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Epilepsy is one of the most common neurological disorders, a large fraction of which is 
resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its 
intractable forms in particular could create new targets for pharmacotherapeutic intervention. 
The current project explores the dynamic changes in neuronal network function in the chronic 
temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of 
establishment of epilepsy (epileptogenesis) in the temporal lobe.  

Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored 
using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved 
brain slice preparation technique resulted in the natural occurence (in the absence of 
pharmacological stimulation) of rhythmic activity, which was then pharmacologically 
characterised and compared to other models of gamma oscillations (KA- and CCh-induced 
oscillations) using local field potential recording technique. The results showed that SγO 
differed from pharmacologically driven models, suggesting higher physiological relevance of 
SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where 
spontaneous slow wave oscillations (SWO) were detected.  

To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model 
of epilepsy (RISE) was developed. The model significantly reduced animal mortality and 
demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of 
developing spontaneous recurrent seizures. We used SγO to characterize changes in the 
hippocampal neuronal networks throughout the epileptogenesis. The results showed that the 
network remained largely intact, demonstrating the subtle nature of the RISE model. Despite 
this, a reduction in network activity was detected during the so-called latent (no seizure) 
period, which was hypothesized to occur due to network fragmentation and an abnormal 
function of kainate receptors (KAr). We therefore explored the function of KAr by challenging 
SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response 
during the latent period, suggesting KAr dysfunction or altered expression, which will be 
further investigated using a variety of electrophysiological and immunocytochemical 
methods.  
 
The entorhinal cortex, together with the hippocampus, is known to play an important role in 
the TLE. Considering this, we investigated neuronal network function of the mEC during 
epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr 
function, with possible receptor upregulation or abnormal composition in the early 
development of epilepsy. Alterations in receptor function inevitably lead to changes in the 
network function, which may play an important role in the development of epilepsy. 
Preliminary investigations were made using slices of human brain tissue taken following 
surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in 
human brain slices and that such network activity was pharmacologically similar to that 
observed in rodent brain. 
 
Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in 
the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr 
contribute to epilepsy establishment and may be the key to uncovering its mechanism.       
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PSs – Phase-Locking Value for Spontaneous gamma oscillations 

PTX - Picrotoxin 

PTZ - Pentylenetetrazol 

PV - Parvalbumin  

RISE – Reduced Intensity Status Epilepticus 

RMS – Root Mean Square 

s – Second 

s. - Stratum 

s/c - Subcutaneous 
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SE – Status Epilepticus 

S.E.M. – Standard Error of the Mean 

SγO – Spontaneous Gamma Oscillations 

sIPSC – Spontaneous Inhibitory Postsynaptic Current  

sPSC – Spontaneous Postsynaptic Currents 

SRS – Spontaneous Recurrent Seizures 

SWO – Slow Wave Oscillations 

TTX - Tetrodotoxin 

TLE – Temporal Lobe Epilepsy 

uIPSC – Unitary Inhibitory Postsynaptic Current 

VFO – Very Fast Oscillations 

vs. - Versus 

wks - Weeks 
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1. Chapter 1 Introduction 
"
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1.1. Neuronal network oscillations 

As early as 1875, the first electrical signals were recorded from the exposed brains of 

animals by Richard Canton, a Liverpool physician. However, it was not until 50 years 

later that such signals were recorded from a human brain. An Austrian psychiatrist, 

Hans Berger, was one of the pioneers in electroencephalography (EEG), having 

invented the EEG device, which allowed recording rhythmic activity of the brain. 

Since then much effort has been put into exploring various brain rhythms, their 

functions and mechanisms, roles in physiological and pathological states, as well as 

ways of altering rhythmic activity, using pharmacotherapy, deep brain stimulation and 

transcranial magnetic stimulation.   

 

In the past 20 years, the field of neuronal network oscillations has become very 

popular, it has been able to attract neuroscientists from different areas by providing 

the opportunity to study brain function at multiple organisational levels: from 

understanding cellular and synaptic mechanisms underlying neuronal network 

behaviour, through interactions between networks at regional and interregional 

levels, to how network oscillations correlate with higher brain functions and 

pathological conditions. The development of in vitro electrophysiology has broadened 

the horizons of neuroscientific research. Using a combination of in vivo and in vitro 

approaches provides an opportunity to bring insights from different techniques 

together, working towards a larger picture of neuronal network function.  

1.1.1. What are brain rhythms? 

Brain rhythms represent extracellular voltage changes, which originate from the 

summation of electrical activity of neuronal assemblies, and are shaped by the 

geometry and alignment of those neurons (Buzsaki, 2006). The complexity of 

human/animal behaviour and cognitive functions requires neuronal networks in 

different areas of the brain to work together, which in turn requires populations of 

neurons engaged in a task to fire synchronously and repeatedly. This neuronal 

network activity is synchronized into particular rhythms. These rhythms can be 

detected and measured in vivo e.g. through EEG and magnetoencephalography 

(MEG), and in vitro e.g. local field potential recording (LFP). The mechanisms 
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underlying the generation of specific brain rhythms and the role(s) they play in the 

brain remain key questions in neuroscience.  

 

Neuronal network oscillations are known to occur at characteristic frequencies 

ranging from 0.05 to ~600 Hz (Buzsaki and Draguhn, 2004). The EEG classification 

of brain rhythms divides them into frequency bands:  

 

 delta (1 – 4 Hz) 

 theta (4 – 7 Hz) 

 alpha (8 – 13 Hz)  

 beta (13 – 30 Hz) 

 gamma (30 – 100 Hz)  

 

Frequencies beyond this classification such as slow-wave (<1 Hz) oscillations (SWO) 

and very fast (>100 Hz) oscillations (VFOs) have also been observed (Steriade et al., 

1993c,d; Curio et al., 1994). Each of the frequency bands correlates with specific 

brain functions, and various physiological and pathological states. For instance, delta 

rhythm can be observed during the deepest stages of sleep, whereas alpha wave 

represents a wakeful relaxation with closed eyes (Kandel et al., 2000). Faster 

rhythms are thought to be involved in the process of memory formation and 

cognition, feature binding and, more globally, in a large-scale integration (Thallon-

Baudry and Bertrand, 1999; Singer, 1999). Furthermore, some neurological disorders 

like epilepsy, Alzheimer’s disease, schizophrenia and Parkinson’s disease, are 

associated with abnormalities in synchronised brain activity (for review see Herrmann 

and Demiralp, 2005; Ulhaas and Singer, 2006). There is clear evidence that neuronal 

network oscillations play one of the key roles in the operation of the brain; exploring 

these network oscillations will lead to a better understanding of mechanisms 

underlying higher brain functions. Below, I will briefly review neuronal network 

oscillations of high (gamma) and very low (SWO) frequencies in terms of their 

mechanisms and biological functions.  

1.1.2. Gamma rhythm (30 – 100 Hz) 

Probably the most extensively studied rhythm in the brain in vitro is the gamma 

rhythm. It is commonly observed in various regions of the brain during wakefulness 
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and is most often associated with cognitive function (for reviews see Singer and 

Gray, 1995; Engel et al., 2001). In terms of in vitro gamma rhythmogenesis, the most 

explored oscillations have been those occurring in the hippocampus. This is due to 

its accessibility, its clearly defined laminar organisation and its densely packed 

pyramidal cells, which give rise to large-amplitude oscillations. In vivo, hippocampal 

gamma oscillations are known to arise during specific behavioural states like 

exploration, when they usually co-occur with theta oscillations; therefore, there is an 

opportunity to study the relationship between oscillations and behaviour (Bragin et 

al., 1995). Due to a large amount of work done on gamma activity in hippocampus, 

many underlying mechanisms have been already uncovered.  

 

From the results of in vivo studies, two independent generators of gamma oscillations 

in the hippocampus have been identified, the first one being in the dentate gyrus 

(DG) receiving inputs from the entorhinal cortex (EC) and another one being in CA3 

region propagating to CA1 (Csicsvari et al., 2003). Over the years, ways of artificially 

inducing gamma oscillations in brain slices have been discovered: kainic acid (KA), 

carbachol (CCh) or (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG, metabotropic 

glutamate receptor agonist), hypertonic potassium (K+) solution, as well as by tetanic 

stimulation (Whittington et al., 1995; Fisahn et al., 1998; Fisahn et al., 2004; Hajos 

and Paulsen, 2009). Overall, the general mechanism has been established and it is 

known that gamma oscillations arise from the interaction of the inhibitory 

interneuronal network and pyramidal cells. One of the crucial conditions for gamma 

rhythm generation in hippocampus is the presence of γ-Aminobutyric acid (GABA)-

mediated inhibition by interneurons. Two models of gamma oscillations include 

interneuron network gamma (ING) and pyramidal-interneuron network gamma 

(PING) and have been reviewed by Whittington et al. (2000). 

1.1.2.1. ING model 

Gamma oscillations can be generated by a group of inhibitory interneurons (Fig. 

1.1A). The prerequisites for the emergence of gamma oscillations are: 1. 

interconnected inhibitory interneurons, 2. GABA-A receptor (GABA-Ar) mediated 

inhibitory postsynaptic potentials (IPSPs) with an exponential decay time constant 

and 3. an excitatory drive to elicit spiking in the interneurons (Wang and Rinzel,  
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Figure 1.1. Schematic representation of ING and PING models of gamma oscillations. 
ING (A), PING (B). Adapted from Mann et al., 2005a.  

 

1992; Whittington et al., 1995; Traub et al., 1996a). When the interneurons receive 

either a tonic or stochastic excitatory input, they start firing spikes. The synchrony 

comes about when a group of interneurons starts discharging together and thus 

generate IPSPs in the coupled interneurons, which respond with a rebound spiking 

after the decay of GABA-Ar-mediated hyperpolarisation, and the process is repeated 

(Buzsaki and Wang, 2012). Single interneurons spike with the frequency of 

approximately 40 Hz (Wang and Buzsaki, 1996). Such mutual inhibition takes all the 

interneurons to zero-phase synchrony, when the activity is synchronous without any 

temporal delays. The frequency of oscillations essentially depends on the kinetics of 

IPSPs. Experiments with increased decay time constant have demonstrated a 

decrease in the frequency of oscillations whilst manipulations, which speed up the 

decay time constant, have the opposite effect (Traub et al., 1996a).  

1.1.2.2. PING model 

Compared to a simple ING model, a more complex PING model (Fig. 1.1B), which 

adds to the system pyramidal cells reciprocally connected to the interneurons, 

demonstrates how the whole network can be phase-locked to gamma frequency. It is 

believed that with certain strength of the fast excitation coupled with delayed 

inhibition, activity in the two populations of cells can alternate in a cyclic manner 

(Buzsaki and Wang, 2012). In the PING model, three different types of interneurons 

are distinguished: targeting either other interneurons, perisomatic regions of 

pyramidal cells, or pyramidal cell dendrites (Fig. 1.2) (Buhl et al., 1994; Halasy et al., 

1996; Acsady et al., 1996; Cobb et al., 1997). After numerous studies on the possible 

mechanism of PING model, it was identified that of all the different types of  
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Figure 1.2. Schematic diagram of interconnected pyramidal cell and different types of 
interneurons in hippocampal CA3 region (adapted from Hajos et al., 2004). PC, pyramidal 
cell; BC, basket cell, IS, interneuron-selective cell; OLM, oriens-lacunosum-moleculare cell; 
RC, radiatum cell.  
 

interneurons, the fast spiking parvalbumin-containing (PV) basket cells projecting to 

the pyramidal cell soma have the putative role of generating gamma rhythm (Lytton 

and Sejnowski, 1991; Penttonen et al., 1998; Csicsvari et al., 2003; Gloveli et al., 

2005; Mann et al., 2005b). The basket cells impose rhythmic IPSPs on the pyramidal 

cells, thus making their firing become binned into narrow time windows (Penttonen et 

al., 1998; Gloveli et al., 2005, Hasenstaub et al., 2005, Mann et al., 2005a). Among 

different types of interneurons, basket cells stand out because of their low spike 

threshold, ability to fire quickly, and their resonance in gamma frequency band in 

response to stochastic excitation (Gulyas et al., 1993; Buzsaki et al., 1983; 

McCormick et al., 1985; Pike et al., 2000). The role of other interneuron types in 

generating gamma oscillations is less understood. Miles and colleagues (1996) 

compared the roles of somatic and dendritic targeting interneurons and concluded 

that while somatic interneurons control pyramidal cell output, the dendritic 

interneurons regulate the efficacy of dendritic inputs. 

"
Receiving the excitatory drive from pyramidal cells, individual interneurons become 

synchronised. With the coordinated involvement of interneuron-selective interneurons 

and basket cell coupling with each other via synapses and gap junctions, the 

interneuronal network activity becomes synchronised with gamma frequency (Cobb 
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et al., 1997; Fukuda and Kosaka, 2000; Meyer et al., 2002). Electrical coupling 

between the interneurons does not seem to be a prerequisite for the generation of 

gamma oscillations. However, knocking out (KO) gap junction protein connexin 36, 

which is expressed between interneurons (Galarreta and Hestrin, 1999, 2002), 

greatly reduced the amplitude of oscillations (Hormuzdi et al., 2001; Buhl et al., 

2003). Similarly, pharmacological blockade of gap junctions reduced oscillatory 

power as well (Traub et al., 2000, 2001a)."
 

Interestingly, the intracellular recordings from the basket and pyramidal cells during 

gamma oscillations revealed that pyramidal cells phase-locked to the oscillation fired 

at a very low frequency (approximately 3 Hz), while the phase-coupled interneurons 

fire with a delay at higher frequencies (Fisahn et al., 1998; Hajos et al., 2004). 

Interneurons terminating in the perisomatic region exhibited firing at high frequencies 

and were strongly phase-coupled, whereas interneurons projecting to the dendrites 

displayed firing at lower frequency and weaker phase coupling (Hajos et al., 2004). 

To investigate whether the pyramidal cells firing at low frequencies are able to 

support gamma oscillations, Mann and colleagues (2005a) designed a network 

model of 400 pyramidal cell and 40 interneurons. They concluded that with the 

phasic excitation of interneurons provided by pyramidal cells, the recurrent feedback 

inhibition appeared to be a plausible mechanism for network activity synchronisation 

and that pyramidal cells were not required to fire on every cycle of an oscillation.  

1.1.2.3. Gamma oscillations in brain physiology 

The role of gamma oscillations in the brain is still being uncovered, however, they are 

most often observed during attentive states such as focused wakefulness, sensory 

perception, object recognition, and language perception (Bouyer et al., 1981; Sheer 

et al., 1989; Murthy and Fetz, 1992; Pfurtscheller and Neuper, 1992). Gamma 

frequency oscillations have been implicated in fast coordination of neurons required 

in such hippocampal processes as input selection, arranging cells into functional 

groups, memory storage and retrieval (Colgin and Moser, 2010). These operations 

require activation of certain neuronal populations, as well as selective elimination of 

unnecessary inputs. Hence, hippocampal pyramidal cells are known not to fire on 

every cycle of the gamma rhythm (Senior et al., 2008; Colgin et al., 2009; de Almeida 

et al., 2009). It is believed that gamma is involved in temporal encoding and sensory 
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binding of features, as well as learning and memory processes (Hopfield et al., 1995; 

Buzsaki and Chrobak, 1995; Lisman and Idiart, 1995; Lisman, 1999). On a global 

scale, gamma frequency oscillations are thought to indicate integration mechanisms 

in the brain (Herrmann et al., 2004). It is clear that gamma oscillations play a 

substantial role in cognitive brain functions, however this area requires further 

exploration.  

1.1.2.4. Gamma oscillations in brain pathology 

Apart from the physiological role of gamma oscillations, gamma rhythm alterations 

are also observed during various pathological states. For example, synchronous 

activity of neuronal networks is a key player in epilepsy, as it has long been thought 

that hypersynchronisation was the main feature underlying this condition (Penfield 

and Jasper, 1954). In this context, high frequency oscillations in the gamma range 

have been observed both before and at the onset of ictal events (Fisher et al., 1992; 

Allen et al., 1992). A special place in epilepsy disorder is taken by VFOs observed 

both in vivo and in vitro in humans and animals at the onset of seizures and have 

been proposed to play a role of biomarkers of epilepsy (Fisher et al., 1992; Bragin et 

al., 1999a,b; Traub et al., 2001b; Grenier et al., 2003; Worrell et al., 2008). Several 

studies explored changes in synchrony associated with epilepsy and showed 

enhanced local phase synchrony (van Putten, 2003; Garcia Dominguez et al., 2005). 

In contrast to hypersynchrony in epilepsy, schizophrenia is one of the disorders 

closely associated with the impairment of neuronal network beta and gamma 

frequency range oscillation and their synchronisation over long distances, leading to 

disturbed cognitive functions (Kwon et al., 1999; Krishnan et al., 2005; Ulhaas et al., 

2006). Abnormalities of GABA-ergic transmission, as well as NMDAr dysfunction 

have been proposed to play a role in the mechanism of disrupted synchronisation in 

schizophrenia (Lewis et al., 2005; Moghaddam et al., 2003). Herrmann and Demiralp 

(2005), as well as Ulhaas and Singer (2006), have published extensive reviews of 

abnormal gamma rhythms in the context of neuropsychiatric disorders. Several 

studies also suggested that impaired long-range synchronisation was implicated in 

Alzheimer’s disease, and this, together with neuronal loss, was leading to cognitive 

dysfunctions (Babiloni et al., 2004; Koenig et al., 2005; Stam et al., 2006). Gamma 

rhythm activity has also been shown to play a role in such disorders as autism (Brock 

et al., 2002) and attention deficit hyperactivity disorder (Yordanova et al., 2001). 
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1.1.3. Slow rhythm (0.1 – 0.5 Hz) 

Studies in behaving animals have investigated oscillatory neuronal network activity in 

the two fundamental  brain states: sleep and arousal. The state of arousal in animals 

is represented by attentiveness and alertness and appears on EEG as low-voltage 

high-frequency activity (Moruzzi and Magoun, 1949). Quiescent states, on the other 

hand, are observed during sleep or anaesthesia and are accompanied by high-

voltage low-frequency oscillatory activity. During deep sleep and anaesthesia, the 

cortex does not simply remain in an idle state, but rather engages in a characteristic 

pattern of activity consisting of periods of silence (DOWN state) and intensive cell 

firing (UP state) alternating at 0.1–0.5 Hz. In humans the frequency range may be 

slightly broader (Achermann and Borbely, 1997; Iber et al., 2007). Steriade (2006) 

suggested that SWO in vivo played a role in grouping other rhythms creating 

complex, nested waveforms. Human studies demonstrated that UP states of SWO 

were accompanied by elevated activity in almost all frequency bands (Csercsa et al., 

2010). Cortical activity of such low frequency has been reported both in vivo in 

anaesthesised and sleeping animals and in vitro in cortical slices of various species 

(Steriade et al., 1993a-d; Timofeev et al., 1996; Sanchez-Vives and McCormick, 

2000; Shu et al., 2003; Dickson et al., 2003; Cunningham et al., 2006; Sheroziya et 

al., 2009). Due to the occurrence of SWO in various cortical regions (in neo- and 

allocortex), different functional properties have been assigned to observed cortical 

activity (from implications in development and metabolism to information processing 

and memory consolidation). Nevertheless, SWO show striking similarities regardless 

of the brain area, and it is commonly agreed that the more recently described SWO 

recorded in vitro resemble those recorded by Steriade et al. (1993c,d) during sleep 

and anaesthesia.       

 

SWO are generated within the cortex. Experiments with lesioned thalamocortical 

connections revealed that SWO persisted in the cortex in the absence of  reciprocal 

connections and does not appear in the thalamus of decorticated animals (Timofeev 

and Steriade, 1996). Different views exist regarding the layer-specific origin of this 

activity. Several reports from in vitro and in vivo studies suggest that activity is 

generated in the deep cortical layers (in particular layer V of the neocortex), 

spreading to layer VI and later to the superficial layers (Sanchez-Vives and 

McCormick, 2000, Chauvette et al., 2010). On the other hand, the current-source 
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density analysis of human recordings from prefrontal and parietal cortices revealed a 

large sink in supragranular layers, indicating superficial origin of UP state generation 

(Csercsa et al., 2010). Furthermore, studies in the entorhinal cortex demonstrate that 

SWO activity is generated by interaction of superficial neurons and interneurons 

(Dickson et al., 2003; Gnatkovsky et al., 2007). The discrepancies, however, could 

arise from the differences in species, the cytoarchitectonics of recorded cortical 

areas, as well as recording conditions.  

 

Nir and colleagues (2011) investigated whether the human cortical SWO activity was 

a global or localised phenomenon. Their results demonstrated a localised nature of 

this activity, favouring the theory of sleep being controlled by local circuits (Krueger et 

al., 2008). Nir et al. (2011) also showed that slow waves could propagate along 

different anatomic pathways. At the cellular level, the following questions arise: what 

causes peristent firing during UP states of SWO? Does it occur due to intinsic 

membrane properties or barrages of synaptic activity? Some experimental results 

demonstrated that intracellular injection of hyperpolarising or depolarising currents 

did not alter the parameters of SWO, indicating that network mechanisms may 

underly this rhythm (Sanchez-Vives and McCormick, 2000).   

1.1.3.1. Mechanism of SWO generation 

Numerous studies dedicated to unraveling how SWO activity is generated yielded  

two plausible cellular mechanisms. UP states are initiated by spontaneous firing of 

layer V neurons (in conditions of increased excitability) and sustained through 

recurrent excitatory connections (Sanchez-Vives and McCormick, 2000; Compte et 

al., 2003). Being the largest cortical cells, layer V neurons have the largest number of 

inputs, which increases the probability of UP state generation. Another proposed 

mechanism involves occasional summation of miniature excitatory postsynaptic 

potentials (mEPSPs), which activates persistent sodium (Na+) current (INa(p)) leading 

to the depolarisation of cortical pyramidal cells, activation of calcium (Ca2+)-sensitive 

non-selective cation current (ICAN) (Sheroziya et al., 2009) and subsequent spike 

generation. This process triggers an UP state of prolonged bursts maintained by 

INa(p), ICAN and synaptic activity (Timofeev et al., 2000; Bazhenov et al., 2002; 

Sheroziya et al., 2009; Chauvette et al., 2010). INa(p) is a small but long-lasting Na+ 

current, which is activated by subthreshold voltages and persists for hundreds of 
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milliseconds (ms), thus enhancing excitability of other depolarising currents and 

maintaining repetitive firing (Stafstrom et al., 1985; Beck and Yaari, 2008).     

 

DOWN states are known to be refractory periods of hyperpolarisation occurring due 

to Na+- and Ca2+-activated K+ currents and synaptic fatigue (possibly due to depletion 

of extracellular Ca2+ after a prolonged UP state) (Steriade et al., 1993d; Sanchez-

Vives and McCormick, 2000; Bazhenov et al., 2002; Compte et al., 2003; Sheroziya 

et al., 2009).  Cunningham and colleagues (2006) suggested that the initiation of 

DOWN states occurred due to a K+ current activated by metabolic demands 

[ATP]/[ADP] (adenosine triphosphase/adenosine diphosphate) during UP states. 

Overall, activation of K+ currents leads to cell hyperpolarisation. It has been reported 

that the switch to silent (DOWN) state was highly synchronous, which implied 

involvement of widespread inhibition mediated by interneurons (Volgushev et al., 

2006). A later study demonstrated that almost half of the fast-spiking cell population 

started firing at a higher rate towards the end of UP states (Puig et al., 2008).  

1.1.3.2. Pharmacology of SWO 

In a combined in vitro and in vivo study, Sanchez-Vives and McCormick (2000) 

suggested that UP states of SWO were generated by both excitatory and inhibitory 

postsynaptic potentials. A detailed pharmacological analysis of SWO helped tease 

apart various components of synaptic transmission involved in their generation and 

maintenance. Several studies suggested that spontaneous SWO in the cortex 

depended heavily on N-Methyl-D-aspartic acid receptors (NMDAr), being blocked by 

NMDAr antagonist AP-5 (Sanchez-Vives and McCormick, 2000; Shu et al., 2003; 

Allene et al., 2008; Sheroziya et al., 2009). Conversely, Cunningham and colleagues 

(2006) demonstrated that neither NMDAr nor 2-Amino-3-(5-methyl-3-oxo-1,2-oxazol-

4-yl) propanoic acid receptors (AMPAr) were involved in SWO. CNQX, a non-

selective AMPAr/KAr antagonist, reliably abolished SWO activity in most studies, 

indicating a crucial role of KAr-mediated excitation (Sanchez-Vives and McCormick, 

2000; Shu et al., 2003; Cunningham et al., 2006; Sheroziya et al., 2009). 

Cunningham and colleagues (2006) further investigated KAr role by applying 

UBP302 (a selective GluK1 antagonist), which readily blocked spontaneous SWO.  
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Together with excitatory components, the role of GABA-ergic inhibition was 

investigated in several studies. It is generally accepted that GABA-Ar blockade 

enhances SWO activity before transforming it into interictal (epileptiform) discharges 

(Sanchez-Vives and McCormick, 2000; Shu et al., 2003; Allene et al., 2008; 

Sheroziya et al., 2009). Similar results were demonstrated with a decrease in 

magnesium (Mg2+) concentration in artificial cerebro-spinal fluid (aCSF) causing a 

gradual rise in the frequency of rhythmic activity and a rapid switch to prolonged 

epileptiform bursts (Sanchez-Vives and McCormick, et al., 2000). Recently, Allene et 

al. (2008) reported two distinct types of SWO occuring at different stages of 

development (cortical early network oscillations and cortical giant depolarising 

potentials). Interestingly, while the early network oscillations were considered to be 

glutamate-driven (abolished by NMDAr blockade, but enhanced by GABA-Ar 

blockade), the giant depolarising potentials were less sensistive to NMDAr block and 

were abolished by GABA-Ar antagonists (Allene et al., 2008).  

 

Resemblance of SWO in vitro with those observed during sleep and anaesthesia 

encouraged researchers to explore potential cholinergic and noradrenergic 

modulation of this activity. It is known that these two systems are at least partially 

involved in cortical arousal, since slow rhythmic patterns of activity can be disrupted 

by brainstem stimulation of cholinergic and noradrenergic nuclei (Moruzzi and 

Magoun 1949; Steriade et al. 1993a; Steriade and Contreras 1995). Several studies 

demonstrated that the same results could be reproduced in vitro by application of 

either CCh or noradrenaline (NA) (Shu et al., 2003; Favero et al., 2012). These 

results indicated that cortical SWO recorded in brain slices related in some way to 

slow wave sleep oscillations, and possibly represented the same phenomenon at the 

mechanistic level.  

 

Together with obvious similarities between various reported slow oscillations, there 

are certain discrepancies in their properties. Hence, it is not clear whether the 

disparities arise from exploring different brain regions in different species under 

different conditions or because investigators are actually observing different types of 

cortical activity. 
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1.1.3.3. SWO in brain physiology 

Several research groups study rather similar patterns of SWO, but diverge in their 

views on the nature and the functional significance of this activity. For instance, the 

laboratories of Yehezkel Ben-Ari, Rosa Cossart and others suggest a developmental 

role of SWO during the maturation of the cortex. Furthermore, Sheroziya et al. (2009) 

also suggest an important role played by bursting neurons (in the EC) in cortical and 

hippocampal development. Although Allene and colleagues (2008) draw a parallel 

between cENO and in vivo rhythms observed during sleep, they do not make any 

definite conclusions. Steriade, Timofeev, McCormick and others, on the other hand, 

focus on the SWO occurring during sleep and anaesthesia and suggest implications 

in information processing and memory consolidation (Sanchez-Vives and 

McCormick, 2000; Tononi and Cirelli, 2006; Stickgold and Walker, 2007). These 

sleep-related SWO may exhibit an age-dependent pattern of their own. For example, 

Massimini and colleagues (2004) demonstrated that in humans this activity originated 

mostly from frontal cortical areas. Supporting these findings, Kurth et al. (2010) 

showed how the SWO propagation changed with age, starting from occipital regions 

in toddlers and gradually switching from posterior to anterior cortical brain regions 

until late adolescence. These results suggested changing levels of cortical excitability 

throughout development, which could potentially explain recording spontaneous 

SWO in the EC only in young animals (Sheroziya et al., 2009) or in adult animals 

under the conditions of increased excitability (Cunningham et al., 2006). 

1.1.3.4. SWO in brain pathology 

A potential link between SWO and epilepsy has been investigated in several studies 

in humans and animals. Vanhatalo and colleagues (2004) used EEG recording to 

detect slow activity (0.02 – 0.2 Hz) in the brains of epileptic patients during sleep. 

The study demonstrated that interictal activity was synchronised with SWO in cortical 

regions, preferentially appearing on the negative peak of SWO. The authors 

suggested that these results might help develop new diagnostic and therapeutic 

approaches to epilepsy. In animals, for instance, Steriade and Contreras (1995) 

showed that normal sleep-like synchronous activity in the cortex could develop into 

ictal activity, represented by typical 2 – 4 Hz spike-and-wave complexes. This type of 

pathological activity is normally observed on the EEG during absence seizures. 

Assuming SWO are a developmental phenomenon, it is possible to explore this 
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rhythmic activity in epileptic animals to determine any developmental changes 

occurring in pathological conditions. 

1.2. Kainate receptors and oscillogenesis 

Glutamate is a major excitatory neurotransmitter in the mammalian brain. 

Metabotropic and ionotropic glutamate receptors (mGluR and iGluR) are two classes 

of receptors mediating excitatory transmission through G-proteins and ion channels, 

respectively. KAr, together with AMPAr and NMDAr, constitute a class of ligand-

gated iGluRs, which are mostly permeable to Na+, K+ and Ca2+. KAr are homo- and 

heteromeric tetramers, comprised of the combinations of 5 receptor subunits GluK1-

5, formerly known as GluR5-7 and KA1-2 (Bettler and Mulle, 1995). KAr have been 

shown to give rise to excitatory postsynaptic currents (EPSCs) with kinetics much 

slower compared to AMPAr (Castillo et al., 1997; Vignes and Collingridge, 1997). 

While AMPAr and NMDAr, located postsynaptically, mostly mediate basal excitatory 

synaptic transmission, KAr produce a variety of regulatory effects in neuronal 

communication. This type of receptors is found both pre- and postsynaptically. 

Postsynaptic KAr, due to their slow kinetics, have a role of regulating neuronal 

excitability and information processing by integrating excitatory synaptic inputs 

(Frerking and Nicoll, 2000; Frerking and Oligher-Frerking, 2002, Goldin et al., 2007, 

Pinheiro et al., 2013). Presynaptic KAr, on the other hand, bidirectionally regulate 

neurotransmitter release at both inhibitory and excitatory synapses (Schmitz et al., 

2000; Lauri et al., 2001; Rodriguez-Moreno et al., 1998; Frerking et al., 1999; Cossart 

et al., 2001). For extensive updated reviews on KAr in the brain see Perrais et al. 

(2010), Contractor et al. (2011), Lerma and Marques (2013).   

1.2.1. KAr in the hippocampus 

Despite the abundance of KAr across diverse brain regions, possibly the most 

studied area remains the hippocampus (for review see Carta et al., 2014). Early 

studies demonstrated high densities of KAr, with all 5 subunit types expressed in rat 

hippocampus (Monaghan and Cotman, 1982; Wisden and Seeburg, 1993). Studies 

reported expression of GluK1 KAr subunits on the hippocampal interneurons, GluK2 

were found in pyramidal cell layers and interneurons, GluK3 were expressed mostly 

in the DG, GluK4 on pyramidal cells, while GluK5 were widely found throughout the 
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Figure 1.3. KAr localisation in the hippocampus.  IN, interneuron; PC, pyramidal cell 
(adapted from Pinheiro and Mulle, 2006 and Carta et al., 2014). 
 

 hippocampus (for review see Carta et al., 2014). The lack of subunit-selective KAr 

antagonists presents an issue in determining subunit-specific effects. In the 

hippocampal CA3 region, postsynaptic KAr function has been explored at mossy 

fibres projecting to CA3 pyramidal cells (Castillo et al., 1997; Vignes and 

Collingridge, 1997). Mulle and colleagues demonstrated that slow EPSCs on CA3 

pyramidal cells were mediated by GluK2 KAr. Mossy fibres have also been shown to 

carry presynaptic KAr autoreceptors (Represa et al., 1987; Schmitz et al., 2001). 

Presynaptic effects of KAr on mossy fibres include facilitation of transmitter release 

(Contractor et al., 2001; Pinheiro et al., 2007). Darstein and colleagues (2003) 

carried out a subunit-specific analysis of pre- and postsynaptic KAr at mossy fibres. 

The results showed that GluK4 were expressed presynaptically, while GluK5 were 

found at the postsynaptic membrane, however both types were co-expressed with 

GluK2 (Darstein et al., 2003). The lack of studies on interneuronal KAr in the CA3 

region does not allow a review of KAr function in this area.  
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Together with the CA3 region, KAr localisation and function were explored in CA1. 

Early reports demonstrated presynaptic inhibition of glutamate release at Schaffer 

collateral – CA1 pyramidal cell synapses (Chittajallu et al., 1996; Kamiya and Ozawa, 

1998). Later studies proposed that presynaptic modulation was conducted by 

metabotropic KAr (Rodriguez-Moreno and Lerma, 1998; Frerking et al., 2001). 

Interestingly, postsynaptic KAr responses (KAr EPSCs) could not be evoked at CA1 

pyramidal cells, indicating the absence of KAr on the postsynaptic membrane 

(Cossart et al., 1998; Frerking et al., 1998; Cossart et al., 2002). Early studies 

reported that micromolar (µM) concentration of KA presynaptically reduced inhibitory 

transmission of CA1 interneurons onto the pyramidal cells (Fisher and Alger, 1984; 

Kehl et al., 1984; Rodriguez-Moreno et al., 1997). Later studies using submicromolar 

concentrations reported an increase of inhibition (Cossart et al., 2001; Jiang et al., 

2001). Rodriguez-Moreno and colleagues (1997) suggested metabotropic nature of 

presynaptic KAr. Somato-dendritic KAr have been found on CA1 interneurons, 

contributing to the postsynaptic excitatory inputs to interneurons. Semyanov and 

Kullmann (2001), however, suggest axonal localisation of KAr on CA1 interneurons.    

 

KAr localisation and function in the hippocampus is summarised in Fig. 1.3, adapted 

from Vincent and Mulle (2009) and Carta et al. (2014). 

1.2.2. KAr in the EC 

KAr function in the EC has been described only by a small number of studies (West 

et al., 2007; Beed et al., 2009 and Chamberlain et al., 2012). The most extensive 

characterisation of pre- and postsynaptic KAr in layer III of the EC was presented by 

Chamberlain and colleagues (2012). Authors reported that glutamate terminals 

carried presynaptic KAr, which facilitated glutamate release and were likely to be 

assembled of GluK1 and possibly GluK2 subunits, similarly to mossy fibre 

autoreceptor reports. The authors did not exclude the possibility of non-GluK1 KAr 

inhibiting glutamate release. It was also suggested that GluK1 KAr were unlikely to 

participate in postsynaptic transmission. KAr were shown to mediate slow EPSCs in 

layer III neurons via GluK2, but not GluK1-containing KAr (Beed et al., 2009; 

Chamberlain et al., 2012). It was suggested that postsynaptic KAr in the EC could be 

located peri- or extrasynaptically (Chamberlain et al., 2012). The role of KAr in 

GABA-ergic transmission was also investigated in layer III EC. The results 
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Figure 1.4. KAr localisation in the EC  LIII IN, mEC layer III interneuron; EC LIII PC, mEC 
layer III pyramidal cell; GLU input, glutamatergic input (adapted from Chamberlain et al., 
2012). 
 

 demonstrated that KAr stimulation increased GABA release, as a result of increased 

firing of interneurons due to activation of somato-dendritic GluK1-containing KAr on 

interneurons (Chamberlain et al., 2012). Same study suggested the existence of 

presynaptic non-GluK1 KAr heteroreceptors inducing GABA release. The effects of 

KAr in the EC are summarized in Fig. 1.4, adapted from Chamberlain et al. (2012). 

1.2.3. KAr pharmacology 

Uncovering the functions of KAr has always been restricted by the lack of selective 

pharmacological agents that could first distinguish between AMPAr and KAr and then 

between the different subunits within KAr. With the development of selective AMPAr 

antagonists like GYKI 53655 (Paternain et al., 1995) and SYM 2206 (Pelletier et al., 

1996), it was possible to extract KAr-mediated currents and their slow kinetics 

(Castillo et al., 1997). Pharmacological advancement resulted in the development of 

subunit-selective KAr agonists and antagonists, which are summarised in Table 1.1, 
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adapted from Jane et al. (2009). Certain KAr subunits like GluK2 or GluK5 remain 

without selective antagonists, which complicates KAr characterisation.  

 

 Table 1.1. KAr ligands.  Adapted from Jane et al., (2009). 

Compound Activity Selectivity References 

KA Agonist KAr (EC50<10µM) Watkins, 1981; Alt et al., 2004 

AMPA Agonist 
AMPAr 

(EC50>100µM) 

Hansen et al., 1983; 

Alt et la., 2004 

ATPA Agonist GluK1 
Clarke te al., 1997; Alt et al., 

2004 

ACET Antagonist GluK1, GluK1/5 
Dolman et al., 2007; 

Perrais et al., 2009 

UBP310 Antagonist GluK1, GluK3 
Dolman et al., 2007; 

Perrais et al., 2009 

UBP304 Antagonist GluK1 Dolman et al., 2006 

UBP296 Antagonist 
GluK1, GluK1/2, 

GluK1/5 

More et al., 2004; 

Dolman et al., 2006 

LY382884 Antagonist 
GluK1, GluK1/2, 

GluK1/5 
Alt et al., 2004 

  

1.2.4. KAr in gamma oscillations 

The fast excitation provided for interneurons by the pyramidal cells is mediated via 

glutamatergic synapses. There are contradicting reports on the role of glutamatergic 

AMPAr in generation and maintenance of gamma oscillations in the brain. Some 

reports demonstrated that gamma oscillations were greatly decreased in power with 

genetically reduced AMPA currents and were greatly diminished or blocked by AMPA 

receptor antagonists (Fuchs et al., 2007; Cunningham et al., 2003, 2004; Palhalmi et 

al., 2004). By contrast, Fisahn et al. (2004) reported that AMPAr antagonist did not 

produce any effect, implying that AMPAr were not involved in gamma oscillations. 

The discrepancies, however, could be species- (rats vs. mice), area- (hippocampus 

vs. EC), AMPAr antagonism- (GYKI 53655 vs. SYM2206 vs. AMPAr KO) and gamma 

type-specific (KA- vs. CCh- vs. DHPG-induced).     
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Another mediator of glutamatergic transmission is KAr, abundantly expressed both in 

the hippocampus and EC and playing an important role in neuronal communication. 

KAr also appear to be crucial for neuronal network synchronisation in the gamma 

frequency band. Application of nanomolar doses of KA produces persistent gamma 

oscillation in brain slices, which has been observed in the cortex (Buhl et al., 1998; 

Cunningham et al., 2003), hippocampus (Hajos et al., 2000; Hormuzdi et al., 2001; 

Fisahn et al., 2004) and other areas. Several studies were dedicated to uncovering 

the roles of each receptor subunit. Fisahn and colleagues (2004) studied the 

hippocampus of GluK1 and GluK2 KO mice and discovered that in the absence of 

GluK2, KA was not able to induce oscillations. It was suggested that GluK2 subunit-

containing KAr were located in the somato-dendritic region of interneurons and 

pyramidal cells and, when activated by KA, increased action potential firing and 

consequent GABA and glutamate release. KAr containing GluK1, on the other hand, 

were located on the axons of interneurons and did not seem to be critical for 

induction of oscillatory activity, but instead set the inhibition level, preventing 

epileptiform activity. A slightly different picture was presented by Brown et al. (2006) 

in the hippocampus and Stanger et al. (2008) in the medial EC (mEC). In those 

studies, KAr GluK1 subunit function was pharmacologically tested using selective 

GluK1 antagonists and it was revealed that while it might not be sufficient to generate 

oscillatory activity, it played an important role in maintaining gamma oscillations in 

the temporal lobe.  

 

It was demonstrated that KAr played a crucial role not only in gamma frequency 

oscillations but also in the generation of SWO in the EC. SWO are known to be 

shaped by the balance between excitation and inhibition. Contributing to this balance 

may be KAr, since SWO was abolished by CNQX, as well as by GluK1-selective KAr 

antagonist UBP302 (Cunningham et al., 2006; Sheroziya et al., 2009). Taking into 

account the work of Chamberlain and colleagues (2012), it appears that it is either 

tonically active presynaptic KAr autoreceptors or somato-dendritic KAr receptors on 

layer III interneurons that are involved in SWO generation. Further studies would be 

required to determine the exact role of KAr in this type of rhythmic activity.   
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1.2.5. KAr in epilepsy 

Interestingly, application of KA can produce not only oscillatory, but also epileptiform 

activity. For many years local and systemic administration of KA has been used as a 

model of seizures/epilepsy, which resemble those observed in temporal lobe epilepsy 

(TLE) patients (Ben-Ari et al., 1985). The role of KAr in epilepsy and its link to 

oscillogenesis have been explored. The variety of pre- and postsynaptic effects 

exerted by KAr on different cells populations in the temporal lobe introduces 

possibilities of KAr involvement in regulating the excitation and inhibition balance 

(Ben-Ari and Cossart, 2000). Several studies indicated a dual nature of KA effects, 

depending on the subunit composition. GluK1 subunit KAr are located mostly on 

interneurons and act to decrease excitability of pyramidal neurons by increasing tonic 

and phasic inhibition (Khalilov et al., 2002; Fisahn et al., 2004). The GluK1 subunit 

specific agonist ATPA was shown to augment the firing of interneurons and 

subsequent GABA release, which inhibited pyramidal cells. Authors also reported 

that ATPA was able to stop propagation of paroxysmal discharges in hippocampal 

regions. There are, however, studies showing that GluK1 antagonist prevented 

pilocarpine- and 6 Hz stimulation-induced seizures (Smolders et al., 2002; Barton et 

al., 2003). GluK2-containing KAr, on the other hand, are found in mossy fibre 

synapses and are considered to be involved in seizure generation, since KO studies 

show a significant increase in seizure threshold and a reduced sensitivity to KA 

(Cossart et al., 1998; Mulle et al., 1998; Fisahn et al., 2004). Telfeian and colleagues 

(2000) reported that overexpression of GluK2 receptors in the hippocampus 

produced limbic seizures in vivo. 

 

A study by Behr et al. (2002) demonstrated inhibitory presynaptic KAr effects on 

GABA release in DG. As the results suggest, this effect was augmented in kindled 

animals, indicating elevated KAr sensitivity or expression. Epsztein et al. (2010) 

discovered KAr-related differences between dentate granule cells in TLE and healthy 

animals. It was reported that in TLE, unlike controls, recurrent mossy fibre synapses 

relied on KA transmission, which changed the firing of dentate granule cells from 

sparse to sustained rhythmic pattern. Since the DG gates information flow from EC to 

hippocampus, its altered activity in TLE may disrupt normal neuronal processing and 

coding (Artinian et al., 2011).  
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Much effort has been put into exploring the effects of KAr agents in both healthy and 

epileptic animals, providing new possibilities for drug discovery process. A large part 

of research focused on the roles of GluK1 and GluK2 subunits. For instance, it was 

demonstrated that the anticonvulsant, topiramate, was able to block both 

electrophysiological and clinical GluK1-mediated effects (Gryder and Rogawski, 

2003; Kaminski et al., 2004). It also reduced KA-induced seizures (Kaminski et al., 

2004). The role of GluK1 was also explored by Smolders and colleagues (2002) both 

in vivo and in vitro. GluK1 antagonists were found to reduce and prevent population 

spikes elicited by KA or pilocarpine in hippocampal regions. Similar anticonvulsant 

effects were achieved by GluK1 antagonists in vivo, when tested against pilocarpine- 

and 6 Hz stimulation-induced seizures. Both electrical stimulation- and picrotoxin-

induced epileptiform events in CA3 were reduced by GluK1 antagonists, although the 

compounds were found to be ineffective against seizures caused by intravenous 

injection of picrotoxin (PTX). Barton and colleagues (2003) demonstrated that one of 

those GluK1 antagonists, although ineffective against generalised MES seizures, 

produced a decrease in seizures induced by 6 Hz stimulation. Furthermore, studies 

on soman-induced seizure model revealed that GluK1 antagonists could block 

pathological rhythmic activity both in vitro and in vivo (Apland et al., 2009; Apland et 

al., 2013; Figueiredo et al., 2011).  

 

Apart from GluK1 and GluK2, the role of GluK3 was investigated by Loscher et al. 

(1999). It was reported that a relatively selective GluK3 antagonist reduced seizures 

elicited by kindling in rats, however, did not produce any significant effect in MES 

model.  

 

Altogether, studies in the literature demonstrate that KAr are tightly involved in an 

essential brain function, such as rhythmogenesis, by exerting a variety of their 

regulatory effects due to differential subunit composition and receptor localisation on 

different types of neurons. Moreover, growing evidence shows a complex role of KAr 

in the processes of icto- and epileptogeneses and the potential for unravelling the 

mechanism of epilepsy and developing new therapeutic approaches.  
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1.3. Aims and objectives 

1. To develop a physiologically-relevant model of neuronal network activity in the 

hippocampus in vitro and compare it to existing models. 

2. To develop a model reflecting natural activity of neuronal networks in the EC 

in vitro. 

3. To develop a refined model of chronic TLE in the rat. 

4. To characterise changes in the temporal lobe network function in the refined 

model of epilepsy using models 1 and 2. 

5. To investigate the role of excitatory neurotransmission in epileptogenesis. 

6. To characterise neuronal network activity in human epileptic brain in vitro and 

compare it to the refined animal model of epilepsy.   
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2. Chapter 2 Methods 
"
"
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2.1. Brain slice preparation  

Combined hippocampal-EC slices were obtained from male Wistar rats (50 – 500 g). 

Each rat was anaesthetized firstly with 2% isoflurane in N2/O2 and then with injection 

of pentobarbital (~600 mg/kg) and ketamine (~100 mg/kg) + xylazine (10 mg/kg) until 

the paw pinch, tail pinch and corneal reflexes disappeared. Then the rat was 

transcardially perfused with ice-cold sucrose aCSF, which contained (mM): 180 

sucrose, 2.5 KCl, 10 MgSO4, 25 NaHCO3, 1.25 NaH2PO4, 0.5 CaCl2, 10 glucose, 1 L-

ascorbic acid, 2 N-acetyl-L-cysteine, 1 taurine, 20 ethyl pyruvate, 0.04 indomethacin, 

0.4 uric acid, 0.01 aminoguanidine, 0.19 ketamine and saturated with carbogen (95% 

O2, 5% CO2). To obtain brain tissue free of spontaneous activity, basic sucrose 

solution composition was used for perfusion and cutting (mM): 206 sucrose, 2 KCl, 

1.6 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, 2.25 CaCl2, 10 glucose, and 5 sodium 

pyruvate. After the perfusion, the brain was rapidly and carefully extracted and 

placed in the same solution. Horizontal slices 450 µm (for extracellular recording) and 

400 µm (for patch-clamp recording) thick were cut in chilled (5 – 10°C) sucrose aCSF 

using Vibroslice (Campden Instruments, UK). Following the cutting, slices were 

placed into an interface (for extracellular recording) or submersion (for patch-clamp 

recording) chambers, which were constantly bubbled with carbogen and were filled 

with room-temperature sodium chloride based aCSF of the following composition 

(mM): 126 NaCl, 3 KCl, 1.6 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 10 

glucose. 0.04 mM indomethacin and 0.4 mM uric acid were also added to the storage 

solution. Slices for patch-clamp recording were kept in the submerged storing 

chamber for one hour (h) prior to being placed in the recording chamber. Slices for 

extracellular recordings were placed into the recording chamber immediately after 

slicing (Scientific System Design Inc., Canada), where they were perfused with 

sodium chloride aCSF for one hour at 33 – 34 °C, which was maintained by PTC03 

proportional temperature controller (Scientific System Design Inc., Canada).  
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2.2. Reduced intensity model of chronic epilepsy 

2.2.1. Model protocol 

The current epilepsy model is based on a modified version of the lithium(Li)/low-dose 

pilocarpine model originally described in rats by Glien et al. (2001). The described 

model involved a pre-dose of lithium chloride (LiCl) 24 h prior to repeated (30 

minutes) low-doses of pilocarpine. The model employs a similar protocol but 

combined this with administration of the sedative and muscle relaxant drug, xylazine, 

during the acute seizure phase and rapid termination of the acute seizure phase with 

an anticonvulsant/antiepileptic cocktail.   

 

Rats (male Wistar, 45–80g) were housed in temperature and humidity controlled 

conditions with a 12/12 light/dark cycle and were allowed to feed and drink ad libitum. 

On day 1, rats were treated with 127 mg/kg LiCl via subcutaneous (s/c) injection. 

Twenty-four hours following the LiCl injection, α-methyl scopolamine 1mg/kg (s/c) 

was administered to reduce peripheral effects of muscarinic cholinergic (mAChr) 

receptor activation. Thirty minutes later, a low dose of pilocarpine (15–25 mg/kg, s/c) 

was given. Animals were then closely observed for signs of seizure activity, which 

was ranked using Racine’s scale (Table 2.1, Racine, 1972). Animals failing to reach 

Racine Stage 4 were dosed again with pilocarpine, up to a maximum of 3 doses 

given at 30–45 minute intervals.  When a seizure severity rating of >3 on Racine’s 

scale was reached (bilateral forelimb clonus with rearing), xylazine (2.5 mg/kg 

intramuscularly – i/m) was immediately administered. To reduce seizure severity, rats 

were allowed to remain in xylazine-modified status epilepticus (SE) for no more than 

one hour, at which point seizure activity was arrested using a ‘stop’ solution, given 

s/c at 1 ml/Kg, and containing MK-801 (0.1 mg/kg; R&D systems, UK), diazepam (2.5 

mg/kg; ethanolic solution; Bayer, De) and MPEP (20 mg/kg Abcam Biochemicals, 

UK). SE ceased within 30 min and animals were then closely monitored during 

subsequent recovery. During the recovery period, rats were kept on a heat pad to 

maintain body temperate and visually monitored until ambulatory and able to 

consume water and moistened, powdered food. Where necessary, 0.9% w/v saline 

was given s/c to rehydrate animals. In most cases recovery was near complete at 4 h 

and all rats were fully recovered within 12 h. Regular checks were made to ensure 

animals were recovering well, and animals were weighed at 24 h and 48 h to monitor 



42"
"

recovery. The end-point for weight loss was 20% of weight at induction, and this was 

not reached at any point. The low severity of the protocol precluded the requirement 

for eye drops to prevent ocular keratitis. At approximately 48–72 h after recovery, 

rats were housed in groups of 2–5 and allowed to feed and drink ad libitum. 

 

Table 2.1. Racine scale of seizures. Adapted from Racine et al., 1972)  
 Stage 1. Mouth and facial movements 

Stage 2. Head nodding 

Stage 3. Forelimb clonus 

Stage 4. Rearing 

Stage 5. Rearing and falling 

 

2.2.2. Experimental timeline 

 For experimental purposes, comparison of network activity was conducted between 

epileptic rats and age-matched control rats (often litter mates) that received no 

pharmacological treatments. Animals were taken for experiments 24 h, 5–7 days, 6–

8 weeks and 90+ d post-SE (PSE 24h, PSE 7d, PSE 6wks, PSE 90d), which roughly 

fell into the following phases of epileptogenesis: SE and some breakthrough 

seizures, latent period and spontaneous recurrent seizures (SRS) period (Fig. 2.1). 

For brain slice preparation see Section 2.1. 

    

 

"
Figure 2.1. Experimental timeline. Red box represents SE period, blue boxes indicate 
periods (PSE 24h, PSE 7d, PSE 6wks, PSE 90d), during which animals were sacrificed for 
experiments 
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2.2.3. SRS development 

In the absence of post-seizure behavioural battery (PSBB), the development of the 

SRS stage was determined by exposing an animal to either new environment (a box) 

or a strong stimulus (e.g. a loud clap) to evoke a seizure episode of stage 2–3 

Racine scale. Animals that exhibited seizures were considered to have entered the 

SRS stage. The tests were carried out one day prior to sacrificing the animal for 

experiments.   

2.3. Human brain tissue electrophysiology 

Human brain tissue was obtained from paediatric patients undergoing surgical brain 

resection due to intractable epilepsy. The tissue was obtained via collaboration with 

Birmingham Children's Hospital and with the approval of, and according to the terms 

specified by, both the Black Country LREC (protocol 'Cellular studies in epilepsy' 

10/H1202/23), and the Birmingham Children's Hospital NHS Trust (RECREF 

10/H1202/23) (see Appendix 1). The work was undertaken with Aston University’s 

ethical permission Project number 328. Briefly, surgically removed tissue from 

locations predetermined using intraoperative and/or implanted electrocorticography 

was placed in cooled in aCSF and slices prepared as described in Section 2.1. 

Patient data are presented in Table 2.2.  

 

Table 2.2. Patient data. 

Patient Diagnosis/pathological substrate Nature of resected brain tissue 

1 Heterotopia Control tissue above the lesion 

2 Cortical dysplasia Dysplastic tissue 

3 Cortical dysplasia Control tissue 

4 Cortical dysplasia Control and dysplastic cortex 

5 Cortical dysplasia Dysplastic cortex 
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"
Figure 2.2. Schematic diagram of combined hippocampal-EC brain slice.  Two recording 
electrodes placed in CA3 and layer II regions. Red line shows a cut made to disconnect the 
two areas in some experiments. 

2.4. Electrophysiological Recordings 

2.4.1. Extracellular recording  

LFP of neuronal networks were measured using an extracellular recording technique. 

Borosilicate microelectrodes filled with aCSF were used to record LFPs from brain 

slices. Microelectrodes with an open tip resistance of 1–3 MΩ were fabricated using 

a Flaming/Brown micropipette puller (P-97, Sutter instruments Co, USA). A silver 

wire electroplated with silver chloride was inserted into the microelectrode and then 

placed on a manually operated micro-manipulator (Narishige MM-3, Japan). 

Synchronised activity of neuronal networks could be detected within the 250 µm 

radius from the electrode tip (Katzner et al., 2009; Xing et al., 2009).   
 
LFPs were simultaneously recorded from 4 slices using 4 microelectrodes placed 

under the Olympus SZ51 microscope (Olympus, Japan) into either CA3 s. 

pyramidale of the hippocampus to record spontaneous gamma oscillations (SγO) or 

layers II/III of the mEC to record SWO (Fig. 2.2). The signal was amplified by 100 

times and low-pass filtered at 1 KHz through EXT-02F amplifier (NPI, Germany). It 

was further amplified by 10 times and low-pass filtered at 700 Hz through LHBF-48X 

amplifier/filter (NPI, Germany). Environmental noise was reduced by Hum Bug 50/60 

Hz noise eliminators (Quest Scientific Instruments Inc, Canada). Signals were 

digitised to a PC at 10 KHz using an Axon Digidata 1400A (Axon Instruments, USA) 

or Micro-1401 (Cambridge Electronic Device, UK) analog to digital converter and 
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recorded by Clampex 10.2 or Spike2 7.0 software, respectively (Fig. 2.3.). The data 

were analysed using Clampfit 10.2, Spike2 7.0, Mini Analysis (Synaptosoft Inc, USA) 

and GraphPad Prism 5, MatLab software.  

 

To explore phase properties of SγO, KA- and CCh-induced gamma oscillations (KγO 

and CChγO), the same equipment was used for data acquisition. However, the 

experimental setup was different: 4 evenly separated microelectrodes were placed 

into the hippocampal CA3 s. pyramidale of a single slice. When SγO were stable, 

either a single dose or increasing doses of KA or CCh were bath-applied. Epochs of 

data for analysis were taken when the oscillations were stable.   

2.4.2. Evoked field potential recording 

Evoked field potentials were recorded from CA3 hippocampus in order to study KAr-

mediated response induced by electrical stimulation. Stimulation was delivered by 

ISO STIM01D (NPI, Germany) through a bipolar electrode made from 80/20 

nichrome wire, which was placed in granule cell layer to stimulate mossy fibres. 

Different stimulation protocols were employed (see section 5.2.2.). Evoked field 

potentials were recorded by Clampex 10.2 software and analysed in Clampfit 10.2.  

 

"
Figure 2.3. Electrophysiology rig setup.  Electrophysiology rig for LFP and evoked field 
potential recordings. 
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2.4.3. Patch-clamp recording  

Borosilicate glass microelectrodes pulled with a P-2000 laser puller (Sutter 

Instruments, USA) were used for the current technique. Microelectrodes with tip 

resistance of 5–7 MΩ were filled with internal solution of the following composition (in 

nM): 100 CsCl, 40 HEPES, 1.0 QX-314, 0.6 EGTA, 5.0 MgCl2, 10 TEA-Cl, 80 ATP-

Na, 6 GTP-Na, 1 IEM1460. The microelectrode was connected to an Axon CV-2 

headstage, which was in turn connected to an Axopatch 200B amplifier (Molecular 

Devices, USA). Recording was made in the submerged chamber continuously 

perfused with sodium chloride aCSF at 5-7 ml/min, 32 °C. Prior to the recording, the 

neurons of hippocampal CA3 region, layer II/III of the mEC or human cortex in the 

slice were visualized using differential interference contrast optics and infrared 

camera (IR-DIC). The internal solution composition allowed the observation of 

inhibitory postsynaptic currents (IPSCs) at a holding potential of -65 mV.    

2.5. Data Collection and Analysis 

2.5.1. Spontaneous gamma oscillations 

All data from extracellular experiments were converted to a digital waveform and 

recorded in Clampex 10.2 and Spike 2 (version 7.0). The data were analysed in 

Clampfit 10.2 and Spike 2 using the Fast Fourier Transform (FFT) algorithm, which 

created power spectrum where the waveform was split into frequency components. 

30 seconds (s) epochs of sampled data were analysed. Pooled data were analysed 

in GraphPad Prism 5 and presented as mean normalized peak power change (with 

control value taken for 100%) and mean peak frequency change. Statistical 

significance was determined using paired non-parametric Wilcoxon matched-pairs 

signed rank test. All data are expressed as mean ± standard error of the mean 

(S.E.M.). For RISE model and KAr LFP studies, statistical significance was 

determined using Mann-Whitney test between the epileptic and AMC groups. 

 

MatLab software was used to conduct a time-frequency analysis. For analysis of 

SγO, KγO and CChγO, Morlet wavelet spectrograms were created using a script 

written by Dr. Stephen Hall (Aston University, Plymouth University).   
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2.5.2. Phase analysis 

Frequency-specific synchronisation is a part of brain coding and is important in both 

physiological and pathological conditions (e.g. epilepsy). The idea was to use phase 

synchrony to characterise SγO in CA3. The main question was asked: are SγO 

different from KγO and CChγO? We are planning to further use this analysis to 

characterise epilepsy development, as we hypothesise that during a seizure-free 

period network synchrony is disrupted and recovers during the SRS stage. 

 

The method called phase-locking statistics, which allows measuring phase synchrony 

between two signals, was developed by Lachaux et al. (1999) and has advantages 

over the traditional method of spectral coherence by separating phase and amplitude 

components. It is important because coherence increases with amplitude covariance, 

which does not allow an independent phase component estimation.   

 

The phase analysis of SγO, KγO and CChγO was carried out by our collaborator 

Gerard Gooding-Williams (Aston University). Epochs of 60 s of data were processed 

using Matlab software. Down-sampled to 1 kHz, the data were filtered to the 

frequency of interest (±2.5 Hz) using a zero phase finite impulse response (FIR) filter 

function. Instantaneous phase values were estimated using Hilbert transform. Phase 

angle difference and phase synchronisation as measured by phase-locking value 

(PLV) were calculated using the following formulas (Lachaux et al., 1999): 

 

€ 

Δθ =θ1(t) −θ2(t), 

 

where ∆θ(t) is instantaneous phase angle difference between the 2 signals, θ2(t) 

instantaneous phase angle of signal 2, θ1(t) instantaneous phase angle of signal 1. 
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where PLV is phase-locking value (phase synchronisation), ∆θ is phase angle 

difference.  
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PLVs were normalised to a scale of 0 to 1, with a score of 0 meaning no phase-

locking between the two signals measured, a score of 1 implying a perfect phase-

locking between the signals. Fig. 2.4. presents two examples of phase angle 

difference distributions (3000 points) and resulting PLVs: a random sample (no 

phase synchrony) and an example of phase synchrony centred around 90 degrees 

(unimodal distribution). Fig. 2.5. demonstrates an example of method limitation, 

where it is not able to resolve a bimodal distribution and therefore produces a false 

result. 

"
Figure 2.4. PLV for random and unimodal distribution of phase angle difference. A. 
Random phase angle difference distribution histogram (top), histogram plotted onto circular 
plot (middle), generated PLV (bottom). B. Unimodal phase angle difference distribution 
histogram (top), histogram plotted onto circular plot (middle), generated PLV (bottom). 
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Figure 2.5. Method limitation: bimodal phase angle difference distribution. A. Phase 
angle difference distribution histogram, phase-locking shared between 90 and 270 degree 
angles. B. Histogram plotted onto circular plot. C. Generated PLV being close to zero due to 
phase angle difference cancelling out.  
 

Phase synchrony is presented for each pairing of adjacent electrodes (i.e. 1-2, 2-3, 3-

4) as a set of PLVs for 20–70 Hz range (51 values at 1 Hz step).   

 

A single trial method requires a null data set to be created, in order to calculate the 

phase synchrony threshold value for a particular significance level (Hurtado et al., 

2004). For this analysis, null data sets were developed and were based on a 

Gaussian distributed random process. The validity of the null data sets was tested 

against synthetic surrogate data and in vitro test data for both correlated and 

uncorrelated data. Good agreement was found between phase synchrony and phase 

entropy measures across the test data and for various significance levels tested 
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(although only PLV data are presented here). A multiple comparison correction was 

applied to the phase coherence significance threshold for the plots presented.      

 

Both linear and non-linear measurements of phase analysis, such as phase 

synchrony and phase entropy, were employed in the analysis. Different approaches 

produced equivalent results at the same significance level, as the phase difference 

data were unimodal. Presented data are the result of phase synchrony analysis. 

 

To account for the variability of phase synchrony between the tissue samples, a new 

value 'proportional phase synchrony' (PPS) was adopted. For each frequency and 

electrode pair there is a phase synchrony PLV for spontaneous (PSs) and 

corresponding KA- or CCh- driven (PSd) oscillations.  

 

For PLV increase from spontaneous to driven, PPS = (PSd-PSs)/(1-PSs) 
For PLV decrease from spontaneous to driven, PPS = (PSd-PSs)/PSs 

 

Using the same filter parameters as in the calculation of phase synchrony, the root 

mean square (RMS) power was calculated at each frequency (20 – 70 Hz) for 

spontaneous and driven (KA or CCh) conditions. A measure is produced by the 

following ratio: 

 

(driven RMS power)/(spontaneous RMS power)    
 

To derive an aggregated value across electrodes, the PPS and RMS power values 

were averaged. Graphs were produced by plotting RMS power against PPS 

measured at 1 Hz intervals across 20 – 70 Hz for different concentrations of KA and 

CCh.   

2.5.3. SWO analysis 

For SWO, a burst analysis was carried out in Mini-Analysis software. It allowed to 

determine burst duration, peak amplitude, interburst interval, interevent interval 

(intraburst interval), and the number of events in a burst. The data were compared 

between control and drug conditions within both healthy and epileptic groups, as well 

as healthy versus (vs.) epileptic. Statistical significance was determined using 
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Wilcoxon matched pairs signed rank test within the group and Mann-Whitney test 

between the groups. The data are presented as percentage of change from control to 

drug (with control value taken for 100%) ± S.E.M. for each measured parameter in 

both groups (healthy and epileptic).  

2.5.4. Evoked field potential and patch-clamp analysis 

Recorded evoked field potentials were low-pass filtered at 10 Hz in Clampfit 10.2 to 

eliminate stimulation artefacts. The amplitude of evoked response was measured in 

the same software.    

 

For patch-clamp recording IPSCs were recorded using Clampex 10.2 and later 

analysed in Mini Analysis software. A minimum of 200 events were taken from the 

recordings in order to calculate the amplitude, the decay time and the interevent 

interval (IEI) of the IPSCs. The cumulative probability distributions were plotted for 

each of the variables in control and drug. The two-sample Kolmogorov-Smirnov (KS) 

test was used to determine whether the difference between two distributions was 

significant.  

2.6. Drugs 

The drugs were purchased from Tocris Bioscience, Bristol, UK. Stock solutions of 

each drug were prepared at a certain concentration and stored at – 20 °C prior to 

being used. The drugs were directly applied to the perfusing aCSF, for approximately 

50 – 60 min or depending on the experiment design. 
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3. Chapter 3 Spontaneous gamma oscillations in CA3 
hippocampus 
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3.1. Introduction 

3.1.1. In vitro models of induced gamma oscillations and pharmacology 

Knowledge accumulated over the last 20 years demonstrates that rhythmic electrical 

activity of gamma frequency arises from the interaction of inhibitory interneuronal 

network and pyramidal cells. Critical conditions for gamma rhythm generation are the 

presence of GABA-Ar-mediated inhibition by interneurons and the excitatory 

glutamatergic drive (Wang and Rinzel, 1992; Whittington et al., 1995; Traub et al., 

1996a). In addition to that, other mechanisms were found to be involved leading to 

various ways of eliciting different forms of gamma oscillations in vitro: using CCh 

(Fisahn et al., 1998), KA (Buhl et al., 1998; Hajos et al., 2000; Fisahn et al., 2004), 

mGluR activation (Whittington et al., 1995; Whittington et al., 1997; Palhalmi et al., 

2004) and hypertonic K+ solution (LeBeau et al., 2002).  

 

One of the first discovered ways of inducing gamma oscillations in vitro in the 

hippocampus was by activation of mGluRs either by an agonist (Whittington et al., 

1995) or by tetanic stimulation (Whittington et al., 1995; Whittington et al., 1997). This 

type of gamma oscillations is of transient nature, because of time-limited nature of 

the stimulus and subsequent glutamate reuptake and/or mGluR desensitisation. 

However, despite the transience of this rhythm, it was established that the 

oscillations were phase-locked over the distance of 1–2 mm and dependent on the 

inhibition mediated by GABA-Ar. Oscillations remained in the presence of GABA-B 

receptor (GABA-Br) and iGluR antagonists, further supporting this point. Whittington 

et al. (1995) suggested a crucial role of tonic activation (mGluRs) projecting 

excitatory effects on inhibitory interneurons. The role of gap junctions was studied 

and it was concluded that while electrical cell coupling was not essential, it 

significantly enhanced the network synchrony. Several years later, persistent dose-

dependent gamma oscillations in the hippocampus could be elicited by activation of 

mGluRs with DHPG (group I mGluR agonist). Palhalmi et al. (2004) 

pharmacologically characterised this rhythmic activity and drew a conclusion that 

DHPG-induced gamma depended both on excitation and inhibition, as it was blocked 

by a broad-spectrum mGluR antagonist, LY341495, and an AMPAr antagonist, 

GYKI53655, as well as by a GABA-Ar antagonist, bicuculline (Palhalmi et al., 2004).    
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Shortly after the discovery of mGluR role in inducing gamma oscillations, a different 

way of providing excitatory input in the hippocampus was suggested by Buhl and 

colleagues (1998) – pharmacological stimulation with the combination of CCh and KA 

(in somatosensory cortex), or with either CCh (Fisahn et al., 1998) or KA (Hajos et 

al., 2000; Fisahn et al., 2004) independently. Application of micromolar 

concentrations of mAChr agonist CCh consistently elicited persistent 40 Hz gamma 

oscillations in the hippocampus (Fisahn et al., 1998). CChγO were abolished by a 

non-selective mAChr antagonist, atropine, and an M1 mAChr antagonist, 

pirenzepine. Once again indicating the crucial role of inhibition and excitation, GABA-

Ar, AMPAr and KAr antagonists blocked CChγO. NMDAr and mGluR, on the other 

hand, did not produce any effect, the latter suggesting the differences in models of 

oscillations in vitro. This work was yet another milestone in in vitro network activity 

research. 

 

Following the work of Buhl et al. (1998), Hajos et al. (2000) explored persistent 

hippocampal gamma oscillations induced by nanomolar application of KA. They 

described the modulation of KγO by the cannabinoid system. This model was further 

characterized in connexin-36 KO studies performed by Hormuzdi et al. (2001). It was 

discovered that oscillations in the wild-type mice were sensitive to GABA-Ar and gap 

junction blockers. KO mice, however, demonstrated reduced amplitude oscillations 

with preserved frequency and synchrony within the area.  Several years later, Fisahn 

and colleagues (2004) further characterised the pharmacology of KγO and explored 

the role of different KAr subunits in generation and maintenance of oscillations. KγO 

persisted in the presence of GYKI53655, AP-5 and MCPG, which suggests AMPAr, 

NMDAr and group I mGluR respectively, are not involved in this model of network 

oscillations. DNQX, a non-selective AMPAr/KAr antagonist, and bicuculline, GABA-Ar 

antagonist, abolished the activity, indicating the prerequisite components common to 

all models. Studies with M1 mAChr knockout mice demonstrated that CCh could not 

generate oscillations, while induction with KA remained intact, proving these two 

models have an independent generation mechanism (Fisahn et al., 2004).  
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3.1.2. Spontaneous gamma oscillations 

  The diversity of in vitro models brings up such questions as which model represents 

best the in vivo gamma oscillations or whether all of them contribute to the actual 

gamma rhythm mechanism, reflecting the difference in regions and states. Apart from 

the absence of proper network connectivity and a higher degree of spatial coherence 

compared to the intact brain, in vitro gamma oscillations are induced through artificial 

stimulation. In this light, the latest model described in literature – SγO occurring in the 

hippocampus in vitro (Trevino et al., 2007; Pietersen et al., 2009; Case and 

Broberger, 2012) – seems to be a better physiological model, free of any external 

intervention. SγO are observed in the healthiest slices, therefore improving brain 

slice preparation techniques and increasing viability of the slices results in 

uncovering a persistent gamma rhythm in the hippocampal CA3 region. Hajos and 

Mody (2009) suggested possible modifications of aCSF composition in order to 

create physiological environment resembling that of neurons in an intact brain. 

Inclusion of such neuroprotective agents as NMDAr antagonists, antioxidants and 

anti-inflammatory drugs reduces the processes of excitotoxicity, oxidative stress and 

neuroinflammation taking place in the slice (Farooqui, 2008). Improved aCSF 

composition combined with transcardial perfusion of the animal appear to be the key 

factors in obtaining brain slices with increased viability and longevity, which allows 

neuronal populations to exhibit their natural spontaneous activity.  

 

One of the most extensive reports on SγO was done by Pietersen et al. (2009), 

where SγO were compared to KγO in murine hippocampus. The analysis revealed 

common features of the basic mechanism in both models, demonstrating once again 

that oscillations arise from the interplay of excitation and inhibition. Gap junction 

blockers demonstrate that both models rely on electrical coupling between the cells. 

AMPAr antagonist SYM2206 was reported to block SγO, while it only partially 

decreased KγO. Furthermore, NMDAr antagonist also did not produce similar effects 

in the two models, causing a decrease in SγO and an increase in KγO. A broad-

spectrum mGluR antagonist did not produce any significant effect in either of the 

models, demonstrating that mGluR activation was not required for maintenance of 

gamma oscillations. Partial block of SγO was observed in atropine, suggesting the 

involvement of mAChr. Based on the current-source density analysis, Pietersen and 

colleagues (2009) reported that SγO relied on the perisomatic inhibition less in 
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comparison to KγO. Moreover, cross-correlation and phase studies revealed that 

KγO were coherent across the CA3 region, whereas phase changed between the 

regions in SγO. Overall, they concluded that both oscillation models arise from the 

same local network mechanism; however, they show differences in the 

pharmacological properties. In this light, it was suggested that SγO is used as a new 

physiologically relevant model of gamma oscillations in vitro. Unfortunately, this 

report has major discrepancies between tabulated effects and results/discussion in 

the main text, and this makes interpretation of these data difficult. 

3.1.3. Improved brain slice preparation technique 

The acute brain slice technique (Yamamoto and McIlwain, 1966; Andersen et al., 

1972; Alger et al., 1984) has contributed substantially to the investigation of the 

electrical and morphological properties of neurons and synapses. More recently, the 

in vitro slice approach has provided insights into neuronal network oscillations 

(Whittington et al.; 1995; Traub et al., 1996a; Buhl et al., 1998; Cunningham et al., 

2003), allowing the understanding of fundamental mechanisms underlying network 

function and the EEG.  

A brain slice is a preparation containing local neuronal networks, yet in such 

preparation a great number of input and output connections with other brain regions 

are either cut off due to the size of a brain slice or severed as a result of performed 

manipulations (e.g. brain extraction, cutting procedures). These manipulations are 

stressful for brain tissue, as they trigger a cascade of excitotoxic and 

neuroinflammatory reactions, which alters electrical properties of the cells and 

eventually leads to cell death. In order for in vitro brain slice research to be 

translational, it is crucial to obtain healthy and viable brain slices with well-preserved 

brain cells and networks, so that the networks resemble those found in vivo. 

Traditionally, rhythmic activity in a brain slice has been induced by either 

pharmacological or electrical stimulation to mimic excitatory inputs or by alteration of 

ionic concentrations to set the right level of neuronal excitability. However, I noticed 

that upon improvement of preparation techniques, brain slices started exhibiting 

spontaneous rhythmic activity (free of any pharmacological or electrical stimulation), 

suggesting a sufficient presence of network elements required for the generation of 

oscillations by the system itself.  
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Having obtained these spontaneous oscillations, it was of interest to investigate their 

nature more thoroughly and compare them to the most commonly used models in the 

literature (KγO and CChγO). Naturally occurring gamma activity in the slices 

presented an opportunity to investigate a physiologically relevant in vitro model of 

hippocampal oscillations that can be correlated with in vivo observations in animals 

and EEG recordings in humans. To determine the differences between the three 

models of oscillations, we examined their pharmacology using standard LFP 

recording techniques. Time-series analysis was used to investigate the phase 

relationships between neighbouring local networks in the models of gamma 

oscillations.   

3.2. Results 

3.2.1. Traditional vs. improved brain slice preparation 

Spontaneous activity in the gamma frequency range (SγO) was observed in CA3 

hippocampus in brain slices obtained using improved methods described in Prokic 

(2012). The method included transcardial perfusion and alteration of aCSF recipe to 

include various neuroprotectants, including taurine, aminoguanidine and ethyl 

pyruvate, which significantly improved the viability of Betz cells in M1 brain slices. We 

compared horizontal hippocampal-entorhinal slices obtained with traditional method 

to the ones obtained using the modified method. In young adult rats, the hippocampal 

CA3 region (usually the most vulnerable area) generally survived better in modified 

preparation, compared to the traditional one (Fig. 3.1A,B). We then explored whether 

SγO were present in CA3 hippocampus s.pyramidale in slices made using standard 

methods, and it appeared that the activity was still present in some slices. However, 

it did not appear reliably and, when present, was low in power and variable in 

frequency (Fig. 3.1C,D). SγO were observed in 22.9% (11/48) of traditional method 

slices, whereas this increased to 87.7% (142/162) slices obtained with the modified 

technique.  
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Figure 3.1. Impoved brain slice preparation increases slice viability and exposes 
natural SγO. A. and B. Images of the hippocampal CA3 region in traditional and improved 
brain slice preparation, respectively. C. and D. FFT power spectra of spontaneous rhythmic 
activity in slices from traditional and improved preparations. 

3.2.2. Basic profile of SγO, KA- and CCh-induced gamma oscillations  

SγO were studied and compared to KγO (50 nM KA) and their CChγO (1µM CCh). 

Oscillations were recorded from s.pyramidale of CA3 hippocampus of 80 – 120 g 

Wistar rats (Fig. 3.2). Time-frequency relationship of all gamma oscillation models 

was explored using Morlet wavelet analysis. The results demonstrated that the peak 

frequency was stable over time and oscillation amplitude showed low-frequency 

modulation (Fig. 3.3). The average peak frequency of SγO was 31.8 ± 0.4 Hz and 

average peak power 55.2 ± 6.1 µV (n=121), compared to the frequency and 

amplitude range of oscillations induced by 50 nM KA (37.4±0.8 Hz and 596.3±167.2 

µV [n=58]) or 1 µM CCh (38.1±0.5 Hz and 151.9±23.7 µV [n=69]) (Fig. 3.4).  
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Figure 3.2. Basic profile of SγO, KγO and CChγO. . Ai., Bi. and Ci. Unfiltered raw traces 
of SγO, KγO (75 nM KA) and CChγO (1µM CCh), respectively. Aii., Bii. and Cii. 
Representative FFT power spectra of SγO, KγO and CChγO, respectively.   
 

 
Figure 3.3. Time-frequency analysis of SγO, KγO and CChγO.  A., B. and C. Morlet 
wavelet time-frequency plots for SγO, KγO and CChγO, respectively. 
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Figure 3.4. Mean power-frequency characterisation of SγO, KγO and CChγO. Mean 
peak frequency (A.) and power (B.) of SγO (teal), KγO (red) and CChγO (blue). **** 
represent p<0.0001, * represents p<0.05.   
 
 
 
SγO appeared from the start of the recording (1 h after slicing), peaked in power after 

1–1.5 h and persisted in this stable state for several hours, with the longest recording 

of stable SγO being >7 hrs. KγO and CChγO emerged approximately 10 minutes 

after bath application of either KA or CCh, reached stable state 1.5–2 h later and 

again persisted for several hours. 

 

Observation of SγO over time demonstrated a gradual increase in power until 

reaching a stable state. Addition of KA or CCh to pre-existing SγO in majority of 

slices resulted in initial acceleration of oscillations and rapid power escalation. As the 

power was reaching its peak, the frequency decreased slightly, before settling, 

usually at a point above the pre-drug level. Shifts in frequency upon transition could 

probably be explained by elevated level of excitation produced by KA and CCh in the 

slice (Wang and Buzsaki, 1996). Exploratory KA and CCh dose-response curve 

experiments demonstrated that the power of gamma oscillation induced by 25 nM KA 

corresponded approximately to the power induced by 1 µM CCh, however, CCh 

induced a different input-output curve, inducing rhythmic activity of different 

frequencies, depending on the dose.   
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Figure 3.5. SγO survive prolonged storage.  Ai. and Aii. Unfiltered raw trace and FFT 
power spectrum of SγO recorded from a slice stored for 1 h. Bi. and Bii. Unfiltered raw trace 
and FFT power spectrum of SγO preserved in a slice stored for 7 h. 
 

 

SγO appeared in almost all hippocampal slices immediately after 1 h of recovery 

period, as well as after a prolonged (even up to >6h) storage (Fig. 3.5). The 

oscillations in stored slices varied in peak power and frequency, but were generally 

smaller and slower compared to freshly-cut slices. In stored slices, gamma 

oscillations could also be induced with as little as 25 nM KA and 500 nM CCh, 

indicating higher sensitivity of CA3 to KA. Generally there was a positive correlation 

between the size and frequency of SγO and chemically induced gamma oscillations 

in the same slice. 
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Figure 3.6. Weight-dependent profile of SγO.  Ai. and Aii. Bar charts showing mean peak 
frequency and peak power of SγO in slices from 50 g, 100 g, 250 g and 450 g animals. *** 
indicate p<0.001, ** indicate p<0.01, * indicates p<0.05. 

3.2.3. Characterisation of SγO  

SγO were more readily observed towards the dorsal side of the hippocampus. To 

determine the origin of SγO, LFP recordings were obtained from slices with the cut 

made through the perforant path/mossy fibres and Schaffer collateral to disconnect 

CA3 region from the EC, DG and CA1, respectively. Persistent SγO could still be 

observed in CA3 region, suggesting that spontaneous activity was intrinsic to this 

area.  

 

SγO were studied across different weight groups (50g, 100g, 250g, 450g). These 

studies showed that the average peak frequency significantly increased with weight 

from 26.6±0.8 Hz (n=13) in 50g animals to 31.8±0.4 Hz (n=26) in 100g, 34.7±0.8 Hz 

(n=17) in 250g and 36.3±0.8 Hz (n=14) in 450g animals (Fig. 3.6). Generally the FFT 

peaks appeared sharper in older rats. The average peak power, though quite 

variable, did not exhibit statistically significant differences across all age groups.   

3.2.4. Pharmacological profile of SγO, KγO and CChγO 

Pharmacological properties of three gamma oscillation models were characterized 

and compared. We explored the roles of inhibitory and excitatory systems in 

generation and maintenance of SγO, KγO and CChγO. 
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Figure 3.7. Abolition of SγO, KγO and CChγO by 20 µM PTX.   A., B. and C. Unfiltered 
raw traces of SγO (teal), KγO (red) and CChγO (blue) under control and 20 µM PTX. 

3.2.4.1. GABAergic pharmacology 

It is known that GABA-mediated inhibition is critical for induced gamma oscillation 

generation and maintenance in vitro (Whittington et al., 1995; Fisahn et al., 1998; 

Pietersen et al., 2009). We explored the role of GABA-Ar in SγO observed in our 

slices and compared it to chemically induced gamma oscillations. In all experiments, 

the GABA-Ar antagonist bicuculline (20 µM) and GABA-Ar blocker PTX (20 µM) 

reliably abolished gamma oscillations, demonstrating the crucial role of the 

GABAergic system (Fig. 3.7). Hence, in the majority of slices, gamma rhythm was 

replaced by slow interictal-like activity, appearing once the effect of GABA-Ar 

blockade had stabilised. Benzodiazepine site agonist zolpidem (100 nM) significantly 

augmented the peak power of SγO, KγO and CChγO by 44.5±25.2% (n=10, p<0.01), 

21.0±18.6% (n=9, p<0.05), 46.8±25.4% (n=8, p<0.05), respectively (Fig. 3.8A). A 

decrease in the peak frequency was also observed in all three models: ∆Hz -

1.95±1.6, p<0.01 in SγO, -1.2±0.9, p<0.05 in KγO and -1.4±0.8, p<0.05 in CChγO. 

We then investigated the effects of GABA-Ar modulator pentobarbital (10 µM), which 

produced a significant change in peak power only in CChγO (increase by 21±14.6% 
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p<0.01, n=10), although a characteristic significant decrease in the peak frequency 

was observed in all three models (∆Hz -3.5±1.9Hz, n=9, p<0.01 in SγO, -4.8±1.8Hz, 

n=9, p<0.01 in KγO and -2.3±1.1Hz, n=10, p<0.01 in CChγO) [Fig. 3.8B].  

 

 

"
Figure 3.8. The effects of GABA-Ar modulators on SγO, KγO and CChγO. A. Bar charts 
illustrating a significant reduction of peak frequency and an increase in the peak power of 
SγO (teal), KγO (red) and CChγO (blue) upon the application of 100 nM zolpidem. B. Bar 
charts showing a significant reduction of SγO (teal), KγO (red) and CChγO (blue) peak 
frequency upon the application of 10 µM pentobarbital. A significant increase in peak power 
observed only in CChγO. ** indicate p<0.01, * indicates p<0.05. 



65"
"

"
Figure 3.9. Differential effects of GluK1,3 KAr antagonist UBP310 (3 µM) on SγO, KγO 
and CChγO. Ai., Bi. and Ci. Unfiltered raw traces of SγO, KγO and CChγO under control 
conditions. Aii., Bii. and Cii. Unfiltered raw traces of SγO, KγO and CChγO after 3 µM 
UBP310 application. Aiii., Biii. and Ciii. FFT power spectra for control and UBP310 
conditions in SγO, KγO and CChγO, respectively. The figure demonstrates a marked 
reduction of KγO power in UBP310, while an increase in SγO and CChγO.   

3.2.4.2. Glutamatergic pharmacology 

The role of phasic excitatory inputs in oscillogenesis was established in the works of 

Buhl et al. (1998) and Fisahn et al. (1998). To explore the involvement of excitatory 

glutamatergic system in the generation of spontaneous and other types of gamma 

oscillations, a KAr/AMPAr antagonist, CNQX (20 µM), was bath applied. CNQX 

caused a significant reduction of gamma band power in all three models, however, a 

broad peak in theta/beta bands was introduced instead with mean peak frequencies 

13.22±2.1 Hz for SγO (n=12), 11.39±2.9 Hz for KγO (n=3) and 17.5±1.5 Hz for 

CChγO (n=12). The mean peak power of the theta oscillation was significantly lower 

compared to initial gamma peak in both KγO (by 69.3±10.6 %, p<0.05) and CChγO 

(by 68.24±10.6 %, p<0.001), but did not change significantly in SγO (p<0.05), as 

illustrated by Fig. 3.11A. The role of GluK1 and/or GluK3-containing KAr in the 

generation of gamma oscillations by the administration of a selective antagonist, 

UBP310 (3µM). The effects produced by UBP310 application differed significantly 
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between the models. The antagonist produced an increase in mean peak power of 

SγO by 68±21.4 % (n=12, p<0.05) and a decrease in the mean peak frequency by 

4.5±2.4 Hz (n=12, p<0.01), as illustrated by Figs. 3.9A and 3.11C. In contrast, 

application of UBP310 dramatically reduced the peak power of KγO (by 78.9±6.25 %, 

n=11, p=0.001) and insignificantly increased the peak frequency (Figs. 3.9B and 

3.11C). CChγO did not change significantly upon the blockade of GluK1,3 KAr (Figs. 

3.9C and 3.14C). 

 

In addition to KA type glutamate receptors, mammalian neurones express AMPAr, 

which mediate fast synaptic transmission. We examined the role of AMPAr by 

applying AMPAr antagonist, SYM2206 (Pelletier et al., 1996). Application of 

SYM2206 (20 µM) did not demonstrate consistent results. Initially, SYM2206 

produced a significant increase in all types of gamma oscillations, however, when 

experiments were repeated, it showed abolition of gamma rhythm in all models. 

Therefore it was decided to block AMPAr with the combination of 20 µM SYM2206 

and 2.5 µM NBQX. At such a low concentration NBQX is known to be selective for 

AMPAr, although higher doses also act on KAr. SYM2206+NBQX reliably abolished 

gamma oscillations in SγO (n=9), KγO (n=8) and CChγO (n=10) but introduced a low 

amplitude theta peak (10 – 15 Hz) afterwards (Fig. 3.11B). The mean peak 

frequencies after AMPAr blockade were 10.26±0.7 (p<0.01) Hz in SγO, 11.32±0.9 

(p<0.01) in KγO and 13.94±2.6 (p<0.01) in CChγO. We also investigated whether 

another type of ionotropic glutamate receptors, NMDAr, were involved in the 

mechanism of gamma oscillations. DL-AP-5 (25 µM), an NMDAr antagonist, 

increased the peak power of only CChγO by 56.2±20.8% (n=11, p<0.01), and caused 

no significant effect in other models  (Figs. 3.10 and 3.11D). Despite no changes in 

power, DL-AP-5 significantly reduced the peak frequency of SγO and KγO (by 

3.78±1.1 Hz [n=10, p<0.01] and 1.0±0.6 Hz [n=9, p<0.05], respectively). Apart from 

ionotropic glutamate receptors, mammalian neurones express a variety of 

metabotropic glutamate receptors, which exert their effects on excitability and 

synaptic function through G-proteins. The main mGluRs can be divided into 3 groups,  
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Figure 3.10. Differential effects of NMDAr antagonist on SγO, KγO and CChγO.  Ai., Bi. 
and Ci. Unfiltered raw traces of SγO, KγO and CChγO under control conditions. Aii., Bii. 
and Cii. Unfiltered raw traces of SγO, KγO and CChγO after 25 µM AP-5 application. Aiii., 
Biii. and Ciii. FFT power spectra for control and AP-5 conditions in SγO, KγO and CChγO, 
respectively. The figure demonstrates a marked increase of CChγO power in AP-5, while no 
significant change in SγO and KγO. 
 

groups I contains mGluRs 1 and 5, group II is comprised of mGluRs 2 and 3, while 

group III contains mGluR4, mGluR6-8. The role of metabotropic receptors, mediating 

slow excitation and presynaptic inhibition of transmitter release, was explored using a 

selective antagonist, MPEP (mGlu5 antagonist), and a group II/III mGluR antagonist, 

LY341495.  MPEP (20 µM) increased γ oscillation peak power in SγO, KγO and 

CChγO by 60.3±27.6% (n=9, p<0.01), 48.9±27.5% (n=10, p=0.01) and 31.9±21.9% 

(n=11, p<0.05), respectively (Fig. 3.13A). Furthermore, results demonstrated that 

MPEP reduced the peak frequency of SγO and KγO by 3.8±0.7 Hz (p<0.01) and 

2.3±1.7 Hz (p<0.05), respectively (Fig 3.13A). Application of LY341495 (5 µM) did 

not result in a significant effect in any of the three models, yet it significantly 

decreased the peak frequency of gamma oscillations by 2.17±1.4 Hz (n=9, p<0.05) in 

SγO and 1.6±0.9 Hz (p<0.05) in KγO (Fig. 3.13B). 
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Figure 3.11. The effects of glutamatergic antagonists on SγO, KγO and CChγO. A. Bar 
charts illustrating a significant reduction of peak frequency in SγO (teal), KγO (red) and 
CChγO (blue) and peak power of KγO and CChγO, but not SγO upon the application of 
AMPAr/KAr antagonist CNQX (20µM). B. Bar charts illustrating a similar reduction in the 
peak frequency of all three models, while a reduction in power only in SγO and KγO, but not 
CChγO upon administration of AMPAr antagonists SYM2206+NBQX (20µM and 2.5µM, 
respectively). C. Bar charts showing significant decrease in peak frequency and an increase 
of peak power of SγO upon administration of 3 µM UBP310 (GluK1,3 Kar antagonist). 
UBP3010 nearly abolished KγO. D. Bar charts showing the effects of NMDAr antagonist AP-
5 (25 µM), which reduced the peak frequency of SγO and KγO and increased the peak 
power of CChγO. *** indicate p<0.001, ** p<0.01, * p<0.05. 
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Figure 3.12. Differential effects of mAChr antagonist on SγO, KγO and CChγO. Ai., Bi. 
and Ci. Unfiltered raw traces of SγO, KγO and CChγO under control conditions. Aii., Bii. 
and Cii. Unfiltered raw traces of SγO, KγO and CChγO after 5 µM atropine application. Aiii., 
Biii. and Ciii. FFT power spectra for control and atropine conditions in SγO, KγO and 
CChγO, respectively. The figure demonstrates abolition of CChγO by atropine, while no 
significant change in SγO and KγO. 

3.2.4.3. Cholinergic pharmacology 

According to Fisahn and colleagues (1998), atropine blocked CChγO, suggesting this 

model of oscillations heavily depends on cholinergic system. We investigated, 

whether this was the case for SγO or KγO. We first established that atropine (5 µM) 

abolished CChγO, confirming previous reports in literature (Fig. 3.13C). The 

muscarinic receptor antagonist, however, produced no significant effect on the power 

of SγO and KγO (Fig. 3.12). Despite that, it still significantly reduced the frequency of 

SγO by 2.77±0.9 Hz (n=11, p<0.01).  

3.2.4.4. Gap junctions 

Early work on in vitro gamma oscillations demonstrated that electrical coupling 

between neurons is an important part of neuronal network oscillations (Traub et al., 

2000; Hormuzdi et al., 2001). We bath applied 200 µM carbenoxolone (CBX), a gap 

junction blocker, and it significantly decreased SγO, KγO and CChγO by 83.3±7.21% 

(n=15, p<0.0001), 61.2±21.4% (n=10, p<0.01) and 60.4±20.5% (n=8, p>0.05), 

respectively (Fig. 3.13D).  
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Figure 3.13. The effects of mGluR and mAChr antagonists and gap junction blocker 
SγO, KγO and CChγO. A. Bar charts showing a significant reduction of peak frequency in 
SγO and KγO and an increase in peak power of all three models produced by an mGluR5 
antagonist, MPEP (20µM). B. Bar charts showing a significant reduction in the peak 
frequency of SγO and KγO upon the application of mGluR group II and III antagonist 
LY341495. C. Bar charts demonstrating a decrease of SγO peak frequency produced by 
mAChr antagonist atropine (5µM). D. Bar charts showing a reduction of peak frequency in 
SγO and KγO produced by a gap junction blocker CBX (200 µM). CBX caused a dramatic 
decreased in the peak power of all three models. *** indicate p<0.001, ** p<0.01, * p<0.05. 
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3.2.5. Phase profile of SγO, KγO and CChγO 

3.2.5.1. Phase characterisation  

Phase analysis of SγO, KγO and CChγO was carried out to determine the difference 

between the three models of gamma oscillations. Phase synchrony differences were 

explored by adding various doses of KA or CCh to existing SγO, thus investigating 

SγO->KγO and SγO->CChγO transitions. As a first stage of analysis, three 

parameters were considered: phase synchrony (PLV), dominant frequency and 

phase angle difference. Phase synchrony and phase angle difference plots for 

adjacent electrodes recording SγO, KγO and CChγO are presented in Fig. 3.14. The 

results showed that SγO had high degree of phase synchronisation between all 

electrodes within a single slice. Between adjacent electrodes (e.g. 1-2) the phase 

coupling generally occurred across the 20 – 70 Hz range, with a dominant frequency 

of approximately 5 Hz bandwidth between 30 Hz and 40 Hz. As for the long-range 

phase relations (electrodes 1-4), phase coupling was reduced, yet the dominant 

frequency was still preserved (Fig. 3.15). Phase angle difference between adjacent 

pairs of electrodes was consistent across the frequency range.  

 

Addition of either 50 nM KA or 1 µM CCh increased the intrinsic phase coupling 

across the measured frequency band. The effect of phase angle difference, however, 

was not consistent, either increasing or remaining unchanged. At this stage of 

analysis, no differences were detected between KA and CCh in their effect on SγO in 

the CA3 hippocampus. 
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Figure 3.14. Phase coupling of SγO, KγO and CChγO across CA3. Ai., Bi. and Ci. 
Strong phase coupling at gamma frequency between the neighbouring local CA3 networks in 
SγO, KγO and CChγO, respectively. The plots show strong phase coupling in all models of 
gamma oscillations. Aii., Bii. and Cii. Small phase angle difference between the two signals 
in SγO, KγO and CChγO, respectively.  
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Figure 3.15. Short- and long-range connectivity in SγO.  A. A schematic representation of 
4 recording electrodes in the hippocampal CA3 region. Bi. and Bii. Phase synchrony 
between the adjacent (1-2) and distal (1-4) electrodes in SγO, demonstrating stronger phase 
coupling between the adjacent electrodes. Ci. and Cii. Phase synchrony between the 
adjacent and distal electrodes in KγO demonstrating stronger phase coupling between the 
adjacent electrodes. Di. and Dii. Phase synchrony between the adjacent and distal 
electrodes in CChγO, demonstrating stronger phase coupling between the adjacent 
electrodes. 
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Figure 3.16. Volume conduction issue.  A. A schematic representation of 4 recording 
electrodes in the hippocampal CA3 region with an incision made between electrodes 2 and 
3. Bi., Bii. and Biii. PLV plots demonstrating preservation of SγO phase coupling between 
electrodes 1 and 2, 3 and 4, while a disruption of phase coupling between electrodes 2 and 
3, demonstrating no volume conduction effect. 
 

3.2.5.2. Volume conduction problem 

High values of phase synchrony, as mentioned above, raise the possibility that the 

data were compromised by volume conduction phenomenon and might not represent 

the real network activity recorded by the electrodes. To test this possibility, a cut was 

made in the slice through CA3b region, thus separating electrodes 2 and 3. The 

hypothesis was that the incision would sever neuronal connection disrupting neuronal 

communication between electrodes 2 and 3; however, the touching sides of the 

lesioned tissue would allow volume conduction phenomenon to occur, if present. The 

results demonstrated that the phase synchrony between electrodes 2 and 3 was 

below significance level, whereas electrode pairs on either side of the cut presented 

high degree of phase coupling, which suggested a disrupted link between the two 

middle electrodes (Fig. 3.16). Results demonstrated that volume conduction played 

little or no role in generating the phase-locking data observed. 

3.2.5.3. Dose-dependent phase effects of KA and CCh on SγO  

Phase synchrony and oscillatory power relationship was explored using increasing 

concentrations of KA (0.5 – 125 nM) and CCh (0.5 – 50 µM) applied to SγO. Scatter 
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plots were built for each agent concentration (each dot representing PPS-RMS power 

relationship for every frequency value between 20 Hz and 70 Hz). The plots for KA 

and CCh are presented in Fig. 3.17. Results suggested that the relationship between 

power and phase were linear across frequencies at a particular drug concentration, 

hence could be decribed by the parameters of a linear equation y=mx+c for each 

dose of a driving agent, where m determines the slope of the line (i.e. the relationship 

between phase synchrony and power), while c determines the y-intercept (i.e. the 

gain in power at each concentration). Plotting gradients (m) and constants (c) for 

different concentrations of driving agents (in this case KA) produces the following 

graph presented in Fig. 3.18. The plot shows the behaviour of CA3 network 

oscillations under different concentrations of KA. By the created definition of phase-

power relationship, at 0 nM KA (essentially, SγO) no phase-power relationship (m=0) 

and no gain in power (c=1) would be expected. This was confirmed experimentally 

(within the measurement error), as at near zero concentration c is close to 1, 

whereas m is approaching 0 (Fig. 3.18). While the power (c line) appears to increase 

linearly with added doses of KA, the phase-power relationship (m curve) 

demonstrates dose-dependent differences, suggesting different modes of oscillations 

at low concentrations compared a higher (>20 nM) KA drive. Nevertheless, at 

concentrations above 20 nM KA, which are commonly used for KγO induction, m 

seems to change in a linear fashion. To test the hypothesis that SγO are 

mechanistically the same as KγO, only smaller, we extrapolated from the linear 

region (20 – 100 nM KA) back to 0 nM KA (i.e. SγO). Fig. 3.18 shows that 

extrapolation does not produce c=1, m=0 for SγO, which would be the case, if SγO 

were the same as KγO. Although the results are preliminary, they suggest that SγO  

are different from KγO elicited by 20-100 nM KA. Although pharmacologically they 

appeared similar to KγO, the effects of UBP310 confirmed our interpretation of 

fundamental differences between induced and spontaneous gamma activity. 
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Figure 3.17. Phase synchrony-power relationship for increasing concentrations of KA 
and CCh. A. Scatter plot showing phase synchrony (PPS) and KγO oscillation power 
relationship at different concentrations of KA. B. Scatter plot showing phase synchrony 
(PPS) and CChγO oscillation power relationship at different concentrations of CCh.  
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Figure 3.18. Phase synchrony-power-concentration relationship for KγO.  A. c (red) 
values representing the power change of KA and m (blue) values showing phasepower 
relationship change with increasing concentrations for KA. The graph demonstrates linear 
increase in power, while a curvilinear phase-power relationship change. Extrapolation (blue 
dotted line) from the linear part of m (20–100 nM KA) to zero concentration gives m=0.8841 
instead of predicted m=0 if SγO were the same as KγO (induced by 20–100 nM KA).  
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Figure 3.19. Laminar profile of SγO and KγO.  A. Band-pass filtered (20–60 Hz) raw 
traces of SγO (teal) and KγO (red) recorded from the hippocampal CA3 layers (single 
recording). The peak frequency of SγO remains the same throughout the layers, whereas 
KγO in s. oriens showed lower frequency compared to other layers. Largest peak power for 
both SγO and KγO was observed in s. lacunosum-moleculare. Scale bars 20µV✕25ms for 
SγO (left) and 100µV✕25ms for KγO (right). 
 

3.2.6. Laminar profile of SγO and KγO 

The laminar profile of SγO and KγO was studied in the same slice by placing 

recording electrodes in s. oriens, s. pyramidale, s. radiatum and s. lacunosum-

moleculare (distal s. radiatum) of the CA3 region. The largest power of both SγO and 

KγO was observed in s. lacunosum-moleculare and declined further away from the 

layer (Fig. 3.19). The frequency remained the same throughout the layers, although 

s. oriens showed lower frequency in KγO. Phase analysis demonstrated phase 

reversal between s.pyramidale and s. radiatum in both SγO and KγO (data not 

shown). 

3.3. Discussion !

3.3.1. SγO in improved brain slice preparation 

In vitro brain slice research in rodents has always been criticised by researchers 

occupying “higher” levels of research pyramid, working on whole-brain preparations, 

on larger mammals, on in vivo preparations and finally on humans. Obvious 

limitations of brain slices include reduced size of the preparation, isolated neuronal 
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networks, absence of long-range connectivity, artificial conditions, not to mention the 

differences in species. Despite all these factors, so much information that we 

possess today has been acquired through in vitro research, and many mechanisms 

were uncovered because of the work that otherwise would not be possible due to 

ethical and practical considerations. Yet discrepancies still exist between the in vitro 

and in vivo sides of research, and it is our responsibility to make research more 

translational. One of the first steps towards this process should be increasing the 

quality of in vitro research by maximising the quality of brain preparations.   

 

Increasing the viability and longevity of brain slices by improving slice preparation 

and storage techniques resulted in uncovering a natural gamma frequency rhythm in 

the hippocampal CA3 region. During the traumatic brain injury like brain extraction 

and cutting, brain cells undergo a stressful insult, which triggers a cascade of 

excitotoxic reactions aggravated by neuroinflammation and oxidative stress. These 

factors compromise cell well-being and result in cell death. In our lab, much effort is 

put into creating conditions for brain slices resembling the conditions found in more 

intact ‘physiological’ systems. Our goal is obtaining healthy slices and, hence good 

quality recordings. In their review Hajos and Mody (2009) proposed several 

modifications to the aCSF that would significantly improve tissue preservation. 

Altering aCSF composition was one of the first steps: using different aCSF solutions 

for cutting and recording (sucrose- and NaCl-based, respectively). Replacing NaCl 

with sucrose prevents cell swelling and lysis during the damaging procedure of 

cutting slices (Aghajanian and Rassmussen, 1989). Furthermore, inclusion into the 

aCSF of various neuroprotectants, neuromodulators and antioxidants, like 

indomethacin, uric acid, aminoguanidine, L-ascorbic acid, ketamine, N-acetylcysteine 

and taurine substantially improved cell viability and longevity (Pakhotin et al., 1997; 

Tutak et al., 2005; Proctor, 2008; Griffiths et al., 1993; Rice, 2000; Green and Cote, 

2009; Tian et al., 2003; Kreisman and Olson, 2003). Changing the dissection 

technique, employing transcardial perfusion with ice-cold cutting aCSF caused 

remarkable changes in slice visualisation and endurance. These modified 

techniques, combined and utilised by Prokic (2012) allowed us to minimize 

excitotoxicity and neuronal death in the slice, which resulted in the observed 

spontaneous activity in the CA3. Pietersen et al. (2009) also reported that using 



80"
"

transcardial perfusion with sucrose-based aCSF substantially increased the 

occurrence of SγO in the hippocampal slices.  

 

Spontaneous activity observed in brain slices in the absence of any pharmacological 

intervention allows us to study the natural “preferred” rhythm of a particular network. 

This way we are able to exclude from the process a biased step of artificial promotion 

of activity, a forceful drive of a network, which might not necessarily be the case in 

vivo. SγO present an opportunity to study a more physiologically relevant model of 

gamma oscillations and broaden our understanding of this phenomenon. Another 

potential application of this model is in the drug discovery/development process for 

increasing cognitive functions, as gamma waves in hippocampus are know to be 

involved in learning and memory. 

3.3.2. Basic profile of SγO, KγO and CChγO 

Due to the fact that SγO were persistently observed in the majority of slices, in order 

to independently measure and compare KγO and CChγO models, we had to go back 

to the basic aCSF composition for slice preparation, in order to create a clear 

baseline prior to induction of oscillatory activity. In the absence of additional 

neuroprotectants and neuromodulators, spontaneous activity was mostly absent or 

significantly reduced, suggesting that slice viability was a key factor in observations 

of spontaneous oscillatory activity. SγO have been reported previously in a 

preparation of murine hippocampus, however, they appeared only in 32.9% of slices 

and persisted for only 20 – 40 min, which makes pharmacological characterisation of 

this activity difficult (Pietersen et al., 2009). In contrast to this, SγO described in this 

report readily appeared in the majority (>85%) of slices and lasted for several (up to 

7) h, which could be explained by using improved brain slice preparation techniques. 

The basic profiles of explored gamma models appear to be very similar, although 

SγO frequency is significantly lower than induced oscillations. The mean peak 

frequencies of gamma rhythm models observed by Pietersen and colleagues (2009) 

were comparable to SγO and KγO recorded from our slices, suggesting to some 

extent a similar nature of SγO studied in both laboratories. There are several 

possible reasons that could account for frequency difference between spontaneous 

and induced activity. On the one hand, the oscillations could involve same core 

mechanisms, but different levels of excitatory drive. Hence, increasing the tonic 
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excitatory drive by addition of KA or CCh and recruiting larger networks makes 

chemically-induced gamma oscillations faster and more powerful compared to SγO 

(Buzsaki and Wang, 1996). On the other hand, the studied models could involve 

different microcircuits and interneuron types in the generation of gamma oscillations 

(Middleton et al., 2008; Pietersen et al., 2009). In this scenario, different 

interneurones would have different connectivity, IPSP decay kinetics or excitability, 

which might alter the rhythm created upon their activation.  The contrast in the 

frequency of rhythmic activity is observed not only during the independent 

comparison, but also when KA/CCh are added to pre-existing SγO. The frequency 

shift marks the transition from one type of oscillation to another for the possible 

reasons decribed above. It is worth mentioning the positive correlation between the 

quality of SγO and induced gamma in the same slice, indirectly implying involvement 

of similar basic mechanism (Pietersen et al., 2009), although it can also reflect good 

general survival of different network elements.  

 

The differences in the peak power of oscillations between the three models arise due 

to uneven strength of excitatory drives provided by 50 nM KA and 1 µM CCh. As 

identified from the input-output curves, application of 25 nM KA produces gamma 

frequency oscillations of a comparable power to the ones produced by 1 µM CCh. 

Concentrations of driving agents used to elicit gamma oscillations in our experiments 

were considerably lower than the ones reported in original studies, indicating higher 

sensitivity for KA and CCh (Fisahn et al., 1998; Hajos et al., 2000; Hormuzdi et al., 

2001). Possibly due to enhanced slice viability and network preservation, minimal 

excitation was sufficient to generate network oscillations. Despite seemingly 

increased excitability, the hippocampal network appeared to be relatively stable, as it 

was impossible to induce any epileptiform activity, even at high concentrations of KA 

and CCh. Increasing driving force usually reached a point when oscillations gradually 

ceased, which was in line with early studies on hippocampal oscillations (Traub et al., 

1996a). A project carried out by Darshna Shah, another member of the laboratory, in 

collaboration with Newcastle University has revealed that the modified brain slice 

preparation contained more PV-positive interneurons (usually vulnerable to injury) 

and was less susceptible to epileptiform activity compared to traditional slice 

preparations.  
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Early studies on brain slice preparation techniques (methodology) revealed that 

immediately after cutting brain, slices required a minimum of 1 h rest prior to 

recording, during which a structural recovery of the slice took place (Garthwaite et al., 

1980; Hajos et al., 1989; Kirov et al., 1999). This technique is also used in our 

laboratory, and we found that when the LFP was recorded after the recovery period, 

SγO were already present in the hippocampal CA3 region. By contrast, when 

recorded straight after slicing, no activity was observed in the slices, however, it still 

emerged after approximately 1 h, upon the completion of “synaptically silent” period 

of recovery (Kirov et al., 1999). In all three models, gamma oscillations became 

stable within 1.5–2 h of recording and usually lasted for several hours. Even though 

we conducted no direct studies measuring the maximum life span of oscillations in 

our slices, it was obvious from dose-response/sham experiments that SγO persisted 

for up to 7 h, while oscillations sustained by pharmacological stimulation could persist 

for 10 h and possibly longer. These observations once again point out high level of 

brain cell preservation. Even slices exposed to prolonged storage (>6h) exhibited 

SγO, further supporting this interpretation.   

 

It is interesting how hippocampal rhythmic activity undergoes changes in frequency, 

depending on applied KA/CCh dose. Dose-response experiments demonstrated that 

at higher concentrations of KA and CCh, together with gamma oscillations, slow 

rhythms were introduced (either theta or delta). It has been reported previously in 

experimental and modeling conditions that different concentrations of CCh (4–60 µM) 

were able to elicit transient delta, theta and gamma rhythm oscillations (Fellous and 

Sejnowski, 2000; Tiesinga et al., 2001). Theta oscillations have been widely 

observed in the hippocampus of rodents during active behaviour. Of a particular 

interest is co-occurrence of gamma and theta rhythms, the so-called nesting of 

rhythms (Soltesz and Deschenes, 1993; Bragin et al., 1995; Colgin et al., 2009; 

Belluscio et al., 2012). It is believed that such dual oscillation is involved in coding 

information, memory and sensory processes (Lisman and Jensen, 2013).      

3.3.3. Characterisation of SγO 

Apart from the CA3 region, spontaneous oscillatory activity has not been detected in 

any other hippocampal regions in our slices. It is known that spontaneous oscillations 

emerge from the areas with a substantial system of recurrent excitatory collaterals, a 
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characteristic feature of the hippocampal CA3 region. Our results from experiments 

with cut slices (to isolate CA3) support the idea of intrinsically generated SγO.  

 

Exploring SγO occurrence across different age groups has revealed that 

spontaneous activity is present throughout the life of an animal, although reports 

exist in the literature about gamma rhythm decline in aged animals (Vreugdenhil and 

Toescu, 2005; Lu et al., 2009). In contrast to this, our experiments show that SγO 

become stronger and increase in frequency, as the rats get older. It is probably 

important to establish whether it is the development or the aging of the system, as by 

P20 (50g rat) the most fundamental developmental processes are already 

completed. Pharmacological analysis showed that SγO peak frequencies were 

altered significantly in response to any modulation, even when the power of 

oscillations remained unchanged. This might indicate that oscillation frequency is 

sensitive to even slight changes in the network balance, which provides 

generation/maintenance of gamma oscillations. It is possible that some network 

elements undergo fine age-dependent alterations, which modulate the frequency of 

rhythmic neuronal activity. One of the potential contributors is the change in kinetic 

properties of GABA-Ar, as the frequency of gamma oscillations is determined by the 

decay time constant of GABAr-mediated IPSCs (Whittington et al., 1995; Buzsaki et 

al., 1996). Some of our data show that spontaneous IPSCs recorded from CA3 

pyramidal cells of 50g rats have a longer decay time compared to 100g animals, 

hence slower gamma frequency oscillations (see Section 5.2.3.2.). This difference 

could potentially be traced in older animals, however more experiments are required. 

Other studies have demonstrated faster IPSC kinetics in mature animals compared 

to young ones, which was associated with an increase in α1 subunit content of 

postsynaptic GABA-Ar (Doischer et al., 2008; Lazarus and Huang, 2011). The 

frequency of SγO could also depend on the overall level of interneuron excitation 

mediated by AMPAr (Wallenstein and Hasselmo, 1997), which could change 

throughout development/aging.  

3.3.4. Comparative Pharmacology  

Together with basic characterisation of in vitro gamma oscillations models, we 

carried out a pharmacological analysis of SγO, KγO and CChγO, which revealed that 

the three models were pharmacologically different. The results showed that 
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GABAergic system was essential for gamma oscillations generation and 

maintenance in all studied models, as GABA-Ar antagonists PTX and bicuculline 

readily abolished all oscillatory activity. These findings were in line with the original 

studies on SγO, KγO and CChγO in the hippocampus and cortical regions (Fisahn et 

al., 1998; Fisahn et al., 2004; Palhalmi et al., 2004; Cunningham et al., 2003; 

Yamawaki et al., 2008; Pietersen et al., 2009). Increased power of gamma 

oscillations caused by the positive allosteric modulator of GABA-Ar zolpidem (100 

nM) further supported the importance of GABA involvement. Similar effect was 

observed by Heistek et al. (2010) in the hippocampus and Yamawaki et al. (2008), 

Prokic (2012) and Ronnqvist et al. (2013) in M1 motor cortex. Palhalmi et al., 2004, 

on the other hand, reported an opposite effect in CA3 area, which may be due to a 

100-fold difference in zolpidem concentration. In accordance with previous 

pharmacological studies (Fisahn et al., 1998; Cunningham et al., 2003; Yamawaki et 

al., 2008; Pietersen et al., 2009), GABA-Ar modulator pentobarbital produced a 

characteristic decrease in frequency of all three types of gamma oscillations due to 

its ability to prolong the decay time of GABAergic IPSCs (Segal and Barker, 1984). A 

significant shift in power was observed only in CChγO, which could indicate that this 

model might be more dependent on GABAergic IPSCs. Together these findings 

demonstrate that in SγO, like other gamma oscillations models, GABA-mediated 

inhibition is a prerequisite for neuronal network synchronisation. 

 

We also explored the role of excitatory glutamatergic system in the generation of 

SγO and compared it to traditional KγO and CChγO models. Our findings show that 

fast excitation mediated by ionotropic AMPAr was necessary for gamma oscillations 

generation in all studied models. In all models, a non-selective AMPAr and KAr 

antagonist, CNQX, abolished gamma rhythm, and replaced it with theta oscillations 

6-15 Hz and ripples (150-200 Hz). This effect was similar to the one observed with 

the combination of selective AMPAr blockers NBQX+SYM2206, although the theta 

rhythm seemed to be more pronounced, whereas ripples were less prominent. Theta 

oscillations occurring under the conditions of suppressed AMPAr activity were 

reported by Gillies et al. (2002) and have been suggested to be generated by intrinsic 

theta-frequency spiking subset of hippocampal interneurons. A remarkable difference 

between the models appeared when GluK1,3-containing KAr were blocked by 

UBP310 and the expected reduction in KγO power was contrasted with an increase 
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in SγO power. The lack of literature on KAr in CA3 means we may only speculate on 

the possible mechanism of UBP310 action on SγO. It seems likely that the effect 

occurs on a local CA3 interneuron/pyramidal cell level. Based on the studies of KAr 

in the hippocampus (for reviews see Pinheiro and Mulle, 2006 and Carta et al., 

2014), pyramidal cells mostly express GluK2-containing KAr, while GluK1 KAr are 

found on the interneurons. An increase in SγO peak power could arise from blocking 

the suppressive effect of presynaptic GluK1,3 on GABA release. For example, 

Rodríguez-Moreno and colleagues" (1997) showed that presynaptic KA-

heteroreceptors decreased GABA release by 90% in hippocamnpus in vitro and in 

and in vivo. Jiang et al. (2001) further demonstrated that high levels of KAr activity 

depressed GABA inhibition in CA1, whilst low levels of activity facilitated inhibition in 

the form of increased success rate of unitary IPSCs (uIPSCs). Hence, during SγO, 

low levels of KAr activity may favour inhibition of pyramidal cell activity and this would 

be relieved by KAr blockade with UBP310, leading to increased principal cell 

excitability and enhanced oscillatory power, whilst during KA-driven activity, inhibition 

would already be suppressed to some extent and the effects of UBP310 would be 

dominated by depressant effects on network excitation – leading to a reduction in 

KγO power. This mechanism is necessarily speculative, since the work cited above 

was performed in CA1, however, we might predict that CChγO activity, which also 

lacks direct KAr activation, might resemble SγO in its response to UBP310. This was 

indeed observed in some experiments (see Fig. 3.9C) but not in others and the 

mixed effects may indicate that CCh drive places the network at the threshold for 

significant indirect KAr activation, placing this model somewhere between SγO and 

KγO in this regard. 

 

Due to the lack of selective GluK2 KAr antagonists, it is difficult to evaluate the role of 

GluK2 subunit in the generation of gamma oscillations. However, Fisahn and 

colleagues (2004) showed that in GluK2 KO mice, KA application failed to elicit 

gamma oscillations. Most studies suggest that KAr and AMPAr-mediated excitation 

was required for the generation of various types of gamma oscillations (Fisahn et al., 

1998; Whittington et al., 2000; Cunningham et al., 2003; Khazipov and Holmes, 

2003; Fisahn et al., 2004; Brown et al., 2006; Pietersen et al., 2009). Fisahn and 

colleagues (2004), however, argued that AMPAr activation was not necessary for 
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KγO, although discrepancies could possibly occur due to different AMPAr 

antagonists used.  

 

Our results demonstrated that NMDAr did not significantly contribute to SγO or KγO, 

the latter being supported by the original pharmacological study (Fisahn et al., 2004). 

On the contrary, Pietersen et al. (2009) showed SγO suppression and 

KγO enhancement with NMDAr antagonist AP-5. Interestingly, our CChγO increased 

significantly after NMDAr were blocked. 

 

The involvement of metabotropic glutamate receptors was explored using MPEP and 

LY341495 to block mGlu1, mGlu5 and groups II and III, respectively. Our findings 

showed that groups II and III did not actively contribute to gamma oscillations in 

either of explored models. Blockade of mGlu5, on the other hand, resulted in a 

substantial increase in oscillation power in all three models, possibly due to indirect 

effects leading to increased synaptic inhibition, which boosted the oscillations (Desai 

et al.,1994).  

 

Apart from the synaptic mechanism, all three models of gamma oscillations heavily 

relied on the non-synaptic component, as the gap junction blocker either greatly 

decreased or abolished gamma oscillations in all experiments. These observations 

were in line with previous reports (Traub et al., 2000, 2003; Hormuzdi et al., 2001; 

Buhl et al., 2003; Pietersen et al., 2009). Generally, previous reports demonstrated 

that electrical coupling dramatically increased the power of gamma frequency 

oscillations, however were not required for the generation of rhythmic activity.     

 

Atropine, as an mACh antagonist, was used to determine whether these receptors 

were required for maintaining gamma rhythm oscillations. The results demonstrated 

that while activation of cholinergic system was able to induce oscillatory activity, its 

presence was not required for the naturally occurring rhythm in the slices (SγO). The 

fact that atropine blocked CChγO (Fisahn et al., 1998), but not SγO and KγO (Fisahn 

et al., 2004) indicated that SγO were more comparable to KγO than CChγO. Our 

observations led us to an assumption that KγO represented a more physiologically 

relevant in vitro model of gamma oscillations in comparison to CChγO, however as 
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the system is capable of generating different types of gamma activity, we cannot 

exclude the possibility of KγO or CChγO occurrence in an intact brain. 

 

Overall, pharmacological characterisation shows fundamental differences in the 

mechanism of the three models. SγO, KγO, CChγO seem to share some basic 

elements taking part in rhythmogenesis, such as dependence on GABAergic 

inhibition. However, the independence of SγO from GluK1 KAr and mAChr, which are 

essential for KγO and CChγO maintenance, respectively, suggests that SγO 

constitute a distinct class of rhythmic activity.      

3.3.4. Phase analysis of SγO 

Phase synchrony analysis provided some insights into the nature of SγO and their 

spatial profile. Similarly to driven oscillation, SγO were strongly phase coupled 

throughout the CA3 region. Although it decreased in the long range, the coupling was 

still rather strong. The fact that upon addition of pharmacological agents the phase 

synchrony became slightly stronger suggested either the recruitment of more cells or 

a more synchronised cell firing. To address the issue of volume conductance, we 

carried out experiments with the cut between adjacent electrodes, which showed that 

strong coupling was produced by the network activity recorded by the electrodes. 

The analysis of short- and long-range connectivity is in progress, and should provide 

more knowledge on the spatial properties of SγO, in comparison to KγO and CChγO.  

 

Based on the KA dose-dependent phase synchrony-power relationship, it appeared 

that SγO were different from KγO, as SγO behaviour did not fit into the predicted 0 

nM KA KγO. More experiments are required to investigate whether SγO are a 'small 

version' of CChγO.     

3.3.5. Laminar characterisation of SγO and KγO 

The laminar profile of SγO suggested that the change in polarity from s. pyramidale 

to s. radiatum reflected the flow of currents in somato-dendritic regions of CA3 

pyramidal cells. Original studies demonstrated phase reversal from body to apical 

dendrites of hippocampal pyramidal cells in KγO and CChγO (Csicsvari et al., 2003; 

Buzsaki et al., 2003; Hajos et al., 2004; Mann et al., 2005a; Vreugdenhil and Toescu, 

2005). Current-source density (CSD) studies revealed that gamma oscillations were 
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associated with alternating current sink and source pairs in s. pyramidale and s. 

radiatum (Csicsvari et al., 2003; Hajos et al., 2004; Mann et al., 2005a). The 

investigation carried out by Vreugdenhil and Toescu (2005) on KγO and CChγO 

revealed certain differences in characteristics of these two models. Although some 

observation from the study did not fit with other literature (in particular regarding 

CChγO), the authors concluded that despite similar mechanisms between 

KγO and CChγO, they involved different networks (Vreughdenhil and Toescu, 2005). 

The same research group investigated laminar CSD profile of SγO in comparison to 

KγO, their results showed less pronounced sinks and sources in SγO and authors 

suggested that KγO additionally recruited perisomatic IPSCs (Pietersen et al., 2009). 

3.3.7. SγO as a physiologically relevant model of gamma oscillations 

Electrophysiological and pharmacological comparison of three types of gamma 

oscillations (SγO, KγO and CChγO), combined with previous reports, suggest that, 

compared to KγO and CChγO, SγO more closely resemble the gamma oscillations 

observed in vivo (Csicsvari et al., 2003; Buzsaki et al., 2003; Vreugdenhil and 

Toescu, 2005; Pietersen et al., 2009). We demonstrate that SγO are 

pharmacologically different, and thus could be used for exploring rhythmic activity in 

the hippocampus in vitro. Although SγO have been observed previously, it had a 

transient nature and did not appear regularly. For these reasons, characterisation of 

such SγO and interpretation of results appear to be difficult. Despite this limitation, 

Pietersen and colleagues (2009) suggest that SγO and KγO arise from the same 

basic network, but are different in the types of involved interneurons and 

pharmacological properties, although it is difficult to make conclusions. Nevertheless, 

the main idea taken from spontaneous activity observation is that SγO represent a 

physiologically-relevant model of oscillations, as it is naturally produced by the local 

neuronal networks preserved in a brain slice. Due to the existance of only two 

characterisational studies on SγO, much information about this rhythm is still 

unknown.  

3.4. Conclusion 

In this report we explore a model of persistent spontaneous gamma oscillations in 

CA3 area of the hippocampus. We suggest that improving slice viability by altering 



89"
"

methodology (techniques) uncovers this natural rhythm. We compare its 

electrophysiological and pharmacological properties to traditional KγO and CChγO 

models of gamma oscillations. We conclude that SγO in CA3 hippocampus appear to 

employ the same basic inhibition-based mechanism as KγO, however, significant 

difference in KAr dependence is observed. Similarly, SγO differs from CchγO in their 

independence from cholinergic system. Based on the pharmacological and phase 

analyses, we conclude that SγO are a distinct type of gamma rhythmic activity, and 

hence, due to their natural occurrence, are more physiologically relevant. These 

findings present an opportunity to work on a reliable physiological model of neuronal 

network oscillations, partially solving the problem of large discrepancies between in 

vitro and in vivo research. 



90"
"

4. Chapter 4 The Reduced Intensity Status Epilepticus 
(RISE) model of chronic epilepsy 



91"
"

4.1. Introduction 

Epilepsy is a pathological condition, characterized by the occurrence of SRS, which 

appear as a result of abnormal neuronal excitability and synchrony. Electrographic 

seizures are associated with large amplitude oscillatory activity, suggesting 

hypersynchrony, at least on a local level (Timofeev et al., 2012). Due to a large 

variety of seizure and epilepsy types in humans, as well as a large variety of studied 

brain regions, different types of rhythmic activity have been associated with seizures 

(either preceding or superimposed upon them): spike-wave complexes (2 – 3 Hz) 

and fast runs at 10 – 20 Hz (Steriade et al., 1998; Neckelmann et al., 1998), 50 – 80 

Hz rhythmic activity (Allen et al., 1992); 80 – 200 Hz ripples (Fisher et al., 1992; 

Traub et al., 2001b; Grenier et al., 2003) and 200 – 500 Hz fast ripples (Bragin et al., 

1999b). Overall, much information has been accumulated from both human and 

animal studies over the years; however, more research exploring the role of different 

oscillatory patterns in epilepsy is yet to come. It is becoming clear that high-

frequency oscillations are tightly associated with seizure activity and might indicate 

epileptogenic properties of the tissue and identify the focus of seizure generation.       

 

From a clinical point of view, as defined by the International League Against Epilepsy 

(ILAE), epilepsy is “a condition characterized by two or more recurrent epileptic 

seizures over a period longer than 24 h, unprovoked by any immediate identified 

cause” (Sander, 1997). Various classifications of epilepsy exist in the literature and 

clinics, including the localisation of the focus, aetiology, as well as the seizure types. 

According to seizure manifestation, seizures can be motor, sensory (auditory, visual, 

olfactory), autonomic (sweating, piloerection, epigastric sensation), psychic 

(cognitive, illusions, hallucinations). There are two types of seizures: partial, 

occurring in a specific area of the brain (focal), and generalised, when the 

pathological activity spreads across the brain regions. Partial seizures are further 

divided into simple (maintained consciousness) and complex (loss of 

consciousness). Generalised seizures actively involve motor system, hence are 

accompanied by convulsive state with tonic /clonic phases. Based on the aetiology, 

epilepsy is classified into idiopathic (e.g. absence epilepsy), provoked, cryptogenic 

and the largest group symptomatic, which includes genetic/developmental and 
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acquired (e.g. head trauma, infection, brain tumors) (Shorvon, 2011). Depending on 

the brain area producing the seizures, epilepsies are classified into temporal, frontal, 

parietal and occipital lobe epilepsies. TLE is the most commont type among 

localisation-related epilepsies, occuring in 66% cases (Semah et al., 1998). 

Furthermore, TLE is known to be the most common type of intractable epilepsy, 

occuring in 50 – 70% of the cases (Wass et al., 1985; Guldvog et al., 1994; Keene et 

al., 1997).  As suggested by its name, TLE involves temporal lobe brain structures 

like the hippocampus and amygdala, its symptoms usually inlcude motionless staring 

(freezing) and oroalimentary automatisms (Engel, 1996). TLE is usually accompanied 

by characteristic neuropathological alterations like hippocampal sclerosis with 

excessive gliosis and cell death, neuronal circuit reorganisation with axonal sprouting 

and synaptogenesis (Sutula et al., 1988, 1989; Mikkonen et al., 1998).    

4.1.1. Epilepsy models in animals 

A number of questions have been formulated in the epilepsy research over the years. 

What leads to cell hyperexcitability, what causes abnormal synchronous neuronal 

discharges, what underlies the transition from interictal to ictal activity, why do 

seizures propagate, how do they stop, how is intractable epilepsy different from other 

types, and, of course, developing new antiepileptic drugs (AEDs) – these are the 

main questions the research has been trying to answer (Mody and Schwartzkroin, 

1997).  

 

One might understand that human studies are not suitable for extensive epilepsy 

research, due to obvious ethical issues. These limitations have led to the 

development of a wide variety of epilepsy and seizure models in animals. The search 

for new effective AEDs and the necessity to unravel the mechanism of 

epileptogenesis have been the main factors pushing forward the development of 

different epilepsy models up to this date. One of the critical moments of epilepsy 

animal research is to distinguish between seizure and epilepsy models. Both types 

are widely used nowadays, however they serve different purposes. Seizure models 

are mainly utilised for new AED screening in the pharmaceutical industry, when 

certain model properties like cost- and time-effectiveness are essential. Epilepsy 

models, on the other hand, are mostly used by research groups exploring the 
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mechanisms of epileptogenesis in search for new targets for pharmacotherapeutic 

intervention.  

 

One of the main challenges in the field has been the questionable validity of epilepsy 

models. As summarised by Sarkisian (2001), some people reasonably argue that 

many investigations are carried out on healthy rather than epileptic brains, some of 

the seizure manifestations, both behavioural and at the level of brain recording, do 

not resemble those observed in humans, and finally, it may be asked: how 

translational is animal research in epilepsy? So what are the criteria for a good 

epilepsy model? Again, as pointed out by Sarkisian (2001), an epilepsy model should 

exhibit the same or at least similar behavioural and EEG patterns of seizures, as in 

human epilepsy. Furthermore, a valid epilepsy model should mimic the aetiology of 

the corresponding human condition. The model should have a similar age of epilepsy 

onset and exhibit the same pathological changes characteristic for a certain type of 

human epilepsy. Logically, a valid epilepsy model should respond to the same AEDs 

as the human epilepsy.    

 

A brief description of the most commonly used models of seizures and epilepsy will 

be given now.  

4.1.1.1. In vitro models of seizures 

In vitro brain slice preparations allow modelling and studying epileptiform discharges 

at the cellular and network levels, which can be a solid support for epilepsy model 

findings and the mechanism(s) of action of AEDs. In vitro models of seizures are a 

good basis for exploring seizure intiation, propagation and cessation within a 

localised area. These models clearly lack the most important features of in vivo 

models, such as long-range connectivity of the brain, as well as behavioural and 

motor components, and therefore can produce only limited aspects of seizures. 

These seizure equivalents are achieved by altering electrical activity and ionic 

concentrations in slices. In brain slices, acute seizure-like activity can be elicited with 

low Ca2+ (Jefferys and Haas, 1982), low Mg2+ (Stanton et al., 1987) or elevated K+ 

(Jensen and Yaari, 1988) medium, as well as 4-aminopyridine (4-AP) (Avoli et al., 

1996) and/or electrical stimulation (Rafiq et al., 1995). It is peculiar that seizures are 

induced in slices from healthy tissues, yet it is often very difficult to elicit seizures in 
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the same way in human tissue from epileptic brain (Gabriel et al., 2004; Huberfeld et 

al., 2011). When using brain slice preparations to study seizure-like events, one 

should always keep in mind the disadvantages of this model, such as the tissue 

undergoing acute lesioning/ischemia, disturbed networks, severed connections, 

reduced oxygen and nutrients diffusion in slices, differences in brain 

physiology/anatomy between species (Heinemann et al., 2006). 

4.1.1.2. Models of acute seizures 

Different models of seizures and epilepsy are used based on the aims of conducted 

research. For the purpose of screening a large number of compounds for 

anticonvulsant properties, a new class of models termed models of acute seizures 

was developed. These models include induction of seizures with chemical agents like 

pentylenetetrazol (PTZ), antibiotics, metals and toxins or with electrical stimulation, 

such as maximal electroshock seizure threshold (MEST) and 6-Hz seizure test (for 

review see Velisek, 2006; Mares and Kubova, 2006).   

4.1.1.3. Kindling model of epilepsy 

The kindling phenomenon was discovered by Graham Goddard in 1967, and it has 

been widely used in epilepsy research as a model of chronic TLE, since the most 

significant changes appear in the temporal lobe regions like the amygdala and 

piriform, perirhinal, entorhinal, and insular cortices (Goddard et al., 1969; McIntyre et 

al., 1999). The kindling phenomenon occurs when a repeated induction of focal 

seizures results in a gradually increasing response to the stimulating agent, 

producing electrographic and behavioural changes and leading to the kindled state. 

Eventually, after a long period of time, epileptic seizures start appearing 

spontaneously, as the brain region becomes 'overkindled' and truly epileptic. For an 

extensive review of kindling models see Morimoto et al. (2004).     

4.1.1.4. Post SE epilepsy models 

TLEs exhibit several features that have been incorporated into different animal 

models. These hallmarks include seizure foci in the temporal lobe (Bartolomei et al., 

2005), an intial insult (so-called 'initial precipitating injury') [Mathern et al., 2002] 

followed by a seizure-free period and certain histopathological changes (Mathern et 
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al., 1997). SE models of epilepsy constitute a large field of animal epilepsy research, 

due to the common properties they share with TLE. They allow exploration of truly 

epileptic animals exhibiting SRS some time after systemic administration of 

convulsant agents like KA or pilocarpine. These models, although employing different 

mechanisms, progress through the same stages: an initial hours-long SE 

characterised by continuous recurrent seizures, followed by a quiescent period of a 

few weeks or months with no seziures (the so-called latent period), and finally SRS, 

when an animal becomes epileptic. During the SRS phase, researchers can observe 

seizures lasting 1 – 3 min and resembling complex partial seizures with secondary 

generalisation, which increase in frequency with epilepsy progression. The most 

explored stages are either SRS period or the transition from latent period to SRS. It is 

believed that all neuropathological changes take place during the latent period. The 

duration of latent period can not be precisely calculated, however, its mean duration 

is around 40 d (Glien et al., 2001) and it can be manipulated through the dose of 

inducing agent, lasting from several days at high doses to months after SE induction 

at lower doses (Hamani and Mello, 2002). Moreover, Navarro Mora et al. (2009) 

suggest that in pilocarpine model a prolonged SE is not required for an animal to 

become epileptic. They demonstrate that even after not having experienced SE still, 

lesioned animals develop SRS after latent periods of up to a year.  

 

SE models are widely used to study TLE, as they closely mimic the changes occuring 

in human mesial TLE, even though animal models may produce extensive brain 

damage. Indeed, severe brain damage and animal mortality during the induction are 

serious disadvantages and problems of these models. Klitgaard and colleagues 

(2002) report that in pilocarpine model minimum 30 min SE is necessary for SRS 

development later on, however, the longer the SE period is, the more extensive 

cellular death is observed (Inoue et al., 1992). It is known that SE might be difficult to 

control, and it is further exacerbated by the variability in sensitivity towards 

convulsant agents among animals. These factors often result in high animal mortality. 

On the other hand, reducing the dose of an agent most of the times leads to a low 

success rate, therefore, when working with these models, it is essential to find the 

right balance.      
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4.1.1.4.1. KA-induced SE model of epilepsy 

In 1978 Nadler and colleagues discovered that focal injection of KA induced seizure 

and neuropathological changes in the hippocampus. This model became a powerful 

tool in the epilepsy field. KA-induced epilepsy in animals closely resemble acquired 

human epilepsy and TLE condition, sharing the same morphological alterations such 

as significant neuronal death, hippocampal gliosis, and axonal sprouting (Wieser et 

al., 2004). Furthermore, a similar etiology was documented in humans, when an 

outbreak of amnesic shellfish poisoning took place in Canada in 1987. Acute domoic 

acid (a KA analogue) poisoning resulted in affected people exhibiting various seizure 

manifestations from chewing and grimacing to a prolonged SE (Teitelbaum et al., 

1990; Cendes et al., 1995). The patients who had undergone SE had a seizure-free 

period of about a year before developing TLE (Cendes et al., 1995). The postmortem 

examinations of patients with fatal outcome revealed specific neuropathological 

changes in the hippocampus and amygdala, similar to KA-induced damage in 

animals (Teitelbaum et al., 1990).  

4.1.1.4.2. Pilocarpine/Li-pilocarpine model of epilepsy 

The pilocarpine model of chronic epilepsy was first described by Turski and 

colleagues in 1983, and since then has been used extensively as a model of human 

TLE. The fact that pilocarpine-induced epilepsies demonstrate circuit reorganisation 

in limbic structures (e.g. the loss of interneurons, mossy fibre sprouting and reactive 

gliosis) and are poorly controlled by AEDs further supports the use of this model for 

exploring TLE (Wieser, 2004; Glien et al., 2002; Chakir et al., 2006). Studies show 

that pilocarpine produces its epileptogenic effects via M1 mAChr, since seizures can 

not be induced with pilocarpine in M1 receptor KO mice (Hamilton et al., 1997). 

Furthermore, administration of atropine prior to SE induction is able to prevent the 

development of seizures (Clifford et al., 1987). Interestingly, atropine loses its 

effectiveness once the seizures are initiated, suggesting that their maintenance relies 

on mechanisms other than muscarinic receptor activation (Clifford et al., 1987). 

Extensive research on the mechanism of pilocarpine effects has been conducted for 

years now, and it has been summerised by Cavalheiro et al. (2006) and presented in 

Fig. 4.1. When examining the whole picture, it becomes clear that pilocarpine triggers 

a massive cascade of reactions in neurons and glial cells. These reactions affect 

signal transduction pathways, ionic concentrations, receptor and neurotrasmitter 
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activity, and inflamation, which lead to increased excitability, development of SE, 

cellular death and neuronal reorganisation.  

 

Many epilepsy models, including the pilocarpine model, initially induce SE, which 

progresses through the Racine stages, culminates in generalised tonic-clonic 

seizures and persists for hours before spontaneously subsiding. Before and during 

SE, EEG recordings initially demonstrate theta rhythm in the hippocampus, which 

turns into large amplitude and high frequency activity, as the seizures worsen. Later 

on, high voltage spiking appears prior to seizures, hence both ictal and interictal 

activity can be observed on the EEG. Once SE remits, the EEG goes back to normal. 

Studies suggest that the epileptiform activity originates in hippocampus and spreads 

to the amygdala and the cortex (Turski et al., 1983).     

 

The SRS phase is characterised by the occurrence of spontaneous seizures, which 

begin with partial seizures such as staring, oroalimentary auromatism, forelimb 

clonus and later turn into generalized seizures, incuding bilateral forelimb clonus, 

rearing, falling and tonic-clonic seizures (Veliskova, 2006; Goffin et al., 2007). It has 

been noted that SRS appear in a cyclic manner every 5–8 days (Goffin et al., 2007). 

EEG manifestations include bursts of spikes originating in the hippocampus and 

propagating to the cortex; ictal activity is followed by interictal activity with 

suppressed background activity with spikes (Cavalheiro et al., 1991). "
 

Since the pilocarpine model of epilepsy has been in use for decades now, it has 

inevitably undergone modification and improvement. Different research groups add 

their own components and change the protocol according to desired outcomes. One 

of the most popular modifications of the model is administration of Li 24 h prior to 

pilocarpine induction (Honchar et al., 1983). It was suggested that Li and pilocarpine 

exert synergistic effects, increasing inositol 1,4,5-trisphosphate (IP3) production and 

subsequent acetylcholine (ACh) release and mAChr signalling (Honchar et al., 1983; 

Jope et al., 1986). Administration of Li allows reducing the dose of pilocarpine from 

300–400 mg/kg to only 30 mg/kg. The models seem to be indistinguishable in all their 

parameters, apart from increased sensitivity to pilocarpine and increased success 

rate (Clifford et al., 1987; Goffin et al., 2007). Despite all its advantages, the Li-

pilocarpine still caused very high (>90%) mortality among the animals (Jope et al., 
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1986; Morissett et al., 1987). To reduce mortality, different methods have been 

suggested, such as repeated injections of low doses of pilocarpine over time and 

shortening SE by termination with drugs (diazepam, pentobarbital and phenytoin).  

 

Neuropathological alterations occurring under the influence of pilocarpine induction of 

epilepsy are similar to those observed in KA-induced model and human TLE. 

Following SE, the changes appear in many areas of the brain, including olfactory 

cortex, the amygdala, hippocampus, thalamus, and neocortex (Turski et al., 

1983a,b). Cell death has been reported in different limbic structures like amygdala, 

subiculum and entorhinal cortex, particular loss of interneurons was found in the 

hippocampus (Turski et al., 1983a,b; Du et al., 1995; Mello and Covolan, 1996; 

Knopp et al., 2005). Neocortex has been reported to undergo significant 

neuropathological changes like sprouting, reorganisation, abnormal morphology, 

reactive gliosis, disruption of cortical organisation, and reduction in the cortical 

thickness (Sanabria et al., 2002; Silva et al., 2002). It is still not clear what role those 

changes play in the reorganisation and seizure development, since sprouting can 

occur without extensive cell loss, and epileptogenesis itself has been suggested to 

occur without neuronal damage (Zhang et al., 2002). This observation can be true, 

since there is a minority of TLE patients without gross histopathological changes 

(Margerison and Corsellis, 1966; Lehericy et al., 1997; Liu et al., 2002; Jackson et 

al., 2004; and other). 

 

Much effort has been put into trying to unravel the mechanism(s) of epileptogenesis. 

Different theories have been proposed and explored, including reduction in synaptic 

inhibition, increase of excitation, and changes in receptors and ion channels (for 

review see Dudek et al., 2006). Researchers have employed a variety of in vitro and 

in vivo electrophysiological and histological methods in their attempts to disentangle 

mechanisms, however, there is a daunting level of complexity. For example, some 

research groups have been focusing on exploring axonal sprouting and development 

of new recurrent excitatory circuits during epileptogesis (Dudek et al., 2002; Dudek 

and Shao, 2003; Nadler, 2003). Other laboratories have pursued a different path, 

focusing on the possible selective loss of interneurons, leading to subsequent 

disinhibition of pyramidal cells (Best et al., 1994; Morin et al., 1998; Buckmaster and 

Jongen-Relo, 1999). In their review, Bernard and colleagues (2000) reasonably point 
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out that alterations observed in the brain are area-, pathway-, time- and model-

specific, which adds an incredible number of variables that have to be taken into 

account when researching in this field. On the one hand, it would be extremely 

helpful to have a unified model of epilepsy. On the other hand, so much variability 

exists among the human epilepsy itself, that it may justify the existance and usage of 

different animal models. Finally, identifying the mechanisms/findings that are 

common across models could potentially be the most fruitful approach.  

4.1.2. Epilepsy in human brain slices in vitro 

A handful of laboratories around the world explore mechanisms underlying epilepsy 

in a preparation of human brain slices. The tissue is usually obtained from surgical 

resections of epileptogenic brain foci in patients with pharmacoresistant epilepsies, 

most commonly mesial TLEs. Significant amount of information on the human brain 

tissue physiology has been accumulated thanks to the works of Köhling, 

Schwartzkroin, Avoli, Miles, Cunningham and others. A variety of electrophysiological 

techniques, including intracellular and field potential recordings (commonly utilising 

multielectrode arrays), have been used to study ionic concentrations, voltage-gated 

currents, cellular, synaptic, and network properties of epileptic human brain tissue 

(Köhling et al., 2006). Apart from electrophysiological techniques, a wide range of 

histochemical and immonochemical, optical imaging and pharmacological methods 

have been implemented as well. Despite best efforts, human brain slices do not 

exhibit spontaneous epileptiform activity, however, electrical and pharmacological 

stimulation, as well as changes of ionic concentration were found to elicit epileptiform 

activity (Masukawa et al., 1989, Avoli et al., 1991; Hwa et al., 1991, Avoli et al., 

1994). 

    

One of the greatest advantages of this specimen compared to the models discussed 

previously is the true nature of human epilepsy. The findings derived from the 

epileptic human tissue would never be under the attack of animal model criticism or 

skepticism regarding the actual relation to human disease. However, together with 

strengths, certain limitations of this prepration exist. Firstly, it is extemely difficult to 

obtain non-epileptic human brain tissue to use as a negative control. Researchers 

have, however, sometimes used tumour resections or healthy tissue taken to gain 

access to deep epileptic areas. Secondly, resected tissues are always minimised in 
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size and often do not contain preserved networks, which might be crucial in the 

context of epilepsy. Possibly due to these reasons, little or no spontaneous ictal 

activity has ever been observed in epileptic human brain slices. Thirdly, access to 

this kind of material is usually limited and only a small number of laboratories have 

the opportunity conduct human tissue research.          

4.1.3. Necessity for improvement and refinement 

 “The sheer mass of data now available on the subject of temporal lobe 

epilepsy is emblematic of the modern problem of having so much information 

on any given subject that it is significant conceptual challenge to separate 

facts from notions, associations from causes, and to discriminate between the 

possibly important and the probably unimportant. The enormous information 

now available to us, taken together with the natural desire we have to get clear 

and unambiguous answers to all of the questions we ask, makes simple 

answers appealing, and may explain, in part, the general hesitancy we have to 

admit that we may know far less than we actually do”.  (Sloviter 2005) 

 

After decades of researching epilepsy, it appears that we are still in the very 

beginning of our understanding. Numerous discrepancies and inconsistencies arising 

from epilepsy animal research prevent it from moving forward. The use of a wide 

array of different seizure and epilepsy models, which are time- and cost-effective, but 

which often fail to reflect the natural history of epilepsy only further exacerbates the 

problem. All models of seizures and epilepsy undoubtedly demonstrate both 

advantages and disadvantages. For instance, kindling and focal lesioning are known 

to be less severe, compared to systemic injections of proconvulsants. Systemic 

injections, on the other hand, allow a “self-selection” of brain regions most vulnerable 

to seizures. Despite this advantage, some systemic protocols may involve a very 

intense and/or prolonged seizure activity resulting in a severe neuronal damage all 

over the brain, which is not found in the majority of epilepsy patients, hence, is not a 

prerequisite for idiopathic epilepsy. Sloviter (2005) has questioned the validity of 

epilepsy models that rely upon prolonged SE for the induction of the disease. The 

amount of research conducted and infomation accumulated over the past years 

compared to the overall progress made suggests the necessity of employing a 

multidisciplinary approach, with active integration of existing models with the only 
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truly epileptic material i.e. human brain tissue. The adoption of 3Rs (Reduction, 

Refinement and Replacement of animals) principles into the research ethics 

framework of many EU and non-EU nations has provided an encouragement to seek 

more refined animal models that not only reduce animal usage and suffering but also 

aim to improve the scientific basis for models through, for example, closer homology 

to the natural history of a disease (Russell and Burch, 1959).     

             

The disadvantages of existing epilepsy models encouraged us to attempt to improve 

the Li-pilocarpine model to mimic the human condition more closely. The severity of 

existing models and the extent of neuropathological brain damage were the key 

factors that required  refining, as pointed out by Sloviter (2005, 2008). As mentioned 

earlier, high animal mortality also remains an important issue, as it undermines both 

ethical priciples, as well as physiological relevance of the model. Therefore, we 

developed a model of acquired TLE with a better control of induced SE and, thus, 

minimised brain damage and mortality. We characterised it in behavioural and in vitro 

studies, demonstrating that the refined model is of low severity, yet high morbidity, 

which makes it a good tool to explore the mechanisms of epileptogenesis.  

   

4.2. Results 

4.2.1. Model refinement 

The current Li/low-dose pilocarpine epilepsy model is based on a modified version of 

the model originally described in rats by Glien et al. (2001). The original model 

involved a pre-dose of Li 24 h prior to repeated (30 min intervals) low doses of 

pilocarpine. The reduced-intensity status epilepticus (RISE) model described and 

utilised here employs a similar protocol but combines this with administration of the 

sedative and muscle relaxant drug, xylazine, during the acute seizure phase and 

rapid termination of the acute seizure phase with an anticonvulsant/antiepileptic 

cocktail.   

 

The original studies used high-dose pilocarpine (300–400 mg/kg) model, which was 

very common and was associated with the development of a full syndrome, yet with a 

very high mortality (Turski et al., 1983b, 1989; Cavalheiro et al., 1991; Liu et al., 
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1994). Honchar and colleagues (1983) discovered that administration of relatively low 

doses of pilocarpine to Li-treated rats produced sustained limbic seizures. Li was 

found to have a potentiating effect on pilocarpine-produced seizures, when pre-

administered 24 h before pilocarpine (Honchar et al., 1983; Jope et al., 1986; Clifford 

et al., 1987). Studies have reported that Li-pilocarpine model produces similar 

behavioural and electrographic seizures, as well as neuropathological changes, as 

those seen in animals treated only with high doses of pilocarpine, but appears to be 

more consistent in seizure onset latency and success rate (Jope et al., 1986; Clifford 

et al., 1987). Hence, the Li-pilocarpine model of chronic epilepsy was used as a 

foundation for the current model. After predosing with Li (127 mg/kg), we used 30 

mg/kg pilocarpine (s/c) to induce SE. Α-methylscopolamine was administered (s/c) 

prior pilocarpine to block peripheral cholinergic effects like piloerection, salivation, 

tremor and diarrhoea. Once the animals experienced two periods of stage 4–5 

Racine scale seizures, behavioural seizure manifestations and clonic muscle 

contractions were attenuated by administration of a low dose (2.5 mk/kg) of the 

central muscle relaxant xylazine (Yang et al., 2006; Thompson et al., 2007). 

Administration of xylazine helped minimise animal suffering and the severity of the 

model. Glien and colleagues (2001) conducted a study showing that the majority of 

animals exhibit SRS even after 1h of SE, which is significantly shorter than used by 

some laboratories (Lemos and Cavalheiro, 1995). Therefore, to reduce 

neuropathological damage and animal suffering, after 1h of xylazine-modified SE, a 

STOP cocktail containing diazepam (allosteric modulator at GABA-Ar 

benzodiazepine site), MPEP (mGluR5 antagonist), MK-801 (selective and non-

competitive NMDAr antagonist) and ethanol was administered s/c to terminate SE, as 

diazepam and MK-801 are known to produce anticonvulsant effects (Walton and 

Treiman, 1988, 1991; Ormandy et al., 1989). The rats were recovering during the 

next 6 h and were back to normal within 24 h. Close monitoring of animals during the 

recovery period was a critical condition for high survival of animals after lesioning.  

4.2.1.1. Low mortality and high morbidity 

The current model of chronic epilepsy has been tested on a total of 396 rats, which 

resulted in 12 losses during initial SE and 39 animals were sacrificed for health and 

welfare reasons. Once the model protocol was fully established from a total of 196 

rats only 2 losses were recorded, showing a very low mortality rate (~1%) across the  
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Figure 4.2. SRS frequency is variable and follows a weekly cycle.  A. Distribution of 
weekly seizure frequency as observed during video monitoring (n=10). B. Mean daily seizure 
frequency of animals during the recording period, data are expressed as mean ± S.E.M. 
(n=10). 
 

two laboratories in which it has been used. Overall, using a combination of Li-

pilocarpine and decreasing the duration of SE to only 1 h, resulted in a lower 

mortality rate during and after SE, when compared to previous reports: 40–50% 

(Glien et al., 2001; Turski et al., 1989) and 50–80%  (Jope et al., 1986). In order to 

determine the fraction of animals undergoing SRS, our collaborators from Reading 

University used behavioural assessment discussed below) and demonstrated that 

40–100% of surviving animals in any cohort (mean 69% overall) successfully 

developed SRS.     After it was confirmed by PSBB (see below) and video monitoring 

that animals exhibited SRS, the group in Reading explored the course of SRS 

development in behaviourally monitored animals (n=10). The results showed a large 

variability of seizure occurrence among the animals (range: 1–37; mean: 8.1 ± 3.5 

seizures per week), however the frequency of seizures also varied in a characteristic 

periodic way peaking every 5–7 days (Fig. 4.2). It should be noted that the observed  

animals were from different batches and exhibited SRS at different times. Hence the 

rats were video monitored on different schedules, which made it impossible for any 

external factors to interfere with these results.  
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4.2.2. Behavioural studies  

SRS detection and assessment are associated with time-consuming continuous 

video monitoring or implantation of electrodes for continuous electrographic 

monitoring for seizures. Addressing this issue, our colleagues in Reading University 

designed a series of behavioural tests (PSBB) to confirm the occurrence of SRS in 

animals exposed to the RISE model of chronic epilepsy. Previous studies revealed 

that epileptic animals showed signs of hyperexcitability and aggression in 

comparison to healthy controls (Rice et al., 1998; Polascheck et al., 2010; Huang et 

al., 2012). The PSBB used by our colleagues was based on the behavioural battery 

introduced by Moser (1988) and adapted by Rice et al. (1998). The PSBB included 

the touch task (gently nudging the animal with a blunt instrument) and the pickup task 

(picking up the animal by grasping around the body), responses to which were rated 

according to the scale in Table 4.1.  

Table 4.1 PSBB tasks. 

Score Touch task Pickup task 

1 No reaction Very easy pickup 
2 Rat turns toward instrument Easy pickup with vocalisation 

3 Rat moves away from instrument Some difficulty in pickup (rat rears 
and faces the hand) 

4 Rat freezes Rat freezes 
5 Rat turns toward the touch Difficult pickup (rat moves away) 

6 Rat turns away from the touch Very difficult pickup (rat behaves 
defensively or attacks the hand) 

7 Rat jumps (with or without 
vocalisation) - 

 

Our collaborators video monitored and PSBB assessed 8 animals during latent and 

SRS periods. It was confirmed by video monitoring that 6 out of 8 studied animals 

exhibited SRS. The results of PSBB revealed that epileptic animals consistently 

showed high PSBB scores in both tasks (touch x pickup: 12.6 ± 1.4; pickup time bin: 

4.2 ± 0.2; n=6), in contrast to age-matched controls (AMC) that demonstrated 

significantly lower scores (touch x pickup: 1.3 ± 0.1; pickup time bin: 1.1 ± 0.0; n=12). 

Animals that did not develop SRS following the induction exhibited PSBB scores that 

were between fully epileptic and AMC (touch x pickup: 5.2 ± 0.8; pickup time bin: 3.4 

± 0.3). Based on the obtained results, our colleagues developed the criteria that  
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Figure 4.3. Behavioural measurements of epilepsy following induction.  A. The 
percentage of animals meeting PSBB criteria at various weeks post-induction (n=31). B. 
Touch x pickup and C. time bin pickup PSBB scores of animals having undergone status 
epilepticus induction (n=37) and age-matched controls (criteria met/seizure observed, n=13; 
criteria met/no seizure observed, n=18; criteria not met/no seizure observed, n=6; control, 
n=12). D. Correlation between pilocarpine dose administered during SE dose and the week 
animals met PSBB criteria. A Spearman’s rank analysis was conducted showing no 
statistical correlation (p>0.05; n=31). 
 

would help easily identify animals in the SRS stage: touch x pickup score is >10 or 

time-bin pickup score is ≥4 for 4 consecutive trials. According to this scale, 83% of 

animals with confirmed SRS fulfilled these criteria and none of the non-epileptic 

animals did so. These findings indicate the possibility of false negative, however not 

false positive, results. 

 

Using PSBB criteria assessment, the Reading group determined the duration of the 

seizure-free latent period. The results showed that, following a successful SE 

induction (n=37), 84% of the animals fulfilled the SRS criteria by 12 weeks post-SE. It 

was revealed that a large number of animals developed SRS within 4 and 5 weeks 

post-induction (48% and 23%, respectively) [Fig. 4.3]. When compared to AMC 

(n=12), all the animals that fulfilled the SRS criteria showed a significantly higher 

PSBB score (p<0.001). It is worth mentioning that even though no significant 

difference was observed between non-epileptic rats (not meeting the SRS criteria) 

and AMC (p>0.05), non-epileptic ones showed greater variability in scores. This 

could indicate individual differences in the speed of SRS development in those 
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animals (e.g. >12 week). The findings described here validate the use of PSBB 

independently of visual monitoring for identification of SRS. It was also investigated 

whether the dose of injected pilocarpine during the induction could influence the 

duration of the latent period, however, no significant correlation was observed 

(p>0.05). 

4.2.3. In vitro studies in the hippocampus 

Following a period of RISE not exceeding 60 minutes, we sacrificed animals and 

made recordings at specific time points PSE 24h, PSE 7d, PSE 6wks, PSE 90d. We 

made horizontal brain slices containing both hippocampus and EC (Jones and 

Heinemann, 1988), cut such that connections around the extended circuitry remained 

intact. These two regions are known to be heavily involved in and affected by TLE. 

Recordings were made in the hippocampal area CA3 at the indicated time-points in 

order to track the progress of epileptogenesis and to monitor the functional state of 

neuronal networks in CA3. During the post-insult development of SRS, we noted 

clear differences between the activities of neuronal networks relevant to TLE. 

4.2.3.1. Morphology and staining 

High doses of inducing agents and prolonged SE in traditional unrefined models of 

epileptogenesis are known to induce gross neuropathological damage, which do not 

necessarily reflect changes occurring in human epilepsy (Sloviter, 2005). We 

compared horizontal brain slices taken from animals that underwent epilepsy 

induction (PSE 24h, PSE 7d, PSE 90d) to those from AMC. When viewed with IR-

DIC optics, both healthy and lesioned hippocampal slices showed no severe cell loss 

in hippocampal CA3 region. Slices from animals that, for the reasons of individual 

hypersensitivity, exhibited severe and difficult to control SE exhibited clear 

microhemorrhages, which appeared in the piriform, perirhinal, entorhinal cortices and 

the hippocampus (Fig. 4.4E,F). The hemorrhages were visible to the naked eye and 

were not removed by transcardial perfusion, indicating that those areas could be 

ischemic in the live animal. The slices taken from severe cases of SE and studied 

under the microscope did not present viable tissue either; it appeared inflamed, 

rough and had no cells. When rats received higher doses of pilocarpine (37.5 mg/kg 

compared to 25 mg/kg), it has a pronounced effect on the temporal lobe, when 
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explored PSE 24h. The ventral part of the temporal lobe exhibited significant tissue 

sclerosis (Fig. 4.4C,D).  

 

Generally, no significant differences were observed in the morphology of CA3 

pyramidal cells between PSE 24h and AMC animals (Fig. 4.4A,B). It was a challenge 

to preserve CA3 area in adult slices from both epileptic and control animals, as the 

region becomes very sensitive to any external intervention, especially mechanical 

damage. Our collaborators from Newcastle University performed a histological 

analysis of the brains of epileptic rats and demonstrated that there was no gross cell 

loss in the CA3 region in PSE 90d (data not shown). Overall, we showed that our 

model demonstrated reduced severity due to high survival rate and low 

neuropathological damage, yet high morbidity due to the good success rate of 

animals developing SRS.        
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Figure 4.4. Morphology of epileptic brains.  A. and B. Images of control and PSE 24h 
hippocampal CA3 region. C. and D. PSE 24h brain of an animal that had undergone severe 
SE (signs of sclerosis). E. and F. Sections of PSE 24h brain after a severe SE (visible 
microhemorrhages) and a healthy brain, respectively.    
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4.2.3.2. SγO in healthy and epileptic rats 

4.2.3.2.1. 24h post-SE 

Earlier in this report I described SγO occurring in the hippocampal CA3 region in the 

absence of any pharmacological stimulation (see Chapter 3). We investigated 

whether SγO was altered in the slices of animals that had undergone epilepsy 

induction or whether spontaneous activity was present. We tested the functional 

capability of hippocampal network at PSE 24h in rats that were recovering from the 

initial insult and exhibited breakthrough seizures. In healthy AMC brain slices SγO 

were routinely recorded from CA3 region and had mean peak frequency 28.0 ± 0.9 

Hz and mean peak power 46.1 ± 10.46 µV2 (n=17). When recordings were made 

from PSE 24h slices, SγO were also routinely observed and has mean frequency 

30.5 ± 1.1 Hz and mean peak power 36.6 ± 10 µV2 (n=18). Typical SγO data from 

PSE 24h and AMC are shown in Fig. 4.5A,B. The time-frequency characteristics 

were assessed by constructing Morlet-wavelet spectrograms and comparing them for 

PSE 24h and AMC (Fig. 4.5C,D). The results showed a similar profile of gamma 

oscillatory activity in both conditions, however, in PSE 24h a richer mix of low and 

high frequency rhythmic activity was observed in CA3 region. When pooled data from 

17 AMC and 18 PSE 24h recordings were compared (Fig. 4.5G,H), no significant 

differences were found in mean peak power or mean peak frequency values (p>0.05, 

Mann-Whitney test). In order to determine the stability of periodic spontaneous 

network activity over time, we computed the autocorrelation function for short (1.6 s) 

epochs of gamma activity in CA3. Under control conditions, the mean peak 

autocorrelation function was 0.23 ± 0.04, and this was significantly higher than that 

determined at PSE 24h (0.15 ± 0.04; p< 0.05, unpaired t-test, n=20). 
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Figure 4.5. At PSE 24h LFP recordings show SγO and fast bursts in CA3.  A. and B. 
Examples of unfiltered raw traces from AMC and PSE 24h, respectively. C. and D. Example 
Morlet wavelet spectra and power spectral density plots of the same traces, white dotted 
lines on spectra indicate 20-60 Hz pseudofrequency band. E. and F. Representative power 
spectra for AMC and PSE 24h, respectively. G. and H. Pooled peak frequency (G) and peak 
power (H) for AMC and PSE 24. 
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4.2.3.2.2. 7d post-SE 

Together with early post-induction period studies, we performed similar investigations 

at PSE 7d slices, which corresponded to the early seizure-free latent period.  At this 

stage, SγO could be recorded in slices from both PSE 7d and AMC animals. The 

power of SγO was similar between groups (mean peak power 44.61 ± 10.12 µV2 

[n=12] in AMC vs. 44.39 ± 7.94 µV2 [n=10] in PSE 7d, p>0.05), as was the mean 

peak frequency (30.40 ± 1.19 Hz [n=12] in control vs. 29.81 ± 0.80 µV2 [n=10] in PSE 

7d, p>0.05), which is illustrated in Fig. 4.6. Despite the similarities in the static power-

frequency parameters, more dynamic data representations involving the time 

component (raw traces and Morlet-wavelet spectrograms) still demonstrated a 

tendency towards less stable network oscillatory activity (Fig. 4.6C,D), although 

comparison of the mean peak autocorrelation function did not quite reach 

significance (AMC 0.19 ± 0.02 [n=12] vs. PSE 7d 0.13 ± 0.02 [n=10]; p>0.05). 

Analysis of SγO in PSE 7d slices showed partial recovery of the hippocampal 

network from the altered state seen at PSE 24h. These results again indicated that 

CA3 remained functional at this point of epileptogenesis. 
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Figure 4.6. SγO in CA3 at PSE 7d.  A. and B. Examples of unfiltered raw traces from AMC 
and PSE 7d, respectively. C. and D. Example Morlet wavelet spectra and power spectral 
density plots of the same traces, white dotted lines on spectra indicate 20–60 Hz 
pseudofrequency band. E. and F. Representative power spectra for AMC and PSE 7d, 
respectively. G. and H. Pooled peak frequency (G) and peak power (H) for AMC and PSE 
7d. 
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4.2.3.2.3. 6-8 wks post-SE 

As mentioned before, the length of the latent period varies significantly between 

animals, and this was also observed between laboratories using the same protocol. 

Thus, rats in Reading were mostly epileptic by 4-5 weeks, whereas it took around 6-8 

weeks for the rats to develop SRS in Birmingham. In both cases, however, the 

majority of rats exhibited SRS at PSE 90d, as assessed by PSBB and/or behavioural 

monitoring. Following the plan of comparing epileptic animals at various points of 

epileptogenesis to AMC, we examined CA3 activity in vitro during the 6-8 weeks 

post-induction (PSE 6wks), which corresponded to the latent period. Our results 

showed that SγO could be routinely observed in hippocampal CA3 in both PSE 6wks 

and AMC animals, demonstrating that oscillatory activity remained intact at this stage 

of epileptogenesis. Fig. 4.7A,B shows typical recordings from PSE 6 wks and AMC 

slices. SγO recorded under these conditions had a mean peak power of 25.2 ± 9.9 

µV2 (n=14) in control slices, as compared to 12.5 ± 6.2 µV2 (n=13) in PSE 6wks 

slices. Statistical analysis revealed significant differences in the mean peak power of 

SγO between the two conditions (p<0.05), demonstrated in Fig. 4.7G,H. The mean 

peak frequency values were very similar in both conditions (34.7 ± 0.9 Hz [n=14] in 

control vs. 34.7 ± 1.8 Hz [n=13] in PSE 6wks, p>0.05). Interestingly, when the peak 

autocorrelation function was analysed, the mean value for SγO autocorrelation at 

PSE 6wks appeared to be significantly higher than control values, despite its low 

oscillatory power (0.19 ± 0.02 [n=14] vs. 0.10 ± 0.02 [n=13], respectively; p<0.01). No 

spontaneous epileptiform activity was found in recordings during this period, 

indicating that CA3 remained functionally intact and further suggesting that the model 

did not grossly damage circuits in this region. 
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Figure 4.7. SγO in CA3 during PSE 6wks. A. and B. Examples of unfiltered raw traces 
from AMC and PSE 6wks, respectively. C. and D. Example Morlet wavelet spectra and 
power spectral density plots of the same traces, white dotted lines on spectra indicate 20-60 
Hz pseudofrequency band. E. and F. Representative power spectra for AMC and PSE 6wks, 
respectively. G. and H. Pooled peak frequency (G) and peak power (H) for AMC and PSE 
6wks. 
  



116"
"

4.2.3.2.4. 90+d post-SE 

We further investigated the properties of hippocampal networks in epileptic rats by 

comparing recorded SγO from hippocampal CA3 of PSE 90d and AMC. At this point, 

the rats exhibited SRS and were considered fully epileptic. In rats now weighing 400-

500g, CA3 was again spontaneously active generating similar SγO (mean peak 

power 65.7 ± 11 µV2 at 36.7 ± 0.9 Hz, n=18) to those observed in controls (mean 

peak power 84.3 ± 23.8 µV2 at 36.3 ± 0.9 Hz, n=14). The differences in frequency 

and power between PSE 90d and AMC were statistically non-significant. The results 

suggested that in epileptic rats CA3 again remained functionally intact. Fig. 4.8 

shows typical spontaneous gamma activity in CA3 recorded in PSE 90d and AMC 

slices. The time-frequency analysis also revealed strong similarity between activity 

recorded in control and epileptic animals (Fig. 4.8C,D). Neither of the recordings from 

epileptic rats demonstrated spontaneous ictal activity. Many slices, however, showed 

SγO with superimposed high frequency activity (Fig. 4.8B).   
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Figure 4.8. SγO in CA3 during PSE 90d. A. and B. Examples of unfiltered raw traces from 
AMC and PSE 90d, respectively. C. and D. Example Morlet wavelet spectra and power 
spectral density plots of the same traces, white dotted lines on spectra indicate 20-60 Hz 
pseudofrequency band. E. and F. Representative power spectra for AMC and PSE 90d, 
respectively. G. and H. Show pooled peak frequency (G) and peak power (H) for AMC and 
PSE 90d. 
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Figure 4.9. VFO as a biomarker of increased excitability in PSE 24h and PSE 90d.  

 A. Unfiltered raw trace from PSE 24h with an episode of VFO of 120 Hz and the power 
spectrum of VFO. B. Unfiltered raw trace from PSE 90d with an episode of VFO. 

 

4.2.3.3. VFO as a biomarker of epilepsy 

VFOs have been implicated in epilepsy, as they have been found to appear at the 

onset of seizures and during the interictal period (Fisher et al., 1992; Bragin et al., 

1999a,b; Traub et al., 2001b; Grenier et al., 2003). In our experiments, when PSE 

24h slices were studied for spontaneous hippocampal activity, together with SγO 

episodes of transient VFO were recorded. The bursts of fast oscillations (range 136–

670 Hz, n=13) were notable at intervals ranging from 0.6–8.8 seconds. An example 

of VFO superimposed on SγO is shown in Fig. 4.9. Occasionally, VFO could be 

observed on top of gamma frequency oscillations (both spontaneous and 

pharmacologically-induced gamma) in control animals, however this feature was 
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more prominent in slices from animals that had undergone epilepsy induction. VFO 

were also observed along with SγO in slices from epileptic rats (PSE 90d), 

suggesting a correlation between VFO occurrence and seizure manifestations. 

Example traces from PSE 90d are presented in Fig. 4.9.   

4.2.3.4. Ictal and interictal activity in CA3  

During the observation of rhythmic activity in the hippocampus throughout different 

stages of epileptogenesis, ictal activity has been infrequently recoded from both CA3 

and EC, although at different time points post-SE. Hippocampal seizures were 

observed spontaneously during PSE 24h, while PSE 90d exhibited large interictal 

events in the presence of 100 nM KA. The early period seizure occurred in one slice 

during a simultaneous recording of SγO with 4 electrodes (Fig. 4.10). An ictal 

episode consisted of high amplitude sharp rhythmic activity in the high gamma 

frequency range superimposed on a slow wave, followed by a transient abolition of 

synaptic activity followed by afterdischarges, after which the normal, pre-ictal gamma 

returned. Despite the poor quality of the recording, the lag between the 4 sites was 

obvious. The results suggest that seizure activity was initiated in one site and then 

propagated  further across the area (4->1).    

 

The duration of the episode was around 70 s, it started with a high-amplitude high 

frequency (~50 Hz) discharge with a large slow wave followed by a period of 

quiescence for approximately 30 s, after which large-amplitde afterdischarges 

appeared (Fig. 4.10). A type of interictal events emerged in the CA3 of PSE 90d 

slice, however, it occurred in the presence of 100 nM KA (Fig. 4.11). The events 

consisted of a slow wave with superimposed highly-synchronous discharges (100 

Hz). Although the occurrence of epileptiform activity during PSE 24h and PSE 90d 

was in line with the stages of epileptogenesis, their scarcity did not allow us to make 

any valid conclusions on this matter.        
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"
Figure 4.10. Spontaneous ictal activity in the hippocampal CA3 region in PSE 24h.  

A. Raw traces from 4 recording electrodes positioned in CA3 (CA3c->CA3a top to bottom 
trace) of one PSE 24h slice. Clear seizure propagation through CA3 is demonstrated. 
Enlarged traces show slow high-amplitude afterdischarges at the end of an ictal event and an 
episode of high-amplitude high-frequency rhythmic discharge at the onset of a seizure 
(representative power spectrum presented in B).   
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Figure 4.11. Interictal activity in the hippocampal CA3 region in PSE 24h.  A. Raw trace 
from PSE 90d slice in the presence of 100 nM KA and a high-amplitude high-frequency 
gamma discharge (representative power spectrum presented in B). 

4.2.3.5. Spontaneous ictal activity in the mEC in PSE 7d 

PSE 7d slices spontaneously exhibited episodes of ictal activity, suggesting the 

involvement of mEC in the process of epileptogenesis. Seizures consisted of a high 

gamma frequency (multiple 70–100 Hz) sharp discharge superimposed on a slow 

wave followed by large amplitude afterdischarges, as illustrated in Fig. 6.16. SWO 

reappeared 10 mins after the seizure.  

 

 "
Figure 4.12. Spontaneous ictal events in layers II/III mEC in PSE 7d slices.  A. and B. 
Raw traces showing spontaneous ictal events in PSE 7d slices. Below high-pass filtered (>5 
Hz) raw traces showing high-frequency rhythmic activity.  
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4.3. Discussion  

4.3.1. Model refinement 

The current model of chronic epilepsy is a modified version of low-dose Li-pilocarpine 

model described by Glien et al. (2001). Model refinement reduced mortality from 

uncontrollable seizures during the initial insult and minimised the exhausting effects 

of prolonged seizures, which further reduced mortality during the recovery period. 

Together with low mortality, the model maintained high morbidity, as the majority of 

rats undergoing epilepsy induction developed SRS within 3 months.    

One of the main refinements employed in RISE was the use of central muscle 

relaxant xylazine, which has been reported previously by Yang et al. (2006), 

Thompson et al. (2007). The effects of xylazine were most likely associated with its 

action at the central alpha-adrenergic receptors. Joy and colleagues (1983) 

described the effects of xylazine in seizures as dose-dependent pro- and 

anticonvulsant (0.3 mg/kg and 3–20 mg/kg, respectively). In addition to any direct 

effects of xylazine on seizure threshold or ongoing activity in vulnerable neuronal 

networks, xylazine also exerted sedative and muscle relaxant effects, which seemed 

to work effectively in reducing the intensity. At the dose used during RISE, xylazine 

produced sedation, locomotor hypoactivity and ataxia, successfully curtailing 

behavioural manifestations of SE. In humans, non-convulsive SE has been 

associated with lower mortality, in comparison to clinically manifested SE (Tatum et 

al., 2001). Eliminating the convulsive component with xylazine injection may be an 

important factor in reducing mortality by preventing running/bouncing seizures and 

decreasing the chance of secondary generalisation involving subcortical structures 

such as the brainstem (Samoriski and Applegate, 1997).    

Another refinement introduced into RISE was administration of the anticonvulsant 

cocktail in order to terminate SE 1 h after induction. The cocktail contained an 

mGluR5 antagonist, MPEP, a non-competitive NMDAr antagonist, MK-801 and 

diazepam, a benzodiazepine. This combination of drugs has previously been used in 

high-dose pilocarpine studies by Tang and colleagues (2007). The authors 

demonstrated that MPEP, MK801 and diazepam caused an effective cessation of SE 

and subsequent neuronal loss in the hippocampus. We used the same combination 
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of drugs, although a smaller dose of MPEP and a higher dose of diazepam, and 

observed the same effects in low-dose Li-pilocarpine model. The cocktail 

successfully terminated RISE, and, furthermore, little damage was observed in the 

temporal lobe. Together, the reduction of convulsive effects induced by xylazine, and 

the rapid termination of SE radically reduced mortality associated with 

epileptogenesis using the pilocarpine model. 

4.3.2. Reduced mortality in RISE 

High animal mortality of SE epilepsy models is an issue in modern epilepsy research, 

not only due to the ethical element of the problem, but also the aspect of translational 

animal research. Mortality rates are often omitted in the scientific literature, and when 

reported, vary greatly and are usually high (sometimes >90%), even in low dose 

pilocarpine protocols (see Curia et al., 2008). High mortality in traditional models of 

acquired epilepsy has to some extent been associated with prolonged period of SE. 

Sloviter (2005) argued that continuous SE resulted in gross neuropathological 

changes in cortical regions, inflammatory and cerebrovascular lesions, and therefore 

aggressive models failed to mimic the natural history of epilepsy in humans. In the 

RISE model mortality was reduced to a minimum (~1%), yet it did not affect the 

development of epilepsy in lesioned animals (although the progress was relatively 

slow). Moreover, as mentioned before, administration of xylazine decreased seizure 

intensity due to reducing highly metabolically demanding continuous convulsive 

activity during SE. Regarding the animal project licensing and animal welfare, 

previous models of acquired chronic epilepsy have always been categorized by the 

Home Office (UK) as being of ‘substantial’ severity due to the stressful effects of the 

acute induction and the associated mortality. The RISE model has now been 

classified as ‘moderate’ severity. An important point of model improvement is the fact 

that low mortality rate resulted in fewer animals being used overall, thus the RISE 

model clearly fulfilled at least two (refinement and reduction) of the 3Rs. 

4.3.3. Behavioural studies 

Introduction of behavioural assessment methods into the model is a great 

advancement, as it allows determining the progression of epileptogenesis in a quick 

and effective manner, avoiding the laborious long-term video or electrophysiological 

monitoring for seizure onset. Studies carried out by our collaborators in Reading 
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University showed that PSBB scoring system was sufficient in identifying animals that 

had developed SRS. With a large variability in the latent period duration, behavioural 

assessment presents a valuable tool for epilepsy model research and makes the 

study of SRS in this model more feasible and approachable.      

4.3.4. In vitro studies of neuronal networks 

For in vitro investigations, animals were sacrificed for experimental purposes at 

different time points following SE induction, such that we could study the dynamic 

changes of neuronal network function throughout the different stages of 

epileptogenesis. Together with functional studies (LFP), we looked at a general 

survival of cells in epileptic vs. AMC slices. Our findings indicated that the current 

RISE model produced more subtle effects, devoid of neuronal damage, in the 

temporal lobe regions throughout the whole process of epileptogenesis, implying that 

cell loss and damage were not prerequisite for epilepsy development. The results of 

haemotoxylin and eosin staining showed that even at later stages of epilepsy 

development the hippocampus was still a viable healthy-looking structure, which 

again demonstrated that hippocampal lesion was not necessarily a characteristic 

feature of epilepsy. These findings were in line with the study conducted in humans, 

where postmortem histological analysis showed normal looking hippocampus in 48% 

of patients with epilepsy (Margerison and Corsellis, 1966). Other reports also 

revealed that the majority of newly diagnosed epilepsy patients only had minimal 

brain abnormalities and did not show signs of hippocampal sclerosis (Lehericy et al., 

1997; Liu et al., 2002 Jackson et al., 2004 and other). It seems plausible that the 

RISE model in animals is better in reflecting the natural course of human epilepsy. As 

we have observed, slight increase in pilocarpine dose or individual cases with severe 

SE stage caused a remarkable damage to the brain. The severe tissue sclerosis and 

vascular pathologies that we observed showed that the unrefined models were too 

intense/severe to mimic human condition, supporting the views previously expressed 

by Sloviter (2005, 2008).    

4.3.4.1. Early post-insult alterations in network function 

Together with morphological/histological examination, we also measured the 

functional state of the neuronal networks using LFP recording and found that the 

vulnerable CA3 region of hippocampus remained spontaneously active in vitro 
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throughout the development of chronic epilepsy, suggesting strongly that our model 

did not result in wholesale excitotoxic damage to this region. During the early post-

insult stage, although the basic characteristics of SγO were similar in both groups, 

the activity appeared altered compared to AMC, with periodic bursts of VFOs and 

less stable gamma activity. Despite that, the inhibition required to generate coherent, 

SγO activity remained generally intact. VFOs, on the other hand, are known to be 

involved in abnormal epileptogenic mechanisms, as they have been observed during 

the interictal EEG spikes and are thought to be associated with regions 

spontaneously generating seizures (Bragin et al., 1999b; Jacobs et al., 2008). 

Although VFO also appear in healthy controls and relate to normal function of the 

brain, it is believed that high frequency activity is strongly enhanced in epileptic 

brains (Buzsaki et al., 1992; Ylien et al., 1995; Draguhn et al., 1998; Bragin et al., 

1999b; Engel et al., 2009). In our experiments VFO were sometimes observed 

together with gamma oscillations in control rats (both spontaneously and in the 

presence of KA), however, it was more prominent in lesioned rats during early post-

insult stages. The findings could indicate that the hippocampal network was still 

under the effects of SE or breakthrough seizures, suggesting a link between VFO 

and epileptic/ictal activity.  

Throughout the process of epileptogenesis it was extremely difficult to induce any 

epileptiform activity in vitro, let alone to observe it spontaneously. One of the few 

occasions the ictal activity was detected, was in a PSE 24h slice when 4 electrodes 

simultaneously recorded a seizure in CA3 region. Different electrographic seizure 

patterns have been reported in literature, from LFP population spike with associated 

slow wave to low voltage high-frequency activity (Bragin et al., 2005; Kobayashi et 

al., 2005; Bragin et al., 2007). Together with a general examination of an ictal 

episode, these data allowed us a glimpse of seizure propagation phenomenon within 

the CA3. It appeared that hippocampal cells did not discharge synchronously across 

the whole area, but a clear order of firing was present instead. Seizure activity 

propagated from CA3b to CA3a region and was possibly driven by EC/DG inputs or 

originated independently in the CA3 region (Ben-Ari, 1981; Rafiq et al., 1993; 

Barbarosie and Avoli, 1997, Bragin et al., 1997, 1999a; Dzhala and Staley, 2003). 

Although the propagation was clear, we can only hypothesize where the 

epileptogenic focus was and how the activity spread outside the area covered by our 

4 electrodes. It is possible that ictal activity originated in CA3c region and propagated 
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to CA3a, as demonstrated by several seizure models (Colom and Saggau, 1994; 

Dzhala and Staley, 2003). Shi and colleagues (2014) showed the following 

propagation sequence using a multi-electrode array (MEA): EC->DG->CA3c-a->CA1. 

Another study suggested that sharp-wave seizure type emerged in CA3a-b regions 

and spread to CA3c before propagating to CA1 (Csicsvari et al., 2000). Only more 

experiments would shed light on spatiotemporal properties of ictal activity; however, it 

is extremely challenging to record spontaneous seizures in an SE model in vitro in 

the absence of necessary equipment such as MEA. Possibly, like the VFO observed 

in PSE 24h slices, the occurrence of a seizure during the same period could 

characterize enhanced hyperexcitability of the hippocampal network and its 

susceptibility to seizures, as residual effects of the SE experienced by the animal. 

The variability in sensitivity towards seizures among animals could also explain why 

ictal activity was observed only in the minority of slices. Contributing to this might be 

a different way of brain slice preparation, which preserves more cells, in particular the 

PV-positive interneurons, which might reflect the situation in an intact brain. As 

mentioned above, it is difficult to detect spontaneous epileptiform activity even in the 

truly epileptic material, such as human tissue (Gabriel et al., 2004; Huberfeld et al., 

2011). Reduced network connectivity in a brain slice and an increased endogenous 

anticonvulsant effects have been proposed (Heinemann and Staley, 2014).  

4.3.4.2. Neuronal network function during the latent period      

Whilst abnormal neuronal activity can be demonstrated in CA3 as early as 24 hours 

after the initial insult, this activity appears to resolve during the latent period, with the 

area showing relatively normal spontaneous activity. Indeed, SγO recorded from PSE 

7d slices has very similar power-frequency characteristics compared to control slices, 

which shows that the network remains intact and fully functional. One week after SE 

would correspond to the early latent period, when seizures subside, animals are fully 

recovered from initial insult and their behaviour appears normal, which is reflected by 

electrophysiological recordings. As the hippocampus returns to its normal state, 

some undefined changes seem to take place in the EC during this period. Two ictal 

events have been recorded in PSE 7d layers II/III of the mEC in the absence of any 

pharmacological agents, suggesting imbalance between inhibition and excitation 

allowing for a simultaneous discharge of cortical neurons.  
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Further investigation of hippocampal neuronal network function during later stages of 

latent period revealed robust SγO, suggesting the presence of sufficient inhibitory 

and excitatory components to generate spontaneous activity. Of particular interest is 

a significantly lower power of SγO in PSE 6 wks, yet a higher stability of gamma 

oscillation cycle length compared to control slices. A plausible mechanism could be a 

large CA3 network breaking up into small internally synchronised local networks of 

neurons, which could explain a decrease in power and a high degree of oscillation 

stability. Rhythmic hippocampal activity appears normal in the latent period; however, 

this possible fragmentation into smaller networks could play a role in reorganisational 

changes that take place during this period. In the absence of robust global 

connectivity, it is possible that initiated seizures remain focal. Or the fragmentation of 

the network could prevent seizure initiation, as, according to Kramer and colleagues 

(2010), the network shows highest synchronisation at the onset and before the 

termination of a seizure. Therefore, network compartmentalisation could disrupt 

seizure initiation or propagation mechanisms, preventing it from generalisation. 

Determining role of latent period changes in epilepsy development and how they link 

to the absence of seizure activity in this period is yet to be elucidated. Some of the 

further work would include exploring the spatial distribution and phase coupling of 

SγO during the latent period, as a way of evaluating network integrity. 

4.3.4.3. Neuronal network function during SRS period             

Following the development of SRS three months after initial insult, we compared 

spontaneous hippocampal activity to AMC. Strong SγO were again present in both 

groups, demonstrating that even during this period the network remains functional. 

The rhythmic activity regained its power, in comparison to the late latent period. 

Interestingly, concurrent bursts of high frequency activity and gamma rhythm were 

again observed in CA3, resembling the ones observed in PSE 24h slices. These 

findings indicate some similarities between the two periods. Furthermore, ictal-like 

events were observed in CA3 in the presence of KA, suggesting higher seizure 

susceptibility of the tissue. It is debatable whether the observed activity can be 

considered ictal or interictal preceding a seizure, as it consist of a ripple with a slow 

wave and has an element of post-ictal synaptic depression. Previous literature 

described an abruptly occurring population burst as a typical feature of interictal 

epileptiform discharges (Dzhala and Staley, 2003; Dzhala and Staley, 2004). Another 
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study reported this type of activity as a seizure-like event (Gong et al., 2010). 

Recently, the mechanistic differences in the generation of interictal spikes and sharp-

wave ripples have been explored (Karlocai et al., 2014; Gulyas and Freund, 2014). In 

the context of current project, whether the events were ictal or interictal, was not of 

great importance, since they reflected alterations in the network operation and 

excitability regardless of their nature. The change of oscillatory power and the 

occurrence of VFO, as well as ictal-interictal activity, indicate increase in network 

excitability and possibly connectivity that was undermined during the latent period. 

These changes coincide with the appearance of behavioural SRS in animals, 

whether these are linked will have to be determined in the future. Overall, these data 

strongly suggest that processes underlying epileptogenesis can be readily explored 

within the model, and hint that a stepwise process involving multiple neuronal regions 

in the temporal lobe (and beyond) may be involved in the development of SRS. 

4.3.4.4. Ictal activity in the mEC 

Investigation of neuronal network activity in the mEC has revealed two episodes of 

spontaneous ictal activity in PSE 7d slices, demonstrating that EC is implicated in the 

development of chronic TLE, which has been shown in literature (Du et al., 1993; 

Spencer and Spencer, 1994; Du et al., 1995; Schwarcz et al., 2000). The occurrence 

of spontaneous seizures coinciding with the possible upregulation of AMPAr in the 

mEC could indicate that the two are related (see Chapter 6). Of a particular interest is 

the relationship between the EC and the hippocampus in epilepsy and during 

epileptogenesis, as these regions are highly interconnected. Spencer and Spencer 

(1994) showed that the EC and hippocampus interact to produce and propagate 

seizures. Several paths can be explored in this regard. What is the link between 

AMPAr and KAr function alterations? Why receptor changes occur at different points 

of epileptogenesis? Do brain regions undergo epileptogenesis independently or 

differently?  

4.4. Conclusion       

 Together, the use of the low-dose lithium protocol, minimisation of time spent in SE, 

administration of xylazine and the use of the multi-drug cocktail provide a highly 

reliable and repeatable method for induction of epilepsy which reduces mortality 
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whilst maintaining a high degree of epileptogenicity. A criticism often leveled at 

animal models of chronic epilepsy by clinical colleagues is that patients almost never 

present with epilepsy that has resulted following an episode of SE, and, as such, 

models employing SE during induction are fundamentally unable to mimic human 

epilepsy (and see Sloviter, 2005). The current model, whilst retaining and element of 

short-duration, modified SE, goes some way to mitigating this criticism, and shows 

that prolonged SE is not necessary for the reliable induction of a condition with 

significant similarities to human epilepsy. In this context, a recent report (Navarro 

Mora et al., 2009) of slow development of SRS in animals treated with pilocarpine but 

who did not enter SE suggest it may not be the critical factor in pilocarpine 

epileptogenesis, and indicates that further development of the current model may be 

possible. In this regard, refinement of the protocol for administration of lithium, which 

is an irritant, is both desirable and necessary. 
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5. Chapter 5 KAr studies in RISE 
"
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5.1. Introduction  

Uncovering the mechanisms underlying ictogenesis and epileptogenesis has been 

one of the main directions pursued by neuroscientists with an interest in epilepsy. It is 

now clear that epilepsy has a complex, multicomponent mechanism(s). A long-

standing opinion among the neuroscience community is the imbalance between 

inhibition and excitation that underlies this disorder. Researchers have been trying for 

decades to identify whether it is the excess of excitation or the lack of inhibition or 

both that is causing seizures to appear. Given the complexity of the problem and the 

diversity of obtained results so far, it is probably safe to say that changes in both 

excitation and inhibition may be sufficient, but not necessary to cause epilepsy, and 

other mechanisms including inflammation and glia-induced hyperexcitability may play 

important roles (Devisnky et al., 2013). At a more sophisticated level, the 'dormant 

basket cell' hypothesis was proposed by Sloviter (1983, 1987, 1991), suggesting that 

hippocampal hyperexcitability emerged due to a selective loss of neurons specifically 

activating inhibitory basket cells. However, this later proved to be inadequate to 

explain TLE, with other investigators recording active basket cells in epilepsy and 

questioning the interpretation of the original papers (Bernard et al., 1998).  Indeed, 

abnormalities in ionic concentrations, receptors, transmitter release/uptake and other 

factors have all been reported and identified as potentially causal. However, the 

results so far have been inconsistent, since, for virtually every finding there is a study 

reporting opposing results. Finally, at the network level, two popular theories have 

been explored: selective loss of interneurons and axonal sprouting creating recurrent 

excitatory connections. These mechanisms are not mutually exclusive and can co-

exist in an epileptic brain, and some evidence in their support has been evinced (for 

review see Ben-Ari and Dudek, 2010).  
 

Our previous findings suggested that changes in network excitability occurred 

throughout the process of epilepsy establishment in RISE model of epilepsy. We 

intended to investigate what could underlie network excitability decline during the 

latent period and its return during the SRS stage. We hypothesized that KAr, being 

one of the major mediators of excitatory glutamatergic transmission and 

oscillogenesis, could play a key role in the appearance of epileptic activity. Although 
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KAr studies in epilepsy appear to be rather controversial, a number of reports exist 

demonstrating abnormal expression of these receptors and, hence, their involvement 

in epilepsy mechanism. For instance, Graebenitz et al. (2011) and Palomero-

Gallagher et al. (2012) demonstrated an increase in KAr in human epileptic brain 

tissue, compared to healthy brains. KAr subunit KO studies in animals revealed that 

GluK2 subunits were associated with low seizure threshold and high KA sensitivity 

(Fisahn et al., 2004). An overview of KAr expression in epilepsy is presented below, 

for functional studies see section 1.2.5.  

5.1.1. KAr expression in human epilepsy 

One of the advantages of obtaining resected epileptic tissue following surgical 

intervention in refractory epilepsy, is the possibility to perform a variety of techniques 

to determine changes occurring in epileptic tissue. A number of studies were 

dedicated to exploring changes in receptor (including KAr) expression in pathological 

tissue. The findings are often inconsistent, which could be the result of studying 

different brain regions, progress of epilepsy, types of epilepsy and diversity among 

patients (adults vs. children).  In 1990, Geddes and colleagues reported a decrease 

in KAr expression in various sclerotic regions of the hippocampus (CA1, CA3 and 

hilus) in patients with intractable epilepsies. This decrease coincided with an increase 

in parahippocampal regions, perhaps representing aberrant excitatory connections in 

these regions. In line with these findings, Brines et al. (1997) reported a uniform 

decrease in KAr expression throughout the whole hippocampal region. Another study 

was conducted by Zilles and colleagues (1999) on adult temporal cortex from 

patients with focal epilepsy. They reported no overall change in KAr binding in 

epileptic tissue compared to control, however it was noticed that KAr density was 

higher in deeper cortical layers, compared to superficial layers (Zilles et al., 1999; 

Palomero-Gallagher et al., 2012). In contrast to previously mentioned studies, 

Graebenitz et al. (2011) demonstrated a change in receptor densities and functions, 

including a significant increase in KAr binding in lateral amygdala nucleus of epilepsy 

patients. An extensive study charactrerising receptor alterations was carried out by 

Palomero-Gallagher and colleagues (2012). The study is an admirable attempt to 

correlate receptor alterations with different epilepsy subgroups according to clinical 

and electrophysiological criteria. The results show significant changes in KA, AMPA, 

M2 and 5HT1A receptors across all subgroups, suggesting these receptors to be the 
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key players in epilepsy. Focusing on KAr, a positive correlation was found between 

KAr upregulation and the frequency of seizures in patients with associated brain 

tumors.  

 

A number of studies have approached KAr function/expression in epilepsy from a 

subunit-specific point of view, which further complicated already relatively 

inconsistent findings. On the other hand, considering differential effects of KAr in the 

brain, systematising according to subunits may be a step forward in understanding 

the role of KAr in epilepsy. DeFelipe et al. (1994) reported patches of reduced GluK1-

3 KAr staining in adult epileptic tissue resected from the temporal cortex. They 

suggested that these foci could be involved in seizure generation and propagation. 

Another study using the same technique reported an increase in KAr in superficial 

layers of temporal cortex, yet a decrease in layer VI, which contradicted the results of 

previously mentioned reports (Gonzalez-Albo et al., 2001). A study focusing on 

different KAr subunits was conducted by Grigorenko and colleagues (1997), where 

significant changes were observed in the hippocampal area of epileptic tissue (GluK2 

was increased, while GluK4 was decreased). GluK1 KAr were found neither in 

control nor in epileptic tissue. Using in situ hybridisation, Mathern et al. (1998) 

investigated the levels of GluK1-5 in epileptic tissue with and without hippocampal 

sclerosis and control postmortem tissue. The results demonstrated a decrease in 

GluK1-2 in different regions of the hippocampus in both groups of epileptic patients. 

GluK3-5 were also decreased, but only in sclerotic hippocampus (Mathern et al., 

1998). Contrary to this report, no change in hippocampal GluK1 and GluK2 was 

reported by Kortenbruck and colleagues (2001), however, elevated KAr expression 

was found in the temporal cortex, which was suggested to be a compensatory 

phenomenon for prevention of excess Ca2+ influx during ictal activity. Another study 

on resected cortical tissue from paediatric patients with epilepsy suggested a 

reduction in GluK1 while an increase in GluK2 mRNA (Baybis et al., 2004). In line 

with Mathern et al. (1998), Li and colleagues reported a decrease in GluK1 in the 

hippocampus of patients with complex partial TLE. However, opposite to Mathern 

report, an increase of GluK4 and GluK5 was found in the hippocampus of epileptic 

tissue (Das et al., 2012). 
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5.1.2. KAr expression in animal models of epilepsy    

Undoubtedly, animal model studies dedicated to KAr function yield even more 

diverse results than human data, especially due to such wide variety of models in 

use. Several studies using kindling by electrical stimulation reported contradictory 

results, including both increase and decrease in KAr binding in hippocampal CA3 and 

the dentate gyrus (Savage et al., 1984; Represa et al., 1989). In the model of 

chemical kindling with PTZ, KAr binding measured 24 h after a seizure revealed 

reduced binding in limbic structures including EC, hippocampus and amygdala 

(Cremer et al., 2009). Other kindling studies demonstrated increased GluK4 mRNA in 

hippocampal CA3 region (Hikiji et al., 1993). Kamphuis et al. (1995) reported minor 

increase in GluK2 and GluK5 in CA1, CA3 and DG, whereas a small reduction in 

GluK3 in DG, all during early stages of epileptogenesis. 

 

KAr levels were also explored in animals at various timepoints after KA- or 

pilocarpine-induced SE. Ullal et al. (2005) invetigated hippocampal protein 

expression for KAr 72 h, 90 and 180 d post KA-induced SE. Results demonstrated 

GluK1 expression increase throughout the period of observation, while GluK3 

appeared to be decreased only at 90 days, returning to normal levels at 180 days. 

GluK2 remained unaltered throughout. Porter and colleagues (2006) carried out a 

study on rats exposed to Li-pilocarpine epilepsy induction and sacrificed 14 days 

post-induction. Authors report a reduction in GluK2 mRNA and an increase in GluK5, 

while no change in GluK3 and GluK4 in DG neurons. Although not specified directly, 

it appears that the study was carried out during the latent period of epileptogenesis. 

The diversity of reported results in literature does not allow making any conclusions 

on the precise role of KAr in epilepsy, although it is clear that they have some part in 

it. 

 

Understanding what changes KAr undergo throughout epileptogenesis may provide 

an insight into the further role of this class of receptors. The transition from the latent 

phase to the period of behavioural SRS is a critical point of epileptogenesis when 

KAr changes may take place. Abnormal KAr function may potentially underlie both 

hypoexcitability and reduced connectivity of the hippocampal network in seizure-free 

period and may be responsible for the appearance of epileptic SRS activity later on. 

To test this, we used the RISE model and attempted an investigation of KAr function 
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change throughout the epileptogenesis. Both extra- and intracellular techniques were 

utilised to study KAr on the network and cellular level. Results showed a dramatic 

redutcion in gamma oscillation power during the late stage. Although LFP studies do 

not provide direct answers in abnormal KAr contribution to epilepsy establishment, 

experiments with selective KAr agents on SγO, intracellular and immunocytochemical 

methods could lead to a better understanding of KAr role in this pathological 

condition.  

5.2. Results    

5.2.1. Extracellular recordings 

Our previous findings suggested that hippocampal neuronal network exhibited 

functional changes throughout the process of epileptogenesis in RISE model of 

epilepsy. The properties of network oscillations were investigated in epileptic vs. 

AMC rats as various timepoints during epileptogenesis (PSE 24h, PSE 7d, PSE 6wks 

and PSE 90d). We compared how spontaneous hippocampal activity responded to a 

challenge with KA in epileptic vs. healthy control brain slices. KA is known to elicit 

gamma oscillations in hippocampal slices (Hajos et al., 2000; Hormuzdi et al., 2001; 

Fisahn et al., 2004). Earlier in this report we have demonstrated that hippocampal 

slices exhibited SγO (see Chapter 3). In this project we first compared the baseline 

activity (SγO) present in AMC vs. epileptic slices, as well as the activity produced by 

KA application (KγO) in the same slices. Representative raw traces and power 

spectra of both oscillation types in PSE 24h and AMC slices are shown in Fig. 5.1. As 

mentioned previously, SγO in PSE 24h exhibited concurrent high-frequency bursts 

and gamma rhythm activity, explaining a less defined peak on the FFT, compared to 

AMC slices where oscillations were more stable and synchronised and appeared to 

stay within a narrow frequency band (Fig. 5.1). A mix of slow and fast oscillations in 

PSE 24h came out clearly from Morlet-wavelet spectrogram (Fig. 5.1Aiii,Biii). 

Although SγO seemed abnormal in PSE 24h, the network was still responsive to 100 

nM KA stimulation, causing a large increase in power and producing more coherent 

synchronised oscillations, comparable to the ones observed in control slices in the 

presence of KA (Fig 5.1Aii,Bii). Administration of KA suppressed high-frequency 

activity in epileptic slices. Pooled data demonstrated that SγO PSE 24h had a mean 

peak power of 36.57±10.1 µV2 (n=18) at a mean peak frequency of 30.47±1.1 Hz 
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(n=18), while in SγO AMC showed a mean peak power 33.74±6.8 µV2 (n=13, ns) at a 

mean peak frequency 26.7±0.8 Hz (n=13, p<0.05) [Fig. 5.5A]. In the presence of 100 

nM KA, SγO PSE 24h reached 3235±1333 µV2 (n=18) at 36.23±1.4 Hz (n=18), while 

SγO AMC reached 4024±2191 µV2 (n=13, ns) at 29.5±1.4 Hz (n=13, p<0.01).   

 

The analysis of neuronal network oscillations in PSE 7d slices revealed moderate 

SγO activity in CA3 hippocampus, similar to that observed in AMC slices (Fig. 5.2). 

SγO in epileptic slices still showed a residual high frequency component, although, 

compared to PSE 24h, it was less prominent, but the gamma rhythm itself appeared 

more pronounced (Fig. 5.2Aiii,Biii). When 100 nM KA was bath applied to pre-

existing SγO, the activity increased in power dramatically, both in PSE 7d and AMC 

slices. Representative traces and power spectra are shown in Fig. 5.2A,B. Despite 

the fact that KγO demonstrated good oscillatory power, as well as sharp and well-

defined FFT peaks in both groups, the time-frequency analysis suggested that PSE 

7d oscillations were less stable, with patches of low gamma power. Overall, SγO in 

AMC slices reached the mean peak power of 28.34±11.38 µV2 at 32.3±0.9 Hz 

(n=12), which was comparable to the peak power but not the peak frequency of 

oscillations observed in PSE 7d (44.39±7.9 µV2 at 29.8±0.8 Hz, n=10, p>0.05 and 

p<0.05, respectively) [Fig. 5.5B]. Application of 100 nM KA increased SγO to 

1666±554.0 µV2 at 29.8±1.0 Hz (n=12) in AMC slices and 2039±585.3 µV2 at 

31.37±2 Hz (n=10) in PSE 7d (both p>0.05).  
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According to our previous findings, SγO exhibited changes during the late latent 

period (Chapter 4). In this project, we compared both SγO and KγO between PSE 

6wks and AMC slices. The results in PSE 6wks demonstrated SγO, which was not 

observed consistently, indicating underlying abnormalities of the network function 

(Fig. 5.3). Spontaneous activity was surprisingly small in power, yet highly coherent 

with a sharp gamma peak on the power spectrum, which is not very characteristic of 

low-power SγO. These findings may reflect possible involvement of small but 

synchronous networks (Fig. 5.3Aii,Bii). AMC slices consistently exhibited strong SγO 

in CA3 region, demonstrating normal operation of the hippocampal neuronal network 

(Fig. 5.3). 100 nM KA administered to control slices with SγO produced a dramatic 

increase in the power of oscillations, similar to other AMC slices. In PSE 6wks, 

application of 100 nM KA, on the contrary, produced only a small change, indicating 

poor sensitivity to the agent or KAr receptor dysfunction. Stimulation with a double 

dose of KA (200 nM) resulted in a small increase of oscillatory power, which still was 

not comparable to control slices (Fig. 5.3Aii,Bii). These findings demonstrated a 

decrease in network excitability and a disruption of network oscillation mechanism, 

although the exact involvement of KAr in this case was not clear. Fig. 5.3 presents a 

recording from an AMC slice challenged with 200 nM KA. Overall, SγO AMC slices 

was significantly higher in power compared to PSE 6 wks (41±11.5 µV2, n=18 vs. 

20.59±6.6 µV2, n=20, p<0.05), although similar in mean peak frequency (35.4±0.9 

Hz, n=18 vs. 34.87±1.2 Hz, n=20, p>0.05). These results showed that network 

changes/reorganisation in the latent period were already visible from the natural 

hippocampal activity of the slices. Application of KA revealed further exacerbated the 

differences between the two groups. The contrast in KγO mean peak power between 

AMC and PSE 6 wks slices was evident (1968±756.8 µV2, n=18 vs. 322.5±156.7 µV2, 

n=20, p<0.01), even though no significant difference was observed in mean peak 

frequency (34.6±0.8 Hz, n=18 vs. 36.4±1.3 Hz, n=20, p>0.05). Pooled data results 

are presented in Fig. 5.5C. 

 

To determine whether rhythmic activity in the hippocampus underwent changes 

during epileptogenesis, we explored SγO and KγO in the slices from fully epileptic 

rats (PSE 90d) and compared them to AMC. SγO demonstrated strong power in both 

control and epileptic slices, although concurrently with gamma frequency PSE 90d 

slices exhibited transient high-frequency activity (Fig. 5.4). Traces demonstrating 
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multiple frequency components in PSE 90d are shown in Fig. 5.4Bi. These bursts of 

high-frequency activity may represent increased excitability of the tissue and its 

susceptibility to seizures. When 100 nM KA was applied to pre-existing SγO, 

rhythmic activity dramatically increased in power and became regular in both groups 

(Fig. 5.4Ai,Bi). Moreover, in epileptic slices administration of KA abolished fast 

activity and introduced a pure gamma frequency rhythm (Fig. 5.4Bi,Bii). The main 

parameters of SγO were comparable in AMC vs. PSE 90d (84.29±23.9 µV2 at 

36.3±0.9 Hz [n=14] vs. 62.65±9.6 µV2 at 35.9±0.9 Hz [n=22], p>0.05), as shown in 

Fig. 5.5D. KγO, on the other hand, were significantly stronger in power in PSE 90d 

compared to AMC (3401±757.4 µV2 [n=22] vs. 1798±612.7 µV2 [n=14], p<0.05). The 

frequency of KγO did not demonstrate significant differences (29.9±0.8 Hz [n=22] in 

PSE 90d vs. 31.4±0.4 Hz [n=14] in AMC, p>0.05). Interestigly, it appears that 

adminstration of 100 nM KA produced a larger effect in epileptic slices, which is 

illustrated by Fig. 5.5D. These results could reflect elevated excitability of the tissue, 

which may be the link to the appearance of behavioural seizures during this period. 

In addition, ictal/interictal episodes described earlier further support the idea of 

increased seizure susceptibility of the epileptic tissue/brain.   
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In this project we used potentiation of baseline oscillatory activity (SγO) upon 

administration of 100–200 nM KA, as a measure of KAr activity during different 

stages of epileptogenesis. We compared the changes in power produced by KA 

application (KγO – SγO) in epileptic and control conditions, as well as between 

different stages of epileptogenesis. Direct pharmacological stimulation of PSE 24h 

slices with KA produced similar effects to the ones recorded in AMC (3198.4±1333 

µV2, n=18 in PSE 24h vs. 3990±2191 µV2, n=13 in AMC, p>0.05). Similar picture was 

observed in PSE 7d slices, where KA-induced change was comparable to control 

slices (1994.6±585.3 µV2, n=10 in PSE 7d vs. 1647.3±606.8 µV2, n=11, p>0.05). The 

most dramatic deviation from control values appeared in the late latent period (PSE 

6wks). At this time SγO seemed to lose its oscillatory power and even a double 

concentration of KA failed to produce a response comparable to AMC level 

(301.91±156.8 µV2, n=20 in PSE 6 wks vs. 1926.17±756.9 µV2, n=18 in AMC, 

p<0.05). Later stages were characterized by robust SγO and KγO in both epileptic 

and control slices. Development of behavioural seizures seemed to coincide with 

regained power of SγO and KγO in PSE 90d slices. Although the change in power 
produced by KA in PSE 90d did not reach statistical significance (3338.35±757.5 µV2 

in PSE 90d vs. 1713±613 µV2, n=14, p>0.05), it appeared that epileptic slices were 

more responsive to KA (as the raw power of KγO was high), indicating possible 

increased excitability. 

 

When compared within healthy and lesioned groups, the results demonstrated a 

similar/consistent level of power change from SγO to KγO throughout all control 

slices, whereas in epileptic slices the level of power change did not appear stable 

throughout the epileptogenesis, which indicated underlying network alterations (Fig. 

5.6). The figure demonstrates that after the initial insult, KA effect on SγO was 

gradually declining until reaching the lowest point during the late latent period, when 

application of KA produced the smallest effect compared to AMC and other stages. 

Contrary to the latent period, SRS stage was characterized by a rebound of the 

hippocampal rhythmic activity to the early post, indicating restored mechanisms for 

synchronisation.     
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"
Figure 5.5. Pooled peak frequency and peak power plots for SγO and KγO in control 
and epileptic conditions.  A. Pooled peak frequency and peak power plots for PSE 24h and 
AMC slices. SγO and KγO peak frequency is significantly lower in AMC slices compared to 
PSE 24h. B. Pooled peak frequency and peak power plots for PSE 7d and AMC slices. C. 
Pooled peak frequency and peak power plots for PSE 6wks and AMC slices. A significant 
reduction in the peak power is observed in SγO and KγO in PSE 6wks compared to AMC. D. 
Pooled peak frequency and peak power plots for PSE 90d and AMC. A significantly higher 
KγO peak power is demonstrated in PSE 90d compared to AMC slices. ** indicate p<0.01, * 
indicates p<0.05. 
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"
Figure 5.6. KAr response is compromised during PSE 6wks.  A. Changes in the peak 
power of gamma oscillations produced by the application of KA in AMC and epileptic slices at 
different stages of epileptogenesis. 

5.2.2. KAr function in evoked field potential recording 

We sought to explore KAr function during the process of epileptogenesis, latent 

period in particular, using a more direct method. We first attempted to induce and 

then pharmacologically isolate KAr-mediated effects in CA3 region brain slices from 

healthy adult rats (~300g, age-matched to PSE 6 wks). The experiments were based 

on the work of Castillo and colleagues (1997), who used electrical stimulation of 

mossy fibres to evoke field postsynaptic potentials in CA3 s. lucidum of a brain slice. 

According to experiments described by the authors, application of a single stimulus 

produced a response that was blocked by selective AMPAr antagonist GYKI 53655. 

The response, however, was restored by a train of 6 stimuli at 30 Hz in the presence 

of GYKI 53655, indicating non-involvement of AMPAr. This evoked synaptic potential 

was blocked by a non-selective KAr/AMPAr antagonist CNQX demonstrating that the 

response was mediated by KAr.  

 

The experiments we repeated in adult rat slices, however, the results were not 

consistent. A successful experiment is demonstrated in Fig. 5.7A. A response was 

evoked with a single stimulus (the recording is an average of 10 runs) and was 
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blocked with 30 µM GYKI 53655. A train of 6 stimuli at 30 Hz every 5 seconds was 

then applied to initiate glutamate release and hopefully expose KAr-mediated 

reponses. The amplitude of evoked synaptic potential was 1300 µV, which reduced 

by 60% when 40 µM CNQX was bath-applied. CNQX application produced a 

significantly smaller effect in comparison to original studies by Castillo et al. (1997), 

which suggested involvement of other receptor types. In other experiments that were 

conducted, bath application of GYKI 53655 produced either an increase or no 

change in single stimulus evoked potential amplitude. Administration of another 

AMPAr antagonist NBQX (2.5 µM) could not block the response either, indicating 

contribution of other receptors or possible technical issues during the experiment. We 

also tried co-application of 40 µM MK-801, 20 µM PTX, 5 µM CGP 55845 with 30 µM 

GYKI 53655. This combination of drugs was administered to pharmacologically 

isolate KAr-mediated responses. Despite these efforts, synaptic potential evoked by 

a single stimulus could not be blocked by this cocktail. Application of 40 µM CNQX 

did not abolish the train-induced potential either (Fig. 5.7B), hence 1 µM tetrodotoxin 

(TTX) was tested to determine whether the recorded responses were real. TTX 

produced a small reduction, however could not abolish the activity, suggesting that 

the signal might reflect volume conduction or directly driven synaptic currents. 

Overall, the inconsistency of obtained results suggested that this method was not 

appropriate to characterise KAr function in our brain slices, possibly due to technical 

limitations. 

 

We also investigated the role of KAr using a different protocol, which at first yielded 

more consistent results, however, this too eventually proved ineffective. Mossy fibres 

were stimulated to produce synaptic responses in CA3 hippocampus. A test 

recording was obtained first, in order to confirm that a single stimulus induced a 

postsynaptic potential. When this was established, the stimulation protocol was 

changed to a train of 40 stimuli at 200 Hz, which produced a slow postsynaptic 

potential, which we believed was mediated by KAr. When a combination of 20 µM 

PTX, 5 µM CGP 55845, 2.5 µM NBQX, 20 µM SYM2206 and 20 µM MK-801 was 

bath-applied, the response changed in amplitude and duration, abolishing fast events 

and retaining the slow component. Application of 40 µM CNQX reduced the slow 

event (Fig. 5.7C). Pooled data from control slices suggest that mean suppression of 
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synaptic potential amplitude 46.7±8.5% (n=12), however the results were not 

consistent. Therefore, we found this protocol inaproppriate for investigation of KAr. 

 

"
Figure 5.7. Evoked field potential in the hippocampal CA3 region.  A. Raw trace showing 
a successfully reproduced experiment by Castillo et al. (1997), where AMPAr blockade (teal) 
exposed a slow postsynaptic potential, which was reduced by CNQX application (red) and 
was therefore KAr-mediated. B. Raw traces showing no change in field postsynaptic 
potential after blocking all major receptor types. A small effect produced by TTX application 
(black) raises concerns about the biological nature of observed signals. C. Raw traces 
showing an example of successful experiment, where application of CNQX reduced the 
amplitude and duration of the evoked field potential. All traces low-pass filtered at 10 Hz. 
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Figure 5.8. Poor survival of the hippocampal CA3 in control adult slices.  A., B. and C. 
Iimages of CA3, CA1 and layer II EC, respectively. Brain slices obtained from 300+g rats.   

5.2.3. KAr function in whole-cell patch-clamp recordings 

5.2.3.1. Attempts to increase CA3 viability  

The whole cell patch-clamp technique was used to determine the change in pre- and 

post-synaptic contribution of KAr in CA3 throughout epileptogenesis. My initial plan 

included characterising presynaptic KAr by exploring spontaneous postsynaptic 

currents (sPSCs) and postsynaptic KAr by exploring evoked EPSCs (eEPSCs). 

Conclusions drawn from extracellular results suggested close investigation of the 

latent and SRS stages of epilepsy development. This, however, has proved to be 

rather challenging, as the survival of CA3 cells decreased dramatically in slices from 

>300g animals. Despite our best efforts, the hippocampal CA3 region seemed to be 

extremely vulnerable to manipulations required to make brain slices. In contrast to 

CA3, CA1 and mEC, for instance, appeared healthy looking (Fig. 5.8). We employed 

a variety of methods to increase the viability of neurons in the CA3 region. The 

improved-composition cutting solution routinely used in the lab was not very effective 

in protecting CA3 neurons, hence we tried using basic cutting solution (see Section 

2.1.), which further decreased the quality of slices. Replacing sucrose with an 

equivalent amount of glycerol resulted in relatively healthy slices, however the cells 

were very difficult to patch. We then tried different variations of the 'protective 

recovery method' used by Peca and colleagues (2011), which included preincubation 

of brain slices in NMDG or choline chloride solution at 32–34°C (for recipes see 

Appendix 2). Together with protective recovery method, addition of high doses of 
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NAC to cutting solutions was used to prevent glutathione depletion for better slice 

preservation. These modifications produced apparent enhanced preservation of CA3 

regions, however, cells appeared swollen and when patched were depolarised, 

suggesting poor viability. We also tried using H2S donors as an additional component 

of sucrose cutting solution, in order to suppress oxidative damage through promotion 

of reductive environment. This did not improve CA3, however. In our attempts to 

increase morphological presevation of CA3 cells, we tried different cutting blades 

(ceramic vs. steel), different slicers (Vibroslice HA752 by Campden Instruments vs. 

HM650V by Microm), different speed (slow vs. fast) and temperature (4–10°C vs. 

room temperature) of slicing, different brain orientation (slicing back to front vs. side 

to side) and finally different storing conditions (submerged vs. interface). None of the 

used method modifications could consistently produce healthy-looking well-preserved 

CA3 region in slices from 300g and above rats.  

5.2.3.2. KAr effects on GABA release 

Due to the issues described above, the study of KAr function using intracellular 

recordings could not be completed, yet some results are still presented in this report. 

We started investigating KAr activity by recording sIPSCs on CA3 pyramidal cells. 

Application of 100 nM KA produced a significant decrease in sIPSC inter-event 

interval (IEI) in 50g control rats (142.6±9.1 ms to 66.9±2.6 ms, n=3, KS p<0.0001), as 

illustrated in Fig. 5.9A,B. In these recordings the frequency of events increased by 

53.1%. The amplitude of sIPSCs increased slightly from 40.65±2.4 pA to 46.3±2.8 pA 

(n=3, paired t-test p>0.05), however did not reach significance. In slices from 90-

100g animals (AMC to PSE 7d) administration of KA caused a significant reduction in 

IEI (from 121.0±4.4 ms to 83.4±1.9 ms, n=5, KS p<0.0001), thus increasing the 

frequency by 31.1% (Fig. 5.9C,D). KA also produced a significant increase in sIPSC 

amplitude (41.7±1.5 pA to 48.5±1.9, n=5, paired t-test, p<0.01). In contrast to control 

slices, sIPSCs recorded from PSE 7d significantly decreased in amplitude (from 

210.6±13.9 pA to 161.3±13 pA, n=1, paired t-test, p<0.0001) but exhibited no change 

in frequency (IEI 105.4±4.5 ms to 114.7±5.1, n=1, p>0.05) [Fig. 5.10A,B]. In adult 

animals, one recording was obtained from a PSE 6wks slice. Application of KA 

demonstrated a significant increase in sIPSC amplitude (10.7±0.4 pA to 14.9±0.8 pA, 

n=1, paired t-test, p<0.0001), yet the effect on IEI was not significant (158±8.9 ms to 

131.9±7.2 ms, n=1, p>0.05) (Fig. 5.10C,D). It appears that pharmacological 
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stimulation with KA produced presynaptically regulated increase in GABA release. It 

is yet to determine with more experiments whether the fact that KAr activation in 

epileptic slices indeed causes no change in sIPSC frequency and, hence GABA 

release, implying a disrupted function of KAr in epilepsy development. Overall, at this 

stage it is impossible to draw any conclusions about the changes of either pre- or 

postsynaptic KAr activity throughout epileptogenesis, as further investigation is 

required, specifically during latent and SRS stages. These data, however, could 

contribute to further experiments.  
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Figure 5.9. KAr effects on GABA release in CA3 of control slices.  Ai. and Ci. 
Cumulative probability plots showing sIPSC amplitude change upon application of 100 nM 
KA in 50g and 90g control slices, repsectively. Aii. and Cii. Cumulative probability plots 
showing sIPSC IEI change upon application of 100 nM KA in 50g and 90g control slices, 
repsectively. B. and D. Example traces showing control and 100 nM KA condition in 50g and 
90g control slices, respectively. 
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Figure 5.10. KAr effects on GABA release in CA3 of epileptic slices.  Ai. and Ci. 
Cumulative probability plots showing sIPSC amplitude change upon application of 100 nM 
KA in PSE 7d and PSE 6wks slices, repsectively. Aii. and Cii. Cumulative probability plots 
showing sIPSC IEI change upon application of 100 nM KA in PSE 7d and PSE 6wks slices, 
repsectively. B. and D. Example traces showing control and 100 nM KA condition in PSE7d 
and PSE 6wks slices, respectively. 
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5.3 Discussion         

There is evidence that KAr play a role in epilepsy and we hypothesise that this class 

of receptors is involved in crucial network changes underlying the transition from 

seizure-free latent period to behavioural SRS period. Neuronal network oscillations 

are a reflection of network activity, therefore we measured the effect produced by 

KAr stimulation at various stages of epilepsy development. Through results obtained 

we estimated the contribution of KAr to the network function and how it changed 

throughout epileptogenesis. During the early post-insult period, although SγO 

appeared altered, KAr-mediated responses remained intact. A similar picture 

emerged in PSE 7d slices, as KA application produced comparable effects on 

gamma oscillations, indicating similar activity of KAr in both PSE 7d and AMC. With 

the progression of the latent period, epileptic slices exhibited significantly lower SγO 

and KγO power compared to AMC. Even stronger KA stimulation was not able to 

produce a response similar to AMC. These results indicated abnormal function of 

hippocampal network, and although the basic mechanism for rhythmic activity 

generation was not disrupted, it appeared suppressed. As mentioned in the previous 

section of this report, changes in the oscillatory activity may reflect fragmentation of 

entire CA3 network into smaller localised networks due to the loss of interneurons 

and/or disturbed or limited activity of KAr, which are involved in network 

synchonisation (Fisahn et al., 2004; Fisahn et al., 2005; Kramer et al., 2010). It is 

possible that these networks lost means of communication with each other, hence 

such dramatic change in power was observed. Development of behavioural seizures 

in animals coincided with a rebound of oscillatory power in both SγO and KγO, 

indicating restoration and possibly hyperfunction of KAr. The findings suggest that in 

PSE 90d the network possibly regained synchronisation mechanism and established 

stronger synaptic connections. The results demonstrated that network/KAr changes 

do not take place until further into the latent period. Another time point aroung PSE 

3wks might be necessary for future experiments to determine how soon the changes 

develop. 

 

Results obtained from extracellular recordings let us suggest that KAr underwent 

certain changes during epileptogenesis, which were reflected by abnormal 

rhythmogenesis in the epileptic hippocampal slices. KAr are known to mediate a 
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variety of regulatory effects in neuronal communication and are the key players of 

glutamatergic transmission in the hippocampus (Cossart et al., 2002). Postsynaptic 

KAr, due to their slow kinetics, have a role of regulating neuronal excitability and 

information processing by integrating excitatory synaptic inputs (Frerking and Nicoll, 

2000; Frerking and Oligher-Frerking, 2002, Goldin et al., 2007, Pinheiro et al., 2013). 

Presynaptic KAr, on the other hand, bidirectionally regulate neurotransmitter release 

at both inhibitory and excitatory synapses (Schmitz et al., 2000; Lauri et al., 2001; 

Rodriguez-Moreno et al., 1997; Frerking et al., 1999; Cossart et al., 2001). 

Suppressed oscillatory activity observed during the latent period in response to KA 

gives an indirect indication of underlying network alterations, however does not 

identify a clear source of abnormality, considering that rhythmic activity has a 

complex multi-component network mechanism. Since KAr are heavily involved in 

synaptic transmission and have means of regulating other network components, 

without direct intracellular studies exploring the function of KAr during 

epileptogenesis, it is impossible to make conclusions on the cause of observed 

changes. KAr may be affected in various ways, which could explain a drop in gamma 

oscillations during the seizure-free period and its later recovery during the SRS 

stage. For instance, KAr subunit composition, protein expression, channel gating and 

other factors influencing KAr kinetics, as well as receptor desensitisation, synaptic 

plasticity and changes in presynaptic regulation of other neurotransmitters (e.g. 

GABA) could contribute to or be responsible for an abnormal function of KAr in 

epilepsy.  

 

To evaluate KAr activity more directly, yet in the network context, we recorded 

evoked field potentials in CA3 hippocampus. Mimicking glutamate release at mossy 

fibre terminals by electrical stimulation and subsequent pharmacological 

decomposition of postsynaptic potentials in an attempt to isolate KAr-mediated 

responses. Postsynaptic potentials appeared in various shapes and amplitudes, and 

were neither stable nor consistent. Application of AMPAr, NMDAr, GABA-Ar, GABA-

Br, and AMPAr/KAr antagonists did not demonstrate reproducible effects, indicating 

possible technical faults like artefacts or factors like volume conductance and 

disruption of electrical activity of cells. Isolation of one neurotransmission element in 

a population of cells might not be as straightforward as in an individual cells. 

Replication of the original experimental protocol by Castillo and colleagues (1997) 
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could not produce reliable results, as GYKI 53655 failed to block AMPAr-mediated 

component, as did CNQX.      

 

The next step in investigating the functional state of KAr involved intracellular 

evaluation of pre- and postsynaptic KAr activity at various timepoints of 

epileptogenesis. The idea of this investigation was to focus on the late latent period 

of 6-8 wks and the SRS stage when animals exhibit behavioural seizures, as the 

dramatic changes in network function were observed then. It is known that 

preservation of neurons in slices from adult/old animals can be challenging, therefore 

most of the research has been conducted on young animals. We have encountered 

this problem in the hippocampal brain slices of 300+g animals, where CA3 region 

exhibited low viability in both epileptic and AMC slices. Interestingly, poor 

preservation was highly distinctive for CA3, whereas other areas of the slice 

appeared healthy, which demonstrated a higher age-dependent vulnerability of CA3 

cells to mechanical damage. Various brain slice preparation techniques were tested 

in order to preserve this area (see Appendix 2). Unfortunately, it was not possible to 

increase survival of CA3 cells and at the same time maintain the morphological and 

electrophysiological properties of the cells. Due to technical issues and limited time, 

we gathered little information on KAr properties in AMC and epileptic slices. The 

results that were obtained were in line with previous reports in literature (Fisahn et 

al., 2004; Christensen et al., 2004; Chamberlain, 2009). In our experiments 

application of KA increased the frequency of sIPSCs in CA3 pyramidal cells, 

indicating positive modulation of GABA release mediated by presynaptic KAr. 

Conducted experiments are only a first step in characterising KAr function, as more 

experimental work is needed to investigate both pre- and postsynaptic components. 

However, the problem of poor CA3 viability in adult brain slices is a serious obstacle, 

which has to be overcome prior to carrying out intracellular studies.   

 

Having conducted a number of electrophysiological studies exploring functional 

changes in KAr in epilepsy, we chose to support the findings with 

immunocytochemical methods to investigate the presence rather than the functional 

state of KAr during the latent period and the SRS stage (in collaboration with Prof. 

Elek Molnar, Bristol University. Alterations in KAr subunit expression during the 

process of epilepsy establishment in the temporal lobe may explain the progression 
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of epileptogenesis and occurrence of behavioural seizures. Nevertheless, protein 

expression does not provide a full receptor profile, as a receptor might be expressed 

but not functionally active, which could be misleading. Therefore it seems reasonable 

to utilise various characterisation methods to obtain a more detailed picture.  

   

Looking back, it would be beneficial to characterise the role of KAr in SγO during 

epileptogenesis. Using a variety of subunit-selective KAr antagonists and agonists 

(e.g. UBP310 and ATPA) would provide insight into the direct contribution of GluK1-

containing KAr to the drop of gamma activity during the latent period and gamma 

power rebound in the SRS stage. Our previous pharmacological findings in control 

animals demonstrate a difference in GluK1 KAr role in SγO and KγO. Measuring the 

degree of SγO potentiation upon addition of GluK1 KAr antagonist in epileptic vs. 

AMC slices would reveal any abnormal function of GluK1 KAr without having to 

artificially stimulate the receptors with KA.   

5.4. Conclusion 

Overall, it is clear that the hippocampal CA3 network undergoes certain changes 

during the latent period of RISE model, when the activity temporarily shrinks and 

becomes less responsive to KA, as demonstrated by our results. The activity 

recuperates coincidentally with the appearance of SRS, suggesting a possible 

restored and augmented function of KAr in epilepsy. One of the limitations in 

interpreting extracellular data is the fact that the rhythmic activity of a network is a 

complex process involving multiple interrelated components including KAr. It is 

known that KAr play a crucial role in the generation and maintenance of the gamma 

rhythm, but KγO can not be used as a direct measure of KAr activity. 

Immunocytochemical methods might provide support for our hypothesis. A potentially 

fruitful approach would also be to test the effects of subunit-selective KAr agents on 

SγO in epileptic vs. control animals. 
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6. Chapter 6 Spontaneous rhythmic activity in layer II 
mEC 
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6.1. Introduction 

6.1.1. The EC and epilepsy 

In the previous chapters we investigated the establishment of epilepsy in the CA3 

hippocampus, however, TLE is not restricted to the hippocampal area, but involves 

other regions like the entorhinal and perirhinal cortices, as well as the amygdala. 

Some of the work on epilepsy has been dedicated to the role of the EC in the TLE, as 

various studies have shown that ictal activity can arise independently in this region, in 

humans (Rutecki et al., 1989; Spencer and Spencer, 1994; Assaf and Ebersole, 1997 

and others) and animal models (Ben-Ari et al., 1981; Collins et al., 1983; Stringer et 

al., 1994). A reduction of the EC volume has been demonstrated in the patients with 

TLE, suggesting a destructive effect of epilepsy on this area (Bernasconi et al., 1999, 

2001; Jutila et al., 2001; Bonilha et al., 2003). Several reports showed a correlation 

between the size of EC resection and the success rate of the surgery for intractable 

TLE (Siegel et al., 1990; Fried et al., 1993). EC resections often presented with 

atrophy and gliosis, while a particular vulnerability was demonstrated for the layer III 

neurons (Du et al., 1993; Yilmazer-Hanke et al., 2000). Animal studies are in line with 

human observations, showing neuronal damage in layer III of the EC (Du et al., 1995; 

Wozny et al., 2005). Opposite views exist on the localisation of seizure focus in the 

EC. Jones and Lambert (1990) showed that epileptiform activity emerged from the 

deep layers, while Tolner and colleagues (2005) demonstrated a superficial origin.  

 

Based on the previous knowledge, we set out to investigate the role of EC in the 

epileptogenesis, using the RISE model. We explored the possibility of differential 

time scales for epilepsy development in the hippocampus and the EC, as well as a 

possible migration of a seizure focus. SWO were taken as a measure of network 

activity in the EC, which were recorded from layers II/III in both AMC and epileptic 

slices.   

6.1.2. The EC and SWO 

Slow brain rhythms constitute an important part of neurophysiology, as they appear 

during sleep and anaesthesia (Steriade et al., 1993a-d). Slow rhythms have been 
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shown to group and modulate rhythmic activity of higher frequencies, reflecting active 

processes taking part in the brain during sleep (Steriade and Amzica, 1998). Studies 

report the occurence of <1 Hz rhythms in the cortical regions of animals, both in vivo 

and in vitro (Steriade et al., 1993a-d; Timofeev and Steriade, 1996; Sanchez-Vives 

and McCormick, 2000; Shu et al., 2003; Dickson et al., 2003; Cunningham et al., 

2006; Sheroziya et al., 2009). The cortex has been shown to exhibit alternating 0.1-

0.5 Hz periods of UP (intensive cell firing) and DOWN (periods of quiescence) states. 

This type of activity has been detected in prefrontal, somatosensory, visual and 

entorhinal cortices and implications in development, metabolism, as well as 

information processing have been proposed (Sheroziya et al., 2009; Cunningham et 

al., 2006; Steriade et al.,1993c; Sanchez-Vives and McCormick, 2000).  

 

A commonly accepted mechanism of slow rhythm generation in the cortex is a 

combined action of intrinsic and synaptic mechanisms, when activation of INa(p) and 

ICAN generate spiking of neurons and together with synaptic mechanisms sustain 

prolonged bursting, thus forming an UP state (Timofeev et al., 2000; Bazhenov et al., 

2002; Sheroziya et al., 2009; Chauvette et al., 2010). DOWN states, on the other 

hand, reflect periods of hyperpolarisation mediated by K+ currents and synaptic 

fatigue (Steriade et al., 1993d; Sanchez-Vives and McCormick, 2000; Bazhenov et 

al., 2002; Compte et al., 2003; Sheroziya et al., 2009). Moreover, interneurons 

supposedly govern the synchronised switch from to the DOWN state (Volgushev et 

al., 2006; Puig et al., 2008).  

   

Of  a particular interest to us was spontaneous rhythmic activity of <1 Hz in the EC 

reported by Dickson et al. (2003), Cunningham et al. (2006), Gnatkovsky et al. (2007) 

and Sheroziya et al. (2009). In these reports, SWO was generated by reducing Mg2+ 

and Ca2+ concentrations and/or electrical stimulation of the lateral olfactory tract, by 

setting the right level of excitation in the slice. While Sheroziya and colleagues (2009) 

detected slow rhythmic activity only in neonatal rats (P5–P13), others recorded from 

young adult guinea pig and adult rat brains, which raises a question whether this 

activity was a truly developmental phenomenon or a result of adjusted experimental 

conditions. SWO were recorded from layers II/III of the mEC in all studies, and 

findings from Marco de Curtis' laboratory (Dickson et al., 2003; Gnatkovsky et al., 

2007) demonstrated that SWO were generated by the interaction of superficial layer 
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pyramidal cells and interneurons, although activity could still be recorded layer V 

mEC.        

 

Although the <1 Hz cortical activity is widely associated with sleep and anaesthesia, 

the functional relevance might differ between the cortical areas. So far, a common 

theory has been involvement of SWO in information processing and memory 

consolidation. For example, Cunningham and colleagues (2006) demonstrated that 

the activity was driven by the interaction between neuronal network mechanism and 

metabolism-related mechanism. Sheroziya et al. (2009), on the other hand, showed 

that SWO activity reflected developmental processes and could be important in the 

maturation of EC and the hippocampus. Future in vitro studies combined with in vivo 

research will help uncover the role of alternating states of activity and quiescence. 

 

Searching for network activity in the EC, the presence of spontaneous SWO in 

control and epileptic slices from young animals was observed. Much like in CA3 

hippocampus, these spontaneous oscillations presented an opportunity to explore 

the differences between slices from healthy animals and from animals that had 

undergone RISE induction. SWO were a good reflection of the natural network state, 

therefore any changes in epileptic slices could suggest the effects of epileptogenesis. 

We, therefore, compared the basic electrophysiological and pharmacological profiles 

profile pharmacology/mechanism of SWO in both groups of slices.  

6.2. Results 

6.2.1. Basic profile in control slices 

Using the same improved brain slice preparation technique, combined hippocampal-

EC brain slices were prepared from healthy 50–100 g rats (n=47 number of animals 

12). SWO was recorded from layers II/III of mEC in a traditional aCSF recipe in the 

absence of driving pharmacological agents. The frequency of SWO varied from 0.1 to 

1.8 Hz, with the mean interburst frequency being 0.72±0.1 Hz (n=27). Layers II/III 

demonstrated a range of electrographic patterns of oscillatory activity, consisting of 

rhythmic bursts and/or slow waves in various combinations (Fig. 6.1). The bursts 

lasted for 1.2±0.1 s, while the burst amplitude was 106.9±13.8 µV2 with the mean  
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Figure 6.1. Basic profile of SWO in layers II/III of the mEC.  A. Example unfiltered raw 
trace showing SWO, low-pass filtered (<1Hz) raw trace showing the slow component of 
SWO, band-pass filtered (5 – 60 Hz) traces revealing bursts of higher (>5 Hz) frequency 
activity. B. Representative power spectrum of unfiltered data showing a large peak at 0.15 
Hz. C. Morlet wavelet time-frequency plot of unfiltered SWO data showing very low 
frequency activity with bursts of 5–40 Hz activity occurring approximately every 5s. 
 

intraburst frequency of 28.97±2.0 Hz (n=27). The patterns could be divided into 

following groups: synchronised bursts/single units with slow wave, synchronised 

bursts/single units with no slow wave, slow wave no bursts, as well as complex 

patterns with alternating bursts of higher and lower amplitude (Fig. 6.2). A number of 

slices exhibited occasional bursts and/or slow waves but no rhythmicity; such 

recordings were excluded from general characterisation but were included into some 

pharmacology experiments. The variability of observed oscillatory patterns did not 

appear to depend on animal age, experimental conditions or layer-specific position of 

the electrode. The differences in burst/spike patterns could depend on electrode 

position in relation to individual cells and cell populations. Once established, SWO  
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Figure 6.2. Variety of electrographic patterns of SWO in control and PSE 24h/7d slices.  
A. Unfiltered raw traces of SWO recorded from layers II/III mEC of AMC slices. B. Unfiltered 
raw traces of SWO recorded from layers II/III mEC of PSE 24h/7d slices. 
 

persisted for several hours, however, in some cases the frequency and the pattern 

were unstable over time. Apart from layers II/III, SWO could also be recorded from 

layer V of mEC (Fig. 6.3). Experiments with severed connections between mEC and 

the hippocampus, as well as between mEC and lateral EC showed that spontaneous 

SWO were still present in the mEC indicating an intrinsic nature of this activity.            

 

One of the characteristic features of SWO in the mEC in healthy rats was the 

disappearance of activity in animals older than 100 g when recordings were made in 

normal aCSF with standard [Mg2+] and using a 30 minute period in which to test for 

the appearance of SWO activity. A cutoff at 100 g suggested some developmental 
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Figure 6.3. SWO in deep and superficial layers of the mEC.  A. Unfiltered raw trace of 
SWO (left) recorded from layers II/III mEC of control slices. Band-pass filtered (10 – 60 Hz) 
raw trace (right) showing a burst of high-frequency component. B. Unfiltered raw trace of 
SWO (left) recorded from layer V mEC of control slices. Band-pass filtered (10 – 60 Hz) raw 
trace (right) showing a burst of high-frequency component. 
 

changes taking place in the EC at this stage, however, by this age the development 

should be completed. Fig. 6.4 shows a plot of the percentage of slices exhibiting 

SWO within 30 minutes of commencing recording. It is clear that slices from 

chronically epileptic rats show an enhanced tendency towards generation of SWO. A 

number of brain slices from adult rats exhibited either irregular elements of slow 

activity (occasional bursts and/or slow waves) or episodes of rhythmic activity, 

however, these required several hours to develop. A possible explanation for this 

phenomenon could be a reduction of slice thickness over time and possibly better 

penetration/diffusion of the perfusate. To determine whether enhanced excitability in 

the slice would promote spontaneous SWO in slices from adult rats similar to 

Cunningham et al. (2006), we changed traditional aCSF to 'in vivo-like' aCSF. 

Increasing the level of excitation in the slice promoted bursting and rhythmic activity, 

indicating insufficient excitation in adult slices to generate spontaneous rhythmic 

activity (Fig. 6.5).  

"
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Figure 6.4. Differences in the developmental profile of SWO in control and epileptic 
slices.  The graph shows an earlier decline of SWO occurrence in control compared to 
epileptic slices.    
 

 

 

 

"
Figure 6.5. Reducing [Mg2+]o promotes SWO in control adult slices.  A. Unfiltered raw 
trace recorded from layers II/III mEC of a control slice in traditional aCSF composition. B. 
Unfiltered raw trace recorded from layers II/III mEC of a control slice in low Mg2+ aCSF 
composition. 
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Figure 6.6. Differential effects of GABA-Ar blockade on SWO in control and PSE 
24h/7d slices.  A. Unfiltered raw traces in control (left) and 20 µM PTX (right) conditions in a 
control slice. PTX enhances SWO. B. Unfiltered raw trace in control (left) and 20 µM PTX 
(right) in a PSE 7d slice. PTX transforms SWO into interictal discharges.  
"

6.2.2. Pharmacological characterisation   

We explored the contribution of synaptic component into generation and 

maintenance of spontaneous SWO activity in the mEC. We started the 

pharmacological characterisation by looking at GABA-ergic inhibition, as it is known 

to be involved in network synchronisation. Application of GABA-Ar blocker PTX (20 

µM) enhanced slow rhythmic activity, increased burst amplitude by 46±18% (p< 0.05, 

n=4) and the intraburst frequency by 44.73±12% (p<0.05, n=4; Fig. 6.6A). Although 

blocking GABA-Ar increased the amplitude of bursts, it did not promote 

synchronisation of cell firing. It should be noted that blocking the inhibition was able 

to generate SWO in slices with no initial activity. The results suggest that GABA-ergic 

inhibition does not have the same function in the generation of spontaneous SWO, 

as compared to gamma rhythm synchronisation. The function of slow GABA-Br-

mediated inhibition was explored by administration of receptor antagonist CGP 

55845 (5 µM). GABA-Br blockade seemed prolong burst duration in some slices (Fig. 

6.7A), however, this was not significant (p>0.05, n=5). CGP 55845 promoted SWO in 

some slices without pre-existing spontaneous activity.      
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Figure 6.7. The effects of GABA-Br blockade on SWO in control and PSE 24h/7d slices.  
A. Unfiltered raw traces in control (left) and 5 µM CGP55845 (right) conditions in a control 
slice. B. Unfiltered raw trace in control (left) and 5 µM CGP55845 (right) in a PSE 7d slice.  
 

We next investigated the role of ionotropic glutamatergic transmission by blocking 

NMDAr, AMPAr/KAr, AMPAr, KAr and with 20 µM MK-801, 20 µM CNQX, 2.5 µM 

NBQX, and 3 µM UBP310, respectively. The contribution of NMDAr was 

inconclusive, since changes in none of the measured burst parameters reached 

significance (p>0.05, n=4 for both amplitude and duration); Fig. 6.8A, however, 

shows there was a tendency for NMDAr antagonist to increase burst amplitude and 

reduce the frequency of SWO. Application of CNQX abolished all spontaneous 

activity in layers II/III of the mEC in 10/10 slices, as illustrated in Fig. 6.9A. 

Administration of UBP310, a selective GluK1 and GluK3-contaning KAr antagonist, 

readily abolished all spontaneous activity in the mEC in 7/7 slices, indicating that 

KAr-mediated transmission was a crucial part of the generation mechanism (Fig. 

6.10A). When 200 nM KA was applied, a cessation of SWO was observed prior to 

the emergence of persistent gamma oscillations in the mEC (Fig. 6.11). Selective 

blockade of AMPAr with low concentration NBQX (2.5 µM)"produced mixed effects, 

as it terminated all activity in 2 out of 7 slices, while abolished or reduced only the 

burst component but kept the rhythmic slow wave in 4 out of 7 slices (Fig. 6.12A). In 

one slice with a complex oscillatory pattern, NBQX selectively abolished low 

amplitude bursts, yet retained large bursts and a slow wave. Overall, NBQX reduced 

SWO power by 14.4 ± 17.0 %, however, this was not significant (p>0.05, n=7). 
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Figure 6.8. NMDAr blockade reduces the interburst frequency but increases burst 
amplitude in control and PSE 24h/7d.  A. Unfiltered raw traces in control (left) and 20 µM 
MK801 (right) conditions in a control slice. B. Unfiltered raw trace in control (left) and 20 µM 
MK801 (right) in a PSE 7d slice. 
 

 

Figure 6.9. AMPAr/KAr blockade abolishes SWO in control and PSE 24h/7d slices.  A. 
Unfiltered raw traces in control (left) and 20 µM CNQX (right) conditions in a control slice. 
CNQX abolishes all activity. B. Unfiltered raw trace in control (left) and 20 µM CNQX (right) 
in a PSE 7d slice. CNQX abolishes all activity. 
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Figure 6.10. GluK1,3 KAr blockade abolishes SWO in control and PSE 24h/7d slices . 
A. Unfiltered raw traces in control (left) and 3 µM UBP310 (right) conditions in a control slice. 
UBP310 abolishes all activity. B. Unfiltered raw trace in control (left) and 3 µM UBP310 
(right) in a PSE 7d slice. UBP310 abolishes all activity. 
 

 

Figure 6.11. The effect of KAr activation on SWO in PSE 24h/7d.  Figure shows an 
unfiltered raw trace of SWO at the onset of KA effect, demonstrating a gradual 
transformation of SWO into a persistent gamma rhythm. An increase in the frequency of the 
fast component is observed, while the low-frequency modulation of amplitude (burstiness) 
disappears.  
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Figure 6.12. AMPAr blockade abolishes SWO in PSE 24h/7d but not control slices . A. 
Unfiltered raw traces in control (left) and 2.5 µM NBQX (right) conditions in a control slice. 
NBQX abolishes bursts of high frequency activity but retains the slow wave. B. Unfiltered raw 
trace in control (left) and 2.5 µM NBQX (right) in a PSE 7d slice. NBQX abolishes all activity. 
C. Power spectra showing the effect of AMPAr blockade on SWO in control slices. D. Pooled 
data showing the effect of NBQX on the peak power of SWO in control and PSE 7d slices. * 
indicates p<0.05. 
 
 
The contribution of slow glutamatergic transmission mediated by mGluRs was 

explored using selective antagonists for groups I and II/III (MTEP and LY 341495). 

The results showed apparent potentiation of spontaneous slow rhythmic activity 

produced by both antagonists. The effect of MTEP on SWO parameters did not reach 

significance (p>0.05, n=6). Group II and III antagonist LY 341495 increased the 

number or events in the bursts by 54.2±13.2%, p<0.01, and the intraburst frequency 

by 23.4±6.4%, p<0.05 (n=8). Blocking mGluRs appeared to enhance the synchrony 

of bursting cells, which is visible from the Morlet wavelet time-frequency 

spectrograms (Figs. 6.13A and 6.14A). These findings might indicate an indirect 

modulation of GABA release taking part in the network synchronisation.  
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Figure 6.13. mGluR5 blockade promotes intraburst synchrony in control and PSE 
24h/7d.  A. Morlet wavelet time-frequency plots in control (left) and 100 nM MTEP (right) 
conditions in a control slice. B. Morlet wavelet time-frequency plots in control (left) and 100 
nM MTEP (right) in a PSE 7d slice. 
 

                

Figure 6.14. mGluR gpoups II/III blockade promotes intraburst synchrony in control 
and PSE 24h/7d.  A. Morlet wavelet time-frequency plots in control (left) and 5 µM 
LY341495(right) conditions in a control slice. B. Morlet wavelet time-frequency plots in 
control (left) and 5 µM LY341495 (right) in a PSE 7d slice. 
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Figure 6.15. Gap junction blockade abolishes SWO in control and PSE 24h/7d.  A. 
Unfiltered raw traces in control (left) and 200 µM CBX (right) conditions in a control slice. B. 
Unfiltered raw trace in control (left) and 200 µM CBX (right) in a PSE 7d slice. 
 

Previous studies have shown that gap junctions play an important role in network 

synchronisation at high and very high frequencies (Hormuzdi et al., 2001; Buhl et al., 

2003; Draguhn et al., 1998). Application of gap junction blocker, CBX, at 200 µM 

abolished all activity in 3 out of 8 slices. In the rest of the slices (5/8), CBX caused a 

decrease in SWO power (Fig. 6.15A). Overall, CBX application reduced SWO by 

50.41±20.5% (p<0.05, n=8). These findings confirm that SWO share the same 

mechanisms with the persistent high frequency activity such as gamma rhythm 

oscillations.  

6.2.3. Spontaneous SWO in RISE 

SWO were observed in combined hippocampal-EC slices from animals that had 

undergone epilepsy induction (RISE). The activity was most prominent in layers II/III 

of the mEC in PSE 24h and PSE 7d animals, corresponding to 50-140 g. Overall, 

spontaneous SWO in epileptic rats were similar in their basic characteristics to the 

ones observed in control animal with mean burst duration 1.3±0.2 s, inter- and 

intraburst frequencies being 0.21±0.05 Hz and 27.9±2.2 Hz (n=31). The mean peak 

amplitude, however, was significantly lower compared to control slices (61.14±7.2 
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µV2 vs. 106.9±13.8 µV2, p<0.01). Epileptic slices also resembled AMC slices in a 

variety of produced oscillatory patterns of low frequency (Fig. 6.2).        

 

Interestingly, in AMC slices spontaneous SWO disappeared, with rare exceptions, 

after the animals reached 100g. On the other hand, in animals that had previously 

undergone SE spontaneous SWO were still prominent between 100-140 g, 

suggesting underlying differences in brain development or network excitability in 

epileptic animals. The percentage of spontaneously active slices from the 100 – 140 

g weight category was 21.2% (7/33) in control vs. 65% (26/40) in epileptic slices, as 

illustrated by Fig. 6.4. No evident spontaneous activity was observed in the mEC of 

adult animals further into epilepsy development, perhaps indicating that similarly to 

healthy animals, SWO activity undergoes some form of developmental regulation in 

the epileptic brain.  

6.2.4. Pharmacology of SWO in epileptic slices 

Taking into account the differences in developmental profile of SWO in control and 

epileptic slices, we investigated whether SWO in epileptic animals were driven by the 

same mechanisms. The results demonstrated in Fig. 6.6B showed that GABA-Ar 

blockade produced similar effects as in AMC by enhancing SWO, however, unlike 

control slices, PTX quickly transformed SWO into interictal type activity (n=4). 

Blocking GABA-Br-mediated slow inhibition seemed to decrease the frequency of 

bursts, however the results again did not reach significance (p>0.05, n=5). GABA-Br 

blockade effects are demonstrated in Fig. 6.7B. Overall, it appeared that GABA-ergic  

inhibition remained in balance with excitation, which allowed generation of SWO in 

the mEC in both control and epileptic slices. "
 

NMDAr antagonist seemed to increase the amplitude of bursts, which was similar to 

control slices, however, the results did not reach significance (p>0.05, n=4) Fig. 

6.8B). We then explored the role of excitation by blocking AMPAr and KAr with 20 µM 

CNQX, which abolished all rhythmic activity in 5/5 slices (Fig. 6.9B), suggesting a 

crucial role of these receptors in SWO generation. In order to separate KAr and 

AMPAr contributions to SWO mechanism, selective antagonists (3 µM UBP 310 and 

2.5µM NBQX, respectively) were administered. UBP 310 had a similar effect as in 

AMC, terminating SWO in 5 out of 6 slices (Fig. 6.10B). KA application demonstrated 
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the same action on SWO, as in AMC, transforming slow activity into a persistent 

gamma rhythm (Fig. 6.11). The most interesting effect, however, was produced by 

low dose (i.e. AMPAr selective) NBQX (2.5 µM), which nearly abolished rhythmic 

activity in all slices (reduction of SWO power by 80.38±9.5%, n=7, p<0.05), indicating 

that, unlike control slices, both slow and fast components of SWO were AMPAr-

dependent in epileptic slices (Fig. 6.12). These findings might be the key element 

underlying the difference between healthy and pathological networks in the EC. 

 

Investigation of mGluR contribution to SWO generation in PSE 24h – PSE 7d slices 

yielded similar results as in AMC. Although the parameters did not reach statistical 

significance, blocking mGluR groups I (n=8) and II/III (n=5) had a positive effect on 

spontaneous activity, enhancing SWO and promoting synchronisation of the UP 

states (Figs. 6.13, 6.14). And finally a gap junction blocker, CBX, abolished all activity 

in 4/7 epileptic slices, overall decreasing SWO power by 73.12±14.2% (p<0.01, n=7). 

CBX effects showed a substantial contribution of electrical coupling in the generation 

of SWO in both control and epileptic slices (Fig. 6.15).           

 6.3. Discussion   

 6.3.1. Basic profile of SWO in control vs. epileptic slices 

Improving brain slice preparation technique has resulted in an increased viability of 

slices and a better preservation of local neuronal networks. This has allowed for the 

slices to exhibit their natural activity not only in the hippocampus, but also in the EC. 

Spontaneous SWO observed in the brain slices from young rats were similar to those 

reported in vitro by Dickson et al. (2003), Cunningham et al. (2006) and Sheroziya et 

al. (2009). SWO in the mEC were detected in control animals younger than 100 g, 

suggesting late developmental/age-dependent changes such as reduction in cellular 

excitability, which prevent the activity from appearing spontaneously under normal 

experimental conditions. It seems plausible that ambient glutamate levels play an 

important role in spontaneous generation of SWO, hence the developmental 

upregulation of glutamate transporters (Danbolt, 2001) and an increase of 

extracellular space could lead to the disappearance of rhythmic activity in slices from 

older animals (Sykova et al., 2000). Based on the previous studies of spontaneous 

oscillations in EC, it appears that by adjusting the level of excitability, either by 
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changing aCSF composition or by electrical stimulation, it is possible to manipulate 

the appearance of rhythmic activity. Therefore, in our experiments, 'in vivo-like' aCSF 

was able to generate slow oscillations in the mEC of the adult animal slices. 

Chamberlain (2009) investigated the changes produced by lowering Mg2+ 

concentration, which allowed for the generation of SWO in adult slices. Reducing 

[Mg2+] was shown to increase glutamate release, which strongly activated GluK1 

KAr, which, in turn, increased GABA release (Chamberlain, 2009).     

 

In contrast to AMC slices, epileptic slices (PSE 24h and PSE 7d) produced evident 

SWO in animals up to 140 g, suggesting two possible mechanisms: delayed 

development or increased excitability of epileptic slices. Hence, the stressful insult of 

SE and associated damage to sensitive neural circuits may result in a delayed 

neurodevelopment. Another possibility for a prolonged appearence of spontaneous 

SWO in epileptic slices is tissue hyperexcitability due to such factors as increased 

levels of ambient glutamate, enhanced sensitivity of receptors and others. These 

effects may occur as a result of epilepsy establishment in the EC and, indeed, may 

reflect the early stages of altered balance between excitation and inhibition.  

 

A variety of oscillatory patterns generated by local cortical networks might suggest a 

multicomponent mechanism of SWO. The patterns clearly showed interchanging 

periods of high (UP state) and low (DOWN state) activity at ~0.7 Hz, resembling that 

reported by Steriade et al. (1993c,d) during sleep and anaesthesia. In both AMC and 

epileptic slices, UP states were represented by bursts of single-unit spikes, epochs of 

synchronised 10-40 Hz activity and/or ascending part of the slow wave. Intracellular 

studies in the literature suggested that UP states were generated by intensive 

neuronal firing, represented by unit activity or local network oscillations, while DOWN 

states reflected periods of hyperpolarisation (Dickson et al., 2003; Cunningham et al., 

2006; Gnatkovsky et al., 2007; Sheroziya et al., 2009). The complex structure of 

SWO contains a low frequency component, which reflects the termporally broad 

cellular excitability, and a fast component, which determines the exact timing when 

an AP is generated (Hasenstaub et al., 2005). A large number of our slices (both 

AMC and epileptic) exhibited SWO with superimposed periods of fast (theta/gamma) 

oscillations, which resembled the ones described by Le Van Quyen et al. (2010) in 

human EC during sleep. Indeed, the authors showed that gamma frequency 
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episodes appeared at the UP states of slow oscillations during slow-wave sleep and 

were coherent over a single cortical region. Similar patterns of activity have been 

reported in animals in vivo by Steriade et al. (1996), Isomura et al. (2006) and in vitro 

by Dickson et al. (2003) and Compte et al. (2008), indicating a common cortical 

phenomenon. Cellular studies did not identify rhythmicity in the firing pattern; 

however, the firing was phase-locked to the gamma rhythm, reflecting sparse 

neuronal participation in the rhythmogenesis (Compte et al., 2008; Le Van Quyen et 

al., 2010).  

 

Much research has been conducted on the origin of SWO and its laminar cortical 

profile. It has been established by several studies that SWO emerged intracortically, 

which was also confirmed in our experiments with preserved spontaneous rhythmic 

activity in isolated mEC slices (Steriade et al., 1993e; Timofeev and Steriade, 1996). 

Previous reports demonstrated that the activity was generated in the superficial 

layers of the EC, although deep layer origin has also been reported in other areas 

(Cunningham et al., 2006; Gnatkovsky et al., 2007, Sheroziya et al., 2009; Sanchez-

Vives and McCormick, 2000; Chauvette et al., 2010). Contrary to the observations of 

Cunningham and colleagues (2006), spontaneous SWO recorded by our group 

persisted in layers II/III and V of the mEC, suggesting the propagation of activity from 

superficial to deep layers.  

  

6.3.2. Pharmacology of SWO in control vs. epileptic slices 

The presence of spontaneous SWO in the EC can be used as a measure of neuronal 

network activity, which is important in the context of TLE. We, therefore, explored 

pharmacological properties of SWO in both epileptic and AMC slices to determine the 

nature of spontaneously occurring activity, as well as to compare it between healthy 

and pathological conditions. Pharmacological characterisation revealed that SWO in 

the EC shared similar elements of generation mechanism with higher frequency 

rhythmic acivity, such as earlier described SγO. Related to this point is the fact that 

gamma oscillations appeared as a part of slow activity. According to previous 

studies, SWO in the cortex emerged from the balance between recurrent excitation 

and inhibition with contributing intrinsic mechanisms (Shu et al., 2003; Compte et al., 

2003, 2008; Haider et al., 2006). We investigated the role of synaptic component by 
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application of selective agonists and antagonists for the main types of receptors 

known to be involved in rhythmogenesis. The findings showed that glutamatergic 

transmission, especially mediated by KAr and AMPAr, was the key player in the 

generation of SWO in the mEC. It appeared that ambient levels of glutamate were 

sufficient to spontaneously produce SWO, which were readily blocked by CNQX both 

in our experiments and in literature (Cunningham et al., 2006 in EC; Sanchez-Vives 

and McCormick, 2000; Shu et al., 2003 in other regions). Reliable abolition of SWO 

with GluK1,3-containing KAr antagonist (in line with Cunningham et al., 2006) and 

high doses of agonist (KA) suggested a window of receptor activation allowing for the 

generation of rhythmic activity in both control and epileptic slices. 

 

Interestingly, the role of AMPAr and its change in epileptic animals was 

fundamentally different to controls. As might be expected, blockade of AMPAr 

reduced the general level of excitation and decreased SWO bursts in control slices, 

however, the slow component of SWO often remained and abolition of all activity was 

only ever achieved in the presence of KAr blockade. These findings indicate that both 

fast excitation through AMPAr and slower excitation via KAr is required for full 

expression of SWO activity under control conditions. Interestingly, observations by 

the Cunningham group (Cunningham et al., 2006) showed increased cell firing 

produced by an AMPAr antagonist, which might seem to be at odds with our data, 

although we did not conduct any intracellular recordings with which to make direct 

comparisons. Taking into account the fact that KAr blocker abolished all activity, 

while AMPAr blockers only reduced it, control SWO appear to rely more on KAr-

mediated excitation. A different picture was observed in PSE 24h and PSE 7d slices, 

where all rhythmic activity (both fast and slow) was abolished by AMPAr blockade, 

suggesting greater participation of these receptors in SWO. These results suggest an 

increase in the function of AMPAr in the early stages of epileptogenesis, which might 

reflect neuronal network alterations due to either an initial insult (SE) or a progressing 

establishment of epilepsy. Several factors could account for that, including altered 

expression with insertion of AMPAr caused by the SE and abnormal receptor function 

due to delayed development. Previous reports in literature have demonstrated 

AMPAr plasticity taking place after SE. Rajasekaran and colleagues (2012) showed a 

loss of GluA2 and an increase in GluA1 subunits of AMPAr following the SE, which 

resulted in another source of Ca2+ entry into the neurons (as GluA2-lacking AMPAr 
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flux Ca2+), thus increasing excitability and possibly susceptibility to seizures, which 

we have observed spontaneously in PSE 7d slices in the EC. Ca2+-permeable 

AMPAr are not only a pathological, but also a developmental feature, as GluA2-

lacking AMPAr are replaced by Na+ and K+-permeable GluA2-containing AMPAr 

during development, which has been shown in CA1 (Stubblefield and Benke, 2010). 

Therefore, taking into account delayed development in our PSE 24h/7d slices, it is 

plausible that AMPAr remained in their developmental state. Furthermore, Abegg et 

al. (2004) have shown that in the hippocampus epileptiform activity strengthens 

excitatory synapses by increasing the number of functional AMPAr. By contrast, Hu 

and colleagues (2012) demonstrated a reduction of AMPAr following the SE, 

however they also observed changes in the subunit composition of the receptors, 

which might suggest that in our model it is not the quantity, but the “quality” (perhaps 

efficacy) of AMPAr that may alter network activity and play a role in epileptogenesis.   

   

In agreement with Cunningham et al. (2006), but contrary to other reports (Sanchez-

Vives and McCormick, 2000; Shu et al., 2003; Sheroziya et al., 2009), NMDAr did not 

appear to play a crucial role in the mechanism of SWO neither in AMC nor in 

epileptic slices. By contrast, recorded rhythmic activity, especially its burst 

component, was significantly affected by mGluR groups I-III antagonists, which 

enhanced theta/gamma oscillations nested on the slow wave by modulating the 

levels of glutamate and GABA via different mechanisms. Errington and colleagues 

(2011) demonstrated an increase in tonic inhibition by activation of the group I 

mGluR. Activation of mGluR group II is known to presynaptically reduce glutamate 

release in the EC (Bandrowski et al., 2003; Wang et al., 2012). Woodhall et al. (2001) 

demonstrated that mGluR group III were not tonically activated in the EC, hence are 

probably not involved in the generation of SWO. Overall, the findings suggested that 

tonically activated mGluR contributed to the balance of excitation and inhibition, 

which gave rise to SWO. Sheroziya and colleagues (2009) also demonstrated that 

application of a group I/II antagonist E4CPG did not abolish intrinsic bursting of layer 

III neurons.       

 

The disinhibition of control and epileptic slices with a GABA-Ar blocker produced 

differential effects on spontaneous SWO. Previous studies have demonstrated that 

blocking GABA-Ar transformed SWO into epileptiform activity (Sanchez-Vives and 
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McCormick, 2000; Shu et al., 2003; Sheroziya et al., 2009). Our experiments, on the 

other hand, showed interictal-type activity in PSE 24h and PSE 7d, but not in control 

slices, where merely a potentiation of SWO was observed. In control slices, PTX 

appeared to create favourable conditions for the SWO development. However, the 

disinhibition of epileptic slices revealed a somewhat augmented excitatory 

component, which could be associated with the change in AMPAr function. Blocking 

slow GABA-Br resulted in what seemed like an enhancement of rhythmic activity, 

suggesting GABA-Br acted to suppress slow activity and kept it at a slow pace, 

although the effect was not consistent. The role of inhibition in control over UP and 

DOWN states has previously been explored in the EC by Mann and colleagues 

(2009). They demonstrated that increasing concentrations of gabazine (GBZ) 

shortened the duration of the UP state and increased the spiking frequency, 

eventually transforming it into epileptiform activity. GABA-Br, on the other hand, were 

involved in the UP state termination, as GABA-Br blockade resulted in a prolongation 

of UP states, which is generally in line with some of our findings. It has been 

demonstrated that DOWN states appeared synchronously (Volgushev et al., 2006), 

hence Mann and colleagues (2009) suggested that it was GABA-Br that determined 

the transition from active to silent state, together with GABA-Ar controlling spike rate 

and synchrony.  

 

Application of a gap junction blocker produced a marked overall reduction of SWO 

power, suggesting the involvement of gap junctions in the both slow and fast network 

synchronisation, which has been previously established in gamma oscillations 

(Hormuzdi et al., 2001; Buhl et al., 2003). By contrast, Sheroziya et al. (2009) 

showed that SWO were not affected by a gap junction blocker. 

 

Despite a substantial body of literature on slow sleep oscillations observed in various 

cortical regions, pharmacological studies are limited to the effects of GABA and 

iGluR antagonists. Considering the importance of synaptic transmission in the 

generation of SWO, it is necessary to carry out a more in depth analysis to determine 

more contributing elements. We, therefore, investigated the roles of mGluRs and gap 

junctions, together with the basic pharmacology, which we compared to previous 

literature. It would also be interesting to explore cholinergic and histaminergic effects 
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on SWO, as these systems are known to be involved in sleep/wakefulness 

processes.    

6.3.3. Functional significance and relation to in vivo studies 

To understand the functional relevance of in vitro findings, the results need to be 

considered in the context of in vivo animal and human research. Spontaneous SWO 

have been initially observed in animals in vivo during sleep and anaesthesia by the 

group of M. Steriade (Steriade et al., 1993a-e). Since then SWO have been recorded 

and explored in different cortical areas in both animals and humans (e.g. Timofeev et 

al., 2000; Hasenstaub et al., 2005; Isomura et al., 2006; Volgushev et al., 2006; 

Luczak et al., 2007; Csercsa et al., 2010; Le Van Quyen et al., 2010 and other). 

Different functions of slow rhythmic activity have been proposed, some of the most 

popular being memory consolidation, information processing, homeostatic and 

developmental (Steriade and Timofeev, 2003; Huber et al., 2004; Luczak et al., 2007; 

Tononi and Cirelli, 2006; Cunningham et al., 2006; Sheroziya et al., 2009).  

 

Interestingly, Le Van Quyen et al. (2010) reported episodes of gamma oscillations 

appearing on the UP states of SWO in the EC of sleeping humans during slow-wave 

sleep (non-REM). This activity closely resembled our observations in the rat EC. Le 

Van Quyen and colleagues suggested that, since fast rhythmic activity was similar to 

that appearing in wakefulness, these ‘microwakes’ reflected or ‘replayed’ previously 

experienced events in a form of synchronisations incorporated into slow wave sleep 

activity (Ji and Wilson, 2006). Authors also pointed out that synchronised gamma 

activity might represent means of local cortical communication (Le Van Quyen et al., 

2010).                 

        

Another aspect of spontaneous SWO is their disappearance in adult brain slices, 

whether this phenomenon is limited to brain slices and experimental set up or 

whether the activity in mEC is indeed age-dependent. Previous in vitro studies in this 

brain region suggested that experimental conditions greatly affected spontaneous 

activity in mEC (Dickson et al., 2003; Cunningham et al., 2006; Sheroziya et al., 

2009).  On the other hand, human sleep studies demonstrated that throughout 

childhood and adolescence SWO shifted from posterior to anterior regions of the 

brain, which followed the same time course as cortical maturation (Shaw et al., 2008; 
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Kurth et al., 2010). These authors suggested that, apart from regional development 

of the cortex, SWO alterations reflected changes in synaptic density (synaptic 

pruning), which affected network synchronisation (Sowell et al., 2004; Vyazovskiy et 

al., 2009). It has been shown that slow activity strongly correlated with grey matter 

thickness, both decreasing with age (Buchman et al., 2011). These findings indicated 

a clear developmental component in the operation of slow rhythmic activity 

associated with sleep in the human brain, however, in vivo studies might help 

determine the role of development in animals.  

 

The possible involvement of slow rhythmic activity in memory consolidation raises an 

interesting question regarding cortico-hippocampal interactions during sleep and 

whether cortical SWO are correlated with hippocampal activity. Several studies have 

explored these relationships in vivo, including Isomura et al. (2006), Ji and Wilson 

(2006), Le Van Quyen et al. (2010). In a study carried out by Isomura and colleagues 

(2006) in vivo recordings were taken from the hippocampus, neo- and paleocortices. 

The results showed that while EC neurons dwelled in a bimodal (UP-DOWN) state 

associated with slow oscillations, hippocampal neurons exhibited independent firing 

patterns. Nevertheless, these authors showed that excitatory component of SWO did 

spread from the neocortex to the hippocampus via EC, although hippocampal 

neurons still remained active during cortical DOWN states. Overall, it was concluded 

that hippocampal neurons operated via both neo-/paleocortex-dependent and 

independent mechanisms, suggesting some degree of cortico-hippocampal 

interaction during sleep. It would be interesting to explore the relationship between 

the EC and hippocampus in both healthy and epileptic animals, as we have an 

opportunity to simultaneously observe SWO and SγO in a slice. 

 

Finally, as is clear from the results above, from a methodological point of view these 

studies were difficult to analyse and interpret and, in particular, statistical validation of 

observations was problematic. This was due in no small part to the variability 

between recordings of SWO, which are difficult to quantify in a manner that is both 

rigorous and repeatable. Further work in this area is ongoing in the laboratory, and 

we hope to develop more reliable indices of SWO ‘power’, perhaps by including both 

slow-wave amplitude and and intraburst power in a combined metric. 
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6.4. Conclusions                       

Our investigations into how the EC network operation changed during epilepsy 

development revealed that spontaneous SWO employed a different mechanism of 

oscillogenesis, which relied more on AMPAr activation, as compared to control slices. 

It is yet to determine the exact role that AMPAr take over and its significance in the 

context of epilepogenesis. We can also conclude that epilepsy development or the 

initial insult (SE) acted to delay network maturation in animals that had experienced 

RISE. 
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7. Chapter 7 Electrophysiology of paediatric brain tissue 
resected from patients with intractable epilepsy 
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7.1. Introduction  

Despite the existance of a large variety of AEDs, 30–40% of patients with epilepsy 

exhibit seizures that are poorly controlled by medication (Kwan and Brodie, 2000). 

TLE is generally one of the most common types of epilepsy, however, it also 

constitutes 50–70% of intractable epilepsy cases (Semah et al., 1998; Wass et al., 

1985; Guldvog et al., 1994; Keene et al., 1997). Characteristic changes such as 

hippocampal sclerosis with excessive gliosis and cell death, neuronal circuit 

reorganisation with axonal sprouting and synaptogenesis are normally associated 

with TLE (Sutula et al., 1988, 1989; Mikkonen et al., 1998). Studies suggest that 50% 

of epilepsy cases begin before the age of 5 (Hauser, 1992). Although TLE is not the 

most common type of epilepsy in paediatric patients, it forms a large part of drug-

resistant cases requiring surgical intervention. Manifestations of temporal lobe 

seizures include the onset of aura (e.g. olfactory, gustatory, auditory) indicating a 

simple partial seizure, followed by a complex partial seizure (automatisms, 

psychomotor seizures) with impaired consciousness and possibly culminating in 

generalised tonic-clonic seizures (Adelson, 2008). The most common pathological 

substrates in paediatric drug-resistant epilepsy are cortical dysplasia, tumors, mesial 

temporal lobe sclerosis and vascular lesions (review by Cataltepe and Cosgrove, 

2011). Nowadays, advanced surgical expertise allows good outcomes with low 

morbidity and mortality (Benifla et al., 2006; Kan et al., 2008). Reviews published by 

Engel et al. (2003) and Schmidt and Stavem (2009) point out that surgical resection 

produces a seizure-free outcome in 40–60% of cases, which is 4–5 times higher 

compared to prolonged medication. A more recent report by Muhlebner et al. (2014) 

demonstrated that 80% of the patients were seizure-free (56.7% stopped receiving 

AEDs). It appears that similar surgical outcomes were observed in children 

regardless of age (Chugani et al., 1993; Wyllie et al., 1998; Maton et al., 2008). 

 

Epileptic brain tissues surgically resected from patients with pharmacoresistant 

epilepsies present extremely valuable material for studying cellular and network 

changes. A direct relation to human pathology is one of the obvious advantages that 

human tissue possesses compared to animal research. A limited number of 

laboratories around the world use various techniques to characterise human brain 
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tissue. Over the years, information has been accumulated on electrophysiological 

properties of human cortical neurons (Avoli and Olivier, 1989; McCormick, 1989; 

Foehring et al., 1991; de la Prida, 2002; Molnar et al., 2008; Florez et al., 2013) and 

the role and mechanism of VFOs in epileptic human tissue (Roopun et al., 2010; 

Cunningham et al., 2012; Simon et al., 2014). However, only one report described 

physiological network function has recently appeared in literature (Florez et al., 

2013). The lack of studies characterising neuronal network synchronisation in human 

brain tissue indicates a clear gap in our knowledge. Abnormal network function 

constitutes the basis of epileptic disorder, therefore investigation and establishment 

of physiological/baseline human network profile seems of major importance. One of 

the main limitations is the paucity of control human brain tissue. However certain 

surgeries require resection of healthy tissue to gain access to remote epileptic 

regions. In addition, brain resections of non-epileptic pathologies such as brain 

tumors could also be utilised as a control tissue. Despite the fact that extensive 

animal research characterising healthy and epileptic networks has been conducted 

for decades, similar investigations in the human brain are required to establish 

differences and similarities. Therefore, we started a pharmacological characterisation 

of neuronal network oscillations recorded from resected cortical brain tissue from 

paediatric patients with drug-resistant epilepsy.  

7.2. Results  

7.2.1. Basic profile of neuronal network oscillations   

Human brain tissue was resected from the brains of paediatric patients suffering from 

intractable epilepsy. We received brain tissue samples of 5 patients with cortical 

dysplasia, the specimens were mostly taken from the temporal cortex and were 

either normal or dysplastic (see Section 2.3.). 

  

As a collective effort from all members of the lab (Jane Pennifold, Darshna Shah, 

Swetha Kalyanapu, Dr. Emma Prokic, and Nicholas Johnson), brain slices were 

prepared the same way as described for animal slices (see Section 2.1.). LFP 

recordings were made from human cortical tissue under control drug-free conditions, 

as well as during pharmacological stimulation with various doses of KA and CCh. 

Electrodes were placed in both deep and superficial cortical layers, although in some 
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cases it was impossible to distinguish between them. Slices did not exhibit any 

spontaneous activity, apart from occasional single-unit spikes. When a human 

cortical slice was washed with 'in vivo-like' aCSF, which enhanced tissue excitability, 

slow baseline fluctuations (~0.1 Hz) appeared, but no stable rhythmicity or 

ictal/interictal events were detected.  

 

Different concentrations of KA (150 nM, 300-400 nM, 800 nM and 1-1.2 µM) were 

bath-applied in orded to elicit rhythmic activity in the slices. Induced oscillations 

emerged 10-15 mins after drug application and were persistent for several hours. 

Lower doses of KA generated low power low frequency oscillations as demonstrated 

by raw traces and power spectra in Fig. 7.1B-D.  Application of 150 nM KA produced 

oscillations with the mean peak frequency 5.6±0.5 Hz and mean peak power 

1.95±0.6 µV2 (n=2). In a different set of slices administration of 300 – 400 nM KA 

resulted in rhythmic activity with higher mean peak frequency 10.17±2.2 Hz and 

similar mean peak power of 1.85±0.5 µV2 (n=6). A higher concentration of 800 nM 

KA produced beta frequency rhythmic activity (mean peak frequency 21.57±1.1 Hz) 

with higher mean peak power of 11.49±9.7 (n=3). Gamma frequency oscillations 

were observed upon application of 1-1.2 µM KA. An increased dose produced faster 

but not larger oscillations (mean peak frequency 27.47±6.2 Hz and meak peak power 

7.37±2.7 µV2, n=4). We also tested the effects of KA and CCh co-application in 7 

cortical slices, which resulted in generation of beta frequency activity (mean peak 

frequency 17.38±2.3 Hz) with consistently higher power compared to KA-induced 

oscillations (mean peak power 20.97±7.2 µV2). Frequency-power characteristics of 

recorded neuronal network oscillations are summarised in Fig. 7.2C, where a positive 

correlation could be observed between KA dose and the frequency of induced 

oscillations. Using Morlet wavelet method, the time-frequency characteristics were 

analysed for different types of induced oscillations and showed stable oscillatory 

activity over time (Fig. 7.2A,B).  

 

Simultaneous recording of field potential from deep and superficial layers of the 

human cortex revealed a more prominent rhythmic activity in superficial layers upon 

application of 400-800 nM KA. Increasing the dose of KA from 400 nM to 800 nM 

resulted in the oscillation frequency shift from 15 Hz to 35 Hz in the superficial layers, 

while no network synchronisation was observed in the deep cortical layers (n=1). 
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These findings could indicate disruption of laminar connectivity, independent rhythm 

generators within the cortex or poor survival of deep layer neurons. Florez and 

colleagues (2013) have previously pointed out the differences in the laminar profile of 

network oscillations in the human cortex. In that study, superficial layers generated 

higher power rhythmic activity compared to deep layers in response to cholinergic 

activation, which was explained by histological differences and a higher density of 

muscarinic receptors in superficial layers (Florez et al., 2013). 

"
Figure 7.1. Human brain tissue slice morphology and KA-induced rhythmic activity. Ai. 
and Aii. Images of normal and dysplastic human cortical brain tissue, respectively. B., C. and 
D. Band-pass filtered (2 – 50 Hz) raw traces and representative power spectra for oscillations 
induced by 300 nM, 800 nM and 1.2 µM KA, respectively.  
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Figure 7.2. KA- and CCh-induced rhythmic activity in human cortical brain tissue.  A. 
Unfiltered raw trace of KA-induced oscillations and representative Morlet wavelet time-
frequency plot. B. Unfiltered raw trace of KA+CCh-induced oscillations and representative 
Morlet wavelet time-frequency plot. C. Bar charts showing peak frequency and peak power of 
rhythmic activity induced by different concentrations of driving agents (recordings not paired). 
A positive correlation is observed between the dose of KA and the peak frequency of induced 
oscillations.  
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"
Figure 7.3. Rhythmic activity in the human cortex is mediated by GABA-Ar.  A. Power 
spectra showing a reduction in the peak power of oscillations produced by low concentration 
GBZ (250 nM) and a desynchronisation produced by 2 µM GBZ. B. Unfiltered raw traces 
showing large delta-type oscillations produced by 2 µM GBZ. C. and D. Power spectra 
showing differential dose-dependent effects of 100 nM and 10 nM zolpidem, respectively.  
 

7.2.2. Pharmacological characterisation 

Together with basic characterisation, we started pharmacological analysis of the 

rhythmic activity to determine whether it shared the same mechanism with 

oscillations in animal brain slices. Original studies established that synchronous 

activity in animal slices crucially depended on GABA-mediated inhibition (Whittington 

et al., 1995; Buhl et al., 1998), hence the effect of GABA-Ar antagonist GBZ was 

tested on pharmacologically-induced oscillations in human cortical slices. At 250 nM 

GBZ produced a decrease in the peak power of oscillations by 32.04±11.1% and a 

small reduction in the peak frequency from 22.5±6.8 Hz to 18.8±0.5 Hz, n=2 (Fig. 

7.3A). As illustrated by Fig. 7.3B, high concentration (2 µM) of the antagonist 

abolished oscillations and introduced a low-frequency high-power rhythmic activity of 

delta frequency range, which was possibly mediated by excitatory transmission. The 
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mean peak frequency decreased from 22.5±6.8 Hz to 5.03±1.7 Hz (n=4), whereas 

power increased >10000-fold (%). These results indicate that beta-gamma 

synchronous activity generated by human tissue networks is dependent on GABA 

inhibition. These findings were further supported by the effect of a GABA-Ar blocker, 

PTX (20 µM), which also abolished network oscillations. The activity was also 

affected by a benzodiazepine site agonist, zolpidem, which produced differential 

effects at 10 nM and 100 nM concentrations. High concentration of zolpidem 

produced an increase in the peak power of beta band rhythmic activity by 24.2 %, 

while a reduction in the peak frequency from 18.3 Hz to 15.9 Hz (n=1), as 

demonstrated by Fig. 7.3C. Low dose of zolpidem, on the other hand, resulted in a 

slight reduction of beta oscillation power by 21.3 % and a minor decrease in the peak 

frequency from 22.0 Hz to 20.8 Hz, n=1 (Fig. 7.3D). It is not possible to make 

conclusions about the effects of zolpidem, however, the results already suggest a 

certain level of modulation.  

 

The second main component of rhythm generation in animals is AMPAr-mediated 

excitation (Whittington et al., 1995). We, therefore, explored the effects of an AMPAr 

antagonist, NBQX (2.5 µM), on KA+CCh-induced oscillations in the human cortical 

slices. Blockade AMPAr resulted in the abolition of gamma activity and appearance 

of a slow rhythm with a lower peak power instead (the peak shifted from 30.5 Hz to 

6.1 Hz and decreased in power by 52%, n=1), indicating involvement of 

glutamatergic transmission in the generation and maintenance of rhythmic activity in 

human neuronal networks (Fig. 7.4A). The role of NMDAr in the generation and 

maintenance of rhythmic activity was explored by application of 50µM DL-AP-5. 

NMDAr blocked reduced gamma peak by 54.4% (n=1), while retained the slow 

rhythm (Fig. 7.4B). To investigate the contribution of KAr, a selective GluK1,3 subunit 

agonist UBP310 (3 µM) was bath-applied to KA- and KA+CCh-induced oscillations. 

The results demonstrated similar effects to non-selective AMPAr/KAr blockade, as 

UBP310 caused a significant reducion in beta band power, yet an increase in lower 

frequencies (Fi. 7.4C,D). The peak frequency shifted from 15.9 Hz to 7.3 Hz, 

whereas the peak power decreased by 47.2% (n=1). These findings suggest a role of 

KAr in beta/gamma frequency network synchronisation, similarly to findings in animal 

slices.  
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Cholinergic involvement in the generation of  rhythmic activity was explored by 

addition of 5 µM atropine, an mAChr antagonist. Cholinergic blockade produced 

different effects in KA- and KA+CCh-induced oscillations, similar to our previous 

findings in rodent hippocampus (Chapter 3). KA-induced oscillations persisted in the  

 

 
Figure 7.7.4. Pharmacological profile of pharmacologically-induced rhythmic activity 
in the human cortical tissue.  A. Power spectra showing a dramatic reduction in the peak 
frequency and peak power of oscillations produced by 2.5 µM NBQX. B. Power spectra 
showing the NMDAr blockade with 25 µM AP-5 causes a marked desynchronisation in the 
gamma frequency band, yet maintains the low-frequency peak. C. and D. Power spectra 
showing a reduction in the peak frequency and peak power of KA+CCh- (C.) and KA- (D.) 
induced oscillations produced by 3 µM UBP310. E. Power spectra showing a reduction in the 
peak power of KA-induced oscillations produced by 5 µM atropine. F. Power spectra showing 
gamma frequency desynchronisation produced by a gap junction blocker, CBX (200 µM).  



191"
"

"
Figure 7.5. VFOs are not mediated via gap junctions.A. High-pass filtered (at 100 Hz) raw 
trace in control conditions showing high-frequency episodes. B. High-pass filtered (at 100 
Hz) raw trace showing that application of a gap junction blocker did not abolish VFOs.   
  
presence of atropine with the peak power reduction by 34.9% (n=1), whereas 

KA+CCh-induced activity was rapidly abolished (n=1), indicating that cholinergic 

activation is not essential for oscillation generation and maintenance and that the two 

oscillation models rely on different mechanisms (Fig. 7.4E). Similar results were 

reported by Florez and colleagues (2013), where KA+CCh-induced oscillations were 

abolished by atropine application in the human tissue.    

 

Electrical coupling between neurons is a potent facilitatory mechanism of rhythmic 

network activity in rodent brain (Traub et al., 2000, 2003; Hormuzdi et al., 2001; Buhl 

et al., 2003; Pietersen et al., 2009). Gap junctions have been linked to VFOs in 

human epileptic brain (Cunningham et al., 2012). Taking these findings into 

consideration, 200 µM CBX was bath-applied to existing beta frequency oscillations. 

The gap junction blocker readily curtailed rhythmic activity in the beta range, however 

augmented the power level in the delta frequency band (peak frequency changed 

from 20.8 Hz to 6.1 Hz, while delta-peak power was 63.6% lower than beta peak, 

n=1), as illustrated by Fig. 7.4F. Several human tissue recordings presented with 

episodes of high frequency activity (Fig. 7.5). We, therefore, applied 200 µM CBX to 

determine whether the observed fast component was mediated via gap junctions. In 

a single recording, gap junction blocker did not appear to produce any effect on fast 

oscillations (Fig. 7.5). In an attempt to promote high frequency ocillations, a gap 

junction opener, 10mM trimethylamine, was bath applied. Stimulation of gap junction 

conductance reduced beta oscillation power, which was counterintuitive, considering 

similar effects produced by a gap junction blocker, and did not enhance high 

frequency activity.  
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Figure 7.6. Similarities between VFO in PSE 24h slices and epileptic human tissue. A. 
Unfiltered raw traces showing episodes of VFO recorded from PSE 24h slices. Power 
spectum of the VFO showing a peak at 150 Hz. A. Unfiltered raw traces showing episodes of 
VFO recorded from epileptic human brain slices. Power spectum of the VFO showing a peak 
at around 150 Hz. Scale bars 200ms✕50µV. 
  

7.2.3. VFO and ictal activity      

As mentioned earlier, human cortical slices occasionally exhibited bursts of high 

frequency activity, similar to the ones observed in brain slices from epileptic rats (Fig. 

7.6). The epochs of fast activity were of 200 – 600 Hz frequency range. Since 

enhanced VFOs have been associated with epilepsy, it would reasonable to assume 

that high frequency oscillations observed in our human and rat slices are a 

characteristic feature of epileptogenicity. An episode of ictal activity was also 

recorded from the human cortical tissue. The seizure consisted of a high-amplitude 

relatively slow wave followed by a period of rhythmic activity with multiple frequency 

components (Fig. 7.7A). The episode exhibited a changing frequency pattern, which 

is illustrated by the Morlet-wavelet spectrogram (Fig. 7.7B). 
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Figure 7.7. Ictal event in epileptic cortical tissue from a human brain.   A. Unfiltered raw 
trace recorded from the epileptic human tissue. B. Representative Morlet wavelet time-
frequency spectrogram.  
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Figure 7.8. GABA sIPSC kinetic properties of the individual cells in normal and 
dysplastic human tissues.  A. Bar chart showing sIPSC amplitude across 7 cells. B. Bar 
chart showing sIPSC rise time across 7 cells. C. Bar chart showing sIPSC decay time across 
7 cells. D. Bar chart showing sIPSC IEI across 7 cells. 
 

7.2.4. IPSC kinetics in human cortical slices   

Intracellular patch-clamp recordings were taken from the human cortical neurons. We 

recorded sIPSCs in 7 pyramidal-looking cells from control and dysplastic tissues and 

summarised their kinetic properties under control (drug-free) conditions. The events 

had the mean amplitude of 12.8±0.4 pA, a mean rise time of 4.75±0.1 ms and mean 

decay time 11.75±0.3 ms, while the IEI was 445.3±29.1 ms (n=7). The parameters 

across individual cells are presented in Fig. 7.8. The amplitude and the rise time 

appeared to be more consistent from cell to cell in comparison to the decay time and 

IEI. Cells from supposedly dysplastic regions did not appear to show significant 

differences, as some of the kinetic parameters were rather variable. At this stage of 

investigations it is too early to draw conclusions.  

 

To investigate the effects of KAr on GABA release in human brain slices, 100 nM KA 

was bath-applied. In one cell recording in control tissue, KA administration caused a 

significant decrease in the frequency of sIPSCs, indicating negative modulation by  



195"
"

 
Figure 7.9. KAr modulated GABA release.  Ai.  and Aii. Raw traces of sIPSCs in control 
and 100 nM KA conditions. Bi. And Bii. Cumulative probability plots showing changes in 
sIPSCs amplitude and IEI upon the application of 100 nM KA. 
 

presynaptic KAr (p<0.05), as illustrated by Fig. 7.9Bii. No significant changes in 

amplitude, rise and decay times were observed upon addition of KA. It is obvious that 

more experiments are required to make conclusions on the modulatory presynaptic 

functions of KAr in human cortical neurons.  

7.3. Discussion   

7.3.1. Basic profile of human tissue oscillations 

The ultimate goal of animal research is understanding neurophysiological and 

neuropathological processes taking part in the human brain and finding ways of 

altering these conditions. Although animal research has yielded a substantial part of 

our knowledge of human physiology, the question of species differences is always 

open for discussion. Therefore exploring electrophysiological properties of neurons 

and neuronal networks in human brain tissue constitutes a valuable section of brain 

research. Brain tissue resection is common for surgical treatment of intractable 

epilepsy in humans, and this fact presents an opportunity to study pathological 
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changes occurring in epilepsy. We explored neuronal network properties in human 

brain slices by eliciting rhythmic activity in the temporal cortex. Previous human 

tissue studies mostly focused on the electrophysiology of individual cells, however 

several reports demonstrated the existence of transient oscillations of mostly theta 

and high gamma frequencies (Cunningham et al., 2012; Florez et al., 2013). Here, 

we report persistent neuronal network oscillations of different frequencies induced in 

the human cortical tissue, which, to our knowledge, has not been reported in the 

literature to date. Similar to animal models of brain rhythms, oscillations in the human 

cortex could be generated by application of KA or KA+CCh (Buhl et al., 1998; 

Cunningham et al., 2003; Roopun et al., 2006; Yamawaki et al., 2008). Florez and 

colleagues (2013) used a combination of KA and CCh to induce theta oscillations 

that lasted for approximately three minutes. The differences between oscillations 

could be determined by different experimental conditions (Mg2+ concentration in 

aCSF, submerged recording and temperature) and doses of driving agents. 

 

The aim of initial experiments was to establish an induction protocol, which would 

reliably generate rhythmic activity in human brain slices. The starting concentrations 

of KA and CCh were chosen based on the protocol of gamma oscillation induction in 

cortical rat brain slices (entorhinal, motor and piriform cortices). Established doses in 

human slices roughly corresponded to those used in rodent slices. Despite this fact, 

human rhythmic activity was much lower in power compared to that induced in 

animals. Several factors could account for that: higher cell survival rate and 

preservation of local circuits in animal slices. Interestingly, in rodents application of a 

driving agent resulted in a dose-dependent increase in oscillatory power, yet in little 

change in the frequency of oscillations. In human brain slices, on the other hand, a 

positive correlation was observed between the dose KA and produced frequency of 

oscillations, while the power did not seem to consistently depend on the strength of 

the drive. The power of oscillations, however, could be limited by the size of the 

network (the number of survived neurons) or a more sparse location of cells in the 

human brain. It appeared that cortical neurons in the human brain were more 

sensitive to a gain in the input drive, increasing the firing rate or changing the kinetics 

of GABA IPSCs, as it is known to determine the frequency of oscillations.  
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Application of KA in the human cortex was able to produce network oscillations of 

various frequency bands (5 – 30 Hz), which means that the level of excitatory drive 

could be matched to induce rhythmic activity observed in the intact human brain. 

However, the fact that the same area could generate multiple oscillation frequencies 

depending on the excitation suggests similar underlying mechanism, which does not 

seem to be the case in rodent slices. Another question is whether the induction 

method is important, as we know application of KA alone and KA+CCh are able to 

induce various types of rhythmic activity, whereas pure cholinergic activation was 

insufficient to generate oscillations (Florez et al., 2013). In our human tissue 

experiments, co-administration of CCh and KA consistently produced higher power of 

oscillations, compared to KA alone, however, had a less pronounced effect on the 

frequency. These results together with pharmacological data suggest that cholinergic 

input indeed modulates the generation of rhythmic activity, but is not a prerequisite. 

Hence, it is not clear whether the cholinergic activation participates in the generation 

of neuronal network oscillations in an intact human brain. Our previous findings 

demonstrated that in the rodent hippocampus the naturally occurring spontaneous 

rhythmic activity is different from both KA- and CCh-induced oscillations (Chapter 3). 

However, in the absence of spontaneous cortical activity in human slices, which 

model of oscillations is more physiologically relevant? Given the existence of different 

oscillation induction mechanisms, it is an important question, whether cholinergic 

activation is involved in rhythm generation in vivo. Previous reports suggest that KA-

induced oscillations persist in the absence of cholinergic input, whereas CCh-induced 

activity is abolished with blocked glutamatergic transmission. In a complex system 

such as intact brain, it is plausible that both systems act separately or together to 

generate different rhythms in various parts of the brain. However, when working with 

a simpler model like a brain slice, unless spontaneous rhythmic activity presents 

itself, researchers have to choose among several ways of induction. Personal 

preferences for a particular model and the diversity of available models may 

complicate the generalisation of accumulated knowledge.  

 

Stimulation of cortical network with different doses of KA elicited oscillations ranging 

from 4 to 45 Hz. Generation of different oscillation frequencies could either indicate a 

similar underlying mechanism with altered neuronal firing or employment of different 

network mechanisms depending on the level of excitatory drive. A substantial amount 
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of intra- and extracellular studies are required to determine the origin of observed 

frequency change. It can still be speculated that KA application is able to induce 

rhythmic activity with different mechanims and properties. For instance, a relatively 

low concentration of KA produced slow theta frequency rhythm. Although theta 

oscillations have been widely reported in the hippocampus of rodents, in humans 

theta frequencies have been observed in cortical structures, but several studies 

suggest that these rhythms are not coherent with theta in the hippocampus and 

represent different states in each region (Kahana, 1999; Raghavachari et al., 2001). 

Theta rhythm has been linked to various behavioural states, in particular associated 

with voluntary movement (Vanderwolf, 1969; Whishaw and Vanderwolf, 1973; Bland 

and Oddie, 2001). However, theta waves were also observed in animals during 

immobility associated with fear conditioning and attention to predators (Whishaw, 

1972; Sainsbury et al., 1987a,b). Some findings also suggest that theta rhythm is 

involved in the processes of memory and learning (Berry and Thompson, 1978; 

Winson, 1978; Givens and Olton, 1990; Vertes and Kocsis, 1997; Berry and Seager, 

2001). 

   

Increased KA concentration caused a significant shift in oscillation frequency 

producing a 10 Hz oscillation, which corresponded to alpha frequency band in the 

human brain. In literature alpha oscillations are categorised into three types. The first 

type is the “occipital alpha”, which prevails during quiet wakefulness and is 

decreases by eye opening. Occipital alpha is a major contributor to the alpha band 

magnitude during this behavioural state. Another type of alpha frequency rhythm is 

known as the mu rhythm, these waves are present in the central cortical areas and 

can be observed only in a small number of individuals (< 15%) during relaxed 

wakefulness (Jasper and Andrews, 1938; Maddochs et al., 1951; Schutz and Muller, 

1951). Studies demonstrate the attenuation of this rhythm by motor movements or 

somatosensory stimuli (Pfurtscheller et al., 1998). The third type of alpha rhythm is 

the “third rhythm” (independent temporal alphoid rhythm) observed in the temporal 

region and described by Niedermeyer (1990; 1991). However, these waves are 

visible on the EEG only in subjects with skull defects (Niedermeyer, 1997). A 

distinctive feature of the third rhythm is the absence of a specific blocking process or 

stimulus, unlike with occipital alpha or mu rhythm (Niedermeyer, 1997). It seems 

plausible that the third rhythm analogue could be generated in the temporal cortex 
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slices, although it should be noted that a brain slice is a reduced system with limited 

connectivity. 

 

A further increase in the glutamatergic drive resulted in alpha oscillations developing 

into a beta frequency (~15-20 Hz) rhythm. In humans beta rhythm is associated with 

sensorimotor functions and cognitive processing related to stimulus assessment and 

decision-making. Beta activity is prominent during steady contractions and holding 

periods following movements, and is blocked by voluntary movement (Sanes and 

Donoghue, 1993; Baker et al., 1997; Kilner et al., 1999; Klostermann et al., 2007). 

Apart from sensory-motor area, beta frequencies have been recorded from more 

frontal, as well as posterior and temporal regions (for review see Niedemeyer and 

Lopes da Silva, 2005). There is a possibility that beta oscillations represent 

pathological states and are enhanced in such conditions as Parkinson’s and 

epilepsy. In vitro experiments might support this idea. It is yet to determine whether 

beta oscillations recorded from the epileptic human brain slices are physiological or 

emerge as a consequence of a pathological condition. Another possibility is that what 

appears to be a beta type activity could in fact be a slow gamma rhythm, indicating 

the same underlying mechanism. Therefore, more studies will help identify the nature 

of recorded activity.  

 

Acceleration of rhythmic activity at high doses of KA in human slices demonstrated 

capability of the human cortex to generate gamma oscillations in vitro. The gamma 

rhythm in human slices was similar to that recorded from rodents, although in an 

intact human brain gamma oscillations tend to be of a higher frequency. This, 

however, could be explained by reduced connectivity in a slice, as well as artificial 

experimental conditions. It is believed that the functional role of gamma oscillations is 

involvement in temporal encoding, sensory binding of features, learning and memory 

processes (Hopfield et al., 1995; Buzsaki and Chrobak, 1995; Lisman and Idiart, 

1995; Lisman, 1999, Jensen et al., 2007). Gamma oscillations are observed during 

attentive state, focused wakefulness, sensory perception, object recognition, and 

language perception (Bouyer et al., 1981; Sheer et al., 1989; Murthy and Fetz, 1992; 

Pfurtscheller and Neuper, 1992, Bragin et al., 1995; Jensen et al., 2007). On a global 

scale, gamma frequency oscillations are thought to reflect integration mechanisms in 

the brain (Herrmann et al., 2004).  
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7.3.2. Pharmacology of human tissue oscillations 

Pharmacological investigation of synchronous activity in the human cortical tissue 

revealed similar findings to rodent pharmacology, implying similar underlying 

mechanism. Crucial role of GABA-ergic inhibition and glutamatergic excitation in the 

generation of beta/gamma oscillations suggests that the species share basic 

mechanisms of neuronal communication and information processing/transmission 

(Buhl et al., 1998; Cunningham et al., 2003; Yamawaki et al., 2008). Initial results 

demonstrated that a benzodiazepine site agonist, zolpidem, produced a dual dose-

dependent modulation of rhythmic activity, which again supported the role of GABA-

Ar and was in line with the effects reported in rat M1 (Yamawaki et al., 2008; Prokic, 

2012). KAr are known to take part in the generation and maintenance of neuronal 

network activity (Stanger et al., 2008), and our results showed that GluK1 subunit-

containing KAr were also involved in the network synchronisation in the human 

tissue. Our findings demonstrated that human oscillations relied heavily on gap 

junction transmission, similar to animal findings in vitro. Together with the similarities, 

several differences occurred when human pharmacology was compared to rodent 

oscillations. It appeared that NMDAr and mAChr were more involved in the 

generation and maintenance of gamma activity in the human cortex, compared to 

KA-induced oscillations in rodents. At the moment, our dataset is limited; therefore it 

is too early to make conclusions on the mechanism of human oscillations in vitro. 

7.3.3. VFO and ictal activity 

Several experiments revealed episodes of high frequency activity recorded from 

human brain slices taken from paediatric patients suffering from intractable epilepsy. 

The burst of fast oscillations resembled those recorded from PSE 24h and PSE 90d 

slices, indicating that RISE model bears at least a superficial similarity to the human 

condition. As mentioned earlier, fast oscillations are significantly enhanced in 

epilepsy and are known to precede and superimpose upon seizure activity. High 

frequency oscillations have been observed both in vivo and in vitro, in humans and 

animals (for review see Traub et al., 2012). Studies suggest that high frequency 

activity can be generated in the absence of chemical neurotransmission by non-

synaptic mechanisms relying on axonal gap junctions. In our experiments, however, 

gap junction blocker did not produce the expected effect suggesting a different 
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physiological mechanism or a non-biological nature of the events. Gap junction 

activation with TMA could not promote high frequency activity in human slices, 

although more experiments are needed to draw conclusions on the origins of fast 

oscillations. 

An ictal episode observed in one of the human brain slices confirmed the 

epileptogenic nature of the tissue. As previously mentioned, human tissue in vitro 

appears to be relatively seizure-resistant, making epilepsy research in vitro rather 

difficult (Heinemann and Staley, 2014). Various methods have been used to promote 

ictogenesis in the brain slice, including 4-AP, bicuculline, elevated K+ and reduced 

Mg2+, however whether these models are physiologically relevant is still a question 

open for discussion (Avoli et al., 2003; Gabriel et al., 2004; Huberfeld et al., 2011). 

Recent advances in the clinical field demonstrate the use of a single pulse electrical 

stimulation as a new diagnostic tool for epileptogenic focus detection (Valentin et al., 

2008). It has been shown that a single pulse of electrical stimulation produces a 

different response in the regions of spontaneous seizure occurrence, compared to 

normal brain regions. This method could be implemented in vitro to facilitate epilepsy 

research and is now being piloted in the laboratory.  

7.4. Conclusion 

Overall, we are starting to uncover electrophysiological properties and neuronal 

network dynamics of the human brain tissue. We are still in the early stages of 

understanding cellular and network mechanisms of synchronised activity in the 

human brain. Nevertheless, the findings we have so far show a striking similarity 

between the human and animal brain tissue. We have demonstrated the possibility of 

recording oscillations of various frequencies in reduced cortical networks of the 

human brain, much like in rat brain slices. The mechanism of human oscillations is 

also similar in its dependence on both synaptic inhibition and excitation, as  well as 

non-synaptic mechanisms. Completing pharmacological and electrophysiological 

characterisation of rhythmic activity and supporting LFP findings with intracellular 

data would set a solid foundation for in vitro human brain research, which could be 

built on and compared to in pathological conditions. Once the electrophysiological 

properties of human brain tissue are established, it would present an opportunity to 

explore KAr and AMPAr changes, as well as other alterations in the human epilepsy.     
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Chapter 8 General discussion and future work 
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The ultimate goal of this project was to explore the process of epileptogenesis in the 

temporal lobe, since TLE, intractable forms in particular, constitute a large clinical 

problem. As the hippocampus and the EC are known to be implicated in the 

development of TLE, these were the areas of our focus.  

 

To understand the course of epileptogenesis, it is important to approach it at the right 

organisational level, as epilepsy is a network disorder. Dynamic changes in the 

network operation could well reflect the progression of epileptogenesis. We therefore 

chose spontaneous rhythmic activity of neuronal populations to characterize the state 

of hippocampal and EC networks throughout the development of epilepsy. 

Spontaneous oscillations seem to represent well the natural (free of external 

intervention) state of the network and do not raise questions about the validity of 

induction models of rhythmic activity in vitro. 

 

 Having this in mind, we established a model of SγO in the hippocampal CA3 region. 

SγO had been previously observed by Pietersen et al. (2009), however, on a less 

regular and reliable basis than our own observations. We determined the nature of 

this activity and carried out a phamacological comparison to other gamma oscillation 

models existing in literature (KγO and CChγO). The results showed that SγO 

represented a separate class of rhythmic activity, as they were pharmacologically 

different from previously described KγO and CChγO. These findings were further 

confirmed by phase analysis of the models. Nevertheless, having routinely observed 

stable SγO in the hippocampus was a reliable way of assessing network function in 

healthy and pathological conditions. Despite the fact that spontaneous activity in the 

hippocampus has been reported by a number of studies, the transient nature and 

sporadic occurrence of spontaneous oscillations present serious limitations for the 

utilisation of this model in hippocampal studies. By contrast, our slices routinely 

exhibited a persistent activity of high frequency and power, which was stable for 

hours, thus allowing the use of this activity to characterise network function in various 

physiological and pathological states, epilepsy in particular. Together with the 

hippocampus, we explored the EC and detected spontaneous rhythmic activity of low 

frequency in layers II/III (SWO). SWO were pharmacologically characterised to 

establish basic synaptic mechanism of these oscillations, which were used to study 

epilepsy development in the EC. Overall, established and characterised spontaneous 
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activity in the major regions of the temporal lobe set a solid foundation for exploring 

network changes occurring during epileptogenesis and leading to the development of 

behavioural seizures.  

 

To study chronic TLE, we developed Li-pilocarpine-based RISE model, which proved 

to have reduced severity, yet high morbidity. The use of the Li-low-dose pilocarpine 

protocol, reduction of SE duration, administration of xylazine and the use of the multi-

drug cocktail altogether provide a highly reliable and repeatable method for induction 

of epilepsy which reduces mortality whilst maintaining a high degree of 

epileptogenicity. Unlike other, more aggressive models, the subtle nature of this 

model does not allow gross neuropathological changes, thus mimicking the natural 

course of epilepsy. We assessed the progression of epileptogenesis in this model 

based on the changes in hippocampal SγO and EC SWO. Recordings were 

conducted at 4 timepoints following the initial insult (SE): PSE 24h (recovery from 

SE), PSE 7d and PSE 6wks (early and late latent period, respectively), PSE 90d 

(occurrence of SRS). Observations, supposedly, covered the main stages of 

epileptogenesis, such as SE, followed by a seizure-free latent period, culminating in 

the appearance of behavioural seizures (SRS). The hippocampal network 

demonstrated signs of hyperactivity with elements of high frequency oscillations 

shortly after the SE and during the SRS stage, when ictal and interictal activities were 

also detected. The late latent period (seizure-free stage), on the other hand, showed 

reduced network activity, which was reflected by reduced power of SγO in CA3. 

These findings suggested that certain changes occurred in the network during 

epileptogenesis, in particular during latent and SRS stages, when a period of 

quiescence was asssociated with reduced neuronal synchronisation, while the 

appearance of behavioural seizure coincided with the network activity bouncing back. 

We hypothesised that network fragmentation during the latent period (possibly due to 

the loss of interneurons) and its reconnection during the SRS stage might underlie 

the transition from no-seizure to seizure period. A substantial body of literature is still 

focused on the role of GABA inhibition in epilepsy, while changes in the excitatory 

component are sometimes overlooked. Nevertheless, several studies have pointed 

out the role of KAr in the epileptic condition (Mulle et al., 1998; Mathern et al., 1998; 

Smolders et al., 2002; Fisahn et al., 2004). We, therefore, explored KAr function and 

their possible role in the network alterations throughout epileptogenesis, including 
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network fragmentation. SγO, in this light, presented a useful tool for exploring 

network properties.   

 

We set out to test this hypothesis by challenging hippocampal SγO with KA, to 

evaluate the response/network excitability at different stages of epileptogenesis. The 

results showed a striking difference in the latent period, when KAr stimulation 

produced a minimal effect. By contrast, the response was restored when epilepsy 

was established and behavioural seizures occurred, which guided us to further 

investigate KAr function directly via intracellular recordings. Unfortunately, due to 

poor survival of CA3 region in older animals, this has proved to be rather challenging. 

Therefore, at this point it is not clear whether the effect was mediated by direct 

activation of KAr or presynaptic modulation via KAr. Nevetherless, it is clear that the 

latent period deserves attention, as the occurring changes might play a key role in 

the establishment of epilepsy in the hippocampus. We also investigated neuronal 

network changes appearing in the EC and used spontaneous SWO for their 

evaluation. It should be noted that SWO were present in the slices only up to a 

certain animal age, therefore EC network function was explored during the early 

stages post-SE. Generally, spontaneous activity was fairly similar between epileptic 

and AMC slices. However, shortly after the SE, the system showed a greater 

dependence on AMPAr activation compared to control slices. Possible mechanisms 

could include upregulation or abnormal function/subunit composition of AMPAr 

following the SE. Overall, alterations in the function of KAr and AMPAr might be a 

part of the complex changes associated with epileptogenesis. 

 

The role of excitatory glutamatergic transmission in epilepsy has been in the shadow 

of GABA research. However, both AMPAr and KAr appear to be involved in the 

complex mechanism of epileptogenesis and might contribute to/be responsible for 

the development of behavioural seizures. As our findings demonstrated, both the 

hippocampus and the EC neuronal networks undergo changes associated with 

glutamatergic receptors. Considering the complexity of epilepsy mechanism, it is 

worth exploring multiple receptor types, as has been done by Graebenitz and 

colleagues (2011) and Palomero-Gallagher et al. (2012) who have shown altered 

expression of glutamatergic, cholinergic and adrenergic receptors in human epilepsy. 

It is worth asking: what are the differences in epileptogenesis between the 
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hippocampus and the EC, does it develop on a different time scale in these regions, 

what are the roles of KAr and AMPAr, as well as what happens in the EC later into 

the epileptogenesis. Hence, there is plenty of room for further research: 

 

∴ Explore the role of KAr in the hippocampus during epileptogenesis 

using intracellular techniques. Investigate possible involvement of 

AMPAr in the hippocampus. 

∴ Explore the role of AMPAr and KAr in the EC during all stages of 

epileptogenesis. 

∴ Correlate findings from RISE model in animals with the epileptic 

human tissue data.    
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Appendix 1 

"
Figure A.1. Copy of ethical approval for cellular studies in human epilepsy.  
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Figure A.1.  Copy of ethical approval for cellular studies in human epilepsy (cont.).  
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"
Figure A.1.  Copy of ethical approval for cellular studies in human epilepsy (cont.). 
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Appendix 2 

Table A.1. Choline chloride-based cutting solution recipe. Adapted from 
BrainSliceMethods n.d. 
 
Choline Chloride Recovery Solution (JT)   
Recovery period <12 min at 32-34*C (use the shortest possible)  
Excellent for very old mice or for difficult/compact brain areas (CA1, CA3) 
(NOTE: extended exposure can permanently disrupt physiology)  
(NOTE: recommended only if NMDG-HEPES aCSF is not sufficient)  

 mM MW g/L 
g/500 
mL   

Choline chloride 92 139.6 12.85 6.42   
KCl 2.5 74.6 0.19 0.09   
NaH2PO4 1.2 138.0 0.17 0.08   
NaHCO3 30 84.0 2.52 1.26   
HEPES 20 238.3 4.77 2.38   
Glucose 25 180.2 4.51 2.25   
Sodium ascorbate 5 198.0 0.99 0.50   
Thiourea 2 76.1 0.15 0.08   
Sodium pyruvate 3 110.0 0.33 0.17   

MgSO4.7H2O 10 
246.4

8 5 mL 2.5 mL 
(2M 
stock)  

CaCl2.2H2O 0.5 
147.0

1 
250 
µL 125 µL 

(2M 
stock)  

 
 
 
Table A.2. NMDG-based cutting solution recipe.  Adapted from BrainSliceMethods n.d. 
 

NMDG-HEPES Recovery Solution (JT)   
Recovery period <15 min at 32-34*C     
Excellent for mouse ages 5 weeks to 1 year old or older  

 mM MW g/L 
g/500 
mL   

NMDG 93 195.2 18.16 9.08   
HCl (see note) 93       (10N stock) 
KCl 2.5 74.6 0.19 0.09   
NaH2PO4 1.2 138.0 0.17 0.08   
NaHCO3 30 84.0 2.52 1.26   
HEPES 20 238.3 4.77 2.38   
Glucose 25 180.2 4.51 2.25   
Sodium ascorbate 5 198.0 0.99 0.50   
Thiourea 2 76.1 0.15 0.08   
Sodium pyruvate 3 110.0 0.33 0.17   

MgSO4.7H2O 10 246.5 5 mL 2.5 mL 
(2M 
stock)  

CaCl2.2H2O 0.5 147.0 250 125 µL (2M  
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µL stock) 
 
 
 
 
 
Table A.3. Modified HEPES holding aCSF recipe.  Adapted from BrainSliceMethods n.d. 
 

Modified HEPES Holding aCSF (JT) 

  mM MW g/L 
g/500 
mL  

NaCl 92 58.4 5.38 2.69  
KCl 2.5 74.6 0.19 0.09  
NaH2PO4 1.2 138.0 0.17 0.08  
NaHCO3 30 84.0 2.52 1.26  
HEPES 20 238.3 4.77 2.38  
Glucose 25 180.2 4.51 2.25  
Sodium ascorbate 5 198.0 0.99 0.50  
Thiourea 2 76.1 0.15 0.08  
Sodium pyruvate 3 110.0 0.33 0.17  

MgSO4.7H2O 2 246.5 
1 

mL 
0.5 
mL 

(2M 
stock) 

CaCl2.2H2O 2 147.0 
1 

mL 
0.5 
mL 

(2M 
stock) 

 
 
Table A.4 Recording aCSF recipe.  Adapted from BrainSliceMethods n.d. 
 
 
Standard recording aCSF (JT) 
 mM MW g/L g/500mL 
NaCl 124 58.4 7.25 3.62  
KCl 2.5 74.6 0.19 0.09  
NaH2PO4 1.2 138.0 0.17 0.08  
NaHCO3 24 84.0 2.02 1.01  
HEPES 5 238.3 1.19 0.60  
Glucose 12.5 180.2 2.25 1.13  

MgSO4.7H2O 2 246.5 
1 

mL 
0.5 
mL 

(2M 
stock) 

CaCl2.2H2O 2 147.0 
1 

mL 
0.5 
mL 

(2M 
stock) 

 


