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T H E S I S S U M M A RY

This thesis is a study of performance management of Complex Event
Processing (CEP) systems. Since CEP systems have distinct characteris-
tics from other well-studied computer systems such as batch and online
transaction processing systems and database-centric applications, these
characteristics introduce new challenges and opportunities to the perfor-
mance management for CEP systems.

Methodologies used in benchmarking CEP systems in many perfor-
mance studies focus on scaling the load injection, but not considering
the impact of the functional capabilities of CEP systems. This thesis
proposes the approach of evaluating the performance of CEP engines’
functional behaviours on events and develops a benchmark platform for
CEP systems: CEPBen. The CEPBen benchmark platform is developed
to explore the fundamental functional performance of event processing
systems: filtering, transformation and event pattern detection. It is also
designed to provide a flexible environment for exploring new metrics
and influential factors for CEP systems and evaluating the performance
of CEP systems.

Studies on factors and new metrics are carried out using the CEP-
Ben benchmark platform on Esper. Different measurement points of res-
ponse time in performance management of CEP systems are discussed
and response time of targeted event is proposed to be used as a metric
for quality of service evaluation combining with the traditional response
time in CEP systems. Maximum query load as a capacity indicator regar-
ding to the complexity of queries and number of live objects in memory
as a performance indicator regarding to the memory management are
proposed in performance management of CEP systems. Query depth
is studied as a performance factor that influences CEP system perfor-
mance.

keywords: Complex event processing; Performance management; Bench-
mark; Response time; Throughput; Complexity of queries; Garbage col-
lection.
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1
I N T R O D U C T I O N

In this chapter, we will give an introduction of complex event proces-
sing systems and their performance management. We will also describe
our contributions and outline the rest of the thesis. We use both event
processing and complex event processing interchangeably to refer to the
term “complex event processing”.

1.1 introduction of complex event processing

Over the last decades, we have witnessed some great developments in
computer systems. Computer systems are now used in almost every ima-
ginable field from science to day-to-day activities of our lives. Although
the basic purposes of these computer systems are the same, i.e., to au-
tomate and increase the ease of tasks, they differ in the computation
and the amount of information they can handle. For example, computer
systems for commercial companies, banks, and governments handle and
process a much larger amount of data compared to other computer sys-
tems. These computer systems are sometimes referred to as large scale
or global computer systems that process large amount of data. This tre-
mendous increase to process and handle large quantities of information
poses scalability challenges for large scale of systems.

Nowadays, ongoing technologies bring us to the big data era. Data are
generated from various sources, including social networking and media,
mobile devices, internet transactions and networked devices and sensors.
For example, Facebook has 699 million daily active users on average and
1.15 billion monthly active users in June 2013, according to reports on Fa-
cebook Newsroom1. Each Facebook update from every user creates new
data. More than 5 billion people are calling, texting, tweeting and brow-
sing on mobile phones worldwide. Akamai analyzes 75 million events
daily to improve targeting advertisements2. Walmart handles more than

1 Facebook Newsroom: http://newsroom.fb.com/Key-Facts
2 Akamai: http://www.asterdata.com/resources/assets/cs_Aster_Data_4.0_

Akamai.pdf
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1.1 introduction of complex event processing

1 million customer transactions every hour3. Appliances such as sensors
are widely applied both in daily life and research for monitoring the
environment. Sensor networks may consist of different types of sensors
such as thermal, visual, acoustic and radar. They can monitor ambient
conditions, including temperature, humidity, pressure, noise level, move-
ment of certain objects [3]. Sensors produce large volumes of data conti-
nuously over time. The large volume of data generated in every field
challenges existing information technology (IT) architecture to process
information effectively and efficiently.

Complex Event Processing (CEP) is a set of techniques and tools that
provides new opportunities to tackle the challenges of large volume of
data. CEP can be applied broadly because information systems are all
driven by events. It defines and utilizes relationships between events and
helps users to understand the ongoing process in their system. CEP is
also flexible. It allows users to specify the events that are interesting to
them at any time. Various kinds of events can be specified and monito-
red simultaneously.[4]

An event is defined as follows [1]:

“An occurrence within a particular system or domain; it is
something that has happened, or is contemplated as having
happened in that domain. The word event is also used to
mean a programming entity that represents such an occur-
rence in a computer system.”

The occurrence of an event is significant because it might affect other
events and actions. Events are produced by an event producer, which
might be an application, a service, a business process, a sensor or a
transmitter. Events are consumed by event consumers, which receive
the events subject to patterns. Event processing refers to computing that
performs operations on events.

Figure 1.1 shows the general architecture of an event processing sys-
tem. In event processing applications, events could be generated by hard-
ware such as sensors, industrial equipment, or software applications. An
event consumer could be a hardware component which acts physically
according to the events. It could be a software, which may take records
of the events it receive. The intermediary event processing involves event
routing, event filtering, event transformation, events patterns matching
and so on.

3 The Economist News: http://www.economist.com/node/15557443
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1.1 introduction of complex event processing

Figure 1.1: The general architecture of event processing [1]

CEP detects multiple independent events by patterns in various di-
mensions of interest and derives new events, which summarize, represent
or denote a set of other events [2]. For example, in a temperature sensor
network, the system detects 10 adjacent sensors reporting temperatures
higher than 30 centigrade, and then generates an alert event to the end
users. This process is complex event processing. This alert event is a
derived event.

Event processing has been widely applied. Applications of event pro-
cessing can be categorized into the following areas[1]:

• Observation. Event processing is used for monitoring a system or
detecting certain behaviour in a process and generating in-time
alerts. For example, an event-driven approach is applied in wire-
less sensor networks in the health-care environment which is to
monitor patients’ vital signs as much as information requested is
by doctor or nurse stations [5].

• Information dissemination. Information dissemination applications
include applications such as stock, sports and news tickers, tourist,
travel and traffic information systems, and emergency notification
systems. Event processing could help in delivering the right infor-
mation to the right event consumer at the right time. A typical
example is the work done by Bacon et al. [6]. Based on the Trans-
port Information Monitoring Environment project, they design and
develop a software to distribute, process and store sensor data in
real-time. They aim to make data widely available to policy ma-
kers, application developers and citizens.

• Dynamic operational behaviour. Event processing is used to drive
the actions of a system dynamically, to react to incoming events.

15



1.2 performance management

For example, an online trading system matches buy requests and
sell requests in an action. Based on the trading policy, order infor-
mation and risk evaluation according to the trading history, the
system carries on the process of trades. Another example is sub-
sequence matching in stock systems, mentioned in the paper by
Wu H. et al. [7]. Online event-driven subsequence matching is de-
veloped and demonstrated to perform better, compared with the
approach of fixed time period search.

• Active diagnostics. Event processing can help to diagnose pro-
blems based on the events that have occurred in systems. Altman
et al. present an event-driven, distributed system-level diagnosis al-
gorithm to enhance the performance of fault diagnosis in parallel
multi-computers [8].

• Predictive processing. Event processing can be used to predict the
incoming events by analyzing the events that have already happe-
ned. Due to the development of distributed computing systems,
higher level of automation in systems management tasks, such as
diagnosis and prediction based on real-time streams of computer
events, setting alarms and monitoring, is required. For example,
Sahoo et al. present a proactive prediction and control system for
large clusters [9].

Event processing techniques provide a flexible, extensible and natural
way to integrate event data into an application. Event processing is very
appropriate and practical in many cases. It is well suited for applications
which are naturally centred on events, e.g., sensor networks in monito-
ring environment. An example of this type of applications is the forest
fire detection application with millions of sensor nodes set in forests and
bio-complexity mapping of the environment. It is also well fitted to be
used in real-time business systems which have high requirements on
timeliness, scalability and handling large volume of data.

1.2 performance management

After a brief introduction to complex event processing systems, in this
section we discuss the general performance management of computer

16



1.2 performance management

systems and new challenges and opportunities that event processing
systems face in performance management.

1.2.1 Performance of event processing systems

Performance is a fundamental concern for all users of computer sys-
tems. Achieving acceptable performance at reasonable cost is an im-
portant requirement. Various approaches and frameworks to enhance
the performance of computer systems were proposed in literature, e.g.,
[10, 11, 12, 13, 14, 15, 16]. For a computer, performance is measured
by the amount of useful work accomplished, associated with the time
and resources used. For the users of a computer system, performance
is measured against expectations and negotiated levels of service. For
providers of computer applications, performance is achieved using fol-
lowing mechanism:

• Application design: Designing approaches and developing metho-
dologies to utilize hardware resources and to handle increasing
work loads effectively.

• Sizing and configuration: Determining the type of hardware nee-
ded to support performance goals.

• Parameter tuning: Applying tools and techniques to set configu-
rable parameters to achieve the best performance.

• Performance monitoring: Instrumentation and determining what
resources are being used and the level of service the system is
providing and users are experiencing.

• Troubleshooting: When the system cannot meet the performance
requirement, the application is able to diagnose the problems.

Performance management is necessary to optimize utilization of com-
puter systems and to ensure that goals are consistently being met in
an effective and efficient manner. It always starts with performance ob-
jectives. With clear definition of objectives, performance management
involves four essential parts: performance monitoring, performance eva-
luation, performance tuning and performance prediction.

How to validate that CEP systems satisfy the performance require-
ments of the applications and how to manage the performance of CEP
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systems are the challenges that CEP system vendors and practitioners
currently face [17]. Understanding the factors that affect the system per-
formance is very important for performance management of CEP sys-
tems.

In the next section, we will present new challenges and opportunities
that complex event processing systems face.

1.2.2 New Challenges in the Performance Management of Complex Event Pro-
cessing Systems

CEP systems share certain common performance requirements, but there
are wide variabilities in different applications of event processing: e.g.,
some need millisecond response time while others can accept minute or
hour or day response time; some handle several events per day while
there are applications which process thousands of millions events every
day. As a consequence of the variability, performance management of
event processing systems is of great interest and challenge [18].

Event processing systems have distinct characteristics from other well-
studied computer systems such as batch and online transaction proces-
sing systems and database-centric applications. These characteristics in-
troduce new challenges and opportunities to the performance manage-
ment for event processing systems, as described below:

• Independence of event producers and event consumers

In an event processing system, event producers and event consu-
mers are independent. Event producers are not aware of the com-
plexity of the processing and applications which are going to consume
or interpret these events. Although events have specified event
attributes (e.g. header attributes and payload attributes [1]) and
content at design time, there is no tight link between event produ-
cers and event consumers when events are generated. Figure 1.24

shows an overview of an event processing system and the indepen-
dence of event producers and event consumers. Event consumers
capture events they are interested in from the event “cloud”, which
is a collection of events sent by event producers. New events, event
consumers and event sources can be added independently.

4 Courtesy of International Business Machines Corporation, © (2010) International
Business Machines Corporation
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Figure 1.2: Independence of event producers and event consumers [2]

In determining the performance of a computer system, through-
put is the usual measure. Throughput measures the number of
jobs that are processed in a unit of time in a system. However,
because of the independence between event producers and event
consumers, a CEP system’s input and output are very flexible and
dynamic. From a performance perspective, the capability to deli-
ver a satisfying quantity of output events is as important as the
capability to process a satisfying quantity of input events.

• Asynchrony

In an event processing system, due to the independence of event
producers and event consumers, there is no cause and effect link
between the interests of end users (event consumers) and the occur-
rence of an event. The events that occur might push actions out to
end users; might initiate a work flow in an information processing
system; might sit indefinitely in a complex event processing condi-
tion; or might have no effect at all. This is quite different from a
transaction processing system, which uses request-response inter-
actions. The end user initiates a request (e.g., a credit card pur-
chase) and the system returns the information asked for as the
response to the request.

Figure 1.3 shows the differences in response time between tran-
saction processing and event processing. The response time for a
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transaction processing system is the period from the time that the
request is sent to the time that the response to the request is re-
ceived by the user. For an event processing system, the response
to a request is made after subsequent events’ occurrence (event 1,
2 and 3 as shown in the figure). If we apply the definition of res-
ponse time in transaction processing in complex event processing,
the response time would be from the time when event 3 is detected
to the time that the action is generated responding to the related
events. But for an end user in an event processing system, the time
for finishing a single task from the start (e.g., the time from the
occurrence of event 1 to the time that the action is taken) is more
considerable. How to define the start of timing for response time
becomes very important.

Figure 1.3: Comparison between transaction systems and event processing
systems on response time

From a performance perspective, defining the start of a task in
event processing systems varies among applications. They might
be even different from the different types of events in the same sys-
tem. This brings challenges to effectively and precisely evaluating
the system performance of CEP systems.

• Timeliness
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Many of today’s event processing application areas used to be
handled as off-line applications, for example, fraud detection on
credit cards or other bank transactions. The growing need for bu-
sinesses to manage in real time has changed this. Recognizing the
significance of an event and identifying related responses to the
event could provide a business to respond efficiently to new op-
portunities and competitive threats, to disseminate relevant infor-
mation in time to the right people, and to enable active diagnosis
of problems.

Therefore, from a performance management perspective, the chal-
lenge is how to define the performance objectives of timeliness
requirements, considering the response time discussed above.

• Incremental Evolution

Event processing systems grow incrementally. New event types
can be easily added into the systems and new complex event ana-
lysis can be introduced, which the systems are required to handle
in all system layers. Systems can also grow physically in size and
geographic dispersion as new event sources are introduced. Take
the Birmingham highways project for example. There are 90,000

lampposts in Birmingham highways network. More than one sen-
sor can be set on each lamppost. The throughput can scale up by
increasing the intervals of events, sensor nodes and the event types
at hundreds of thousands of times.

Although there are plenty of traditional software engineering ap-
proaches that support incremental growth, e.g. iterated waterfall,
spiral, develop-refine, extreme programming, event processing is
distinct not only because of the independence feature of event pro-
ducers and event consumers, but also because of the ease of inte-
grating events from new sources with existing event streams.

This growth model introduces challenges in designing a workload
model to simulate the real event input streams containing dynami-
cally changing numbers and types of events in performance eva-
luation of CEP systems.

• Statefulness

In a stateless event processing system, the processing of one event
does not influence the way that the system processes any sub-
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sequent events. Stateless event processing systems are easier to
manage and to optimize. However, more complex applications are
of our interest, in which state management is a requirement. Sta-
teful event processing processes events in the way that is influen-
ced by more than one event input. Many event processing systems
are inherently stateful. More complex analysis requires substantial
information be maintained regarding prior event occurrence. For
example, an application looking for trends in user behaviours will
need to record information about prior activity of those users for
comparison to current and future activity. [1]

State management can present restrictions to performance manage-
ment activities such as recoverability, workload management (e.g.,
routing of events) and load balancing across event processing sys-
tems. Restoring the state of a system to its exact value before a fai-
lure occurred is very important. States must be maintained consis-
tently. These activities related to states affect event flows so that
states have effect on the workload of the systems [19]. It is also re-
source consuming. Therefore, detecting bottlenecks caused by ma-
nagement is critical and challenging in the performance manage-
ment of CEP systems.

• Complexity of queries

In event processing systems, deployed queries define the function
that the systems perform on input events. Due to the involvement
of large volume and different types of data and different interests
on the input events from users, queries deployed in event proces-
sing systems can be complex. The complexity of queries and the
number of such queries all have impact on performance.

From a performance management perspective, the challenge is to
find out how the complexity of queries influences performance,
which helps to understand and optimize a CEP system’s beha-
viour.

In the rest of the thesis, we will present our work addressing the above
challenges on performance management of complex event processing
systems.
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1.3 contributions and the outline

Our work focuses on the performance management of complex event
processing systems. The major contributions of this work are as follows:

• A review of the state of art of the performance management in
complex event processing systems is presented.

• A benchmark platform named CEPBen aiming to provide a testbed
is developed to explore the important performance factors and new
performance metrics for complex event processing systems. The
capability of this benchmark is demonstrated by implementing it
on the Esper event processing platform5.

• Based on the CEPBen framework, new factors and metrics are ex-
plored for performance management of complex event processing
systems. The performance impact of the complexity of queries and
memory management on a CEP system is studied. New metrics
including response time of targeted event, maximum query load,
and the ratio of live objects in the heap are proposed for the per-
formance management of CEP systems

The rest of the thesis is organized as follows: Chapter 2 reviews the
state of art in performance management of transaction processing sys-
tems and event processing systems. Chapter 3 introduces the design of
the CEPBen framework that is developed as a testbed for performance
management of complex event processing systems. The workload mo-
del, performance metrics and factors, and design of tests are described.
Chapter 4 presents a framework that is designed and applied for imple-
menting the CEPBen benchmark. Following that, details of implemen-
ting the framework on Esper and preliminary experiments on Esper are
presented. Chapter 5 proposes and investigates new factors and metrics.
At last, Chapter 6 summarizes the thesis and discusses potential future
work.

5 Esper is a component for complex event processing, available for Java as Esper, and
for .NET as NEsper. http://esper.codehaus.org/

23

http://esper.codehaus.org/


2
P E R F O R M A N C E M A N A G E M E N T O F T R A N S A C T I O N
P R O C E S S I N G S Y S T E M S A N D E V E N T P R O C E S S I N G
S Y S T E M S

Computer systems are built to deliver a quality of service that meets
the demands of user applications. Decades of development have pro-
duced a vast body of knowledge on the problem of computer system
performance evaluation. Generally speaking, the performance of a gi-
ven system can be determined by measuring different metrics such as
throughput, turnaround time and availability [20, 21, 22, 23]. Through-
put measures the steady-state work capacity of the system. Turnaround
time, also called latency or response time, is the delay between the pre-
sentation of the input to a system and the receipt of the output from
it. Availability measures the likelihood that a system is operating pro-
perly at a given moment, or the percentage of time during which it is
operating properly.

In this chapter, we will review the research in performance manage-
ment both in traditional transaction processing systems and event pro-
cessing systems. The state of the art reveals the gaps and opportunities
in performance management in event processing.

2.1 performance management of transaction processing

systems

Transaction processing systems share fundamental performance tech-
niques and metrics with CEP systems. A review of the performance
management of transaction processing systems provides insight to ge-
neral performance management issues. In this subsection, we will start
with a short introduction to transaction processing systems, then move
on to review the performance management of transaction processing sys-
tems. We will also highlight the performance methodology and metrics
adopted in these systems.
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2.1.1 Introduction to Transaction Processing Systems

According to Gray J. and Reuter A.[24], a transaction processing (TP)
system is defined as follows:

“A transaction processing system provides tools to ease
or automate application programming, execution, and admi-
nistration. Transaction processing applications typically sup-
port a network of devices that submit queries and updates to
the application. Based on these inputs, the application main-
tains a database representing some real-world state. Appli-
cation responses and outputs typically drive real-world ac-
tuators and transducers that alter or control the state. The
applications, database and network tend to evolve over se-
veral decades. Increasingly, the systems are geographically
distributed, heterogeneous (they involve equipment and soft-
ware from many different vendors), continuously available
(there is no scheduled down-time), and have stringent res-
ponse time requirements.”

A transaction processing system includes application generators, opera-
tions tools, one or more database systems, networks and operating sys-
tem software. Within the TP system, there is a core collection of services
called TP monitor. It manages and coordinates the flow of transactions
through the system.

2.1.2 Metrics in Transaction Processing Systems

Hardware performance and software performance are the two aspects in
performance evaluation, while software dominates the cost of databases
and communications [24]. Many new or improved techniques have been
developed to estimate and analyse the performance of a transaction pro-
cessing system over years. For example, two queueing models are deve-
loped to investigate the performance effects of a database system by va-
rying the granularity of locks and the degree of multi-programming [25].
Avritzer and Weyuker present [26] a new way to design an application-
independent workload to compare the performance of an existing pro-
duction platform and a proposed replacement architecture; Weyuker
and Vokolos [27] describe their experience of designing test case in a
large industrial client/server transaction processing application.
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Transaction processing systems are applied to deliver sets of services.
There are a number of possible outcomes when a system user requests
any of these services. These outcomes represent the quality of the ser-
vice provided by the system. Performance metrics refer to the criteria
used to evaluate and quantify the performance of a system. For each
performance study, a set of performance metrics must be chosen based
on performance goals and the services provided by the tested system.
Moreover, performance metrics should be chosen correctly and not ba-
sed on biased goals. Manipulating metrics can change the conclusions
of a performance study [22]. Incorrect performance metrics can not re-
flect the level of service provided by the tested systems and can mislead
the system developers and users. In addition, the measure of the level
of quality of service and the expectation of performance vary among
system developers and users.

Metrics for transaction processing systems include throughput, res-
ponse time, utilization, reliability, and availability [24, 23]. Throughput is
defined as the average number of transactions processed per unit of mea-
sured time. Response time refers to the system’s elapsed time from the
point that a request is made by a user or an application to the response is
returned to the user or the application. Utilization measures the fraction
of time that a computer resource is busy. A system usually is compo-
sed of multiple modules. Module reliability measures the time from an
initial instant to the next failure event. Reliability is statistically defined
as mean-time-to-repair (MTTF). Service interruption is statistically defi-
ned as mean-time-to-repair (MTTR). Module availability measures the
ratio of service-accomplishment to elapsed time. Therefore, availability
is statistically defined as MTTF

MTTF+MTTR .
The definitions of commonly used performance metrics need to be

modified to suit certain applications. Therefore, definitions of those com-
mon metrics in transaction processing systems will vary depending on
applications and types of computer systems.

2.1.3 Benchmarks

Benchmarks are prototype applications created for one of several rea-
sons:
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1. They can be used to demonstrate and test application behaviours
against expectations under very controlled conditions;

2. They can be used to explore performance characteristics of an ap-
plication under varying, but controlled conditions;

3. They can also be used for comparative studies of distinct run-time
environments. One example of applying benchmarks in perfor-
mance evaluation is that Fortier and Michel demonstrated evalua-
ting the performance of four top industrial databases by running
a standard benchmark on the test databases [23].

Some standard benchmarks have been defined to represent the work-
load of different type of problems. These standard benchmarks are intro-
duced by the industry consortium, Transaction Processing Performance
Council (TPC)1. They are widely accepted and applied for performance
measurement in industry. These benchmarks can be found on their web-
site: TPC Benchmark C (TPC-C), TPC Benchmark DS (TPC-DS), TPC
Benchmark E (TPC-E), TPC Benchmark H (TPC-H), TPC Virtual Measu-
rement Single System Specification (TPC-VMS), TPC-Pricing, and TPC-
Energy. Each of these benchmarks represents the workload of a TP ap-
plication pattern. We will now introduce these benchmarks briefly.

• TPC-C [28] is a benchmark addressing the workload of on-line
transaction processing (OLTP) systems. It compares OLTP perfor-
mance on various hardware and software configurations. Maxi-
mum Qualified Throughput (MQTh) which is the total number of
completed transactions per minute, is known as the performance
metric. In the specification, a response time (RT) is defined by

RT = T2 − T1

where:

T1 and T2 are measured at the Remote Terminal Emulator
(RTE) and defined as:

T1= timestamp taken before the last character of input
data is entered by the emulated user.

T2= timestamp taken after the last character of output is
received by the emulated terminal.

1 Transaction Processing Performance Council: www.tpc.org
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• TPC-DS [29] represents the workload of decision support systems.
It models scaling and database population, queries and data main-
tenance and implementation rules. It is claimed that it has been
designed to be broadly representative of modern decision support
systems. The size of the test database can be scaled up to 100 tera-
bytes (TB). The benchmark has a data generator to generate valid
dataset for the tests, and a query generator to generate functional
SQL queries following the query template. Data maintenance ope-
rations are performed as part of the benchmark execution. These
operations including insert, update and delete operations, imple-
mented in SQL consist of processing refresh data.

TPC-DS defines three primary metrics:

– The performance metric, which is the effective query through-
put of the benchmarked configuration;

– The price performance metric, which is defined as price/the
performance metric;

– The system availability date required in the benchmark TCP-
Pricing [30].

It also defines the following secondary metrics:

– Load time, which start from the creation of the tables (requi-
red by the schema of the data) or when the first character is
read from any of the flat files or when the first character is ge-
nerated by the data and query generator (whichever happens
first);

– Power test elapsed time, which measures the ability of the sys-
tem to process a sequence of queries in the least amount of
time in a single stream fashion. And the elapsed time of each
query in the power test, which is power test elapse time/num-
ber of queries;

– Throughput tests elapsed times, which measures the ability of
the system to process the most number of queries in the least
amount of time with multiple users and data maintenance
activity;

The power per performance defined in TPC_Energy Benchmark
[31].
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• TPC-E benchmark simulates the On-Line Transaction Processing
(OLTP) workload of a brokerage firm [32]. The focus of the bench-
mark is the central database that executes transactions related to
the firm’s customer accounts. It is claimed that the database schema,
data population, transactions, and implementation rules have been
designed to be broadly representative of modern OLTP systems.
The primary performance metric applied in this benchmark is cal-
led reported throughput. The value of this metric is based on the
Measured Throughput. The Measured Throughput is computed as
the total number of Valid Trade-Result Transactions within a cho-
sen period of time during steady state (the Measurement Interval)
divided by the duration of the Measurement Interval in seconds.

• TPC-H benchmark [33] consists of a set of business oriented ad-
hoc queries and concurrent data modifications. It represents deci-
sion support systems that examine large volumes of data, execute
queries with a high degree of complexity, and generate answers to
critical business questions.

Two tests are run in measuring the performance in TPC-H bench-
mark: One is the power test, which measures the raw query exe-
cution power of the system when connected with a single active
user; the other one is a throughput test, which measures the abi-
lity of the system to process the most number of queries in the
least amount of time. The performance metric in the benchmark
is called the TPC-H Composite Query-per-Hour Performance Me-
tric (QphH@Size). It reflects multiple aspects of the capability of
the system to process queries. These aspects include the selected
database size against which the queries are executed, the query
processing power when queries are submitted by a single stream,
and the query throughput when queries are submitted by multiple
concurrent users. The TPC-H Price/Performance metric is expres-
sed as $/QphH@Size.

• TPC Virtual Measurement Single System Specification (TPC-VMS)
benchmark defines four new benchmarks by adding the metho-
dology and requirements for running and reporting performance
metrics for virtualized databases to the TPC-C, TPC-E, TPC-H and
TPC-DS Benchmarks. Details can be found in the specification [34].

29



2.1 performance management of transaction processing

systems

Apart from the industrial standard benchmarks, numerous domain-specific
benchmarks have been developed over the years of development of tran-
saction processing systems. For example, the HyperModel Benchmark
[35] and the object operations benchmark [36] (OO1 Benchmark) are de-
signed focusing on the important characteristics of engineering applica-
tions such as computer-aided software engineering (CASE) and computer-
aided design (CAD); XML Data Management benchmark (XMach-1 Bench-
mark) [37], XOO7 Benchmark [38], XMark [39], Transaction Processing
over XML benchmark (TPoX Benchmark) [40] are designed to evaluate
the performance of XML data management system; A comparison study
of these XML benchmarks can be found in [40]. Either response time
or throughput is adopted in these benchmarks, except TPoX Benchmark
apply both of response time and throughput as the performance metrics;
APB-1 benchmark [41] by On_Line Analytical Processing (OLAP) Coun-
cil in online analytical processing domain; The Sequoia 2000 [42] is a
benchmark in spacial data management. A collection of further bench-
marks for transaction processing systems can be found in [43] and [44].

2.1.4 Summary

In this subsection, we introduce transaction processing systems and the
general performance metrics in performance management of such sys-
tems. We also review the existing benchmarks in transaction processing
systems. Existing benchmarks in transaction processing systems are in
large numbers. Therefore, only some benchmarks as examples from dif-
ferent domains are mentioned. The review mainly focuses on the stan-
dard benchmarks from TPC. TPC has had a significant impact on the
industry and expectations around benchmarks. Vendors and end users
both benefit from these standard benchmarks.

In the next section, we will review the performance management of
complex event processing systems, focusing on the factors and metrics,
performance modeling and analysis and techniques applied in impro-
ving the performance of CEP systems.
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There are a number of complex event processing systems existing in both
industry and academia, e.g., Esper2, streambase3, and Nastel AutoPilot4

from industry, SASE [45], Cayuga [46] and NEXT [47] from academia.
There is also much research on performance management of CEP sys-
tems in the literature. In this section, we will review the critical work on
performance management of CEP systems in the following aspects: per-
formance factors and metrics, and performance modeling and analysis,
and existing technique in performance optimization.

2.2.1 Factors and Performance Metrics

Passing rigorous performance tests and analysis before starting produc-
tion is essential for developers and users. The scenarios of applied com-
plex event processing range broadly and have different operational re-
quirements in terms of throughput, response time, type of events, pat-
terns, number of event sources and consumers, scalability, and more.
Factors that influence the performance of a CEP system and metrics of
the performance are important to be identified when evaluating perfor-
mance. Common performance metrics of interest are: the expected event
notification latency, utilization and message throughput of the various
system components [14].

Throughput is a critical metric when judging the ability of systems to
handle large amount of data. Mendes et al. take throughput as the me-
tric and conducted a series of tests to compare the performance of three
event processing systems [18]. Lakshmanan et al. [48] choose through-
put to demonstrate that their novel approach could achieve high scalabi-
lity especially when the model and network topology change frequently.
Throughput measurement is also applied in the paper by Wu et al. [45].
A complex event system, SASE, is developed to address the need of sli-
ding windows and value-based comparisons between events in monito-
ring applications using radio frequency identification (RFID) technology.
Their work focuses on high volume streams and extracting events from

2 Esper: http://esper.codehaus.org/
3 Streambase: www.streambase.com
4 Nastel Technologies: http://www.nastel.com/

31

http://esper.codehaus.org/
www.streambase.com
http://www.nastel.com/


2.2 performance management of complex event processing

systems

large windows. Throughput is used as a performance metric in their per-
formance evaluation. Oracle publishes a white paper on the performance
of Oracle Complex Event Processing. The output event rate, average la-
tency, 99.99% latency and absolute max latency are the metrics in the
performance tests [49]. In addition, Isoyama et al. evaluate throughput
as the performance metric for their scalable context delivery platform in
[50].

Latency is the time that a system takes for the output events to emerge
after the input event happened. In the paper by Grabs and Lu [17], the
authors propose system latency and information latency as metrics for
event processing systems to address the challenges of out-of-order arri-
val events. The system latency is well understood as it is the time that
a system takes to produce the response events from the moment that
all needed events are detected for generation of the response. The infor-
mation latency is the delay caused by late-arriving event or waiting for
additional input.

Common metrics that are discussed in Section 2.1.2 are eligible to
apply in performance measurement of CEP systems. As CEP systems
are different from transaction processing systems at several aspects that
are discussed in Section 1.2.2, the definitions of common metrics will
be different when they are applied in the performance management of
CEP systems. Our work will focus on adapting and defining common
metrics and exploring new metrics in performance measurement of CEP
system.

2.2.2 Performance Modeling and Analysis

As opposed to conventional request/reply-based distributed systems, no
general approach to performance modeling and evaluation exists for
complex event processing [14]. Kounev et al. state that their work of
workload characterization and performance modeling was the first re-
garding distributed event based systems (DEBS). A workload model of
a generic DEBS is developed and operational analysis techniques are
used to characterize the system traffic and derive an approximation for
the mean event delivery latency. Queueing Petri Nets (QPN) are used
for accurate performance prediction. This is a pioneering work in perfor-
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mance modeling for distributed event based systems, and it evaluates
the throughput and event notification latency. [14]

Mendes et al. [51] introduce a framework for performance evaluation
of complex event processing systems5. Three challenges for benchmar-
king of complex event processing systems are presented in this publica-
tion. Firstly, there is a lack of standards in query languages, data formats,
semantics or terminology. This causes difficulties to design the workload
and the interface between a benchmark and tested CEP systems. Se-
condly, complex event processing is applied in multiple domains. Perfor-
mance requirements vary in different domains. Therefore, designing a
benchmark for CEP systems with flexible workload settings is much nee-
ded to meet the performance requirements of different domains. Thirdly,
the services provided by CEP systems are different. The performance of
various CEP systems can be measured by different metrics depending
on the services.

Challenges in developing benchmarks for CEP systems are not limited
to the three discussed above. Identifying primary factors and secondary
factors before designing a benchmark is important. Performance impact
from primary factors needs to be quantified, while performance impact
from secondary factors are not of interest to performance analysts [22].
However, very little about performance factors of CEP systems has been
investigated.

In addition, Mendes et al. conduct a set of experiments by running
a number of micro-benchmarks on three different event processing en-
gines to find out what their bottlenecks are [18]. A core set of opera-
tions used in most scenarios: windowing, filtering (selection/projection),
transformation, sorting/ranking, aggregation/grouping, correlation/en-
richment (join), merging (union) and pattern detection are proposed.
Following these operational requirements, the designed experiments are
conducted and throughput are used as the performance metric. It is the
first performance study to compare different CEP engines. However, the
authors do not measure the responsiveness of the tested CEP engines. As
real time processing is a very important feature of CEP systems, it is cri-
tical for CEP systems to generate responses to the requests quickly. The
approaches of performance modeling and analysis in this study can be
applied in the performance analysis of our work. In addition, the conclu-

5 The BiCEP project: http://bicep.dei.uc.pt/index.php/Main_Page.
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sion drawn from these studies can be used to verify our proposals and
analysis.

2.2.3 Existing Techniques in Performance Optimization

Much work to improve the performance of event processing systems in
different aspects can be found in the literature, e.g., [52, 53, 54, 48, 45, 55].
Techniques from other areas are also applied to enhance the performance
of event processing systems. Control theory is applied in improving sca-
lability of event processing systems. Xu et al. propose a new architecture
for event processing [56] with a controller for the flow control and load
balancing in inter-event processing. Event processing could be divided
into intra-event processing (e.g., filtering) and inter-event processing (e.g.
detecting a resource bottlenecks). The intra-event processing is defined
as processing on isolated events, while the inter-event processing is defi-
ned as processing on related events to build relationships between them.

Artificial intelligence technologies are applied to performance impro-
vement of event processing systems. These applications can be found
in several publications, such as [57, 58, 54]. Saboori et al. [58] apply a
well-known evolutionary algorithm called Covariance Matrix Adapta-
tion (CMA) in distributed systems to achieve automatic system perfor-
mance tuning. By applying CMA to configure the parameters of systems,
the authors improve the throughput without increasing the response
time. The work by Chen et al. [54] proposes adaptive algorithms that are
designed and used for project development. The authors provide me-
thods to pre-process structural events for creating unique name-value
pairs that can be correlated by event correlation engines. Two algorithms
applying Bayesian network and Monte Carlo sampling for CEP are de-
signed and experimented to improve efficiency and accuracy of event
materialization under uncertainty [52].

2.2.4 Summary

Most work in complex event processing by now focus on either tech-
niques of implementing high-performance event processing or techniques
of improving the performance of a event processing system. Our review
focuses on the approaches and analysis of performance management
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presented in these papers. The approaches and analysis are categorized
into performance factors and metrics, performance modeling and ana-
lysis, and techniques in performance optimization. It is revealed that
factors and metrics in CEP systems are not well studied. Our work on
developing a benchmark for CEP systems and exploring influential fac-
tors and metrics in CEP systems will meet the gap.

2.3 benchmarks related to complex event processing sys-
tems

In this section, we will review four benchmarks that are built in different
fields related to event processing: BiCEP, a benchmark for event proces-
sing systems; Linear Road, a benchmark for stream data management
systems; SPECjms2007, a benchmark for message-oriented middleware;
BEAST, a benchmark for active databases. In Section 2.3.5, we will dis-
cuss their advantages and their shortcomings when applied in event
processing systems.

2.3.1 BiCEP

BiCEP is a project in event processing of the University of Coimbra to
benchmark Complex Event Processing systems (CEP)6. The objective is
to identify some of the core CEP requirements and develop a synthetic
benchmark or a set of benchmarks to allow a comparison of products
and algorithms in spite of their architectural and semantic differences
[59].

In [59], the gap in current CEP research is presented, that is no agree-
ment upon terminology, semantics, query languages, data formats, APIs,
standards or benchmarks. The main considerations for designing a bench-
mark of CEP is also proposed. And more specifically, the following me-
trics for a CEP benchmark to assess and other issues affecting perfor-
mance are described:

• Sustainable throughput: the steady-state number of events per
unit of time that event processing engine can process while exe-
cuting queries.

6 BiCEP Research Project: http://bicep.dei.uc.pt/index.php/Main_Page
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• Response time: the time since the last event of some event pattern
is fed into the system until the system notifies the event pattern
detection

• Scalability: the ability to scale-up, speed-up and load-up. The scale-
up will be assessed by increasing the system (event producers and
consumers) and increasing the load. The speed-up will be asses-
sed by increasing the system and maintaining the load. The load-
up will be assessed by maintaining the system but increasing the
load.

• Adaptivity: the system’s ability to adapt its query processing when
unpredictable events occur.

• Computation Sharing: devising query processing techniques so
that different queries can share computation.

• Similarity search and precision and recall: this refers to informa-
tion retrieval metrics, e.g., precision and recall [60].

The Pairs benchmark [61] is developed as the first of the BiCEP Bench-
marks, aiming at assessing the ability of CEP engines in processing large
amount of events and simultaneous queries and providing quick res-
ponses. It simulates an investment firm where a number of analysts
interact with an enterprise trading system that is responsible for au-
tomating and optimizing the execution of orders in stock markets. The
performance metric is defined as: pscore = load

99th latency , which represents
overall system performance. The load in the metric refers to the load of
a CEP system processes and 99% latency.

FINCoS framework [51, 62] is developed in the BiCEP research pro-
ject. It contains a set of benchmarking tools for aiding end-users and
developers to carry out performance evaluation on diverse CEP systems.
The performance metrics built in the framework are throughput and res-
ponse time. It is a helpful tool for preliminary performance evaluation.
However, it lacks flexibility in exploring and measuring other perfor-
mance metrics.
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2.3.2 Linear Road Benchmark

The linear road benchmark has been created for Stream Data Manage-
ment Systems (SDMS) by Arasu et al. [63]. It simulates a toll system for
motorways, where tolls are set according to dynamic factors, such as
traffic congestion and accident proximity. It is designed to evaluate the
performance of the systems to respond to real-time queries in processing
high-volume streaming and historical data. The benchmark is implemen-
ted on two systems. One is a commercially available relational database
system and the other is a pre-release commercialization of Aurora [12].

The researchers identify and propose several challenges to design a
benchmark for streaming data. Firstly, the input data should not be pu-
rely random but have some semantic validity, because a typical stream
presents discrete measurements of a continuous activity. Moreover, consis-
tency is required between the content of a stream and the activity that
it presents. Secondly, the typical database benchmark metric of “com-
pletion time” is not appropriate because of the presence of continuous
queries. Thirdly, the validation of the correct results in the benchmark
should have multiple correct answers from the same query because some
states are evolving. At last, there is no standard query language for
stream management systems yet.

It is claimed that the linear road benchmark meet each of these chal-
lenges in the following manner:

• A traffic simulator [64] is used as semantically valid input, instead
of a purely random input generator in the linear road benchmark.

• Response time and L-rating (i.e., supported query load) are cho-
sen as the metrics for the benchmark. L-rating that refers to the
number of motorways, is a measure of the amount of input that an
SDMS can process while meeting response time and correctness
constraints.

• Multiple correct answers in response times are attained, because
the answers to these queries vary depending on evolving states of
the toll system.

• Queries in the system are specified formally in the predicate calcu-
lus instead of a stream query language.
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2.3.3 SPECjms2007

SPECjms2007 [65] (Standard Performance Evaluation Corporation) is a
benchmark to provide a standard workload and metrics for measuring
and evaluating the performance and scalability of Message-Oriented
Middleware (MOM) platforms based on Java Message Service (JMS). It
provides a standard workload and performance metrics for competitive
product comparisons, as well as a framework for in-depth performance
analysis of enterprise messaging platforms.

SPECjms2007 measures the end-to-end performance of all components
in the application, including hardware, JMS server software, Java Vir-
tual Machine (JVM) software, database software if used for message
persistence, and the system network. SPECjms2007 provides three dif-
ferent workload topologies which correspond to three different modes
in which the benchmark can be run: two controlled topologies, horizon-
tal topology and vertical topology and freeform topology. Horizontal
topology is scaling in a horizontal direction for increasing the number
of JMS Destinations and associated Event Handlers whilst maintaining
a fixed throughput per destination. The Vertical topology is the scaling
in a vertical direction for increasing the throughput per JMS Destination
whilst maintaining a fixed number of those destinations. The freeform
topology allows users to define their own topology and scale the work-
load in an arbitrary manner.

SPECjms2007 can serve different purposes. It is capable to produce
and publish standard results for marketing purposes. The capability of
tuning and optimizing system platforms and analyzing the performance
of certain specific MOM features are attractive to many users. Other
users may be interested in using the benchmark for research purposes in
academic environments. For example, one might be interested in evalua-
ting the performance and scalability by novel methods and techniques
for building high-performance MOM servers (e.g., [66, 67]).

2.3.4 BEAST

BEAST (BEnchmark for Active database SysTems) is a benchmark for
Active Database Management Systems (ADBMSs) [68]. It is based on
the OO7 benchmark, which was built for performance tests of Object-
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Oriented Database Management Systems (OODBMS) in 1993 [69][70].
BEAST benchmark can serve the three purposes. Firstly, it can be run
by users to compare the performance of multiple ADBMSs. Secondly, it
can be used by designers to identify the performance weakness of their
systems compared with others. Thirdly, it can be applied to compare the
performance of an ADBMS with the performance of a passive database
management system, where the active behavior is encoded manually in
the applications.

The goals of performance measurement for BEAST is to measure the
execution time of the services provided by ADBMS [68]. The tested pa-
rameter in the measurement is active behaviour. The active behaviour is
composed of three phases: event detection, rule management and rule
execution. BEAST proposes a collection of tests focus on specific sub-
tasks of the three phases. Event detection is the recognition of the occur-
rence of specific events of interest, and it includes primitive events and
composite events. The accuracy of the detection is an influential aspect in
performance. Rule management affects the performance by identifying
and retrieving corresponding rules to help to determine if a primitive
event will be used in a composite event. Rule execution identifies the
condition and actions that have to be executed after event occurrences
and the execution of such identification. BEAST measures rule retrieval
time, but does not consider rule definition and rule storage in ADBMS
for rule management. The performance tests are listed in the Table 2.1.

The papers by Geppert et al. [13] present further performance tests
using the BEAST benchmark. The performance tests are held by ap-
plying BEAST to four different object-oriented ADBMS which are AC-
tive Object Oriented Database (ACOOD) management system [71] , Na-
tive Active Object System (NAOS) [72], Ode [73] and SAMOS [74]. The
performance measurements demonstrate achievements in the area of ac-
tive database technology, and also show trade-offs between performance
and functionality.

2.3.5 Discussion

In this section, we review four significant benchmarks related to event
processing. We summarise the main goals and technologies of these
benchmarks in the following table (Table 2.3).
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Performance metrics are decided by different performance objectives
in applications. According to the literature, the performance metrics of
benchmarks in event processing vary. In the Linear Road benchmark
[63], response time and supported query load are proposed as appro-
priate metrics for the system. The BEAST benchmark adopts response
time as the metric for performance measurement. Other factors are the
number of defined events, the fraction of composite events and the num-
ber of defined rules, besides the factors for passive DBMS, such as buf-
fer size, database size, etc [68]. In the BiCEP benchmark, sustainable
throughput, response time, scalability, adaptivity, computation sharing,
and similarity search and precision and recall are the metrics that the au-
thors considered [59]. Details of these metrics have been given in Section
2.3.1.

These four benchmarks have different goals. Linear Road and BEAST
benchmarks partly match with the requirement of a test environment
for performance evaluation of event processing systems. However, Li-
near Road is a benchmark focusing on data streaming with a workload
of traffic and transportation verticals. It is not sufficient to investigate
the statefulness and complexity of queries. BEAST has a series of tests
for rule execution and events detection, which none of the other three
benchmarks have. However, it is a benchmark of active database sys-
tems, and it lacks state operation, which is a very important property
of event processing. The BiCEP project focuses on benchmarking event
processing system, although it is still under development. The objective
of their performance research is different from that in our project. The
BiCEP aims to develop a suite of standard benchmarks for CEP systems,
while our project focuses on a benchmark which can be used as a testbed
to explore the performance metrics and factors of CEP systems. SPEC-
jms2007 is the only industry-standard benchmark among those that we
explored. It is well designed and developed, but as it provides standard
workload to measure performance and scalability of JMS-based MOM
platforms, it is not to be used to explore performance management in
statefulness and complexity of event processing languages. Therefore, to
explore the performance of event processing systems, we need to create
a testbed for our research.
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2.4 summary

In this chapter, we give a brief review of performance management of
transaction processing systems and a comprehensive review of the state
of the art in performance management of event processing systems. Per-
formance management of transaction processing systems has been stu-
died well. Numerous benchmarks have been developed for performance
management of applications from various domains. Therefore, it is im-
possible to cover all the benchmarks. Only those widely accepted and
deployed TPC benchmarks are reviewed and some other benchmarks
from different domains are briefly listed.

In comparison, performance management of CEP systems is not stu-
died as well as transaction processing systems. Definitions of perfor-
mance metrics for CEP systems are barely found in literature. Seve-
ral benchmarks in stream data management systems, message-oriented
middleware and active database management systems, which are rela-
ted to CEP systems are reviewed. In addition, one benchmark for CEP
systems has been identified but it is currently under development.

It is found that performance research in event processing mostly stays
within different application areas instead of benchmarks for general
complex event processing, and lacks standards. Most performance mea-
surements and evaluation in event processing systems are done in de-
monstrating new event processing techniques in different publications.
Limited work is done focusing on fundamental aspects in performance
of event processing systems, for example, benchmarks for CEP systems.
New performance metrics and factors distinguished from other types of
systems are not well explored in CEP systems. Methodologies of perfor-
mance management for CEP systems is not studied much as well.
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3
B E N C H M A R K I N G C O M P L E X E V E N T P R O C E S S I N G
S Y S T E M S

Performance management ensures that performance goals and the pro-
mised level of service are consistently being met in an effective and effi-
cient manner. Benchmarks are often created for exploring performance
characteristics of an application under varying but controlled conditions.
However, following the discussion in Chapter 2, no existing benchmark
is found sufficient for comparing the performance and exploring the
performance evaluation of event processing systems. Therefore, a bench-
mark platform for performance evaluation on CEP systems is developed.

In this chapter, we will focus on the benchmark platform that is built
to explore performance characteristics of complex event processing sys-
tems by evaluating the functionalities of such systems.

3.1 introduction to the cepben benchmark platform

In this section we will introduce the motivation and the goals to develop
the CEPBen benchmark platform and the tested system for this bench-
mark platform.

3.1.1 Motivation and Goals of the Benchmark Platform

Complex event processing excels at in processing large amount of data
and responding in timely fashion. As society demand faster reactions
to changing conditions, CEP systems are means to meet this demand.
Systems in many domains have benefited from event processing techno-
logies, e.g., active diagnostics, real-time operational decision, predictive
processing, observation systems and information dissemination.

Complex event processing engines provides three main functional ca-
pabilities: filtering, transformation and event patterns detection. A filter
operation takes an event input and decides whether this event is to be
selected for further processing. A transformation operation takes one or

44



3.1 introduction to the cepben benchmark platform

more input events and generates different output events that are based
on them. Event patterns are templates specifying one of more combina-
tions of events. An event pattern detection operation detects such tem-
plates [1].

Performance management ensures that performance goals and the
promised level of service are consistently being met in an effective and
efficient manner. Some performance reports can be found from various
CEP venders, e.g. Oracle [49, 75], Esper [76] and StreamBase [77]. Their
methodologies in benchmarking CEP systems focus on scaling the load
injection, but do not consider the impact of the functional capabilities of
a CEP system. The functional capabilities of a CEP system are critical,
because they are the foundation of the service provided by the system.
We propose an approach of evaluating the performance of CEP engines’
functional behaviours on events and create the benchmark Platform for
CEP systems: CEPBen.

CEPBen is developed to explore the fundamental functional perfor-
mance of event processing systems: filtering, transformation and event
pattern detection. It is designed to provide a flexible environment which
is capable of classifying the performance of CEP systems and exploring
new metrics for CEP systems and influential factors in evaluating the
performance of CEP systems.

The CEPBen benchmark Platform has the following features of flexibi-
lity.

• It is able to present a varied workload to meet the requirements
of different performance tests. Users can create events with their
desired event properties, batch size, batch frequency.

• By setting the number of query statements and the depth of query
statements, the benchmark platform presents varied degrees of
application query complexity for investigating the system beha-
viours.

These features will help to explore a range of factors influencing the
performance of CEP systems and a range of metrics to better show that
performance.
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Events Occurrences

T1

Events Arrivals

T2

Event Processing

T3 T4

Derived Events Event Consumers

Event Transmission Event Transmission

Figure 3.1: The system behavior of an event processing system

3.1.2 The Tested Systems

CEP delivers high-speed processing of events, identifying the meaning-
ful events according to defined rules, and taking subsequent action in
real time. The goal of this benchmark platform is to measure the effi-
ciency of CEP engines’ functional behaviours.

Figure 3.1 illustrates the timeline of events in a CEP system and the
system behaviours. Events occur at T1, and transmit to the front end of
the event processing engine at T2. After being processed, derived events
are generated at T3 and sent back into the CEP engine for further pro-
cessing or transmitted to event consumers. Event consumers receive the
derived events at T4.

Event transmission and event processing are crucial for the perfor-
mance of a CEP system. Event sources and event processing engines
influence event processing:

• Event sources influence the system by their schema, time, causality,
aggregation and input rate;

• While event processing engines drive the whole system to provide
satisfactory services in detecting events and their patterns and ge-
nerating necessary messages for actions.

On the other hand, event transmission is much depending on networks,
because event sources and event consumers usually have distributed fea-
tures. Thus, the performance of networks plays an important role in such
scenarios. Since the main focus is on the event processing behaviours in
our benchmark platform, the performance of networks is not tested in
this platform.
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3.2 workload design

In this section, we will firstly review the workloads in existing bench-
marks related to CEP systems. Then we will introduce the workload
design for the CEPBen. At last, we will evaluate the workload design.

3.2.1 Workload in Complex Event Processing Systems

A workload is the amount of work that a system has to perform in a
given time. The workload is the most crucial part in performance eva-
luation [22]. Existing benchmarks have different workloads:

The Pairs benchmark [61] is a domain-specific benchmark. The input
of Pairs is stock market data. Its workload consists of sets of five strate-
gies which define operations in a tested system in the application scena-
rio.

The workload in linear road benchmark is generated by the MIT Traf-
fic Simulator (MITSIM) [64]. The simulator generates the stream data
and historic data for the benchmark. The stream data consists of the in-
formation about position reports, historical query quests for account ba-
lances, daily expenditures and travel time estimation. The historic data
prior to the start of the simulation need to be maintained by the system
for answering historical query requests.

Aiming to provide a flexible framework for performance analysis of
JMS servers, SPECjms2007 offers a configurable workload. It provides a
list of workload configuration parameters that can be set by users. The
workload can be scaled in three workload topologies: horizontal, vertical
and free form, all of which have been introduced in in the Section 2.3.3.

Different from other benchmarks above, BEAST does not propose a
typical application. Therefore, BEAST workload is defined to test the
basic ADBMS functionality: event detection, rule management and rule
execution. Details about these benchmarks are reviewed in the Section
2.3.

It is found that most of the workloads are designed in typical appli-
cation scenarios, except the BEAST workload. Similarly, our benchmark
platform focus on CEP engine’s functionalities, and no typical applica-
tion of CEP systems is suggested in CEPBen. In the next section, we will
describe the workload design for the CEPBen benchmark platform.
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CEP Engine

Event Sources

Event Batches

The Event Cloud

Figure 3.2: The workload model of CEPBen

3.2.2 Workload Design in CEPBen

To simplify the abstraction of the workload for performance tests, a bat-
ched model for the event workload of CEP systems is designed in CEP-
Ben. The workload consists of event batches of variable size with varying
interval times (depending on desired load). Figure 3.2 shows that events
from various event sources form the event cloud [78] and arrive in the
CEP engine in batches.

The workload can scale in the following dimensions: 1) The number
of event batches; 2) The number of events in a batch; 3) The Interval
times between two event batches. The interval times in a workload are
arbitrarily distributed generally. Moreover, the average time of the inter-
vals can be set according to test scenarios. Short intervals mean heavier
workload in a time unit for the system, while long intervals mean less
workload in a time unit.

By setting the number of events in each batch and the interval times
between two event batches, the workload can vary greatly. This feature
also ensures the representativeness of various range of loads in real CEP
applications. Users can create their specific event loads according to their
application scenarios following the workload model. Because the bench-
mark platform tests the fundamental functionality of CEP engines, no
typical application is proposed in CEPBen for CEP systems.

3.2.3 Discussion on the Workload Design

According to Jain [22], four major aspects are considered in designing
the workload in performance evaluation of computer systems: the ser-
vices exercised by the workload, the level of detail, representativeness,
and timeliness. The service exercised by the workload should be as com-
plete as possible. The level of detail refers to the details in reproducing
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the requests for the services that the system provides, e.g., most frequent
request, frequency of request types, time-stamped sequence of requests.
A test workload should be representative the workload of the real appli-
cation. Timeliness refers to that a test workload should follow the users’
usage pattern in a timely fashion.

The proposed workload model has rich flexibility to help users to ad-
dress the major considerations in defining the suitable test workload
when using the CEPBen. CEP applications vary in different domains,
therefore, workloads for applications vary as well. The workload model
is representative for general loads in CEP systems. It can be applied in
applications where input events generated at various rate are proces-
sed. Users are able to configure the number of events in a event batch
and the time intervals between event batches accordingly. The details
of input events, e.g. event types and values of event attributes, can be
defined by users too. Therefore, the level of details of the workload is
decided by the users of the benchmark platform. However, timeliness
of usage pattern in a system is not considered in this model, because
users’ usage pattern does not have much impact on the workload in a
CEP system. As event producers and event consumers (users of CEP
systems services) are independent in a CEP system, event producers are
not aware of the complexity of the processing and applications which
are going to consume or interpret these events. On the other hand, event
consumers capture events which they are interested in from the output
of CEP engines.

3.3 selection of metrics

For each performance study, a set of performance metrics must be cho-
sen. Generally, if the system performs the service correctly, its perfor-
mance is measured by the time taken to perform the service, the rate at
which the service is performed and the resources consumed while per-
forming the service. These three metrics are also called responsiveness,
productivity and utilization metrics respectively. Response time is the
measurement of the responsiveness; Throughput is the measurement of
the productivity. The percentage of time that the resources in the tested
system are busy for the given load level is the measurement of utilization
[22].
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Throughput, response time and utilization are commonly applied me-
trics in measuring information systems. Therefore, these three metrics
are selected as the basic metrics of CEPBen. In this section, we will de-
fine the measurement of these selected metrics.

3.3.1 Throughput

Throughput can be categorized into input throughput and output through-
put in light of the independence feature of event producers and event
consumers in CEP systems [1]. Suppose that a workload with n event
instances is sent into the event processing engine and m output events
are generated after the event input are processed. The input throughput
is measured by:

Input Throughput =
The Number of Input Events in the Period

TNth − T1st−input
(3.1)

Output Throughput =
The Number o f Output Events in the Period

TMth − T1st−output
(3.2)

T1st−input and TNth are the start time and the end time of the sample per-
iod for measuring the input throughput after the system reaches steady
state. T1st−output and TMth are the start time and the end time of the
sample period for measuring the output throughput after the system
reaches steady state.

3.3.2 Response Time

Response time is one of the performance metrics in the CEPBen. The
response time measurement is defined in the following manner.

When the CEP engine perform filtering, response time is measured
as follows: Before each event arrives at the event processing engine, the
event is labelled with the system time Tin. When the event is selected
according to the selection queries by the event processing engine, it is
labelled with the current system time Tout. The responsive behaviour of
the system is measured by the metric of response time:

Tresponse = Tout − Tin (3.3)
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More than one event are involved in a transformation operation or an
event pattern detection in complex event processing. An event arrives
in the CEP engine at system time Tin. A CEP engine performs event
processing on events E1, E2,..., En, which arrive in the CEP engine in
time series (Tn−in > ... > T2−in > T1−in). The new output event that is
triggered by these events is generated at system time Tout. The response
time of transformation behaviour is defined as:

Tresponse = Tout − Tn−in (3.4)

3.3.3 Utilization

The utilization is measured by the utilization of the memory resource
and CPU resource of the computer where the tested CEP engine is run.
The utilization of a resource is measured as the fraction of time when
the resource is in busy servicing requests. The utilization of a resource
is defined as:

U =
Busy Time

Total Elapsed Time
(3.5)

Alternatively, in a busy CEP system which has continuous input event
streams, the utilization are the percentages of usage of memory and CPU
resources that are measured over a certain period during the busy time
as follows:

U =
Average o f Used Resource

Total Alocated Resource f or services
(3.6)

3.4 benchmark platform design

The goal of complex event processing is to identify meaningful events
and respond to them as quickly as possible. Three main functionalities
are necessary to perform the event processing: filtering, transformation
and event pattern detection. These functionalities are performed accor-
ding to queries registered in the CEP engines.
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3.4.1 Tests for Filtering

Filtering is a fundamental functionality of a CEP engine. It can be found
in many event processing applications [1]. For example, applications that
involve event producers which produce large numbers of events, might
need to filter out irrelevant events, such as sensor networks and news
feeds. Some applications might have multiple event consumers, so these
applications need to perform filtering on the events that are sent to each
event consumer.

A filter operation takes an event instance as input and decides whe-
ther that instance is to be selected for further processing. In CEPBen, a
group of tests that focuses on filtering function of event processing sys-
tems is designed and conducted. A load of queries representing filtering
operations are created and registered in the tested CEP engine for the
performance tests.

3.4.2 Tests for Transformation

According to the definition by Etzion and Niblett[1], transformation in
event processing can be categorized into the following types: translation,
composition, aggregation, enriching, splitting and projection. A transla-
tion operation takes a single event as input and generate a derived event
following a pre-defined derivation formula. A composition operation
takes groups of events from two input streams, looks for matches by a
matching criterion and generates derived events based on the matched
events. An aggregation takes a collection of events as input and creates
a single derived event according to a defined function over input events.
An enriching operation takes a single input event and creates a deri-
ved event which includes the attributes from the original event, possibly
with modified values, and can include additional attributes. A splitting
operation takes a single input event and creates a collection of events
which can be clones of the original event or events that contain a subset
of the attributes of the original event. A projection takes a single event
and creates a single derived event containing a subset of the attribute of
the input event.

This group of tests focuses on transformation function of event pro-
cessing systems. Query statements of transformation that cover all types
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of transformation for the event processing engine are created and regis-
tered in the tested CEP engine. These operation will perform on events
in one input stream and different input streams.

3.4.3 Tests for Detecting Event Patterns

Pattern detection allows users to look for a specific collection of events
and the relationship between them. It helps to understand the meanings
of events. Pattern detection operation performs a pattern matching func-
tion on one or more input events, and emits one or more derived events
when a specified pattern is detected. This group of tests focuses on the
system behaviour of detecting event patterns. A load of queries of detec-
ting event patterns are created and registered in the tested CEP engine
for the performance tests.

3.4.4 Factors

It is important to identify the factors which make a significant impact on
the performance of the tested systems. In our benchmark platform, the
following factors are identified for the performance of a CEP system:

• The workload.

Heavy workload with relative information to the system queries
challenges a CEP system’s capability to respond to a large amount
of events.

• The query load.

Query load is the number of query statements in different test
groups. Handling large sets of query statements efficiently is a
challenge for CEP engines. As CEP engines take time to process
events against each query, it is expected that a larger number of
query statements increases the total processing time. On the other
hand, processing a large number of query statements consumes
more resources of the computer, which slows down the CEP sys-
tem.

• The number of events that a query statement involves.
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Among three main functionalities, transformation produces com-
posite events which are formed based on different number of events.
Similarly, an event pattern detection operation can involve various
number of events as well. To process events against statements
with number of events, the CEP engine need to catch and hold the
required events temporarily, which is resource-consuming.

• The garbage collection.

The benefits of garbage collection over explicit memory manage-
ment in software engineering are widely accepted. However, the
garbage-collection pause that happens when the garbage is collec-
ted can be unpredictable. The garbage collector must suspend the
execution of the application to ensure the integrity of the object
trees when it performs garbage collection. Therefore, garbage col-
lection has direct impact on the performance of a CEP engine.

• The machine configuration where the event processing engine is
run.

The performance of a CEP system relies on the hardware configu-
ration of the machine on which the CEP system runs.

3.5 summary

In this Chapter, we introduce a benchmark platform for complex event
processing systems: CEPBen. This benchmark platform targets at the per-
formance of fundamental functionalities of CEP engine. The workload
design, selected metrics and benchmark tests, as well as the factors that
are considered to be important for the performance of a CEP system are
described.

This benchmark platform is very flexible. On one hand, it can be ap-
plied to CEP engines for the performance evaluation of CEP engines. On
the other hand, it can be applied to explore novel metrics and influen-
tial factors to measure the performance of CEP systems. This will be
demonstrated in the later chapters of this thesis.

In the next Chapter, we will introduce the performance-oriented fra-
mework that is developed for the performance management of CEP sys-
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tems. Based on the framework, CEPBen is implemented on an open-
source CEP platform Esper1.

1 Esper:http://esper.codehaus.org/
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4
T H E P E R F O R M A N C E - O R I E N T E D F R A M E W O R K A N D
C E P B E N I M P L E M E N TAT I O N

Complex event processing has been increasingly popular in the busi-
ness operations and planning. Complex event processing products can
be found in diverse areas. In the last chapter, we presented CEPBen, a
benchmark platform for complex event processing systems. In this chap-
ter, we will focus on the implementation of CEPBen and its performance
tests. A performance-oriented framework is designed and presented in
the absence of a flexible testbed for performance evaluation of CEP sys-
tems . This framework is used in our implementation of CEPBen on
Esper complex event processing engine.

4.1 the performance-oriented framework

In the section, we will introduce the features of the performance-oriented
framework and its general architecture.

4.1.1 Introduction

Performance management aims at achieving performance objectives and
delivering the promised level of service. Benchmarks are developed in
order to evaluate performance of CEP systems, which is discussed in
Chapter 2 and 3. We can implement and demonstrated the instrumenta-
tion, tooling and methodologies that are required for complex event pro-
cessing systems with an appropriate framework. However, there is a lack
of flexible performance tools for performance instrumentation for CEP
systems. A framework FINCoS is developed in BiCEP project to provide
a flexible and neutral framework which allows users, researchers and en-
gineers quickly run realistic performance tests on event processing plat-
forms without having to code themselves load generation, performance
measurement and event conversion routines. However, with built-in per-

56



4.2 the design of the framework

formance metrics and measurements, this framework is not sufficient in
exploring and testing novel performance metrics.

Therefore, we propose the performance-oriented framework in order
to support performance instrumentation and performance tests with a
wide range of performance metrics. This framework provides a flexible
and scalable testbed environment for evaluating performance of event
processing systems, especially in exploring performance metrics, perfor-
mance instrumentation and performance analysis. It can be adapted to
test the performance of various event processing engines and the perfor-
mance of various algorithms that developed by various researchers.

4.1.2 Features

The framework can create event streams according to application sce-
narios and take other form of data as event resources, i.e., Comma-
Separated Values (CSV) files; The input layer and output layer of this
framework offer interfaces as measurement points for performance mea-
surement, which allows users to implement and test the performance of
their particular interests. The query module is designed to be configured
according to users’ applications and to help users understand the effect
of complexity of queries on the system performance.

4.2 the design of the framework

In this section, we will introduce the framework that is created for sup-
porting performance evaluation of event processing system. This frame-
work is implemented in JAVA. The implementation details can be found
in the appendix.

Figure 1 shows the architecture of the framework. It has the following
components: events generator, input and output layer, event processing
engine, query module, data collection, real time performance monitor
and off-line performance analysis.

As shown in the Figure 4.1, this benchmark platform is composed
of the following components: the Events Generator, the Input Layer,
the Output Layer, the Event Processing Engine, the Query Module, the
Events Consumers and the Performance Analysis Module. The Event
Processing Engine is the core component for an event processing system.
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4.2 the design of the framework

Event processing engines from different vendors can be applied here.
The Events Generator is the event source for the event processing bench-
mark platform. The Input Layer is the connector of the Events Generator
and the Event Processing Engine. This layer adapts the events that are ge-
nerated in the Events Generator and sends them to the Event Processing
Engine. The Output Layer connects the Event Processing Engine and
the Events Consumers, which delivers the derived events to the Events
Consumers. The Query Module contains queries that are registered in
the Event Processing Engine according to the interests of events consu-
mers. Performance analysis of the system is built in the Performance
Analysis module which can produce real-time performance monitoring,
as well as the resources of computer systems. An off-line performance
analysis program is developed for the analysis combining with historic
performance data.

4.2.1 Events Generator

Complex event processing can be widely applied in event-driven appli-
cations. The events rate and types of events in applications vary accor-
dingly. This leads to difficulties to create a workload to represent all
types of workloads, especially in a benchmark platform of event proces-
sing systems. An event generator is built for generating the workloads
according to workload designs.

The event generator is for generating events. It can be set to two dif-
ferent modes: generating events at runtime or reading events from saved
CSV files. To overcome concerns about computer resources, e.g., memory
consumption, CPU consumption, the event generator can be installed on
remote machines and send events into event processing engines.

• Generating Events at Runtime

Generating events at runtime provides users flexibility to define
the events data that they want to use. Users can either make some
data according to the scenarios of simulations that they are interes-
ted in, or make random data for tests. Events volume, events types
and events rate can be well defined and controlled.

• Converting CSV Files to Events
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Saved CSV files can be used as events feed to event processing sys-
tems. This relies on an adapter in the input layer of the system. The
adapters in the input layer convert CSV readings to event instances
and send them to the event processing engine.

The two modes have their own advantages and disadvantages. Genera-
ting data at runtime consumes the memory of the computer which runs
the events generator. Therefore, it does not suit for tests with extremely
large data amounts, but it provides flexibility of testing event proces-
sing applied in various scenarios. Creating events via saved CSV files
does not consume as much memory as generating data at runtime. Thus
this mode does not pose big challenges on computer resources when
creating event streams with large amounts of data. However, it requires
users to prepare a file with data which represents the workload. Thus, it
suits the users who have some data already.

4.2.2 Query Module

A CEP application in the real world usually has a number of queries
in different levels of complexity. The query module is designed for ge-
nerating queries of various levels of complexity. Some complex queries
require the information of the history and states of historic events in the
system. Therefore, the system needs to allocate resources to keep the his-
tory and states of events. This requirement can pose stress on the system
and its performance.

Generally, the query module is implemented based on the type of
query statements (i.e., selections, joins, windows, and event patterns),
the number of different type of query statements and an execution plan.
Because there is no standard event processing languages across CEP en-
gines, queries that the query module generates are implemented depen-
ding on the event processing language of the event processing engine
that users adopt. Query load can be measured here.

4.2.3 Input Layer

The input layer is the front end of the event processing engine in the
framework. It is critical for the event processing engine and the perfor-
mance measurement of the event processing system. Adapters for events
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that are from various resources and events senders are implemented in
this layer. Adapters read the events from socket, which are transmitted
from various event sources, unmarshall it and create event instances for
these events and send them to the event processing engine. The measure-
ment of input throughput is implemented in this layer. The calculation
of input throughput is discussed in Section 3.3.1. The start of measu-
ring response time is implemented in this layer. Response time in CEP
systems is discussed in Section 3.3.2.

4.2.4 Output Layer

The output layer is for delivering derived events from the event proces-
sing engine to events consumers. The derived events can be alerts from
detecting certain events patterns, events to change configuration of the
system, events to be processed again or events to be deleted. Derived
events and events with new configuration information go through the
events channel and arrive in the input layer to get processed.

This layer is important for performance measurement of an event pro-
cessing system. Output throughput is measured in this layer. The end of
the measurement of response time is implemented in this layer.

4.2.5 Event Consumers

Event consumers are the end users of CEP systems. They are implemen-
ted according to the application of CEP systems.

4.2.6 Complex Event Processing Engine

Event processing engine is the core component of an event processing
system. In this framework, the event processing engine connects to events
sources via the input layer, and outputs notification to events consumers
via the output layer. As complex event processing becomes increasin-
gly popular, a number of commercial and open source event processing
engines are developed and can be tested under this framework.
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4.2.7 Performance Monitoring and Analysis

Performance monitoring and evaluation needs instrumentation to ga-
ther data on executing systems and processes, techniques for data analy-
sis and representation, theories and models which realistically represent
computer systems and computer processes. In the framework, the per-
formance monitor can display the performance in a real-time manner.
The off-line performance analysis is performed to compare and analyze
the performance results that are obtained in performance tests.

4.3 cepben implementation on esper

In this section, we will introduce the implementation of the CEPBen
benchmark platform on Esper based on the performance-oriented fra-
mework.

4.3.1 Introduction to Esper

Esper CEP engine is an open source CEP platform. It processes data
continuously and generate responses in a real-time fashion when the
stored queries are matched.

Esper offers an event pattern language to specify expression-based
event pattern matching. The event processing engine matches expected
sequences of presence, or absence of events, or combinations of events.
Esper also offers event stream queries which include windows, aggrega-
tion, joining and analysis functions for use with streams of events. These
queries are following the Event Processing Language (EPL) syntax.

EPL is designed for similarity with the Structured Query Language
(SQL). However, it differs from SQL: EPL is used to represent the dif-
ferent operations needed to structure data in an event stream and to
derive data from an event stream.

4.3.2 Performance Implementation and Settings

To demonstrate the benchmark platform, we implement CEPBen on Es-
per complex event processing engine in Java. Event generator is configu-
red to generate four types of events (EventA, EventB, EventC, EventD)
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for the workload. By default, each event has event ID and timestamp
property. Other string properties for events are drawn from a string pool
with a random process. The integer values in properties are generated
randomly. The event structure is shown as following:

EventA (String eventID, long timeStamp, String attributeA)
EventB (String eventID, long timeStamp, String attributeB)
EventC (String eventID, long timeStamp, String attributeC1, int attri-
buteC2)
EventD (String eventID, long timeStamp, int attributeD1, String attri-
buteD2)

The workload is composed of 500 event batches, which each batch has
20,000 events. The average of interval times is set to 0.3 seconds.

Input layer and output layer are programed on the Esper engine. Be-
cause the behaviours of CEP engines are the main focus, simple event
consumers which subscribe text alerts when the events are detected are
implemented.

Three types of queries are implemented in the query module: Selec-
tion statements are created for tests of filtering functionality; Join state-
ments are created for tests of transformation functionality; Event pattern
statements are created for tests of event pattern detection functionality.
The Event Processing Language (EPL) is the language of the Esper event
processing. EPL is a SQL-like language with SELECT, FROM, WHERE,
GROUP BY, HAVING and ORDER BY clauses [79]. EPL queries are crea-
ted and stored in the engine. Statement examples for the benchmark
tests are listed in the following box:

Tests for filtering:
select * from EventA where EventA.attributeA = ’red’;

Test for transformation:
select attributeC as averageSize, attributeD as profession

from EventC.std:lastevent() as attributeC,

EventD.std:lastevent() as attributeD

where EventC.eventId=EventD.eventId
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Tests for event pattern detection:
select * from pattern [ every data= EventA

(attributeA=’green’)

-> (EventB (attributeB = ’UK’))

-> (EventD (attributeD1>3000))

->(EventC(attributeC1<800))

->(EventC(attributeC2>1000))];

In the above box, the filtering query catches all the EventA, in which
the attributeA has the value “red”. The transformation query combines
the attributeC from the last EventC event and the attributeD from the
last EventD event when the IDs of the EventC event and the EventD
event are the same. The pattern detection query in the above box looks
for patterns, which an EventA event has attributeA value as “green”, an
EventB event which has attributeB value as “UK”, an EventD event has
attributeD1 value larger than 3000, an EventC event has attibuteC1 value
smaller than 800 and an EventC event has attributeC2 value larger than
1000 are fed into the system following this sequence.

As the benchmark platform is coded in Java, it is important to clarify
Java Virtual Machine (JVM) setting before running the experiments. This
benchmark application can take up to 256 megabytes of heap at runtime.
The explicit garbage collection is disabled in the experiments.

4.3.3 Benchmark Results

Two groups of tests are set up for the performance test. The settings
for performance tests are displayed in the Table 4.1: Group 1 is testing
the three functional behaviours respectively with 10 query statements;
Group 2 is testing the functional behaviours respectively with 100 query
statements. Group 1 and Group 2 are designed for revealing the per-
formance effect of different functional behaviours. Each filtering query
catches one event when the event matches the specified condition in
the query. Each transformation query transforms two events into a new
event. Each event pattern query detects five events in a certain sequence.
No windows are implemented in the statements in these two test groups.
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Table 4.1: Settings of performance test groups

Settings Group 1 Group 2

Number of queries 10 100

Types of queries Filtering; Transformation; Pattern Detection

The input throughput, output throughput, response time and utiliza-
tion are measured. The input throughput and output throughput are
measured as events per second. The averages of input throughput and
output throughput are calculated and presented. The response time is
measured in milliseconds. Relative frequencies and cumulative distribu-
tion of response time are calculated and presented.

4.3.3.1 Response Time

test group 1 Figure 4.2, 4.3 and 4.4 depict the relative frequency
of response time for filtering, transformation and pattern detection in
the test Group 1. Each of the three figures contains two graphs: The
first graph is the relative frequency of response time plotted on a semi-
logarithmic scale showing the shortest response time and the relative
frequency of the first bin which contains the shortest response time; the
second graph is the relative frequency of response time plotted on a
linear scale. In the second graph, the relative frequency distribution is
divided into two parts in order to show the curve clearly. The part of
the distribution that goes beyond the visible part of the graph is not dis-
played. The response times of filtering are mainly in the interval between
0 and 15 milliseconds with the most relative frequency above 0.7 (Figure
4.2). The response times of transformation are mainly in the interval bet-
ween 0 and 40 milliseconds with the highest relative frequency above
0.7 (Figure 4.3). The response times of event pattern detection mainly
fall in the interval between 0 to 300 milliseconds with highest relative
frequency at about 0.55 (Figure 4.4).

Figure 4.5 presents a cumulative distribution comparison for filtering,
transformation and pattern detection in the test Group 1. The part of
the distribution that goes beyond the visible part of the graph is not
displayed. The cumulative probabilities of response time for filtering
and transformation converge to 1 sharply and overlap with each other,
while the response time for pattern detection converges to 1 slowly.
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Figure 4.2: Filtering in test Group 1
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Figure 4.3: Transformation in test Group 1
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Figure 4.4: Pattern detection in test Group 1
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The results of response time in Group 1 reveal that the Esper engine
responds faster in filtering than in transformation, and it responds faster
in transformation than in event pattern detection.
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Figure 4.5: The cumulative distribution of filtering, transformation and pat-
tern detection in Group 1

test group 2 Figure 4.6, 4.7 and 4.8 illustrate the relative frequency
of response time for filtering, transformation and event pattern detection
in the test Group 2. Each of the three figures contains two graphs: The
first graph is the relative frequency of response time plotted on a semi-
logarithmic scale displaying the shortest response time and the relative
frequency of the first bin which contains the shortest response time; the
second graph is the relative frequency of response time plotted on a
linear scale. In the second graph, the relative frequency distribution is
divided into two parts in order to show the curve clearly. The relative
frequency distribution for filtering are mostly in the interval between
0 and 50 milliseconds (Figure 4.6). The relative frequency distribution
for transformation has a higher variability than filtering with a peak
of about 0.08 between 160 and 200 milliseconds (Figure 4.7). The rela-
tive frequency distribution for event pattern detection has both a higher
mean and higher variability (from 0 to 1400 milliseconds) than the other
query types (Figure 4.8). The peak relative frequency reaches above 0.25.

Figure 4.9 depicts the cumulative distribution of the response time for
filtering, transformation and event pattern detection in the test Group 2.
The part of the distribution that goes beyond the visible part of the graph
is not displayed. Similarities are found with the cumulative distribution
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Figure 4.6: Filtering in the test Group 2
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Figure 4.7: Transformation in test Group 2
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Figure 4.8: Pattern detection in test Group 2
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of response time in the test Group 1. The cumulative probabilities of
response time for filtering and transformation converge to 1 faster than
the response time for event pattern detection.

The results in Group 2 prove the conclusion of the test Group 1 that
the Esper engine responds faster in filtering than in transformation, and
it responds faster in transformation than in event pattern detection.
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Figure 4.9: The cumulative distribution of filtering, transformation and pat-
tern detection in test Group 2

4.3.3.2 Input Throughput

test group 1 Figure 4.10 shows the system input throughput in the
test Group 1. The input throughput is sampled and measured in each
event batch. The system is run for 3 times and the average of the in-
put throughput is calculated and plotted. The input throughput of filte-
ring fluctuates considerably between 140,000 events/second and 210,000

events/second. However, it is much higher than the input throughput of
event pattern detection and transformation overall. Noticeably, the input
throughput of event pattern detection is higher than the input through-
put of transformation.

test group 2 Figure 4.11 presents the input throughput of test Group
2. The input throughput is sampled and measured in each event batch.
The system is run for 3 times and the average of the input throughput is
calculated and plotted. The input throughput of filtering fluctuates bet-
ween 52,000 and 58,000 events/second, which is much higher than the in-
put throughput of the transformation and event pattern detection in the
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same group. However, it is significantly lower than the input throughput
of filtering in the Group 1.

4.3.3.3 Output Throughput

Outputting events consumes resources of CEP systems. Output load and
output throughput in a CEP system can be used to indicate the amount
of work processed in the CEP engine with an input workload. Our test
environment does not strictly control the amount of output, because
values of event properties and values in query statements are generated
with a random process. Tables 4.2 and 4.3 present the average output
throughput and the average output load in two test groups. Because
more queries are deployed in the tests in Group 2, more output events
are generated in Group 2, as shown in these two tables.

Comparing the output load and output throughput of three functio-
nalities in Tables 4.2 and 4.3, it is found that the scalability of filtering
in Esper engine is the best among the three functionalities. The output
throughput and the output load of filtering are both nearly eight times
more in Group 2 than in Group 1. The output load of transformation
and event pattern detection in Group 2 are nearly ten times heavier than
they are in Group 1, while the output throughput of transformation and
event pattern detection are nearly twice larger in Group 2 than they are
in Group 1.

Table 4.2: The system output throughput and output load in the test Group
1

Functionalities
Output of Group 1

Throughput (events/sec) Load (events)

Filtering 14,431 3,077,108

Transformation 28,644 6,248,000

Event Pattern Detection 3,119 990,876
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Figure 4.10: The system input throughput in the test Group 1
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Figure 4.11: The system input throughput in the test Group 2
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Table 4.3: The system output throughput and output load in the test Group
2

Functionalities
Output of Group 2

Throughput (events/sec) Load (events)

Filtering 84,366 28,821,616

Transformation 28,644 58,731,250

Event Pattern Detection 5,508 11,086,190

4.3.3.4 Utilization

In the experiments, Central Processing Unit (CPU) usage and heap me-
mory that is allocated to the application in JVM are monitored and recor-
ded. VisualVM1 is used to monitor the utilization features. VisualVM is
a tool to monitor and trouble-shoot Java applications. It can profile CPU
and memory usage and display memory pool and garbage collection
activity, which can be used to spot abnormal trends.

Tables 4.4 and 4.5 summarize the utilization in different tests in the
two test groups. The heap size in the experiments is decided by JVM at
runtime. The maximum heap size is configured before Java applications
are run. In these two groups of tests, the maximum heap size is set to 256

megabytes. The CPU usage fluctuates in a range in each test. Garbage
collection is one of the causes. Comparing with Group 1, the CPU usage
in group 2 is higher than the group 1 in each type of test. Tests of event
pattern detection in Group 2 consume much more memory than other
tests in Group 1 and 2.

Table 4.4: The utilization of computer resources in the test Group 1

Functionalities
Test Group 1

CPU Usage (%) Heap Size

Filtering 10% - 20% 16

Transformation 25% - 35% 16

Event Pattern Detection 20% - 100% 256

1 VisualVM is a visual tool integrating several command line Java Development Kit
(JDK) tools and lightweight profiling capabilities. http://visualvm.java.net/
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Table 4.5: The utilization of computer resources in the test Group 2

Functionalities
Test Group 2

CPU Usage(%) Heap Size

Filtering 20% - 35% 16

Transformation 30% -50% 16

Event Pattern Detection 30% -100% 256

4.3.4 Discussion

The experiments show that the performance of various types of func-
tionalities in the tested CEP system based on Esper descends in the se-
quence: filtering functionality, transformation functionality and pattern
detection functionality. The tested system has best response time and
input throughput in filtering while having high output throughput and
consuming the least system resource (i.e., CPU usage and heap usage).
Moreover, the tested system has better response time and consumes less
system resources in transformation than pattern detection, while having
lower input throughput and much higher output throughput. In a sum-
mary, the performance with filtering is the best among all functionalities.

A performance study of three CEP systems is done by Mendes et al.
[18]. The results is presented to compare three CEP systems with se-
lection and projection queries (filtering functionality), aggregation and
window queries (transformation functionality), joins queries (transfor-
mation functionality) and pattern matching queries (pattern detection
functionality). Throughput is the metric to evaluate the performance.
The results show that the level of throughput in system X, system Y
and system Z in the tests with selection and projection queries is higher
than that with aggregation and window queries and joins queries. The
level of throughput with aggregation and window queries and join que-
ries is higher than pattern detection queries. Therefore, our conclusion
complies with the conclusion drawn from their experimental results.

In summary, it is tested and found that CEP systems perform better
in filtering and transformation than pattern detection. This can be consi-
dered and applied in improving the performance of a CEP system.
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framework

In this section, we will provide guidance on the use of the current im-
plementation of CEPBen on Esper to conduct performance tests. We will
also discuss what is available to support the reuse of the implementation
of CEPBen on other CEP Engines.

4.4.1 Using the Existing Implementation

The current implementation of CEPBen on Esper can be used to investi-
gate the performance characteristics of a range of CEP systems. Before a
performance test is carried out, the configuration must be specified and
this is done by modifying some Java code. There are three components
of the framework to be set up: the event generator, the query module
and the performance monitoring and analysis.

4.4.1.1 Configuring the Event Generator

• Configuring the event streams

Event streams contain batches of events. The number of events in
an event batch and the number of batches that an event stream
has are two fields in the Main class in the project. They can be
configured in the Main class (i.e., Main.java file).

//the number of event batches

static int NUMBER_BATCHES=500;

//the number of events in each batch

static int NUMBER_EVENTS=5000;

• Configuring values of event attributes

Current values for event attributes are all implemented in Field-
sForStream class (i.e., FieldsForStream.java file). Users can make
changes in this class. For example, the pool of strings used for dif-
ferent attributes and seeds for generating random numbers.

• Configuring types of events in an event stream

More types of events can be added into an event stream by imple-
menting those event classes and adding them into an event stream.
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Configuring types of events in an event stream can be done by ad-
ding or removing the line of the code to generate a new event in
createEvents method in EventStream class (i.e., EventStream.java
file). The code below is an example to add or remove when confi-
guring event streams in EventStream class.

//create a random number

long randomA = fields.randomLatency(randomC);

/*create an event of EventA type. An eventA type of //

event has four attributes: event ID, time stamp, the time

when the event is sent into the CEP engine and a random

attribute. */

EventA eventA = new EventA(id, randomA, 0,

fields.getAttributeA());

//add the event into the event stream

stream.add(eventA);

4.4.1.2 Configuring the Query Module

• Configuring the number of queries deployed in an experiment

The number of queries deployed in an experiment can be set in the
Main class of the project. Different types of queries can be configu-
red with three fields in the Main class shown as follows:

//the number of selection query statements

static final int SELECTION = 0;

//the number of transformation query statements

static final int TRANSFORMATION = 0;

//the number of pattern detection query statments

static final int PATTERN = 1;

• Add queries with different syntax structures

Figure 4.12 shows a Unified Modelling Language (UML) class dia-
gram of the query module that is implemented on Esper platform.

The query generator is implemented to generate queries with a set
of fixed syntax structures. For example, the query generator can
generate simple queries as follows:
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Statement

+admin: EPAdministrator

+stmtList: ArrayList<String>

+number: int

+nameList: ArrayList<String>

+map: HashMap<String, ArrayList<Double>>

+statementsList: ArrayList<EPStatement>

+map_output: HashMap<String, ArrayList<Long>>

+createStmtss(source:EventSource): ArrayList<EPStatement>

EventPatternStmt

+statement: EPStatement

+recorder: RecordingData

+listener: PatternListener

+passRecorder(): void

+createStmts(stream:EventSource): ArrayList<EPStatement>

SelectionStmt

+statement: EPStatement

+recorder: RecordingData

+listener: SelectionListener

+passRecorder(): void

+createStmts(stream:EventSource): ArrayList<EPStatement>

JoinStmt

+statement: EPStatement

+recorder: RecordingData

+listener: JoinListener

+passRecorder(): void

+createStmts(stream:EventSource): ArrayList<EPStatement>

QueryGenerator

+query: String

+head: String

+from: String

+source: String

+condition: String

+stream: EventSource

+attributesList: ArrayList<String>

+attributesMap: HashMap<String, String>

+randomChoice: Random

+LinkingFeildsForSelection(stream:EventSource): String

+newSelectionStmt(): String

+selectionStmtList(num_queries:int): ArrayList<String>

+newJoinStmt(): String

+joinStmtList(num_queries:int): ArrayList<String>

+newPatternStmt(): String

+patternStmtList(num_queries:int): ArrayList<String>

+getCondition(key:String): String

Figure 4.12: UML diagram of the query module
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select select_list from stream_def [as name] [, stream_def

[as name]] [,...]

[where search_conditions]

However, EPL queries can have more variation in syntax structures
than the implemented syntax structures, because EPL queries fol-
low the syntax presented in the box below[79]:

[annotations]

[expression_declarations]

[context context_name]

[insert into insert_into_def]

select select_list

from stream_def [as name] [, stream_def [as name]] [,...]

[where search_conditions]

[group by grouping_expression_list]

[having grouping_search_conditions]

[output output_specification]

[order by order_by_expression_list]

[limit num_rows]

For example, the query generator with current implementation
cannot generate queries with some other clauses, e.g., “group by”,
“order by”. To extend the implementation of query syntax struc-
tures, users can add new methods in QueryGenerator class (i.e.,
QueryGenerator.java), to generate queries with different syntax.

4.4.1.3 Configuring Performance Monitoring and Analysis

The performance monitoring and analysis can be configured for real-
time or off-line mode in the main class. The real-time analysis displays
all the response times and throughputs, which are measured while a
performance test is running. The performance monitoring and analysis
can be turned on or off in the Main class. The framework saves all the
performance data when the system is operating in both real-time and off-
line analysis mode. These data can be used to analyse the performance
after the performance test is finished.
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4.4.2 Implementing CEPBen on other CEP engines

We introduced the configuration of CEPBen implementation on Esper in
the last section. Following this, we will present guidance on the reuse of
the implementation of CEPBen on other CEP engines in this section.

EventSource

+iterator(): Iterator<EventBase>

+hasNext(): boolean

+getStreamId(): String

+getTypes(): String

EventBase

+eventID: int

+timeStamp: long

+sentTime: long

EventA

+attributeA: String

EventB

+attributeB: String

EventC

+attributeC: String

+attributeC1: int

EventD

+attributeD1: int

+attributeD2: String

EventStream

+eventsStream: EventBase

+streamIterator: Iterator<EventBase>

+maxEvents: int

+events_counter: int

+count: int

+getStreamID(): String

+getLatency(): void

+createEvents(): List<EventBase>

+hasNext(): boolean

+next(): EventBase

Figure 4.13: UML diagram of the event generator

The event generator component in the framework can be reused and
extended. Users can add more event types when needed by modifying

82



4.4 guidance on the implementation of cepben benchmark

framework

the existing code. Figure 4.13 is a UML class diagram of the event gene-
rator.

The event stream is constructed by iteratively adding four events of
different types in the implementation (shown in the following box). The
values of the attributes in each event are randomly assigned. There-
fore, the event stream generated has a fixed structure when there are
four types of events: EventA, EventB, EventC, EventD, EventA, EventB,
EventC, EventD,........EventA, EventB, EventC, EventD.

for(events_counter=1; events_counter<maxEvents;

events_counter++)

{

long randomA = fields.randomLatency(randomC);

EventA eventA = new EventA(id, randomA, 0,

fields.getAttributeA());

stream.add(eventA);

getLatency(randomC, randomA);

id=id+1;

long randomB = fields.randomLatency(randomA);

EventB eventB = new EventB(id, randomB, 0,

fields.getAttributeB());

stream.add(eventB);

getLatency(randomA, randomB);

id=id+1;

randomC = fields.randomLatency(randomB);

EventC eventC = new EventC(id, randomC, 0,

fields.getAttributeC(),

fields.getAttributeC1());

stream.add(eventC);

getLatency(randomB, randomC);

EventD eventD = new EventD(id, randomStamp, 0,

fields.getAttributeD1(),

fields.getAttributeD2());

stream.add(eventD);

}

The query module cannot be reused with other CEP engines because
of the differences between CEP languages. However, the query module
can be modified to fit other CEP engines, as the query module produces
queries by deconstructing a CEP query to several parts and concatena-
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ting them following the format of Esper CEP languange. As shown in
Figure 4.12, a query is constructed by four string objects: “head”, “from”,
“source” and “condition”. When it is implemented on other CEP engines,
different components will be required to construct a query statement.
These components of a query statement should be modified accordingly
in the methods for generating different types of query statements. For
example, to generate selection statements, newSelectionStmt() method
has to be modified to meet the CEP language’s requirement.

As the input layer links event sources and the deployed CEP engine,
and the output layer links the deployed CEP engine and event consu-
mers, the implementation of the two layers should consider event sources,
event consumers and the deployed CEP engine in the implementation.
Because of the wide variety of event sources, event consumers and CEP
engines, the input layer and the output layer must be re-implemented to
meet the requirements of the three components of a CEP benchmark.

Performance data is displayed via performance monitoring and ana-
lysis module. This module is developed in Java using JFreeChart2 for
displays and opencsv3 for saving performance data into CSV files. While
the performance measurement points discussed in Section 4.2.3 and 4.2.4
are implemented in the input and output layers, the performance moni-
toring and analysis module is developed and tightly linked to these two
layers. As the input layer and the output layer have to be implemented
according to the tested engine, this module has to be re-implemented
based on performance measurement implementation. The Java libraries,
JFreeChart and opencsv, are recommended to CEPBen Users when re-
implementing the performance monitoring and analysis module if the
benchmark is coded in Java.

4.5 summary

In this chapter, we present a performance-oriented framework for imple-
menting the CEPBen benchmark platform. The implementation of CEP-
Ben on Esper using the performance-oriented framework is described.
Preliminary results of the experiments are obtained and presented as a
demonstration of the capability and usability of the CEPBen benchmark
platform. Some guidance on how to reuse and extend the benchmark

2 JFreeChart: http://www.jfree.org/jfreechart/
3 opencsv: http://opencsv.sourceforge.net/
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platform using the framework is provided. In the next chapter, we will
focus on experiments that are designed to explore the performance fac-
tors and metrics. Further discussion on performance management will
be presented.
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5
M E T R I C S A N D FA C T O R S F O R P E R F O R M A N C E
M A N A G E M E N T O F C O M P L E X E V E N T P R O C E S S I N G
S Y S T E M S

Performance is an important criterion at every stage in the life cycle of
a computer system. Complex event processing systems typically receive
continuous input events from various data sources and process these
input by queries that continuously and incrementally produce derived
events as new input events are detected. Hence, performance manage-
ment plays an important role in designing and using of a CEP system.

While most of performance studies in CEP focus on scaling load re-
jection and measuring throughput of CEP systems, e.g., performance
reports from Oracle [49, 75], Esper [76] and StreamBase [77], factors and
new metrics in performance management of CEP systems have not gai-
ned much attention.

Typically, a service level agreement is made to describe the key ser-
vices that the system providers offer and the quality standards that the
system providers and system users have agreed with in terms of ser-
vice delivery. Key performance metrics as a part of quality standards
of services are often stated in the agreement. For example, a service le-
vel agreement for a transactional system might have statements like the
following:

“We guarantee that 90% percent of response times will be
less than 1 second for all transactions, provided the arrival
rate of transactions is less than 10000 per second.”

Understanding the factors that affect system performance and selecting
appropriate performance metrics are critical to the service level provided
by CEP systems. Better knowledge of the system performance metrics
and factors helps system developers and users respond to problems and
make better evaluation and estimation of their systems’ performance.
Therefore, it is important to identify those factors which make significant
impact on the system performance and explore appropriate metrics that
can be applied in CEP systems.
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In the discussion in this chapter, the following terms and the example
shown in the Figure 5.1 are used to illustrate the performance measure-
ment points in CEP systems.

In complex event processing, each event can have the following header
attributes regarding to timestamps: occurrence time and detection time.
Their definition can be found in [1] as following:

occurrence time Occurrence time is the time at which
the event occurred in the external system. It is generally set
by the application.

detection time Detection time is the time at which the
event becomes known to the event processing system. It is
generated by the CEP system.

Figure 5.1 shows an example of events arriving into a CEP system. Event
1, Event 2 and Event 3 occur at occurrence times T1’, T2’ and T3’ . These
events are detected by the CEP system at detection times T1, T2 and T3

respectively in the CEP system. The derived output event is generated
as a response in the system at Tderived . This example will be used later in
this chapter to illustrate the performance measurement of CEP systems.

Event 1 Event 2

Event 3

Derived Event Event 3

Event 1 Event 2

Detection Time (System Time)

Occurrence Time (Application Time)

T1 T2 T3 Tderived

T1’ T2’ T3’

Figure 5.1: An example of events arriving into a CEP system

In this chapter, the studies on the performance factors in CEP systems
based on CEPBen will be presented. As a result of the study, three new
metrics are proposed and evaluated: response time of targeted event,
maximum query load and number of live objects, for performance ma-
nagement of CEP systems. Moreover, query depth as a factor relative to
the complexity of queries is studied.

5.1 measurement of response time

Response time and latency are often interchangeably used to describe
the time delay that a system takes for responses to emerge after their
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corresponding input events have been detected in the system. Indeed,
response time and latency are the key performance metrics in perfor-
mance evaluation in general.

Interactions between event producers and event consumers in event
processing are different from request-response interactions in transac-
tion processing because of the asynchrony feature between event pro-
ducers and event consumers that is discussed in Chapter 1: There is
no cause and effect link between the interests of end users (i.e., event
consumers) and the occurrence of an event. In this section, we take a
fresh look at response time and propose a different way of measuring
response time in performance management of CEP systems.

5.1.1 Discussion of Response Time

In performance management, the definition of response time must consi-
der the behaviour, design and architecture of a system in a performance
test. Traditionally, response time is measured by the time interval from
the time that a user initiates a request to the time that a response to the
request is received. Since in complex event processing, an event pattern
in event processing usually involves several events to trigger the derived
event, an event initiates a request in the traditional definition or trigger
to fire a pattern in CEP doesn’t apply here. Response time in CEP sys-
tems traditionally is measured in this way:

traditional response time Traditional response time
Ttraditional in CEP is measured from the detection time of the
last event Tlast that triggers the derived event to the time of
the derived event Tderived. It is calculated by:

Ttraditional = Tderived − Tlast (5.1)

For example, in Figure 5.1, the traditional response time Ttraditional

is measured as Ttraditional = Tderived − T3.

However, because event pattern detection involves more than one input
event, the initialization of a request in pattern detection is not clear. Thus,
the start point of the measurement of response time can vary. In another
words, response time in such environment can be measured differently.
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The response time relative to some other event rather than the last
event in matching an event pattern can be useful for system administra-
tors and of interest to users in some event processing applications. It can
be the perception of the response time and valuable for system users.
The following two applications are examples to illustrate the values of
response time to an event which is not the last event in pattern matching.

The first example is a fast flower delivery application from the book
[1]: A consortium of flower stores in a large city cooperates with inde-
pendent van drivers to deliver flowers from stores to their destinations.
When a store gets a flower delivery order, the system broadcasts the
request for delivery to the drivers close to the store location including
the information of required pick-up (typically now) and delivery time.
A driver is assigned and the customer is informed of expected delivery
time. The driver picks up the flowers and makes the delivery. The per-
son who receives the flowers confirms the delivery time by signing on
the driver’s device.

The flower delivery process has several processing phases. The assi-
gnment phase is one of these phases: the store receives the order, sends
a request to the drivers for the upcoming delivery and assigns the de-
livery to a driver who responds to the request and matches the store’s
requirements. Figure 5.2 illustrates the pattern detection of the assign-
ment phase. An order, as the input event 1 in the figure, triggers the
request for delivery. Meanwhile the order triggers a request for delivery.
Responses to the request from drivers in 2 minutes go through a bidding
system and get ranked. The information of five highest-ranked drivers
is the input event 2 for the store to create an assignment. Following this
step, the store makes the decision, creates an assignment and informs
the chosen driver. The derived output event is the creation of the new
assignment in the system. The derived output event is generated based
on the input event 1 and the input event 2. In this case, the response time
of the assignment output is traditionally measured from obtaining infor-
mation of five drivers to the output (i.e., the creation of the assignment).
However, the time delay from the moment that the order is received to
the creation of the assignment is the response time of the system to a
new order from the store’s point of view.

The second example is pattern detection of fraudulent use of credit
cards that is discussed in [78]: A credit card belonging to a holder re-
sident in California is used in former Czechoslovakia over the internet,
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Time

Input Event 1 Input Event 2 Derived Output

An Order A List Containing Five 
Highest-ranked Responses 
from Drivers for delivery 

Creation of an Assignment

Input Event 3

A Driver is 
Chosen

Figure 5.2: The assignment phase in the fast flower delivery application

where the holder has never been to. The card is first used for a tran-
saction of 2 cents over the internet. Following the first transaction, the
card is used for increasing transactions of 10 cents, then 2 dollars, 10

dollars and 100 dollars. Each transaction is made after the previous one
has cleared processing. As this pattern of fraud is deployed within the
card processing systems, an alert is created and the holder is contacted
in California. This pattern can be expressed in EPL like the following
box and illustrated in the Figure 5.3.

New Location of
Using the Card
Detected

A Transaction of
10 Cents at the
New Location

A Transaction of
10 Dollars at the
New Location

A Transaction of
2 Dollars at the
New Location

A Transaction of
100 Dollars at the
New Location

Generate an 
Fraud Alert

Time

Input Event 1 Input Event 2 Input Event 3 Input Event 4 Input Event 5 Derived Event

T1 T2 T3 T4 T5 Tderived

Figure 5.3: The pattern of fraud detection

/*
Event pattern of the fraud detection in the second example:
Each transaction event has amount, location and detection time as
attributes
*/
select * from pattern [ every (event1 = (Transaction1

(location != “American”))

-> (event2 = Transaction1 (amount = event1.amount)

-> (event3 = Transaction2 (amount > = event2.amount)

-> (event4 = Transaction3 (amount > = event3.amount))

-> (event5 = Transaction4 (amount >= event4.amount))

];

In this example, the response time that the system takes to react to the
last triggering event (a transaction of 100 dollars) is important to prevent
further loss. Meanwhile, the earlier the fraud alert is generated after the
first fraudulent use of the credit card (the transaction of 2 cents), the less

90



5.1 measurement of response time

loss the card holder and the card company make. From the card holder’s
point of view, the response time that the system takes to react to the first
fraudulent use in the defined pattern represents the responsiveness of
the service that the system provides.

The measurement of response time to a particular event represents
the quality of service that a CEP application delivers from a user’s point
of view, while the traditional response time cannot. The traditional res-
ponse time measures how fast a CEP engine processes input events.
Comparatively, the response time to a particular event combines the
information efficiency measurement which means how fast the system
receives the needed information and the CEP engine efficiency measure-
ment which means how fast the CEP engine can process available input
events. Therefore, response time to a particular event is not applicable
in performance tests that focus on the performance of a CEP engine or
comparing performance of different CEP engines.

In the rest of the section, we will introduce the measurement of the
response time to the particular event and its application in performance
management of CEP systems. We also present an empirical study on ap-
plying response time of the particular event to evaluate the performance
using CEPBen.

5.1.2 Response Time of Targeted Event

A CEP system’s responsiveness to a particular event in matching a pat-
tern can represent the system users’ perception of response time as it
is discussed in the last section. To address this need, we propose the
response time of targeted event as an extension to the traditional measu-
rement of a CEP system’s responsiveness. The response time of targeted
event can be used as a performance metric in CEP systems, in which
particular events are critical in deployed event patterns.

the response time of targeted event The response
time of targeted event is the response time that a CEP system
takes to respond to a particular event in an event pattern. It is
measured as the time difference between the detection time
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of the targeted event Ttarget and the time of the derived event
Tderived when the event pattern is matched.

Tresponse = Tderived − Ttarget (5.2)

Response time of targeted event can be applied in Quality of
Service (QoS) evaluation in CEP applications.

According to the definition of the response time of targeted
event, the response time of targeted event is the same as the
traditional response time when the targeted event is the last
detected event to match the pattern.

As the Figure 5.4 shows, the response time of targeted event (i.e., Event
1) consists of two parts. One is the time interval from Event 1 to Event
3; The other is the time interval from detection time of Event 3 to the
time of the output event. The time interval from event 3 to the time of
the output event is equivalent to the traditional response time. While
the time interval from Event 1 to Event 3 is the information latency Tin f o,
which is defined as follows:

information latency Information latency refers to the
waiting time from the detection of targeted event Ttarget to
the detection of the last required event Tlast to match a pat-
tern and generate the derived event. It occurs when a CEP
engine waits for more required events to be detected after
the detection of the targeted event to fully match the event
pattern.

According to the definition, the information latency Tin f o can be calcula-
ted in this way:

Tin f o = Tlast − Ttarget (5.3)

Based on Equation 5.2 and 5.3, Ttarget can be written in Equation 5.4. It
shows that response time of targeted event is much affected by the event
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input stream of a CEP system. Therefore, response time of targeted event
is not applicable in evaluating the performance of a CEP engine.

Ttarget = Tin f o + Ttraditional (5.4)

Event 1 Event 2

Event 3

Output Event 

Traditional Response
Time

Late-arriving Event 3

Event 1 Event 2

System Time

Application Time

Response Time of Targeted Event

Target

Ttarget Tderived

Figure 5.4: Two ways of measuring response time

Figure 5.4 illustrates the two ways of measuring response time: tra-
ditional response time and response time of targeted event. A pattern
is deployed to detect Event 1 followed by Event 2 and Event 3. In this
example, the traditional measurement of response time is the time bet-
ween the last event (Event 3) to the derived output of the event pattern.
If Event 3 is the targeted event, the response time of targeted event is
the same measurement as the traditional measurement of response time.
If Event 1 is the targeted event, the response time of targeted event is
measured as it shown in Figure 5.4.

The targeted event needs to be labelled in the pattern for further pro-
cessing. The targeted event can be defined differently according to the
CEP system specification. Hence, the pattern for Figure 5.4 can be writ-
ten in the implementation on Esper CEP platform as shown in the three
boxes below with different targeted events. The first query statement
labels the Event1 as the target. The second query statement labels the
Event2 as the target. The third query statement labels the Event3 as the
target.
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/*An event pattern example which defines the targeted event is any
event of Event1 type that has attributeA as ’green’ */
select * from pattern [ every TARGET = Event1 (attributeA =

’green’)

-> (Event2 (attributeB = ’18’))

-> (Event3 (attributeC > 3000))];

/*An event pattern example which defines the targeted event is any
event of Event2 type that has attributeB as ’18’ */
select * from pattern [ every Event1 (attributeA =

’green’)

-> (TARGET = Event2 (attributeB = ’18’))

-> (Event3 (attributeC > 3 000))];

/*An event pattern example which defines the targeted event is any
event of Event3 type that has attributeC is larger than 3000 */
select * from pattern [ every Event1 (attributeA =

’green’)

-> (Event2 (attributeB = ’18’))

-> (TARGET = Event3 (attributeC > 3000))];

The required information to work response times out can be acquired
by the listener for this pattern. The listener for the event pattern conti-
nuously receives updated data as soon as the event processing engine
generates derived output events when the pattern is matched. The follo-
wing box contains the listener for the example pattern above. Acquiring
information of timestamps of targeted event and the output event is im-
plemented here: Values of attributes in targeted event and derived event
can be accessed, so that the timestamps of their detection are used in
the calculation of the response time of targeted event. Calculations of
response times can be done in the listener like the code below.
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/* The listener for the event patterns and calculation of response times
*/
public void update(EventBean[] newEvents, EventBean[ ]

oldEvents) {

if (newEvents = = null) {

return;

}

EventBean detection = newEvents[0];

//System time of the pattern is matched. This will be used to calcu-
late response time.
long receiveTime = System.nanoTime( );

// Obtain the targeted event when the pattern is matched.
EventBase event = (EventBase) detection.get("TARGET");

Object e = event.getSentTime();

long sentTime = (Long) e;

//Response time of targeted event
responseTime = (double)(receiveTime -sentTime)/1000;

(code) //Generate an alert: Event 1(time, ID, attributeA) is detec-
ted.
}

In summary, implementing the measurement of response time of tar-
geted event requires modifying pattern queries. One approach to modify
the deployed queries is to label the targeted event for events listeners to
trace them in the event history. The history of relevant events for mat-
ching patterns is kept in stateful event processing system (discussed in
Section 1.2.2) and can be used to acquire the details of relevant events.
The modification does not change the behaviour of the system, because
it does not change the structure of the queries.

5.1.3 Evaluation on Response Time of Targeted Event

Following the discussion of the relationship between response time of
targeted event and traditional response time, we re-run the experiment
that is presented in Section 4.3 to demonstrate the two types of response
time measurements. The targeted event is set to be the first event in an
event pattern in the experiment tests. Thus, the response time of targeted
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event is then measured from the detection time of the first event to the
generation time of the derived event when a pattern is matched.

Figure 5.5 and Figure 5.7 show the comparison of relative frequency
and cumulative distribution of two types of measurement of response
times in Group 1, where 10 event pattern detection queries are registe-
red in the Esper engine. Figure 5.6 and Figure 5.8 show the comparison
of relative frequency and cumulative distribution of two types of measu-
rement of response times in Group 2, where 100 event pattern detection
queries are deployed in the Esper engine.

All the figures of relative frequency display the shortest response time
and the relative frequency of the first bin which contains the shortest
response time. The relative frequency distribution for response time of
targeted event (shown in the Figure 5.5b and 5.6b) has both a much
higher mean and much higher variability than the relative frequency
distribution for traditional response time (shown in the Figure 5.5a and
5.6a). Figure 5.7 and Figure 5.8 compare the cumulative distribution of
two types of response time measurements.

Since the two sets of experiments are run in the same configuration,
the significant differences on values of the two types of response time
in both groups are caused by the information latency in response time
of targeted event. Therefore, it is concluded from the results that the
information latency is the dominant factor in the length of response time
of targeted event.

To explore the relationship between the traditional response time and
workloads, the relationship between the response time of targeted event
and workloads and the relationship between the information latency of
input events and workloads, the traditional response time, response time
of targeted event and the information latency in inputs at various work-
loads are measured and plotted in the Figure 5.9, 5.11 and 5.10.

The workloads vary from 5,000 events per batch to 25,000 events per
batch with an increment of 5,000 events per batch and 0.3 seconds inter-
val between batches. The event pattern is generating a derived event
when five events are detected in the defined sequence. The targeted
event is the first event that is detected in matching a pattern. 99th per-
centile of traditional response time, response time of targeted event and
the information latency are plotted in the figures to show the changes
responding to the workloads.
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Figure 5.5: The relative frequency of two types of response time in event
pattern detection in Group 1
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Percentile is a common statistical criteria in expressing the perfor-
mance of computer systems. For example, in the Oracle CEP perfor-
mance study 99.99 percentile is applied to compare latencies [75]. In
our experiments, 99th percentile response time is applied to compare
the results under different experiments settings.
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Figure 5.9 describes the 99th percentile of traditional response time
with different workloads. The traditional response time Tsystem increases
while the workload grows heavier. This complies to typical traditional
response time in load testing in computer systems.
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Figure 5.10 describes the 99th percentile of the information latency
with various workloads. The information latency Tin f o decreases while
the workload increases. The reason is that the workloads increases by in-
creasing input events in each batch in the tests. The event types are fixed
in the increment, however, the values of the properties of these events
are randomly set. By this increment, more relevant events to match the
deployed event patterns are detected in the same time period, compa-
ring with less input events in each batch. Therefore, information latency
to match an event pattern decreases.
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Figure 5.9: The 99th percentile of traditional response time at various work-
loads

Figure 5.11 shows the 99th percentile of response time of targeted
event with different workloads. The response time of targeted event
Ttarget decreases while the workload increases. Information latency is
a dominant factor to influence the response time of targeted event, be-
cause the results from experiments in this section clearly indicate that
the length of one information latency measurement is significantly lon-
ger that the length of a traditional response time measurement. Even
though the traditional response time increases with heavier workloads,
the response time of targeted event decreases with heavier workloads
because of significant decrease in information latency.

Large information latency indicates that the system takes more re-
sources to maintain and store the event states and history. This is an im-
portant factor to consider when allocating memory to event processing

100



5.1 measurement of response time

1 2 3 4 5
600

800

1000

1200

1400

1600

1800

Workloads (Events/Batch)

99
%

 T
ra

di
tio

na
l R

es
po

ns
e 

T
im

e 
(m

ill
is

ec
on

ds
)

Workload Test − Traditional Response Time

Figure 5.10: The 99 percentile of information latency at various workloads

engines. When the waiting time for more incoming events to a pattern
matching is relatively long, more heap needs to be allocated to maintain
the event history in order to match queries to guarantee the level of ser-
vice. When the waiting time for more incoming events is relatively short,
more derived events are generated. In this case, more system resources
will be consumed on pattern matching and outputting derived events.

The information latency can be obtained by subtracting the traditional
response time measurement from response time of targeted event (see
Formula 5.3). It can be valuable in an event processing system which
takes simultaneous events as input because it is time information re-
lated to important events to the system. It not only represents users’
perception of response time, but also can be used as a factor to decide
whether to deploy workload balancing strategies, when short waiting
time is observed continuously and output throughput does not decrease
sharply.

Measurement responsiveness and accuracy are the most basic concern
for a performance metric [80]. The responsiveness means that a perfor-
mance metric changes when there is a change in system performance.
Accuracy means that the measurement results of a performance metric
are close to true values. The response time of targeted event indicates the
responsiveness of a CEP system to a particular event in pattern detection.
It represents users’ perception of the responsiveness of the system ser-
vice. In this case, the measurement of response time of targeted event
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Figure 5.11: The 99 percentile of response time of targeted event at various
workloads

is responsive. The changes of response time of targeted event reveal the
level of service provided by the CEP system responding to the targeted
event. The instrumentation and calculation of response time of targeted
event are based on the detection time (i.e., the system time) recorded in
the event history. This approach guarantees the accuracy of the measure-
ment of response time of targeted event if the detection time is assigned
by the central platform when the events arrive there.

5.1.4 Summary

In this section, the response time of targeted event as a performance me-
tric to measure the responsiveness to particular events is proposed and
discussed. The need and importance of different measurements of res-
ponse time in CEP systems is addressed firstly. Then possible measuring
points for response time are analysed. At last, the consistency and accu-
racy of response time of targeted event are evaluated. The two types
of response time measurement in the experiments based on the CEP-
Ben benchmark are presented and compared. It is concluded that repose
time of targeted event is consistent and accurate in indicating the res-
ponsiveness to a particular event in pattern detection. The information
latency which can be obtained from response time of targeted event and
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traditional response time is meaningful in performance management of
CEP systems.

5.2 query depth : a performance factor

A query is a language expression that describes data to be retrieved from
a database. In a CEP system, wide varieties that the input events can
have and the complexity of tasks of event processing suggest the mighty
richness and complexity of deployed continuous queries. This richness
and complexity of query impact on system performance. In this section,
we will explore the performance influence by the complexity of queries.

5.2.1 Query Depth in Complex Event Processing

Query processing is recognized as a very important aspect in improving
the performance of CEP systems. Various techniques on query proces-
sing in CEP to improve the system performance can be found in lite-
rature. The development of these techniques shows the importance of
query processing for the system performance. For example, a runtime
query unsatisfiability (RunSAT) checking technique is developed to de-
tect optimal points for terminating query evaluation in complex event
processing [81]. A complex pattern ranking (CPR) framework for speci-
fying top-k pattern queries in complex event processing is proposed to
improve the efficiency of systems’ pattern matching when plenty of pat-
terns are matched [82]. Instead of focusing the techniques of enhancing
query execution, our project focuses on performance effect of queries
themselves regardless of the techniques deployed in processing queries.

In complex event processing, events are typically processed in rules
by comparing them with other and past events to create complex or abs-
tract events, which are used to signify state changes in relevant entities.
Among three main functionalities (filtering, transformation and pattern
detection) that is discussed in Chapter 3, transformation produces com-
posite events which are formed based on different number of primitive
events. Similarly, event pattern detection can involve various numbers
of events. We specify the number of events as query depth. For example,
the general example that is described in Figure 5.1, the query depth is 3
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because the derived output events are generated based on three events
detected in the system.

query depth Query depth is defined as the number of
events that are used to produce a composite event or a de-
rived event in a query statement.

Query depth does not concern about the origins of events. Events in the
definition refer to both raw events and derived events in a CEP system.
For example, the query of creating an assignment in flower delivery
system in Section 5.1.1 has query depth of 3 (5.2). The input event 2 in
the pattern is a derived event, while the input event 1 and input event 3

in the figure are raw events.
Sometimes more than one attributes of a single event can be used in a

query statement. For example, the statement that detects the fraudulent
use of a credit card in Section 5.1.1 (shown in the box below) is written
in a way that it seems involving 5 events: event1, event2, event 3, event4
and event5. In fact, only four transaction events are used to match this
pattern. “event1” and “event 2” in this query are two different attributes
of one transaction event. In this case, the query depth refers to the num-
ber of events, not the number of attributes. Hence, this query statement
has query depth of 4. The events in this statement are all raw events.

/*
Event pattern of the fraud detection in the second example:
Each transaction event has amount, location and detection time as
attributes
*/
select * from pattern [ every (event1 = (Transaction1

(location != “American”))

-> (event2 = Transaction1 (amount = event1.amount)

-> (event3 = Transaction2 (amount > = event2.amount)

-> (event4 = Transaction3 (amount > = event3.amount))

-> (event5 = Transaction4 (amount >= event4.amount))

];

Query depth is important because it refers to the event history that a
CEP engine needs to maintain for processing query statements that in-
volve more that one primitive event. Maintaining the history is resource-
consuming and affects the performance of a CEP system. In this section,
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we will investigate the query depth as a performance factor in perfor-
mance management of CEP system.

5.2.2 Performance Analysis on the Factor of Query Depth

In the Section 4.3, two groups of experiments are designed and presen-
ted. In the experiments according to the definition of query depth, the
query statements of filtering has query depth as 1, the query statements
of transformation has query depth as 2 and the query statements of pat-
tern detection has query depth as 5. Figure 4.5 and Figure 4.9 show the
response time of the three types of queries. Filtering with the least query
depth performs the best in the two groups of experiments. In Figure 4.10

and Figure 4.11, the event pattern detection with query depth of 5 has
higher input throughput than the transformation with query depth of 2.
The reason might be the output throughput is much heavier in transfor-
mation than in event pattern detection as shown in Table 4.2 and Table
4.3. Higher output throughput means queries are matched and fired for
more times and more derived events are generated in the measured per-
iod. This indicates heavier processing load for the CEP engine. Therefore,
the performance impact from higher query depth in pattern detection is
offset by the performance impact from the heavier processing load in
the transformation.

The results of Group 1 and Group 2 demonstrate the differences that
the different type of functional queries with different query depths make
on performance. However, these two group of tests are not enough to
exclude the possible reason that the event processing engine’s nature on
different functionalities. To clarify the influence of query depth, another
group of test is designed: Group 3. In the Group 3, a single functionality
— event pattern detection, with two query depth settings which are 3

and 5, is tested. The workload is the same as the Group 1 and Group
2: It consists of 500 event batches with 20,000 events in each batch; The
average of interval times is set to 0.3 seconds. In addition, 100 queries
are deployed in this group of experiment.

Figure 5.12 and 5.13 describe the cumulative distribution of traditio-
nal response time and response time of targeted event in Group 3. The
targeted event is the first detected event of each deployed query state-
ment. The relative frequency distribution is divided into two parts in
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order to show the curve clearly. The part of the distribution that goes
beyond the visible part of the graph is not displayed here. The CEP
system performs better with queries that have query depth as 3 than
queries that have query depth as 5 in evaluation of traditional response
times. Although the CEP system performs has better performance with
queries that have query depth as 3 than queries that have query depth
as 5 in the evaluation of response times of targeted event with the first
event of each pattern as the targeted event, choosing targeted events in
different queries according to real-world application scenarios makes a
lot of differences in the value of response time of targeted event.
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Figure 5.12: The cumulative distribution of traditional response time in the
Group 3
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Figure 5.13: The cumulative distribution of response time of targeted event
in the Group 3

106



5.2 query depth : a performance factor

Figure 5.14 provides the input throughput in the Group 3. The measu-
rement of input throughput is taken in each event batch. Therefore, there
are 500 measures in each run of an experiment. The X axis of Figure 5.14

is the measures taken in 500 event batches in a time series. The system
with query depth of 3 has much higher input throughput than the sys-
tem with query depth of 5. A significant drop in the input throughput
is found in both input throughput lines in the graph.
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Figure 5.14: The Input throughput in Test group 3

To investigate the reasons that cause such phenomenon, the CPU
usage, garbage collection and heap size are monitored. Figure 5.15 and
5.16 are screen shots that are caught during two experiments in Group 3.
The X axis is the time when the experiments are run in these screen shots.
in the As it is shown in the graphs, the CPU usage, garbage collection
and heap size had steady increase in the later period of the experiment.
At the final stage, the used heap is very close to the maximum of the
heap size. This stress on the heap results in the drop in input through-
put in Figure 5.14.

In contrast, Figure 5.17 shows a screen shot of typical system resources
usage of a filtering experiment. The deployed queries are 100 filtering
statements in this figure. The CPU usage and heap usage remains in a
steady level through the experiment. The resource consumption is very
different from the increasing resource consumption in Group 3.
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Figure 5.15: A screen shot of VisualVM in the running system with queries
of query depth 3

Hence, it is concluded by the comparison above that the increase in
heap size in Group 3 (shown in Figure 5.15 and 5.16) can be caused by
the accumulation of event history in the CEP engine. Because the queries
that are deployed in the experiments are not specified with window
time, the states of relative events in early period of the experiment can
be maintained in the CEP engine until the later period when more input
events are detected for matching the related event patterns. When the
heap size reaches the maximum, more garbage collection is performed
to release memory for processing. This is observed in both Figure 5.15

and 5.16.
Table 5.1 shows the output throughput in the Group 3. The system

generates larger amount of output events and higher output throughput
in the experiments with queries that have query depth 3 than the expe-
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riments with queries that have query depth 5. Larger amount of output
events and higher output throughput indicate that more events match
the deployed patterns and heavier processing load in the CEP engine.
Figure 5.15 and 5.16 show the heap is stressed more in the experiment
with query depth as 3 than the experiment with query depth as 5. This
observation confirms that the performance influence by larger amount
of output events and higher output throughput.

Figure 5.16: A screen shot of VisualVM in the running system with queries
of query depth 5

In a summary, query depth significantly influences the performance of
CEP systems. Comparing with the tested system with queries that have
more query depth, the system with queries that have less query depth
has better response time and higher input throughput. It is noticed that
the system with queries that have less query depth deals with heavier
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Figure 5.17: Typical CPU usage, garbage collection activity and heap usage
in a filtering experiment

output load and generates higher output throughput to process the same
amount of input events in the experiments above.

Table 5.1: The output throughput in Group 3

Query Depth
Output of Group 3

Throughput (events/sec) Load (events)

3 13639.01 18,102,554

5 6866.44 10,549,305

5.2.3 Summary

In this section, query depth as a factor that influence the performance of
CEP systems is investigated. A group of performance test is designed to
explore the impact. Detailed results obtained from the experiments were
described and analysed. It is concluded query depth has impact on the
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performance of CEP systems. Systems with less query depth of queries
perform better than systems with more query depth of queries.

5.3 query load

In a CEP system, the load of input events is an important factor that in-
fluences the system performance. Moreover, queries in CEP systems are
continuous queries which are issued once and then logically run conti-
nuously over the data. The queries deployed in a CEP system forms a
load in the system. In this section, we will explore the impact on the sys-
tem performance that is made by the load of queries that are deployed
in a CEP system. The experimental work done on Esper using CEPBen
is presented to demonstrate the impact of varying number of queries on
the system performance.

5.3.1 A Capacity Indicator: Maximum Query Load

The queries in complex event processing engines are commonly known
as continuous queries. Multiple continuous queries are usually registe-
red simultaneously in a CEP system. As it is observed that processing
continuous queries over data streams involves fundamental trade-offs
among efficiency, accuracy and storage, Dobra A. et. al states that it is
an open problem to understand the implications of these trade-offs in a
real system processing continuous queries [83].

Furthermore, from performance point of view, executing such queries
is expensive. When the system resources are allocated to the execution
largely, the level of Quality of Service (QoS) (e.g., response time, input
throughput and output throughput) that is provided by this system will
degrade. Therefore, knowing the number of queries that a CEP system
can support and at the same time providing a satisfying level of QoS is
important.

The Linear Road Benchmark that is reviewed in Section 2.3 used “sup-
ported query load” as a metric to address the challenge of continuous
queries [63]. The authors argue that the typical database benchmark me-
tric — completion time — is not appropriate for continuous queries be-
cause such queries never complete. Supported query load is defined as
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the input that a stream system can process while meeting specified res-
ponse times and correctness constraints.

Different from the Linear Road Benchmark, the number of queries that
a CEP system can support is also interesting because it reflects the capa-
bilities of the CEP system on processing events. Deploying queries is a
dynamic process in CEP systems. For example, in Esper a query state-
ment can have three states: Started: when the query statement is actively
evaluating input events according to the queries expression; Stopped:
when the query statement is inactive; Destroyed: when query statement
resource is relinquished. Therefore, we define query load as the follo-
wing:

query load Query load is the number of query statements
that are active at the runtime while the CEP engine is meeting
specified performance requirements. Query load consists of
three components reflecting to the three main functionalities
a CEP engine operates: a number of filtering queries, a num-
ber of transformation queries and a number of pattern detec-
tion queries.

The more active queries a CEP system can support, the better capacity
the CEP system has. Therefore, we propose maximum query load as a
capacity indicator for event processing systems.

maximum query load Maximum query load refers to the
maximum number of active queries that a CEP engine can
support while providing a satisfied service. The maximum
query load can be expressed including two figures: total num-
ber of active queries and the ratio of numbers of three types
of functionality queries (i.e., number of filtering queries: num-
ber of transformation queries: number of pattern detection
queries). Maximum query load of a CEP engine is affected
by the workload and the query depths of the deployed que-
ries in the tested CEP system.

Query load in a CEP system is important for both users and developers
in guaranteeing a promising responsive service. From user’s point of
view, having knowledge of the query load that can be supported by
candidate CEP systems is helpful to estimate and choose the right CEP
system to run their application when making decisions and to avoid
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unnecessary service failure in running systems. From developers’ point
of view, having knowledge of the query load supported by their CEP
systems is beneficial to detect bottlenecks and improve the performance
to meet users’ requirements on performance.

In the next section, we will introduce the implementation of query
load. Experiment results from the CEPBen benchmark that is implemen-
ted on Esper are discussed on the impact of various query loads on the
system performance.

5.3.2 Implementation and Experiments of Query Load

The number of active queries that are deployed in a CEP system can
be tracked either via built-in interfaces at runtime if the CEP engine
interface has the method to return the value of the number of active
queries, or implementing a class to count the state changes when new
query statements are deployed and the states of query statements are
changed. In our experiment, the number of deployed query statements
stays the same from the beginning to the end of the experiment.

To demonstrate the performance impact by query load, the results
that are obtained from the experiments described in Section 4.3 are pre-
sented. The input workloads in this set of experiments are set as the
following: 20,000 events in each event batch, 500 event batches in total,
and 0.3 seconds as the interval between two events batches. Two query
loads are implemented in the two groups of tests: 10 queries and 100

queries. Cumulative distribution of traditional response time with three
types of functionalities and response time of targeted event with pat-
tern detection are plotted. The targeted event is set to be the first event
detected to match a pattern.

Figure 5.18 compares the response times acquired in the CEP system
run with 10 filtering queries and 100 filtering queries respectively. Figure
5.19 compares the response times in the CEP system with 10 transforma-
tion queries and 100 transformation queries respectively. Figure 5.20 and
5.21 compare the traditional response times and response times of targe-
ted event in the CEP system with 10 pattern detection queries and 100

pattern detection queries respectively. These figures reveal the impact of
different query load on response time: Higher query load leads to longer
response time.
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The response time of targeted event represents the users’ perception
of response time. Therefore, the response time of targeted event is par-
ticularly important in deciding whether the agreed level of service is
provided in a CEP system.
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Figure 5.18: The cumulative distribution of response time for filtering with
different query loads
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Figure 5.19: The cumulative distribution of response time for transformation
with different query loads

Trade-off study between 99th percentile response time and query load
and trade-off study between average input throughput and query load
are studied and presented in Figure 5.22 and 5.23, to compare the sys-
tem performance under various query loads. 40 queries and 70 queries
as two query loads are added in the trade-off study to create a steady
increasing query load setting: 10—40—70—100 queries. With each query
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load setting, filtering, transformation and pattern detection queries are
deployed respectively and displayed in one graph. Note that the trade-
off between average output throughput and query load is not displayed
here, because the number of output events and the output throughput
heavily depend on the context of deployed queries in the system against
input events.
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Figure 5.20: The cumulative distribution of traditional response time for pat-
tern detection with different query loads
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Figure 5.21: The cumulative distribution of response time of targeted event
for pattern detection with different query loads

Figure 5.22 demonstrates the trade-off between query load and 99th
percentile traditional response time. 99th percentile traditional response
time refers to 99th percentile of the shortest response times among all
the response times that are produced in one set of experiments. As it
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Figure 5.22: The trade-off between 99% response time and query load

is shown in the graph, the traditional response time increases while the
query load increases.

Figure 5.23 shows the trade-off between query load and average input
throughput. Input throughput is measured once in each event batch,
therefore, the average input throughput of a run of an experiment can be
calculated based on these data. Several runs of experiments are carried
out. The average input throughput is calculated and displayed in the
graph based on average input throughput of each run of experiments.
It is concluded from Figure 5.23 that the average input throughput is in
inverse relation to the query load.

The experiment results show that query load has significant impact on
performance. The more the query load is, the higher response time that
the system performs, the lower average input throughput that the sys-
tem processes. Therefore, maximum query load can be used to indicate
the capacity of a CEP system under the constraint of QoS. The trade-off
studies are helpful for developers and users to judge the performance
level at runtime in the performance management. As an outcome of this
query load study, it is recommended to include trade-off study of query
load in performance reports of CEP systems.

To compare the capacity of different CEP systems using maximum
query load, the total number of active queries and the ratio of number
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Figure 5.23: The trade-off between average input throughput and query load

of the three types of functionality queries are both considered. Accor-
ding to the results that are obtained from experiments, the capability
of a CEP system descends in supporting different types of queries in
the following sequence: filtering, transformation, and pattern detection.
Therefore, the more pattern detection queries in the maximum query
load that a CEP system can support while meeting the agreed level of
service, the more capable the CEP system is. If the numbers of pattern
detection queries are the same, the more transformation queries in the
maximum query load that a CEP system can support, the higher capa-
bility the CEP system has. If numbers of pattern detection queries and
numbers of transformation queries are the same in two CEP systems,
then the numbers of filtering queries in the maximum query loads of
these two systems are compared.

5.3.3 Summary

In this section, the definition and the significance of query load and
maximum query load in CEP systems are presented. Then the perfor-
mance impact by query load is studied and demonstrated using the
CEPBen benchmark on Esper. Trade-off studies between query load and
99 percentile response time, and the trade-off between query load and
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input throughput were presented to show the performance influence
by query load. It is concluded that maximum query load can be used
as a capacity indicator for CEP systems. Trade-off studies regarding to
query load and other performance metrics are recommended in measu-
ring performance of CEP systems. At the end, applying the maximum
query load to compare the capability of different CEP systems is discus-
sed.

5.4 live objects in heap

Memory management is critical in performance management of CEP
systems. It is known that memory management plays an important role
in meeting the agreed level of service with limited resources.

In this section, we will explore performance of memory management
in CEP and propose the number of live objects in heap as a performance
metric to indicate the usage of the heap.

5.4.1 Garbage Collection

Memory management is the process of allocating new objects and remo-
ving unused objects to make space for those new object allocations [84].
Garbage collection (GC) is a memory management technique for auto-
matic reclamation of allocated storage for programs. Many computer lan-
guages require garbage collection as part of the language specification,
e.g., Java, C#, while some languages use manual memory management,
but have garbage collected implementations available (e.g., C, C++) [85].

Garbage collection relieves programmers from memory management
and reduces certain categories of bugs. However, garbage collection has
certain disadvantages. Garbage collection consumes computing resources
in deciding which memory to release. Furthermore, it can cause unpre-
dictable stalls in real-time environment, transaction processing or inter-
active programs [86]. This disadvantage is very critical for complex event
processing when timely responses are required.

To study the garbage collection’s impact on CEP, a group of perfor-
mance tests on CEPBen is set up. The garbage collection activity in the
tests is monitored. The garbage collection in the experiments automati-
cally occurs because CEPBen is implemented in Java and the garbage
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collection is built in Java Virtual Machine (JVM). In this test, the input
workload consists of 500 event batches with 20,000 events in each batch.
Five pattern detection queries are deployed. Each query has query depth
as 3. VisualVM (introduced in Section 4.3.3.4) is used to monitor the gar-
bage collection activity. Traditional response time and input throughput
are measured. As the input throughput is measured once in each batch,
500 input throughput data are obtained in each run of the experiment.

An experiment with the settings described above is run. The perfor-
mance data is plotted in Figure 5.24, 5.25, and 5.26 . Figure 5.24 is a snap-
shot of VisualVM that describes garbage collection activity and CPU ac-
tivity in one run of the experiment with the described experimental set-
tings. It shows that the garbage collection activity is active all the time
including several peaks at the beginning of the experiment (warm-up
period), 12:41:40, 12:42:15 and 12: 43:10 roughly estimated. The garbage
collector in the machine where the CEP system runs is generational gar-
bage collector [87].

Figure 5.25 depicts 1 percentile worst traditional response times in
time sequence in this experiment. It is found that worst response times
occur at different times in the experiment. Moreover, when the garbage
activity peaks happen, long response times are detected at around the
peaks’ time. These are marked out in the Figure 5.25 with underlined
time periods.

Figure 5.24: Garbage collection activity (an example)
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Figure 5.25: One percentile of worst traditional response time

120



5.4 live objects in heap

Figure 5.26: 10 percentile of worst input throughput
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Figure 5.26 records 10 percentile worst input throughput in time se-
quence. Because one measurement of input throughput is taken mea-
sured in each event batch and there are 500 event batches in total, 10

percentile worst input throughputs contain 50 input throughput data.
Comparing with the garbage collection activity, significantly drops of
input throughput measurements occur at 12:41:37, 12:42:12 and 12:43:06,
corresponding to the garbage collection activity peaks.

Garbage collection activity can have a significant impact on perfor-
mance of CEP systems. The correspondence between the time of garbage
collection activity peaks and the time when the lowest input through-
put and highest response times occurred at runtime demonstrate the
influence of garbage collection on the CEP system performance.

Therefore, for better and precise measurement of the performance in
CEP systems, we will explore a new way of measuring the memory
usage considering the influences from memory management techniques
in such systems in the rest of this section.

5.4.2 Live objects as a Performance Metric

In the previous section, it is demonstrated that garbage collection plays
an important role in the performance management of CEP systems. Ex-
treme performance in real-time processing can cause unacceptable ser-
vices at critical times.

There are many different dynamic memory management schemes and
garbage collection algorithms [85, 88]. Moreover, different implementa-
tions of memory management systems apply different memory manage-
ment schemes and garbage collection algorithms. No matter what dyna-
mic memory management scheme and garbage collection algorithm are
adopted in memory management, there are common issues in the heap.

Java objects reside in the heap. The heap is created when the JVM
starts up. The usage of the heap may increase and decrease in size when
applications run. The heap consists of reachable objects and unreachable
objects. Reachable objects are live objects and actively used by the sys-
tem. Unreachable objects in the heap are ready to be collected. The heap
usage reflects the current usage of the heap. However, considering the
frequently occurred garbage collection in the memory, the heap that is
occupied by unreachable objects can be released as soon as garbage col-
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lection happens. Consequently, a drop in used heap occurs after the gar-
bage collection. For example, a snapshot of the heap usage taken in an
experiment is displayed in Figure 5.27. The maximum heap size is 256

megabytes (MB). The heap usage reaches 70% (about 200MB) at about
the time 21:00. As time passes, the used heap is growing larger until it
reaches the maximum heap size. Even though the used heap fluctuates
at the level that is close to the maximum heap size, the experiment is
running well. This is because the garbage collection can release memory
for the system. At this stage when the heap is under excessive pressure,
the number of live objects in the heap can be used to reveal the capability
of the system to guarantee the service.

Figure 5.27: The heap under excessive use

On the other hand, the number of unreachable objects can indicate
the imminent initiation of garbage collection activity, because they trig-
ger garbage collection activity. The number of unreachable objects in
the heap can help predicting garbage collection activity. Although the
performance impact cannot be predicted during the garbage collection,
predicting high garbage collection activity offers opportunities to the
system to get prepared for possible unacceptable system performance
that results from garbage collection.

CEP systems are featured of real-time processing. The memory in such
systems is highly demanded in processing events and storing event his-
tory for matching patterns. High input throughput and output through-
put, large query load and the query depths of these queries deeply affect
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the memory consumption. Therefore, to capture the characteristics of the
heap usage in CEP systems, we propose the ratio between number of live
objects and the total number of objects in the heap (i.e., live objects and
unreachable objects) as a performance metric. The ratio is calculated in
Formula 5.5.

γ =
Nlive

Nlive + Nunreachable
(5.5)

Where γ is the ratio of the live objects in the heap, Nlive is
number of live objects, Nunreachable is the number of unrea-
chable objects in the heap. According to the definition of the
ratio of the live objects, the more the number of live objects
is, the higher γ is, in fixed size of heap.

In the next section, we will present the implementation and analysis of
applying the number of live objects in the heap as a performance metric.

5.4.3 Implementation and Performance Analysis

The number of live objects can be obtained by heap dumps. A heap
dump is a snapshot of the main memory. It can be created via JVM func-
tions or by using special tools that utilize the JVM tooling interface. The
heap dump itself contains rich information about the memory, including
the information of number of live objects and unreachable objects. The
rich information generally is used in identification of memory leaks and
memory-eaters in a program.

However, generating a heap dump requires memory itself. In addition,
a heap dump will suspend the JVM [89]. Therefore, heap dump cannot
be done under very heavy load or in real-time. An experiment based on
CEPBen with 100 queries deployed is run. All the queries have query
depth as 5. The workload of the experiment is set the same as the expe-
riments in Chapter 3: 20,000 events in each batch and 500 batches in all.
The heap usage, CPU usage and garbage collection activity is monitored
with VisualVM. The heap dump is acquired and analysed by Memory
Analyzer (MAT) 1. To avoid problems of generating heap dump when

1 The Eclipse Memory analyser is a fast and feature-rich Java heap analyser. MAT
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the heap is excessively used, the maximum heap size is set to 512 MB
which is doubled than the experiment presented in Figure 5.27.

Figure 5.28 and 5.29 depict the CPU usage, garbage collection and
heap usage in the experiment. Figure 5.28 reveals the moments that
three heap dumps are acquired. The CPU usage has three spikes at dif-
ferent times. The used heap has steady growth in Figure 5.29. Figure
5.30 shows that the number of live objects increases steadily, correspon-
ding to the used heap size in Figure 5.29. The number of unreachable
objects indicates the memory that can be released after garbage collec-
tion. Hence, the ratio of live objects in the heap can be plotted based
on these data (shown in Figure 5.31). The ratio increases while the used
heap increases. The figure of the ratio can indicate the state of the me-
mory usage. The bigger the ratio is, the less heap memory is available
for use.

The memory usage becomes a constraint for achieving promised ser-
vice (e.g. sound response time, high input throughput and high maxi-
mum query load) when the heap is excessively used. The ratio of live
objects in the heap can be used as a performance metric to describe the
used heap in CEP systems. It is consistent as it increases while the used
heap increases. Moreover, it is more precise than the used heap in revea-
ling the available memory to use in CEP systems.

Figure 5.28: The CPU usage and garbage collection activity in the expe-
riment
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Figure 5.29: The heap usage in the experiment
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Figure 5.30: Number of live objects and unreachable objects in three heap
dumps in the experiment

Furthermore, the ratio of live objects in the heap is especially useful
because it is associated with query depth. The ratio of live objects im-
plicates the memory size to maintain event history for a particular set
of queries at a particular input rate and output rate, while event history
that is required to maintain in a CEP system is much related to query
depths of deployed queries in the system. The more query depth of a
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active query has, the history of more events are stored in the memory in
a CEP system, therefore the higher the ratio of live objects in the heap is.
Considering the significant performance influence of query depth factor
demonstrated and discussed in Section 5.2, the ratio of live objects in the
heap can be applied to implicate the performance of query depth factor
in CEP systems.

There are many performance tools provide light-weight memory sam-
pling containing information of live objects, e.g., VisualVM and Net-
Beans2. However, the unreachable objects can not be traced through this
approach, but through heap dump. Since the generation and analysis
of heap dump requires memory itself, getting number of unreachable
objects is costly in performance, especially in real-time performance mo-
nitoring and analysing. Therefore, to avoid costly heap dump in the
system, the calculation of the ratio of live objects in the heap in Formula
5.5 can be transformed to Formula 5.6:

γ =
Blive

Bheap
(5.6)

where Blive is bytes of live objects in the heap, and Bheap is bytes of used
heap. The real-time information about the bytes of live objects in the
heap can be traced by memory sampling. Real-time information about
the bytes of used heap can be obtained from performance tools, such as
VisualVM and NetBeans.

5.4.4 Summary of Findings

The performance impact in a CEP system from garbage collection is stu-
died and presented. High garbage collection activity results in worst res-
ponse time and input throughput. Although garbage collection is ano-
ther vast research area, this performance study in CEP systems shall
raise the practical performance management issues in a CEP platform
with dynamic memory management.

The ratio of live objects in the heap as a performance metric is pro-
posed in measuring CEP system performance. The ratio of live objects
in the heap is more precise in indicating the available heap after gar-

2 NetBeans Profiler.NetBeans Profiler
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Figure 5.31: The ratio γ of the number of live objects in the heap

bage collection is performed. Furthermore, it can be used to implicate
the performance of query depth factor in CEP systems. Therefore, the
ratio of live objects can be applied as a fundamental performance metric
in performance management of CEP systems.

5.5 summary

In this chapter, we study response time measurement, the load of and
the complexity of queries that are deployed and memory management in
CEP systems based on the CEPBen on Esper. Three new metrics are pro-
posed in the studies. Firstly, response time of targeted event is proposed
as a performance metric representing CEP system users’ perception of
response time. Secondly, maximum query load is proposed as a capacity
indicator for CEP systems. And thirdly, number of live objects in heap
as a performance metric for heap usage with experiments, evaluation
and implementation of these metrics. Besides, query depth is proposed
to describe the complexity of queries and presented the performance
impact that it causes on CEP systems.
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6
C O N C L U S I O N S A N D F U RT H E R W O R K

This thesis focuses on the performance management of complex event
processing systems. Some challenges that complex event processing sys-
tems face in performance management are highlighted in Chapter 1. To
tackle these challenges, a benchmark platform for CEP systems, CEP-
Ben, is developed to provide a flexible environment for exploring perfor-
mance factors and metrics in CEP systems. The benchmark is implemen-
ted on Esper event processing platform and used to explore performance
factors and new metrics in performance management of CEP systems.

In this chapter, we will summarize the contributions of our work and
discuss the direction of future research.

6.1 background research

The background research of this thesis is described in Chapter 1 and
Chapter 2. A general introduction to complex event processing systems
and performance management of computer systems is presented in Chap-
ter 1. Chapter 1 also highlights the challenges in performance manage-
ment of CEP systems. Furthermore, Chapter 2 reviews the related re-
search done in performance management of traditional transaction sys-
tems and CEP systems. The review mainly focuses on the existing bench-
marks and applied performance metrics in performance management of
these two types of systems.

Based on the literature review, it is concluded that new performance
metrics and factors that distinguish CEP systems from the other types
of systems, are not well explored. There are lacks of widely applied
benchmarks for CEP systems and standards. Although a wide range of
techniques are proposed to improve the performance of CEP systems,
performance measurement and evaluation implemented in the demons-
tration of these new techniques are limited to the conventional measures,
e.g., throughput. Very limited work is done in methodologies of perfor-
mance management in event processing systems.
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6.2 the cepben benchmark platform

The CEPBen benchmark platform and its implementation are presented
in Chapter 3 and Chapter 4. The CEPBen benchmark platform is deve-
loped to explore the fundamental functional performance of event pro-
cessing systems: filtering, transformation and event pattern detection.
A batched workload model is suggested to represent the workload of
CEP engines. Response time, input throughput, output throughput and
utilization are chosen to be the performance metrics. Performance fac-
tors including workload, query load, the depth that query statements
perform on event history, garbage collection activity and machine confi-
guration that CEP engines run on, are considered to be explored by this
benchmark.

The CEPBen benchmark platform has the following features:
• It is able to present a varied workload to meet the requirements of

different performance tests. Users can create events with their desired
event properties, batch size, batch frequency.

• By setting the number of query statements and the depth of query
statements, the benchmark presents varied degrees of application query
complexity for investigating the system behaviours.

A performance-oriented framework is presented for implementing the
CEPBen benchmark. Two groups of tests are designed and carried out.
The results show that the tested CEP engine performs the best in fil-
tering functionality, than transformation and pattern detection functio-
nalities in response time and input throughput, while remaining high
output throughput and consuming much less system resources. Event
pattern detection has higher response time and higher input through-
put than transformation, while transformation in performance tests has
more output events and higher output throughput, and consumes less
system resources than event pattern detection. After comparing our re-
sults with the performance study by Mendes et al. [18], it is concluded
that CEP systems generally perform better in filtering than transforma-
tion and pattern detection.
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6.3 performance metrics and factors

The measurements of response time, query load, complexity of queries
and memory management in CEP systems are investigated in Chapter
5. As a result, several new performance metrics and one performance
factor are proposed and evaluated.

Traditionally response time is measured from the detection time of the
last event that triggers the derived event to the generation time of the
derived event in event pattern detection. However, event patterns can be
used to catch a particular event that happens in a certain pattern. In such
situation, the time that the system takes to respond to this particular
event can be of interest to users. Thus, this response time of targeted
event can be the users’ perception of response time.

Response time of targeted event is defined as the time difference bet-
ween the detection time of the targeted event and the time of the de-
rived event when the event pattern is matched. The implementation of
the response time of targeted event measurement is discussed. The im-
plementation of measuring the response time of targeted event requires
modifying the queries to mark the targeted event, so that the listener for
the query can extract the detection time of the targeted event. Modifica-
tion of queries does not change the structure of the queries, therefore,
it does not change the system behaviours. The measurements of tradi-
tional response time and response time of targeted event with various
workloads are compared and presented in Chapter 5.

Query depth is defined to describe the complexity of queries deployed
in CEP engines. It is the number of primitive events that are used to pro-
duce a composite event or a derived event in a query statement. Our
experiments shows that query depth significantly influences the perfor-
mance of CEP systems. The system with queries that have less query
depth has better response time and higher input throughput while out-
puts heavier load, comparing to the tested system with queries that have
more query depth.

Query load is the number of active queries deployed in a CEP sys-
tem. When the workload and query depth of queries are fixed, the more
active queries a CEP system can support, the better capacity the CEP
system has. Therefore, maximum query load can be used as an capa-
city indicator for event processing systems. Maximum query load of a
CEP system can be affected by the workload and query depth of de-
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ployed queries. The experimental results demonstrate that query load
has significant impact on performance. The more the query load is, the
higher response time that the system performs, the lower average input
throughput that the system processes. Trade-offs between 99th percen-
tile response time and between average input throughput and query
load are also studied. The implementation of query load requires some
programming on constructing a counter to record the newly deployed
started queries and state changes on old deployed queries in a CEP sys-
tem.

Number of live objects in the heap is proposed as a performance me-
tric to reveal the usage of heap considering the effect that the garbage
collection releasing the memory. Used heap contains both live objects
and unreachable objects which will be collected when garbage collec-
tion happens. Therefore, the ratio of live objects in the heap can be used
to indicate the heap usage in the near future after garbage collection
occurs.

The ratio of live objects in the heap is especially useful because it is as-
sociated with query depth. It can be applied to indicate the performance
of query depth factor in CEP systems. Initially, we define the ratio of
live objects in the heap as the ratio of the number of live objects and the
total number of objects (live and unreachable objects) in the heap. The
number of live objects can be obtained by memory sampling from per-
formance tools. However, the number of unreachable objects can only
be acquired by heap dump which has negative impact on the perfor-
mance of JVM. Therefore, we transform the calculation of the ratio of
live objects in the heap to another way of calculation. The ratio of live
objects can be represented as the ratio between the bytes of live objects
and bytes of used heap.

6.4 future work

In this thesis, the CEPBen Benchmark platform is developed as a test
bed for exploring performance characteristics of complex event proces-
sing systems in performing varying functionalities. The capability of this
benchmark has been demonstrated in later implementation and experi-
ments on Esper, a free open-source complex event processing platform.
This benchmark can be reused to study the performance of CEP systems.
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However, the real-time performance monitoring in the framework is
very resource-consuming. In experiments which require more system
resources, the real-time performance monitoring module has to be tur-
ned off. One way of improving the performance monitor is to develop
a network socket module to transfer performance data to a stand-alone
machine for performance analysis and display in real time.

Two types of query representation are used in the event processing
engines today for event processing. One is variations of the standard
conventional relational database query language: Structured Query Lan-
guage (SQL), e.g. Event Processing Language (EPL) in Esper; the other
query language is declarative language, e.g. Drools Fusion [90]. As the
complexity of queries is reckoned as an influential performance factor
in performance management, query depth is proposed regarding to the
complexity of queries and tested on Esper to reveal the performance im-
pact. Since the query language applied in Esper is a variation of SQL. In
future, It would be of interest to investigate the complexity of queries
which are written in declarative language.

Furthermore, the ratio of live objects in the heap cannot be obtained
straightforward. It can be implemented and monitored at real-time by
calculating the information gathered from some available performance
tools. We propose to develop a plug-in for the existing performance tools
for monitoring the ratio of live objects in the heap in CEP systems in real
time.

The CEPBen benchmark platform can be applied in exploring more
interesting factors and metrics. The proposed performance metrics and
the methodology of studying performance of CEP functionalities in this
thesis can be applied in performance management of CEP systems and
benefit both developers and users of CEP systems.

Comparing performance of various CEP products are the interest of
many developers and users in the CEP market. However, in this thesis
we did not compare different CEP engine products. In the future, CEP-
Ben can be implemented on other CEP engines. The performance results
from these tests can be used for comparing CEP products.
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