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Thesis summary 

Approximately 60% of pharmaceuticals target membrane proteins; 30% of the human 

genome codes for membrane proteins yet they represent less than 1% of known unique 
crystal structures deposited in the Protein Data Bank (PDB), with 50% of structures 
derived from recombinant membrane proteins having been synthesized in yeasts. G 

protein-coupled receptors (GPCRs) are an important class of membrane proteins that are 
not naturally abundant in their native membranes. Unfortunately their recombinant 

synthesis often suffers from low yields; moreover, function may be lost during extraction 
and purification from cell membranes, impeding research aimed at structural and 
functional determination. We therefore devised two novel strategies to improve functional 

yields of recombinant membrane proteins in the yeast Saccharomyces cerevisiae. We used 
human adenosine A2A receptor (hA2AR) as a model GPCR since it is functionally and 
structurally well characterised. 

In the first strategy, we investigated whether it is possible to provide yeast cells with a 

selective advantage (SA) in producing the fusion protein hA2AR-Ura3p when grown in 
medium lacking uracil; Ura3p is a decarboxylase that catalyzes the sixth enzymatic step in 
the de novo biosynthesis of pyrimidines, generating uridine monophosphate. The first 

transformant (H1) selected using the SA strategy gave high total yields of hA2AR-Ura3p, 
but low functional yields as determined by radio-ligand binding, leading to the discovery 

that the majority of the hA2AR-Ura3p had been internalized to the vacuole. The yeast 
deletion strain spt3Δ is thought to have slower translation rates and improved folding 
capabilities compared to wild-type cells and was therefore utilised for the SA strategy to 

generate a second transformant, SU1, which gave higher functional yields than H1.  
Subsequently hA2AR-Ura3p from H1 was solubilised with n-dodecyl-β-D-maltoside and 

cholesteryl hemisuccinate, which yielded functional hA2AR-Ura3p at the highest yield of 
all approaches used.  

The second strategy involved using knowledge of translational processes to improve 
recombinant protein synthesis to increase functional yield. Modification of existing 

expression vectors with an internal ribosome entry site (IRES) inserted into the 5ˊ 
untranslated region (UTR) of the gene encoding hA2AR was employed to circumvent 
regulatory controls on recombinant synthesis in the yeast host cell. The mechanisms 

involved were investigated through the use of yeast deletion strains and drugs that cause 
translation inhibition, which is known to improve protein folding and yield. The data 

highlight the potential to use deletion strains to increase IRES-mediated expression of 
recombinant hA2AR. 

Overall, the data presented in this thesis provide mechanistic insights into two novel 
strategies that can increase functional membrane protein yields in the eukaryotic microbe, 

S. cerevisiae.  
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Chapter 1: Introduction 

To structurally or functionally characterise a protein, the isolation of milligrammes to 

grammes of stable, active sample are required.  For some of proteins this process is trivial; 

for membrane proteins, the majority are not naturally abundant in their native membranes 

(Bill et al., 2011). Consequently recombinant protein synthesis is required to generate 

appropriate samples for further study. In this thesis two novel strategies are described to 

increase the functional yield of a recombinant membrane protein in S. cerevisiae; human 

adenosine A2A receptor (hA2AR) was used as a model GPCR since it is functionally and 

structurally well characterised (Jaakola et al., 2008, Xu et al., 2011). The first strategy 

provides the host system with a selective advantage in expressing a recombinant protein in 

its cell membranes, the second explores the possibility of manipulating translational 

processes through the use of internal ribosome entry sequences (IRESes) and mutant 

strains of S. cerevisiae to increase and improve functional yields of membrane proteins. 

 

1.1. Proteins 

Proteins are the engines of normal cellular function. They are enzymes, which are 

responsible for catalysing reactions, antibodies, which bind antigens and stimulate the 

immune system, transport proteins, involved in transport of essential molecules in and out 

of cells, and regulatory proteins, such as cell receptors that allow the cell to communicate 

with its environment and neighbouring cells (Peeters et al., 2011). Overall, proteins are 

involved in practically every process that is carried out within an organism.  

As proteins are involved in all processes that take place within the body, understanding 

their three-dimensional structures and functions is central to understanding the working of 

the cell in health and disease. For proteins associated with medical disorders, this 

knowledge should allow the design of drugs to be approached rationally. Established 

methods of drug discovery use high-throughput screening of thousands of compounds, 

and/or animal screening to select for inhibitory agents (Entzeroth, 2003, Koppitz & Eis, 

2006, Rogawski, 2006). The common downside to these methods is that the mechanism of 

action is not known. This can often result in unwanted side-effects; for example, the anti-

epileptic drug Levetiracetam can cause hostility, anxiety, hallucination or diarrhoea 

(Lyseng-Williamson, 2011). In contrast, rational drug design would result in compounds 

that act in a more specific manner, reducing side effects and increasing efficiency. For 
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example research involving the HIV virus discovered it uses the cell receptor protein, 

CCR5, to enter T-cell lymphocytes in order to propagate, resulting in destruction of the 

infected cell and release of more virus particles. As a result, a multitude of drugs have been 

designed to interfere with HIV-CCR5 interaction, usually by binding to CCR5 to prevent 

HIV doing so (Garcia-Perez et al., 2011).  

 

1.1.1. Membrane proteins 

Membrane proteins are proteins that span the cell membrane, are partially embedded 

within it or are associated with its surface (Fig 1.1) and have been highlighted as potential 

drug targets as it is known that they regulate essential cellular processes including cell 

signalling and transport (McCudden et al., 2004, Böhme & Beck-Sickinger, 2009, Moraes 

et al., 2014). This is evident by the fact that a wide range of diseases arise through 

malfunction of a membrane protein (Wu, 2010); if its function is known, the mechanism 

through which a disorder manifests can be discovered (Bartfai et al., 2004).  

 

Surface protein 

Lipid-linked 

protein 

Sterol 

Integral protein 

(Globular) 

Phospholipid 

 

Glycolipid Glycoprotein 

Integral protein 

(Single trans-

membrane α-helix) 

 

Oligosaccharide  

Fig 1.1 Illustration of membrane proteins in the cell membrane. Proteins which reside and are 

present in a variety of different conformations throughout the lipid bilayer of the cell membrane are 

referred to as membrane proteins. The lipid bilayer is shown in orange, sterols in yellow, different 

types of membrane proteins in red, blue, pink, cyan and fuchsia, oligosaccharides in purple and 

glycolipids in green.  
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An important group of membrane proteins are the integral membrane proteins, which 

receptors and transporters belong to, while other groups include membrane anchors, 

enzymes and structural proteins (McCudden et al., 2004, Böhme & Beck-Sickinger, 2009). 

The receptor and transporter groups are considered the most important by the 

pharmaceutical industry as the former is involved in cell signalling which regulates cellular 

pathways/processes, and the latter is responsible for transport of essential molecules in and 

toxins out (McCudden et al., 2004, Böhme & Beck-Sickinger, 2009,  Bawa et al., 2011). It 

is therefore no surprise that membrane protein biology is an important field for study and 

an essential pre-requisite for drug design, reinforced by the fact that over 60% of drugs on 

the market target this essential class of proteins (Moraes et al., 2014). 

 

Approximately 60% of pharmaceuticals target membrane proteins. However, while 

approximately 30% of the human genome codes for membrane proteins (Almén et al., 

2009), only 1% of the total cellular protein population is membrane bound (Bernaudat et 

al., 2011). There are a few exceptions to this trend of low abundance, which include 

aquaporins, bovine and bacterial rhodopsins and light harvesting proteins (Bill et al., 

2011). Yet these are an exception to the rule, and instead the vast majority of membrane 

proteins are not abundant in the cell membrane and are unstable when removed from it 

(Grisshammer, 2009). Notably, knowledge concerning how membrane proteins synthesis is 

regulated more generally has been lacking (Bill et al., 2011). 

 

It is not surprising that naturally-abundant membrane proteins were amongst the first 

structures to have their structures solved via x-ray crystallography (Deisenhofer et al., 

1985, Sugimoto et al., 1985). These exceptions aside, most membrane proteins must be 

synthesised recombinantly in bacteria, yeast, insect and mammalian host systems 

(Nettleship et al., 2010, Bawa et al., 2011), although generally for eukaryotic membrane 

proteins, bacterial cell lines are not preferred due to the lack of post translational 

modification attributed to eukaryotes, and the inherent problems that most eukaryotic 

membrane proteins produced in bacteria are non-functional (Newstead et al., 2007).  Over 

the past quarter of a century there has been an exponential increase in the number of 

unique solved membrane protein structures deposited into the PDB, although the rate is 

less than that originally predicted in 2005 (Fig 1.2). This increasing trend is due to the 
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emergence of recombinant technology as the preferred tool for membrane protein 

production (Fig 1.3). 

 

 

Since 2002 there has been a shift in the origin of membrane protein structures solved from 

natural sources to recombinant sources (Fig 1.3). The first structure solved in 1985 was 

bacterial rhodopsin (Deisenhofer et al., 1985) for which the researchers, Johann 

Deisenhofer, Robert Huber and Hartmut Michel, were awarded a Nobel Prize in Chemistry 

in 1988. For the next 12 years (1985-1997) only natural sources were used to obtain 

protein for the solving of structures; in 1998 the first structure from recombinant sources 

was achieved. Structural characterisation via crystallisation typically requires 

Fig 1.2 Graph illustrating the exponential trend of deposited solved unique membrane protein 

structures to the PDB from 1985-2013. The bars in the graph are representative of the 

cumulative unique membrane protein structures (n), over time since the first membrane protein 

structure was solved in 1985. The red dotted lined showed the expected growth in terms of new 

structures, which was estimated in 2005. The actual growth as shown by the solid red line (best 

fit), indicates that membrane protein structures are not being solved as fast as expected. 

(reproduced from http://blanco.biomol.uci.edu). 
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milligrammes of purified, functionally active protein (Sarramegna, et al., 2003). By 2010, 

yeast was responsible for over 50% of eukaryotic membrane protein structures solved from 

eukaryotic recombinant sources (Fig 1.3). 

 

 

 

 

 

 

1.1.2. G protein-coupled receptors  

Receptors are integral membrane proteins that regulate cellular process via cell signalling, 

the largest and most important family in mammalian genomes being the G protein-coupled 

Fig 1.3 Current progress in solving prokaryotic and eukaryotic membrane protein structures. The 

graph shows a comparison of unique solved structures of membrane proteins derived from natural 

(black) and recombinant sources (orange) that have been deposited in the Protein Data Bank since 

the first deposit in 1985. The pie chart illustrates the distribution of recombinant host sources used to 

generate the recombinant membrane protein source material (reproduced from Bill e t al., 2011).  
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receptors (GPCRs)(Zhang et al., 2006), which make up 3%  of the human genome 

(Gilchrist & Mazzoni, 2010) or 950 GPCRs (Takeda et al., 2002).  

 

GPCRs in particular are known to regulate a diverse and complex array of essential 

physiological functions via cell signalling (Gilchrist & Mazzoni, 2010), mediated by 

several stimuli such as peptides, hormones, neurotransmitters, ions and even photons 

(Fredriksson et al., 2003). This is supported by research suggesting that abnormal or non-

functioning GPCR pathways play a role in a wide array of diseases such as cardiovascular 

defects, blindness, allergies, depression, diabetes and some forms of cancer (Wu, 2010). 

This makes them excellent therapeutic targets, as knowledge of a protein’s native structure 

can help us to understand its function, opening the avenue for new drug development, and 

increasing medical knowledge. Moreover, approximately 200 of the top selling 

pharmaceuticals target GPCRs (Table 1.1).  

 

 

 

 

 

GPCRs have the ability to be bound by ligands/agonists on the cell surface causing a 

signalling cascade within the cell. They are typically composed of an extracellular N-

terminus, seven transmembrane domains, and an intracellular C-terminus that interacts 

with guanidine nucleotide binding proteins (G proteins) as shown on next page (Fig 1.4). 

Table 1.1 Drugs that act by targeting GPCRs.  The table illustrates the breadth and scope of 

diseases that are treated by using GPCRs as drug targets, ranging from aliments of the 

respiratory, cardiovascular and neurological systems to cancer and HIV (Wu, 2010). 
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Fig 1.4 Schematic of a GPCR and the mechanism of G protein (G
a
) binding. Panels A and B 

illustrate the mechanism through which the seven transmembrane domains of a GPCR are bound at 

their respective binding surfaces, and the subsequent conformational change the receptor undergoes 

(refer to the inset box for a description of the coloured symbols). Panels C and D represent a side 

perspective depicting how the GPCR is integrated into the membrane showing the mechanism of G 

protein activation and intracellular response caused via agonist binding.   

 

B 

D 
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Agonist binds GPCR 

Unbound GPCR 
C 

D 

Agonist 
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The traditionally used classification for GPCRs divides them into 6 groups: Class A 

(rhodopsin-like); Class B (secretin-like receptor); Class C (metabotropic glutamate); Class 

D (Fungal mating pheromone receptors); Class E (Cyclic AMP receptors); and Class F 

(Frizzled/Taste2) (Attwood & Findlay, 1994, Kolakowski, 1994). Membership of a group 

is determined by >20% amino acid homology within the transmembrane domains 

(Attwood & Findlay, 1994, Kolakowski, 1994). This system was originally intended to 

cover vertebrates and invertebrates, and does not therefore include categorisation for 

mammalian GPCRs. Consequently, some classes do not exist in humans, which is true of 

class D and E (Fredriksson & Schiöth, 2005). Therefore another classification system, 

GRAFS,  was developed (Table 1.2)  which allows for an overall map of mammalian 

genomes (Fredriksson et al., 2003). The five main families in GRAFS are Glutamate, 

Rhodopsin, Adhesion, Frizzled and Secretin, with evidence suggesting they all share a 

common ancestor (Fredriksson et al., 2003).  

 

Table 1.2 GRAFS classification of GPCRs.  The table details the Glutamate, Rhodopsin-like, Adhesion, 

Frizzled/Taste2 and Secretin-like members of the GRAFS family classification system of GPCRs 

(Fredriksson & Schiöth, 2005).  
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The production of pharmaceutically- important integral membrane proteins is essential for 

further pharmacological research. For many years the only GPCR to have its crystal 

structure solved was bovine rhodopsin (Palczewski et al., 2000), due to it being readily 

available from bovine retina and being more thermostable than its counterparts. 

Consequently this was the only template for drug design and GPCR studies. Therefore 

many drugs were formulated during this era with limited knowledge concerning the 

intricacy of GPCR biology (Eisenstein, 2009). Fortunately recent breakthroughs in 

crystallography and expression strategies including protein engineering have allowed for 

the stabilisation and subsequent experimental determination of solved structures for the β2 

adrenergic receptor (Rasmussen et al., 2007), β1 adrenergic receptor (Warne et al., 2008) 

and the adenosine A2A receptor (Jaakola et al., 2008), which started a trend in the discovery 

of new unique membrane protein structures, the most recent being listed in Table 1.3. 

 

 

 

 

 

 

Despite these tremendous breakthroughs to date still less than 1% of GPCR structures have 

been determined (Sabbadin et al., 2014), and the ability to consistently and predictably 

produce milligrammes of stable functional GPCRs and membrane proteins in general 

remains a substantial challenge when compared to other categories of proteins that are of 

interest for study (Moraes et al., 2014). 

Year GPCR structure Ref 

2011 human histamine H1 receptor Shimamura et al., 2011 

2012 human M2 muscarinic acetylcholine receptor Haga et al., 2012 

2013 human smoothened receptor Wang, Wu, et al., 2013 

2013 human glucagon class B receptor  Siu et al., 2013 

2013 human serotonin receptor  Wang, Jiang, et al., 2013 

2013 human CCR5 chemokine receptor  Tan et al., 2013 

2014 human P2Y12 receptor  Zhang et al., 2014) 

2014 human metabotropic glutamate receptor 1 Wu et al., 2014 

Table 1.3 Most recently solved GPCR structures.  The table details the most recent successes for 

unique GPCR structures from 2011-2014.   
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1.1.3. Radio-ligand binding assays 

Radio-ligand binding assays involve measuring the specific binding of a receptor to a 

known radio-labelled (labelled with a radioactive isotope) agonist or antagonist (McKinney 

& Raddatz, 2006, Hulme & Trevethick, 2010).  Agonists are natural or synthetic 

compounds that bind and activate a receptor to cause a response, whereas antagonists bind 

a receptor but do not cause a response; they can also prevent other agonists binding (Leach 

et al., 2010). The law of mass action provides the simplest explanation of receptor-ligand 

binding (shown below), and is the basis for radio-ligand binding assay calculations (Leach 

et al., 2010). In this equation, the ligand can be an agonist or an antagonist. 

 

The ligand binds to the receptor forming a receptor – ligand complex; the rate at which this 

occurs is defined by the number of binding events per unit of time referred to as the 

association rate constant kon. Since the process is reversible, the rate can also be defined by 

a dissociation rate constant koff (dependent upon ligand-receptor affinity). Equilibrium 

between association and dissociation is reached when the rate of ligand-receptor complex 

formation equals the rate of ligand-receptor complex dissociation (Leach et al., 2010). 

During equilibrium, the ratio of the rate constants kon and koff can provide information 

regarding the potency of ligand-receptor interaction in the form of the equilibrium 

dissociation constant Kd; is also the concentration of ligand that binds 50% of the receptors 

present. At equilibrium the ligand-receptor complex concentration is governed by the total 

receptor density [ReceptorT], the ligand concentration [Ligand] and the equilibrium 

dissociation constant of the ligand (Leach et al., 2010), which is referred to as the Hill-

Langmuir binding isotherm equation: 

[ReceptorT] x  [Ligand] 

[Receptor    Ligand]  = 

 [Ligand] + Ka 

Where [ReceptorT] = [Receptor] + [Receptor    Ligand] and Ka = kon / koff.   

Receptor + Ligand 

kon 

koff 

Receptor    Ligand 
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Several different types of radio-ligand binding experiments are possible. For saturation 

binding, the binding of increasing concentrations of radio-ligand [Ligand] is measured at 

equilibrium to determine the binding constant (dissociation constant Kd), additionally the 

concentration of specific binding sites for the radio-ligand [ReceptorT] is usually termed 

Bmax. For competition binding experiments, one or more fixed radio-ligand concentrations 

is measured at equilibrium in the presence of increasing concentrations of unlabelled 

ligand. The data can allow the determination of the Kd for a compound for the un-liganded 

receptor and the co-operativity between the compound and the radio-ligand for the binding 

to the receptor. From these experiments the inhibitory constant Ki  can be determined using 

the Cheng-Prustoff equation (Leach et al., 2010) (shown below). 

 

1.1.4. Human adenonise-2A receptor (hA2AR)  

The adenosine 2A receptor (hA2AR) receptor is a GPCR belonging to the Adenosine 

Receptor Family, including A1, A2A, A2B, and A3, which are important targets for 

pharmaceuticals, being responsible for cell signalling in the most important organs; lungs, 

heart and brain (Jacobson, et al., 2000).  hA2AR plays a part in the alleviation of 

cardiovascular and central nervous system disorders (Ongini, et al., 1996). It is antagonised 

by caffeine and theophylline (Jin & Fredholm, 1996). hA2AR is a well-studied GPCR, with 

a variety of ligands designed to bind it. Recombinant production of hA2AR has previously 

been achieved using yeast, specifically S. cerevisiae (Niebauer et al., 2004, Niebauer & 

Robinson, 2006, O’Malley et al., 2007) and P. pastoris (Fraser, 2006, Singh et al., 2008), 

due to the difficulties in using E. coli (Weiss & Grisshammer, 2002). In these studies the 

aim was to isolate and purify the protein for crystallisation to study its structure, multiple 

conformations and mechanisms depending on the ligand bound (O’Malley et al., 2007). 

However, its crystal structure was ultimately solved using recombinant protein produced in 

insect cells in complex with the high-affinity antagonist ZM241385 at a resolution of 2.6Å 

(Jaakola et al., 2008) (Fig 1.5).  

EC50 

Ki  = 

1+ [Radioligand] / Kd 

           

Where Ki = dissociation constant; EC50 = half the effective concentration of the unlabelled 

agonist or antagonist to the receptor, Kd is the Kd of the radioligand and [Radioligand] = 

concentration of the radioligand. 
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Fig 1.5 Diagram of hA2AR-T4L crystal structure with antagonist ZM241385 bound. (A) The 

structure is viewed perpendicular to the plasma membrane; with the transmembrane domain in 

brown, T4 lyzozyme (T4L) in cyan, ZM241385 in light blue, four lipid molecules bound to the 

receptor in red, the four disulphide bonds in yellow, the extracellular loops (ECL 1 -3) in green, and 

the intracellular loops in blue. (B) The structure rotated by 180°around the x-axis (Jaakola et al., 

2008).   

  

  

 

The structure shown in Fig. 1.5 was thermostabilised by removing the C-terminal tail and 

replacing it with T4 lysozyme (T4L) increasing the rigidity by replacing the intracellular 

loop 3(ICL3) (Jaakola 2008), since it had previously been reported that the C-terminal tail 

degraded when recombinantly expressed in E. coli (Weiss and Grisshammer, 2002). A 

subsequent crystal structure was obtained using agonist UK-432097 which when bound 

caused conformational changes leading to a more stable activated state at a resolution of 

2.7Å  (Xu et al., 2011).  Additional efforts have been made to further thermostabilise 

hA2AR by using modified truncated variants and binding different ligands to induce 

different conformational states (Jaakola et al., 2008,  Singh et al., 2008, Xu et al., 2011). 

Mutagenesis has also been employed by performing point mutagenesis to change amino 

acid residues in a systematic manner; consequently, thermostable mutants have been 

created which increase the chances of generating suitable crystals for characterisation 

(Lebon et al., 2011, Lee et al., 2014). However, a complete dynamic understanding of the 
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Fig 1.6 Translation initiation in eukaryotes. The 40S subunit 

binds eIF1, eIF1A, eIF3 and eIF2-GTP-Met-tRNA, the resultant 

complex binds the eIF4 group at the 5ˊ (m7G) cap forming the 

43S pre-initiation complex, which scans the mRNA until an 

initiation codon is found; eIF5 binds and causes the release of all 

eIFs, 60S then binds 40S to form the elongation-capable 80S 

(adapted from Cooper M, 2000). 

mechanism of hA2AR activation is still lacking, which requires wild-type protein in as 

native an environment as possible for further study. The yeasts P. pastoris and S. 

cerevisiae have been the most successful hosts for expression of hA2AR to date, producing 

the highest yields reported (P. pastoris; 2 mg/L (Singh et al., 2008) and S. cerevisiae; up to 

6 mg/L (O’Malley et al., 2007) with near identical pharmacological properties as hA2AR 

from native membranes (Fraser, 2006, Niebauer & Robinson, 2006, O’Malley et al., 2007,  

Singh et al., 2010). Since yeasts are amenable to molecular manipulation, their use 

provides new opportunities to 

generate high yields of 

recombinant hA2AR, and 

other GPCRs, by devising 

new strategies based on 

recent advances in our 

understanding of 

recombinant protein 

synthesis and the 

mechanisms of translation in 

eukaryotes (Bill, 2014). 

 

1.2. Mechanisms of 

translation in eukaryotes 

Translation, the biosynthesis 

of proteins, is performed by 

ribosomes which are 

essentially large protein-

ribosomal RNA multi-

complexes. Ribosomes use 

messenger RNA (mRNA) as 

a template to synthesise 

polypeptide chains. The 

ribosomal subunits, 40S and 

60S, associate to become the 
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eEF-1α 

 eEF-2 

 
eEF-1α 

Fig 1.7 Translation elongation in eukaryotes. The 
Met-tRNAi 

located in the peptidyl (P) site pairs 

with the initiation codon (AUG), while the 

eukaryotic elongation factor (eEF)1α recruits the 

next aminoacyl-tRNA to the amino-acyl (A) site 

which pairs to the next codon. A peptide bond is 
formed between the Met-tRNAi and the new 

aminoacyl-tRNA. The ribosome translocates along 

the mRNA to the next codon with the help of eEF2, 

the A site becomes vacant due to translocation, the 

last aminoacyl is now in the P site and the Met-
tRNAi in the exit (E ) site. With the A site now 

vacant another complementary aminoacyl-tRNA 

can be recruited and a peptide bond formed to add 

to the growing polypeptide; this process repeats 

until a stop codon is reached. (Adapted from 
Cooper M, 2000).    

 

functional 80S ribosome, which performs this 

process (Fig 1.6) in three distinct steps, 

referred to as initiation, elongation and 

termination. The initiation of translation (Fig 

1.6) requires initiation factors called 

eukaryotic initiation factors (eIF). The factors, 

eIF1, eIF1A and eIF3 bind the 40S subunit, 

which in turn allows the association of the 

eIF2-GTP and Met-tRNAi. Simultaneously 

eIF-4E recognises the 5ˊ 7-methylguanosine 

(m7G) cap of the mRNA (Fig 1.6), and binds 

the other eIF4 factors. (Cooper M, 2000) 

 

They then bring the mRNA to the ribosome 

where eIF4G binds to eIF3 (of the 40S, eIF1, 

eIF1A, eIF3, eIF2-GTP, Met-tRNAi complex), 

forming the 43S pre-initiation complex. This 

complex then scans the mRNA from 5ˊ to 3ˊ, 

until the Met-charged-tRNA initiator 

recognises an initiation codon (AUG), which 

then recruits eIF5, which triggers the 

hydrolysis of the eIF2-bound GTP.  This 

releases all the initiation factors and allows the 

60S ribosome to bind the 40S subunit, 

generating the elongation-capable 80S 

ribosome. The 80S has three tRNA binding 

pockets; the peptidyl (P), aminoacyl (A) and 

exit (E). The A site is where new aminoacyl-

tRNAs bind and are joined to previously-

bound aminoacyl-tRNAs located in the P site 

where the growing peptide chain is located, 

and the E site is where the tRNA is released 

from its amino acid. At the start of the 
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Fig 1.8 Translation termination in eukaryotes. 

The ribosomal A site translocates to a stop 

codon, which has no complementary aminoacyl-

tRNA; instead a release factor binds the codon. 

This causes the hydrolysis of the tRNA-

polypeptide chain bond in the P site, release of 

the polypeptide and disassociation of the 40S and 

60S subunits.  (Adapted from Cooper M, 2000).    

  

elongation step (Fig 1.7) the Met-tRNAi is 

located in the P site and paired to the AUG, the 

next aminoacyl-tRNA  is recruited by the 

eukaryotic elongation factor 1 alpha (eEF1α) 

GTP complex to the A site and pairs according 

to the next codon.  During this process the GTP 

is hydrolysed, and a GDP-bound eEF1α is 

released and a peptide bond formed between the 

initiator methionyl tRNA residing in the P site 

and the second (newly arrived) aminoacyl at the 

A site, catalysed by the ribosome. The ribosome 

moves three nucleotides down the mRNA to the 

next codon, termed translocation, and requires 

eEF2 coupled with hydrolysis of GTP. This 

process translocates the A site over the new 

codon (the A site is now vacant), the peptidyl 

tRNA (Met-Ala-tRNA) from the A site into the 

P site, and the uncharged tRNA at the P site to 

site E which will be released upon recruitment 

of a new amino-acyl tRNA to the A site. This 

process is repeated forming a polypeptide until 

an A site translocates onto a termination codon, 

where the termination step takes place. The 

termination step (Fig 1.8) begins when a 

ribosomal A site moves to a termination codon 

having no complementary anticodon tRNA 

(UAA, UAG, UGA); in its place is a eukaryotic 

release factor (eRF-1.) This factor binds the A 

site and induces hydrolysis of the bond linking 

the tRNA with the polypeptide chain in the P 

site, resulting in completed-polypeptide release 

and mRNA-ribosome dissociation, terminating 

translation (Cooper M, 2000).   Translation 

initiation may be the rate-limiting step in 
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Fig 1.9 Cap-dependent & Cap-independent models for translation initiation (reproduced from Kieft et 

al., 2010). 

recombinant protein production (Hershey & Cold Spring Harbor Laboratory., 1996), 

requiring the 5ˊ cap dependent mechanism of translation initiation. If this mechanism can 

be circumvented then the rate limiting step can be overcome and recombinant yield 

increased.  

 

1.2.1. Internal ribosome entry sequences 

The concept of an internal ribosome entry sequence (IRES) first came to light when 

encephalomyocarditis virus (EMCV) and poliovirus were observed to have the ability to 

maintain viral protein production even when 5ˊ cap-dependent ribosomal scanning was 

inhibited in infected cells as a stress response caused by the viral infection. This revealed 

the possibility of cap-independent initiation of translation, later attributed to the presence 

of specific secondary structures of mRNA now referred to as an IRES (Jang et al., 1988, 

Pelletier & Sonenberg, 1988, Jang et al., 1989).   

 

 

An IRES is a cis-acting nucleotide sequence that allows for the initiation of translation 

downstream of the 5ˊcap of an mRNA transcript independent of translation initiation 

factors (Jang et al., 1988, Pelletier & Sonenberg, 1988, Jang et al., 1989). It allows direct 
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recruitment of the 40S ribosome to the initiation codon independent of 5ˊ cap binding 

(Komar & Hatzoglou, 2011) by acting as a ‘landing pad’ for ribosomes (Pelletier & 

Sonenberg, 1988) (Fig 1.9). This is unique as standard translation is a complex process that 

requires recognition of the 7mG cap at the 5ˊ of mRNAs for initiation complex association, 

and subsequent 43S ribosomal subunit scanning until it ‘stumbles upon’ a start codon such 

as AUG. This triggers the assembly the 80S ribosome-initiation complex whereby 

translation begins. An IRES achieves this by being able to recruit ribosomes within the 5ˊ 

untranslated region (UTR) close to or at the start codon without the need for 5ˊcap binding 

and in some cases no initiation factors (Wilson et al., 2000). 

 

 

There are various degrees of IRES activity and their reliance on initiation factors (Fig 

1.10), as shown by the well-studied viral mechanisms above, ranging from the polio virus 

which needs nearly all eIFs, to the cricket paralysis virus (CrPV) and Plautia stali intestine 

Figure 1.10 Differing categories of IRES mechanisms compared to standard cap-dependent initiation 

of translation. The diagram allows the comparison of viral IRES mechanisms according to the need for 

initiation factors (IFs), ranging from a reliance on all IFs except 4E exhibited by the poliovirus, to the 

cricket paralysis virus (CrPV) which requires none (reproduced from Kieft et al ., 2009). 
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Fig 1.11 Picornaviral IRES structural mimicry of the 43S pre-initiation complex. (A) The assembled 

43S pre-initiation complex bound to mRNA, interacts with the ribosome and poly A-binding protein to 

allow circularisation of the mRNA. (B) Structural schematic depicting picornaviral IRES recruitment of 

the 40S ribosome directly to start codon (AUG), aiding by a polypyrimidine tract  (adapted from Stoneley 

& Willis 2004 and Belsham & Jackson 2000). 

  

A B 

virus (PSIV) which need none (Wilson et al., 2000, Filbin & Kieft, 2009). It is believed 

that for most IRESes this is possible due to structural similarities between the IRES and the 

pre-initiation complex (Fig 1.11); the IRES essentially acts as an ‘pre-initiation complex’ 

mimic (providing similar conditions needed to attract ribosomes) (Stoneley & Willis, 

2004). This is under debate, as native strong IRESes in yeast and the fruit fly have been 

shown to have a weak secondary structure, implying a common cap-independent 

mechanism that utilises unstructured RNA segments (Xia & Holcik, 2009). Additionally 

the recent crystal structures of the CrPV IRES bound to the ribosome of the yeast 

Kluyveromyces lactis revealed that it instead mimics a pre-translocation state (Fernández et 

al., 2014). 

 

Cellular eukaryotic mRNA has also been found to possess IRES sequences; it is postulated 

these evolved to allow cap-independent translation of essential genes during mitosis or 

stress conditions, as translation is reduced or stopped at the initiation step (Sonenberg, 

1994a, Han et al., 2001, Morris, 1995, Pain, 1996, Sonenberg, 1994b, Clemens & Bommer, 

1999, Willis, 1999). Therefore cell survival requires this initiation block to be 

circumvented to allow essential genes to continue to be translated; IRESes have been the 

suggested mechanism to facilitate this. It has been shown in eukaryotes that under standard 

growth conditions, cap-dependent and cap-independent translation occur in unison, but 
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when stressed through low nutrient conditions, cap-dependent initiation is prevented while 

IRES-containing mRNA transcripts are still translated (Holcik & Sonenberg, 2005).  

 

Approximately 10% of eukaryotic cellular mRNAs are thought to possess the ability to 

initiate translation via IRESes (Stoneley & Willis, 2004, Komar & Hatzoglou, 2011). As 

our knowledge of IRESes has improved, the potential to discover treatments for viral 

infections via inhibition of viral IRESes has become a reality with recent developments 

leading to the discovery of benzimidazole compounds that bind the HCV IRES and prevent 

the virus from replicating (Dibrov et al., 2012). Furthermore, a variety of oncogenes, 

growth factors and proteins involved in programmed cell death possess IRESes in their 5ˊ 

UTRs, because internal  initiation allow genes to escape many regulatory mechanisms for 

cap-dependent translation. This could facilitate the survival of cancer cells under stress 

conditions (such as those caused by a lack of nutrients, hypoxia or therapy-induced DNA 

damage) and aid the progression of the cancer, thus targeting of IRESes might therefore 

result in effective future cancer treatments (Holcík, 2004). 

 

1.2.1.1. Internal ribosome entry sequences in yeast 

IRES activity in yeast, which is a lower eukaryote, has been specifically observed in S. 

cerevisiae mRNA for yeast adapter protein 1 (YAP1) and p150 (also called TIF4631), the 

yeast homologue of the cap-binding protein eIF4G (Zhou et al., 2001). Using luciferase 

expressing reporting vectors which allow only cap-independent translation by obstructing 

ribosomal scanning with mRNA hairpins, Zhou and colleagues were able to prove IRES 

activity in the 5ˊ UTRs of the mRNAs of both genes (Zhou et al., 2001). This was also 

confirmed using the Renilla luciferase reporter, with p150 showing a 10-fold and YAP1 a 

5-fold increase translational activity (Zhou et al., 2001) with similar findings being 

reported using fluorescent reporter genes (Edwards & Wandless, 2010). As of yet no native 

P. pastoris IRES have been confirmed due to the lack of UTR sequence information 

(Liang, et al., 2012a), although  they have been theorised to be present in the 5ˊUTRS of 

the KOG1 and KOG2 mRNAs (Liang, et al., 2012b). Recently, a putative S. cerevisiae 

IRES from the 5ˊUTR of GPR1 mRNA has been shown to initiate translation of a reporter 

gene in P. pastoris (Liang, et al., 2012a) .  

 

The insect IRES of the CrPV was shown in vitro to bind the 40S ribosomal subunit, and 

upon the addition of the 60S subunit (with no other eIFs or GTP) the 80S ribosome was 
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formed (Hinnebusch, 2001). This demonstrates the ability of an IRES to recruit ribosomes 

without factors. Additionally in vivo studies using the CrPV IRES proved it functions in S. 

cerevisiae; uracil selection was used in conjunction with a URA3 expressing vector under 

the control of the CrPV IRES and a tightly-regulated promoter. The yeast were able to 

grow sufficiently on uracil deficient plates, while cells expressing non-functional IRES 

mutant controls did not (Deniz et al., 2009). IRES efficiency was greatly increased when 

eIF2B was mutated to reduce its ability to bind 40S and thus increased the amount of free 

40S (Deniz et al., 2009). In yeast the CrPV IRES does not mimic the pre-initiation 

complex with the help of other factors as the picornaviral IRESes do (Stoneley & Willis, 

2004), but in fact mimics the Met-tRNAi
Met

 to directly recruit the 40S, which stimulates the 

binding of the 60S subunit, forming an elongation-capable 80S ribosome. (Deniz et al., 

2009). Despite this, several studies have observed that cap-independent initiation in S. 

cerevisiae is unable to recruit sufficient ribosomes unless cap-dependent initiation is 

blocked or reduced (due to stress, starvation, viral infection) as there is competition with 

the cap-dependent mechanism (in particular for ternary complexes) (Deniz et al., 2009).  It 

also has been speculated that IRESes might be employed to increase protein expression in 

eukaryotes (Chappell et al., 2000). 

 

The literature discussed above provides a solid foundation for using IRESes to avoid rate 

limiting cellular control mechanisms in yeast, as this is regulated through the cap-

dependent mechanism which IRESes do not. Recombinant synthesis has in some cases 

been shown to cause a translational block due to cellular stress. This is thought to be 

regulated by eIF-2 kinase, which is released to shut down protein synthesis/translation 

(Harding et al., 2000, Novoa et al., 2001) when the cell senses high amounts of denatured 

protein (a common occurrence during heterologous expression in recombinant hosts) 

(Mattanovich et al., 2004, Gasser et al., 2008). Modifying existing expression vectors with 

IRES sequences therefore has the potential to be used to circumvent any rate limiting 

events imposed by the cell in response to recombinant protein production. Secondly, the 

vector could allow potentially exclusive expression of a recombinant protein by artificially 

inducing stress upon host cells. IRES-augmented mRNA transcripts should be processed 

independently of most, if not all, translation initiation factors depending on the IRES 

element chosen, therefore exploiting a mechanism first highlighted by viruses (Jang et al., 

1988, Pelletier & Sonenberg, 1988, Jang et al., 1989).  
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1.3. Recombinant protein production  

Typically proteins of interest must be produced in the large quantities required for further 

study in a suitable host organism, as a higher yield can be acquired than from natural 

sources. This is particularly true for membrane proteins (Bawa et al., 2011). For example, 

human insulin for treating diabetes was originally extracted from pancreas glands of swine 

and cattle, with 8,000 pounds of gland needed to produce 1 pound of insulin (Noyd et al., 

2013). Then in 1978 the protein hormone was produced recombinantly using E. coli and 

later with S. cerevisiae (Thim et al., 1986), improving yield dramatically while reducing 

time and costs. Recombinant production is usually performed through the introduction of 

plasmid DNA which encodes the protein of interest and a selection marker to allow the 

selection of cells that express the protein of interest. The plasmid vector has the ability to 

replicate and perform protein synthesis using the host cell machinery. The host cells 

therefore act as a recombinant protein factory which will be cultured at an exponential rate. 

Below is a table detailing properties of the major host systems (Table 1.4). 

  

Properties Bacteria   Yeast  Insect  Mammalian  

Complexity of 

Growth Medium 
Minimum Minimum Complex Complex 

Medium Cost Low Low High High 

Expression Level High Low - High Low - High Low - Moderate 

Yield (mg/L)  50-500 10-200 10-200 0.1-100 

Protein Folding 

Refolding 

Usually 

Required 

Refolding May Be 

Required 
Proper Folding Proper Folding 

Success Rate (%)  40-60 50-70 50-70 80-95 

N-linked 

Glycosylation 
None High Mannose Simple Complex 

O-linked 

Glycosylation 
No Yes Yes Yes 

Phosphorylation No Yes Yes Yes 

Project Cost Low Low Medium High 

Advantage 
Low cost, 
fast and easy 

to grow 

Low cost, faster than 
higher eukaryotes,  

possess post translational 

modification (PTM) 

Product closer to 
native state than 

microbes can 

manage, better PTM 

Product is correctly 

folded via natural 
configuration, best 

PTM, more useful for 

study 

Disadvantage 

No PTM 

resulting in 

non-

functional 
products 

Suffers hyper-

glycosolation, requiring 

the cleavage at a later 
stage 

Requires specialised 

media and strict 

culture conditions, 

longer time, 
expensive. 

Requires specialised 

media and strict 

culture conditions, 

longer time, highest 
cost 

Table 1.4 Properties of each major host system with respect to recombinant protein production. Adapted from 

http://www.genwaybio.com/technologies/protein-expression). Post translational modification (PTM). 
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The majority of recombinant protein production is usually carried out using the four main 

host systems detailed in Table 1.4; bacteria (E. coli), yeast (P. pastoris, S. cerevisiae), 

insect cells (baculovirus/insect larvae) and mammalian cells (CHO, HEK). To date 

recombinant protein production is divided among these hosts as follows: E. coli 73%;  P. 

pastoris 11%; Mammalian cell-lines 4%; Insect cells 4% and S. cerevisiae 2% (the 

remainder being accounted for by cell-free systems and other microbes).  Yet of the 150 

recombinant protein that are approved as drugs by the US Food and Drug Administration, 

29% are from E. coli, 18% from   S. cerevisiae, 12% from hybridoma cells, 40% from 

mammalian cells, 0.5% from insect and 0.5% from transgenic animals (Bill, 2014). 

 

Each host system has a variety of unique accessory factors needed for the synthesis of 

membrane proteins of which not much is known (Bill et al., 2011). The significance of this 

is that although a membrane protein can be produced in a chosen host, there are subtle 

differences in factors such as chaperones, single peptides and translocon components that 

may result in low yields due to inefficient synthesis (Bill et al., 2011). Notably, it has been 

shown that higher yielding conditions do not always correlate with higher functional 

protein yield (André et al., 2006), and contrastingly production at a slower rate due to 

‘translational initiation blocks’, allows proteins to fold properly improving functional 

yields (Bonander et al., 2005).This situation has been termed ‘the bottleneck in membrane 

protein production’, since acquisition of the membrane protein of interest is an important 

rate limiting step in research in this field (Bonander, et al., 2009).  

 

The success of E. coli is due to the low cost and time involved in expressing soluble 

proteins such as insulin, human growth hormone and the insulin growth factor 1 (Ferrer-

Miralles et al., 2009). Yet it does have disadvantages as a recombinant host (detailed in 

Table 1.4)  such as a tendency to form inclusion bodies that need refolding at a later stage 

(Ferrer-Miralles et al., 2009). Furthermore, prokaryotic translation elongation occurs 4-10 

times faster than eukaryotic translation elongation and the codon usage is different which 

can have unforeseen effect on the folding of eukaryotic proteins (Ferrer-Miralles et al., 

2009). Additionally as shown in Table 1.4, E. coli does not perform adequate post-

translation modification (PTM) such as glycosylation, phosphorylation, acetylation and 

disulphide bond formation, which can have adverse effects on eukaryotic proteins. In 
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contrast, insect and mammalian cells produce more authentic products when expressing 

proteins of human origin, and are used in the biopharmaceutical industry to produce 

erythropoietin, granulocyte colony stimulating factor and monoclonal antibodies (Demain 

& Vaishnav, 2009).  The yeast species, S. cerevisiae, is used extensively for the production 

of therapeutics, possessing the properties of a prokaryotes (fast and easy culture, low cost) 

with the appropriate PTMs allowing correct eukaryotic expression and folding for human 

proteins (Nielsen, 2013). 

 

Whilst products from yeast are not as authentic as those from mammalian or insect cells, 

the trade-off for high-density low cost cultures with adequate PTM make it a good mid-

ground host (Demain & Vaishnav, 2009). S. cerevisiae performs high mannose-type N-

linked glycosylation of recombinant proteins, where a chain of over 100 mannose residues 

is added during glycosylation, which is not typically found in mammals. This can 

adversely affect the function of recombinant human proteins, confer a short half-life in vivo 

and often requires modification of the protein remove glycosylation sites (Wildt & 

Gerngross, 2005, Nielsen, 2013). Consequently, much work has been performed to 

engineer S. cerevisiae (and P. pastoris) strains that that can carry out human N-linked 

glycosylation; this could see yeast host use become even wider (Wildt & Gerngross, 2005), 

especially since P. pastoris has recently been approved for use as a biopharmaceutical host 

(Berlec & Strukelj, 2013).  P. pastoris is used in conjunction with the inducible alcohol 

oxidase 1 (AOX1) promoter, which is induced using methanol to turn on recombinant 

expression. Therefore the difficulties with high density culture do not apply to P. pastoris, 

and it can also express recombinant proteins without the hyperglycosylation typical of S. 

cerevisiae  (Romanos et al., 1992). P. pastoris has been used extensively for the production 

of difficult targets, such as membrane proteins, as it is amenable to high-density cultures. 

However unlike S. cerevisiae, P. pastoris is not as well studied as a model organism and 

therefore is a less suitable candidate for genetic manipulation. In contrast to P. pastoris, S. 

cerevisiae cannot be grown to high cell yields unless under a complex feeding regime 

resulting in a production and subsequent build-up of ethanol (Verduyn et al., 1984). 

Interestingly the TM6* strain possesses mutated hexose transporters (Hx1p and Hx7p) 

responsible for glucose uptake and is an exclusively respiratory yeast, which does not 

undergo fermentation and can therefore be grown to higher cell densities than wild-type 

strains (Otterstedt et al., 2004). 
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While E. coli is responsible for the vast majority of recombinant protein production, when 

it comes to challenging targets, the yeasts P. pastoris and S. cerevisiae have substantial 

advantages, with over 50% of all the eukaryotic membrane protein structures deposited in 

the PDB being produced in yeast (Fig  1.3) (Bill et al., 2011). This is not surprising as a 

study using 103 GPCRs determined that only 50% could be expressed in E. coli when 

compared to 94% for yeast and 95% for mammalian cells (Lundstrom et al., 2006). Even 

so, membrane protein production still suffers from low functional yield (Bonander, et al., 

2005) and cannot be produced predictably in the high-yields required (Bill et al., 2011), a 

problem that is further compounded by the fact that there is no universal host for 

recombinant membrane protein production (Bill, 2001, Sørensen, 2010). 

 

 1.4. Saccharomyces cerevisiae 

The yeast species S. cerevisiae belongs to 

the Fungi kingdom and has historically 

been associated with bread and beer 

making. S. cerevisiae cells are around 2-

10µM in size and are referred to as 

budding yeast, as the ‘mother’ cell 

divides to create a smaller ‘daughter’ cell 

or ‘bud’ (Fig 1.12). The typical doubling 

time of S. cerevisiae when grown in a 

complex medium containing its preferred 

carbon source, glucose, is approximately 

1.6h (Werner-Washburne et al., 1993). As 

it is a eukaryote many cellular mechanisms are conserved between the yeast and humans, 

making it an indispensable tool for biological studies.  It was the first eukaryote to have its 

genome sequenced revealing 6,200 genes on 16 chromosomes (Bassett et al., 1996). 

Additionally the Saccharomyces Genome Database (http://www.yeastgenome.org) is an 

open community source sharing molecular and microbial resources. The ease with which 

experiments can be performed using yeast has allowed a wide range of biological questions 

to be answered on translation, transcription and metabolism.  For example, the geneticist 

Figure 1.12 Light microscopy image of wild-type 

S. cerevisiae with budding daughter cells.  
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and cell biologist Sir Paul Nurse was awarded a Nobel Prize in 2001 for his discovery, 

using yeast to identifying the specific proteins that control cell division. 

S. cerevisiae growth involves three phases (in a closed system under controlled 

conditions); lag, log, and stationary (Fig.1.13). Lag phase is when the yeast cells adjust 

their metabolism to utilise a new carbon source, such as glucose. Log phase is when 

growth is exponential and glucose is converted into ethanol and CO2 via fermentation and 

some respiration (Verduyn et al., 1984).  When the (fermentable carbon source) glucose is 

exhausted, a diauxic shift takes place (Fig.1.13), and the yeast metabolises the ethanol, 

cells grow at a reduced rate and increase their carbohydrate stores before entering 

stationary phase (Werner-Washburne et al., 1993).  

 

 

 

 

Figure 1.13 Growth and metabolism of S. cerevisiae. (A) Growth curve highlighting the three distinct 

phases; lag, log, and stationary.  (B) Metabolic curve illustrating the shift from respiro-fermentation to 

respiration indicated by the diauxic shift, which occurs when the preferred carbon so urce, glucose, is 

used up and ethanol that was produced during respiro-fermentation is consumed. 
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When all the ethanol has been exhausted, the yeast enter stationary phase due to 

accumulation of toxic waste products and nutrient limitation, during which there is no 

increase in cell count and the cells differentiate to a stress resistant state where the cell wall 

thickens, cells adapts to be thermo-tolerant, and transcription is reduced. Cells in stationary 

phase have been shown to survive with practically 100% viability for at least 3 months 

(Werner-Washburne et al., 1993).  

 

1.4.1 Recombinant membrane protein production in S. cerevisiae  

A wide range of important yeast expression hosts are used in recombinant protein 

production including S. cerevisiae, P. pastoris, Schizosaccharomyces pombe, 

Kluyveromyces lactis, Hansenula polymorpha, Yarrowia lipolytica and Arxula 

adeninivorans, the most promising of which have proven to be S. cerevisiae and P. 

pastoris (Celik & Calık, 2012).Using S. cerevisiae for laboratory research involves 

genetically engineered strains such as BY4741, which is an auxotroph having non-

functioning alleles for certain enzymes required for essential nutrient synthesis 

(Brachmann et al., 1998). This allows the selection of cells that harbour plasmids encoding 

a protein of interest. This is achieved by providing all the nutrients the organism requires in 

the growth medium excluding the nutrient that is encoded for by the plasmid selection 

marker gene, allowing the survival of plasmid-harbouring cells only. For example common 

selection markers are URA3, HIS3, TRP1, LEU3 and MET15 which encode critical 

enzymes involved in the synthesis of uracil, histidine, tryptophan, leucine and methionine, 

respectively (Pronk, 2002). 

 

S. cerevisiae is extremely well understood at a genetic level, possessing deletion libraries 

for 90% of it genes, and due to the high amount of conservation of expression and 

secretion pathways among lower and higher eukaryotes. Its higher eukaryote-like secretory 

pathways lead to correct processing of proteins (Mattanovich et al., 2012) and its 

machinery similar to mammalian cells enables post-translation modification such as 

disulphide bond formation and glycosylation (Böer et al., 2007). This allows the 

production of heterologous human proteins recombinantly in yeast, exploiting its microbial 

properties at the same time as its eukaryotic ones (Bawa et al., 2011). There is also huge 

potential for the modification of the complex systems that facilitate protein synthesis and 
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folding in yeast; this might lead to solutions for proteins that have proved difficult to 

express in their fully functioning form (Tate, 2001). Recent work on strain engineering to 

create improved yeast recombinant hosts (Bonander & Bill, 2012) has demonstrated that S. 

cerevisiae is particularly useful as a host organism for the production of difficult targets 

(Drew et al., 2008). The P2Y12 receptor which is a GPCR and potential drug target for 

platelet aggregation, recently had its structure solved using protein synthesised using insect 

cell line Sf9 (Zhang et al., 2014). 

 

1.5. Selective advantage 

Practically every hostile environment is inhabited by unique organisms that have been 

selected for by pressure applied by their environment, giving them a selective advantage 

(SA) over invading, competing organisms. The bacterium Shewanella oneidensis has the 

ability to turn toxic metals into soluble, less unstable forms, and in doing so acquire the 

oxygen it needs for cellular processes. As this organism inhabits deep-sea and soil 

anaerobic environments, this ability confers significant advantage over other competing 

organisms (Swan et al 2009). The most extreme conditions on earth have selected for 

another of group of microbes known as Archaea. Their ability to adapt to chronic stress has 

given them a selective advantage over bacteria in these extreme environments (Swan et al 

2009). They are organised into four main physiological groups; halophiles, thermophiles, 

alkaliphiles and acidophiles, which thrive in high salt, temperature, alkali and acid 

conditions, respectively. All the organisms mentioned have been selected for by their 

environment, therefore the same should apply to allow selection when the pressure applied 

is man-made/artificial. As mentioned in 1.4.1, strategies are employed routinely in 

microbiological research where an organism is transformed with a self-replicating double 

stranded DNA plasmid that codes for a protein of interest, allowing recombinant synthesis 

in the host. To guarantee that only organisms that possess this plasmid dominate a culture, 

a gene essential for survival of the host organism will be contained within the plasmid, 

allowing an organism to survive while their competitors perish (Fig 1.14).  

 

Four previous attempts have been reported which utilised SA to increase recombinant 

protein yields of difficult targets. All have taken place using bacteria as the recombinant 

host on protein targets of prokaryotic or viral origin. This has been done through tagging 
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the protein of interest with another protein that will confer a SA on cells that synthesise it. 

In 1999, an attempt to obtain soluble HIV integrase was plagued by solubility issues when 

expressed in bacteria; an SA strategy was therefore designed by fusing HIV integrase with 

chloramphenicol acetyltransferase (CAT), an enzyme conferring antibiotic resistance, and 

expressing the fusion protein in E. coli. It was discovered that when cultured on plates that 

contained high levels of chloramphenicol, cells that had a higher resistance tended to 

express the more soluble form of the HIV-integrase (Maxwell et al., 1999) although the 

underlying mechanisms were not elaborated on.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

In 2009, attempts were made to improve the yields of several membrane proteins from 

Mycobacterium tuberculosis (responsible for most cases of tuberculosis) including the 

membrane protein, rhomboid-Rv1337. A fusion between rhomboid-Rv1337and different 

antibiotic resistance enzymes resulted in the selection of strains that had up to a 75-fold 

BLUE – Yeast cells 

without selective 
advantage 

RED – Yeast cells                         
with selective advantage: 

plasmid conferring ability 
to make an essential 
nutrient + protein of 

interest 

Absence of a nutrient 
introduces a significant 

selective pressure whereby 
only cells possessing 

plasmid that give the ability 
to produce this nutrient 

survive. 

As no selective pressure is 
introduced no advantage is 
observed, so both strains 

survive in the population. 

Complete 
Synthetic Medium 

(CSM) 

CSM 
- 1 Nutrient 

Figure 1.14 Flow diagram depicting the basis of selective advantage in autotrophic yeast. 
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increase in yield (Massey-Gendel et al., 2009). Despite this success, the authors were only 

able increase yield of 10% of the membrane proteins tested. 

 

In 2010 researchers attempted to increase expression of several membrane proteins in 

Lactococcus lactis, by fusing them to the erythromycin-resistance protein (ErmC) which 

conferred resistance to the antibiotic erythromycin and resulted in  the selection of strains 

that had a 2-8 fold increase in yield for a number of the target proteins (Linares et al., 

2010). In 2014, the same research group attempted a similar method in E. coli, in which 

they were able to select for strains that had an increase in membrane protein yield by up to 

5-fold (Gul et al., 2014). In that study, GFP was used as a reporter of correct folding for the 

membrane proteins they were fused to it. While this is useful and routinely employed for 

high-throughput screening and optimisation of recombinant membrane protein expression 

(Newstead et al., 2007), no functional assays were performed on the recombinant proteins 

produced during the aforementioned strategies (Gul et al., 2014). 

 

1.6. Strategies to increase recombinant protein yield 

1.6.1. Employing Selective Advantage 

In order to improve functional yields of recombinant hA2AR in yeast, we devised a strategy 

to provide yeast cells with an SA (Fig 1.15) in producing hA2AR in fusion with orotidine-5 

phosphate decarboxylase (Ura3p). hA2AR was chosen since it is a well-characterised 

protein with a robust functional assay in the form of radio-ligand binding; this enabled the 

characterisation of total and functional recombinant protein. The fusion partner was Ura3p, 

which is essential in the catalytic pathways necessary for the production of uracil. 

Therefore cells that express the hA2AR-Ura3p fusion have a selective advantage when 

grown in a medium lacking uracil. A detailed overview of the strategy is provided at the 

beginning of Chapter 3. 
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1.6.2. Employing knowledge of translational processes  

1.6.2.1. Translational slowdown 

A reduction in the rate of translation has been shown to reduce amino acid incorporation 

errors and misfolding and thus lead to a higher functional yield, which is particularly 

important for membrane proteins; reductions in culture temperature have been employed to 

this effect for recombinant expression. It was decided to use deletion strains that had 

translational inhibitions, and also to administer drugs known to inhibit translation in yeast, 

in an attempt to reduce the rate of translational. Our model membrane protein was hA2AR. 

A detailed overview of the strategy is provided at the beginning of Chapter 4. 

 

Figure 1.15 Synthesis of recombinant hA
2A

R-Ura3p fusion protein. With the membrane protein 

correctly localised in the plasma membrane, the Ura3p fusion partner is positioned at the C -

terminus in the intracellular space anchored to the cell membrane, allowin g the cell to benefit from 

the enzymatic activity of the fusion partner. 
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1.6.2.2. IRES 

Translation initiation independent of the canonical 5ˊ cap-binding mechanism enables 

genes downstream of an IRES to circumvent regulation. As previously described in 

1.2.1.1, some yeast IRESes have also been shown to increase translational activity (Zhou et 

al., 2001, Edwards & Wandless, 2010), and they are thought to have increased activity 

when the host cell is in a stressed state as global translation initiation becomes 

compromised  (Paz et al., 1999, Komar & Hatzoglou, 2005). Consequently, it was 

theoretically possible that modifying an existing expression vector by inserting an IRES 

into the 5ˊ UTR upstream of a low yielding target might result in increased yields, 

especially if IRES activity was increased by the stress of recombinant protein production 

or alternatively through expression in a deletion strain that exhibits a constitutively stressed 

state.  It was decided to use hA2AR as the model membrane protein and the YAP1, p150 

and CrPV IRESes (the most studied IRESes shown to have in vivo activity under 

physiological conditions in wild-type yeast cells), along with spt3Δ, which has been shown 

to exhibit a translation initiation block (Fig 4.6). A detailed overview of the strategy is 

provided at the beginning of Chapter 4. 

 

1.7. Aims of project 

I) To use the principle of SA in S. cerevisiae cells to increase the yield of recombinant 

hA2AR expressed in its membranes; specifically to increase the yield per cell of 

functional protein. 

 

II) To use knowledge of translational processes that affect recombinant protein production 

to increase functional yield by: 

a) the modification of existing expression vectors with an IRES inserted into the 5ˊ 

UTR upstream of the gene encoding hA2AR, to circumvent limiting responses 

placed on recombinant translation by the host cell; 

b) using S. cerevisiae deletion strains known to have translation initiation blocks, and 

drugs known to cause translational inhibition in an effort to slow down translation 

sufficiently to improve protein quality and therefore increase functional yield. 

 

III) To gain insight into the underlying mechanisms that cause high functional 

recombinant membrane protein yield in S. cerevisiae. 
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Chapter 2: Methodology 

2.1. Reagents 

2.1.1. Culture reagents 

2.1.1.1. MES (pH6)(1L) 

This solution was prepared by adding 213.25g of 2-(N-Morpholino)ethanesulfonic acid 

(MES) monohydrate and made upto 1L with distilled water and adjusted to pH6.  

2.1.1.2. Ampicillin  

100mg/mL stocks were sterilised by syringe filter sterilisation into 1.5ml microcentrifuge 

tubes, and stored at -20°C until required. Stocks were diluted to a final concentration of 

100μg/mL in the required media once cooled. 

2.1.1. 3. Glucose (40%; 1L) 

This solution was prepared by adding 400g of glucose by dissolving slowly in distilled 

water up to 1 L final volume, the solution was then filter sterilised and stored at room 

temperature. 

 

2.1.1.4 10× Amino acid drop-out solution (DO; minus histidine) 

This solution was prepared by adding 200 mg L-adenine hemi-sulphate salt, 200 mg L-

arginine HCl, 300 mg L-isoleucine, 1000 mg L-leucine, 300 mg L-lysine HCl, 200 mg L-

methionine, 500 mg L-phenylalanine, 2000 mg L-threonine, 200 mg L-tryptophan, 300 mg 

L-tyrosine, 200 mg L-uracil  and 1500 mg L-valine and made up to 1 L with distilled 

water, and autoclaved then stored at 4°C.  

 

2.1.1.5 10× DO (minus uracil) 

This solution was prepared by adding 200 mg L-adenine hemi-sulphate salt, 200 mg L-

arginine HCl, 200 mg L-histidine HCl monohydrate, 300 mg L-isoleucine, 1000 mg L-

leucine, 300 mg L-lysine HCl, 200 mg L-methionine, 500 mg L-phenylalanine, 2000 mg 

L-threonine, 200 mg L-tryptophan, 300 mg L-tyrosine and 1500 mg L-valine and made up 

to 1 L with distilled water, and autoclaved then stored at 4°C. 
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2.1.1.6. 10× DO (minus uracil and histidine) 

This solution was prepared by adding 200 mg L-adenine hemi-sulphate salt, 200 mg L-

arginine HCl, 300 mg L-isoleucine, 1000 mg L-leucine, 300 mg L-lysine HCl, 200 mg L-

methionine, 500 mg L-phenylalanine, 2000 mg L-threonine, 200 mg L-tryptophan, 300 mg 

L-tyrosine and 1500 mg L-valine and made up to 1 L with distilled water, and autoclaved 

then stored at 4°C. 

 

 

2.1.2. Membrane preparation reagents 

2.1.2.1. Breaking Buffer (pH7.4)  

This solution was prepared by adding 50mM Na2HPO4, 50mM NaH2PO4, 2mM EDTA 

(pH7.4), 100mM NaCl and 5% Glycerol and made up to 1 L with distilled water and 

adjusted to pH7.4.  

 

2.1.2.2. Buffer A (pH7)  

This solution was prepared by adding 20mM HEPES, 50mM NaCl, 10% glycerol and 

made up to 1 L with distilled water and adjusted to pH7. 

  

2.1.2.3. Bovine serum albumin (BSA) standard  

BSA (Sigma) was diluted to a final amount in each well of 0-10 μg from a 1mg mL-1 stock 

for all protein determinations. 

 

2.1.2.4. Lysis buffer  

This solution was prepared by adding 11.3 mL 1M NaH2PO4, 38.7 mL 1M Na2HPO4, 1 

mL 3 M NaCl and 10mL 1M imidazole (final concentration 50 mM NaH2PO4, 300 mM 

NaCl and 10 mM imidazole) which was made upto 1 L  with distilled water adjusting to 

pH 8.0. 
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2.1.3. Immunoblot reagents 

2.1.3.1. Western Tris buffer (1L)  

This solution was prepared by adding 100mL 10×Tris buffer  and  200mL methanol and 

made up to 1 L with distilled water. 

 

2.1.3.2. Phosphate buffer saline (PBS; 1 L)  

This solution was prepared by adding by 5 PBS tablets were dissolved in 1 L distilled 

water.  

 

2.1.3.3. PBS-Tween 20 (PBST; 1 L)  

This solution was prepared by adding 2mL Tween 20 (0.2%) and then made up to 1 L with 

PBS.  

 

2.1.3.4 5×Laemmli sample buffer  

This solution was prepared by adding 1.25mL 0.5M Tris-HCl (pH 6.8), 1mL 100% 

glycerol, 2mL 10% SDS, 0.5mL β-mercaptoethanol and 10μL bromophenol blue. Made 

upto 8mL with distilled. 

 

2.1.3.5 PageRuler plus prestained protein ladder 

A protein ladder (Thermo Scientific) used for SDS-PAGE, with a range of 10-250kDa. 

 

2.1.4. Radio-ligand binding reagents 

2.1.4.1. Binding buffer  

This solution was prepared by adding 11.3 mL 1M NaH2PO4, 38.7 mL 1M Na2HPO4 and 

1 mL 0.5 M EDTA, made up to 1 L with distilled water, and pH 7.4.  

 

2.1.4.2. Tritiated ZM241385 ([3H]ZM241385)  

Tritiated ZM241385 was purchased from American Radio Chemicals (ARC Inc). Dilutions 

were made using binding buffer and stored at 4°C in a radiochemical laboratory.  
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2.1.4.3. Unlabelled ZM241385 (cold ZM241385)  

Stock dilutions of cold ZM241385 (Tocris) were made with 100% DMSO to 

concentrations: 0.1mM, 10μM, 1μM, 0.1μM, 100nM, 10nM and 0.1nM. With the final 

concentration of cold ZM241385 being a 1:100 dilution of these stock solutions.  

 

2.1.4.4. Soluene  

Soluene®-350 (Perkin-Elmer) was used as a tissue solvent to solubilise total membrane 

pellets.  

 

2.1.4.5 Scintillant  

ScintiSafe (Fisher) scintillant was used in conjunction with the scintillation counter for the 

radio-ligand binding experiments. 

 

2.1.5. Solubilising reagents 

2.1.5.1. n-dodecyl-β-d-maltopyranoside (DDM)  

DDM (Anatrace) was diluted to 5% (w/v) using distilled water to desired volume and 

stored at 4°C.  

 

2.1.5.2. Cholesteryl hemi-succinate (CHS)  

0.5% CHS (w/v) (Sigma) solution was made with 50 mM Tri-HCl pH 8.0 and sonicated 

for 10s repeated 3 times (using ice to keep the solution cool), and stored at 4°C. 

 

2.1.6 Molecular biology reagents 

2.1.6.1 Restriction enzymes 

Several restriction enzymes were used for digestion of DNA and were acquired from New 

England BioLabs Inc. Enzyme details and reaction conditions were taken from the New 

England BioLabs Inc. website (http://www.neb.com/nebecomm/enzymefinder.asp). 

 

2.1.6.2  BamHI 

Source is an E. coli strain that carries the cloned BamHI gene from Bacillus 

amyloliquefaciens H Reaction temperature 37°C.  
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2.1.6.3. NcoI 

Source is an E. coli strain that carries the cloned NcoI gene from Nocardia corallina. 

Reaction temperature 37°C.  

 

2.1.6.4. XmaI 

Source is an E. coli strain that carries the cloned XmaI gene from Xanthomonas 

malvacearum. Reaction temperature 37°C.  

 

2.1.6.5. NheI 

Source is an E. coli strain that carries the cloned NheI gene from Neisseria mucosa 

heidelbergensis. Reaction temperature 37°C.  

 

2.1.6.6 T4 DNA ligase 

T4 DNA ligate was used for all ligations (Promega). 

 

2.1.6.7 Pfu DNA polymerase 

DNA polymerase used for all PCR (Promega). 

 

2.1.6.8 1kb plus DNA ladder 

A DNA ladder (Thermo Scientific) used for DNA gels, with a range of 75bp to 20,000bp  

 

2.1.6.9 MassRuler low range DNA ladder 

A DNA ladder (Thermo Scientific) used for DNA gels, with a range of 80bp to 1,031bp  

 

2.1.6.10 Primers 

Primers were designed using GENtle software and ordered from Life Technologies. 

 

2.2. Vectors 

Control: pYX222-A2AR (see Appendix 1.1) 

Selective advantage: pYX222-A2AR-URA3 (see Appendix 1.2).  
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Translation process: pYX222-YAP1(IRES)-A2AR, pYX222-CrPV(IRES)-A2AR and 

pYX222-p150(IRES)-A2AR (see Appendix 1.3, 1.4 and 1.5). 

 

2.3. Molecular biology  

2.3.1. Miniprep (Fermentas GeneJET Plasmid Miniprep Kit)  

A single colony of plasmid harbouring E. coli was added to a 15ml Falcon tube containing 

5ml LB (2.4.3.5.4.) supplemented with 5µL 100mg/mL ampicillin (2.1.1.2.), and the 

sample was left to incubate at 37°C with shaking (220rpm) overnight. The next day the 

culture was centrifuged at 3,000rpm for 5min to pellet cells, the supernatant was discarded 

and tubes left to drain over paper towels. 250μl resuspension buffer was added to the 

pellet, and vortexed to resuspend the pellet. 250μl lysis solution was added to the tube, 

which was then inverted until the solution became clear and viscous. 350μl neutralisation 

solution was added and the mixture was mixed gently using a pipette, and pipetted into a 

labelled 1.5ml microcentrifuge tube. The sample was then centrifuged at 13,000rpm for 

5min (all micro-centrifugation performed at 13,000rpm), a GeneJET minicolumn was 

placed into a collection tube. After centrifugation, the supernatant was then removed 

without disturbing the pelleted white precipitate, and it was pipetted into the minicolumn. 

The sample was then centrifuged for 1min and the flowthrough was discarded. 500μl wash 

buffer solution was added and the sample centrifuged for 1min, and flowthrough discarded. 

An empty column was centrifuged for 1min, the minicolumn was added to a labelled 1.5ml 

microcentrifuge tube. 50μl of ddH2O was added directly to resin of the minicolumn, and 

incubated at 37°C for 4-6min, the spun at  to elute the DNA which was  stored at -20°C. 

 

2.3.2. NanoDrop 1000 

The NanoDrop 1000 spectrophotometer apparatus was used for DNA quantification after a 

miniprep or PCR, and prior to ligation, transformation or sequencing. The instrument was 

initialised with 1μl ddH2O then blanked with 1μl of ddH2O, then 1μl of DNA sample was 

added and the reading recorded in ng/μl, which was repeated 3 times to create a reliable 

average. As DNA absorbs at a wavelength of 260nm, the ratio of 260/280nm was noted to 

ensure the sample was in the >1.80 region to ensure the DNA is pure.  
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2.3.3. Polymerase Chain Reaction (PCR) (50μl) 

 

 

 

2.3.4. DNA Restriction digest 

Digest reactions were made up to a volume of 50μl and controls to 25μl, so all volumes 

added were halved for the controls with respect to the main digest. To a 1.5ml 

microcentrifuge tube, 33μl of water and 5μl of 10XBuffer suitable according to NEB were 

added. Then 10μl DNA and 1μl (1unit) of each restriction enzyme were added, and the 

reaction mixture was mixed gently with a pipette. The digest reactions were then left to 

incubate at 37°C for 2h. When the digest was complete the samples were analysed via 

agarose gel electrophoresis (1%). 

 

2.3.5. DNA Ligation 

Ligation reactions were made up to a volume of 25μl in a 1.5ml microcentrifuge tube, 

using the equation below.  

 

 

 

The volume of insert and vector DNA was added to dH20 to a volume of 21.5μl. Then 

2.5μl of 10× T4 DNA ligase buffer was added along with 1μl T4 DNA ligase, this reaction 

95°C 2min 

95°C 30s 

55°C 30s 

72°C 60s/kb  

of target 

95°C 30s 

55°C 30s 

72°C 60s/kb of target 

plus 10s/cycle 

10 cycles 

20 cycles 

PCR Mix 

5μl 10X DNA polymerase buffer 

2μl dNTPs (40mM) 

15ng Template 

1μl Forward primer (10pmol) 

1μl Reverse primer (10pmol) 

0.5 Herculase (or 1μl Pfu) DNA polymerase 

Made upto 50μl with dH2O 

 

 

PCR Program 
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mixture was mixed gently with a pipette and left to incubate at 22-25°C (room 

temperature) for 3 h. Once the ligation was complete the sample is heated in a heatblock at 

65°C for 10min to inactivate the ligase, then 2μl of the reaction was used for subsequent 

transformations using E.coli competent strains DH5alpha, XL-2 Blue or XL-10 GOLD. 

 

2.3.6. DNA Sequencing (Automated Fluorescence; University of Birmingham) 

Sample preparation for sequencing; 200-500ng DNA, 3.2pmol primer then made up to 

10μl with distilled water. The sample was loaded at the University of Birmingham into a 

96-well plate, where the other relevant chemicals were added by staff. Results were 

obtained via the university’s website the following day, and analysed using GENtle.   

 

2.3.7. 1% Agarose gel  

1g agarose was made up to 100ml using 1xTAE buffer, this was heated in a microwave 

until the agarose was completely dissolved. When the mixture was cool enough to touch 

5μl ethidium bromide was added.  This bound the migrating DNA allowing visualisation 

using UV. The mixture was poured into gel tray-cast containing combs which created 

sample loading wells.  Once set the tray was placed into the gel tank, and covered in 

1xTAE buffer. The combs were removed while submerged to prevent air bubbles. 5μl 

DNA was mixed with 1μl 6x loading buffer for each sample and loaded in subsequent 

wells, and 6μl of 1kb+ gene-ruler ladder was loaded. The gel was run at 90V for 

approximately 45min, after which the gel was visualised using a UV box-camera setup. 

 

2.3.8. Gel Excision  

Once the desired gel bands had been identified the gel was placed on a UV box, while 

taking due care to avoid direct UV exposure (wearing gloves, lab coat and perspex 

faceguard), and using a scalpel the bands were excised and put into a 1.5ml 

microcentrifuge tube and stored at -20°C. 
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2.3.9. Gel and PCR purification (Promega Wizard SV Gel and PCR Clean-up 

System) 

In the case of gel purification, a 1.5ml microcentrifuge tube was weighed then the excised 

gel slice containing the band of interest was placed inside and weighed again to ascertain 

the weight of the gel slice. 10μl membrane binding buffer per 10mg of gel slice was added, 

vortexed and incubated at 50-65°C for 5-10 min or until the gel had dissolved. In the case 

of PCR, an equal volume of membrane binding buffer was added to the PCR product. A 

SV minicolumn was place into a collection tube, and the dissolved gel mixture or prepared 

PCR product was added to the column to incubate at room temperature (22-25°C) for 1 

min. The column assembly was centrifuged at 13,000rpm for 1min and the flowthrough 

was discarded. 700μl membrane wash buffer was added, the sample centrifuged at 

13,000rpm for 1 min and the flowthrough discarded. Then 500μl of membrane wash buffer 

was added, and the sample centrifuged at 13,000rpm for 5 min and flowthrough discarded.  

The sample was centrifuged again for 1min with no buffer added to allow for evaporation 

of residual ethanol. The minicolumn was removed from the collection tube used for the 

wash step, and placed in a new labelled 1.5ml microcentrifuge tube. 50μl nuclease-free 

water was added directly to the resin of the minicolumn, then left to incubate at room 

temperature for 1 min. The sample was then centrifuged for 1 min at 13,000rpm and the 

eluted purified DNA was stored at -20°C. 

 

2.3.10. Genomic DNA extraction  

50-100 µL packed volume of yeast cells was resuspend in 200 µL 1xTE and then 200 µL 

of glass beads was added. 400 µL of PCI (Phenol:Chloroform) and vortexed for 1min, and 

spin at 13,000rpm for 10 min. Take the aqueous layer, then add 1ml absolute ethanol and 

spin at 13,000rpm for 10min at 4ºC then recover the pellet. Resuspend the pellet in 200 µL 

TE, Add 500 µL absolute ethanol, and spin for 20min for 13,000rpm at 4ºC, and keep the 

pellet. Add 1 mL of 75% ethanol and invert 5-6 times, then spin at13,00rpm for 5min at 

RT (repeat the wash step).The pellet was left to dry then 100 µL ddH2O added to 

resuspend pellet, the DNA was then stored at -20ºC or -80ºC. 
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2.4 Microbial strains, transformations and culturing conditions  

2.4.1 Microbial strains 

2.4.1.1 E. coli   

DH5α was used for vector amplification and XL2-Blue for transformation of ligated 

products. 

 

2.4.1.2 S. cerevisiae  

BY4741 (MATα, ura3Δ0, leu2Δ0, met15Δ0, his3Δ1) haploid strain is the parental strain of 

the deletion mutants; tor1Δ, gcn3Δ and spt3Δ (from the yeast knockout selection: 

http://www.thermoscientificbio.com/non-mammalian-cdna-and-orf/yeast-knockout-

collection).  

 

2.4.2. Transformation 

2.4.2.1 E. coli  

1.5ml microcentrifuge tubes were pre-chilled on ice and the competent cells thawed on ice, 

which 50μl of competent cells was added to each chilled tube. Then 1.7μl β-

mercaptoethanol was added to each tube, the content of the tube were swirled and left to 

incubate on ice for 10min, with swirling every 2min. After incubation 1μl plasmid DNA or 

2μl ligation mixture (0.1-50ng) was added, tubes were swirled gently and incubated on ice 

for 30min. After incubation the tubes were heat shocked at 42°C for 45s in a water bath, 

then incubated on ice for 2min. Then add 0.9ml LB to each of the tubes and incubate at 

37°C for 1hour with shaking. After incubation 100μl of the transformants was plated on an 

LB amp plate, the remaining sample to be stored at 4°C.  

 

2.4.2.2. S. cerevisiae (LiOAC method)  

5ml YPD was inoculated with one colony and grown till mid log phase, cells were pelleted 

at 5000rpm for 3min. Pellet was resuspended with 500μl sterile water, and pelleted again, 

then resuspended in 500μl 100mM lithium acetate (LiOAc) and transferred to an 1.5mL 

microcentrifuge tube. Cells pelleted at 13,000rpm for 15s, 100μl of 100mM LiOAc added 

and vortexed. 50μl of resuspension was taken and pelleted at 5000rpm for 2min. Then 

added in this order was; 240μl of 50% PEG, 36μl of 1M LiOAc, 25μl salmon testes DNA 

(boiled at 100°C then chilled prior), 50μl dH2O and 3μl vector DNA. Incubated at 30°C for 
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30min and heat-shocked at 42°C for 20min, centrifuged at 6000rpm for 15s and 

supernatant removed. Pellet resuspended in 800μl dH2O and 100μl of that used to plate on 

appropriate selection media plates, according to vector selection marker.      

 

2.4.2.3. Glycerol stocks  

50% glycerol was made by adding 50mL water to 50mL glycerol and the solution was 

autoclaved. 1mL overnight yeast culture was put in cryovial with 1mL 50% glycerol, 

mixed, and stored at -80°C. 

 

2.4.3 Media 

2.4.3.1. Complete Synthetic Medium (CSM; 1L)  

This solution was prepared by adding 1.7g yeast nitrogen base (without amino acids), 5g 

(NH)2SO4, 20g agar (omit for liquid) was added and made up to 950ml with distilled H2O 

(or 850ml and additionally 100ml 10xDO (2.1.1.4-2.1.1.6) for selective medium e.g. CSM 

-uracil, CSM -histidine-uracil and CSM –histidine  -uracil), then  autoclaved and 50ml of 

40% glucose added. 

 

2.4.3.2. YPD (1L)  

This solution was prepared by adding 20g peptone, 10g yeast extract, 14g agar (omit for 

liquid) and made up to 950ml with distilled water, then autoclaved and 50ml of 40% 

glucose added. 

 

2.4.3.3. L-Broth (LB; 1L)  

This solution was prepared 5g NaCL, 5g yeast extract, 10g tryptone, 15g agar (omit for 

liquid and made up to 1 L with distilled water. For LB-Amp, add ampicillin to a final 

concentration of 100mg/L (to achieve 1000μL of 100mg/ml ampicillin was added). 

 

2.4.4. Culturing conditions 

2.4.4.1. Inoculation 

A single colony of yeast was added to a 5ml universal tube containing 1ml YPD, grown 

overnight at 37°C with shaking at 220rpm. 
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 2.4.4.2. Shake flask cultures (1:5 volume) (S. cerevisiae) 

A single colony (as per 2.4.4.4) or inoculate was added to a 5ml universal tube containing 

1ml YPD, then incubated at 30°C with shaking at 220rpm and grown until the required 

0D600 was achieved.  

 

2.4.4.3. Culturing (1:5 volume) (E. coli) 

For a shake flask culture a single colony was added, then incubated at 37 °C with shaking 

at 220rpm overnight for approximately 16-19 h.  

 

2.4.4.4 A1 and SA transformant culture procedure  

For the A1 control; each experiment (immunoblot, ligand binding, confocal) was 

conducted at least 3 times, and for which a fresh transformation was performed and a 

colony randomly picked and the values from all the replicate were represented by the 

mean. For H1 and SU1 and U1, as they were generated through the SA strategy they were 

always obtained from glycerol stocks of the original selected colony that was stored at -

80°C, experiments were also conducted at least 3 times and the values from all the 

replicates were represented by the mean. 

 

2.4.4.5. Cell viability  

The culture was diluted to OD600 and 2μL of culture was added to a microscope slide and 

mixed with 2μL trypan blue solution. Then 100 cells were counted at 100× magnification 

and the number of stained cells determined, each determination was done in triplicate.  

 

2.4.4.6 Determination of uracil requirement 

Dilutions of the standard 1,700µM concentration of uracil were made up (1,700µM 

(100%), 170µM (10%), 17µM (1%), 1.7µM(0.1%)), they were used to supplement 5ml 

CSM –uracil cultures. The cultures were inoculated at a starting O.D 0.01 and grown for 

16h and the O.D recorded. 
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2.5. Protein expression and analysis 

2.5.1. Membrane preparations  

Membrane preparations, when 100ml flasks were grown, an Emulsiflex-C3 (C3) cell 

disrupter was used to homogenise the cells. Cells were resuspended in ice cold breaking 

buffer (2:1 buffer to cells). Protease inhibitor cocktail IV set was added to cells (1:2000 

dilution), and the cells were passed through the C3 with a chilled heat exchanger for 20min 

at a homogenising pressure of 30000 psi. The cells were observed under a light microscope 

to assure the cells were homogenised, typically there was approximately 90% cellular 

disruption. The samples were at 10000 × g for 30 min to remove cellular debris and 

unbroken cells, the supernatant was transferred to ultra-centrifuge tubes and centrifuged at 

100000 × g for 1 h. The pellet was then re-suspended in ice cold buffer A and stored at -

80°C. 

 

2.5.2. BCA assay (protein concentration determination; bicinchoninic acid assay) 

The protein concentration from membrane preparation and cell lysates were determined 

using a BCA assay, using 1mg/ml bovine serum albumin (Sigma) at concentrations 0, 2, 4, 

6, 8, 10µg as the linear standard. The protein quantification solution was made up using 

1:50 4%(w/v) copper (II) sulphate solution (Sigma) added to BCA solution (Sigma) with 

200μL of the solution added to each well in a clear plastic 96 well plate. Then 2μL of 

sample was added to the solution (repeated in triplicate to obtain the mean), and the plate 

was read at 570nm using a plate reader (if the reading was outside the range of the 

standard, the samples were diluted and the experiment repeated).  

 

2.5.3. SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate proteins from supernatant and membrane preparations sample according to their 

molecular weight. 10% SDS separating gels and 4% SDS stacking gels were used. 

TEMED (Tetramethylethylenediamine) and Ammonium persulphate (made fresh) added 

last. Isopropanol was added on top of the separating gel while it set to ensure the gel 

leveled out flat, and was washed away with distilled water. Samples were loaded using 5 х 

Laemmli buffer, and 25µg or 50µg of the protein sample (determined by BCA assay) and 

heated to 50°C for 5min on a heat-block, and then loaded into the gel with a prestained 

http://en.wikipedia.org/wiki/Bicinchoninic_acid_assay
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protein ladder (Fermentas). A 1 х SDS running buffer was added and a current of 150V 

was applied for 1h. 

 

2.5.4. Coomassie staining 

The SDS-PAGE gel was submerged in 50ml Bio-Safe™ Coomassie Stain (Bio-Rad) and 

incubated while shaking for 1hr at room temperature (bands are visible after 20min). The 

stain was discarded and the gel was then rinsed in 200ml of distilled water for 30min. 

Images were then taken of the gel using a camera.  

 

2.5.5. Immunoblot  

Immunoblots (western blots) were then performed of the SDS-PAGE gels, transferring the 

proteins to nitrocellulose membranes. The nitrocellulose was blocked with PBS with 5% 

milk (Marvel milk powder), and incubated while shaking for 1hr at room temperature 

(RT). The nitrocellulose was then washed with PBST 3 times for 15min at RT, and then 

PBS with 5% milk was added along with primary rabbit anti-His6 monoclonal antibody 

(Serotec) to a dilution of 1:5000 and incubated for 1hr at RT. The nitrocellulose was then 

washed with PBST 3 times for 15min at RT, and then PBS with 5% milk was added along 

secondary mouse anti-rabbit HRP-conjugate antibody to a dilution of 1:5000 and incubated 

for 1hr at RT. The nitrocellulose was then washed with 4mL EZ-ECL Enhanced 

Chemiluminescence Detection Kit for HRP (Biological Industries) for 4min in a dark 

room. The nitrocellulose was then exposed for 15min, and viewed using the Chemidoc 

system (UVItech). The immunoblot images were analysed using ImageJ software.  

 

2.5.6. Solubilisation of yeast membranes using DDM 

Solubilisation with n-dodecyl-ß-D-maltoside (DDM) was performed with the following 

solubilisation buffer: 20 mM HEPES, pH 7.4, 50% glycerol, 250 mM NaCl, 1 μL protease 

inhibitors, 10% (w/v) DDM (2.1.5.1) and 2% (w/v) cholesteryl hemi-succinate 

(CHS)(2.1.5.2). The membrane fraction added to the solubilisation buffer for a 1:1 ratio 

where the starting concentration was ~ 1mg mL-1 and therefore the final concentration in 

the solubilisation was ~ 0.5mg mL-1. After incubation with slow rotation at 4°C for 4 h, the 

sample was centrifuged at 100000 × g for 1 h. The supernatant contained DDM solubilised 

hA2AR and was stored at 4°C for further studies for a maximum of 3 days. 
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2.5.7. Gel filtration  

Illustra G50 gel filtration columns (GE Healthcare) were used.  

 

 

2.6. Radio-ligand binding assays 

A radio-ligand binding involves labelling compounds with radioactive isotopes, the 

compound typically being a ligand that will bind the receptor of interest (Leach et al., 

2010). Tritium [3H] is the radiolabel used due to its having a long half-life of 12.3 years 

(Lucas & Unterweger, 2000). All experiments involving radio-ligand binding were carried 

out using tritiated ZM241385 ([3H]ZM241385) (ARC), a high-affinity hA2AR antagonist 

(Jaakola et al., 2008). 

 

2.6.1. Single-point saturation  

A single-point binding assay was used as initial experiment to determine if the hA2AR was 

folded correctly. A single, high concentration of 10nM [3H]ZM241385 (therefore 

saturating the receptors with ligand) was used (Table 2.1), a concentration known to be at 

the top of a saturation curve for the hA2AR. This allows calculation of the specific binding 

(total binding subtracted by the non-specific binding), but as a full curve has not been 

performed this is effectively a Bmax estimate. 

 

  

 
Total Binding (T) Non-specific binding (NS) 

Total 
membrane 

(µg) 

Final 
[3H]ZM24138

5 

concentration 

(nM) 

Adenosine 
deaminase 

(U) 

Binding 
buffer 

(µL) 

Final 
[3H]ZM241385 

concentration 

(nM) 

Adenosine 
deaminase 

(U) 

Unlabelled 
ZM241385 

(µM) 

Binding 
buffer 

(µL) 

100 10 0.1 

up to 

500 10 0.1 1 

up to 

500 

Table 2.1 Single-point saturation binding reaction preparation for membrane bound 

hA2AR. The reaction uses 10nM [
3
H]ZM241385, adenosine deaminase, unlabeled ZM241385 

(for NS), and binding buffer. 
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2.6.1.1. Single-point binding for membrane bound hA2AR 

The binding reactions were prepared (as shown in Table 2.1) in 1.5mL microcentrifuge 

tubes, the reactions were mixed by inverting the tubes, then incubate for 1.5h at room 

temperature (RT) on the bench. Then centrifuged at 14000rpm for 5 min at 4°C (and 

supernantant removed), the pellets were washed carefully with tap water using pipette 

(with excess water removed carefully with tissue being careful not to disturb the pellet). 

Then 100µl soluene was added (in a fume hood) to dissolve the pellet, and incubated for 

1.5h at RT on bench. Then transferred from microcentrifuge tubes to scintillation tubes, 

4ml scintillant added and mixed well by inversion. The scintillation tubes were added to 

counting vials place in the scintillation counter (Packard 1600TR Liquid Scintillation 

Analyser) for counting. 

 

2.6.1.2. Single-point binding for solubilised hA2AR 

For single-point binding analysis of solubilised hA2AR (2.5.6), 120µl (60µg) of the 

solubilised total membranes were used and the reaction prepared (Table 2.2) in 1.5mL 

microcentrifuge tubes.  The reactions were mixed by inverting the tubes, then incubated for 

1.5h at room temperature (RT) on the bench. The reaction was added to Illustra G50 gel 

filtration columns (GE Healthcare) (2.5.7) (which had been washed 3 times previously 

with 500µl binding buffer) and then centrifuged at 3000 rpm for 2 min and the eluate 

transferred to scintillation tubes. Then 4ml scintillant was added and mixed well by 

inversion, and the tubes were added to counting vials and placeed in the scintillation 

counter (Packard 1600TR Liquid Scintillation Analyser) for counting. 

 

  

 
Total Binding (T) Non-specific binding (NS) 

Solubilsed  

membranes 

(µg) 

Final 

[3H]ZM241385 

concentration 

(nM) 

Adenosine 

deaminase 

(U) 

Binding 

buffer 

(µL) 

Final 

[3H]ZM241385 

concentration 

(nM) 

Adenosine 

deaminase 

(U) 

Unlabelled 

ZM241385 

(µM) 

Binding 

buffer 

(µL) 

60 10 0.1 

up to 

200 10 0.1 1 

up to 

200 

Table 2.2 Single-point saturation binding reaction preparation for solubilised hA2AR from total cell 

membranes. The reaction uses 10nM [
3
H]ZM241385, Adenosine deaminase, unlabeled ZM241385 (for 

NS), and binding buffer. 
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Fig 2.3 Homologous competition binding reaction preparation for solubilised hA2AR 

from total cell membranes. The reaction uses 10nM [
3
H]ZM241385, Adenosine deaminase, 

unlabeled ZM241385 (for NS), and binding buffer. 

2.6.2. Competition curve binding (homologous) 

Competition binding assays allow the study of receptor interactions while a single constant 

radiolabelled ligand is in the presence of an increasing competition (unlabelled ligand) 

under equilibrium conditions (Leach et al., 2010). Homologous competition was used to 

calculate the specific binding (total binding subtracted by the non-specific binding), at 

various concentration of unlabelled ZM241385 while the radiolabelled [3H]ZM241385 

stays at a low constant concentration (2nM). The specific binding measurements allow a 

homologous competition curve to be generated, to which the Cheng-Prusoff equation was 

applied to a one-site binding model. This allowed the calculation of the Kd and pKa to 

determine hA2AR affinity (Leach et al., 2010). 

 

Kd = Ki EC50 – [Radio-ligand] 

 

With Ki = dissociation constant and is equivalent to Kd for homologous curves; EC50 = 

half the effective concentration of the unlabelled ZM241385 and [Radio-ligand] = 

concentration of the [3H]ZM241385. 

 

The binding reactions were prepared as shown below in Table 2.3, using the method 

described in section 2.6.1.1. 

 

 

 

 

 

 

 

 

 

Membrane 

(µg) 

Final 

[
3
H]ZM241385 

concentration (nM) 

Unlabelled 

ZM241385 

(nM) 

Adenosine 

deaminase 

(U) 

Binding buffer 

(µL) 

100 2 1000 0.1 up to 500 

100 2 100 0.1 up to 500 

100 2 10 0.1 up to 500 

100 2 1 0.1 up to 500 

100 2 0.1 0.1 up to 500 

100 2 0.001 0.1 up to 500 

100 2 0 0.1 up to 500 
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2.6.3. Saturation binding curve 

Saturation binding is used to discover by direct measurement the total amount of receptors 

present in the sample under investigation by determining the amount of occupied binding 

sites (Bmax), and also to determine the affinity of said receptors known as the equilibrium 

constant (Kd ) (Leach et al., 2010). This is achieved by measuring the specific binding 

(total binding subtracted by the non-specific binding) at various concentrations of radio-

ligand [3H]ZM241385. The binding reactions were prepared as shown in Table 2.4, using 

the method described in section 2.6.1.1. Non-linear regression was used to determine the 

Bmax using GraphPad Prism® 4 software (2.8.2). 

 

 

  

 

 

 

 

 

Total Binding (T) Non-specific binding (NS) 

Total 

membrane 

(µg) 

Final 

[3H]ZM241385 

concentration 
(nM) 

Adenosine 

deaminase 

(U) 

Binding 

buffer 

(µL) 

Final 

[3H]ZM241385 

concentration 
(nM) 

Adenosine 

deaminase 

(U) 

Unlabelled 

ZM241385 

(µM) 

Binding 

buffer 

(µL) 

100 0.5 0.1 up to 500 0.5 0.1 1 up to 500 

100 1 0.1 up to 500 1 0.1 1 up to 500 

100 2.5 0.1 up to 500 2.5 0.1 1 up to 500 

100 5 0.1 up to 500 5 0.1 1 up to 500 

100 10 0.1 up to 500 10 0.1 1 up to 500 

100 20 0.1 up to 500 20 0.1 1 up to 500 

100 50 0.1 up to 500 50 0.1 1 up to 500 

Table 2.4 Saturation curve binding reaction preparation for membrane bound hA2AR. The 

reaction uses 10nM [
3
H]ZM241385, Adenosine deaminase, unlabeled ZM241385 (for NS), and 

binding buffer. 
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2.7. Confocal Microscopy (Indirect Immunofluorescence Microscopy of Yeast Cells) 

2.7.1. Cell Fixing and Permeabilisation 

5 mL CSM/YPD was inoculated and grown for 19h . 500 μl of formaldehyde was added to 

the culture and left to shake for an additional 1.5 hours at 30°C. 1 OD600 (1ml of 

OD600=1) was removed of cells and wash twice in 1 mL PBS/0.5% Tween-20 (PBST). 

Cells were resuspended in 0.5 mL 50 μg/mL zymolase diluted in PBST. (2 μl stock 

zymolase for every 0.5mL of PBST). Then incubate for 20 minutes at 37°C. Care was 

taken not to overincubate as proteolytic contaminants in the zymolase can ruin the sample. 

The washed three times in 1 mL PBST. From this point, cells to be spun no faster than 

6,000 rpm to avoid breaking open the spheroplasts. 

 

2.7.2. Cell Staining 

The cells were resuspended in a dilution of primary antibody in 20 μl of PBS/4%BSA. (10 

μg/mL his6-anti-mouse [Clontech] (0.4 μl). Incubated for 1h at room temperature. Washed 

one time in 500 μl PBS/BSA then incubated for 15min in 500 μl PBS/BSA. Washed one 

more time in PBS/BSA then resuspended in secondary antibody diluted in 20 μl PBS/BSA. 

(Use 40 μg/mL of Alexa488-conjugated goat-anti-mouse antibody (0.4 μl). Then incubate 

1h at room temperature in the dark. Then washed and incubated in PBS/BSA for 15min as 

described above. Then spun down, and resuspended in ~5 μl of PBS. 

 

2.7.3. Slide Preparation 

3μl of Fluoroshield™ mounting solution (Sigma) was added cover slip attached. Nail 

polish then applied to cement slip to slide. 

 

2.8. Software packages 

2.8.1. GENtle  

GENtle was used for planning and design of molecular biology experiments.  

 

2.8.2. Graphpad Prism  

GraphPad Prism® 4 was used for radio-ligand binding analysis, statistical analysis and 

tabulation of results from yield analysis. 

 

2.8.3. ImageJ 

ImageJ software was used for quantification of immunoblots using densitometry. 
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2.9. Equipment  

All equipment used was standard laboratory equipment, and is referred to in the 

methodology. The centrifuges are listed below. 

 Beckman Coulter OptimaTM L-80XP Ultracentrifuge (Maximum revolutions per 

minute (rpm): 80,000)  

 Beckman Coulter OptimaTM TLX Ultracentrifuge (Maximum rpm: 120,000)  

 Beckman Coulter Allegra 25R Centrifuge (Maximum rpm: 15,000)  

 Fisher Scientific AccuspinTM MicroR, benchtop (Maximum rpm: 13,000)   
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Chapter 3: Employing Selective Advantage to improve hA2AR 

Yield   

 

3.1 Summary of experimental objectives   

3.1.1 Rationale behind the selective advantage strategy 

In order to give yeast cells a selective advantage (SA) in expressing hA2AR in its 

membranes, we fused it to a fusion partner that would confer the SA. The fusion partner 

chosen was the enzyme orotidine 5ˊphosphate decarboxylase (ODCase, which will be 

referred to as Ura3p) specifically the form from the yeast S. cerevisiae, encoded for by the 

URA3 gene. This particular decarboxylase catalyses the reaction whereby orotidine 5-

monophosphate (OMP) is converted to uridine 5-monophosphate (UMP)( Fig.3.1).  

 

 

 

 

 

 

 

 

 

 

The gene product of the URA3 gene is a commonly used selection marker in yeast, 

essential for the production of uridine, a nucleoside of uracil (Houk et al., 2001, Raugei et 

al., 2004, Hu et al., 2008) which in turn is essential for RNA synthesis and thus survival 

and growth (Brachmann et al., 1998). In our SA strategy yeast cells lacking this essential 

enzyme must produce the fusion protein for survival when grown on nutrient media 

lacking uracil as is the case for the S. cerevisiae strain BY4741 which is auxotrophic for 

Uridine 5- 
monophosphate  

(UMP) 

Orotidine 5-
monophosphate  

(OMP) 

Ura3p 

Figure 3.1 Mechanism of Ura3p. Scheme depicting the decarboxylation of OMP to UMP, catalysed by 

the enzyme ODCase encoded for by URA3. This is the last step of de novo biosynthesis of the essential 

major uracil precursor UMP.   
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histidine, leucine, methionine and uracil (Brachmann et al., 1998). Subsequently if all 

those nutrients are provided except uracil, a selection pressure is created which should 

drive the efforts of the cells to produce the fusion and thus facilitate the production of the 

needed uracil. 

 

Ura3p is known to be able to enhance the rate of the reaction shown in Fig 3.1 by a factor 

of 1017 (Radzicka & Wolfenden, 1995).  It also requires no co-factors or metals ions which 

is a common pre-requisite for decarboxylating enzymes, but relies entirely upon non-

covalent bonding (Radzicka & Wolfenden, 1995, Miller & Wolfenden, 2002). The crystal 

structure revealed that Ura3p in its active form is a dimer, which is composed of two α/β-

barrels with 2 active sites which are shared (Harris et al., 2000). It is believed that Ura3p 

possesses substantial flexibility in terms of its conformation provided by its several loops, 

allowing vital binding interactions (Miller & Wolfenden, 2002, Wu et al., 2000). These 

findings suggested that fusing Ura3p to hA2AR would not affect its function and ability to 

confer SA. Furthermore, when Ura3p was expressed from a HIS4C-URA3 fusion in S. 

cerevisiae, the enzyme was shown to function correctly allowing growth (Alani & 

Kleckner, 1987). The aim of that study was to ascertain which mutations decreased or 

increased Ura3p function, whereas the experiments carried out throughout this thesis use 

Ura3p to drive protein production yields. Nonetheless this previous result sets a precedent 

for the use of a Ura3p fusion to select for specific phenotypes. 

 

The fusion was expected to be expressed in the manner illustrated in Fig 3.2, with Ura3p 

being located on the intracellular C-terminus of hA2AR. This is an essential characteristic 

as Ura3p is a cytosolic enzyme, and can only catalyse the reaction shown in Fig 3.1 when 

in contact with the intracellular space (Metzger et al., 2008). This configuration leaves the 

Ura3p C-terminus free of any steric hindrance, as fusion at the C-terminus of Ura3p has 

been reported to increase instability and prevent S. cerevisiae cells from expressing the 

selection marker when grown in a medium lacking uracil (Gilon et al., 1998). 
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Y.C - α-factor - His10 - A2AR 

Fig 3.3 Schematic illustrating the A2AR construct cloned into pYX222 which was used for the SA 

strategy. The A2AR variant was devised by Niall Fraser and is a truncated form that has had the 

glycosylation site removed (red). It is preceded by a yeast consensus sequence (Y.C) (dark grey) for 

enhanced translation initiation, α-factor secretion signal (light grey) for export of the recombinant 

protein to the cell membrane, and a sequence encoding a His10  tag (green) for purification. 

  

 

3.1.2 A2AR construct  

The A2AR gene construct used encoded a truncated glycosylation deficient form of hA2AR 

designed by Niall Fraser (Fig 3.3, red), which had the glycosylation site Asn154 mutated to 

Gln, which prevents hyper-glycosylation in yeast (Fraser, 2006). The A2AR construct was 

previously used by researchers to produce sufficient quantities of hA2AR to begin 

crystallisation studies (Fraser, 2006) so was a validated variant. The A2AR gene was 

preceded by a yeast consensus sequence (Fig 3.3, dark grey) thought to enhance translation 

initiation (Wang et al., 1998, Robbins-Pianka et al., 2010), and a precursor of the yeast 

mating pheromone α-factor secretion signal (Fig 3.3, light grey), which is routinely 

employed when expressing recombinant proteins in yeast (Brake et al., 1984). The α-factor 

signal allows the translocation of the fusion protein to the cell membrane, as it is involved 

in facilitating export from the site of synthesis to the site of release in the cell membrane 

(Bitter et al., 1984, Brake et al., 1984). For purification, a sequence encoding a His10 tag 

was inserted as shown (Fig 3.3, green). 

 

Expressed Fusion Gene 

Transcripts 

Expressed Fusion in 

Cell Membrane 

  A2AR         URA3         

Figure 3.2 Expected expression trait selected for by SA. The fusion protein was designed to be 

expressed from A2AR-URA3 mRNA as a hA2AR-Ura3p fusion. The fusion protein was expected to 

comprise the hA2AR partner (red) inserted into the yeast cell membrane and the Ura3p partner (purple) 

fused to its C-terminus and being presented intracellularly to confer the SA.  

 

   365aa             267aa 
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3.1.3 Objectives 

The specific objectives of Chapter 3 were therefore: 

1. To design and construct a SA vector; 

2. To generate SA transformants; 

3. To examine the hA2AR yield and characteristics from the SA transformants. 

 

3.2 Vector construction  

3.2.1 Cloning strategy: pYX222-hA2AR-URA3 

The cloning strategy is illustrated in Figure 3.4. The pYX222 backbone contains a HIS3 

selection marker that can be used to select for colonies maintaining the plasmid in histidine 

deficient medium. Introduction of the URA3 sequence in fusion with the A2AR coding 

sequence additionally allowed for application of SA on uracil deficient medium. 

 

3.2.2 Construction of pYX222-A2AR-URA3 

In order to insert the URA3 gene downstream of the A2AR coding region in plasmid 

pYX222-A2AR (the kind gift of Dr Richard Darby) to create a fusion protein, it was 

necessary to disrupt the A2AR stop codon (as illustrated in Fig 3.4). Extensive attempts 

were made to use conventional cloning approaches to remove the stop codon in pYX222-

A2AR. Unfortunately, errors in the vector map for pYX222-A2AR resulted in three 

independent strategic approaches yielding incorrect inserts. It was therefore decided, due to 

the low cost of emerging gene synthesis technologies, to use gene synthesis to expedite the 

vector construction. The A2AR sequence (3ˊ minus TGA)-linker-URA3 insert (Fig 3.4) was 

therefore designed using GENtle software (www.gentle.magnusmanske.de), synthesised by 

GeneArt (Life Technologies) and was delivered pre-cloned into a stock vector designated 

pLAU. For the new insert’s target site to replace the stop codon of the A2AR coding region, 

XmaI, which was the most extreme unique restriction site 3ˊ of A2AR, was chosen being 

located 241bp upstream of the stop codon. The next unique restriction site after the A2AR 

stop codon was NheI, located in the backbone of the plasmid 352bp away. The pLAU 

plasmid, was transformed into XL2-Blue supercompetent E. coli to amplify the DNA and 

acquire a stock; analysis of pLAU was performed via gel electrophoresis which confirmed 

a product of approximately 3,000bp (Fig 3.5A).  
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A2AR 3ˊ 
(minus TGA) 

 

URA3 

Vector linearised using 

XmaI and NheI 

Releasing the 3ˊ end of hA2AR 

coding region containing its stop 

codon which was discarded 

pLAU 

  
Synthesised insert 

released using 

XmaI and NheI 

Insert ligated into linearised 

pYX222-A2A 

Stop codon 

Linker-TEV site 

hA2AR(C-term)-linker-

URA3 

XmaI  

NheI 

pYX222-A2AR 
 

10222bp 

 

pYX222-A2AR-URA3 
  

10222bp 
  

Fig 3.4 Schematic illustrating the cloning strategy devised to create the SA vector pYX222-A
2A

R-URA3.  An insert was 

synthesised (GeneArt from Life Technologies) and inserted into a standard vectors (designated pLAU). The insert consisted of the 

3ˊA
2A

R with its stop codon removed, and URA3. The A
2A

R (3 ́ minus TGA)-linker-URA3 was released from pLAU using XmaI and 

NheI. The vector containing the Fraser variant pYX222-A
2A

R was cut with XmaI and NheI to release the 3ˊend of the original A
2A

R 

(containing its stop codon), the synthesised A
2A

R (3 ́ minus TGA)-linker-URA3 insert was then ligated into pYX222-A
2A

R producing 

pYX222-A
2A

R-URA3 (with the stop codon removed, the A
2A

R coding region will be read-through until the stop codon present in the 

URA3, producing a hA
2A

R-Ura3p fusion protein with a linker-TEV portion between the two proteins).       
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The pLAU miniprep product was double digested using XmaI and NheI to release the A2AR 

(3ˊ minus TGA)-linker-URA3 insert at 1087bp (Fig 3.5B, lane 2), which was validated by 

comparison with an uncut control (Fig 3.5B lane 1). The released insert was excised and 

purified. The pYX222-A2AR was digested with XmaI and NheI which released a 700bp 

(Fig 3.5C, lane 2) insert, creating a suitable accepting backbone for the A2AR (3ˊ minus 

TGA)-linker-URA3 insert (as per the cloning strategy shown in Fig 3.5), against an uncut 

control (Fig 3.5C, lane 1).Double digested pYX222-A2AR was excised and purified ready 

for ligation with the purified A2AR (3ˊ minus TGA)-linker-URA3.  

 

The purified A2AR (3ˊ minus TGA)-linker-URA3 and pYX222-A2AR(double digested) were 

ligated using a 3:1 vector to backbone ratio, and the subsequent ligation mixture used to 

transform XL-2 blue super-competent bacteria (as described in 2.4.2.1). Four colonies 

from the transformation were grown and minipreps performed to obtain the vector DNA. A 

restriction digest was then performed on the vector DNA using the restriction enzymes 

used to sub-clone the insert (XmaI and NheI) to confirm the insert’s presence, correct size 

and ensure the ligation has been successful (Fig 3.5D). All colonies released an insert of 

1,087bp which was the correct size for A2AR (3ˊ minus TGA)-linker-URA3 (Fig 3.5D, 

black arrow). In the case of colony 2 the backbone DNA retrieved was 2,500bp in size (Fig 

3.5D, lane 2, red arrow) when it should have been approximately 10kbp and therefore this 

colony was discarded. The vector DNA from each of colonies 1, 3 and 4 was sequenced 

and found to be correct. The DNA from colony 1 was taken forward as the pYX222-A2AR-

URA3 selective advantage vector. 

  

Fig? Construction of pYX222-A2A-URA3. 

representing the A2A-linker-URA3 plasmid 

miniprep product. (B) A2A-linker-URA3 insert 

release from harbouring plasmid, releasing 

the A2A-linker-URA3 insert at 1087bp. The 

insert was excised from the gel and purified 

ready for ligation into pYX222-A2A.  

Lane 5 pCrPV(IRES) 
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1           2         A B pLAU 

C D 

Fig 3.5 (A) Construction of pYX222-A2AR-URA3. A 1% agarose gel DNA electrophoresis gel was 

performed to validate the synthesised plasmid and to ensure correct retrieval of the A2AR (3ˊminus 

TGA)-linker-URA3 insert. (A) The pLAU plasmid which contained the synthesised A2AR (3ˊminus 

TGA)-linker-URA3 insert (GeneArt, Life Technologies) was transformed into XL2-Blue supercompetent 

E. coli and three separate minipreps performed. A band of approximately 3,000bp (arrow) representing 

the pLAU miniprep product was observed (confirmed using supplementary documentation supplied by 

Life Technologies). (B) A2AR (3ˊminus TGA)-linker-URA3 insert was released from pLAU plasmid via 

double digestion using XmaI and NheI, confirmed as a product of 1,087bp. The insert was excised from 

the gel (arrow), the gel slices were pooled and purified ready for ligation into pYX222-A2AR. (C) A 1% 

agarose DNA electrophoresis gel was performed to analyse whether the pYX222-A2AR vector was 

correctly prepared for ligation with the A2AR (3ˊminus TGA)-linker-URA3 insert. The vector was 

digested with XmaI and NheI and a correct insert release of 700bp confirmed correct digestion (black 

arrow); the backbone of the cut vector (red arrow) was excised and purified ready for ligation with the 

A2AR (3ˊminus TGA)-linker-URA3 insert (D) Transformants from the newly created pYX222-A2AR-

URA3 were analysed via restriction digest for correct insert release of 1,087bp to confirm correct 

insertion resulting from the ligation. All transformant colonies produced the correct result except 2 

(red) which had an erroneous starting plasmid size of 2,500bp . Samples 1, 3 and 4 were sequenced and 

found to be correct. 
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3.3 Employing SA to generate transformants 

3.3.1 Generating transformants by SA using pYX222-A2AR-URA3 

 

 

 

 

BY4741 

 

 

Transformation 

 

colonies arise 

after 7-10 

days 

colonies 

arise after  

3 days 
60 

3 1 

2-step 

selection 

process 

CSM –histidine: 

selects only for 

colonies possessing 

the plasmid via the 

HIS3 marker in the 

pYX222 backbone 

CSM –uracil: selects 

for adequate synthesis 

of hA2AR-Ura3p to 

promote growth 

replicated 

by spotting 

pYX222-A2AR-URA3 

 

H1: Near normal growth 

 

H2: No growth in liquid medium 

 

H3: No growth in liquid medium 

 

U1: Slow growing 

1-step 

selection 

process 

Fig 3.6 Scheme depicting the generation of SA transformants using pYX222-A2AR-URA3. The selection process through which 

transformants were generated was achieved using both a 1-step and a 2-step process. In the 1-step process, yeast were grown on 

uracil-deficient medium (CSM –uracil) immediately following the transformation process. In the 2-step process, yeast were grown 

on histidine-deficient medium (CSM –histidine) after transformation and then colonies were spotted from CSM –histidine to CSM 

–uracil. As the transformation process is stressful to cells, we expected the two-step to produce more viable transformants. The 1-

step process generated 1 colony (U1) which was slow growing, while the two-step process generated 3 colonies (H1, H2 and H3); 

H2 and H3 were not viable in liquid medium while H1 had normal growth.  

CSM -Ura 

CSM -His 
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SA 

 

One-Step 

 C-URA 

Method Plasmid Transformant 

pYX222-

A2AR-URA3 

  A1 

Fig 3.7 Scheme illustrating the generation of the 3 transformants A1, H1 and U1 that were used for 

the SA strategy study. Plasmid pYX222-A2AR was transformed into S. cerevisiae BY4741 WT to produce 

A1 which was the non-SA control. pYX222- A2AR-URA3 was used to generate transformants U1 and H1 

using one-step and two-step methods respectively, as shown in Fig. 3.6. For the A1 control fresh 

transformations were performed and a biologically independent colony picked randomly for each 

experiment. For H1 and U1, the glycerol stocks were prepared of these transformants and used in all 

subsequent experiments. 

  

  

 H1  

pYX222- 

A2AR-URA3 
U1 

 C-HIS  C-URA 

 

Two-Step 

URA 

  

 C-HIS pYX222- 

A2AR 

Control 

 

The 1-step process generated 1 colony designated U1 (uracil 1); this transformant grew 

particularly slowly (Fig 3.6); two further biologically-independent attempts to generate 

colonies in this manner yielded no colonies. The two-step method generated 3 colonies yet 

only one of them (Fig 3.6), which was designated H1 (histidine 1), could be cultured (Fig 

3.6), as such H2 and H3 were not used for further study. H1 and U1 were therefore taken 

forward for further studies to ascertain their yield characteristics together with the control, 

A1 (Fig 3.7). 
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3.3.2 Determination of the uracil requirement of H1  

An experiment was devised to assay the uracil requirement of H1, with A1 as the control.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 suggests H1 produced adequate hA2AR- Ura3p to sustain growth in medium 

lacking uracil, while A1 showed no growth under the same conditions (Table 3.1). 

Interestingly it appeared that the uracil typically supplemented in CSM (1,700 µM) is in 

large excess because A1 could grow in 17µM uracil (albeit to a lower biomass yield than 

in 1,700 µM uracil). This excess may be to prevent uracil becoming rate-limiting in high-

density culture, especially in the case of recombinant protein production. The data in Table 

3.1 demonstrated that H1 could be used for further study to determine its hA2AR- Ura3p 

yield characteristics. U1 was not taken forward on account of its slow growth phenotype. 

 

  

 
Growth OD600 at 16h 

Uracil (µM) A1 H1 

1,700µM (100%)  3.0  3.1 

170µM (10%)  2.7  2.8 

17µM (1%)  1  2.9 

1.7µM (0.1%)  0.3  2.7 

0.0µM (0%)  0.0  2.8 

Table 3.1 Analysis of A1 and H1 growth in varying concentrations of uracil. The pYX222-A2AR 

transformant, A1, and the pYX222-A2AR-URA3 transformant, H1, were cultured in the CSM –uracil drop 

out medium supplemented with uracil as shown;  1,700µM is the typical concentration of uracil added 

(100%) to complete CSM. 5ml cultures were started at an OD600 0.01 and grown for 16h. H1 was able to 

sustain growth in all condition,  most importantly in the absence of uracil (0.0%), whereas the control A1 , 

which lacks the URA3 gene, cannot grow in the absence of uracil. Surprisingly the results suggest a huge 

excess of uracil  is used in drop out medium because A1 had near normal growth at 170µM uracil (values 

are the mean of n=2). 
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3.3.3 Growth characteristics of A1 and H1 

It has been previously reported that to achieve maximal expression of membrane proteins 

from S. cerevisiae that cells should be harvested in the late exponential phase of growth, 

just prior to glucose exhaustion and the diauxic shift (Bonander et al., 2005). All 

experiments were therefore done on samples after 19h of growth at which time the cells 

were at an approximate OD600 4-5. Fig 3.8 (left) shows typical growth curves for H1 and 

A1 and residual glucose concentration in the culture medium (Fig 3.8, right). 

 

 

 

 

 

 

 

 

 

 

 

  

Fig 3.8 growth curves and glucose concentration for A1 and H1. Measurements of the optical 

density (left) and residual glucose concentration (right) were taken periodically over 19h of growth 

for the SA transformants A1 and H1 (data representative of typical growth profiles).  
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3.3.4 Viability of A1 and H1 

The viability of A1 and H1 was assessed using trypan blue dye exclusion to determine 

whether the SA strategy and associated recombinant synthesis had impacted it. Table 3.2 

shows essentially identical viability for A1 and H1 compared to the untransformed parental 

strain, BY4741. This suggested that the SA strategy and recombinant expression had no 

effect on viability.  

 

 

 

 

 

 

3.3.5 Reproducibility of H1-like colony generation 

Fig 3.6 shows that the 1-step process generated only 1 colony, designated U1; this 

transformant grew particularly slowly and two further biologically- independent attempts to 

generate additional colonies in the same manner yielded no colonies. Since the two-step 

selection process that had generated H1 had resulted in only 1 culturable colony, the two-

step procedure was repeated to determine the reproducibility of H1-like colony generation 

and colony survival rates.  

 

 

 

 

 

 

  Viability (%)   

Transformant YPD CSM-HIS CSM-URA 

BY4741 99.99 — — 

A1  — 99.90 — 

H1 — — 99.95 

Comparison of reproducibility of the two-step selection  

Transformation 

attempt 

Selection (no. colonies) Initial 

Survival 
rate (%) 

Viable in 

liquid  
CSM -ura  

Overall 

survival rate 
(%) 

CSM -his 

1st step  

CSM -ura 

2nd step  

1 (original) 60 3 5.00 Yes (1) 1.66 

2 45 5 11.11 No 0.00 

Table 3.2 The effect of SA on the viability of A1 and H1. A viability assay was performed 

using trypan blue dye exclusion (as described in 2.4.3.4). The yeast transformants were grown 

for 19h at 30°C. Cell viability is reported as the % viability of 100 cells. The viability data 

suggest that the SA strategy has no observable effect on the viability of the cells when compared 

to the BY4741 untransformed control (values are the mean of n=3). 

 

Table 3.3 Repeat of the two-step selection that generated H1. The two-step selection method was 

performed again and the data compared with the previous attempt that generated H1.The first selection 

round gave 60 colonies on CSM –histidine, of which 3 survived on CSM –uracil; of the 3 only 1 could be 

cultured in liquid CSM –uracil medium (H1). The second attempt gave 45 colonies on CSM -histidine, of 

which 5 survived on CSM –uracil medium, but could not be cultured. 
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Table 3.3 shows that during the original selection, 60 colonies formed after step 1, yet only 

3 of them presumably synthesised adequate hA2AR-Ura3p to support growth on CSM –

uracil; a survival rate of 5%. Since only 1 out of the 3 was culturable in liquid CSM –

uracil, the overall survival rate was 1.7%. A second, biologically- independent attempt to 

generate H1-like colonies yield only 45 colonies on CSM -histidine plates, yet 5 colonies 

survived on CSM- uracil; a survival rate of 11.1%. However, none of the colonies could be 

cultured in liquid CSM –uracil, giving an overall survival rate of 0%. A biologically-

independent third attempt yielded no colonies. These data suggested that the generation of 

H1-like colonies is a rare event and so it was decided to focus on characterising the yield 

characteristics of H1. 

 

3.4 Employing SA to increase recombinant hA2AR yield 

3.4.1 Immunoblot analysis of expression profile using anti-His6 specific antibody 

 

 

 

 

 

 

 

 

 

 

 

The A1and H1 transformants were grown in 100ml CSM-histidine and CSM-uracil 

cultures respectively, until an OD600 4-5, harvested and a membrane preparation was 

performed (described in 2.5.1) to isolate total cell membrane protein presumed to contain 

  1         2                        3         4  

Fig 3.9 Immunoblot performed using anti-His6 antibody [Clontech].  Transformants A1 (grown in 

CSM-histidine) and H1 (grown ins CSM-uracil) were grown to an OD600 4-5 in 100ml culture. Cells 

were harvested, a membrane preparation performed and the concentration of total membrane 

protein determined using a BCA assay. A1 hA2AR (1) 25ng, (2) 50ng. H1 hA2AR-Ura3p (3) 25ng, (4) 

50ng. 
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150 
100 

 

75 
50 

 
35 

  

A1 H1 



87 

 

hA2AR (from A1) or hA2AR-Ura3p (from H1). An immunoblot was performed with 25µg 

or 50µg total membrane protein as determined by BCA assay (described in 2.5.2), using an 

anti-His6 antibody (Clontech, 1:2000 dilution), as shown in Fig 3.9. An anti-hA2AR 

antibody (Santa Cruz Biotech) was evaluated, but gave inconsistent and unreliable results 

and therefore was not used further.  

 

Lanes 1 and 2 show membranes from A1, with 25µg and 50µg of total membrane protein 

loaded, respectively. A band at approximately 45kDa (black arrow) was observed in both 

lanes corresponding to the mass of a monomer of hA2AR, plus a higher band of around 

150kDa (red arrow) that could be either an oligomeric or an aggregated form of hA2AR. 

Lanes 3 and 4 were loaded with membranes from H1, with 25µg and 50µg of total 

membrane protein added, respectively. Both lanes had bands of around 45kDa (black 

arrow) representing a monomer of hA2AR, and a higher band of 170kDa (green arrow) in 

lanes 3-4 which could represent aggregated hA2AR-Ura3p and was brighter than the 

presumed oligomeric form of hA2AR from A1 cultures. No 75kDa hA2AR-Ura3p monomer 

band was observed. As hA2AR is thought to homodimerise in the plasma membrane 

(Canals et al., 2004), and importantly Ura3p is only active as a dimer (Hu et al., 2008), this 

result was not unexpected.  

 

In addition a band of 35kDa (purple arrow) was seen in all wells and was thought to 

correspond to hA2AR monomer that had suffered C-terminal degradation which has been 

previously documented in the literature (Weiss & Grisshammer, 2002, O’Malley et al., 

2007, Singh et al., 2008).  
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3.4.2 Quantification via immunoblot of total hA2AR-Ura3p expression yields from H1 

grown in different culture media  

To determine whether the increase in hA2AR-Ura3p yield over the yield of hA2AR seen in 

Fig 3.9 was due to SA through the use of a selective medium, the yields expressed from H1 

cultured in CSM-histidine, CSM -histidine -uracil and CSM –uracil were compared, along 

with that from U1 cultured in CSM-uracil. The data from triplicate immunoblots was 

analysed via ImageJ software to compare relative expression judged by band intensity of 

the whole lane. hA2AR-Ura3p yields were calculated relative to the hA2AR control from 

transformant A1 as shown in Fig 3.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.10 Quantification of hA2AR/hA2AR-Ura3p yields via ImageJ analysis of immunoblots. 

Transformants generated through SA, H1 and U1, were cultured in uracil deficient selective medium 

to encourage high expression of hA2AR-Ura3p. In addition H1 was cultured in medium deficient in 

histidine and medium doubly deficient in histidine and uracil. The control, A1, was cultured in medium 

deficient in histidine. The graph shows mean data for the combined data sets of immunoblots 

performed using Clontech anti-His6 antibodies. All wells had 55µg total membrane proteins loaded as 

determined by BCA assay. The results are the mean of 3 independent experiments. A 1-way ANOVA 

with a Dunnett’s multiple comparison test against the control group A1 indicated a significance with a 

p= 0.0001 (****) for H1 (CSM -uracil). 
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H1 growth in CSM-uracil selected for cells that express adequate hA2AR-Ura3p encoded 

by pYX222-A2AR-URA3, while growth in CSM -histidine selected only for cells 

containing the plasmid (through its HIS3 selection marker in the pYX222 backbone); this 

was identical to the A1 control growth conditions. Growth in CSM -histidine -uracil 

selected simultaneously for adequate expression of hA2AR-Ura3p and for possession of the 

plasmid through the HIS3 selection marker.  

 

Fig 3.10 indicates that H1 cultured in CSM -uracil had the highest increase in yield 

compared to the A1 control showing approximately a 7-fold increase. When H1 was 

cultured in CSM-histidine and CSM -histidine – uracil, there was only a 2-fold yield 

increase over A1. The U1 transformant cultured in CSM -uracil had no observable 

recombinant expression which supports our hypothesis that a one-step selection on CSM -

uracil was too stressful for the cells.  

 

Interestingly H1 cultures grown on CSM -histidine were also higher yielding than A1, 

despite them both being cultured in the same conditions (i.e. no SA). However it has been 

documented that the addition of tags can increase yield, protein stability and function 

(Waugh, 2005), which could be true of Ura3p and would explain the unexpected increase 

over the A1 control. H1 cultured in CSM -histidine -uracil, had comparable yields to the 

A1 control most probably as a result of the metabolic stress attributed to the double 

auxotrophy which appeared to have a negative effect on recombinant yield. From this point 

it was obvious that H1 should be cultured exclusively in CSM –uracil in all subsequent 

experiments.  
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3.4.3 Confirmation of the identity of the recombinant proteins synthesised by the A1 

and H1 transformants by mass spectrometry 

To confirm the identity of the bands in Fig 3.9 as hA2AR-Ura3p, 50µg of total membrane 

protein (determined by a BCA assay) from each of A1 and H1 was separated by SDS-

PAGE and stained with Bio-safe Coomassie stain. The bands of interest at 150kDa (Fig 

3.9, green arrow) and 170kDa (Fig 3.9, red arrow) were excised from the gel and sent to 

the University of Birmingham’s mass spectrometry facility for analysis (Table 3.4). The 

170kDa band from H1 membranes was shown to contain both hA2AR and Ura3p, 

consistent with a hA2AR-Ura3p dimer of approximately 140kDa. The 150kDa band from 

A1 membranes yielded no data from the analysis, possibly due to an inadequate sample 

concentration. However, the band had been identified in Fig. 3.9 with an anti-His6 antibody 

and an anti-hA2AR antibody (Santa Cruz Biotech) had also previously given one positive 

signal (data not shown on account of the inconsistency of this antibody). Since the H1 band 

had been identified as a hA2AR-Ura3p dimer, A1 and H1 membranes were subject to radio-

ligand binding assays to confirm the presence of a correctly-folded hA2AR moiety. 

Sample Accession Description Score  Coverage  
# 

Protein 

# # 
MW 

[kDa] Peptides AAs 

A1 
150kDa 

- - - - - - - - 

H1 
170kDa 

C9JQ D8 
ADO RA2A 

(hA2AR) 
9.9 7.12 2 2 365 40.1 

    High VLAAHGSDGEQVSLR 2 2 C9JQD8 0 0 

    Low QMESQPLPGER 1 2 C9JQD8 0 0.164 

    

      
  

  20734607
0 

YEL021Wp 
(Ura3p) 

12.87 25.84 4 7 267 29.2 

    
High 

TVDDVVSTGSDIIIVG

R 
2 4 207346070 0 0 

    High SDKDFVIGFIAQR 1 4 207346070 0 0 

    High LQYSAGVYR 1 4 207346070 0 0.001 

    High QTNLcASLDVR 1 4 207346070 0 0.001 

    High YNFLLFEDR 1 4 207346070 0 0.001 

    Medium YNFLLFEDRK 1 4 207346070 0 0.045 

    Low MsKATYKER 1 4 207346070 0.63   

 

 

  

Table 3.4 Mass spectrometry of A1 and H1 immunoblot bands. A 10% SDS-PAGE gel was performed with 

50µg total membrane protein loaded (determined by a BCA assay) for both A1 and H1, and bands of interest 

were excised and sent for mass spectrometry as the University of Birmingham. The results show hits for both 

hA2AR and Ura3p in the 170kDa band from H1 confirming the presence of the hA2AR-Ura3p dimer. A1 

returned no results from recombinant sources. 
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3.4.4 Radio-ligand binding analysis of hA2AR and hA2AR-Ura3p in A1, H1 and U1  

To determine whether the hA2AR-Ura3p we had produced was correctly folded and to 

estimate the amount of functional hA2AR moiety (complementing total hA2AR yield 

estimates by immunoblot), a radio-ligand binding assay was performed (Singh et al., 

2012). A single-point saturation radio-ligand binding analysis was performed using the 

well know antagonist [3H]ZM241385 (Jaakola et al., 2008) using 100µg of total membrane 

extract from A1, H1 and U1 (Fig 3.11). The binding data in Fig 3.11 indicate that H1 had 

only a minimal increase (1.6 ± 0.1 pmol mg-1) in hA2AR-Ura3p that is in a correctly-folded 

state and able to bind the antagonist compared to the A1 control (1.3 ± 0.1 pmol mg-1). 

This is in contrast to the earlier quantification by immunoblot (Fig 3.10), which showed a 

7-fold increase. While U1 had a negligible yield as expected (0.2 ± 0.1 pmol mg-1). 

 

 

 

 

 

 

 

 

 

 

 

This suggested that the majority of hA2AR-Ura3p produced in H1 was not correctly folded. 

Confocal microscopy was therefore employed to establish hA2AR/hA2AR-Ura3p 

localisation within the cells and whether any differences could be seen between H1 and the 

A1 control. 
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Fig 3.11 Single-point saturation binding analysis of transformants generated through SA.  Single-

point binding using the antagonist [
3
H]ZM241385 was performed on total membrane extracts 

containing 100µg total membrane protein harvested from A1, H1 and U1. The transformants were 

cultured in media according to their respective selection criteria; A1 was cultured in CSM –histidine 

thereby selecting for yeast using the selection marker HIS3 of the plasmid it harbours (pYX222-A2AR). 

H1 and U1 were cultured using CSM –uracil which selects for expression of the fusion protein hA2AR-

Ura3p encoded in the pYX222-A2AR-URA3. The data are the mean of at least 3 independent 

experiments and the errors represent SEM. 

 

 

 

as a prerequisite for production of uracil being vital for protein biosynthesis and therefore growth.  
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3.4.5 Confocal microscopy of N-terminally His10-tagged hA2AR/hA2AR-Ura3p in A1 

and H1  

To investigate the 7-fold increase in recombinant yield for H1 compared to A1 shown by 

immunoblot and the significantly smaller increase shown by radio-ligand binding, we 

decided to visualise the A1 and H1 cells by confocal microscopy. The cells were therefore 

grown to an OD600 of 4-5 in line with previous cultures. Confocal microscopy was 

performed using Clontech rabbit anti-His6 primary antibodies in conjunction with Alexa-

Fluor488 conjugated anti-rabbit secondary.  

 

Fig 3.12 shows that the A1 transformants exhibit expression throughout the cell and that 

the vacuole was devoid of recombinant protein. In comparison, H1 appeared to have the 

majority, if not all, of the recombinant protein internalised in the vacuole. The 

untransformed BY4741 parental strain did not show any signal, so we were able to rule out 

non-specific binding. We concluded that the internalisation event in H1 cells may be 

responsible for the discrepancies between total recombinant hA2AR-Ura3p yield 

(determined by immunoblot) and functional recombinant hA2AR-Ura3p yield (determined 

by radio-ligand binding assay). 

BY4741 A1 H1 

Fig 3.12 Confocal microscopy visualisation of recombinant hA2AR/hA2AR-Ura3p in transformed S. cerevisiae 

using AlexFluor488 antibodies. The representative images depict the general localisation of recombinant 

hA2AR/hA2AR-Ura3p in green in BY4741, A1 and H1 grown to an OD600 of 4-5. Using Clontech rabbit anti-His6 as 

the primary antibody, the Alexa-Fluor488 conjugated anti-rabbit secondary was used to allow visualisation under a 

confocal microscope. The BY4741 control displayed no non-specific binding; the green fluorescent signal for A1 and 

H1 was therefore due to His-tagged recombinant proteins. The A1 control displayed expression of the recombinant 

protein throughout the cell excluding the vacuole, while H1 displayed a high concentration of recombinant protein in 

its vacuoles. 
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3.4.6 Strategies to avoid vacuolar internalisation of recombinant hA2AR-Ura3p in H1  

Localisation of hA2AR-Ura3p in the vacuole due to an apparent internalisation in H1 cells 

(Fig. 3.12) appeared to have a negative effect on functional yield as determined by radio-

ligand binding. We therefore decided to investigate 3 vacuolar mutants of BY4741, 

apm3Δ, vps1Δ and pep3Δ. The two main pathways for protein trafficking in S. cerevisiae 

are the alkaline phosphatase pathway (ALP) and the vacuolar hydrolase carboxypeptidase 

Y pathway (CPY) (Conibear & Stevens, 1998), which can both be disrupted through the 

deletion of APM3 and VPS1 (Fig.3.13). Since PEP3 is responsible for vacuolar biogenesis 

(Srivastava et al., 2000) and its deletion prevents vacuole formation, this mutant was also 

investigated (Fig 3.13).  

CPY pathway 

(Vps1) 

Golgi 

Vacuole 
(Pep3) 

Endosome/PVC 

ALP pathway 

(Apm3) 

X 

X 

Fig 3.13 Schematic illustration depicting the effect of deletions of the vacuolar genes, APM3, VPS1 and 

PEP3, on vacuolar trafficking pathways and vacuolar biogenesis in S. cerevisiae. Newly synthesised 

proteins are trafficked to the vacuole via two pathways, the vacuolar hydrolase carboxypeptidase (CPY) 

pathway which involvestransit through the pre-vacuolar compartment, and the alkaline phosphatase (ALP) 

pathway. Deletion of the Vacuolar Protein Sorting-1 (VPS1) gene or the clathrin Adapter Protein complex 

Medium chain (APM3) gene, cause a disruption to the CPY and ALP pathways, respectively. Additionally 

deletion of the carboxyPEPtidase Y-deficient protein (PEP3) gene prevents vacuolar biogenesis. 
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The clathrin Adapter Protein complex Medium chain protein (Apm3p)  is a subunit of 

clathrin associated protein complex (AP-3), responsible for trafficking to the vacuole via 

the ALP pathway  (Nothwehr et al., 1995, Cowles et al., 1997). The Vacuolar Protein 

Sorting-1 protein (Vps1p) is a dynamin- like GTPase which is involved in vesicle budding 

from the Golgi, facilitating trafficking along the CPY pathway (Ekena et al., 1993). The 

carboxyPEPtidase Y-deficient protein (Pep3p) protein is a component of the CORVET 

tethering complex which is a peripheral membrane protein responsible for playing an 

important role in vacuolar biogenesis (Srivastava et al., 2000). 

 

 

3.4.7 Cell morphology and localisation of hA2AR/hA2AR-Ura3p in vacuolar mutant 

apm3Δ, pep3Δ and vps1Δ   

Confocal microscopy was performed to investigate whether vacuolar accumulation could 

be disrupted through the use of the vacuolar mutant strains, apm3Δ, pep3Δ and vps1Δ, as 

host cells for recombinant protein synthesis. The 3 mutant strains were therefore 

transformed with pYX222-A2AR-URA3 (the SA plasmid) and pYX222-A2AR (the control 

plasmid). The two-step method was used to generate vacuolar mutant transformants; 3-8 

colonies were generated on CSM-uracil plates from 15-25 colonies on CSM-histidine 

plates and 1 culturable colony was picked at random for each strain. The vacuolar control 

transformants were generated in the same fashion as A1. 

 

Figure 3.14A shows that the apm3Δ transformants displayed a similar localisation for both 

hA2AR and hA2AR-Ura3p as the A1 control, with a relatively empty vacuole. In the case of 

the vps1Δ transformants, both vps1Δ: hA2AR and vps1Δ: hA2AR-Ura3p appeared to have 

small vesicles containing recombinant protein together with a signal throughout the cell 

and no visible vacuole (Fig 3.14B). The cells also exhibited a non-typical spherical 

morphology. The pep3Δ: hA2AR transformant (Fig 3.14C), which has no vacuole, appeared 

to have small vesicles which contained recombinant hA2AR-Ura3p. In contrast, pep3Δ: 

hA2AR-Ura3p gave a relatively low signal throughout the cell and no visible concentration 

in vesicles (Fig 3.14C) indicating that expression was relatively low for this transformant. 

The pep3Δ cells also had the non-typical spherical morphology.  
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A B 

C 

Fig 3.14 Confocal microscopy of S. cerevisiae BY4741 vacuolar mutants expressing hA2AR and 

hA2AR-Ura3p. The images above are representative images depicting the general localisation of 

recombinant hA2AR in green in yeast transformants that were grown to an OD600 of 4-5. Clontech rabbit 

anti-His6 was used as the primary antibody, with Alexa-Fluor488 conjugated anti-rabbit as secondary 

which allowed visualisation under a confocal microscope. (A) apm3Δ: hA2AR, (B) apm3Δ: hA2AR-

Ura3p, (C) pep3Δ: hA2AR, (D) pep3Δ: hA2AR-Ura3p, (E) vps1Δ: hA2AR, (G) vps1Δ: hA2AR-Ura3p. 

pYX222-A2AR pYX222-A2A-URA3 

B 

A apm3Δ 

vps1Δ 

pep3Δ 
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Radio-ligand binding assay was performed to determine whether the use of these mutant 

strains had improved the amount of functional recombinant protein. 

 

3.4.8 Analysis of hA2AR/hA2AR-URA3 yield by radio-ligand binding in vacuolar 

mutant strains 

Single-point radio-ligand binding analysis was performed using [3H] ZM241385 on total 

membrane extracts containing 100µg total membrane protein. Vacuolar mutants, apm3Δ, 

pep3Δ and vps1Δ expressing hA2AR/hA2AR-Ura3p were analysed to quantify functional 

yield (Fig 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The analysis showed that for apm3Δ the SA strategy (apm3Δ:hA2AR-Ura3p) caused a 

reduction in yield when compared to its control (apm3Δ: hA2AR).  For pep3Δ there was no 

observable difference in yield. Notably, vps1Δ: hA2AR-Ura3p had an extremely low yield 

compared to its control vps1Δ: hA2AR which had a yield comparable to A1. Interestingly 

Fig 3.15 Single-point binding analysis of vacuolar mutants apm3Δ, pep3Δ and vps1Δ. Single-point 

radio-ligand binding analysis was done using the antagonist [
3
H]ZM241385 on 100µg total 

membrane preparations harvested from vacuolar mutants which expressed hA2AR or hA2AR-Ura3p; 

this experiment was performed once. 
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the hA2AR yield from apm3Δ (apm3Δ: hA2AR) was approximately 1.9 pmol mg-1 which 

was higher than A1 control levels (1.3 pmol mg-1 from the BY4741 strain). Although there 

was no vacuolar internalisation in these 3 mutant strains, there was also no increased 

hA2AR-Ura3p yield using the SA strategy. We therefore devised an alternate strategy to 

alleviate vacuolar accumulation by investigating the use of the spt3Δ strain which has been 

reported to have improved recombinant protein quality (Bonander et al., 2005), possibly 

due to the possession of a translation initiation block (unpublished data by Dr. Stephanie 

Cartwright, Aston University); Fig 4.6). Such translationally inhibited states have been 

suggested to be amenable to producing higher quality protein (Siller et al., 2010, Meriin et 

al., 2012, Sherman & Qian, 2013).  

 

3.4.9 Use of the spt3Δ strain to improve functional yields with the SA strategy 

The SPT3 gene encodes a transcription factor that is a component of the SAGA complex, 

which is composed of 20 subunits and is involved in transcriptional activation of 10% of 

genes in yeast, many associated with stress (Jacobson & Pillus, 2009). Previous studies 

have shown that the spt3Δ strain can be used to improved recombinant protein quality and 

has shown increased yields of the yeast membrane protein Fps1, a glycerol facilitator 

(Bonander et al., 2009). It also has be shown to have a translational initiation block 

(unpublished data by Dr. Stephanie Cartwright, Aston University);Fig 4.6). Slowing the 

rate of translation through translational inhibition has been shown to decrease the 

proportion of misfolded recombinant proteins expressed in host systems by enhancing 

folding efficiency, possibly due to the increased availability of chaperones and a reduced 

load on the ER machinery (Siller et al., 2010, Meriin et al., 2012, Sherman & Qian, 2013). 

A one-step selection method was therefore used to generate spt3Δ SA transformants; only 

one colony formed from the process which was designated SU1 (spt3Δ uracil 1; Fig 3.16). 

Unlike U1 which also was generated through a one-step selection, SU1 did not acquire a 

severe growth defect as a consequence of being selected via the more stressful method, 

instead exhibiting the same growth characteristics as the parental strain spt3Δ. 

Consequently a two-step process was not used to generate further transformants. 

  



98 

 

Method Plasmid Transformant 

  SU1 

Fig 3.16 Schematic illustrating the generation of the SU1 (spt3Δ:hA2AR-Ura3p). The pYX222-A2AR-

URA3 SA vector was used to generate transformant SU1 using a one-step method.  

spt3Δ:hA2AR-Ura3p 

One-Step 

 C-URA 

pYX222-

A2AR-URA3 

 

An immunoblot was performed on total cell membranes containing 50μg total membrane 

protein to determine the yield of recombinant hA2AR-Ura3p from SU1, with A1 as the 

control. The immunoblot results were analysed using ImageJ to compare hA2AR /hA2AR-

Ura3p expression quantitatively between the control, A1, and SU1, respectively. Fig 3.17 

shows that SU1 has a reduction in yield scoring only 0.6 times as much as A1.  
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Fig 3.17 Immunoblot quantification of A1 and SU1 recombinant yields by ImageJ analysis. 

Transformants were grown to an OD600 of 4-5. Using rabbit anti-His6 (Clontech) as the primary 

antibody, His-tagged hA2AR and hA2AR-Ura3p were detected in A1 and SU1 membranes and the bands 

quantified by ImageJ. Data are the mean of triplicate determinations; with error ± SEM. 
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Single-point radio-ligand binding analysis was performed using [3H] ZM241385 on total 

cell membrane extracts containing 100µg total membrane protein (determined by BCA 

assay), to determine the functional hA2AR-Ura3p yield from SU1 (Fig 3.18). The data 

show that the SU1 transformant has a functional yield of 3.3 ± 0.2 pmol mg-1 hA2AR-

Ura3p, a 2.5-fold increase over the A1 control (1.3 ± 0.1 pmol mg-1). Since spt3Δ:hA2AR 

had a lower yield (0.5 ± 0.1 pmol mg-1) than the control A1 and SU1, this suggested that 

the increase in functional yield shown by SU1 over A1 is a result of the implementation of 

the SA strategy rather than being a result of the specific characteristics of the spt3Δ strain 

alone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immunoblot analysis suggested SU1 had a lower total yield of hA2AR-Ura3p than the yield 

of hA2AR in the A1 control (Fig 3.17). In contrast, Fig 3.19 demonstrates higher specific 

Fig 3.18 Single-point binding analysis of SU1 (spt3Δ:hA2AR-Ura3p) and spt3Δ:hA2AR 

transformants compared with the A1 control. Single-point binding using the antagonist [
3
H] 

ZM241385 was performed to quantify functional yield of hA2AR/hA2AR-Ura3p from total cell 

membranes containing 100µg total membrane protein harvested from SU1 and spt3Δ:hA2AR with A1 

as the control. SU1 was shown to have a hA2AR yield of 3.3 pmol mg
-1

, and spt3Δ:hA2AR only 0.5 pmol 

mg
-1

. Data are the mean of triplicate determinations; error bars represent SEM. A 1-way ANOVA 

with a Dunnett’s multiple comparison test with the control group A1was performed; p = of 0.0001 

(****) for SU1 and 0.01 (**) for spt3Δ:hA2AR. Data are representative of at least 3 independent 

experiments with error ± SEM 
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activity in SU1 than A1 when the membranes were assayed by radio-ligand binding 

analysis. Confocal microscopy was therefore used to investigate these seemingly 

contradictory results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The confocal images are reminiscent of the A1 control confocal images (Fig 3.12) where 

the recombinant protein is found to be located throughout the cell, with no vacuolar 

accumulation of recombinant protein occurring as it did in H1 (Fig 3.12); SU1 has empty 

dark vacuoles devoid of the green signal associated with recombinant protein (Fig 3.19). It 

was clear that the SU1 transformant did not suffer from vacuolar accumulation despite the 

SA pressure put upon the cells. This could be attributed to the spt3Δ strain’s ability to fold 

proteins more slowly and efficiently due to its translational initiation block; it has been 

Fig 3.19 Confocal microscopy visualisation of recombinant hA2AR-Ura3p 

expressed in SU1 using AlexFluor488 antibodies. The images above are 

representative images and depict the general localisation of the recombinant 

hA2AR in green in the SU1 transformants. The cells were grown to an OD600 of 4-

5 and visualised using rabbit anti-His6 (Clontech) as the primary antibody and 

Alexa-Fluor488 conjugated anti-rabbit as secondary. The SU1 transformant had 

empty vacuoles and did not appear to contain internalised hA2AR-Ura3p. 
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documented in other such mutants (that suffer an inhibition of translation) that they have 

better protein folding capabilities (Bonander et al., 2005, Sherman & Qian, 2013).  

 

A viability assay was performed as shown in Table 3.5, SU1 had identical viability to H1 

and the controls (A1 and BY4741), suggesting that recombinant expression had no effect 

on viability.  

  

 

 

 

 

 

 

Overall, it was unclear why the comparative immunoblot (Fig. 3.17) and radio-ligand 

binding data (Fig 3.18) were contradictory for SU1. Consequently the pharmacological 

profiles of hA2AR-Ura3p produced by H1 and SU1 were compared with the profile of 

hA2AR produced by A1. 

 

3.4.10 Pharmacological profile of hA2AR-Ura3p produced by H1 and SU1 compared 

with hA2AR produced by A1 

It had been established that H1 had a small increase and SU1 a substantial increase over 

the A1 control in terms of functional yield of hA2AR-Ura3p. The question still remained 

whether or not the Ura3p fusion partner affected receptor affinity. Homologous 

competition curve assays were therefore performed using ZM241385 (as described in 

2.6.2) for A1, H1 and, SU1 (Fig 3.20). The pKd values observed for H1 and SU1 were 8.4 

± 0.2 and 8.3 ± 0.2 respectively which is in line with the values for the A1 control (8.6 ± 

0.2). All values were within the nanomolar range expected for membrane-bound hA2AR 

expressed from various constructs in the literature (Singh et al., 2010). 

  Viability (%)   

Transformant YPD CSM-HIS CSM-URA 

BY4741 WT 99.99 — — 

A1  — 99.90 — 

H1 — — 99.95 

SU1 — — 99.88 

Table 3.5 The effect of SA on the viability of SU1. The viability data suggest that the SA strategy 

had no observable effect on the viability of SU1 cells when compared to the other SA transformant 

(H1) and the controls (A1 and BY4741); all have identical viability (values are the mean of n=3). 
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We were therefore confident that expression in an SA-driven manner did not affect the 

affinity of the hA2AR and neither did expression in spt3Δ membranes. The existence of a 

heterogeneous receptor population in H1 (Fig 3.12) also suggested that misfolded or 

mislocalised hA2AR-Urap3 was not able to bind the antagonist and therefore did not affect 

the binding data. This did not appear to be the case for the immunoblot assays, because 

there would be no discrimination between receptors as long as the His10-tag was presented. 
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Fig 3.20. Homologous competition 

curves for hA2AR/hA2AR-Ura3p 

expressed in A1, H1 and SU1 using 

hA2AR antagonist ZM241385. The 

experiment was performed using total 

cell membranes containing100µg total 

membrane protein. Data are 

representative of the mean of 3 

independent experiments, with pKd 

presented in each graph ± SEM, derived 

from the EC50 values of the curves which 

were fitted using a one-site binding 

model in Graphpad Prism. 
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3.4.11 Solubilisation of hA2AR-Ura3p / hA2AR from A1, H1 and SU1 membranes 

A solubilisation study was carried out to determine if it was possible to recover misfolded 

protein from H1(Fig 3.21), where a 7-fold increase in total hA2AR-Ura3p yield compared 

to the A1 control from immunoblots (Fig 3.10) was matched with a 1.3-fold increase from 

functional data using radio-ligand binding (Fig 3.11). As confocal microscopy showed 

hA2AR in H1 appeared to be accumulating in the vacuole rather than throughout the cell 

and the cell membrane, as seen in the A1 control and SU1, this might have a negative 

effect on the structure or folding of the receptor. It was hypothesised that the function of 

the misfolded hA2AR-Ura3p expressed in H1 could be restored by solubilisation in n-

dodecyl β-D-maltopyranoside (DDM), a detergent known to retain GPCR function when 

supplemented with cholesteryl hemisuccinate (CHS) (Weiss & Reinhard Grisshammer, 

2002, O’Malley et al., 2007, Singh et al., 2010).  

Functional yield (pmol mg
-1

) 

  Solubilisation 

 
– + 

A1 1.3 ± 0.1 1.2 ± 0.3 

H1 1.6 ± 0.1 5.8 ± 1.6 

SU1 3.3 ± 0.2 3.2 ± 0.7 
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Fig 3.21Effect of solubilisation on hA2AR/hA2AR-Ura3p harvested from A1, H1 and SU1. A single-point 

saturation binding assay for hA2AR/hA2AR-Ura3p using antagonist [
3
H]ZM241385 and total cell 

membranes preparations harvested from A1, H1 and SU1 that had been solubilised with 10%DDM and 

2%CHS that contained 60µg total membrane protein. Depicted above are the mean of at least 3 

experiments for A1, H1 and SU1. The previous hA2AR single-point saturation values in total membranes (-) 

and solubilised hA2AR single-point saturation values (+) were compiled to analyse the effect of 

solubilisation with respect to the increase in functionality of the receptor. Only H1 was observed to have an 

increase in functionality after solubilisation. A 1-way ANOVA with a Holm-Sidak’s multiple comparison 

test with samples grouped into three preselected groups A1, H1 and SU1 gave significance with p = of 

0.001 (***) for H1(-) versus H1(+). A table containing the numerical data calculated for the solubilisation 

study is shown on the left (data are representation of 3independent experiments with error ± SEM) . 
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The total cell membranes from A1, H1 and SU1 were solubilised using 10%DDM 

supplemented with 2%CHS (as described in 2.7), and a single point radio-ligand binding 

assay was performed to assess whether or not function had been recovered for hA2AR-

Ura3p or hA2AR (for the A1 control). 

 

Comparison of the binding data for solubilised (+) and un-solublised (-) hA2AR-Ura3p (Fig 

3.21), it is clear that hA2AR-Ura3p activity could be recovered from the solubilisation of 

H1 membranes. An increase from 1.6 to 5.8 pmol mg-1 was observed, which represented a 

significant 5.2-fold relative increase in functional hA2AR-Ura3p (also compared to the A1 

controls) strongly indicating that the use of detergent appeared to have rescued receptor 

functionality thereby increasing functional yield. It is possible that the hA2AR-Ura3p 

internalised in the vacuoles was present in vesicles but these were not sufficiently lysed 

during preparations of the H1 membrane samples that were used for binding assays (-). 

When the membrane preparations were solubilised using DDM (+), this might have 

resulted in permeabilisation of the vesicles, allowing access of the radioligand to these 

previously inaccessible receptors, thus increasing the binding.  

 

For the A1 control and SU1 membranes, solubilisation appeared to have no effect. It was 

most likely that A1 and SU1 saw no increases in functional yield because they did not have 

any substantial misfolded hA2AR/hA2AR-Ura3p to be recovered. In contrast for H1, only 

24% of total recombinant hA2AR-Ura3p was functionally active as determined by 

radioligand binding assay (Fig 3.11), leaving a potential 76% for recovery; when this 

recovery was done with DDM this increased the total functional yield to 60% (an increase 

of 36%)(Fig 3.21). 
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3.4.12 Quantifying receptor yield of A1, H1 and SU1 from saturation binding curve 

data 

Three saturation curves were performed on total cell membranes containing 100µg total 

membrane protein from A1, H1 and SU1 membranes (Fig 3.22A) using hA2AR antagonist 

[3H]ZM241385. Single-point binding assays were performed previously to estimate the 

Bmax since this required a relatively low amount of radio-ligand (Fig 3.11 and 3.18). A full 

saturation curve is required to accurately determine the Bmax because during the single-

point assays the receptors might not have been fully saturated.  
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Fig 3.22 (A) Saturation binding curves for hA2AR/hA2AR-Ura3p expressed in A1, H1 and SU1 using antagonist [
3
H]ZM241385. 

Saturation binding curves were performed using the antagonist [3H]ZM241385 to quantify functional yield of hA2AR/hA2AR-Ura3p in a 

more robust manner than the initial experiments (single-point). Assays used total cell membranes containing 100µg total membrane 

protein. Data are the mean of 3 independent experiments. The Bmax values were derived from non-linear regression of the saturation 

curves using Graphpad Prism. (B) Comparison between single-point (Single.P) and saturation binding curve (Sat.C)data. To 

validate whether single-point assays are suitable for determining Bmax estimates, the values from both assays were compiled in a single 

graph. All data are representative of at least three independent experiments with error ± SEM. 
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A mean Bmax of 1.2 pmol mg-1 was determined for A1 which was in line with single-point 

binding data (1.3 pmol mg-1), and showed the single-point method to be accurate in 

obtaining the Bmax in respect to A1 (Fig 3.22). This value was the control value for 

comparting increases found for the SA transformants, H1 and SU1. A mean Bmax of 2.3 

pmol mg-1 was determined for H1 (Fig 3.22), which did not correlate as well with the 

single-point binding results (1.6 pmol mg-1). This might be accounted for by the observed 

the vacuolar internalisation/accumulation (Fig 3.12), suggesting that saturation curves are 

more reliable in obtaining the Bmax values for to H1. The Bmax values from the saturation 

curve suggest that there was a 1.8-fold increase in functional hA2AR-Ura3p yield from H1 

membranes over the A1 control, indicating that in the case of H1, the SA strategy has 

resulted in a transformant that produced nearly twice the amount of functional hA2AR as 

the standard expression vector strategy. A mean Bmax of 3.3 pmol mg-1 was determined for 

SU1 which was exactly the same value obtained via single-point binding (3.3 pmol mg-1) 

(Fig 3.22B). This indicates that a single-point analysis was suitable for investigating the 

functional yield with respect to SU1. Using the saturation curve Bmax values, SU1 was seen 

to have a 2.5-fold increase in functional hA2AR-Ura3p yield over the A1 control, indicating 

that in the case of SU1, the SA strategy in conjunction with the spt3Δ strain resulted in a 

transformant that produced nearly 2.5-times the amount of functional hA2AR as the 

standard expression vector strategy.  

 

3.5 Summary 

3.5.1 Generation of high-yielding transformants through SA 

We established that it is possible to select for S. cerevisiae transformants that express 

sufficient Ura3p (via expression of a hA2AR-Ura3p fusion) to support growth in CSM-

uracil. Using a two-step method of selection (selecting first for the HIS3 marker on CSM-

histidine, and then for expression of URA3 and synthesis of the recombinant fusion hA2AR-

Ura3p on CSM-uracil) one colony was generated; H1 (Fig 3.6). The one-step method also 

only generated one colony (U1) (Fig 3.6), which exhibited poor growth and negligible 

hA2AR-Ura3p yield when analysed via immunoblot and radio-ligand binding (Fig 3.10 and 

3.11). H1, specifically cultured in CSM –uracil was therefore used as the basis for further 

investigation. 
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3.5.2 Increasing recombinant hA2AR synthesis through SA 

Immunoblot analysis revealed that H1 had a 7-fold increase in total yield of recombinant 

hA2AR-Ura3p compared to the A1 control (Fig 3.10), but a single-point radio-ligand 

binding assay indicated only a 1.6-fold increase (Fig 3.11) suggesting the SA method 

might have negatively affected the function of hA2AR produced. Confocal microscopy was 

performed to assess any differences between the A1 and H1 transformants with respect to 

the localisation of the recombinant hA2AR-Ura3p. The images revealed that H1 suffered 

vacuolar internalisation of hA2AR-Ura3p, whereas the A1 control exhibited evenly-

distributed expression throughout the cell with a vacuole devoid of hA2AR (Fig 3.12).    

 

3.5.3 Preventing vacuolar internalisation of hA2AR-Ura3p 

Since we had observed vacuolar accumulation in H1 and the associated reduction in 

functional yield when immunoblot data were compared to radio-ligand binding data, we 

attempted to alleviate this problem. Three vacuolar mutants did not provide a solution, 

although the apm3Δ strain did show potential as a recombinant host (Fig 3.14 and Fig 

3.15). We therefore investigated spt3Δ in conjunction with the SA strategy as it had been 

shown to have improved folding properties (Bonander et al., 2009), preventing vacuolar 

internalisation. 

 

For the spt3Δ strain with the SA strategy, we discovered that despite only yielding on 

average 60% of the A1 control total yield, as determined by immunoblot (Fig 3.18), single-

point radio-ligand binding indicated a 3.3-fold increase in functional yield when compared 

to A1 (Fig 3.18). Confocal microscopy also confirmed no vacuolar internalisation of 

hA2AR-Ura3p synthesised in SU1 membranes. This provided a solution to the low increase 

in functional yield and vacuolar accumulation issues exhibited by H1. 

 

The vacuolar mutants, apm3Δ, pep3Δ and vps1Δ, were transformed using the SA vector 

pYX222-A2AR-URA3 and pYX222-A2AR as the non-SA control. Subsequently confocal 

microscopy showed no vacuolar accumulation and radio-ligand binding suggested that 

apm3Δ and vps1Δ caused a reduction in yield of hA2AR-Ura3p using the SA strategy. The 
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pep3Δ strain displayed vesicular internalisation of hA2AR, while the SA counterpart 

pep3Δ:hA2AR-Ura3p had very little expression. Interestingly the non-SA control of apmΔ 

had a yield of 1.9 pmol mg-1, whereas the A1 control was only 1.3 pmol mg-1, highlighting 

it as a possible expression host for hA2AR and other membrane proteins. 

 

3.5.4 Effect of SA on hA2AR affinity  

Homologous competition curves using antagonist [3H] ZM241385 revealed that the affinity 

for recombinant hA2AR expressed in A1, H1 and SU1 had a pKd of 8.6, 8.4 and 8.3 

respectively, suggesting the SA strategy and/or expression in spt3Δ does not affect ligand 

binding (Fig 3.21). Initially we obtained Bmax estimates for hA2AR/hA2AR-Ura3p yields 

using single-point saturation binding assays, but to arrive at more accurate values we 

performed saturation binding curves. We discovered that the estimates obtained were in-

line with the single-point values from the curves for A1 and SU1 with no differences being 

seen, whereas in the case of H1 the single-point assay produced a value of 1.6 pmol mg-1 

and the curves 2.3 pmol mg-1 (Fig 3.23B). This could have been due to the condition of the 

hA2AR-Ura3p as a result of the vacuolar accumulation, or the event which caused the cell 

to undergo the accumulation. Although non-specific binding (NS) was taken into account 

during the binding assays to arrive at specific maximum binding, H1 had a larger 

proportion of NS (as a percentage of total binding) when compared to A1 and SU1 (~50% 

compared to ~30%), possibly caused by the misfolded and non-functional proportion of the 

receptor population that H1 exhibited. This suggested that single-point binding was not as 

accurate and subject to some error; H1 might have required a higher concentration of 

ligand, and a full curve for the trend to produce accurate Bmax values. 

 

3.5.5 Solubilisation of hA2AR-Ura30p as a method to recover function  

The membrane preparations for A1, H1 and SU1 were solubilised in an effort to establish 

whether misfolded hA2AR-Ura3p could be recovered from H1 in a functional form, in 

effect increasing its functional yield by achieving a higher value from ligand binding post-

solubilisation. The aim was to recover functional yield that is more in-line with the 

immunoblot values in the region of a 7-fold increase in hA2AR-Ura3p yield over the A1 
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control. We also wanted to investigate whether solubilisation could improve the functional 

yield of hA2AR-Ura3p from SU1 and possibly the A1 control.  

 

Comparison of single-point binding assay data for the solubilised material with the 

previous single-point binding data for total membrane preparations, revealed an increase in 

Bmax for H1 from 1.6 to 5.8 pmol mg-1 when solubilised (Fig 3.22). This represented an 

improvement from 1.3 to 5.2-fold relative increase in functional hA2AR-Ura3p yield when 

compared with their respective A1 controls (A1 (-), A1(+)). This supported the earlier 

hypothesis that hA2AR-Ura3p expressed in H1 was misfolded and that it could be 

recovered in detergent micelles. 
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Chapter 4: Employing knowledge of translational processes to 

improve hA2AR yield 

 

4.1 Summary of experimental objectives   

4.1.1 Rationale behind employing a translation slowdown strategy 

The work presented in Chapter 3 illustrates that when S. cerevisiae is manipulated to 

synthesise hA2AR-Ura3p in high yields by directly linking its expression to cellular 

survival (the SA strategy), the majority of the protein produced is non-functional, being 

localized to the vacuole (as seen in the case of H1, although hA2AR-Ura3p could be 

recovered by extraction in DDM; Fig. 3.22). This was subsequently alleviated using the 

spt3Δ strain, which exhibits an initiation block (unpublished data by Dr Stephanie 

Cartwright, Aston University); Fig 4.6) causing translation to proceed at a reduced rate. 

When the spt3Δ strain was transformed with the SA plasmid, colony SU1 was generated. 

Immunoblot analysis showed SU1 synthesised 40% less total protein than the control (Fig. 

3.18); however, the protein produced was functional as evidenced by the 3-fold increase in 

yield determined by radio-ligand binding (Fig. 3.19). In this Chapter, we therefore wished 

to investigate whether translation slowdown (TSD) can be used to increase the yield of 

functional yield hA2AR in S. cerevisiae. 

 

A mild inhibition of translation, which reduces the rate of translation, has been shown to 

reduce protein misfolding (Bonander et al., 2005, Siller et al., 2010, Fredrick & Ibba, 2010, 

Tsaytler et al., 2011, Meriin et al., 2012,  Sherman & Qian, 2013). This is presumably by 

reducing the rate of protein synthesis so that the  introduction of newly-synthesised nascent 

peptides into the ER is manageable, reducing the load on ER chaperones to manageable 

levels (Tsaytler et al., 2011, Sherman & Qian, 2013). This strategy has recently been used 

successfully to increase the levels of correctly-folded and thus functional, recombinant 

mutant CFTR which was previously expressed in a non-functional form (Meriin et al., 

2012). The slowing of translation elongation is thought to reduce the chance of errors in 

translation by allowing adequate time for the correct amino acid to be incorporated in the 

nascent polypeptide (Fredrick & Ibba, 2010). In bacteria, for instance, a slowdown in 

elongation resulted in a 20-fold increase in the accuracy of amino acid incorporation, 
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increased folding efficiency (Siller et al., 2010) and an increased proportion of functional 

protein (Meriin et al., 2012). Slowing the rate of translation at the initiation or elongation 

step is also thought to allow for favourable spacing between translating ribosomes, 

preventing ribosome congestion  (Fig 4.1); the associated stalling of translation, which can 

result in the nascent polypeptide being degraded prematurely (Fredrick & Ibba, 2010), 

leading to reduced recombinant yields may then be minimised (Sherman & Qian, 2013) .  

 

 

 

4.1.1.1 Mutant strain and drug choice 

The potential benefits of TSD were investigated using two approaches. Examination of the 

literature supported the use of two drugs, guanabenz and emetine, known to inhibit 

translation in eukaryotes (Tsaytler et al., 2011, Sherman & Qian, 2013). We also selected 

BY4741 deletion strain, tor1Δ, as an expression host because it is known to exhibit 

translational inhibition (Kennedy & Kaeberlein, 2009).  

 

4.1.1.1.1 Emetine 

Emetine is an FDA-approved translational inhibitor which binds to the 40S ribosomal 

subunit inhibiting translation elongation, and is currently used to treat parasitic diseases 

such as amoebic dysentery (Kanner et al., 2003, Marie & Petri, 2013, Sherman 2013).  

 

Fig 4.1 Diagram depicting the effects of translational slowdown on translating ribosomes. An 

inhibition of translation at the initiation or elongation step allows for uniform spacing preventing 

ribosome congestion, allowing more efficient protein synthesis and reducing the rate at which newly 

synthesised polypeptides enter the ER. This is proposed to decrease the stress on the ER mach inery, 

and increase the availability of chaperones (reproduced from Fredrick & Ibba, 2010). 
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4.1.1.1.2 Guanabenz 

Guanabenz is an FDA-approved hypertensive drug, and is also used to treat prion disease 

(Tribouillard-Tanvier et al., 2008), parasites such as Toxoplasma gondii (Konrad et al., 

2013), metabolic disorders (Ye et al., 2013) in humans, and has been shown to be active in 

yeast (Tribouillard-Tanvier et al., 2008). The drug has been shown to bind to eIF2α 

inhibiting de-phosphorylation of the subunit brought about by stress, leading to an overall 

inhibition of translation (Tsaytler et al., 2011). Translation inhibition in this manner has 

been shown in cells under stress: it facilitates the rescue of proteins from misfolding, 

supposedly by reducing the work load on cellular chaperones (Tsaytler et al., 2011).  

 

4.1.1.1.3 tor1Δ 

The TOR1 gene (target of rapamycin 1) is found in all eukaryotes and encodes an 

extremely important protein which forms the TORC1 complex. TORC1 regulates many 

cellular processes including protein synthesis, transcriptional activation, ribosome 

biogenesis, actin organisation and the cell cycle (Kennedy & Kaeberlein, 2009). TOR1 has 

been a focus of much study in eukaryotes, particularly in yeast, on ageing, cancer, 

apoptosis and hypoxia (Bjornsti & Houghton, 2004, Martin & Hall, 2005, Kennedy & 

Kaeberlein, 2009). The tor1Δ strain has been shown to exhibit a phenotype with an 

inhibition of translation (Kennedy & Kaeberlein, 2009) and it was therefore selected for 

use in this study. 

 

4.1.2 Rationale behind using Internal Ribosome Entry Sequences   

It is well known that recombinant protein synthesis can cause stress in host cells whether it 

be through the cytotoxicity associated with the build-up of misfolded recombinant protein 

(a common occurrence during heterologous recombinant expression), or the metabolic 

stress caused through expression of heterologous protein  (Mattanovich et al., 2004). This 

can lead to a multitude of cellular stress responses (Mattanovich et al., 2004), one 

important response being global translational inhibition at the initiation step, which halts 

all but essential protein synthesis (Hoffmann & Rinas, 2004, Gasser et al., 2008) via the 

phosphorylation of eIF2α regulated by eIF-2 kinase (Harding et al., 2000, Novoa et al., 

2001).  
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We hypothesised that an alternative internal initiation site could be implemented to 

increase functional yields of recombinant protein using expression vectors that circumvent 

this block in translation initiation. As detailed in Section 1.2.1, IRES sequences allow 

internal initiation (Fig 1.11) independent of the canonical mechanism (Fig 1.6): IRES-

augmented mRNA transcripts are processed independently of most if not all translation 

initiation factors depending on the IRES element chosen (Filbin & Kieft, 2009). Previous 

studies, discussed in Section 1.2.1.1, had suggested that the expression of reporter genes in 

S. cerevisiae could be increased by incorporation of IRES sequences into the expression 

plasmid (Chappell et al., 2000), setting a precedent for investigating the use of IRES 

sequences to produce increased yields of a functional, recombinant membrane protein, in 

this case hA2AR. 

 

4.1.2.1 IRES selection 

4.1.2.1.1 YAP1 IRES 

Located in the 5ˊUTR of the mRNA of the yeast adapter protein 1 gene (YAP1), which is a 

transcription factor involved in regulating a variety of genes required for oxidative stress 

tolerance (Moye-Rowley et al., 1989, Delaunay et al., 2000), the YAP1 IRES has been 

shown to drive expression of reported genes via internal initiation in S. cerevisiae (Zhou et 

al., 2001, Edwards & Wandless, 2010). It has been shown to increase translational 

efficiency  6-fold  for the reporter, Photinus luciferase (Zhou et al., 2001). 

 

4.1.2.1.2 p150 IRES 

Located in the 5ˊUTR of the mRNA of the p150 gene (also called TIF4631; p150 is the 

yeast homologue of the cap-binding protein eIF4G), the p150 IRES has been shown to 

drive expression of a variety of reported genes via internal initiation in S. cerevisiae (Zhou 

et al., 2001, Edwards & Wandless, 2010), increasing translation efficiency 9-fold for the 

reporter gene chloramphenicol acetyltransferase (CAT) (Zhou et al., 2001). 
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4.1.2.1.3 CrPV IRES 

The Cricket paralysis virus (CrPV) IRES, requires no initiation factors (IFs) at all to 

initiate translation (Deniz et al., 2009) in common with the Plautia stali intestine virus 

(PSIV) IRES (Kieft, 2008).  Unlike the PSIV IRES, the CrPV IRES has been  investigated 

in S. cerevisiae and is reportedly able to bind directly to the 40S ribosomal subunit and 

stimulate 60S subunit recruitment and subsequent polypeptide elongation (Deniz et al., 

2009).  It was also used to allow S. cerevisiae growth on plates deficient in uracil, when it 

was used to drive synthesis of Ura3p (Deniz et al., 2009). This finding suggested that the 

CrPV IRES has sufficient activity in yeast to drive expression of recombinant proteins.  

 

4.1.3 Objectives 

The specific objectives of Chapter 4 were therefore: 

1. To examine the quality of hA2AR yield using TSD  

2. To design and construct IRES vectors for the YAP1, p150 and CrPV IRESes 

3. To examine the hA2AR-Ura3p yield from the IRES vectors 

4. To investigate methods to increase yields by increasing IRES activity 

 

4.2 IRES vector construction 

4.2.1 Overview 

As our model membrane protein is hA2AR we decided to use pYX222-A2AR, which was 

the same construct modified in Chapter 3 for the SA strategy. We planned to insert each 

IRES upstream of the A2AR sequence construct (Fig 4.2), while using unmodified pYX222-

A2AR as the control. 
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5ˊ  
3ˊ 

Fig 4.2 Schematic illustrating the modification of the previously-used pYX222-A2AR via the 

addition of a 5ˊ IRES. The A2AR variant was devised by Niall Fraser and is a truncated form that has 

had the glycosylation site removed (red; Fraser, 2006). It is preceded by a yeast consensus sequence 

(Y.C) (dark grey) for enhanced translation initiation, α-factor secretion signal (light grey) for export 

of the recombinant protein to the cell membrane, and a sequence encoding a His10  tag (green) for 

purification. An IRES was placed upstream of the original construct (gold).   

  

Y.C - α-factor - His
10

 - A2AR 

5ˊ  
3ˊ 

Original 

Modified 

IRES - Y.C - α-factor - His
10

 - A
2A

R 

 

The YAP1 and p150 IRESes were from S. cerevisiae and were obtained by PCR from the 

genomic DNA with suitable restriction sites added at the 3ˊ and 5ˊ ends to allow insertion 

upstream of the A2AR sequence. Since we did not have access to CrPV genomic DNA, the 

relevant sequence was synthesised (GeneArt, Life Technologies) and cloned into a plasmid 

which we designated pCrPV(IRES). The cloning strategy for the three IRES plasmids is 

illustrated in detail in Section 4.2.2, Fig 4.3A and Fig 4.3B. 
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4.2.2 Cloning strategy for IRES plasmids, pYX222-CrPV(IRES)-A2AR, pYX222-

YAP1(IRES)-A2AR and pYX222-p150(IRES)-A2AR 

CrPV(IRES) 

190bp 

Vector linearised using 

NcoI and BamHI 

pCrPV(IRES) 

 

Synthesised 

insert released 

using 

NcoI and BamHI 

Insert ligated into 

linearised pYX222-A2AR 

pYX222-CrPV(IRES) 

-A2AR 

Fig 4.3A Schematic illustrating the cloning strategy devised to create the IRES vector pYX222 -

CrPV(IRES)-A2AR.  The CrPV IRES was synthesised (GeneArt, Life Technologies) and inserted into 

one of their standard vectors (the vector was designated pCrPV), the IRES was removed from the 

plasmid using restriction sites NcoI and BamHI. The vector to be modified (pYX222-A2AR) was 

also cut with NcoI and BamHI; the CrPV IRES was then cloned into pYX222-A2AR to produce 

pYX222-CrPV(IRES)-A2AR.  

pYX222-A2AR 

BamHI 

NcoI 
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YAP1(IRES) 

172bp 

Vector linearised using 

NcoI and BamHI 
Amplified from 

S. cerevisiae 

genomic DNA 

via PCR and 

digested using 

NcoI and 

BamHI 

 

Inserts 

ligated into 

cut 

pYX222-

A2AR 

p150(IRES) 

464bp 

Amplified from 

S. cerevisiae 

genomic DNA 

via PCR and 

digested using 

NcoI and 

BamHI 

 

 

5ˊ 

BamHI 

5ˊ 

BamHI 

3ˊ 

NcoI 

3ˊ 

NcoI 

pYX222-p150(IRES) 
-A2AR 

pYX222-YAP1(IRES) 
-A2AR 

Fig 4.3B Schematic illustrating the cloning strategy devised to create the IRES vectors pYX222 -

YAP1(IRES)-A2AR and pYX222-p150(IRES)-A2AR .  The p150 and YAP1 IRESes were amplified 

using PCR from the genomic DNA of S. cerevisiae with the addition of restriction sites NcoI and 

BamHI to the 3ˊand 5ˊ ends respectively to allow insertion upstream of the A2AR coding region in 

pYX222-A2AR.The vector to be modified (pYX222-A2AR) was also cut with NcoI and BamHI, with 

the IRESes then being cloned into pYX222-A2AR to produce IRES vectors, pYX222-YAP1(IRES)-

A2AR and pYX222-p150(IRES)-A2AR.  

 

pYX222-A2AR 

BamHI 

NcoI 
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4.2.3 Construction of IRES plasmids, pYX222-CrPV(IRES)-A2AR, pYX222-

YAP1(IRES)-A2AR and pYX222-p150(IRES)-A2AR 

Construction of sequence-verified pYX222-CrPV(IRES)-A2AR, pYX222-YAP1(IRES)-

A2AR and pYX222-p150(IRES)-A2AR is  shown in Figure 4.4 and Appendix 1.  

Fig 4.4 IRES vector construction. (A) The pCrPV vector was transformed into XL2-Blue supercompetent E. coli and DNA 

retrieved by miniprep. A 1% agarose DNA electrophoresis gel was performed of the double digestion (DD, NcoI and BamHI) 

to confirm and retrieve the synthesised CrPV IRES sequence (C, control) from pCrPV. A band of approximately 192bp (arrow) 

representing the CrPV IRES insert was excised from the gel and purified. (B) A 1% agarose gel DNA electrophoresis gel 

showing PCR products at 464bp for p150 IRES (red arrow) and 170bp for YAP1 IRES (black arrow) . These bands were excised 

and purified. (C) A 1% agarose gel DNA electrophoresis gel showing the double digested (DD, NcoI and BamHI) and 

linearised pYX222-A2AR at approximately 10kbp). The insert was excised and purified. (D)The purified CrPV IRES insert was 

ligated into pYX222-A2AR and transformed into XL2-Blue supercompetent E. coli and DNA retrieved by miniprep from 

successful transformants. A 1% agarose DNA electrophoresis gel was performed for a double digestion (DD, NcoI and BamHI) 

to confirm insert ligation  a band of 464bp was released indicating success, which was followed up and confirmed by 

sequencing. (E) The purifed YAP1 and p150 IRES inserts were ligated into pYX222-A2AR and transformed into XL2-Blue 

supercompetent E. coli and DNA retrieved by miniprep from successful transformants. A 1% agarose DNA electrophoresis gel 

was performed of a double digestion (DD, NcoI and BamHI) to confirm insert ligation:a band of 192bp and 170bp was 

released indicating success for CrPV and YAP1 IRESes respectively (the inserts were visible by eye, red and black circles 

indicate their loaction), this was followed up and confirmed by sequencing. 
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4.3 Radio-ligand binding analysis of hA2AR produced under conditions of translation 

inhibition 

4.3.1 Radio-ligand binding analysis of hA2AR produced in the presence of guanabenz 

and emetine 

We wanted to investigate whether imposing translation inhibition using the drugs 

guanabenz or emetine can lead to improved yields of hA2AR. The S. cerevisiae parental 

wild-type strain, BY4741, was therefore transformed with the control hA2AR expression 

vector, pYX222-A2AR, and cultures were grown in 100µM guanabenz (Sherman & Qian, 

2013) or 2mM emetine (Kanner et al., 2003, Sherman & Qian, 2013); these concentrations 

had previously been established to cause sufficient translation inhibition in eukaryotes 

(Kanner et al., 2003, Sherman & Qian, 2013). The drugs were administered at the 

beginning of the culture, which was harvested at OD600 4-5. Membranes were then 

prepared for single-point radio-ligand binding analysis with the antagonist [3H] 

ZM241385. Fig 4.5 indicates that in the presence of guanabenz or emetine, hA2AR yields 

were 0.2 and 0.1 pmol mg-1, respectively, compared with control values of 1.3 pmol mg-1. 

Notably the growth rates of the cultures were 0.19 h-1 in the presence of guanabenz and 

0.17 h-1 in the presence of emetine compared to 0.35 h-1 for control cultures suggesting that 

the drugs severely inhibited translation which significantly retarded growth which 

negatively affected recombinant yields. Since both drugs had a negative effect on hA2AR 

yield, and this approach was therefore not pursued further.  

 

 

 

 

 

 

 

 

 

Fig 4.5 Single-point binding analysis of translationally inhibited yeast samples expressing hA2AR 

using the antagonist [
3
H] ZM241385. BY4741expressing pYX222-A2AR was cultured in the presence 

of 2mM guanabenz) or 100µM emetine). Samples were grown to an OD600 4-5 in 100ml cultures and 

100µg total membrane preparations was used for each binding assay. Data are the mean of 3 

experiments ± SEM. 
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4.3.2 Radio-ligand binding analysis of hA2AR produced in the tor1Δ strain 

The tor1Δ strain (together with the spt3Δ strain used in the SA strategy described in 

Chapter 3), are known to exhibit a translational block. This was confirmed by polysome 

profiling as shown in Fig 4.6, below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following this confirmation (Fig. 4.6), the tor1Δ strain was transformed with pYX222-

A2AR, the cells were cultured to an OD600 4-5 and membranes were prepared. Fig 4.7 

shows that there is no improvement in hA2AR yield (0.9 pmol mg-1), compared to the 

control value of 1.3 pmol mg-1. Notably the growth rates of the cultures were 0.24 h-1 for 

the tor1Δ transformant cultures and 0.35  h-1 for control cultures suggesting that perhaps 

the translational inhibition is too severe to increase hA2AR yield. Since there was no effect 

on hA2AR yield, despite an improvement in functional yield when the spt3∆ strain was 

used as a host cell for SA (Fig 3. 19), this approach was therefore not pursued further. 

Fig 4.6 The spt3Δ and tor1Δ strains are confirmed to have initiation blocks. Polysome profiles, such as that 

shown for BY4741 in the upper panel, were determined for the BY4741 wild-type, spt3Δ and tor1Δ strains by 

Dr Stephanie Cartwright, Aston University. Profiles were determined in the replicates, as shown, and the 

ratio of peak areas of monosome (80S):polysome are reported. The corresponding standard error of the mean 

is shown in parentheses. The larger the value of the ratio, the greater the initiation block. 
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4.4 Employing IRES sequences to increase recombinant hA2AR yield 

4.4.1 Radio-ligand binding analysis of hA2AR produced using IRES-A2A vectors 

transformed into BY4741 WT and spt3Δ 

IRES sequences are active when the non-canonical mechanism for translation initiation is 

inhibited (Komar & Hatzoglou, 2005). We therefore chose S. cerevisiae strain spt3Δ for 

this study, since it is known to exhibit a mild initiation block (unpublished data by Dr 

Stephanie Cartwright, Aston University); and confirmed in Fig 4.6) its use with IRES-

containing vectors should therefore boost translation initiation in this already effective 

strain (Fig. 3.19).  

 

As controls, the BY4741 and spt3Δ strains were both transformed with pYX222-A2AR to 

account for strain-related effects in cap-dependent translation; it was expected that the 

spt3Δ strain would therefore give a lower total yield. The IRES augmented vectors, 

pYX222-YAP1(IRES)-A2AR, pYX222-p150(IRES)-A2AR and pYX222-CrPV(IRES)-

A2AR, were also used to transform both spt3Δ and BY4741; it was expected that the IRES 

should have a bigger impact in the spt3Δ strain. Radio-ligand binding assays were 

performed using [3H]ZM241385 on total cell membranes containing 100µg total 

membrane protein for each of the 3 IRES vector transformants and their respective controls 

(Fig 4.8), to investigate recombinant hA2AR yields.  
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Fig 4.7 Single-point binding analysis of the tor1∆ and BY4741 strains expressing hA2AR using the 

antagonist [
3
H] ZM241385.  Samples were grown to an OD600 4-5 in 100ml cultures and 100µg total 

membrane preparations was used for each binding assay. Data are the mean of 3 experiments ± SEM. 
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4.4.1.1 p150 IRES 

Expression under the control of the p150 IRES in both BY4741 (p150(IRES)-

hA2AR:[WT]) and spt3Δ (p150(IRES)-hA2AR:[spt3Δ]) transformants appeared to be 

reduced compared to the A1 control; reporting a yield of  0.7 ± 0.2  and 0.7 ± 0.1 pmol mg-

1, suggesting that spt3Δ did not activate the p150 IRES and increase the yield. The p150 

IRES is located in the 5ˊ UTR of the yeast homolog of eIF4G, which is a vital protein for 

translation (Prévôt et al., 2003). It is therefore possible that since eIF4G is required for 

translation of essential housekeeping genes, especially during periods of global inhibition 

of initiation throughout the cell (Komar & Hatzoglou, 2005), that the regulation of p150 

IRES is subject to tight regulation.   

 

Fig 4.8 Single-point binding assay for hA2AR expressed by IRES-augmented vectors using 

antagonist [
3
H]ZM241385. Single-point saturation binding using the antagonist 

[
3
H]ZM241385 was performed on  total cell membranes containing 100µg total membrane 

protein harvested from each transformant sample; the samples were grown to an OD600 of 4-

5. A 1-way ANOVA with a Holm-Sidak’s multiple comparison test with samples grouped into 

3 preselected groups p150(IRES), CrPV(IRES) and YAP1(IRES)gave significance with p = of 

0.001 (***) for YAP1(IRES)-hA2AR versus YAP1(IRES)-hA2AR[spt3Δ]. All data are the mean 

of at least 3 independent experiments ± SEM. 
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4.4.1.2 CrPV IRES 

The CrPV IRES appeared to cause a general reduction in hA2AR expression in the spt3Δ 

and BY4741 strains compared to the A1 control (1.3 pmol mg-1), producing average yields 

of 0.4 ± 0.1 and 0.5 ± 0.1 pmol mg-1 respectively. Unlike the other two IRESes under 

study, the CrPV IRES is not endogenous to S. cerevisiae, instead being found as part of a 

virus that infects insect cells (Plus & Scotti, 1984). In order to enhance the IRES activity in 

yeast, another mutant of BY4741, gcn3Δ, was chosen because it had been suggested that as 

the CrPV IRES is inhibited in the presence of abundant ternary complexes (due to 

competition for the P-site of the 40S ribosomal subunit); therefore a reduction in ternary 

complexes would enhance IRES activity (Deniz et al., 2009). Since GCN3 encodes the α 

subunit of eIF4B, which is involved in facilitating the formation of ternary complexes via 

guanine nucleotide exchange, a mutation leads to a reduction in ternary complexes (Gomez 

& Pavitt, 2000, Taylor et al., 2010). 

 

The pYX222-CrPV(IRES)-A2AR plasmid and the control plasmid, pYX222-A2AR, were 

therefore transformed into gcn3Δ.  Fig 4.9 indicates that the CrPV IRES had improved 

activity in the gcn3Δ strain, evident by increased expression of hA2AR in the presence of 

the IRES when compared to the no-IRES vector control: CrPV(IRES)-hA2AR:[gcn3Δ] 

gave a yield of 0.9 ± 0.1 pmol mg-1 compared to 0.3 ± 0.1 pmol mg-1 for hA2AR:[gcn3Δ], 

representing a 3-fold increase that was attributed to the CrPV IRES.  Additionally, the 

yield seen from CrPV(IRES)-hA2AR:[gcn3Δ] was almost double the amount previously 

observed from the other mutant spt3Δ using CrPV IRES (CrPV(IRES)-hA2AR:[spt3Δ] (0.5 

± 0.1 pmol mg-1). This validated the hypothesis made by Deniz et al., 2009 and our 

decisions to choose a more suitable host for CrPV(IRES).  
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4.4.1.3 YAP1 IRES 

The binding data in Fig 4.8 suggest that the presence of the YAP1 IRES enhanced hA2AR 

expression in the spt3Δ strain (YAP1(IRES)-hA2AR:[spt3Δ] = 1.0 ± 0.1 pmol mg-1) over 

the wild-type control (YAP1(IRES)-hA2AR:[WT] = 0.3 ± 0.1 pmol  mg-1), by over 3-fold, 

and over the non-IRES control (hA2AR:[spt3Δ] = 0.4 ± 0.1 pmol mg-1) by over 2-fold. 

However compared to the A1 control (hA2AR:[WT] = 1.3 ± 0.1 pmol mg-1), the yields are 

comparable, suggesting that in the spt3Δ strain, the YAP1 IRES cannot exceed yields 

achieved by cap-dependent translation in BY4741.   
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Fig 4.9 Single-point binding assay for hA2AR expressed in the CrPV(IRES) augmented vector. Single-

point saturation binding using the antagonist [
3
H]ZM241385 was performed on  total cell membranes 

containing 100µg total membrane protein harvested from CrPV(IRES) -hA2AR:[gcn3Δ] and 

hA2AR:[gcn3Δ]. Each transformant was grown to an OD of 4-5. All data are the mean of at least 3 

independent experiments with error bars in SEM. A 1-way ANOVA with a Holm-Sidak’s multiple 

comparison gave a p = 0.01 (**) for both hA2AR hA2AR:[gcn3Δ] and CrPV(IRES)-hA2AR:[spt3Δ] against 

CrPV(IRES)-hA2AR:[gcn3Δ]. Data are representative of the mean of 3 independent experiments ± SEM.  
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The YAP1 IRES is responsible for the transcription of vital oxidative genes during stress 

and is thought to be highly regulated, although as yet this is not fully understood (Delaunay 

et al., 2000). The data in Fig 4.8 might be therefore be interpreted to suggest that that the 

initiation block in the spt3Δ strain was not sufficient to activate the YAP1 IRES. We 

therefore attempted to activate the YAP1 IRES using a stress related to its native function: 

the cap-independent initiation of translation of YAP1 in response to oxidative stress.  

We attempted to mimic oxidative stress conditions by culturing BY4741 in 100ml YPD 

cultures for 18h followed by a 1h treatment with varying concentration of H2O2 (0, 25, 50, 

100, 200 and 300µM). These concentrations were the same concentration range that had 

been used previously in S. cerevisiae to induce and increase Yap1p expression (Delaunay 

et al., 2000). Immunoblots were performed (Fig 4.10A) and were analysed using ImageJ to 

compare band intensities relative to the control conditions (0µM H2O2; Fig 4.10B).  

 

 

 

 

 

 

 

 

 

 

As seen in Fig 4.10B, it appears that 100µM H2O2 elicits the strongest response in terms of 

Yap1p expression.  Although the experiment was only performed twice, this provides a 

basis on which trials for the optimisation of the YAP1(IRES)-hA2AR plasmid could be 

started. 

Fig 4.10(A) Immunoblot performed using anti-Yap1p antibody to measure YAP1 expression in BY4741 

in varying concentrations of H2O2. BY4741 cells were grown to an OD 4-5 (19h) in 100ml YPD cultures 

containing varying concentrations of  H2O2. Cells were harvested and 25μg total cell lysates were loaded 

in each well (determined using a BCA assay), and Yap1p was visualised using anti-Yap1p antibody 

[Santa Cruz Biotechnology]. (B) Quantification of Yap1p using immunoblot data via ImageJ. The 

Immunoblot data were used to quantify Yap1p expression relative to the 0µM control; data for each 

concentration are representative of the mean of 2 independent experiments with error bars in S EM.  
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4.5 Summary  

4.5.1 Increasing recombinant hA2AR yields through translation inhibition 

We were able to modify the pYX222-A2AR vector with the YAP1, p150 and CrPV IRESes 

to create the pYX222-YAP1(IRES)-A2AR, pYX222-p150(IRES)-A2AR and pYX222-

CrPV(IRES)-A2AR IRES vectors (Fig 4.4). The tor1Δ strain is known to have an initiation 

block, which we hoped would activate the IRESes but did not lead to an increase in hA2AR 

yields; radio-ligand binding showed comparable yields to the BY4741 control (WT:hA2AR 

= 1.3 pmol mg-1; Fig 4.7). Addition of emetine and guanabenz dramatically reduced yields 

compared to the control (0.2 and 0.1 pmol mg-1 respectively) (Fig 4.5). This could be 

followed up by harvesting at different times, concentrations and duration of dose. The 

treated samples took around 27-30h to reach an OD600 of 4-5, which is 8-11h more than 

tor1Δ:hA2AR. This indicates that the drugs had too negative an impact on translation and 

growth to be useful. 

 

4.5.2 Increasing hA2AR yield using IRES-activated translation 

All IRES-containing vectors reduced yields of hA2AR compared with the yield from the 

no-IRES control, A1 (1.3 pmol mg-1; Fig 4.8). However, some interesting trends were 

observed: the p150 IRES showed approximately no change in yield (0.7 pmol mg-1) in 

either BY4741 or spt3Δ cells. Since the p150 gene encodes eIF4G (Zhou et al., 2001), it 

would not be surprising that the p150 IRES is tightly regulated. The YAP1 IRES caused a 

3-fold reduction in yield (0.3 pmol mg-1) compared to the A1 control, yet when used with 

spt3Δ the yield was comparable to the control (1.0 pmol mg-1) (Fig 4.8). The CrPV IRES 

also suffered reduced yields of hA2AR in BY4741 (0.4 pmol mg-1) and spt3Δ (0.5 pmol mg-

1) compared the control, and did not seem more active in spt3Δ (Fig 4.8). Overall the YAP1 

IRES in spt3Δ was the most successful with a yield of 1.0 pmol mg-1 compared with 1.2 

pmol mg-1 for the A1 control. 

 

4.5.3 Activating the CrPV IRES in the gcn3Δ strain 

The CrPV IRES vector was used to transform strain gcn3Δ, which has reduced ternary 

complexes known to increase CrPV IRES activity (Deniz et al., 2009). This transformant 

resulted in the highest hA2AR yields under the control of the CrPV IRES (0.9 pmol mg-1) 
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(Fig 4.9). Despite the yield being lower than the A1 control, it was still an approximate 2-

fold increase over the spt3Δ and BY4741 transformants, suggesting there is potential and 

scope for the IRES in other mutant strains. 

 

4.5.4 Activating YAP1 IRES activity with oxidative stress 

The YAP1 IRES had the largest effect on yield of the three IRES sequences tested; this was 

achieved in the spt3Δ strain, with specific activity increasing from 0.3 pmol mg-1 in 

BY4741 to 1.0 pmol mg-1 in the spt3Δ strain. We therefore attempted to identify a H2O2 

concentration that induced native Yap1p synthesis, which would be evidence of increased 

YAP1 IRES activity. It was determined that 100µM H2O2 caused the highest levels of 

Yap1p of all the concentrations tested, with a 1.6-fold increase over the control (Fig 4.10). 
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Chapter 5: Discussion 

 

A major finding of this thesis is that it is possible to use SA to select for transformants that 

produce an increased total and functional hA2AR-Ura3p yield compared with controls (Fig 

3.22). Importantly the strategy did not affect receptor affinity (Fig 3.21). Initially the 

strategy generated H1 which exhibited vacuolar internalisation of hA2AR-Ura3p (Fig 3.12), 

and therefore low functional yield, despite high total yields (Fig 3.11 vs. Fig 3.10). The 

spt3Δ deletion strain, known to have improved folding capabilities, was therefore used 

with the SA strategy to alleviate this phenotype, leading to the generation of SU1 (Fig 

3.16). SU1 had increased hA2AR-Ura3p functional yield (3-fold) over controls (Fig 3.18) 

and did not suffer vacuolar internalisation (Fig 3.19). Additionally after solubilisation, 

hA2AR-Ura3p could be recovered from H1 membranes following solubilisation with DDM 

and CHS; this increased functional yield recovery from H1 to 5.8-fold over the control (Fig 

3.21). 

 

Attempts to increase yield by manipulating translation processes were not as successful, 

with neither the TSD nor IRES strategies leading to an increased hA2AR yield. The data 

from the TSD strategy suggested that the translation- inhibiting drugs guanabenz and 

emetine caused a drastic reduction in yield compared to the control (Fig 4.5). The 

translation-deficient mutant tor1Δ gave a minor reduction in yield, suggesting its specific 

translation initiation block was not relevant to improve yield for this study (Fig 4.5). The 

data from the IRES strategy indicated that cap-independent translation should be explored 

further in combination with specific stress conditions (Fig 4.9). 

 

5.1 Principle of SA as a strategy to increase yield 

5.1.1 Generation of SA transformants 

We were able confer a selective advantage on S. cerevisiae cells that expressed hA2AR by 

tagging the GPCR with Ura3p to create a fusion protein thereby generating H1, SU1 and 

U1 transformants (Fig 3.6 and 3.16). A two-step method was devised to allow adaptation 

on CSM-histidine plates before the colonies were spotted onto CSM-uracil. This generated 
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3 colonies (H1, H2 and H3) from a population of 60. Only H1 was viable, culturable and 

was discovered to be high yielding (Fig 3.6). The one-step method generated one colony 

from the BY4741 strain (U1, Fig 3.6), and one colony from the spt3Δ stain (SU1, Fig 

3.16), suggesting a lower survival rate for the 1-step method.  

 

U1 had a slow growth phenotype and negligible yield was observed via immunoblot (Fig 

3.10) and radio-ligand binding assay (Fig 3.11). In contrast, SU1 had a minor growth 

defect, growing around 10% more slowly than BY4741; the spt3Δ strain already had this 

phenotype. Indeed, a phenotype that the one-step transformants have in common are 

slower growth (Fig  3.6 and 3.16), which raises the possibility that only cells with slower 

growth can deal with the stress associated with the one-step method because yeast 

transformation is already a stressful process (Kawai et al., 2010).  Since the strain used in 

the one-step process to generate SU1 was a mutant (spt3Δ) that grew slower than BY4741, 

we expected a higher survival rate from spt3Δ-generated transformations and therefore 

more colonies to be generated. Since this was not observed, it might have been due to low 

transformability of the spt3Δ mutant, which is supported by evidence that mutant strains of 

S. cerevisiae and numerous other fungi have been found to have differing transformability 

dependent upon their mutation (Kawai et al., 2010). An experiment to assess the standard 

transformability under normal conditions (e.g. no SA), could have been conducted to 

discover if this was the case. 

 

Post-transformation, cells have a damaged cell membrane, are severely stressed (Kawai et 

al., 2010) and have to survive long enough to reproduce. This might affect the cell’s ability 

to produce and traffic a complex membrane protein such as the hA2AR-Ura3p fusion. Any 

poorly folded recombinant product would be degraded before it could promote growth on 

CSM-uracil. In the two-step method, expression of hA2AR-Ura3p is not linked to survival 

in the first step because CSM-histidine contains uracil, allowing the cells time to adapt 

before the second step. Therefore the decision to take into account the stresses imposed on 

the cells with regard to the selection process appeared to be validated.  
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5.1.2 Uracil requirement 

The experiments in Table 3.1 showed that even when 100-fold less uracil was added to the 

culture medium than is typically found, A1 (non-SA control producing hA2AR) grew at 

approximately one third of the biomass that it grew under standard uracil conditions. This 

is not surprising because Ura3p is the most efficient enzyme yet known (Houk et al., 2001) 

with even a small amount of uracil capable of promoting growth of auxotrophic strains 

(Metzger et al., 2008) and more uracil allowing higher biomass (Table 3.1). It is likely that 

this characteristic would prevent loss of the phenotype as long as H1 and SU1 were grown 

in medium lacking uracil, because the cells producing more hA2AR-Ura3p within the 

population would out-compete the cells that were producing less hA2AR-Ura3p. It is 

possible, however, that the H1 and SU1 phenotypes are conferred due to the acquisition of 

a genomic mutation, which has been reported previously using selective advantage in L. 

lactis, as discussed in Section 1.5 (Linares et al., 2010). We were able to rule out revertants 

because BY4741 is auxotrophic due to the deletion of the entire coding region for the 

URA3 gene including the flanking 5ˊ and 3ˊ regions that do not affect neighbouring genes 

(Pronk, 2002). Attempts to promote plasmid loss were attempted, but were inconclusive; 

whether H1 or SU1 are therefore true transformants or mutant strains remains an open 

question. For the purposes of this study, and in the absence of other evidence, we have 

referred to them as transformants throughout the thesis. 

 

The H1 transformant was grown in different selective media (that imposed different 

selective states): CSM-histidine, CSM-histidine -uracil and CSM-uracil to investigate the 

influence of different selective pressures on hA2AR-Ura3p yield (Fig 3.10). In-line with our 

hypothesis, cells grown on CSM-uracil recorded the highest increase in yield (7-fold) when 

analysed via immunoblot, with both CSM-histidine -uracil (selecting for the plasmid and 

hA2AR-Ura3p production) and CSM-histidine (selecting only for the plasmid) conditions 

only causing a 2-fold increase (Fig 3.10). As CSM-uracil had been shown to select a high-

yielding phenotype, this was the selection also chosen for SU1. SU1 was found to have 

lower recombinant yields than A1 when assayed by immunoblot (Fig 3.17), but the 

functional yield was 3-fold higher (Fig 3.18), suggesting A1 must have a higher proportion 

of non-functional hA2AR.  
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An interesting addition to the study would have been to perform a viability assay to 

determine the effect these different selection states imposed on the yeast. This would 

provide evidence to test the assumption that the double auxotrophy caused by CSM-

histidine  -uracil was responsible for the decreased yield observed compared to the A1 

control (Fig 3.10). This assumption is supported by the literature which reports that a 

decreased growth rate and/or higher energy requirements imposed upon the cells results in 

lower recombinant protein yield (Hensing et al., 1995, Liu et al., 2013). Since CSM-

histidine -uracil selects for high-expression of hA2AR-Ura3p and plasmid maintenance, 

there is an additional metabolic load under these conditions. Despite this, all conditions 

caused an increase in hA2AR yield over A1 (Fig 3.10). However, there is evidence that tags 

(Ura3p as in this case) can have a positive effect on yield improving stability and function 

(Waugh, 2005) and even to some extent can render their fusion partner resistant to 

intracellular proteolysis (De Marco et al., 2004) perhaps decreasing the rate of turn-over.  

 

5.1.3 Characterisation of hA2AR-Ura3p 

5.1.3.1 Sequence identification 

From the immunoblot analysis of A1 and H1 expression (Fig 3.9) we expected two bands, 

a monomer and dimer for both A1-expressed hA2AR and H1-expressed hA2AR-Ura3p. This 

has been reported previously for hA2AR expressed in yeast as an untagged protein 

(Niebauer & Robinson, 2006) and as a GFP fusion protein (O’Malley et al., 2007). This 

was the case for A1, with a 45kDa band denoting the monomer and a band of 

approximately 150kDa most likely representing a dimer. For H1, we saw a 45kDa band 

suggesting a hA2AR monomer, and a 170kDa band which most likely represents a dimer of 

the hA2AR-Ura3p fusion, with no 75kDa monomer seen. This might suggest the hA2AR-

Ura3p monomer  suffered C-terminal degradation; notably recombinant hA2AR synthesis 

has been reported to produce products of 35kDa in E. coli (Weiss & Grisshammer, 2002), 

S. cerevisiae (O’Malley et al., 2007) and P. pastoris (Singh et al., 2008) as seen for A1 and 

H1.  Since Ura3p levels have been observed to be regulated according to required 

concentration, it is possible that some specific proteolysis occurred (Metzger et al., 2008). 

A likely explanation for the absence of a hA2AR-Ura3p monomer could be the selection 

process itself. As Ura3p is only active as a dimer (Hu et al., 2008), it is possible that 

monomers of hA2AR-Ura3p would not be active and therefore not confer the SA, 
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suggesting that perhaps the SA process caused transformant cells that express the monomer 

to be selected against (inactive Ura3p), and those that express dimers (active Ura3p) to be 

selected for.  The 170kDa band was analysed using mass spectrometry (Table 3.4), 

subsequently confirming the presence of both the hA2AR and Ura3p. The analysis of the 

mass spectrometry data cannot definitively confirm fusion proteins because the software 

identifies unique peptide sequences of protein fragments cross-referenced against known 

proteins from a database. The fact that the two proteins are found at the correct molecular 

weight for a hA2AR-Ura3p dimer, and the hA2AR and Ura3p are of different molecular 

weights individually suggests strongly the fusions’ presence.   

 

5.1.3.2 Functional characterisation of hA2AR-Ura3p 

Single-point saturation binding analysis was used to measure functional yield (i.e. the 

amount of protein that can bind ligand in a native-like manner) of the hA2AR moiety 

synthesised by A1, H1 and SU1. These transformants yielded Bmax values of 1.3 ± 0.1 

pmol mg-1, 1.6 ± 0.1 pmol mg-1 and 3.3 ± 0.2 pmol mg-1, respectively (Fig 3.11 and 3.18). 

This represented only a minor functional yield increase for H1, but a 3-fold increase for 

SU1. Notably there was a 420% yield decrease for H1 (7-fold to 1.3-fold; Fig 3.10 and 

3.11) and an 82% yield increase for SU1 (0.5-fold to 2.8-fold; Fig 3.17 and 3.18) when 

comparing functional yield values to total yield values (from the immunoblots, when A1 

=1 ; the immunoblot data measure total recombinant protein that has an accessible His10 

epitope). The decrease in functional yield for H1 can be attributed to vacuolar 

internalisation; as we discussed earlier, in 2006 Niebauer and Robinson also observed 

vacuolar internalisation and reported that only 60% of their hA2AR-GFP was functional, 

which they surmised might be due to the receptor being in a low affinity state. They 

speculated that this might be due to the presence of the sterol, ergosterol, rather than 

mammalian cholesterol in yeast membranes (Niebauer & Robinson, 2006). This is in line 

with our findings in that a large proportion of hA2AR-Ura3p from H1 was non-functional. 

However, it is unlikely that ergosterol is an issue because when hA2AR was synthesised in 

A1, it was not internalised to the vacuole. The common factor in the Niebauer and 

Robinson study and this study is that hA2AR-GFP and hA2AR-Ura3p have tags, so it might 

be speculated that these were the cause of the internalisation. 
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Despite quantification via immunoblot indicating a 7-fold increase in recombinant 

expression over the A1 control (Fig 3.10), when a radio-ligand binding assay was 

performed on the same samples, there was only a slight yield increase for H1 over A1 (Fig 

3.11). SU1 had comparable levels of recombinant expression compared to A1 from 

immunoblot data (Fig 3.17), yet radio-ligand binding showed a 3-fold increase over A1 

(Fig 3.18). As none of the previous studies that have used selective advantage to increase 

membrane protein yield have supplemented their methods with a functional assay, we 

cannot make a direct comparison to the proportion of unfolded to folded recombinant 

expression in previous studies. Our overall conclusion is that SU1 makes higher quality 

protein than A1; as such, our data are consistent with a higher proportion of misfolded 

hA2AR being produced by the A1 transformant, and a lower proportion of misfolded 

hA2AR-Ura3p being produced by SU1. 

 

In a study focused on directed evolution of E. coli transformants to increase yields of 

membrane proteins fused to GFP, Gul et al,.2014 used a temperature decrease to ensure 

that the GFP fusion partner was folded correctly; this was because a normal growth 

temperature of 37°C yielded no fluorescence signal. This decreased the E. coli growth rate 

and might therefore alleviate misfolding and subsequent degradation. Notably, a reduction 

in growth rate has already been shown to improve yields in yeast (Hackel et al., 2006, 

Gasser et al., 2007). Lowering growth temperature is likely to have a similar beneficial 

effect as the use of spt3Δ in our study; spt3Δ has a reduced growth rate compared to wild-

type cells. In contrast, H1 was generated and cultured at the standard growth temperature 

for S. cerevisiae of 30°C; it is perhaps therefore not surprising that we encountered 

misfolding and that a similar decrease in temperature to 25°C might have been usefully 

employed for generating improved transformants.  

 

Confocal imagery was performed to assess any differences in recombinant protein 

localisation between the A1 and H1 transformants (Fig 3.12). The images revealed that H1 

had a concentrated accumulation of hA2AR-Ura3p in the vacuole, whereas the A1 control 

exhibited evenly distributed expression throughout the cell with a vacuole devoid of 

hA2AR.  It is possible that H2 and H3, the viable but non-culturable (VBNC) transformants 

from the two-step selection (Fig 3.6), exhibited their phenotype due to a high abundance of 
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misfolded recombinant protein in their vacuoles. This is  supported in the literature for S. 

cerevisiae, where increases in misfolded recombinant proteins have been shown to 

decreases fitness and retard growth dramatically due to cytotoxicity (Geiler-Samerotte et 

al., 2011). No confocal microscopy was performed on H2 and H3, which would have been 

useful in their analysis to confirm this speculation. 

 

Three factors needed to be addressed with respect to their effect on the affinity of the 

hA2AR moiety of hA2AR-Ura3p: the influence of the Ura3p tag; the effect of expression as 

part of SA strategy; and the influence of the spt3Δ strain. Homologous competition binding 

experiments were therefore conducted using ZM241385 (Fig 3.20), with pKd values for 

A1, H1 and SU1 being 8.6 ± 0.2, 8.4 ± 0.2 and 8.3 ± 0.2 respectively. This suggests hA2AR 

from all sources has values in line with those reported for membrane-bound hA2aR using 

various constructs in the literature (Singh et al., 2010). Therefore it was determined that 

neither the Ura3p tag, expression in an SA manner or spt3Δ had any effect on hA2AR-

Ura3p affinity. Additionally, as discussed earlier in this section, our data suggest that there 

is a significant heterogeneous receptor population in membranes tested from H1 

comprising of non-functional and functional hA2AR-Urap3.  

 

5.1.4 Comparison with previous studies   

To our knowledge, using SA as a tool to boost eukaryotic recombinant protein yields has 

not been previously reported in yeast, but has been performed in bacteria. The first study 

was carried out in 1999 by Maxwell and colleagues, who discovered that E. coli cells that 

expressed soluble forms of a fusion of HIV integrase with chloramphenicol 

acetyltransferase (CAT) had higher resistance than cells that expressed insoluble forms 

when cultured on plates containing high levels of chloramphenicol (Maxwell et al., 1999). 

Strains of E. coli could therefore be selected and isolated that produced more soluble 

protein.  

 

In 2009, Massey-Gendel and colleagues created a fusion protein of the membrane protein, 

rhomboid-Rv1337 (from Mycobacterium tuberculosis, responsible for most cases of 

tuberculosis), fused to chloramphenicol acetyltransferase (CAT), an enzyme conferring 



135 

 

antibiotic resistance. They reported a 75-fold increase in yield (Massey-Gendel et al., 

2009), which was quantified by immunoblot. As shown in Chapter 3, this method is not 

able to assess the functional or folded state of membrane proteins as demonstrated by our 

results and literature reports (Niebauer & Robinson, 2006).  

 

In 2010, Linares and colleagues used L. lactis strains to increase the expression of 

recombinant membrane proteins by fusing the membrane protein with a protein that 

conferred resistance to the antibiotic erythromycin (the erythromycin-resistance protein 

(ErmC) together with a GFP tag) (Linares et al., 2010). By gradually increasing the 

erythromycin concentration, cell viability decreased, with the surviving population being 

higher yielding (2-8 fold) than controls. The authors claim that the resulting strains 

possessed an improved folding state, although no functional assay was performed to assess 

true functionality. They also discovered that when selected strains had their genome 

sequenced, that they had acquired a mutation in the nisK gene which encodes a sensor 

histidine kinase, allowing increased transcription due to their plasmid having a nisin 

promoter (Linares et al., 2010). By analogy with this study, we do not know whether our 

selected transformants have acquired mutations in their genome, which will be the subject 

of future work. 

 

The most recent SA study reported in the literature, from the L. lactis research group, used 

the same selective advantage fusion strategy but with E. coli. This also generated strains 

that had increased expression of functional recombinant target membrane proteins when 

they were fused to ErmC and GFP and cultured in increasing concentrations of 

erythromycin (Gul et al., 2014). Selected strains that exhibited improved yield 

characteristics had acquired genomic mutations; notably no functional assays were 

performed on the proteins produced. The addition of toxic antibiotics to the growth 

medium for selection might appear beneficial in the short-term, but if the experiment is 

scaled up, the antibiotics are still needed to prevent revertants, which could negate the 

benefits (M A Romanos et al., 1992, Hensing et al., 1995).  The traditional manner for 

selection in yeast is through auxotrophy of compounds needed for synthesis, and is well 

established and understood and therefore was the most logical choice for our study (Pronk, 

2002). This does perhaps leave open the option of an anti-fungal resistance protein being 



136 

 

used in the place for Ura3p. However, through the authors’ own admission, wild-type E. 

coli cells are highly resistant to their chosen antibiotic, erythromycin, forcing the use of a 

triple drug/antibiotic export null strain (Gul et al., 2014). The selection of bacteria based on 

drug resistance could possibly lead to health and safety issues (Joakim Larsson & Fick, 

2009), which would not be an issue when selecting using auxotrophy in yeast. It is 

therefore likely that the strategy explored in this thesis would be more readily received in 

the biopharmaceutical industry. 

 

None of the studies described above attempted to use detergents to increase functional 

yield. For example Linares and colleagues and Gul and colleagues performed no functional 

assays and relied on the folding of GFP as an indicator of protein quality (Linares et al., 

2010, Gul et al., 2014). Niebauer and Robinson expressed a hA2AR-GFP fusion in S. 

cerevisiae and used FACS to sort high-yielding transformants, which were less than 3.5% 

of the total population. This approach was initially successful, yet expression decreased on 

a per cell basis over the course of their study (Niebauer et al., 2004). Despite this, there 

might be potential for the use of a GFP tag for screening yeast SA transformants. However, 

due to the very low number of colonies in our study (Table 3.3), a more beneficial 

improvement might be to select in liquid medium cultures (instead if plate medium) with 

decreasing concentrations of uracil in the growth medium, which could then be sorted 

using FACS.  

 

5.1.5 Conclusions 

The SA strategy allows selection of host cells for production of a functional target protein. 

Yeast is increasingly relevant for the production of human membrane proteins due to its 

closer evolutionary links than bacteria (Grisshammer & Tate, 1995), while being cheaper 

than more authentic host cells such as mammalian and insect cells  (Bill et al., 2011). 

Importantly, the strategy used in Chapter 3 did not appear to have an effect on receptor 

affinity, which we confirmed by homologous competition binding assays. In this work, we 

were able to link yeast cell survival to high yields of functional recombinant membrane 

protein in the first example of the application of SA in this organism.  
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5.2 Impact on yeast host cells of the SA strategy: vacuolar  internalisation of non-

functional protein 

5.2.1 Total recombinant protein vs. functional recombinant protein  

The conflicting data from immunoblot and ligand binding assays for H1 hinted that the SA 

strategy had achieved more recombinant hA2AR-Ura3p over the control, yet ligand binding 

indicated much was non-functional and potentially misfolded bringing the actual level of 

functional hA2AR-Ura3p in line with values seen from the control (Fig 3.10 and 3.11). 

 

hA2AR has been expressed previously in S. cerevisiae as a hA2AR-GFP fusion and a similar 

vacuolar internalisation was observed by the authors’ also using confocal microscopy 

(Niebauer et al., 2004, Niebauer & Robinson, 2006), with the vacuole appearing as a solid 

block similar to our findings (Fig 3.12). The authors’ chosen S. cerevisiae strain was 

BJ5464, which lacks the genes for the vacuolar proteases Pep4p and Prb1, thought to 

reduce proteolyic artifacts during the preparation of cell extracts (Jones, 1991, Kowalski et 

al., 1998). This might be the reason why they observed this internalisation in the vacuole; 

after sequestering hA2AR, the vacuole perhaps lacks the ability to recycle or degrade it. 

This also might have answered some potential questions raised during the study, namely 

whether or not the internalisation we observed was caused by the SA strategy or whether 

the SA strategy has selected for mutants which are amenable to the SA stress, as perhaps 

vacuolar mutant are.  The evidence leaned towards the latter proposition in that H1 might 

have been a mutant lacking one or more vacuolar protease, thus conferring an advantage 

over wild-type cells that are able to degrade the hA2AR-Ura3p. Niebauer and colleagues 

used whole cell fluorescence for their hA2AR-GFP construct, and ligand binding using 

whole cells lysates as a measure of functional expression (as opposed to total cell 

membranes as in our study), and also observed significant discrepancy when comparing to 

total expression from immunoblots (Niebauer et al., 2004, Niebauer & Robinson, 2006). 

They were of the opinion that the hA2AR that was internalised was functional because the 

GFP was correctly folded and was able to fluoresce even when inside the vacuole. If this 

was the case, it would indicate that perhaps the hA2AR-Ura3p from H1 was misfolded prior 

to being internalised. However, it is possible that despite GFP being folded correctly in 

their hA2AR fusion, the hA2AR was not, which is the conclusion we have drawn from the 

data.   
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Niebauer and colleagues selected for the highest fluorescing cells through flow assisted 

cell sorting (FACS) (Niebauer et al., 2004), which selected for those cells that expressed 

the most GFP (further compounded through using anti-GFP antibody for the immunoblot), 

rather than correct folding of its hA2AR partner. GFP screening was essential as they used 

the pITY plasmid vector capable of integrating 1-30 times at different positions throughout 

the cells genome  (Niebauer et al., 2004, Niebauer & Robinson, 2006), allowing for a 

massive variation in expression potential. The study reported an estimated potential yield 

of 6 ± 2 mg/L (Niebauer & Robinson, 2006), using this system.  

 

Gul and colleagues observed no fluorescence of their GFP-tagged target when E. coli was 

grown at 37°C, instead needing to culture at 20-25°C (Gul et al., 2014), indicating that 

their SA strategy caused undue stress which results in misfolded or inadequately-processed  

products. This correlates with our SA finding that showed the majority of our recombinant 

product in H1 was unable to bind ZM241385, which perhaps could be remedied by a 

reduction in culture temperature. Reductions in temperature have been reported in S. 

cerevisiae and P. pastoris to improve protein yield, quality and function (Hackel et al., 

2006, Gasser et al., 2007), by alleviating the metabolic burden of overexpression due 

slower and more efficient cell translation (Bawa et al., 2011). It has also been suggested to 

prevent saturation of the membrane protein insertion machinery (Loll, 2003, Wagner et al., 

2006) allowing the appropriate amount of chaperones and foldases (Tate et al., 1999, 

Higgins et al., 2003). This is in line with our findings as when spt3Δ was used in 

conjunction with the SA strategy, as mentioned above. 

 

The quality control mechanisms in S. cerevisiae to deal with misfolded cytosolic proteins 

are not entirely understood, but it is thought that Ura3p has a very short half-life and is 

ubiquitinated and transported to proteasomes for degradation (Gilon et al., 1998, Metzger 

et al., 2008). It is not clear whether or not this caused Ura3p to be cleaved from hA2AR or 

whether the entire fusion is degraded during the process, but the western data showing 

hA2AR monomers from H1 (Fig 3.9) could support that theory. There is the potential to use 

the mutant strain ydj1pΔ which is a deletion of the cytosol/ER membrane-localized 

chaperone Ydj1p, which has been shown to impair the ubiquitination and degradation of a 
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Ura3p-fusion (a fusion with destabilising sequences used to discover degradation pathways 

for Ura3p), which was shown to allow the majority of the Ura3p-fusions to escape 

degradation (Metzger et al., 2008). 

 

The yeast secretion pathway can respond to misfolded proteins by sending them back to 

Golgi/ER to be refolded and if this fails they are sent to the vacuole for storage or 

degradation (Nielsen, 2013). If indeed H1 is vacuolar protease deficient this would allow 

an accumulation of misfolded hA2AR-Ura3p (resulting in the internalisation observed, Fig 

3.12) which might have been an important factor for cell survival, thus providing a 

selective advantage; Ura3p must be correctly folded or the cells will not survive. Assays 

could be conducted in an effort to judge whether any kind of unfolded protein response 

(UPR) or ER-associated degradation (ERAD) is taking place, although as discussed earlier 

this vacuolar accumulation had been observed before although the authors did not 

elaborate further (Niebauer et al., 2004). 

 

5.2.2 Vacuolar mutants 

Vacuolar deletion strains were employed in an attempt to prevent vacuolar accumulation, 

through the deletion of genes vital for the CPY (vps1Δ), ALP (apm3Δ) vacuolar transport 

pathways and PEP3 (pep3Δ) responsible for vacuolar biogenesis (Fig 3.13). The vacuolar 

mutant controls were selected in the same fashion as A1, and SA vacuolar transformants 

were generated using the two-step method because the one-step process yielded no 

colonies. Interestingly for the vacuolar mutants, fewer colonies arose during the first step 

on CSM-histidine (around 7-15 as opposed to 60 for H1) which was expected as different 

strains have different rates of transformability (Kawai et al., 2010). The colonies took 

longer to form during the second step on CSM-uracil (approximately 14-16 days as 

opposed to 7-10 for H1 and SU1), yet they had a higher survival rate with at least 50% 

surviving the spotting procedure from CSM-histidine to CSM-uracil. this possibly 

indicates that vacuolar mutant strains have a distinct advantage over BY4741 in the SA 

method, although this could also be due to the longer growth time afforded to the vacuolar 

mutants. The higher survival rate of the vacuolar mutants further supported the idea that 

perhaps the H1 transformant is a vacuolar mutant. 
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None of the vacuolar SA transformants had an increase in yield over the control (Fig 3.15); 

they did however not suffer the same vacuolar internalisation because apm3Δ:hA2AR-

Ura3p had a vacuole devoid of recombinant protein similar to the control A1 WT:hA2AR 

(Fig 3.12) and the mutant control apm3Δ:hA2AR (Fig 3.14). Similarly the vps1Δ and pep3Δ 

transformants did not have any vacuole formation (Fig 3.14), which was not surprising for 

pep3Δ transformants as the gene for the vacuole formation is deleted. However, for the no-

SA control pep3Δ:hA2AR there appeared to be vesicular accumulation of hA2AR and in 

contrast the SA transformant pep3Δ:hA2AR-Ura3p had very low expression throughout 

(Fig 3.14). The vps1Δ:hA2AR-Ura3p transformant appeared to have vesicular accumulation 

of hA2AR-Ura3p with its control vps1Δ:hA2AR having uniform expression throughout the 

cell. Since there was no vacuole present in either transformant, it might be possible that 

there is disruption of vesicular budding from the Golgi and other organelle fission events, 

which is a property of the vps1Δ strain (Ekena et al., 1993, Nothwehr et al., 1995).  

 

The vacuolar mutant SA transformants and their controls all had decreased yield of hA2AR 

determined by ligand binding compared to the A1 control, except apm3Δ:hA2AR (Fig 

3.15), which surprisingly was the non-SA control of apmΔ and had an increased yield of 

1.9 pmol mg-1, compared to the A1 control (1.3 pmol mg-1). This result highlighted it as a 

potential host for hA2AR and other membrane proteins, and also indicated that the ALP 

pathway might be responsible for low yields of hA2AR and possibly other membrane 

proteins. Additionally, immunoblot analysis could have been conducted to supplement the 

confocal and binding data, allowing for a more insightful and thorough comparison against 

H1 in terms of recombinant protein localisation. 

 

The apm3Δ gene is involved in the targeting and transport of membrane proteins in the 

ALP pathway from the Golgi to the vacuole  (Odorizzi et al., 1998, Yeung et al., 1999). A 

deletion of any of its subunits results in the mislocalisation of cargo vesicles (Cowles et al., 

1997).  Our data suggest that this mislocalisation must either be beneficial in some way, 

perhaps reducing the rate of hA2AR turnover within the cell allowing for more hA2AR per 

cell than would usually be permitted compared to the A1 control.  hA2AR is not trafficked 

via the ALP pathway at all and might be diverted to the CPY or endocytic pathways which 
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traffics cargo to the plasma membrane in most cases, and not necessarily the vacuole 

which is the case for cargo regulated via the ALP pathway (Conibear & Stevens, 1998). 

Interestingly earlier attempts at hA2AR expression in S. cerevisiae attributed reduced 

expression to translational or post-translational events (Niebauer et al., 2004), fitting with 

the idea that the ALP pathways is somehow involved. In future work, specific proteins 

essential to certain steps in the trafficking pathway of membrane proteins from the plasma 

membrane to the vacuole could be inhibited using mutant strains. Another avenue that 

could be pursued to prevent vacuolar internalisation of hA2AR-Ura3p, might have been to 

use a deletion strain of the heat-shock protein 70 (Hsp70p), as the  hsp70Δ strain has been 

shown to be unable to turn over Ura3p within the cell, suggesting that Hsp70p is essential 

for Ura3p proteolysis (Horst et al., 1999).   

 

5.2.3 Strategies to recover non-functional protein  

A large proportion of hA2AR-Ura3p from H1 seemed to be non-functional. Factoring 

together the immunoblot and ligand binding values, it was calculated that only 

approximately 24% of total recombinant hA2AR-Ura3p was functionally active as 

determined by radio-ligand binding, meaning a potential further 76% could be recovered, 

increasing the overall total functional yield. Solubilisation of hA2AR-Ura3p was therefore 

attempted using DDM, which has been used in structural characterisation of many 

membrane proteins deposited in the Protein Data Bank (O’Malley et al., 2007). Most 

importantly it has been used successfully for solubilisation of the hA2AR receptor 

expressed in S. cerevisiae  (O’Malley et al., 2007, Singh et al., 2010). DDM was 

supplemented with CHS, a soluble form of cholesterol which had been shown to promote 

GCPR activity in vivo (Weiss & Grisshammer, 2002, O’Malley et al., 2007, Singh et al., 

2010); the equivalent membrane sterol in yeast is ergosterol. This allows the solubilisation 

environment and subsequent micelles to more closely resemble the properties that hA2AR 

would have in its native plasma membrane. Additionally it has been reported that 

solubilisation attempts on hA2AR in S. cerevisiae membranes with DDM but not CHS 

resulted in loss of protein function assessed through ligand binding (O’Malley et al., 2007). 

CHS has also been shown to be essential for maximal recovery of functional hA2AR from 

solubilisation (Singh et al., 2010). 
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We also solubilised A1 and SU1 as controls (Fig 3.21). The hA2AR-Ura3p from H1 

reported a significant increase in the amount of functional receptors (increase in Bmax) after 

solubilisation (1.6 to 5.8 pmol mg-1), while the A1 and SU1 had no change (Fig 3.21). 

 

5.2.4 Conclusion 

The SA strategy initially lead to a transformant, H1, that suffered vacuolar internalisation 

of hA2AR-Ura3p. Attempts to circumvent this through the use of vacuolar mutants were 

only partly successful because the transformants had a decrease in total hA2AR/hA2AR-

Ura3p yield compared to the A1 control. The apm3Δ strain might prove to be a new 

membrane protein over-expression host because it had a 1.6-fold increase in hA2AR yield 

over the A1 control. Use of spt3Δ in the SA strategy generated SU1, which did not suffer 

internalisation and had a reported 2.5-fold functional yield increase. A large proportion of 

hA2AR-Ura3p in H1was non-functional; solubilisation with DDM and CHS was used to 

recover functionality and increase overall functional yield from H1. 

 

The new Bmax value for solubilised hA2AR-Ura3p from H1 represented a 4.5-fold increase 

over the Al control, making it the new highest yielding SA transformant; SU1 had a 2.5-

fold increase pre and post-solubilisation (fig 3.21). For H1, this brought its yield more in 

line with the immunoblot values (Fig 3.10). We note, however, that the binding data from 

the solubilisation did not take into account the insoluble fraction, so we are likely to be 

underestimating the yield. Overall the data support the earlier hypothesis that a large 

proportion of hA2AR-Ura3p expressed in H1 was misfolded causing it to be non-functional 

in a radio-ligand binding assay. Of the 74% misfolded hA2AR-Ura3p available for 

recovery, 36% was successfully solubilised. 

 

5.3 Manipulation of translational processes as a strategy to increase yield  

5.3.1 Translation slowdown 

The attempt to increase yields of hA2AR using drugs by translational inhibition did not 

result in increased yields. In fact the drugs caused a significant reduction, with guanabenz 

and emetine having yields of 0.2 and 0.1 pmol mg-1 respectively compared to the hA2AR 
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control A1 (1.3 pmol mg-1)(Fig 4.6). The extremely slow grow rates in the presence of the 

drugs indicated they caused a severe growth defect due to a much more severe translational 

inhibition than intended which appeared to negatively affect yield. Use of the tor1Δ strain 

had a slight reduction (0.9 pmol mg-1; Fig 4.7), indicating that the specific translational 

inhibition exhibited by tor1Δ was not suitable to improve hA2AR yield. 

 

A larger ranging screen using smaller culture volumes could have been used allowing for 

more concentrations to be assayed, and possibly using immunoblots as an initial screen. 

Additionally polysome profiling could be performed to detect increases in monosomes 

which would confirm any translational inhibition (Bonander et al., 2009) after emetine or 

guanabenz treatment. An immunoblot for phosphorylated eIF2A (which causes inhibition 

of translation initiation specifically) would also be an indicator of translational inhibition 

(Sherman & Qian, 2013).  

 

5.3.2 IRES 

Overall it was not possible to increase hA2AR expression using IRES sequences over our 

non-IRES control and, in fact, the IRESes caused an overall repression in yield. This is not 

unexpected for IRESes in wild-type yeast cells because IRESes have very low activity if 

cap-dependent initiation is fully active (Paz et al., 1999). We expected that translation-

deficient spt3Δ cells would have sufficiently inhibited the cap-dependent mechanism thus 

allowing the IRESes to increase hA2AR yields over the no-IRES control, which it did not 

(Fig 4.8). However, the spt3Δ strain IRES transformants did not have increased yield over 

the WT IRES transformants apart from the spt3Δ YAP1 IRES (YAP1(IRES)-

hA2AR:[spt3Δ]) which had a 3-fold increase in yield compared to the of WT YAP1 IRES 

(YAP1(IRES)-hA2AR) (Fig 4.8).  

 

For the CrPV IRES, both the WT and spt3Δ transformants had comparable yields (Fig 4.8), 

therefore another deletion strain was chosen as that was more amenable to the IRES. It had 

been speculated according to results reported in the literature that as the CrPV IRES is 

inhibited in the presence of abundant ternary complexes (due to competition for the P-site 

of the 40S ribosomal subunit), a reduction in ternary complexes should enhance IRES 
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activity (Deniz et al., 2009). The deletion strain gcn3Δ was chosen, as GCN3 encodes the α 

subunit of eIF4B which is involved in facilitating the formation of ternary complexes via 

the guanine nucleotide exchange, a mutation leads to a reduction in ternary complexes 

(Gomez & Pavitt, 2000, Taylor et al., 2010). This resulted in approximately a 2-fold (0.9 

pmol mg-1) increase in hA2AR yield over spt3Δ and BY4741 CrPV IRES transformants 

(CrPV(IRES)-hA2AR:[spt3Δ] and CrPV(IRES)-hA2AR), and not far off the A1 control (1.3 

pmol mg-1) (Fig 4.9). 

 

We also searched for optimal conditions for the YAP1 IRES by manipulating the oxidative 

stress response, performing an immunoblot for Yap1p expression in BY4741 cells that had 

been stressed using varying concentrations of H2O2 which were added for the last 1h of 

growth of a 19h culture (Fig 4.10). The data suggested that 100µM was the concentration 

that elicited the strongest Yap1p response (1.6-fold higher Yap1p expression than the 0µM 

control;Fig 4.10).    

 

As the YAP1 IRES is not fully understood, it is unknown which and how many factors are 

required for it  to facilitate internal initiation; this is coupled with the fact that the control 

mechanisms for IRESes harboured in the 5ˊUTR of cellular mRNAs is not entirely 

understood and speculated to possess multiple pathways that mediate internal initiation 

(Komar & Hatzoglou, 2005, Komar & Hatzoglou, 2011). Additionally, unlike the CrPV 

IRES, the YAP1 IRES originates in the 5ˊUTR of a cellular mRNA and most likely also 

needs IRES-transacting factors (ITAFs) as it is reported that ITAFs are responsible for 

sensing changes  in cellular metabolism and are thought to be responsible for regulating 

IRES activity (Komar & Hatzoglou, 2005, Lewis & Holcik, 2007). A possible solution to 

investigate what initiation factors and ITAFs are required for YAP1, and even p150, has 

been reported using purified factors  and translation apparatus in a reconstituted in vitro 

translation system (Kolupaeva et al., 2007, Pisarev et al., 2007). A more high-throughput 

alternative could use GFP in the place of hA2AR to determine the highest yielding deletion 

strain for every given IRES, additionally using a 96-well format would maximise the 

amount of translation-deficient deletion strains that could be trailed using the IRESes. If 

the plate was recorded in real time, the data might also indicate the highest peak in 

expression/IRES activity that the cells should be harvested. It is thought that starved cells 
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or cells in stationary phase have a higher capacity to support internal initiation in yeast 

(Paz et al., 1999), as cap-dependent translation activity is dramatically reduced, yet cells 

maintain excess translational capacity (Dickson & Brown, 1998). Using these data the 

same conditions could be applied to the IRES hA2AR constructs and then binding 

performed to see if the relationship between the condition and high GFP expression 

correlates to high hA2AR functional yield.  

 

5.3.3 Conclusions 

In a preliminary screen, using concentrations that had been reported in the literature, 

guanabenz and emetine had a negative effect on protein yield. The tor1Δ strain did not 

have as significant a decrease in hA2AR yield with a Bmax 0.9 pmol mg-1, compared to the 

A1 control 1.2 pmol mg-1. The TOR1 gene (target of rapamycin 1) encodes an extremely 

important protein, which forms the TORC1 complex. TORC1 regulates many cellular 

processes including protein synthesis, transcriptional activation, ribosome biogenesis, actin 

organisation and the cell cycle (Bjornsti & Houghton, 2004, Martin & Hall, 2005, Kennedy 

& Kaeberlein, 2009); it is therefore conceivable that the reduction in translation that is 

exhibited in tor1Δ does not result in an increased yield of hA2AR as other factors are 

involved in such a complex set of pathways.  

 

Despite none of the IRESes having an increase in yield over the A1 control, through the 

use of deletion strains it was possible to increase the activity of the YAP1 IRES (using 

spt3Δ) and the CrPV IRES (using gcn3Δ). A screen of BY4741 deletion strains using the 

IRES vectors could be done if hA2AR was to be replaced with GFP and a 96-well plate 

format incorporated. This would allow for a high-throughput screen to individually identify 

optimal–IRES activity strains particular to each IRES. Also preliminary YAP1 IRES 

optimisation efforts suggested relevant concentrations of H2O2 that might be used to boost 

YAP1 IRES activity. 
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5.4 Further work 

5.4.1 SA 

 Sequence the H1 and SU1 genomes to discover if a mutant was indeed selected for 

by the SA as in previous attempts at SA in bacteria.  

 Performed further pharmacology using other hA2AR ligands such as NECA and 

XAC 

 Mutate URA3 causing the Ura3p of the hA2aR-Ura3p fusion to be deficient with 

the aim of forcing higher yield from SA transformants   

 Apply strategy to other membrane proteins such as CGRP receptor 

 Apply strategy to industrially relevant soluble proteins such as HRP 

 

5.4.2 Knowledge of translational processes 

 96-well screen with GFP-reporter to assay the culture time that correlates with 

maximal expression/IRES activity 

 

5.4.2.1 TSD 

 Use other translationally-deficient strains in 96-well screen with GFP-reporter 

vectors (replace hA2AR with GFP in the pYX222-hA2AR) 

 Use varying concentrations of emetine and guanabenz in a in 96-well screen with 

GFP-reporter vectors (replace hA2AR with GFP in the pYX222-hA2AR) 

 

5.4.2.2 IRES 

 Use other translationally-deficient strains, perhaps in 96-well screen with IRES-

GFP-reporter vectors (replace hA2AR with GFP in the pYX222-(IRES)-hA2AR). 

 Test 100µM H2O2 to investigate the hypothesis that an induction more tailored to 

YAP1 can increase the yield further 

 Use other translationally-deficient strains, in 96-well screen against all the 3 

IRESes 

 Apply strategy to other membrane proteins such as CGRP receptor 
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 Apply strategy to industrially relevant soluble proteins such as HRP 

 No native P. pastoris IRES has yet been shown to work in vivo in P. pastoris and 

there is high conservation between S. cerevisiae and P. pastoris regarding IRES-

dependent translation. The S. cerevisiae GRP1 IRES has been shown to internally 

initiate translation in P. pastoris (Liang, et al., 2012a) allowing the possibility for 

adapting the strategy to P. pastoris, using the YAP1, p150 and even the CrPV 

IRESes. 
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7. Appendices 

A.1. Vectors 

A.1.1. pYX222-A2AR 

 

GAATTCACCATGGATCCTAGGGCCCACAAGCTTAACAAAATGAGATTTCCTTCAATTTTTA

CTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGA

TGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTC

GATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTA

CTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGC

TCATCATCATCATCATCATCATCATCATCATGAATTCATGCCCATCATGGGCTCCTCGGTG

TACATCACGGTGGAGCTGGCCATTGCTGTGCTGGCCATCCTGGGCAATGTGCTGGTGTGCT

GGGCCGTGTGGCTCAACAGCAACCTGCAGAACGTCACCAACTACTTTGTGGTGTCACTGGC

GGCGGCCGACATCGCAGTGGGTGTGCTCGCCATCCCCTTTGCCATCACCATCAGCACCGGG

TTCTGCGCTGCCTGCCACGGCTGCCTCTTCATTGCCTGCTTCGTCCTGGTCCTCACGCAGA

GCTCCATCTTCAGTCTCCTGGCCATCGCCATTGACCGCTACATTGCCATCCGCATCCCGCT

CCGGTACAATGGCTTGGTGACCGGCACGAGGGCTAAGGGCATCATTGCCATCTGCTGGGTG

CTGTCGTTTGCCATCGGCCTGACTCCCATGCTAGGTTGGAACAACTGCGGTCAGCCAAAGG

AGGGCAAGCAGCACTCCCAGGGCTGCGGGGAGGGCCAAGTGGCCTGTCTCTTTGAGGATGT

GGTCCCCATGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGTGCTGGTGCCCCTGCTG
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CTCATGCTGGGTGTCTATTTGCGGATCTTCCTGGCGGCGCGACGACAGCTGAAGCAGATGG

AGAGCCAGCCTCTGCCGGGGGAGCGGGCACGGTCCACACTGCAGAAGGAGGTCCATGCTGC

CAAGTCACTGGCCATCATTGTGGGGCTCTTTGCCCTCTGCTGGCTGCCCCTACACATCATC

AACTGCTTCACTTTCTTCTGCCCCGACTGCAGCCACGCCCCTCTCTGGCTCATGTACCTGG

CCATCGTCCTCTCCCACACCAATTCGGTTGTGAATCCCTTCATCTACGCCTACCGTATCCG

CGAGTTCCGCCAGACCTTCCGCAAGATCATTCGCAGCCACGTCCTGAGGCAGCAAGAACCT

TTCAAGGCAGCTGGCACCAGTGCCCGGGTCTTGGCAGCTCATGGCAGTGACGGAGAGCAGG

TCAGCCTCCGTCTCAACGGCCACCCGCCAGGAGTGTGGGCCAACGGCAGTGCTCCCCACCC

TGAGCGGAGGCCCAATGGCTACGCCCTGGGGCTGGTGAGTGGAGGGAGTGCCCAAGAGTCC

CAGGGGAACACGGGCCTCCCAGACGTGGAGCTCCTTAGCCATGAGCTCAAGGGAGTGTGCC

CAGAGCCCCCTGGCCTAGATGACCCCCTGGCCCAGGATGGAGCAGGAGTGTCCGCGGCCGC

TGAAAATCTGTATTTCCAGAGTGCCGGTAAGGCCGGAGAGGGCGAGATTCCCGCTCCGCTG

GCCGGCACCGTCTCCAAGATCCTCGTGAAGGAGGGTGACACGGTCAAGGCTGGTCAGACCG

TGCTCGTTCTCGAGGCCATGAAGATGGAGACCGAGATCAACGCTCCCACCGACGGCAAGGT

CGAGAAGGTCCTGGTCAAGGAGCGTGACGCGGTGCAGGGCGGTCAGGGTCTCATCAAGATC

GGGTGATCTAGAGTCGACCCGGGTATCCGTATGATGTGCCTGACTACGCATGATATCTCGA

GCTCAGCTAGCTAACTGAATAAGGAACAATGAACGTTTTTCCTTTCTCTTGTTCCTAGTAT

TAATGACTGACCGATACATCCCTTTTTTTTTTTGTCTTTGTCTAGCTCCAATTCGCCCTAT

AGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTG

GCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGA

AGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGC

CCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACT

TGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCC

GGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTAC

GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG

ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTC

CAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGC

CGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAA

CAAAATATTAACGCTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTA

TTTCACACCGCATAGATCCGTCGAGTTCAAGAGAAAAAAAAAGAAAAAGCAAAAAGAAAAA

AGGAAAGCGCGCCTCGTTCAGAATGACACGTATAGAATGATGCATTACCTTGTCATCTTCA

GTATCATACTGTTCGTATACATACTTACTGACATTCATAGGTATACATATATACACATGTA

TATATATCGTATGCTGCAGCTTTAAATAATCGGTGTCACTACATAAGAACACCTTTGGTGG

AGGGAACATCGTTGGTTCCATTGGGCGAGGTGGCTTCTCTTATGGCAACCGCAAGAGCCTT

GAACGCACTCTCACTACGGTGATGATCATTCTTGCCTCGCAGACAATCAACGTGGAGGGTA

ATTCTGCTTGCCTCTGCAAAACTTTCAAGAAAATGCGGGATCATCTCGCAAGAGAGATCTC

CTACTTTCTCCCTCTGCAAACCAAGTTCGACAACTGCGTACGGCCTGTTCGAAAGATCTAC

CACCGCTCTGGAAAGTGCCTCATCCAAAGGCGCAAATCCTGATCCAAACCTTTTTACTCCA

CGCACGGCCCCTAGGGCCTCTTTAAATGCTTGACCGAGAGCAATCCCGCAGTCTTCAGTGG

TGTGATGGTCGTCTATGTGTAAGTCACCAATGCACTCAACGATTAGCGACCAGCCGGAATG

CTTGGCCAGAGCATGTATCATATGGTCCAGAAACCCTATACCTGTGTGGACGTTAATCACT

TGCGATTGTGTGGCCTGTTCTGCTACTGCTTCTGCCTCTTTTTCTGGGAAGATCGAGTGCT

CTATCGCTAGGGGACCACCCTTTAAAGAGATCGCAATCTGAATCTTGGTTTCATTTGTAAT

ACGCTTTACTAGGGCTTTCTGCTCTGTCATCTTTGCCTTCGTTTATCTTGCCTGCTCATTT

TTTAGTATATTCTTCGAAGAAATCACATTACTTTATATAATGTATAATTCATTATGTGATA

ATGCCAATCGCTAAGAAAAAAAAAGAGTCATCCGCTAGGGGAAAAAAAAAAATGAAAATCA

TTACCGAGGCATAAAAAAATATAGAGTGTACTAGAGGAGGCCAAGAGTAATAGAAAAAGAA

AATTGCGGGAAAGGACTGTGTTATGACTTCCCTGACTAATGCCGTGTTCAAACGATACCTG

GCAGTGACTCCTAGCGCTCACCAAGCTCTTAAAACGGGAATTTATGGTGCACTCTCAGTAC

AATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCG

CCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGA



166 

 

GCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGT

GATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTGCGGCCGC

TCTAGAACTAGTGGATCAATTCCACGGACTATAGACTATACTAGTATACTCCGTCTACTGT

ACGATACACTTCCGCTCAGGTCCTTGTCCTTTAACGAGGCCTTACCACTCTTTTGTTACTC

TATTGATCCAGCTCAGCAAAGGCAGTGTGATCTAAGATTCTATCTTCGCGATGTAGTAAAA

CTAGCTAGACCGAGAAAGAGACTAGAAATGCAAAAGGCACTTCTACAATGGCTGCCATCAT

TATTATCCGATGTGACGCTGCAGCTTCTCAATGATATTCGAATACGCTTTGAGGAGATACA

GCCTAATATCCGACAAACTGTTTTACAGATTTACGATCGTACTTGTTACCCATCATTGAAT

TTTGAACATCCGAACCTGGGAGTTTTCCCTGAAACAGATAGTATATTTGAACCTGTATAAT

AATATATAGTCTAGCGCTTTACGGAAGACAATGTATGTATTTCGGTTCCTGGAGAAACTAT

TGCATCTATTGCATAGGTAATCTTGCACGTCGCATCCCCGGTTCATTTTCTGCGTTTCCAT

CTTGCACTTCAATAGCATATCTTTGTTAACGAAGCATCTGTGCTTCATTTTGTAGAACAAA

AATGCAACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGAACA

GAAATGCAACGCGAAAGCGCTATTTTACCAACGAAGAATCTGTGCTTCATTTTTGTAAAAC

AAAAATGCAACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGA

ACAGAAATGCAACGCGAGAGCGCTATTTTACCAACAAAGAATCTATACTTCTTTTTTGTTC

TACAAAAATGCATCCCGAGAGCGCTATTTTTCTAACAAAGCATCTTAGATTACTTTTTTTC

TCCTTTGTGCGCTCTATAATGCAGTCTCTTGATAACTTTTTGCACTGTAGGTCCGTTAAGG

TTAGAAGAAGGCTACTTTGGTGTCTATTTTCTCTTCCATAAAAAAAGCCTGACTCCACTTC

CCGCGTTTACTGATTACTAGCGAAGCTGCGGGTGCATTTTTTCAAGATAAAGGCATCCCCG

ATTATATTCTATACCGATGTGGATTGCGCATACTTTGTGAACAGAAAGTGATAGCGTTGAT

GATTCTTCATTGGTCAGAAAATTATGAACGGTTTCTTCTATTTTGTCTCTATATACTACGT

ATAGGAAATGTTTACATTTTCGTATTGTTTTCGATTCACTCTATGAATAGTTCTTACTACA

ATTTTTTTGTCTAAAGAGTAATACTAGAGATAAACATAAAAAATGTAGAGGTCGAGTTTAG

ATGCAAGTTCAAGGAGCGAAAGGTGGATGGGTAGGTTATATAGGGATATAGCACAGAGATA

TATAGCAAAGAGATACTTTTGAGCAATGTTTGTGGAAGCGGTATTCGCAATATTTTAGTAG

CTCGTTACAGTCCGGTGCGTTTTTGGTTTTTTGAAAGTGCGTCTTCAGAGCGCTTTTGGTT

TTCAAAAGCGCTCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTT

CAAAGCGTTTCCGAAAACGAGCGCTTCCGAAAATGCAACGCGAGCTGCGCACATACAGCTC

ACTGTTCACGTCGCACCTATATCTGCGTGTTGCCTGTATATATATATACATGAGAAGAACG

GCATAGTGCGTGTTTATGCTTAAATGCGTACTTATATGCGTCTATTTATGTAGGATGAAAG

GTAGTCTAGTACCTCCTGTGATATTATCCCATTCCATGCGGGGTATCGTATGCTTCCTTCA

GCACTACCCTTTAGCTGTTCTATATGCTGCCACTCCTCAATTGGATTAGTCTCATCCTTCA

ATGCTATCATTTCCTTTGATATTGGATCATATGCATAGTACCGAGAAACTAGTGCGAAGTA

GTGATCAGGTATTGCTGTTATCTGATGAGTATACGTTGTCCTGGCCACGGCAGAAGCACGC

TTATCGCTCCAATTTCCCACAACATTAGTCAACTCCGTTAGGCCCTTCATTGAAAGAAATG

AGGTCATCAAATGTCTTCCAATGTGAGATTTTGGGCCATTTTTTATAGCAAAGATTGAATA

AGGCGCATTTTTCTTCAAAGCTGCGGCCGCACGTCAGGTGGCACTTTTCGGGGAAATGTGC

GCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACA

ATAACCGTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC

CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAA

CGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT

GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG

AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGC

AACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGA

AAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGT

GATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT

TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA

AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGC

AAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGG

AGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGC



167 

 

TGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGAT

GGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAAC

GAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCA

AGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAG

GTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACT

GAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGT

AATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAA

GAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTG

TTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATA

CCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACC

GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTT

CGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGA

GCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGC

AGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATA

GTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG

GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGG

CCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCG

CCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAG

CGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCAT

TAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTA

ATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTAT

GTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTAC

GCCAAGCTCGAAATTAACCCTCACTAAAGGGAACAAAAGCTGGTACCGGGCCGGCCGTCGG

GCCGTCGAGCTTGATGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCT

CCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAG

CTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTT

ATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTG

GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC

GGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGA

AAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGT

AACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTG

AGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGA

ATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGA

GCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCC

CCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAAT

AGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTGGGGATCTACGTATGGTCATTTCTTC

TTCAGATTCCCTCATGGAGAAAGTGCGGCAGATGTATATGACAGAGTCGCCAGTTTCCAAG

AGACTTTATTCAGGCACTTCCATGATAGGCAAGAGAGAAGACCCAGAGATGTTGTTGTCCT

AGTTACACATGGTATTTATTCCAGAGTATTCCTGATGAAATGGTTTAGATGGACATACGAA

GAGTTTGAATCGTTTACCAATGTTCCTAACGGGAGCGTAATGGTGATGGAACTGGACGAAT

CCATCAATAGATACGTCCTGAGGACCGTGCTACCCAAATGGACTGATTGTGAGGGAGACCT

AACTACATAGTGTTTAAAGATTACGGATATTTAACTTACTTAGAATAATGCCATTTTTTTG

AGTTATAATAATCCTACGTTAGTGTGAGCGGGATTTAAACTGTGAGGACCTTAATACATTC

AGACACTTCTGCGGTATCACCCTACTTATTCCCTTCGAGATTATATCTAGGAACCCATCAG

GTTGGTGGAAGATTACCCGTTCTAAGACTTTTCAGCTTCCTCTATTGATGTTACACCTGGA

CACCCCTTTTCTGGCATCCAGTTTTTAATCTTCAGTGGCATGTGAGATTCTCCGAAATTAA

TTAAAGCAATCACACAATTCTCTCGGATACCACCTCGGTTGAAACTGACAGGTGGTTTGTT

ACGCATGCTAATGCAAAGGAGCCTATATACCTTTGGCTCGGCTGCTGTAACAGGGAATATA

AAGGGCAGCATAATTTAGGAGTTTAGTGAACTTGCAACATTTACTATTTTCCCTTCTTACG

TAAATATTTTTCTTTTTAATTCTAAATCAATCTTTTTCAATTTTTTGTTTGTATTCTTTTC

TTGCTTAAATCTATAACTACAAAAAACACATACAG 
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A.1.2. pYX222-A2AR-URA3 

 

 

ACACATACAGGAATTCACCATGGATCCTAGGGCCCACAAGCTTAACAAAATGAGATTTCCT

TCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTA

CAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGA

AGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTT

ATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAG

AGGCTGAAGCTCATCATCATCATCATCATCATCATCATCATGAATTCATGCCCATCATGGG

CTCCTCGGTGTACATCACGGTGGAGCTGGCCATTGCTGTGCTGGCCATCCTGGGCAATGTG

CTGGTGTGCTGGGCCGTGTGGCTCAACAGCAACCTGCAGAACGTCACCAACTACTTTGTGG

TGTCACTGGCGGCGGCCGACATCGCAGTGGGTGTGCTCGCCATCCCCTTTGCCATCACCAT

CAGCACCGGGTTCTGCGCTGCCTGCCACGGCTGCCTCTTCATTGCCTGCTTCGTCCTGGTC

CTCACGCAGAGCTCCATCTTCAGTCTCCTGGCCATCGCCATTGACCGCTACATTGCCATCC

GCATCCCGCTCCGGTACAATGGCTTGGTGACCGGCACGAGGGCTAAGGGCATCATTGCCAT

CTGCTGGGTGCTGTCGTTTGCCATCGGCCTGACTCCCATGCTAGGTTGGAACAACTGCGGT

CAGCCAAAGGAGGGCAAGCAGCACTCCCAGGGCTGCGGGGAGGGCCAAGTGGCCTGTCTCT

TTGAGGATGTGGTCCCCATGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGTGCTGGT

GCCCCTGCTGCTCATGCTGGGTGTCTATTTGCGGATCTTCCTGGCGGCGCGACGACAGCTG

AAGCAGATGGAGAGCCAGCCTCTGCCGGGGGAGCGGGCACGGTCCACACTGCAGAAGGAGG

TCCATGCTGCCAAGTCACTGGCCATCATTGTGGGGCTCTTTGCCCTCTGCTGGCTGCCCCT
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ACACATCATCAACTGCTTCACTTTCTTCTGCCCCGACTGCAGCCACGCCCCTCTCTGGCTC

ATGTACCTGGCCATCGTCCTCTCCCACACCAATTCGGTTGTGAATCCCTTCATCTACGCCT

ACCGTATCCGCGAGTTCCGCCAGACCTTCCGCAAGATCATTCGCAGCCACGTCCTGAGGCA

GCAAGAACCTTTCAAGGCAGCTGGCACCAGTGCCCGGGTCTTGGCAGCTCATGGCAGTGAC

GGAGAGCAGGTCAGCCTCCGTCTCAACGGCCACCCGCCAGGAGTGTGGGCCAACGGCAGTG

CTCCCCACCCTGAGCGGAGGCCCAATGGCTACGCCCTGGGGCTGGTGAGTGGAGGGAGTGC

CCAAGAGTCCCAGGGGAACACGGGCCTCCCAGACGTGGAGCTCCTTAGCCATGAGCTCAAG

GGAGTGTGCCCAGAGCCCCCTGGCCTAGAGGGGGGTCCGGAGAGAACCTGTACTTCCAGGG

GAGTATGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCC

AAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCTTCATTGGATGTTCGTA

CCACCAAGGAATTACTGGAGTTAGTTGAAGCATTAGGTCCCAAAATTTGTTTACTAAAAAC

ACATGTGGATATCTTGACTGATTTTTCCATGGAGGGCACAGTTAAGCCGCTAAAGGCATTA

TCCGCCAAGTACAATTTTTTACTCTTCGAAGACAGAAAATTTGCTGACATTGGTAATACAG

TCAAATTGCAGTACTCTGCGGGTGTATACAGAATAGCAGAATGGGCAGACATTACGAATGC

ACACGGTGTGGTGGGCCCAGGTATTGTTAGCGGTTTGAAGCAGGCGGCGGAAGAAGTAACA

AAGGAACCTAGAGGCCTTTTGATGTTAGCAGAATTGTCATGCAAGGGCTCCCTAGCTACTG

GAGAATATACTAAGGGTACTGTTGACATTGCGAAGAGCGACAAAGATTTTGTTATCGGCTT

TATTGCTCAAAGAGACATGGGTGGAAGAGATGAAGGTTACGATTGGTTGATTATGACACCC

GGTGTGGGTTTAGATGACAAGGGAGACGCATTGGGTCAACAGTATAGAACCGTGGATGATG

TGGTCTCTACAGGATCTGACATTATTATTGTTGGAAGAGGACTATTTGCAAAGGGAAGGGA

TGCTAAGGTAGAGGGTGAACGTTACAGAAAAGCAGGCTGGGAAGCATATTTGAGAAGATGC

GGCCAGCAAAACTAAGCTAGCTAACTGAATAAGGAACAATGAACGTTTTTCCTTTCTCTTG

TTCCTAGTATTAATGACTGACCGATACATCCCTTTTTTTTTTTGTCTTTGTCTAGCTCCAA

TTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGG

GAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGC

GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGA

ATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGA

CCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGC

CACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTT

AGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGC

CATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG

ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAA

GGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACG

CGAATTTTAACAAAATATTAACGCTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCAT

CTGTGCGGTATTTCACACCGCATAGATCCGTCGAGTTCAAGAGAAAAAAAAAGAAAAAGCA

AAAAGAAAAAAGGAAAGCGCGCCTCGTTCAGAATGACACGTATAGAATGATGCATTACCTT

GTCATCTTCAGTATCATACTGTTCGTATACATACTTACTGACATTCATAGGTATACATATA

TACACATGTATATATATCGTATGCTGCAGCTTTAAATAATCGGTGTCACTACATAAGAACA

CCTTTGGTGGAGGGAACATCGTTGGTTCCATTGGGCGAGGTGGCTTCTCTTATGGCAACCG

CAAGAGCCTTGAACGCACTCTCACTACGGTGATGATCATTCTTGCCTCGCAGACAATCAAC

GTGGAGGGTAATTCTGCTTGCCTCTGCAAAACTTTCAAGAAAATGCGGGATCATCTCGCAA

GAGAGATCTCCTACTTTCTCCCTCTGCAAACCAAGTTCGACAACTGCGTACGGCCTGTTCG

AAAGATCTACCACCGCTCTGGAAAGTGCCTCATCCAAAGGCGCAAATCCTGATCCAAACCT

TTTTACTCCACGCACGGCCCCTAGGGCCTCTTTAAATGCTTGACCGAGAGCAATCCCGCAG

TCTTCAGTGGTGTGATGGTCGTCTATGTGTAAGTCACCAATGCACTCAACGATTAGCGACC

AGCCGGAATGCTTGGCCAGAGCATGTATCATATGGTCCAGAAACCCTATACCTGTGTGGAC

GTTAATCACTTGCGATTGTGTGGCCTGTTCTGCTACTGCTTCTGCCTCTTTTTCTGGGAAG

ATCGAGTGCTCTATCGCTAGGGGACCACCCTTTAAAGAGATCGCAATCTGAATCTTGGTTT

CATTTGTAATACGCTTTACTAGGGCTTTCTGCTCTGTCATCTTTGCCTTCGTTTATCTTGC

CTGCTCATTTTTTAGTATATTCTTCGAAGAAATCACATTACTTTATATAATGTATAATTCA

TTATGTGATAATGCCAATCGCTAAGAAAAAAAAAGAGTCATCCGCTAGGGGAAAAAAAAAA
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ATGAAAATCATTACCGAGGCATAAAAAAATATAGAGTGTACTAGAGGAGGCCAAGAGTAAT

AGAAAAAGAAAATTGCGGGAAAGGACTGTGTTATGACTTCCCTGACTAATGCCGTGTTCAA

ACGATACCTGGCAGTGACTCCTAGCGCTCACCAAGCTCTTAAAACGGGAATTTATGGTGCA

CTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACC

CGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACC

GTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAA

AGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGAC

GTGCGGCCGCTCTAGAACTAGTGGATCAATTCCACGGACTATAGACTATACTAGTATACTC

CGTCTACTGTACGATACACTTCCGCTCAGGTCCTTGTCCTTTAACGAGGCCTTACCACTCT

TTTGTTACTCTATTGATCCAGCTCAGCAAAGGCAGTGTGATCTAAGATTCTATCTTCGCGA

TGTAGTAAAACTAGCTAGACCGAGAAAGAGACTAGAAATGCAAAAGGCACTTCTACAATGG

CTGCCATCATTATTATCCGATGTGACGCTGCAGCTTCTCAATGATATTCGAATACGCTTTG

AGGAGATACAGCCTAATATCCGACAAACTGTTTTACAGATTTACGATCGTACTTGTTACCC

ATCATTGAATTTTGAACATCCGAACCTGGGAGTTTTCCCTGAAACAGATAGTATATTTGAA

CCTGTATAATAATATATAGTCTAGCGCTTTACGGAAGACAATGTATGTATTTCGGTTCCTG

GAGAAACTATTGCATCTATTGCATAGGTAATCTTGCACGTCGCATCCCCGGTTCATTTTCT

GCGTTTCCATCTTGCACTTCAATAGCATATCTTTGTTAACGAAGCATCTGTGCTTCATTTT

GTAGAACAAAAATGCAACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTT

TTACAGAACAGAAATGCAACGCGAAAGCGCTATTTTACCAACGAAGAATCTGTGCTTCATT

TTTGTAAAACAAAAATGCAACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCA

TTTTTACAGAACAGAAATGCAACGCGAGAGCGCTATTTTACCAACAAAGAATCTATACTTC

TTTTTTGTTCTACAAAAATGCATCCCGAGAGCGCTATTTTTCTAACAAAGCATCTTAGATT

ACTTTTTTTCTCCTTTGTGCGCTCTATAATGCAGTCTCTTGATAACTTTTTGCACTGTAGG

TCCGTTAAGGTTAGAAGAAGGCTACTTTGGTGTCTATTTTCTCTTCCATAAAAAAAGCCTG

ACTCCACTTCCCGCGTTTACTGATTACTAGCGAAGCTGCGGGTGCATTTTTTCAAGATAAA

GGCATCCCCGATTATATTCTATACCGATGTGGATTGCGCATACTTTGTGAACAGAAAGTGA

TAGCGTTGATGATTCTTCATTGGTCAGAAAATTATGAACGGTTTCTTCTATTTTGTCTCTA

TATACTACGTATAGGAAATGTTTACATTTTCGTATTGTTTTCGATTCACTCTATGAATAGT

TCTTACTACAATTTTTTTGTCTAAAGAGTAATACTAGAGATAAACATAAAAAATGTAGAGG

TCGAGTTTAGATGCAAGTTCAAGGAGCGAAAGGTGGATGGGTAGGTTATATAGGGATATAG

CACAGAGATATATAGCAAAGAGATACTTTTGAGCAATGTTTGTGGAAGCGGTATTCGCAAT

ATTTTAGTAGCTCGTTACAGTCCGGTGCGTTTTTGGTTTTTTGAAAGTGCGTCTTCAGAGC

GCTTTTGGTTTTCAAAAGCGCTCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGA

ATAGGAACTTCAAAGCGTTTCCGAAAACGAGCGCTTCCGAAAATGCAACGCGAGCTGCGCA

CATACAGCTCACTGTTCACGTCGCACCTATATCTGCGTGTTGCCTGTATATATATATACAT

GAGAAGAACGGCATAGTGCGTGTTTATGCTTAAATGCGTACTTATATGCGTCTATTTATGT

AGGATGAAAGGTAGTCTAGTACCTCCTGTGATATTATCCCATTCCATGCGGGGTATCGTAT

GCTTCCTTCAGCACTACCCTTTAGCTGTTCTATATGCTGCCACTCCTCAATTGGATTAGTC

TCATCCTTCAATGCTATCATTTCCTTTGATATTGGATCATATGCATAGTACCGAGAAACTA

GTGCGAAGTAGTGATCAGGTATTGCTGTTATCTGATGAGTATACGTTGTCCTGGCCACGGC

AGAAGCACGCTTATCGCTCCAATTTCCCACAACATTAGTCAACTCCGTTAGGCCCTTCATT

GAAAGAAATGAGGTCATCAAATGTCTTCCAATGTGAGATTTTGGGCCATTTTTTATAGCAA

AGATTGAATAAGGCGCATTTTTCTTCAAAGCTGCGGCCGCACGTCAGGTGGCACTTTTCGG

GGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGC

TCATGAGACAATAACCGTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTAT

TCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCT

CACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTT

ACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT

TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCC

GGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCAC

CAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCAT
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AACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAG

CTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGG

AGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAAC

AACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATA

GACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCT

GGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT

GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACT

ATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAAC

TGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAA

AAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTT

TCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT

TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA

CCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC

CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC

GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGA

ACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACC

TACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCC

GGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGG

TATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCT

CGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC

CTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAAC

CGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCG

AGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTG

GCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGC

AACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTC

CGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGA

CCATGATTACGCCAAGCTCGAAATTAACCCTCACTAAAGGGAACAAAAGCTGGTACCGGGC

CGGCCGTCGGGCCGTCGAGCTTGATGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCT

TCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA

AAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATC

ACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTT

TCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTT

GCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCT

CATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCC

AGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCG

TTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG

GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTAT

TGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC

GCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAAC

CTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTGGGGATCTACGTATGG

TCATTTCTTCTTCAGATTCCCTCATGGAGAAAGTGCGGCAGATGTATATGACAGAGTCGCC

AGTTTCCAAGAGACTTTATTCAGGCACTTCCATGATAGGCAAGAGAGAAGACCCAGAGATG

TTGTTGTCCTAGTTACACATGGTATTTATTCCAGAGTATTCCTGATGAAATGGTTTAGATG

GACATACGAAGAGTTTGAATCGTTTACCAATGTTCCTAACGGGAGCGTAATGGTGATGGAA

CTGGACGAATCCATCAATAGATACGTCCTGAGGACCGTGCTACCCAAATGGACTGATTGTG

AGGGAGACCTAACTACATAGTGTTTAAAGATTACGGATATTTAACTTACTTAGAATAATGC

CATTTTTTTGAGTTATAATAATCCTACGTTAGTGTGAGCGGGATTTAAACTGTGAGGACCT

TAATACATTCAGACACTTCTGCGGTATCACCCTACTTATTCCCTTCGAGATTATATCTAGG

AACCCATCAGGTTGGTGGAAGATTACCCGTTCTAAGACTTTTCAGCTTCCTCTATTGATGT

TACACCTGGACACCCCTTTTCTGGCATCCAGTTTTTAATCTTCAGTGGCATGTGAGATTCT
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CCGAAATTAATTAAAGCAATCACACAATTCTCTCGGATACCACCTCGGTTGAAACTGACAG

GTGGTTTGTTACGCATGCTAATGCAAAGGAGCCTATATACCTTTGGCTCGGCTGCTGTAAC

AGGGAATATAAAGGGCAGCATAATTTAGGAGTTTAGTGAACTTGCAACATTTACTATTTTC

CCTTCTTACGTAAATATTTTTCTTTTTAATTCTAAATCAATCTTTTTCAATTTTTTGTTTG

TATTCTTTTCTTGCTTAAATCTATAACTACAAAAA 

 

A.1.3. pYX222-YAP1(IRES)-A2AR 

 

GATCCATCCTAGGGCCCACAAGCTTAACAAAATGAGATTTCCTTCAATTTTTACTGCAGTT

TTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGG

CACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGC

TGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCC

AGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTCATCATC

ATCATCATCATCATCATCATCATGAATTCATGCCCATCATGGGCTCCTCGGTGTACATCAC

GGTGGAGCTGGCCATTGCTGTGCTGGCCATCCTGGGCAATGTGCTGGTGTGCTGGGCCGTG

TGGCTCAACAGCAACCTGCAGAACGTCACCAACTACTTTGTGGTGTCACTGGCGGCGGCCG

ACATCGCAGTGGGTGTGCTCGCCATCCCCTTTGCCATCACCATCAGCACCGGGTTCTGCGC

TGCCTGCCACGGCTGCCTCTTCATTGCCTGCTTCGTCCTGGTCCTCACGCAGAGCTCCATC

TTCAGTCTCCTGGCCATCGCCATTGACCGCTACATTGCCATCCGCATCCCGCTCCGGTACA

ATGGCTTGGTGACCGGCACGAGGGCTAAGGGCATCATTGCCATCTGCTGGGTGCTGTCGTT

TGCCATCGGCCTGACTCCCATGCTAGGTTGGAACAACTGCGGTCAGCCAAAGGAGGGCAAG
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CAGCACTCCCAGGGCTGCGGGGAGGGCCAAGTGGCCTGTCTCTTTGAGGATGTGGTCCCCA

TGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGTGCTGGTGCCCCTGCTGCTCATGCT

GGGTGTCTATTTGCGGATCTTCCTGGCGGCGCGACGACAGCTGAAGCAGATGGAGAGCCAG

CCTCTGCCGGGGGAGCGGGCACGGTCCACACTGCAGAAGGAGGTCCATGCTGCCAAGTCAC

TGGCCATCATTGTGGGGCTCTTTGCCCTCTGCTGGCTGCCCCTACACATCATCAACTGCTT

CACTTTCTTCTGCCCCGACTGCAGCCACGCCCCTCTCTGGCTCATGTACCTGGCCATCGTC

CTCTCCCACACCAATTCGGTTGTGAATCCCTTCATCTACGCCTACCGTATCCGCGAGTTCC

GCCAGACCTTCCGCAAGATCATTCGCAGCCACGTCCTGAGGCAGCAAGAACCTTTCAAGGC

AGCTGGCACCAGTGCCCGGGTCTTGGCAGCTCATGGCAGTGACGGAGAGCAGGTCAGCCTC

CGTCTCAACGGCCACCCGCCAGGAGTGTGGGCCAACGGCAGTGCTCCCCACCCTGAGCGGA

GGCCCAATGGCTACGCCCTGGGGCTGGTGAGTGGAGGGAGTGCCCAAGAGTCCCAGGGGAA

CACGGGCCTCCCAGACGTGGAGCTCCTTAGCCATGAGCTCAAGGGAGTGTGCCCAGAGCCC

CCTGGCCTAGATGACCCCCTGGCCCAGGATGGAGCAGGAGTGTCCGCGGCCGCTGAAAATC

TGTATTTCCAGAGTGCCGGTAAGGCCGGAGAGGGCGAGATTCCCGCTCCGCTGGCCGGCAC

CGTCTCCAAGATCCTCGTGAAGGAGGGTGACACGGTCAAGGCTGGTCAGACCGTGCTCGTT

CTCGAGGCCATGAAGATGGAGACCGAGATCAACGCTCCCACCGACGGCAAGGTCGAGAAGG

TCCTGGTCAAGGAGCGTGACGCGGTGCAGGGCGGTCAGGGTCTCATCAAGATCGGGTGATC

TAGAGTCGACCCGGGTATCCGTATGATGTGCCTGACTACGCATGATATCTCGAGCTCAGCT

AGCTAACTGAATAAGGAACAATGAACGTTTTTCCTTTCTCTTGTTCCTAGTATTAATGACT

GACCGATACATCCCTTTTTTTTTTTGTCTTTGTCTAGCTCCAATTCGCCCTATAGTGAGTC

GTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC

CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCC

GCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGC

GGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCG

CCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCC

CCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTC

GACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGG

TTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGG

AACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCG

GCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATAT

TAACGCTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACAC

CGCATAGATCCGTCGAGTTCAAGAGAAAAAAAAAGAAAAAGCAAAAAGAAAAAAGGAAAGC

GCGCCTCGTTCAGAATGACACGTATAGAATGATGCATTACCTTGTCATCTTCAGTATCATA

CTGTTCGTATACATACTTACTGACATTCATAGGTATACATATATACACATGTATATATATC

GTATGCTGCAGCTTTAAATAATCGGTGTCACTACATAAGAACACCTTTGGTGGAGGGAACA

TCGTTGGTTCCATTGGGCGAGGTGGCTTCTCTTATGGCAACCGCAAGAGCCTTGAACGCAC

TCTCACTACGGTGATGATCATTCTTGCCTCGCAGACAATCAACGTGGAGGGTAATTCTGCT

TGCCTCTGCAAAACTTTCAAGAAAATGCGGGATCATCTCGCAAGAGAGATCTCCTACTTTC

TCCCTCTGCAAACCAAGTTCGACAACTGCGTACGGCCTGTTCGAAAGATCTACCACCGCTC

TGGAAAGTGCCTCATCCAAAGGCGCAAATCCTGATCCAAACCTTTTTACTCCACGCACGGC

CCCTAGGGCCTCTTTAAATGCTTGACCGAGAGCAATCCCGCAGTCTTCAGTGGTGTGATGG

TCGTCTATGTGTAAGTCACCAATGCACTCAACGATTAGCGACCAGCCGGAATGCTTGGCCA

GAGCATGTATCATATGGTCCAGAAACCCTATACCTGTGTGGACGTTAATCACTTGCGATTG

TGTGGCCTGTTCTGCTACTGCTTCTGCCTCTTTTTCTGGGAAGATCGAGTGCTCTATCGCT

AGGGGACCACCCTTTAAAGAGATCGCAATCTGAATCTTGGTTTCATTTGTAATACGCTTTA

CTAGGGCTTTCTGCTCTGTCATCTTTGCCTTCGTTTATCTTGCCTGCTCATTTTTTAGTAT

ATTCTTCGAAGAAATCACATTACTTTATATAATGTATAATTCATTATGTGATAATGCCAAT

CGCTAAGAAAAAAAAAGAGTCATCCGCTAGGGGAAAAAAAAAAATGAAAATCATTACCGAG

GCATAAAAAAATATAGAGTGTACTAGAGGAGGCCAAGAGTAATAGAAAAAGAAAATTGCGG

GAAAGGACTGTGTTATGACTTCCCTGACTAATGCCGTGTTCAAACGATACCTGGCAGTGAC

TCCTAGCGCTCACCAAGCTCTTAAAACGGGAATTTATGGTGCACTCTCAGTACAATCTGCT
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CTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACG

GGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATG

TGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCC

TATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTGCGGCCGCTCTAGAAC

TAGTGGATCAATTCCACGGACTATAGACTATACTAGTATACTCCGTCTACTGTACGATACA

CTTCCGCTCAGGTCCTTGTCCTTTAACGAGGCCTTACCACTCTTTTGTTACTCTATTGATC

CAGCTCAGCAAAGGCAGTGTGATCTAAGATTCTATCTTCGCGATGTAGTAAAACTAGCTAG

ACCGAGAAAGAGACTAGAAATGCAAAAGGCACTTCTACAATGGCTGCCATCATTATTATCC

GATGTGACGCTGCAGCTTCTCAATGATATTCGAATACGCTTTGAGGAGATACAGCCTAATA

TCCGACAAACTGTTTTACAGATTTACGATCGTACTTGTTACCCATCATTGAATTTTGAACA

TCCGAACCTGGGAGTTTTCCCTGAAACAGATAGTATATTTGAACCTGTATAATAATATATA

GTCTAGCGCTTTACGGAAGACAATGTATGTATTTCGGTTCCTGGAGAAACTATTGCATCTA

TTGCATAGGTAATCTTGCACGTCGCATCCCCGGTTCATTTTCTGCGTTTCCATCTTGCACT

TCAATAGCATATCTTTGTTAACGAAGCATCTGTGCTTCATTTTGTAGAACAAAAATGCAAC

GCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGAACAGAAATGCA

ACGCGAAAGCGCTATTTTACCAACGAAGAATCTGTGCTTCATTTTTGTAAAACAAAAATGC

AACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGAACAGAAAT

GCAACGCGAGAGCGCTATTTTACCAACAAAGAATCTATACTTCTTTTTTGTTCTACAAAAA

TGCATCCCGAGAGCGCTATTTTTCTAACAAAGCATCTTAGATTACTTTTTTTCTCCTTTGT

GCGCTCTATAATGCAGTCTCTTGATAACTTTTTGCACTGTAGGTCCGTTAAGGTTAGAAGA

AGGCTACTTTGGTGTCTATTTTCTCTTCCATAAAAAAAGCCTGACTCCACTTCCCGCGTTT

ACTGATTACTAGCGAAGCTGCGGGTGCATTTTTTCAAGATAAAGGCATCCCCGATTATATT

CTATACCGATGTGGATTGCGCATACTTTGTGAACAGAAAGTGATAGCGTTGATGATTCTTC

ATTGGTCAGAAAATTATGAACGGTTTCTTCTATTTTGTCTCTATATACTACGTATAGGAAA

TGTTTACATTTTCGTATTGTTTTCGATTCACTCTATGAATAGTTCTTACTACAATTTTTTT

GTCTAAAGAGTAATACTAGAGATAAACATAAAAAATGTAGAGGTCGAGTTTAGATGCAAGT

TCAAGGAGCGAAAGGTGGATGGGTAGGTTATATAGGGATATAGCACAGAGATATATAGCAA

AGAGATACTTTTGAGCAATGTTTGTGGAAGCGGTATTCGCAATATTTTAGTAGCTCGTTAC

AGTCCGGTGCGTTTTTGGTTTTTTGAAAGTGCGTCTTCAGAGCGCTTTTGGTTTTCAAAAG

CGCTCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAAGCGT

TTCCGAAAACGAGCGCTTCCGAAAATGCAACGCGAGCTGCGCACATACAGCTCACTGTTCA

CGTCGCACCTATATCTGCGTGTTGCCTGTATATATATATACATGAGAAGAACGGCATAGTG

CGTGTTTATGCTTAAATGCGTACTTATATGCGTCTATTTATGTAGGATGAAAGGTAGTCTA

GTACCTCCTGTGATATTATCCCATTCCATGCGGGGTATCGTATGCTTCCTTCAGCACTACC

CTTTAGCTGTTCTATATGCTGCCACTCCTCAATTGGATTAGTCTCATCCTTCAATGCTATC

ATTTCCTTTGATATTGGATCATATGCATAGTACCGAGAAACTAGTGCGAAGTAGTGATCAG

GTATTGCTGTTATCTGATGAGTATACGTTGTCCTGGCCACGGCAGAAGCACGCTTATCGCT

CCAATTTCCCACAACATTAGTCAACTCCGTTAGGCCCTTCATTGAAAGAAATGAGGTCATC

AAATGTCTTCCAATGTGAGATTTTGGGCCATTTTTTATAGCAAAGATTGAATAAGGCGCAT

TTTTCTTCAAAGCTGCGGCCGCACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC

CCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCGT

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGC

CCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTG

AAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCA

ACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTT

TAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGT

CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATC

TTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACAC

TGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCAC

AACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATAC

CAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATT
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AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGAT

AAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT

CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC

CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA

CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACT

CATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGAT

CCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA

GACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCT

GCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACC

AACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTA

GTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTC

TGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA

CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG

AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGG

AACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC

GGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCC

TATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGC

TCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAG

TGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG

CGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG

CTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT

TAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTG

GAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCT

CGAAATTAACCCTCACTAAAGGGAACAAAAGCTGGTACCGGGCCGGCCGTCGGGCCGTCGA

GCTTGATGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCC

CAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCG

GTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGC

ACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTAC

TCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAA

CACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTC

TTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACT

CGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAA

CAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT

ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATAC

ATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG

TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTAT

CACGAGGCCCTTTCGTCTTCAAGAATTGGGGATCTACGTATGGTCATTTCTTCTTCAGATT

CCCTCATGGAGAAAGTGCGGCAGATGTATATGACAGAGTCGCCAGTTTCCAAGAGACTTTA

TTCAGGCACTTCCATGATAGGCAAGAGAGAAGACCCAGAGATGTTGTTGTCCTAGTTACAC

ATGGTATTTATTCCAGAGTATTCCTGATGAAATGGTTTAGATGGACATACGAAGAGTTTGA

ATCGTTTACCAATGTTCCTAACGGGAGCGTAATGGTGATGGAACTGGACGAATCCATCAAT

AGATACGTCCTGAGGACCGTGCTACCCAAATGGACTGATTGTGAGGGAGACCTAACTACAT

AGTGTTTAAAGATTACGGATATTTAACTTACTTAGAATAATGCCATTTTTTTGAGTTATAA

TAATCCTACGTTAGTGTGAGCGGGATTTAAACTGTGAGGACCTTAATACATTCAGACACTT

CTGCGGTATCACCCTACTTATTCCCTTCGAGATTATATCTAGGAACCCATCAGGTTGGTGG

AAGATTACCCGTTCTAAGACTTTTCAGCTTCCTCTATTGATGTTACACCTGGACACCCCTT

TTCTGGCATCCAGTTTTTAATCTTCAGTGGCATGTGAGATTCTCCGAAATTAATTAAAGCA

ATCACACAATTCTCTCGGATACCACCTCGGTTGAAACTGACAGGTGGTTTGTTACGCATGC

TAATGCAAAGGAGCCTATATACCTTTGGCTCGGCTGCTGTAACAGGGAATATAAAGGGCAG

CATAATTTAGGAGTTTAGTGAACTTGCAACATTTACTATTTTCCCTTCTTACGTAAATATT
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TTTCTTTTTAATTCTAAATCAATCTTTTTCAATTTTTTGTTTGTATTCTTTTCTTGCTTAA

ATCTATAACTACAAAAAACACATACAGGAATTCACCATGGCGTTTACCGATTAAGCACAGT

ACCTTTACGTTATATATAGGATTGGTGTTTAGCTTTTTTTCCTGAGCCCCTGGTTGACTTG

TGCATGAACACGAGCCATTTTTAGTTTGTTTAAGGGAAGTTTTTTGCCACCCAAAACGTTT

AAAGAAGGAAAAGTTGTTTCTTAAACCG 

 

A.1.4. pYX222-CrPv(IRES)-A2AR 

 

TTGAGTTATAATAATCCTACGTTAGTGTGAGCGGGATTTAAACTGTGAGGACCTTAATACA

TTCAGACACTTCTGCGGTATCACCCTACTTATTCCCTTCGAGATTATATCTAGGAACCCAT

CAGGTTGGTGGAAGATTACCCGTTCTAAGACTTTTCAGCTTCCTCTATTGATGTTACACCT

GGACACCCCTTTTCTGGCATCCAGTTTTTAATCTTCAGTGGCATGTGAGATTCTCCGAAAT

TAATTAAAGCAATCACACAATTCTCTCGGATACCACCTCGGTTGAAACTGACAGGTGGTTT

GTTACGCATGCTAATGCAAAGGAGCCTATATACCTTTGGCTCGGCTGCTGTAACAGGGAAT

ATAAAGGGCAGCATAATTTAGGAGTTTAGTGAACTTGCAACATTTACTATTTTCCCTTCTT

ACGTAAATATTTTTCTTTTTAATTCTAAATCAATCTTTTTCAATTTTTTGTTTGTATTCTT

TTCTTGCTTAAATCTATAACTACAAAAAACACATACAGGAATTCACCATGGAAAGCAAAAA

TGTGATCTTGCTTGTAAATACAATTTTGAGAGGTTAATAAATTACAAGTAGTGCTATTTTT
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GTATTTAGGTTAGCTATTTAGCTTTACGTTCCAGGATGCCTAGTGGCAGCCCCACAATATC

CAGGAAGCCCTCTCTGCGGTTTTTCAGATTAGGTAGTCGAAAAACCTAAGAAATTTACCTG

GATCCATCCTAGGGCCCACAAGCTTAACAAAATGAGATTTCCTTCAATTTTTACTGCAGTT

TTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGG

CACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGC

TGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCC

AGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTCATCATC

ATCATCATCATCATCATCATCATGAATTCATGCCCATCATGGGCTCCTCGGTGTACATCAC

GGTGGAGCTGGCCATTGCTGTGCTGGCCATCCTGGGCAATGTGCTGGTGTGCTGGGCCGTG

TGGCTCAACAGCAACCTGCAGAACGTCACCAACTACTTTGTGGTGTCACTGGCGGCGGCCG

ACATCGCAGTGGGTGTGCTCGCCATCCCCTTTGCCATCACCATCAGCACCGGGTTCTGCGC

TGCCTGCCACGGCTGCCTCTTCATTGCCTGCTTCGTCCTGGTCCTCACGCAGAGCTCCATC

TTCAGTCTCCTGGCCATCGCCATTGACCGCTACATTGCCATCCGCATCCCGCTCCGGTACA

ATGGCTTGGTGACCGGCACGAGGGCTAAGGGCATCATTGCCATCTGCTGGGTGCTGTCGTT

TGCCATCGGCCTGACTCCCATGCTAGGTTGGAACAACTGCGGTCAGCCAAAGGAGGGCAAG

CAGCACTCCCAGGGCTGCGGGGAGGGCCAAGTGGCCTGTCTCTTTGAGGATGTGGTCCCCA

TGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGTGCTGGTGCCCCTGCTGCTCATGCT

GGGTGTCTATTTGCGGATCTTCCTGGCGGCGCGACGACAGCTGAAGCAGATGGAGAGCCAG

CCTCTGCCGGGGGAGCGGGCACGGTCCACACTGCAGAAGGAGGTCCATGCTGCCAAGTCAC

TGGCCATCATTGTGGGGCTCTTTGCCCTCTGCTGGCTGCCCCTACACATCATCAACTGCTT

CACTTTCTTCTGCCCCGACTGCAGCCACGCCCCTCTCTGGCTCATGTACCTGGCCATCGTC

CTCTCCCACACCAATTCGGTTGTGAATCCCTTCATCTACGCCTACCGTATCCGCGAGTTCC

GCCAGACCTTCCGCAAGATCATTCGCAGCCACGTCCTGAGGCAGCAAGAACCTTTCAAGGC

AGCTGGCACCAGTGCCCGGGTCTTGGCAGCTCATGGCAGTGACGGAGAGCAGGTCAGCCTC

CGTCTCAACGGCCACCCGCCAGGAGTGTGGGCCAACGGCAGTGCTCCCCACCCTGAGCGGA

GGCCCAATGGCTACGCCCTGGGGCTGGTGAGTGGAGGGAGTGCCCAAGAGTCCCAGGGGAA

CACGGGCCTCCCAGACGTGGAGCTCCTTAGCCATGAGCTCAAGGGAGTGTGCCCAGAGCCC

CCTGGCCTAGATGACCCCCTGGCCCAGGATGGAGCAGGAGTGTCCGCGGCCGCTGAAAATC

TGTATTTCCAGAGTGCCGGTAAGGCCGGAGAGGGCGAGATTCCCGCTCCGCTGGCCGGCAC

CGTCTCCAAGATCCTCGTGAAGGAGGGTGACACGGTCAAGGCTGGTCAGACCGTGCTCGTT

CTCGAGGCCATGAAGATGGAGACCGAGATCAACGCTCCCACCGACGGCAAGGTCGAGAAGG

TCCTGGTCAAGGAGCGTGACGCGGTGCAGGGCGGTCAGGGTCTCATCAAGATCGGGTGATC

TAGAGTCGACCCGGGTATCCGTATGATGTGCCTGACTACGCATGATATCTCGAGCTCAGCT

AGCTAACTGAATAAGGAACAATGAACGTTTTTCCTTTCTCTTGTTCCTAGTATTAATGACT

GACCGATACATCCCTTTTTTTTTTTGTCTTTGTCTAGCTCCAATTCGCCCTATAGTGAGTC

GTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC

CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCC

GCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGC

GGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCG

CCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCC

CCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTC

GACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGG

TTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGG

AACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCG

GCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATAT

TAACGCTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACAC

CGCATAGATCCGTCGAGTTCAAGAGAAAAAAAAAGAAAAAGCAAAAAGAAAAAAGGAAAGC

GCGCCTCGTTCAGAATGACACGTATAGAATGATGCATTACCTTGTCATCTTCAGTATCATA

CTGTTCGTATACATACTTACTGACATTCATAGGTATACATATATACACATGTATATATATC

GTATGCTGCAGCTTTAAATAATCGGTGTCACTACATAAGAACACCTTTGGTGGAGGGAACA

TCGTTGGTTCCATTGGGCGAGGTGGCTTCTCTTATGGCAACCGCAAGAGCCTTGAACGCAC
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TCTCACTACGGTGATGATCATTCTTGCCTCGCAGACAATCAACGTGGAGGGTAATTCTGCT

TGCCTCTGCAAAACTTTCAAGAAAATGCGGGATCATCTCGCAAGAGAGATCTCCTACTTTC

TCCCTCTGCAAACCAAGTTCGACAACTGCGTACGGCCTGTTCGAAAGATCTACCACCGCTC

TGGAAAGTGCCTCATCCAAAGGCGCAAATCCTGATCCAAACCTTTTTACTCCACGCACGGC

CCCTAGGGCCTCTTTAAATGCTTGACCGAGAGCAATCCCGCAGTCTTCAGTGGTGTGATGG

TCGTCTATGTGTAAGTCACCAATGCACTCAACGATTAGCGACCAGCCGGAATGCTTGGCCA

GAGCATGTATCATATGGTCCAGAAACCCTATACCTGTGTGGACGTTAATCACTTGCGATTG

TGTGGCCTGTTCTGCTACTGCTTCTGCCTCTTTTTCTGGGAAGATCGAGTGCTCTATCGCT

AGGGGACCACCCTTTAAAGAGATCGCAATCTGAATCTTGGTTTCATTTGTAATACGCTTTA

CTAGGGCTTTCTGCTCTGTCATCTTTGCCTTCGTTTATCTTGCCTGCTCATTTTTTAGTAT

ATTCTTCGAAGAAATCACATTACTTTATATAATGTATAATTCATTATGTGATAATGCCAAT

CGCTAAGAAAAAAAAAGAGTCATCCGCTAGGGGAAAAAAAAAAATGAAAATCATTACCGAG

GCATAAAAAAATATAGAGTGTACTAGAGGAGGCCAAGAGTAATAGAAAAAGAAAATTGCGG

GAAAGGACTGTGTTATGACTTCCCTGACTAATGCCGTGTTCAAACGATACCTGGCAGTGAC

TCCTAGCGCTCACCAAGCTCTTAAAACGGGAATTTATGGTGCACTCTCAGTACAATCTGCT

CTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACG

GGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATG

TGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCC

TATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTGCGGCCGCTCTAGAAC

TAGTGGATCAATTCCACGGACTATAGACTATACTAGTATACTCCGTCTACTGTACGATACA

CTTCCGCTCAGGTCCTTGTCCTTTAACGAGGCCTTACCACTCTTTTGTTACTCTATTGATC

CAGCTCAGCAAAGGCAGTGTGATCTAAGATTCTATCTTCGCGATGTAGTAAAACTAGCTAG

ACCGAGAAAGAGACTAGAAATGCAAAAGGCACTTCTACAATGGCTGCCATCATTATTATCC

GATGTGACGCTGCAGCTTCTCAATGATATTCGAATACGCTTTGAGGAGATACAGCCTAATA

TCCGACAAACTGTTTTACAGATTTACGATCGTACTTGTTACCCATCATTGAATTTTGAACA

TCCGAACCTGGGAGTTTTCCCTGAAACAGATAGTATATTTGAACCTGTATAATAATATATA

GTCTAGCGCTTTACGGAAGACAATGTATGTATTTCGGTTCCTGGAGAAACTATTGCATCTA

TTGCATAGGTAATCTTGCACGTCGCATCCCCGGTTCATTTTCTGCGTTTCCATCTTGCACT

TCAATAGCATATCTTTGTTAACGAAGCATCTGTGCTTCATTTTGTAGAACAAAAATGCAAC

GCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGAACAGAAATGCA

ACGCGAAAGCGCTATTTTACCAACGAAGAATCTGTGCTTCATTTTTGTAAAACAAAAATGC

AACGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAGAACAGAAAT

GCAACGCGAGAGCGCTATTTTACCAACAAAGAATCTATACTTCTTTTTTGTTCTACAAAAA

TGCATCCCGAGAGCGCTATTTTTCTAACAAAGCATCTTAGATTACTTTTTTTCTCCTTTGT

GCGCTCTATAATGCAGTCTCTTGATAACTTTTTGCACTGTAGGTCCGTTAAGGTTAGAAGA

AGGCTACTTTGGTGTCTATTTTCTCTTCCATAAAAAAAGCCTGACTCCACTTCCCGCGTTT

ACTGATTACTAGCGAAGCTGCGGGTGCATTTTTTCAAGATAAAGGCATCCCCGATTATATT

CTATACCGATGTGGATTGCGCATACTTTGTGAACAGAAAGTGATAGCGTTGATGATTCTTC

ATTGGTCAGAAAATTATGAACGGTTTCTTCTATTTTGTCTCTATATACTACGTATAGGAAA

TGTTTACATTTTCGTATTGTTTTCGATTCACTCTATGAATAGTTCTTACTACAATTTTTTT

GTCTAAAGAGTAATACTAGAGATAAACATAAAAAATGTAGAGGTCGAGTTTAGATGCAAGT

TCAAGGAGCGAAAGGTGGATGGGTAGGTTATATAGGGATATAGCACAGAGATATATAGCAA

AGAGATACTTTTGAGCAATGTTTGTGGAAGCGGTATTCGCAATATTTTAGTAGCTCGTTAC

AGTCCGGTGCGTTTTTGGTTTTTTGAAAGTGCGTCTTCAGAGCGCTTTTGGTTTTCAAAAG

CGCTCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAAGCGT

TTCCGAAAACGAGCGCTTCCGAAAATGCAACGCGAGCTGCGCACATACAGCTCACTGTTCA

CGTCGCACCTATATCTGCGTGTTGCCTGTATATATATATACATGAGAAGAACGGCATAGTG

CGTGTTTATGCTTAAATGCGTACTTATATGCGTCTATTTATGTAGGATGAAAGGTAGTCTA

GTACCTCCTGTGATATTATCCCATTCCATGCGGGGTATCGTATGCTTCCTTCAGCACTACC

CTTTAGCTGTTCTATATGCTGCCACTCCTCAATTGGATTAGTCTCATCCTTCAATGCTATC

ATTTCCTTTGATATTGGATCATATGCATAGTACCGAGAAACTAGTGCGAAGTAGTGATCAG
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GTATTGCTGTTATCTGATGAGTATACGTTGTCCTGGCCACGGCAGAAGCACGCTTATCGCT

CCAATTTCCCACAACATTAGTCAACTCCGTTAGGCCCTTCATTGAAAGAAATGAGGTCATC

AAATGTCTTCCAATGTGAGATTTTGGGCCATTTTTTATAGCAAAGATTGAATAAGGCGCAT

TTTTCTTCAAAGCTGCGGCCGCACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC

CCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCGT

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGC

CCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTG

AAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCA

ACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTT

TAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGT

CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATC

TTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACAC

TGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCAC

AACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATAC

CAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATT

AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGAT

AAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT

CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC

CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA

CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACT

CATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGAT

CCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA

GACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCT

GCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACC

AACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTA

GTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTC

TGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA

CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG

AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGG

AACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC

GGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCC

TATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGC

TCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAG

TGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG

CGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG

CTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT

TAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTG

GAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCT

CGAAATTAACCCTCACTAAAGGGAACAAAAGCTGGTACCGGGCCGGCCGTCGGGCCGTCGA

GCTTGATGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCC

CAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCG

GTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGC

ACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTAC

TCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAA

CACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTC

TTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACT

CGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAA

CAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT

ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATAC

ATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG
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TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTAT

CACGAGGCCCTTTCGTCTTCAAGAATTGGGGATCTACGTATGGTCATTTCTTCTTCAGATT

CCCTCATGGAGAAAGTGCGGCAGATGTATATGACAGAGTCGCCAGTTTCCAAGAGACTTTA

TTCAGGCACTTCCATGATAGGCAAGAGAGAAGACCCAGAGATGTTGTTGTCCTAGTTACAC

ATGGTATTTATTCCAGAGTATTCCTGATGAAATGGTTTAGATGGACATACGAAGAGTTTGA

ATCGTTTACCAATGTTCCTAACGGGAGCGTAATGGTGATGGAACTGGACGAATCCATCAAT

AGATACGTCCTGAGGACCGTGCTACCCAAATGGACTGATTGTGAGGGAGACCTAACTACAT

AGTGTTTAAAGATTACGGATATTTAACTTACTTAGAATAATGCCATTTTT 

 

A.1.5. pYX222-p150(IRES)-A2AR 

 

TCACCATGGGAAATCATTTTTTGAAGATTACATTAATAAGGCTTTTTTCAATATCTCTGGA

ACAACAGTTTTTTTTTACTTACTAATAGCTTTAAGGACCCTCTTGGACATCATGATGGCAG

ACTTCCATCGTAATGGGATGATCATATGATGGGCGCTATCCTCATCGCGACTCGATAACGA

CGTGAGAAACGATTTTTTTTTTCTTTTTCACCGTATTTTTGTGCGTCCTTTTTCAATTATA

GCTTTTTTTTTATTTTTTTTTTTTCTCGTACTGTTTCACTGACAAAAGTTTTTTTTTCAAG

AAAAATTTTCGATGCCGCGTTCTCTGTGTGCAACGGATGGATGGTAGATGGAATTTCAATA

TGTTGCTTGAAATTTTACCAATCTTGATATTGTGATAATTTACTTAATTATGATTCTTCCT

CTTCCCTTCAATTTCTTAAAGCTTCTTACTTTACTCCTTCTTGCTCATAAATAAGCAAGGT

AAGAGGACAACTGTAATTACCTATTACAATAGGATCCATCCTAGGGCCCACAAGCTTAACA
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AAATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGC

TCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGT

TACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATA

ACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATC

TCTCGAGAAAAGAGAGGCTGAAGCTCATCATCATCATCATCATCATCATCATCATGAATTC

ATGCCCATCATGGGCTCCTCGGTGTACATCACGGTGGAGCTGGCCATTGCTGTGCTGGCCA

TCCTGGGCAATGTGCTGGTGTGCTGGGCCGTGTGGCTCAACAGCAACCTGCAGAACGTCAC

CAACTACTTTGTGGTGTCACTGGCGGCGGCCGACATCGCAGTGGGTGTGCTCGCCATCCCC

TTTGCCATCACCATCAGCACCGGGTTCTGCGCTGCCTGCCACGGCTGCCTCTTCATTGCCT

GCTTCGTCCTGGTCCTCACGCAGAGCTCCATCTTCAGTCTCCTGGCCATCGCCATTGACCG

CTACATTGCCATCCGCATCCCGCTCCGGTACAATGGCTTGGTGACCGGCACGAGGGCTAAG

GGCATCATTGCCATCTGCTGGGTGCTGTCGTTTGCCATCGGCCTGACTCCCATGCTAGGTT

GGAACAACTGCGGTCAGCCAAAGGAGGGCAAGCAGCACTCCCAGGGCTGCGGGGAGGGCCA

AGTGGCCTGTCTCTTTGAGGATGTGGTCCCCATGAACTACATGGTGTACTTCAACTTCTTT

GCCTGTGTGCTGGTGCCCCTGCTGCTCATGCTGGGTGTCTATTTGCGGATCTTCCTGGCGG

CGCGACGACAGCTGAAGCAGATGGAGAGCCAGCCTCTGCCGGGGGAGCGGGCACGGTCCAC

ACTGCAGAAGGAGGTCCATGCTGCCAAGTCACTGGCCATCATTGTGGGGCTCTTTGCCCTC

TGCTGGCTGCCCCTACACATCATCAACTGCTTCACTTTCTTCTGCCCCGACTGCAGCCACG

CCCCTCTCTGGCTCATGTACCTGGCCATCGTCCTCTCCCACACCAATTCGGTTGTGAATCC

CTTCATCTACGCCTACCGTATCCGCGAGTTCCGCCAGACCTTCCGCAAGATCATTCGCAGC

CACGTCCTGAGGCAGCAAGAACCTTTCAAGGCAGCTGGCACCAGTGCCCGGGTCTTGGCAG

CTCATGGCAGTGACGGAGAGCAGGTCAGCCTCCGTCTCAACGGCCACCCGCCAGGAGTGTG

GGCCAACGGCAGTGCTCCCCACCCTGAGCGGAGGCCCAATGGCTACGCCCTGGGGCTGGTG

AGTGGAGGGAGTGCCCAAGAGTCCCAGGGGAACACGGGCCTCCCAGACGTGGAGCTCCTTA

GCCATGAGCTCAAGGGAGTGTGCCCAGAGCCCCCTGGCCTAGATGACCCCCTGGCCCAGGA

TGGAGCAGGAGTGTCCGCGGCCGCTGAAAATCTGTATTTCCAGAGTGCCGGTAAGGCCGGA

GAGGGCGAGATTCCCGCTCCGCTGGCCGGCACCGTCTCCAAGATCCTCGTGAAGGAGGGTG

ACACGGTCAAGGCTGGTCAGACCGTGCTCGTTCTCGAGGCCATGAAGATGGAGACCGAGAT

CAACGCTCCCACCGACGGCAAGGTCGAGAAGGTCCTGGTCAAGGAGCGTGACGCGGTGCAG

GGCGGTCAGGGTCTCATCAAGATCGGGTGATCTAGAGTCGACCCGGGTATCCGTATGATGT

GCCTGACTACGCATGATATCTCGAGCTCAGCTAGCTAACTGAATAAGGAACAATGAACGTT

TTTCCTTTCTCTTGTTCCTAGTATTAATGACTGACCGATACATCCCTTTTTTTTTTTGTCT

TTGTCTAGCTCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTAC

AACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCC

TTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGC

AGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGT

TACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC

CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTT

TAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGG

TTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACG

TTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATT

CTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTA

ACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTCCTGATGCGGTATT

TTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAGATCCGTCGAGTTCAAGAGAAAA

AAAAAGAAAAAGCAAAAAGAAAAAAGGAAAGCGCGCCTCGTTCAGAATGACACGTATAGAA

TGATGCATTACCTTGTCATCTTCAGTATCATACTGTTCGTATACATACTTACTGACATTCA

TAGGTATACATATATACACATGTATATATATCGTATGCTGCAGCTTTAAATAATCGGTGTC

ACTACATAAGAACACCTTTGGTGGAGGGAACATCGTTGGTTCCATTGGGCGAGGTGGCTTC

TCTTATGGCAACCGCAAGAGCCTTGAACGCACTCTCACTACGGTGATGATCATTCTTGCCT

CGCAGACAATCAACGTGGAGGGTAATTCTGCTTGCCTCTGCAAAACTTTCAAGAAAATGCG

GGATCATCTCGCAAGAGAGATCTCCTACTTTCTCCCTCTGCAAACCAAGTTCGACAACTGC
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GTACGGCCTGTTCGAAAGATCTACCACCGCTCTGGAAAGTGCCTCATCCAAAGGCGCAAAT

CCTGATCCAAACCTTTTTACTCCACGCACGGCCCCTAGGGCCTCTTTAAATGCTTGACCGA

GAGCAATCCCGCAGTCTTCAGTGGTGTGATGGTCGTCTATGTGTAAGTCACCAATGCACTC

AACGATTAGCGACCAGCCGGAATGCTTGGCCAGAGCATGTATCATATGGTCCAGAAACCCT

ATACCTGTGTGGACGTTAATCACTTGCGATTGTGTGGCCTGTTCTGCTACTGCTTCTGCCT

CTTTTTCTGGGAAGATCGAGTGCTCTATCGCTAGGGGACCACCCTTTAAAGAGATCGCAAT

CTGAATCTTGGTTTCATTTGTAATACGCTTTACTAGGGCTTTCTGCTCTGTCATCTTTGCC

TTCGTTTATCTTGCCTGCTCATTTTTTAGTATATTCTTCGAAGAAATCACATTACTTTATA

TAATGTATAATTCATTATGTGATAATGCCAATCGCTAAGAAAAAAAAAGAGTCATCCGCTA

GGGGAAAAAAAAAAATGAAAATCATTACCGAGGCATAAAAAAATATAGAGTGTACTAGAGG

AGGCCAAGAGTAATAGAAAAAGAAAATTGCGGGAAAGGACTGTGTTATGACTTCCCTGACT

AATGCCGTGTTCAAACGATACCTGGCAGTGACTCCTAGCGCTCACCAAGCTCTTAAAACGG

GAATTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGA

CACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACA

GACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAA

ACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATA

ATGGTTTCTTAGACGTGCGGCCGCTCTAGAACTAGTGGATCAATTCCACGGACTATAGACT

ATACTAGTATACTCCGTCTACTGTACGATACACTTCCGCTCAGGTCCTTGTCCTTTAACGA

GGCCTTACCACTCTTTTGTTACTCTATTGATCCAGCTCAGCAAAGGCAGTGTGATCTAAGA

TTCTATCTTCGCGATGTAGTAAAACTAGCTAGACCGAGAAAGAGACTAGAAATGCAAAAGG

CACTTCTACAATGGCTGCCATCATTATTATCCGATGTGACGCTGCAGCTTCTCAATGATAT

TCGAATACGCTTTGAGGAGATACAGCCTAATATCCGACAAACTGTTTTACAGATTTACGAT

CGTACTTGTTACCCATCATTGAATTTTGAACATCCGAACCTGGGAGTTTTCCCTGAAACAG

ATAGTATATTTGAACCTGTATAATAATATATAGTCTAGCGCTTTACGGAAGACAATGTATG

TATTTCGGTTCCTGGAGAAACTATTGCATCTATTGCATAGGTAATCTTGCACGTCGCATCC

CCGGTTCATTTTCTGCGTTTCCATCTTGCACTTCAATAGCATATCTTTGTTAACGAAGCAT

CTGTGCTTCATTTTGTAGAACAAAAATGCAACGCGAGAGCGCTAATTTTTCAAACAAAGAA

TCTGAGCTGCATTTTTACAGAACAGAAATGCAACGCGAAAGCGCTATTTTACCAACGAAGA

ATCTGTGCTTCATTTTTGTAAAACAAAAATGCAACGCGAGAGCGCTAATTTTTCAAACAAA

GAATCTGAGCTGCATTTTTACAGAACAGAAATGCAACGCGAGAGCGCTATTTTACCAACAA

AGAATCTATACTTCTTTTTTGTTCTACAAAAATGCATCCCGAGAGCGCTATTTTTCTAACA

AAGCATCTTAGATTACTTTTTTTCTCCTTTGTGCGCTCTATAATGCAGTCTCTTGATAACT

TTTTGCACTGTAGGTCCGTTAAGGTTAGAAGAAGGCTACTTTGGTGTCTATTTTCTCTTCC

ATAAAAAAAGCCTGACTCCACTTCCCGCGTTTACTGATTACTAGCGAAGCTGCGGGTGCAT

TTTTTCAAGATAAAGGCATCCCCGATTATATTCTATACCGATGTGGATTGCGCATACTTTG

TGAACAGAAAGTGATAGCGTTGATGATTCTTCATTGGTCAGAAAATTATGAACGGTTTCTT

CTATTTTGTCTCTATATACTACGTATAGGAAATGTTTACATTTTCGTATTGTTTTCGATTC

ACTCTATGAATAGTTCTTACTACAATTTTTTTGTCTAAAGAGTAATACTAGAGATAAACAT

AAAAAATGTAGAGGTCGAGTTTAGATGCAAGTTCAAGGAGCGAAAGGTGGATGGGTAGGTT

ATATAGGGATATAGCACAGAGATATATAGCAAAGAGATACTTTTGAGCAATGTTTGTGGAA

GCGGTATTCGCAATATTTTAGTAGCTCGTTACAGTCCGGTGCGTTTTTGGTTTTTTGAAAG

TGCGTCTTCAGAGCGCTTTTGGTTTTCAAAAGCGCTCTGAAGTTCCTATACTTTCTAGAGA

ATAGGAACTTCGGAATAGGAACTTCAAAGCGTTTCCGAAAACGAGCGCTTCCGAAAATGCA

ACGCGAGCTGCGCACATACAGCTCACTGTTCACGTCGCACCTATATCTGCGTGTTGCCTGT

ATATATATATACATGAGAAGAACGGCATAGTGCGTGTTTATGCTTAAATGCGTACTTATAT

GCGTCTATTTATGTAGGATGAAAGGTAGTCTAGTACCTCCTGTGATATTATCCCATTCCAT

GCGGGGTATCGTATGCTTCCTTCAGCACTACCCTTTAGCTGTTCTATATGCTGCCACTCCT

CAATTGGATTAGTCTCATCCTTCAATGCTATCATTTCCTTTGATATTGGATCATATGCATA

GTACCGAGAAACTAGTGCGAAGTAGTGATCAGGTATTGCTGTTATCTGATGAGTATACGTT

GTCCTGGCCACGGCAGAAGCACGCTTATCGCTCCAATTTCCCACAACATTAGTCAACTCCG

TTAGGCCCTTCATTGAAAGAAATGAGGTCATCAAATGTCTTCCAATGTGAGATTTTGGGCC
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ATTTTTTATAGCAAAGATTGAATAAGGCGCATTTTTCTTCAAAGCTGCGGCCGCACGTCAG

GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTC

AAATATGTATCCGCTCATGAGACAATAACCGTGATAAATGCTTCAATAATATTGAAAAAGG

AAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCC

TTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGG

TGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGC

CCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTAT

CCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTT

GGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA

TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCG

GAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGA

TCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCT

GTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGC

CCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGT

ATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGG

GGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGAT

TAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTT

CATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCC

CTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC

TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCA

GCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCA

GCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAA

GAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCC

AGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC

AGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACAC

CGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG

GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAG

GGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG

ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTT

TTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTG

ATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAAC

GACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCT

CTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAG

CGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTT

ACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACA

GGAAACAGCTATGACCATGATTACGCCAAGCTCGAAATTAACCCTCACTAAAGGGAACAAA

AGCTGGTACCGGGCCGGCCGTCGGGCCGTCGAGCTTGATGGCATCGTGGTGTCACGCTCGT

CGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC

CATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTG

GCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCAT

CCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTAT

GCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGA

ACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTAC

CGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTT

TACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGA

ATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCA

TTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACA

AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATT

ATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTGG

GGATCTACGTATGGTCATTTCTTCTTCAGATTCCCTCATGGAGAAAGTGCGGCAGATGTAT
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ATGACAGAGTCGCCAGTTTCCAAGAGACTTTATTCAGGCACTTCCATGATAGGCAAGAGAG

AAGACCCAGAGATGTTGTTGTCCTAGTTACACATGGTATTTATTCCAGAGTATTCCTGATG

AAATGGTTTAGATGGACATACGAAGAGTTTGAATCGTTTACCAATGTTCCTAACGGGAGCG

TAATGGTGATGGAACTGGACGAATCCATCAATAGATACGTCCTGAGGACCGTGCTACCCAA

ATGGACTGATTGTGAGGGAGACCTAACTACATAGTGTTTAAAGATTACGGATATTTAACTT

ACTTAGAATAATGCCATTTTTTTGAGTTATAATAATCCTACGTTAGTGTGAGCGGGATTTA

AACTGTGAGGACCTTAATACATTCAGACACTTCTGCGGTATCACCCTACTTATTCCCTTCG

AGATTATATCTAGGAACCCATCAGGTTGGTGGAAGATTACCCGTTCTAAGACTTTTCAGCT

TCCTCTATTGATGTTACACCTGGACACCCCTTTTCTGGCATCCAGTTTTTAATCTTCAGTG

GCATGTGAGATTCTCCGAAATTAATTAAAGCAATCACACAATTCTCTCGGATACCACCTCG

GTTGAAACTGACAGGTGGTTTGTTACGCATGCTAATGCAAAGGAGCCTATATACCTTTGGC

TCGGCTGCTGTAACAGGGAATATAAAGGGCAGCATAATTTAGGAGTTTAGTGAACTTGCAA

CATTTACTATTTTCCCTTCTTACGTAAATATTTTTCTTTTTAATTCTAAATCAATCTTTTT

CAATTTTTTGTTTGTATTCTTTTCTTGCTTAAATCTATAACTACAAAAAACACATACAGGA

AT 
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A.2. IRES sequences 

A.2.1. YAP1 IRES 

GCGTTTACCGATTAAGCACAGTACCTTTACGTTATATATAGGATTGGTGTTTAGCTTTTTT

TCCTGAGCCCCTGGTTGACTTGTGCATGAACACGAGCCATTTTTAGTTTGTTTAAGGGAAG

TTTTTTGCCACCCAAAACGTTTAAAGAAGGAAAAGTTGTTTCTTAAACCG 

 

A.2.2. p150 IRES  

GAAATCATTTTTTGAAGATTACATTAATAAGGCTTTTTTCAATATCTCTGGAACAACAGTT

TTTTTTTACTTACTAATAGCTTTAAGGACCCTCTTGGACATCATGATGGCAGACTTCCATC

GTAATGGGATGATCATATGATGGGCGCTATCCTCATCGCGACTCGATAACGACGTGAGAAA

CGATTTTTTTTTTCTTTTTCACCGTATTTTTGTGCGTCCTTTTTCAATTATAGCTTTTTTT

TTATTTTTTTTTTTTCTCGTACTGTTTCACTGACAAAAGTTTTTTTTTCAAGAAAAATTTT

CGATGCCGCGTTCTCTGTGTGCAACGGATGGATGGTAGATGGAATTTCAATATGTTGCTTG

AAATTTTACCAATCTTGATATTGTGATAATTTACTTAATTATGATTCTTCCTCTTCCCTTC

AATTTCTTAAAGCTTCTTACTTTACTCCTTCTTGCTC 

 

A.2.3 CrPV IRES 

AAAGCAAAAATGTGATCTTGCTTGTAAATACAATTTTGAGAGGTTAATAAATTACAAGTAG

TGCTATTTTTGTATTTAGGTTAGCTATTTAGCTTTACGTTCCAGGATGCCTAGTGGCAGCC

CCACAATATCCAGGAAGCCCTCTCTGCGGTTTTTCAGATTAGGTAGTCGAAAAACCTAAGA

AATTTACCT 

 

A.2.3.1 Synthesisied CrPV(IRES) insert  (GeneArt, Life Technologies) 

SpeI-CrPV(IRES)-NcoI   

ACTAGTAAAGCAAAAATGTGATCTTGCTTGTAAATACAATTTTGAGAGGTTA

ATAAATTACAAGTAGTGCTATTTTTGTATTTAGGTTAGCTATTTAGCTTTAC

GTTCCAGGATGCCTAGTGGCAGCCCCACAATATCCAGGAAGCCCTCTCTGCG

GTTTTTCAGATTAGGTAGTCGAAAAACCTAAGAAATTTACCTCCATGG 
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