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Critical noise levels for low-density parity check decoding
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We determine the critical noise level for decoding low-density parity check error-correcting codes based on
the magnetization enumeratai(), rather than on the weight enumeratdt\ employed in the information
theory literature. The interpretation of our method is appealingly simple, and the relation between the different
decoding schemes such as typical pairs decoding, MAP, and finite temperature deddBiy becomes
clear. In addition, our analysis provides an explanation for the difference in performance between MN and
Gallager codes. Our results are more optimistic than those derived using the methods of information theory and
are in excellent agreement with recent results from another statistical physics approach.
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[. INTRODUCTION different approach has been used to study LDPC codes, using
the established methods of statistical phys{&. This
The theory of error-correcting codes is based on the effianalysis, relying mainly on the replica symmetric analysis of
cient introduction of redundancy to given messages for prodiluted systemg7.8], offers an alternative to information

tecting the information content against corruption. The theo-f[heory methods and has yielded some additional results and

retical foundations of this area were laid by Shannonsf=0%e (8- 2 DS (0 (0% BroMRg PESes B LARC
seminal work|1] and have been developing ever since. One; . . . . . . h
of the mainkr[elults obtained in this figld gis the celebratezgcaI physics, there is growing interest in the relationship

h | coding th wiating that th ist d h etween IT and SP methods. As the two communities inves-
channel coding theorerstating that there exists a code suc tigate similar problems, one may expect that standard tech-

that the average message error probabHiy, when maxi-  pigyes known in one framework would bring about develop-
mum likelihood decoding is used, can be made arbitrarilyments in the other, and vice versa. Here we present a direct
small for sufficiently long messages below tbieannel ca-  sp method to determine the critical noise level of Gallager
pacity, and will approach 1 above it. The channel codingand MN error-correcting codes, which allows us to focus on
theorem is based on unstructured random codes and impragre differences between the various decoding criteria and
tical decoders such as maximum likelihof#] and typical  their use for defining the critical noise level for which de-
set decoding3]. In the case of structured codes, the critical coding is theoretically feasible.

code rateR (message information content/length of the en-  The paper is organized as follows: In Sec. Il we introduce
coded transmissionmay lie below the channel capacity, the general framework, notation and the quantities we focus
commonly termedShannon’s boundeven if optimal(and  on, while in Sec. Ill we will briefly describe the SP calcula-
typically impractical decoding methods are being used. Thetion. Section IV describes qualitatively the emerging picture
proximity of the critical code rate to Shannon’s limit pro- of the main quantities calculated for Gallager’s code while
vides an indication to the theoretical limitations of a giventhe corresponding picture for MN codes will be described in
code. It should be emphasized that the theoretical criticaGec. V. Quantitative results for the critical noise level will be

code rate is typically not achievable in practice, as it maypresented in Sec. VI followed by conclusions.
require using search methods that scale exponentially with

the system size, in the computing time needed. Il. REGULAR GALLAGER AND MN CODES

In 1963 Gallagef4] proposed a coding scheme that in- . . .
volves sparse linear transformations of binary messages that In a general scenario, tidimensional Boolean message
was forgotten soon after, in part due to the success of corﬁoe{o'}}N is encoded to thé/(>N) dimensional Boolean
volutional code$2] and the computational limitations of the vectort®, and transmitted via a noisy channel, which is taken
time. Gallager codes have been recently rediscovered biyere to be a binary symmetric chaniBISC) characterized
MacKay and Neal(MN), who independently proposed a by an independent flip probability per bit; other transmis-
closely related cod§5]. Variations of this family of codes, sion channels may also be examined within a similar frame-
known as low-density parity checkDPC) codes, have dis- work. At the other end of the channel, the corrupted code-
played performance comparaliend sometimes superjolo  word is decoded utilizing the structured code word
other state-of-the-art codes. This family of codes has beeredundancy.

thoroughly investigated in the information thediy) litera- The first type of error-correcting code that we focus on
ture (e.g.,[3,5,6]), providing a range of significant theoreti- here, is Gallager’s linear codd]. Gallager’s code is a low-
cal and practical results. density parity check code defined by the a bina® - N)

In parallel to studies carried out in the IT community, a X M matrix A=[C,|C,], concatenating two very sparse ma-
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trices known to both sender and receiver, with the<N)  signa) statistics criterion. Upon successful decodafgwill

X (M—N) matrix C, being invertible. The matriA hasK  pe selected, while a decoding error is declared when a vector
nonzero elements per row at@per column, and the code &x et (A 50) is selected. For each decoding scheme, the
rate is given byR=1—C/K=N/M. Encoding refers to mul- averaé)gt)léck error probability[16] '
tiplying the original messagﬁ’ with the (M X N) matrix G"
(where G=[1y|C; 1), yielding the transmitted vector®. Pe(Ps.p)=(A(avector ce Th(A,c°) is selectedh co
Note that all operations are carried outmod 2 arithmetic. 3

. _)o . .
Upon sendingt” through the BSC with noise leved, the can be defined as a measure of error-correcting ability for a

vectorr =t°+n? is received, whera® is the true noise. given code ensemble, wherg(-) is an indicator function
Decoding is carried out by multiplying by A to produce  returning 1 if the proposition of the argument is true and 0,

the syndrome vectar= Ar (=An°, sinceAG'=0). In order  otherwise. For BSC, only the number of nonzero compo-

to reconstruct the original messag one has to obtain an nents characterizes the statistics of the noise. On the other

. > . . > hand, the signal bits, in general, have an equal probability for
o
estimaten for the true noisen®. First we select alh that being 0 | e, Pe %), which implies that they have no

satisfy the parity check&n=An®, useful prior information for the estimation. In the following,
o (S A we therefore focus on decoding schemes based on the weight
Ipd An°)={n|An=z}, of a vector which is the average sum of the noise compo-
and nentsw(é)EllME}\’Llnj. To obtain the error probability,
) ) o one averages the indicator function overclivectors drawn
ZpdAn%)={neZ,(A,n°[n#n°%, (1)  from some distribution and the code ensemhlas denoted
by (.)a,co-
the (restricted parity check set. Unfortunately, carrying out averages over the indicator

The second type of error-correcting code that we focus offunction is difficult. Therefore, the error probabilitg) is
here is the MN codg5]. An MN code is a low-density parity usually upper bounded by averaging over thunberof vec-
check code defined by a binay X (N+M) matrix A torsp obeying a certain condition on the weigh¢n), which
=[C4|Cy], concatenating two very sparse matrices known tqharacterizes the employed decoding scheme. Alternatively,
both sender and receiver, with théxM matrix C, being  gne can find the average number of vectors with a given
invertible. TheM X N matrix C; hasK nonzero elements per weight valuew from which one can construct a complete
row andC per column, whileC,, hgsL_nonzero elements per weight distribution of noise vectors in Z'I'C(A,EO). From
row an.d column. The CO,dG .rate 1S 9"’?”_ By=K/C= ’:UM' this distribution one can, in principle, calcpulate a bound for
Encoding refers to multiplying the original messagfeby  p_ and derive critical noise values above which successful
the (M X N) dense generator matr&=C,, 'C,, yielding the decoding cannot be carried out.
transmitted vectot®. Note that all operations are carried out A natural and direct measure for the average number of

in (mod 2 arithmetic. Upon sending® through the BSC States is the entropy of a system under the restrictions de-
with noise levelp, the vectorr =%+ n° is received, where scribed above, which can be calculated via the methods of

>0 . statistical physics.
n®is the true noise. It was previously showrtsee, e.g., Ref.9] for technical

Decoding is carried out by muIEipIying by C, to produce  detailg that this problem can be cast into a statistical me-
the syndrome vectoz=C.;s°+C,n°=Ac®, wherec is the chanics formulation, by replacing the field{0,1,
concatenated vectos(n). In order to reconstruct the origi- +mod (2)) by ({1,—1},X), and by adapting the parity
nal message®, one has to obtain estimatesfor the true  checks correspondingly. The statistics of a noise veotisr

. o T . : : i N M
signal and noise®. First we select all combinations of signal Now described by its magnetizatiom(n)=1/MZXjZ,n;,

and noisec that satisfy the parity check&c=Ac®, (m(n) e[1,—1]), which is inversely linked to the vector
weight in the[ 0,1] representation. Similarly, the statistics of
T, A,c®)={c|Ac=z}, a signal vectors is now described by its magnetization

my(s)=1MZ,s;, (m(s)e[1,—1]). With this in mind,
we introduce the conditioned magnetization enumerator, for

a given code and noise, measuring the noise vector magne-
tization distribution inZ},(A,n°),

and
Thd(A,cO)={ce (A ,c%)|c#c}, 2

the (restricted parity check set. 1
To unify notfatl?n for Galla.\g.er and. MN coc.ies, we will MA’ﬁo(m)EMm[TrﬁEIr (A,r;c,)é(m(ﬁ)—m)]. (4)
adopt the notatio® for the original noisgand signal vec- pe

tor, andc for the estimate of the nois@nd signal vector. To obtain themagnetization enumeratok4(m)
Any general decoding scheme then consists of selecting a '

vectorc* from Z,(A,c®), on the basis of some noigand M(M)=(Mp co(M))A o, (5)
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which is the entropy of the noise vectorsﬂgC(A,ﬁO) with a _ i i - i
given m, one carries out uniform explicit averages over all M(mg)= N<|”[TrCEILC(AVCO)5(m(S)_ms)DA,cO- (10
codes A with given parameter,C (and L), and the 1
weighted average over all possible noise vectors generated W = AT ot on oS (S.80) — -
by the BSC,(and all possible signal vectors.e., s(@s) N< [Treery a0 d@(S,SH) ~wdlac
M (17)

P(n) =[] [(1-p)8(n’—1)+ps(n®+1)],  (6)  Inwhat follows, we perform all calculations as if bathand
J o (andmg andw, for MN codes, are constrained to particu-
lar values. As we will show, omitting a constraint in the final
P(s”)=I1 [(1-po)&(s'~1)+pss(sP+1)], (7) expressions can then easily be done by assigning the zero
i value to the corresponding Lagrange multiplier.

with herep,=3. It is important to note that, in calculating lll. THE STATISTICAL PHYSICS APPROACH
the entropy, the average quantity of interest is the magneti- -, _ .
zation enumerator rather than the actual number of states. Quantiies of the typed(c)=(Qy(C))y, with Q,(c)

=1MIn[Z,(c)] and Z,(c)=Tr,d(c(x,y)—Mc), are very
For physicists, this is the natural way to carry out the averCommon in the SP of dlsordered systems: the macroscopic
ages for three main reasoria) The entropy obtained in this

. . o : order parametec(x,y) is fixed to a specific value and may
way is believed to beself-averagingi.e., its average value depend both on the disordgrand on the microscopic vari-

(over the disordgrcoincides with itstypical value. (b) This  gpjesx. Although we will not prove this here, such a quantity
quantity isextensiveand grows linearly with the system size. g generally believed to beelf-averagingn the large system
(c) This averaging distinguishes betweemnealedvariables |imit, j.e.,” obeying a probability distributionP(Qy(c))
that are averaged or summed for a given setjoénched =8(Q, (c) Q(c)). The direct calculation 0®(c) is known
variables that are averaged over later on. In this particulags aquenchedaverage over the disorder, but is typically hard
case, summation over ali vectors is carried for dixed to carry out and requires using the replica metiﬁg}j The
choice of codeA and vectorc®; averages over these vari- "eplica meEhod makes use of the identityinz)
ables are carried out at the next level. =(lim,,_o[ 2"-1]/n), by calculating averages over a prod-
One should point out that in somewhat similar calcula uct of partition function replicas. Employing assumptions

fons we shoied tat s metha ofcarying out he aver 5011 PlEa, symrietnis g anauicaly coring e
ages provides more accurate results in comparison to aveY

) . . determine the state of the system.
aging over both sets of variables simultaneoygH.

A bositi tizati t =0 indicat To simplify the calculation, one often employs the so-
positive magnetization enumera (M(m). Y Indicates calledannealedapproximation, which consists of performing
that there is an exponential number of solutigimsM) with

> an average ove@,(c) first, followed by the logarithm op-
magnetizationm, for typically chosenA and c®, while eration. This avoids the replica method and provides
M(m)—0 indicates that this number vanishes ls—« (through the convexity of the logarithm functipan upper
(note that negative entropy is unphysical in discrete sysbound to the quenched quantity,

tems.

Another important indicator for successful decoding is the Q.(c)= iln[(Zy(c»y]
overlap w between the selected estimat&, and the true
noise N% w(nN,n)=1MZ" nn, (o(n,n°e[-1,1), =Qq(c)
with =1 for successfu[perfec) decoding. However, this 1
guantity cannot be used for decodingrﬁs’s unknown to the = —(In[Z,(c)])y
receiver. Thecode and noise dependgnbise overlap enu- M
merator is now defined as » (Z;(C)>y—1

1 - =lim M (12
WA,EO((U)EM'n[TrEezLC(A,EO)tS(w (n,n°)—w)], (8 n—0
The technical details of the calculation are similar to those
and the average quantity being in Ref.[9]. It turns out that it is useful to perform the gauge
transformationc;—c;c?, such that the averages over the
W(@)=(Wa g0 ©)) ,co- 9 I J

codeA and noise/signa&O can be separatet!y, co becomes
This measure is directly linked to theeight enumeratof3], independent ofc®, leading to an equality between the
although according to our notation, averages are carried ogfuenched and annealed result3))(m) = Ma(m)|p-o
distinguishing between annealed and quenched variables ur-Mg(m)|,—o. For any finite noise valup one should mul-
like the common definition in the IT literature. However, astiply expfW(w)] by the probability that a state obeys all
we will show below, the two types of averages provide iden-parity checks exjp-X(w,p)] given an overlag and a noise

tical resultsin this particular case level p [3]. In calculating®(w) and Ma/q(m), the & func-
Similarly, for MN codes one defines the signal magneti-tions fixingm and w, are enforced by introducing Lagrange
zation and weight enumerators as multipliers m and w.
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Carrying out the averages explicitly, one then employs therhe probability distributionsr(x) and 7(x) emerge from
saddle point method to extremize the averaged quantity Withhe calculation; the former represents a probability distribu-
respect to the parameters introduced while carrying out thgyn with respect to the noise vector local magnetizafits,
calculation. These lead, in both quenched and annealed clyjje the Iatter relates to a field of conjugate variables that
culations, to a set of saddle point equations that are solvegmerge from the introduction of functions while carrying
either analytically or numerically to obtain the final expres- o+ the averagegfor details see Ref[9]). Their explicit

sion for _the averageq quantitgntropy. . forms are obtained from the functional saddle point equa-
The final expressions for the annealed entropy per noise

degree of freedom for Gallager codes, under both overlafons 6Qq/om(x), 6Q,/6m(x)=0, and all integrals are

(w) and magnetizationni) constraints, are of the form from —1 to 1. _ _
The final expressions for the annealed entropy per noise

degree of freedom for MN codes, under both signal and
noise overlap ¢,ws) and magnetizationnj, mg) constraints,
are of the form

c K
Q= — R{(In(2)+(K—1)In[1+cl]}

+IN(Trp— +.exg n(@+mn°)J(1+nck 1% o

— (@w+mm), (13
where the average cavity magnetizatmrhas to be obtained
from the saddle point equatiohQ,/dc,;=0. Similarly, the Q.= —{In(2)+(K+ L—l)In[1+cfd'i]}
final expression in the quenched calculation, employing the
simplest replica symmetry assumptif8l, is of the form —R(MyM+ 0sws) — (MM+ 0 o)
R . a . N ~ e
Q.= _Cf dxdXar(x) (I 1+ xX] +RIN(Trg .+ 1exd s(ws+ Mgs?) (1+5¢) ) o

+IN(Tr— +1exd N(@+mn®)](1+ndy) Hpo, (15

i

k=1

1
2

c K
+KJ [kﬂl dka(xk)] In

+f lfll d*c%(ic)] < In

C
+mn®) [T (1+n%)
c=1

Tro— - 1exp(n( @

where c,, d; have to be obtained from the saddle point
equations’Q,/dcq,dQ,/dd,=0. Similarly, the final expres-
> —({uw+ﬁ1m). (14) sion in the quenched calculation, employing the simplest rep-
o lica symmetry assumptiof8], is of the form

—R(MMg+ wsws) — (MM+ ww)

K L
1+ 1 x [l Y|)
k=1 =1

K L .
quf klzll dx W(Xk)lljl dy,p(y)in >

O

C
—Kf dxd&w(x)%(i)|n[1+x§<]+Rf 11 d%c%(ic)<|n Tre_ . ;exp(s(ws+ms?)) [ | (1+s§<c)}>
c=1 0

c=1
> . (16)

L L
-L f dydyp(y)p(y)In[1+yy]+ f .Hl d9|;(9|)< ln[Trnﬂexp(m&wﬁm‘J))ﬂ (1+ny)

=1

The probability distributionsm(x),p(y) and @(x),p(y)  saddle point equations 5Qu/8m(X), 8Q4/5m(X),
emerge from the calculation; the former represent probablllty(;Qq/(gp(y), 5Qq/6p(¥)=0, and all integrals are from
distributions with respect to the signal/noise vector local_ 1 ¢5 1

magnetizationg15], while the latter relate to fields of con- . . LA A
jugate variables that emerge from the introductiord déinc- Enforcing as fu?ctmn correfponds to tflklng,m,ws,rps
tions while carrying out the averagéfor details see Ref. such thatdQyq/dw, dQqq/dM, JQqq/dws, IQquq/dIMs
[9]). Their explicit forms are obtained from the functional =0, while not enforcing it corresponds to putting
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M(m) M(m) probability of error below m,(p) vanishes, P(3n

€ Zpe:m(n)>m. (p))=0, and since(m(n°) =my(p))=1,
the critical noise levelp, is determined by the condition
m, (p.) =Mg(p:). The selection process is explained in

a) p<pe

L me)

‘ : Figs. a—0.
-1 m mipy 1 -1 m mp) 1 (2) Typical pairs decodings based on randomly selecting
an from Ty With m(n)=mo(p) [3]; an error is declared
€) p>pe ; whenn? is not the only element df,.. For the same reason

as above, the critical noise level. is determined by the
conditionm, (p¢) = Mp(Pe)-

(3) Finite temperature (MPM) decodingAn energy
—Fm(ﬁ) (with F=3 In[1—p/p]) according to Nishimori's
condition(corresponding to the selection of an accurate prior
within the Bayesian framewoykis attributed to each

-1 m @) 1

FIG. 1. The qualitative picture ofM(m)=0 (solid lineg for - . .
different values ofp. For MAP, MPM, and typical set decoding, "€ Zpc, @nd a solution is chosen from those with the mag-

only the relative values af, (p) andmo(p) determine the critical ~Netization that minimizes the free enef@}. This procedure
noise level. Dashed lines correspond to the energy contribution ds known to minimize thebit error probability [16]. Using

— BF at Nishimori's condition =1). The states with the lowest the thermodynamic relatiotF=4/—1/8S, B being the in-
free energy are indicated by a poi@t (&) Subcritical noise levels  verse temperaturéNishimori's condition corresponds to set-
P<pc, wherem, (p)<mg(p), there are no solutions with higher ting g=1), the free energy of the suboptimal solutions is
magnetization thamg(p), and the correct solution has the lowest given by F(m)=—Fm—(1/B)M(m) [for M(m)=0],
free energy(b) Critical noise levelp=p., wherem..(p)=mo(P). ~ \ypile that of the correct solution is given byFmy(p) (its
The minimum of the free energy of the suboptimal solutions isemropy being D The selection process is explained graphi-

equal to that of the correct solution at Nishimori’s conditi¢o). g )
Overcritical noise levelp> p. where many solutions have a higher cally |n' Figs. Ia).—l(c). Th? free energy differences bet\{veep
timal solutions relative to that of the correct solution in

magnetization than the true typical one. The minimum of the free>U0OP

energy of the suboptimal solutions is lower than that of the correcthe current plots are given by the orthogonal distance be-
solution. tweenM(m) and the line with slope- BF through the point

(my(p),0). Solutions with a magnetizatiom for which
w,m,ws,Ms equal to 0. Sincew,m,ws,mg, follow from M(m) lies above this line, have a lower free energy, while
&Qa/q/&&),aQa/qlaﬁm8Qa/q/c9205,&Qa/q/t?r:ﬂfO, all the those for whichM(m) lies below, have a higher free energy.

relevant quantities can be recovered with appropriate choice%InCe negative en_tropy valu_es are_unphysmal n dlscre_te Sys-
~ A oAl A tems, only suboptimal solutions with1(m)=0 are consid-

of w,m, ws,Ms. ered. The lowesp value for which there are suboptimal so-
lutions with a free energy equal toe Fmg(p) is the critical

IV. QUALITATIVE PICTURE noise levelp, for MPM decoding. In fact, using the convex-

We now discuss the qualitative behavior .6i(m), and ity of M(m) and Nishimori’s condition, one can show that
the interpretation of the various decoding schemes. To obtaifi€ SlopedM(m)/dm=>— gF for any valuem<m,(p) and
separate results fabM(m) and W(m) we calculate the re- anY P, and equals—gF only atm=m,(p); therefore, the
sults of Egs.(13) and (14) [and Egs.(15) and (16)], corre- critical n0|sellevel for MPM fjecodlngizpc is |de.nt|cal j[o

sponding to the annealed and quenched cases, respectivéf)‘/?t_Of MAP, in agreement with results obtained in the infor-

LA . ~ . mation theory community17].
setting w=0 to obtain M(m) and m=0 to obtainW(w) - L . -
(that becomes\/l(m)|p:0 after gauging In Fig. 1, we have The statistical physics interpretation of finite temperature

qualitatively plotted the resulting function(m) for rel- decoding corresponds to making the specific choice for the

evant values ofp. M(m) (solid line) only takes positive L-adrange multipliem=F and considering the free energy

values in the intervdlm_(p),m. (p)]; for evenk, M(m) is instead of the entropy. In earlier work on MPM decoding in
an even function ofnandm_(p)=—m. (p). The maximum the SP framework9], negative entropy values were treated
value of M(m) is always (I R)In(2) for Gallager codes, by adopting different replica symmetry assumptions, which

.- . ffectivel It in ch ing the i t ture, i.e.,
andRIn(2) for MN codes. The true noise® has(with prob- efiectively Tesull In changing the inverse temperature, 1.

- . o ~ the Lagrange multipliem. This effectively setsn=m, (p),
ib#,?(/p)l): i[ezgy%cgh;ndafggft:éaﬁgg of the BSGn(n°) i.e., to the highest value with non-negative entropy. The sub-

. . . timal states with the lowest free energy are then those with
The various decoding schemes can be summarized as f _p: m. (p) 9y
lows. e

: _ N The central point in all decoding schemes is to select the
(1) Maximum likelihood (MAP) decodinginimizes thf correct solution only on the basis of its magnetization. As

block error probability 16] and consists of selecting the  |ong as there are no suboptimal solutions with the same mag-
from IpC(A,nO) with the highest magnetization. Since the netization, this is, in principle, possible. As shown here, all
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three decoding schemes discussed above manage to do so.Where H,(p) is the binary entropy per bit for vectors with
find whether at a giverp there exists a gap between the biasp. Hence, under this assumption, we do not only obtain
magnetization of the correct solution and that of the neareghe exact expression fok1(m), but we see that the critical
suboptimal solution, just requires plottingf(m)(>0) and noise levelp. is given byR=1—H,(p.), saturating Shan-
mo(p), thus allowing a graphical determinationmf. Since  non’s bound for this type of codes.

MPM decoding is done at Nishimori's temperature, the sim- _Unfortunately, the assumption cannot be verified easily
plest replica symmetry assumption is sufficient to describgvithout the replica method. To verify whether indeed
the thermodynamically dominant stdi@]. At p, the states ?M(m)/dp=0, we have to take the derivative of expression
with m.(pc)=my(p.) are thermodynamically dominant, (16) (settingw=ws=ms=0) with respect t. It turns out
and thep, values that we obtain under this assumption arghat M is only independent op, when p(y) is an even

exact. function ofy, which, in turn, requires that(y) and(x) are
even functions of their arguments. Numerical analysis shows
V. MN CODES—AN ALTERNATIVE VIEW that this is the case for ary=3 orK=2, L=3, wh?le not
so forK=1 orK=L=2. This result is consistent with those
For MN codes there is a way to obtain tegactexpres- reported in Ref[9], i.e., typical MN codes withrK=3 or
sion for M, in the case of unbiased messages, by employing =2, L=3 do saturate Shannon’s bound, while those with
a single highly plausible assumption. We first note that every =1 andK=L=2 do not.
parity check bitZo:Siol' . 'SiOKanl' . .nJQL is made up of a Intuirt]ively this result crz]in Il()éé)under(’jstoold én the) foIIovaing
P ; ; _ Iy o ; way. There areM parity check bits and onliN(<M) signal
combination ofK unbiased(i.e., ps=3) signal bits, and. bits, such that parity check bits, although individually unbi-

. - l . -
b:ased('l.ze.,_p#zg_ n0|(sje_ l(lets. AZ a JeSL:cltt,hevery s;g?tdr(t)r?e ased, are not uncorrelated. These correlations do seem to
elementz, 1S unbiased independently of the noise bit Stalis, 5 g effect onvi(m) for K=1 andK =L =2, while for

tics. It is therefore plausible to assume that the noise bilk 3 409 K=2 L=3 the signal bits seem to be

stat.istics(i.e., p) have no influence on the disFribution of the «gerambled” enough in the parity checks for the correlations
parity check bitsz,, and therefore oo\ (which only de-  tq pe insignificant. Note that this argument does not hold for
pends on the true noise through thg. If this assumptionis  Gallager codes and MN codes with biased messages, where
satisfied, one can invoke Nishimori’s condition to obtain anthe parity check bits exclusively comprise biased bits, and
exact expression faM. are therefore biased themselves. They only become unbiased

Independently of the assumption, Nishimori’s conditionas K—« for Gallager codegfor which it was already re-
gives the following identity for the thermodynamically domi- ported in the literatur¢5] that such codes can saturate Sh-
nant state: annon’s bouny and forK —« or L—c for MN codes.

In fact, numerical analysis reveals that &3 and for

AM(m) B K=2, L=3 we have thap(y)=38(y), p(y)=&(y), m(x)
om - =—F(p) = §(x) at least up tan, (p) =mg(p;) which is independent
m=mo(P) of p. This allows us to calculaté4 analytically from expres-
1 (1-p sion (16), and we recover, as expected, the exact expression
:——In(—) (19.
2 P ForK=1 orK=L=2, as in the case of Gallager codes,
1 [1+m, one can only obtaim, (p) numerically. The results of this
__Eln 1-m. (17)  procedure are presented in the following section. Further-
(0]

more, forK =1 and forK =L =2, we find that spontaneously
rgsaﬁo for some values op<p., when no restriction is
enforced(i.e., for m¢=0). This implies that one may im-
prove the decoding performance by imposing the condition
of unbiased signafsimilar to the conditions for typical set
decoding, i.e., by adjusting the Lagrange multiplier, such
thatmg= 0. Unfortunately, this only happens for valuespof
(18)  for which there is an exponential number of suboptimal so-
lutions EeILC(A,EO) with the same weight as®, and im-
posing this constraint on the signal estimator only reduces
this number, leaving it, nevertheless, exponential.

It was shown[10] that MN codes, in principle, contain
sufficient information to saturate Shannon’s bound for unbi-
1 m 14u a;eq messages. For code_s WKtk 1 orK=L=2, some of
M(m)=M(0)— _f du In(—) f[hls_lnf_ormathn is wasted in a region where errorless dgcod-

2)o 1-u ing is impossible anyway, such that Shannon’s bound is not
saturated. For codes with=3, orK=2, L=3, our analysis
m” (19 indicates that all information is used optimally, and that
' Shannon’s bound can be theoretically saturated. Our argu-

Since states characterized by any magnetization valu
m<mqy(p;) will become dominant for an appropriately cho-
sen value op, and since we assume th&t is independent
of p, the identity

1+m
1-m

oMm 1
gm  2M

must hold for any value afn. Furthermore, the maximum of
M(m) is reached amn=0 with M(0)=RIn(2), and we have
that

=In(2)

1+
R—1+ H2( 5
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(K,C)y |(6,3)(5,3)|(6,4)](4,3)

a) Im b) | Coderate | 1/2 | 2/5 | 1/3 | 1/4
IT (W,) (0.0915(0.129 | 0.170 | 0.205

Sp 0.0990/ 0.136 | 0.173 | 0.209

__________ . Mha(P)
: Mha(P) Pea (Mg) | 0.031]0.066 | 0.162 | 0.195
O PeaPer OB Peq (M) 0.0998]0.1365]0.17250.2095

Shannon p;| 0.109 | 0.145 | 0.174 | 0.214

FIG. 2. (a) Determining the critical noise levels, 4 based on the functiotM,,, for Gallager codes and for MN codes with=1 or
K=L=2, a qualitative picture(b) Comparison of different critical noise levep{) estimates for Gallager codes. Typical set decoding
estimates have been obtained using the methods g13] based on having a unique solutiong(m)=/(m,p.), as well as using the
methods of SP18]. The numerical precision is up to the last digit for the current method. Shannon'’s limit denotes the highest theoretically
achievable critical noise leved, for any code[1].

ment also explains the relative importance of the parametermssary in the current formalism as the quenched calculation
K andL for the behavior of the code in comparison with ~ automatically suppresses such contributions. The similarity
between the results reported here and those obtained in Ref.
VI. CRITICAL NOISE LEVEL—RESULTS [14] is not surprising as the equations obtained in quenched
calculations are similar to those obtained by averaging the
Some general comments can be made about the criticalpper bound to the reliability exponent using a method pre-
MAP (or typical set values obtained via the annealed andsented originally by Gallagg#]. Numerical differences be-
quenched calculations. Sinckt,(m)<M,(m) [for given  tween the two sets of results are probably due to the higher
values ofK, C (L), andp], we can derive the general inequal- numerical precision here.
ity Pe,q=Pc,a- ForallK, C (L) values that we have numeri- We have also obtained the critical noise levels for some
cally analyzed, for both annealed and quenched caseparameter choices in MN codes. We only present the
m.(p) is a nonincreasing function gj, and p. is unique. quenched(exac) values, and compare them only with the
The estimates of the critical noise levedg 4, based on highest theoretically achievable critical noise lepgfor any
Myq, are obtained by numerically calculating ,4(P), code[1], as we are not aware of values obtained with other
and by determining their intersection withg(p). This is  methods in the literature. Note that although still strictly be-
explained graphically in Fig.(2). low p;, the critical noise levelp, for K=L=2 with in-
As the results for MPM decoding have already been preereasing values of rapidly approachp, to within the cur-
sented elsewherd 1], we will now concentrate on the criti- rent numerical precisiofsee Fig. 3.
cal resultsp. obtained for a typical set and MAP decoding
for Gallager codes; these are presented in Filgl, 3howing
the values of, 4 for various choices oK andC compared VIl. CONCLUSIONS
with those reported in the literature.
From Fig. Zb) it is clear that the annealed approximation
gives a much more pessimistic estimate figr. This is due
to the fact that it overestimates1 in the following way:

In this paper we have shown how both weight and mag-
netization enumerators can be calculated using the methods
of statistical physics in the case of regular LDPC codes. We

. . - - U study the role played by thenagnetization enumerator
Ma(m) describes the combined entropyrofindn® as if n° M(m) in determining the achievable critical noise level for

were therrrlal variable§ as well. Therefore, exponentially rar¢ arious decoding schemes. The formalism based on the mag-
events forn® [i.e., m(n°)#mg(p)] still may carry positive  netization enumeratat offers a intuitively simple alterna-
entropy due to the addition of a positive entropy term fromtjve to the weight enumerator formalism used in conjunction
n. In a separate studyl8] these effects have been taken carewith typical pairs decoding in the IT literatuf8,18]. The SP

of by the introduction of an extra exponent; this is not nec-based analysis employs the replica method given the very

a) |m b)
1 (K$ CV L) (17372) (276’ 2) (2’ 37 2) (31 9’ 3)

Code rate | 1/3 1/3 2/3 1/3
Peq (Mg) | 0.15 |S0.174| 0.06 | 0.174
Shannon p¢| 0.174 | 0.174 | 0.0615 | 0.174

My,g(p) = mo(p:)

0 Pe,gq =Pt 0.

P
mo(p)

FIG. 3. (a) Determining the critical noise levelg, , based on the function, for MN codes withK=3 orK=2, L=3, a qualitative
picture.(b) Comparison of different critical noise levep(,) estimates for MN codes. The numerical precision is up to the last digit for the
current method. Shannon’s limit denotes the highest theoretically achievable critical noisp, leareany code1].
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low critical values obtained by the annealed approximatiorallows them to saturate Shannon’s limit for finke=3 and
calculation. Furthermore, the powerfull gauge theory as profor K=2, L=3 values(if impractical algorithms such as
posed by Nishimori8], proves that the replica symmetric maximum likelihood are us@dThis result, which is consis-
assumption is correctt least at the critical noise leyebnd  tent with previous SP based analyg€3, is considered as
thus that the critical noise levels as obtained by our methodyrprising in the IT community.

areexact Although we have concentrated here on the critical \We believe that SP based analysis will provide more in-
noise level for the BSC, other channel types as well as othesjght into the performance and characteristics of random

quantities of interest can be treated using a similar formal DPC codes, complementing the analysis provided by IT
ism. The predictions for the critical noise level are moremethods.

optimistic than those reported in the IT literature, and are up

to numerical precision in agreement with those reported in

Ref.[18]. We have also shown that the critical noise levels ACKNOWLEDGMENTS

for typical pairs, MAP and MPM decoding must coincide,

and we have provided an intuitive explanation to the differ- Support by Grant-in-Aid Nos. 13680400 and 13780208
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