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“Essentially, the theory of probability is nothing but good common 

sense reduced to mathematics. It provides an exact appreciation of 

what sound minds feel with a kind of instinct, frequently without 

being able to account for it.” 

Pierre Simon Laplace (1749-1827) (1) 

 

 

Bayes’ ……..“crack cocaine of statistics…. Seductive, addictive and 

ultimately destructive”  

An unknown Google representative who recruited Bayesians for 

Google (2) 
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Abstract 

The objective of this study was to investigate the effects of circularity, comorbidity, prevalence and 
presentation variation on the accuracy of differential diagnoses made in optometric primary care 
using a modified form of naïve Bayesian sequential analysis. No such investigation has ever been 
reported before. 

Data were collected for 1422 cases seen over one year. Positive test outcomes were recorded for 
case history (ethnicity, age, symptoms and ocular and medical history) and clinical signs in relation to 
each diagnosis. For this reason only positive likelihood ratios were used for this modified form of 
Bayesian analysis that was carried out with Laplacian correction and Chi-square filtration. Accuracy 
was expressed as the percentage of cases for which the diagnoses made by the clinician appeared at 
the top of a list generated by Bayesian analysis.  

Preliminary analyses were carried out on 10 diagnoses and 15 test outcomes. Accuracy of 100% was 
achieved in the absence of presentation variation but dropped by 6% when variation existed. 
Circularity artificially elevated accuracy by 0.5%. Surprisingly, removal of Chi-square filtering 
increased accuracy by 0.4%. Decision tree analysis showed that accuracy was influenced primarily by 
prevalence followed by presentation variation and comorbidity.  

Analysis of 35 diagnoses and 105 test outcomes followed. This explored the use of positive likelihood 
ratios, derived from the case history, to recommend signs to look for. Accuracy of 72% was achieved 
when all clinical signs were entered. The drop in accuracy, compared to the preliminary analysis, was 
attributed to the fact that some diagnoses lacked strong diagnostic signs; the accuracy increased by 
1% when only recommended signs were entered. Chi-square filtering improved recommended test 
selection. Decision tree analysis showed that accuracy again influenced primarily by prevalence, 
followed by comorbidity and presentation variation.    

Future work will explore the use of likelihood ratios based on positive and negative test findings prior 
to considering naïve Bayesian analysis as a form of artificial intelligence in optometric practice. 

(key words: Bayesian; clinical decision making; likelihood ratios; differential diagnosis; epidemiology; 
optometry; primary care;) 
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Glossary  

Definitions of terms as used within the context of this study 

 

algorithm a sequence of steps in order to solve a problem 

ban Probability expressed in logarithm to the base 10 to ease calculations 
(introduced by  Alan Turing). 

Bayesian network  a graphical model representing the probabilities and their relationships  

Chi-square filtering Chi-square test is used to test the strength between a test item and  the 
condition being tested. Filtering is carried out by using only strong 
associations (determined by by a Chi-square value that ensured that 
there would be no false positives errors), so that weak or spurious 
associations are not used in the naïve Bayesian analysis 

circularity testing of the Bayesian analysis using the same data that was used 
determine the prevalence and build the likelihood ratios in the first place   

comorbidity the coexistence of more than one eye condition or disease in the same 
individual  

decision matrix  is a table of rows and columns containing data that allows the analysis of 
the data and determine their relationships. In this study, only 2x2 
decision matrices have been used, that is 2 rows by 2 columns. Decision 
matrices are also known  as contingency tables 

decision tree analysis a method of multivariate analysis that is used to classify statistical data in 
hierarchical manner, with the ability to handle both discrete and 
continuous variables.  

diagnosis an eye disease or condition 

frequentist statistical 
theory 

the drawing of conclusions from sample data  with emphasis on the 
frequencies of the data, using hypothesis testing and confidence intervals 
to see how well the sample represents the population. 

Gibbs sampling  a form of Monte Carlo sampling based on Markov chains  

heuristic  enabling a person to discover or learn for themselves  

kappa  is an agreement coefficient statistic used to measure the agreement 
between tests which has been corrected for agreements achieved by 
chance. Maximum value of kappa is 1 which achieved when there is 
perfect agreement.  

kappa - weighted,   (kr) is where cells in the decision matrix are weighted according to their 
importance after which the kappa coefficient is applied. When the 
weighting "r"  =1 , this gives kappa value for a screening test, that is 
sensitivity is maximised. For r=0, kappa value is for a diagnostic test, that 
is specificity is maximised; when r=0.5, both sensitivity and specificity are 
given equal importance and false positives and false negatives are 
minimised.  
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Glossary –Cont. 

likelihood ratio - positive the ratio of sensitivity to the false positive error rate LR+ = sensitivity/ (1-
specificity) 

likelihood ratio- negative the ratio of the false negative error to specificity  LR- = (1-sensitivity)/ 
specificity 

Markov Chain a stochastic process in which future states are independent of past states 
given the present state 

MCMC A combination of Markov chains and Monte Carlo methods 

Monte Carlo  a computer generated simulation of a probability distribution by taking 
random samples  

naïve Bayesian analysis Bayesian analysis which assumes that all tests items are independent of 
each other, and test outcomes are independent of other test outcomes.  

naïve Bayesian sequential 
analysis 

in the context of this study, naïve Bayesian analysis with a continuous 
input of data, altering outcomes with the input of new data where the 
order of new data being applied to the analysis is not of significance 

odds - post test the odds of the condition being  present after a  test outcome.  If the test 
outcome is positive, then Post-test odds = Pre-test odds x positive 
likelihood ratio . If however the  test outcome is negative, then Post-test 
odds = Pre-test odds x negative likelihood ratio 

odds - pre-test the odds of the condition being present prior to testing.  Pre-test 
odds=pre-test probability/ (1- pre-test probability)  

ophthalmic procedure examination of a particular structure (e.g. cornea or optic disc) or 
measurement (e.g. intraocular pressure or fixation disparity)  

predictive value - negative proportion of people who with a negative test outcome who do not have 
the condition 

predictive value - positive proportion of people with a positive test outcome who actually have the 
condition  

presentation variation  the difference between observed clinical data and expected "textbook" 
data 

prevalence the ratio of the number cases showing that particular diagnosis  to the 
total number of cases.  

priors - equal equal probability is assigned as the pre-test probability as previous data 
to relating this diagnosis is vague and inconclusive  

priors - subjective where the pre-test probability is based on a persons belief  as opposed to 
being based on previous data 

priors - unequal unequal probability is assigned to the pre-test probability when there is 
previous informative data  relating to the diagnosis, that is, the 
prevalence.  

priors -objective where the pre-test probability is based on previous data 

probabilities (post-test) is the probabilty of the diagnosis after the application of the test  

probabilities (pre-test)  is the prevalence of the diagnosis in practice 
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Glossary - Cont. 

QROC is a graphical plot of the weighted kappa k1 to k0 .   The weighted kappa 
represent "quality indices" in an ROC curve (therefore QROC)  

receiver operator 
characteristic (ROC)  curve  

a graphical plot of the true positive rate against the false positive rate 
that is sensitivity against (1-specificity)  for different pass/fail criteria. 
ROC curves are used to determine optimal models for decision making  

recommended tests following history and symptoms, the post-test odds determine the 6 most 
likely diagnosis. Recommended tests are those which would then confirm 
the diagnosis, and these are those test items that have the highest 
positive likelihood ratios indicating a strong test item/ condition 
association. 

sampling  using a finite number of observations to learn about a much larger 
population  

sensitivity  proportion of people with a condition who will have a positive test 
outcome   

sequential analysis   a continuous analysis of data; essentially analysing new data as it arrives 
whilst taking into account previous data. 

specificiity proportion of people without the condition who will have a negative test 
outcome  

statistical inference drawing conclusions from data using statistical methods 

stochastic  of or pertaining to a process involving a randomly determined sequence 
of observations each of which is considered as a sample of one element 
from a probability distribution.  

test item  any clinical recording that can provide information to aid/improve 
diagnosis  (such as  ocular or medical history demographics, presenting 
symptoms, clinical signs )  

test outcome the test outcome is whether or not a test item is present or absent 
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1. Introduction  
This chapter briefly sets the stage for the research presented in this thesis before describing the 

scope of the study and an outline of what each chapter covers.   

 

1.1 Global Action Plan 2014-2019  

In May 2013, the World Health Assembly approved the Global 

Action Plan (GAP) for the Prevention of Avoidable Blindness 

and Visual Impairment 2014-2019 (3). This supersedes the 

Vision 2020, the Right to Sight (4) (5), public health initiative of 

the World Health Organisation (WHO) and the members of the 

International Agency for the Prevention of Blindness (IAPB). 

The goal of the GAP is to “reduce avoidable visual impairment 

and to secure rehabilitation services for the visually impaired”.  

The GAP purpose is to achieve this goal by improving access to 

comprehensive eye care services which are a part of a general 

health system.  This will be achieved by  

 Collecting epidemiological evidence 

 Training more eye health professionals 

 Provide comprehensive eye care  

According to the WHO and IAPB (4) (5) about 285 million 

people in the world today are estimated to be visually 

impaired. Of these, 39 million are estimated to be blind.  Of all 

the people that are visually impaired, it is estimated that 80% are due to preventable causes.  The 

United Republic of Tanzania became a signatory in 2003 and is currently running its 2nd Strategic Plan 

(6). The summary of the GAP is shown in Figure 2 

  

Figure 1 From Vision 2020- The Right 
to Sight to the Global Action Plan 
2014-2019 
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Figure 2 A summary of the Global action Plan 2014 -2019: Aims and Objectives 

  



17 
  

1.2 The need for effective differential diagnosis   

Eye disease is most likely to be detected first in the primary care setting during routine eye 

examinations. Failure to detect early eye disease leads, at best, to the need for more sophisticated 

and costly secondary care treatments and, at worst, to avoidable loss of vision that brings with it 

other socioeconomic costs (7). On the other hand, unnecessary referrals lead to overburdening of 

secondary eye care services (8). This potentially leads to delivery of suboptimal treatment in 

overstretched hospitals. Effective and timely referral between eye care professionals can ensure the 

best treatment possible, and efficient use of costly secondary care resources (9).  

Primary care optometrists are therefore an essential part of the strategy to eliminate avoidable 

blindness and the consequences of sight threatening conditions can be limited if optometrists make a 

timely diagnosis and manage eye disease appropriately. 

There are currently only about 190 registered optometrists in Tanzania (10), serving a population of 

43 million people (11), (12). Efforts are being made to increase the manpower and the level of clinical 

training. However, one of the consequences of this shortage in man power is that Tanzanian 

optometrists are frequently called upon to make clinical decisions that extend beyond their training.  

In the UK, there is a different kind of pressure. Commercial pressure to reduce chair time (13) puts 

the optometrist at risk of not detecting sight threatening conditions in time due to a lack of clinical 

vigilance. Clinical vigilance guided by the recognition of symptoms and signs is important for making 

accurate diagnoses and the most appropriate referrals (14).  

Poor record keeping and missed diagnoses can be a potential minefield for any optometrist, with 

possibly severe legal implications. Computerised record keeping systems ensure comprehensive and 

legible records, but currently lack artificial intelligence.  

 

1.3 Scope of the present study 

This thesis explores the factors influencing the accuracy of a modified form of naïve Bayesian 

sequential analysis as a means of providing artificial intelligence for making differential diagnoses and 

selecting diagnostic tests. As far as its author is aware, the investigations described in this study have 

never appeared in the ophthalmic literature before now. 

Chapter 2 introduces Bayes’ theorem from an historical perspective. Chapter 3 provides worked 

examples to demonstrate the simplicity of naïve Bayesian calculations and the theoretical influence 



18 
  

on its accuracy of factors such as prevalence, comorbidity, presentation variation and circularity. The 

use of the Laplacian correction, Chi-square filtration and sequential analysis are also discussed in 

chapter 3. Chapter 4 covers the methodology of the preliminary and main studies of this thesis. 

Chapter 5 presents the findings of a preliminary study designed to determine the influence of 

circularity, prevalence, comorbidity, presentation variation and Chi-square filtering on the accuracy of 

naïve Bayesian sequential analysis applied to a small group of diagnoses, each of which had at least 

one definitive diagnostic test outcome. Chapter 6 shows the findings of the main study designed to 

re-examine the influence of prevalence, comorbidity, presentation variation and Chi-square filtering 

on the accuracy of naïve Bayesian sequential analysis applied to a larger group of diagnoses, some of 

which did not necessarily have definitive diagnostic tests outcomes. The use of positive likelihood 

ratios to identify diagnostic tests was also explored in chapter 6. Chapter 7 summarises the findings of 

this thesis and makes recommendations for future study. 
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2. Bayes’ Theorem 
This chapter introduces the 250 year old history of Bayes’ theorem and presents a brief overview of 

its applications to date in ophthalmic research. 

   

2.1 What is Bayes’ theorem? 

Thomas Bayes’, a mathematician and theologian who lived in the 18th century, proposed a 

mathematical basis for the change in probability of an event following new evidence (15) (16) . The 

concept of Bayes’ theorem is simple: An initial belief (referred to as a prior probability or just a prior 

or, in the clinical context, a pre-test probability) is altered by new evidence (that may be expressed in 

terms of a likelihood ratio) to give a new and improved belief (posterior probability or, in the clinical 

context, a post-test probability).  

Systems that apply Bayes’ theorem are not only relatively simple but can self-learn, leading closer and 

closer to certainty as more data is entered (2) (17). Bayesian models also have the ability to self-

correct; that is, when the inputted data changes, the model changes to accommodate the new data 

(18). 

 

2.2 Early History of Bayes’ Theorem 

Bayes’ Theorem has had a turbulent history since its first emergence in 1763. Thomas Bayes was very 

much involved with the issues of the early 18th century, and although he only published one paper 

during his lifetime, defending and explaining Newton’s theory of calculus (19) (20), he was an active 

member of an informal group that peer reviewed other mathematicians’ papers. Bayes’ work was 

known to have been influenced by Richard Price (who edited and posthumously published the work 

of Thomas Bayes (15)), Jakob Bernoulli, Abraham de Moivre and possibly also the philosopher David 

Hume (21). Bayes provided a reasoned argument for inference from observed frequencies to 

unknown probabilities (that is, from effect to cause), something also, independently, worked on by 

Pierre Simon Laplace (22). This was the inverse of the Bernoulli theorem and de Moivre’s theory 

(from cause to effect (23)). Bayes assumed equal priors, which would be modified on collection of 

further data.  

Across the English Channel in France, the prediction of the return of Halley’s Comet by French 

scientists of the time convinced Laplace that natural events could be revealed by mathematics. 
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Laplace was, like Bayes, influenced by de Moivre’s work on probability. In the mid-18th century, 

probability was mainly applied to gambling, assessing situations of commercial risk, and philosophical 

questions such as the existence of God. Laplace presented his paper “Memoire on the Probability of 

Causes given Events” in 1773 (22). This was the very first expression of Bayesian statistical inference. 

Initially Laplace assigned equal priors to his theory but later amended it to include unequal priors. 

Laplace then used this theory in demography and judicial reform before applying it to studies of 

astronomy, the tides and barometric pressure.  

During Laplace’s lifetime, and immediately afterwards, the thirst for facts grew, whether they were 

birth statistics, the number of crimes in a city, the number of undelivered letters in the Paris post 

office, or the number of cholera cases. These were then used to make decisions in government and 

other institutions. As the number of facts grew the need for Bayesian analysis, (which worked well in 

the face of uncertainty), diminished and frequency analysis (which worked better when hard facts 

were available) took over in the latter half of the 19th Century.  

 

2.3 The Early 20th Century 

Joseph Bertrand (24) used Bayes’ theorem to assist the French army artillery to improve their 

performance. Bertrand advocated the strict use of equal priors only when they were truly equal or 

when there was actually no prior information. Bertrand’s textbooks and methods were used by both 

the French and Russian military. At that time, all the judiciary attended military school and had 

studied Bayes’ theorem from Bertrand’s textbooks. When Alfred Dreyfus, a Jewish French army 

officer, was convicted of spying for the Germans his defence lawyer requested the assistance of Henri 

Poincare who used Bayes’ theorem to dismiss a letter presented by the prosecution as forgery thus 

exonerating Dreyfus (25). 

In 1907, Bell Telephones Systems was facing financial collapse. A financial plan to make the company 

more economically viable, based on Bayes’ theorem by Edward Molina, helped Bell to convince a 

banking consortium, led by the House of Morgan, to give financial support crucial for Bell’s survival 

(26) (27).  

In another important development, in the early 20th century, legislative changes were introduced in 

the United States which required employers to provide employees with occupational injury and 

illness insurance. Thus insurance premiums had to be formulated for a wide variety of circumstances. 

Isaac Rubinow, working for the American Medical Association, collated insurance claims from all over 
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the world to give the prior information in order to set premiums (28) (29) (30). Whitney in 1918 

formulated the credibility theory for the insurance industry based on Bayes’ theorem.  

Although Bayes’ theorem was being used by the military and many other disciplines, statisticians 

were being strongly influenced by the theories of Karl Pearson and Ronald Fisher in the early 1920’s.  

Pearson and Fisher promoted the frequentist theories for statistics, condemning Bayes’ theorem, and 

introduced sampling theory, tests of significance, analysis of variance and experimental design 

methods. Fisher redefined uncertainty, not by probability but by relative frequency (31) (32) (33) (34). 

Egon Pearson (the son of Karl Pearson) used both Bayes’ theorem and Fisher’s frequentist statistical 

theories to advance statistical theoretical work (35). Egon Pearson then teamed with Jerzy Neyman to 

develop the Neyman-Pearson theory of hypothesis testing (36). Fisher and Neyman were staunch 

anti-Bayesians and their influence prevented the use and the advancement of Bayes’ theorem in 

statistics for almost 50 years. Their objection to Bayes’ theorem was mainly due to the fact that the 

priors being used were subjective, that is that the prior probability was determined according to an 

individual’s “personal belief” and was subject to great variation. However, they found it acceptable to 

use Bayes’ theorem when prior probabilities were “objective” that is, the prior probabilities were 

based on previous data, or on a collective rather than individual belief. 

Around the same time, in the 1920’s, three people (Emile Borel, Frank Ramsey and Bruno de Finetti) 

independently came to the conclusion that a person’s subjective belief could be quantified by the 

amount that he was willing to bet (as in a horse in a race, for example). This was an important step 

forward for Bayes’ theorem, in that the controversial subjective prior could now be quantified. De 

Finetti is particularly recognised as having put the use of subjective priors on a firm mathematical 

basis (37) (38) (39) (40). However, de Finetti’s work was not recognised for a long time in the 

predominantly English speaking Bayesian circles. 

Harold Jeffreys, a contemporary of Fisher, also made a major contribution to the development of 

Bayes’ theorem after Laplace. Jeffreys studied earthquakes and, using this theorem, was able to 

determine their epicentres based on the tsunamis that followed the earthquakes (41) 

 

2.4 Bayes’ applications during World War II 

Alan Mathison Turing is credited with the modern revival of Bayes’ theorem. Turing’s primary 

contribution was the decoding of German “Enigma” messages during World War II (42); especially 

that of the U boats. Turing quantified information in terms of a “ban” which  is similar to today’s byte 
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(used in information technology); Irving John Good, Turing’s statistical assistant,  wrote about 900 

articles on Bayes’ theorem, most of which were published. 

Another good friend of Turing’s, Claude Shannon (also a committed Bayesian) developed information 

theory (43), programmed a machine to play chess (44), performed cryptography analysis (45) and 

developed communications theory (46).  

Also during the Second World War, Andrei Kolmogorov used Bertrand’s tables to testing artillery for 

the Russian army. His theoretical work showed that probability can legitimately be used in both 

frequentist and Bayes’ theory (47) (48). Abraham Wald tested the quality of ammunitions which led 

him to develop sequential analysis, that is, the continuous analysis of data, as it arrives, whilst taking 

into account previous data (49). 

 

2.5 The Cold War Years 
At the height of the Cold War, search techniques were developed using Bayes’ theorem by Bernard 

Osgood Koopman (50), (51) (52). This helped in locating lost Hydrogen-bombs as well as submarines. 

Crews were rescued by the Coast Guards after their boats had capsized using Bayesian and Monte 

Carlo Methods (53). Monte Carlo methods use repeated sampling to determine the properties of a 

phenomenon. 

In civilian life, Bayes’ theorem had found many uses. The Essen-Moller index was a probability index 

based on Bayes’ theorem and used to determine paternity in lawsuits until DNA profiling became 

available. Mickey et al (54) showed that the index is quite reliable, provided a realistic prior is used. 

The Credibility Index, used by the insurance industry and developed by Whitney in 1918, was further 

updated by Arthur Bailey. Bailey discusses the fact that the insurance business uses Bayes’ theorem 

where prior knowledge is combined with current knowledge where the current knowledge is also 

weighted in order to make decisions in the face of uncertainty of future events (27). Bailey’s son, 

Robert used Bayes’ theorem to give drivers merit when they had no previous insurance claims (55) 

(56). 

Jimmie Savage’s book, “The Foundations of Statistics” in 1954 (57), gave further impetus to the 

revival of Bayes’ theorem and Savage himself led many statisticians on the road to accepting this 

theorem. 
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In medicine, Jerome Cornfield of the National Institute of Health (NIH) applied Bayes’ theorem to 

epidemiology (58) and showed a positive link between lung cancer and smoking (59). He also showed 

the link between cardiovascular disease and smoking, cholesterol, heart abnormalities and blood 

pressure (60). Homer Warner created the first computerised programme for detecting disease in 

1961. Basing it on 1,000 children with various congenital heart diseases, Warner showed that Bayes’ 

theorem could identify their underlying problems quite accurately (61). Warner had a total of 54 tests 

but this could be reduced to 7 or 8 tests to give the proper diagnosis (62). 

At the Harvard Business School, John Pratt, Howard Raiffa and Robert Schlaifer applied Bayes’ 

theorem to business decision making. Here the theorem flourished, because often decisions needed 

to be made fast on limited information (63).  

Allen Birnbaum introduced likelihood theory (64) derived from observed data only. This followed on 

from George Barnard’s work on statistical inference (65). 

One of the largest Bayesian projects undertaken before the advent of personal computers was the 

determination of authorship of the “Federalist papers” by Fred Mosteller and David Wallace (66). This 

project took more than ten years to complete with Wallace at times working full time, together with 

students and statistical assistants. Mosteller also found that Bayesian models proved to be more 

accurate than predictions based solely on prior probabilities. 

John Tukey used Bayes’ theorem to predict the Presidential election win for John F Kennedy in 1960; 

six hours before the official declaration. He, like Turing, had also worked on Enigma and decoding 

Soviet messages. Tukey also worked at Bell Labs where his work included the development of the 

cathode ray tube, development of anti-aircraft guided missiles and improving statistical sampling (67). 

Recommendations on improving statistical analysis became a priority after criticism of the statistical 

methods used in the Rasmussen Report on nuclear safety (68) and the Kinsey study on the sexual 

behaviour of the human male (69). 

Adrian Raftery discovered that with Bayesian analysis he could discover how abrupt changes can 

affect data. Raftery was analysing the change in fatalities in coal mining in the later 1880’s and early 

1890’s and discovered that the fall in fatalities was associated with the establishment of the Coal 

Worker’s Union, whose main concern was safety (70). 
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2.6 Bayes’ theorem comes of age 

The full force of the Bayesian revolution was felt in the 1980s. Considerably more powerful and easily 

accessible computers together with advances in sampling theory (71) (72) (73) (74) made Bayesian 

inference more applicable to a variety of different situations. Sampling allows Bayesian analysis to 

draw inferences even when data is missing or incomplete.  The development of the BUGS (Bayesian 

inference using Gibbs sampling) software by the Medical Research Council Biostatistics Unit, 

Cambridge in 1989 followed by  WinBUGS  developed together with Imperial College School of 

Medicine London (75)  allowed the fitting of complex statistical models using Markov chain Monte 

Carlo (MCMC) methods. Further development was also built on recently declassified information 

relating to the use of Bayes’ theorem during World War II. Such advances allowed Bayesian analysis 

to use increasingly larger datasets and ask increasingly complex questions. (76) (77) 

Thus, so far, Bayesian analysis has had many applications, ranging from analysing bird and animal 

distributions, mining, crop production, space programs, medical diagnosis and research (78) (79),  

engineering, decision analysis, artificial intelligence, email filtering, theoretical mathematical analysis 

(80) (81) (82) (83), child abuse (84) and prediction of the occurrence of epidemic meningitis (85)  

Bayesian analysis has also been used to differentiate the different levels of risk for disease treatment 

in medical negligence cases (86). This demonstrates the use of evidence based medicine and best 

practice in medico-legal cases and could be applied in the field of optometry. 

The search for missing Air France plane Flight 447 from Rio de Janerio to Paris in 2009 was conducted 

using Bayes’ theorem. An early assumption that the black box or the cockpit voice recorder would be 

emitting a signal led to delays. However, when the assumption was changed (that is the black box or 

the cockpit voice recorder was not emitting a signal), the search area was significantly reduced and 

the wreckage of the plane was found (87).  

 

2.7 The future of Bayes’ theorem …..  

So where does Bayes’ go from here? Every day data is being collected as part of routine tasks: 

institutions such banks, social media (Facebook and Twitter, for example), healthcare and sales. 

Incredible computer power today can use this data to make predictions based on Bayesian networks 

(88). Computers learn from accumulated data (the prior) to make predictions about the future. 

Predictions can be made in healthcare (89), risk analysis (insurance), marketing, crime and fraud, 

safety and efficiency, politics, government, education and human resources (90) (91). Such vast 
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quantities of data represent human experience on an unprecedented scale, which Bayes’ theorem 

can transform into powerful decision making tools.  

 

2.8 Previous applications of Bayes’ theorem in ophthalmic research 

Aspinall & Hill (92) described how Bayes’ theorem could be applied to making rational clinical 

decisions in optometry.  Since Aspinall & Hill’s work in 1983, applications in optometry and 

ophthalmology have included detection of ophthalmic disease from visual acuity and contrast 

sensitivity (93) and from colour vision (94) (95), the prediction of visual acuity following post- cataract 

surgery (96) (97),  the evaluation of visual field defects in patients with and without glaucoma (98) 

(99) (100) (101), prediction of retino-neural function following Nd-YAG laser in patients with posterior 

sub-capsular opacification (102) and prediction of childhood myopia (103). 

Most of the studies in eyecare, considered above, have been applications of naïve Bayesian analysis. 

Hand and Yu (104) have shown that naïve analysis works well in most cases and that the accuracy of 

naïve Bayesian analysis improves as the number of variables (tests) increases. Naïve Bayesian analysis 

supports heuristic solutions to disease diagnosis especially when more than one possible diagnosis is 

present (comorbidity) (105).  The advantage of naïve Bayesian analysis is its mathematical simplicity 

and for this reason it was applied in the present study. Naïve Bayesian analysis makes the following 

assumptions: 

 Each diagnosis is independent of any other diagnosis (e.g. dry eye is often associated with 

blepharitis; naïve Bayesian analysis would assume no relationship between the two)  

 Independence of tests outcomes (e.g.  a patient with corneal abrasion might present with two 

test outcomes - photophobia and cornea Fluorescein staining; Bayesian analysis would 

assume that these two test outcomes were independent of each other (106). 

  

2.9 Summary 

Relatively recent publications that have introduced the idea of applying Bayes’ theorem to help 

optometrists and ophthalmologist make clinical decisions (92), (101), (107), (108) often refer to 

frequentist statistical methods as traditional when, in actual fact, Bayesian statistical methods fell out 

of favour and have now returned. The use of Bayes’ theorem is now widespread. Though it has seen 

some application in ophthalmic research, the full potential of naïve Bayes’ theorem for use in day-to-

day primary care optometry has barely been touched upon. The next chapter demonstrates the 
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simplicity of naïve Bayesian calculations and introduces some of the factors that might influence its 

accuracy.  
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3. Naïve Bayesian analysis 
This chapter uses worked examples to demonstrate the simplicity of naïve Bayesian calculations and 

the influence on diagnostic accuracy of various factors later studied in this thesis.  

 

3.1 Decision Matrices 

With conventional probability notation, the probability of the presence of an eye condition/disease is 

stated as p(D+). Following a positive test result, the probability of an eye condition/ disease = 

p(D+|T+) and is expressed as:  

 p(D+|T+)=  p(T+|D+) x p(D+) 
   p(T+) 
 

That is, the probability of a positive diagnosis given a positive test result  is equal to the probability of 

a positive test result given a positive diagnosis multiplied by the probability of the presence of the 

diagnosis (that is, its prevalence) all divided by the probability of a positive test result.(101) 

 

The form of naïve Bayesian analysis carried out in this study essentially calculates the post-test 

probability of a number of eye conditions or diseases by modifying unequal objective priors (pre-test 

probability or prevalence) of those conditions or diseases using likelihood ratios (relating to a number 

of test outcomes).  

Sequential analysis refers to the use of more than one test outcome to calculate post-test 

probabilities for each eye condition or disease irrespective of the order of the tests. 

Throughout this thesis a simpler form of probability notation (ref) is applied to decision matrices in 

order to make the understanding of Bayes’ theorem more intuitive to the clinician, and demonstrate 

the ease with which Bayes’ theorem can be applied to routine clinical practice.  The number of 

decision matrices required is the product of the number of eye conditions or diseases and the 

number of test outcomes considered.  

Table 1 shows a 2x2 decision matrix (also known as a contingency table), that is used for Bayesian 

analyses (as described by Aspinall and Hill (92)).  In the definitions below, both the simpler and 

conventional probability notation is  given. 
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  Condition/Disease     

Test Present Absent  Row Total 

Positive a b a+b 

Negative c d c+d 

 Column Total  a+c b+d a+b+c+d 
Table 1 Decision Matrix (contingency table) (109), (107) 

Definitions of the elements of the decision matrix shown in Table 1 are as follows: 

 a+b+c+d  = the total sample size (i.e. the total number of cases seen)  

 a+c = the total number of cases  seen with the diagnosis  

 b+d = the total number of cases  seen without the diagnosis  

 a+b = the total number of cases testing positive  

 c+d = the total number of cases  testing negative 

 a= total number of cases with a positive diagnosis and positive test result (observed 

true positives)  

 b= total number of cases with a negative diagnosis and positive test result (observed 

false positives )  

 c= total number of cases with a positive diagnosis and negative test result (observed 

false negatives) 

 d= total number of cases with a negative diagnosis and negative test result (observed 

true negatives)  

From the above elements the following quantities can be calculated  

 Prevalence or pre-test probability = (a+c)/ (a+b+c+d) using simpler notation and  p(D+) using 

conventional notation.  

 Pre-test odds = prevalence / (1 - prevalence) using simpler notation and p(D+)/(1-p(D+)) 

using conventional notation. 

 Sensitivity = a / (a + c) using simpler notation and p(T+|D+) using conventional notation. This 

is the ratio of observed true positives to all those with a positive diagnosis.   

 Specificity = d / (b + d) using simpler notation and p(T-|D-) using conventional notation. This 

is the ratio of observed true negatives to all those with negative diagnosis.  

 Positive likelihood ratio (LR+) = sensitivity / (1 - specificity) using simpler notation and  

p(T+|D+)/ p(T+|D-) using conventional notation.  This ratio is used when a positive test result 

occurs.  

 Negative likelihood ratio (LR-) = (1 - sensitivity) / specificity using simpler notation and      

p(T-|D+)/p(T-|D-) using conventional notation. This ratio is used when a negative test result 

occurs. This is shown for completion only. Negative likelihood ratios were not used in the 

present study because only positive test findings were recorded (see 4.3 Data Collection).  

 Post-test odds = pre-test odds x LR (positive or negative likelihood ratio is used, depending on 

the test outcome) 
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 Post-test probability = post-test odds / (1 + post-test odds). This value is equal to the 

predictive values described by Hill and Aspinall (92), and Parikh et al (107),  which can be 

calculated more directly (that is,  without the use of likelihood ratios). However, the use of 

likelihood ratios has the advantage of enabling sequential analysis (3.7 Naïve Bayesian 

sequential analysis) and even diagnostic test selection (see 6.2 The use of positive likelihood 

ratios to select diagnostic tests) 

 Positive Predictive Value = a/a+b using simpler notation and p(D+|T+) using conventional 

notation. This is the ratio of true positives to all positive and is equal to the probability of a 

positive diagnosis when the test is positive. A high positive predictive value (that is close to 1) 

indicates a test that is as good as a “gold standard” test.  

 Negative Predictive Value = d/c+d using simpler notation and p(D-|T-) using conventional 

notation. This is the ratio of all the true negatives to all negatives and is equal to the 

probability of the absence of a diagnosis when the test is negative. Again, as with the positive 

predictive value, if the negative predictive value is close to 1 then the test is as good as a 

“gold standard” test. The probability of a positive diagnosis following a negative test result is 

= p(D+|T-) and is equal to 1-Negative predictive value. 

LR+ and LR- vary from 0 to infinite. Ratios of greater than 1 raise the post-test probability of a 

diagnosis. Ratios of less than 1 lower the post-test probability of a diagnosis. Ratios of 1 indicate that 

a test is not very useful for the diagnosis in question as post-test probability remains unaltered 

regardless of the test result (110), (111). 

Note how likelihood ratios are dependent on the sensitivity and specificity of the test under 

consideration. That is, they say something about the test but not the probability of disease in the 

patient who has just been tested.  Likelihood ratios have the advantage of portraying the amount by 

which a test result alters the probability of an eye condition or disease, not just whether a test is 

positive or negative (112). The fact that likelihood ratios are not influenced by prevalence (108), 

makes  them very useful as, for example, ratios derived from data collected in the secondary 

(hospital) eye care setting (in which the prevalence of eye disease is relatively high) can be applied in 

the primary eye care setting (in which the prevalence of eye disease is relatively low). 

The positive predictive value and negative predictive value are dependent on prevalence. Where 

prevalence is low, the number of false positives will be high and therefore the number of individuals 

with healthy eyes that are mistakenly diagnosed with the condition will be high, leading to 

unnecessary treatment. Thus predictive values are not constant over different clinical settings (being 

dependent on prevalence), unlike the likelihood ratio (being independent of prevalence) which can, 

therefore, be obtained from one clinical setting and used in another. (113),  (107).   
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3.2 Multiple levels of test outcomes 

Naïve Bayesian analysis assumes that all tests are independent of each other (see 2.8 Previous 

applications of Bayes’ theorem in ophthalmic research) 

Optometric clinical reality is not quite so simple. Certain measurements have multiple values, such as 

age, cup-to-disc ratios, and intraocular pressure measurements, and the clinician has to decide at 

which point a certain measurement assumes diagnostic importance. An incorrect decision would 

result in a missed diagnosis, or unnecessary referral. Therefore choosing the correct value is of 

immense diagnostic importance.  In this study, approved guidelines for “best practice” were used to 

determine test/ diagnostic levels of importance such as those from the National Institute for Health & 

Clinical Excellence (NICE) and College of Optometrists Clinical Management Guidelines (114), (115) as 

applied by the author in daily practice. 
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3 Worked examples of naïve Bayesian analysis  

Table 2 shows a worked example of how the information in a decision matrix is used to calculate the 

post-test probability a diagnosis being present. Here, the test is whether or not reduced vision is 

reported and the diagnosis is cataract. 

  Observed          

  
Reduced 
Vision (test) 

Cataract (diagnosis) 

Total 

  

  Present Absent   

  Positive 36 217 253   

  Negative 25 433 458   

  Total  61 650 711   

  Here:  
   

  

  
 

Prior probability = 0.0858 
 

  

  
 

Sensitivity = 0.5902 
 

  

  
 

Specificity = 0.6662 
 

  

  
 

LR+ = 1.7678 
 

  

  
 

LR- = 0.6152 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 0.0938 
 

  

  
 

Post-test odds = 0.1659 
 

  

  
 

Post-test 
probability = 0.1423 

 
  

  If a negative test occurs … 
  

  

  
 

Pre-test odds= 0.0938 
 

  

  
 

Post-test odds = 0.0577 
 

  

  
 

Post-test 
probability= 0.0546 

 
  

            

Table 2 Worked example of naïve Bayesian analysis carried out on a test (reduced vision) in relation to a specific diagnosis 
(cataract). 

 

The pre-test probability, from the prevalence for this sample, is 9%.  A positive test result (that is, the 

reporting of reduced vision) increases the probability of cataract from 9% to 14%, whereas a negative 

test result (that is, the patient does not report a reduction in vision) reduces the probability of 

cataract from 9% to 5%. 

Although the present study did not use negative test findings and therefore the negative likelihood 

ratio, the usefulness of a negative test outcome is demonstrated here and in the following examples.  
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3.4 Factors affecting Bayesian Analysis   

Various factors potentially influence the accuracy of Bayesian analysis. These include prevalence 

(116), comorbidity and variation in presentation of symptoms and signs 

3.4.1 The effect of Prevalence  

Table 3and Table 4 show how likelihood ratios calculated for a specific test give rise to very different 

post-test probabilities in primary and secondary eye care settings in which the prevalence of eye 

disease is likely to be, respectively, relatively low and high. For example, the prevalence of glaucoma 

for a population seen in primary care is thought to be between 1- 4% (117) (118). In a secondary care 

setting, the prevalence may be much higher. Using the figures cited by Parikh et al (108), Table 3 

shows the post-test probability of glaucoma when a test (high intraocular pressure > 24 mmHg, 

sensitivity 50%, specificity 92% (119)) is used in the primary care setting in which the prevalence of 

glaucoma (prevalence 2.5%) is low. 
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  Diagnosis with low prevalence       

  Intraocular 
pressure > 
24 (test) 

Open Angle Glaucoma 

Total 

  

  Present Absent   

  Positive 125 780 905   

  Negative 125 8970 9095   

  Total  250 9750 10000   

  Here:  
   

  

  
 

Prior probability = 0.0250 
 

  

  
 

Sensitivity = 0.5000 
 

  

  
 

Specificity = 0.9200 
 

  

  
 

LR+ = 6.2500 
 

  

  
 

LR- = 0.5435 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 0.0256 
 

  

  
 

Post-test odds = 0.1603 
 

  

  
 

Post-test 
probability = 0.1381 

 
  

  If a negative test occurs … 
  

  

  
 

Pre-test odds= 0.0256 
 

  

  
 

Post-test odds = 0.0139 
 

  

  
 

Post-test 
probability= 0.0137 

 
  

            

Table 3 Worked example of naïve Bayesian analysis carried out on a test (intraocular pressure > 24 mmHg) in relation to a 
specific diagnosis (glaucoma) in the primary care setting in which the prevalence of glaucoma is taken to be 2.5%. 

Table 4 shows the post-test probability of glaucoma that arises when the same test is used in 

secondary care, where perhaps the prevalence of glaucoma rises to 40%.  
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  Diagnosis with high prevalence       

  Intraocular 
pressure > 
24 (test) 

Open Angle Glaucoma 

Total 

  

  Present Absent   

  Positive 2000 480 2480   

  Negative 2000 5520 7520   

  Total  4000 6000 10000   

  Here:  
   

  

  
 

Prior probability = 0.4000 
 

  

  
 

Sensitivity = 0.5000 
 

  

  
 

Specificity = 0.9200 
 

  

  
 

LR+ = 6.2500 
 

  

  
 

LR- = 0.5435 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 0.6667 
 

  

  
 

Post-test odds = 4.1667 
 

  

  
 

Post-test 
probability = 0.8065 

 
  

  If a negative test occurs … 
  

  

  
 

Pre-test odds= 0.6667 
 

  

  
 

Post-test odds = 0.3623 
 

  

  
 

Post-test 
probability= 0.2660 

 
  

            

Table 4 Worked example of naïve Bayesian analysis carried out on a test (intraocular pressure > 24 mmHg) in relation to a 
specific diagnosis (glaucoma) in a secondary care setting in which the prevalence of glaucoma is taken to be 40%. 

 

As the same test (intraocular pressure > 24 mmHg) was used in both the primary (Table 3) and 

secondary (Table 4) care settings, the same sensitivity (50%) and specificity (92%) were used in both 

sets of calculations. Given that positive and negative likelihood ratios are calculated using sensitivity 

and specificity, then it follows that that these values also remain the same (6.25 and 0.54, 

respectively) in both settings. However, the post-test probability for a positive test result differs 

dramatically in the primary (14%) and secondary (81%) care settings. So exactly the same test carried 

out in two different settings gives rise to very different levels of suspicion that glaucoma exists. It 

follows that with low prevalence a higher portion of positive test results will be false positives (113). 

The importance of the clinical setting has been recognised in previous studies (120). In qualitative 

terms, a positive test result in the primary care setting may only slightly raise the suspicion of eye 

disease, whereas a positive test in a secondary care setting may raise  suspicion significantly (121). It 

has thus been recognised that when prevalence is not taken into account in interpreting positive test 

results, unnecessary diagnostic errors can occur (122), (123), (124), (125). Accounting for prevalence 

is a key feature of Bayesian analysis that sets it apart from other forms of statistical analysis (e.g. t-
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tests, analyses of variance, that are all frequentist in nature ( see 2.3 The Early 20th Century) that are 

more  used in clinical research (92).  

 

3.4.2 The effect of Comorbidity  

Comorbidity refers to the coexistence of eye conditions or diseases in the same individual (126). This 

could confound the linkage between test findings and specific diagnoses.  This factor was considered 

by a research group that applied Bayesian analysis to the diagnosis of dementia (127), (128). Their 

findings indicated that Bayesian analysis could be successfully performed even in the presence of 

comorbidity.  Table 5 and Table 6 illustrate confounding arising from comorbidity together with the 

additional influence of prevalence and suggest that Chi-square filtering is a possible remedy.  

Table 5 reveals, as might be expected, that uncorrected ametropia has a high prevalence (81%) in the 

primary care setting. One would expect this condition to be associated with reported reduced vision 

and, taken as a test for uncorrected ametropia; this symptom has a sensitivity of 40% and a specificity 

of 82% with corresponding positive and negative likelihood ratios of 2.20 and 0.74, respectively.  

Now consider pinguecula (Table 6). This would not normally be associated with reported reduced 

vision. However, given the high prevalence of uncorrected ametropia, it is to be expected that some 

individuals with uncorrected ametropia will also have pinguecula. Pinguecula is also relatively 

uncommon (prevalence = 2%). So a rather high proportion of cases with pinguecula might also have 

uncorrected ametropia and reported reduced vision. Consequently, the decision matrix shown in 

Table 6 shows that reported reduced vision, as a test for pinguecula, has an unexpectedly high 

sensitivity (56%) and specificity (65%) with positive and negative likelihood ratios (1.63 and 0.66, 

respectively) of approximately the same magnitude as found for uncorrected ametropia. 
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  Observed  
   

  

  
Reduced 
Vision (test) 

uncorrected Ametropia (diagnosis) 

Total 

  

  Present Absent   

  Positive 228 25 253   

  Negative 345 113 458   

  Total  573 138 711   

  Here:  
   

  

  
 

Prior probability = 0.8059 
 

  

  
 

Sensitivity = 0.3979 
 

  

  
 

Specificity = 0.8188 
 

  

  
 

LR+ = 2.1964 
 

  

  
 

LR- = 0.7353 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 4.1522 
 

  

  
 

Post-test odds = 9.1200 
 

  

  
 

Post-test probability = 0.9012 
 

  

  If a negative test occurs … 
 

  

  
 

Pre-test odds= 4.1522 
 

  

  
 

Post-test odds = 3.0531 
 

  

  
 

Post-test probability= 0.7533 
 

  

  
    

  

  
 

Chi-square with Yates' 
correction = 21.86  

 
  

  
 

  
 

  

  
 

df = 1 
 

  

  
 

p-value =  <0.001 
 

  

            

Table 5  Worked example of naïve Bayesian analysis carried out on a test (reported reduced vision) in relation to a specific 
diagnosis (uncorrected ametropia). Chi-square with Yates’ correction has been applied to the diagnostic matrix and 
reveals a strong association (p-value < 0.001) between the test and the diagnosis being considered.  
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  Observed  
   

  

  
Reduced 
Vision (test) 

Pinguecula 

Total 

  

  Present Absent   

  Positive 8 245 253   

  Negative 6 452 458   

  Total  14 697 711   

  Here:  
   

  

  
 

Prior probability = 0.0197 
 

  

  
 

Sensitivity = 0.5714 
 

  

  
 

Specificity = 0.6485 
 

  

  
 

LR+ = 1.6257 
 

  

  
 

LR- = 0.6609 
 

  

  If a test positive occurs ... 
 

  

  
 

Pre-test odds = 0.0201 
 

  

  
 

Post-test odds = 0.0327 
 

  

  
 

Post-test probability = 0.0316 
 

  

  If a negative test occurs … 
 

  

  
 

Pre-test odds= 0.0201 
 

  

  
 

Post-test odds = 0.0133 
 

  

  
 

Post-test probability= 0.0131 
 

  

  
    

  

  
 

Chi-square with Yates' 
correction = 2.02 

 
  

  
 

  
 

  

  
 

df= 1 
 

  

  
 

p-value= >0.05 
 

  

            

Table 6  Worked example of naïve Bayesian analysis carried out on a test (reported reduced vision) in relation to a specific 
diagnosis (pinguecula). Chi-square with Yates’ correction has been applied to the diagnostic matrix and reveals a weak 
association (p-value >0.05) between the test and the diagnosis being considered.  

 

It is proposed that using a Chi-square filter might be a remedy. Here, Chi-square is used to indicate 

the strength of the association between any test and diagnosis. Weakly associated test-diagnosis 

combinations could be disregarded.  Calculating Chi-square involves determining expected counts in 

each cell of the corresponding decision matrix and, in instances where expected counts drop below 

10, Yates’ correction is advised (129). For computational simplicity Yates’ correction could be carried 

out on all diagnostic matrices. Table 5 shows that the association between reported reduced vision 

and uncorrected ametropia is strong (Chi-square with Yates’ correction = 21.9, df = 1, p-value <0.001). 

Table 6 on the other hand, shows that the association between reported reduced vision and 
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pinguecula is weak (Chi-square with Yates’ correction = 2.0, df = 1, p-value > 0.05). Note how Chi-

square alters a great deal in both instances despite the likelihood ratios being very similar. 

The proposed use of Chi-square to filter out weakly associated test-diagnosis combinations may be 

unnecessary. Table 5 shows that, because uncorrected ametropia is common (that is, its prevalence is 

high), a positive test outcome (i.e. reduced vision is reported) gives rise to a post-test probability of 

90%. Table 6, however, shows that, because pinguecula is relatively rare (that is, its prevalence is 

low), a positive test outcome gives rise to a post-test probability of only 3%. So spurious associations 

between tests and diagnoses that arise due to comorbidity may have only a very small impact on 

accuracy. Nevertheless, Gill et al.  (130) pointed out that small elevations of post-test probability can 

accumulate when large numbers of tests are used. As the question of whether or not to use Chi-

square filtering remains equivocal, the effect on accuracy of using such a filter was tested in the 

present study. 

 

3.4.3 The Effect of Presentation Variation  

It is likely that variations in presentation of various eye conditions and diseases will alter accuracy in a 

similar manner to that described above for comorbidity. For example, not all people with uncorrected 

ametropia will report reduced vision. This was also tested in the present study.   

 

3.5 Circularity  
Circularity, that is, the testing of the Bayesian analysis using the same data that was used determine 

the prevalence and build the likelihood ratios in the first place could, theoretically, overestimate the 

performance of the analysis. Therefore, this also was tested in the present study.   

 

3.6 Use of the Laplacian Correction 

Problems arise if any cell in a diagnostic matrix contains zero counts. This could result in likelihood 

ratios of zero and, in turn, post-test probabilities of zero would occur at any point in during naïve 

Bayesian sequential analysis (see section 3.1). A post-test probability of zero would absolutely rule 

out a diagnosis even if subsequent tests strongly indicated that the diagnosis was actually present. A 

remedy for this is to add a very small increment to cell counts a-d in each decision matrix Table 8. This 

is called a Laplacian correction (131). Commonly “1” is added to each cell and is known as “add 1 
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smoothing”.  However to ensure that the increment added to the cells made the least difference to 

the original cell counts, an addition of 0.001 to the count in each cell was considered to be sufficient, 

and thus ensured that no diagnosis can be entirely ruled out (after all, it is not possible to be 100% 

certain of the presence or absence of any diagnosis). The probability of such a diagnosis being present 

just becomes very small instead. Table 7 and Table 8 show a worked example demonstrating the 

effect of the Laplacian correction adopted in the present study. Table 9  shows the effect of using the 

commonly used “add 1 smoothing” and as can be seen by comparing Table 8 and  Table 9, the larger 

the increment added to each cell, the greater the effect on the calculated prevalence and the post-

test probability. 

Although there are many different methods of smoothing and eliminating the effects of a zero count 

in any of the cells, the investigation of these was considered to be beyond the scope of this study.  
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  Hypothetical        

  Reduced 
Vision 
(test) 

Cataract (diagnosis) 

Total 

  

  Present Absent   

  Positive 61 531 592   

  Negative 0 119 119   

  Total 61 650 711   

  Here:  
   

  

  
 

Prior probability = 0.0857947 
 

  

  
 

Sensitivity = 1.0000000 
 

  

  
 

Specificity = 0.1830769 
 

  

  
 

LR+ = 1.2241055 
 

  

  
 

LR- = 0.0000000 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 0.0938462 
 

  

  
 

Post-test odds = 0.1148776 
 

  

  
 

Post-test 
probability = 0.1030405 

 
  

  If a negative test occurs … 
  

  

  
 

Pre-test odds= 0.0938462 
 

  

  
 

Post-test odds = 0.0000000 
 

  

  
 

Post-test 
probability= 0.0000000 

 
  

            

Table 7 Worked example of the calculation of prevalence, likelihood ratios and post-test probability before the 
application of the Laplacian correction. Here, if a negative test occurs the negative likelihood ratio would be applied and 
this effectively reduces the post-test probability to zero. In a sequential analysis, this would rule out any further 
diagnosis, even if the likelihood ratio applied later was of a very high magnitude.  
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  Hypothetical With Laplacian Correction    

  Reduced 
Vision 
(test) 

Cataract (diagnosis) 

Total 

  

  Present Absent   

  Positive 61.001 531.001 592.002   

  Negative 0.001 119.001 119.002   

  Total 61.002 650.002 711.004   

  Here:  
   

  

  
 

Prior probability = 0.0857970 
 

  

  
 

Sensitivity = 0.9999836 
 

  

  
 

Specificity = 0.1830779 
 

  

  
 

LR+ = 1.2240869 
 

  

  
 

LR- = 0.0000895 
 

  

  If a test positive occurs ... 
  

  

  
 

Pre-test odds = 0.0938489 
 

  

  
 

Post-test odds = 0.1148793 
 

  

  
 

Post-test probability 
= 0.1030419 

 
  

  If a negative test occurs … 
  

  

  
 

Pre-test odds= 0.0938489 
 

  

  
 

Post-test odds = 0.0000084 
 

  

  
 

Post-test probability= 0.0000084 
 

  

            

Table 8  Worked example of the calculation of prevalence, likelihood ratios and post-test probability after the application 
of the Laplacian correction. Note how addition of a correction of 0.001 to each cell of a diagnostic matrix makes little 
difference to calculations apart from removing the possibility of post-test probabilities of zero. 
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  Hypothetical With Laplace smoothng Correction "add 1"   

  
Reduced 
Vision (test) 

Cataract (diagnosis) 

Total 

  

  Present Absent   

  Positive 62 532 594   

  Negative 1 120 121   

  Total 63 652 715   

  Here:  
   

  

  
 

Prior probability = 0.0881119 
 

  

  
 

Sensitivity = 0.9841270 
 

  

  
 

Specificity = 0.1840491 
 

  

  
 

LR+ = 1.2061105 
 

  

  
 

LR- = 0.0862434 
 

  

  If a test positive occurs ... 
 

  

  
 

Pre-test odds = 0.0966258 
 

  

  
 

Post-test odds = 0.1165414 
 

  

  
 

Post-test 
probability = 0.1043771 

 
  

  If a negative test occurs … 
 

  

  
 

Pre-test odds= 0.0966258 
 

  

  
 

Post-test odds = 0.0083333 
 

  

  
 

Post-test 
probability= 0.0082645 

 
  

            

Table 9  Worked example of the calculation of prevalence, likelihood ratios and post-test probability after the application 
of the Laplace smoothing add 1 correction. Note how addition of a correction of 1 to each cell of a diagnostic matrix 
makes a greater difference to the prevalence, and the post-test probability of the diagnosis being present following a 
negative test result compared to the  example in Table 8. 

 

3.7 Naïve Bayesian sequential analysis  
Primary eye care does not involve carrying out one isolated test to indicate the presence of just one 

diagnosis. In fact, a battery of screening tests is carried out, often leading to more than one tentative 

diagnosis.  

To apply Bayesian analysis to such a situation, the post-test odds of the first test becomes the pre-

test odds for the second. In turn, the post-test odds of the second test become the pre-test odds for 

the third and so on (130). In this sequential manner both positive and negative likelihood ratios may 

be used to raise or lower the final probabilities of each possible diagnosis depending on the outcome 

of each test (though in the present study, only positive likelihood ratios were used, see 4.3 Data 

Collection).  Wald and Wolfowitz (49)  had used the term “sequential analyses” as long ago as 1950. 
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For the purposes of this study, naïve Bayesian sequential analysis refers to a continuous analysis of 

data; essentially analysing new data as it arrives whilst taking into account previous data, where the 

order of new data being applied to the analysis is not relevant. 

For example, the diagnosis of primary open angle glaucoma (POAG) is usually made after several tests 

which inform the decision making process. In the following example, 3 tests (intraocular pressure 

[IOP] >= 24mmHg; cup to disc ratio [CDR] >= 0.7; If ISNT rule is true or false) are used to change the 

post-test probability of a positive diagnosis of POAG. Table 10 shows the three tests being used and 

their sensitivity, specificity and associated likelihood ratios.  

 

  Sensitivity Specificity LR+ LR- 

IOP >=24mmHg 50 92 6.2500 0.5435 

ISNT 72 79 3.4286 0.3544 

CDR >= 0.7 20 99 20.0000 0.8081 
Table 10  Three tests used to inform decision making about POAG with their sensitivity, specificity and associated 
likelihood ratios 

Taking the prevalence of POAG to be 2%, the pre-test odds are calculated. With a positive test result, 

the pre-test odds are multiplied by the LR+ to give the post-test odds. This, in turn becomes the pre-

test odds for the next test. So,  

Post-test oddsIOP= pre-test odds x LR+ IOP 

Post-test oddsISNT & IOP = post-test odds IOP  x LR+ISNT = pre-test odds x LR+ IOP x LR+ISNT 

Post-test odds CDR& ISNT & IOP = Post-test odds ISNT & IOP  x  LR+CDR = pre-test odds x LR+ IOP x LR+ISNT x LR+CDR 

 

Thus ,  for n number of tests  

 Post-test oddsn = Pre-test odds x LR+1 x LR+2 x LR+3 ………..LR+n 

And from this is can be seen that the order of the tests is not critical to the analysis. 

Using the three tests (that is IOP, ISNT rule and CDR measurement) the post-test probabilities can be 

calculated at each stage. 
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Figure 3  shows more than one test is used to give a final post-test probability. Here IOP, CDR measurement and presence 
or absence of ISNT rule determines the final probability of a positive diagnosis of POAG. 

 

 

Pre-test probability of POAG = 0.02 

Calculate pre-test odds  

Test – IOP 
Positive result – multiply pre- test by 

LR+ to obtain post –test odds 
 

Post-test odds for IOP test now 

becomes pre-test odds for CDR test. 

Positive test result -multiple by LR+ to 

obtain new post-test odds 

Post-test odds for CDR test now 

become the pre-test odds for ISNT 

test. Positive test result -multiple by 

LR+ to obtain new post-test odds 

All tests now complete 

Convert post-test odds for ISNT test 

to post-test probability for positive 

diagnosis of primary open angle 

glaucoma  
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No test 0.0200 0.0200 0.0200 0.0200 

IOP only  0.0200 0.1131 0.1131 0.1131 

IOP and CDR 0.0200 0.1131 0.7184 0.7184 

IOP, CDR &ISNT 0.0200 0.1131 0.7184 0.8974 
Table 11 Prevalence of primary open angle glaucoma is set at 2%. Note how the post-test probability of a positive 
diagnosis of primary open angle glaucoma increases with each successive positive test result. 

 

To take this example further, consider the following four ocular surface conditions, dry eye, allergic 

conjunctivitis, bacterial conjunctivitis and viral conjunctivitis. Using 4 symptoms as reported by the 

patient and 3 signs as noted by the optometrist, Bayesian analysis can give the possible differential 

diagnosis between the four ocular conditions. Test outcomes are represented by 1=positive test 

result, 0= negative test result, blank = test not carried out. 

Table 12, Table 13, and Table 14, show how a test or a combination of tests can improve the 

differential diagnosis achieved.  Table 14 also shows the advantage of recording a negative sign in 

improving the diagnosis.  
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      presenting symptoms signs    
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which test? >>         selection no no YES   

test outcome? >>   1               

dry 0.1525 0.3726 0.3726 0.3726 0.3726 0.3726 0.3726 0.3726 37.26 

allergic 0.0654 0.4949 0.4949 0.4949 0.4949 0.4949 0.4949 0.4949 49.49 

bacterial 0.0196 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291 2.91 

viral 0.0040 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.68 

Table 12 Pre-test probabilities for the four conditions are shown on the left. The probabilities are changed with the 
application of a positive test result for itchy eye.  Two conditions, ocular allergy and dry eye have significantly raised post-
test probabilities.  
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which test? >>         selection no no YES   

test outcome? >>   1           1   

dry 0.1525 0.3726 0.3726 0.3726 0.3726 0.3726 0.3726 0.5024 50.24 

allergic 0.0654 0.4949 0.4949 0.4949 0.4949 0.4949 0.4949 0.9920 99.20 

bacterial 0.0196 0.0291 0.0291 0.0291 0.0291 0.0291 0.0291 0.0206 2.06 

viral 0.0040 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0000 0.00 

Table 13 Carrying out a second test, the presence of palpebral papillae, the post-test probabilities change again and now 
a diagnosis of allergy becomes significantly more likely than a diagnosis of dry eye. Note how, with a positive test result 
for palpebral papillae, the post-test probability for a viral eye condition actually is reduced. 
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      presenting symptoms signs    
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which test? >>         selection Yes no no   

test outcome? >>   1 1     1   0   

dry 0.1525 0.3726 0.8330 0.8330 0.8330 0.9920 0.9920 0.9920 99.20 

allergic 0.0654 0.4949 0.8045 0.8045 0.8045 0.8045 0.8045 0.2916 29.16 

bacterial 0.0196 0.0291 0.0431 0.0431 0.0431 0.0000 0.0000 0.0000 0.00 

viral 0.0040 0.0068 0.0219 0.0219 0.0219 0.0511 0.0511 0.0511 5.11 

Table 14 In this example, there are two presenting symptoms, itchy eye that has a high association with ocular allergy and 
burning which is highly associated with dry eye. To distinguish between the two conditions, two signs are looked for and 
a positive result for fluorescein staining and a negative result for palpebral papillae make dry eye the more likely of the 
two conditions. Note, that prior to determining the presence of palpebral papillae, but after noting the presence of 
fluorescein staining, the probability for dry eye is 99% and ocular allergy is 80%;  after determining the absence of 
palpebral papillae the probability of dry eye remains unchanged, but the probability of ocular allergy is reduced to 29%. 
This demonstrates the importance of recording negative findings during the eye examination.  

 

In this manner, a list of alternative diagnoses can be obtained and, by ranking them in order of 

ascending probability, the most likely diagnoses can be identified. Thus, Bayesian analysis has the 

potential to assist in increasing the accuracy of eye examinations carried out by community 

optometrists.     

 

3.8 Summary 

Recall, from chapter 2, that one of the historical objections to earlier Bayesian analyses related to the 

use of equal and subjective priors. Less objectionable unequal objective priors are used in this thesis. 

These come in the form of the prevalence of eye conditions or diseases. Prevalence is converted to 

pre-test odds that are altered using likelihood ratios generated for each test outcome (representing 

new evidence) to give post-test odds and, ultimately, probability. Likelihood ratios have a number of 

advantages and one of them is to enable sequential analysis of many test outcomes, including those 

with multiple levels. Naïve Bayesian sequential analyses tested in this thesis include Laplacian 

correction. In addition, Chi-square filtering is explored, for the first time, as a means of overcoming 

some of the factors (prevalence, comorbidity and presentation variation) that might influence the 
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accuracy of naïve Bayesian sequential analysis. Circularity is another factor that is explored for the 

first time. The next chapter provides a description of the methodological aspects of this study.      
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4. Methodology 
This chapter covers the methodological aspects of this study. 

 

4.1 Introduction  

The purpose of the present study was to explore factors influencing the accuracy of naïve Bayesian 

sequential analysis when applied to clinical data collected in the primary eye care setting. As such, it 

is important for the reader to understand that neither the provision of eye care  nor the range of eye 

diseases encountered in this part of Tanzania were the primary focus of the study.  

The study was retrospective, i.e. it posed a question and looked back at data to find the answers, as 

opposed to a prospective study, which would pose a question and then design a study to find the 

answers. (132) 

Confidential clinical data (such as patient age, sex, ethnicity, symptoms, signs and diagnoses) are 

being collected in primary care practices all over the world every day. This wealth of data is very 

rarely used for epidemiological studies, and yet can inform public health policies as well as informing 

clinical decision-making by individual eye care practitioners.  

 

4.2 Ethical Approval  
The clinical data needed to be collected without prior consent as any refusal to participate in this 

study would corrupt estimates of prevalence (i.e. pre-test probability) that are essential for Bayesian 

analysis. Attempts to gain consent early on in the study raised subtle issues of trust. For example, 

patients may wonder why an optometrist would need to carry out such research. Might it be that 

optometrists doubt their ability to make clinical decisions without the assistance of computers? If that 

is the case, then are optometrists to be trusted? Fortunately, there is precedent for unconsented 

retrospective analysis of fully anonymised clinical data (effectively a clinical audit (133)). This case was 

made to the research ethics committees of Aston University and Tanzania’s National Institute of 

Medical Research (NIMR) and ethical approval for the study was granted. A research certificate was 

also obtained from the Commission for Science and Technology (COSTECH) in Tanzania. Clearances 

from both NIMR and COSTECH ensured that the project was undertaken in accordance with 

Tanzanian laws and protocols (see pages 111 & 113) 
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4.3 Data Collection   
The clinical data for this analysis was collected from 

Eyeline Optometrists (see Figure 4), a family owned 

community practice, in Dar es Salaam city centre. 

The data constituted clinical records of routine eye 

examinations (134) (135).  

The patient base at Eyeline Optometrists is varied, 

but not typical of Tanzania. This is partly due to the 

location of the practice. The language used in the 

practice varies almost equally between English, 

Kiswahili (the local African language) and Gujarati 

(spoken by most Indians). Hindi and French 

speaking patients are occasionally seen.  

The time period chosen for data collection was one 

year, from October 2010 to October 2011. Initially, 

data was recorded as necessary for the purposes of 

primary care practice. Practice data needs to inform 

the practitioner’s decisions, whether at that 

particular examination or at an examination sometime in the future (136). Here, positive and negative 

test findings have to be recorded as part of the practitioner’s legal defence in case of a complaint. For 

the purposes of this study, cases that presented for follow-up visits, where diagnoses had been 

previously made, were excluded from the analysis.  

Prior to any analysis, all cases were anonymised by the removal of any personal details that could 

lead to identification of a particular patient. Of the 1524 cases seen during the designated time 

period, 1422 met the criteria for analysis. In these 1422 cases, 199 test outcomes were found to be 

associated with 57 diagnoses. Preliminary examination of this data revealed that further refinement 

was necessary in the interests of consistency (for example, where several reported visual complaints 

actually represented the same symptom or where the exact nature of a symptom, for example its 

laterality or onset, were not recorded because they did not aid diagnosis at the time of the eye 

examination). This refinement process was extremely time consuming and leads to the 

recommendation for future research of this type that data collection should be prospective and 

should use standardised test outcomes and diagnoses.  

Figure 4 Staff of Eyeline Optometrists, Dar es 
Salaam 
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Only positive test outcome were included in the analysis, as the data contained positive outcomes 

only of tests carried out. While positive test outcome had an unambiguous meaning, the absence of a 

positive sign was open to the following interpretation: 

 Either the test was carried out and was negative  

 Or the test was not carried out at all. 

Because of this ambiguity, it was not considered valid to assume that the absence of a positive test 

sign could be interpreted as a negative test result and thus prevented the use of negative likelihood 

ratios in the naïve Bayesian sequential analysis. The consequence of this decision was that a modified 

form of naïve Bayesian analysis was performed that only included positive likelihood ratios.  

 

4.4 Methods  

4.4.1 Splitting the database  

The refined data was split into two equal datasets of 711 cases each (datasets A and B). These 

represented the first 711 cases seen (dataset A) and then the second 711 cases seen (dataset B). 

Creation of the two datasets allowed the accuracy of Bayesian analysis to be tested with and without 

circularity.  

Each dataset was checked against the other to ensure that the same diagnoses and tests occurred in 

both datasets. This left the two datasets with 105 test items and 35 diagnoses.  Bayesian analysis on 

this data required the construction of 3,675 decision matrices (that is, 105 tests x 35 diagnoses). 

4.4.1.1 Preliminary analysis 

A preliminary investigation was carried out on 10 diagnoses and 15 test items. This reduced the 

analysis to 150 decision matrices (that is, 15 tests x 10 diagnoses), and enabled an initial assessment 

of the effects on accuracy of circularity, prevalence, comorbidity, presentation variation and Chi-

square filtering..  

 

4.4.1.2 Main analysis 

The process was then repeated with the full dataset, involving 105 test items and 35 diagnoses and 

the construction and analysis of 3.675 decision matrices.  
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4.4.2 Comorbidity  

The comorbidity for each case was based on the original complete data (that which included all 57 

original diagnoses) as some of the test outcomes could have resulted from diagnoses that were 

eventually not included but might, nevertheless, have influenced the accuracy of diagnoses arising 

from Bayesian analysis.   

 

4.4.3 Prevalence 

Prevalence was calculated as described in section 3.1. If comorbidity was present, then the median 

prevalence was calculated from all diagnoses made for that case.  

 

4.4.4 Presentation variation 

Datasets A and B showed test outcomes as they naturally occurred (observed data). That is, it was not 

always the case that “textbook” relationships between diagnoses and test outcomes arose. The 

impact on the accuracy of Bayesian analysis of natural variations in test outcomes associated with 

each diagnosis was investigated by creating two further datasets with all presentation variation 

removed.  In the preliminary study and the main study, this was carried out in two very different 

ways. The presentation variation was the number of mismatches found between the observed 

dataset and the “textbook” dataset. 

4.4.4.1 Presentation Variation in Preliminary Analysis 

The calculation of presentation variation required reconstruction of new datasets (A and B) for which 

all presentation variation was removed. For the preliminary analysis, this was a relatively simple 

process as only 15 test outcomes were matched to 10 diagnoses; the 15 test outcomes were selected 

(5.1 Selection of tests and diagnoses) partly because of their unambiguous linkage to each diagnosis. 

The required presentation variation was then equal to the number of mismatches found, case by 

case, when comparing the test outcomes for the observed and “textbook” data in both datasets  

4.4.4.2 Presentation Variation in Main Analysis 

The main study consisted of 3,675 decision matrices representing 105 test outcome and 35 diagnosis 

combinations. It was not feasible to search the literature for “textbook” associations for all these 

combination. The supervisor of this project had also previously carried out literature searches of this 

sort, as part of a series of dissertations completed by final year optometry students, which indicated 

that the required information was lacking. 
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The lengthy process of removing presentation variation from 105 test outcomes in relation to 35 

diagnoses had to be carried out in two stages. The first stage involved re-combining both datasets (A 

and B) and calculating Chi-square filtered positive likelihood ratios for all 3675 test 

outcome/diagnosis combinations. The second stage involved selection of “textbook” test outcomes 

for each diagnosis by including only those for which the Chi-square filtered positive likelihood ratio 

was greater than 1 (a value of 1 indicated a test of no diagnostic value) and, in the professional 

opinion of the author, “made sense”. By this means, the 35 diagnoses were typically assigned 2 

definitive test outcomes but up to 9 “textbook” test outcomes were noted. Finally a “textbook” 

dataset B (that for which Bayesian analysis was applied), with presentation variation removed, was 

constructed by taking the observed diagnoses for each case and replacing the observed test 

outcomes for each diagnosis with “textbook” test outcomes. . The required presentation variation 

was then equal to the number of mismatches found, case by case, when comparing the test 

outcomes for the observed and “textbook” B datasets. 

 

4.4.5  Decision matrices with Laplacian correction   

Decision matrices incorporating Laplacian correction were constructed (as shown in section 3.6 Use of 

the Laplacian Correction) for each test outcome and diagnosis combination. As mentioned earlier, this 

involved calculation of 150 matrices for the preliminary analysis and 3,675 matrices for the main 

analysis (see 4.4.1 Splitting the database). These matrices were used to calculate prevalence and 

positive likelihood ratios (as shown in section 3.1 Decision Matrices) 

 

4.4.6  Chi-Square filtering of likelihood ratios 

Chi-square with Yates’ correction was used to filter out positive likelihood ratios that represented 

weakly associated test outcome/diagnosis combinations. Chi-square values were calculated as shown 

in 3.4.2 The effect of Comorbidity. A critical minimum Chi-square then had to be determined, below 

which Likelihood ratios would be filtered out. The minimum Chi-square value was determined using a 

Probability Distribution Calculator (127) 

 

4.4.6.1 Chi-square filtering in the preliminary study 

For the preliminary study, 150 decision matrices were constructed (4.4.1.1 Preliminary analysis) In 

order to avoid even 1 statistical false positive error (that is, to have a probability of a statistical false 
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positive error of less than 1 in 150 = 0.006667). The Probability Distribution Calculator indicated that 

the minimum Chi-square value required was 7.36. 

4.4.6.2 Chi-square filtering in the main study 

Similarly, for the main analysis, 3,675 decision matrices were constructed (see section  

4.4.1.2 Main analysis). To avoid a statistical false positive error (i.e. to have a probability of a false 

positive error of less than 1 in 3,675 = 0.000272) the Probability Distribution calculator indicated the 

minimum Chi- square value required was 13.25.  

 

4.4.7 Naïve Bayesian sequential analysis 

This was performed case by case. All test outcomes were entered into the analysis. The pre-test odds 

for all diagnosis were multiplied by the Chi-square filtered positive likelihood ratios of each positive 

test outcome. The final post-test odds for all diagnoses were then converted to post-test 

probabilities. Diagnoses were then ranked in order or descending post-test probability. 

4.4.7.1 Naïve Bayesian sequential analysis in the preliminary study 

As described in 4.4.7 Naïve Bayesian sequential analysis, positive likelihood ratios were used to 

convert pre-test probability into post-test probability (Figure 5). 
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Figure 5  Flow chart showing the process of naïve Bayesian sequential analysis using only LR+. In the 
main study, the analysis was extended to include tests recommended by the use of LR+. 
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4.4.7.2 Naïve Bayesian analysis in the main study  

As described in 4.4.7 Naïve Bayesian sequential analysis, pre-test probabilities were converted to 

post-test probabilities using the likelihood ratios. However an extension of the use of likelihood ratios 

was incorporated to recommend supplementary tests to confirm diagnoses. 

 

4.4.8 Accuracy  

Accuracy was expressed as the percentage of cases for which the diagnoses made by the clinician 

appeared at the top of a ranked list generated by naïve Bayesian sequential analysis.  

 

4.4.9 Circularity  

In the preliminary analysis, percentage accuracy was compared with and without circularity. 

Circularity was present if accuracy was investigated by using the pre-test odds and likelihood ratios 

generated from dataset A to make diagnoses on the test outcomes of dataset A. On the other hand, 

circularity was absent if the accuracy was investigated by using the pre-test odds and likelihood ratios 

generated from dataset A to make diagnoses on the test outcomes of dataset B. The main analysis 

was carried out in the absence of circularity.  

 

4.4.10 Use of Microsoft® Excel® spreadsheets` 

Microsoft® Excel® spreadsheets were used to perform all the calculations necessary for all decision 

matrices (See example given in Table 15 Tables ). The data used in all the calculations to determine 

prevalence and the likelihood ratios were taken from dataset A.   
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Table 15 Tables 15.1 to 15.21  serve to illustrate how Microsoft® Excel® spread sheets were used to calculate filtered 
likelihood ratios. Note that the example shown only considers 4 diagnoses and 7 tests extracted from the main study data 
(chapter 6). The 4 diagnoses shown are all causes of conjunctivitis (dry eye, allergic, bacterial and viral). The 7 tests shown 
include 4 symptoms reported by patients (itchy eye, burning eye, watery discharge and sticky discharge) and 3 signs 
(fluorescein staining, palpebral redness, palpebral papillae). All tables make reference to cells a, b, c and d of the decision 
matrix described in Table 1. Tables 15.1 to 15.8 create the decision matrices for each test/diagnosis combination. Tables 
15.9 to 15.17 lead to the calculation of Chi-square for cells a, b, c and d. Tables 15.18 to 15.20 show the calculation of 
positive likelihood ratios from sensitivity and specificity. Table 15.21 show filtered likelihood ratios. The critical value of 
13.25 shown in Table 15.21 was that used in the main study (see section 4.4.6.2). The prevalence of each diagnosis was 
calculated by dividing the number of cases seen with the diagnosis (Table 15.2) by the total number of cases seen (Table 
15.1).  

 

Table 15.1 The total number of cases seen. This gives cell (a+b+c+d) in each diagnostic matrix. The Laplacian correction of 
0.001  is added (a value of 0.004 appears as the total number of cases seen represents 4 cells in each diagnostic matrix). 
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dry 711.004 711.004 711.004 711.004 711.004 711.004 711.004 

allergic 711.004 711.004 711.004 711.004 711.004 711.004 711.004 

bacterial 711.004 711.004 711.004 711.004 711.004 711.004 711.004 

viral 711.004 711.004 711.004 711.004 711.004 711.004 711.004 

 

Table 15.2 shows the total number of cases seen with the diagnosis. This represents the (a+c) cell of the decision matrix in 
Table 1. The Laplacian correction appears as 0.002 as the total number of cases with the diagnosis represents 2 cells of 
the diagnostic matrix. 
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dry 110.002 110.002 110.002 110.002 110.002 110.002 110.002 

allergic 44.002 44.002 44.002 44.002 44.002 44.002 44.002 

bacterial 11.002 11.002 11.002 11.002 11.002 11.002 11.002 

viral 3.002 3.002 3.002 3.002 3.002 3.002 3.002 
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Table 15.3 shows the number of cases seen without the diagnosis. This is calculated from the above two tables, that is by 
subtracting the values of Table 15.2 from Table 15.1. This is gives the value of cell (b+d) of the decision matrix. 

(b+d)  symptoms       signs      

  it
ch

y 
ey

e
 

b
u

rn
in

g 
ey

e
 

w
at

er
y 

d
is

ch
ar

ge
 

st
ic

ky
 d

is
ch

ar
ge

 

fl
u

o
re

sc
ei

n
 s

ta
in

in
g 

p
al

p
e

b
ra

l r
e

d
n

es
s 

p
al

p
e

b
ra

l p
ap

ill
ae

 

dry 601.002 601.002 601.002 601.002 601.002 601.002 601.002 

allergic 667.002 667.002 667.002 667.002 667.002 667.002 667.002 

bacterial 700.002 700.002 700.002 700.002 700.002 700.002 700.002 

viral 708.002 708.002 708.002 708.002 708.002 708.002 708.002 

 

 

Table 15.4 shows the number of cases seen that had a positive test result. This represents (a+b) of the decision matrix  

(a+b) symptoms       signs      
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dry 48.002 49.002 59.002 8.002 39.002 5.002 43.002 

allergic 48.002 49.002 59.002 8.002 39.002 5.002 43.002 

bacterial 48.002 49.002 59.002 8.002 39.002 5.002 43.002 

viral 48.002 49.002 59.002 8.002 39.002 5.002 43.002 

 

 

Table 15.5 Observed true positives, that is, cases that tested positive with a positive diagnosis. These represent the (a) 
cell of the decision matrix. 

(a)  symptoms       signs      
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dry 18.001 30.001 29.001 4.001 32.001 1.001 6.001 

allergic 21.001 11.001 7.001 3.001 1.001 0.001 38.001 

bacterial 2.001 1.001 1.001 3.001 0.001 5.001 1.001 

viral 0.001 0.001 0.001 0.001 0.001 1.001 0.001 
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Table 15.6  Observed false positives, that is, cases that had a positive test result but a negative diagnosis. These represent 
the (b) cell of the decision matrix. These are calculated by subtracting values of Table 15.5 (a) from Table 15.4 (a+b)  

(b)  symptoms       signs      
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dry 30.001 19.001 30.001 4.001 7.001 4.001 37.001 

allergic 27.001 38.001 52.001 5.001 38.001 5.001 5.001 

bacterial 46.001 48.001 58.001 5.001 39.001 0.001 42.001 

viral 48.001 49.001 59.001 8.001 39.001 4.001 43.001 

 

Table 15.7 Observed false negatives , that is, cases that had a negative test result but a positive diagnosis. These 
represent the ( c ) cell of the decision matrix. These are calculates by subtracting the values of Table 15.5 (a) from Table 
15.2 (a+c)  

(c)  symptoms       signs      
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dry 92.001 80.001 81.001 106.001 78.001 109.001 104.001 

allergic 23.001 33.001 37.001 41.001 43.001 44.001 6.001 

bacterial 9.001 10.001 10.001 8.001 11.001 6.001 10.001 

viral 3.001 3.001 3.001 3.001 3.001 2.001 3.001 

 

Table 15.8 Observed true negatives, that is, cases that had a negative test result and a negative diagnosis. These 
represent the  (d) cell of the decision matrix and are calculated by subtracting the values of Table 15.6 (b) from Table 15.3 
(b+d)  

(d)  
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dry 571.001 582.001 571.001 597.001 594.001 597.001 564.001 

allergic 640.001 629.001 615.001 662.001 629.001 662.001 662.001 

bacterial 654.001 652.001 642.001 695.001 661.001 700.001 658.001 

viral 660.001 659.001 649.001 700.001 669.001 704.001 665.001 
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Table 15.9 Expected true positives that is expected (a), = [(total cases with the diagnosis) *(total cases testing 
positive)]/(total number of cases). Referring to the decision matrix in Table 1, this is  [(a+c)*(a+b)]/(a+b+c+d).  The values 
in this table are calculated from Tables  15.2, 15.4 and 15.1 

Expected a 
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dry 7.427 7.581 9.128 1.238 6.034 0.774 6.653 

allergic 2.971 3.033 3.651 0.495 2.414 0.310 2.661 

bacterial 0.743 0.758 0.913 0.124 0.604 0.077 0.665 

viral 0.203 0.207 0.249 0.034 0.165 0.021 0.182 

 

Table 15.10 Expected false positives that is, expected (b) = [(total cases without the diagnosis) *(total cases testing 
positive)]/(total number of cases). Referring to the decision matrix in Table 1, this is  [(b+d)*(a+b)]/(a+b+c+d).  The values 
in this table are calculated from Tables  15.3, 15.4 and 15.1 
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dry 40.575 41.421 49.874 6.764 32.968 4.228 36.349 

allergic 45.031 45.969 55.351 7.507 36.588 4.692 40.341 

bacterial 47.259 48.244 58.089 7.878 38.398 4.925 42.337 

viral 47.799 48.795 58.753 7.968 38.837 4.981 42.820 

 

Table 15.11 Expected false negatives, that is, expected (c) = [(total cases with the diagnosis) *(total cases testing 
negative)]/(total number of cases). Referring to the decision matrix in Table 1, this is [(a+c)*(c+d)]/(a+b+c+d).  The values 
in this table are calculated from Tables  15.2, 15.7,15.8 and 15.1 
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dry 102.575 102.421 100.874 108.764 103.968 109.228 103.349 

allergic 41.031 40.969 40.351 43.507 41.588 43.692 41.341 

bacterial 10.259 10.244 10.089 10.878 10.398 10.925 10.337 

viral 2.799 2.795 2.753 2.968 2.837 2.981 2.820 
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Table 15.12 Expected true negatives, that is, expected (d) = [(total cases without the diagnosis) *(total cases testing 
negative)]/(total number of cases). Referring to the decision matrix in Table 1, this is [(b+d)*(c+d)]/(a+b+c+d).  The values 
in this table are calculated from Tables 15.3, 15.7, 15.8 and 15.1 
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dry 560.427 559.581 551.128 594.238 568.034 596.774 564.653 

allergic 621.971 621.033 611.651 659.495 630.414 662.310 626.661 

bacterial 652.743 651.758 641.913 692.124 661.604 695.077 657.665 

viral 660.203 659.207 649.249 700.034 669.165 703.021 665.182 

 

Table 15.13 is the calculated chi square value for (a) incorporating Yates’ correction. Chi square = [(expected value-
observed value) 

2
 -0.5]/ expected value. From the tables above this is calculated by using tables 15.5 and 15.9 

Chi-square for a  
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dry 13.666 63.376 41.113 4.137 107.482 0.096 0.003 

allergic 103.447 18.393 2.224 8.124 0.345 0.118 456.100 

bacterial 0.774 0.087 0.186 45.638 0.017 252.818 0.041 

viral 0.439 0.418 0.255 6.461 0.687 10.904 0.562 

 

Table 15.14 is the calculated chi square value for (b) incorporating Yates’ correction. From the tables above this is 
calculated by using tables 15.6 and 15.10. 
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dry 2.501 11.600 7.525 0.757 19.673 0.018 0.001 

allergic 6.824 1.213 0.147 0.536 0.023 0.008 30.089 

bacterial 0.012 0.001 0.003 0.717 0.000 3.974 0.001 

viral 0.002 0.002 0.001 0.027 0.003 0.046 0.002 
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Table 15.15 is the calculated chi square value for (c) incorporating Yates’ correction. From the tables above this is 
calculated by using tables 15.7 and 15.11. 
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dry 0.989 4.691 3.720 0.047 6.238 0.001 0.000 

allergic 7.490 1.361 0.201 0.092 0.020 0.001 29.361 

bacterial 0.056 0.006 0.017 0.519 0.001 1.791 0.003 

viral 0.032 0.031 0.023 0.074 0.040 0.077 0.036 

 

Table 15.16 is the calculated chi square value for (d) incorporating Yates’ correction. From the tables above this is 
calculated by using tables 15.8 and 15.12. 
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dry 0.181 0.859 0.681 0.009 1.142 0.000 0.000 

allergic 0.494 0.090 0.013 0.006 0.001 0.000 1.937 

bacterial 0.001 0.000 0.000 0.008 0.000 0.028 0.000 

viral 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table 15.17 is the chi square value for a+b+c+d and is calculated as the sum of tables 15.13, 15.14, 15.15 and 15.16 

Chi-square for 
a+b+c+d 
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dry 17.338 80.526 53.039 4.949 134.534 0.115 0.004 

allergic 118.255 21.057 2.585 8.758 0.389 0.127 517.487 

bacterial 0.843 0.095 0.206 46.883 0.019 258.611 0.044 

viral 0.473 0.451 0.279 6.562 0.730 11.028 0.601 
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Table 15.18 Sensitivity is calculated as the ratio of true positives to all positive diagnosis. Referring to the decision matrix, 
this is the ratio of the cells  (a)/ (a+c) and is calculated from Tables 15.2  and 15.5 

Sensitivity (a/(a+c)) 
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dry 0.164 0.273 0.264 0.036 0.291 0.009 0.055 

allergic 0.477 0.250 0.159 0.068 0.023 0.000 0.864 

bacterial 0.182 0.091 0.091 0.273 0.000 0.455 0.091 

viral 0.000 0.000 0.000 0.000 0.000 0.333 0.000 

 

Table 15.19 Specificity is calculated as the ratio of true negatives  to all negative diagnosis. Referring to the decision 
matrix, this is the ratio of the cells (d)/ (b+d) and calculated from  tables 15.3 and 15.8 

Specificity (d/(b+d)) 
presenting 
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dry 0.950 0.968 0.950 0.993 0.988 0.993 0.938 

allergic 0.960 0.943 0.922 0.993 0.943 0.993 0.993 

bacterial 0.934 0.931 0.917 0.993 0.944 1.000 0.940 

viral 0.932 0.931 0.917 0.989 0.945 0.994 0.939 

 

Table 15.20 The positive likelihood ratio is the ratio sensitivity/(1-specificity) and is calculated using tables 15.18 and 
15.19 

Positive likelihood 
ratio symptoms       signs      

  it
ch

y 
ey

e
 

b
u

rn
in

g 
ey

e
 

w
at

er
y 

d
is

ch
ar

ge
 

st
ic

ky
 d

is
ch

ar
ge

 

fl
u

o
re

sc
ei

n
 s

ta
in

in
g 

p
al

p
e

b
ra

l r
e

d
n

es
s 

p
al

p
e

b
ra

l p
ap

ill
ae

 

Dry 3.278 8.626 5.281 5.464 24.973 1.367 0.886 

allergic 11.790 4.388 2.041 9.096 0.399 0.003 115.184 

bacterial 2.768 1.327 1.098 38.180 0.002 318189 1.516 

Viral 0.005 0.005 0.004 0.029 0.006 59.005 0.005 
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Table 15.21 Filtered likelihood ratio. Using the chi square value determined for all the cells in Table 15.16,  if the 
calculated chi square value is greater than 13.25 ( the critical chi square value , see section 4.4.6.2 Chi-square filtering in 
the main study) then the corresponding likelihood ratio is used (filtered likelihood ratio) , otherwise the likelihood ratio is 
set to 1 (this would have the least effect of the final post-test probability). 

Positive Likelihood 
ratio 

 
symptoms       signs      
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dry 3.278 8.626 5.281 1.000 24.973 1.000 1.000 

allergic 11.790 4.388 1.000 1.000 1.000 1.000 115.184 

bacterial 1.000 1.000 1.000 38.180 1.000 318189 1.000 

viral 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

4.4.10.1 Use of Microsoft® Excel® spread sheets: Preliminary study 

Using the data from both datasets A and B, two new datasets were created without presentation 

variation. A “dashboard” was created which allowed the selection of the dataset, (circular or non- 

circular and with or without presentation variation) and selection of the value of Chi-square filtration, 

to be used to test the analysis. As these are relational spread sheets, using formulae relating to 

particular cells, calculations could be carried out very quickly. Results from each analysis were 

displayed within the spread sheet and could easily then be copied into the IBM® SPSS® 21 statistical 

package to carry out the decision tree analysis.  

4.4.10.2 Use of Microsoft® Excel® spread sheet: Main study 

As with the preliminary analysis, data from dataset A was used to determine prevalence and 

likelihood ratios. 

Dataset B (non-circular with presentation variation) was used to test the naïve Bayesian sequential 

analysis in two different ways: 

 All test items: naïve Bayesian sequential analysis was carried out using all demographic 

factors, symptoms and signs recorded by the clinician.  

 Recommended tests: Using only symptoms and history, the best tests to confirm the 

diagnoses using the positive likelihood ratio were entered into the analysis.  

Accuracy levels were recorded in a separate spread sheet to facilitate the transfer of data into the 

IBM® SPSS 21 statistical package for further analysis.  
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A dashboard was also created allowing easy data entry, a summary of the pertinent data relating to 

that case (that is, prevalence, comorbidity and presentation variation) and the summary of the 

accuracy levels for the two analyses. A graphical display comparing the accuracy achieved by naïve 

Bayesian sequential analysis to the diagnoses made by the clinician was also displayed on the 

dashboard.   

Figure 6 shows the dashboard where naïve Bayesian sequential analysis identified the same diagnoses 

as the clinician. 

 

Figure 6 Dashboard of Excel spreadsheet showing how naive Bayesian sequential analysis achieves clinical accuracy by 
correctly identifying the same diagnoses as the clinician. Light grey bars represent the diagnoses made by the clinician 
and the blue bars represent the diagnosis made by naïve Bayesian sequential analysis.  

 

Note how the clinician has noted 4 eye conditions and these are shown as the light grey bars. The 

naïve Bayesian sequential analysis has calculated the post-test probabilities and has correctly 

identified the same 4 conditions.  

Each of the 711 cases had to be entered into the analysis and a macro (that is, a set of instructions) 

was created that enabled the naïve Bayesian sequential analysis to enter each case and record the 

data automatically. In this manner all 711 cases of dataset B could be analysed in about 15 minutes.  

 

4.4.11 Decision tree analysis (DTA)  

Decision tree analysis (DTA) is a method of multivariate analysis that is used to classify statistical data 

in a hierarchical manner. In optometry, DTA has previously been applied to the: 
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 Identification of refractive error (137); 

 Interpretation of data from videokeratography in a both quantative and objective manner 

(138); 

 Classification of keratoconus (139); 

 Identification of factors which may contribute to the loss of visual and optical performance of 

in myopes wearing silicone hydrogel lenses  (140); 

 Assessment of the cost effectiveness of school based screening and primary eye care in 

relation to the supply of spectacles to correct refractive error in rural and urban areas in 

India. (141); 

 Assessment of the factors influencing habits and attitudes to retinoscopy (142). 

For the present study, DTA was considered suitable as it can handle both discrete and continuous 

variables. DTA can also be used for primary classification of data, where data is analysed and leads to 

a decision being made for further classification. However, this study used DTA to determine the level 

of influence of the three independent factors (prevalence, comorbidity and presentation variation) on 

the final accuracy achieved. Each independent factor was categorised to enable a preliminary analysis 

of the influence of each factor (see 5.2.1 Distribution and categorization of prevalence, comorbidity 

and presentation variation) 

Previous studies have used Regression tree analysis and algorithms such as C4.5 and ID3 to carry out 

decision tree analysis (143). More recently, Dunstone (142) used the same software as the current 

study (IBM® SPSS® 21). This software was used to perform DTA with the Chi-squared Automatic 

Interaction Detection (CHAID) tree growing method which enabled investigation of the influences of 

prevalence, presentation variation and comorbidity (each being treated as independent variables) on 

the accuracy of naïve Bayesian sequential analysis (the dependent variable). CHAID was able to 

indicate the relative importance of each independent variable. (144) 

To simplify interpretation of the decision trees, the dependent and independent variables were 

assigned categories. That is, accuracy was categorised as “1” (meaning not accurate) or “2” (meaning 

accurate), prevalence as “rare” or “common”, comorbidity as “absent” or “present” and presentation 

variation as “high” or “low”. By assigning these categories to the variables, all the data was treated as 

being discrete.  

An alternative form of analysis (stepwise multiple regression) was considered not to be suitable as it 

required all variables to be continuous (142). 
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DTA gives rise to decision trees containing parent nodes from which child nodes grow. For the 

analyses presented in this study, the default settings were used, that is, parent nodes had to contain 

at least 100 cases while child nodes had to contain at least 50 cases. This was possible as the sample 

was large enough to allow at least 2 levels of tree growing. This allowed for the influence of the 3 

independent variable to be displayed in the tree.  

The following CHAID statistical criteria were also kept at the default levels: 

 Significance level p=0.05  

 Chi-square statistic – Pearson  

Using Pearson (which is the default statistic) enabled faster calculations within the software, and the 

sample was deemed to be large enough to allow this. SPSS® recommends that, for small samples, the 

likelihood ratio is preferred but calculations may take longer (145) 

The Bonferroni correction (although default) was not used (its use is sometimes recommended in 

order to avoid a Type II error; that is, accepting a hypothesis in error). Armstrong (146) suggests that 

use of the Bonferroni correction in this type of decision tree analysis reduces the power of the 

statistical test  

 

4.5 Summary 
Having outlined the methods that are common to all analyses carried out in this study, Chapter 5 

presents the findings of the preliminary analysis while chapter 6 presents those of the main analysis. 
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5. Findings of the preliminary analysis 
This chapter shows the findings of the preliminary study on 15 test outcomes and 10 diagnoses. The 

objectives of the preliminary study were to determine the influence of circularity, prevalence, 

comorbidity, presentation variation and Chi-square on the accuracy of naïve Bayesian sequential 

analysis.  

 

5.1 Selection of tests and diagnoses  

Five non-definitive test outcomes were selected, including age (over 50 years) and 4 symptoms. These 

represented the occurrence of test outcomes that may be common to several diagnoses and might, 

therefore, challenge Bayesian analysis. The “textbook” relationships between these 5 non-definitive 

test outcomes and the 10 chosen diagnoses are shown in Table 16 

The 10 diagnoses were selected using two criteria. The first criterion was that each diagnosis was 

required to have one definitive test. This ensured that the accuracy of Bayesian analysis was not 

underestimated through failure to make a diagnosis for which there were no definitive signs. The 

second criterion was that the selected diagnoses had to represent the full range of observed 

prevalence and that the prevalence of each selected disease was approximately equal in datasets A 

and B (see Figure 7).  This ensured that dataset A (used to generate pre-test odds and likelihood ratios 

prior to performing Bayesian analyses) contained the same distribution of diagnoses as dataset B 

(upon which Bayesian analyses were performed). 
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Uncorrected ametropia    * *     *                   

Uncorrected presbyopia  * * *       *                 

Uncompensated heterophoria     *         *               

Dry eye        * *       *             

Allergic Conjuctivitis        * *         *           

Pinguecula *                   *         

Cataract   *                   *       

Diabetic retinopathy *                       *     

Macula hole  * *                       *   

Primary open angle glaucoma *                           * 

Table 16  The 10 diagnoses selected for analysis together with their associated definitive signs and associated reported symptoms 
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Prevalence of the 10 selected diagnoses on datasets A (blue bars) and B (red bars) are shown in Figure 

5-1. No statistically significant difference was found between prevalence of each of the 10 selected 

diagnoses in datasets A and B (Chi square = 7.83, degrees of freedom = 9, P > 0.05). 

 

 
Figure 7 Prevalence in Datasets A & B 

 

 

5.2 Results 

5.2.1 Distribution and categorization of prevalence, comorbidity and presentation variation  

Prevalence (or median prevalence) ranged from 0.001 to 0.80 with a median of 0.56. Comorbidity 

ranged from 0 (no eye conditions present) to 6 (6 eye conditions present) with a median of between 1 

(no comorbidity as only 1 eye condition was present) and 2. This indicated that approximately 50% of 

the sample showed some degree of comorbidity. Presentation variation ranged from 0 to 7 items 

with a median of 1 item.  

For the purposes of decision tree analyses, prevalence, comorbidity and presentation variation were 

categorised as shown in Table 17 
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Prevalence  
  

> 0.56 (common) 

<= 0.56 (rare) 

Comorbidity  
 

<=1 (absent) 

>1 (present) 

Presentation 
variation  

<=2 (low) 

>2 (high) 
Table 17 Categories of prevalence, comorbidity and presentation variation used for decision tree analyses.  

  

5.2.2 Overall accuracy of naïve Bayesian sequential analysis 

Circularity was present in the analyses denoted AA (Table 18) as accuracy was investigated by using 

the pre-test odds and likelihood ratios generated from dataset A to make diagnoses on the test 

outcomes of dataset A. Circularity was absent in analyses denoted AB (Table 18) as accuracy was 

investigated by using the pre-test odds and likelihood ratios generated from dataset A to make 

diagnoses on the test outcomes of dataset B. Presentation variation was absent in analyses 

performed on datasets A and B that contained cases with “textbook” test outcomes for all diagnoses. 

Presentation variation was present in analyses performed on datasets A and B that contained cases 

with observed test outcomes for all diagnoses. Percentage accuracy represented the percentage of 

cases for which the diagnoses made by the clinician (the author) appeared at the top of a list 

generated by Bayesian analysis. 

Analysis 
 

Percentage accuracy 

AA (circularity present, presentation variation absent) 100.0% 

AB (circularity absent, presentation variation absent) 100.0% 

AA (circularity present,  presentation variation present) 94.5% 

AB (circularity absent, presentation variation present) 94.0% 
Table 18  The overall percentage accuracy of naïve Bayesian sequential analysis achieved with and without circularity and 
presentation variation. . 

 

Table 18 shows the overall percentage accuracy of naïve Bayesian sequential analysis with and 

without circularity and presentation variation. Accuracy of 100% was achieved when presentation 

variation was absent. This, in a sense, proved the basic concept of applying this form of naïve 

Bayesian analysis to the sort of clinical data collected in the setting of primary care optometry.  

Accuracy fell be up to 6% when presentation variation was present. The presence of circularity with 

presentation variation artificially increased the accuracy by 0.5%.  
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Counter intuitively, removal of the Chi-square filter did not influence the accuracy of Bayesian 

analysis when presentation variation was absent and increased accuracy by 0.4% when presentation 

variation was present.  

5.2.3 Decision Trees Analysis 

 

 

 
Figure 8 Decision tree analysis for analysis AA (circular analysis with presentation variation) 
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Figure 9 Decision tree analysis for analysis AB (non- circular analysis with presentation variation) 
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Separate decision tree analyses were performed for naïve Bayesian sequential analyses carried out 

with circularity present (AA- Figure 8) and absent (AB-Figure 9) in the presence of presentation 

variation. The overall accuracy of naïve Bayesian sequential analysis was found to be 94.5% for 

analysis AA and 94% for analysis AB. Decision trees exhibited up to 3 levels of branching (denoted as 

the 1st, 2nd and 3rd level of influence). The hierarchical influences of prevalence, comorbidity and 

presentation are indicated by the level of influence in which they are found. The percentage of cases 

represented in each level is shown.  The percentage accuracy achieved by Bayesian analysis is also 

shown at each level. 

In both analyses, prevalence influenced accuracy the most, followed by presentation variation and, 

only when circularity was absent, comorbidity.  

The finding that comorbidity did not influence the accuracy of Bayesian analysis when circularity was 

present is consistent with previous research carried out on patients with dementia (127).The present 

study is, however, as far as the author is aware, the first to have carried out Bayesian analysis when 

circularity is absent and to have also considered the influence of prevalence and presentation 

variation. 

In the presence of circularity, 100% accuracy was achieved for 57.8% of all cases. All of these 

exhibited eye conditions of common prevalence. Accuracy of 93.4% was achieved in 25.7% of all 

cases, all of which exhibited eye conditions of rare prevalence in combination with low presentation 

variation. Accuracy of 76.9% was achieved in 16.5% of cases, all of which exhibited eye conditions of 

rare prevalence in combination with high presentation variation. This finding was very encouraging as 

it showed that accuracy of over 76% was achievable even for the most challenging cases; those with 

atypical presentations of rare eye conditions. 

However, Bayesian analyses lacking circularity were of most interest in the context of the future 

application of this form of artificial intelligence to new cases. Under these conditions, Bayesian 

analysis achieved 100% accuracy for cases exhibiting eye conditions of common prevalence and this 

occurred for 57.5% of all cases. Accuracy of 95.6% was achieved in 12.8% of all cases, all of which 

exhibited eye conditions of rare prevalence in combination with low presentation variation and no 

comorbidity. Accuracy of 87% was achieved in 15.2% of all cases, all of which exhibited eye conditions 

of rare prevalence in combination with low presentation variation and comorbidity. Accuracy of 

75.7% was achieved in 14.5% of all cases, all of which exhibited eye conditions of rare prevalence in 
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combination with high presentation variation but with no comorbidity. Therefore, even with 

circularity present, accuracy of over 75% was achievable in the most challenging cases. 

 

5.3 Summary  

The preliminary study, carried out on 10 diagnoses and 15 test outcomes, showed that naïve Bayesian 

sequential analysis could make diagnoses without error in the absence of presentation variation. 

Accuracy dropped by only 6% when presentation variation existed. Circularity artificially elevated 

accuracy by 0.5%. Surprisingly, removal of Chi-square filtering increased accuracy by 0.4%. Decision 

tree analysis showed that accuracy was influenced primarily by prevalence followed by presentation 

variation and comorbidity.  Chapter 6 presents the findings of the main study that was carried out to 

explore whether these encouraging findings also arise when naïve Bayesian sequential analysis is 

applied to diagnoses that may not necessarily have definitive tests. Chapter 6 also presents an 

investigation carried out to determine whether positive likelihood ratios could be used to identify 

diagnostic tests.  
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6. Findings of the main study  
This chapter shows the findings of the main study on 105 tests and 35 diagnoses. The objectives of 

this study were (1) to re-examine the influence of prevalence, comorbidity, presentation variation 

and Chi-square filtration on the accuracy of naïve Bayesian sequential analysis for diagnoses that may 

or may not have definitive tests and (2) to explore the use of positive likelihood ratios to identify 

diagnostic tests.  

  

6.1 Selection of tests and diagnoses 

The 35 diagnoses represented all diagnoses that were present in both datasets (A and B). The 

requirement in selection 5.1 Selection of tests and diagnoses to have one definitive test associated 

with each diagnosis was removed in this analysis to reflect clinical reality. Likewise, the 105 tests 

represented all tests that were present in both datasets (A and B).  

 

6.2 The use of positive likelihood ratios to select diagnostic tests 

Recall that the magnitude of each positive likelihood ratios gives the amount by which the post-test 

odds of any given diagnosis rises or falls after a positive test result (section 3.1 Decision Matrices). 

Logically, then, the test outcome with the largest positive likelihood ratio associated with a given 

diagnosis is that which has greatest diagnostic value for that diagnosis. Previous workers have hinted 

that this would work (92), or have actually tried it out (62). As far as the author is aware, this has not 

been tested in the field of optometry. Using Chi-square filtered positive likelihood ratios for this 

purpose could help optometrists select the most appropriate diagnostic tests. Exploring the potential 

for this was one of the key objectives of the main analysis.  

 

An overview of the scheme adopted now follows. For each case, naïve Bayesian sequential analysis 

was performed until all positive test outcomes for demographic items (ethnicity and age), symptoms 

and history items (ocular and medical) had been entered. In other words, the history and symptoms 

part of the eye examination had been completed. This included 54 of the 105 test outcomes. At this 

point, diagnostic tests (all clinical signs) were recommended based on those that had the highest Chi-

square filtered positive likelihood ratios associated with the top 6 diagnoses (these diagnoses being 

ranked according to their post-test probability at that point).  Only 6 diagnoses were shown as the 
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maximum comorbidity was known to be equal to 6 (see 5.2.1 Distribution and categorization of 

prevalence, comorbidity and presentation variation). Logically, this would only lead to the 

recommendation of 6 of the remaining 51 diagnostic tests that represented signs. Naïve Bayesian 

sequential analyses were then resumed until all positive outcomes of these 6 diagnostic tests had 

been entered. At this point, the end of the eye examination, all diagnoses were again ranked 

according to their post-test probability. The accuracy of the diagnoses was calculated (as described in 

4.4.8 Accuracy) and compared to the accuracy achieved when positive test findings for all 105 test 

outcomes had been entered. 

 

This approach would only work in optometric practice if optometrist had the autonomy to select 

diagnostic tests on their diagnostic value alone, as medical practitioners do. However, in reality, 

optometrists have to perform certain tests to meet medico-legal obligations. Nevertheless, if it could 

be demonstrated that positive likelihood ratios could identify fewer but more diagnostically valuable 

tests without a loss in diagnostic accuracy, then the approach tested in this study might, in the 

fullness of time, be considered medico-legally acceptable. 

This approach has another potential advantage – reduced “chair-time”. The 51 test outcomes, 

representing clinical signs, could actually be grouped into just 17 ophthalmic procedures. Appendix III 

(Ophthalmic Procedures) shows the ophthalmic procedures in the first column and the signs 

associated with these procedures that were used in the analysis in the second column. Each 

ophthalmic procedure included between 1 and 13 of the 51 test items. For example one of the test 

procedures was fundus examination. This included 3 test items: haemorrhages, cotton wool spots and 

exudates. The thinking here was that if an optometrist invested the “chair time” to examine the 

fundus then they would very likely detect any of the 3 test items. So, if 3 of the 6 recommended 

diagnostic tests fell under fundus examination then the “chair time” invested in those 3 

recommended diagnostic tests would only amount to that involved with carrying out 1 ophthalmic 

procedure.  Now, if the 6 recommended diagnostic tests represented 1 test item from each of 6 

different ophthalmic procedures then the total reduction of “chair time” would be equal to ((17 – 6) / 

17) x 100 = 65%. On the other hand, if all 6 recommended diagnostic tests fell under just one 

ophthalmic procedure (this would be theoretically possible for ophthalmic procedures involving 

examination of the conjunctiva, cornea and optic disc) then the total reduction of “chair time” would 

be equal to ((17 – 1) / 17) x 100 = 94%. So, adopting the approach of recommending just 6 out of 17 

diagnostic tests could reduce “chair time” by anything between 65% and 94%,  
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Given what has been said above, it becomes clear that if this approach reduces “chair time” without 

compromising diagnostic accuracy (that is, clinical vigilance), then this might be of great interest to 

practices that rely on high volume eye examinations to remain economically viable. 

Dataset A was used to generate the Chi-square filtered positive likelihood ratios used to identify 

recommended diagnostic tests for each diagnosis. Two criteria were used for recommended test 

selection. The first was, as mentioned earlier, that the recommended test had to exhibit the largest 

positive likelihood ratio for the diagnosis in question. The second criterion was that the 

recommended test had to be the sole test item with the largest positive likelihood ratio for that 

diagnosis. That is, there should be no ties between test items exhibiting maximum positive likelihood 

ratios. These criteria were met for 34 of the 35 diagnoses; the diagnosis of hypertensive retinopathy 

lacked a recommended diagnostic test. It is worth considering the loss of accuracy that this might 

cause. Given that Bayesian analysis was carried out on the cases in the dataset B, it follows that the 

potential loss of accuracy, when basing diagnoses on recommended tests, amounts to the number of 

cases in dataset B that had hypertensive retinopathy. This amounted to 2 (0.3% of dataset B). 

Therefore, little loss in accuracy was anticipated. Nevertheless, the possibility that this type of 

accuracy loss can occur should be noted when considering this approach to making diagnoses in the 

future.     

 

6.3 Results  
All naïve Bayesian sequential analyses carried out in the main study were made without circularity 

(that is, Bayesian analyses were carried out using initial pre-test odds and positive likelihood ratios 

from dataset A in order to make diagnoses based on positive test outcomes from dataset B) and 

included natural presentation variations observed in dataset B. 

 

6.3.1 Overall accuracy of naïve Bayesian sequential analysis on all test items 

The overall percentage accuracy of Bayesian analysis, when diagnoses were based on positive test 

outcomes from all 105 test items, was 75% when Chi-square filtering was used and 74% when Chi-

square filtering was removed. As found in the preliminary analysis, Chi-square filtering had little 

impact on accuracy.  
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Recall that the accuracy found under the same conditions (circularity absent, presentation variation 

present) in the preliminary study was 94% (Table 18). The question arose as to what might have 

caused this 20% drop in accuracy. 

6.3.1.1 Possible causes of reduced accuracy: lack of definitive tests 

It has already been suggested that this was due to some of the 35 diagnoses lacking definitive tests. 

The definitive test selected by naïve Bayesian sequential analysis had the highest positive likelihood 

ratio for that particular test/diagnosis combination. Of the 35 diagnoses, 34 diagnoses had definitive 

tests associated with them. However on closer inspection, some of these test/diagnosis associations 

were spurious and in normal clinical practice would not be associated with the diagnosis (147). Of the 

35 diagnoses only 29 were found to have a test that would be associated in clinical practice; that is 

17% of the diagnoses lacked definitive tests or tests that were equivocal at best.  

Figure 10 shows how the diagnosis of hypertensive retinopathy is missed by the naïve Bayesian 

sequential analysis because there were no associated definitive signs. Similarly, nuclear cataract had 

equivocal signs associated with the diagnosis (hazy view of fundus, small retinal haemorrhages), so 

again this diagnosis is missed. 

  

Figure 10 Due to a lack of a definitive sign, the diagnosis of hypertensive retinopathy is missed completely. Similarly, the 
diagnosis of nuclear cataract is missed as the signs associated with this diagnosis (hazy view of fundus, small retinal 
haemorrhages) are equivocal at best  

  

Missed Hypertensive retinopathy 

Missed nuclear cataract 
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The diagnoses lacking a definitive test identified by the use of likelihood ratios were:  

 Allergic dermatitis (0.2%) 

 Bacterial Conjunctivitis (1.6%) 

 Corneal abrasion (1.7%) 

 Cataract – cortical (1.3%) 

 Primary open angle glaucoma (0.8%) 

 Hypertensive retinopathy (0.3%) 

Prevalence of each condition for dataset B is given in brackets. Thus, diagnoses with rare prevalence, 

which lack a definitive sign, may account for part of the drop in accuracy.   

 

 6.3.1.2 Possible causes of reduced accuracy: reduced potency of definitive tests 

There is, however, another possible explanation. Might the positive likelihood ratios of the definitive 

tests of the preliminary analysis have been much higher in value that those of the main study? In 

other words, might the definitive test of the preliminary study have had greater diagnostic power (or 

potency) than those of the main study.  

This was investigated by taking the average of all the LR+ associated with a diagnosis and multiplying 

this by the prevalence (thus giving the weighted average). The average of all the weighted averages 

was then compared between the two studies. The preliminary study average was found to be 1,740 

and the main study average was found to be 82. This suggested that there was more than 20 times 

difference in the potency of the tests used in the preliminary study and the main study. It is pertinent 

to note that in the preliminary study the tests were “chosen” by the author, whereas in the main 

study the tests were “chosen” by using the Bayesian analysis (that is, identifying the best 

test/diagnosis associations by using the LR+). The comparison of the positive likelihood ratios for the 

preliminary study and the main study are shown in Appendix V -Comparison of LR+ between the 

preliminary study and the main study.  

 

6.3.1.3 Possible causes of reduced accuracy: lack of recorded signs  

Loss of accuracy (that is, where naïve Bayesian sequential analysis did not concur with that of the 

clinician) occurred in 26% percent of cases.  Individual cases were further examined to elicit the 
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possible causes of the drop in accuracy. One such loss of accuracy was found to be due to the lack of 

a recorded sign associated with the diagnosis.  

Figure 11 shows a diagnosis of pinguecula that is missed completely as there were no recorded 

associated signs. Three eye conditions were recorded in this case and the other 2 were correctly 

identified.  

 

Figure 11 Naïve Bayesian sequential analysis misses a diagnosis as there is no recorded sign. 

Other eye conditions that were diagnosed but were lacking in recorded signs by the clinician were 

corneal arcus, pterygium, and corneal abrasion. 

Further, if incomplete signs are recorded, then the naïve Bayesian sequential analysis identifies the 

clinician’s diagnoses, but included other diagnosis as well. (Figure 12) 

  

Missed diagnosis-pinguecula 
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Figure 12 Incomplete recording of signs achieves partially accurate diagnoses, but also achieves high probability for a 
spurious diagnosis. In this case, the two diagnoses recorded by the clinician were “dry eye” and “allergic conjunctivitis”. 
However, the only sign that was recorded was “conjunctival small papillae”. The diagnosis for the dry eye has been made 
on the history and symptoms. A high diagnostic probability for “uncorrected ametropia” is also seen, which was not 
recorded by the clinician; thus in this case although the original diagnoses were confirmed by naïve Bayesian sequential 
analysis, accuracy is lost by the introduction of a spurious diagnosis. 

 

6.3.1.4 Possible causes of reduced accuracy: influence of small likelihood ratios 

Could a large number of small positive likelihood ratios have been the cause of the reduced accuracy? 

Likelihood ratios less than 1 diminish the probability of a diagnosis. However, where the positive 

likelihood ratio is greater than 1, the effect of a large number of such small likelihood ratios can have 

a cumulative effect raising the probabilities of a diagnosis. (130) 

Sixty eight of the test/diagnosis combinations had a positive likelihood ratio of greater than 1 and of 

these 59 had a positive likelihood ratio of greater than 5. It would, therefore, seem very unlikely that 

a preponderance of smaller positive likelihood ratios (of between 1 and 2) could have a significant 

effect on the final diagnosis.  

 

6.3.2 Overall accuracy of naïve Bayesian sequential analysis on recommended test items  

The overall percentage accuracy of Bayesian analysis, when diagnoses were based on just 6 

recommended tests, was 73% when Chi-square filtering was used and 70% when Chi-square filtering 

was removed. This was an encouraging finding as it indicated that basing diagnoses on just 6 

recommended tests (which, as mentioned earlier, could reduce “chair-time” by between 65% and 

94%) also bought about a 3% increase in accuracy when Chi-square filtering was used. 
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6.3.2.1 The quality of recommended test items 

The quality of recommended tests for each of the 35 diagnoses was investigated. The author used her 

clinical judgement to rate each recommended test using a Likert scale of 1 to 5; in which 1 

represented strong disagreement and 5 represented strong agreement. The maximum score possible 

was 175 (that is, maximum score of 5 per test multiplied by the total number of tests, 35). The score 

for the analysis with Chi-square filtering was 150 and without the Chi-square filtering was 137. 

Expressed as a percentage of the highest possible score, the tests with Chi-square filtering achieved 

85.7% and without Chi-square filtering achieved 78.3%. These findings suggested that Chi-square 

filtering improved recommended test selection – albeit by a small degree.  The recommended tests 

selected by using the maximum likelihood ratios are shown on page 122. 

6.4 Decision tree analysis 

Decision tree analyses was carried out to further explore the hierarchical influences of prevalence, 

comorbidity and presentation variation on the accuracy of naïve Bayesian sequential analyses carried 

out in the main study. Separate decision tree analyses were performed for Bayesian analyses carried 

out with all test items and with recommended tests. Logically, the percentages of cases found at each 

level in the decision tree were identical in both analyses (after all, both analyses were carried out on 

dataset B). The decision tree structure was also identical in both analyses showing that prevalence 

influenced accuracy the most, followed by comorbidity and then by presentation variation. Compared 

to the decision tree analyses performed in the preliminary study (section 5.2.3 Decision Trees 

Analysis), comorbidity had increased its hierarchical position from last to second. 

The decision tree analyses based on all test items and recommended tests are shown in Figure 13 and 

Figure 14, respectively. 
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Figure 13 Decision tree analysis for naive Bayesian sequential analysis using all 105 test items comprising of non-circular 
data with presentation variation  
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Figure 14 Decision tree analysis based on only recommended tests following history and symptoms comprising of non-
circular data with presentation variation 
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The only differences in both analyses were the accuracy levels achieved. Even so, the differences 

observed were only subtle so that the accuracy trends were identical. In cases exhibiting eye 

conditions of common prevalence (52.3% of all cases), both analyses achieved 100% accuracy. In 

cases exhibiting eye conditions of rare prevalence without comorbidity (15.2% of all cases), analyses 

based on all test item and recommended tests achieved 64.8% and 70.4% accuracy, respectively. In 

cases exhibiting eye conditions of rare prevalence with comorbidity and high presentation variation 

(19.4% of all cases), analyses based on all test item and recommended tests achieved 48.6% and 

44.9% accuracy, respectively. In cases exhibiting eye conditions of rare prevalence with comorbidity 

and low presentation variation (13.1% of all cases), analyses based on all test item and recommended 

tests achieved 2.2% and 6.5% accuracy, respectively.  

The reason for the paradoxical elevation of accuracy in cases with high presentation variation 

compared to low presentation variation remains obscure. On closer examination of individual cases, 

lack of accuracy appeared again due to lack of definitive tests for some diagnoses and missing 

diagnostic signs (see 6.3.1.1 Possible causes of reduced accuracy: lack of definitive tests; 6.3.1.3 

Possible causes of reduced accuracy: lack of recorded signs).  

 

6.5 Summary  

The main study, on 35 diagnoses and 105 test outcomes exhibiting observed presentation variations, 

showed that naïve Bayesian sequential analysis, without circularity, achieved accuracy of 72% when 

all clinical signs were entered. So the encouraging findings of the preliminary analysis (chapter 5) 

were not sustained. Removal of Chi-square filtering made little difference. The 20% drop in accuracy, 

compared to the preliminary analysis, was attributed to the fact that some diagnoses lacked strong 

diagnostic signs, a lack of potency of diagnostic tests used or a lack of recorded diagnostic signs.  

The main study also explored the use of Chi-square filtered positive likelihood ratios, calculated after 

history and symptoms, to recommend diagnostic signs to look for. This approach reduced “chair 

time” by between 65% and 94% while maintaining clinical vigilance. In fact, when compared to the 

entry of all positive test findings, the accuracy increased by 1% when only recommended signs were 

entered. Chi-square filtering improved recommended test selection.  

Decision tree analysis showed that accuracy was influenced primarily by prevalence, followed by 

comorbidity and presentation variation. The influence of these factors was also greater than that 

observed in the preliminary analysis. Accuracy fell dramatically in 13% of the cases exhibiting eye 
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conditions of rare prevalence compounded with comorbidity and low presentation variation (13.1% 

of all cases). Here, analyses based on all test item and recommended tests achieved 2.2% and 6.5% 

accuracy, respectively.  

The above analyses were all carried out using only positive likelihood ratios as only positive test 

outcomes had been recorded. As a result of these findings, it is strongly recommended that, in future 

studies, Bayesian analysis should be based on positive and negative test findings.  

Chapter 7 provides a review of the thesis findings and makes recommendations for further studies.  
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7. Discussion  
This study was designed to investigate the influences of prevalence, comorbidity, presentation 

variation and circularity on the application of naïve Bayesian sequential analysis to make differential 

diagnoses in the optometric primary care setting. This study also investigated the extent to which Chi-

square filtering maximised accuracy. Given the widespread use of Bayesian analysis in many other 

areas of our daily lives, it is surprising that this is the first investigation of its kind in the field of 

optometry. Even where similar investigations have been carried out in other medical fields, none 

have explored the potential sources of error investigated in the present study.    

One of the key features of Bayesian analysis, in this context, is that it accounts for the prevalence of 

each diagnosis. Reliable estimates of prevalence are, therefore, essential and were only possible if all 

eligible data was included in the analysis. It soon became apparent that asking for patient consent 

raised subtle trust issues. Therefore, it became necessary to proceed without patient consent and this 

became a major ethical issue standing in the way of the continuation of this study. Risks to patients 

would be the accidental disclosure of clinical data and yet the advantage of using Bayesian analysis to 

improve the accuracy of differential diagnosis had vast potential in preventing avoidable blindness.  

Fortunately, precedent for the use of completely anonymised clinical data without prior consent 

appears in Section 3.3 of the Guidelines for Researcher and Research Ethics Committees on 

Psychiatric Research involving Human Participants (133), which states that…“Individual consent 

should not be necessary for group analysis of anonymised data but the ethics committee should 

ensure that the required anonymisation has been achieved before the data are made available” and 

…“the ethics committee should have specifically agreed to exempt the research from the general 

requirement for individual consent from each research subject. In that respect, our recommendation 

on research using records and archived samples follow the same principles as those that apply to 

clinical audit”. A not insignificant breakthrough occurred when the research ethics committees of 

Aston University and the Tanzanian National Institute of Medical Research made this study possible 

by accepting this guidance. 

The findings of this study indicate that naïve Bayesian sequential analysis works without error when 

variations in the presentation of various eye conditions or diseases are removed. The preliminary 

study served as a proof of concept in that prevalence and comorbidity did not render the application 

of naïve Bayesian analysis to primary care clinical data a “non-starter”. The main study showed that 

naïve Bayesian analysis can be applied to a wealth of clinical data with some accuracy.  
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The sample of 1422 cases examined in this study seems adequate for the purposes of evaluating the 

factors affecting naïve Bayesian analysis, given that previous studies of ocular conditions in primary 

eye care have been carried out on samples of between 1438 and 5308 cases (148) (149) (150) (151) 

(152). 

In the preliminary study, 100% accuracy was achieved when there was no presentation variation in 

the data. A surprisingly small fall in accuracy (6%) did, however, occur when observed presentation 

variations were included in the analysis. Though some inconsistency was evident in the findings, 

analyses indicated that prevalence, comorbidity and presentation variation reduced accuracy. 

Prevalence was consistently highest in the hierarchy of these influencing factors.  There were initial 

concerns about circularity but even this exerted a surprisingly small (0.5%) artificial elevation of 

accuracy. 

Using all the available data, naïve Bayesian sequential analysis achieved 72% accuracy in data with 

low presentation variation. A similar study carried out on the detection of pancreatic cancer using 

sequential Bayesian analysis involving clinical, laboratory and image data achieved 67% accuracy 

(153). Using Chi-square filtered positive likelihood ratios to recommend between 65% and 94% fewer 

confirmatory tests, no fall in the accuracy of naïve Bayesian sequential analysis (73%) arose, thus 

opening the way for this form of artificial intelligence to direct problem-orientated eye examinations. 

This has potential in an environment in which commercial pressures demand reduced “chair-time”. 

Recall that Warner, in his early computerised diagnostic program for congenital heart conditions, had 

a total of 54 tests but this could be reduced to 7 or 8 tests to give the proper diagnosis (61). 

In the preliminary study, the tests chosen were such that they had definitive links with each of the 

diagnoses. In the main study however, not all the tests were definitive and this may have led to a 20% 

reduction in accuracy.  

Accuracy could be further improved by recording negative test findings, thereby allowing the use of 

negative likelihood ratios.  

No attempt was made in this study to calculate confidence limits for sensitivity, specificity and 

likelihood ratios as this did not assist Bayesian analysis. In the future, however, these quantities could 

be published with confidence limits as an indicator of their reliability.  

Attempts made to remove circularity (3.5 Circularity) involved splitting the data into subsamples A 

(containing the first half of the data collected) and B (containing the second half of the data 
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collected). The first sample was used to calculate prevalence and likelihood ratios. The second sample 

was used to test the accuracy of Bayesian analyses carried out using the calculated prevalence and 

likelihood ratios. An alternative approach would have been to randomly pick the data used to 

calculate prevalence and likelihood ratios and then to test accuracy on the remaining data. As these 

were both samples from the same population, future studies could calculate prevalence and 

likelihood ratios from one clinic and test the accuracy of Bayesian analyses, based on these quantities, 

in another clinic.  

Decision tree analysis (DTA) was applied to broadly categorised data; for example, prevalence was 

categorised as being high and low. This led to uncomplicated decision trees that could be interpreted 

easily. Initial analysis using DTA on independent variables that had not been broadly categorised 

resulted in confusing results. However, future work could be directed towards narrower 

categorization of the independent variables. For example, to understand at what level of prevalence 

does the accuracy drop below 100%? (see Figure 8, Figure 9, Figure 13 and Figure 14).  

Accuracy may also be improved by the greater use of tests with multiple levels, such as for cup-to-disc 

ratios, and intraocular pressure measurements. Different likelihood ratios for the different levels of a 

test (108), can be calculated, which may also provide useful information about an individual patient 

and thereby making the diagnosis more customised for each patient.  

This is shown in the example below, derived from the present study, where age was recorded in 

multiple levels and positive likelihood ratios are shown for uncorrected presbyopia (see Table 19) 

 Positive Likelihood 
ratio Age             

  0-10 11-20 21-30 31-40 41-50 51-60 61-70 

n 43 112 111 117 128 94 67 

LR+ for uncorrected 
presbyopia  0.00 0.00 0.00 0.13 12.18 2.47 1.46 

Table 19 The Variation of positive likelihood ratios for uncorrected presbyopia with age. 

Uncorrected presbyopia (or the need for a near vision correction) is not generally seen before the age 

of 40. So, positive likelihood ratios of below 1 are seen up to 40 years of age. Between the ages of 41-

50, most patients need a new reading prescription, or a change to a current one and this is reflected 

by the high positive likelihood ratio recorded for that age group. The falling positive likelihood ratios 

after 50 years of age reflect the fact that progressively fewer patients require further change to their 

reading prescription. Table 19 therefore, illustrates how multiple levels of test outcomes can 

generate useful information about a patient’s individual characteristics, such as age.   
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Looking at the challenges for eye care today in terms of the aging demographic throughout the world, 

the main conditions that have to be addressed in order to prevent avoidable blindness are cataract, 

diabetic retinopathy, glaucoma and age related macular degeneration (3). Table 20 shows how 

positive likelihood ratios reveal that all of these conditions are more likely to occur with advancing 

age. The positive likelihood ratios for diabetic retinopathy are reduced to zero at the age group 81-90 

and this may be due to the fact that there is a poor survival rate at this age with diabetes. Similarly, 

the positive likelihood ratio for age-related macular degeneration also drops to zero. This may be due 

to the fact that few people were actually seen in the practice of this age group in the data that was 

analysed (only 2 patients of this age group were seen) , or that they may be attending a specialist low 

vision clinic and may not require the services of a community optometrist.  

Positive likelihood 
ratio (LR+) 

Age                 

  0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 

n 43 112 111 117 128 94 67 31 8 

Cataract - nuclear 0.00 0.00 0.00 0.00 1.60 1.48 0.97 6.13 37.66 

Primary open angle 
glaucoma 

0.00 0.00 0.00 0.40 1.37 3.00 2.96 1.95 9.76 

Diabetic retinopathy 0.00 0.00 0.00 0.00 1.54 1.88 3.36 7.03 0.00 

Age-related macular 
degeneration 

0.00 0.00 0.00 0.00 0.00 0.00 7.80 15.78 0.00 

Table 20  The variation of positive likelihood ratios with age for cataract, primary open angle glaucoma, diabetic 
retinopathy and age-related macular degeneration. 

 

It is pertinent to note that a completely novel method of evaluating test/diagnosis association was 

considered in this study- Chi-square filtering. In the past, several other methods have been used to 

evaluate diagnostic tests. Aspinall & Hill (154) used receiver operator characteristic curves (ROC) to 

determine the best cut-off values for a positive or negative test outcome (ideally maximising true 

positives and minimising false negatives), whereas Gilchrist (100) used a weighted kappa and QROC 

curves.  

Figure 15 shows an ROC curve with the dashed line representing the indecision line. That is  where 

the diagnostic information is so poor, that cases with or without the condition or disease cannot be 

differentiated except by chance.  The top left hand corner of the graph is where sensitivity and 

specificity is at its best. Each curve represents a test with the sensitivity and specificity for a certain 

value.  A point on the curve that is furthest away from this line and closest to the top left hand corner 

of the graph represents the best criteria for a positive or negative test outcome.  This point ensures 
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Sensitivity  
P(T+|D+) 

1-Specificity  
P(T+|D-) 

Specificity  
P(T-|D-) 

1.0 

1.0 

1.0 
0 

0 

0 

A 

A 

B 

maximum true positives and the minimum false negatives.  Curve B represents a test that is more 

likely to identify true positives and true negatives than the test represented by Curve A. 

 

 

 

 

 

 

 

 

 

Using the data from Crick and Daubs (155) using intraocular pressure for detecting glaucomatous 

visual field loss, Aspinall & Hill used ROC curves to determine the intraocular pressure that predicts 

visual field loss caused by primary open angle glaucoma. The ROC curve thus obtained was shown to 

be very close to the indecision line, suggesting that intraocular pressure measurement, as a stand-

alone test, cannot be a strong indicator for glaucomatous field loss.   

In the present study, intraocular pressure > 21 mmHg was considered to be a definitive sign for 

primary angle glaucoma. In the preliminary study, the positive likelihood ratio that was generated 

between the test “intraocular pressure >21mmHg” and the diagnosis of “primary open angle 

glaucoma” was 0.88. (see page 120). Likelihood  ratios that are close to 1 have minimal effect on post-

test probability (see 3.1 Decision Matrices) and therefore this shows that the test is of very little 

diagnostic value, concurring with the findings of Aspinall & Hill (154). 

ROC curves are useful for a single test/diagnosis combination as shown above. However, the current 

study deals with test outcomes in relation to many alternative diagnoses.  For this, each 

test/diagnoses combination would require the calculation of separate ROC curves. This was thought 

to be an unwieldy process. 

Figure 15  ROC curves (after Aspinal and Hill) 
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Gilchrist (100) applied a weighted coefficient “kappa” which is a measure of association between the 

test and the diagnosis and this gives an optimal test criterion as well as estimating the test quality. By 

adjusting the weighting “r”, kappa can be used to find the best screening method (when r=0) or the 

best diagnostic test (when r=1). However, to compare to the methods used in the present study, the 

weighting that gave the least false positive and least false negatives r=0.5 can be used.  

The weighted kappa was worked out (see Table 21) for the examples shown in section 3.4.2 The 

effect of Comorbidity, where Chi-square filtering was used to test the association between reduced 

vision and ametropia (Table 5)  and between reduced vision and pinguecula (Table 6),  

 
Reduced Vision/Uncorrected Ametropia 

k(0) 0.65 

k(0.5) 0.15 

k (1) 0.08 

  Reduced vision/ Pinguecula 

k(0) 0.01 

k(0.5) 0.02 

k(1) 0.33 
Table 21 Weighted kappa was worked out for two test/diagnosis combinations (reduced vision/uncorrected ametropia 
and reduced vision/pinguecula) for different values of "r".   

 

Note how reduced vision is a good test for screening for uncorrected ametropia, but not a good 

diagnostic test. For pinguecula, reduced vision is not a good screening test, yet appears to have a fair 

association as a diagnostic test. Recall that the positive likelihood ratios were similar for both tests 

(Reduced vision/Uncorrected ametropia LR+ = 2.2; Reduced vision/pinguecula LR+ = 1.6) suggesting 

that reduced vision was of equal diagnostic value for detecting uncorrected ametropia and 

pinguecula. So both likeliood ratios on their own and kappa can make spurious associations.  

However, in this study, more than one test/diagnosis association is being tested for the strength of 

that association. Kappa allows for only one test at a time and whether that test is suitable for 

screening or diagnosis, whereas the filtered Chi-square removes spurious association for a number of 

tests at a time.  

QROC curves (similar to ROC curves) determine the strength of a test/diagnosis association at 

different values of the test, by using the different sensitivity and specificity at different values to 

produce the QROC curve. In this respect, all the data has to be analysed to find the best cut-off value 
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for each test. Like the ROC curves this process was felt to be too cumbersome for the purposes of the 

current study. 

 Advantages of using the Chi-square filtering are 

 It can be incorporated into the naïve Bayesian sequential analysis, and can work in the 

“background” within the analysis,  

 It allows the use of multiple test criteria (such as age, the severity of symptoms and signs)   

which allows a “tailor-made” diagnosis for each person.  

Yet, the use of Chi-square filtering appears to be questionable when applied to all available data, and 

does not appear to justify the computational effort involved.  However, the use of Chi-square filtering 

does appear to make a worthwhile contribution when it comes to identifying “sensible” 

recommended tests to confirm diagnosis. Further work is required, especially when both positive and 

negative likelihoods ratios are used and where diagnoses without definitive tests occur, to see if Chi-

square filtering is a worthwhile addition to Bayesian analysis.    

The clinical records used for the analysis were created during routine eye examinations. Although 

only positive outcomes were assessed in this study, it is important to note that the clinical records did 

contain “negative” outcomes such as “anterior segment– normal”. Unfortunately, this type of 

recording of negative findings was deemed not to be specific enough for the purposes of this study. 

Ideally, each test item should have a positive or negative test outcome or otherwise an indicator that 

the test had not been carried out.  This study shows the importance of recording negative findings as 

a part of best practice.  

In clinical practice, a practitioner may well recognise a condition/disease due to experience and 

having done so, may not note all the signs leading to the diagnosis. In such cases, where information 

is incomplete, loss of accuracy may occur.   

Sadatsafavi et al (156) created a mathematical model to assess inter-observer agreement when using 

Bayesian analysis to assist in clinical diagnosis. 3 main sources of errors were cited in interpreting 

diagnostic findings using Bayes’ theorem: 

 pre-test probabilities (prevalences in the present study);  

 the misclassification of the test outcomes;  

  prior knowledge of the observer/clinician which can affect the decision making process. 

(156).  
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Although these findings were not applied to clinical practice, a similar finding was made in the 

present study. That is, where the clinician had prior knowledge (or experience), diagnoses were often 

made without recording the associated signs (see 6.3.1.3 Possible causes of reduced accuracy: lack of 

recorded signs), leading to a loss of accuracy.  

If sufficient further accuracy can be achieved with the above suggestions, naïve Bayesian analysis 

could be incorporated into practice software systems. This would create an element of artificial 

intelligence, assisting in clinical decision making and diagnostic test selection. Global use of such an 

“intelligent” system could base prevalence on entered details of the practice location and setting (i.e. 

primary or secondary care), as prevalence is dependent on the clinic location and setting (157). 

However, likelihood ratios would apply to any setting (as they are independent of prevalence). This 

“intelligent” system would update itself with continued input of clinical data (becoming a circular, 

sequential analysis). The potential here is vast as this would enable epidemiological surveillance on an 

unprecedented scale.  

In addition, an “intelligent” system within practice software could help to safeguard against missed 

diagnosis (that is, by suggesting the most appropriate tests to be carried out). In this manner, such a 

system would have legal value in that it could provide an evidence base for “best or current practice” 

that would support legal defence in cases of malpractice. The resulting reduction of legal actions 

might, in turn, reduce legal costs and the cost of professional indemnity insurance.  

Bayes’ theorem has been used within the courts of law (25), (86). However, Bayesian principles may 

be difficult to understand for the layman and, recently, in an appeal against a murder conviction in 

the UK, a judge ruled against the use of Bayesian arguments “unless the underlying statistics are 

‘firm’” (158).  Bayesian analysis has always been a method of drawing inference from limited data; 

drawing conclusions from the effects about the cause (see 2.2 Early History of Bayes’ Theorem). Thus 

it appears that the judge has ruled against what may be the best method of obtaining statistical 

inference from limited data, not necessarily because the statistical methods themselves are flawed, 

but because it is difficult for the layman to understand the principles involved in Bayesian analysis.  

Another potential advantage of “intelligent” systems is the possibility that they could increase 

efficiency through better use of optometric assistants. Here, “intelligent” systems could be used by 

optical assistants to elicit the presenting symptoms from which the most appropriate diagnostic tests 

would automatically be identified. The optometrist would then concentrate on the recommended 
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diagnostic tests. This would save time by providing the most efficient problem-orientated eye 

examination directed to the resolution of the presenting symptoms.  

Would such an “intelligent” system lead to “deskilling” of the optometrist? A comparable situation 

was experienced when soft contact lenses improved in design and quality. As they became more 

popular, many optometrists thought they would lose this potentially lucrative market to unskilled 

personnel. However, the reality showed that optometrists were facing new challenges, and therefore 

had to learn new skills to deal with the complications posed by the extensive use of soft contact 

lenses (159) (160) (161). Thus, the optometrist should not fear deskilling but look to different 

challenges and to a new level of optometry.  

Such “intelligent” systems also have the potential of helping new optometrists make the best possible 

decisions based on the symptoms and signs that they have elicited from the patient. Similarly such a 

tool can help more seasoned optometrists make decisions more confidently and provide the evidence 

base to facilitate the training of younger colleagues. Bayesian analysis is a powerful decision-making 

tool allowing the clinician to consider treatments based on rigorous evidence tailored to the patient’s 

individual requirements (162). The use of Bayesian analysis can also inform problem-based learning, 

which tends to encourage an inquisitive style of learning as opposed to the more traditional, short 

term, rote memorisation. This encourages the learner (be it a student or a seasoned practitioner) to 

become a pro-active, independent thinker, with good problem solving skills. (163). This would 

harmonise well with the current General Optical Council continuing professional requirements for 

registration to practise in the UK (164). A further consideration would be to develop problem 

orientated clinical records in which Bayesian decision making is part of the record and can help to 

identify when a test should be carried out and when treatment should be started (165). Such 

examination of probabilities can rule out unnecessary tests, making medical care more cost and time 

efficient (166). Clinical records should be user friendly, allow data analysis for the purposes of self-

evaluation and learning, enable the formulation of public health policies and research, with strict 

parameters for patient confidentiality and comprehensive data recording (167). 

Bayesian analysis in medicine has advanced considerably since Jerome Cornfield’s discovery linking 

lung cancer and smoking (58) and, especially in the last 30 years, allowing modelling where flexibility 

and innovation are desired, where models can be continually changed according to data available 

(168) (169). Bayesian analysis applied to optometry can assist in decision-making especially where 

data may be incomplete or equivocal. 
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Adoption of Bayesian thinking in optometry can allow the eye examination to become more problem 

orientated and more efficient. Using Bayesian analysis with electronic record keeping can assist in 

meeting the challenges of the Global Action Plan for Universal Eye Health (3), by assisting collection 

and analysis of epidemiological data (170), formulating public health policies for resource and 

infrastructure management, supporting training of eye care personnel (171) and providing an 

evidence based clinical support guidelines where there may be lack of human and infrastructure 

resources. 

This study has shown the value of data collection from primary eye care in formulating an evidence 

base, in order to guide the profession and the practitioner alike.  
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Appendix II (continued) 
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Appendix II  (continued)  
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Appendix II (continued)  
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Appendix III  

Ophthalmic Procedures  
 

Ophthalmic Procedure  Associated Signs used in analysis  

1: VA Reduced VA on presentation  

2: CT Heterotropia  

  Heterophoria 

3: FD Fixation disparity 

4: Pupils Not reactive to light 

5: Lids External (eyelid) - lump/swelling 

6: Tears External (lacrimal apparatus) - TBUT ≤10s 

7: Conjunctiva External (conjunctiva) - lump/nodule 

  External (conjunctiva) - winged mass 

  External (conjunctiva) - redness - bulbar 

  External (conjunctiva) - redness - bulbar - diffuse 

  External (conjunctiva) - redness - bulbar - diffuse - mild 

  External (conjunctiva) -  redness - bulbar - diffuse - severe 

  External (conjunctiva) - redness - bulbar - sectoral 

  External (conjunctiva) - redness - palpebral 

  External (conjunctiva) - discharge - clear watery 

  External (conjunctiva) - discharge - yellow pus like 

  External (conjunctiva) - papillae - small 

  External (conjunctiva) - papillae - cobblestone 

  External (conjunctival) - foreign body 

8: Cornea External (cornea) -  foreign body 

  External (cornea) - fluorescein staining - punctate 

  External (cornea) - fluorescein staining - diffuse 

  External (cornea) - fluorescein staining - foreign body tracks 

  External (cornea) - limbal ring opacity 

  External (cornea) - haze 

  External (cornea) - lesion 

  External (cornea) - scar 

9: Lens Internal (media) - crystalline lens - cloudy/yellowing  

  Internal (media) - crystalline lens - small white flake like opacities 

  Internal (media) - pseudophakia - opaque capsule 

10: Vitreous Internal (media) - vitreous - floaters 

  Internal (media) - hazy view of fundus 

11: Optic disc Internal (optic disc) - nasal displacement of blood vessels 

  Internal (optic disc) - tilted 

  Internal (optic disc) - CDR>0.7 

  Internal (optic disc) -intraocular difference of CDR >= 0.2 

  Internal (optic disc) - well defined margins 

  Internal (optic disc) - pallor 

  Internal (optic disc) - temporal pallor 

12:Retinal Vasculature Internal (Retinal B/Vs) - AV nipping 

13: Fundus Internal(fundus) - haemorrhage - small 

  Internal(fundus) - cotton wool spots 
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  Internal(fundus)  - exudates 

14: Macula Internal(macula) - pigment clumping 

  Internal(macula) - hole 

  Internal(macula) - oedema 

  Internal(macula) - scar 

15: Rx Refraction - uncorrected 

16. Add Near add determination - uncorrected  

17: IOP Tonometry - IOP >21mmHg 
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Appendix IV 

Comparison of LR+ between the preliminary study and the main study  

 Preliminary Study  min LR+ max LR+ 
average 
LR+ 

weighted average 
(= prevalence x 
average LR+ ) 

Uncorrected ametropia  0.093233283 137,038.40 9136.89815 7,273.54 

Uncorrected presbyopia  0.087807903 449,803.38 29988.3724 9,532.17 

Dry eye  0.816783297 27.32 3.12663961 0.43 

Cataract 1 47.54 5.19562989 0.58 

Allergic Conjuctivitis  0.076248892 115.18 8.57181606 0.59 

Pinguecula 1 174.19 12.6469705 0.25 

Diabetic retinopathy 1 175.44 12.751062 0.18 

Uncompensated heterophoria 0.078588283 707,766.16 47185.2823 597.28 

New Primary Open Angle Glaucoma 0.078588283 1.00 0.8771451 0.00 

Macula hole  0.118009615 707.94 48.0705282 0.07 

  
  

    

      Average = 1,740.51 
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Appendix IV continued 

 

 Main study  min LR+  Max LR+ 
Average 
LR+ 

weighted average 
(= prevalence x 
average LR+ ) 

Uncorrected ametropia  0.04 142,001.75 1,353.34 1,083.05 

Uncorrected presbyopia  0.00 461,000.16 4,391.73 1,544.21 

Uncompensated heterophoria 0.06 707,766.16 6,748.00 28.47 

Heterotropia 0.09 702,914.15 7,532.82 84.76 

Allergic Dermatitis 0.06 177.16 2.56 0.01 

Blepharitis 0.00 140.95 4.05 0.03 

Stye 0.06 176.66 4.17 0.02 

Dry eye  0.20 27.32 1.67 0.26 

Allergic Conjuctivitis  0.12 115.18 2.39 0.15 

Bacterial Conjunctivitis 0.06 318,188.51 3,033.49 46.93 

Viral Conjunctivitis 0.06 117.98 3.27 0.01 

Pterygium 0.23 586.74 7.23 0.20 

Pinguecula 0.00 174.19 2.67 0.05 

Subconjunctival haemorrhage 0.06 75.73 1.83 0.01 

Foreign body on conjunctiva 0.06 709,293.42 6,755.71 9.50 

Contact lens associated GPC 0.06 70.69 1.86 0.01 

Contact lens associated red eye  0.06 44.29 1.88 0.01 

Corneal arcus 1.00 99.41 3.24 0.07 

Corneal abrasion 0.08 78,060.88 744.43 9.42 

Foreign body on cornea 0.06 709,293.42 6,755.71 9.50 

Cataract - early 1.00 21.24 1.29 0.06 

Cataract - posterior pole 1.00 36.42 2.11 0.06 

Cataract - cortical 0.07 70,156.27 1,337.56 18.81 

Cataract - nuclear 0.06 106.01 2.32 0.01 

Primary open angle glaucoma 0.07 140,242.45 1,337.70 18.81 

Ocular hypertension 0.06 64.42 1.18 0.00 

Normal tension glaucoma  0.07 141.14 2.13 0.01 

Anterior Ischaemic optic neuropathy 0.06 709,293.42 6,757.40 9.50 

Optic neuropathy (nutritional) 0.06 708,647.85 6,751.85 18.99 

Diabetic retinopathy 0.08 311.70 5.64 0.07 

Hypertensive retinopathy 0.06 177.28 2.23 0.00 

Retinitis pigmentosa 0.06 354.15 3.95 0.01 

Diabetic maculopathy 0.07 564.15 7.12 0.05 

Macula hole  0.06 707.94 7.45 0.02 

ARMD  0.06 708.58 9.54 0.01 

  
  

    

      Average= 82.38 
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Appendix V 

Comparison of recommended tests with and without Chi-square 

Diagnosis  Best recommended test as identified by LR+  Score  
Best recommended  test as identified by LR+ 
without use of Chi-square filtration  Score 

Uncorrected ametropia  Refraction - uncorrected 5 Refraction - uncorrected 5 

Uncorrected presbyopia  Near add determination - uncorrected  5 Near add determination - uncorrected  5 

Uncompensated heterophoria Fixation disparity 5 Fixation disparity 5 

Heterotropia Cover Test - heterotropia  5 Cover Test - heterotropia  5 

Allergic Dermatitis 
External (conjunctiva) - discharge - yellow 
pus like 1 

External (conjunctiva) - discharge - yellow pus 
like 1 

Blepharitis External (eyelid) - lump/swelling 4 External (eyelid) - lump/swelling 4 

Stye External (eyelid) - lump/swelling 5 External (eyelid) - lump/swelling 5 

Dry eye  External (lacrimal apparatus) - TBUT ≤10s 5   1 

Allergic Conjuctivitis  External (conjunctiva) - papillae - small 5 External (conjunctiva) - papillae - small 5 

Bacterial Conjunctivitis External (conjunctiva) - redness - palpebral 4 External (conjunctiva) - redness - palpebral 4 

Viral Conjunctivitis 
External (conjunctiva) -  redness - bulbar - 
diffuse - severe 5 

External (conjunctiva) -  redness - bulbar - diffuse 
- severe 3 

Pterygium External (conjunctiva) - winged mass 5 External (conjunctiva) - winged mass 5 

Pinguecula External (conjunctiva) - lump/nodule 5 External (conjunctiva) - lump/nodule 5 

Subconjunctival haemorrhage 
External (conjunctiva) - redness - bulbar - 
sectoral 5 

External (conjunctiva) - redness - bulbar - 
sectoral 5 

Foreign body on conjunctiva External (conjunctival) - foreign body 5 External (conjunctival) - foreign body 5 

Contact lens associated Giant 
papillary conjunctivitis  

External (conjunctiva) - papillae - 
cobblestone 5 External (conjunctiva) - papillae - cobblestone 5 

Contact lens associated red eye  
External (conjunctiva) - redness - bulbar - 
diffuse - mild 4 

External (conjunctiva) - redness - bulbar - diffuse 
- mild 4 

Corneal arcus External (cornea) - limbal ring opacity 5 External (cornea) - limbal ring opacity 5 

Corneal abrasion External (cornea) -  foreign body 3 External (cornea) -  foreign body 3 

Foreign body on cornea External (cornea) -  foreign body 5 External (cornea) -  foreign body 5 

Cataract - early 
Internal (media) - crystalline lens - 
cloudy/yellowing  5 

Internal (media) - crystalline lens - 
cloudy/yellowing  5 

Cataract - posterior pole Internal (media) - hazy view of fundus 4 Internal(fundus) - cotton wool spots 1 

Cataract - cortical 
External (conjunctiva) - discharge - clear 
watery 1 External (conjunctiva) - discharge - clear watery 1 

Cataract - nuclear Internal (media) - hazy view of fundus 4 Internal (media) - hazy view of fundus 4 

Primary open angle glaucoma Pupils - not reactive to light 1 Pupils - not reactive to light 1 

Ocular hypertension Tonometry - IOP >21mmHg 5 Tonometry - IOP >21mmHg 5 

Normal tension glaucoma  
Internal (optic disc) - nasal displacement of 
blood vessels 4 

Internal (optic disc) - nasal displacement of blood 
vessels 4 

Anterior Ischaemic optic 
neuropathy Internal (optic disc) - well defined margins 5 Internal (optic disc) - well defined margins 5 

Optic neuropathy (nutritional) Internal (optic disc) - temporal pallor 5 Internal (optic disc) - temporal pallor 5 

Diabetic retinopathy Internal(fundus)  - exudates 4 Internal(fundus)  - exudates 4 

Hypertensive retinopathy   1 Near add determination - uncorrected  1 

Retinitis pigmentosa Internal(macula) - pigment clumping 5 Internal(macula) - pigment clumping 5 

Diabetic maculopathy Internal(fundus)  - exudates 5 Internal(fundus)  - exudates 5 

Macula hole  Internal(macula) - hole 5 Internal(macula) - hole 5 

Age-related macular degeneration - 
dry Internal(macula) - pigment clumping 5   1 

 




