IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, MAY P12 1

On reliable computation by noisy

random Boolean formulas

Alexander Mozeika and David Saad

Abstract—We study noisy computation in randomly model of computation, the computational complexity and
generated k-ary Boolean formulas. We establish bounds on effects of noise are important questions [2].

the noise level above which the results of computation by L . N
_ ] _ The circuit complexity of a Boolean function is the
random formulas are not reliable. This bound is saturated

by formulas constructed from a single majority-like gates. minimum number of gates (Circuéize) or the minimum

We show that these gates can be used to compute anydepthl of a circuit, constructed from a particular set of

Boolean function reliably below the noise bound. gates, which computes this function. However, to find

Index Terms—Random Boolean formulas, e-noise, reli- & Circuit representation of a Boolean function with a
able computation. bounded size or depth is a difficult problem [1]. One ap-

proach to this problem is to study complexity tgpical
|. INTRODUCTION Boolean functions computed by random formulas [3].

One of computation models for a Boolean function The two most studied methods of generating random
f:{-1,1}" — {-1,1} is a Boolean circuit or formula formulas use random tree generation and a growth pro-
[1]. A circuit is a directed acyclic graph in which nodesess as their core procedures. In the first method, a rooted
of in-degree zero are either the Boolean constants kary tree is sampled from the uniform distribution of
variables, nodes of in-degrde > 1 are logical gates, all rootedk-ary trees; the leaves of this random tree are
computing Boolean functions d@f arguments, and nodesthen labelled by reference to the Boolean variables and
of out-degree zero correspond to the circuit outputs. iiiternal nodes are labelled by the Boolean gates. This
a circuit has only a single output and the output of eaghethod was used to investigate the complexity of typical
gate is used as an input to at most one gate then thismctions computed by random AND/OR formulas [4],
circuit is called aformula. In circuits, as in any other [5], [6] and allowed to obtain a close relation between

the probabilityP[f] of a random formula to compute a
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The second method uses the following growth processrcuit. In his paper, von Neumann showed that reliable
Firstly, one defines the initial probability distributioncomputationd < 1/2) is possible for a sufficiently small
Pol[f] over the sef” of simple Boolean functions oV ¢ [9] and demonstrated how reliability of a Boolean noisy
variables. Secondly, and in further steps, the functior#cuit can be improved by using constructions based
chosen from the distribution®.[f] defined in previ- only one-noisy gates.
ous steps are combined by Boolean gatBst! = There had been little development in the analysis
{a(fy,... f);f; € Ftfor j = 1,2,...,k}. This pro- of noisy computing systems until the seminal work of
cess can be seen as a growtlkedry balanced trees andPippenger [10] who addressed the problem from an in-
was first used by Valiant to obtain an upper bound oiermation theory point of view. He showed that if a noisy
the size of monotone formulas computing the majorit¢-ary formula is used to compute a Boolean functjon
function [7]. Savicky recently showed for one of thesevith the error probabilityy < 1/2, then (i) there is an
processes, foP[f] that is uniform on some set of upper bound for the gate-errefk) which is strictly less
Boolean functions*® and under very broad conditionsthan1/2 and (ii) there is a lower bound for the formula-
on «, the probabilityP,[f] tends to the uniform distri- depthd(k, ¢, ) > d, whered is the depth of a noiseless
bution over all Boolean functions aV variables when formula computingf. In comparison to its noiseless
t — oo [8]. The convergence rates of the Savicky'sounterpart, a noisy formula that computes reliably has
process and its variants with different gates and initigireater depth due to the presence of restitution-gates,
conditions were studied in [3]. implying longer computation times [10].

Another important question in the circuit theory is A number of papers have followed and extended
a reliable computations of Boolean functions in theippenger's results. For instance, similar results were
presence of noise. One of the first to study the effegkrived for circuits by Feder [11], who also improved
of noise in computing systems was von Neumann Whfle bounds obtained by Pippenger for formulas. The
attempted to explain the robustness of biologicallyexact noise thresholds fdrary Boolean formulae were
inspired computing circuits [9]. His model representegyter determined for odd [12], [13] and for formulas
neural activities by a circuit (or formula) composed ofonstructed from2-input NAND gates [14]; the latter
e-noisy Boolean gates. Thenoisy gate is designed towas recently suggested as the exact noise threshold for
compute a Boolean function : {—1,1}* — {-1,1}, general2-input gate formulas [15].
but for each inputs € {-1,1}* there is an eror  Resyits derived for noisy Boolean formulas in [12],
probability ¢ such thata(s) — —a(co). To simplify [13] rely on a specific construction which usesioisy
the analysis, error-probability is taken to be independemajority gates. The noiseless variant of this gate per-
for each gate in the circuit. Clearly, a noisy circuitorms the majority-vote functidhsgn[>""_, S;] on the
(¢ > 0) cannot perform any given computation in &ynary inputsS; € {—1,1} and naturally the number of

deterministic manner: for any circuit-input there is a Nonpese inputs; is odd. In contrast to previous work, in

vanishing probability that the circuit will produces the
wrong output. The maximum of this error probability 2We use the definitiorsgnz] = 1 for = > 0, sgnfa] = —1 for

over all circuit-inputs determines theliability of the =z < 0 andsgn[0]=0 throughout this paper.
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¢= 1 1 ... -1—— many realizations of noise leads us to the equation
fi= 1 1 .. -1 b
1 \ Pealf] = DCTT{PAG 1) &)
fpb= 1 -1 ... 1 1=l
. . ] ] -1 1 ... 1=f N S
: : T : / 2 eB (], )

<11 o
fr=1 -1 ... -1 7 2cosh Ba(fy, ... )

! . . _ which gives us the probability of a Boolean functién
Fig. 1. Noisy growth process. i) Boolean functioffig,. ..,

(represented by binary strings of len@f ) are sampled randomly and being computed by the noisy formulas of depth 1.

independently from the distributioR.[f]. i) These functions are then Here for convenience we have introduced the inverse

used to compute a new Boolean functiowia the gatex. At each step “t t y ¢ 1/T which i lated t
. . . . . emperature arame = wnicn IS relate (0}
of this computation noise (represented by the binary stéih@verts P P & /

the output ofe (this operation is represented by thesymbol) with ~ the noise parametervia the equalitytanh = 1 — 2e.

probability €. In this figure the first and the last bits of the function-rhe limits 8 — O/OO correspond to completely ran-

f (in red) are inverted by noise. Repeating operations i) gnchany L
. o . o dom/deterministic cases.
times gives rise to an ensemble described by the distribiRio 1 [].

Without noise @ — oo) the equation (1) reduces to

k
Piaff] = Z H {Pt[ f ]} )

;1 g=1

this paper we concentrate on the possibility of reliable

2N
. § [ alfl,. . f)],
computation inrandomly generated Boolean formulas. x };[1 [ a(f k)]

As a first step towards this goal, we study the effecighere we usef[z;y] to denote Kronecker delta. Equa-

of e-noise on the formulas generated in the Savickyison (2) was studied in the original Savicky's work [8]

growth process. and subsequent studies [3] where the stationary distribu-
tion Po[f] = lim;—, o, P[] of the noiseless process

(2) was studied with the initial conditionBy[f] =

1 2N P . - o
Il. NOISY GROWTH PROCESSES AND MAIN RESULTS TF0T 2ugero | 1i—1 0[f'; 8'] for different initial setsk® of
simple Boolean functions (constants, identities, etcd) an

_ L different gatesa. Depending on these parameters the
Let us introduce noise into the formulas generated by
L ) stationary distribution is either concentrated on a single
Savicky’'s growth process. In order to do this we note N _
_ o function, i.e.Po[f] = [I;_; 6 [ {*;¢] or on some set
that the noiseless case, as described in the Introduction, ) N
of functionsF, i.e. Po[f] = = > . . o[f%; gt
can be also seen as a computation, performed bycgate ol f] I¥] deF [T olfse7)
) ) There are also cases when fors oo the distributions
of a new Boolean functiofi from & Boolean functions
] ) P.[f] andP;41[f] are distinct.
f1,...,fx. These functions, represented by binaky
. N Our main contribution to these studies is the following
strings (or vectors) of length”Y, are drawn randomly
_ o result for the noisy process (1).
and independently from the same distribution [8]. How-
Theorem 2.1: For abalanced gat€ o the stationary

ever, each computation at the gatemay be corrupted
by noise that inverts the result of this computation with 3The gate is balanced when it has an equal numbes b6 and

probability e (see Figure 1). Averaging the process overi’s in its output.
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distributionP .. [f] = Q%N is a stable and unique solution 0.5 — . . .

of the process (1) when> e(k) = i(’“), whereb(k) = W
{2k k(o )5 272 (=1 (5 2)/2)}’ with £ > 3, () A
03 + -

for £ odd and even respectively.

Proof: In order to show this, we first use the result,

derived in Appendix A, that the distributio®, [f] 01 L |
can be represented via its moments’(t + 1) =

R N O ; 1 1 1 1
i Peralf][[,cs f', where S is a subset of the set 1 10 30 50 70 100

[2N] = {1,...,2V}, andP,,+[f] is given by k

Fig. 2. Upper bound for reliable computation by noisxary random
Piif] = W 14+ Z St+1) H fil, (@ formulas.

SC[2N] €S

where then-th moment is governed by the equation ) )
operation can be seen as a procedure which reduces the

m‘te (4 1) (4) entropy, but in our case of very deep—+ o) random
k . . .
~ tanh” Z H { formulas the entropy is at its maximum when> €(k).
{ti}i=1 Thus any computation, even as simple as computing
_ identity function, can not be performed reliably in this
X_ 1+Zm )Hfj } regime.
SCl i€S

y HO‘ £, ; For odd k our result for the bound (k) is exactly
icl equal to theexact threshold for reliable computation by
with | = {41, ...,4,}. Thus then-th moment at + 1 is general-ary formulas [12], [13]. It is not clear however

a function of only then-th and lower order moments atif this threshold is also exact, i.e. any Boolean function
t. can be computed fot € (0,¢(k)) with the error§ <

Let us assume now thatnh(8) < b(k) then by 1/2, for randomly generated formulas. For even>
the Lemma 4.1, withn = 1, the first moments of 2 this threshold is not known, but our result suggests
the distributionP;[f] are vanishing a3 — oo. But that for balanced gates it can not exceed the bound
then, by applying the same lemma to the order 2 ¢(k) of Theorem 2.1. Furthermore @&s— oo the (k)
moments, we conclude that all moments are vanishimgproaches/2 asl/2—e(k) = O(1/v/k), this is follows
ast — oo. B from the Stirling’s approximation ob(k), which is in

In addition to its direct interpretation that abosg) agreement with the bound computed in [16] for general
(see Figure 2) the noisy process (1)eigodic and has formulas.
only one stationary solution, the result of Theorem 2.1 The results of Lemma 3.1, which are used in the
also has consequences for computation in noisy rand@moof of Theorem 2.1, can be also exploited to show that
formulas. A feature of noisy formulag/hich is essential reliable computation in randomly generated formulas is
for reliable computatiopis their greater depth due to thepossible. This can be shown as follows. Suppose that

presence of correctingnoisy gates [10]. This correctiongate « in the process (1) is the same as the one stud-
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ied in Lemma 3.1. Assume that the initial distribution  Proof: This lemma follows from the equalities
Po[f] is such that the stationary distributidh[f] of F,(£1) = +tanh g, F, (0) = 0 (this can be shown by
the noiseless process (2) is concentrated on only odieect substitution) and the fact that (m) is a strictly
Boolean function, i.e. all formulas compute the sami@creasing function, which is also convex and concave on
function. This implies that for any input € {—1,1}"V  the intervalg —1,0) and(0, 1), respectively (to show this
all formulas simultaneously provide an output-pi or we study properties of), (m) in the Appendix B). Then
—1. Then in the presence of noise the average formulds true becausgd%|m:0 < 1 whentanh 8 < b(k) and
errors in its output with the probabilityl — m;(c0))/2, i) is true because o%%|m:0 > 1 whentanh 8 > b(k).
wherem;(co) is the stationary solution of equation (5) [ ]
corresponding to this input. From the analysis in Lemma

3.1 follows that the maximum of this error over all inputs

is § = (1 —m(o00))/2 and is bounded away from/2 V. MOMENTS OFP:[ {]

when ¢ < (k). Furthermore, the output error can be . .
€ < elk) P Let us consider equation (4) for arth momentm.

reduced by decreasingor by increasing:. Thus in this . .
y feor by g Assuming that all lower order moments vanish allows us

regime any Boolean function can be computed with anx _ _ L .
t0 write this equation in a very simple form

desired accuracy.

m(t+1) = Fa(m(t) ()
I1l. COMPUTATION OF THE LOWER BOUND VALUES k
In this section we compute the values of lower bounds = tanh™(f) Z 1:[1 {
appearing in Theorem 2.1. In order to do this we . {Uj}'jin
choose a balanced gate(o) from the set of gates Xon 1+m(t)H0’§'] }
sgn [2521 aj] +1 [Z?Zl oj = 0} ~(o), wherey(o) € . 12.1
{~1,1} is such thay"_ 1 [Zle oj = 0} v(e)=0, and x 1_1;[10‘(”1’ -5 O)-

consider the first moments; (t) = >, P,[ { ] f*. These

are governed by the equations For a balanced gate the pointm = 0 is a stationary

solution of the above equation and has the following

mt+1) = Fy(m(t)) 5) property.
k
= tanh(Q) Z (IZ) sgn[2¢ — k| Lemma 4.1: The pointm = 0 is a stable and unique
= » solution of (6) whentanh™(8) < b(k).
1+ m(¢) 1—m(¢)]"
X 5 5 Proof: In order to prove this we first show that
Lemma 3.1: For k > 3 the functionF, (m), defined )
tanh(B)" ™ F 7
in the equation (5), has the following properties: i) if anh(5) X(mi 0
tanh 8 < b(k) thenm > F,(m) for m € (0,1] and = tanh"(3) Z H 2% 1+Ianr§]
F,(m) > m for m € [~1,0); ii) if tanh3 > b(k) then {oj 7=t =t
* * * H . k n )
I m* # 0 such thain* = F, (m*), whereb(k) is defined « sen Z H ol
in the Theorem 2.1. j=1i=1
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whereF, (m) is defined in (5). This can be shown by egenerated by it are unreliable. We also show that formu-

direct calculation as follows las constructed from majority-like gates, which saturate

tanh" (8 ZH2n 1+mHa] (8)

this bound, can be used for computing any Boolean

function whene < e(k). Our earlier work, which uses

{o} }i=1
£ n methods of non-equilibrium statistical physics, suggests
X sgh Z H 7; that the same noise bound also applies to the noisy feed-
j=1i=1
forward [17] and recurrent Boolean networks [18].
n 1 + Ina o . )
= tanh"( 2n 1 Z H The current analysis is restricted to reliable computa-
1
to5}a= tion in a growth process that uses omiglanced gate$
X sgn Z o | = tanh(8)""'F, (m). and produces (without noise) ontye Boolean function;

but we envisage that it can be extended to study more
In the above the first equality was obtained by applyingeneral scenarios of non-balanced gates and a richer
transformations} — [[;_, 0% and the last equality distributions of Boolean functions [3].
followed from comparing this result with the right hand
side of equation (5). APPENDIX A

Next, for a balanced gate we compute the difference MOMENT REPRESENTATION OFP[ f |

A(m) = tanh"™ (5)Fx (m) — Fa(m) in Appendix C. The probability distributiorP,[ f | can be represented
The result of this computation is that(m) > 0 and

A(m) < 0ontheintervalsn€0,1) andme (—1,0], re

via its moments. In order to find this representation we
can use the identityy ; o[f;f] = 1 to write Py[f] =

>
DY [f; f]P,[f]. Then, becausé|z;y] = (1 + zy) for
Fo(m) andtanh” *(8)F,(m) < F,(m) on the same

spectively, from which the boundanh™ ' (8)F, (m)

x,y € {—1,1}, we obtain
intervals follow. The behaviour ofanh™ *(8)F, (m)

2N
with respect to the inverse temperatiieis the same P,f] = Zpt[ﬂ H% (1 +fifi) (9)
as of F, (m), which we described in Lemma 3.1, but f =1
with the tanh(3) being replaced by theanh™(3). 1
= |1+ ] > J]FF
2N
u 2 £ SC[2N]i€S
1 0
V. CONCLUSION = o |17 > w O],
SC[2N] i€s

The paper extends previous work [12], [13] on the . N
pap X previous work [12], [13] wherem®(t) = 37; Py[f] [T, f* are the moments of

reliability of computation in Boolean formulas and

generation of random Boolean functions [8], [3], by . . ) .
Let us now derive equation governing evolution of

investigating the properties of formulas constructed b¥1 h s i2in (1), Thi be obtained b
en-th momentm®-*2:*(t), This can be obtained by

a random growth process whereby computing elements,
multiplying both sides of equation (1) by the monomial

primarily k-ary balanced gates, are subjecttnoise.

We show that the noisy grOWth process 1s ergOdIC4The results of this paper can be easily extended talitie butions

above the noise bound(k) and hence the formulasover balanced gates [18].
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[T.c ', wherel = {iy,...,i,}, and taking the sums APPENDIX B
overf as follows DERIVATION OF F, AND ANALYSIS OF ITS
PROPERTIES

Here we first derive the functioR, (m) then we study

its properties. Let us first compute the sum

11 {%] { sen LZZ fj] (12)

> Penlfl]]F (10) 0]
f i€l
k
1158 =0] A(f,... f
=SSP 1 [;a v(fy k)}
S (k) £5+k) /2 (k=32F_ £5)/2
2 B atl ) , - [_1 + m] o {_1 — m} j:”
_ - f 2 2
x 1;[1 2 cosh Ba(tl, .. 1) g 0
k k k
= tanh”(8) > [ {Pel £, ... £ ]} X{sgn ‘ fjl +1 ijzo ’Y(fla...7fk)}
{ti} =1 j=1 j=1
k 4 k—/¢
i i E\ [1+m 1—m
x| | a(f;,..., f - _
g(l ) Z(E)[ ) ] [ ) ] sgn[2¢ — k| ,
£=0
=mt (4 1), in the definition (10) for the specific choice af = y.

This result leads to the functiafi, (m) used in equation
(5).

We are interested in how the functidfy (m) behaves
on the intervalm € [—1,1] and how this behaviour is

where in the above we have used the proper@ﬁeCted by the parameteanh 5. In order to find this

tanh(_x) — — tanh(z). Finally, using the moment out we first rewriteF, (m) as follows
representation (9) in the above, we obtain F(m) )
= tanh(Q)
k Vi k—¢
E\ [1+m] [1-m
20 = =
£=0
x {1[20 — k> 0] — 1[2¢ — k < 0]},
méisein (t +1) (11) but
n : SR\ [14+m] 1 —m]*
= tanh (B)ZH Z( ) { } { } ()
{f;} =1 = ? ’
k Vi k—4
E\ [1+m] [1-m
| . _ i —m
A[regwon) -2 (O 57
SCl €S o

< [Jat, ... f).

i€l =1
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so
Fy(m) ) (15)
— tanh(B) (1 - 2;: (’Z)
1+—H1 J4 1—_111 k—¢
—1k = (mod2)]{ 2 } { 2 }
k/2
() (21152)7)
where

1k =0 (mod 2)](k/2-1)

+ 1k=0 (mod 1)](k—1)/2.

Now we use the above representation Bf(m) to

compute

(16)

June 21, 2012

So, using definition of;, we obtain
d k k+1
Fy(m) = tanh(ﬁ)<(k N 1)/2)< 5 )(17)
for k£ odd and

T

L) = tanh(ﬂ)<k1;2> @ (18)

. (T

Thus L F, (m) > 0 on for allm € (—1,1) and hence

for k even.

F, (m) is a strictly increasing function. Furthermore, the
function F, (m) at the pointm = 0 changes its slope
Fy(m)|m=o > 1 at

from - F\ (m)|m—o < 1 to =

tanh(8) = 2" /k <(kk—_1;/2>

for k¥ odd and

tanh() = 25~ 2/(( "o 2)2/2>(k 1)

for k even.
Let us now compute the second derivative/Qf(m).

Differentiating equations (17) and (18) with respect to

m gives us
d2
wFX(m) = —mtanh(S) (19)
(k-1

y k k+1
(k+1)/2 2 4
for £ odd and

()

I Px(m) = —mtanh(5)
(i) (5) 57
()’

for £k even. We note that both are of the form

2

L F(m) = —mG(m), where G(m) > 0 for all

m € (—1,1). Thus the functionF, (m) is strictly

DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, MAY P12

convex and concave on the intervéls1,0) and (0,1)

respectively.

APPENDIXC
COMPUTATION OF A(m) AND ANALYSIS OF ITS

PROPERTIES

Let us first define the average:--),,
Z{U;} Hle 3 [1+m[], oi] (---) and shorthand
notations{1[o],1_[o], 1o[c]} for the indicator func-
tions {1[3_, [T\, 0f > 0L IIL,0f <
0], 1[2;?:1 [1;=, oi =0]}. Then the rescaled difference

A(m)/4 tanh™(8) can be computed as follows

(21)

identity

June 21, 2012

to obtain

A(m)
Atanh” ()

(5] [5)

ISk T, okl
1-m

(23)

Now because is a balanced gate we have the following

(24)

ZHa(oi,...,a};)

{o1}i=1

=y <1+ [o] +1_[o] + 1o [0]>
{0}

Adding the above representation of zero to the terms

inside the curly brackets in equation (23) leads to the

DRAFT
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final result

A(m)

st (2] 152

(25)

Xk TP, ol
14+m 2
8 Z [1—m} -1
{o}}
x 1 [o Ha ,op)=—1
Ik e, o
2
x| [Hm
x1_[o]1 [[Jelol, ... o0) =+
i=1

From the above it is clear thak(m) > 0 for me|0,1)
andA(m) < 0 for me (—1,0].
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