
 

 

 

 Some pages of this thesis may have been removed for copyright restrictions. 

 

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either 

yours or that of a third party) or any other law, including but not limited to those relating to 

patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please 

read our Takedown Policy and contact the service immediately 

  



Bridging large and small scales of water
models using hybrid Molecular

Dynamics/Fluctuating Hydrodynamics
framework

ARTURS SCUKINS

Doctor Of Philosophy

– ASTON UNIVERSITY –

September 2014

This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without proper acknowl-
edgement.

1



ASTON UNIVERSITY

Bridging large and small scales of water models
using hybrid Molecular Dynamics/Fluctuating

Hydrodynamics framework

ARTURS SCUKINS

Doctor Of Philosophy, 2014

Thesis Summary

This thesis presents a two-dimensional water model investigation and development of a multiscale
method for the modelling of large systems, such as virus in water or peptide immersed in the
solvent.

We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using
Molecular Dynamics. We have studied its dynamical and structural properties dependence on the
model’s parameters. For the first time we derived formulas to calculate thermodynamic properties
of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in
the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of
the model in both ensembles.

We have developed and implemented a self-consistent multiscale method, which is able to
communicate micro- and macro- scales. This multiscale method assumes, that matter consists of
the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro
scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using
Molecular Dynamics. We have demonstrated that the communication between the disparate scales
is possible without introduction of fictitious interface or approximations which reduce the accuracy
of the information exchange between the scales. We have investigated control parameters, which
were introduced to control the contribution of each phases to the matter behaviour. We have shown,
that microscales inherit dynamical properties of the macroscales and vice versa, depending on the
concentration of each phase. We have shown, that Radial Distribution Function is not altered
and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to
Fluctuating Hydrodynamics description, when phase balance is changed.

In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water
models. For the SPC/E water model we investigate microscale fluctuations which are computed
using advanced mapping technique of the small scales to the large scales, which was developed by
Voulgarakisand et. al. [1].

Keywords: Hybrid methods, Multiscale methods, ‘Mercedes Benz’ water model, BN2D, Large
and small scales, Molecular Dynamics, Landau Lifshitz-Fluctuating Hydrodynamics, CABARET
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Chapter 1 INTRODUCTION

One of the most prominent scientific achievements in the last century was in the biomolecular

computation. This discipline allows to create, control and manipulate biomolecular systems [6].

These systems are referred to as large biomolecular systems i.e proteins, that play vital role

in living organisms. They perform various functions, such as replicating DNA, transporting

molecules from one location to another, catalyzing metabolic reactions, and many more [7]. Pro-

teins are characterized by long chains of amino acid residues. The sequence of these amino acids

determine the folding of these chains into a specific structure, that defines protein’s activity. Folded

protein structures (conformations) can exist for a certain period of time, which lasts from minutes

up to years. Later these folded proteins are dismantled by the cell’s machinery. If proteins are mis-

folded, then they are destroyed more rapidly. It happens because misfolded proteins are unstable

and more likely to be targeted for a destruction.

It is believed, that surrounding solvent molecules play important role in the process of protein

folding [8]. Recent investigations showed connection between water molecules in the vicinity of

the proteins and protein conformations [9].

According to the study, protein chains are guided by the water’s hydration shell before con-

formation is performed. An ability to predict and control this guidance, which drives protein to

a particular conformation, is highly demanded, because it defines all the rearrangements of the

protein and its characteristics.

In order to simulate large systems, such as virus in water or the connection between water

and protein molecules, computational techniques can be used. The best scenario, in terms of

accuracy, would be to simulate the protein together with all water molecules available during

the experiment. However, this task is computationally expensive, since accurate description of

all molecules leads to enormous calculations. For this reason various computational tricks and

approximations are employed, such that the number of solvent molecules is reduced or molecule’s

description is simplified.

For example, implicit solvent method which instead of considering solvent molecules explic-

itly represents them as a continuous medium. Thus, method reduces dramatically degrees of free-

dom of solvent, since its molecules are not considered explicitly. Implicit solvent models assume

that non-polar atoms of a solute tend to gather together and occupy non-polar media, whereas

polar and charged groups of the solute tend to remain in water [10]. The method is based on the

Poisson equation which describes the electrostatic interactions. Therefore, protein is characterized

with the point charges with known spatial distribution in a low dielectricum and the solvent posses

high dielectric properties (contains ions distributed from Boltzmann statistics). Since, accurate

Poisson-Boltzmann equation requires large computational effort, approximations are used, such

as generalized Born approximation. Which replaces the electrostatic potential calculation with the
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approximate solvent-induced reaction field energy [11].

Implicit solvent methods are utilized in the well known software, such as CHARMM [12] or

AMBER [13] and are frequently used for the study of the drug delivery problems (across biological

membranes), protein folding, solute-solvent interactions in structural and chemical processes, etc.

These methods proved to be effective, although they have drawbacks, such as inaccurate account

for the hydrophobic effect (which is important in the folding processes) and hydrogen bonding

with the solvent.

The study [9] demonstrated, that the amount of surrounding water (explicit description) cannot

be reduced dramatically, hence not all approximations can be used.

Water molecule itself has a V shape structure with a characteristic diameter of 2.74Å and is

commonly referred to as a small scale description of the matter.

In order to evaluate the size of the problem or computational efforts required to accurately sim-

ulate protein folding, the number of numerical operations is counted. This number scales with the

amount of particles, if complexity of interaction is not considered. Hence, when individual water

molecules are considered in the matter description, then for the realistic system size simulations

the number of operations is enormous.

On the other extreme the size of the experimental system is regarded as the large or macro-

scale. Large scales are normally used for the engineering purposes and can be in length of more

than a meter. A range of scales between the micro- and marco- scale is known as the mesoscale.

In general, large systems are simulated using empirical models, such as Navier -Stokes conser-

vation equations or Hydrodynamics [14]. This model proved to be effective for the vast majority

of engineering problems, although in some cases, when complexity of the processes in the system

is critical, results are rather mixed. Unfortunately, this method is not applicable for the protein

folding study due to the lack of the information on how the microstructure influence macroscale

behaviour of the system and vice versa. Although, an effort was made by Irving and Kirkwood

to overcome this limitation. They derived equations of hydrodynamics from the principles of the

classical statistical mechanics. That resulted in an accurate representation of the macroscopic pa-

rameters in terms of molecular variables [15]. However, this approach did not reduce computation

costs and lacks influence of the large scales on the small scales.

On the other hand, hydrodynamics, despite the fact that it cannot resolve microscopic details

was successfully implemented in some practical experiments.

As we noted before the environment around the protein is critical for the folding process.

For instance, Brody et.al. [16] used a micromixer to move protein in and out of a free-stream

flow in a microchamber, where the concentration of denaturant was changing rapidly, that even-

tually forced protein to fold and unfold. Similar set-ups were studied computationally by [17],
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where the microchannel was composed of two inlets and one outlet. They have studied membrane

fabrication by controlled shear stress and an interfacial cross-linking reaction between the two

streams of the fluid.

Unfortunately, these types of simulations are limited by the coarse hydrodynamics methods.

Other extreme can be considered, such as quantum many-body theory, which is assumed to be

the true first principle [18]. This approach does not have any empirical parameters to fit and fo-

cuses on obtaining the wave functions, that posses all information about the system. The problem

here is that independent variables are as many as the number of electrons and nuclei in the system.

Consequently, it is an impossible task to simulate large systems. After all, the wave function con-

tains too much information, that in most cases is not needed. In practice there are simplifications,

which reduce computational costs, however, for the large size systems they still remain ineffective.

No individual technique applicable to the large or small scales is able to resolve protein folding

in the real size system with feasible computation effort. However, such large systems can be solved

if multiscale approaches are used. The multiscale means that it considers simultaneously both

small and large scales. These approaches preserve the size of the system, although the complexity

of the system is simplified by approximations where details are not of great interest. Although, in

many cases structure and shape of water molecules are important.

If studied process is described at a particular scale, large or small, the relevant method is used.

However, understanding the relationship between the different levels of physical models is not a

trivial task and it is essential to connect both representation.

Multiscale methods are based on two ideas. First, the large system can be characterized by

models of different complexity. Second, the use of accurate methods in regions, where details are

needed, such as regions where defects, chemical reactions, etc. are present. The rest is simulated

with the coarse methods (large scales), which normally are cheaper.

Here, multiscale methods are classified into two groups: analytical methods and computational

methods. Some of these methods are discussed in the following sections.

1.1 Analytical methods

1.1.1 Matched asymptotics method

Method of ‘matched asymptotics’ is commonly used when solution changes abruptly in a small

region, such as boundary layers. This localized region is called ‘inner region’. Dominant features

of the ‘inner region’ are different from the feature of the rest region, that is called ‘outer region’.

In order to estimate the solution in the ‘inner region’ a stretched variable is introduced [19].

Considerations above can be illustrated using the one-dimensional advection-diffusion equa-
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tion

∂tξ
ε +∂xξ

ε = ε∂
2
xξ

ε, (1.1)

where ξε(x, t) is a physical quantity, t denotes time, x is the spatial coordinate, ε→ 0 in general

represents the small scales (i.e region where details are of great interest, for instance cooling of

the hot wall by the flow of cool liquid, where cooling is dominated by the diffusion in the boundary

layer).

The initial condition is not important for the method description, while the boundary condi-

tions are essential and given by ξε(0, t) = ξ0(t) and ξε(1, t) = ξ1(t) .

Due to the small value of ε the right hand side can be neglected yielding an advection equation

∂tΞ+∂xΞ = 0, (1.2)

which is not exactly the same as the original equation. The solution of the advection equation Ξ is

denoted as the ‘outer solution’ and requires one boundary condition Ξ|x=0 = ξε
0, again the initial

conditions are not of great importance for the demonstration of the method.

An assumption is made that abrupt change of the solution appears at the boundary layer at

x→ 1, although the boundary layer is not accounted in the solution of the advection equation

(1.2). The boundary layer can be used to connect solution of the advection equation (1.2) with the

solution of the initial problem (1.1) [20].

According to the ‘matched asymptotics’ method a stretching variable is introduced

y =
x−1

δ
, (1.3)

where δ is known as a boundary layer thickness.

Now the initial differential equation (1.1) can be expressed in terms of the stretching variable

∂t ξ̃
ε +

1
δ

∂yξ̃
ε =

ε

δ2 ε∂
2
y ξ̃

ε. (1.4)

This equation gives non-trivial balance, when δ and ε are close and for the current demonstra-

tion are assumed to be equal. This yields the following differential equation

∂yξ̃ = ∂
2
y ξ̃, (1.5)

where ξ̃ is the solution in the boundary layer. Derivative with respect to time can be neglected,

since δ ·∂t ξ̃ is small. Integrating once the equation above gives

ξ̃ = ∂yξ̃+C1, (1.6)

in order to match the solution with the ‘outer region’ we assume that ∂yξ̃|y→−∞ = 0, hence C1 =

Ξ(1, t). The second boundary condition is ξ̃|y=0 = ξ1(t). Integrating again and expressing in terms
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of the initial variable x, the boundary layer solution is given by

ξ̃(x, t) = Ξ(1, t)+(ξ1(t)−Ξ(1, t))e
x−1

δ . (1.7)

In this particular case, ‘matched asymptotics’ method allows to connect large system Ξ description

with the boundary layer x→ 1, which is regarded as the small scales description (region). This

method can be effectively applied to the boundary layer problems and internal vortices.

Apart from this technique other analytical approaches are available, such as averaging meth-

ods, multiscale expansions, etc [20].

1.1.2 Multiscale expansion method

A brief review of the method is given here, more details can be found in [20].

The multiscale expansion method employs the expansion of the solution and it is used for

the ordinary differential equations (ODE), that contain small parameter ε. Thus, method can be

applied to systems with disparate scales. The solution is assumed to be given by

ξ(t)≈ ξ0(t)+ εξ1(t)+ ε
2
ξ2(t), (1.8)

which is later substituted back in the initial differential equation.

The objective is to find ξ0,ξ1. Effectively, the consequent solution of ξ1 substituted back into

the expansion will account for the effect of the small contribution εξ1(t) in (1.8).

1.1.3 Dimensional analysis

In engineering ‘dimensional analysis’ is commonly used, which can be very useful for a quick

guess of important features. It allows to identify the relationships between the different physical

quantities by analysing their dimensions. In order to do that Buckingham π theorem is used [21].

The most remarkable example is Kolmogorov’s prediction about the small scale structures in a

fully developed turbulent flows [22].

In general, analytical techniques are limited to a set of problems they can be applied to, mostly

in Hydrodynamics. Unfortunately, molecular phenomena, such as protein folding, cannot be ef-

fectively investigated using these methods. For this purpose computational methods are employed.

1.2 Computational methods

Computational methods are usually applied to Partial Differential Equations (PDE). These meth-

ods employ various numerical techniques in order to obtain solution that is very close to the exact

one.

A standard procedure for numerical methods is as follows:
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1. Discretize PDE using, for example, finite differences or finite element methods [23], that

are popular in Hydrodynamics. In matrix form discretized PDE can be expressed as

Ahξh = fh, (1.9)

where h denotes the grid size.

2. Solve obtained linear system using iterative methods, that generate a sequence of improving

approximate solutions [24].

The iterative method convergence is determined by the condition number of matrix Ah. Usu-

ally, this condition number scales as k(Ah) ≈ h−2. Thus, for smaller h the convergence is slower

[24].

1.2.1 Multigrid methods

One of the computational mutiscale methods is ‘multigrid method’, which became a practical tool

in 70s, and was later extended to Molecular Dynamics and Monte Carlo simulations [25]. In

particular, Brandtl suggested to use this tool for the study of the marcoscale behaviour of multi-

physics problems [26].

This method can be demonstrated if Poisson’s equation is considered

∆ξ(x) = f (x) (1.10)

with the boundary condition ξ|∂Ω = 0, where ∂Ω is a contour of the whole simulation domain Ω,

here initial conditions are not important for the demonstration of the method. Apply finite differ-

ences framework to (1.10) and consider an iterative method, for instance the relaxation method

(see Appendix A.1), on two different grids that correspond to the grid sizes h (fine grid) and 2h

(coarse grid). Here the fine grid represents the small scales, while the coarse grid the large scales.

In order to transfer the solution between the grids, projection operator is introduced, which

maps fine grid functions on the coarser grids P2h
h . And interpolation operator, which maps coarser

grid functions on the finer grids Ph
2h.

The algorithm of multigrid method can be demonstrated as the following procedure:

1. Run a few steps (iterations) on the fine grid using, for instance the relaxation method [27].

2. Calculate the residual on the fine grid rh = Ahξh− fh.

3. Project residual to the coarse grid r2h = Ph
h2rh.

4. Solve on the coarse grid A2he2h = r2h, where e2h = ξ2h−ξ∗ is the error vector and ξ∗ is the

exact solution of (1.10).
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5. Interpolate to the fine grid ξh← ξh−P2h
h e2h.

This method can be generalized to any subsequent grid sizes, covering all scales. However,

multigrid method requires sufficient computational effort and does not have the best accuracy.

Many other classic iterative algorithms are available, such as the fast multipole method, adap-

tive mesh refinement, multi-resolution representation, or domain decomposition [20].

1.2.2 Domain decomposition methods

The domain decomposition method also employs various grids, although the implementation is

different. The whole simulation domain is divided into subdomains and the strategy is to match

the solutions in different subdomains.

The advantages of this method are:

1. convenience to use in parallel computing;

2. different models or different algorithms can be used in each subdomain [28].

The solution of the first subdomain is denoted as ξ1 and the second as ξ2, while the solution

on the interface of these two subdomains as φ Fig. 1.1.

x1 x2
f

Figure 1.1: Domain decomposition method for two non-overlapping different grids. The solution
of the first subdomain is denoted as ξ1 and the second as ξ2, while the solution on the interface of
these two subdomains as φ

Equation (1.10) can be rewritten as a linear system if finite differences are used

Aξ = f , (1.11)

where ξ = (ξ1,ξ2,φ)
T , A and f are relevant matrices, the subscript h, which corresponds to the

grid size is omitted. The linear system can be expanded in
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
A11 0 A13
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
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When ξ1 and ξ2 are eliminated, the solution at the interface between subdomains is given by

Sφ = g, (1.12)

where g = fφ−A31A−1
11 f1−A32A−1

22 f2 and S = A33−A31A−1
11 A13−A32A−1

22 A23.

The solution at the interface can be written in the following way

Sφ = A33−A31ξ1−A32ξ2, (1.13)

where the two equations A11ξ1 = A13φ and A22ξ2 = A23φ are solved independently, and g is treated

in the same manner.

Effectively, the solution for the original problem is obtained, when normal derivatives as well

as the solutions between the subdomains match at the interface [20].

Finally, the subdomains can be either overlapping or not. However, if subdomains overlap,

the boundary conditions must be chosen correctly, otherwise the method may not converge. More

information about the decomposition methods can be found in [28].

1.2.3 Adaptive resolution methods

It is assumed that there are two different representations of the matter. Fritsch et al. [2], generalized

the adaptive resolution idea, where molecules smoothly changed their level of representation as a

function of position by moving through a transition region Fig. 1.2.

Figure 1.2: Pictorial representation of the adaptive simulation box and local molecular represen-
tation. The low resolution (coarse-grained) region is on the right, indicated by B, and the high
resolution (atomistic) region A is on the left. The transition (hybrid) region H with the switching
function w(x) (curve in grey) is in the middle; The figure is taken from [2]

The transition is accomplished by changing the degrees of freedom of the molecules, such

that the tetrahedral particles are gradually introduced. Their corresponding spheres are denoted
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as coarse grained description. These tetrahedral particles are build of four molecules bound by

the Lennard-Jones interaction potential type springs. When molecules are passing to the coarse

grained region, they are gradually loosing their degrees of freedom (DOF), such as rotational and

vibrational ones, until they become spheres with only translational DOFs of the centre of mass [2].

This transition process is described by two different representations, that are interpolated by a

function w(x), with w = 1 in fine-grained (small scales) region, and w = 0 in the coarse-grained

region (large scales).

The fine grained region is described by individual water molecules. While the coarse grain

region is described by the coarse grained spheres, which interact with each other through central

forces.

Hence, in the transition region, the total force between interacting particles α and β located at

the Xα and Xβ respectively consists of two parts Ξtot = ΞA
αβ

+ΞB
αβ

, the all atom interaction given

by

Ξ
A
αβ

= w(Xα)w(Xβ)∑
i j

~FA
αiβ j

(1.14)

and the coarse grain contribution

Ξ
B
αβ

= (1−w(Xα)w(Xβ))~F
B

αβ
, (1.15)

where A denotes the fine grained, B the coarse grained representation, ~FA
αi,β j

is the interaction

force between i atom of molecule α and j atom of β molecule, and ~FB
αβ

is the mass- centre of mass

interaction.

In this case unphysical drift due to the pressure difference at the boundaries of the transition

region can arise, hence, the authors removed it by introducing a thermodynamics force, which acts

on the molecules

Fth(x) =
Mα

ρ0
∇p(x), (1.16)

where ρ0 is all-atom density, Mα is molecule’s mass and p is pressure. This force is able to adjust

the viral pressure and the thermal energy, while the molecules are passing from one region to

another.

As a result, the thermodynamic force, (1.16), eliminated the effects of the pressure difference

on the distribution of molecules in both regions as well as artifacts (large density fluctuations) that

appeared due to the change of the resolution.

1.2.4 Dissipative Particle Dynamics

Other popular technique, which was introduced by Hoogerbrugge and Koelman, is the so called

Dissipative Particle Dynamics (DPD) [29], which allows to relate the macroscopic properties of
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the fluid to its microscopic structure.

DPD is an off-lattice method, where particles represent whole molecules or fluid regions. This

method does not consider atomistic details, thus, the main benefit of DPD is that it allows to use

longer time and length scales, than the conventional MD method. Today it has become a popular

tool for modelling complex systems [30, 31].

Summarizing, computational methods presented here demonstrate an effort to account for the

microstructure influence on the macroscale behaviour of the system and vice versa. However,

accuracy of these methods and effectiveness in providing desired results is rather mixed.

1.2.5 Hybrid Molecular Dynamics and Hydrodynamics methods

In the hybrid Molecular Dynamic and Hydrodynamics simulation, the domain is decomposed into

the meso- and micro- scale subdomains joined by a hybrid interface. Based on the flux balance,

at every fixed time interval both domains receive equal but opposite mass and momentum fluxes

across the hybrid interface.

The earliest examples of this type of method includes [32, 33], followed by more recent work,

namely, [34, 35, 36, 37].

Fabritis et. al [38] showed that the mean values and the fluctuations across the interface are

consistent with hydrodynamics and thermodynamics, when mesoscale Landau Lifshitz - Fluctuat-

ing Hydrodynamics (LL-FH) is joined with the microscale Molecular Dynamics (MD) description.

Both LL-FH and MD techniques are described in the later sections.

The mass flux was calculated from the MD system and the momentum flux was obtained

with two different approaches, that showed the same result. The first was based on the velocity

gradients next to the interface, for the second, the pressure gradient was used.

Similarly, the information exchange between the domains with different representations can

also be accomplished using Schwarz alternating method. For instance, this approach was used by

Nie et. al [39] to simulate Couette flow and channel flow with nano-scale rough walls. They split

the simulation domain in two subdomains, with the region where both subdomains overlap. In one

subdomain the continuum Navier-Stokes equations [14] were solved and in the other Molecular

Dynamics was used.

Other authors, [32, 40] also established coupling between MD and hydrodynamics by ensuring

the conservation of the mass and momentum fluxes through a finite-size overlap-region. In the

overlap-region Schwarz alternating method was applied.

The Schwarz method is an iterative method, which approximates the solutions for each sub-

domain as the boundary conditions. In other words, in the region where two subdomains are

connected for one subdomain as a boundary condition is chosen solution of the other subdomain
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and vice versa [41].

There is a number of efficient approaches developed to couple MD and hydrodynamics, that

employ the Schwarz technique [42, 43].

In the recent years there were successful attempts to implement the multiscale models, from

modelling micro and nanofluidic devices to physical, chemical, biological and other objects [44,

45, 46, 47, 48, 9, 49].

The main limitation in the multiscale methods is the accuracy of the communication between

the two different representations, if the computational effort is not considered. So far, the methods

presented here do not maintain the communication without approximations, or introduction of

fictitious potentials or molecules.

Thus, a new self-consistent method is proposed, which solves the communication problems

between the two different descriptions without artificial approximations and leads to a smooth

transition between them.

1.3 The main idea of our approach

In the present work coupling method or coupling denotes a method, which is able to communicate

the large and small scales, provides an information exchange between the disparate scales.

We assume that matter is described by a mixture of two different phases.

The first phase is represented using Molecular Dynamics simulations and the other by Landau

Lifshitz- Fluctuating Hydrodynamics simulation. Both these techniques are discussed in details in

Chapter 2.

The description of the matter changes gradually from the region where mostly large scales are

present Fig. 1.3 (left hand side), to the region where mostly small scales are present (right hand

side).

In the transition or overlap-region a mixture of these two representations is considered. The

communication or information exchange between them is conducted using coupling methods in-

vestigated in this work. A multiphase modelling concept is used to couple both scales in the

overlap-region. In the current implementation, large and small scales coexist with the different

concentrations s. On the right hand side of the domain Fig. 1.3 concentration of the large scales is

zero, that means that only the small scales are accounted. The large scales are also present in this

region, however, they are not visible by the small scales.

On the left hand side Fig. 1.3 it is assumed, that only the large scales are present, although

there still exist small scales that are not visible by the large scales.

In other words, the large and small scales are present in the simulation domain simultaneously,
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Figure 1.3: The visibility of matter description is controlled by the parameter s. If s= 1 the matter
is fully described by continuum phase, in the transition zone 0 < s < 1 matter is represented by
a mixture of both continuum and atomistic descriptions, if s = 0 fully atomistic description is
considered

however, the contribution of each scale to the matter description changes with the concentration s,

that is a priori known for the whole system.

The presence of the two descriptions all over the simulation domain maintains the continuity

and the conservation in the Molecular Dynamics and Landau Lifshitz - Fluctuating Hydrodynam-

ics simulations.

1.4 Thesis outline

In the present work we demonstrate a self-consistent communication between the large and small

scales. We also show that dynamical properties are different in the regions with various concen-

trations of the phases. While structural properties, such as the close order of the liquid do not

change.

Second chapter is devoted to the development of the coupling method as well as the study

of two-dimensional liquid argon in the framework of proposed coupling method. The analysis

of close order, dynamics and statistical properties is undertaken. The analysis confirmed that the

communication between the large and the small scales was successfully established.

Third chapter is focused on two-dimensional ‘Mercedes Benz’ or BN2D [50] and SPC/E

[51] water models implementation in the context of the coupling method.

We start with the study of BN2D water model. Where for the first time we derived formulas

for the thermodynamic properties of the model when microcanonical (NVE) ensemble is used.

Also we derived the equations of motion for the BN2D water model for isothermal-isobaric (NPT)

ensemble and discussed the rotational degree of freedom representation in both NVE and NPT

ensembles.

Then we report recent developments of the coupling method, especially its integration into the

well known software GROMACS [52] by our collaborating colleagues from Cambridge University

and Queen Mary University of London.
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The development of the coupling method was split into two stages: ‘one way’ and ‘two way’

communications between the scales. Where in the first, the small scales are affected by the large

scales and in the second both scales affect each other. Currently, only the ‘one way’ communica-

tion is integrated into the GROMACS as add-on.

And finally, a three-dimensional liquid argon as well as SPC/E water models were simulated

using this add-on, which provided the same trends as were obtained for the simpler BN2D water

model.

Also we discuss and demonstrate the effect of the advanced mapping technique form the small

scales to the large scales (‘blob’ filter) [1] in the context of our coupling method.
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Chapter 2 BRIDGING LARGE AND SMALL SCALES

2.1 Conservation equations

In the introduction the importance of a realistic size simulation of biological objects was empha-

sised. As we noted, an effective simulation, that involves concurrent continuum and atomistic

descriptions of matter, is a challenging task. That in most cases ends with the approximations

and simplifications of the matter or processes studied. Sometimes surrounding conditions can be

idealized in order to reduce the computation costs, for instance biological objects are considered

with the surrounding medium at rest, that is not true in a real experiment.

We also noted, that a well known methods of Computational Fluid Dynamics (CFD), such as

Navier-Stokes equations proved to be effective for the vast majority of the flow problems, although

they lack accuracy, when atomistic resolution is needed. Thus, an effort is made to tailor CFD

methods to the atomistic description. For instance, mesoscale method proposed by Landau and

Lifshitz, entails atomistic scale fluctuations in the hydrodynamics equations. This extension was

substantial despite the fact, that the communication between the continuum and atomistic scales

is incomplete, since changes in the continuum do not affect the atomistic processes (small scales).

On the other hand, the whole system can be considered at atomistic level, for instance Molec-

ular Dynamics can be used to describe medium in which biological objects are immersed. Unfor-

tunately, the demand for the computational resources in this case cannot be satisfied.

Nevertheless, large biological systems were under scrutiny of scientists for many years, but

only in the last few decades this area of research had achieved certain success.

Nowadays, accurate simulation of the large systems, such as virus in the water is not possible,

regardless the increasing computing power. Efficiently, this means that the methods that are able

to resolve the physical phenomena over a wide range of scales and reduce the computational costs

for the complex systems simulations are not accurate enough.

The approximations made often reduce accuracy of the simulation of the phenomena studied.

For example in the case of DPD method unphysical potentials are introduced between conglom-

erates of molecules. In some cases artificial boundaries (Schwartz alternating method) appear in

the regions where the large and small scales are present (so called overlap-region), that results in

unnatural behaviour. An approach that doesn’t have these drawbacks would be beneficial.

A coupling method studied here does not introduce fictitious boundaries and treats overlap-

region as a mixture of two miscible liquids. In other words, following the standard approach in

two-phase modelling, a mixture of two completely miscible liquids in the system [53] is consid-

ered. One phase corresponds to the Lagrangian phase (atomistic description) and the other is the

Eulerian phase (FH continuum).
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Chapter 2 BRIDGING LARGE AND SMALL SCALES

Figure 2.1: In the xy-plane a 2D simulation domain is shown, with the black dots representing
MD particles; the FH phase is modelled on a regular grid (white lines); the coupling parameter s
has a Gaussian profile in this example and its projection on the xy-plane is shown in colour

For simplicity and associativity reasons the Lagrangian phase is denoted as the MD phase and

the Eulerian phase as the FH phase, due to the methods used to obtain properties, such as densities

and momentum, for each phase. Effectively it means Molecular Dynamics is used for the MD

phase and Landau Lifshitz- Fluctuating Hydrodynamics for the FH phase.

This multiphase approach, together with the MD and LL-FH frameworks allows to establish

communication between these phases in the overlap-region. Here communication is considered

as an inheritance of the large scale (FH phase) properties by the small scales (MD phase) and

vice versa. The strength of this inheritance is estimated by the concentration of the phases and

implemented though a set of parameters as well as imbalance between the phase densities and

momenta. Furthermore, the coupling method allows to exchange mass and momentum between

the phases, such that the differences between them are driven to a prescribed value.

A parameter s is reintroduced, which represents the concentration of the FH phase. This

parameter shows if the mixture properties are dominated by one phase or another. In mathematical

terms, s is a smoothly changing function in space (and possibly time). The value of s varies from

0 to 1, as shown in Fig. 2.1. We assume that the centre of the system has mostly MD description

(s ≈ 0) and on the edges it is mostly FH (s ≈ 1), while in the middle region there is a mixture of

the MD and FH phases.

In general, the MD phase is a continuum entity, which consists of many MD particles. For this

reason all simulation domain is split into subdomains (cells) Fig. 2.1, as it is commonly done for

the LL-FH simulation. Further, each cell has prescribed parameters, such as density and velocity
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(momentum), that are obtained differently for each phase. For the FH phase these parameters

are evaluated using the conservation equations, while for the MD phase MD particles and their

velocities are counted in each cell.

This provides us with the MD phase density ∑p ρp and momentum ∑p ρpuip, in which ρp =
mp

Vcell

and uip are MD particle’s density and velocity respectively, where p stands for the ‘particle’, i

denotes the spatial component (x, y or z), mp is the particle’s mass, and Vcell is the volume of the

subdomain (cell) over which summation ∑p is performed. The obtained values are prescribed to

the cells centres, in which the particles were summed. The FH phase density ρ and momentum

ρui are defined for the same cell centres as the MD phase density and momentum.

According to the multiphase approach, density of the MD and FH phase mixture is given by

ρ̃ = sρ+(1− s)∑
p

ρp (2.1)

and the momentum is expressed as

ũiρ̃ = suiρ+(1− s)∑
p

ρpuip. (2.2)

The equations above indicate that at the limits, when s→ 0 density and momentum of the

mixture are determined by the MD phase, and, contrary, when s→ 1 the mixture properties are

specified by the FH phase.

The phase conservation equations are obtained, if the following philosophy is followed:

• mass is conserved;

• Newton’s second law is applied (momentum conservation);

• energy is conserved.

The following definitions from CFD are used: control volume is a closed volume drawn within

a finite region of the flow, it is a reasonably large and finite region of the flow; control sur f ace is

a surface of the control volume [54].

In the following sections, fundamental physical principles listed above are applied to the fluid

crossing the control volume’s surface and to the fluid inside the control volume.

2.1.1 Mass conservation

As was noted in the previous section a model of a finite control volume fixed in space is considered.

A vector ~̃u denotes the velocity on the control surface, where vector elemental surface area is d~S.

Let dV be an elemental volume inside the finite control volume.

The mass conservation principle is applied to this control volume, that means ‘net mass flow

out of the control volume through the surface S’ is equal to the ‘time rate of decrease of mass
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inside the control volume’. Then, the mass conservation for the mixture, with density ρ̃ is given

by the expression:
∂ρ̃

∂t
+

∂

∂xi
(ũiρ̃) = 0, (2.3)

where i denotes the spatial component (x, y or z) and the derivative with respect to the coordinate
∂

∂xi
=
(

∂

∂x ,
∂

∂y ,
∂

∂z

)
.

An assumption is made that the phases are able to convert from one to another, such that the

total mass of the mixture is constant. The same assumption is applicable to momentum.

The mass conservation equation of the mixture is not of a great importance, although it can be

used to extract mass conservation equations of the phases.

Equation (2.3) can be decoupled in the mass conservation laws of each phase. For example,

the FH phase mass conservation equation is given by

∂

∂t
sρ+

∂

∂xi
ũisρ = Jρ, (2.4)

and the MD phase mass conservation equation can be written as

∂

∂t
(1− s)∑

p
ρp +

∂

∂xi
(1− s)∑

p
uipρp =−Jρ, (2.5)

where Jρ is a phase mass sink/source, here the transport velocity of the FH phase is replaced by

the conservation velocity of a mixture ũi in order to produce well-defined equations of motion.

Thus, (2.3) is not entirely correct and following derivations will be based on the (2.4) and (2.5).

Throughout this work coupling method implies that imbalance between the FH and MD phase

is driven to a particular value. In the case of mass it can be specified in the following manner

D
Dt0

(
ρ̃−∑

p
ρp

)
= Lρ ·

(
ρ̃−∑

p
ρp

)
, (2.6)

where D
Dt0

= ∂

∂t ·+
∂

∂xi
ũi·, the Lρ operator drives the corresponding deviation to the prescribed value

within the zone 0 < s < 1 and returns zero at the s = 0 and s = 1.

This assumption or dynamic law provides an ability to adjust the density of the MD phase

∑p ρ to the density of the mixture ρ̃. The nature of the Lρ operator is a matter of preferences/

convenience and will be discussed in the Section 2.3 and Section 2.4).

First, the FH phase contribution to the mass conservation is estimated.

Using the notation of the D/Dt0, (2.6) can be expanded to

∂

∂t

(
ρ̃−∑

p
ρp

)
+

∂

∂xi
ũi

(
ρ̃−∑

p
ρp

)
= Lρ ·

(
ρ̃−∑

p
ρp

)
, (2.7)

if ρ̃ from the (2.1) is substituted in the (2.7), then dynamical law, (2.6), can be expressed as

∂

∂t
s

(
ρ−∑

p
ρp

)
+

∂

∂xi
ũis

(
ρ−∑

p
ρp

)
= Lρ ·

(
ρ̃−∑

p
ρp

)
. (2.8)
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Equation (2.8) together with the FH phase mass conservation, (2.4), yields the mass sink/

source equal to

Jρ =
∂

∂t
s∑

p
ρp +

∂

∂xi
ũis∑

p
ρp +Lρ ·

(
ρ̃−∑

p
ρp

)
, (2.9)

we keep ρ̃ on the right hand side in order to obtain modified equations of motion, that contain the

mixture (‘tilde’) and MD variables.

Once Jρ is known, the FH phase mass conservation (2.4) can be used.

Secondly, the MD phase contribution to the mass conservation is estimated. The mass sink/source

Jρ can be substituted in the MD phase mass conservation (2.5) that gives the following relationship

∂

∂t
(1− s)∑

p
ρp +

∂

∂xi
(1− s)∑

p
ρpuip =−

∂

∂t
s∑

p
ρp−

∂

∂xi
ũis∑

p
ρp−Lρ ·

(
ρ̃−∑

p
ρp

)
,

which can be reordered to

∂

∂t ∑
p

ρp +
∂

∂xi
sũi ∑

p
ρp +

∂

∂xi
(1− s)∑

p
ρpuip =−Lρ ·

(
ρ̃−∑

p
ρp

)
. (2.10)

The mass conservation equation of the MD phase must be considered in the context of Molec-

ular Dynamics simulation. For this purpose it is convenient to use the mass conservation equation

in the following form
∂

∂t ∑
p

ρp +
∂

∂xi
∑
p

dxip

dt
ρp = 0, (2.11)

where the modified velocities dxip
dt of the MD particles are introduced. These velocities include the

mass source/sink Jρ.

Equation (2.10) together with (2.11) give

∂

∂xi
∑
p

dxip

dt
ρp =

∂

∂xi
ũi ∑

p
ρp +

∂

∂xi
(1− s)∑

p
ρpuip +Lρ ·

(
ρ̃−∑

p
ρp

)
, (2.12)

that is further integrated yielding the mass conservation equation of the MD phase, that is applied

to the entire cell

∑
p

dxip

dt
ρp = ũi ∑

p
ρp +(1− s)∑

p
ρpuip +

∫
Lρ ·

(
ρ̃−∑

p
ρp

)
dx.

From the equation above the single particle velocity can be derived by eliminating the sum-

mation

dxip

dt
= uip + s(ũi−uip)+

1
ρpN(t)

∫
Lρ ·

(
ρ̃−∑

p
ρp

)
dx, (2.13)

where N(t) is the number of particles in the cell.

As a result, new MD particles velocities/coordinates, (2.13), were obtained. The mass source/sink

Jρ defined in (2.9) is used in the mass conservation equation for the FH phase (2.4). This set of

equations ensures that the total mass of the mixture is conserved.
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2.1.2 Momentum conservation

In addition to the conservation of mass, it is appropriate to assume that the momentum is also

conserved.

Thus, another fundamental physical principle is applied to the control volume, that is the

Newton’s second law

~F = m~a, (2.14)

where the net force ~F is proportional to the acceleration ~a. It is assumed that the control volume

is exposed to the surface forces, while the body forces are set to zero for convenience.

These assumptions lead to the momentum conservation equation of the mixture, that is conse-

quently decoupled into the FH phase momentum conservation equation

∂

∂t
sρu j +

∂

∂xi
ũiu jsρ = sFj + Ju, (2.15)

and the MD phase momentum conservation equation

∂

∂t
(1− s)∑

p
ρpu jp +

∂

∂xi
(1− s)∑

p
uipu jpρp =

(1− s)
Vcell

∑
p

Fjp− Ju, (2.16)

where Fj is the FH force (per volume), Fjp is the MD force and Ju is a momentum exchange rate.

Similar procedure as for the mass conservation equation is used here. That means that the

difference between the MD phase and the mixture momentum is driven to a prescribed value. This

assumption is expressed as

D
Dt0

(
ũ jρ̃−∑

p
ρpu jp

)
= Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
, (2.17)

where Lu is the forcing operator, which will be defined in Section 2.3 and Section 2.4 for different

coupling approaches (cases).

A procedure similar to the mass sink/source evaluation is applied to the momentum exchange

rate, which is later used in the FH phase momentum conservation, (2.15).

Equation (2.17) can be expanded to

∂

∂t

(
ũ jρ̃−∑

p
ρpu jp

)
+

∂

∂xi
ũi

(
ũ jρ̃−∑

p
ρpu jp

)
= Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
,

where ũiρ̃ is substituted from the (2.2) yielding

∂

∂t
s

(
u jρ−∑

p
ρpu jp

)
+

∂

∂xi
sũi

(
u jρ−∑

p
ρpu jp

)
= Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
,

similar to the mass conservation case we keep ũ jρ̃ on the right hand side in order to obtain modified

equations of motion, that contain the mixture (‘tilde’) and MD variables.

The equation above together with the (2.15) gives the momentum exchange rate
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Ju =
∂

∂t
s∑

p
ρpu jp +

∂

∂xi
sũi ∑

p
ρpu jp− sFj +Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
. (2.18)

The definition of Ju completes the FH phase momentum conservation (2.15).

Therefore, the momentum exchange rate Ju can be substituted in the MD phase momentum

conservation, (2.16), and produce

∂

∂t
(1− s)∑

p
ρpu jp +

∂

∂xi
(1− s)∑

p
uipu jpρp = (2.19)

=
(1− s)
Vcell

∑
p

Fjp + sFj−
∂

∂t
s∑

p
ρpu jp−

∂

∂xi
sũi ∑

p
ρpu jp−Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
,

that is further simplified to

∂

∂t ∑
p

ρpu jp +
∂

∂xi
(1− s)∑

p
uipu jpρp = (2.20)

=
(1− s)
Vcell

∑
p

Fjp + sFj−
∂

∂xi
sũi ∑

p
ρpu jp−Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
.

Effectively, the same analogy with the MD phase mass conservation is used for the momentum.

It is convenient to use the momentum conservation equation in the following form

∂

∂t ∑
p

ρpu jp +
∂

∂xi
∑
p

dxip

dt
u jpρp = ∑

p
ρp

duN
jp

dt
, (2.21)

that leads to the modified force of the MD phase
duN

jp
dt , which includes the momentum exchange

rate Ju.

Consequently, a series of rearrangements and substitutions are made to obtain the MD phase

forces. Equation (2.21) in combination with (2.20) yield

− ∂

∂xi
∑
p

dxip

dt
u jpρp +∑

p
ρp

duN
jp

dt
+

∂

∂xi
(1− s)∑

p
uipu jpρp = (2.22)

=
(1− s)
Vcell

∑
p

Fjp + sFj−
∂

∂xi
sũi ∑

p
ρpu jp−Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
,

using (2.12) we can obtain following relationship

∂

∂xi
∑
p

dxip

dt
u jpρp =

∂

∂xi
sũi ∑

p
u jpρp +

∂

∂xi
(1− s)∑

p
u jpρpuip +Lρ ·

(
ρ̃−∑

p
ρp

)
∑p u jp

N(t)
,

the modified force/acceleration acting on the molecules in each cell is

∑
p

ρp
duN

jp

dt
= (1− s)

∑p Fjp

Vcell
+ sFj +Lρ ·

(
ρ̃−∑

p
ρp

)
∑p u jp

N(t)
−Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
.
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The individual particle’s force/acceleration becomes

duN
jp

dt
= (1− s)

Fjp

ρpVcell
+

1
ρpN(t)

[
sFj +Lρ ·

(
ρ̃−∑

p
ρp

)
∑p u jp

N(t)
−Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)]
.

(2.23)

The new equations of motion include terms ρ̃−∑p ρp and ũ jρ̃−∑p ρpu jp that force MD

particles to minimize the difference between the density and momentum of the mixture and MD

phase.

As a result, a full set of equations of motion is obtained. Where we evaluate MD particles

accelerations /velocities using (2.23), that are consistent with the MD phase momentum conserva-

tion, (2.16), as well as the FH phase momentum conservation, (2.15), and the momentum exchange

rate, (2.18).

2.1.3 Energy conservation

Consistent mass and momentum conservation equations for the FH and MD phases were derived.

These conservation equations are similar to the Navier-Stokes equations, since the same funda-

mental principles were applied.

Notably [55], in the case of liquids at isothermal conditions for which the adiabatic heat ratio

approaches unity, the macroscopic conservation laws for mass and momentum are sufficient to

consider, because the energy equation decouples from the governing Navier-Stokes equations.

However, for the non-equilibrium simulations the total energy control method can be consid-

ered. The effect of this method is demonstrated in Section 2.5. Which also showed that the balance

of the total energy between both phases is consistent for all concentrations s.

Summarising, we have derived the conservation equations for both phases alongside with the

equations of motion for the MD particles, (2.13) and (2.23). The conservation equations are used

only for the FH phase. Thus, the FH phase is determined using (2.4) and (2.15), where the mass

source/sink Jρ is defined as (2.9) and the momentum exchange rate Ju, (2.18). The operators Lρ

and Lu will be defined in Section 2.3 and Section 2.4 for different coupling approaches (cases).

Originally, the FH force (per volume) Fj, according to the Navier-Stokes equations, is defined

as a gradient of the stress tensor. However, in this work, a Landau Lifshitz - Fluctuating Hydrody-

namics framework is used. Which extends the applicability range of the Navier-Stokes equations

to smaller scales. Practically it means that the stochastic stress tensor is used additionally to the

normal stress tensor. The details and implementation of the LL-FH framework together with the

derived equations is discussed in the following sections.
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2.2 Implementation

2.2.1 MD simulation

The first principles in the present work are shifted from the quantum N-body (QM) to Molecular

Dynamics framework. This is due to the complexity of mathematics involved in QM for the

large systems and over detailed solution. Molecular Dynamics can be assumed as the most likely

method and accurate enough to study atomistic processes.

Here the basics of MD simulation are explained, for practical simulations more advanced

techniques are commonly used.

As it was noted before, the MD phase is obtained using new equations of motion, (2.13)

and (2.23), in the Molecular Dynamics framework. In other words, physical movements of MD

particles are simulated in the context of N-body system using newly derived equations of motion.

These MD particles interact for a certain period of time and the path of the particles (trajectory) is

determined by the numerical solution of (2.13) and (2.23).

Usually the interaction force ~Fjp between the particles in the (2.23) is obtained by taking minus

gradient of the interaction potential

~Fjp =−
∂Φ

∂x j
,

if the interaction potential Φ is conservative.

A type of the potential depends on the complexity of the interaction between particles. One of

the simplest representations of the interaction is in noble gases.

Noble gases have weak interatomic forces due to the ‘full’ outer shell of the valence electrons,

and they are all monoatomic gases under normal conditions. Thus, no complex or long range

interactions are involved, that eventually saves computational costs.

The interacting potential, originally proposed for noble gases such as liquid argon, is called

Lennard-Jones potential (LJ) or 6−12 potential. It is a simple mathematical model that approxi-

mates the interaction between a pair of neutral atoms or molecules.

In mathematical terms LJ potential is given by

ΦLJ(ri j) = εLJ

((
σLJ

ri j

)12

−
(

σLJ

ri j

)6
)
, (2.24)

where σLJ,εLJ are the model’s parameters describing the length and depth of the potential and ri j

is the distance between the interacting particles. This potential is widely used in MD simulations.

Water, which is more often used in experiments and is much more complex liquid than liquid

argon, is not a good choice to start with. Since the complexity of the water molecules interaction

requires more computational efforts.
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For that reason we gradually increase the complexity of the solvent, that is the interaction

potential, starting with the LJ potential switching to BN2D and, finally, the SPC/E water model.

The BN2D water model is discussed in details in Chapter 3. The SPC/E model detailed expla-

nation can be found in [51] and a brief description in Section 3.3.

It should be noted, that the BN2D water model developed by Ben -Naim gives atomic structural

details and three-dimensionality, although it is a two-dimensional model. This model uses only

few parameters and is computationally simple enough, and eventually mimics anomalous water

properties.

In application to large systems, the dimensionality (2 or 3) makes critical difference in terms

of computational effort. Other benefit of BN2D water model is that it treats hydrogen bonding

geometrically, that does not require to calculate long range Coulomb interactions, which are com-

putationally expensive [56].

Thus, the most computationally expensive are three-dimensional model/cases. For which there

are many realistic water models, such as standard TIP3P, TIP4P, SPC/E, etc., [57] as well as 3D

‘Mercedes Benz’ water model [58].

Algorithms and methods

Numerically Molecular Dynamics simulations are ill-conditioned, creating cumulative errors in

numerical integration, that cannot be eliminated. However they can be minimized by a proper

selection of algorithms and parameters.

A simple numerical scheme which is widely used in MD is known as Leapfrog or Verlet

method. This method yields coordinates that are accurate to third order in time dt, and, from the

point of view of energy conservation when Lennard - Jones type potentials are used, tend to be

considerably better than the higher-order methods. The storage requirements are also minimal

[25, 59].

In the Verlet scheme, the velocity ẋ evolution is calculated at each half timestep, while the

coordinates x are calculated only once. These steps are presented as

ẋ(t +
h
2
) = ẋ(t)+

h
2
· ẍ(t), (2.25)

x(t +h) = x(t)+h · ẋ(t + h
2
)

followed by

ẋ(t +h) = ẋ(t +
h
2
)+

h
2
· ẍ(t +h),

where ẍ is the acceleration, that from the Newton’s second law is related to force. When the

coupling is used the conventional velocities and accelerations are replaced with the ones defined

in (2.42) and (2.43).
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From a computational point of view substantial improvement can be made if interaction be-

tween particles is evaluated over a small range, slightly bigger than rcut , that is the distance, after

which the contribution to the force acting on the particle is negligible. For that reason the search

of interacting (neighbouring) particles must be improved. One of the methods that can be used in

this case is called cell list method [59].

The cell list method used here can be described as the following procedure: all simulation

domain is subdivided into the lattice of small cells, such that the cell length is slightly bigger than

rcut . All atoms are assigned to the relevant cells based on their location. The interaction between

the particles can be only with the particles located in the same or neighbouring cells. Due to the

symmetry only half of these cells must be evaluated. This technique is proved to be very useful in

the reduction of the computational effort during the force evaluation.

This method is improved even further and is called neighbouring list, more information re-

garding these methods can be found in [59].

Other technical aspect is related to the systems, that are considered as infinite, in this case

periodic boundaries are introduced. This technique allows the atoms that leave the simulation

domain through a boundary face and instantly return through the opposite face.

During the MD simulation, there is a gradual energy drift due to cumulative numerical errors,

that depend on the integration method, potential function, etc. In order to eliminate this energy drift

velocity adjustment is required during the simulation. A procedure called velocity rescaling can

infrequently adjust the particles velocities to an average velocity that is defined by the temperature

set for the particular simulation.

Other feature of the Verlet algorithm/method is that it naturally produces the NVE ensemble,

that dictates the conditions of the simulation.

Statistical ensembles were defined by Gibbs [60]:

• “Microcanonical ensemble or NV E ensemble — a statistical ensemble where the total en-

ergy of the system and the number of particles in the system are each fixed to particular

values; each of the members of the ensemble are required to have the same total energy and

particle number. The system must remain totally isolated (unable to exchange energy or

particles with its environment) in order to stay in statistical equilibrium.”

• “Isothermal–isobaric ensemble (constant temperature and constant pressure ensemble) is a

statistical mechanical ensemble that maintains constant temperature T , and constant pres-

sure P, applied. It is also called the NPT - ensemble, where the number of particles N, is

also kept as a constant. This ensemble plays an important role in chemistry as chemical

reactions are usually carried out under constant pressure condition.”
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We do not present a full list of ensembles, since only two of them were used in this work.

Throughout this work the NVE ensemble is used, however the NPT ensemble is also imple-

mented, when BN2D water model properties were compared between the ensembles and with the

real water.

2.2.2 Landau Lifshitz-Fluctuating Hydrodynamics

Here a concise review of Landau Lifshitz-Fluctuating Hydrodynamics (LL-FH) equations is un-

dertaken. These LL-FH conservation equations proved to be effective for the mesoscopic scales

simulations [61].

The LL-FH method, which was initially proposed by Landau and Lifshitz, accounts for the mi-

crostructure influence on the macroscale behaviour of the system. They suggested that the meso-

scopic scales can be described by Navier-Stokes hydrodynamic equations with added stochastic

forcing terms which ensure that the fluctuation-dissipation balance principle is satisfied and essen-

tially account for the thermal fluctuations, that originate from the microscopic molecular motion

[25]. This assumption is also consistent with the MD phase microscopic nature.

Considerations above can be expressed in the full set of equations

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (2.26)

∂ρui

∂t
+

∂

∂x j
(ρuiu j) =

∂

∂x j

(
Πi j + Π̃i j

)
, i = 1,2,3,

∂ρE
∂t

+
∂

∂x j
(ρEu j) =

∂

∂x j

((
Πi j + Π̃i j

)
·ui
)
+

∂

∂x j
(q j + q̃ j),

where ρ is the fluid density, ~u is the fluid velocity, Πi j is the stress tensor, the stochastic stress

tensor is Π̃i j, the stochastic energy flux is ~̃q, t denotes time and i, j are spatial coordinates (x, y or

z).

The dissipative stress tensor is defined as

Πi j =−
(

p−ξ
∂u j

∂x j

)
δi j +η

(
∂u j

∂xi
+

∂ui

∂x j
−2D−1 ∂u j

∂x j
·δi j

)
, (2.27)

with ξ and η are the shear and bulk viscosities, D is the dimension of the system, p is the pressure

and δi j is the Kronecker delta function.

In order to estimate the stochastic stress tensor fluctuation-dissipation theorem (FDT) [62] is

used, which predicts the behaviour of non-equilibrium thermodynamical systems.

The theorem provides the balance between the fluctuations in the system and its dissipative

properties. If the balance is violated then system’s behaviour can be either dominated by the

fluctuations or become too dissipative. In the first case we get instabilities, while in the second

case very small fluctuations. Thus it is important to maintain the balance between these two

properties.
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The FDT provides us with the covariance of stochastic stress tensor

〈Π̃i j(r, t) · Π̃kl(r′, t ′)〉= 2kBT
[

η
(
δikδ jl +δilδ jk

)
+

(
ξ− 2

3
η

)
δi jδkl

]
(2.28)

×δ(r− r′)δ(t− t ′)

that yields stochastic stress [61] expressed as

Π̃i j =

√
2kBT
δtδV

(√
2
√

η ·Gs
i j +
√

D
√

ξ
tr[G]

D
Ei j

)
, (2.29)

where G is Gaussian random matrix, Gs
i j =

Gi j+GT
i j

2 − tr[G]
D Ei j, E is the unity matrix and tr[G] =

G11 +G22 +G33, which stands for the matrix trace, kB is Boltzmann constant, T is the tempera-

ture. The Gaussian random matrix G is a matrix which elements are randomly generated with the

Gaussian distribution [63].

The first equation in (2.26) is the standard Navier-Stokes mass conservation equation, the

second equation is the momentum conservation equations with the stochastic forcing terms, and

the last is the energy equation with the stochastic energy flux term.

As was mentioned before, the FH phase is modelled using a generalisation of the deterministic

Navier-Stokes equations for microscopic flows, that is LL-FH.

The main benefit of LL-FH model is that it allows accurate modelling of statistical properties

of the atomistic fluctuations. On the other hand, in the limit of large volumes, the LL-FH model

tends to the conventional Navier-Stokes equations. Most notably, when the space and time scales

become small, the LL-FH equations are able to account for the thermal motion of molecules.
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Figure 2.2: Schematic representation of the numerical schemes. a) Conserved variables of the MD
and FH phase, such as density and momentum are defined at the cell’s centre on the regular grid,
while the mass and momentum fluxes are located on the cell faces. b) The CABARET numerical
scheme evaluates conservative variables (circles) every half timestep, while the fluxes (triangles)
are obtained every timestep between the conservative variables evaluation

The modified FH phase conservation equations, (2.4) and (2.15), together with (2.9) and (2.18)

are solved numerically with the Eulerian methods which have reached mature state in Computa-

tional Fluid Dynamics. In the current implementation, the governing partial differential equations

of the FH phase are discretised using a Central Leapfrog finite-difference scheme for the left hand

side advection terms and the central finite differences for the right hand side source terms. The

total order of approximation is two in space and time. For enhanced numerical stability, a stag-

gered formulation of the Central Leapfrog scheme is used by introducing separate variables for the

cell centres and the cell faces, Fig. 2.2a, together with a low-dissipative non-linear flux correction.

The details of the staggered nonlinear Central Leapfrog scheme for advection equation as well as

its implementation for the classical Landau Lifshitz-Fluctuating Hydrodynamics equations can be

found in [64, 65].

In this work two different approaches of communication between disparate scales are consid-

ered, where the LL-FH simulation is different for each case.

2.2.3 Interpolation in between the scales

An interpolation is used since the LL-FH method provides data only for the grid points while MD

particles can be located anywhere in the simulation domain.
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Figure 2.3: Linear interpolation illustration in 2D space (x and y)

In this work linear interpolation is implemented, Fig. 2.3, where P is the location of a particle

and P11,P12,P21,P22 are the grid points, where the MD and FH phase densities and momentum are

available.

Linear interpolation for location P is performed as subsequent steps of linear interpolation for

the positions Q1 and Q2 using the following relationships

f (Q1)≈
x2− x
x2− x1

f (P11)+
x− x1

x2− x1
f (P21) (2.30)

and

f (Q2)≈
x2− x
x2− x1

f (P12)+
x− x1

x2− x1
f (P22) (2.31)

followed by the linear interpolation between Q1 and Q2 for the location P

f (P)≈ y2− y
y2− y1

f (P1)+
y− y1

y2− y1
f (P2). (2.32)

Note, that this procedure is applied to each MD particle.

2.2.4 Communicating large and small scales

The subject of this subsection is the communication between the FH and MD phases. According

to the previous assumptions, it is known, that each phase properties have dual nature.

First, the continuum properties of each phase, such as the MD phase density ∑p ρp and mo-

mentum ∑p ρpuip and the FH phase density ρ and momentum ui are situated at the cell centres of

the regular grid Fig. 2.2a, and the FH phase density flux ũiρ and momentum flux ũi(ρui) at the cell

faces.
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Second, atomistic properties, where the FH phase density and momentum are considered by

means of stochastic terms and the MD phase density and momentum are obtained using MD

particles positions and velocities. Note, that the density of particles ρp is the same regardless the

values of the coupling parameter s. Thus scaling of the interaction potential between MD particles

is not required.

Successful communication between the phases requires information from both MD and LL-

FH simulations, thus an update/exchange of the MD phase density ∑p ρp and momentum ∑p ρpuip

with the FH phase density ρ̃ and momentum ρ̃ũi is handled simultaneously.

An essential criteria is that the time lapse in both simulations is the same. It means that if the

ratio between the timesteps in LL-FH and MD simulations is n = dtFH/dtMD, then every nth MD

iteration the MD phase was advanced to the one timestep of the FH phase. At this point the data

between the phases can be exchanged.

It is also important to note, that the periodic boundary conditions were used to avoid surface

tension and rigid boundary effect during the simulations. Additionally, a linear interpolation was

used, since the FH and MD phase densities and momentum are available only at the cell centres,

whereas MD particles can be located anywhere in the simulation domain.

The coupling framework encompasses multiple approaches joined together in a consistent

manner. It is composed of different techniques and, obviously, requires an assessment of credibil-

ity and accuracy. Otherwise a lack of validity and effectiveness will undermine the applicability

of coupling method itself. Thus, we used a set of conditions and combination of techniques to

determine whether the method works as it was originally expected.

If our assertions prove to be valid, the consequent step would be to apply this method to water

models. Such application would be favourable and encouraging in a sense of computation effort

minimization, when protein folding and other important biomolecular processes or large systems,

such as virus in water are studied.

Also we would have a mapping technique from the large to small scales, which is based on the

physical analogy.

We suggest two approaches, each of which uses different combinations of equations obtained

in previous sections as well as a set of conditions.

According to the first coupling approach, denoted as ‘one way’ coupling, we employ new

equations of motion (2.13) and (2.23) for the MD particles, and a standard LL-FH simulation for

the FH phase. Therefore, if s 6= 0, we expect that these new equations of motion will alter trajec-

tories of the MD particles. The change of the trajectories will result in the MD phase resemblance

with the FH phase. That means that the fluctuations of the densities and momenta of the MD

phase become correlated with the FH phase, but not the other way around, since the FH phase
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fluctuations were obtained from a stand-alone LL-FH simulation. As a consequence, when s is

gradually increased the resemblance between the MD and FH phase gets more pronounced.

The second coupling approach, denoted as ‘two way’ coupling, utilizes (2.4) and (2.15) for

the FH phase simultaneously with the equations of the MD phase (2.13) and (2.23). In this case

the MD particles experience similar effect of the coupling as in the ‘one way’ coupling, although

the ‘two way’ coupling is different. The difference is in the MD and FH phase communication,

since in ‘two way’ coupling MD phase density and momentum fluctuations provide a feedback to

the FH phase, thereby amending FH phase fluctuations.

We have studied these two coupling approaches in details and results are presented in the

further sections.

Both coupling approaches were considered in the adiabatic systems (energy equation is not

integrated).

2.3 ‘One way’ coupling

The ‘one way’ coupling implementation is split into two categories, one corresponds to the FH

and the other to the MD phase. In general, the equations that are used in the coupling require

information, such as densities and momenta of both phases, however in the ‘one way’ case the FH

phase must be know beforehand. For that reason the FH phase fluctuations are obtained in advance

with the standard LL-FH simulation. This simulation provides with the values of the densities and

momenta at the grid cell centres for a certain period of time. Then these values are used directly

in the coupled equations of the MD phase.

2.3.1 FH phase

This subsection is throughout devoted to the standard Landau Lifshitz-Fluctuating Hydrodynam-

ics.

The LL-FH is an extrapolation of the continuum hydrodynamics below the range of applica-

bility. The LL-FH governing equations are the Navier-Stokes equations with the fluctuating flux

terms of energy and momentum. The intensity of these fluxes is determined by the temperature

and the spatial and temporal scales, such that the fluctuating dissipative theorem is satisfied. In the

LL-FH context the spatial scale is meant to be the size of the grid cells, Fig. 2.2a.

The energy conservation decouples from the mass and momentum conservation equations,

when no stochastic energy flux is present, that is true for the adiabatic systems.
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The standard LL-FH governing equations (without energy conservation equation) are given by

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (2.33)

∂ρui

∂t
+

∂

∂x j
(ρuiu j) =

∂

∂x j

(
Πi j + Π̃i j

)
, i = 1,2,3,

where the first equation corresponds to the mass conservation followed by the momentum conser-

vation equation.

We keep the same considerations and notations as previously, where i, j are the spatial coordi-

nates (x, y or z), ρ is the fluid density, u j is the fluid velocity ith component, Πi j is the stress tensor,

the stochastic stress tensor is Π̃i j, the stochastic energy flux is ~̃q, and t denotes time.

The stress tensor is defined as

Πi j =−
(

p−ξ
∂u j

∂x j

)
δi j +η

(
∂u j

∂xi
+

∂ui

∂x j
−2D−1 ∂u j

∂x j
·δi j

)
, (2.34)

with ξ and η are the shear and bulk viscosities, D is the dimension of the system, p is the pressure

and δi j is the Kronecker delta function.

The stochastic stress [61] is expressed as

Π̃i j =

√
2kBT
δtδV

(√
2
√

η ·Gs
i j +
√

D
√

ξ
tr[G]

D
Ei j

)
, (2.35)

where G is Gaussian random matrix, Gs
i j =

Gi j+GT
i j

2 − tr[G]
D Ei j, E is the unity matrix and tr[G] =

G11+G22+G33, which stands for the matrix trace, kB is Boltzmann constant, T is the temperature.

2.3.2 LL-FH simulation

Following standard approaches in CFD, the partial differential equations of the LL-FH are solved

using numerical methods. There are many different numerical schemes available in CFD, although

every scheme has its limitations and benefits [23].

Here, for instance, the CABARET scheme [64, 65] was used for the LL-FH simulations. This

numerical scheme possesses improved dispersion and dissipative properties in comparison with the

other approaches. In distinction from the schemes based on the central differences, the CABARET

scheme does not yield spurious reflected waves travelling in the opposite direction even on a very

coarse grids, that is common for other schemes [64].

In Fig. 2.2b the numerical scheme for the solution of the set of LL-FH governing equations is

shown. The solution is constructed using an explicit predictor-corrector algorithm (Verlet) which

consists of the three consecutive stages presented in Algorithm. 1.
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Algorithm 1: Pseudo-code for the standard LL-FH simulation
Result: Fluctuations of the velocities and densities of the FH phase

for n≤ simulation time do

Predictor: Calculate the intermediate conservative variables ρ
n+1/2
i+1/2 and (ρu)n+1/2

i+1/2 at

the half timestep;

Extrapolation: Calculate the flux variables for the next time layer n+1 using

characteristic decomposition method;

Corrector: Calculate the conservative variables ρ
n+1
i+1/2 and (ρu)n+1

i+1/2 for the next

timestep;

Post processing: Collect statistics;

end

In terms of finite differences the mass conservation equation of the LL-FH using CABARET

scheme is written as [64]

ρ
n+1/2
i+1/2 −ρn

i+1/2

0.5 · τn+1/2 +
ρn

i+1un
i+1−ρn

i un
i

xi+1− xi
= 0, (2.36)

and the momentum equation is expressed as

ρ
n+1/2
i+1/2 un+1/2

i+1/2 −ρn
i+1/2un

i+1/2

0.5 · τn+1/2 +
ρn

i+1un
i+1un

i+1−ρn
i un

i un
i

xi+1− xi
+

pn
i+1− pn

i

xi+1− xi
= (2.37)

=
Π

n+1/2
i+1 −Π

n+1/2
i

xi+1− xi
+

Π̃
n+1/2
i+1 − Π̃

n+1/2
i

xi+1− xi
.

The flux variables are calculated using characteristic decomposition method, where Riemann

invariants for the set of equations (2.33) are R= u+c lnρ and Q= u−c lnρ, with the characteristic

speeds λ1,2 = u± c, where c is the speed of sound (derivations can be found in Appendix A.2).

The extrapolation of the fluxes is accomplished in several steps

• Update of invariants

Xn+1
i = Xn+1/2

i+1/2 +Xn+1/2
i−1/2 −Xn

i ,

where X = (R,Q).

• Correct invariants according to the maximum principle

φ
n+1
i = φ

n+1
i , min(φn

i )≤ φ
n+1
i ≤max(φn

i ), (2.38)

φ
n+1
i = min(φn

i ), φ
n+1
i < min(φn

i ),

φ
n+1
i = max(φn

i ), φ
n+1
i > max(φn

i ),
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where

min(φn
i ) =

(
min(Rn

i−1,R
n
i−1/2,R

n
i )+min(Rn

i ,R
n
i+1/2,R

n
i+1)
)
/2+

(
(F1)

n
i−1/2 +(F1)

n
i+1/2

)
/2

and

max(φn
i ) =

(
max(Rn

i−1,R
n
i−1/2,R

n
i )+max(Rn

i ,R
n
i+1/2,R

n
i+1)
)
/2+

(
(F1)

n
i−1/2 +(F1)

n
i+1/2

)
/2,

here sources are evaluated as

(F1)
n
i−1/2 =

Rn+1/2
i−1/2 −Rn

i−1/2

0.5 · τn+1/2 +(λ1)
n+1/2
i−1/2

Rn
i −Rn

i−1

xi− xi−1
,

(F1)
n
i+1/2 =

Rn+1/2
i+1/2 −Rn

i+1/2

0.5 · τn+1/2 +(λ1)
n+1/2
i+1/2

Rn
i+1−Rn

i

xi+1− xi
.

The same procedure is applied to the Q invariant.

The fluxes at the time layer n+1 are used to calculate the conservative variables ρn+1 and un+1

for the next time layer

ρ
n+1
i+1/2−ρ

n+1/2
i+1/2

0.5 · τn+1/2 +
ρ

n+1
i+1 un+1

i+1 −ρ
n+1
i un+1

i

xi+1− xi
= 0

and

ρ
n+1
i+1/2un+1

i+1/2−ρ
n+1/2
i+1/2 un+1/2

i+1/2

0.5 · τn+1/2 +
ρ

n+1
i+1 un+1

i+1 un+1
i+1 −ρ

n+1
i un+1

i un+1
i

xi+1− xi
+

pn+1
i+1 − pn+1

i

xi+1− xi
= (2.39)

=
τ

n+1/2
i+1 − τ

n+1/2
i

xi+1− xi
+

τsn+1/2
i+1 − τsn+1/2

i

xi+1− xi
.

The LL-FH simulation provides us with the set of data, that consists of the fluctuating variables

such as density ρ and momentum ρui in each grid cell. This data is denoted as the FH phase

fluctuations and is used in the new equations of motion of the MD particles .

2.3.3 MD phase

In this subsection the MD phase equations are completed with the definitions of the coupling

operators Lρ and Lu.

The MD phase should follow the fluctuations of the FH phase, when s→ 1, because the new

equations of motion of the MD phase involve terms that drive the differences of the densities and

the momenta between the phases to a prescribed value. From the physical point of view, this is

due to the external force created by the coupling, that impose the FH phase fluctuations on the MD

phase, leading to the new particles trajectories.

The difference between the MD and FH phase densities and momenta play essential role in the

coupling, while the strength of coupling is characterized by adjustable parameters, such as s, α,β
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and the chosen type of the forcing. It is recommended to use ‘mild’ Lρ and Lu operators, that do

not impose substantial constraints on the MD particles movements, when the effect of coupling is

expected to be small. Additionally, we choose Lu operator, such that at the limit s = 1 we recover

standard LL-FH model for the FH phase. Here we consider diffusive type of operators Lρ and Lu.

An operator Lρ for the mass conservation is assumed to be

Lρ ·

(
ρ̃−∑

p
ρp

)
=

∂

∂xi

[
s(1− s)α

∂

∂xi

(
ρ̃−∑

p
ρp

)]
(2.40)

and for the momentum conservation Lu was chosen as

Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
=

∂

∂x j

[
s(1− s)β

∂

∂x j

(
ũ jρ̃−∑

p
ρpu jp

)]
. (2.41)

Here, new parameters α and β were introduced. These parameters allow to adjust the strength

of the forcing operators. In this case α and β can be regarded as a diffusion coefficients, although

the diffusion is unphysical, since we consider phases that do not exist in real life. From the

technical point of view, α and β parameters are chosen for the numerical stability. The requirement

for the parameters is that α,β > 0, that will sustain the convergence between the densities and

momenta of the two phases. The magnitude of the parameters controls the stability of simulations.

Criteria for choosing α and β will be discussed in the following sections.

The new equations of motion of MD particles according to the definitions of the Lρ operator,

(2.40), yields the following velocities for each MD particle

dxip

dt
= uip + s(ũi−uip)+ s(1− s)α(x)

1
ρpN(t)

∂

∂xi

(
ρ̃−∑

p
ρp

)
, (2.42)

and according to the Lu definition (2.41) following acceleration of a single particle is obtained

∂uN
jp

∂t
= (1− s)

Fjp

ρpVcell
+

1
ρpN(t)

× (2.43)

×

[
sFj +

∂

∂xi

(
s(1− s)α(x)

∂

∂xi

(
ρ̃−∑

p
ρp

))
∑p u jp

N(t)
− ∂

∂xi

(
s(1− s)β(x)

∂

∂xi

(
ũ jρ̃−∑

p
ρpu jp

))]
.

Equation above shows, that when s = 0 we recover pure MD equations of motion. When

s = 1 MD particles experience FH force, which alters their velocities. Later, these velocities are

disregarded when particles positions are updated (2.42). Thus, a ‘static structure’ of MD particles

is moving with the FH phase flow velocity. At the limit s = 0 or s = 1 contribution from the terms

ρ̃−∑p ρp and ũ jρ̃−∑p ρpu jp becomes zero, that means either the MD or FH phase does not exist

and there is no reference for the MD phase to be driven to.

2.3.4 MD simulation

The MD phase simulation details are described in this subsection. The 2D Lennard- Jones liquid

is used for testing the coupling method. This interaction potential gives a good approximation for

49



Chapter 2 BRIDGING LARGE AND SMALL SCALES

the study of argon and is given by

ΦLJ(ri j) = εLJ

((
σLJ

ri j

)12

−
(

σLJ

ri j

)6
)
, (2.44)

where σLJ,εLJ are the model’s parameters describing the length and depth of the potential and ri j

is the distance between the interacting particles. This potential is widely used in MD simulations,

and is accurate enough for illustrating the application of the coupling method to realistic liquid.

At this point dimensionless units are introduced, they provide various benefits, starting from

the ability to solve a whole class of problems, that can be consequently scaled to the physical units,

ending with the reduction of the computational effort and storage requirement, since the most of

the variables and parameters are close to unity.

The dimensionless units are defined by choosing σ , m and ε to be the units of length, mass,

and energy, respectively, and making the replacements

• length: r→ r∗σ;

• energy: e→ e∗ε;

• time: t→ t∗
√

mσ2

ε
;

that provide us with the dimensionless length r∗, energy e∗ and time t∗.

From now on, all variables involved in the computation and presented on the figures are ex-

pressed in the dimensionless units, unless it is said otherwise. Thus, we denote dimensionless

density of the FH phase as ρ, of the MD phase as ∑p ρp and of the mixture as ρ̃. The dimensionless

velocity of the FH phase is ui, of the MD phase is ∑p uip and of the mixture is ũi, where i is the

spatial component (x, y or z).

As was mentioned in the previous sections, the simulation of the MD phase coupled with the

FH phase is carried out using Molecular Dynamics methods, specifically, the Verlet algorithm and

the new equations of motion (2.42) and (2.43).

MD particles coordinates and velocities are obtained according to the procedure explained in

Algorithm. 2.
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Algorithm 2: Pseudo code for the ‘one way’ coupling
Result: Obtain MD particles coordinates and velocities

for n≤ simulation time do

if n=dtHD/dtMD then

assign the FH phase ρ and ρui to the cell centres from the LL-FH simulation;

else

calculate ∑p ρp and ∑p ρpuip for each cell;

update coordinates and velocities using modified equations of motion (2.42) and

(2.43) at the half timestep ;

calculate interaction forces and ∑p ρpuip for each cell;

update velocities using modified equations of motion (2.43) at the half timestep ;

end

use ∑p ρp and ∑p ρpuip for analysis;

end

Since the FH phase density and momentum were obtained from the stand-alone LL-FH simu-

lation, the terms in (2.42) and (2.43) related to α and β can be calculated. The MD phase density

is calculated in the following way: all particles inside the cell are summed and divided over the

volume of the cell, thus, the density ∑p ρp is obtained for each cell. The momentum is obtained

in a similar way: multiply the density ρp and velocity uip of a particle and sum them over the cell,

this will yield the MD phase momentum ∑p ρpuip.

Now the FH and MD phase properties are known, and the new equations of motion can be

evaluated. It must be noted, that the linear interpolation is used, since the MD and FH phase

properties are available only at the cell centres, however they are required in the whole domain.

According to the Verlet algorithm, the velocities are updated every half timestep and the coor-

dinates every timestep between the velocity evaluation procedure. Hence, the MD phase density

∑p ρp and momentum ∑p ρpuip are estimated at every half timestep.

All simulations were conducted in the dimensionless units, that were obtained using the Lennard-

Jones model parameters from Table. 2.1, yielding dimensionless values for the simulation condi-

tions listed in Table. 2.2.

Rounding and cut-off errors were minimized at every 100th MD iteration using the velocity

rescaling technique.

A sets of coupling coefficients α∗,β∗ = 2/1000/20000 and s = 0.1/0.5/0.8/0.95 were used

and considered to be sufficient enough to test the coupling method.
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Parameter Value

εLJ 122.4 [K]

σLJ 3.432 [Å]

m 39.948/NA [ gr
mol ]

Table 2.1: Lennard-Jones potential parameters, where NA is Avagadro number [4]

Parameter Dimensionless value

T ∗ 2.45

ρ∗ 0.607

N 10 000

dt∗MD 0.005

dt∗FH 0.05

η∗ 1.011

ξ∗ 0.337

ε∗LJ 1

σ∗LJ 1

Number of cells (Ncell) 5 x 5 (25)

Table 2.2: ‘One way’ coupling simulation conditions in dimensionless units (LJ potential)

2.3.5 Stability analysis

This subsection is devoted to the stability analysis and the simulation results that we obtained

using the ‘one way’ coupling. We perform the analysis using densities and momenta of the FH

and MD phase, that were available from 25 cells. The 10000 MD particles were used for the study

of the velocity autocorrelation and radial distribution functions.

Here we introduce the relative density difference between the FH and MD phase which is

given by

Θ
ρ =

ρ−∑p ρp

ρavg
(2.45)

and the relative velocity difference between the FH and MD phase

Θ
u
i =

ui−∑p uip

uavg
, (2.46)

where ρavg is the average density (denoted by ρ∗ in Table 2.2), uavg =
√

Ncell ·T
N denotes average

velocity which corresponds to the set temperature T , Ncell is the number of cells, N is the number

of MD particles in simulation, ∑p is performed over all MD particles in the current cell and i

stands for the velocity component (x, y or z).

As expected the MD particles followed new rules of motion when coupling was used. These

rules are described by (2.42) and (2.43), which are able to minimize the difference between the

MD and FH phase densities and momenta fluctuations. The MD particles coordinates are slightly
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adjusted to produce the desired value of the MD phase density. This adjustment gets more pro-

nounced when parameters s and α∗,β∗ are increased.

Figure 2.4: The relative difference between the FH and MD phase densities at one of the cells,
when α∗,β∗ = 2

Graphs in Fig. 2.4, Fig. 2.5, and Fig. 2.6 demonstrate different trends when the parameters α∗

and β∗ are increased. That means α∗ and β∗ values cannot be ignored and must be assessed every

time when applied to a different interaction potential.

Figure 2.5: The relative difference between the FH and MD phase densities at one of the cells,
when α∗,β∗ = 1000
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Fig. 2.4 and Fig. 2.7 show that stability of simulation for α∗,β∗ = 2 is jeopardised, when

s = 0.95.

In this case interaction between the MD particles is scaled with the (1− s) and the main

contribution to (2.42) and (2.43) is form the FH phase. The time lapse in the FH and MD phase

is different, hence the FH phase terms in (2.42) and (2.43) are constant for a certain period of

time (dtFH/dtMD timesteps). Consequently, the MD particles can get accumulated in some cells,

regardless the difference between the phase densities and momentum, which are not the dominant

terms when α∗,β∗ are small. Due to the constant number of MD particles some cells become

empty. This inconsistency leads to the high MD phase fluctuations and at some point MD particles

can get too close to each other to result in the strong repulsion, which jeopardises stability of the

simulation.

When values of α∗,β∗ are small the expected behaviour of the MD phase is not observed. That

means that the MD phase fluctuations were not able to mimic the FH phase. Even when α∗,β∗

were increased to 1000, Fig. 2.5 and Fig. 2.8 show that the correlation between the MD and FH

phase density and velocity fluctuations was not substantially enhanced.

Figure 2.6: The relative difference between the FH and MD phase densities at one of the cells,
when α∗,β∗ = 20000

Further increase of α∗,β∗ demonstrates better results, especially for the higher s values. In this

case the MD phase density fluctuations more and more resemble the FH phase density fluctuations,

the same conclusion is made for the velocities.
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X

Figure 2.7: The relative difference between the FH and MD phase velocities (x component) at
one of the cells, when α∗,β∗ = 2

Figure 2.8: The relative difference between the FH and MD phase velocities (x component) at
one of the cells, when α∗,β∗ = 1000
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Figure 2.9: The relative difference between the FH and MD phase velocities (x component) at
one of the cells, when α∗,β∗ = 20000

Fig. 2.7 illustrates unusually high fluctuations of the MD phase velocities, when s = 0.95

(α∗,β∗ = 2) that eventually will cause the simulation to crash. The peaks of these fluctuations

coincide with the ones for s < 0.95. Furthermore, increase of α∗,β∗ to 1000, Fig. 2.8, maintains

the stability and expected MD phase fluctuations. Further increase of α∗,β∗ to 20000, Fig. 2.9,

improves stability and yields desired MD phase fluctuations Fig. 2.10.

Figure 2.10: Velocity fluctuations of the FH phase ux and MD phase ∑p uxp, when α∗,β∗ = 20000
and different coupling parameter s values; ‘one way’ coupling of 2D argon

In order to eliminate conditions that cause the divergence of the velocities and densities, a set
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of simulations were conducted and presented in Table. 2.3 and Table. 2.4. These tables show how

the standard deviation of the phase differences ρ−∑p ρp and ux−∑p uxp are changing with α∗,β∗

and parameter s.

α∗ β∗ s = 0.1 s = 0.5 s = 0.8 s = 0.95

2 2 0.021 0.019 0.024 0.045

1000 2 0.018 0.012 0.011 0.015

20000 2 0.012 0.004 0.003 0.003

2 1000 0.021 0.021 0.035 0.076

1000 1000 0.020 0.011 0.009 0.014

20000 1000 0.012 0.004 0.003 0.003

2 20000 0.020 0.065 − −

1000 20000 0.019 0.011 0.010 0.017

20000 20000 0.012 0.004 0.003 0.003

Table 2.3: The standard deviations of ρ−∑p ρp, for different α∗,β∗ and s, (“-” unstable simula-
tion); The standard deviation was calculated using 34000 FH iterations

α∗ β∗ s = 0.1 s = 0.5 s = 0.8 s = 0.95

2 2 0.090 0.077 0.103 0.431

1000 2 0.088 0.085 0.103 0.185

20000 2 0.088 0.125 0.175 0.214

2 1000 0.080 0.060 0.074 0.194

1000 1000 0.077 0.061 0.059 0.095

20000 1000 0.086 0.089 0.075 0.125

2 20000 0.059 0.032 − −

1000 20000 0.059 0.027 0.022 0.021

20000 20000 0.062 0.033 0.022 0.021

Table 2.4: The standard deviations of ux−∑p uxp for different α∗,β∗ and s, (“-” unstable simula-
tion); The standard deviation was calculated using 34000 FH iterations

One can argue, that the fluctuations of pure FH and MD phases as well as coupled systems

are not compatible, hence the figures above are not representable. Thus we obtained the standard

deviations for the pure MD and FH phases as well as coupled systems MD phase, Fig. 2.11 and

Fig. 2.12.

Fig. 2.11 and Fig. 2.12 show that the standard deviations (std) even after a short simulation

time are close for all systems. For a longer time std values are expected to converge to the same

value. It is also believed that for the pure MD phase std has higher values due to the pulsations

of the MD phase, which appear when particle migrates from one cell to another. This effect can

be eliminated if ‘blob’ filter is used [1]. At this moment these pulsations are not critical and their

elimination using ‘blob’ is presented in Section 3.3, where SPC/E water model is considered.
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Overall the fluctuations are believed to be correct and compatible for all systems.
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Figure 2.11: The standard deviation of density of the coupled system ρ̃, when α∗,β∗ = 20000,
pure FH phase ρ and MD phase ∑p ρp
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Figure 2.12: The standard deviation of the velocity’s x component of the coupled system ũ, when
α∗,β∗ = 20000, pure FH phase ux and MD phase ∑p uxp

Standard deviations presented in Table. 2.3 and Table. 2.4 show that the coupling effect is

recovered if α∗ exceeds 1000, and β∗ is in the region of 20000. Since the contribution of the terms

with α∗,β∗ become sufficient enough to match densities and momentum between phases.
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When α∗ is less than 1000, regardless the value of β∗ the simulation becomes unstable, al-

though the effect of coupling is more prominent, if β∗ is in the region of 20000.

Other observation of the standard deviations dependence on the parameters α∗,β∗, Table.2.3

and Table.2.4 shows, that α∗ mostly affects density fluctuations, while β∗ is largely involved in the

momentum fluctuations.

2.3.6 Structure and Dynamics of the liquid

Structural peculiarities or close order change due to the coupling was not observed Fig. 2.13. For

all simulations the Radial Distribution Function (RDF) is the same.

R
D

F

Figure 2.13: The radial distribution functions of 2D liquid argon in the case of ‘one way’ coupling
are the same for all s, α∗ and β∗

Contrary, the velocity autocorrelation functions (VACF) showed substantial difference when

coupling was used. We calculated VACFs using MD particles velocities (2.42) and for the FH

phase data from 25 cells was evaluated.
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Figure 2.14: MD particles velocity autocorrelation functions for α∗,β∗ = 20000

The estimation of VACF, when simulation lacks stability or does not provide with the expected

coupling effect is not of great interest, hence VACF of the most meaningful case (α∗,β∗ = 20000)

is shown in Fig. 2.14. Normally VACF in the case of LJ potential would rapidly fall to zero,

however here with the increase of the parameter s the correlation functions are stretched along the

time axis. That means that the correlation between MD particles exists for a longer time period.

These trends are possible if particles are in commotion, that could be caused by an external force

field. Thus, the coupling method creates the external forcefield, that affects MD particles motion.

On the other hand, the linear interpolation used between the cell centres can also impose additional

correlation between MD particles. Unfortunately, the interpolation cannot be eliminated, since the

MD and FH phase properties are available only at the cell centers.

Summarizing, we have successfully tested the new equations of motion and demonstrated the

coupling effect between the MD and FH phases. We established the one way communication

between phases as well as calibrated α∗ and β∗ parameters for the 2D Lennard-Jones potential.

2.4 ‘Two way’ coupling

In the previous section we demonstrated, that (2.42) and (2.43) impose the FH phase fluctuations

on the MD phase, when the communication between these phases is accomplished in the ‘one way’

coupling, no feedback is given to the FH phase. No both way communication was implemented

before, hence MD phase was unable to affect the FH phase, leading to an incomplete communica-
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tion. The next step is to use a feedback routine, from the MD to the FH phase, that is essential for

the successful communication between the phases.

This communication can be applied through (2.4) and (2.15), instead of using the equations of

the standard LL-FH simulation for the FH phase. Hence, the coupling parameters such as α∗,β∗

obtained in the ‘one way’ coupling may not be applicable now, therefore re-evaluations of these

parameters is required.

Apart from the different equation sets for the FH and MD phases, information exchange be-

tween them must be described in details as well. The exchange of information or fluctuations

between the FH and MD phase was partially solved in the ‘one way’ coupling, although the effect

of the MD phase on the FH phase fluctuations must be considered now.

The information exchange between the phases is illustrated in Algorithm. 3. First, the standard

LL-FH and MD simulations are implemented, thus, each phase is equilibrated for the same condi-

tions, Table. 2.2. Then, like in the ‘one way’ coupling, as time in the MD simulation is not equal to

the time passed in the FH simulation, the FH phase fluctuations are imposed on the MD particles.

In other words, if the timestep in modified LL-FH simulation is, for example, dt∗FH = 0.05 and in

the MD simulation, dt∗MD = 0.005, then the MD particles are advanced using (2.42) and (2.54) for

10 iterations before the exchange of the data between the phases in undertaken.

When the 10th MD iteration is reached the modified LL-FH equations (2.4) and (2.15) are

solved using the definitions in (2.9), (2.18), where Lρ is defined as (2.40) and Lu as (2.53). This

will amend the FH phase density and momentum fluctuations, compared to the standard LL-FH

simulation. Essentially, this procedure updates the FH phase fluctuations for the next time layer,

that will be used in the MD simulation.
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Algorithm 3: Pseudo code for the ‘two way’ coupling

Data: equilibrate the FH and MD phases (standard LL-FH and MD simulations);

calculate ∑p ρp and ∑p ρpuip in the cell centres;

for n≤ simulation time do

if n = dtHD/dtMD then

run LL-FH simulation using modified equations (2.4) and (2.15) for the FH phase;

else

run MD simulation using modified equations of motion (2.42) and (2.43);

calculate ∑p ρp and ∑p ρpuip in the cell centres;

end

exchange data;

end

2.4.1 FH phase

According to Algorithm. 3, the MD phase density ∑p ρp and momentum ∑p ρpuip are known from

the MD simulation. The FH phase is obtained with the modified LL-FH simulation, where the

following notations are used

ρ
′ = ρ̃−∑

p
ρp, (2.47)

ρ
′u′j = ρ̃ũ j−∑

p
ρpu jp, (2.48)

where ρ′ and ρ′u′j are the differences between the mixture (the MD and FH phase mixture in the

overlap-region) and the MD phase density and momentum respectively. These new variables can

also be denoted as perturbations of density and momentum.

Modified LL-FH equations are given by the new mass conservation equation

∂

∂t
ρ
′+

∂

∂xi
ũiρ
′ = Qρ, (2.49)

where

Qρ =
∂

∂xi

[
s(1− s)α

∂ρ′

∂xi

]
, (2.50)

followed by a new momentum conservation equation

∂

∂t
u′jρ
′+

∂

∂xi
ũiu′jρ

′ = sFj +Qu, (2.51)
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where

Qu =
∂

∂x j

[
s(1− s)β

∂

∂x j

(
u′jρ
′)] . (2.52)

The FH force (per volume) Fj is defined in the same manner as in the standard LL-FH simula-

tion

Fj = ∇ j
(
Πi j + Π̃i j

)
.

In distinction from the ‘one way’ coupling, the ‘two way’ coupling instead of the standard LL-

FH simulation uses the modified equations (2.49) and (2.51). These equations are solved using the

operator splitting technique and second-order centred finite-difference scheme CABARET, that

already was successfully implemented for the standard LL-FH simulation.

According to the operator splitting technique, equations (2.49) and (2.51) yield Riemann in-

variants ρ′ and ρ′u′ with the characteristic speeds λ1,2 = ũ. (for detailed derivations see Ap-

pendix A.3).

An additional step in the CABARET numerical scheme is introduced, such that Q0 and Qu are

applied at the corrector step, when the next time layer n+1 is evaluated in Algorithm. 1.

2.4.2 MD phase

The MD phase is obtained in the similar way, using the same Lρ operator type

Lρ ·

(
ρ̃−∑

p
ρp

)
=

∂

∂xi

[
s(1− s)α

∂

∂xi

(
ρ̃−∑

p
ρp

)]
,

although for the momentum exchange rate operator is different:

Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
=

∂

∂x j

[
s(1− s)β

∂

∂x j

(
ũ jρ̃−∑

p
ρpu jp

)]
+ sFj. (2.53)

The presence of the FH force (per volume) Fj in the definition of the operator Lu is a matter of

convenience, leading to the FH force to remain in the momentum conservation equation of the FH

phase, (2.15). Thus, at the limit s = 1 we recover standard LL-FH model/simulation. Notably, in

the ‘one way’ coupling case the Fj force was incorporated in the MD particles equations of motion

(2.43).

According to (2.13) and (2.23) as well as the definitions of the Lρ and Lu operators above, the

new velocities of the MD particles are given by

dxip

dt
= uip + s(ũi−uip)+ s(1− s)α(x)

1
ρpN(t)

∂

∂xi

(
ρ̃−∑

p
ρp

)
,

63



Chapter 2 BRIDGING LARGE AND SMALL SCALES

and the new accelerations of the individual particle become

∂uN
jp

∂t
= (1− s)

Fjp

ρpVcell
+

1
ρpN(t)

× (2.54)

×

[
∂

∂xi

(
s(1− s)α(x)

∂

∂xi

(
ρ̃−∑

p
ρp

))
∑p u jp

N(t)
− ∂

∂xi

(
s(1− s)β(x)

∂

∂xi

(
ũ jρ̃−∑

p
ρpu jp

))]
.

Equations above show that, we recover pure MD equations of motion when s = 0. When s = 1

MD particles accelerations become zero and their velocities are equal to the FH phase velocity.

Thus, in the case s = 1 ‘static structure’ of MD particles is moving with the FH phase flow. At the

limit s = 0 or s = 1 contribution from the terms ρ̃−∑p ρp and ũ jρ̃−∑p ρpu jp becomes zero, that

means either the MD or FH phase does not exist and there is no reference for the MD phase to be

driven to. The same behaviour is in the case of the ‘one way’ coupling, where accelerations are

proportional to the FH phase force which alters MD particles velocities, that are later disregarded

in the particles position update.

2.4.3 Simulation

Summarizing, the equations of motion of the MD phase are similar to the ‘one way’ coupling,

(2.42) and (2.43), with the only difference that the FH force term Fj is absent in (2.54).

For the FH phase, instead of the standard LL-FH simulation equations (2.4) and (2.15) are

used. We expect that the new equations for the FH phase will impose changes on the FH phase

fluctuations due to the presence of the MD phase. The strength of this effect is partially defined

by the parameters α∗ and β∗, that must be re-evaluated, since they were not calibrated for this

particular case.

Overall, we expect the ‘two way’ coupling to be more effective comparing to the ‘one way’

coupling, considering that the effectiveness is measured as an ability to communicate between the

phases.

The simulations were conducted using the same LJ model parameters, Table. 2.1, and condi-

tions, Table. 2.2, as in the ‘one way’ coupling , although the coupling parameters α∗,β∗ were set

to 2/50/1000.

2.4.4 Stability analysis

The ‘two way’ coupling analysis is slightly different, because now the FH phase is affected by the

MD phase fluctuations.

Like in the ‘one way’ coupling we encountered stability issues when, α∗,β∗ = 2, leading to the

unusually hight fluctuations of densities and velocities. These fluctuations could not be avoided
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even with the velocity rescaling, that was used in simulations to reduce the effect of rounding and

cut-off errors for a long run.

The standard deviations of all sets of simulations, when the stability was maintained (α∗,β∗ >

2), produced similar magnitudes of fluctuating variable as in Fig. 2.12. This observation shows

the consistency between the phase fluctuations, from the statistical point of view.

Figure 2.15: The density and velocity fluctuations of the mixture (denoted by tilde), of the MD
and FH phases in a random cell; the case of ‘two way’ coupling of 2D liquid argon; parameter
s = 0.1; a) corresponds to the density and c) velocity x component, when α∗ = 2, β∗ = 50; b)
corresponds to the density and d) velocity x component, when α∗ = 50, β∗ = 50

Furthermore, regardless the values of α∗,β∗ or parameter s Fig. 2.15 and Fig. 2.16, the den-

sities of each phase as well as the velocities are always correlated. As if both phases were in

commotion in each cell.
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Figure 2.16: The density and velocity fluctuations of the mixture (denoted by tilde), of the MD
and FH phases in a random cell; the case of ‘two way’ coupling of 2D liquid argon; parameter
s = 0.8; a) corresponds to the density and c) velocity x component, when α∗ = 2, β∗ = 50; b)
corresponds to the density and d) velocity x component, when α∗ = 50, β∗ = 50

When s is large (s = 0.8), Fig. 2.16, it can be seen that the density and velocity fluctuations

of the MD phase are almost the same as of the FH phase. Contrary, when s is small (s = 0.1),

Fig. 2.15, these fluctuations are not close, this observation leads to the conclusion that the FH

phase is more inert (heavy) than the MD phase, thus less effort is needed to get the MD phase into

the FH phase state, rather than the FH phase into the MD phase state.
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Figure 2.17: The relative difference between the FH and MD phase densities if s = 0.1 in the case
of ‘two way’ coupling of 2D liquid argon; single plots are depicted for all sets of β∗, when α∗ = 50
and α∗ = 1000, due to the negligible difference between plots;

The choice of the parameters α∗ and β∗ defines the stability of simulation. Fig. 2.17 shows

that with the increase of α∗ the difference (relative) between the densities is driven to zero quicker.

If α∗ is chosen large, the phase densities will be rapidly equalized, when α∗ is in a middle re-

gion (α∗ = 50), the difference (relative) between the phase densities gradually diminishes, though

slower. For the small α∗ values the stability issues are encountered, especially when α∗,β∗ = 2

the simulation crashes after certain period of time, hence for the rest sets of α∗,β∗ stability was

maintained.
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Figure 2.18: The relative difference between the FH and MD phase densities if s = 0.8 in the case
of ‘two way’ coupling of 2D liquid argon; single plots are depicted for all sets of β∗, when α∗ = 50
and α∗ = 1000, due to the negligible difference between plots;

The effect of β∗ on the density differences is negligible if α∗ ≥ 2, thus we assume that α∗ is

an essential parameters for the communication between the phase densities. From the numerical

perspective Fig. 2.17 and Fig. 2.18 show that one phase densities relax to another, and the rate of

relaxation is mostly determined by the α∗ parameter.

The choice of α∗ must be such that the density relative difference Θρ is monotonically de-

creasing function. For this particular case α∗ ≥ 50.

Fig. 2.18 leads to the same conclusions, although in contrast with Fig. 2.17, the density differ-

ence (relative) magnitudes are smaller by an order, that is in agreement with our previous sugges-

tion, that the MD phase is less inert, than the FH phase.
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Figure 2.19: The relative difference between the FH and MD phase velocities when s = 0.1 and
α∗ = 2; in the case of ‘two way’ coupling of 2D liquid argon

In the ‘one way’ coupling case we suggested that α∗ and β∗ mostly affect densities and ve-

locities respectively. We carried out a set of tests to verify if this is also true for the ‘two way’

coupling.

Figure 2.20: The relative difference between the FH and MD phase velocities when s = 0.1 and
α∗ = 1000; in the case of ‘two way’ coupling of 2D liquid argon

Fig. 2.17, Fig. 2.18, Fig. 2.19, Fig. 2.21, Fig. 2.20 and Fig. 2.22 show that β∗ parameter con-

tribution to the density fluctuations must be considered when α∗ values are small. And parameter
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α∗ contribution to the velocity fluctuations should not be accounted for large β∗ values, regardless

the value of s.

Figure 2.21: The relative difference between the FH and MD phase velocities when s = 0.8 and
α∗ = 2 ; in the case of ‘two way’ coupling of 2D liquid argon

Figure 2.22: The relative difference between the FH and MD phase velocities when s = 0.8 and
α∗ = 1000; in the case of ‘two way’ coupling of 2D liquid argon

2.4.5 Structure and Dynamics of the liquid

We investigated the dynamical and structural properties in order to detect artifacts or other unde-

sirable effects.
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Figure 2.23: MD particles velocity autocorrelation functions for α∗,β∗ = 50; in the case of ‘two
way’ coupling of 2D liquid argon

Fig. 2.23 shows that VACF trends are similar to the ‘one way’ coupling, with the increase of

the parameter s VACF curve stretches, that can be explained as MD particles are experiencing

collective motion in the external force field, that drags particles in a certain direction. Notably,

the stretching effect is not related to the time rate difference in MD and LL-FH simulation, since

temperature remains close to the set value. All VACFs for a particular s value are the same,

Fig. 2.23, regardless the value of α∗ and β∗.
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Figure 2.24: Radial distribution function of 2D liquid argon is in the case of ‘two way’ coupling

We obtained the same RDF for all sets of α∗ and β∗. Fig. 2.24 illustrates that close order

between MD particles is not affected by the ‘two way’ coupling and in both coupling cases is the

same as for the 2D liquid argon, when coupling is not used.

Summarizing, for large values of the parameter s the MD phase fluctuations resemble the FH

phase and, opposite, when s is small the FH phase fluctuates similarly to the MD phase. Thus,

the communication between the FH and MD phases was successfully established, if α∗,β∗ ≥ 50,

when 2D Lennard-Jones potential is used.

2.5 Total energy rescaling

We assumed that the coupled system’s energy conservation equation decouples from the mass

and momentum conservation equations, since adiabatic systems are studied. It is important to

verify if only numerical errors (such as rounding and cut-off errors) were eliminated using velocity

rescaling algorithm and no fundamental issues arise from the MD and FH phase coupling, that

could lead to divergence of the total energy.

The energy conservation equation for the MD phase is not available, because energy in the

MD simulations is conserved by definition, if the NVE ensemble is used.

Also for the FH phase simulation energy conservation equation was not solved due to the

absence of the external sink/source of energy and adiabatic conditions of the system. Thus, the

estimation of the balance between the total energies of the FH and MD phases is required.
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This can be achieved by introducing a function f (s(~r)) which scales the total energy of the

MD phase in the balance equation:

H0 = (1− s) f (s(~r))(EMD
k +Φ

MD(~r))+ s(EFH
k +UFH(V )), (2.55)

where H0 is the Hamiltonian of the coupled system, Ek is the kinetic energy with the superscript

denoting the phase, ΦMD(~r) is the potential energy of the MD phase, UFH(V ) is the internal energy

of the FH phase and f (s(~r)) is assumed to be a linear function

f (s(~r)) = 1+αE(s(~r)), (2.56)

for simplicity the notation αE = αE(s(~r)) is used.

Note, that the MD phase density in the coupled system is close to the pure MD density and

the MD phase contribution to the total energy of the coupled system is calculated according to the

concentration (1− s).

Equation (2.55) can be expressed in terms of the variables used in the previous simulations

H0 = ∑
i
(1− s(~ri)) f (s(~r))

~p2
i

2mp
+∑

i
(1− s(~ri)) f (s(~r))∑

j
Φ

MD
i j (|~ri−~r j|) (2.57)

+
∫

V
s(~r)

ρFH(~r)uFH(~r)2

2
d~r+

∫
V

s(~r)UFH(~r)d~r, (2.58)

where ~pi = mp~uip is the particle’s momentum, ρFH and uFH are the FH phase density and velocity

respectively, the summation is taken over all MD particles and the integration is performed over

the system’s volume V .

The internal energy of the FH phase is assumed to be

UFH(~r) =
P(~r)
(γ−1)

, (2.59)

where P(~r) is the average pressure and γ is a constant.

The complete relationship between the available variables is obtained, after the substitution of

f (s(~r)). The balance equation becomes

H0 = ∑
i
(1− s(~ri))(1+αE)

~p2
i

2mp
+∑

i
(1− s(~ri))(1+αE)∑

j
Φ

MD
i j (|~ri−~r j|) (2.60)

+
∫

V
s(~r)

(
PFH(~r)
γ−1

+
ρFH(~r)uFH(~r)2

2

)
d~r. (2.61)

The constant γ is unknown, although is can be determined if the limit case is considered. For

example, when s = 0, H0 is equal to the total energy of the pure MD phase, that can be obtained

beforehand. H0 is calculated using the classical formula

H0 = EMD
kin +EMD

pot . (2.62)
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On the other hand, when s = 1, the Hamiltonian of the system is given by

H0 =
∫

V

(
PFH(~r)
γ−1

+
ρFH(~r)uFH(~r)2

2

)
d~r. (2.63)

Substituting the value of H0 obtained from the pure MD simulation into the equation above, γ

can be recovered

γ =
PFHV

H0−∑
N
i

[
ρFH(~ri)vFH(~ri)2

2

]
V/N

+1. (2.64)

Since all the necessary variables and constants are known αE can be obtained using the fol-

lowing expression

αE =
H0−

∫
V s(~r)

(
PFH(~r)

γ−1 + ρFH(~r)vFH(~r)2

2

)
d~r

∑i(1− s(~ri))∑ j ΦMD
i j (|~ri−~r j|)+∑i(1− s(~ri))

~p2
i

2mp

−1. (2.65)

Equation (2.60) shows that the f (s) function scales the MD phase kinetic and potential energy

equally. This results in the following scaling of the interaction potential

Φ
MD
i j (r) = (1+αE) · (ΦMD

i j (r))old , (2.66)

we assume αE to be smoothly and slowly changing function, such that αE scales the interaction

forces between the MD particles as

FMD
i j =−

∂ΦMD
i j

∂q
= (1+αE)(FMD

i j )old , (2.67)

where q is the coordinate (x, y or z), subscript old stands for the unaltered/initial variable (value),

before the energy rescaling was implemented.

The contribution of the scaling to the kinetic energy yields the following MD particle’s velocity

uMD
ip =

√
1+αE · (uMD

ip )old . (2.68)

Overall, αE , that we introduced from the principles of total energy balance between the MD

and FH phases, rescales the MD forces and velocities. Qualitatively, αE variable presents moments

when velocity rescaling is meant to be used.

2.5.1 Implementation

We implemented (2.65) with (2.67) and (2.68) to both coupling approaches, when liquid argon

was studied.
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The dimensionless pressure PFH for each FH cell was derived from the Equation of State

(EOS), that was obtained from the fitting of the experimental data [66] with a cubic polynomial

PFH(~r) =
(
A(ρFH(~r)−B)3 +C

)
, (2.69)

where A,B,C and ρFH(~r) are the dimensionless constants and the density of the FH phase.

We used the same EOS, (2.69), for all Lennard-Jones potential implementation cases.

The main benefit of the total energy rescaling is to specify if the imbalance between the MD

and FH phases can be considered as a numerical imprecision.

Note, that when αE correction is applied the velocity rescaling is not used.

Fig. 2.27 demonstrates that the total energy correction αE randomly fluctuates around the zero

value. Thus, no constant correction is required, that would be the case if fundamental artifacts

were present. The magnitude of αE shows that the correction is in the range of 0.2%. Essentially,

the total energy is conserved, although numerical errors are present. The analysis of αE standard

deviations showed the reduction in the std value, when s is increased. This can be due to the slight

disproportion between the total energy of the MD and FH phase. These deviations can be easily

explained.

Figure 2.25: The relative difference between the FH and MD phase a) densities and b) velocities;
total energy rescaling is used, α∗,β∗ = 20000

In the LL-FH simulation instant values of the total energy are fluctuating, in a way that the

averaged over a certain period of time energy is conserved. Hence the total energy of the FH

phase must be considered only in terms of averaged in time. Although, for the purpose of this

section it is not necessary.
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Figure 2.26: MD phase velocities of a random cell for α∗,β∗ = 20000 and s = 0.1, with (using
αE , black line ) and without energy rescaling

Fig. 2.26 and Fig. 2.28 show that the total energy rescaling do not impose substantial con-

straints that could disrupt the coupling effect.

Figure 2.27: α∗E plots for different s values, α∗,β∗ = 20000, where velocity is rescaled from the
total energy scaling concept

Fig. 2.25 demonstrates that the reassessment of α∗ and β∗ is not required, when total energy

rescaling is used.
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Figure 2.28: MD phase velocities of a random cell for α∗,β∗ = 20000 and s = 0.8, with (using
αE , black line) and without energy rescaling

2.6 Conclusions

Summarizing, we have successfully tested the framework of the coupling method between the

MD and FH phases. These tests consisted of two parts. The ‘one way’ coupling and the ‘two way’

coupling. The first was incomplete in the context of the communications between the phases,

while the former showed substantial changes in both phase fluctuations, when the communication

is fully implemented. We also estimated and made recommendations for the parameters used in

the coupling methods. Especially regarding the lower limit of the parameters, when Lennard-

Jones type potential is used. We investigated structural and dynamical properties, resulting in a

conclusion that for the larger values of the coupling parameter s the MD particles motion is affected

by the external field due to the coupling. The same stretch of the autocorrelation functions along

time axis was obtained regardless the timestep of the LL-FH simulation dtFH .

However, in all coupling cases a fundamental limitation was considered, that is a constant

value of the coupling parameter s in the whole simulation domain. The variable coupling parame-

ter s profile was implemented for 3D liquid argon, although the results are not presented here, since

the simulations produced the same trends, more details regarding the variable coupling parameter

s profile can be found in Section 3.3.

Different types of the operator Lu was tested, (2.70) in both ‘one’ and ‘two’ way coupling
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(here presented operator type is for the ‘one way’ case)

Lu ·

(
ũ jρ̃−∑

p
ρpu jp

)
= s(1− s)β

(
ũ jρ̃−∑

p
ρpu jp

)
, (2.70)

resulting in the same trends as with the type defined in (2.41), however the α∗ and β∗ parameters

had much smaller values.

Liquid argon, described with the Lennard-Jones potential is not of a great interest. The study

of more complex fluids, like water is an advantageous task. Apart from the abnormal properties,

water is also a main solvent used in many experiments.

Before the coupling method is applied to real water it is tested on the 2D ‘Mercedes Benz’

or BN2D water model, which, like the real water, demonstrates abnormal properties, although it

is a much simpler model. The next chapter is devoted to the water models in the context of the

coupling framework.
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3.1 Two-dimensional ‘Mercedes Benz’ or BN2D water model

In Chapter 2 we successfully established communication between the large and small scales. This

was demonstrated for 2D liquid argon. In this chapter a step towards realistic water models is

undertaken.

The accuracy and efficiency of the simulation of water is defined by the water model. Three

dimensional water models (SPC/E, TIP4P, etc. [57]) are in qualitative and often quantitative agree-

ment with the experiment [3] .

Clearly, a large number of molecules is needed to faithfully reproduce physical chemistry of

the system. Even though it is usually enough to simulate a few thousands molecules. Computa-

tional considerations have become critical recently, when the focus has shifted to large molecular

systems, such as biological macromolecules or hydrodynamics at meso- and macro- scales. Ro-

bust reproduction of water in this situations require very large number of molecules in the system.

The three dimensional (XYZ) models are still too expensive for statistically sound results. In ap-

plication to large systems, the N2 scaling makes critical difference compared to N3. Thus, two

dimensional water models attract interest [5, 67, 68, 69, 70, 71, 72]. They require less com-

putational effort but, at the same time, they are proved to be in qualitative agreement with the

experiment [3].

In fact there is available a two-dimensional water model, which gives atomic structural details

and three-dimensionality. This model uses only few parameters and is computationally simple

enough, and eventually mimics anomalous water properties. This model was developed by Ben

-Naim and is called ‘Mercedes Benz’ (MB) or BN2D water model [50].

The BN2D water is described by a fewer parameters, than other sophisticated models, in which

case the dominant interaction can be established easier. This allows to trace the connection be-

tween the assumptions of driving forces to the observed properties.

Anomalous water properties appears as hydrophobic effect and unusual thermodynamic prop-

erties, such as temperature of maximum density over a wide range of pressures, minimum in the

isothermal compressibility depending on temperature and large heat capacity. These properties

are assumed to emerge from the ability of water molecules to form the tetrahedrally coordinated

hydrogen bonds (that are indirectly presented in the BN2D water model, where three ‘arms’ are

introduced, although water molecule is chemically bonded only with two hydrogens ) [50]. The

related microscopic processes and structure can be elucidated using simplified computer models

based on interatomic interaction potentials which are usually phenomenological.

Other benefit of the BN2D water model is that it treats hydrogen bonding geometrically. This

geometrical representation can be described as the third degree (an angle) of freedom in the 2D
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system. Techniques such as Monte Carlo (MC) or Molecular Dynamics (MD) are among the

most popular for calculating both microscopic and macroscopic properties of liquid water and its

solutions. While the MC produces static structural properties, the MD can probe both static and

dynamic properties, also the coupling method can be applied only using MD technique.

The BN2D water model apart from the straightforward benefits of 2D also does not include

computationally expensive long range Coulomb interactions that have to be calculated using meth-

ods such as Ewald summation [25, 56], requiring a large number of operations and sometimes

leading to artefacts.

Despite a very detailed study of the model by Ben-Naim and other authors [5, 73, 74, 75,

76, 77], the dynamical properties of this model have not been thoroughly investigated because it

has mostly been studied using MC. An investigation of a 3D ‘Mercedes Benz’ water model by

MD has been reported [58]. However, the authors did not provide detailed results on the physical

chemistry of the model. Instead, they concentrated on the numerical performance of the model.

The implementation of BN2D model using MD was successfully carried out by [71, 72], but the

focus of the investigation was on the properties of the protein, only a limited number of the water

model properties has been studied. Here, the focus is on the detailed MD implementation of the

BN2D water model in the NVE and NPT ensembles, with the emphasis on the physical chemical

characteristics of the model.

3.1.1 Molecular model and details of computation
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Figure 3.1: Two-dimension ‘Mercedes Benz’ (MB or BN2D) water model

The ‘Mercedes Benz’ water model or BN2D [50] water is a simple two-dimensional computational

model with three orientation dependent hydrogen bonding arms arranged similar to the Mercedes-

Benz logo, Fig. 3.1. Molecules interact pairwise through the Lennard-Jones term and an explicit

hydrogen bounding term (which depends on the respective orientation of the arms). The total
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potential is given as

Φ = ΦLJ +ΦHB, (3.1)

where the Lennard-Jonnes potential ΦLJ is defined in the usual fashion and the summation is taken

over all pairs of interacting particles

ΦLJ =
N

∑
i j

4 εLJ

((
σLJ

ri j

)12

−
(

σLJ

ri j

)6
)
, (3.2)

and ΦHB is the explicit hydrogen bonding term defined as

ΦHB =
N

∑
i j

εHB ·G [(ri j− rHB),σr]×
3

∑
k,l=1

G
[
(~ik ·~ui j−1),σφ

]
G
[
(~jl ·~ui j +1),σφ

]
, (3.3)

where G is the Gaussian function

G [x,σ] = e
−x2

2σ2 , (3.4)

~ui j is a unit vector that connects the particle centres,~ik and ~jl are the unit vectors of the orientation

of the arms, ri j is the distance between the particles, the angle between a molecule’s arms is

120◦; εLJ,εHB and σLJ,σHB = (σr,σφ) are Lennard-Jones and BN2D model well depth and contact

parameters respectively Fig. 3.1. Where σr is used for the radial part and σφ for the angular part

of the MB potential.

3.1.2 Equations of motion

As was already mentioned in Chapter 2, for conservative potential fields the force acting on the

molecule is calculated as the negative gradient of the potential field

~f =−∇Φ. (3.5)

For the BN2D model in addition to the translational force a derivative with respect to the angle

φ describing the molecule’s orientation, Fig. 3.1, produces the torque τ:

τ =−∂Φ

∂φ
. (3.6)

The additional degree of freedom φ gives rise to the angular velocity ω. A corresponding

moment of inertia I of the molecule should be introduced in order to characterize the rotation of

water molecules (I is an equivalent of mass for rotation).

NVE ensemble

In the case of NVE ensemble, where volume V and energy E are constant, the equation of motion

is the Newton’s second law, which for the translation is expressed as

q̈i =
fi

mi
, (3.7)
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and for the rotation as

φ̈i =
τi

I
, (3.8)

where I is the moment of inertia , mi is the mass, qi is the spatial coordinate (x or y), φi is the angle,

τi is the torque, fi is the force acting on the ith particle. Afterwords, these equations of motion are

implemented numerically using Verlet algorithm, that was described in Chapter 2.

NPT ensemble

In the NVE ensemble the total energy is constant, whereas the kinetic and the potential energies

fluctuate. As the kinetic energy is defined by the velocities, the temperature, also defined by the

velocities, is not constant. In order to simulate the NPT ensemble, special methods have to be

applied to keep the temperature and pressure constant.

The mechanism for feedback regulation of the temperature rests on the idea that the tempera-

ture is proportional to the mean-square velocity, which can be varied by adjusting the rate at which

time progresses [4]. A new dynamical variable st is introduced which rescales the unit of time,

and extra terms are added to the equations of motion. There are now two distinct time variables:

the real, or physical, time t, and a scaled, or virtual, time t ′. The relationship between them is

t =
∫ t 1

st
·dt ′. (3.9)

While this connection between time and temperature is maintained, pressure can be kept con-

stant by adjusting the container (system) volume. In the MD context this is achieved by a uniform

isotropic volume change that eventually rescales particles coordinates:

qi =V 1/dq′i, (3.10)

where q′ is the virtual coordinate changing from 0 to 1, d is the spatial dimensionality and the

scaling parameter is V (which corresponds to the volume) [4].

These two transformations result in equations for scaling parameters and modified equations

of motion for coordinates.

From the Newton’s equations of motions for the ith particle’s virtual coordinates q′ and virtual

time t ′ the equations of motion for the real coordinates and real time can be obtained:

q̈i =
fi

mi
−
[

ṡt

st

][
q̇i−

qi

V d
V̇
]
+

1
d

qiV̈
V

+qi

(
V̇

V d

)2

(1−d) , (3.11)

φ̈i =
τi

I
−
[

ṡt

st

]
· φ̇i, (3.12)
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s̈t =
ṡt

2

st
+

st

Ms

(
∑

i
mi

[
q̇i−

qi

V d
V̇
]2

+∑
i

Iφ̇i
2−gkT

)
, (3.13)

V̈ =
ṡtV̇
st

+
s2

t

d ·MV ·V
×

([
∑

i
mi

[
q̇i−

qi

V d
V̇
]2

+∑
i

Fi ·qi

]
−Pex ·d ·V

)
, (3.14)

where Pex is the desired pressure, g is the number of degrees of freedom, Ms and MV are general-

ized masses (for derivations see Appendix A.6), k is Boltzmann constant, T is the temperature.

Comparing equations of motion (3.7) and (3.8) for the NVE ensemble with (3.11) - (3.14)

for the NPT ensemble, two more equations are available, one for st and another for V , as well as

modified equations of motion for the coordinates and angles.

3.1.3 Thermodynamics

NVE ensemble

To evaluate the thermodynamic properties from Molecular Dynamics results statistical mechanics

should be used. For the NVE ensemble the phase space volume [78, 4] is

Ω(N,V,E) = M
∫

d pN . . .dqN
δ(E−H(pN ,qN)) (3.15)

and the phase space density is

Σ(N,V,E) = M
∫

d pN . . .dqN
Θ(E−H(pN ,qN)), (3.16)

where p and q are the phase space momenta and coordinates, N is the number of particles, V is the

volume of the system, E is the total energy, H(qN , pN) is the Hamiltonian, M is the normalisation

constants, and Θ is the Heaviside step function [79].

The relationship between them is [78]

Ω(N,V,E) =
∂

∂E
Σ(N,V,E). (3.17)

Assuming the usual separation for the Hamiltonian H(pN ,qN)=Φ(qN)+K(pN), where Φ(qN)

is the potential energy and K(pN) is the kinetic energy, the integrals (3.15) and (3.16) can be par-

tially solved for momenta by applying the Laplace transform, solving for momenta, and calculating

the inverse Laplace transform [78] following expressions are obtained

Σ(N,V,E) = M
∫

(E−Φ(qN))3N/2

Γ(3N/2+1)
×Θ(E−Φ(qN))dqN , (3.18)

Ω(N,V,E) = M
∫

(E−Φ(qN))3N/2−1

Γ(3N/2)
×Θ(E−Φ(qN))dqN , (3.19)
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derivations are available in Appendix A.5.

For a large number of molecules the entropy is [78]

S = kB lnΣ, (3.20)

and the thermodynamic relationships for macroscopic parameters are derived from the entropy

definition.

Thus, temperature is given by

T =

(
∂S
∂E

)−1

V
, (3.21)

pressure as

P = T
(

∂S
∂V

)
E
, (3.22)

isochoric heat capacity as

CV =

[(
∂T
∂E

)
V

]−1

, (3.23)

isothermal compressibility as

1
βT

=−V
(

∂P
∂V

)
T
=−V

[(
∂P
∂V

)
S
+

T
CV

(
∂P
∂T

)2

V

]
, (3.24)

the relationship between the thermal expansion coefficient and the compressibility is

αP =
1
V

(
∂V
∂T

)
P
= βS

(
dP
dT

)
V
. (3.25)

In 2D case the volume V = dx ·dy ·dz is replaced with the area A = dx ·dy (as the third degree

of freedom φ does not contribute to the ‘volume’). The derivatives of the integrals (3.18) and

(3.19) with respect to the area (volume) require a substitution q = A
1
2 q∗, since the area (volume)

is incorporated into the integration limits [78]. This yields modified equations

Σ(N,V,E) = M1AN
∫

(E−Φ((A
1
2 q∗)N))3N/2

Γ(3N/2+1)
×Θ(E−Φ((A

1
2 q∗)N))dq∗N , (3.26)

Ω(N,V,E) = M1AN
∫

(E−Φ((A
1
2 q∗)N))3N/2−1

Γ(3N/2)
×Θ(E−Φ((A

1
2 q∗)N))dq∗N , (3.27)

that can be used for differentiation with respect to the area (volume).

From the definition of the entropy (3.20) and integrals (3.26) and (3.27) the thermodynamic

relationships (3.21) - (3.24) are expressed through K, ∂Φ

∂A , and ∂2Φ

∂A2 only.

Temperature

T =
2

3N
〈K〉 , (3.28)
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pressure

P = ρ kBT −
〈

∂Φ

∂A

〉
, (3.29)

isochoric heat capacity

CV

NkB
=

(
2
3
〈K〉

〈
K−1〉+N(1−〈K〉

〈
K−1〉))−1

. (3.30)

Following the same approach the first term in (3.24) is obtained as

−A
(

∂P
∂A

)
S
=

2〈K〉
3A

+ρA
〈

dΦ

dA

〉
+A

〈
d2Φ

dA2

〉
+A

(
3N
2
−1
)
× (3.31)

× [

〈
dΦ

dA

〉〈
K−1 dΦ

dA

〉
−ρT

〈
K−1 dΦ

dA

〉
−

〈
K−1

(
dΦ

dA

)2
〉

] ,

the second term in (3.24), the derivative of the pressure with respect to the temperature, is calcu-

lated from the data obtained (P(T )). Angular brackets 〈 〉 denote ensemble average or, according

to the ergodicity hypothesis (see Appendix A.4), time average, ρ = N/A is the number density, kB

is Boltzmann constant, K−1 is the reciprocal kinetic energy.

The derivatives of the potential energy with respect to the area are

dΦ

dA
=

1
2A

N−1

∑
i=1

N

∑
j=i+1

dx
dΦi j

dx
+dy

dΦi j

dy
(3.32)

and

d2Φ

dA2 =
1

4A2

N−1

∑
i=1

N

∑
j=i+1

dx2 ∂2Φi j

∂x2 +2 ·dxdy
∂2Φi j

∂x∂y
+dy2 ∂2Φi j

∂y2 , (3.33)

where Φi j is the potential between the ith and jth particles, dx and dy are the distances between

the particles along x and y respectively.

The technique from [78] was originally used for systems with translational degrees of the

freedom only. Our application to the BN2D water model shows that the angular degree of freedom

must be treated in the same manner as the translational degrees of freedom when kinetic energy is

considered and dismissed when the spatial derivatives are evaluated.

NPT ensemble

Thermodynamic properties in the NPT ensemble were evaluated using the following relationships:

Cp =
1
N

(
∂〈H〉
∂T

)
p
, (3.34)

βT =
〈V 2〉−〈V 〉2

〈V 〉T
, (3.35)
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α =
1
〈V 〉

(
∂〈V 〉
∂T

)
p
, (3.36)

where 〈H〉= 〈K〉+〈Φ〉+P · 〈V 〉 is the enthalpy, Cp is the heat capacity, α is the thermal expansion

coefficient, β is the isothermal compressibility computed from the fluctuations [4, 59].

3.1.4 Structural and dynamic properties

The structure of the MB water is characterised by the radial distribution function (RDF) and a

function quantifying the angular alignment

g(2)r (r) =
2V
N2

〈
∑
i< j

δ(r−|~ri j|)

〉
, (3.37)

and

g(2)
φ
(r) =

2V
N2Zi j

〈
∑
i< j

zi jδ(r−|~ri j|)

〉
, (3.38)

zi j =
3

∑
k=1

3

∑
l=1

G(~ik ·~ui j−1)G(~jl ·~ui j +1), (3.39)

Zi j =
∫

∞

0

〈
∑
i< j

zi jδ(r−|~ui j|)

〉
dr, (3.40)

where N is the number of molecules in the corresponding solvation shell, Zi j is the normalization

factor.

The dynamic characteristics are described by the velocity correlation functions that cannot be

obtained using Monte Carlo method.

The velocity autocorrelation function is

fv(τ) = 〈~v(t) ·~v(t + τ)〉 , (3.41)

where ~v(t) and ~v(t + τ) are the translational velocities at time moments t and t + τ . If processes

are stationary fv is independent of t. The rotation velocity autocorrelation function is defined by

the rotational velocity ω(t) = ∂φ

∂t :

fω(τ) = 〈ω(t) ·ω(t + τ)〉 . (3.42)

3.1.5 Simulation

The system of 2500 particles was simulated in the NVE ensemble using Verlet method with the

velocity rescaling algorithm for thermostating [25]. Since the velocity rescaling was applied very

infrequently and only to correct the numerical errors, the data calculated between rescaling mo-

ments was used for thermodynamic properties evaluation. The simulation domain was chosen as
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a square box, since structural restrictions were not assumed. The timestep dt∗ = 0.001 was small

enough to account for the rotation of the molecules which was significantly faster than the transla-

tion. The timestep can be increased up to dt∗ = 0.01, which is the largest timestep that maintains

stable simulation for the current conditions.

Following the same approach of dimensionless units, in the case of MB water they are given

by

T =
εHB

kB
T ∗, (3.43)

r = rHB · r∗, (3.44)

m = mH2O ·m∗, (3.45)

t =
√

m · r2
HB/εHB · t∗, (3.46)

P ·V = εHB ·P∗ ·V ∗, (3.47)

where ∗ denotes the dimensionless variables. The MB model parameters are listed in Table 3.1.

The value of σ∗HB should be small, such that only one hydrogen bond is formed [5].

The density was set to ρ = 1054 kg
m3 or ρ∗ = 0.9. In the case of the NPT ensemble instead of

the density, pressure was set to P = 192 MPa or P∗ = 0.195.

The NPT ensemble requires to set parameters Ms and MV , that contribute to the constant

temperature and volume. These quantities must be determined empirically and do not affect results

when system reaches equilibrium. For this particular case Ms = 1 and MV = 0.1.

In the NPT simulation the Verlet integrator is replaced with the Predictor-Corrector as well

as different set of equations of motion are used. For more details regarding Predictor-Corrector

method see Appendix A.9. The code description can be found in Appendix A.7.

The kinetic energy in MB model is calculated as

K =
N

∑
i=1

m~v2
i

2
+

Iω2
i

2
, (3.48)

where I is the moment of inertia,~vi and ωi are the translational and angular velocities.
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Variable Real values Units Dimensionless

mH2O 18 ·10−3 kg
mol 1

rHB 2.78 Å 1

εHB 12.742 kJ
mol -1

εLJ 1.274 kJ
mol 0.1

σr 0.25 Å 0.085

σφ - - 0.085

σLJ 2.065 Å 0.7

I 2.938 ·10−47 kg ·m2 0.0127

kB 1.38 ·10−23 J
K 1

Table 3.1: The variables used in MD simulations. rHB is hydrogen bond length, mH2O is the
water molecule mass, I is the moment of inertia [5], εHB is the hydrogen bond energy, εLJ is the
Lennard-Jones energy, σ∗LJ is 0.7 of the r∗HB

3.1.6 Analysis

Thermodynamics (NVE ensemble)

The macroscopic parameters of water can be obtained from the equation of state that requires

pressure, volume, and temperature relationships or using equations (3.21) - (3.24) in the case of

NVE ensemble.

T

Figure 3.2: Simulated isothermal compressibility β∗T , pressure P∗, isochoric heat capacity C∗V ,
isothermal expansion coefficient α∗ in the NVE ensemble, ρ∗ = 0.9. The error bars for β∗T are
shown to illustrate slow convergence for this parameter

The obtained pressure as a function of temperature, Fig. 3.2a, is qualitatively the same as the

experimental values, Fig. 3.3a. It almost linearly increases starting from T ∗ ≈ 0.18.
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The heat capacity of real water decreases with the temperature, Fig. 3.3c. The BN2D water

model mimics the same trend, Fig. 3.2c. This trend is the result of the hydrogen bond rearrange-

ment.

T

Figure 3.3: Experimental water isothermal compressibility βT , pressure P, isochoric heat capacity
CV , isothermal expansion coefficient α (taken from [3])

The temperature expansion coefficient, Fig. 3.2b, 3.3b, of water changes sign at T ∗ = 0.18.

If MB water molecule is fully hydrogen-bonded it forms hexagonal ice. If water is in a liquid

state, when hydrogen bonds collapse, molecules can approach each other closer. As the tempera-

ture of liquid water increases, the hydrogen bonds continue to collapse and allow the non-bonded

molecules to approach closer, thus, the number of neighbours increases. This is in contrast with

other liquids, when due to the increase of temperature the distance between the molecules increases

accounting for the expansion of available space and the increase of kinetic energy.

The compressibility decreases with temperature, Fig. 3.2d, 3.3d, 3.6d. The temperature de-

pendence of β∗T is similar to the experiment Fig. 3.3d within the large error bars caused by slow

convergence of the first term in the equation (3.24). This leads to the slow convergence of the

compressibility.

90



Chapter 3 WATER MODELS

Figure 3.4: The fluctuations of the 1st order derivative with respect to the area for different system
sizes (the number of molecules is indicated), T ∗ = 0.21.

Fluctuations of the first order derivative of the potential with respect to the area for different

system sizes are demonstrated in Fig. 3.4. It shows that averaging time must be considered long

enough to ensure the convergence to the mean value of these fluctuations.

b)

a)

Figure 3.5: a) convergence of the 1st order derivative of the MB potential with respect to area b)
isothermal compressibility , T ∗ = 0.21, N = 2500

For instance, system of 2500 MB particles shows slow convergence of dΦ

dA Fig. 3.5.a, which

consequently yields slow convergence of the isothermal compressibility Fig. 3.5.b.

In our simulations 11 ·106 iterations were needed to obtain Fig. 3.2d.
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Thermodynamics (NPT ensemble)

In the NPT ensemble the macroscopic parameters can be evaluated using equations (3.34) - (3.36).

T

Figure 3.6: Simulated isothermal compressibility β∗T , volume V ∗, isobaric heat capacity C∗p,
isothermal expansion coefficient α∗ in the NPT ensemble, P∗ = 0.195.

The temperature of minimum volume/maximum density Fig. 3.6a, the negative expansion co-

efficient Fig. 3.6b, the large heat capacity Fig. 3.6c, and the minimum in the isothermal com-

pressibility Fig. 3.6d are consistent with the thermodynamic parameters as in the NVE ensemble,

experimental data and other authors who implemented BN2D model using Monte Carlo method,

that can be found in [5].

It is important to demonstrate that, despite the different approaches of evaluating the thermo-

dynamic parameters such as pressure in the NVE and NPT ensembles, a consistent state of the

system is obtained.

Fig. 3.7 is a combination of two plots, one is the pressure vs temperature at ρ∗ = 0.9 , and the

other is the density vs temperature at P∗ = 0.195. From the pressure curve the value of P∗ = 0.195

is realised at T ∗ = 0.215. This corresponds to ρ∗ = 0.9 on the density curve, which is equal to the

set density of the pressure curve. The reverse is also true: the ρ∗ = 0.9 value on the density curve

produces P∗ = 0.195, the correct value for the pressure curve at this temperature.
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Figure 3.7: The dependence of the pressure for the NVE ensemble and density for the NPT en-
semble on temperature. Two different simulations are depicted here, black squares are the density
vs temperature in the NPT ensemble and red circles are the pressure vs temperature in the NVE en-
semble. The blue arrowed line shows that for the temperature T ∗ = 0.215 and pressure P∗ = 0.195
in the NPT ensemble density becomes ρ∗ = 0.9 , while in the case of the NVE ensemble with
density ρ∗ = 0.9 and temperature T ∗ = 0.215 pressure becomes P∗ = 0.195, resulting in the same
state of the system regardless the approach used

The analysis of the equations of motion in the NPT ensemble and the equation for pressure

(3.22) in the NVE ensemble shows that the pressure is obtained differently. In the NVE ensemble

full kinetic energy is used, while in the NPT only translational part is included. Nevertheless, the

same thermodynamic state of the system is obtained, Fig. 3.7, proving that the pressure evaluation

is consistent in both ensembles.

Dynamics

The dynamical properties of water are characterised by the translational (VACF) and rotational

(RVACF) autocorrelation functions.
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a)

b)

Figure 3.8: Velocity autocorrelation functions at T ∗ = 0.195 for BN2D and SPC water models

The obtained autocorrelation functions, Fig. 3.8, coincide with the ones from 3D realistic

models, such as SPC [80]. The minima on VACF and RVACF are located at approximately correct

positions, which confirms the correctness of the values of the moment of inertia and mass. The

moment of inertia of MB particle can be additionally adjusted such that RVACFs from SPC and

MB models coincide even better.

Structure

The structure formed by BN2D water model, Fig. 3.9, is similar to the realistic water model. It

also reproduces the results by Ben-Naim [81].

94



Chapter 3 WATER MODELS

Figure 3.9: Radial distribution function at T ∗ = 0.16. The reference molecule is shown in green.
The ‘interstitial’ water is magenta

The maxima on RDF indicates solvation shells of different order. The maxima roughly corre-

sponds to the hexagonal ice structure of water, while a small maximum at ≈ 0.7 is formed by the

‘interstitial’ water molecules.

Figure 3.10: Orientational distribution (3.38) of MB water as a function of distance at T ∗ = 0.16

The calculation of the g(2)
φ
(r) from (3.38) allows to evaluate the orientation of the molecules

in different solvation shells.
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If the orientational part of the potential is switched off the molecules are oriented randomly

and zi j is constant starting form the distance corresponding to the very first peak on the RDF,

Fig. 3.10.

The peaks of g(2)
φ
(r) show that in different solvation shells the molecules are aligned with

respect to the central molecule. This alignment roughly corresponds to the hexagonal ice lattice.

Figure 3.11: Radial distribution function for different σ∗HB in orientational part of MB potential,
at temperature 300K

The comparison between RDFs of the SPC and BN2D water models, Fig. 3.9, shows that the

BN2D water model has unnatural small maximum at 0.7, that was described by the author of the

BN2D water model [81].

The first small peak on RDF at 0.7 corresponds to the interstitial water, Fig. 3.9. These

molecules are randomly oriented which is demonstrated by the absence of the peak on the g(2)
φ
(r),

Fig. 3.10. This is reasonable as these molecules do not form hydrogen bonds with the central

molecule. If the σHB of the orientational part is decreased only the first peak remains on g(2)
φ
(r),

thus strong HB alignment destroys the orientation structure beyond the first solvation shell.

Directionality of the hydrogen bond

The MB model is very convenient for studying the properties of hydrogen bonding. In fact, it

was originally designed for this purpose - to incorporate explicitly hydrogen bonds into a simple

molecular model. In particular, the directionality of the hydrogen bond can be studied by varying

the parameter σ∗HB. Low values of this parameter model a very directional hydrogen bond when the

HB interaction is effective when the ‘arms’ of the molecules are aligned along a straight line. This
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also implies only one HB for one arm of the molecule. High values of σ∗HB allow HB interactions

when the orientation of the molecules is more relaxed, thus leading to bent HBs and branched

bonds, when one ‘arm’ can make two bonds.

Figure 3.12: Structures formed for different σ∗HB in orientational part of the MB potential, at
temperature 300K. Where a) σ∗HB = 0.0085, b) σ∗HB = 0.085, c,d) σ∗HB = 0.5
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Our analysis of the implementation of the BN2D water model using structural and dynamical

properties was conducted at the temperature of 300 K and the density of 1054 kg
m3 . The RDF

curves in Fig. 3.11 and Fig. 3.12 show that increasing σ∗HB to 0.5 leads to a crystal like structure.

A clear separation of phases is seen in Fig. 3.12. The long range ordering of molecules is apparent

when only the locations of the molecules are plotted Fig. 3.12.d. This is also confirmed by the

RDF. Similar RDF were obtained for TIP5P ice at 250 K [57]. The dynamics of the molecules

is characterised by oscillations around metastable positions, Fig. 3.13, and slow rotation without

changing direction for long time Fig. 3.14. This also resembles the crystal phase behaviour.

Figure 3.13: Velocity autocorrelation function for different σ∗HB in orientational part of the MB
potential, at temperature 300 K

If the value of σ∗HB is decreased to 0.0085 the effect is, in a sense, opposite. The system

remains in liquid states, but the order is lost beyond the second solvation shell, Fig. 3.11 and

Fig. 3.12. Strong directionality of HB results in the appearance of many non-bonded molecules

that rotate almost freely, Fig. 3.14. There are also dimers and trimers, Fig. 3.11 and Fig. 3.12. All

molecules tend to keep their translational motion in the same direction for long times, in contrast

to real water, which VACF decays much faster.
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Figure 3.14: Rotation velocity autocorrelation function for different σ∗HB in orientational part of
the MB potential, at temperature 300 K

Overall, different values of σ∗HB for the orientational part of the MB potential show that the

structural and dynamical properties are changed dramatically. The changes lead to either unnatural

solid phases (which should not be formed at this temperature and density) or liquid phases with

abnormal structural and dynamical properties that deviate from real water behaviour.

Stability analysis

In general, the BN2D water model simulation is stable if the timestep is less than dt∗ = 0.01.

Fig. 3.15 shows that the standard deviation of the rotational velocity rapidly increases when the

timestep exceeds this value. The translational velocities are less affected by the timestep, thus the

maximal timestep is restricted by the rotation of the MB molecule.

In the NPT ensemble the stability for the long course of the run is maintained with a set of

parameters, such as the number of particles, masses Ms and MV and the timestep, which yields a

slow energy drift if timestep exceeds dt∗ = 0.005.

3.1.7 Summary

The BN2D water model can be used for simulations using Molecular Dynamics. The results

presented here show that BN2D water model mimics real water anomalous properties, dynamics

and structure.
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H

Figure 3.15: The standard deviation of the rotational velocity with the timestep dt∗ (NVE ensem-
ble).

We showed that different values of σ∗HB for the orientational part of the MB potential dramat-

ically change the structural and dynamical properties. The changes lead to unnatural solid phases

or liquid phases with abnormal structural and dynamical properties that deviate from the real water

properties.

For the first time thermodynamic formulas for the BN2D water model were derived when

NVE ensemble is used. Also we derived equations of motion for the BN2D water model when

NPT ensemble is used.

We also showed, that the calculation of the pressure in the NVE and NPT ensembles is differ-

ent. In the NVE ensemble full kinetic energy is used, while in the NPT ensemble rotational part is

excluded. Our simulation results confirm the correctness of the obtained formulas which produce

the same thermodynaic state for the different ensembles.

More details about BN2D water model simulation can be found in Appendix A.7.

The benefits of the investigated model are most obvious for very large systems approaching

hydrodynamic scales because the model will allow direct atomistic verification of the hydrody-

namic description. Furthermore, using this model, a hybrid approach combining both atomistic

MD and hydrodynamic descriptions can be investigated and verified.

The following section is entirely devoted to the BN2D water model in the context of the ‘two

way’ coupling described in Chapter 2.
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3.2 ‘Two way’ coupling using BN2D water model

In molecular modelling the focus is increasingly shifting towards large molecular systems such as

biological macromolecules, the aggregates of molecules (for example various kinds of membranes,

including biological), or even entire living cell organelles with all their molecular complexities (the

so called ‘crowded’ biomolecular systems) [82, 83]. Necessarily approximations have to be used

to make large scale representation of the system computationally feasible. These include various

coarse graining techniques, continuum modelling, combinations of the two, and other approaches.

The key point in using such approximations is their validity. To perform the validation of a

system under consideration it has to be computationally tractable at both small and large scales.

For example, to check the validity of hydrodynamic description of a system of specific size over

specific time, it has first to be modelled at these size and time using atomistic representation. Then

the hydrodynamic representation of the system can be modelled and validated against the “ab

initio” atomistic results.

Besides the development of approximated descriptions, such systems provide a test bed for

hybrid approaches when fundamentally different descriptions are used simultaneously at different

locations of the system.

In the hydrodynamic limit the number of particles in atomistic molecular dynamics simulations

makes critical difference in terms of computational efforts. Here 2D models can offer a reasonable

compromise between the accuracy and the computationally efficiency. For water the BN2D model

reproduces many important aspects of experimentally observed behaviour, while it is significantly

faster in comparison with high-fidelity 3D water models such as TIP4P .

The BN2D water model is extended to hydrodynamics by using hybrid Molecular Dynamics

(MD) / Fluctuating Hydrodynamics (FH) frameworks. The hybrid framework was first developed

for the 2D liquid argon in equilibrium [84] and also non-equilibrium conditions [47]. As was

explained before the idea of this multiscale approach is to use a physical analogy with two-phase

flow modelling to concurrently represent the system using continuum and atomistic phases of the

same liquid. The criteria of mixing are the preservation of the appropriate macroscopic conserva-

tion laws (such as mass and momentum) and thermal fluctuations as required by the fluctuation-

dissipation theorem.

3.2.1 Simulation

The coupling framework described in this work yields new equations of motion, that are integrated

instead of the standard MD equations used for the study of BN2D water model. The equations of

motion for the MB particles (2.42) and (2.54) were applied, although the angles were advanced
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using (3.6).

Partially, this is because the LL-FH solution is not available for the rotational degrees of free-

dom. Although, in order to avoid speculations regarding the consistency of the models used here,

following investigation and assumptions were made. Since the distance between the centre and

the arms of MB particle is small, it is assumed that the external force field due to the coupling

does not change at this distance. Therefore, the coupling technique is applied to the translational

velocities of MB particles only.

The FH phase was obtained using conservation (2.4) and (2.15) together with the definitions

from the (2.9) and (2.18), where operators Lρ and Lu were used the same as in the ‘two way’ 2D

liquid argon case, effectively (2.40) and (2.53).

Simulations are conducted on a regular grid in a 2D square box split into 5 by 5 cells with

10000 MB water molecules and 25 nodes of FH values at the temperature of 300[K] and the

density of ρ = 1054
[

kg
m3

]
.

The simulations are carried out in dimensionless units given as for the BN2D water model in

the previous sections.
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Figure 3.16: Equation of state for MB water model.

As was demonstrated before, for the particular conditions (T = 300[K] and ρ = 1054
[

kg
m3

]
) the

MB water model quantitatively represents real water.

The LL-FH simulation requires macroscopic transport parameters of continuum phase, such

as bulk and shear viscosities, as well as the equation of state Fig. 3.16 for calculating pressure,

which was obtained from the pure MB simulations.
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The commonly used method to obtain viscosities is by using the Green-Kubo relationships [4],

where the bulk viscosity is calculated as an integral over time

η =
V0

kBT
lim
t→∞

∫ t

0
BACF(t ′)dt ′, (3.49)

where V0 is the system’s volume,

BACF(t ′) = 〈δP(t ′)δP(0)〉, (3.50)

and δP(t) = P(t)−Pavg is the pressure fluctuations.

For the shear viscosity the following relationship was used:

ξ =
V0

kBT

∫ t

0
SACF(t ′)dt ′, (3.51)

where

SACF(t ′) = 〈Pxy(t ′) ·Pxy(0)〉. (3.52)

The off-diagonal components of the pressure tensor are calculated using

Pxy =
1
V

N

∑
i=1

N

∑
j=i+1

(
m ·ux

i ·u
y
i + f x

i j · r
y
i j

)
, (3.53)

where ui is the particle’s translational velocity, fi j is the intermolecular force, ri j is the distance

between the molecules and the superscripts denote x and y components.

The MB water model parameters are given in Table. 3.1.

The ratio between the FH and MD simulations timesteps is dtFH/dtMD = 10, updating/exchanging

the averaged over the cell values at every 10th MD iteration.

The coupling parameters were chosen α∗,β∗ = 2, the values were selected such that the cou-

pling strength is weak to avoid unphysical behaviour and at the same time strong enough to demon-

strate the effect of coupling. Values of the coupling parameter s have no particular importance,

thus they were set to 0.1/0.5/0.8 to demonstrate the influence on the FH phase behaviour in the

mixture of the FH and MD phases. Here, a constant parameter s(x) profile was used across the

system.

3.2.2 Analysis

Standard deviation of fluctuations of the mixture velocity x component ũx for the coupled systems,

pure MD phase (MB) and FH phase are shown in the Fig. 3.17. Standard deviations of the density

are not present here, since they show the same trend. The effect of pulsations is also believed to

be present here as it was in Chapter 2. Overall, the standard deviation values are very close.
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Figure 3.17: Standard deviation of velocity x component of the pure MD phase (MB) ∑p uxp, FH
phase ux and coupled system’s mixture velocity ũx

The difference between the velocity of the mixture ũx and the MD phase ∑p uxp, Fig. 3.18,

shows that when s = 0.1 the difference is small, that means the velocities follow each other in

both phases, while for s = 0.8 the difference is significantly larger and have complicated dynamics

signifying the largely independent time evolution of the velocities.

Figure 3.18: The difference between the mixture and phase velocities a) ũx−∑p uxp and b) ũx−ux

for s = 0.1 and s = 0.8
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Figure 3.19: Velocity x component profiles of the MD phase ∑p uxp and FH phase ux; ‘two way’
coupling, BN2D water model; a) s = 0.1, b) s = 0.8

The effect of coupling, Fig. 3.18 and Fig. 3.19, shows that ũ inherits fluctuations of the FH

phase when s→ 1 and MD phase when s→ 0. As well as each phase velocities follow different

pattern Fig. 3.19 for the different coupling parameter s values .

R
D

F

Figure 3.20: Radial distribution function of BN2D water model for different coupling parameter
s values

The radial distribution function of the molecules, Fig. 3.20, remains the same as for the MB

model without coupling. This means that the external force field, the ‘coupling’, does not affect
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the distribution of the MB molecules in local neighbourhood.

Figure 3.21: Translational velocity autocorrelation function for different s values calculated from
the particles velocities

As was noted before, translational velocities of the MB particles are coupled with the LL-FH

velocities, leaving the rotational degree of freedom uncoupled. The consistent representation of

rotation is not available/required in the LL-FH framework. The angular velocity of MB particles

was controlled using angular velocity rescaling to maintain the set temperature.

The translational velocity autocorrelation function (VACF) calculated using the actual parti-

cle’s velocity dxip
dt , (2.42), is shown in Fig. 3.21. For larger values of the coupling parameter s

VACF becomes more stretched in time and in the limits s→ 0 and s→ 1 it approaches the corre-

sponding VACFs of the pure MD and LL-FH simulations.
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Figure 3.22: Translational velocity autocorrelation function for different s values calculated from
the ũ velocity fluctuations in the cell centres

The cell averaged (phase) fluctuations of the velocity, ũ, were used to calculate the translational

velocity autocorrelation function (VACF) of Fig. 3.22. As can be seen the limiting case s = 1 for

the coupled system produces similar VACF to the classical LL-FH model [61], while for s 6= 1 the

faster decay of correlations signifies the dynamical properties of the liquid similar to the atomistic

MD representation.

With the increase of the coupling parameter s VACF calculated from the velocities of particles

Fig. 3.21 tends to the cell averaged ũ VACF Fig. 3.22.

The velocity autocorrelation function and radial distribution function analysis show, that with

the increase of the coupling parameter s MD particles loose their ability to move independently in

the ‘external force field’ (due to the coupling) and eventually at the limit s→ 1 we get the ‘static

structure’ of MD particles moving with the FH phase velocity.

Unfortunately, regardless the ability of BN2D water model to be in qualitative agreement

with the real water and mimic its anomalous properties, BN2D water model implementation in

biomolecular simulations is limited due to the two-dimensionality.

3.2.3 Conclusions

The results presented here reiterated that BN2D water model mimics real water anomalous prop-

erties.

We showed that different values of σ∗HB for the orientational part of the MB water potential

107



Chapter 3 WATER MODELS

dramatically change the structural and dynamical properties. The changes lead to unnatural solid

phases or liquid phases with abnormal structural and dynamical properties that deviate from the

real water properties.

For the first time thermodynamic formulas for the BN2D water model were derived when

NVE ensemble is used. Also we derived equations of motion for the BN2D water model when

NPT ensemble is used.

We also showed, that the calculation of pressure in the NVE and NPT ensembles is different.

In the NVE ensemble full kinetic energy is used, while in the NPT ensemble rotational part is

excluded. Our simulation results confirm the correctness of the obtained formulas which produce

the same thermodynamic state for the different ensembles.

Also we have studied dynamic properties of the BN2D water model, that was not reported

before.

The benefits of the investigated model are most obvious for very large systems approaching

hydrodynamic scales because the model will allow direct atomistic verification of the whole sys-

tem.

We demonstrated, that the coupling approach based on the two-phase modelling, Landau

Lifshitz- Fluctuating Hydrodynamics and Molecular Dynamics simulations can be successfully

applied to the BN2D water model.

We showed, that the fluctuations of the velocities and densities of one phase can be smoothly

enforced on the other, thus constituting the macro- and micro- scale coupling.

Also we showed, that the structural properties, the radial distribution function for MB particles,

is not affected by the coupling.

With the increase of the coupling parameter s the velocity autocorrelation function (VACF)

for MB particles tends to the pure FH phase VACF and the FH phase VACF tends to the pure MB

water model VACF.

In the next chapter we present the application of the proposed coupling method to three-

dimensional systems, including a popular SPC/E water model . Also a variable profile of the

parameter s is discussed.
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3.3 SPC/E water model implementation of the hybrid framework

Here we reiterate the importance of biomolecular systems simulations and focus on the SPC/E

water model in the context of proposed coupling method.

As we mentioned in the introduction, the dynamics of proteins in water can be investigated by

analysing the collective motion of particles in a liquid or biomolecular solutions. In this case glassy

dynamics can be employed, where large domains consisting of water and biomolecules are found

to move as a whole with very different dynamics in different domains [85]. Similarly, Umezawa

et al. [86] reported that on a surface of a protein a coherent behaviour of large conglomerates of

water molecules, microscopic “water vortices”, can be observed. It is now commonly recognised,

that surrounding solvent molecules play important role in the process of protein folding [8]. Re-

cent investigations demonstrate the connection between water molecules dynamics in the vicinity

of the proteins and protein conformations motions [9]. According to the study, protein chains are

guided by the water hydration shell at the periods of major conformation rearrangements. The

ability to predict and control this guidance, which drives protein to a particular conformation, is

highly demanded, because it defines all the properties and functionality of the protein. Since in

these processes the range of scales spans several orders of magnitude, coupling method studied

here can be employed. We have shown, that this coupling method is free from the problem of de-

stroying and introducing atoms when crossing the atomistic/continuum interface zone, in contrast

to other hybrid Molecular Dynamics/Hydrodynamics methods, which are based on the mass and

momentum flux through the interface zone.

In the previous sections, coupling or communication between the large and small scales was

successfully implemented, for 2D liquid argon and BN2D water model. Now the proposed cou-

pling method can be applied to the realistic three-dimensional SPC/E water model, which is in

qualitative and quantitative agreement with experiment [3].

3.3.1 Model and details of computation

The SPC/E water model represents water as a triatomic molecule with rigid bonds, Fig. 3.23, where

red and white balls indicate oxygen and hydrogen atoms with relevant charges, respectively. The

dashed line circle signifies the effective size of the molecule.
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Figure 3.23: SPC/E water model representation

The interaction potential of the SPC/E water molecule is described by the following combina-

tion of energies

Etotal(rN) = Edisp +ELRC +Ecoulomb, (3.54)

where on the right hand side the first is the pair dispersion energy, the second is the long-range

correction to the pair dispersion energy, and finally the Coulomb potential energy. More details on

this model can be found in [51].

The results in this section were obtained in collaboration with Cambridge University and

Queen Mary University of London colleagues Dr Sergey Karabasov, Dr Anton Markesteijn and

Dr Ivan Korotkin, who have incorporated the ‘one way’ coupling in the GROMACS [52] code as

an add-on.

Basically, in the time loop (‘md.c’ file) new routines were inserted for the calculation of the

FH phase densities and momentum and collection of the statistics. In the ‘update.c’ file velocity

and coordinates evaluation routines were replaced with the new equations of motion that were

obtained in the previous chapters (‘one way’ coupling).

This add-on allows to do serial and parallel [87] computing with the majority of available water

models and peptides. Also GROMACS has multiple tools for analysis, which are very useful for

the further studies.

SPC/E water model available in GROMACS 4.6.5. was used in simulations. Standard con-

ditions were applied in the NVT ensemble simulation, with temperature T = 298.15[K]. The

timestep dt = 0.25 f s. Velocity rescaling was used with relaxation parameter set to 100 times big-

ger than the timestep. More details on the velocity rescaling can be found in GROMACS 4.6.5

manual, pages 31−32 [52]. The coupling parameters were α,β = 1000
[

nm2

ps

]
, that in dimension-

less units are α∗,β∗ ≈ 15600. For a set of constant values of the coupling parameter s and 9000

molecules.
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As we mentioned before an interpolation is used in the regions between the grid points. In

order to increase the accuracy of the interpolated data, our colleagues replaced linear interpolation

with the cubic spline interpolation.

3.3.2 Cubic spline interpolation

The cubic spline interpolation can be better demonstrated by a one-dimensional example. As-

sume that on a line four values are available a−1,a0,a1,a2, then the interpolated value at the local

position t that is in the range [0;1] is obtained using the following expression

p(t) =
1
2

(
1 t t2 t3

)


0 2 0 0

−1 0 1 0

2 −5 4 −1

−1 3 −3 1




a−1

a0

a1

a2


This procedure is applied for each dimension.

The difference between the linear and cubic spline interpolation for the ux velocity is shown

on Fig. 3.24 and Fig. 3.25.

Figure 3.24: Three-dimensional linear interpolation of the velocity component ux
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Figure 3.25: Cubic spline interpolation of the velocity component ux

This improves the accuracy of the terms related to the phase densities and the velocities in the

region between the grid points, which are used in the equations of particle’s motion. Consequently,

particles in the region between the grid points experience smoother change of the external force

field, which is due to the applied coupling.

3.3.3 Finite size of the water molecules

Before the water model is implemented in terms of the ‘one way’ coupling method, the existence

of pulsations of the MD phase densities and velocities must be discussed.

As we suggested before, these pulsations lead to the higher values of standard deviations. To

verify that, an advanced mapping technique of the small scales to the large scales or the ‘blob’

filter is applied [1], which effect can be demonstrated on the change of the MD phase fluctuations

as well as values of the standard deviations.

Figure 3.26: Contributions of a particle to the MD phase density and momentum is calculated as
a fractions of its volume d3

mol in different cells
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This filter was initially developed for TIP3P water molecules, although it can be applied even

to the monoatomic argon in order to reduce the pulsations. This method employs an assumption,

that the atom is not a point particle, hence it occupies a certain volume. Thus, a characteristic

volume must be assigned to each molecule, for the TIP3P water molecule Voulgarakisand et. al.

[1] proposed to use dmol = 2.4 Å, which is also used in this section. In this case if a molecule

partially crossed the cell’s border, then its presence must be accounted for in both cells. In other

words, the contributions of a particle to the MD phase density and momentum is calculated as a

fractions of its volume d3
mol in different cells Fig. 3.26. The effect of this technique on the SPC/E

water model MD phase fluctuations is illustrated in Fig. 3.27 and Fig. 3.28.
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Figure 3.27: SPC/E water model MD phase density fluctuations in a random cell with and without
‘blob’ filter

It can be seen that the pulsations in the cells are smaller, although the velocity fluctuations

are not affected as much as the density fluctuations. This is because the MD phase density is

calculated by an amount of migrated particles between the cells, while the velocity fluctuations do

not required particles to leave or enter a cell to change the value.

Overall, the ‘blob’ filter smoothes the pulsations of the MD phase densities and velocities,

hence minimizes ‘jumps’ of the MD phase, when molecule migrates from one cell to another.
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Figure 3.28: SPC/E water model velocity x component fluctuations in a random cell with and
without ‘blob’ filter

As we reported in the previous sections the standard deviations for the pure MD phase are

higher than for the coupled systems or the pure FH phase. After the ‘blob’ filter is applied the stan-

dard deviations become smaller due to the elimination of the pulsations, Fig. 3.29 and Fig. 3.30,

where the pure MD systems are simulated with and without the ‘blob’ filter.

Figure 3.29: Standard deviation of the SPC/E water model MD phase density fluctuations with
and without ‘blob’ filter, where ρ is measured in Da

nm3

The standard deviations for the 3D systems can be estimated using classical relationships [61],
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which are as follows: for the density

std(ρ) =
1
cT

√
ρkB

T
Vcell

, (3.55)

where cT is the speed of sound and Vcell is the cell’s volume.

The standard deviation of the velocity in the 3D case can be estimated using relationship

std(u) =

√
kB

T
ρVcell

, (3.56)

in general there is no difference in the statistical sense between the velocity components and the

velocity magnitude, thus we calculate standard deviations for the velocity x component.

Figure 3.30: Standard deviation of the SPC/E water model MD phase x velocity component fluc-
tuations in nm

ps with and without ‘blob’ filter

According to the formulas above, the standard deviation of the MD phase density must be

approximately 18 Da
nm3 and the velocity 0.04 nm

ps , that is very close to the value obtained with the

‘blob filter’.

3.3.4 Pure water

Further results are presented for the SPC/E water model with the ‘blob’ filter.

As we predicted, the SPC/E water trends are the same as for the other models studied in the

previous sections, when the coupling was applied.

Close order analysis shows that water molecule’s radial distribution functions of the oxygen-

oxygen and oxygen-hydrogen do not change with the coupling method Fig. 3.31 and Fig. 3.32.
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Figure 3.31: Radial distribution function of SPC/E water model O−O (oxygen-oxygen)

Figure 3.32: Radial distribution function of SPC/E water model O−H (oxygen - hydrogen)

The dynamical properties of the model changed in the same manner, Fig. 3.33, as for 2D

models in the previous sections, with the increase of the coupling parameter s VACF gets stretched

and tends to the FH phase VACF.

When the coupling parameter s is small VACF resembles standard SPC/E water model VACF

and when the coupling parameter s gets larger VACF becomes more and more similar to the pure
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FH phase VACF. Especially, when s = 1 VACF of the MD particles is the same as FH phase.

Figure 3.33: Velocity autocorrelation function of the SPC/E water model particles for different
parameter s

That means that α∗,β∗ parameters were chosen large enough to demonstrate the effect of the

coupling and small enough to do not disrupt the close order between the molecules.

As a result, water molecules with increase of the coupling parameter s inherit bulk water

dynamical properties and preserve close order, which is unique for each model. It means that

particles experience collective motion that is characteristic to the continuum, when s is large.
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Figure 3.34: Standard deviations of the density for the pure and coupled system of SPC/E water
model MD phase with different parameter s

When the ‘blob’ filter is used, the standard deviations are very close to the coupled and pure

phases, Fig. 3.34 and Fig. 3.35, although the MD phase density fluctuations std’s are slightly

smaller, than the pure FH phase. In order to adjust the std values to the theoretical one, (3.55) and

(3.56), the occupied volume by a molecule d3
mol must be changed. The larger volume is decreasing,

while the smaller volume is increasing the std value.

Figure 3.35: Standard deviations of the velocity x component for pure and coupled system of
SPC/E water model MD phase with different parameter s
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Summarizing, the SPC/E model was tested using GROMACS with the ‘one way’ coupling

add-on and obtained that the same trends as for the other models studied in this work. We have

demonstrated, that the coupling can be improved if ‘blob’ filter [1] is implemented, which reduces

pulsations of the fluctuations of the MD phase densities and velocities. This yields more accurate

standard deviations of the MD phase fluctuations.

To study peptides or proteins in solvent a variable profile of the parameter s is required, such

that in the center in the vicinity of the peptide s = 0 and gradually changes to the edges, where

s = 1 and represents bulk water.

3.3.5 Variable coupling parameter s

We have tested a sphere type profile of the coupling parameter s for the 3D liquid argon. Where

in the sphere centre s = 0 was pure MD phase and at the edges s = 1 pure FH phase. The test

provided similar trends with respect to the magnitude of the coupling parameter s for the statistics

as well as VACF and RDF. Where s is large VACFs are stretched along the time axis and for small

values of s VACFs resemble pure argon. The RDF curves are the same and correspond to the pure

argon in each cell regardless the value of s.

Furthermore, if the sphere type profile of the parameter s is used, then MD particles close to

the s = 1 border can stick to the FH phase and leave a vacancy in its previous position. In the

region s = 1 MD particles do not interact between each other, hence they are dragged by the FH

phase without resistance. Consequently, when MD particles stick to the FH phase collectively,

empty areas appear in the region, where s 6= 1. Although, after certain period of time MD particle

return back to the region where s 6= 1. This effect is not visible in the MD particles close order

(RDF) analysis, since it is a macroscale effect.

Initially, particles in the center were marked in red colour, where s = 0, gradually changing

colour to blue on the edges, where s = 0.99, Fig. 3.36.
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Figure 3.36: 3D liquid argon with sphere type profile of the coupling parameter s. Initially,
particles in the center were marked in red colour, where s = 0, gradually changing colour to blue
on the edges, where s = 0.99 (view of a slice)

The size of the particles at the edges is bigger than particles, which are at the center region.

Thus, we illustrate that the behaviour of the particles is more inert, when they are located in the

regions with the larger s values. At the edges movement of the particles is ‘jelly’-like (smooth and

slow) while at the center region the particles are ‘lighter’ and moving much faster.
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Figure 3.37: A snapshot of the simulation of 3D liquid argon with sphere type profile of the
coupling parameter s. Initially, particles in the center were marked in red colour, where s = 0,
gradually changing colour to blue on the edges, where s = 0.99 (view of a slice)

As can be seen some red particles can migrate to the edges and stick to the large s region for

a while Fig. 3.37. Contrary, the blue particles increase their kinetic energy while moving towards

the center.

This is demonstrated on the video of 3D liquid argon with the sphere type profile of the cou-

pling parameter s on the CD: file name ’5.1.Dr.I.Korotkin. 3D liquid argon (sphere profile s).mpg’.

3.3.6 Peptide in water

When peptide is introduced in water it is important to position the sphere profile of the coupling

parameter s at the peptide’s geometrical center, since its representation in the LL-FH is not avail-

able. The size of the s = 0 region must be large enough to encompass the peptide with surrounding

water.

A small system is simulated, which consists of dialanine [88] and 1444 SPC/E water molecules.

Standard conditions with thermostat are used, resulting in the NVT ensemble. Timestep 0.001[ps],

coupling parameters are set to α,β = 1000
[

nm2

ps

]
. The coupling parameter s is zero for 40% of

the simulation domain and positioned at its center. Then coupling parameter s gradually (linear)

increases to 0.99 at the edges, Fig. 3.38.
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Figure 3.38: Initial distribution of dialanine and 1444 SPC/E water molecules in simulation using
variable coupling parameter s profile. Parameter s is zero for 40% of the simulation domain and
positioned at its center. Then parameter s gradually (linear) increases to 0.99 at the edges

The water molecules in the vicinity of the dialanine move quickly, while at the edges their

movements are ‘jelly’-like (smooth and slow).

Figure 3.39: A snapshot of distribution of dialanine and 1444 SPC/E water molecules in simu-
lation using variable coupling parameter s profile. Parameter s is zero for 40% of the simulation
domain and positioned at its center. Then parameter s gradually (linear) increases to 0.99 at the
edges

We have noticed, that after some time peptide is dragged to the simulation domain outskirts, if
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it gets in the region, where s 6= 0, Fig. 3.39. In this case the peptide starts to experience forces from

the FH phase, which eventually leads the simulation to crash. This is due to the lack of the peptide

representation in the LL-FH simulation. As we mentioned already, in order to overcome this issue,

s = 0 region must be large enough to include studied object (peptide) and water molecules as well

as its center must be connected to the object’s (peptide) geometrical center.

Video demonstration of the simulation when sphere type profile of the coupling parameter s is

fixed in the center of the simulation domain is available on the CD: file name ‘5.2.Dr.I.Korotkin.

dialanine and 1444 SPCE water (fixed sphere type s).mpg’.

A larger system, dialanine and 30000 SPC/E water molecules was simulated at the normal

conditions with the timestep 0.001[ps]. Nose-Hoover thermostat was used with the relaxation

parameter set to 0.1[ps]. Periodic boundary conditions were used with coupling parameters set to

α,β = 20000
[

nm2

ps

]
. Sphere type profile of the coupling parameter s was used. Two simulations

were conducted using 8 cores. In the first simulation (660 000 MD iterations) sphere center was

fixed at the simulation domain center and in the second simulation (860 000 MD iterations) it was

fixed to the dialanine center of mass.

Video demonstration of the first simulation is available on the CD: file name ‘5.3.Dr.I.Korotkin.

dialanine and 30000 SPCE water (fixed sphere type s).mpg’, which shows the same behaviour of

the dialanine as for the smaller system (1444 SPC/E water molecules). Where peptide is dragged

to the large coupling parameter s region.

The second simulation, where parameter s profile center is linked to the dialanine’s geometrical

center is demonstrated on the CD: file name ‘5.4.Dr.I.Korotkin. dialanine and 30000 SPCE water

(moving sphere type s).mpg’. As we can see the sphere profile follows the dialanine.

Summarizing, the proposed coupling method can be used for the real size system simulation,

such as protein immersed in the water.
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4.1 BN2D water model

We have shown that BN2D water model mimics real water anomalous properties in both NVE and

NPT ensembles. This qualitative agreement with the real water was already reported by [5] who

used Monte Carlo simulation (NPT ensemble).

We showed that different values of σ∗HB for the orientational part of the MB potential dramat-

ically change the structural and dynamical properties. The changes lead to unnatural solid phases

or liquid phases with abnormal structural and dynamical properties that deviate from the real water

properties.

For the first time thermodynamic formulas for BN2D model were derived when the NVE

ensemble is used. Also we derived equations of motion for BN2D model when the NPT ensemble

is used.

We also showed, that the calculation of the pressure in the NVE and NPT ensembles is differ-

ent. In the NVE ensemble full kinetic energy is used, while in the NPT ensemble rotational part

is excluded. Our simulation results confirm the correctness of the obtained formulas that produce

the same thermodynamic state for different ensembles.

We have studied dynamic properties of the BN2D model, that was not reported before. The

obtained autocorrelation functions coincide with the ones from 3D realistic models, such as SPC.

The minima on VACF and RVACF are located at approximately correct positions, which confirms

the correctness of the values of the moment of inertia and mass. The moment of inertia of MB

particle can be additionally adjusted such that RVACFs from SPC and MB models coincide even

better.

The benefits of the investigated 2D model are most obvious for very large systems approach-

ing hydrodynamic scales because the model will allow direct atomistic verification of the whole

system, since computational costs are scaled with ND, where N is the number of particles and D

is the number of spatial dimensions.

4.2 Bridging large and small scales

We have successfully tested the framework of the coupling method between the MD and FH

phases. These tests consisted of two parts. The ‘one way’ coupling and the ‘two way’ coupling.

The first was incomplete in the context of communications between the phases (only MD phase

fluctuations changed), while the former showed substantial changes in the both phase fluctuations

(thus communication is fully implemented).

We showed, that the fluctuations of the velocities and densities of the phases can be smoothly

enforced on each other, thus constituting the large and small scale coupling.
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We also estimated and made recommendations for the lower limit of the parameters used in

the coupling methods.

We investigated structural and dynamical properties resulting is a conclusion that for the larger

values of the coupling parameter s the MD particles motion is affected by the external field due to

the coupling.

We showed that the structural properties, such as Radial Distribution Function of particles is

not affected by the coupling.

We demonstrated that with the increase of the coupling parameter s the velocity autocorrelation

function (VACF) of particles tends to the pure FH phase VACF and the FH phase VACF tends to

the pure MD phase VACF.

We showed that coupling approach based on the two-phase modelling, Landau Lifshitz- Fluc-

tuating Hydrodynamics and Molecular Dynamics simulations can be successfully applied to the

liquid argon, BN2D and SPC/E water models.

We provide with a good estimation of the coupling parameters α∗,β∗ values for the 2D liquid

argon, BN2D and SPC/E water models. The values are large enough to demonstrate the coupling

effect and small enough to do not change the RDF of the particles and produce artifacts.

We presented results obtained in collaboration with Cambridge University and Queen Mary

University of London colleagues, who have incorporated the ‘one way’ coupling in the GRO-

MACS code [52] as an add-on.

The ‘blob’ filter [1] was used which smooths transition of the particles from cell to cell and

eventually eliminates pulsations that are present in the density and velocity fluctuations of the MD

phase. We showed that these pulsations lead to the higher values of the standard deviations of the

densities and momenta.

4.3 Pure water

The SPC/E water model was tested using the ‘one way’ coupling and showed the same trends as

for the liquid argon and BN2D water model.

We showed that SPC/E water molecules with the increase of the coupling parameter s inherit

bulk water dynamical properties and preserve close order (RDF), which is unique for each model.

It means that particles experience collective motion that is characteristic to the continuum, when s

is large.
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4.4 Variable coupling parameter s

We have presented a sphere type profile of the coupling parameter s for 3D liquid argon. Where

in the sphere centre s = 0 was the pure MD phase and at the edges s = 1 pure FH phase. The test

provided similar trends with respect to the magnitude of the coupling parameter s for the statistics

as well as VACF and RDF.

We demonstrated that MD particles can migrate from the center to the edges of the simulation

domain and stick to the large coupling parameter s region for a while and then return back to the

s 6= 1 region.

We have shown that the MD particles, which are located in the larger coupling parameter s

region are more inert, then those in the region of the smaller s. At the edges the movement of the

particles is ‘jelly’-like (smooth and slow) while at the center region the particles are ‘lighter’ and

moving much faster.

Overall, method investigated in this work encompasses regions with the atomistic description

and transition zone (overlap-region), where the last can be naturally joined with the continuum

models, thus increase geometrical size of the system, that results in the substantial reduction of

the degrees of freedom and computational costs.

4.5 Peptide in water

When peptide is introduced in the water it is important to position the sphere profile of the coupling

parameter s at the peptide’s geometrical center, and large enough to encompass peptide, since its

representation in the LL-FH is not available.

We have noticed, that if peptide gets in the region, where s 6= 0, it starts to experience forces

from the FH phase, which eventually drag the peptide to the s = 1 region and leads the simulation

to crash.

4.6 Outlook

For the further development of the method the following points must be addressed:

1. A ‘two way’ coupling must be incorporated into the GROMACS.

2. Non-equilibrium or non- adiabatic systems can be studied if energy equation is integrated

in LL-FH simulation.

3. The time lapse in both the MD and FH representations must be scaled.
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Summarizing, the coupling method is effective for the communication between the large

and the small scales, it is free from the problem of destroying and introducing atoms when

crossing the atomistic-continuum interface zone, contrary to other hybrid Molecular Dynamics/

Hydrodynamics methods, it preserves geometrical size of the system and it is not limited to a

particular interaction potential.

128



Bibliography

[1] N. K. Voulgarakisand and J.-W. Chu, “Bridging fluctuating hydrodynamics and molecular

dynamics simulations of fluids,” The Journal of Chemical Physics, vol. 130, 2009.

[2] S. Fritsch, S. Poblete, C. Junghans, L. D. Site, and K. Kremer, “Adaptive resolution molec-

ular dynamics simulation through coupling to an internal particle reservoir,” PRL, vol. 108,

p. 170602, 2012.

[3] G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0 to 150

deg. c. : Correlations and tables for atmospheric pressure and saturation reviewed and ex-

pressed on 1968 temperature scale,” Journal Of Chemical and Engineering Data, vol. 20,

pp. 97–105, 1975.

[4] M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation. Oxford: Oxford

University Press, 2012.

[5] K. A. T. Silverstein, A. D. J. Haymet, and K. A. Dill, “A simple model of water and the

hydrophobic effect,” J. Am. Chem. Soc, vol. 120, pp. 3166–3175, 1998.

[6] S. L. Seager, Organic and Biochemistry for Today. Boston: Cengage Learning Inc, 2010.

[7] A. Bruce, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walters, The Shape and Structure

of Proteins. Molecular Biology of the Cell.Fourth Edition. New York and London: Garland

Science, 2002.

[8] H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R.

Stroe, J. Swenson, and R. D. A. Young, “Unified model of protein dynamics proc,” Natl.

Acad. Sci.USA, vol. 106, pp. 5129–5134, 2009.

[9] D. Nerukh and S. Karabasov, “Water-peptide dynamics during conformational transitions,”

The Journal of Physical Chemistry Letters, vol. 4 (5), pp. 815–819, 2013.

[10] C. J. Cramer and D. G. Truhlar, “Implicit solvation models: Equilibria, structure, spectra,

and dynamics,” Chem. Rev., vol. 99, p. 2161−2200, 1999.

129



Chapter 4 BIBLIOGRAPHY

[11] G. Morra, Role of electrostatics explored with molecular dynamics simulations for protein

stability and folding. PhD thesis, Freien Universitat Berlin, 2005.

[12] The CHARMM Development Project, “Charmm,” 2014.

[13] Peter Kollman’s group, “Amber,” 2014.

[14] O. Zikanov, Essential Computational Fluid Dynamics. New York: John Wiley, 2010.

[15] J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes iv.

the equations of hydrodynamics,” J.Chem.Phys, vol. 18, p. 817, 1950.

[16] J. Brody, P. Yager, R. Goldstein, and R. H. Austin, “Biotechnology at low reynolds numbers,”

Biophys. J., vol. 71(6), p. 3430–3441, 1996.

[17] E.Shapiro, D. Drikakis, J. Gargiuli, and P. Vadgama, “Interface capturing in dual-flow mi-

crofluidics,” Journal of Computational and Theoretical Nanoscience, vol. 4, p. 1–5, 2007.

[18] G. Greenstein and A. Zajonc, The Quantum Challenge: Modern Research on the Foundations

of Quantum Mechanics, Second edition. Sudbury: Jones and Bartlett Publishers, 2006.

[19] J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics. London: Springer-

Verlag, 2004.

[20] E. Weinan, Principles of Multiscale Modelling. Cambridge: Cambridge University Press,

2011.

[21] E. Buckingham, “On physically similar systems; illustrations of the use of dimensional equa-

tions,” Physical Review, vol. 4, pp. 345–376, 1914.

[22] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge: Cam-

bridge University Press, 1996.

[23] K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations, An Intro-

duction. New York: Cambridge University Press, 2005.

[24] M.Ainsworth and T. Oden, A Posteriori Error Estimation in Finite Element Analysis. New

York: John Wiley, 2000.

[25] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. USA: Oxford University

Press, 2000.

[26] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, 2nd ed. SIAM, 2000.

130



Chapter 4 BIBLIOGRAPHY

[27] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art of Sci-

entific Computing .3rd ed. New York: Cambridge University Press, 2007.

[28] A. Toselli and O. Wildlund, Domain Decomposition Methods. London: Springer-Verlag,

1981.

[29] P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydrodynamic phe-

nomena with dissipative particle dynamics,” Europhysics Letters, vol. 19(3), p. 155–160,

1992.

[30] P. Espanol, “Dissipative particle dynamics with energy conservation,” Europhysics Letter,

vol. 40, p. 631, 1997.

[31] H. Wu, J. Xu, S. Zhang, and H. Wen, “Gpu accelerated dissipative particle dynamics with

parallel cell-list updating,” IEIT Journal of Adaptive and Dynamic Computing, vol. 1, pp. 33–

42, 2011.

[32] S. O’Connell and P. Thompson, “Molecular dynamics-continuum hybrid computations: a

tool for studying complex fluid flows,” Phys Rev E, vol. 52, p. 5792, 1995.

[33] N.Hadjiconstantinou, “Discussion of recent developments in hybrid atomistic continuum

methods for multiscale hydrodynamics,” Bull Polish Acad Sci: Tech Sci, vol. 53, pp. 335–

342, 2005.

[34] K. G. Fedosov D.A., “Triple-decker: interfacing atomistic-mesocopic-continuum flow

regimes,” J. Comp.Phys, p. 1157–1171, 2009.

[35] B. I. Schwartzentruber T.E., “A hybrid particle-continuum method applied to shock waves,”

J. Comp.Phys, vol. 215, pp. 402–416, 2006.

[36] K. P. Kotsalis E., Walther J., “Control of density fluctuations in atomistic-continuum simula-

tions of dense liquids,” Physical Review E, vol. 76, pp. 016709–1–7, 2007.

[37] K. P. Kotsalis E Walther J., Kaxiras E., “Control algorithm for multiscale flow simulations

of water,” Physical Review E, vol. 79, 2009.

[38] G. D. Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney, “Multiscale modelling of liquids

with molecular specificity,” Phys. Rev. Lett., vol. 97, p. 134501, 2006.

[39] X. B. Nie, S. Y. Chen, W. N. E, and M. O. Robbins, “A continuum and molecular dynamics

hybrid method for micro- and nano-fluid flow,” J. Fluid Mech., vol. 500, pp. 55–64, 2004.

131



Chapter 4 BIBLIOGRAPHY

[40] E. G. Flekkoy, G. Wagner, and J. Feder, “Hybrid model for combined particle and continuum

dynamics,” Europhys. Lett., vol. 52, p. 271–276, 2000.

[41] S. Mikhlin, On the Schwarz algorithm (in Russian). Moscow: Doklady Akademii Nauk

SSSR, 1951.

[42] A. Asproulis, M. Kalweit, and D. Drikakis, “A hybrid molecular continuum method using

point wise coupling,” Advances in Engineering Software, vol. 46, p. 85–92, 2012.

[43] R. Steijl and G. Barakos, “Coupled navier–stokes /molecular dynamics simulations in nonpe-

riodic domains based on particle forcing,” Int. J. Numer. Meth. Fluids, vol. 69, p. 1326–1349,

2012.

[44] B. M. J., S. Keten, and T. Ackbarow, “Theoretical and computational hierarchical nanome-

chanics of protein materials: Deformation and fracture.,” Progress in Materials Science,

vol. 54, pp. 1101–1241, 2008.

[45] F. de Meyer, Venturoli, and B.Smit, “Molecular simulations of lipid-mediated protein-protein

interactions,” Biophy. J., vol. 95, pp. 1851–1865, 2008.

[46] H. Frauenfelder, G. Chen, J. Berendzen, P. Fenimore, H. Jansson, B. McMahon, I. Stroe,

J. Swenson, and R.D.Young, “A unified model of protein dynamics,” Proc. Natl. Acad. Sci.

USA, vol. 106, pp. 5129–5134, 2009.

[47] A. Markesteijn, S. Karabasov, A. Scukins, D. Nerukh, V. Glotov, and V. Goloviznin, “Con-

current multiscale modelling of atomistic and hydrodynamic processes in liquids,” Philo-

sophical Transactions of the Royal Society, vol. A 372, p. 20130379, 2014.

[48] A. Markesteijn and S. Karabasov, “Time asynchronous relative dimension in space method

for multi-scale problems in fluid dynamics,” Journal of Computational Physics, vol. 258,

no. 10, pp. 137–164, 2014.

[49] D. Nerukh, “Non -markov state model of peptide dynamics,” Journal of Molecular Liquids,

vol. 176, pp. 65–70, 2012.

[50] A. B. Naim, “Statistical mechanics of “waterlike” particles in two dimensions. i. physical

model and application of the percus–yevick equation,” J. Chem. Phys, vol. 54, p. 3682, 1971.

[51] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair

potentials,” J. Phys. Chem, vol. 91(24), p. 6269–6271, 1987.

[52] Royal Institute of Technology and Uppsala University, “Gromacs,” 2014.

132



Chapter 4 BIBLIOGRAPHY

[53] D. Drew and S.L.Passman, Theory of Multicomponent Fluids. New York: Springers, 1999.

[54] J. Anderson, E. Dick, G. Degrez, R. Grundmann, J. Degroote, and J. Vierendeels, Computa-

tional Fluid Dynamics. Berlin: Springer, 2009.

[55] G. D. Fabritiis, M. Serrano, R. Delgado-Buscalioni, and P. Coveney, “Fluctuating hydrody-

namic modeling of fluids at the nanoscale,” Physical Review E, vol. 75, p. 026307, 2007.

[56] T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An n log(n) method for ewald

sums in large systems,” J. Chem. Phys., vol. 98, p. 10089, 1993.

[57] C. Vega, C. McBride, E. Sanz, and J. L. Abascal, “Radial distribution functions and densities

for the spc /e, tip4p and tip5p models for liquid water and ices ih, ic, ii, iii, iv, v,vi, vii, viii,

ix, xi and xii,” Physical Chemistry Chemical Physics, vol. 7, pp. 1450–1456, 2005.

[58] T. Hynninen, C. Dias, A. Mkrtchyand, V. Heinonen, M. Karttunen, A. Fostera, and T. Ala-

Nissila., “A molecular dynamics implementation of the 3d mercedes-benz water model.,”

Computer Physics Communication, 2011.

[59] D. C. Rapaport, The Art of Molecular Dynamics Simulation .Second Edition. Cambridge:

Cambridge University Press, 2004.

[60] J. W. Gibbs, Elementary Principles in Statistical Mechanics. New York: Charles Scribner’s

Sons, 1902.

[61] L. Landau and E. Lifshitz, Fluid Mechanics. Pergamon press, 1966.

[62] U. M. B. Marconi, A. Puglisi, L. Rondon, and A. Vulpiani, “Fluctuation-dissipation: Re-

sponse theory in statistical physics,” Physics Reports, vol. 461 (4–6), p. 111–195, 2008.

[63] M. L. Mehta, Random Matrices, 3rd ed. New York: Academic Press, 1991.

[64] A. Markesteijn, S. Karabasov, V. Glotov, and V. Goloviznin, “A new non-linear two-time-

level central leapfrog scheme in staggered conservation-flux variables for fluctuating hydro-

dynamics equations with gpu implementation,” Computer Methods in Applied Mechanics

and Engineering, vol. under revision, 2014.

[65] V. Glotov, V. Goloviznin, S. Karabasov, and A. Markesteijn, “New two level leapfrog scheme

for modeling the stochastic landau–lifshitz equations,” Computational Mathematics and

Mathematical Physics, vol. 54 (2), p. 315–334, 2014.

[66] R. B. Stewart and R. T. Jacobsen, “Thermodynamic properties of argon from the triple point

to 1200k with pressure to 1000 mpa,” Center of Applied Thermodynamic Studies, 1988.

133



Chapter 4 BIBLIOGRAPHY

[67] Y. Kataoka, “Studies of liquid water by computer simulations. iii. dynamical properties of a

2d model,” Bull. Chem. Soc. Jpn, vol. 57, pp. 1522–1527, 1983.

[68] Y. Kataoka, “A molecular dynamical study of the mutual diffusion coefficient and coopera-

tive motion in a 2-dimensional aquaeous solution,” Bull. Chem. Soc. Jpn, vol. 59, pp. 3341–

3346, 1985.

[69] K. Okazaki, S. Nosé, Y. Kataoka, and T. Yamamoto, “Study of liquid water by computer

simulations. i. static properties of a 2d model,” The Journal of Chemical Physics, vol. 75,

no. 12, pp. 5864–5874, 1981.

[70] F. Hirata and P. J. Rossky, “A realization of ’v structure’ in liquid water,” J. Chem. Phys,

vol. 74, pp. 6867–6874, 1981.

[71] C. L. Dias, T. Ala-Nissala, M. Karttunen, I. Vattulainen, and M. Grant, “Microscopic mech-

anism for cold denaturation,” Physical Review Letters, vol. 100, p. 118101, 2008.

[72] C. L. Dias, “Using microscopic mechanism for pressure and cold denaturations of proteins,”

Physical Review Letters, vol. 109, p. 048104, 2012.
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5 Supplementary files

Four video files are available (provided by Dr Ivan Korotkin) on the CD attached to the thesis. Each

file demonstrates the effect of the coupling (investigated in this work) on the different systems (3D

liquid argon and dialanine in SPC/E water). These video files (.mpg format) can be played using

Windows Media Player.

5.1 Simulation of three-dimensional liquid argon with the variable cou-

pling parameter s profile

Demonstration of three-dimensional liquid argon simulation using the coupling method when

sphere type profile of the coupling parameter s is used (CD: file name ’5.1.Dr.I.Korotkin. 3D

liquid argon (sphere profile s).mpg’).
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5.2 Simulation of dialanine with 1444 SPC/E water molecules when the

variable coupling parameter s profile is fixed to the simulation

domain center

Demonstration of dialanine with 1444 SPC/E water molecules simulation when sphere type pro-

file of the coupling parameter s is fixed in the center of the simulation domain (CD: file name

‘5.2.Dr.I.Korotkin. dialanine and 1444 SPCE water (fixed sphere type s).mpg’).

5.3 Simulation of dialanine with 30000 SPC/E water molecules when

the variable coupling parameter s profile is fixed to the simulation

domain center

Demonstration of dialanine with 30000 SPC/E water molecules simulation when sphere type pro-

file of the coupling parameter s is fixed in the center of the simulation domain (CD: file name

‘5.3.Dr.I.Korotkin. dialanine and 30000 SPCE water (fixed sphere type s).mpg’).

5.4 Simulation of dialanine with 30000 SPC/E water molecules when

the variable coupling parameter s profile is moving with the pep-

tide’s geometrical center

Demonstration of dialanine with 30000 SPC/E water molecules simulation when sphere type pro-

file of the coupling parameter s is linked to the dialanine’s geometrical center (CD: file name

‘5.4.Dr.I.Korotkin. dialanine and 30000 SPCE water (moving sphere type s).mpg’).

137



List of Publications

1. Anton Markesteijn, Sergey Karabasov, Arturs Scukins, Dmitry Nerukh, Vyacheslav Glo-

tov and Vasily Goloviznin. Concurrent multiscale modelling of atomistic and hydrody-

namic processes in liquids. 2014. Philosophical Transactions of the Royal Society. A 372.

20130379.

2. Evgen Pavlov, Makoto Taiji, Arturs Scukins, Anton Markesteijn, Sergey Karabasov and

Dmitry Nerukh. Visualising and controlling the flows in biomolecular systems at and be-

tween multiple scales: from atoms to hydrodynamics at different locations in time and space.

2014. Royal Society of Chemistry. DOI:10.1039/C3FD00159H.

3. Arturs Scukins, Vitaliy Bardik, Evgen Pavlov and Dmitry Nerukh. Molecular Dynamics

implementation of BN2D or ‘Mercedes Benz’ water model. submitted.

4. Arturs Scukins, Vitaliy Bardik, Evgen Pavlov and Dmitry Nerukh. Structure and collective

dynamics of two dimensional water I: Molecular Dynamics implementation of Mercedes

Benz model. submitted.

5. Arturs Scukins, Dmitry Nerukh, Evgen Pavlov, Sergey Karabasov and Anton Markesteijn.

Structure and collective dynamics of two dimensional water II: multiscale Molecular Dy-

namics / Hydrodynamics implementation of Mercedes Benz model. submitted.

138



Conferences

1. Dmitry Nerukh, Sergey Karabasov, Arturs Scukins, Evgen Pavlov, Ivan Korotkin, Vladimir

Farafonov, and Makoto Taiji, Hybrid molecular dynamics–hydrodynamics approach for

multiscale modelling of liquid molecular systems, 10th Congress of the World Association

of Theoretical and Computational Chemists (WATOC 2014) (Santiago, Chile, 2014)

2. Dmitry Nerukh, Sergey Karabasov, Arturs Scukins, Evgen Pavlov, Ivan Korotkin, Vladimir

Farafonov, and Makoto Taiji, Hybrid molecular dynamics–hydrodynamics framework for

modelling liquid molecular systems, EMLG - JMLG annual meeting 2014 (Rome, Italy,

2014)

3. Dmitry Nerukh, Arturs Scukins, Evgen Pavlov, Sergey Karabasov, Anton Markesteijn, Hy-

brid molecular dynamics - hydrodynamics framework for modelling liquids, Liquids 2014

(Lisbon, Portugal, 2014)

4. Evgen Pavlov, Makoto Taiji, Arturs Scukins, Ivan Korotkin, Anton Markesteijn, Sergey

Karabasov, Dmitry Nerukh, Visualising and controlling the flows in biomolecular systems

at and between multiple scales: from atoms to hydrodynamics at different locations in time

and space, Faraday Discussion 169: Molecular Simulations and Visualization (Nottingham,

UK, 2014)

5. Sergey Karabasov, Dmitry Nerukh, Arturs Scukins, Evgen Pavlov, Anton Markesteijn, Par-

dis Tabaee, Makoto Taiji, Modelling solutions of biomolecules at atomistic and contin-

uum representation at the same time: hybrid MD/hydrodynamics framework, CCPBioSim /

CCP5 Multiscale Modelling Conference (Manchester, UK, 2014)

6. Dmitry Nerukh, Arturs Scukins, Evgen Pavlov, Sergey Karabasov, Anton Markesteijn, and

Vitaliy Bardik, Modelling liquid solutions at atomistic and continuum representation at the

same time: hybrid MD/hydrodynamics implementation of two dimensional water model,

Methods and Applications of Computational Chemistry (Kharkov, Ukraine, 2013)

7. Dmitry Nerukh, Arturs Scukins, Evgen Pavlov, Vladimir Ryabov, Sergey Karabasov, and

139



SUPPLEMENTARY FILES

Anton Markesteijn, Molecular dynamics/hydrodynamics hybrid description of liquids and

biomolecular solutions, EMLG - JMLG annual meeting 2013 (Lille, France, 2013)

140



A Appendix

A.1 Relaxation method

The relaxation method is an iterative method for solving systems of equations.

Using finite differences framework, initial partial differential equation can be discretized in

the following manner

un+1 = Bun +g, (A.1)

where u is the solution, n+1 is the next time layer, B is the iteration matrix and g is the constant

vector.

For this case, the relaxation method can be expressed as

un+1 = (1−ω)un +ω(Bun +g), (A.2)

where ω is a parameter that minimizes spectral radius of the relaxed iteration matrix, which is

given by Bω = (1−ω)I +ωB.

More detailed description on the relaxation methods can be found in [27].
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A.2 Method of characteristics (‘one way’ coupling case)

The Landau Lifshitz-Fluctuating Hydrodynamics (LL-FH) equations can be expressed in the char-

acteristic form
∂φ

∂t
+A

∂φ

∂x
= f (φ), (A.3)

where φ = (ρ,u,P) are the conservative variables and f (φ) denotes the right hand side. The matrix

A is given by

A =


u ρ 0

0 u 1/ρ

0 ρc2 u


.

Thereby, the LL-FH equations can be rewritten in the terms of eigenvalues and eigenvectors.

Following eigenvalues of the matrix A are obtained λ1 = u+ c, λ2 = u− c, λ3 = u, where c is

the speed of sound.

Consequently, the eigenvectors are given by~v1 =(0,1, 1
ρc),~v2 =(0,1,− 1

ρc) and~v3 =(−c2,0,1).

The eigenvector matrix is expressed as

Ω =


0 1 1

ρc

0 1 − 1
ρc

−c2 0 1


.

Now, the LL-FH equations are multiplied with the eigenvector matrix Ω derived above

Ω
∂φ

∂t
+ΩA

∂φ

∂x
= Ω f (φ). (A.4)

According to the well known relationship AΩ = ΛΩ equation above becomes

Ω
∂φ

∂t
+ΛΩ

∂φ

∂x
= Ω f (φ), (A.5)

where the eigenvalue matrix is given by

Λ =


u+ c 0 0

0 u− c 0

0 0 u


.

Using principles above, the LL-FH equations can be written explicitly[
∂u
∂t

+
1
ρc

∂P
∂t

]
+(u+ c)

[
∂u
∂x

+
1
ρc

∂P
∂x

]
= F1 (A.6)[

∂u
∂t
− 1

ρc
∂P
∂t

]
+(u− c)

[
∂u
∂x
− 1

ρc
∂P
∂x

]
= F2[

∂P
∂t
− c2 ∂ρ

∂t

]
+u
[

∂P
∂x
− c2 ∂ρ

∂x

]
= F3.
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Riemann invariants R,Q,S can be introduced, such that (A.6) is reduced to

∂R
∂t

+(u+ c)
∂R
∂x

= F1 (A.7)

∂Q
∂t

+(u− c)
∂Q
∂x

= F2

∂S
∂t

+u
∂S
∂x

= F3.

These Riemann invariants can be associated with the two pressure waves and one entropy

wave. Before the Riemann invariants are determined following relationship must be noted c =

c(ρ) =
√

∂P
∂ρ

, which can be reordered as ∂P = c2∂ρ.

Using relationship above invariants can be extracted assuming that[
∂u
∂t

+
1
ρc

∂P
∂t

]
=

[
∂u
∂t

+
c
ρ

∂ρ

∂t

]
=

[
∂u
∂t

+ c
∂ lnρ

∂t

]
, (A.8)

thus R = u+ c lnρ, Q = u− c lnρ.

The last equation of the LL-FH is not solved in this work, since adiabatic system is studied,

where energy equation is decoupled from the mass and momentum conservation equations.

Generally speaking, S is an entropy if the ideal gas is studied. A well known relationship for

ideal gas

c2 =
γp
ρ

(A.9)

provides with the following derivations ∂ρ · 1
ρ
−∂P · ρ

γP ·
1
ρ
= ∂ lnρ−∂ lnP1/γ = 1

γ
∂

(
ργ

P

)
leading to

the entropy for the ideal gas, that must be constant and equal to S = ργ

P .

A.3 Method of characteristics (‘two way’ coupling case)

The so called ‘two way’ coupling governing equations of the FH phase are summarized here.

It is advisable to introduce following variables

ρ
′ = ρ̃−∑

p
ρp, (A.10)

u′ρ′ = ũ jρ̃−∑
p

ρpu jp, (A.11)

where the first definition, that is density difference between the mixture and MD phase densities,

can be regarded as the perturbation density. The second definition, which is the difference between

the mixture and MD phase momentum can be regarded as the perturbation momentum.

Following the definitions above, the LL-FH mass conservation equation can be expressed as
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∂

∂t
ρ
′+

∂

∂xi
ũiρ
′ = Qρ, (A.12)

where

Qρ =
∂

∂xi

[
s(1− s)α

∂

∂xi

(
ρ
′)] (A.13)

followed by the LL-FH momentum conservation equation

∂

∂t
u′jρ
′+

∂

∂xi
ũiu′jρ

′ = sFj +Qu, (A.14)

where

Qu =
∂

∂x j

[
s(1− s)β

∂

∂x j

(
u′jρ
′)] . (A.15)

The FH phase force per volume term Fj is defined in the same manner as in the standard

LL-FH simulation

Fj =
∂

∂x j

(
Πi j + Π̃i j

)
, (A.16)

where the dissipative stress tensor is defined as

Πi j =−
(

p−ξ
∂u j

∂x j

)
δi j +η

(
∂u j

∂xi
+

∂ui

∂x j
−2D−1 ∂u j

∂x j
·δi j

)
, (A.17)

with ξ and η are the shear and bulk viscosities, D is the dimension of the system, p is the pressure

and δi j is the Kronecker delta function.

In order to estimate the stochastic stress tensor fluctuation-dissipation theorem (FDT) [62] is

used, which predicts the behaviour of non-equilibrium thermodynamical systems.

The theorem provides the balance between the fluctuations in the system and its dissipative

properties. If the balance is violated then system’s behaviour can be either dominated by the

fluctuations or become too dissipative. In the first case we get instabilities, while in the second

case very small fluctuations. Thus it is important to maintain the balance between these two

properties.

The FDT provides us with the covariance of stochastic stress tensor

〈Π̃i j(r, t) · Π̃kl(r′, t ′)〉= 2kBT
[

η
(
δikδ jl +δilδ jk

)
+

(
ξ− 2

3
η

)
δi jδkl

]
(A.18)

×δ(r− r′)δ(t− t ′)

that yields stochastic stress [61] expressed as

Π̃i j =

√
2kBT
δtδV

(√
2
√

η ·Gs
i j +
√

D
√

ξ
tr[G]

D
Ei j

)
, (A.19)
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where G is Gaussian random matrix, Gs
i j =

Gi j+GT
i j

2 − tr[G]
D Ei j, E is the unity matrix and tr[G] =

G11 +G22 +G33, which stands for the matrix trace, kB is Boltzmann constant, T is the tempera-

ture. The Gaussian random matrix G is a matrix which elements are randomly generated with the

Gaussian distribution [63].

The set of equations (A.12) - (A.15) is solved numerically using a second-order centred finite-

difference scheme based on the characteristic decomposition method. For the ‘two way’ coupling

governing equations (A.12) and (A.15) can be expressed in the matrix format (for simplicity one-

dimensional case is considered here)

Ut +AUx = Q, (A.20)

where variables are expressed as

U =

 ρ′

ρ′u′j


the derivative with respect to time

Ut =


∂ρ′

∂t

∂ρ′u′j
∂t


followed by the spatial derivative

Ux =


∂ρ′

∂xi

∂ρ′u′j
∂xi


We apply operator splitting technique, thus the right hand side temporally is assumed to be

Q = 0.

The matrix A is given by

A =

 ũ j 0

0 ũ j


, that leads to the characteristic speeds λ1,2 = ũ and Riemann invariants are ρ′ and ρ′u′j.

Finally, the right hand side Q is used when the conservative values are evaluated.

A.4 Ergodicity

Assuming, that studied N - body system obey ergodic hypothesis, MD simulations can be used to

determine macroscopic thermodynamic properties of the system.
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The ergodicity theorem states that the time average is the same as an ensemble average (de-

noted as 〈〉), where the ensemble is an idealization consisting of a large number of virtual copies of

the system considered simultaneously, each of which represents a possible state of the real system

could be in [4, 59].

A.5 Thermodynamics of BN2D water model in the NVE ensemble

The relationships between the thermodynamic variables and macroscopic parameters, such as tem-

perature T , pressure P, isochoric heat capacity CV , isothermal compressibility βT , thermal expan-

sion coefficient αP are given by:

T =

(
∂S
∂E

)−1

V
, (A.21)

P = T
(

∂S
∂V

)
E
, (A.22)

CV =

[(
∂T
∂E

)
V

]−1

, (A.23)

1
βT

=−V
(

∂P
∂V

)
T
=−V

[(
∂P
∂V

)
S
+

T
CV

(
∂P
∂T

)2

V

]
, (A.24)

αP =
1
V

(
∂V
∂T

)
P
= βS

(
dP
dT

)
V
. (A.25)

In order to evaluate these thermodynamic properties from molecular dynamics results statisti-

cal mechanics should be used. The MD theory framework naturally leads to the NVE ensemble.

The phase space volume [78, 4] is defined as

Ω(N,V,E) = M
∫

d pN . . .dqN
δ(E−H(pN ,qN)) (A.26)

and the phase space density as

Σ(N,V,E) = M
∫

d pN . . .dqN
Θ(E−H(pN ,qN)), (A.27)

where p and q are the phase space momenta and coordinates, N is the number of particles, V is the

volume of the system, E is the total energy, H(qN , pN) is the Hamiltonian, M is the normalization

constant, and Θ is the Heaviside step function [79].

146



Appendix A APPENDIX

A useful relationship between the phase space volume and density is available[78]

Ω(N,V,E) =
∂

∂E
Σ(N,V,E). (A.28)

In the context of statistical mechanics, for a large number of molecules the entropy can be

defined as [78]

S = kB lnΣ. (A.29)

It is assumed that system’s Hamiltonian can be separated into the potential and the kinetic

energies [4]

H(qN , pN) = Φ(qN)+K(pN). (A.30)

Thus the Laplace transform applied to the microcanonical ensemble (NVE) partition function or

phase space volume (A.26) results in following expression

L[Ω] = M
∫

d pN
∫

dqN
∫

dE e−βE
δ(E−Φ(qN)−K(pN)) (A.31)

= M
∫

dqN e−βΦ(qN)
∫

d pN e−βK(pN),

with

M =
E0

N!h3N , (A.32)

where h is Plank constant, E0 is the thickness of the energy shell [4].

When BN2D water model is studied, the kinetic energy has three components (Kx, Ky, Kφ).

The two transitional kinetic energies are

Kx(px) =
p2

x

2m
, (A.33)

Ky(py) =
p2

y

2m
, (A.34)

and the rotational kinetic energy is

Kφ(pω) =
p2

ω

2I
, (A.35)

where px, py are the momentum along x and y respectively, pω is the rotational velocity.

Following substitution is performed p′2x,y =
p2

i
2m , pi = p′i

√
2m and d pi = d p′i

√
2m, where i de-

notes spatial coordinate x and y. Note, that in (A.31) d pN = d p1
x d p2

x ...d pN
x ...d p1

y d p2
y ...d pN

y , where

N is the number of particles. While for the rotational part d pω = d p′ω
√

2I. Since the parts of the

integral are independent, they can be solved separately assuming that∫
d pN e−βK(pN) = (2mπ)2N/2(2Iπ)N/2

β
−3N/2, (A.36)
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since ∫
d p′ e−βp′2 =

√
π

β
. (A.37)

Now, Laplace transform applied to the phase space volume can be rewritten as

L[Ω] = M
∫

dqN e−βΦ(qN) (2mπ)N(2Iπ)N/2
β
−3N/2 = M (2mπ)N(2Iπ)N/2

∫
dqN e−βΦ(qN)

β
−3N/2.

(A.38)

Applying the inverse Laplace transform to the integral above

L−1
(∫

dqN e−βΦ(qN)
β
−3N/2

)
=

1
2πi

∫ i∞

−i∞
dqN

β
−3N/2eβ(E−Φ(qN))dβ (A.39)

the phase space volume is obtained, where the kinetic part is eliminated form the integral

Ω(N,V,E) = M (2mπ)N(2Iπ)N/2×
∫

dqN (E−Φ(qN))3N/2−1

Γ(3N/2)
Θ(E−Φ(qN)). (A.40)

Using relationship between the phase space volume and density

Ω(N,V,E) =
∂

∂E
Σ(N,V,E),

the phase space density is obtained

Σ(N,V,E) = M (2mπ)N(2Iπ)N/2×
∫

dqN (E−Φ(qN))3N/2

Γ(3N/2+1)
Θ(E−Φ(qN)). (A.41)

Using the definition of the entropy (A.29) and thermodynamic relationships (A.21) - (A.24)

the thermodynamic parameters can be calculated for the NVE ensemble using MD simulation.

A.5.1 Temperature

The temperature is defined as (A.21) yielding

kB T =
Σ

Ω
=

2
3N
〈K〉 , (A.42)

where 〈〉 is the ensemble or time average, E is the total energy.

A.5.2 Pressure

Since the pressure is defined as (A.22) we get

P =
1
Ω

∂Σ

∂V
, (A.43)

the volume V in the two-dimensional system is replaced with the area A.
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The volume dependence is contained implicitly in the integration limits, thus by changing

variables in the integral we render the limits independent of the box size.

Using the substitutions in the phase space

q = A
1
2 q∗ (A.44)

and

p = A
1
2 p∗ (A.45)

the phase space integrals become

Σ(N,V,E) = M1AN×
∫

dq∗N
(E−Φ((A1/2q∗)N))3N/2

Γ(3N/2+1)
×Θ(E−Φ((A1/2q∗)N)) (A.46)

and

Ω(N,V,E) = M1AN×
∫

dq∗N
(E−Φ((A1/2q∗)N))3N/2−1

Γ(3N/2)
×Θ(E−Φ((A1/2q∗)N), (A.47)

where M1 = M · (2mπ)N(2Iπ)N/2.

The phase space density derivative with respect to the area yields pressure

P =
1
Ω

∂Σ

∂A
=

N
A

2
3N
〈K〉−

〈
∂Φ

∂A

〉
= ρ kBT −

〈
∂Φ

∂A

〉
, (A.48)

where ρ = N/A is the number density.

A.5.3 Isochoric heat capacity

The isochoric heat capacity (A.23) is calculated as

1
CV

=
1
kB

(
1
Ω

∂Σ

∂E
− Σ

Ω2
∂Ω

∂E

)
=

1
kB

(
1− Σ

Ω2
∂Ω

∂E

)
, (A.49)

which is reduced to

CV

NkB
=

(
2
3
〈K〉

〈
K−1〉+N(1−〈K〉

〈
K−1〉))−1

. (A.50)

A.5.4 Isothermal compressibility

The first term in the equation (A.24) for the isothermal compressibility is defined as

−A
(

∂P
∂A

)
S
=−A

∂

(
1
Ω

∂Σ

∂A

)
∂A


S

=−A
(

1
Ω

∂2Σ

∂A2

)
S
+A

(
1
Ω

∂Σ

∂A
1
Ω

∂Ω

∂A

)
S
, (A.51)
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which yields(
∂P
∂A

)
S
=

(
N(N−1)

A2 kBT −
〈

∂2Φ

∂A2

〉
− −2ρ

〈
∂Φ

∂A

〉
+(3N/2−1)

〈
K−1

(
∂Φ

∂A

)2
〉)
−

(A.52)

−
(

ρ− (3N/2−1)
〈

K−1 ∂Φ

∂A

〉)
P.

The technique from [78] was used for the systems with translational degrees of freedom only.

This particular application to BN2D water model shows that the angular degree of freedom must

be treated in the same manner as the translational degrees of freedom.

A.6 Equations of motion in the NPT ensemble

In the NPT ensemble virtual variables (q′, p′,st ,V, t ′) are introduced. These variable can be related

to the real variables (q, p,st ,V, t) when scaling of time and coordinates is performed. Where ′

denotes virtual variable, q is the coordinate, p is the impulse or momentum, V is the volume, t is

time and st is the new variable which is discussed later.

Relationship between these variable can be established if following strategy is used: the time

is scaled with the new variable st and the coordinates are scaled with the length, which is defined

as V 1/d , where d stands for the dimensionality [4, 59]. In mathematical terms these relationships

are expressed as

qi =V 1/dq′, (A.53)

t =
∫ t 1

st
·dt ′. (A.54)

Eventually, the volume V and parameter st are assumed to be the new degrees of freedom. As

a result, the change in the volume will maintain constant pressure in the system, and the change of

st constant temperature, since MD particles velocities depend from the time rate.

Using relationships above and statistical mechanics framework, the real momentum is propor-

tional to the virtual momentum and the proportionality coefficient is defined as

p = c · p′. (A.55)

The coefficient c is unknown, although it can be derived using classical mechanics concepts. Since

momentum is a product of the mass m and velocity

p = m · dq
dt

, (A.56)

where velocity is a derivative of the coordinate with respect to time.
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Using relationships (A.53) and (A.54) momentum can be expressed in the terms of virtual

variables

p = stV 1/dm · dq′

dt ′
. (A.57)

The full derivative is given by q̇ = V 1/d q̇′+( V̇
V dV 1/d)q′, the velocities must be measured relative

to the rate at which the region size changes. Thus the flow component V̇ must be dismissed from

the atomic velocities, that is essential to ensure the correct definition of the temperature [59].

From the statistical mechanics perspective a relationship between the coordinates and momen-

tum is given by
dq′

dt ′
=

dH
d p′

, (A.58)

where H is system’s Hamiltonian.

The Hamiltonian is a sum of kinetic and potential energy from all degrees of freedom. There-

fore, according to the statistical mechanics principles full system Hamiltonian is expressed as

H = ∑
i

p2
i

2mi
+∑

i

pi
2
φ

2I
+Φ(q,φ)+

p2
st

2Ms
+gkT lnst +

p2
v

2MV
+PexV, (A.59)

where pst and pv are conjugate momenta for st and V respectively, I is the moment of inertia,

Ms and MV are the proportionality coefficients (generalized masses), summation is done over all

particles.

For the virtual time g = d ·N + 1, where N is the number of particles, and for the real time

g = d ·N [59, 25, 4].

Now, the derivative dq′
dt ′ can be substituted in (A.57) considering the relationship between the

real and virtual momentum

p = m · stV 1/d d[c2 p′2/2m]

d p′
(A.60)

that can be reduced to

p = stV 1/dc[c · p′] = stV 1/dcp. (A.61)

Eliminating p from the both sides, proportionality parameter is given by

c =
1

stV 1/d . (A.62)

Thus the relationship between the momentum in terms of available parameters is

pi =
p′i

stV 1/d . (A.63)

Furthermore, an assumption is made, that the angle between the MB arms and x-axis is not

scaled, since the angle in the MB model is separated from the spatial space. Thus, following

transformation is true for the angular coordinate
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φi = φ
′
i. (A.64)

Following similar procedure to the momentum above, a relationship between the real and

virtual rotational momentum is

pφ = cφ · p′φ, (A.65)

where cφ is the proportionality coefficient.

It is known, that rotational momentum is a product of the moment of inertia I and angular

velocity

pφ = I · dφ

dt
(A.66)

that in terms of the virtual angle and time can be written as

pφ = st · I
dφ′

dt ′
. (A.67)

Using statistical mechanics, virtual angular velocity is defined as a derivative of the system’s

Hamiltonian with respect to the momentum

dφ′

dt ′
=

dH
d p′

φ

. (A.68)

Substituting virtual angular velocity in the equation for the virtual angular momentum follow-

ing expression is obtained

pφ = st · I
dH
d p′

φ

, (A.69)

that can be simplified to

pφ = I · st
d[c2

φ
p′2

φ
/2I]

d p′
φ

(A.70)

and later reduced to

pφ = st · cφ[cφ · p′φ] = st · cφ · pφ. (A.71)

Eliminating angular momentum on the both sides, the proportionality coefficient is given by

cφ =
1
st
. (A.72)

The relationship between the real and virtual angular momentum becomes

pφ =
p′

φ

st
. (A.73)

The full system’s Hamiltonian in terms of the virtual variable and available parameters is

expressed as

H = ∑
i

V−2/dst
−2 p′2i

2mi
+∑

i
st
−2 p′i

2
φ

2I
+Φ(V 1/dq′,φ′)+

p2
st

2Ms
+gkT lnst +

p2
v

2MV
+PexV. (A.74)

152



Appendix A APPENDIX

Using statistical mechanics principles together with the obtained relationships above, a set of

equations of motion is obtained.

The virtual velocities are given by

dq′i
dt ′

=
∂H
∂p′i

=V−2/dst
−2 p′i

mi
, (A.75)

followed by the virtual forces

d p′i
dt ′

=−∂H
∂q′i

=−∂Φ(V 1/dq′,φ′)
∂qi

V 1/d , (A.76)

the virtual angular velocity is expressed as

dφ′i
dt ′

=
∂H
∂p′

φi

= st
−2 p′

φi

I
, (A.77)

followed by the virtual torque

d p′
φi

dt ′
=−∂H

∂φ′i
=−∂Φ(V 1/dq′,φ′)

∂φ′
, (A.78)

an additional degree of freedom st change rate is given by

ds
dt ′

=
∂H
∂pst

=
pst

Ms
, (A.79)

followed by the conjugate momentum for st change rate

d pst

dt ′
=−∂H

∂st
=

[
V−2/dst

−2
∑

i

p′2i
mi

+ st
−2

∑
i

p′2φi

I
−gkT

]
/st , (A.80)

volume change rate is given by
dV
dt ′

=
∂H
∂pv

=
pv

MV
, (A.81)

followed by the conjugate momenta for volume change rate

d pv

dt ′
=−∂H

∂V
=

[
V−2/dst

−2
∑

i

p′2i
mi
− ∂Φ(qi)

∂qi
qi

]
/(d ·V )−Pex. (A.82)

The equations above can be rewritten in terms of the virtual variables, if a derivative of (A.75)

- (A.82) is taken with respect to the virtual time t ′. Following set of equations is obtained if

derivative is taken with respect to the real time t:

q̈′i =V−1/d fi

mi
−
[

ṡt

st
+

2
d

V̇
V

]
q̇′i, (A.83)

φ̈′ =
fφi

I
−
[

ṡt

st

]
· φ̇′i, (A.84)

s̈t =
ṡt

2

st
+ st

(
V 2/d

∑
i

miq̇′i
2
+∑

i
Iφ̇′i

2−gkT

)
/Ms, (A.85)
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V̈ =
ṡtV̇
st

+
st

2

d ·MV ·V
×

([
V 2/d

∑
i

miq̇′i
2
+V 1/d

∑
i

Fi ·q′i

]
−Pex ·d ·V

)
, (A.86)

where ¨ denotes ∂2

∂t2 . The set of equations can be expressed in terms of the real variables, if

relationships in (A.53) is used:

q̈i =
fi

mi
−
[

ṡt

st

][
q̇i−

qi

V d
V̇
]
+

1
d

qiV̈
V

+qi

(
V̇

V d

)2

(1−d) , (A.87)

φ̈i =
τi

I
−
[

ṡt

st

]
· φ̇i, (A.88)

s̈t =
ṡt

2

st
+

st

Ms

(
∑

i
mi

[
q̇i−

qi

V d
V̇
]2

+∑
i

Iφ̇i
2−gkT

)
, (A.89)

V̈ =
ṡtV̇
st

+
s2

t

d ·MV ·V
×

([
∑

i
mi

[
q̇i−

qi

V d
V̇
]2

+∑
i

Fi ·qi

]
−Pex ·d ·V

)
. (A.90)

A.7 Program structure for the MB water model

Most of the standard routines were used form ‘D. C. Rapaport, ”The Art of Molecular Dynam-

ics Simulation” (Second Edition), Cambridge University Press, UK, 2004’. That makes easier

to modify and improve the code if user is familiar with the book. The book contains detailed

explanations of the implemented and available algorithms, methodology and analysis methods.

The BN2D water model simulation code consists of the two header files mb_class_defs.h

and macro.h, main file main.cpp and input file input.txt.

Five classes are available, the MB class is for MB model, the NV E and NPT classes for

the relevant ensemble respectively, the RDF and VACF classes for the structural and dynamical

properties respectively.

Derivatives of the potential with respect to the area can be found in Appendix A.8.

A.8 Potential derivatives

Integration of MD equations of motion requires forces that act on each particle. For the conserva-

tive potential fields the force acting on the ith molecule is calculated as a negative gradient of the

potential field. For the BN2D water model in addition to the translational force the derivative with

respect to an angle φ produces the torque τ:

τ =−∂Φ

∂φ
. (A.91)
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The additional degree of freedom φ gives rise to the angular velocity ω. A corresponding

moment of inertia I should be introduced in order to characterize the rotation of water molecules

(I is an equivalent for the mass for rotation).

The formulas for thermodynamic properties depend, besides the kinetic energy, on the deriva-

tives of the potential with respect to the area/volume. The first and second order derivatives of the

potential energy with respect to the area are:

dΦ

dA
=

1
2A

N−1

∑
i=1

N

∑
j=i+1

dx
dΦi j

dx
+dy

dΦi j

dy
, (A.92)

and

d2Φ

dA2 =
1

4A2

N−1

∑
i=1

N

∑
j=i+1

dx2 d2Φi j

dx2 +2 ·dxdy
d2Φi j

dxdy
+dy2 d2Φi j

dy2 , (A.93)

where Φi j is the potential, dx and dy are the distances along x and y direction between the ith and

jth particles respectively.

A.8.1 Lennard-Jones part

The derivatives of the Lennard Jones part of the potential for ith particle leads to:

FLJ =−∇qΦLJ =−
ΦLJ

dri j

dri j

dq
, (A.94)

where ri j =
√

(x j− xi)2 +(y j− yi)2 and q denotes xi or yi coordinate, the notation of ∇q is either
∂

∂xi
or ∂

∂yi
.

Using equation

ΦLJ(r) = εLJ

((
σLJ

ri j

)12

−
(

σLJ

ri j

)6
)
, (A.95)

where σLJ,εLJ are the model parameters describing the length and depth of the potential and ri j is

the distance between interacting particles, we get

dΦLJ

dri j
=−24 · εLJ ·σ6

(
2 σ

6r−14
i j − r−8

i j

)
· ri j,

where the distance derivatives with respect to xi and yi are

dri j

dxi
=−

x j− xi

ri j
,

and
dri j

dyi
=−

y j− yi

ri j

respectively.

The second order derivatives of the LJ potential with respect to xi and yi components are

155



Appendix A APPENDIX

d2ΦLJ

dq2 = 24 · εLJ ·σ6


(

26 σ6−7 r6
i j

)
·
(

dri j
dq

)2

r14
i j

+ +
ri j

(
−2σ6 + r6

i j

)(
d2ri j
dq2

)
r14

i j

 ,

where
d2ri j

dx2
i

=−
(x j− xi)

2

r3
i j

+
1
ri j

and
d2ri j

dy2
i

=−
(y j− yi)

2

r3
i j

+
1
ri j

.

The torque of Lennard-Jones potential is zero.

A.8.2 Hydrogen bonding part

The derivative of the HB part of the potential with respect to xi, yi, and φi are derived as follows

1
εHB

∇qΦHB = ∇qG(ri j− rHB)
N

∑
i j

G(~ik ·~ui j−1)G(~jl ·~ui j +1)+ (A.96)

+G(ri j− rHB)
N

∑
i j

∇qG(~ik ·~ui j−1)G(~jl ·~ui j +1)+G(ri j− rHB)
N

∑
i j

G(~ik ·~ui j−1)∇qG(~jl ·~ui j +1).

Introducing new notation hi =~ik ·~ui j and h j = ~jl ·~ui j, the scalar products hi and h j become

hi =
(x j− xi) · cos φi +(y j− yi) · sin φi

ri j
,

and

h j =
(x j− xi) · cos φ j +(y j− yi) · sin φ j

ri j

respectively.

Using the notation above we expand the terms in (A.96) to

∇qG(ri j− rHB) =
dG(ri j− rHB)

dri j

dri j

dq
,

where
dG(ri j− rHB)

dri j
=−

(ri j− rHB)

σ2
HB

G(ri j− rHB).

The orientation dependent terms become

∇qG(hi−1) =
dG(hi−1)

dhi

dhi

dq
=−(hi−1)

σ2
θ

G(hi−1)
dhi

dq
,

and

∇qG(h j +1) =
dG(h j +1)

dhi

dh j

dq
=−

(h j +1)
σ2

θ

G(h j +1)
dh j

dq
,
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where
dhi

dxi
=−cos φi

ri j
−

(x j− xi) · cos φi +(y j− yi) · sin φi

r2
i j

dri j

dxi
,

dh j

dxi
=−

cos φ j

ri j
−

(x j− xi) · cos φ j +(y j− yi) · sin φ j

r2
i j

dri j

dxi
,

dhi

dyi
=−sin φi

ri j
−

(x j− xi) · cos φi +(y j− yi) · sin φi

r2
i j

dri j

dyi
,

dh j

dyi
=−

sin φ j

ri j
−

(x j− xi) · cos φ j +(y j− yi) · sin φ j

r2
i j

dri j

dyi
.

The torque of the HB part for the ith particle is

∇φiΦHB = εHB ·G(ri j− rHB) ·
N

∑
i j

∇φiG(hi−1)G(h j +1),

where
dhi

dφi
=
−(x j− xi)sin φi +(y j− yi)cos φi

ri j
.

Introducing new notations A = G(ri j− rHB), B = G(hi− 1), C = G(h j + 1) the second order

derivatives of the potential with respect to the coordinate for the HB part are obtained

d2ΦHB

dq2 =
d2 (A∑B ·C)

dq2 = ∇
2
qA∑B ·C+A∑∇

2
qB ·C+A∑B ·∇2

qC+ (A.97)

+2
(
A∑∇qB ·∇qC+∇qA∑B ·∇qC+∇qA∑∇qB ·C

)
.

The second order derivative of the Gauss function G( f (q)) = e−
f (q)2

2σ2 is

d2G( f (q))
dq2 =

G( f (q))
(
(−σ2 + f (q)2) ·

(
d f (q)

dq

)2
−σ2 · f (q) ·

(
d2 f (q)

dq2

))
σ4 ,

while

d2hi

dx2 = (yi− y j)

(
sin(φi)(−2(xi− x j)

2 +(yi− y j)
2)

r5
i j

+
3 cos(φi)(xi− x j)(yi− y j)

r5
i j

)
,

d2hi

dy2 = (xi− x j)

(
cos(φi)((xi− x j)

2−2(yi− y j)
2)

r5
i j

+
3 sin(φi)(xi− x j)(yi− y j)

r5
i j

)
,

d2h j

dx2 = (yi− y j)

(
sin(φ j)(−2(xi− x j)

2 +(yi− y j)
2)

r5
i j

+
3 cos(φ j)(xi− x j)(yi− y j)

r5
i j

)
,

d2h j

dy2 = (xi− x j)

(
cos(φ j)((xi− x j)

2−2(yi− y j)
2)

r5
i j

+
3 sin(φ j)(xi− x j)(yi− y j)

r5
i j

)
.
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A.9 Predictor-Corrector method

Predictor-Corrector (PC) methods use information from the previous timesteps (here Adams ap-

proach is described [59]).

Predictor step for the time layer t +dt is an extrapolation of the information obtained from the

previous timesteps and can be expressed as

x(t +dt) = x(t)+dt · ẋ(t)+dt2
k−1

∑
i=1

αiẍ(t +[1− i]dt), (A.98)

where ẍ is acceleration and coefficients αi are already known [59]. These coefficients were ob-

tained by satisfying k−1 set of equations

k−1

∑
i=1

(1− i)q
αi =

1
(q+1)(q+2)

, (A.99)

where q = 0, ...,k−2.

The predictor step for the velocity is given by

dt · ẋ(t +dt) = x(t +dt)− x(t)+dt2
k−1

∑
i=1

α
′
iẍ(t +[1− i]dt), (A.100)

where α′i is already known and satisfied following relationship

k−1

∑
i=1

(1− i)q
α
′
i =

1
(q+2)

. (A.101)

After acceleration evaluation at the next timestep ẍ(t + dt) corrector step is applied to the

coordinate

x(t +dt) = x(t)+dt · ẋ(t)+dt2
k−1

∑
i=1

βiẍ(t +[2− i]dt), (A.102)

followed by the correction of the velocities

dt · ẋ(t +dt) = x(t +dt)− x(t)+dt2
k−1

∑
i=1

β
′
iẍ(t +[2− i]dt), (A.103)

where βi and β′i are already known by satisfying

k−1

∑
i=1

(2− i)q
βi =

1
(q+1)(q+2)

, (A.104)

and
k−1

∑
i=1

(2− i)q
β
′
i =

1
(q+2)

. (A.105)

For the NPT simulation of the BN2D model k was set equal to 4.
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