
Visualisation of heterogeneous data with the Generalised
Generative Topographic Mapping

Michel F. Randrianandrasana, Shahzad Mumtaz and Ian T. Nabney
Nonlinearity and Complexity Research Group, Aston University, Birmingham B4 7ET, UK

{randrimf, mumtazs, i.t.nabney}@aston.ac.uk

Keywords:
Data visualisation, GTM, LTM, heterogeneous and missing data

Abstract:
Heterogeneous and incomplete datasets are common in many real-world visualisation applications.
The probabilistic nature of the Generative Topographic Mapping (GTM), which was originally
developed for complete continuous data, can be extended to model heterogeneous (i.e. containing
both continuous and discrete values) and missing data. This paper describes and assesses the
resulting model on both synthetic and real-world heterogeneous data with missing values.

1 INTRODUCTION

Type-specific data analysis has been well stud-
ied in machine learning1. In the last couple of
decades, the need to analyse mixed-type data has
received some attention from the machine learn-
ing community because of the fact that real-world
processes often generate data of mixed-type. An
example of such mixed-type data could be a hos-
pital’s patient database where typical fields in-
clude age (continuous), gender (binary), test re-
sults (binary or continuous), height (continuous)
etc. In practice a number of ad-hoc methods are
used to analyse mixed-type data. For instance,
if there is a mixture of continuous and discrete
variables, then either all the discrete variables are
converted to some numerical scoring equivalent
or, on the other hand, all the continuous vari-
ables are discretised. Alternatively, both types
of variables are analysed separately and then the
results are combined using some criteria. Accord-
ing to (Krzanowski, 1983), “All these options in-
volve some element of subjectivity, with possi-
ble loss of information, and do not appear very
satisfactory in general”. The ideal general so-
lution for analysing such heterogeneous data is
to specify a model that builds a joint distribu-
tion with an appropriate noise model for each
type of feature (for example, a Bernoulli distri-

1http://letdataspeak.blogspot.co.uk/2012/07/mixed-
type-data-analysis-i-overview.html

bution for binary features, a multinomial distri-
bution for multi-category features and a Gaussian
distribution for continuous features) and then fit
the model to data (de Leon and Chough, 2013).

A multivariate distribution that can model
random variables of different types is not avail-
able. However, one possible way of jointly
modelling discrete and continuous features is
using a latent variable approach to model the
correlation between features of different types.
For example, a dataset consisting of continu-
ous, binary and multi-category features can be
modelled using a conditional distribution that
is a product of Gaussian, Bernoulli and multi-
nomial distributions. This approach has been
previously discussed as a possible extension for
GTM (Bishop and Svensen, 1998; Bishop et al.,
1998) and PCA (Tipping, 1999) models. This
idea was implemented in (Yu and Tresp, 2004) to
visualise a mixture of continuous and binary data
on a single continuous latent space by extend-
ing probabilistic principal component analysis
(PPCA) and was called generalised PPCA (GP-
PCA). GPPCA is a linear probabilistic model
and uses a variational Expectation-Maximisation
(EM) algorithm for parameter estimation. There
are other latent variable models for mixed-type
datasets but to the best of our knowledge most of
these are linear models (Moustaki, 1996; Sammel
et al., 1997; Dunson, 2000; Teixeira-Pinto and
Normand, 2009) and they either use numerical



integration or a sampling approach to handle
the intractable integration for fitting a latent
variable model of this type. It is important to
mention that there is not much work reported
in the literature for analysing mixed-type data
using a latent variable formalism (de Leon and
Chough, 2013). As a generalisation of GTM,
a latent trait model (LTM) to handle discrete
data was proposed in (Kabán and Girolami,
2001): the model used the exponential family
of distributions. In this paper we describe and
assess a probabilistic non-linear latent variable
model to visualise a mixed-type dataset on
a single continuous latent space. We shall re-
fer to this model as a generalised GTM (GGTM).

The treatment of incomplete data for the stan-
dard GTM has been explored in (Sun et al., 2002)
using an EM approach which estimates the pa-
rameters of the mixing components of the GTM
and missing values at the same time. The same
approach is used in this paper to visualise mixed-
type data containing missing values with GGTM.

2 Visualisation of heterogeneous
data with GGTM

The main goal of a latent variable model is
to find a low-dimensional manifold, H, with M
dimensions (usually M = 2) for the distribution
p(x) of high-dimensional data space, D, with D
dimensions. Latent variable models have been
developed to handle a dataset where all the
features are of the same type.

Suppose that the D-dimensional data space
is defined by |R| continuous, |B| binary and
|C| multi-categorical features respectively. The
link functions for continuous, binary and multi-
category features are defined in equations (1), (2)
and (3) respectively

µR = Φ(z)WR. (1)

µB = gB(Φ(z)WB)

=
exp(Φ(z)WB)

1 + exp(Φ(z)WB)
.

(2)

µCsd = gC(Φ(z)wCsd)

=
exp(Φ(z)wCsd)∑Sd

s′d=1 exp(Φ(z)ws′d
)
.

(3)

We write each observation vector, xn in terms
of sub-vectors xRn , xBn and xCn for continuous,

binary and multi-category features respectively.
The likelihood of each type of feature is given by

p(xRn |z,WR, β) = p(xRn |µR, β)

=

(
β

2π

) |R|
2

exp

(
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2
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)
. (4)

p(xBn |z,WB) = p(xBn |µB)

=

|B|∏
d=1

(
µBd

)xB
nd
(
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nd)

. (5)

p(xCn|z,WC) = p(xCn|µC)

=

|C|∏
d=1

Sd∏
sd=1

(
µCsd

)xC
nsd

. (6)

Then we compute the product of the likelihoods
for the Gaussian (equation (4)), Bernoulli (equa-
tion (5)) and multinomial (equation (6)) distribu-
tions, and find the distribution of x by integrating
over the latent variables, z,

p(x|Ω) =

∫
p(xRn |z,WR, β)

p(xBn |z,WB)p(xCn|z,WC)p(z) dz,

(7)

where Ω = {WR, β,WB,WC} contains all the
model parameters. We use as prior distribution,
p(z), a sum of delta functions as for the standard
GTM and LTM

p(z) =
1

K

K∑
k=1

δ(z− zk). (8)

The data distribution can now be derived from
equations (7) and (8), where we use the same mix-
ing co-efficient for all components (i.e. πk = 1

K ),

p(x|Ω) =

K∑
k=1

πkp(x|zk,Ω). (9)

The log-likelihood of the complete data takes the
form

L(Ω) =

N∑
n=1

ln

K∑
k=1

πkp(xn|zk,Ω). (10)

The choice of noise model is related to the cor-
responding type of data and also the link func-
tion mapping from latent to data space (Kabán
and Girolami, 2001). The exponential family of
distributions is used here to model mixed-type
data under the latent variable framework. From
here onward to simplify the notation, we use xM,
whereM can represent either R, B or C, to indi-
cate the type of feature for a data point x.



2.1 An expectation maximization
(EM) algorithm for GGTM

Our proposed model is based on a mixture of dis-
tributions where each component is a product of
Gaussian, Bernoulli and/or multinomial distribu-
tions. The parameters of the mixture model can
be determined using an EM algorithm: in the E-
step, we use the current parameter set, Ω, to com-
pute the posterior probabilities (responsibilities)
using Bayes’ theorem,

rkn = p(zk|xn,W) =
πkp(xn|zk,W)∑K

k′=1 πk′p(xn|zk′ ,W)
,

(11)
where

p(xn|zk,W) =p(xRn |zk,WR, β)

p(xBn |zk,WB)p(xCn|zk,WC).

(12)

We use the maximization of the relative likeli-
hood (Bishop, 1995), which does not require the
computation of the log of a sum. The relative
likelihood between the old and new set of param-
eters can be calculated as

Q =

N∑
n=1

K∑
k=1

rkn log
{
p(xn|zk,W)p(zk)

}

=

N∑
n=1

K∑
k=1
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+
{
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C
k − G

(
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+
{

log(p(zk))
}


(13)

where θMk = Φ(zk)WM. In the M-step we max-
imize the function Q with respect to each type of
weight sub-matrix WM as

∂Q

∂WM = ΦT
[
RXM −Eg(ΦWM)

]
, (14)

where Φ is a K×L matrix, R is a K×N matrix
calculated using equation (11), XM is an N ×
|M| data sub-matrix and the diagonal matrix E
contains the values

ekk =

N∑
n=1

rkn. (15)

In the case of an isotropic Gaussian with unit
variance, the link function g(.) is the identity and
by setting the derivative to zero we obtain, as in
the standard GTM (Bishop and Svensen, 1998),

ŴR = (ΦTEΦ)−1ΦTRXR. (16)

For other link functions, a Generalised EM
(GEM) (McLachlan and Krishnan, 1997) algo-
rithm is used because convergence to the local
maximum is guaranteed without maximizing the
relative likelihood (Kabán and Girolami, 2001).
A simple gradient-based update can be obtained
for WM from Equation (14)

∆WM ∝ ΦT
[
RXM −Eg(ΦWM)

]
, (17)

where this can be used as an inner loop in the M -
step. The correlations between the dimensions of
φl responsible for preserving the neighbourhood
are required for a topographic organisation given
that the natural parameter θM is being updated
under the gradient update of the weight matrix
WM (Kabán and Girolami, 2001):

θ̂Mk = φkWM + η

N∑
n=1

K∑
k′=1

rk′nφkφ
T
k′(xM − µMk′ ).

3 Visualisation of missing data
with GGTM

The EM framework supports the treatment of
missing values in the GGTM model.

3.1 Continuous data

The data points xn are written as (xo
n,x

m
n ), where

m and o represent subvectors and submatrices
of the parameters matching the missing and ob-
served components of the data (Ghahramani and
Jordan, 1994). Binary indicator variables ζnk
are introduced to specify which component of the
mixture model generated the data point. Both
the indicator variables ζnk and the missing inputs
xm
n are treated as hidden variables in the EM al-

gorithm. The changes made to the EM algorithm
for GTM are detailed in (Sun et al., 2002).

3.2 Discrete data

The missing values are inferred in the E-step us-
ing the usual posterior means with responsibility
rkn computed on the observed data,

E[xm
n |xo

n,µ
D] =

K∑
k=1

rknµ
D
k , (18)

where D = {B or C}. In the M-step, the weight

matrix ŴD is updated first using the complete

training data and we then update µ̂Dk with

µ̂Dk = gD(Φ(zk)ŴD). (19)



4 Visualisation quality evaluation
measures

Algorithms based on GTM are examples of
unsupervised learning which always give a result
when applied to a particular dataset. Thus we
cannot tell a priori what is the expected or de-
sired outcome. This makes it difficult to judge
which method is the best (i.e. tells us the most
about a certain dataset). Here we use metrics
that measure the degree of local neighbourhood
similarity between data space and latent space
which can be calculated even if ‘ground truth’ is
not known.

4.1 Trustworthiness, continuity
and mean relative rank errors
(MRREs)

Two well-known visualisation quality measures
based on comparing neighbourhoods in the data
space x and projection space z are trustworthiness
and continuity (Venna and Kaski, 2001). A map-
ping is said to be trustworthy if k-neighbourhood
in the visualised space matches that in the data
space but if the k-neighbourhood in the data
space matches that in the visualised space it
maintains continuity. The higher the measure the
better the visualisation, as this implies that local
neighbourhoods are better preserved by the pro-
jection. We also use mean relative rank errors
with respect to data and latent spaces (MRREx

and MRREz), which measure the preservation
of the rank of the k-nearest neighbours contrary
to the trustworthiness and continuity which only
consider matches in the k-neighbourhood (Lee
and Verleysen, 2008). Note that the lower the
MRRE the better the projection quality.

5 Experimental results

The GGTM was evaluated on both complete
and missing synthetic and real-world datasets and
compared with standard GTM for complete data.
The weight matrix W was initialised using prin-
cipal component analysis (PCA). For the metrics
in Section 4, we computed pair-wise distances us-
ing Hamming distances for the binary features
and Euclidean distances for the continuous fea-
tures. For each distance matrix, we divided each
column by its standard deviation. All experi-
ments used 10-fold cross-validation. The visu-

alisation quality measures were computed with
a range of neighbourhood sizes (5, 10, 15, 20) and
the mean of these measures over the different sizes
and cross-validation runs was computed.

5.1 Synthetic dataset

The synthetic dataset was generated from an
equiprobable mixture of two Gaussians, N (mk, I)

(with k = 1, 2) with means m1 =
(

2.0
3.5
3.5

)
, and

m2 =
(

3.5
4.5
4.5

)
. A dataset with 9-dimensional bi-

nary features from four classes was also gener-
ated (these classes were not used as inputs to the
visualisation). Both continuous and binary data
were combined to make a dataset of 12 features
with 2, 800 data points. The visualisation results
of the complete and missing datasets (10% ran-
domly removed) are shown in Figure 1 and the
quality metrics are given in Table 1. We also gen-

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing
(training set)

(f) GGTM missing (test
set)

Figure 1: GTM and GGTM visualisations of the syn-
thetic 12-dimensional datasets with 3 continuous and
9 binary features.

erated a dataset with two multi-category features
with 8 and 16 categories in the first and second
features respectively. We appended the multi-
category features to the previous 12-dimensional
dataset and used a 1-of-S encoding scheme for the



GTM GGTM GGTM
complete complete missing

Trustworthiness 0.969 ± 0.003 0.949 ± 0.024 0.947 ± 0.027
Continuity 0.964 ± 0.003 0.970 ± 0.013 0.969 ± 0.014
MRREx 0.040 ± 0.000 0.043 ± 0.003 0.042 ± 0.003
MRREz 0.004 ± 0.000 0.038 ± 0.002 0.037 ± 0.002

Table 1: GTM and GGTM visualisation quality met-
rics of the 12-dimensional synthetic datasets. Each
figure represents the average over a 10-fold cross-
validation with one standard deviation on the test
sets.

GTM GGTM GGTM
complete complete missing

Trustworthiness 0.962 ± 0.004 0.977 ± 0.009 0.973 ± 0.014
Continuity 0.946 ± 0.008 0.980 ± 0.007 0.976 ± 0.013
MRREx 0.045 ± 0.001 0.044 ± 0.001 0.116 ± 0.005
MRREz 0.045 ± 0.001 0.041 ± 0.002 0.132 ± 0.005

Table 2: GTM and GGTM visualisation quality met-
rics of the 14-dimensional synthetic datasets.

multi-category features. Labels were based on the
four classes in the binary data.The visualisation
results of the 14-dimensional complete and miss-
ing datasets are shown in Figure 2 and the cor-
responding quality metrics are given in Table 2.
The proportion of missing values has also been

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing
(training set)

(f) GGTM missing (test
set)

Figure 2: GTM and GGTM visualisations of the syn-
thetic 14-dimensional datasets with 3 continuous, 9
binary and 2 multi-category features.

increased to 30%, 50%, 70% and 90% without
substantially degrading the visualisation quality
measures.

5.2 Hypothyroid dataset

This real-world dataset is publicly available from
the UCI data repository (Bache and Lichman,
2013). The dataset consists of two variable types:
15 binary and 6 continuous features. It contains
three classes: primary thyroid, compensated thy-
roid and normal. The dataset was originally di-
vided into a training set of 3, 772 data points
(93 with primary hypothyroid, 191 with com-
pensated hypothyroid and 3488 normal) and a
test set of 3, 428 data points (73 with primary
hypothyroid, 177 with compensated hypothyroid
and 3178 normal). These training and test sets
have been merged prior to running a 10-fold cross-
validation. The visualisation results of the com-
plete and missing datasets are shown in Figure 3
and the quality metrics are given in Table 3.

(a) GTM (training set) (b) GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

(e) GGTM missing
(training set)

(f) GGTM missing (test
set)

Figure 3: GTM and GGTM visualisations of the
thyroid disease datasets. The cyan circles, red plus
sign and blue squares represent primary hypothyroid,
compensated hypothyroid and normal respectively.



GTM GGTM GGTM
complete complete missing

Trustworthiness 0.718 ± 0.022 0.718 ± 0.015 0.716 ± 0.014
Continuity 0.804 ± 0.017 0.843 ± 0.014 0.835 ± 0.007
MRREx 0.018 ± 0.000 0.019 ± 0.000 0.019 ± 0.000
MRREz 0.016 ± 0.000 0.016 ± 0.000 0.016 ± 0.000

Table 3: GTM and GGTM visualisation quality met-
rics of the hypothyroid disease datasets.

6 CONCLUSIONS

A generalisation of the GTM to heteroge-
neous and missing data has been described and
assessed in this paper. This involves modelling
the continuous and discrete data with Gaussian
and Bernoulli/multinomial distributions respec-
tively. These extensions have been suggested
in (Bishop et al., 1998) but this is the first time
the mathematical details have been worked out
and an implementation written and evaluated.

Visualisation results for synthetic data using
the GGTM have shown more compact clusters
for each class compared to the standard GTM
whereas for the real dataset no significant dif-
ference was observed. For synthetic datasets
with missing values, GGTM visualisations have
greater compactness for each class. In terms
of visualisation quality evaluation metrics, we
observed that for a mix of continuous and bi-
nary data, the trustworthiness and MRREx are
slightly better for standard GTM compared to
GGTM whereas the continuity and MRREz were
better for GGTM compared to standard GTM.
However, for a mix of continuous, binary and
multi-category features, all the quality evaluation
measures were better for GGTM compared to the
standard GTM. Missing values have caused lim-
ited deterioration in results compared to the com-
plete data case.
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