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Critical noise levels for low-density parity check decoding
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We determine the critical noise level for decoding low-density parity check error-correcting codes based on
the magnetization enumerator (M), rather than on the weight enumerator (W) employed in the information
theory literature. The interpretation of our method is appealingly simple, and the relation between the different
decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding~MPM! becomes
clear. In addition, our analysis provides an explanation for the difference in performance between MN and
Gallager codes. Our results are more optimistic than those derived using the methods of information theory and
are in excellent agreement with recent results from another statistical physics approach.
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I. INTRODUCTION

The theory of error-correcting codes is based on the e
cient introduction of redundancy to given messages for p
tecting the information content against corruption. The th
retical foundations of this area were laid by Shanno
seminal work@1# and have been developing ever since. O
of the main results obtained in this field is the celebra
channel coding theoremstating that there exists a code su
that the average message error probabilityPE , when maxi-
mum likelihood decoding is used, can be made arbitra
small for sufficiently long messages below thechannel ca-
pacity; and will approach 1 above it. The channel codi
theorem is based on unstructured random codes and imp
tical decoders such as maximum likelihood@2# and typical
set decoding@3#. In the case of structured codes, the critic
code rateR ~message information content/length of the e
coded transmission! may lie below the channel capacit
commonly termedShannon’s bound, even if optimal ~and
typically impractical! decoding methods are being used. T
proximity of the critical code rate to Shannon’s limit pro
vides an indication to the theoretical limitations of a giv
code. It should be emphasized that the theoretical crit
code rate is typically not achievable in practice, as it m
require using search methods that scale exponentially
the system size, in the computing time needed.

In 1963 Gallager@4# proposed a coding scheme that i
volves sparse linear transformations of binary messages
was forgotten soon after, in part due to the success of c
volutional codes@2# and the computational limitations of th
time. Gallager codes have been recently rediscovered
MacKay and Neal~MN!, who independently proposed
closely related code@5#. Variations of this family of codes
known as low-density parity check~LDPC! codes, have dis-
played performance comparable~and sometimes superior! to
other state-of-the-art codes. This family of codes has b
thoroughly investigated in the information theory~IT! litera-
ture ~e.g., @3,5,6#!, providing a range of significant theoret
cal and practical results.

In parallel to studies carried out in the IT community,
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different approach has been used to study LDPC codes, u
the established methods of statistical physics~SP!. This
analysis, relying mainly on the replica symmetric analysis
diluted systems@7,8#, offers an alternative to information
theory methods and has yielded some additional results
insights @9,11,12#. Due to the growing interest in LDPC
codes and their successful analysis via the methods of st
tical physics, there is growing interest in the relationsh
between IT and SP methods. As the two communities inv
tigate similar problems, one may expect that standard te
niques known in one framework would bring about develo
ments in the other, and vice versa. Here we present a d
SP method to determine the critical noise level of Galla
and MN error-correcting codes, which allows us to focus
the differences between the various decoding criteria
their use for defining the critical noise level for which d
coding is theoretically feasible.

The paper is organized as follows: In Sec. II we introdu
the general framework, notation and the quantities we fo
on, while in Sec. III we will briefly describe the SP calcul
tion. Section IV describes qualitatively the emerging pictu
of the main quantities calculated for Gallager’s code wh
the corresponding picture for MN codes will be described
Sec. V. Quantitative results for the critical noise level will b
presented in Sec. VI followed by conclusions.

II. REGULAR GALLAGER AND MN CODES

In a general scenario, theN-dimensional Boolean messag
sWoP$0,1%N is encoded to theM (.N) dimensional Boolean
vector tWo, and transmitted via a noisy channel, which is tak
here to be a binary symmetric channel~BSC! characterized
by an independent flip probabilityp per bit; other transmis-
sion channels may also be examined within a similar fram
work. At the other end of the channel, the corrupted co
word is decoded utilizing the structured code wo
redundancy.

The first type of error-correcting code that we focus
here, is Gallager’s linear code@4#. Gallager’s code is a low-
density parity check code defined by the a binary (M2N)
3M matrix A5@C1uC2#, concatenating two very sparse m
©2002 The American Physical Society05-1
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trices known to both sender and receiver, with the (M2N)
3(M2N) matrix C2 being invertible. The matrixA hasK
nonzero elements per row andC per column, and the cod
rate is given byR512C/K5N/M . Encoding refers to mul-
tiplying the original messagesWo with the (M3N) matrix GT

~where G5@1NuC2
21#), yielding the transmitted vectortWo.

Note that all operations are carried out in~mod 2! arithmetic.
Upon sendingtWo through the BSC with noise levelp, the
vector rW5 tWo1nW o is received, wherenW o is the true noise.

Decoding is carried out by multiplyingrW by A to produce
the syndrome vectorzW5ArW (5AnW o, sinceAGT50). In order
to reconstruct the original messagesWo, one has to obtain an
estimatenW for the true noisenW o. First we select allnW that
satisfy the parity checksAnW 5AnW o,

Ipc~A,nW o![$nW uAnW 5zW%,

and

I pc
r ~A,nW o![$nW PIpc~A,nW o!unW ÞnW o%, ~1!

the ~restricted! parity check set.
The second type of error-correcting code that we focus

here is the MN code@5#. An MN code is a low-density parity
check code defined by a binaryM3(N1M ) matrix A
5@CsuCn#, concatenating two very sparse matrices known
both sender and receiver, with theM3M matrix Cn being
invertible. TheM3N matrix Cs hasK nonzero elements pe
row andC per column, whileCn hasL nonzero elements pe
row and column. The code rate is given byR5K/C5N/M .
Encoding refers to multiplying the original messagesWo by
the (M3N) dense generator matrixG5Cn

21Cs , yielding the

transmitted vectortWo. Note that all operations are carried o
in ~mod 2! arithmetic. Upon sendingtWo through the BSC
with noise levelp, the vectorrW5 tWo1nW o is received, where
nW o is the true noise.

Decoding is carried out by multiplyingrW by Cn to produce
the syndrome vectorzW5CssW

o1CnnW o[AcWo, wherecW is the
concatenated vector (sW,nW ). In order to reconstruct the origi
nal messagesWo, one has to obtain estimatescW for the true
signal and noisecWo. First we select all combinations of sign
and noisecW that satisfy the parity checksAcW5AcWo,

Ipc~A,cWo![$cW uAcW5zW%,

and

I pc
r ~A,cWo![$cWPIpc~A,cWo!ucWÞcWo%, ~2!

the ~restricted! parity check set.
To unify notation for Gallager and MN codes, we w

adopt the notationcWo for the original noise~and signal! vec-
tor, andcW for the estimate of the noise~and signal! vector.
Any general decoding scheme then consists of selectin
vector cW* from Ipc(A,cWo), on the basis of some noise~and
02670
n
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signal! statistics criterion. Upon successful decodingcWo will
be selected, while a decoding error is declared when a ve
cW* PI pc

r (A,cWo) is selected. For each decoding scheme,
averageblock error probability@16#

Pe~ps ,p!5^D„a vector cWPI pc
r ~A,cWo! is selected…&A,cWo

~3!

can be defined as a measure of error-correcting ability fo
given code ensemble, whereD(•) is an indicator function
returning 1 if the proposition of the argument is true and
otherwise. For BSC, only the number of nonzero comp
nents characterizes the statistics of the noise. On the o
hand, the signal bits, in general, have an equal probability
being 0 and 1~i.e., ps5

1
2 ), which implies that they have no

useful prior information for the estimation. In the following
we therefore focus on decoding schemes based on the w
of a vector which is the average sum of the noise com
nents w(cW )[1/M( j 51

M nj . To obtain the error probability

one averages the indicator function over allcWo vectors drawn
from some distribution and the code ensembleA as denoted
by ^.&A,cWo.

Unfortunately, carrying out averages over the indica
function is difficult. Therefore, the error probability~3! is
usually upper bounded by averaging over thenumberof vec-
torsnW obeying a certain condition on the weightw(nW ), which
characterizes the employed decoding scheme. Alternativ
one can find the average number of vectors with a giv
weight valuew from which one can construct a comple
weight distribution of noise vectorsnW in I pc

r (A,cWo). From
this distribution one can, in principle, calculate a bound
Pe and derive critical noise values above which succes
decoding cannot be carried out.

A natural and direct measure for the average numbe
states is the entropy of a system under the restrictions
scribed above, which can be calculated via the method
statistical physics.

It was previously shown~see, e.g., Ref.@9# for technical
details! that this problem can be cast into a statistical m
chanics formulation, by replacing the field„$0,1%,
1mod (2)… by ($1,21%,3), and by adapting the parity
checks correspondingly. The statistics of a noise vectornW is
now described by its magnetizationm(nW )[1/M( j 51

M nj ,

„m(nW )P@1,21#…, which is inversely linked to the vecto
weight in the@0,1# representation. Similarly, the statistics
a signal vectorsW is now described by its magnetizatio
ms(sW)[1/M( j 51

M sj , „ms(sW)P@1,21#…. With this in mind,
we introduce the conditioned magnetization enumerator,
a given code and noise, measuring the noise vector ma
tization distribution inI pc

r (A,nW o),

MA,nW o~m![
1

M
ln@TrnW PI

pc
r (A,nW o)d„m~nW !2m…#. ~4!

To obtain themagnetization enumeratorM(m),

M~m!5^MA,cWo~m!&A,cWo, ~5!
5-2
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which is the entropy of the noise vectors inI pc
r (A,nW 0) with a

given m, one carries out uniform explicit averages over
codes A with given parametersK,C ~and L), and the
weighted average over all possible noise vectors gener
by the BSC,~and all possible signal vectors!, i.e.,

P~nW o!5)
j

M

@~12p!d~nj
o21!1pd~nj

o11!#, ~6!

P~sWo!5)
j

N

@~12ps!d~sj
o21!1psd~sj

o11!#, ~7!

with hereps5
1
2 . It is important to note that, in calculatin

the entropy, the average quantity of interest is the magn
zation enumerator rather than the actual number of sta
For physicists, this is the natural way to carry out the av
ages for three main reasons.~a! The entropy obtained in this
way is believed to beself-averaging, i.e., its average value
~over the disorder! coincides with itstypical value.~b! This
quantity isextensiveand grows linearly with the system siz
~c! This averaging distinguishes betweenannealedvariables
that are averaged or summed for a given set ofquenched
variables that are averaged over later on. In this partic
case, summation over allcW vectors is carried for afixed

choice of codeA and vectorcWo; averages over these var
ables are carried out at the next level.

One should point out that in somewhat similar calcu
tions, we showed that this method of carrying out the av
ages provides more accurate results in comparison to a
aging over both sets of variables simultaneously@14#.

A positive magnetization enumerator,M(m).0 indicates
that there is an exponential number of solutions~in M ) with
magnetizationm, for typically chosenA and cWo, while
M(m)→0 indicates that this number vanishes asM→`
~note that negative entropy is unphysical in discrete s
tems!.

Another important indicator for successful decoding is
overlap v between the selected estimatenW * , and the true
noise nW o: v(nW ,nW o)[1/M( j 51

M njnj
o , „v(nW ,nW o)P@21,1#…,

with v51 for successful~perfect! decoding. However, this
quantity cannot be used for decoding asnW o is unknown to the
receiver. The~code and noise dependent! noise overlap enu-
merator is now defined as

WA,cWo~v![
1

M
ln@TrcWPI

pc
r (A,cWo)d„v~nW ,nW o!2v…#, ~8!

and the average quantity being

W~v!5^WA,cWo~v!&A,cWo. ~9!

This measure is directly linked to theweight enumerator@3#,
although according to our notation, averages are carried
distinguishing between annealed and quenched variables
like the common definition in the IT literature. However,
we will show below, the two types of averages provide ide
tical resultsin this particular case.

Similarly, for MN codes one defines the signal magne
zation and weight enumerators as
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Ms~ms![
1

N
^ ln@TrcWPI

pc
r (A,cWo)d„m~sW !2ms…#&A,cWo, ~10!

Ws~vs![
1

N
^ ln@TrcWPI

pc
r (A,cWo)d„v~sW,sWo!2vs…#&A,cWo.

~11!

In what follows, we perform all calculations as if bothm and
v ~andms andvs for MN codes!, are constrained to particu
lar values. As we will show, omitting a constraint in the fin
expressions can then easily be done by assigning the
value to the corresponding Lagrange multiplier.

III. THE STATISTICAL PHYSICS APPROACH

Quantities of the typeQ(c)5^Qy(c)&y , with Qy(c)
51/M ln@Zy(c)# and Zy(c)[Trxd„c(x,y)2Mc…, are very
common in the SP of disordered systems; the macrosc
order parameterc(x,y) is fixed to a specific value and ma
depend both on the disordery and on the microscopic vari
ablesx. Although we will not prove this here, such a quanti
is generally believed to beself-averagingin the large system
limit, i.e., obeying a probability distributionP„Qy(c)…
5d„Qy(c)2Q(c)…. The direct calculation ofQ(c) is known
as aquenchedaverage over the disorder, but is typically ha
to carry out and requires using the replica method@8#. The
replica method makes use of the identitŷlnZ&
5^ limn→0@Z n21#/n&, by calculating averages over a pro
uct of partition function replicas. Employing assumptio
about replica symmetries and analytically continuing t
variable n to zero, one obtains solutions that enable on
determine the state of the system.

To simplify the calculation, one often employs the s
calledannealedapproximation, which consists of performin
an average overQy(c) first, followed by the logarithm op-
eration. This avoids the replica method and provid
~through the convexity of the logarithm function! an upper
bound to the quenched quantity,

Qa~c![
1

M
ln@^Zy~c!&y#

>Qq~c!

[
1

M
^ ln@Zy~c!#&y

5 lim
n→0

^Z y
n~c!&y21

nM
. ~12!

The technical details of the calculation are similar to tho
in Ref. @9#. It turns out that it is useful to perform the gaug
transformationcj→cjcj

o , such that the averages over th
codeA and noise/signalcWo can be separated,WA,cWo becomes
independent ofcWo, leading to an equality between th
quenched and annealed results,W(m)5Ma(m)up50
5Mq(m)up50. For any finite noise valuep one should mul-
tiply exp@W(v)# by the probability that a state obeys a
parity checks exp@2K(v,p)# given an overlapv and a noise
level p @3#. In calculatingW(v) andMa/q(m), the d func-
tions fixing m andv, are enforced by introducing Lagrang
multipliers m̂ and v̂.
5-3
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Carrying out the averages explicitly, one then employs
saddle point method to extremize the averaged quantity w
respect to the parameters introduced while carrying out
calculation. These lead, in both quenched and annealed
culations, to a set of saddle point equations that are so
either analytically or numerically to obtain the final expre
sion for the averaged quantity~entropy!.

The final expressions for the annealed entropy per n
degree of freedom for Gallager codes, under both ove
(v) and magnetization (m) constraints, are of the form

Qa52
C

K
$~ ln~2!1~K21!ln@11c1

K#%

1 ln^Trn561exp@n~v̂1m̂no!#~11nc1
K21!C&no

2~v̂v1m̂m!, ~13!

where the average cavity magnetizationc1 has to be obtained
from the saddle point equation]Qa /]c150. Similarly, the
final expression in the quenched calculation, employing
simplest replica symmetry assumption@8#, is of the form

Qq52CE dxdx̂p~x!p̂~ x̂!ln@11xx̂#

1
C

KE H )
k51

K

dxkp~xk!J lnF1

2S 11)
k51

K

xkD G
1E H )

c51

C

dx̂cp̂~ x̂c!J K lnFTrn561exp~n~v̂

1m̂no!!)
c51

C

~11nx̂c!G L
no

2~v̂v1m̂m!. ~14!
ilit
ca
-

al
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The probability distributionsp(x) and p̂( x̂) emerge from
the calculation; the former represents a probability distrib
tion with respect to the noise vector local magnetization@15#,
while the latter relates to a field of conjugate variables t
emerge from the introduction ofd functions while carrying
out the averages~for details see Ref.@9#!. Their explicit
forms are obtained from the functional saddle point eq

tions dQq /dp(x), dQq /dp̂( x̂)50, and all integrals are
from 21 to 1.

The final expressions for the annealed entropy per no
degree of freedom for MN codes, under both signal a
noise overlap (v,vs) and magnetization (m,ms) constraints,
are of the form

Qa52$ ln~2!1~K1L21!ln@11c1
Kd1

L#%

2R~m̂sms1v̂svs!2~m̂m1v̂v!

1R ln^Trs561exp@s~v̂s1m̂ss
o!#~11sĉ1!C&so

1 ln^Trn561exp@n~v̂1m̂no!#~11nd̂1!L&no, ~15!

where c1 , d1 have to be obtained from the saddle po
equations]Qa /]c1 ,]Qa /]d150. Similarly, the final expres-
sion in the quenched calculation, employing the simplest r
lica symmetry assumption@8#, is of the form
Qq5E )
k51

K

dxk p~xk!)
l 51

L

dylr~yl !lnF1

2 S 11)
k51

K

xk)
l 51

L

yl D G2R~m̂sms1v̂svs!2~m̂m1v̂v!

2KE dxdx̂p~x!p̂~ x̂!ln@11xx̂#1RE )
c51

C

dx̂cp̂~ x̂c!K lnFTrs561exp~s~v̂s1m̂ss
o!!)

c51

C

~11sx̂c!G L
so

2LE dydŷr~y!r̂~ ŷ!ln@11yŷ#1E )
l 51

L

dŷl r̂~ ŷl !K lnFTrn561exp~n~v̂1m̂no!!)
l 51

L

~11nŷl !G L
no

. ~16!
g

The probability distributionsp(x),r(y) and p̂( x̂),r̂( ŷ)
emerge from the calculation; the former represent probab
distributions with respect to the signal/noise vector lo
magnetizations@15#, while the latter relate to fields of con
jugate variables that emerge from the introduction ofd func-
tions while carrying out the averages~for details see Ref.
@9#!. Their explicit forms are obtained from the function
y
l

saddle point equations dQq /dp(x), dQq /dp̂( x̂),

dQq /dr(y), dQq /dr̂( ŷ)50, and all integrals are from
21 to 1.

Enforcing ad function corresponds to takingv̂,m̂,v̂s ,m̂s

such that]Qa/q /]v̂, ]Qa/q /]m̂, ]Qa/q /]v̂s , ]Qa/q /]m̂s

50, while not enforcing it corresponds to puttin
5-4
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v̂,m̂,v̂s ,m̂s equal to 0. Sincev,m,vs ,ms , follow from
]Qa/q /]v̂,]Qa/q /]m̂,]Qa/q /]v̂s ,]Qa/q /]m̂s50, all the
relevant quantities can be recovered with appropriate cho
of v̂,m̂,v̂s ,m̂s .

IV. QUALITATIVE PICTURE

We now discuss the qualitative behavior ofM(m), and
the interpretation of the various decoding schemes. To ob
separate results forM(m) and W(m) we calculate the re-
sults of Eqs.~13! and ~14! @and Eqs.~15! and ~16!#, corre-
sponding to the annealed and quenched cases, respect
setting v̂50 to obtainM(m) and m̂50 to obtainW(v)
~that becomesM(m)up50 after gauging!. In Fig. 1, we have
qualitatively plotted the resulting functionM(m) for rel-
evant values ofp. M(m) ~solid line! only takes positive
values in the interval@m2(p),m1(p)#; for evenK, M(m) is
an even function ofm andm2(p)52m1(p). The maximum
value of M(m) is always (12R)ln(2) for Gallager codes
andRln(2) for MN codes. The true noisenW o has~with prob-
ability 1! the typical magnetization of the BSC:m(nW o)
5m0(p)5122p ~dashed-dotted line!.

The various decoding schemes can be summarized as
lows.

~1! Maximum likelihood (MAP) decodingminimizes the
block error probability@16# and consists of selecting thenW

from Ipc(A,nW 0) with the highest magnetization. Since th

FIG. 1. The qualitative picture ofM(m)>0 ~solid lines! for
different values ofp. For MAP, MPM, and typical set decoding
only the relative values ofm1(p) andm0(p) determine the critical
noise level. Dashed lines correspond to the energy contributio
2bF at Nishimori’s condition (b51). The states with the lowes
free energy are indicated by a pointd. ~a! Subcritical noise levels
p,pc , wherem1(p),m0(p), there are no solutions with highe
magnetization thanm0(p), and the correct solution has the lowe
free energy.~b! Critical noise levelp5pc , wherem1(p)5m0(p).
The minimum of the free energy of the suboptimal solutions
equal to that of the correct solution at Nishimori’s condition.~c!
Overcritical noise levelsp.pc where many solutions have a high
magnetization than the true typical one. The minimum of the f
energy of the suboptimal solutions is lower than that of the cor
solution.
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probability of error below m1(p) vanishes, P„'nW

PI pc
r :m(nW ).m1(p)…50, and sinceP„m(nW o)5m0(p)…51,

the critical noise levelpc is determined by the condition
m1(pc)5m0(pc). The selection process is explained
Figs. 1~a–c!.

~2! Typical pairs decodingis based on randomly selectin

a nW from Ipc with m(nW )5m0(p) @3#; an error is declared

whennW 0 is not the only element ofIpc. For the same reaso
as above, the critical noise levelpc is determined by the
conditionm1(pc)5m0(pc).

~3! Finite temperature (MPM) decoding.An energy

2Fm(nW ) ~with F5 1
2 ln@12p/p#) according to Nishimori’s

condition~corresponding to the selection of an accurate pr
within the Bayesian framework! is attributed to each

nW PIpc, and a solution is chosen from those with the ma
netization that minimizes the free energy@9#. This procedure
is known to minimize thebit error probability @16#. Using
the thermodynamic relationF5U21/bS, b being the in-
verse temperature~Nishimori’s condition corresponds to se
ting b51), the free energy of the suboptimal solutions
given by F(m)52Fm2(1/b)M(m) @for M(m)>0#,
while that of the correct solution is given by2Fm0(p) ~its
entropy being 0!. The selection process is explained grap
cally in Figs. 1~a!–1~c!. The free energy differences betwee
suboptimal solutions relative to that of the correct solution
the current plots are given by the orthogonal distance
tweenM(m) and the line with slope2bF through the point
„m0(p),0…. Solutions with a magnetizationm for which
M(m) lies above this line, have a lower free energy, wh
those for whichM(m) lies below, have a higher free energ
Since negative entropy values are unphysical in discrete
tems, only suboptimal solutions withM(m)>0 are consid-
ered. The lowestp value for which there are suboptimal so
lutions with a free energy equal to2Fm0(p) is the critical
noise levelpc for MPM decoding. In fact, using the convex
ity of M(m) and Nishimori’s condition, one can show th
the slope]M(m)/]m.2bF for any valuem,mo(p) and
any p, and equals2bF only at m5mo(p); therefore, the
critical noise level for MPM decodingp5pc is identical to
that of MAP, in agreement with results obtained in the info
mation theory community@17#.

The statistical physics interpretation of finite temperatu
decoding corresponds to making the specific choice for
Lagrange multiplierm̂5bF and considering the free energ
instead of the entropy. In earlier work on MPM decoding
the SP framework@9#, negative entropy values were treate
by adopting different replica symmetry assumptions, wh
effectively result in changing the inverse temperature, i
the Lagrange multiplierm̂. This effectively setsm5m1(p),
i.e., to the highest value with non-negative entropy. The s
optimal states with the lowest free energy are then those w
m5m1(p).

The central point in all decoding schemes is to select
correct solution only on the basis of its magnetization.
long as there are no suboptimal solutions with the same m
netization, this is, in principle, possible. As shown here,
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three decoding schemes discussed above manage to do s
find whether at a givenp there exists a gap between th
magnetization of the correct solution and that of the nea
suboptimal solution, just requires plottingM(m)(.0) and
m0(p), thus allowing a graphical determination ofpc . Since
MPM decoding is done at Nishimori’s temperature, the si
plest replica symmetry assumption is sufficient to descr
the thermodynamically dominant state@8#. At pc the states
with m1(pc)5m0(pc) are thermodynamically dominan
and thepc values that we obtain under this assumption
exact.

V. MN CODES—AN ALTERNATIVE VIEW

For MN codes there is a way to obtain theexactexpres-
sion forM, in the case of unbiased messages, by employ
a single highly plausible assumption. We first note that ev
parity check bitz^&5si 1

o
•••si K

o nj 1

o
•••nj L

o is made up of a

combination ofK unbiased~i.e., ps5
1
2 ) signal bits, andL

biased~i.e., pÞ 1
2 ) noise bits. As a result, every syndrom

elementz^& is unbiased independently of the noise bit sta
tics. It is therefore plausible to assume that the noise
statistics~i.e., p) have no influence on the distribution of th
parity check bitsz^& , and therefore onM ~which only de-
pends on the true noise through thez^&). If this assumption is
satisfied, one can invoke Nishimori’s condition to obtain
exact expression forM.

Independently of the assumption, Nishimori’s conditi
gives the following identity for the thermodynamically dom
nant state:

]M~m!

]m U
m5mo(p)

52F~p!

52
1

2
lnS 12p

p D
52

1

2
lnS 11mo

12mo
D . ~17!

Since states characterized by any magnetization v
m,m0(pt) will become dominant for an appropriately ch
sen value ofp, and since we assume thatM is independent
of p, the identity

]M~m!

]m
52

1

2
lnS 11m

12mD ~18!

must hold for any value ofm. Furthermore, the maximum o
M(m) is reached atm50 with M(0)5Rln(2), and we have
that

M~m!5M~0!2
1

2E0

m

du lnS 11u

12uD
5 ln~2!FR211H2S 11m

2 D G , ~19!
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whereH2(p) is the binary entropy per bit for vectors wit
biasp. Hence, under this assumption, we do not only obt
the exact expression forM(m), but we see that the critica
noise levelpc is given byR512H2(pc), saturating Shan-
non’s bound for this type of codes.

Unfortunately, the assumption cannot be verified eas
without the replica method. To verify whether indee
]M(m)/]p50, we have to take the derivative of expressi
~16! ~settingv̂5v̂s5m̂s50) with respect top. It turns out
that M is only independent ofp, when r( ŷ) is an even
function of ŷ, which, in turn, requires thatr(y) andp(x) are
even functions of their arguments. Numerical analysis sho
that this is the case for anyK>3 or K52, L>3, while not
so forK51 or K5L52. This result is consistent with thos
reported in Ref.@9#, i.e., typical MN codes withK>3 or
K52, L>3 do saturate Shannon’s bound, while those w
K51 andK5L52 do not.

Intuitively this result can be understood in the followin
way. There areM parity check bits and onlyN(,M ) signal
bits, such that parity check bits, although individually unb
ased, are not uncorrelated. These correlations do see
have an effect onM(m) for K51 andK5L52, while for
K>3 and K52, L>3 the signal bits seem to b
‘‘scrambled’’ enough in the parity checks for the correlatio
to be insignificant. Note that this argument does not hold
Gallager codes and MN codes with biased messages, w
the parity check bits exclusively comprise biased bits, a
are therefore biased themselves. They only become unbi
as K→` for Gallager codes~for which it was already re-
ported in the literature@5# that such codes can saturate S
annon’s bound!, and forK→` or L→` for MN codes.

In fact, numerical analysis reveals that forK>3 and for
K52, L>3 we have thatr( ŷ)5d( ŷ), r(y)5d(y), p(x)
5d(x) at least up tom1(p)5m0(pt) which is independent
of p. This allows us to calculateM analytically from expres-
sion ~16!, and we recover, as expected, the exact expres
~19!.

For K51 or K5L52, as in the case of Gallager code
one can only obtainm1(p) numerically. The results of this
procedure are presented in the following section. Furth
more, forK51 and forK5L52, we find that spontaneousl
msÞ0 for some values ofp,pc , when no restriction is
enforced~i.e., for m̂s50!. This implies that one may im-
prove the decoding performance by imposing the condit
of unbiased signal~similar to the conditions for typical se
decoding!, i.e., by adjusting the Lagrange multiplierm̂s such
that ms50. Unfortunately, this only happens for values ofp
for which there is an exponential number of suboptimal
lutions cWPI pc

r (A,cWo) with the same weight ascWo, and im-
posing this constraint on the signal estimator only redu
this number, leaving it, nevertheless, exponential.

It was shown@10# that MN codes, in principle, contain
sufficient information to saturate Shannon’s bound for un
ased messages. For codes withK51, or K5L52, some of
this information is wasted in a region where errorless dec
ing is impossible anyway, such that Shannon’s bound is
saturated. For codes withK>3, orK52, L>3, our analysis
indicates that all information is used optimally, and th
Shannon’s bound can be theoretically saturated. Our a
5-6
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FIG. 2. ~a! Determining the critical noise levelspc,a/q based on the functionMa/q for Gallager codes and for MN codes withK51 or
K5L52, a qualitative picture.~b! Comparison of different critical noise level (pc) estimates for Gallager codes. Typical set decod
estimates have been obtained using the methods of IT@13#, based on having a unique solution toW(m)5K(m,pc), as well as using the
methods of SP@18#. The numerical precision is up to the last digit for the current method. Shannon’s limit denotes the highest theor
achievable critical noise levelpt for any code@1#.
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ment also explains the relative importance of the parame
K andL for the behavior of the code in comparison withC.

VI. CRITICAL NOISE LEVEL—RESULTS

Some general comments can be made about the cri
MAP ~or typical set! values obtained via the annealed a
quenched calculations. SinceMq(m)<Ma(m) @for given
values ofK, C ~L!, andp#, we can derive the general inequa
ity pc,q>pc,a . For all K, C ~L! values that we have numer
cally analyzed, for both annealed and quenched ca
m1(p) is a nonincreasing function ofp, and pc is unique.
The estimates of the critical noise levelspc,a/q , based on
Ma/q , are obtained by numerically calculatingmc,a/q(p),
and by determining their intersection withm0(p). This is
explained graphically in Fig. 2~a!.

As the results for MPM decoding have already been p
sented elsewhere@11#, we will now concentrate on the criti
cal resultspc obtained for a typical set and MAP decodin
for Gallager codes; these are presented in Fig. 2~b!, showing
the values ofpc,a/q for various choices ofK andC compared
with those reported in the literature.

From Fig. 2~b! it is clear that the annealed approximatio
gives a much more pessimistic estimate forpc . This is due
to the fact that it overestimatesM in the following way:
Ma(m) describes the combined entropy ofnW andnW o as if nW o

were thermal variables as well. Therefore, exponentially r
events fornW o @i.e., m(nW o)Þm0(p)# still may carry positive
entropy due to the addition of a positive entropy term fro
nW . In a separate study@18# these effects have been taken ca
of by the introduction of an extra exponent; this is not ne
02670
rs

al

s,

-

e

-

essary in the current formalism as the quenched calcula
automatically suppresses such contributions. The simila
between the results reported here and those obtained in
@14# is not surprising as the equations obtained in quenc
calculations are similar to those obtained by averaging
upper bound to the reliability exponent using a method p
sented originally by Gallager@4#. Numerical differences be
tween the two sets of results are probably due to the hig
numerical precision here.

We have also obtained the critical noise levels for so
parameter choices in MN codes. We only present
quenched~exact! values, and compare them only with th
highest theoretically achievable critical noise levelpt for any
code@1#, as we are not aware of values obtained with oth
methods in the literature. Note that although still strictly b
low pt , the critical noise levelspc for K5L52 with in-
creasing values ofC rapidly approachpt to within the cur-
rent numerical precision~see Fig. 3!.

VII. CONCLUSIONS

In this paper we have shown how both weight and m
netization enumerators can be calculated using the meth
of statistical physics in the case of regular LDPC codes.
study the role played by themagnetization enumerato
M(m) in determining the achievable critical noise level f
various decoding schemes. The formalism based on the m
netization enumeratorM offers a intuitively simple alterna-
tive to the weight enumerator formalism used in conjunct
with typical pairs decoding in the IT literature@3,18#. The SP
based analysis employs the replica method given the v
the

FIG. 3. ~a! Determining the critical noise levelspc,q based on the functionMq for MN codes withK>3 or K52, L>3, a qualitative

picture.~b! Comparison of different critical noise level (pc,q) estimates for MN codes. The numerical precision is up to the last digit for
current method. Shannon’s limit denotes the highest theoretically achievable critical noise levelpt for any code@1#.
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low critical values obtained by the annealed approximat
calculation. Furthermore, the powerfull gauge theory as p
posed by Nishimori@8#, proves that the replica symmetr
assumption is correct~at least at the critical noise level!, and
thus that the critical noise levels as obtained by our met
areexact. Although we have concentrated here on the criti
noise level for the BSC, other channel types as well as o
quantities of interest can be treated using a similar form
ism. The predictions for the critical noise level are mo
optimistic than those reported in the IT literature, and are
to numerical precision in agreement with those reported
Ref. @18#. We have also shown that the critical noise lev
for typical pairs, MAP and MPM decoding must coincid
and we have provided an intuitive explanation to the diff
ence between MAP and MPM decoding. Finally, an ext
sion of this analysis to MN codes reveals the mechanism
J.

ns

a

R.
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allows them to saturate Shannon’s limit for finiteK>3 and
for K52, L>3 values~if impractical algorithms such as
maximum likelihood are used!. This result, which is consis
tent with previous SP based analyses@9#, is considered as
surprising in the IT community.

We believe that SP based analysis will provide more
sight into the performance and characteristics of rand
LDPC codes, complementing the analysis provided by
methods.
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