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 
Abstract—This paper presents research from part of a larger 

project focusing on the potential development of commercial 
opportunities for the re-use of batteries on the electricity grid 
system, subsequent to their primary use in low and ultra-low 
carbon vehicles, and investigating the life cycle issues 
surrounding the batteries. The work has three main areas; 
Examination of  fleet data in detail to investigate usage in 1st life. 
Batteries that have passed through a battery recycler at the end 
of their first life have been tested within the laboratory to 
confirm the general assumption that remaining capacity of 80% 
after use in transportation is a reasonable assumption as a basis 
for 2nd life applications. The second aspect of the paper is an 
investigation of the equivalent usage for three different second 
life applications based on connection to the electricity grid. 
Additionally the paper estimates the time to cell failure of the 
batteries within their second life application to estimate lifespan 
for use within commercial investigations. 
 

Index Terms—Batteries, Electric Vehicles, Energy Storage, 
Frequency Response, Smart Grids. 

I.  INTRODUCTION 

The use of battery systems within transportation, in the 
form of hybrid or electric vehicles is increasing. There is also 
significant interest in using electric vehicle batteries to help 
support the new smart grid functionality. Several credible 
sources, including the Department of Energy and Climate 
Change (DECC), Arup and Cenex [1] and Shepherd et al [2] 
reports, suggest there could be between 70,000 to 2.6 million 
electric and hybrid vehicles on the road by 2020. Typically, 
once an Electric Vehicle (EV) battery has degraded to 
nominally 70-80% of its original capacity it is considered to 
be at the end of its first life application. Assuming a typical 
battery capacity of around 5-24kWhr (Mild Hybrid Electric 
Vehicle (MHEV) 5kWh – Battery Electric Vehicle (BEV) 18-
24kWh battery), and a 10 year life span, this equates to a 
projection of batteries available for storage in second life 
applications of >1GWhrs by 2025. Second life batteries should 
also be available at lower cost than new batteries, however 
reliability becomes an important issue as individual batteries 
may suffer from degraded performance or failure. 

The remaining quality and life of a battery after its first life 
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can be dependent on a number of factors including, but not 
limited to; the battery chemistry, the number of cycles, the 
discharge current, the State of Charge (SOC) or Depth of 
Discharge (DoD) swing, the charge throughput of a current 
micro-cycle and the cell temperature [3,4]. A variety of 
publications looking at some or all of these variables exist for 
a range of chemistries under a variety of laboratory and test 
based conditions. Typically the cell temperature is held to be 
constant (either ambient or a typical value of around 45oC) 
[5,6] and either a constant charge-discharge regime to a set 
DoD or a constant drive cycle is applied to the cells under test 
[6,3]. The results published aim to estimate the capacity fade 
or look at when cell failure occurs or estimate the remaining 
life[3,5]. This work is used to help investigate batteries from 
vehicles which have been driven as part of a large scale 
vehicle trial, where fixed cycles and fixed cell temperatures 
don’t apply, to estimate the remaining life span for a second 
life application. 

The incorporation of battery storage onto the utility grid 
presents three main revenue streams, available for second life 
batteries;  

 
1. Peak load reduction on the distribution Network to allow for 

network re-enforcement costs to be deferred. (Customer 
base: Distribution Network Operator ( DNO))  

2. Ancillary Service (or primary/secondary frequency response 
- Customer is ultimately National Grid through market 
mechanisms via DNO’s or Energy service providers or 
Aggregators)  

3. Provide customers with the means of optimising their 
energy demand patterns to suit market conditions. (large, 
small industry and domestic consumers through energy 
service providers) 

 
Some previous work has been undertaken on the economics 

of second life batteries, most notably by Neubauer et Al[7] 
who look at cost comparisons between new and second life 
batteries based on a health factor related to estimated battery 
life and energy throughput (relating to a US peak load 
reduction application).  Their work includes a number of fixed 
parameters such as a total battery life of 20 years, vehicle 
drive cycles from a more general study looking at all vehicle 
behavior and a fixed DoD of 60%. The life span of the second 
life battery is then assumed as 20years minus first life. 
    This paper examines methods of estimating how much 
second life is available from second life batteries using an 
alternative method based primarily on usage data from EV and 
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HEV trial data (as opposed to assumed data) looking at real 
DoD rates and then determining a remaining life span based 
on this, but not dependent on a fixed 20 year total life. The 
Energy throughput is not explicitly calculated but could be 
inferred to feed into other work if required. The data comes 
from the Technology Strategy Board (TSB) ‘CABLED’ 
(Coventry And Birmingham Low Emissions Demonstration) 
project, and the data on vehicle usage are used to estimate 
residual life in the batteries through a statistical based 
approach. The remaining life cycle can then be used within 
projects to estimate the business case for second life batteries 
under the three income streams described above.  
   Batteries that have passed through a battery recycler at the 
end of their first life have been tested within the laboratory to 
confirm the general assumption that remaining capacity of 
80% after use in transportation is a reasonable assumption as a 
basis for 2nd life applications. The third aspect of the paper is 
an investigation of the equivalent usage for three different 
second life applications based on connection to the electricity 
grid. The paper estimates the time to cell failure of the 
batteries within their second life application to estimate 
lifespan for use within commercial investigations. Different 
battery chemistries are not inherently seen as a problem, but 
the work here concentrates on a mixture of Nickel Metal 
Hydride (NiMH) and Lithium Ion batteries.  

II.  BATTERY FIRST LIFE 

The ‘CABLED’ project was commissioned in 2009 by the 
Technology Strategy Board (TSB) with support from 
Advantage West Midlands (AWM). The aim of the trial was to 
showcase and demonstrate the use of ultra-low carbon 
vehicles (ULCV) in the West Midlands region. Usage data 
collected from each car was used to inform local authorities 
and vehicle manufacturers, providing them with a better 
understanding of ULCV technology; thus enabling the 
development of longer term policies. The data collected also 
provided an opportunity to investigate vehicle and battery 
usage, and the monitoring of any battery degradation issues 
that occurred over the period of the trial. Using this data on 
‘first life’ usage, a picture of battery condition for second life 
application can be constructed. 

A.  CABLED Vehicles 

The majority of the vehicles in the CABLED trial were 
pure electric vehicles (EVs). With a range of between 65-110 
miles (depending on model), these vehicles are designed to 
meet the requirements of an urban household. Over 100 EVs 
were leased to members of the public or fleet operators for a 
minimum period of 12 months, with data collected over a 27 
month period. 

Each vehicle in the trial was fitted with a GPS and data 
logger, which recorded the usage, location and charging habits 
of each vehicle. Records were taken every minute whilst the 
car was in use, and every 15 minutes when not. The data 
collected allowed the following information to be attained: 

• Frequency of individual journeys 
• Length and duration of journeys 
• Date & time of journeys 
• Energy used per journey 

• Duration and amount of energy transferred during charge 
• External ambient temperature 
• Location of charging/parking, i.e. home, work, public etc. 
• Average speed 

B.  Vehicle usage 

The analysed data in table 1, shows that the vehicles in the 
trial were driven for around 40 minutes per day on average. 
This was calculated by considering the total amount of time 
the vehicle was parked and subtracting from the total hours the 
car was operational. The RAC national traffic survey [7] and 
UK national travel survey [8] indicates that the figure of 40 
minutes driving per day is not an unreasonable average for the 
population as a whole. This indicates that the vehicles used in 
the trial were undertaking representative driving cycles, and 
their usage is in keeping with the national average for other 
vehicle engine types. 

TABLE I 

Statistical driving usage/day 

Statistics % time parked 
Time in use 

(daily) 
Mean 97.32% 00:38 

Median 97.30% 00:38 
St dev 1.36% 00:19 

 
The data relating to vehicle charging is shown in Fig. 1, 2 

and 3 and summarised in Table II. Fig. 1 shows a distribution 
of the State of Charge when vehicles started charging. 
Between 20-80% the distribution is fairly evenly spread, 
indicating a variation in different user’s behaviour and usage. 
Once plugged in, the majority of these vehicles are then fully 
charged as shown in Fig. 2. The State of Charge (SOC) 
increase is shown in Fig. 3. Whilst these results show variation 
in charging behaviour, typically people topped-up their battery 
before they began to run out of charge (i.e. >20% remaining). 

 
Fig. 1.  Battery SOC before recharging 
 

The profile for number of charges per day is shown in Fig. 
4. On average the vehicles were charged 0.54 times per day 
(rougly equivalent to 1 charge every 2 days) with a standard 
deviation of 0.38. A typical set of charging profiles are shown 
in Fig. 5.  

Using the figures presented the following assumptions can 
be made: 

1. The vehicles are operating on typical drive cycles. 
2. Each vehicle is assumed to charge on a recurring cycle 

Battery SOC (%) 
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where the Depth of Discharge (DoD) is defined as: 
 
DoD = SOC                   (1) 
 
The DoD is set 35% since this was the average increase per 

charge in the CABLED trial. 
3. The frequency of charging of all vehicles is 0.54 times 

per day – equivalent to approximately 200 times per year.  
4. The vehicle life is 10 years (based on the 10 year, 

100,000 miles power train warranties now on offer from some 
manufacturers).  

 
 

 

 
Fig. 2.  Battery SOC after recharging 

 
Fig. 3.  Battery SOC change during charging 

 
TABLE II 

Mean battery charging (Not necessarily per day) 
 

Charging statistics 

Mean SOC at start of charge (%) 54.07

Median SOC at start of charge (%) 55.00

Average charge time (hrs) 02:54:40

Median charge time (hrs) 02:34:17

Average SOC increase per charge (%) 34.32

 
Fig. 4.  Average number of charges per day per vehicle 

 
Fig. 5.  Sample of the charging regime for three vehicles over 100 days 

C.  Theoretical battery degradation based on vehicle usage 

   
   Fig. 6 reproduced from [9] shows the 100% DoD cycle 
equivalent (DoDCE) against depth of discharge until failure. 
Typically the manufacturer will plot the life span against the 
DoD as an exponential curve, but this is an alternative 
representation. (Note - a lower DoD has a greater number of 
cycles until failure as expected).  
 A nominal 100% DoD cycle equivalent is found by 
multiplying the number of cycles with the DoD as per 
equation (2): 
 
DoDCE = No cycles x DoD               (2) 
 
   Since unequal amounts of energy flow out of batteries 
during discharge, the results were plotted in this way to enable 
comparison. The results in paper [9] were obtained from a 
relatively small data set using a single battery type and as such 
are only treated as indicative, allowing the methodology to 
estimate remaining life to be shown. This curve will be 
different for different battery chemistries and the results from 
this paper were used because the data was already published. 
Although this chemistry doesn’t necessarily tie up with the 
battery types from vehicles on the CABLED trial the 
methodology is shown.  
   

Battery SOC (%) 

Increase in battery SOC (%) 
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Fig. 6.  Estimated battery life at 35% DoD using data from [9], The blue 
diamond shows that for a DoD of 35% there is an estimated 1600 DoDCE of 
lifespan. After the first life the green triangle represents the 900 DoDCE that 
remains. 
 

  Using a nominal 35% DoD, the initial life span of the vehicle 
in DoDCE can be estimated at 1600 DoDCE cycles or 
approximately 4500 total cycles at this DoD. This is shown by 
the blue diamond in Fig. 6. If the lifespan of the vehicle is 10 
years then the battery will go through 2000 charge/discharge 
cycles. The amount of life used up from equation 2, is 
therefore equivalent to 0.35x2000 = 700 DoDCE. Subtracting 
the first life DoDCE usage away from the starting DoDCE 
yields a remaining life span of 900 DoDCE shown by the 
green triangle. This then acts as the starting point for the 
second life application for which a different DoD may be 
used. 

However, not every driver discharges their vehicle by an 
average 35% DoD. Results from the CABLED project showed 
that some drivers top up twice a day and others less than 1 in 
every 3 days with the average being 200 times per year. If it is 
assumed that each vehicle is still driving 40 minutes per day 
(valid due to the low STD) then an additional two scenarios 
can be considered for someone topping up with low DoD 
(10%) twice per day and someone topping up with high DoD 
(70%) 100 times per year. Within a year – the total SOC 
increase for the two vehicles is assumed to be the same (due to 
same time on road). Using equation 2, the remaining life span 
of the vehicle with 10% DoD is 1600 DoDCE after 10 years. 
The vehicle with 70% DoD will have an estimated zero 
remaining life span. 

D.  Battery degradation experimental data 

    This section looks at experimental data from both the 
CABLED project (looking for degradation trends within first 
two years of vehicle life) and data from testing batteries which 
have come through their first life and been passed on by a 
battery recycler for testing to look to try and confirm the 
validity of the theoretical data. 
 

    1)  Early life battery degradation using CABLED data 
 
  Due to the data set available - the following methods were 
developed to best understand battery degradation in the 
CABLED vehicles: 
 

Method 1: Analytical comparison of similar journeys (eg work 
to home) for the same vehicle at different times within the 
project time cycle. To try and minimize as many extraneous 
variables as possible, separate journeys were compared given 
similar ambient temperatures, initial state of charge, journey 
duration and journey distance. The total energy used for each 
journey was then compared to see if there were any 
degradation effects over time. 
 
Method 2: A Monte-Carlo based approach, with data collected 
from many journeys (same battery and vehicle type but non-
vehicle specific) over the project timespan. Average SOC 
usage per mile was plotted against ambient temperature and 
separated by date to see if the energy needed per mile varied 
over time. Instead of taking out the random effects caused by 
issues mentioned below – this analysis uses these to look at 
the total spread of data. 
 
The issues and effects that can’t be taken into account in the 
data, and hence which form ‘noise’, and may affect the battery 
degradation analysis include, but are not limited to: 
 
Measurement accuracy  
 SOC (slight variations in the recorded SOC compared to the 

actual capacity remaining in the battery) 
 Ambient Temperature (records only taken every minute. 

May also be other variables which affect the temperature 
gauge) 

 The effect of humidity on battery degradation  
 Speed (recorded only every minute so difficult to determine 

how much of an affect this has over a long journey). 
 

Auxiliary loads (Hotel loads) 
 This includes the power taken from the battery for the air 

conditioning and heating as well as additional weight in 
the car. It is assumed that the same driver will have the 
same auxiliary load when driving the same journey at the 
same ambient temperature but this cannot be guaranteed. 
There is a strong correlation between SOC used on a 
journey and ambient temperature.  

 
Driving behavior: 
 This is the effect of different drivers with potentially 

different driving styles from the same family. It is assumed 
that this averages out for the same vehicle, but the data 
isn’t in-depth enough to determine varying behavior. 

 Road topology/speed required (i.e. uphill, dual carriageway, 
motorway, urban) 

 
To try and minimize extraneous effects a number of measures 
will be taken:  
 
• For this analysis all data <0oC and >20oC is excluded to try 
and remove the extreme variances of hotel loads. Fig. 8 shows 
SOC used against ambient temperature for vehicle 1 
journeying from home to work. As the temperature increases 
above 20oC the effect of air conditioning load can be seen as 
an increase in the SOC used. 
• Journeys < 5miles are excluded from the analysis because it 
takes a while for the data logger to accurately record the SOC. 
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• The SOC usage is not linear and depends on the initial 
charge conditions. Where possible we use data from vehicles 
with a high starting SOC. 
 
    2)  SOC degradation estimate method 1 
 
  Using the data set for vehicle 1, the following data was 
filtered; 
• Same journey (based on distance and GPS start and end 
points) – Two journeys considered (to work and the return 
home from work) 
• Ambient Temperature set >0oC and <20oC (to minimise 
hotel loading effects) 
• SOC before journey start >60% from home to work and > 
80% for work to home (most of the journeys were undertaken 
with a SOC of >92% because of the opportunity to charge the 
vehicle at work before commuting) 
   Using the filtering methods described, only suitable records 
were analysed. One such journey match, for example, 
occurred in both Aug 2010 and Aug 2011 with a starting SOC 
of around 86% and an ambient temperature of 15oC, The SOC 
depletion for the journey in 2010 was 15.3%, whilst the SOC 
depletion in 2011 was 15.8%. In general terms this means an 
equivalent journey in 2011 drained the battery more than in 
2010, with ~3% more energy needed. However, plotting the 
results of the journey to work as a scatter graph against 
ambient temperature in Fig. 9 shows no noticeable increase in 
SOC between the data over each year.   
 

 
Fig. 7.  Vehicle 1 Journey to work 
 

    3)  SOC degradation estimate method 2 
 
To allow more data points to be compared, a Monte-Carlo 
type statistical clustering approach was chosen. Using the data 
set for seven different vehicles with the same battery size and 
battery chemistry, the following data was filtered; 

 
• All journeys > 5miles 
• Ambient Temperature set >0oC and <20oC (to minimise 

effects of auxiliary/hotel loading) 
• SOC at journey start >60%  

   The charge used per mile was calculated for each journey in 
the three year sets and plotted as shown in Fig. 8. Using the 
data extracted over 2000 journeys plotted. However, there 
were less data points in 2010 and 2012 and ideally >1000 data 
points are need for a more accurate analysis.  
  The results indicate that there is no measurable battery 
degradation in the vehicles analysed by this method. Had there 

been some degradation this would have manifested itself as a 
need for higher energy usage/km year on year. 

 
Fig. 8.  Vehicle 1: 250 journeys to work showing SOC usage from 2010 to 
2012 plotted against temperature. 

 
Fig. 9  Vehicle Journey’s > 5km within ambient temperature boundaries 
 

   A brief comparison between Fig 8 and Fig 9 show there is 
much more of a spread in %SOC per km and this reflects the 
results of different journeys and drivers compared to the 
specific journey and driver of Fig 8 (for the same battery and 
vehicle type). 
  The recorded results for %SOC/km in the cable project are 
on the high side compared with those by Liaw and Dubarry 
[13] which are calculated at approximately 0.2kWh/km or 
0.6% SOC/km in Hawaii. This is not unreasonable as their 
data is non-temperature specific and based around 15 vehicles 
within 4 organizations (1 of which has strict speed limits) with 
the same battery type, as opposed to the greater number and 
variety of CABLED data vehicles. The authors use fuzzy logic 
within their paper to determine drive cycle and duty cycle 
profiles to produce a vehicle usage profile which could be 
used to calculate energy throughput. The advantage of the 
CABLED data is that the fuzzy logic approach is not needed 
due to the captured data set. However, a great variety of data 
points reflecting different driver behavior has been captured. 
 

E.  Battery degradation at end of first life – test data 

 
   The tests consider 2 Honda ‘Insight’ hybrid electric vehicle 
battery packs which were removed from the vehicles and sent 
for recycling. The Honda ‘Insight’ battery is a 6.5Ah NiMH 
battery pack, which utilises 120 Panasonic ‘D’ type cells 
within the pack, configured as 20 series connected strings of 6 
cells, fig. 10. 
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Fig.  10 – String of 6 × 1.2V ‘D’ Cells from a Honda ‘Insight’ battery pack. 

   To reduce the number of tests, and for ease of access of the 
cells within the packs, the tests were conducted on modules 
consisting of 2 such 6 cell strings in series, the connections to 
which were available at one end of the battery pack. 
   Upon receipt, the open circuit voltages (OCVs) were 
measured for each module in each pack, these being shown in 
fig. 11. The OCV’s vary between strings and indicate an in 
balance in the strings within the packs. Subsequent to this, 
each module was fully discharged to give a known starting 
point, then fully charged before a controlled discharge was 
carried out at C/5 (where C is the charge rate equal to a battery 
capacity per hour) to give a measurement of the module 
capacity. The nominal capacity for the Honda ‘Insight’ battery 
pack is 6.5Ah, the voltage curves produced by each module on 
discharge is included as fig. 12, with the module capacities 
being graphed as fig. 13.  
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Fig.  11 – OCV’s of the 2 Honda Insight Packs as delivered. 

   The remaining module capacities for the 10 × 12 cell battery 
strings is above 5.2Ah, showing a loss of capacity of a 
maximum of 20% on the original pack capacity for the 
modules. This is in keeping with the generalization that 
battery packs reach the end of their first life applications when 
the pack capacities falls to 80% of the original ‘new’ pack 
capacity. Further to the measurements of OCV and module 
capacity, the modules were then subject to impedance 
measurements to determine the ability of the modules to 
provide power on a transient basis. Fig. 14 shows the 

magnitude of the module impedance against frequency for 
each of the modules in the battery packs. It can be seen that 
the module impedances are consistant across the two packs, 
showing similar trends and values across each of the modules  
in the packs. Each module having an impedance of 
approximately 0.1Ω at 0.1Hz. This shows the packs are still 
capable of delivering a significant current despite being 
nominally at the end of their useful first life. 
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Fig.  12 – Discharge curves for the cell modules in each pack. 

III.  BATTERY SECOND LIFE  

Future battery management systems, for example, using 
techniques under investigation at the University of Maryland, 
will aim to estimate the remaining life in a much more detailed 
and comprehensive manner [15]. However, until such times as 
this is universally adopted within vehicles, estimates are all 
that is available.  Once the battery has completed its ‘first life’ 
use – the usage of the second life battery will be different. The 
number of cycles and the %DoD will vary depending on the 
application and income stream.  

A.  Ancillary service (or frequency response) 

   At present in the UK, National Grid quote that there are 
around 1500 incidents each year requiring frequency support 
and this can last up to 30 minutes [14]. However, Fig 15 
shows a frequency measurement spread out over the period of 
a week at one of the distribution substations. Within the week 
there were 14 incidences of high frequency (>50.2Hz) and 7 of 
low(<49.8Hz). This is less than the rate of 1500 incidents/year 
rate figure quoted by National Grid and each incident lasts less 
than 5 minutes. The requirement that National Grid has for 30 
minutes support is based on rare occurrence. In reality a 
10MW unit rated for 30 minutes (the minimum size and time 
requirement for bidding into the UK market) and operating 
under a 5 minute window is likely to see a DoD of less than 
 

Pack 1 – Measured OCV’s as received 

Pack 2 – Measured OCV’s as received 

Pack 1 – String capacity measurement at C/5  

Pack 2 – String capacity measurement at C/5  
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Fig.  13 – Module capacities in the packs. 
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Fig.  14 – Magnitudes of the cell module impedances for the 2 Honda insight 
battery packs. 

 

20% for each low frequency event. Working on the number of 
events per year at 1500, as quoted By National Grid and 
assuming that these events are split into 750 over frequency 
and 750 under frequency events at 20% DoD the remaining 
estimated life following first life can be calculated.  
   From fig. 6 the estimated remaining life after typical vehicle 
usage is around 900 DoDCE. If it is assumed that the low 
frequency DoD is 20% then from equation 2,  
   Remaining: 900 DoDCE 
   DoD of second life: 20% 
   Total No Cycles at 20% DoD : 900/0.2 = 4500 cycles 
   No of cycles per year = 1500/2 = 750 
   Total years of operation = 4500/750 = 6 years 
This means that the pay back on recycling, battery equipment 
etc has to be undertaken within a 6 year time scale. The results 
are shown in Table III. 

 
Fig. 15.  Typical plot of frequency variation with time over a week, showing 
maximum, minimum and mean values of frequency over each time segment 
and the frequency excursions (spikes over 50.2Hz and under 49.8Hz)  

B.  Network deferral 

A typical situation is where an energy storage system is 
designed to charge overnight and discharge at peak time to 
allow Network deferral costs to be referred to a later date. The 
battery will be required to charge and discharge once per day 
to a DoD of say 50% between the months of November to 
February to meet peak load on the feeder (typical data from 
Western Power Distribution [10]). Using the same analysis 
and assuming that the battery charging/discharging is required 
for only 4 months of the year allows the following to be 
calculated: 
   Remaining: 900 DoDCE 
   DoD of second life: 50% 
   Total No Cycles at 50% DoD: 900/0.5 = 1800 cycles 
   No of cycles per year = 4 x 30 = 120 
   Total years of operation = 1800/120 = 15 years 
   If it is assumed that frequency response is also an option but 
is only available outside the months of November to February 
(incl) then the combination of Network deferral and frequency 
response results in a life span of 4 years as shown in Table III 

C.  Energy management 

   Like the network deferral – energy management is likely to 
occur at peak times but for the whole year. Assuming a factory 
operating over 5 days per week and a discharge of 50%, this 
equates to a life cycle of 7 years [10]. Additional charge and 
discharge criteria can be used [11] but the cases here are 

Pack 1 –measured string capacity Ahr 

Pack 2 –measured string capacity Ahr 

Pack 1  

Pack 2 
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representative of customers studied. The option of providing 
frequency support at other times of the year can also be 
considered. This adds to the energy use pattern of five days 
per week charging and discharging plus a proportional part of 
the time spent on frequency support.  

TABLE III 

Summary of remaining life span 
Usage Second life cycle Estimated 

remaining life 
A: Ancillary service  1500 cycles at 10% p.a. 6 years 
B: Network deferral 50% per day for four 

months 
15 years 

Network deferral and 
ancillary service 

Combination of A and B 4 years 

C: Energy management 50% per day 5 
days/week 

7 years 

Energy management and 
ancillary service 

Combination of A and C 3 years 

IV.  CONCLUSION 

Battery lifespan for a typical driver is thought to be around 
10 years. The battery is in use for around 40 minutes per day 
with an approximate DoD of 35% with 200 yearly charges. 
Estimated battery life span until 20% degradation is 8 years. 
For a second life application the %DoD and number of cycles 
can be estimated and used to calculate the remaining life span. 
These figures may be used to calculate the business model for 
developing the hardware and infrastructure to deal with 
second life batteries. It should be noted, that battery 
degradation will be influenced by different chemistries and 
aging characteristics will vary significantly. This method 
relies on having a degradation curve available for the battery 
chemistry. Other limitations of this method include the effect 
of capacity fade and calendaric aging which has not been 
taken into account (only cyclic aging has been considered) and 
the effect of averaging driver usage. Within the CABLED 
project, out of the sixty vehicles analysed, at least one vehicle 
will probably not be available for 2nd life applications, while 5 
vehicles could have batteries available for a much longer 
second life than the expected average. Until detailed 
measurement and analysis of many second life battery systems 
of different chemistries and manufacturers is connected to the 
grid and is available these figures will always remain an 
estimate. 

It should also be noted that as the batteries degrade energy 
efficiency drops to 75% at >50% degradation and this will 
need to be taken into account. 
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