
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1

Concentration polarization model of spiral-wound membrane 

modules with application to batch-mode RO desalination of 

brackish water 

T. Y. Qiu, P. A. Davies* 

Sustainable Environment Research Group, School of Engineering and Applied Science, 

Aston University, Birmingham, B4 7ET, UK 

* Corresponding author: E-mail: p.a.davies@aston.ac.uk,  

Tel +44 (0)121 204 3724, Fax +44 (0)121 204 3683 

*Manuscript

Click here to view linked References



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2

ABSTRACT 

Batch-mode RO (batch-RO) operation is considered a promising desalination method due 

to its low energy requirement compared to other RO system arrangements. To improve and predict 

batch-RO performance, studies on concentration polarization (CP) are carried out. The Kimura-

Sourirajan mass-transfer model is applied and validated by experimentation with two different 

spiral-wound RO elements. Explicit analytical Sherwood correlations are derived based on 

experimental results. For batch-RO operation, a new genetic algorithm method is developed to 

estimate the Sherwood correlation parameters, taking into account the effects of variation in 

operating parameters. Analytical procedures are presented, then the mass transfer coefficient 

models are developed for different operation processes, i.e. batch RO and continuous RO. The CP 

related energy loss in batch-RO operation is quantified based on the resulting relationship between 

feed flow rates and mass transfer coefficients. It is found that CP increases energy consumption in 

batch RO by about 25% compared to the ideal case in which CP is absent. For continuous RO 

process, the derived Sherwood correlation predicted CP accurately. In addition, we determined the 

optimum feed flow rate of our batch-RO system. 

Key words: batch-mode reverse osmosis (batch-RO), solar, high recovery, concentration 

polarization (CP), spiral-wound membrane (SWM), mass transfer  
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           Symbol Units Description 

a  constant 

b  constant 

Cavg kg·m-3 average salt concentration across the 
membrane 

Cb kg·m-3 bulk concentration 

Cf kg·m-3 feed and permeate solute 
concentrations 

Cm kg·m-3 salt concentration on membrane 

Cp kg·m-3 feed and permeate solute 
concentrations 

Cp_ave kg·m-3 average concentration of permeate 

CPF  concentration polarization factor 

D m2·s-1 diffusion coefficient 

dh m hydraulic diameter 

Js kg·m-2·s-1 solute flux 

Jv m·s-1 permeate flux 

k m·s-1 mass transfer coefficient 

L m channel length 

Lp m3·m-2·s-1·Pa-1 intrinsic membrane permeability 

OsmP� Pa osmotic pressure 

Ppower_initial Pa batch-RO initial feed power pressure 

Ps m·s-1 salt permeability coefficient 

��� mol·m-2·s-1·Pa-1 salt permeability coefficient 

Qf m3·s-1 feed flow rate 

Qp m3·s-1 permeate flow rate 

R  real rejection fraction 

Re  Reynolds number 

Ro  observed membrane rejection 
fraction 
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Sc  Schmidt number 

SEC kWh·m-3 specific energy consumption 

Sh  Sherwood number 

u m·s-1 crossflow velocity 

v m2·s-1 kinematic viscosity 

�  constant 

�  constant 

�  constant 

� m layer of thickness 

�OsmP Pa difference in the osmotic pressure 
across the membrane 

�P Pa operating pressure 

�1  reflection coefficient 

�2  coefficient of coupling between salt 
and water 

Abbreviations

BW Brackish water 

CP Concentration polarization 

KS Kimura-Sourirajan 

PV Photovoltaic 

RES Renewable energy source 

RO Reverse osmosis 

SWM Spiral-wound membrane 
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�� ������	
�����

Reverse osmosis (RO) membrane desalination driven by renewable energy (RE) sources 

has been identified as an effective method to address two of the most pervasive global problems: 

the energy crisis and water shortage [1]. Among all the RE-powered desalination technologies, 

solar-driven RO has been gaining popularity in the last decades [2] due, in part, to the low energy 

requirement of RO relative to other technologies and the abundant solar energy in arid and semi-

arid areas. A number of solar photovoltaic reverse osmosis (PVRO) seawater desalination systems 

have been implemented throughout the world, especially in the middle east and north Africa 

(MENA) region, with an overall capacity of around 300 m3/day [2]. A number of brackish water PV-

RO systems have also been reported [3]. The energy efficiency ratio (which compares 

performance to the thermodynamically ideal case) for the brackish water (BW) systems is lower 

than for seawater solar PV-RO systems – indicating greater scope for improvement [4]. Solar PV-

RO BW systems can solve the lack of access to electricity and fresh water in remote inland areas, 

but the major drawbacks holding back the application of such systems are their low efficiencies 

and low recovery ratios.  

For the application of solar-powered BWRO systems in remote, semi-arid areas, PV is not 

necessarily the best choice of energy source. This is not only because of the high price and 

maintenance cost of solar cells, but also their low efficiency. The relatively small components of 

PV-RO systems, e.g. inverter and pumps, lower the system performance further. Besides the low 

efficiency, the recovery ratio of a solar PV-RO BW system is typically low, meaning that a small 

fraction of fresh water is produced, with a large volume of reject brine. Brine disposal is frequently 

a problem, especially when it comes to inland desalination systems, because direct brine 

discharge can cause environmental pollution and brine treatment methods require additional 

technical and financial support [5]. These critical drawbacks of current solar PV-RO BW systems 

have led to a search for alternative energy sources and inland desalination technologies. For 

example, Papadakis and co-workers at the University of Athens developed an organic Rankine 

cycle RO system for both sea and brackish water [6, 7]; and a Rankine cycle batch-mode RO 

(batch-RO) method was proposed by Davies [8]. Batch-RO uses mechanical energy generated 
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6

from vapour expansion to provide the operation pressure for the RO separation process. Results 

have shown that batch-RO is able to achieve a high efficiency as well as a high recovery ratio [9]. 

Additionally, besides solar energy, other heat sources such as waste heat and biomass energy are 

also applicable to batch-RO especially when used in co-generation systems.  

Through pilot experiments to develop the batch-RO system, two major energy loss 

mechanisms � dispersion and concentration polarization (CP) � have been identified and 

investigated to improve system performance. The study of dispersion has been published in earlier 

paper by the authors [10]. In this paper, CP investigated in detail. 

In membrane separation, water penetrates the membrane from the feed side towards the 

permeate side, when the applied pressure overcomes the osmotic pressure difference. Rejected 

salts accumulate on the membrane surface and build up a layer of high concentration; this 

phenomenon is referred to as concentration polarization. CP significantly worsens the performance 

of membrane separation processes since the osmotic pressure difference depends on the 

concentration difference across the membrane, which is the major factor in determining the 

operating pressure. Hence, understanding mass transfer and controlling CP are essential in 

improving the performance of RO separation. Such qualitative and quantitative understanding can 

be gained by determining the mass transfer coefficient and membrane transport parameters based 

on various transport models [11, 12]. Among these solute transport characteristics models, the film 

model, and its two variants with either a mechanistic approach (Kimura-Sourirajan model) or a 

thermodynamic approach (Spiegler-Kedem model) have been most widely used, as they do not 

require detailed information on the structure of the RO membrane, which cannot readily be 

described by simple quantitative parameters [13]. These models have been carefully examined in 

several studies presented in the literature to characterise the solute transport in nanofiltration 

membranes [13-17], ultrafiltration membranes [18, 19], and RO membrane of simple structures, i.e. 

tubular or flat cell, [20-22]. The conclusion about the mechanism of solute separation by 

membranes is still a matter of controversy and indeed this mechanism may vary according to the 

type of specific RO membranes.  
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In contrast to the plethora of CP research on conventional (continuous steady mode) RO 

process, no studies pertaining to CP in batch-RO have been carried out, because not many 

commercially available batch-RO systems exist and research on batch-RO is at a relatively early 

stage [23-25]. Therefore, research about CP in batch-RO is necessary to obtain insight into the 

characteristics of mass transfer in transient hydrodynamic conditions as well as to contribute to the 

improvement of batch-RO. Additionally, although previous studies provide informative insights into 

CP phenomena in RO modules with simple structures, they cannot currently be considered 

representative or accurate for CP in the specific spiral-wound membrane (SWM) RO elements 

used in this study.

The objectives of this paper are to elucidate the mass transfer characteristics of different 

SWM RO elements and to investigate systematically mass transfer coefficients as well as CP 

using semi-experimental methods, thus providing guidance on the optimal design of the batch-RO 

system. To quantitatively assess CP values, we derived corresponding Sherwood correlations to 

reveal the relationship between flow rate and the mass transfer coefficient. In addition, we also 

quantified the CP-related energy loss in the batch-RO system. 

� ����������

��������������

The film model assumes a one-dimensional flow and a fully developed CP layer. At steady 

state, as shown in Figure 1, the solute flux, passing through the membrane Js (kg·m-2·s-1) is 

balanced by the convective flux Jv·C and the solute diffusive flux from the membrane wall to the 

bulk solution D·dC/dx,  

�� � �� � �	 � �	 � � 
 � � �� � (1)

where C  and Cp are the feed and permeate solute concentrations (kg·m-3), respectively, Jv is the 

permeate flux (m·s-1), and D is the diffusion coefficient (m2·s-1). 

The solution of Eq. (1) for a boundary layer of thickness � (m) gives: 
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��� � �� 
 ��
�� 
 �� � ��� ��	��� (2)�

Where CPF is the concentration polarization factor, Cm and Cb (equals the feed concentration) are 

the solute concentrations (kg·m-3) at the membrane surface and in the bulk solution, respectively. k

is the mass transfer coefficient (m·s-1) and is defined as: 

� � �
� � (3)�

Eq. (2) indicates that CPF is strongly dependant on the permeate flux Jv and mass transport 

coefficient k.    

The observed membrane rejection fraction Ro is given by: 

�� �
�� 
 ��
�� �

(4)�

And the real rejection fraction R is given by: 

� � �� 
 ��
�� �

(5)�

Writing Eq. (2) in terms of observed rejection fraction Ro and real rejection fraction R gives: 

� 
 ��
�� � � 
 �

� � ��� ��	��� (6)�

Rearranging Eq. (6) arrives at: 

�� �� 
 ���� � � �	
� � �� �

� 
 �
� �� (7)�

�����������

The Kimura-Sourirajan (KS) model, also known as the combined solution-diffusion/film 

model, assumes that the solvent and solute fluxes do not interact with each other [26] and the 

solute is transported solely by diffusion [17]. 
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In the KS model, the solvent flux Jv through the membrane is given by: 

�	 � �� � �!� 
 !"#$�%� (8)�

The solute flux Js according to KS model is expressed as: 

�� � �� � ��� 
 ��$� (9)�

where Lp is the intrinsic membrane permeability (m3·m-2·s-1·Pa-1), i.e., pure water permeability, �P is 

the operating pressure (Pa), and �OsmP is the difference in the osmotic pressure across the 

membrane (Pa), which equals to �!"#�� 
!"#��$. Ps is the salt permeability coefficient (m·s-1), 

which characterizes solute transport through the membrane. 

Combining Eqs. (5), (6) and (9) to eliminate the unknown parameters Cm and R gives: 

�	� � �� �� 
 ���� � 
 �� ����	�� (10)�

2.3. Sherwood correlation 

Most of the mass transfer models adopted in the characterization of RO or ultrafiltration 

membranes make use of the Sherwood correlation [11, 17, 27]. The Sherwood correlation 

indicates the extent to which mass transfer rate is affected by Reynolds number, i.e., flow regime, 

and hydraulic conditions.  

For fully developed turbulent and laminar flows, the generalized correlations of mass 

transfer coefficient k have the following empirical forms, respectively [27-30]: 

%& � � � '� � ( � ��) � %*+ � ( � �, � '- �) � .-�/
+
� (11)

%& � � � '� � ( � ��) � %*+ � �'� �
0

� ( � �, � '- �) � .-�/
+ � �'� �

0 (12)
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where a, �, � and � are constants that vary for different diffusion physical situations, and they can 

be determined experimentally. Sh is the Sherwood number, Re is the Reynolds number, Sc is the 

Schmidt number, u is the crossflow velocity (m·s-1), v is the kinematic viscosity (m2·s-1), L is the 

channel length (m) and dh is the hydraulic diameter (m). 

The Sherwood correlations, i.e. Eqs. (11) and (12), indicate that the Sherwood number 

varies with Reynolds number and Schmidt number, the Schmidt number being a characteristic of 

diffusion. In other words, the mass transfer coefficient k is in essence a function of the crossflow 

velocity u, diffusion coefficient D, fluid properties, and the membrane module configurations. 

Most of the mass transport models for membrane separation use some specifically tuned 

Sherwood correlation to quantify the concentration at the membrane wall Cm. For a fully developed 

turbulent flow, one widely used Sherwood correlation is [27]: 

%& � 12134 � ��526 � %*5277� (13)

For a fully developed laminar flow, it has the form [28]: 

%& � �289 � ��� � %* � '� �
: 7;

� (14)

For practical SWM RO elements, the spiral geometry can be adequately approximated by 

an unwound flat rectangular membrane channel. Because the feed channel is too narrow and the 

mean crossflow velocity is usually less than 0.8 m·s-1, turbulent flow is unlikely to be fully 

developed, and laminar flow may sometimes be assumed. However, the occurrence of re-

circulation regions, resulting from the increased local shear rates and velocities due to the feed 

channel spacers [31], suggests that flow is not purely laminar but is undergoing transition. Thus, 

most existing Sherwood correlations reported in the literature for fully developed turbulent or 

laminar flow may not be suitable for the determination of mass transfer coefficient in the RO SWM 

elements used in this study. 
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�� �������������������
��

For a batch-RO system, the operating parameters vary during the process; conversely, the 

parameters are usually constant in continuous RO systems. Thus, different methodologies are 

applied to the determination of mass transfer coefficient k in these two modes of operation. After 

the mass transfer coefficients are determined, the specific Sherwood correlations are estimated. 

3.1. Batch mode operation 

For the batch-RO operation, a graphical method is adopted here. From Eq. (12), the 

relationship between the feed velocity u and mass transfer coefficient k is of the form: 

� � ,)
< � (15)

Substituting Eq. (15) in (10) and re-arranging with substitution from Eq. (4) gives: 

�� =�	 � ���� 
 ��> � �� �� �< � �	,)� (16)

Eq. (16) provides a linear relationship between ��?�	 � �� �� 
 ��; @ and �	 ,); . On the basis 

of experimental results for the batch-RO, which are measured at various flow velocities and 

various feed pressures, the value of the velocity exponent � is determined from the best linear fit of 

the measurements from which both the salt permeation parameter Ps and the coefficient b can be 

obtained. The Sherwood relationship can then be easily worked out with the known parameters �

and b based on Eq. (12). 

3.2. Continuous operation 

In conventional continuous operation, because of the constant feed concentration, a 

straight forward experimental procedure was used [22]:     

For pure water, based on Eq. (8):  

��	$ABCDE � �� � !�� (17)
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Thus, using a linear parameter estimation method, with the data for Jv obtained at different 

operating pressures while maintaining a constant feed flow rate for each experiment with pure 

water, the intrinsic membrane permeability Lp was estimated. Then, a series of experiments was 

performed for different feed flow rates with a constant feed concentration and operating pressure. 

With measured permeate flux Jv and permeate concentration Cp (used to calculate "#%��) the 

concentration at the membrane surface �m (calculated from "#%��) was calculated based on Eq. 

(8). The values of CPF and mass transfer coefficient k were subsequently obtained using Eq. (2).

The Sherwood relationship can then be easily worked out with the known mass transfer coefficient 

k based on Eq. (12). 

�� �����������������	���������
��	���

Each experiment used a single module and RO membrane element of commercial 

polyamide thin-film-composite type, either BW30-2540 (brackish water membrane) or XLE-2540 

(low energy membrane) type. Both were from Dow® FilmTec® and in the spiral wound element 

form. Given the diameter of the element and the total membrane area provided by the 

manufacturer, the feed flow channel height and width were determined accordingly. The two 

membrane elements were of the same size, i.e. 0.06 m in diameter and 1 m in length. The average 

flow channel height was 7.1F10-4 m, with the channel length and width being 1 and 1.3 m, 

respectively. Both of the elements have 2.6 m2 active membrane area, but with different salt 

rejection ratios being 99.5% for BW membrane and 99% for XLE membrane. According to the data 

provided by the manufacturer, the pure water permeabilities of the two membrane elements are: 

9.14F10-12 m·s-1·Pa-1 for the BW membrane element and 2.03F10-11 m·s-1·Pa-1 for the XLE 

membrane element. 

4.1. Batch mode operation 

The batch-RO set up (Figure 2) has been described in an earlier paper [9]. The paper 

introduced a batch-RO system powered by compressed air, referred to as DesaLink, which (Figure 

3) was also used to conduct experiments in the current study. Different re-circulating flow rates 

were tested to reveal the relationship between mass transfer characteristics and unstable hydraulic 
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conditions. For all the experiments, the feed concentrations and feed air pressures were kept 

constant at 2.5 kg·m-3 (2500 ppm) and 8F105 Pa (8 bar), respectively. The average feed flow rates 

were 0.04, 0.03 and 0.026 F10-3 m3·s-1 (2.4, 2.0 and 1.6 l·min-1) in separate runs. Experiments 

were conducted three times to reduce random errors.  

4.2. Continuous operation 

A schematic diagram of the experimental unit is illustrated in Figure 4. The unit consists of 

a single membrane element, feed pump, water reservoir and pulsation dampener. The pulsation 

dampener from manufacture Reflex N was installed between the feed pump and the membrane 

element to smooth the feed flow from the pump. The Wilo re-circulation pump was installed before 

the membrane element. Concentrate and permeate flows were mixed in a bucket prior to filling the 

feed tank. Feed solution was prepared using desalinated tap water with an electrical conductivity 

less than 0.1 µS·cm-1 and analytical grade sodium chloride (NaCl) salt from Fisher Scientific. The 

operation pressure and feed flow rate were simultaneously controlled by adjusting the power 

supply and the throttle valve located at the brine outlet. Both concentration and temperature of the 

permeate flux were monitored by a EUTECH COND 500 conductivity transmitter which included a 

temperature-measuring function. The conductivity of the feed solution in the water tank was 

measured using a Hanna HI 8733 conductivity meter. The concentrations of solution were 

calculated from the conductivity measurements using specific conductance for NaCl at specific 

temperatures. Both the concentrate and permeate flow rates were measured with a stop watch and 

measuring cylinders. The concentration of concentrate flow was calculated based on the 

conservation of mass.  

Prior to the experiments, two brand new membrane elements, named BW30-2540 and 

XLE-2540, were conditioned by feeding 3 kg·m-3 (3000 ppm) NaCl solution for 12 hours at 9F105

Pa (9 bar), in order to wet the RO membrane completely. The mass transport experiments were 

carried out with 800 ppm NaCl solution at the fixed operation pressure of 2.76F105 Pa (2.76 bar). 

The feed flow rates were varied by adjusting the supply pump power. In all cases, the membrane 

processes were stabilized for 1 hour before taking the measurements, carefully ensuring the 
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14 

permeate concentration and flow rate had stabilised, i.e. the system had reached a steady state. 

The bulk solution coming out of the membrane element and the permeate were sampled 

simultaneously. All the experiments were performed in the temperature range of 298.15±0.5 K 

(23±0.5 ºC). 

�� ���	�����������
	������

5.1. Salt transport characteristics 

For continuous RO operation, the salt transport characteristics in different membrane 

elements were illustrated in Figure 5, and elucidated by the variation of observed salt rejection 

fraction Ro (calculated using Eq. 4) with permeate flux Jv. For both membrane elements, the 

observed salt rejection fraction Ro is slightly lower for the feed solution of a higher concentration. 

For the BW membrane element only around 1% difference in Ro was observed for all the 

concentrations of feed solution ranging from 0.06 kg·m-3 (60 ppm) to 5 kg·m-3 (5000 ppm), while 

approximately 2% difference in Ro was observed for the XLE membrane element in the same 

concentration range. It thus can be argued that the salt rejection property of membranes is trivially 

affected by the concentration of feed solutions, at least for the range of interest in our work. Both of 

the elements displayed high salt rejection fractions; the average values of Ro for the BW and XLE 

membrane elements were 95% and 90%, respectively. For the XLE element (Figure 5a), the Ro

was less than 60% at low Jv (approximately 1.0F10-6 m·s-1), but it rapidly increased and reached 

almost 90% when Jv was 2.3F10-6 m·s-1. The Ro of XLE element dropped off beyond the value of 

6.9F10-6 m·s-1, in contrast, for the BW membrane element (Figure 5b), Ro remained almost 

constant with increasing solvent flux Jv. As the permeate flux increased to about 2.3F10-6 m·s-1

permeate flux and above, the Ro reached about 92% and levelled off thereafter. 

Based on the film model, Eq. (7), it is noted that when the true salt rejection R is 

independent of permeate flux Jv, the observed solute removal Ro is determined by Jv directly; this is 

supported by the results shown in Figure 5. According to Eq. (1), if the solute passing through the 

membrane Js increases (means accordingly decreased observed solute removal fraction Ro) with 

increasing solvent flux Jv, then it can be established that the solute transport through the 
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membrane is dominated by convection (convective flux Jv·Cf). The salt transport characteristic of 

the XLE element (Figure 5) is in line with this description, i.e., Ro decreases at high solvent flux Jv. 

On the other hand, when the solute transport is dominated by diffusion, Ro monotonically increases 

until it levels off with increasing Jv, which is demonstrated by the BW element results (Figure 5).  

Beside the experimental results of the steady operation (continuous RO) that demonstrate 

the different mass transfer mechanisms in different RO elements, the experimental results (Figure 

6) of the un-steady operation (batch mode) have also indicated a similar trend. For the XLE 

membrane (Figure 6a), the average concentration of the permeate Cp_ave is increased (decreased 

Ro) with increasing operation pressure (increasing Jv). For the BW membrane (Figure 6b), the 

reversed trends are observed, the Cp_ave is decreased (increased Ro) with increasing operating 

pressure (increasing Jv). Notably, for feed water of 4 kg·m-3 (4000 ppm) solute, the product 

permeate in conjunction with the XLE element had an average concentration above 0.5 kg·m-3

(500 ppm, drinking water limit); thus the XLE element was not used in batch-RO operation. 

The results above show that for continuous (steady) and batch-RO (transient) processes, 

the KS model, which suggests the solute is transported solely by diffusion, describes well the mass 

transfer characteristic in BW element. Though this model described less well the results for the 

XLE module in general, for high rejection ratios such as encountered in practice it gives an 

adequate description. For comparison, the relative contributions of the diffusive and convective 

fluxes in the Spiegler-Kedem model [32] are mainly dependent on the hydraulic conditions, such as 

feed concentration, feed flow rate and operation pressure. In practical batch RO applications, the 

concentration of feed solution is in the range of 3–10 kg·m-3 (3000–10000 ppm) during the 

pressurisation cycle, and the average permeate flux Jv is in the range of 2.3F10-6–4.6 F10-6 m·s-1

accordingly, from Figure 5(a), it is seen that the observed salt rejection Ro within this Jv range is 

above 90% and remains almost constant, indicating the salt transport due to convective flux is very 

small and what follows is its diffusion-only characteristic. Additionally, small deviations in Ro caused 

by the different feed concentrations can be neglected. This simplification is supported by the work 

of Ghiu [17], who found that the KS and is similar to the Spiegler-Kedem model when the solute 
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rejection ratio Ro was higher than 86%. Taking into account this argument as well as our 

experimental results, the combined film/KS model was considered as having minimal deficiencies 

and was therefore applied to describe the transport mechanism and determine the mass transfer 

coefficient k for both XLE and BW membrane elements. 

5.2. Mass transfer in batch-RO process 

The feed flow rate varies during the batch-RO operation; thus, the experimental data from 

one pressurization process (Figure 2) reveal the relationship between the different feed flow and 

mass transfer coefficients. However, in order to derive the relationship between the average feed 

and permeate flows (which was used in the modelling process in authors’ another study), different 

initial feed flow rates were used in the tests (Figure 7).  

The obtained permeate flows Qp for the corresponding different feed flow rates Qf are 

shown in Figure 8. Note that only the large and small feed flow rates are presented in Figure 8,

due to the small differences between the medium and small feed flow rates. As expected, the 

permeate flow rate was directly affected by the feed flow rate. Furthermore, not only were the 

observed permeate flows different, but the total salt passages also varied under the varying feed 

flow conditions (Figure 9). For the batch system, pressure, feed flow and concentration all vary 

with time, which explains the more complicated pattern of results than normally seen in a 

continuous flow system. 

Both Figures 8 and 9 point to the fact that the permeate quality is dependent on the 

average feed flow rate. When the average permeate flow rate is higher (meaning a larger volume 

of permeate) the salt passage is reduced (meaning a lower concentration of permeate). This is 

because large flow rates enhance the mass transfer and therefore reduce the CP. It thus 

emphasizes the need to construct a specific theoretical model which describes the relationship 

between flow rates and mass transfer coefficients for unsteady batch-RO operation. This would, in 

turn, allow for the quantification of the observed proportional change in permeate qualities, i.e. 

volume and concentration, against various average feed flow rates.  
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A genetic algorithm (GA) (available in Matlab® toolbox) was used to fit Eq. (16) to the batch-

RO process. In brief, genetic algorithms, as distinct from most classical, derivative-based 

optimization strategies, are heuristic search techniques inspired from the biological process of 

evolution by means of natural selection. GAs are efficient for function minimization in a complex 

search landscape with possibly strongly correlated adjustable parameters [33]. For the objective 

functions, ordinary least-squares (OLS) estimation was first used to fit the data. Moreover, to 

guarantee the goodness of fit and diminish possible chance correlations between the fitted 

parameters, another approach, termed robust regression (RR), was also employed. This is 

because OLS can behave badly when the error distribution is not normal and the number of 

adjustable parameters is somewhat large relative to the number of data points to be modelled, 

whereas, RR is less vulnerable to unusual data points and can normally circumvent such 

problems. All fittings using either OLS or RR plausibly arrived at almost identical sets of 

parameters, which display a clear indication of the fitness of the resulting Sherwood correlations. 

All the unknown parameters, namely �, �, � and a (based on Eqs. 11, 12 and 16) were 

estimated simultaneously by the GA implementation, yielding a very satisfactory regression 

coefficient R2 (Figure 11). The variables Sh, Re, Sc, dh and L were obtained from the experiments. 

Then, the unknown coefficients (�, �, �, a) were determined by fitting the experimental data to Eq. 

(11) using GA (for further details of this procedure see [34]).This led to the following Sherwood 

correlation: 

%& � � � '
�

� 321G � ��52HI � %*5276 � �'� �
5277

� (18) 

In the literature, a value of � =1/3 (Eq.14) is typically suggested for the exponent of Re for a 

fully developed laminar flow [28]. Nonetheless, based on the fit of Eq. (18) to the experimental 

data, it is concluded here that for a partially laminar (transition) flow in the SWM RO element, a 

new model (Eq. 18 with �=0.26) rather than the empirical Sherwood correlation (Eq. 14) is needed 

to characterise correctly the system. So, the herein developed Sherwood correlation obtained by 
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the GA fitting was chosen as the more appropriate and accurate correlation for a transition flow in 

RO module, and the conventional value of � =1/3 was not used. 

With known constants a, �, � and �, the mass transfer coefficients k were then calculated 

based on Eq. (18). The obtained mass transfer coefficients k were plotted against the 

corresponding feed flow velocities, demonstrating a clear increase of the mass transfer coefficients 

k with increasing feed flow velocity u (Figure 12).   

With the mass transfer coefficients k determined, the CPFs were obtained based on Eq. (2). 

The increasing CPF against time (Figure 13), was due to the increase of permeate flow rate and 

the decrease of feed flow rate along the time. At any given time point, the CPF was larger for the 

operation with the small feed flow rate, affirming again the large flow rates help to reduce the CP. 

This is also in line with the expectation from the Sherwood correlation (Eq. 18).  

5.3. Mass transfer in continuous RO process 

For steady continuous RO process, both of the BW and XLE SWM elements were tested. 

According to the procedure described in Section 4.2, the vales of CPF were calculated (Figure 14) 

using Eqs. (17), (8) and (2) subsequently. It shows the CPF value is reduced with a higher 

crossflow velocity u, which is in line with the theory. For the BW membrane, the CPF value is 

lowered by 25 % from 1.6 to 1.3 in the crossflow rate range of 1.8F10-2 –11.5F10-2 m·s-1. For the 

XLE membrane element, similar trends of CPF values were found. The slightly larger CPF values 

compared to the BW system can be explained by the larger permeate flux obtained with the XLE 

membrane element. 

Based on the obtained CPF values and Eq. (2), the corresponding mass transfer 

coefficients k are calculated and summarized in Figure 15. It shows that, in the crossflow velocity 

range investigated, there is a significant enhancement in the mass transfer coefficient k with 

increasing crossflow velocity u. The decreased CPF values can be attributed to the increase of 

back-diffusive transport of the salt away from the membrane surface. For the XLE element, which 

was operated in the crossflow velocity range of 5F10-2 – 12F10-2 m·s-1, this shows the mass 

transfer coefficients were increased by 40% (from 6.4F10-6 to 9F10-6 m·s-1) (Figure 15a). The 
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mass transfer coefficients for the BW membrane element system were doubled (from 3.8F10-6 to 

7.3F10-6 m·s-1) in the crossflow velocity range of 2 F10-2 – 12 F10-2 m·s-1 (Figure 15b). In 

comparison to the BW membrane element system at the similar crossflow velocities, the slightly 

higher mass transfer coefficients for the XLE membrane element may be explained by minor 

differences in membrane and spacer geometry, which may be influenced by the different operating 

pressures in each case. 

With the calculated Sherwood number Sh, Reynolds number Re and Schmidt number Sc, 

the relevant constants in Eq. (12), namely a, �, � and �, were determined by GA method. Thus, the 

specific Sherwood correlations for both of the studied BW and XLE elements were established. It 

needs to be noted that the feed flow channel of the two membrane elements were the same, in 

other words, the third term �' �; $0  in Eq. (12) was fixed. However, the channel geometry 

constraints were still included in the determination of the Sherwood correlations in order to 

generalize the correlation for other commercially available SWMs with different feed channel 

heights and lengths. 

The experimentally determined relationship between the dimensionless numbers Sh and Re

is shown in Figure 6. With the constants optimised following the procedure described above, the 

Sherwood correlations can be rewritten as follows: 

for the BW30-2540 membrane element: 

%&JK � 12G4 � ��5277 � %*527L � �'� �
5277

� (19)

for the XLE-2540 membrane element: 

%&MNO � �2� � ��527L � %*527L � �'� �
5277

� (20)
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A satisfactory representation of the experimental data was provided by these two 

correlations. This is clearly observable from: (1) the good agreement between the experimental 

and predicted data in terms of both the shape of the curve and the overlap of data points (Figure 

16) and (2) the regression coefficients (R2) which are more than 0.99, as indication of the goodness 

of fit (Figure 17).  

Comparing Eqs. (19) and (20) for the BW and XLE membrane element system 

respectively, it should be noted that the constant (�) relating to the Schmidt numbers (Sc) and the 

constant (�) relating to the channel geometry term (dh/L) are the same in both equations. The Re

related constants (�) are very similar. There is a noticeable difference in the constant a, suggesting 

that the difference between the two correlations is mainly due to the difference of the inlet zone of 

the membrane elements, as the hydrodynamic conditions used in all experiments (including the 

characteristics of feed solutions and channel geometries of each membrane element) were 

identical.  

It needs to be emphasized that care must be taken when selecting the correlation models 

for specific RO systems. We find some of the commonly used correlations for fully developed 

laminar flows may not be used for the SWM RO elements investigated in this study. In contrast, 

our newly established Sherwood correlations showed semi-quantitative to quantitative agreement 

with the experiments over a wide range of crossflow velocities; thus, the accuracy and applicability 

of the Sherwood correlation were confirmed. It can be concluded that the Sherwood correlations 

established in this work for the BW30-2540 and XLE-2540 SWM elements can be used to 

determine the mass transfer coefficients for salt solutions in continuous operation processes with a 

satisfactory accuracy.  

5.4. Related energy losses in DesaLink 

The ideal specific energy consumption (SECideal), i.e. with no CP related energy losses, of a 

batch-RO desalination process for BW is related to the osmotic pressure of the feed solution OsmP

and the recovery ratio r: 
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%P�QRDBS � !"#�
T � �� �

�� 
 T$U�
           (21) 

For a practical system, where CP is inevitable, the SEC increases proportionally to the CP 

factor (CPF) because the OsmP increased in proportion to CPF. Furthermore, extra energy 

consumption occurs because of the use of the re-circulation pump. The amount of energy 

consumed by the re-circulation is related to the feed flow rate and operation time. Thus, the 

specific energy consumption SEC of the practical batch-RO desalination process is expressed as 

the sum of two terms: 

VWX � XYZ � VWX[\]^_ � VWX`ab`� (22) 

  

where SECideal is the specific energy consumption without concentration polarization, and SECpump is 

the specific energy consumption of the re-circulation pump. The CPF can be quantified based on 

Eq. (2) and the newly established Sherwood correlation, Eq. (19). SECideal is calculated based on 

Eq. (21). The energy consumption of the pump is assumed to increase linearly with the feed flow 

rate. With the known volume of permeate, which equals the volume of the pump cylinder (refer to 

Figure 3) and permeate flux, the SECpump is given as follows: 

VWX`ab` �
c�a$ � d

e`
�

c�a$ �
ef^d]g
h`

ef^d]g
�
c�a$

h`
�

(23) 

where Vp is the volume of permeate water (L), which equals the volume of the water cylinder Vwater

(L), and t is the operation time (s), which equals the volume of water cylinder divided by the rate of 

permeate flow Qp.  

The parameters of Qp and feed concentration Cf were selected according to the DesaLink 

operation range. In light of the batch-RO system test results, the values for Qp and Cf were chosen 

to be 1 F10-5 m3·s-1 (0.6 l·min-1) and 8000 ppm, respectively. And the energy needed by the re-
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circulation pump, which is a function of the feed flow rate, was decided according to the pump test 

results. In Eq. (22), the first term, CPF·SECideal, decreases with the feed flow rate u exponentially. 

The second term, SECpump, increases with u linearly. Therefore, there exists an optimum point at 

which the minimum SEC is achieved. Figure 17 thus illustrates the changes of the CPF·SECideal, 

SECpump and their sum respectively, and a value of 2 l min-1 for feed flow rate can be identified 

graphically to yield the optimum SEC. When the optimal re-circulation flow (i.e. 2 l min-1) is applied, 

an average value of 1.25 was obtained for CP; this value suggests 25% energy loss due to CP. 

The fact that there exists an optimal re-circulation flow for our batch-RO system means that the 

lowest SEC is achieved when the ratio between re-circulation flow and produced permeate flow is 

3. A larger re-circulation flow would result in energy inefficiency due to increased energy 

consumption by the re-circulation pump, while a smaller flow would lead to an increased CP layer 

which also decreases the overall system efficiency. Likewise, this optimal ratio between re-

circulation flow and permeate flow can be applied in operation for similar systems with different 

size. 

 � !��
�	�����

For inland applications, batch-RO desalination has shown advantages in BW desalination 

over conventional continuous BWRO because of the high recovery ratio achievable without high 

energy input. Moreover, batch RO allows greater control over CP through adjustment of the re-

circulation flow rate. Thorough examinations of CP in both batch and continuous mode RO 

processes were carried out. It was demonstrated that the film/KS model gave an adequate 

description. To quantitatively assess the impact of flow rate on the CP, we derived a Sherwood 

correlation as a means of predicting the degree of CP and the permeate flux. The herein proposed 

Sherwood correlation (Eqs 18, 19 and 20) was fully validated by the experimental observations, 

indicating possible applications to SWM ROs with different geometrical properties (e.g. different 

feed channel heights and lengths). It was found that the newly established Sherwood correlation 

for batch-RO gave accurate CPF within less than 10% deviation; for continuous RO, the correlation 

predicted CP more accurately than other popular correlations. The optimum re-circulation rate for 

DesaLink operation was investigated based on the specific mass transport characterization for 
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batch-RO operation. It may be argued that the optimum feed flow rate determined here may lead 

to a lower performance for other batch-RO in different scale and using different components, thus 

limiting its wider applicability. It was, nevertheless, satisfactory in the scope of this work. 

Furthermore, with the established Sherwood correlation, we were able to evaluate the CPFs under 

the different feed flow rates and to quantify the total volume and concentration of the permeate. 
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Figure legends: 

Figure 1 Schematic diagram of the solute fluxes across RO membranes 

Figure 2 Schematic of practical operation process of batch-RO system (DesaLink): initially both the 

pump cylinder and RO module are filled with saline water, (1) pressurisation stage (with valve 3 

open, valves 1 and 2 closed) the piston pressurises the water, causing freshwater to pass through 

the membrane. The concentration of solution increases gradually. The concentrations at the inlet 

and the outlet of the module are kept nearly equal with the help of the re-circulation pump. After 

the pump piston reaches the end of the cylinder, only concentrated brine is left in the module. 

Thus, it is necessary to purge the module by introducing feed water (with valves 1 and 2 open, 

valve 3 closed). In the purging stage (2), the concentration at the outlet decreases towards the 

value at the inlet. After washing out the left concentrate, the feed pump feeds saline water into the 

cylinder to move the piston upwards (with valves 1 and 3 open while valve 2 is closed); thus, the 

whole system is refilled (3) and restored to its ready-to-go state. The water flow paths and no-flow 

paths of all the pipes are shown by bold and dashed lines respectively [8] .  

Figure 3 Schematic diagram (a) and experimental set-up (b) for the mass transport experiments, 

using the mechanically powered batch-RO system; for details refer to [8, 34].

Figure 4 Experimental set-up for the mass transport experiment, using conventional RO process, 

i.e. continuous RO operation. 

Figure 5 Observed solute removal (Ro) by membrane elements with respect to permeate flux (Jv): 

(a) XLE-2540 element (with the zoom-in figure shown in (c)), (b) BW30-2540 element (with the 

zoom-in figure shown in (d)), in continuous RO operation. 

Figure 6 The average concentration of permeate (Cp_ave) using feed water with different 

concentrations with respect to initial feed pressure (Ppower_initial): (a) XLE-2540 membrane element, 

(b) BW30-2540 membrane element, in un-steady operation 
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Figure 7 Instantaneous feed flow rates measured during the pressurization process of batch-RO. 

For each experimental set there were two obvious stages of power feeding: first with compressed 

air feed on, and then switch off at the minimum point of the curve, at about t=180s, after which the 

flow increases slightly. For more details refer to [34]. Different feed flow rate Qf were realized by 

adjusting the re-circulation pump rate from large (2.4 l·min-1), medium (2.0 l·min-1) and small (1.6 

l·min-1), the feed concentration being kept the same. 

Figure 8 Permeate flow rate profiles for the two different feed flow rates (they are coloured 

according to Figure 7). Similar to the above observed changing of feed flow, all the permeate flows 

display a two-stage feature.

Figure 9 Concentration profiles for the permeate flows obtained at the different feed flow rates 

Figure 10 Representative increasing concentration of bulk solution in batch-RO process 

Figure 11 Comparison of the experimental with the predicted values based on the developed 

Sherwood correlation (Eq. 18) 

Figure 12 Variation of the mass transfer coefficient as a function of the feed flow velocity for the 

two cases of large and small feed flow rates in batch-RO process 

Figure 13 CP value obtained at the different feed flow rates 

Figure 14 Calculated CP vales as a function of crossflow velocity (u): (a) XLE-2540 membrane 

element, (b) BW30-2540 membrane element, under steady RO operation 

Figure 15 Effect of crossflow velocity (u) on mass transfer coefficient (k): (a) XLE-2540 membrane 

element, (b) BW30-2540 membrane element, under steady RO operation 

Figure 16 Experimental and fitted Sherwood numbers (Sh) with respect to Reynolds number (Re) 

at various crossflow velocities: (a) XLE-2540 membrane element, (b) BW30-2540 membrane 

element, under steady RO operation 
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Figure 17 Energy consumptions against different feed flow rates 
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