM Red Fluorescent Probe (Cambrex 13 14 Bioscience, Wokingham, UK) following the manufacturer's protocol. Labelled cells were seeded (at a density of 5 x 10³ cells/ cm²) in DMEM/ 10% FBS + P/S 15 16 into plates coated with nerve-permissive and nerve-inhibitory substrata (see 17 below). After 24 hours, any non-adherent cells were removed and wells washed repeatedly before adding N2 and bFGF-supplemented NCM. Neuronal cultures 18 19 were then immediately seeded into each well and the MSC/ neuronal co-cultures maintained in a humidified atmosphere of 5% CO₂ at 37⁰C for 72 hours. Control 20 21 plates of neuronal cultures seeded alone, i.e., without pre-seeded MSC, were 22 established at the same time in N2 and bFGF-supplemented NCM.

23 Mixed substrate preparation

1	Neurocan, isolated from embryonic chick brains and purified with a monoclonal
2	antibody (Millipore, Billerica, MA), was used to coat tissue culture plates in
3	restricted localities, as described previously [30, 33,34]. Briefly, wells were pre-
4	coated with a thin layer of protein-binding nitrocellulose (see above), which was
5	then blotted with 350 μ m wide strips of filter paper (Whatman No.1, GE
6	Healthcare, Maidstone, Kent, UK) that had been soaked in neurocan at
7	concentrations ranging from 1μ g- 50μ g/ml (in PBS). After the filter strips had dried
8	and been removed, the plates were then washed with PBS. The restricted
9	localisation of the neurocan on the culture plates was visualized by inclusion of a
10	marker dye (5% v/v rhodamine B, Sigma-Aldrich) in the neurocan solution. The
11	same technique was used to prepare culture plates with substrates of 10-
12	400µg/ml recombinant Nogo-A on nitrocellulose or 10-400µg/ml recombinant
13	MAG on nitrocellulose (both R&D Systems, Abbingdon, UK). After coating, all
14	wells were washed repeatedly with PBS prior to seeding with neuronal cultures
15	and/ or MSC.
16	SC1 and neurofilament (NF) 200kD immunostaining
17	SC1 is a cell surface adhesion molecule expressed on motor neuron cell bodies
18	and axons [35], which can be used to purify motor neurons from spinal cord
19	tissues [36]. Neuronal cell cultures were immunolabelled with SC1 for motor
20	neuron characterisation, whereas NF immunolabelling was used for neurite
21	quantitation because the NF immunofluorescence was much stronger and hence

22 better for the counting of fine neurite extensions.

1 Neuronal cell cultures were fixed by gently adding an equal volume of 4% 2 (w/v) buffered paraformaldehyde (BDH Biosciences) to the culture medium in 3 each well for 10 minutes. Wells were washed with PBS twice for 10 minutes. 4 Cells were then incubated for 1 hour with a blocking buffer of 10% goat serum 5 (Vector Laboratories, Burlingame, CA) in PBS at room temperature. Mouse 6 monoclonal anti-SC1 (neat) (kindly donated by Prof Hideaki Tanaka, Kumamoto 7 University, Japan) or anti-NF (1:200) (clone NE14, Sigma-Aldrich) were used as the primary antibodies, and goat anti-mouse Alexa Fluor 488 (1:100) (Invitrogen 8 9 Life Technologies) was used as a secondary antibody. Cells were incubated with 10 the primary antibody for 1 hour and the secondary antibody for 40 minutes at 11 room temperature to stain neuronal bodies and their neurites fluorescent green. 12 Fibronectin and laminin immunostaining MSC cultures were fixed by gently adding an equal volume of 4% (w/v) buffered 13 14 paraformaldehyde to the culture medium in each well for 10 minutes. Wells were 15 washed with PBS twice for 10 minutes. Cells were then incubated for 20 minutes 16 with a blocking buffer of 15% horse serum (Vector Laboratories) in PBS at room 17 temperature. Rabbit polyclonal anti-fibronectin (250µg/ml) or anti-laminin (25µg/ml) (both, Sigma-Aldrich) were used as the primary antibodies, and 18 biotinylated goat anti-rabbit (50µg/ml, Vector Labs) was used as a secondary 19 20 antibody followed by a fluorescein-streptavidin complex (20µg/ml, Vector Labs). 21 Parallel wells were incubated in the same blocking buffer as negative controls for 22 polyclonal antibodies. Cells were incubated with the primary antibody or blocking

- 1 buffer overnight, the secondary antibody for 40 minutes and the fluorescein-
- 2 streptavidin complex for 20 minutes at room temperature.
- 3 MSC-CM neuronal culture assays
- 4 MSC-CM (n=6) were generated as described previously [30] and stored at -20°C
- 5 prior to use. In brief, MSC cultures at 70% confluence were incubated in serum
- 6 free DMEM supplemented with antibiotics at 37°C, 5% (v/v) CO₂ for 48 hours.
- 7 The MSC-CM generated from these cultures was passed through a 0.2μm filter
- 8 (Becton Dickinson Biosciences) to remove any cell debris and stored at -20⁰C
- 9 prior to use, which was within one week of collection. Neuronal cell cultures were
- 10 seeded in MSC-CM in culture plates that had either been uniformly coated in
- 11 nitrocellulose or coated with nitrocellulose and strips of neurocan (50µg/ml) or
- 12 Nogo-A (400µg/ml), as described above. Control neuronal cultures were
- 13 maintained in non-conditioned media under the same conditions. Neurite
- 14 outgrowth was measured after 72 hours in culture.
- 15 MSC-CM neurotrophic protein arrays
- 16 MSC-CM were screened for a panel of 23 neurotrophic proteins using custom
- 17 designed antibody arrays (RayBiotech Inc, Norcross, GA) according to the
- 18 manufacturer's instructions. In brief, array membranes with protein antibodies
- 19 spotted in duplicate were incubated with blocking buffer for 30 minutes at room
- 20 temperature. MSC-CM were thawed and incubated with the membranes
- 21 overnight at 4°C. Membranes were washed and then incubated with a Biotin-
- 22 conjugated antibody for 1 hour. Wash steps were repeated as before and
- 23 membranes incubated with HRP-conjugated streptavidin for 2 hours. Following

1	another series of wash steps, membranes were incubated with a
2	chemiluminescent detection reagent provided in the kit for 2 minutes. Positive
3	signals were visualised with a chemiluminescence imaging system (ChemiDoc™
4	EQ, Bio-Rad Laboratories Srl, Italy). Array data was semi-quantified by
5	measuring the sum of the intensities of the pixels within each spot boundary x
6	pixel area, with image analysis software (Quantity One® version 4.6.3, Bio-Rad,
7	Italy). A signal from a clear part of the array was subtracted from all data to
8	account for background signal. A mean was taken from the two duplicate spots
9	for each factor. Levels of neurotrophic factors were normalised to positive
10	controls (provided in the kit) and to the number of MSC that had generated a
11	standard volume of conditioned media.
12	Microscopy, image capture and analysis
13	Cultures were viewed using phase contrast and fluorescence microscopy (Nikon
14	Eclipse TS100, Nikon, Kingston-upon-Thames, UK). Digitized images were
15	captured with a black and white Hamamatsu digital camera (C4742-95) and
16	examined using IPLab software (Version 3.6, Nikon). For determination of the
17	optimal substrate for growth of embryonic chick spinal neuronal cultures, cell
18	aggregates and neuronal adhesion, and neurite outgrowth were counted using
19	phase contrast and fluorescence images. A cell aggregate was determined as a
20	cluster of more than one adhered cell visible under phase microscopy. NF
21	immunolabelling, visible under fluorescence microscopy was used to stain
22	neurites and to determine those cell aggregates that were of a neuronal
23	phenotype. Hence, those cell aggregates that were immunopositive for NF and

1 possessed neurites (that is, if a neurite $\geq 25 \mu m$ in length were in contact with a neuronal cell aggregate) were then described as 'neuronal bodies'. For substrate 2 3 choice assays, the number of neuronal bodies with neurites that had adhered 4 onto substrates of plastic, nitrocellulose, laminin, neurocan, Nogo-A or MAG were 5 quantified using fluorescent images. For all analysis, adhered neuronal bodies with neurites were counted after 72 hours in culture. The number of red 6 7 fluorescent MSC that were present on the nitrocellulose, neurocan, Nogo-A or 8 MAG substrates in each digitized image was also scored. For substrate choice 9 assay quantitation, results from at least 5 separate cultures and 5 separate 10 images per culture were pooled and combined and examined using IPLab 11 software (Version 3.6, Nikon). 12 MSC-CM neurite outgrowth assays were viewed and quantified using 13 phase contrast microscopy and digitized images captured and examined using 14 the Cell IQ® Imagen system and Analyser software (Chip-Man Technologies, 15 Tampere, Finland). In brief, phase contrast images of cultures (n=12 controls and 16 n=24 MSC-CM) were captured using a fully automated system every 2-3h over a 17 period of 72 hours. From these images, the Cell-IQ® Analyser software 18 automated search tool 'neurite finder' generated temporal neurite length data for 19 each culture condition. 20 Statistical analysis 21 The Mann-Whitney U test was used to assess significant differences: (i) between 22 the frequency of neuronal bodies adhered with extending neurites onto uniform 23 substrates of plastic, nitrocellulose and laminin, (ii) between the frequency of

1 neuronal bodies adhered with extending neurites onto each of the adjacent 2 substrates in substrate choice assays of nitrocellulose versus neurocan, Nogo-A 3 or MAG in neuronal and MSC co-cultures, compared to control neuronal cultures 4 alone, (iii) between the frequency of MSC adhered onto each of the adjacent 5 substrates in substrate choice assays of nitrocellulose versus neurocan, Nogo-A 6 or MAG. The relationship between the relative amounts of each neurotrophic 7 protein and the total neurite outgrowth in each MSC-CM was determined using 8 the Spearman ranked correlation coefficient rs. 9 Results 10 Nitrocellulose substrates promote optimal growth of embryonic chick spinal 11 neuronal cultures. 12 Embryonic chick spinal cells formed aggregates which adhered to both plastic and nitrocellulose substrates with or without laminin coating to varying degrees 13 14 (Fig 1A). A number of fibroblastic cells adhered to substrates of plastic alone; a 15 small proportion of these cells extended neurites but these were difficult to 16 distinguish from neighbouring aggregates in close proximately. Cells seeded onto 17 substrates of plastic coated with laminin or nitrocellulose formed discrete cell 18 aggregates and the majority of these aggregates possessed neurites. The 19 frequency of neurites was increased on substrates of plastic coated with 20 nitrocellulose compared to plastic (with or without laminin) (Fig 1B). For 21 substrates of nitrocellulose coated plastic with laminin, fibroblastic cells were so confluent they could not be reliably separated for quantitation. 22

1	Embryonic chick spinal cell aggregates and neurites were then fixed and
2	immunostained for neurofilament (NF) (Fig 1C). A large proportion of those cell
3	aggregates which had adhered to plastic alone were lost following fixation and
4	immunostaining. The discrete cell aggregates which had adhered to the laminin
5	or nitrocellulose coated plastic were identified as NF immunoreactive. Those NF
6	immunoreactive cell aggregates that had extended NF immunoreactive neurites
7	were identified as neuronal bodies. The frequency of neuronal bodies was
8	increased on substrates of nitrocellulose coated plastic compared to plastic (with
9	or without laminin) (Fig 1D). For substrates of nitrocellulose coated plastic with
10	laminin, there was no clear aggregation of NF immunoreactive cells to form
11	discrete neuronal bodies, with a confluence of cells growing across the substrate
12	instead; hence the distribution of discrete NF immunoreactive neuronal bodies
13	with neurites could not be measured.
14	Embryonic chick spinal neuronal cultures are immunopositive for the motor
15	neuron marker SC1
16	Embryonic chick dorsal root ganglion (DRG) cultures were negative for SC1
17	immunocytochemical staining as were isotype matched control wells (Figs 2A
18	and 2B). In contrast, a large proportion (over 99%, data not included) of spinal
19	neuronal cultures were immunopositive for SC1 (with corresponding negative
20	staining of isotype matched control wells) (Figs 2C-D). Uniform SC1 staining of
21	spinal neuronal cultures was visible over large regions of interest, demonstrating
22	that almost all spinal neurites visible under phase microscopy were SC1
23	immunopositive (Fig 2E). Under high magnification the numerous cell bodies

1	which contribute to the formation of neuronal bodies were clearly visible. SC1
2	staining appeared to uniform throughout the main neuronal cell cluster and along
3	each individual neurite (2F).
4	Embryonic chick spinal neuronal cultures are inhibited by neurocan and Nogo-A
5	but not MAG
6	Neuronal bodies with neurites were repelled by neurocan and Nogo-A in a
7	concentration-dependent manner (Fig 3A and 3B). At high neurocan and Nogo-A
8	concentrations (50µg/ml and 400µg/ml respectively), neuronal adhesion and
9	neurite outgrowth was almost completely inhibited (<1 neuronal cell aggregate
10	with at least one neurite per image). At lower neurocan and Nogo-A
11	concentrations (1-10 μ g/ml and 10-200 μ g/ml respectively), increasing numbers of
12	neuronal bodies and neurites adhered to neurocan and Nogo-A substrates and
13	extended neurites. In contrast, neuronal cultures seeded onto nitrocellulose:
14	MAG substrate assays showed no preference for either substrate, i.e. neuronal
15	bodies and neurites were not inhibited by MAG at any concentration (5-400 μ g/ml)
16	(Fig 3C). No evidence of neuronal cell death (as delineated by cell detachment or
17	ethidium bromide nuclear localisation, data not included) was observed in any of
18	the cultures tested.
19	MSC promote embryonic chick spinal neuronal adhesion and neurite extension
20	over substrata of neurocan, Nogo-A and MAG
21	In MSC/ neuronal co-cultures, neuronal bodies were able to adhere and extend
22	neurites over high neurocan and Nogo-A concentrations, such that ~5 neuronal
23	bodies with neurites per image were present on 50 μ g/ml neurocan and ~3

1	neuronal bodies with neurites per image were present on 400μ g/ml Nogo-A.
2	However, the inhibitory effects of neurocan and Nogo-A on neuronal adhesion
3	and neurite outgrowth were only partially abrogated when compared to
4	substrates of nitrocellulose. Some of the pre-seeded MSC appeared to align at
5	the borders of nitrocellulose with neurocan or Nogo-A, suggesting that these cells
6	were also inhibited by the nerve-inhibitory matrix molecules <mark>. However, it was</mark>
7	apparent that even at high neurocan and Nogo-A concentrations, some MSC
8	were still able to adhere to the neurocan and Nogo-A substrates and it was to
9	these MSC that the adherent neuronal bodies and neurites were often co-
10	localised (Figs 4A and 4B). MSC, neuronal bodies and neurites were not inhibited
11	by MAG at any concentration (5-400 μ g/ml) (Fig 4C). Nonetheless, neuronal
12	adhesion and neurite extension was increased on all substrates, including
13	neurocan, Nogo-A, MAG and nitrocellulose when in co-culture with MSC in
14	comparison to the absence of MSC. In addition, MSC traversing inhibitory
15	substrata were immunopositive for the nerve permissive matrix molecules laminin
16	and fibronectin (Fig 4D).
17	MSC conditioned media (MSC-CM) promotes spinal neurite outgrowth over
18	nitrocellulose but not neurocan or Nogo-A inhibitory substrata
19	MSC-CM significantly increased spinal neurite extension over nitrocellulose
20	substrates compared to control cultures in non-conditioned media (Fig 5A). We
21	have detected several neurotrophic proteins in MSC-CM which may be important
22	in stimulating spinal neurite outgrowth (Fig 5B). Of the neurotrophic factors
23	identified, the levels of granulocyte colony stimulating factor (GCSF), fibroblast

- 1 growth factor-4 (FGF-4) and matrix metalloproteinase-8 (MMP-8) correlated
- 2 significantly to the quantity of neurite outgrowth detected (Spearman Rank rs
- 3 0.57, p=*0.014, *r*s 0.57, p=***<0.0001 and *r*s 0.66, p=**0.0032 respectively).
- 4 However, MSC-CM alone was not sufficient stimulus to promote neurite
- 5 outgrowth over inhibitory concentrations of neurocan or Nogo-A (Fig 5C).

1 Discussion

2 MSC transplantation for the treatment of SCI has proven efficacious in terms of 3 promoting axonal regeneration and functional recovery in animal models and 4 possibly in the clinic [10]. However, few definitive experiments have addressed 5 the mechanisms involved in this process. We have developed a substrate choice 6 assay to examine how spinal nerves interact in co-culture with MSC, specifically 7 in the context of molecules that are present at the site of SCI and that are 8 considered to form major inhibitors to axonal regeneration. Using this model we 9 have shown that spinal neuronal bodies and neurites are inhibited by neurocan 10 and Nogo-A in a concentration dependent manner, akin to DRG sensory 11 neurites, which we have reported previously [30]. Increased concentrations of 12 these extracellular inhibitors, however, were required to observe a similarly 'complete' inhibition, e.g. 50µg/ml of neurocan and 400µg/ml Nogo-A completely 13 14 inhibited spinal neurites, compared to $10\mu q/ml$ of neural proteoglycans (which 15 includes neurocan) and 200µg/ml Nogo-A for the complete inhibition of DRG 16 neurite outgrowth. However, unlike DRG sensory neurites, spinal cultures were 17 not inhibited by MAG substrates at any of the concentrations tested (up to 18 400μ g/ml). Hence, using this CNS system we have shown that one of the 19 proposed inhibitors in the glial scar (MAG) may not be as potent in CNS systems 20 as it is in DRG systems, which may have important implications for our 21 understanding of nerve growth inhibition in the SCI setting. There is some 22 supportive evidence in the literature for these findings which suggest that MAG 23 may not be a crucial inhibitor of axonal regeneration in the CNS. For example,

Bartsch et al. [37] have shown that MAG deficient mice exhibit poor axonal
regrowth following either optic nerve or corticospinal tract transection *in vivo*,
although MAG has been shown by others to repel both peripheral nervous
system (PNS) and CNS nerve growth [30, 38, 39].

5 There are a number of distinctions between these neuronal cultures which 6 might account for the differences we have observed in their response to 7 substrate choice assays, compared to those results previously reported. The 8 most obvious is the developmental stage of each tissue source; in the current 9 study, spinal cultures were isolated 4.5 days after fertilization, compared to our 10 previous work using DRG explants from day 10 embryos [30]. The expression of 11 axonal guidance ligands and receptors, including myelin receptors are known to 12 change throughout CNS and PNS development [40-44], which may explain why spinal and DRG cultures exhibit different sensitivities to MAG. In addition, both 13 14 our current and previous methods of primary neuronal culture isolation included 15 few (if any) purification steps and hence, these cultures are composed of mixed 16 cell populations. We are in the process of characterising those 'fibroblast-like' 17 cells visible in CNS and PNS cultures, which are likely to have influenced the 18 sensitivity of neuronal cultures in substrate 'choice' assays. There is a possibility 19 that other CNS cell types may have reduced the sensitivity of spinal neurites to 20 MAG substrates, perhaps by physically masking or blocking inhibitory epitopes, 21 or by secreting growth factors that blocked the inhibitory effects of MAG, e.g. 22 brain derived neurotrophic factor (BDNF) [45]. In contrast, Schwann cells, which 23 may be present in mixed PNS cultures, could exacerbate sensory nerve reactivity

1	to MAG via an additive effect, as Schwann cells themselves express nerve
2	inhibitory MAG [46]. Furthermore, each culture environment varies greatly in
3	media composition and growth factor supplementation which may also impact
4	directly on the sensitivity of neurites to inhibitory substrates, including MAG [45,
5	47]. For example, the exposure to neurotrophins has been shown to upregulate
6	chimaerin (one of the Rho-GTPase activating proteins) in cerebellar neurons [48].
7	The expression of chimaerin in the cerebellum is correlated with abolishment of
8	the inhibitory effects of MAG in development and ectopic expression of chimaerin
9	in cerebellar neurons in vitro results in resistance to MAG induced neurite
10	inhibition [48].
11	We have demonstrated that MSC co-culture reduces the inhibitory effects
12	of neurocan and Nogo-A on spinal neuronal adhesion and neurite outgrowth and
13	enhances spinal neurite outgrowth over all of the substrates tested (neurocan,
14	Nogo-A, MAG and nitrocellulose). We have also shown that MSC were repelled
15	by high concentrations of neurocan and Nogo-A (but not MAG substrates).
16	Hence, at high concentrations MSC could clearly be seen to align along inhibitory
17	neurocan and Nogo-A borders. Although MSC were inhibited to a much lesser
18	extent than spinal neuronal bodies and their associated neurites. This is not too
19	surprising as we already know that MSC may have an increased capacity to
20	adhere to and migrate over neural proteoglycans, Nogo-A and MAG compared to
21	
<u> </u>	other cell types [30]. The exact mechanisms responsible for the abrogation of
21	other cell types [30]. The exact mechanisms responsible for the abrogation of spinal nerve inhibition to neurocan and Nogo-A in MSC co-cultures may involve a

1	We and others have previously reported that MSC-CM promotes neurite
2	outgrowth from DRG explants and that and that MSC synthesise a number of
3	soluble cytokines and other growth factors that are known to stimulate nerve
4	extension including NGF, BDNF and vascular endothelial growth factor [26, 30,
5	49]. In this study we have shown that MSC-CM promotes spinal neurite
6	outgrowth and contains several neurotrophic proteins, including GCSF, FGF-4
7	and MMP-8 which significantly correlated to the level of spinal neurite stimulation
8	observed. However, we show that MSC-CM alone was insufficient stimuli to
9	promote spinal neurite extension over inhibitory concentrations of neurocan or
10	Nogo-A.
11	There are other explanations which might account for spinal neurites
12	extending over inhibitory substrates in MSC co-cultures. MSC are known to
13	synthesise numerous extracellular matrices that support neuronal cells and
14	provide an optimal surface for nerve growth [50]. We have shown using our
15	model that migrating MSC provide permissive matrix 'bridges' of laminin and
16	fibronectin over nerve inhibitory substrates. In addition, in many sequences and
17	on all inhibitory substrata tested, MSC and spinal neurites co-localised. Whereby
18	MSC appeared to act as adhesive 'stepping stones' for neurite extension.
19	Alternatively, nerve-inhibitory molecules, particularly neural proteoglycans such
20	as neurocan, may have been degraded by matrix metalloproteinases (MMPs),
21	e.g. MMP-1, MMP-2, MMP-13, which MSC are known to synthesise [51]. We
22	have previously demonstrated that cell contact-mediated events, such as towing
23	of neurites and bridging of inhibitory substrata, may play an important role in

1	MSC abrogating the DRG nerve-inhibitory effects of neural proteoglycans, Nogo-
2	A and MAG [30]. Further experimentation using this system will aim to elucidate
3	which of these mechanisms contribute to MSC stimulation of spinal neurite
4	outgrowth over neurocan and Nogo-A, and to what extent. This may help to
5	identify molecular targets to further enhance nerve growth in SCI environments.
6	There are few primary motor neuron culture protocols available for
7	scientists to examine new therapies for CNS repair, particularly in the context of
8	the injured spinal cord. We have modified an existing protocol [32] to test
9	embryonic motor neurons, as characterised by SC1 staining, cultured on
10	substrate choice assays. However, we acknowledge that our characterisation of
11	spinal motor neuron cultures could be improved, e.g. by demonstrating a time
12	course of viability and functionality (at least in theory), which we aim to
13	investigate in future studies. None the less, we suggest that the development of
14	this assay and its refinement for the testing of adult spinal motor neurite
15	outgrowth over different growth surfaces will provide a valuable tool to examine
16	motor neuron and glial cell-matrix and cell-cell interactions, not readily achieved
17	when using complex in vivo models. We anticipate that this novel system may
18	help to further elucidate some of the mechanisms of increased axonal
19	regeneration that has been noted following MSC transplantation for the treatment
20	of SCI, as well as having wider application in the field of spinal therapeutics.
21	

1 References

2 3	1.	Ramer MS, Harper GP, Bradbury EJ. Progress in spinal cord research. Spinal Cord 2000;38;449-72.
4 5	2.	Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49;377-91.
6 7 8	3.	Tang S, Qiu J, Nikulina E, Filbin MT. Soluble Myelin-Associated Glycoprotein Released from Damaged White Matter Inhibits Axonal Regeneration. Mol Cell Neurosci 2001;18;259-69.
9 10 11	4.	McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite outgrowth. Neuron 1994;13;805-811.
12 13 14 15	5.	DeBellard M-E, Tang S, Mukhopadhyay G, Shen Y-J, Filbin M. Myelin- Associated Glycoprotein Inhibits Axonal Regeneration from a Variety of Neurons via Interaction with a Sialoglycoprotein. Mol Cell Neurosci 1996;7;89-101.
16 17 18 19	6.	Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. Nogo-A is a Myelin-Associated Neurite Outgrowth Inhibitor and an Antigen for Monoclonal Antibody IN-1. Nature 2000;403;433-45.
20 21 22 23	7.	Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010;28;93-9.
24 25	8.	Sahni V, Kessier JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol 2010;6;363-72.
26 27 28	9.	Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 2011;7;181-194.
29 30 31	10	Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WEB. Bone Marrow for the Treatment of Spinal Cord Injury: Mechanisms and Clinical Applications. Stem Cells 2011;29;169-78.
32 33 34	11	Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The Ability of Human Schwann Cell Grafts to Promote Regeneration in the Transected Nude rat Spinal Cord. Exp Neurol 1997;148;502-22.
35 36	12	Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 1997;277;2000-2.

1	13. Ramon-Cueto A, Plant, GW, Avila J, Bunge MB. Long-Distance Axonal
2	Regeneration in the Transected Adult Rat Spinal Cord is Promoted by
3	Olfactory Ensheathing Glia Transplants. J Neurosci 1998;18;3803-15.
4	 McDonald JW, Liu X-Z, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI,
5	Choi DW. Transplanted embryonic stem cells survive, differentiate and
6	promote recovery in injured rat spinal cord. Nat Med 1999;5;1410-12.
7	15. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R,
8	Snyder EY. Functional recovery following traumatic spinal cord injury
9	mediated by a unique polymer scaffold seeded with neural stem cells.
10	Proc Natl Acad Sci 2001;99;3024-29.
11	16. Pfeifer K, Vroeman M, Blesch A, Weidner N. Adult neural progenitor cells
12	provide a permissive guiding substrate for corticospinal axon growth
13	following spinal cord injury. Eur J Neurosci 2004;20;1695-1704.
14	17. Yang C-C, Shih Y-H, Ko M-H, Cheng H, Fu Y-S. Transplantation of
15	Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly after
16	Complete Transection of the Rat Spinal Cord. PLoS ONE 2008;3;e3336.
17	 Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal
18	stem cells – a critical review. APMIS 2005;113;831-44.
19	 Phinney DG, Isakova, I. Plasticity and therapeutic potential of
20	mesenchymal stem cells in the nervous system. Curr Pharm Des
21	2005;11;1255-65.
22	 Sigurjonsson OE, Perreault M-C, Egeland T, Glover JC. Adult human
23	hematopoietic stem cells produce neurons efficiently in the regenerating
24	chicken embryo spinal cord. Proc Nat Acad Sci 2005;102;5227-32.
25	21. Chen Y, Teng FY, Tang BL. Coaxing bone marrow stromal mesenchymal
26	stem cells towards neuronal differentiation: Progress and uncertainties.
27	Cell Mol Life Sci 2006;63;1649-57.
28	 Brazilay R, Melamed E, Offen D. Introducing transcription factors to
29	multipotent mesenchymal stem cells: Making transdifferentiation possible.
30	Stem Cells 2009;27;2509-15.
31	23. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M.
32	Spinal cord injury in rat: treatment with bone marrow stromal cell
33	transplantation. Neuroreport 2000;11;3001-5
34 35 36	24. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manria A, Prockop DJ, Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci 2002;99;2199-204.

1	25. Ankeny D, McTigue DM, Jakeman, LB. Bone marrow transplants provide
2	tissue protection and directional guidance for axons after contusive spinal
3	cord injury in rats. Exp Neurol 2004;190;17-31.
4 5 6	26. Neuhuber B, Himes BT, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 2005;1035;73-85.
7	27. Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC,
8	Wagner J, Shumsky JS, Fischer I. Recovery of function following grafting
9	of human bone marrow-derived stromal cells into the injured spinal cord.
10	Neurorehabil Neural Repair 2006;2;278-96.
11 12 13 14	28. Birdsall Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld-Hallin Z, Olson L, Prockop D. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 2006;27;301-21.
15	29. Nakajima H, Uchida K, Rodriguez Guerrero A., Watanabe S, Sugita D,
16	Takeura N, Yoshida A, Long G, Wright K, Johnson E, Baba H.
17	Transplantation of Mesenchymal Stem Cells Promotes the Alternative
18	Pathway of Macrophage Activation and Functional Recovery after Spinal
19	Cord Injury. J Neurotrauma 2012;29;1614-25.
20	30. Wright KT, El Masri, W, Osman A, Roberts S, Chamberlain G, Ashton BA,
21	Johnson WEB. Bone marrow stromal cells stimulate neurite outgrowth
22	over neural proteoglycans (CSPG), myelin associated glycoprotein and
23	Nogo-A. Biochem Biophys Res Comm 2007;354;559-66.
24 25 26 27	31. Dominici M, Blanc KL, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8;315-17.
28	 Henderson CE, Bloch-Gallego E, Camu W. Purified embryonic
29	motoneurons. In: Cohen JC, Wilkin GP eds. Neural cell culture: a practical
30	approach. IRL Press at Oxford University Press, 1995:69-81.
31	33. Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J. Sulfated
32	Proteoglycans in Astroglial Barriers Inhibit Neurite Outgrowth <i>in Vitro</i> . Exp
33	Neurol 1990;109;111-30.
34	34. Snow DM, Mullins N, Hynds DL. Nervous System-Derived Chondroitin
35	Sulfate Proteoglycans Regulate Growth Cone Morphology and Inhibit
36	Neurite Outgrowth: A Light, Epifluorescence, and Electron Microscopy
37	Study. Microsc Res Tech 2001;54;273-86.

1	35. Tanaka H, Matsui T, Agata A, Tomura M, Kubota I, McFarland BK, Lee A,
2	Phillips HS, Shelton DL. Molecular Cloning and Expression of a Novel
3	Adhesion Molecule, SC1. Neuron 1991;7;535-45.
4	36. Camu W, Henderson CE. Purification of embryonic rat motoneurons by
5	panning on a monoclonal antibody to the low-affinity NGF receptor. J
6	Neurosci Methods 1992;44;59-70.
7	37. Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP,
8	Hillenbrand R, Montang D, Schwab ME, Schachner M. Lack of Evidence
9	That Myelin-Associated Glycoprotein is a Major Inhibitor of Axonal
10	Regeneration in the CNS. Neuron 1995;15;1375-81.
11	38. Tang S, Woodhall RW, Shen YJ, deBellard ME, Saffell JL, Doherty P,
12	Walsh FS, Filbin MT. Soluble Myelin-Associated Glycoprotein (MAG)
13	Found <i>in Vivo</i> Inhibits Axonal Regeneration. Mol Cell Neurosci
14	1997;9;333-46.
15	 Mehta NR, Lopez PHH, Vyas AA, Schnaar RL. Gangliosides and Nogo
16	Receptors Independently Mediate Myelin-associated Glycoprotein
17	Inhibition of Neurite Outgrowth in Different Nerve Cells. J Biol Chem
18	2007;282;27875-86.
19 20 21	40. Yip JW, Yip YP. Laminin—developmental expression and role in axonal outgrowth in the peripheral nervous system of the chick. Brain Res Dev Brain Res 1992;68;23-33.
22	41. Cramer KS, Karam SD, Bothwell M, Cerretti DP, Pasquale EB, Rubel EW.
23	Expression of EphB receptors and EphrinB ligands in the developing chick
24	auditory brainstem. J Comp Neurol 2002;452;51-64.
25	42. O'Neill P, Whalley K, Ferretti P. Nogo and Nogo-66 Receptor in Human
26	and Chick: Implications for Development and Regeneration. Dev
27	Dynamics 2004;231;109-21.
28 29 30 31	43. Mauti O, Sadhu R, Gemayel J, Gesemann M, Stoeckli EL. Expression patterns of plexins and neuropilins are consistent with cooperative and separate functions during neural development. BMC Dev Biol 2006;6;32, doi:10.1186/1471-213X-6-32.
32 33 34	44. Cooper MA, Crockett DP, Nowakowski RS, Gale NW, Zhou R. Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. J Comp Neurol 2009;514;310-28.
35	45. Spencer K, Mellado W, Filbin MT. BDNF Activates CaMKIV and PKA in
36	Parrallel to Block MAGmediated Inhibition of Neurite Outgrowth. Mol Cell
37	Neurosci 2008;38; 110-16.

1	46. Shen YJ, DeBellard ME, Salzer JL, Roder J, Filbin MT. Myelin-associated
2	in myelin and expressed by Schwann cells inhibits axonal regeneration
3	and branching. Mol Cell Neurosci 1998;12;79-91.
4	47. Douglas MR, Morrison KC, Leadbeater WE, Gonzalez AM, Berry M,
5	Logan A, Ahmed Z. Off-target effects of epidermal growth factor receptor
6	antagonists mediate retinal ganglion cell disinhibited axon growth. Brain
7	2009;132;3102-21.
8	48. Mizuno T, Yamashita T, Thyme M. Chimaeras act downstream from
9	neurotrophins in overcoming the inhibition of neurite outgrowth produced
10	by myelin-associated glycoprotein. J Neurochem 2004;91;395-403
11	49. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human
12	mesenchymal stem cell subpopulations express a variety of neuro-
13	regulatory molecules and promote neuronal cell survival and
14	neuritogenesis. Exp Neurol 2006;198;54-64.
15	50. Aizman I, Tate CC, McGrogan M, Case CC. Extracellular matrix produced
16	by bone marrow stromal cells and by their derivative, SB623 cells,
17	supports neural cell growth. J Neurosci Res 2009;87;3198-206.
18	51. Tondreau T, Meuleman N, Stamatopoulos B, De Bruyn C, Delforge A,
19	Dejeneffe M, Martiat P, Bron, D, Lagneaux L. In vitro study of matrix
20	metalloproteinase/tissue inhibitor metalloproteinase production by
21	mesenchymal stromal cells in response to inflammatory cytokines: the role
22	of their migration in injured tissues. Cytotherapy 2009;11;559-69.

1 Figure Legends

2 Figure 1. Nitrocellulose promotes optimal growth of embryonic chick spinal 3 neuronal cultures. A: Spinal cord cells formed many small fibroblastic aggregates 4 with few neurites on plastic alone, larger cell aggregates with some neurites were 5 formed on plastic pre-coated with laminin. Similar large cell aggregates were 6 formed on nitrocellulose alone but with many more associated neurites. Cells 7 seeded onto nitrocellulose pre-coated with laminin formed an almost confluent 8 fibroblastic culture with few neurites. Examples of neurites are indicated by black 9 arrows. Digitized images under phase contrast microscopy (calibration bar = 10 $100\mu m$). B: The number of cell aggregates with neurites was significantly 11 increased on nitrocellulose substrates alone compared to plastic (with or without 12 laminin) (*p=0.0042 and *p=0.0062 respectively, Mann Whitney U test: data 13 shown are from at least 5 separate cultures and 5 separate images per culture 14 combined ± SEM). No quantitation was attempted for nitrocellulose and laminin 15 substrates, which supported few distinguishable cell aggregates or neurites 16 amongst an almost confluent monolayer of fibroblastic cells. C: Most cell 17 aggregates on plastic substrates were lost following fixation and immunostaining, 18 some neurofilament staining of neuronal bodies and neurites was observed on 19 plastic pre-coated with laminin. On nitrocellulose alone many neuronal bodies 20 were immunopostive for neurofilament as were a complex network of associated 21 neurites. The nuclei of cells seeded onto nitrocellulose pre-coated with laminin 22 were stained but few neurites were visible. Digitized images under fluorescence 23 microscopy (calibration bar = 100μ m). D: After immunostaining for neurofilament

1	the number of neuronal bodies with neurites was significantly increased on
2	nitrocellulose substrates alone compared to plastic (with or without laminin)
3	(*p=0.0034 and *p=0.0067 respectively, Mann Whitney U test: data shown are
4	from at least 5 separate cultures and 5 separate images per culture combined \pm
5	SEM). Again, no quantitation was attempted for nitrocellulose and laminin
6	substrates as few distinguishable cell aggregates, neuronal bodies or neurites
7	were visible.
8	Figure 2. Embryonic chick spinal neuronal cultures are immunopositive for SC1,
9	a motor neuron marker. A-E: Representative digitized images of identical fields
10	are shown from left to right. Left panels show phase images and right panels
11	show immunolocalisation for SC1 (A and C) and isotype matched controls (B and
12	D). A and B are DRG explants (negative for SC1 staining), C and D are spinal
13	neuronal cultures (positive for SC1 staining). Calibration bars = 100 μ m. E: At low
14	magnification, encompassing a wide field of view, many if not all neuronal bodies
15	and neurite networks in spinal neuronal cultures were immunopositive for SC1.
16	Calibration bar = 500μ m. F: At high magnification, uniform SC1 immunopositivity
17	was visible throughout the numerous cell bodies which cluster to form neuronal
18	bodies but also along the length of each neurite emanating from them.
19	<mark>Calibration bar = 100μm.</mark>
20	Figure 3. Neurocan, Nogo-A and MAG spinal neuronal adhesion and neurite
21	outgrowth assays. A-C Digitized images of fluorescence microscopy show NF
22	immunolabelled neuronal bodies and neurites (dotted lines illustrate the location
23	of the neurocan, Nogo-A or MAG borders, calibration bars = 100μ m). A:

1	Neurocan substrates repelled neuronal adhesion and neurite outgrowth in a dose
2	dependant manner. The difference in the frequency of neuronal bodies with
3	neurites which had adhered to neurocan substrates compared to nitrocellulose
4	was significant at concentrations of 1, 5, 10 and 50 μ g/ml (**p=0.059 and
5	***p<0.0001 Mann Whitney <i>U</i> test). B: Nogo-A substrates repelled neuronal
6	adhesion and neurite outgrowth in a dose dependant manner. The difference in
7	the frequency of neuronal bodies with neurites which had adhered to Nogo-A
8	substrates compared to nitrocellulose was significant at concentrations of 50,
9	100, 200 and 400µg/ml (***p<0.0001 Mann Whitney U test). C: There was no
10	difference in the frequency of neuronal bodies with neurites which had adhered to
11	MAG substrates compared to nitrocellulose at any of the concentrations tested
12	(10, 50, 100, 200 or 400 μ g/ml). Data shown are from at least 5 separate cultures
13	and 5 separate images per culture combined +/-SEM.
14	Figure 4. In MSC co-cultures, the inhibitory effects of neurocan and Nogo-A
15	substrates on neuronal adhesion and neurite outgrowth were reduced. MSC co-
16	cultures also enhanced neuronal adhesion and neurite outgrowth over MAG. A-
17	C: Digitized images of identical fields are shown from left to right under
18	fluorescence microscopy (left panels illustrate the location of the neurocan,
19	Nogo-A or MAG and fluorescently labelled MSC, dotted lines illustrate the
20	location of substrate borders, right panels show NF immunolabelled neuronal
21	bodies and neurites, calibration bars = $100\mu m$). A: MSC adhesion was reduced
22	on high concentrations of neurocan (10 and 50μ g/ml) compared to nitrocellulose
23	(*p=0.0217 and ***p<0.0001 Mann Whitney U test). Neuronal adhesion and

1	neurite extension was only inhibited at the highest concentration of neurocan
2	(50 μ g/ml) in MSC co-cultures (***p<0.0001 Mann Whitney <i>U</i> test). B: MSC
3	adhesion was reduced on $400 \mu g/ml$ Nogo-A substrates compared to
4	nitrocellulose (***p<0.0001 Mann Whitney U test). Neuronal adhesion and neurite
5	extension was only inhibited at the highest concentration of Nogo-A (400 μ g/ml) in
6	MSC co-cultures (***p<0.0001 Mann Whitney U test). C: There was no difference
7	in the frequency of MSC or neuronal bodies with neurites which had adhered to
8	MAG substrates compared to nitrocellulose at any of the concentrations tested
9	(10, 50, 100, 200 or 400 μ g/ml). Black arrows indicate co-localisation of MSC and
10	spinal neurites, white arrows indicate independent binding of neurites to inhibitory
11	substrates. Data shown are from at least 5 separate cultures and 5 separate
12	images per culture combined +/-SEM. D: Merged digitized phase and
13	fluorescence images are shown (illustrating the location of MSC associated
14	laminin or fibronectin, dotted lines illustrate the location of substrate borders,
15	calibration bars = $100\mu m$). MSC shown bridging nerve inhibitory substrata were
16	immunopositive for laminin (right panel) and fibronectin.(middle panel). Left panel
17	illustrates negative control staining for polyclonal antibodies.
18	Figure 5. MSC conditioned media (MSC-CM) stimulates spinal neurite outgrowth,
19	but not over inhibitory neurocan or Nogo-A substrata. A: Representative digitized
20	images of neurite outgrowth over nitrocellulose in control media (top panel) and
21	MSC-CM (bottom panel) under phase contrast microscopy are shown with
22	digitized CellIQ® 'neurite finder' overlays, calibration bars = $100\mu m$. Analysing
23	pooled data (n=6 MSC-CM) demonstrated a marked and significant increase in

1 neurite length following culture in MSC-CM compared to control medium 2 (*p<0.0384 Mann Whitney U test). B: MSC-CM contained several neurotrophic 3 proteins which were detected using custom designed antibody arrays. Arbitrary 4 signal intensity readings were normalised to MSC number, data shown are from 5 MSC-CM combined +/-SEM. C: MSC-CM was not sufficient stimiuli to promote 6 neurite extension over inhibitory substrata of neurocan (top panel) or Nogo-A 7 (bottom panel). Digitized images are shown under fluorescence microscopy show 8 NF immunolabelled neuronal bodies and neurites (dotted lines illustrate the 9 location of the neurocan or Nogo-A, calibration bars = $100\mu m$). There was no 10 difference in the frequency of neuronal bodies with neurites which had adhered to 11 nitrocellulose or inhibitory neurocan or Nogo-A substrata in neuronal growth media compared MSC-CM. Data shown are from at least 5 separate cultures and 12 13 5 separate images per culture combined +/-SEM.

Nogo-A concentration (µg/ml)

Laminin staining

Fibronectin staining

Control staining

Figure 5 tiff Click here to download high resolution image

*Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: JB Disclosure.pdf *Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: KU Disclosure.pdf *Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: KW Disclosure.pdf *Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: SR Disclosure.pdf *Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: WE Disclosure.pdf *Disclosure - TSJ-ICMJE Form Click here to download Disclosure - TSJ-ICMJE Form: WJ Disclosure.pdf *Affirmation of Authorship Form Click here to download Affirmation of Authorship Form: Affirmation Authorship.pdf *FDA Drug/Device Approval Form Click here to download FDA Drug/Device Approval Form: FDA approval.pdf