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The exponentially increasing demand on operational data rate has been
met with technological advances in telecommunication systems such as
advanced multilevel and multidimensional modulation formats, fast signal
processing, and research into new different media for signal transmission.
Since the current communication channels are essentially nonlinear, es-
timation of the Shannon capacity for modern nonlinear communication
channels is required.
This PhD research project has targeted the study of the capacity limits
of different nonlinear communication channels with a view to enable a
significant enhancement in the data rate of the currently deployed fiber
networks. In the current study, a theoretical framework for calculating the
Shannon capacity of nonlinear regenerative channels has been developed
and illustrated on the example of the proposed here regenerative Fourier
transform (RFT). Moreover, the maximum gain in Shannon capacity due
to regeneration (that is, the Shannon capacity of a system with ideal re-
generators – the upper bound on capacity for all regenerative schemes) is
calculated analytically. Thus, we derived a regenerative limit to which the
capacity of any regenerative system can be compared, as analogue of the
seminal linear Shannon limit. A general optimization scheme (regenera-
tive mapping) has been introduced and demonstrated on systems with dif-
ferent regenerative elements: phase sensitive amplifiers and the proposed
here multilevel regenerative schemes: the regenerative Fourier transform
and the coupled nonlinear loop mirror.
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1

Introduction

Since Shannon proposed a mathematical theory for communication (1), it became ac-
tively used in various scientific disciplines: mathematics, physics, economics, biology,
linguistics and other fields of natural and social sciences. His key achievement was a
proof that the efficiency of information transmission through a communication channel
can be estimated by a single parameter – Shannon capacity, an optimizational func-
tional, where by adapting the input distribution to the channel properties, stochastic
and deterministic, one can calculate the maximum error-free transmission rate.

Since Shannon defined the capacity and calculated its value for a linear channel,
a few results were obtained for bounds on the nonlinear channel capacity. However,
though there are a variety of different nonlinear channel models, only few analytical
exact results are obtained. The intensity modulated direct detection channel, the phase
noise channel, the fiber-optic channel and the multipath channels are models of high
practical importance. Among these conditional probability density function has been
derived for only few (2, 3), which is necessary for signal optimization. Thus, instead of
exact capacity results, a number of lower or upper bounds for capacity were reported
(2)-(21).

The increasing demand for data rate drives advances in theoretical studies and en-
gineering technologies. Where information theory enables calculation of the capacity
and technology proposes new practical channel types with various transmission charac-
teristics. In the post-Shannon era, following Shannon’s ingenious approach to coding,
the information theory has been enriched by various coding techniques developed for
a variety of applications in an aim to approach the established linear Shannon limit.
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The problem of the discrete representation of a continuous bi-Gaussian distribution
resulted in a variety of modulation formats, in particular ring constellations ((22), (23)
and references therein) with additional optimization over input probabilities (e. g.
iterative polar quantization (24)), which enables high transmission performance (25)-
(27). Currently, an optimization of 4D modulation formats is widely investigated (see
review in (28)).

Key innovations in engineering led to further increases in data rate. Among these,
distributed feed-back laser, erbium doped amplifier (EDFA) and Raman amplifica-
tion, and various modifications of the fiber link as a transmission medium, were fur-
ther supported by electronic signal processing, optical frequency division multiplex-
ing (OFDM), wavelength division multiplexing (WDM) and time-division multiplex-
ing (OTDM) (see the corresponding capacity increase in Fig. 1.1). In 2009 Charles
Kao was awarded a Nobel Prize for the work of 1960 (29), which led to practical im-
plementations of single-mode silica-based optical fiber, which is now responsible for
generation of over 90% of data traffic. Assisted by laser innovations, it has become a
foundation of modern communication systems, whereas digital signal processing of-
fers fast and reliable multiplexing techniques for using time, phase, wavelength, and
polarization of light, which is reflected in information theory by a number of works
devoted to efficient signal coding and packing (e.g. 4D modulation formats (28) and
references therein).

As a result, the transmission rate has increased dramatically over past decades, with
recent experiments demonstrating capacity of the order of Pbits/s (30). However, as
was indicated in a number of studies (30), there has been a continuous succession of
ever more demanding services, with current demand dominated by social networking,
YouTube, in particular video services, which require 3D ultra-high definition formats,
e.g. online streaming of London 2012-Olympics by BBC. Unfortunately, the efficiency
of current transmission systems are limited by a number of effects, in particular, noise
and nonlinearity. In-fiber nonlinearity is induced from the Kerr effect due to field de-
pendent refractive index change. As a result, the output of a communication channel
suffers not only from noise, but also from self-phase modulation (SPM), cross-phase
modulation (XPM) and four-wave mixing (FWM) (31)-(34). This significantly re-
duces the efficiency of transmission channel, though a variety of different mitigation
techniques were proposed (35)-(39). Among nonlinear effects, one can distinguish
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Figure 1.1: Maximum reported information capacity - for single wavelength (dia-
monds, open symbols for OTDM), WDM (triangles), single and multi-band OFDM (filled
circles) and coherent detection (open circles). (taken from (18))

deterministic effects, which, in principle, can be compensated, though the proposed
methods (40)-(45) are found to be impractical for compensation of full optical band-
width. Thus, currently the practical transmission efficiency is limited by nonlinearity
and signal processing load, and the corresponding nonlinear limit of fiber-channel ca-
pacity was estimated in a number of works, e.g. (18), (30). Moreover, current "hero"
experiments show that the capacity approaches the calculated nonlinear limit. The es-
timations of capacity demands and analysis of current trends show that the estimated
capacity crunch is expected in 2020 (30).

Thus, though exact nonlinear Shannon capacity has not been calculated for ex-
isting channel models, it was indicated that in case of full nonlinear compensation
and signal optimization, the Shannon capacity for static channel models (19) should
increase monotonically with signal power (17, 46). However, current capacity estima-
tions ((12, 18) and references therein) predict the limit on capacity growth due to non-
linearity increasing with signal power. In particular, the conventional Gaussian noise
signal approximation (12, 18, 47) shows that for uncompensated unoptimized link the
estimated transmission rate vanish with the increase of signal power, whereas in (46)
the difference between achievable rate or mutual information (unoptimized Shannon
functional), constrained capacity (Shannon functional optimized over the subset of
probability distributions), and the Shannon capacity (optimized Shannon functional)
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was stressed. Being in agreement with (46), the lower bound on the Shannon capacity
of the nonlinear fiber-optic channel with zero-dispersion was derived (17), showing
that the corresponding Shannon capacity increases with growing signal power, both
studies highlight the importance of analytical calculation of the optimized Shannon
functional – Shannon capacity. Therefore, since there is a variety of different nonlin-
ear channels, the nonlinear Shannon limit remains an open and acute problem.

Hence, there is a surge in search of new techniques for analytical capacity calcula-
tions and new methods of nonlinearity mitigation, as well as investigation of additional
degrees of freedom for more advanced data multiplexing. The latter resulted in spatial-
division-multiplexing for multicore (48) and multimode (49) fibers. Indeed, it was
shown that the new technologies enable a capacity increase a number of times (50),
however, such parallel systems are also affected by the nonlinear crosstalk between the
cores/modes (50) and require sophisticated DSP.

Also, recent experiments show that employing phase-conjugation one can effi-
ciently mitigate nonlinearity and dispersion (51)-(54), though it reduces the flexibility
of the system due to required mid-link optical phase conjugator. This was addressed
by proposing different system configurations (55, 56). As another example, in (57) the
authors proposed to transmit a pair of symmetric phase-conjugated twin waves with
additional requirement of dispersion-symmetry along the transmission path, resulting
in nonlinearity impairments being cancelled by adding the recovered twin waves at
the receiver. This enabled demonstration of a 400 Gb/s superchannel with a record
distance of 12800 km. This, however, is for the cost of the reduced rate by more than
twice, since two polarizations were exploited carrying the same data (58).

Among approaches to compensate for nonlinearity, one can distinguish digital back
propagation (59), which requires extensive signal processing at the receiver. Recently
proposed digital signal processing based on the inverse scattering transform (60) of-
fers new ways to mitigate nonlinear transmission impairments by using the Zakharov-
Shabat spectral problem. All the proposed techniques offer effective nonlinearity com-
pensation, though being computationally expensive.

Optical regeneration enables noise squeezing and, consequently, increases the chan-
nel capacity. In contrast to the destructive nonlinear effects, regeneration is based on
the constructive use of nonlinear signal transformations which result in noise squeez-
ing. Various schemes were offered for regenerators based on electronic or all-optical
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signal processing (61), where all-optical regeneration gained much attention recently.
A number of promising results were obtained for black-box WDM (62), 4-phase-shift
keying (PSK) (63)-(65), 6-PSK (66), 8-PSK (67), and 16-quadrature amplitude mod-
ulation (QAM) (68), which prove the possibility to remove noise from both quadra-
tures of the signal. Another important feature of regeneration is cascadability, as being
placed in cascades along the line regeneration enables accumulation of noise squeez-
ing effect and, as a results, improves the received signal (41, 69, 70, 71). Thus, optical
regeneration has been established as a promising and rapidly evolving area. However,
though in the limits on achievable rate were estimated analytically (18) or numerically
(72), proving that one can achieve transmission rate higher than the corresponding
linear Shannon limit. Nevertheless, the exact regenerative capacity has not been calcu-
lated analytically, though it is highly important for analysis and design of regenerative
systems.

This study addresses the aforementioned problems via an information theory frame-
work, namely:

• we created a method for designing and optimizing regenerative channels, and
derived analytical results for the regenerative capacity limit;

• we introduced a technique of regenerative Fourier transformation (RFT), which
represents the continuous approximation of the ideal regenerative transfer func-
tion: the technique enables regeneration of multilevel multidimensional signal
formats;

• we presented methodology for calculating the Shannon capacity of practical re-
generative schemes and demonstrated it by RFT;

• we developed a procedure for simultaneous optimization of modulation format
and parameters of regenerator; we demonstrated it by the example of phase-
quantizers based on phase-sensitive amplifiers (PSAs), for which we derived
the optimal transfer function parameters and found the optimal signal packing.
Moreover, we proposed a new model for multilevel amplitude regeneration –
coupled nonlinear optical loop mirror and demonstrated its performance on cir-
cular QAM. Also, combined with PSAs it enables simultaneous phase and am-
plitude regeneration for circular QAM.
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The rest of the thesis is organized as follows:
Chapter 2 provides the information theory basis with the emphasis on Shannon’s

seminal paper of 1948 and an overview of the previous and post-Shannon works.
Chapter 3 gives the Shannon capacity results for different communication channels:

from Shannon’s linear channel to currently studied fiber-optic channel.
Chapter 4 presents the results of the analysis of regenerative channels, details of the

optimized regenerative mapping technique and calculations of the regenerative Shan-
non limit. Next, we introduced RFT technique and calculated its capacity.

Chapter 5 analyzes optimization and design of cascaded regenerative transmission.
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2

Shannon capacity

Here we give an overview of information theory and discuss the definition and meaning
of the Shannon capacity.

2.1 Introduction

The main subject of information theory is information, a message encoded in the state
of a transmitter, which is further transmitted to the receiver. By communication, we
mean that the physical acts of the transmitter made influence on the physical state of
the receiver. The physical process of transmitting information is subject to the noise
and imperfections of the medium, signalling processes, etc. Thus, communication is
perturbed by the noise, which induces errors at the receiver. Due to noise, one needs to
introduce redundancy to the message to quantify that for which Shannon used entropy
(1).

The main objects of information theory are ultimate data compression (defined by
entropy) and the ultimate transmission rate (referred to as channel capacity, defined via
the difference of entropies). Thus, information theory provides the method where, by
optimizing a communication scheme over all possible input probability distributions,
one can calculate the maximum achievable transmission rate, that is, the Shannon ca-
pacity.
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2.2 Before Shannon

2.2 Before Shannon

The development of information theory is closely connected with telecommunication
advances. Different coding techniques for information transmission can be found
throughout history: from drums used for long-distance communication (with a speed of
up to 100 miles in an hour) (73) to flag signalling. Starting from the first digital com-
munication system, telegraphy, which was based on the variable-length binary code
and was developed and demonstrated by Morse in 1837 (74), the technology expanded
rapidly. In 1838, the five-needle telegraph was proposed by Cooke and Wheatstone.
Then, in 1841, the first public telegraph from London to Birmingham was implemented
with Morse’s first system installed for the communication from Baltimore to Washing-
ton in 1844. In 1875, Emile Badaudot developed fixed-length binary code for teleg-
raphy (74). The technology paved the way for efficient information coding and led to
the formulation of the sampling theorem in 1924 by Nyquist (75, 76). Nyquist studied
the maximum transmission rate by seeking an "optimum" code, which would replace
Morse’s for some applications. In particular, in 1939, Alec Reeves invented pulse code
modulation (77). Thus started the search for efficient coding schemes, which would re-
duce errors due to transmission impairments. Later, Shannon formulated the problem
of finding optimum input signal distribution (any combination of modulation formats
and error-correcting codes).

2.2.1 Nyquist sampling theorem

Information theory started from the work of Nyquist (75, 76) in 1924, when he in-
vestigated the problem of code optimization, which would be more efficient than the
seminal code of Morse. Thus, he studied the problem of defining the maximum trans-
mission rate in a telegraph band-limited channel in the absence of inter-symbol inter-
ference. He represented a transmitted signal in a general form:

s(t) = ∑
k

xk f (t − kT ) (2.1)

here, a waveshape is denoted by f (t) and encoded binary data by xk transmitted at
a rate 1/T bits/s. This formula contains in itself the representation theorem, which
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2.2 Before Shannon

addresses the problem of finding the minimum number of samples that uniquely de-
termine the function s(t). He showed that if a s(t) has bandwidth W Hz, then, in the
absence of inter-symbol interference, the minimum pulse rate is 2W pulse/s. This rate
is commonly referred to as the Nyquist rate.

The Nyquist rate under the condition of the given bandwidth W can be achieved by
sinc-pulses:

f (t) =
sin(2πWt)

2πWt
(2.2)

Using the above functions for shaping a signal, one can recover a transmitted informa-
tion without inter-symbol interference by using samples taken at the sampling time:
kT , k = 0,±1, ... with T = 1/(2W ). This was later generalized and proved by Shannon
(1) and now is referred to as the Shannon-Nyquist theorem.

This work was further supported by a number of important results, for example,
the maximum telegraph signaling speed was studied for noiseless band-limited linear
signals (75, 76, 78, 79). They proved the transition rate of telegraph signals is propor-
tional to the bandwidth of the transmission line. Earlier, independently and unbeknown
to those authors, Whittaker (80)-(81) applied interpolation theory for sampling band-
limited functions.

2.2.2 Hartley’s contribution

These results were generalized in 1928 by R. Hartley (82), who stated that, "the total
amount of information which may be transmitted . . . is proportional to the product
of frequency range which is transmitted and the time which is available for the trans-
mission". In this work, Hartley used a term of "capacity" as "capacity of a system
to transmit information", where he discusses that "the transmission possibilities of a
complicated system ... within the range of physical possibility." Therefore, in his work,
Hartley posed the fundamental problem of defining the physical limits of transmission
possibilities, which he refers as "capacity". Observing RLC circuits and analyzing
inter-symbol interference, he concluded that capacity is proportional to the bandwidth
of the channel. Moreover, he quantized information as:

H = n logK (2.3)
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2.3 Shannon’s pioneering work

here K is the number of symbols associated with each of n selections. Thus, he re-
flected the fundamental connection between information and selection process (ran-
domness of the sent massage). This echoes Shannon’s work where the randomness
of information was presented as a selection from the chosen alphabet – modulation
format. Shannon continued using the logarithmic measure of information, because
he argued that it was mathematically suitable and practically useful, since transmis-
sion line parameters, such as time, bandwidth, etc., vary linearly with the logarithm
of the possibilities number (this is clearly observed in the Shannon-Hartley theorem –
capacity of AWGN channel depends logarithmically on signal power and linearly on
bandwidth). Also, Shannon, starting from Hartley’s work, included noise effects and
employed probabilistic methods for analyses and characterization of the communica-
tion system and for quantifying information. The probabilistic approach was also in-
spired by studies of cryptography, which Shannon undertook during the war and about
whichhe prepared classified reports (83)-(85), for example, tables of letter frequencies
for decrypting secret messages (84).

In 1946, D. Gabor (86) proposed a time-frequency uncertainty principle as a result
of Heisenberg’s uncertainty principles(87). The idea is similar to the one used by J. von
Neumann (88) for the time-frequency shifts of a single atom. Though Gabor proposed
the Gaussian functions for the signal waveform, Shannon’s work gained more attention
and impact on engineering.

2.3 Shannon’s pioneering work

2.3.1 Introduction

Claude Shannon unified the works of his predecessors and created a unified general
theory of communication in his seminal paper (1) in 1948. As Gabor noted, Shannon
was also influenced by physics: he introduced entropy as a characteristic of informa-
tion. This enabled him to formulate two core theorems:

1. The noiseless coding theorem, which defines the compression of information;
2. The noisy channel coding theorem, which defines the maximum reliable trans-

mission rate over a noisy channel.
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2.3 Shannon’s pioneering work

The section will discuss both of the theorems followed by the basic notions of
information theory and important results and applications of Shannon’s work, which
will be continued in the next chapters: the Shannon capacity of linear and nonlinear
channels.

Both theorems are based on the notion of redundancy of the message, which is
characterised by the entropy. The formulation of a message as Markoff process was
a landmark idea. Following Hartley (82) and Wiener (89), Shannon stated that the
meaning of a message is out of concern for the engineers instead: "The significant
aspect is that the actual message is one selected from a set of possible messages" (1).
Therefore, an information source is a physical random process, and, consequently,
redundancy is a necessary part of the communication. He proposed quantifying the
redundancy by the entropy. This is the key point in his theory and the two theorems
address two problems:

1. redundancy of the information (information compression);
2. redundancy incorporated into a message for noise transmission.
Thus, Shannon produced a novel approach to communications: he reformulated

communication systems and their components in new physical notions.

2.3.2 Basic components of communication system

Following Shannon, let us begin with describing a model of communication channel.
Shannon distinguished the following main parts of communication system:
1. information source,

creates a message – a string of symbols chosen from an alphabet.
examples:
a) telegraph sequence of letters;
b) function of time in radio communications;

2. transmitter,
transmitter samples, compresses, and encodes a message to produce a suitable sig-

nal suitable for transmission;
examples: electric current or light

3. channel,
a medium through which the signal is transmitted;
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2.3 Shannon’s pioneering work

examples: wires, optical fiber, etc.
A variety of channels and mathematical models include description of the signal

distortion by noise and degradation due to nonlinearity, fading and other effects which
that induce errors at at the receiver.
4. receiver,

reconstructs the message from the received signal;
5. destination,

the person or device for whom the message is intended.
Shannon represented a communication system by the basic building blocks shown in
Fig. 2.1.

Figure 2.1: Basic components of a communication system - (taken from (1))

In this way, Shannon defined communication as a system that consists of essentially
five parts listed above and designed to minimize errors during information transfer
between a source and destination. The main purpose is to optimize the components
to maximize efficiency. As an information source produces sequences of messages
to be communicated, the distribution is subject to optimization. Then the transmitter
operates on the messages to produce a signal modulated as suitable for the channel
type used given the distortions that affect information. Finally, the receiver converts
the signal to the form that is preferable for the destination.

To correct errors, one has to add redundancy, so the transmitted data (a set of un-
coded bits) is transformed to coded bits A[k] by a channel encoder (see Fig. 2.2) ac-
cording to the chosen coding scheme – forward error correction (FEC), e.g.for exam-
ple, Reed-Solomon, or low- density parity check codes. Then a constellation mapper
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Figure 2.2: Basic components of a communication system (expanded version) -

Figure 2.3: Basic modulation formats - (taken from (23))
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2.3 Shannon’s pioneering work

assigns bits to the chosen modulation format: A[k] → X[k]. Bit-to-symbol mapping is
usually performed by channel coding techniques such as Gray coding (adjacent con-
stellation symbols have a minimum Hamming distance of 1) or differential coding
(coding in the relative phase difference between adjacent symbols). At tThe output of
the mapper X[k] are is real or complex numbers depending on the modulation format.
There are a variety of different modulation formats (see Fig. 2.2), where information
is encoded in phase (phase-shift keying – PSK) or amplitude (amplitude-shift keying
– ASK), a combination of amplitude and phase modulation (ASK/PSK), or quadrature
amplitude modulation (QAM). In the latter symbol, points may be placed in rings (in
the literature, this may be referred to as circular QAM or ASK/PSK) or on squares
(in the literature, this may be referred to as rectangular or square QAM). The choice
of modulation format defines an alphabet – the string of symbols, which are used for
mapping. Depending on the format type, the alphabet can be real one- dimensional
(e.g.for example, binary phase shift keying (BPSK) – {−1,1}, or more general am-
plitude shift keying (K-ASK) – {1−K, ...,−1,1, ...,K −1}), two-dimensional (e.g.for
example, quadrature phase shift keying (QPSK) – {−1,1;−1,1}, which can be rep-
resented in complex numbers: {−1+ i,−1− i,1+ i,1− i}, or four-dimensional (see
review in (28)). Further, the discrete-time signal X[k] (which can be real or complex
depending on the modulation format) is transformed (by a pulse shaper) to continuous-
time signals: X(t) = ∑k X[k] f (t − kT ), which is then transmitted through the media
(e.g.for example, launched into the fiber channel). Nyquist pulse-shaping criterion
(74) defines sinc-pulses (sinc(t − kT )) as the optimum waveform for the bandlimited
signal for no intersymbol interference (ISI). The smallest value of symbol period T , for
which zero ISI condition holds, is defined via the signal bandwidth T = 1/2/W . How-
ever, perfect sinc-pulses are difficult to generate and in practice raised cosine pulses
are usually used:

f (x) =


T

(
0 ≤ | f | ≤ 1−ρ

2T

)
T
2

(
1+ cos

[
πT
ρ

(
| f |− 1−ρ

2T

)]) (
1−ρ
2T ≤ | f | ≤ 1+ρ

2T

)
0

(
| f |> 1+ρ

2T

) (2.4)

This corresponds to the pulse shape:

f (t) = sinc(t/T )
cos(πρt/T )

1−4ρ2t2/T 2 , t ̸= 0 (2.5)
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2.3 Shannon’s pioneering work

The parameter ρ is called the roll-off factor and defines the excess bandwidth (beyond
the Nyquist frequency 1/2T : W = (1+ρ)/2T ). For ρ = 0 the raised cosine transforms
to sinc-pulse and the excess bandwidth is 0, for ρ = 1/2 the excess bandwidth is 50%,
and for ρ = 1 the excess bandwidth is 100%. On the other hand, since a pulse with ρ ̸=
0 decays more quickly than a sinc-shaped pulse, therefore inter-symbol interference
is reduced for non-perfect sampling. Apart from raised-cosine, also rectangular and
Gaussian pulses are also commonly used. Recent technological advances in optical
transmission have allowed creating any desirable pulse shape.

At the receiver, the transmitted continuous-time signal Y (t) is converted from the
optical to the electrical domain by a digital coherent receiver using analogue-to-digital
conversion processes, and then the obtained digital signal is resampled at twice the
symbol rate. Afterwards, digital signal processing algorithms are applied to com-
pensate for the transmission distortions (chromatic dispersion, polarization mode dis-
persion, etc.) Then the signal is resampled as one sample per symbol using a clock
recovery algorithm to obtain discrete-time signal representation Y[k] (this might also
include maximum likelihood or maximum a posteriori estimation to remove degrada-
tions caused by signal transmission). Further, we denote deterministic channel input
outcomes of channel input X[k] and output Y[k] by lower case x and y correspondingly.
Afterwards, Y[k] is converted into bits B[k] by a de-mapper and then a decoder removes
redundancy added due to FEC; thus, the received data is obtained. To characterize
system performance, the bit error rate (BER) or symbol error rate (SER) are usually
used. BER is defined as the number of bit errors (incorrectly received bits B[k] for
given input bits A[k]) per second or probability to receive incorrect bit B[k] for a given
bit A[k]. Similarly, SER is defined as the number of symbol errors (incorrectly received
symbols Y[k] for given input symbols X[k]) per second or probability to receive incorrect
symbol Y[k] for a given symbol X[k].

Shannon classified communication systems by considering different types of sources,
receivers, and channels. He included a variety of signal forms in his analysis: from
simple sequences of letters used in telegraphs to more complicated forms like func-
tions of several variables that are used in color television or radio. Thus, there are
three main categories of communication systems: discrete, continuous, and mixed.
The first category is related to sequences of discrete symbols: letters, dashes, dots
and spaces. The most common example is Morse code that has been efficient during
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2.4 Shannon capacity

many decades. Another category is concerned with analog signals that are presented as
continuous functions of time and other variables that characterize signal propagation.

2.3.3 Shannon’s contributions to information theory

The framework of information and communication theory was laid by Claude Elwood
Shannon in his landmark paper (1) published in 1948. In this work, he determined
the basic concepts of communication systems such as the capacity and the entropy and
considered different types. Above all, he included noise impact in his analysis that
enabled accurate description of real systems.

By developing a new way of describing communication channels, Shannon suc-
ceeded in developing notions of the feasibility of error-free transmission, and defined
entropy and mutual information (fundamental concepts applied to all communication
channels). Furthermore, he defined capacity (now widely referred to as Shannon ca-
pacity) as the highest achievable error-free transmission rate and formulated channel-
coding theorem, where capacity was determined as a maximum of mutual information.
Thus, he laid foundations of reliable information transmission and proposed a general
methodology for calculating any communication channelŠs capacity. He illustrated
the concept and computed the capacity of a linear AWGN as a function of signal-to-
noise ratio that is now one the most famous and important formulae in communication
theory, that is, linear Shannon limit. Among his other contributions, he considered
the possibility of transmitting information at a rate higher than Shannon capacity; this
resulted in rate-distortion theory.

2.4 Shannon capacity

In this section, the Shannon capacity theorem (1) will be discussed. The theorem de-
fines the maximum rate of reliable communication via noisy channel. It has a particular
importance in information theory.
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2.4 Shannon capacity

2.4.1 Entropy as a measure of information

Representing a discrete information source as a Markoff process, Shannon used the
entropy as a fundamental information measure. Shannon exploits the properties of
Boltzmann entropy in statistical mechanics (90) to develop the information entropy,
commonly referred to as the Shannon entropy.

Shannon defined the entropy of a discrete source with probability distribution (P1, ...,PK)

as

H({xi}) =−
K

∑
i=1

Pi log2 Pi (2.6)

Thus, Shannon introduces the measure of information, choice and uncertainty. In case
of two choices (K = 2 defined by probabilities P and Q = 1−P, the entropy is equal
to

H({xi}) =−P log2 P−Q log2 Q (2.7)
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Figure 2.4: The entropy of the binary case - with probabilities (P,1−P) plotted in (1)

The entropy plotted in 2.4 demonstrates the continuous and concave dependence
on the probability P.
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2.4 Shannon capacity

In comparison with Boltzmann entropy, one can list the following properties of the
entropy:

1. H(x)≥ 0
2. For a given size of the alphabet K, the entropy H has a maximum, equal to

log2 K, when all the selections are equiprobable, i.e. Pi = 1/K. It means that the
entropy of a discrete source has maximum when the alphabet elements are equally
probable.

3. The entropy of a joint event is less than or equal to the sum of the entropy of
each event. The equality holds when and only when the events are independent.

4. The equalization of the probabilities increases the entropy.
In other words, the entropy increases when the probabilities are averaged:

P′
i = ∑

j
ai jPj (2.8)

with coefficients positively defined ai j ≥ 0 and ∑i ai, j = ∑ j ai j = 1
5. The joint entropy is equal to the sum of one event and the conditional entropy of

the other.
6. The uncertainty of one event, y, is never decreased by the knowledge of the

other, x. In particular, if the events are independent, the entropy is unaffected.

H(y)≥ H(y|x) (2.9)

Thus, exploiting the properties of information, Shannon defined the basic notion
of information theory – the entropy. Shannon was a pioneer in borrowing the statis-
tical methods and notions for the analysis of information. Before Shannon, Wiener
introduced differential entropy (89), which was related to Fisher information of 1934
(91). The new approach enabled Shannon to develop two fundamental theorems in
information theory, by which he defined the compression and transmission limits.

Shannon (1) defined the relative entropy as the ratio of the source entropy to the
maximum value it could have being restricted to the same symbols, whereas the maxi-
mum compression occurs as one encodes into the same alphabet. Then, the redundancy
is defined as one minus the relative entropy. Shannon demonstrated the notion of re-
dundancy by using English. In particular, using different methods he showed that the
redundancy of English is 50%.
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2.4 Shannon capacity

2.4.2 Mutual information

Shannon defined the information measure – the Shannon entropy – and proved that
it quantifies the number of bits required for the optimal encoding with zero losses
of information. However, this is only relevant for the noiseless case, whereas if one
transmits information, one can expect noise distortions, which induces errors at the
receiver. Since noise is a stochastic process, the corresponding impairments, being
non-deterministic effects, cannot be compensated for and information losses will be
inevitable. Therefore, one has to increase redundancy to ensure successive information
transmission. Consequently, to quantify information transmitted via noisy channel,
where two statistical processes (the source and noise) affect the channel output, one
can use mutual information I(x,y).

2.4.2.1 Discrete input - discrete output

Let us consider a channel, where the constellation mapper output (see Fig. 2.2) X[k]

is discrete symbols from a discrete alphabet X = {xi}, i = 1..K and the output of the
demapper Y[k] are discrete symbols: Y= {y j}, j = 1..K′. If the channel is memory-less
(the output symbol Y[k] sampled at time k is defined only by the input X[k] at time k)
then the channel is described by the set of conditional probabilities: P(y = y j|x = xl)

(further P(y|x)).
The statistical properties of the channel are given by the conditional probability:

p(y|x), the using of which can define the output probability:

P(y) = ∑
x∈X

P(y|x)P(x) (2.10)

Using Bayes’ rule, one can calculate probability distribution for the input x given
the received output message:

P(x|y) = P(y|x)P(x)
P(y)

(2.11)

Therefore, one can efficiently decode an original message knowing the received
noise-corrupted Y information by sending additional:

H(x|y) = ⟨− log2 P(x|y)⟩ (2.12)
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bits per symbol. This quantity is referred to as conditional entropy and is connected
with mutual entropy as follows:

H(x|y) = ⟨− log2 P(x,y)+ log2 P(y)⟩= H(x,y)−H(y) (2.13)

and similarly
H(y|x) = ⟨− log2 P(y|x)⟩= (2.14)

= ⟨− log2 P(x,y)+ log2 P(x)⟩= H(x,y)−H(x) (2.15)

These equations define the property of the conditional entropy referred to as the chain
rule:

H(x,y) = H(x)+H(y|x) (2.16)

Consequently,
H(x)−H(x|y) = H(y)−H(y|x) (2.17)

The chain rule can be generalized for a number of variables: for example,

H(x,y|z) = H(x|z)+H(y|x,z) (2.18)

The mutual information is measured by the information conveyed in the original
message reduced by the number of additional bits due to channel impairments, there-
fore:

I(x,y) = H(x)−H(x|y) (2.19)

or
= H(x)+H(y)−H(x,y) (2.20)

or, similarly,
= H(y)−H(y|x) (2.21)

The mutual information is symmetric under the change of variables x and y.
In particular, if two messages are uncorrelated, then

P(x,y) = P(x)P(y) (2.22)

which results in
I(x,y) = ⟨log2

P(x,y)
P(x)P(y)

⟩= 0 (2.23)
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2.4 Shannon capacity

Thus, mutual information is a measure of the amount of information that one ran-
dom variable contains about another; in other words, it is the reduction in the uncer-
tainty of one random variable due to the knowledge of the other (92). Mutual informa-
tion represents the achievable rate for a given input distribution (for a given modulation
format and input probabilities P(x)).

2.4.2.2 Discrete input - continuous output

Similarly, let us proceed with a channel, where the constellation mapper output (see
Fig. 2.2) X[k] is discrete symbols from a discrete alphabet X = {xi}, i = 1..K and
the output of the demapper is unquantized (continuous variable Y ). If the channel is
memory-less (that is, in the absence of intersymbol interference), then the channel is
described by the set of conditional pdf: p(y|x = xi). Then the conditional entropy is
given as:

H(y|x) =−
K

∑
k=1

P(xk)
∫ ∞

−∞
dyp(y|xk) log2 p(y|xk) (2.24)

and the output entropy is given as:

H(y) =−
∫ ∞

−∞
dyp(y) log2 p(y) (2.25)

with

p(y) =
K

∑
k=1

P(xk)p(y|xk) (2.26)

This defines mutual information as:

I(x,y) = H(y)−H(y|x) (2.27)

2.4.2.3 Continuous input - continuous output

Finally, let us proceed with a channel, where both the output and the input are contin-
uous variables y. Then, the conditional entropy is given as:

H(y|x) =−
∫ ∞

−∞

∫ ∞

−∞
dxdyp(x)p(y|x) log2 p(y|x) (2.28)

and the output entropy is given as:

H(y) =−
∫ ∞

−∞
dyp(y) log2 p(y) (2.29)
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with
p(y) =

∫ ∞

−∞
dxp(x)p(y|x) (2.30)

Mutual information is defined as:

I(x,y) = H(y)−H(y|x) (2.31)

2.4.3 Shannon capacity theorem

Since mutual information represents the achievable rate for a specific input distribu-
tion, one can vary the latter to achieve the maximum of mutual information, which is
defined as Shannon capacity – maximum achievable error-free transmission rate. As
was discussed above, for efficient communication over a noisy channel, one has to in-
crease redundancy, which is defined by the correlation between the input and output
messages of the channel. Shannon showed that any stochastic channel can be used
for reliable communication at non-zero rate (when the input and output are correlated)
and defined the analytical expression for the optimal transmission rate. Shannon intro-
duced the concept of the channel, as a mathematical model where noise corruption to
the signal is described, and showed that the transmitter has to add redundancy.

Shannon further defined the information capacity (1) for a discrete memory-less
channel as:

C = max
p(x)

I(x,y) (2.32)

where optimization is over all input probability distributions p(x). Capacity here is
measured in bits/symbol.

Channel capacity theorem (1, 92) Shannon stated that "It is possible to send in-
formation at the rate C through the channel with as small a frequency of errors or
equivocation as desired by proper encoding. This statement is not true for any rate
greater than C" (1).

Thus, the theorem defines the maximum transmission rate with arbitrarily low error
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probability. It is important that the Shannon capacity is the maximum achievable

reliable transmission rate. So that for all rates R ≤ C there are codes with maximum
error probability Pe → 0. The converse theorem states that any code with Pe → 0 has
R ≤C (92).

The channel capacity theorem states that even in the presence of noise by introduc-
ing redundancy one can recover the original signal from the corrupted channel output.
The proof of the theorem can be found in (92, 93). Note, that the Shannon capacity
can be defined for continuous-time channels with specific choices of pulse shaping and
filtering or discrete-time channels, whereas mutual information can be defined only for
discrete-time. Further,throughout the thesis, we consider discrete-time channel mod-
els.

2.5 Channel capacity and coding

If the encoder maps each k-bit sequence into a unique n-bit code word (code rate
Rc = k/n), then for a binary AWGN channel, it can be shown that the average error
probability Pe (averaged over all k-bit sequences) is

Pe < 2−n(R0−Rc) (2.33)

where R0 is the cut-off rate:

R0 = log2

( 2
1+ e−SNR

)
(2.34)

Consequently, if Rc < R0, the transmission is reliable as one can achieve average
error probability to be arbitrarily small when increasing the code block length n, since
Pe → 0 when n → ∞. Thus, there are codes with probability of error less than Pe. If
a code selection is random, then a probability to select a code with Pe > αPe is less
than α−1. On the other hand, one can reduce error probability of a selected code by
increasing its dimensionality n.

Different cut-off rates for various equiprobable equidistant q-level amplitude mod-
ulation formats for an AWGN channel with average power constraint are plotted in
Fig. 2.5a) alongside the upper-bound R∗

0, which is within 3 dB of the AWGN channel
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Shannon capacity (74) (see Fig. 2.5b)). There are a variety of codes that allow ap-
proaching the Shannon capacity closely, such as block codes (for example, Hamming,
Hadamard, or Golay codes) or convolutional codes, which use linear finite-state shift
register for encoding (see (74) for more details).

Figure 2.5: Cutoff rate (for equiprobable q-ASK) and capacity - for an AWGN channel
with average power constraint (taken from (74))

2.6 Communication above the Shannon capacity

Later, in 1959 (94), Shannon continued his work by considering the problem of lossy
transmission with a rate higher than the Shannon capacity. In particular, for the binary
channel, Shannon calculated that with a given tolerance, bit error-rate ε, the maximum
transmission rate is higher than the corresponding Shannon capacity by the factor (94):

1
1+ ε log2 ε+(1− ε) log2(1− ε)

(2.35)
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2.6.1 Numerical calculations of Shannon capacity

One can calculate Shannon capacity numerically for a discrete memory-less channel
with fixed input and output alphabets by using the properties of Shannon capacity:

1. C ≥ 0;
2. C ≤ log2 |X|, where |X| is the size of the input alphabet;
3. C ≤ log2 |Y|, where |Y| is the size of the output alphabet;
4. I(X ,Y ) is a continuous function of p(x);
5. I(X ,Y ) is a concave function of p(x).

Hence from the last property follows that the capacity has a unique local maximum,
whereas from the properties 2 and 3 it follows that the maximum is finite for the finite
alphabet; therefore, the capacity can be calculated (at least numerically). For these,
one can use different methods, such as:

• Constrained maximization using the Kuhn-Tucker conditions (95), (96),

generalizes the method of Lagrange multipliers for inequality constraints

• The gradient search algorithm of Frank-Wolfe (97)

is an iterative first-order optimization algorithm for constrained convex optimiza-
tion, also known as the conditional gradient method, reduced gradient algorithm
and the convex combination algorithm. It is based on a linear approximation of
the objective function in each iteration and moves slightly towards a minimum
of this linear function (taken over the same domain).

• The Blahut-Arimoto algorithm (98), (99)

is an iterative method that maximizes the capacity of arbitrary finite input/output
alphabet sources. The optimization is performed recursively, so at each iteration:

P(m)
k =

1
Z(m)

P(m−1)
k exp

[
H
(

P( j|k)||Q(m−1)
j

)
−Sx2

k

]
(2.36)

where H
(

P( j|k)||Q(m−1)
j

)
denotes conditional entropy and the normalization

factor is given by:

Z(m)
k = ∑

l
P(m−1)

l exp
[
H
(

P( j|l)||Q(m−1)
j

)
−Sx2

l

]
(2.37)
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The output probability distribution is:

Q(m)
j = ∑

k
P(m)

k P( j|k) (2.38)

Here we assumed power constraint ∑k Pkx2
k ≤ S. The algorithm was modified for

faster convergence using a natural-gradient-based or accelerated Blahut-Arimoto
algorithm (100).

A number of algorithms were proposed for discrete alphabet (101) or continuous:
using computation of a sequence of finite sums (102) or particle-based Blahut-
Arimoto algorithm (103). In the latter, the a particles xk are moved to increase
the relative entropy while keeping the output probability fixed.

• For discrete-input and discrete-output channels with memory an efficient tech-
nique for calculation of transmission rate was proposed (104)-(106), later gener-
alized for continuous channels in (107).

Further, we adapted gradient search algorithm and applied Blahut-Arimoto algo-
rithm for capacity calculations.

2.7 Conclusion

This chapter reviewed the fundamental theorems of information theory. The key work
is Shannon’s seminal paper the limits of information processing (transmission and
compression) were derived. This work is described with connections to its prede-
cessors, which led to the formulation of the Shannon-Nyquist and Shannon-Hartley
theorems, as well as Shannon’s successors with advances in coding and lossy com-
pression. This is further continued in the next chapter, where various applications of
Shannon capacity for different models of communication channels are discussed.
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3

Shannon capacity of different
communication channels

This chapter gives an overview of different channel models and their efficiency charac-
terized by the Shannon capacity or its associated derived lower bounds. As was demon-
strated, there are a variety of linear channels with different noise distributions or band
or time limitations. For most of them, the Shannon capacity was calculated. The most
celebrated is the Shannon capacity of a linear AWGN channel C = 1/2log2(1+S/N),
which is commonly referred to as the linear Shannon limit. Indeed, it has become a
useful reference for comparing the efficiency of different channel models or coding
techniques. Nowadays, a linear AWGN channel is textbook material and wholly un-
derstood. Current progress in channel coding and processing enables approaching the
linear Shannon limit (Shannon capacity of linear AWGN channel) in practical com-
munication channels. In contrast to linear models, the Shannon capacity for nonlinear
channels is an open problem. As in the linear case, there are a variety of nonlinear
models; however, the Shannon capacity for most of them is not calculated. Fiber-optic
channels, which are inherently nonlinear due to the Kerr effect, are responsible for over
90% of data transmission. Though the Shannon capacity for these channels in cases
of nonlinear compensation was not calculated, the achievable rate for uncompensated
transmission was estimated. This result, verified experimentally and numerically, is
commonly referred to as the nonlinear limit and is widely used for the prediction of
the "capacity crunch". Though various methods were used to increase the channel ca-
pacity, the proposed techniques succeeded only in pushing the crunch later. However,
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3.1 Types of channels

existing methods enabled calculating the lower bounds, but not the Shannon capacity.

3.1 Types of channels

System capacity is defined by a communication channel used for information transmis-
sion. Different degradation and noise effect types , as well as equipment and practical
constraints, affect channel capacity.

Among the common channel types, one can distinguish among the following (74):
1. wireline channels
examples: telephone network;
signal distortions: additive noise affects both amplitude and phase, crosstalk inter-

ference;
2. fiber-optic channels
examples: telecom and trans-oceanic communications;
signal distortions (108): the Kerr nonlinear effects (intensity-dependent refractive

index), attenuation, Rayleigh and Brillouin scattering, dispersion broadening, polar-
ization mode dispersion, modulation instability, and noise caused by amplifiers pe-
riodically placed along the transmission path to compensate attenuation during fiber
transmission;

3. wireless channels
examples: sky-wave or ground-wave propagation;
distortion: noise effects, frequency absorption due to atmosphere heating, signal

multipath, which causes interference fading due to destructive interference of signals
arriving from different propagation paths, and multi-user interference;

4. underwater acoustic channels
distortions: attenuation of waves in water, multipath propagation (due to signal

reflections from the surface and the bottom of the sea), signal fading, and noise;
5. storage channels
examples: optical and USB discs;
equivalent to above communication channels where information transmission was

discussed;
distortions: noise;
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3.2 Capacity of linear additive noise channel

To characterize the aforementioned channels and to estimate their efficiency, math-
ematical models are required.

3.2 Capacity of linear additive noise channel

3.2.1 Capacity of linear additive white Gaussian noise channel

The linear Gaussian noise channel is a basic communication model that has a num-
ber of applications. In particular, it is used in radio and satellite wired and wireless
communications; also fiber-optic channels can be approximated as a linear Gaussian
channels in a low signal power regime.

A discrete-time linear Gaussian channel can be represented as:

Y[i] = X[i]+η[i], η[i] =N(0,N) (3.1)

where real variables are the channel output and input at the time i denoted by Y[i] and
X[i] (see Fig. 2.2). The input X[i] and the output Y[i] can take values x and y chosen
from the alphabets X and Y correspondingly. The channel is disturbed by a zero-mean
additive white Gaussian noise (AWGN) η[i] with a variance N (74). The additive noise
is independent of the signal. The cumulative effect of a large number of small random
effects, each with a well-defined expected value and well-defined variance, can be
approximated by normal distribution (109).

If the noise variance is zero or there are no input constraints, the capacity is infi-
nite. However, in practice, one has input constraints, in particular on the average input
power: ⟨|x|2⟩ ≤ S. The power-constrained system information capacity (1) is given by:

C = max
⟨|x|⟩2≤S

I(x,y) (3.2)

Thus, expressing the mutual information through the entropies I(x,y) = H(y)−H(y|x)
and using independence of X and η, one derives the Shannon capacity per dimension
of power-constrained linear AWGN channel (1):

C = max
p(x)

I(x,y) =
1
2

log2

(
1+

S
N

)
(3.3)
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3.2 Capacity of linear additive noise channel

3.2.2 Capacity of band-limited linear AWGN channel

In practice, a communication channel has a limited bandwidth, which can be described
by a bandpass filter. A band-limited, continuous-time channel can be represented by:

Y (t) =
(

X(t)+η(t)
)
⋆h(t) (3.4)

where h(t) is the impulse response of an ideal bandpass filter, which limits frequencies
to the bandwidth range. We assume here a white Gaussian noise denoted by η(t).

To characterize such channels, Shannon used the results of Nyquist (75) and Gabor
(86); this enabled formulating and proving the following theorem:

Shannon-Nyquist sampling theorem
Any function f (t) limited in frequency to W Hz (that is, the support of its Fourier

spectrum is limited by W ) can be completely determined by samples f ( n
2W ) taken at

the Nyquist rate of 2W samples per second.Taking the sum of the samples reconstructs
the original time-continuous signal:

f (t) =
∞

∑
n=−∞

f
( n

2W

)sin[π(2Wt −n)]
π(2Wt −n)

(3.5)

It is easy to check that the reconstructed function spectrum lies in the band W and is
zero outside. The Shannon-Nyquist theorem (1, 79, 80, 81) states that a band-limited
function has 2W degrees of freedom per second. The band-limited function cannot
be limited in time; however, if the signal energy is concentrated in the time interval
T , one can use expansion over prolate spheroidal functions, in particular, a number of
2TW ; such orthogonal functions completely and uniquely define a signal (92). In a
band-limited Gaussian noise channel, each sample can be considered as an indepen-
dent, identically distributed Gaussian random variable. If the noise has power spectral
density N0/2 and occupies the same bandwidth as the signal, the noise power is N0W .
Using the expression for Shannon capacity of discrete-time Gaussian channels:

C[bits per symbol] =
1
2

log2

(
1+

S
N

)
(3.6)

Given that there are 2W samples per second, one can define the following:

C[bits per second] =W log2

(
1+

S
N0W

)
(3.7)
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3.3 Nonlinear fiber-optic channel

To prove the statement, Shannon defined continuous signal entropy (1) and con-
sidered a geometrical representation of the signals (110). Thus, the formula shows
the capacity as a function of signal-to-noise ratio SNR = S/N and bandwidth W . By
dividing the capacity over the band for which noise power is equal to the signal power
(W0 = S/N0), Shannon (110) analyzed the bandwidth dependence of the dimension-
less channel capacity: C/W0 =W/W0 log2

(
1+S/(N0W )

)
=W/W0 log2

(
1+W0/W

)
(see Fig. 3.1), which in the limit W → ∞ tends to C/W0 → log2(e). If one will consider
W → ∞, the capacity will tend to C → S/N. Hence, for infinite bandwidth, capacity in-
creases linearly to infinity as a function of signal power. There are a number of channel
codes that enable approaching the Shannon linear limit; see (84).

Figure 3.1: Dependence of the Shannon capacity of the linear AWGN channel on
channel bandwidth - (here, signal power was denoted by P) (taken from (110))

3.3 Nonlinear fiber-optic channel

3.3.1 Model

The communication channel in which a fiber-optic cable is used as a transmission
medium is significantly nonlinear due to the refractive index dependence on the signal
power or due to scattering phenomena (108). As the scattering phenomena associ-
ated with Brillouin and Raman effects can be reduced by controlling the signal power,
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3.3 Nonlinear fiber-optic channel

whereas refractive index dependence on the signal power, referred to as the Kerr ef-
fect (observed in 1875 by John Kerr (111)) causes severe degradation to the signal and
limits the channel capacity.

The propagation of an electric field E is governed by (112):

∇2E− 1
c2

∂2E
∂t2 =−µ0

∂2P(E)
∂t2 (3.8)

where c is the speed of light and µ0 is the vacuum permeability.
In case of weak nonlinearity, one can expand the polarization vector P as follows:

P ≈ ε0

(
χ(1)E+χ(2) : EE+χ(3)...EEE

)
(3.9)

here ε0 is the electric permittivity of free space, : denotes the inner tensor product,
whereas χ(1) is the linear susceptibility, and χ(2) governs the second harmonic genera-
tion, whereas χ(3) defines the third harmonic generation and Kerr effect. Further, one
can omit χ(2) for silica fibers (as SiO2 is a symmetric molecule). The Kerr nonlinearity
is responsible for: phase shift acquired by signal propagation – self-phase modulation
(SPM), phase shift due to the influence of signals having different carrier frequencies –
cross-phase modulation (XPM), four-wave mixing (FWM) – interaction between sig-
nals whose frequencies satisfy the phase matching conditions, the interplay between
chromatic dispersion and Kerr effect – modulation instability.

The scalar evolution of linearly polarized along the fiber-optic field in the presence
of Kerr effect in a single-mode fiber with slowly varying envelope and rotating wave
approximations (after separation of rapidly varied part around the carrier frequency
ω0: E = 2−1exE(z, t)exp(−iω0t)+c.c, where ex is a unit vector in x-axis), is given by
the nonlinear Schrödinger equation (NLSE) (113) :

∂E
∂z

+β1
∂E
∂t

+ i
β2

2
∂2E
∂t2 +

α
2

E = iγE|E|2 + β3

6
∂3E
∂t3 −a1

∂(E|E|2)
∂t

−a2E
∂|E|2

∂t
+η(t,z),

(3.10)
here dispersion coefficients are given in a Taylor series of the propagation constant
β(ω) around the carrier frequency ω0:

β j =
d jβ(ω)

dω j

∣∣∣
ω0

(3.11)
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3.3 Nonlinear fiber-optic channel

Hence, the cubic and higher order terms can be neglected under the condition that the
spectral width of the pulse satisfies the condition ∆ω ≪ ω0. The nonlinear parameter
is defined as:

γ(ω0) =
ω0n2

cAe f f
(3.12)

where

n2 =
3
4

Re(χ(3)
xxxx)

ε0n2c
(3.13)

is the fiber nonlinear refractive index (n is a linear part of a fiber refractive index
ñ = n+ ñ2|E|2) and Ae f f is the fiber effective area (108). The parameter α denotes
the linear part of a fiber attenuation coefficient. The Langevin-noise source term η
incorporates the stochastic perturbations of the signal. The NLSE is valid if the signal
polarization does not vary along the fiber length (it was experimentally demonstrated
that the optical field remains co-polarized in long-haul transmission over thousands of
km (113, 114)) and the optical field is quasi-monochromatic: the spectral width of the
spectrum satisfies ∆ω/ω0 ≪ 1. In particular, since ω0 ≈ 1015 s−1, then pulse width is
of the order of 0.1 ps (108).

The term a1, which describes the self-steepening effect of the pulse edge, can be
neglected in optical communications. Also, the term a2, which characterizes the Ra-
man effect, can be reduced by limiting the signal power and bandwidth (108, 113).
Therefore, the NLSE can be simplified as

∂E
∂z

+β1
∂E
∂t

+ i
β2

2
∂2E
∂t2 +

α
2

E = iγE|E|2 +η(t,z), (3.14)

or after a change of variables: τ → t −β1z:

∂E
∂z

+ i
β2

2
∂2E
∂τ2 +

α
2

E = iγE|E|2 +η(τ,z), (3.15)

Thus, the resulting equation includes deterministic, as well as stochastic, linear
(dispersion and attenuation) and nonlinear Kerr effects.

In standard, single-mode fiber, the attenuation coefficient is 0.2 dB/km in the 1550-
nm wavelength region (23); consequently, optical amplification is required (in the ab-
sence of opto-electronic regeneration). This induces noise, depending on amplification
scheme: amplified spontaneous emission (ASE) or double Rayleigh scattering (23).
As spontaneous emission, the result of a photon due to the transition from an excited
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3.3 Nonlinear fiber-optic channel

to the ground state (115, 116) is a random process; the associated quantum-mechanical
fluctuations are referred as ASE. In 1963, Gordon (117, 118) showed that ASE can be
represented as a circularly symmetric additive Gaussian noise, which is fully defined
by the autocorrelation function (23, 108):

⟨η(τ,z),η∗(τ′,z′)⟩= NASE/Lδ(z− z′)δ(τ− τ′) (3.16)

Here, δ functions ensure that the noise realizations in time and space are independent
of each other. Here NASE is the power spectral density of the ASE noise, accumulated
during the signal propagation over the distance L.

The vector NLSE with account of polarization effects and with assumption of low
values of polarization-mode dispersion (PMD) and slow varied birefringence with av-
eraging the nonlinear terms over birefringence fluctuations was derived by Manakov
(119) and subsequently verified in (120, 121):

∂E1

∂z
=−α

2
E1 − i

β2

2
∂2 E1

∂t2 + i
8γ
9
(|E1|2 + |E2|2)E1 +η1, (3.17)

∂E2

∂z
=−α

2
E2 − i

β2

2
∂2 E2

∂t2 + i
8γ
9
(|E1|2 + |E2|2)E2 +η2 (3.18)

here indexes denote two polarizations for electric field E1,2 and noise η1,2.
The basic equation 3.15 apart from being the principal master model, can also be

directly derived in two practically important periodic amplification schemes: (i) peri-
odically spaced discrete point amplifiers (for example, Erbium-doped fiber amplifiers),
and (ii) quasi-lossless distributed Raman amplification where the Raman gain continu-
ously compensates for the fiber loss and signal average power remains constant along
the entire transmission span

In particular, if losses are ideally compensated (that is, α = 0 in Eq. 3.15) by
periodically inserted amplifiers (for example, Erbium-doped fiber amplifiers (EDFAs)
(108, 122), or if the amplifier spacing is much smaller compared with the length scale
of nonlinear effects (γS)−1 or is continuous quasi-lossless distributed over the trans-
mission path Raman amplification (15, 123, 124), the path-averaged model can be
applied leading to the following equation:

∂E
∂z

+ i
β2

2
∂2E
∂t2 = iγE|E|2 +η(t,z), (3.19)
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3.3 Nonlinear fiber-optic channel

The NLSE and Manakov equations characterize the signal propagation along the
fiber and include all aforementioned degradation phenomena. In particular, if SPM and
XPM are of equal strength and losses are ideally compensated over entire transmission
path, the nonlinear equations are integrable by the inverse scattering method (125,
126).

3.3.2 Simplified channel models

The above-presented propagation equations (NLSE and Manakov system) describe
complex nonlinear continuous-time communication channels. Corresponding condi-
tional discrete-time probabilities are not known in the general case for these channels.
Now we consider simplified models with limited applicability, in which capacity can be
estimated or computed. The continuous-time model can be transformed into a discrete-
time model by expanding the continuous-time signal (complex input X(t) and output
Y (t)) over a complete set of orthogonal functions (74). This results in discrete-time
complex variables X[k] and Y[k] (see Fig. 2.2). Further, we omit indexes for memory-
less channels, except MGM channel in Sec. 3.3.2.6. Input X and output Y can take
values x = rineiφin and y = routeiφout chosen from the alphabets X and Y correspond-
ingly.

3.3.2.1 Constant-intensity modulation with coherent detection

Channel using constant-intensity modulation formats with coherent detection is a lin-
ear AWGN channel (127, 128, 129):

Y = X +η,

with complex x and y and additional constraint |x|2 = S

p(y|x =
√

Seiφin) =
1

πN
exp
[
− |y−

√
Seiφin |2

N

]
(3.20)

In (127) Shannon, capacity was calculated numerically and the asymptotic expression
was found for high SNR:

C → 1
2

log2

(4π
e

SNR
)

(3.21)
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3.3 Nonlinear fiber-optic channel

3.3.2.2 Intensity-modulated direct-detection (IMDD) channel

The simplest communication systems are intensity-modulated direct detection (IMDD)
(2, 3), where signal power is modulated and detected. A photo-detector responds to
the square root of the incident electric field; thus, the output and input are connected
as follows:

Y = |X +η|, (3.22)

The conditional pdf for this model was found to be the Rice distribution (2):

p(y|x) = |y|
πN

exp
(
−|y|2 + |x|2

N

)
(3.23)

where I0 is a zero-order modified Bessel function of the first kind. It was shown in
(2, 3) that the capacity-achieving distribution has a number of infinite mass points;
also, lower and upper bounds on capacity were presented, including the asymptotically
tight lower bound (130, 131):

CIMDD
ub =

1
2

log2

(
1+SNR

)
−0.5 (3.24)

Thus, the Shannon capacity of the IMDD channel is a monotonically increasing func-
tion of SNR and the capacity-achieving distribution has an infinite number of mass
points and does not contain an infinite set of mass points on any bounded interval (3).

3.3.2.3 Partially coherent AWGN

The discrete-time partially coherent (phase detection is applied) AWGN channel (132,
133) can be introduced as:

Y = XeiΘ +η, (3.25)

Here, the additive noise η is above a complex Gaussian random variable with zero
mean. Variable Θ mimics the phase noise and can be modelled as real-valued wrapped
AWGN with variance σ2

Φ as in (132, 133).
The conditional pdf for such channels can also be found:

p(y|x) =
∫ π

−π

dθ
πN

exp
[
− |y− xeiθ|2

N

] 1√
2πσ2

Φ

∞

∑
k=−∞

exp
[(θ−2πk)2

2σ2
Φ

]
(3.26)
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3.3 Nonlinear fiber-optic channel

If a phase tracking device (such as phase-locked loop) is employed, than Θ might
be modelled by Thikhonov distribution (3) with positive parameter ρ:

p(θ) =
eρcos(θ)

2πI0(ρ)
1 (3.27)

The conditional pdf for such channels was derived as:

p(y|x) = rout

πN
exp
[
− r2

out + r2
in

N

] I0(ν)
I0(ρ)

(3.28)

ν =

√
4

r2
outr2

in
N2 +4ρ

routrin

N
cos(φin −φout)+ρ2

The capacity-achieving distribution was shown to be circularly symmetric (4) and
(similar to the result in the previous subsection) does not contain an infinite set of
mass points on any bounded interval (3).

In the case when Θ(x) is not a random variable (134), the conditional pdf is sim-
plified to:

p(y|x) = 1
πN

exp
[
− |y− xeiθ(x)|2

N

]
(3.29)

In (134), it was demonstrated that estimation based on Gaussian approximation devi-
ates from the exact Shannon capacity of the channel given by W log2(1+ SNR) with
capacity-achieving distribution:

p(x) =
1

πS

[
1+ iγ

(
x∗

∂θ(x)
∂x∗

− x
∂θ(x)

∂x

)]
exp
[
− |x|2

S

]
(3.30)

3.3.2.4 Nonlinear phase noise channel

In a phase noise channel (17, 135, 136, 137, 138), the output is given via the input as:

Y =
(

X +η
)

e−iΦNL

here, η is the total AWGN accumulated on the transmission path. The equation mod-
els NLSE Eq. 3.15 with zero dispersion β2 = 0 and periodically inserted ASE and
describes the phase noise caused by the SPM effect:

dE(z)
dz

=−i|E(z)|2E(z)+η, ⟨η(z),η∗(z′)⟩= σ2(z− z′) (3.31)
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3.3 Nonlinear fiber-optic channel

The nonlinear phase noise is given as (135):

ΦNL =
γL
Ns

Ns

∑
i=1

|X +ηi|2 (3.32)

Here, summation is performed over the ASE noise accumulated at each of i = 1..Ns

fiber segments: ηi = ζ1 + ...+ ζi (ζi denotes ASE noise aroused at i-th span). The
conditional pdf for such channel (after proper normalization described in (17, 135,
138)) reads:

p(y = routeiφout |x = rineiφin) =
p(rout |rin)

2π
+

1
π

∞

∑
m=1

Re
(

eim(φout−φout)Km(rout ,rin)
)

(3.33)
where p(rout |rin) is the Ricean pdf of the received power:

p(rout |rin) =
2rout

N
exp
(
− r2

out + r2
in

N

)
I0

(2routrin

N

)
(3.34)

and the analytical expressions for the coefficients Cm(rout ,rin):

Km(r) = routbm exp
[
−am(r2

out + r2
in)
]
Im(2bmroutrin) (3.35)

am =

√
imγ
σ

coth
√

imγσ2z

bm =

√
imγ
σ

1

sinh
√

imγσ2z

here Im is the modified Bessel function.

3.3.2.5 Optical fiber channels with zero average dispersion

The NLSE can be rewritten in case of zero average dispersion for a complex function
Y (z) = E(z,0) (17):

dY
dz

=−i|Y |2Y +η (3.36)

with zero-mean AWGN noise having variance ⟨η∗(z′)η(z)⟩ = Dδ(z− z′), where D is
the regularized noise intensity. The channel conditional probability:

p(y|x) =
∞

∑
m=−∞

eim(φout−φout)

πD
r e−

r2
in+r2

out
D km cothkmz km

sinhkmz
I|m|

(2kmroutrin

Dsinhkmz

)
, (3.37)
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3.3 Nonlinear fiber-optic channel

where km =
√

imD and Im is the modified Bessel function. The impact of optimiza-
tion of symbol error probability over amplitude phase-shift keying constellations was
studied in (135, 136, 137). The lower bound on channel capacity was derived in (17):

C ≥ 1
2

log2(SNR) (3.38)

3.3.2.6 Infinite-memory Gaussian noise channel model

The general channel model NLSE can be rewritten in the case of wavelength-division
multiplexing (WDM) in the form that shows evolution of signal in each WDM channel
(the optical field of k-th channel) with account of SPM and XPM effects (139):

∂Ek

∂z
=−i

β2

2
∂2Ek

∂t2 + iγEk

(
|Ek|2 + ∑

j ̸=k
2|E j|2

)
+η(t,z), (3.39)

Here, β2 and γ denote dispersion and nonlinearity coefficients and ideal compensa-
tion of fiber losses is assumed, with η(t,z) being aspontaneous emission noise, which
results from the signal amplification during propagation. This presentation allows in-
troducing another simplified channel model by omitting intra-channel effects. This
may be justified in the regime when the inter-channel effects are dominant nonlinear
effects or when self-phase modulation is compensated (140)-(142)). In this case, the
resulting model equation has the form:

∂Ek

∂z
=−i

β2

2
∂2Ek

∂2t
+ iγEkVk +η(t,z), (3.40)

where the effective potential Vk is

Vk = ∑
j ̸=k

2|E j|2 (3.41)

In dispersion uncompensated transmission, the potential Vk can be modelled (approxi-
mately) as a Gaussian stochastic process short-range correlated in space and time. This
leads to the following simplified channel model with multiplicative Gaussian noise:

Yi = AXi +BHi jX j +η (3.42)

where the output spectrum is denoted as yi = Ẽs(ωi,z), whereas the input signal
is xi = Ẽs(ωi,0). The inter-channel interference is given by the matrix Hi j, which is
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3.4 Conclusion

assumed to be a zero-mean, Gaussian-independent and identically distributed complex
random matrix with variance < HikH jl >= m−1δi jδkl , here m is dimensionality of the
signal. Factor B defines the strength of signal-signal interactions. The conditional pdf
of such a model is given in (13):

p(y|x) = 1
(2πσ2)m e−|y−Ax|2/σ2

(3.43)

where variance is given by:

σ = m−1(⟨|η|2⟩+B2|x|2) (3.44)

Various authors have followed a similar generic approach, which shares the same
assumptions, but includes a variety of different physical effects. These produce slightly
different lower bounds on capacity (including impairments from SPM, XPM, and
FWM effects), which can be generalized by the following formula:

CLB =W log2

(
1+

S
N +µS3 +νS2N

)
bits/s (3.45)

This summarizes the results for a variety of communication channels, such as OFDM
or WDM, with arbitrary dispersion, distributed or lumped amplification, for each of
which the coefficients are found considering different nonlinearities: µ reflects signal-
signal interactions, such as FWM and XPM ((7, 11, 14, 18, 23, 47)) and ν arises from
signal-noise interactions ((143, 144)).

3.4 Conclusion

This chapter gives an overview of analytical modelling of different communication
channels in the context of the Shannon channel capacity. The most important and
challenging limit on fiber channel spectral efficiency is nonlinearity. The increase in
the signal power leads to power-dependent nonlinear transmission distortions. There is
a clear challenge to develop radically new approaches to coding, transmission, and pro-
cessing of information in fiber communication channels. Next the Shannon capacity
of regenerative nonlinear channels is presented.
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4

Shannon capacity of nonlinear
regenerative channels

4.1 Introduction

There is a growing interest in studies of capacity for regenerative nonlinear commu-
nication channels, which are principally different from decode-and-forward channels,
as the term "regenerator" is used here in the context of a device (noise squeezer) that
has a smooth nonlinear regenerative transfer function without any decision making.
For such channels, the capacity limits have yet to be defined. The progress in exper-
imental demonstration of all-optical signal regeneration (145)-(148), including phase
regeneration, paves the way to new possibilities in the constructive use of nonlinearity.

Regeneration may take many forms, ranging from decode-and-forward (allowing
the use of FEC in each stage), hard decision (without FEC) (149), transformation
with smooth nonlinear transfer functions (TF), which results in noise squeezing (61),
and distributed pulse and noise shaping (150). System capacities for the decode-and-
forward model can be readily calculated from the capacity of a single link channel
(151), while another approach is required for hard decision and smooth TF-based re-
generators, which can be realized all-optically.

Recent studies have proved (72) that regenerative channels have Shannon capac-
ity higher than systems without regenerators operating with the same signal launch
power and with the same noise per amplifier. Recent advances opened regeneration
for coherent communication, for example, multilevel phase regeneration (63, 152).
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4.2 Regenerative channel

Nevertheless, all-optical regeneration faces a number of challenges as it still requires
full dispersion compensation and has a limited capability for multi-wavelength per-
formance. Although a number of works were proposed for multichannel regeneration
(for the case of coherentcommunication, see (65)), these are only for a limited number
of channels and the issue remains open. Furthermore, new schemes are required to
suppress phase and amplitude noise for various multilevel modulation formats and for
different pulse shapes.

In this chapter, we estimate the benefits of regeneration implementation in the best-
case scenario – Shannon capacity for fully optimized 3R regenerators, the best trans-
mission performance due to removal of timing jitter effects, and optimized nonlinear
response by regenerative mapping. In the next chapter, we propose new models for
simultaneous suppression of phase and amplitude noise for different circular and rect-
angular multilevel modulation formats.

Here, we present the first calculation of the regenerative capacity benefit with sys-
tem optimization, and we propose the optimization technique for the regenerative
element – regenerative mapping and demonstrate it on the new model – regenera-

tive Fourier transform. The proposed transformation represents the first terms in the
Fourier expansion and, therefore, is a close approximation of the ideal regenerator.
By calculating an analytic result for the Shannon capacity gain due to regeneration
with simultaneous optimization of signal modulation and regenerative characteristics,
we prove the Shannon capacity improvement above the corresponding linear additive
white Gaussian noise channel without requiring decoder/encoder pairs to be used with
in-line elements. Finally, we quantify the Shannon capacity of the ideal regenerator,
which defines the highest efficiency – regeneration limit.

4.2 Regenerative channel

Consider a nonlinear regenerative channel with R identical nonlinear regenerators placed
along the transmission line. The signal transmission is distorted by a stochastic pro-
cess that is modelled as AWGN uniformly distributed along the line. The noise term
incorporates the stochastic effects from different sources. Depending on the model
application, the stochastic process can be considered analogous to the random force
in the time-continuous case of noise mixing with the signal during transmission. This

52



4.2 Regenerative channel

term also includes an additive noise that originates from the nonlinear device itself.
We place regenerative elements equidistantly along the transmission line.
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Figure 4.1: The regenerative channel model -

To maximize the Shannon capacity of regenerative channels, one needs 3R regen-
erators, which allows suppressing timing jitter phenomena. The architecture of such
elements is depicted in Fig. 4.1 and consists of three stages. At the first stage, an optical
filter (here and further, a matched filter to rectangular pulses) is used to maximize the
output signal-to-noise ratio; then, a nonlinear regenerative transformation is applied to
a noise- distorted signal: Ym+1(t) = T [Ym(t)]+ηm+1(t). This is followed by an optical
gate, which samples the point of a minimum amplitude noise so that a continuous-
time signal at the link m, Ym(t), is transformed to its discrete-time form Ym, which is
then shaped by an optical filter. Thus, the discrete-time signal is converted again to
its continuous-time form, to receive a regenerated signal with squeezed amplitude and
timing distortions. Here we assume that a regenerator handles both signal quadratures
of complex Ym independently: Re(Y ′

m) = T [Re(Ym)] and Im(Y ′
m) = T [Im(Ym)]. This

ensures best regenerative efficiency as there is no signal-signal interference. Thus,
the two-dimensional problem (with complex Ym) can be reduced to the 2 independent
one-dimensional lattices. Further, for simplicity, we omit Re, Im notations and use Ym
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4.2 Regenerative channel

for one-dimensional real discrete-time signal at m-th link. After addition of noise, the
signal is: Ym+1(t) = Y ′

m(t)+ηm+1(t). Expanding the noise over the appropriate set of
orthonormal functions, we can consider the continuous-time problem in its discrete-
time form: Ym+1 = Y ′

m +ηm = T (Ym)+ηm+1. Further, we use Ym for one-dimensional
real discrete-time signal output at m-th link and lower case ym for its deterministic
outcome. Similarly, xk notates real k-th alphabet point (that is, in the QPSK case, the
modulation can be considered as two one-dimensional lattices with xk = {−1,1}).

4.2.1 Numerical verification

It is important that the validity of the model depends on the time window of an optical
gate. For continuous-time modelling, we simulated numerically 5 · 105 of equiprob-
able symbols modulated as 16-QAM format shaped as ideal rectangular pulses with
a baud rate of B = 28 GBaud. A nonlinear transformation was applied to an optical
continuous-time signal: T (y) = y+π−1 sin(πy). The optical filter used was matched
for rectangular pulses. The duration of the optical gate time window was varied. An
operating point of the regenerator has been optimized, so that there is no spectral broad-
ening along the line; in other words, pulses maintain fixed duration during transmis-
sion. An eye-diagram, waveform, and spectrum of the output of the 20th regenerator
are plotted in Fig. 4.2 for noiseless transmission and Fig. 4.3 noisy (the correspond-
ing OSNR = 10 dB) transmission. The signals were normalized by the input signal
power. It is seen that the 3R regenerator does not affect the undistorted signal (see Fig.
4.2) and the waveform is conserved. Figure 4.3 demonstrates that noise is effectively
suppressed and signal transmission is significantly improved. Figure 4.4 shows noise
suppression for R = 5 in-line regenerators with the same level of OSNR = 10 dB. Note
that the regenerator acts as a noise squeezer, so that it reduces distortion effects with-
out signal amplification – signal power is not increased. The power ratio for the output
signal of the R-th regenerator to theinput signal is plotted in panel d of Figs.4.2-4.4 for
R = 20 and R = 5 for noiseless and noisy transmission.

Also, we calculated the symbol error rate (SER) by direct error counting using
Monte Carlo simulations as a function of optical SNR (OSNR) OSNR = SNR B

2Bre f
,

where Bre f = 12.5 GHz. SNR is defined here as the ratio of the input signal power S

to the noise (zero mean AWGN with variance Nm) added linearly to the signal during
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4.2 Regenerative channel

transmission at each node m = 1, ...,R+ 1: SNR = S/N, where accumulated noise is
given by N = ∑Nm, where Nm is noise power added after transmission via m− th node.
Note, in the nonlinear communication system, due to the mixing of signal with noise
during propagation, the definition of in-line SNR is a non-trivial issue. The introduced
SNR occurs in the respective linear system in the absence of nonlinear in-line ele-
ments. This allows us to compare the considered system with the corresponding linear
AWGN channel having the same noise level. Evidently, the effect of noise squeezing
is enhanced with the number of regenerators. Therefore, to evaluate the system perfor-
mance improvement, it is necessary toconsider the cumulative effect of nonlinear sig-
nal and noise transformation along the line. To quantify the overall effect, we studied
the capacity of the source-destination transmission as a function of SNR that incorpo-
rates the resulting power of all added noise at the source-destination link. We stress
that the proposed channel model is fundamentally different from decode-and-forward
(since regenerators are memory-less) and does not assume any decoder/encoder pair to
be used with in-line elements. Note that regenerators reduce noise and do not amplify
the signal. An additional noise induced from a device itself NR can be incorporated by
substituting: N → N +RNR.

In the discrete-time case, we simulated 225 equi-probable symbols. One can see
that for small switching windows discrete-time-effective noise source approximation
allows capturing the behavior of the system (see 4.5). Increasing the switching time
window leads to SER degradation due to accumulation of timing jitter caused by non-
linear transformation. The investigation of a timing jitter will be studied elsewhere.
Here, we focus on characterizing the maximum transmission rate that can be achieved
by regeneration with suppression of both time jitter and noise distortions; therefore,
we are interested in optimizing the regenerative element to achieve the highest perfor-
mance. Under this condition, a discrete-time approximation enables correct description
of the system. Further, throughout the thesis, we have focused on this approach.

Further, we developed the general mathematical method of constructing and opti-
mizing the set of transfer functions y′ = T (y) (see, for example, Fig. 4.7) that can in-
crease nonlinear transmission system capacity beyond the capacity of the linear AWGN
channel.
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diagram, b) waveform, and c) spectrum of the signal at the output of the last regenerator
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the output signal power at the last regenerator to the power of input signal
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4.3 Regenerative mapping

Here we propose a general model – regenerative mapping (see Fig. 4.6a,b) for design-
ing the classes of nonlinear communication channels with capacity exceeding Shan-
non capacity of the linear AWGN channel. An important new feature introduced by
the considered nonlinear mapping is the possibility of signal regeneration without re-
quiring ideal regenerators (72) characterized by step-like piecewise transfer functions.
Regenerative mapping incorporates experimental regenerative models and enables an-
alytical optimization. Whenever the nonlinear transformation has multiple fixed points
(Fig. 4.6c), the consequent interleaving of the accumulating noise with the nonlinear
regenerator will produce effective noise suppression (see Fig. 4.6d, Fig. 4.8). In other
words, the nonlinear regenerator will attract a signal to the closest fixed points and
suppress the effective diffusion. The created washboard potential (Fig. 4.6c) quantizes
the signal and improves transmission with consequent capacity increase. Similar ideas
have been discussed in multiple contexts from physical systems (for superconductivity
(153)-(154)) to the interpretation of biological memory effects in terms of potentials
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Figure 4.5: Comparison of discrete-time and continuous-time modelling - SER as
a function of OSNR for different values of SW – percentage of the switching window
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the upper limit of regenerative continuous-time transmission (shown by lines with cir-
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to performance degradation. The number of regenerative elements R (with nonlinear TF:
T (y) = y+π−1 sin(πy)) was varied.

58



4.3 Regenerative mapping

with multiple minima (155).

4.3.1 Regenerative functions

We distinguish between ideal regenerator characterized by step-wise TF and regenera-
tor with smooth TF.

In case of the ideal regenerator, if signal distortion δ is smaller than the corre-
sponding regenerative area (width of the k-th step of the step-wise TF): δ < ||Sk||, then
distortion is completely suppressed. Therefore, the width of the step should be chosen
as the Voronoi region. Thus, the ideal regenerator, having the optimum width of re-
generative area and flat plateau (removes noise completely if δ < ||Sk||), represents the
highest efficiency regenerator. Ideal regenerator can be achieved opto-electronically
or by placing regenerators with smooth TF in cascades: y′ = T (T (T (..T (y)))... A
number of transformations depends on the particular TF type, in particular for T (y) =

y+1/3sin(3y) one can approximate ideal step-wise TF closely by varying the number
of applied transformations NT (see Fig. 4.9). Note, that one needs to place a non-
linear element in cascade, whereas only a single optical gate (after nonlinear signal
transformations) is required (see Fig. 4.1).

Regenerators with smooth TF can be achieved by all-optical regenerative elements,
which create a nonlinear response that needs to be optimized and designed in such a
way that noise-induced distortions are reduced after transformations (see optimization
technique further).

Regenerator reduces signal distortions which do not exceed the certain level – the
size of the corresponding regenerative area: |δ|< ||Sk||. So that under such conditions
distortion after transformation δ′ is smaller than before: |δ′|< |δ| or |δ′/δ|< 1. If the
nonlinear TF has a plateau level then within it the distortion is completely suppressed:
δ′/δ = 0. However, plateau, though being an optimal case is not necessary, because
for effective noise squeezing, the condition |δ′/δ| < 1 is sufficient. Consequently, to
achieve noise reduction in the vicinity of an alphabet point x one needs: |T ′(x)|< 1 to
be fulfilled – this is a suboptimal or stable case. If T ′(x) = 0 then there is a plateau
around the alphabet point – this is the best case and it is further referred as optimal or
superstable.
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plotted with varying parameter a and fixed b = π shows the periodic washboard potential,
where the slope around fixed points (alphabet) is defined by the parameters of the trans-
formation; (b) TF as a function of the parameters a and b given y = π demonstrates the
periodic dependence on b and intensity defined by a (higher intensity is shown by lighter
color, whereas optimal parameter values are shown by dashed lines), (c) y′ = T (y) for the
parameters b = π and a = 1/b – the optimal set of parameters defines the zero-slope at
the stationary point and maximum ability of noise suppression; (d) Gaussian pdf p(y′|y)
associated with the linear channel (right panel) and the regenerative channel (left panel)
having one sine-regenerator with the TF y′ = y+π−1 sin(πy) illustrates the effect of the
TF on the stochastic properties of the channel.
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Of course, a regenerative transformation should not affect alphabet points, that is,
T (x) = x, so one can place a number of regenerators in-line in cascade. Finally, it
is optimum to place an alphabet point in the center of the corresponding regenerative
region, theorem, where an alphabet point is an inflection point of the transformation:
T ′′(x) = 0.

The regenerative transformations result in the effective periodic potential which
creates attraction regions in the signal mapping without making the hard decision.
Where the points are "attracted" to the alphabet, it should remain stable. This results
in the following set of conditions imposed on the transfer function:

T [x] = x, T ′′[x] = 0, |T ′[x]|< 1 (4.1)

The first expression implies that the alphabet is defined by the stationary points x∗ of
the mapping. Next, the transfer function should change curvature at the alphabet, that
is, the alphabet point is the center of the attraction region. The third expression reflects
stability, so that the signal point distortion is effectively suppressed. When the first
derivative is equal to zero, the alphabet is superstable.
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Figure 4.8: Transmission improvement - Square K = 4 constellation a) at the output
of the R-th regenerator Y ′

R = T (YR) and b) at the receiving end YR+1 = T (YR)+ηR+1 (see
Fig. 4.1 for the transmission lines having AWGN distortion of SNR = 3 dB with the
different number of sine-regenerators characterized by TF: y′ = T (y) = y+ π−1 sin(πy).
Linear case R = 0 is shown for reference. One can see that, though the distortion is caused
by AWGN with normal Gaussian distribution, the statistical properties after transforma-
tion are changed (compare signal at the output of the regenerator [panel a] when noise
statistics are no longer Gaussian with signal when AWGN is added again [panel b]). This
demonstrates that the higher capacity is due to the induced changes in noise distribution,
which are caused by nonlinear signal transformation (without signal amplification). Note,
transformation is applied independently to both signal quadratures and the problem can
viewed as transformation induced upon two one-dimensional lattices independently.
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4.3.2 Regenerative Fourier transform model

To demonstrate the constructive role of nonlinearity without necessarily "hard deci-
sion", we propose the nonlinear regeneratoring element that transforms the input x into
the output y thusly: y′ = T (y) = y+asin(by). The model is commonly referred to in
theoretical physics as a sine-mapping (156, 157). The transfer function represents the
first order expansion in the Fourier series of the step-wise ideal regenerative TF; thus, it
is a close, smooth approximation of the ideal regenerator – regenerative Fourier trans-
form (RFT). The step-wise TF of an ideal regenerator with step x0 is given by: [y/x0]

where [ ] represents the integer part of the variable. One can represent it as

y′ideal =
[ y

x0

]
= y− mod (y,2x0)+ x0 (4.2)

or expanding mod operator in the Fourier series expansion one gets:

y′ideal =
[ y

x0

]
= y−

(
x0 −

2x0

π

∞

∑
k=1

sin
(

πky
x0

)
k

)
+ x0 (4.3)

after leaving only first-order term in the series:

y′sine = T (y) = y+
2x0

π
sin
(πy

x0

)
(4.4)
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and notating π/x0 as b one obtains:

y′sine = T (y) = y+asin(by) (4.5)

where alphabet is given by xk = (2k+1)x0 = (2k+1)π/b with k ∈ Z.
Note, the transformation is applied to each signal quadrature independently (here y

is a real variable, which describes both real or imaginary parts of a complex signal):

y′ = T (y) = y+asin(by) (4.6)

The mapping RFT is shown in Fig. 4.7. According to the previously described
optimization procedure, in the considered example, the alphabet is placed at the points
π(2k + 1)/b where k ∈ Z that are stable if and only if 0 < ab < 2 (in particular, if
a = 0, the channel transforms to a linear AWGN channel). The last expression asserts
that noise after the transformation is reduced. Note that, in particular, the system is
superstable when ab = 1; this gives the optimum parameter values, whereas inequality
defines the suboptimal parameter range. The proposed model enables regeneration of
multilevel modulation formats.

4.4 Upper bound of regeneration efficiency – capacity
of the channel with ideal regenerators

Shannon capacity of the considered systems is a function of SNR, the number of regen-
erators R and the parameters of nonlinear mapping. We start the capacity analysis with
the case of ideal regenerators (characterized by step-wise transfer functions) and then
proceed to regenerators with smooth transfer function, which allow approximating the
ideal case by implementing all-optical regeneration (145)-(148).

Ideal regenerators assign each transmitted symbol to the closest element of the
given alphabet, so that the diffused point x′ (originated from the input point xl) will
be assigned to the closest neighbor xk in the regenerative area Sk. The ideal regener-
ator has the largest area Sk – Voronoi region given by

(
xk−1 +

xk−xk−1
2 ,xk +

xk+1−xk
2

)
.

Capacity analysis of the system with the ideal regenerators defines the upper bound of
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regeneration efficiency. The conditional probability of such a system is defined through
the matrix elements (72):

P(y = xk|xl) =
∫

Sk

dx′pG(x′|xl) =Wkl, pG(x′|xl) =
1√

2πN/R
exp
(
− (x′− xl)

2

2N/R

)
(4.7)

The transition matrix is defined as follows

Wkl =
∫ xk+

xk+1−xk
2

xk−1+
xk−xk−1

2

dx′
1√

2πN/R
exp
(
− (x′− xl)

2

2N/R

)
=

1
2

(
erf[∆+

kl]− erf[∆−
kl]
)

(4.8)

with

∆±
kl = (xk + xk±1 −2xl)

√
R

8N
, (4.9)

We assume in this section that the last R-th regenerator is placed at the receiver (Fig.
4.10); therefore, compared to the scheme in Fig. 4.1, there is not R+1, but R effective
noise sources. An effective noise source ηm represents the noise added to the signal
during propagation via the m-th span (it can be considered as noise resulting from
multiple EDFAs or from Raman amplification). Since in both cases the noise power N

added to the signal during transmission is the same, therefore, the noise power at each
node is Nm = N/R (whereas in the case plotted in Fig. 4.1, further used for modelling
regenerators with smooth nonlinear TF, there is noise added after R-th regenerator;
therefore, at each node, the noise power is Nm = N/R). Note, both channels have the
same power of input signal S and power of noise added during transmission N, as well
as the same number of regenerators R; however, the positioning of the regenerators and
models are different.

Note, that the essential difference between linear and regenerative channels is that
the latter is fundamentally discrete. An ideal regenerator attracts a signal point x′ to
the closest alphabet point xk, so it means that an effective attractive region is created
Sk. In capacity calculations, the alphabet is subject to optimization, whereas the choice
of alphabet defines Sk. In adapted here consideration of one-dimensional lattices, Sk is
a region given by a starting point xk−1 +

xk−xk−1
2 and ending point xk +

xk+1−xk
2 .

The size of the attractive region Sk has a direct impact on the regenerative proper-
ties; that is, if the noise-induced distortion is large, so that the distorted point (origi-
nated from an alphabet point xk) is shifted out of its original attraction region (Sk), then
it will be attracted to the wrong alphabet point; consequently, this eventually will cause
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Figure 4.10: The regenerative channel model -

an error at the receiver. In other words, if Sk is too small, then the regenerator will only
increase distortion and regeneration will have a negative impact. In particular, if Sk

is put to zero, the regenerative effect vanishes. As Sk has a meaning of the cell size
(distance between the neighboring alphabet points) in the case of an ideal regenerator
(which ensures maximum regeneration efficiency), the optimal amplitude distribution
is discrete. Thus, the size of Sk depends on the noise variance added at each span.
Noise with the same variance is added to all transmitted points, independently on their
values; therefore, the size of Sk is independent of the value of xk. Consequently, the
optimum alphabet consists of equidistant points with spacing d = xk+1 − xk for any
k and the value of d depends only on the variance of the noise added at each span.
This reasoning was supported by numerical simulations, when a value of d was sub-
ject to optimization for given values of signal S, total accumulated noise power N, and
the number of regenerators in-line R. It was shown that the optimum value of d is a
function N and R (see next section for more details).

As we place a number of identical regenerators in cascade along the line, due to
the Markovian nature of the stochastic system, the overall transition matrix after R re-
generative segments reads as M = W1(N1)...Wm(Nm)...WR(NR) for a fixed total noise
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variance N = ∑R
m=1 Nm. From a symmetry (that is, replacing regenerators will not af-

fect the product and since Wm(Nm) is a monotonically decreasing function of Nm, it
is reasonable to consider regenerators to be placed equidistantly along the line with
the same noise variance added at each span: Nm = N/R = const (since in this case the
noise variance at each span is minimized).

Under these assumptions, the overall transition matrix after R regenerative seg-
ments is given by

M = WR (4.10)

Using conditional pdf, one can calculate the Shannon capacity of the channel.

4.4.1 Analytical calculations of the capacity of the regenerative
channel

Applying the definition of Eq. 4.7 to the binary case (that is, points are given as
x+ =−x− =

√
S, where S notates the signal power), we obtain the transition matrix of

one span for binary channel:

W =

(
w+ w±
w± w−

)
(4.11)

with matrix elements given by:

w+=
∫

S+
dx′pG(x′|

√
S)=

∫ ∞

0
dx′

1√
2πN/R

exp
(
− (x′−

√
S)2

2N/R

)
=

1
2

(
1+erf[

√
R ·SNR/2]

)
(4.12)

w± =
∫

S±
dx′pG(x′|

√
S) =

∫ 0

−∞
dx′

1√
2πN/R

exp
(
− (x′−

√
S)2

2N/R

)
(4.13)

Similarly, for the second point x− = −
√

S. Obviously, from a symmetry of the chan-
nel: w+ = w− = 1−w±. After transmission via R regenerative segments the overall
transition matrix reads as M = WR:

M =

(
m+ m±
m± m−

)
(4.14)

with matrix elements: diagonal m+ = m− =
(
[1+ erf[

√
R ·SNR/2]]/2

)R
and non-

diagonal m± = 1−m+.
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At low SNR range, the channel is binary in each of n dimensions. Using the defi-
nition of capacity per dimension for the discrete-input, discrete-output channels:

CR = Hy −Hy|x =−
K

∑
k=1

Qk log2 Qk +
K

∑
k=1

Pk

K

∑
l=1

Wkl log2Wkl (4.15)

Therefore, capacity per dimension is well approximated by the following expression:

CR =−
(1

2
log2

1
2
+

1
2

log2
1
2

)
+

2
2
(m+ log2 m++m± log2 m±) (4.16)

=
(

1+m+ log2(m+)+m± log2(m±)
)

(4.17)

with the transition matrix elements: diagonal m+ = m− and non-diagonal m± = 1−
m+.

As SNR rises, the closest neighbors distance (d = xk+1 − xk) reaches the optimal
cell size d = dopt , which defines the optimum size of the decision boundary deter-
mined by the noise variance and the number of in-line regenerators. So, as SNR rises,
alphabet points are distributed equidistantly with the constant closest neighbor distance
dopt . Thus, at high SNR, the system is characterized by the optimal decision bound-
aries that are sufficiently large compared with the variance for effective noise suppres-
sion. Therefore, with the growing signal power, the amplitude distribution of K-points
alphabet xk=1..K remains constant (that is, equidistant with the closest neighbors dis-
tance dopt), whereas the maximum entropy principle defines Gaussian distribution as
the optimal probability for a fixed average energy constraint. Thereafter, the output
probability can be well approximated as Qk = µe−νx2

k , here constants are chosen to sat-
isfy conditions ∑K

k=1 Qk = 1 and ∑K
k=1 Qkx2

k = S+N/R. In the limit of high SNR and/or
large number of regenerators, so that the dimension-less parameter ∆ = d

√
R/8N ≫ 1,

the noise is sufficiently squeezed and the faulty decision occurs only between the near-
est neighbors. Further, we consider the problem in the approximation of the closest
neighbors, so the transition matrix of the span has the form:

W =


... ... ... ... ... ... ... ... ...
... 0 w w̃ w 0 ... ... ...
... ... 0 w w̃ w 0 ... ...
... ... ... 0 w w̃ w 0 ...
... ... ... ... ... ... ... ... ...

 (4.18)
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with the elements given by

w̃ =
∫

S+
dx′pG(x′|

√
S) =

∫ xk+d/2

xk−d/2
dx′

1√
2πN/R

exp
(
− (x′− xk)

2

2N/R

)
= erf(∆) (4.19)

and w = (1− w̃)/2. In this approximation, the overall transition matrix M

M =


... ... ... ... ... ... ... ... ...
... 0 m m̃ m 0 ... ... ...
... ... 0 m m̃ m 0 ... ...
... ... ... 0 m m̃ m 0 ...
... ... ... ... ... ... ... ... ...

 (4.20)

with m̃ ≃ w̃R ≃ lim∆→∞ w̃R ≃ 1−Re−∆2
/∆/

√
π and m = (1− m̃)/2. The conditional

entropy is given by definition:

Hy|x =−
K

∑
k=1

Pk

K

∑
l=1

Mlk log2 Mlk (4.21)

Under the assumption of the closest neighbors, the formula is simplified to:

lim
SNR·R→∞

Hy|x =−
K

∑
k=1

Pk

(
m̃ log2(m̃)+2m log2(m)

)
≃−

(
m̃ log2(m̃)+2m log2(m)

)
(4.22)

In the operating limit ∆ ≫ 1, consequently, Re−∆2
/∆/

√
π is a small parameter. In

this approximation, the conditional entropy equates to:

lim
SNR·R→∞

Hy|x =−R
e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

)
(4.23)

By definition, the output entropy is given by:

Hy =−
K

∑
k=1

Qk log2(Qk) (4.24)

Based on the results of numerical simulations (see next subsection), we assume the
output probabilities to be Gaussian: Qk = µe−νx2

k , here, constants are chosen to satisfy
conditions ∑K

k=1 Qk = 1 and ∑K
k=1 Qkx2

k = S+N/R. These reflect on the output entropy:

lim
SNR·R→∞

Hy =−
K

∑
k=1

Qk log2(Qk) =−
K

∑
k=1

Qk

(
log2(µ)−νx2

k

)
(4.25)
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using the conditions ∑K
k=1 Qk = 1 and ∑K

k=1 Qkx2
k = S+N/R:

lim
SNR·R→∞

Hy =− log2(µ)+ν(S+N/R) log2(e) = log2

(
µe−ν(S+N/R)

)
(4.26)

One can find constants µ and ν using quasi-continuous approximation (that is, in the
continuum limit), assuming that there are large numbers of points situated such that
the maximal distance between them is much larger than the minimal distance. Then
the sums can be considered as integrals with a proper weight – the step size, that is,
distance between the adjacent points (similar to the Riemann integral):

K

∑
k=1

Qk →
1
d

∫ ∞

−∞
q(y) =

1
d

∫ ∞

−∞
dyµe−νy2

=
µ
d

√
π
ν
= 1 (4.27)

and

K

∑
k=1

Qkx2
k →

1
d

∫ ∞

−∞
dyq(y)y2 =

1
d

∫ ∞

−∞
µe−νy2

y2 =
µ

2µd

√
π
ν
=

K

∑
k=1

Qkx2
k = S+N/R

(4.28)
Thus, we derive that µ = d

√
ν/π and ν = (2(S+N/R))−1. Substituting the obtained

parameters in Eq. 4.26, we derive:

lim
SNR·R→∞

Hy =
1
2

log2

(2πe(S+N/R)
d2

opt

)
(4.29)

The capacity is given by maximizing the difference of the aforementioned entropies
over the optimum cell size

C = max
dopt

(
Hy −Hy|x

)
SNR·R→∞ =

1
2

log2

(2πe(S+N/R)
d2

opt

)
+R

e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

)
(4.30)

The optimum cell size can be found as follows:(
1
2

log2

(2πe(S+N/R)
d2

opt

)
+R

e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

))′

dopt

(4.31)

which can be solved numerically or approximated analytically as follows:(
Hy|x

)′
dopt

= 0 (4.32)
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Solving (
R

e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

))′

dopt

= 0 (4.33)

we can approximate the solution of 4.32 by using an approximation function κ:

d2
opt =

8Nκ
R

Ω
(e2R2

8πκ

)
, κ = 1+10R−1 (4.34)

here Ω is the so-called Omega function or Lambert function, also referred to as product
logarithm. Note, that the considered channel is significantly discrete and the maximum
closest neighbors distance depends on the noise properties and regeneration parame-
ters.

Finally, the channel capacity in the limit SNR ·R → ∞ is found as

lim
SNR·R→∞

CR =CR =
1
2

log2

(
SNR+

1
R

)
+

1
2

log2

(2πeN
d2

opt

)
+R

e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

)
(4.35)

Thus, with the growing SNR, one can observe a constant gap that quantifies improve-
ment between capacities of the regenerative and linear AWGN channels having the
same power of input signal S and the same power of AWGN added to the signal during
transmission N. This is useful for benchmarking. The capacity improvement is defined
by the noise variance and the number of regenerators:

lim
SNR·R→∞

∆CR =CR −
1
2

log2(SNR+1) =
1
2

log2

(2πeN
d2

opt

)
+R

e−∆2

∆
√

π
log2

(
R

e−∆2

4∆
√

π

)
(4.36)

The minimum SNR value, when dopt is achieved, defines the maximum capacity ratio
to its linear analogue, that is, SNRopt = d2

opt/4N. At this SNR value, both analytic
formulae Eqs. 4.16 and 4.35 can be interpolated to describe capacity at the full range.

4.4.2 Numerical simulations of the capacity of the regenerative chan-
nel

Using the conditional probability for ideal regenerators, one can optimize numerically
mutual information as a function of input distribution: {xk,Pk}, k = 1..K, where K is
the constellation size.

71



4.4 Upper bound of regeneration efficiency – capacity of the channel with ideal
regenerators

Since noise (AWGN) is added linearly to the signal, the resulting distortion will
have the same stochastic properties for each signal point k = 1..K. Thus, the regenera-
tive region Sk will be the same for all signal points. Consequently, we simulate points to
be equidistant. Thus, theproblem is reduced to find the optimal set of {d,Pk,K}. Note,
as we vary simultaneously d and probability distribution Pk, this allows us to perform
optimization thoroughly, since for small values of d one can approximate continuous
distribution. Also, if optimization returns Pk = 0 for particular number k, it will result
in non-equidistant distribution (since the distance between non-zero probability signal
points will be non-equidistant): xk+1 − xk−1 ̸= d. Thus, an approach to vary d,Pk,K

enables optimizing the problem thoroughly for any general case and, therefore, cal-
culating the capacity as the maximum of mutual information functional for a given
conditional probability Eq. 4.10.

The program for numerical simulations was written in Matlab using a built-in se-
quential quadratic programming (SQP) algorithm (written as part of fmincon Matlab
function). SQP is based on the works of Biggs, Han, and Powell ((158) and references
therein) and allows for constrained optimization using Newton’s method. The parame-
ters of the function were set to standard and termination tolerance on the function value
was set to 10−6 (other parameters are: the relative first-order optimality measure is less
than 10−6 and the relative maximum constraint violation is less than 10−6). The initial
search point was chosen to be equi-probable probability distribution (it was verified
that the change of initial values does not affect optimization result), the constraints
were ∑Pk|xk|2 ≤ S and ∑Pk = 1. The input parameters were: SNR and R. The number
of signal points (constellation size K) was varied.

The numerical simulations showed that at low SNR the optimum constellation is
binary with the distance between the alphabet points: d =

√
4S =

√
4SNR ·N. As SNR

increases, the value of d grows until dopt (see Fig. 4.11); a further increase of SNR
beyond SNRopt = d2

opt/4N leads to the expansion of the constellation, so that more
points have non-zero probabilities; however, the distance between the points d does
not change. The explanation of the effect of the constant amplitude distribution at high
SNR was given in the previous section. Any deviation from dopt (d > dopt or d < dopt)
leads to MI degradation. In particular, if d → 0, the regeneration effect is negative.
The comparison of thenumerical simulation results with analytical formula Eq. 4.34 is
shown in the inset if Fig. 4.11.
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Figure 4.13: Regeneration limit. - a) Gain, the regenerative capacity ratio to the Shannon
formula CL = log2(1+ SNR), for the different number of regenerators. The analytical
results demonstrating an excellent agreement with numerics are shown by black (dash-
dotted Eq.4.16 for SNR ·R ≪ 1 and dotted using Eq.4.35 for SNR ·R ≫ 1) lines. The inset
shows mutual information gain for two-dimensional (n= 2) K2- rectangular constellations.
b) Capacity and mutual information for discrete two-dimensional K2 - rectangular QAM
(left panel) and K - points in the ring K-PSK (right panel) alphabets. The arrows show the
constant capacity increase. Constellations and associated attraction regions are shown.
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As a result of numerical optimization, the input probability was found to be a dis-
crete analogue of Gaussian probability (see Fig. 4.12). Thus, the maximum capacity
gain due to regeneration (that is, the maximum regeneration efficiency) is observed
for the binary channel. This emphasizes simple binary channel efficiency. The capac-
ity gain reflects the trade-off between the system complexity and improvement. As
the number of regenerators increases, the capacity gain peak shifts to smaller SNR.
Therefore, employing a low SNR regime and using regeneration, one can achieve high
transmission performance. Moreover, at this SNR interval, destructive nonlinearity
impact is negligible, which might be important for practical design consideration. The
minimum SNR value, when dopt is achieved, defines the maximum capacity ratio to its
linear analogue, that is, SNRopt = d2

opt/4N. At this SNR value, both analytic formula
Eqs. 4.16 and 4.35 can be interpolated to describe capacity at the full range of SNR.

The analytical approximations Eqs. 4.16 (for SNR ·R ≪ 1, shown by dashed lines)
and 4.35(for SNR ·R ≫ 1, shown by dotted lines) depicted in Fig. 4.13 by black lines
demonstrate an excellent agreement with the result of numerical computations of the
capacity for different number of regenerators (colored solid lines). The figure demon-
strates that regeneration allows substantially reducing noise impairments and, conse-
quently, achieving capacity above the linear Shannon capacity (Shannon capacity of
linear AWGN channel). The maximum system improvement is observed at low SNR
values – SNRopt shown by vertical lines.

Similar to the rectangular case, the analysis was extended to ring formats with
conditional probabilities defined through the matrix elements:

P(y = xk|xl) =
∫

Sk

dx′pG(x′|xl) =Wkl, pG(x′|xl) =
1

πN/R
exp
(
− (x′− xl)

2

N/R

)
(4.37)

For K-points placed in a single ring of radius
√

S (phase-shift-keying format) the tran-
sition matrix is defined as follows:

Wkl =
∫ ∞

0
dr

∫ 2πk/K+π/K

2πk/K
dφ

r
πN/R

exp
[
− r2

N/R
− S

N/R
+

2r
√

S
N/R

cos
(

φ− 2πl
K

)]
(4.38)

Figure 4.13b shows mutual information for rectangular quadrature amplitude mod-
ulation (QAM) in the left panel and ring phase-shift-keying (PSK) in the right panel.
Here, an optimization role is demonstrated: the constellation choice (defined by the
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SNR value and the number of the in-line regenerators) results in a capacity dramatic
gain, whereas the non-optimal format results in nonlinear capacity lower than the re-
spective linear one.

Note, the channel capacity depends on two parameters only: SNR and the number
of ideal regenerators R. Since the result of the nonlinear transformation is the noise
squeezing defined by the value of R, the system behavior is governed by SNR, in con-
trast to conventional Kerr-nonlinear problem, where the system performance depends
non-trivially on S and N and cannot be captured by single parameter SNR = S/N. It
was verified numerically that fixing the value of N and varying signal power S or fix-
ing S and varying noise power N gives the same capacity results for the considered
channel.

An important feature of the channel is that capacity gain is achieved by regenerative
transformations without signal amplification. An ideal regenerator assigns distorted
points to the closest alphabet point. Therefore, if a signal, distorted by noise with
variance Nm, had power S+Nm, the regenerated signal will have power equal to the
undistorted signal S.

The ideal regenerator fully suppresses distortion within the regenerative region Sk

and assigns the distorted point x′ to the original alphabet point xk. So, an error will
occur only if the distorted point x′ is diffused out of the regenerative region, when dis-
tortion is larger than ||Sk||/2. Therefore, the ideal regenerator (given by the step-wise
transfer function) has the highest efficiency regeneration and the Shannon capacity of
such a channel is the highest that can be achieved – this we refer to as the regenerative
Shannon limit.

In practice, there are a variety of all-optical regenerators characterized by smooth
transfer functions, which enable approaching an ideal step-wise function (see Fig.4.9).
In the next section, we demonstrate capacity calculations for such systems on the ex-
ample of the regenerative Fourier transform model.
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4.5 Capacity calculation for regenerative mapping

The signal evolution in such systems (see Fig. 4.1) can be presented by the stochastic
map – a discrete version of the Langevin equation for stochastic processes:

Ym = T (Ym−1)+ηm, m = 1, ...,R+1, Y0 = x (4.39)

As in previous sections, notations xk and Ym (and its deterministic outcome ym) are
used for k-th alphabet point and signal at m-th span correspondingly. Again, two-
dimensional problems can be considered as two independent lattices with real variables
x and y. Here m is the discrete spatial index and T is the transfer function of the
regenerative regenerator. The term ηm models the Gaussian noise with zero mean and
the variance given by Nm added at m-th node; further, we assume regenerators to be
placed equidistantly, so for all m: Nm = Nm+1 = N/(R+1), where N is total power of
noise added to the signal during transmission.

The conditional pdf for the output at m-th node for each quadrature ym given the
input ym−1 is found as

p(ym|ym−1) =
1√

2πNm
exp
[
− (ym −T (ym−1))

2

2Nm

]
(4.40)

Because of the Markovian property of the process, the conditional pdf of the received
signal after propagation through R links, yR, given the input, x, is expressed by a prod-
uct of single-step conditional probabilities

p(yR+1|y0 = xk) =
∫

dyR..dy1 p(yR|yR−1)...p(y1|y0 = xk) (4.41)

Consequently, when for any m: Nm = Nm+1 = N1 = const, the conditional pdf can
be expressed through an Onsager-Machlup function or action of the path given by

S= ΣR+1
m=1

1√
2πNm

(ym −T (ym−1))
2

2Nm
(4.42)

as follows
p(yR+1|y0) =

∫
dyR..dy1e−S (4.43)
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4.5.1 Numerical calculation of the Shannon capacity of RFT chan-
nel

Substituting transfer function of RFT: T (y) = y+ asin(by) we obtain the conditional
pdf for the channel output yR+1 given input – alphabet point xk:

p(yR+1|y0 = xk) =
∫ R

∏
m=1

dym
1√

2πNm
e−(ym+1−ym−asin(bym))

2/2Nm (4.44)

This expression calculated numerically (using trapezoidal integration with step
0.005) is plotted in Fig. 4.14 for the same power of added noise N = ∑R+1

m=1 Nm. The
conditional pdf demonstrates that the regenerator acts as a quantizer by attracting sig-
nal points to the alphabet – one can observe peaks formed around the alphabet points.
The alphabet is constructed in accordance with the proposed optimization procedure
of Eq. 4.1, which for the RFT case defines xk = π(−K + 1+ 2k)/b, with k = 1..K).
Also, one can see that for the optimal parameters choice, the noise squeezing effect
is more pronounced (compare suboptimal case plotted in Fig. 4.14a with optimal in
Fig. 4.14b), whereas, since suboptimal case peaks are wider, the interference between
them is more clear (compare Fig. 4.14a with inset in Fig. 4.14b). This illustrates the
difference between the linear and considered regenerative nonlinear channels: if the
distortion is larger than the cell size, then the diffused point will be attracted to the
wrong alphabet point (not the same as the original [before distortion] alphabet point).
This stresses the discreteness of the problem: the cell size cannot be arbitrarily small
(this is in contrast to the linear channel) and the optimum distribution is discrete. While
the noise power N was fixed (here N = 1), placing alphabet points closer to each other
(that is, decreasing cell size) resulted in higher interference between the peaks and
reduction of the regenerative effect (compare Fig. 4.14b with tighter packing in Fig.
4.14c). This demonstrates the importance of optimization over the cell size and the
necessity to adapting it to the noise power and the number of regenerators. Further
decreasing the cell size results in the smoothing of peaks and at d → 0, the regenera-
tive effect vanishes. Obviously, increasing the number of regenerators leads to higher
regeneration efficiency (Fig. 4.14).
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Figure 4.14: Conditional pdf. - p(yR+1|x) for a different number of regenerators a) for
suboptimal ab = 0.5 and b) optimal ab = 1 parameters choice and for the same power of
total noise N = 1. Regenerative transformation results in the formation of peaks around
alphabet points given by the regenerative mapping procedure. Increasing the number of
regenerators results in more narrow peaks and higher noise squeezing, whereas suboptimal
parameters choice, though it results in significant noise reduction, has worse performance
than the optimal parameters choice ab = 1. Decreasing the cell size from d = 2 (panels
a-b) to d = 1 (panel c) results in worse system performance. It shows that the channel
is essentially discrete and the cell size needs to be optimized. Increasing the number of
regenerators improves regeneration efficiency.
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4.5 Capacity calculation for regenerative mapping

4.5.1.1 Impact of parameter b

Using conditional pdf, one can calculate the Shannon capacity of the channel. Re-
generative mapping techniques enable finding amplitude distribution optimal for a
given regenerative nonlinearity. In particular case of RFT, the alphabet is given as
xk = π(−K + 1+ 2k)/b, where k = 1..K is an index of an alphabet point. We choose
the alphabet according to regenerative mapping technique, and as distortion around
these points is suppressed due to regeneration, using a different set of xk will result in
increase of distortion due to applied nonlinear transformation. Effectively, regenera-

tive mapping technique optimizes modulation according to the given nonlinearity. So,
the optimal amplitude distribution is equidistant with the cell size defined by parameter
b.

The program for numerical simulations was written in Matlab using a built-in SQP
algorithm with parameters of the function set to standard termination tolerance on
the function value was set to be 10−6 (other parameters are: the relative first-order
optimality measure is less than 10−6 and the relative maximum constraint violation is
less than 10−6). The initial search point was chosen to be equiprobable distribution (it
was verified that the change of initial values does not affect optimization result). The
constraints were ∑Pk|xk|2 = S and ∑Pk = 1. The input parameters were: SNR = S/N

and R. The number of signal points (constellation size K) was varied until its increase
does not affect the capacity calculations by more than 10−4. The conditional pdf Eq.
4.44 was calculated numerically using trapezoidal integration with step 0.005 (it was
checked that the step size 0.001 did not affect the capacity calculations by more than
10−4).

The optimal input pmf (see Fig. 4.15) is found to be a discrete analogue of Gaussian
distribution: Pk ∼ e−x2

k/2S. The value of parameter b was varied and in Fig. 4.15 results
for two cases b = π and b = 2π are plotted. As the cell size is reduced xk+1 − xk =

2π/b, the constellation size K is increased (compare panels a and b in Fig. 4.15). The
corresponding constrained capacity (MI in Eq. 2.32 optimized over input probability
distribution for a given modulation format) for fixed values b = π,2π,3π. One can
see the impact of the parameter b on the constrained capacity. So, to achieve Shannon
capacity of the channel – maximum of constrained capacity, parameter b needs to be
optimized.

80



4.5 Capacity calculation for regenerative mapping

The Fig. 4.16 demonstrates how the choice of parameter b affects the constrained
capacity, and how the other parameter a was related to the parameter b as ab = 1. If
b= π, the constrained capacity is higher than the linear Shannon limit (and the capacity
gain is higher than 1). If the cell size is reduced (=2π/b), though the constellation size
is increased (see pmf in Fig. 4.15), the constrained capacity becomes smaller, for
b = 2π the constrained capacity is approximately equal to the linear Shannon limit
and the gain, though still above unity, is roughly equal to one. So, decreasing the
cell size below the optimal value, reduces the regenerative effect. Further, decrease of
the cell size b = 3π degrades the constrained capacity below the linear Shannon limit
– regeneration has negative impact: the cell size is so small (compared to the noise
variance), that there is high probability that the distorted point will be attracted to the
wrong alphabet point and a regenerator will only increase distortion. This demonstrates
that the optimal distribution is discrete and the cell size (and, consequently, parameter
b) needs to be optimized.
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Figure 4.15: Optimum input pmf - Pk as a result of numerical simulations as a function
of SNR for R = 10 (shown by colored filled symbols) coincides with a discrete analogue
of Gaussian distribution: ∼ e−x2

k/2S (shown by black unfilled symbols) (here N = 1 was
assumed). We plot here results for two cases b = π and b = 2π.
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Figure 4.16: Constrained capacity of the two-dimensional RFT channel and the cor-
responding gain (ratio to the linear Shannon limit log2(1+ SNR)) - optimized over
probability distributions for a given modulation format: equidistant modulation with the
cell size 2π/b for b = π,2π,3π for a fixed number of RFT regenerators R = 10. Shan-
non capacity of the RFT channel (optimized over modulation and probability distribution
b = bopt) and Shannon capacity of a channel with ideal regenerators – regenerative limit
are plotted for comparison. The value b = π gives constrained capacity in the vicinity of
the Shannon capacity, whereas b = 2π and b = 3π (modulations with smaller cell size)
give significantly smaller constrained capacity, close to the linear case, with the Shannon
capacity of linear AWGN channel having the same SNR. This illustrates that the optimal
distribution is discrete. This contrasts with the linear channel, where optimal distribution
is continuous.
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4.5 Capacity calculation for regenerative mapping

4.5.1.2 Optimization of parameter b

It was shown (from the analysis of conditional pdf) that the cell size needs to be opti-
mized as a function of SNR and a number of regenerators R. Therefore, we optimize
the problem over parameter b, which defines amplitude distribution. Optimization over
parameter b was conducted by calculating constrained capacity (optimization over in-
put pmfs) for different values of b, the maximum was found with function tolerance,
that is, optimization was stopped when the difference between the calculated values of
the constrained capacities was less than 10−4.
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Figure 4.17: Optimum value of a) parameter b and b) cell size versus SNR - calculated
as a result of numerical optimization for different number of regenerators in-line R = 10
and 20 (green and red curves) and different parameters relation: suboptimal ab = 0.5
(dotted) and optimal ab = 1 (dash-dotted). Optimum cell size in case of the channel with
ideal regenerators (see Fig. 4.11) is plotted alongside by solid lines.

The numerically calculated optimal values of parameter b and the corresponding
cell size = 2π/b are plotted in Fig. 4.17. One can see that the optimum cell size
decreases when regeneration is more pronounced, that is, when the number of regen-
erators is increased or when the parameters are closer to the optimum (T ′(x) = 0 when
ab = 1). In other words, when regeneration is stronger, noise is suppressed more and
one can operate with smaller cell size – tighter packing. This directly reflects in capac-
ity.
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4.5 Capacity calculation for regenerative mapping

4.5.1.3 Impact of parameter a

Additional parameter a governs the strength of regeneration. In accordance with sta-
bility requirement of regenerative mapping technique: |T ′(x)| < 1, it follows that if
a = 2/b one can observe plateau formed around the alphabet points; in this case, noise
is completely suppressed within the plateaus (this is the best choice of parameter val-
ues). Thus, the parameter b also defines the value of parameter a.

As was noted before, though being the best choice, plateau is not necessary. If
a < 1/b, one can still observe a regenerative effect. We demonstrate this by calculating
capacity for the suboptimal choice a = 1/2b. When a = 0 there is no regeneration -
linear AWGN channel.

4.5.1.4 Shannon capacity of the RFT channel

Optimizing over parameter b and input pmfs we found maximum of MI over the set of
{Pk,b} – Shannon capacity of the RFT channel for two cases a = 1/b and a = 1/2b

Fig.4.18.
The proposed RFT channel demonstrates visible capacity gain over the Shannon

capacity of the linear AWGN channel. Here we demonstrate that though TF with
plateau is the most efficient, nevertheless, it is not necessary for regeneration. One
can see that suboptimal parameter values also provide a capacity increase. The set of
conditions given by Eq.4.1 defines optimization and design rules for implementation of
such nonlinear regenerative channels. Optimal input distribution is plotted in Fig.4.19.
The optimal distribution is discrete with equidistantly placed alphabet points and the
pmf is a discrete analogue of Gaussian distribution: exp(−x2

k/2S).
The results illustrate that by suppression of signal distortions, one can achieve

Shannon capacity higher than a system without regenerators operating with the same
signal launch power and with the same power of noise added to the signal during trans-
mission. In the high SNR limit, the Shannon capacity of the considered channel tends
asymptotically to the regenerative Shannon limit, which was calculated analytically in
Eq. 4.35.
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4.5.2 Upper bound of capacity for the RFT mapping

The conditional pdf for the sine-regeneratoring model is given by Eq.4.44:

p(yR+1|xk) =
∫ R

∏
m=1

dym
1√

2πNm
e−(ym+1−ym−asin(bym))

2/2Nm, y0 = xk, Nm = N/(R+1)

(4.45)
We can reduce the problem to the previously considered in Section 4.4.1. Let us

start by considering the conditional probability for the first link:

p(y1|xk) =
1√

2πNm
exp
(
− (y1 − xk)

2

2Nm

)
(4.46)

Let us represent it as a sum of probabilities through the decision boundaries, namely
as a sum of a distorted point yl to be in the decision region Sl of the point xl , this is the
same as Wlk in Eq. 4.7:

p(y1|xk) = ∑
l

P(y1 ∈ Sl|xk)
1√

2πNm
exp
(
− (y1 − xk)

2

2Nm

)∣∣∣
y1∈Sl

(4.47)

= ∑
l

Wlk
1√

2πNm
exp
(
− (y1 − xk)

2

2Nm

)∣∣∣
y1∈Sl
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4.5 Capacity calculation for regenerative mapping

Where we used P(y1 ∈ Sl|xk) = Wlk defined in Eq. 4.7. In the ideal regenerator case,
the conditional pdf p(y1|xk) was thoroughly defined by the transition matrix W (since
after the ideal regenerator y1 = xl). However, the regenerator with smooth transfer
function does not assign the distorted point y1 to xl , but attracts it, so y1 becomes
closer but not equal to xl . Thus, the conditional pdf p(y1|xk) has a continuous part. The
representation of p(y1|xk) as a sum over decision boundaries Sl allows us to extract the
small parameter ε = y1 − xl .

Let us proceed with the second link:

p(y2|xk) =
∫

dy1 p(y2|y1)p(y1|xk) = (4.48)

1
2πNm

∫
dy1 exp

(
− (y1 − xk)

2

2Nm
− (y2 − y1 −asin(by1))

2

2Nm

)
Then we substitute p(y1|xk) as in Eq. 4.47 using the small parameter ε = y1 − xl:

p(y2|xk) = ∑
l

Wlk

∫
dεp(y2|xl + ε+asin[b(xl + ε)])

1√
2πNm

exp
(
− (ε− xk + xl)

2

2Nm

)
(4.49)

under assumptions of ε to be small and using the definition of the alphabet points,
namely xk = π(−K + 1+ 2k)/b where k = 1...K, and expanding the sine function in
series over ε we arrive at limε→0 y2 − y1 = limε→0 y2 − xl − ε−asin(b(xl + ε)) = y2 −
xl−ε(1−ρ)+O(ε2), where ρ= ab. Thus, the conditional pdf P(y2|xl+ε+asin[b(xl+

ε)]) can be simplified to p(y2|xl +(1−ρ)ε), which reflects in:

p(y2|xk) = ∑
l

Wlk
1

2πNm

∫
dεexp

(
− (xk − xl − ε)2

2Nm
− (y2 − xl − ε(1−ρ))2

2Nm

)
, ρ = ab

(4.50)
Integrating we obtain

p(y2|xk) =
K

∑
l=1

Wlk
1√

2πNm(1+(1−ρ)2)
exp
(
− (y2 − xl +ρ(xk − xl))

2

2Nm(1+(1−ρ)2)

)
(4.51)

Note, after the transformation, the noise is reduced, so the residual noise at second
link is: Nres

2 = Nm(1+(1−ρ)2) = N(1+(1−ρ)2)/(R+1). Further, one can use the
same procedure (rewrite conditional pdf of each link through the sum to extract small
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4.5 Capacity calculation for regenerative mapping

parameter and then expand sine function over it). So, after repeating the procedure
multiple times, the conditional pdf for the final link will have the form:

p(yR+1|xk) = ∑
l,l′,l′′..

WklWll′..
1√

2πNres
R+1

exp
(
− (yR+1 − f (xk,xl,xl′ , ...))

2

2Nres
R+1

)
(4.52)

where f is a function of alphabet points f (xk,xl,xl′ , ..). Here we do not focus on the
form of the function f , but use that it is independent of yR+1. After each transforma-
tion, the residuary noise becomes: Nres

k = Nm +(1−ρ)2Nres
k−1. The recursion gives the

total residuary noise as

Nres
R+1 = NR+1 +(1−ρ)2Nres

R = NR+1 +(1−ρ)2NR +(1−ρ)4NR + ...+N1(1−ρ)2R

(4.53)
Using that for all m: Nm = Nm−1 = N/(R+1):

Nres
R+1 = Nm

R+1

∑
m=1

(1−ab)2m =
N

R+1
1− (1−ρ)2(R+1)

1− (1−ρ)2 (4.54)

One can use the same approach as in section 4.4.1 and represent Mml = ∑l′,l′′..WklWll′ ..

as M = WR. In the high SNR limit, we can consider the problem in the case of the
nearest neighbors, so that the distortion leads to the error only between the nearest
neighbors, and, therefore, in the transfer matrix M (see Eq. 4.20) only the non-zero
elements are diagonal m̃ and neighboring m = (1− m̃)/2. Hence, the formula can be
written as:

p(yR+1|xk) =
m̃√

2πNres
R+1

exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
(4.55)

+
m√

2πNres
R+1

exp
(
− (yR − x+)2

2Nres
R+1

)
+

m√
2πNres

R+1
exp
(
− (yR − x−)2

2Nres
R+1

)]
where notations with tilde for the diagonal elements and ± for neighboring points.
Here x̃ and x± are real values resulting from integration and may be calculated from
f (xk,xl,xl′, ..). However, here we can avoid these calculations as we do not need the
exact values of x̃ and x±, so we use different notations to distinguish between them.

We continue the same approach as in section 4.4.1 and calculate conditional en-
tropy as:

Hy|x =−
K

∑
k=1

Pk

∫ ∞

−∞
dyR+1 p(yR+1|xk) log2 p(yR+1|xk) (4.56)
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here K is the constellation size. Substituting conditional pdf in a form of Eq. 4.55:

Hy|x =−
K

∑
k=1

Pk√
2πNres

R+1

∫ ∞

−∞
dyR+1

(
m̃exp

(
− (yR+1 − x̃)2

2Nres
R+1

)
+mexp

(
− (yR − x+)2

2Nres
R+1

)
+

(4.57)

mexp
(
− (yR − x−)2

2Nres
R+1

))
log2

[ m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
+

m√
2πNres

R+1
exp
(
− (yR − x+)2

2Nres
R+1

)
+

m√
2πNres

R+1
exp
(
− (yR − x−)2

2Nres
R+1

)]
Let us consider the first term

Ĩ =
∫ ∞

−∞
dyR+1

m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
log2

[ m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
(4.58)

+
m√

2πNres
R+1

exp
(
− (yR − x+)2

2Nres
R+1

)
+

m√
2πNres

R+1
exp
(
− (yR − x−)2

2Nres
R+1

)]
in the limit of large SNR and/or large number of nonlinear regenerators, we can

leave under the logarithm only the first term:

Ĩ≃
∫ ∞

−∞
dyR+1

m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
log2

[ m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)]
(4.59)

=
∫ ∞

−∞
dyR+1

m̃√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)
log2

[ 1√
2πNres

R+1
exp
(
− (yR+1 − x̃)2

2Nres
R+1

)]
+m̃ log2 m̃ =−m̃

2
log2[2πeNres

R+1]+ m̃ log2 m̃

Similar for other terms, which after being summed (using ∑K
k=1 Pk = 1) yield:

Hy|x ≃−
(

m̃ log2 m̃+2m log2 m
)
+

m̃+2m
2

log2(2πeNres
R+1

)
(4.60)

Using that m̃+2m= 1 (due normalization of matrix M) and the sum in the first brackets
is given by Eq. 4.23 (further denoted as H id

y|x) with substitution N/R → Nres
R+1, we

obtain:
Hy|x ≃ H id

y|x|N/R→Nres
R+1

+
1
2

log2(2πeNres
R+1

)
(4.61)

Similarly, we calculate output entropy as:

Hy =−
∫ ∞

−∞
dyR+1 p(yR+1) log2 p(yR+1) (4.62)
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where the output pdf is given by:

p(yR+1) =
K

∑
k=1

Pk p(yR+1|xk) (4.63)

then substituting conditional pdf from Eq. 4.55 it can be simplified as:

p(yR+1) =
K

∑
k=1

Pk
1√

2πNres
R+1

exp
(
− (y− xk)

2

2Nres
R+1

)
(4.64)

Compare an analytical approximation Eq. 4.64 and a result of Eq. 4.63 with full
numerical integration of the exact conditional pdf Eq. 4.44 plotted in Fig. 4.20. This,
further substituted in Eq. 4.62 and integrated by using the method of steepest descent,
results in:

Hy ≃−
K

∑
k=1

Pk log2(Pk)+
1
2

log2[2πeNres
R+1] (4.65)
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Figure 4.20: Output pdf - for R = 10 and SNR = 10 with N = 1. Compare an analytical
approximation Eq. 4.64 and the exact pdf calculated using Eq. 4.63 with full numerical
integration of the conditional pdf Eq. 4.44 shown by dotted and solid lines correspond-
ingly.
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4.6 Conclusion

The optimal input pmf: P = Popt is found to be a discrete analogue of Gaussian
distribution: Pk ∼ e−x2

k/2S, see Fig. 4.15. Thus, we may apply the same reasoning as
in Sec. 4.5 (see Eqs. 4.25-4.29) with substitution N/R → Nres

R+1 to compute the sum,
which is given by Eq. 4.29 and further denoted by H id

y . Therefore, the output entropy
is equal to:

Hy ≃ H id
y

∣∣∣
N/R→Nres

R+1

+
1
2

log2[2πeNres
R+1] (4.66)

The capacity is defined as the difference of output and conditional entropies:

CS = lim
SNR·R→∞

Hy −Hy|x

∣∣∣
P=Popt

=
1
2

log2(1+SNR)+∆CS (4.67)

Using the method of steepest descent, we derive the capacity increase for the sine
transfer function with the sub-optimal parameters relation (see Eq. 4.1) ρ = ab ≤ 1:

lim
SNR→∞

∆CS = ∆CR(R)− log2

(1− (1−ρ)2(R+1)

1− (1−ρ)2

)
(4.68)

where ∆CR(R) is given by Eq. 4.36. This result (Eq. 4.67) defines the upper capacity
bound for the RFT mapping. Thus, in the limit of large SNR and/or large number of
regenerators, all schemes tend to asymptotic behavior, when the gain gap between re-
generative and linear AWGN channel capacity is constant. The saturation effect occurs
when noise is squeezed to such a level that the stochastic distortion is small and the
shift takes place within the plateau area. Thus, under such conditions, the system with
the nonlinear regenerator is equivalent to the ideal regenerative system. In the limit
of small noise, the conditional pdf approximates delta-function behavior and, conse-
quently, reproduces the corresponding result of the channel with the ideal regenerators
∆CR. Thus, the capacity gain of any optimized regenerative system considered here
tends to the asymptotic value defined further by Eq.4.36. This shows that the Shan-
non capacity with the optimized regeneration at high SNR saturates to the regenerative
limit, with the Shannon capacity of the ideal regenerator (∆CR).

4.6 Conclusion

We have developed an analytical model that demonstrates the Shannon capacity of
nonlinear regenerative channels higher than the linear limit - the Shannon capacity of
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4.6 Conclusion

the linear AWGN channel. The gain is achieved by the noise squeezing due to in-
troduced nonlinear regenerative element. We presented the design rules for nonlinear
regenerative systems. The introduced classes of nonlinear devices can be used for con-
struction of communication channels with capacity exceeding the Shannon capacity of
the linear AWGN channel. We anticipate that our results will lead to new insights into
the Shannon capacity of nonlinear communications channels.
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5

Design and optimization of phase and
amplitude regenerative channels

5.1 Introduction

The exponentially increasing data traffic due to extensive use of broadband services
imposes a continuing pressure for technological innovation in the physical layer of
the optical network to meet the future demands on high data rate. With the optical
transmission bandwidth being limited to ∼ 5 THz by the commercially available er-
bium doped fiber amplifier technology, a dramatic increase in the spectral efficiency
of the transmission link will be required (159). At the same time, the need to main-
tain a reducing cost per bit of transmitted data suggests that any serious attempt to
upgrade system data rate should start from legacy network infrastructures before going
to major deployments of new fiber cables, e.g. by adopting space division multiplex-
ing technologies. The use of modulation formats with multi-level signaling represents
a technologically mature and cost efficient way to achieve this goal (22). However,
increasing the constellation complexity makes the signal more vulnerable to amplified
spontaneous emission (ASE) noise and to a variety of linear and nonlinear fiber link im-
pairments (23). To support transmission over long distances frequent all-optical regen-
eration can be used. Only regenerative channels can reduce the accumulation of am-
plified spontaneous emission noise and introduce contractive effects that can combat
fiber nonlinear impairments. To minimize cost, in-line regeneration would ideally be
compatible with complex constellations (160) and operate over multiple wavelengths
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simultaneously (161). Such features are most likely to be the result of all-optical ap-
proaches, making the use of advanced forward error correction (FEC) at a regeneration
site difficult. Considering a fiber channel as the link between two nodes implementing
FEC, all-optical regenerators would result in future high capacity fiber channels being
highly nonlinear (72) even in the absence of nonlinear transmission impairments such
as those considered in (2)-(21).

Thus, a new channel type arises, which we call a regenerative channel, where op-
timization of signal modulation and coding is crucial for high capacity transmission.
Contrary to the well known linear cases or conventional nonlinear channels, where
continuous bi-Gaussian constellations or ring constellations have respectively proved
to be the optimum solution (23), for regenerative channels the problem still remains
unsolved. Even for the conventional nonlinear channel, where nonlinearity plays only
a detrimental role in signal transmission, significant benefits in achievable transmission
rate can be acquired by optimizing the modulation format (10, 72, 162). In regenerative
channels, where nonlinearity has a higher and constructive impact, a stronger connec-
tion between the input modulation and the system parameters should be expected.

A number of regeneration techniques have been proposed making use of different
nonlinear device technologies, e.g. semiconductor optical amplifiers (SOAs) (163)-
(166) or fibers (41, 61, 66) in various subsystem configurations, e.g. Mach-Zehnder
(165, 166) or non-linear loop mirrors (NOLMs) (41, 150, 178). It has been shown
(41, 150, 163), (71) that most of them can support large regenerator cascades and
bring significant improvements in the overall system transmission rate and transmis-
sion distance. However, they were primarily designed to address binary channels of-
fering optimization only in the amplitude and pulse shape of the optical signal. Recent
developments in all-optical signal processing have created a new type of nonlinear ele-
ment, i.e. the phase sensitive amplifier (PSA) (66, 152) which can provide multi-level
nonlinear response in the phase of the input optical field (66),(160). Due to this prop-
erty PSA technology is compatible with a broader variety of signal constellations than
binary ASK regenerators and can support the development of digital fiber links for
long haul transmission at much higher spectral efficiencies. Recent experiments (71)
have already demonstrated a cascadability of more than 100 PSA elements enabling
transmission of BPSK signals over distances larger than 5000 km. For higher spectral
efficiencies a careful selection of the modulation format is required, due to the strong
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interplay between the noise and the non-linear transfer function of the PSA, to improve
the overall transmission performance beyond the conventional limits of linear (1) and
nonilnear optical channels (12), (72), (168) (see section 4).

5.2 Phase regeneration

Phase sensitive amplifiers have recently appeared as an ideal platform to support this
functionality and subsystems for binary (63) and higher order phase encoded formats
have already been demonstrated (66). Although these schemes have been designed and
characterized for single stage demonstrations, their cascadability performance remains
unknown. A rigorous optimization of their regenerative transfer function is necessary
to achieve effective suppression of the transmission impairments in cascaded systems.
A first approach has been proposed in (169), which is based on a "misfit factor" to
minimize the difference between the nonlinear response of the PSA and the step-wise
transfer function of an ideal multi-level quantizer. Here we developed an analytical
methodology has been developed to optimize the transfer function of nonlinear regen-
erative systems based on the well-known theory of dynamic system analysis (170).
This enables analytical predictions for optimal parameters to be made. Here, we ap-
ply the proposed analytical approach of to design PSA based regenerator cascades
for multi-level phase encoded signal transmission. Our method is focused on the op-
timization of the transfer function that is responsible for the phase noise squeezing
capabilities of the regenerator and affects its overall nonlinear response. In particular,
through a set of simple mathematical conditions we define the optimal signal alphabet
and identify the operating margins of the PSA cascade. The analytical predictions of
our theory are verified by extensive numerical simulations of the transmission link per-
formance. We show that in cascades the sensitivity to optimization increases and the
derived analytical expression for the optimal PSA parameter ensures the best perfor-
mance. The proposed model is generic and can be applied to any regenerative transfer
function providing the possibility of dramatic improvements in the information capac-
ity of future transmission systems (72).

A PSA element can be practically realized by a dual pump non-degenerate four
wave mixing scheme of the input signal rineiφin with its (M − 1) – order harmonic
(idler) (66). Assuming operation in the linear regime of the amplifier, i.e. the signal
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power is much lower than the power of the local pumps, the PSA transfer function is
given by:

routeiφout = T (rineiφin) = rineiφin(1+me−iMφin) (5.1)

with the phase response:

φout = F(φin) = arctan
( sin[φin]+msin[(1−M)φin]

cos[φin]+mcos[(1−M)φin]

)
(5.2)

Note that the regenerative function depends only on the phase of the input signal. The
parameter m represents the amplitude ratio between the signal and its idler and has a
critical role in defining the phase noise suppression properties of the PSA. Our recent
analytical study (171) (see section 5.1.1) has identified m = 1/(M−1) as the optimum
value, which provides a flat phase response at the alphabet points of the signal, en-
abling maximum phase noise suppression and regenerative performance along the link.
The amplitude and phase response of an 8-level PSA with an optimized m-parameter
are depicted in Figs. 5.1(a)–5.1(b). Its phase response has a periodic staircase shape
with plateau regions around the signal alphabet points. This periodicity suggests that
only constellation diagrams with phase symmetry can be handled by the specific PSA
scheme, although it can become the building block of more complex configurations
that will allow dealing with rectangular M-QAM signals (68).

5.2.1 Optimization of Cascaded Regenerative Links based on Phase
Sensitive Amplifiers

Here we develop an analytical method for optimizing phase sensitive amplifiers for
regeneration in multilevel phase encoded transmission systems. The model accu-
rately predicts the optimum transfer function characteristics and identifies operating
tolerances for different signal constellations and transmission scenarios. The results
demonstrate the scalability of the scheme and show the significance of having simul-
taneous optimization of the transfer function and the signal alphabet. The model is
general and can be applied to any regenerative system.

In the above equations m corresponds to the amplitude ratio of the interfering
signal-idler pair of waves. It is an optimization parameter that defines the slope of
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Figure 5.3: The PSA transfer function - a) PSA phase transfer function for 8-PSK for-
mat. The optimal value of the parameter mopt = 1/7 (shown by green solid line) demon-
strates a plateau centered at the alphabet points, whereas a critical choice mcr = 0.33
(shown by red dashed line) degrades performance. b) Dependence of the optimal and
critical values of m and the attraction region’s maximum half-width δmax on the order M
of the PSK modulation format.
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Figure 5.4: a) PSA phase transfer function for 8-PSK format. The optimal value of
the parameter mopt = 1/7 (shown by green solid line) demonstrates a plateau centered at
the alphabet points, whereas a critical choice mcr = 0.33 of the parameter (shown by red
dashed line) is expected to lead to poorer regenerative performance. b) Dependence of the
optimal and critical values of m and the attraction region’s maximum half-width ∆max on
the order M of the PSK modulation format.

the phase transfer function of the PSA near the alphabet points and characterizes its
regenerative properties (see Fig. 5.2- 5.4). More specifically, the phase transfer func-
tion creates a periodic attractive potential around a set of special stationary points that
are unaffected by the nonlinear transformation. Both, the stationary points and the at-
tractive potential, contribute to the phase squeezing performance of the PSA. Clearly,
the optimum set of values for parameter m has to be identified to maximize the re-
generation efficiency. Since the alphabet is discrete, it is also necessary to adapt the
characteristics of the nonlinear element to the employed signal format and vice versa.
Firstly, the nonlinear transfer function of the regenerator is adjusted to the signal al-
phabet. For this, the corresponding attraction regions should be centred at the corre-
sponding alphabet points φ∗, the stationary points of the transformation, as defined by
the conditions: F ′′(φ∗) = 0 and F(φ∗) = φ∗. Thus, starting from Eq. 5.2, we derive the
optimum constellation given by the set φ∗ = lπ/M, l ∈ Z. The next step is to ensure
stability of the nonlinear transformation at the alphabet points for effective suppression
of the phase noise. This condition leads to the inequality |F ′(φ∗)|< 1, from which the
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variation limits of the regenerative parameter m are derived as:

|m|< mcr, mcr =
2

M−2
(5.3)

here m > 0 if l = 2k and m < 0 if l = 2k+1, with k ∈ Z. The points are superstable,
i.e. F ′(φ∗) = 0, when

|mopt |=
1

M−1
(5.4)

The superstable case creates operational plateaus around the alphabet points of the
transfer function that enable maximum phase noise suppression. For m ̸=mopt plateaus
cannot be defined, however, provided that |m| < mcr, partial suppression of the phase
noise is still feasible within the limits of each attraction region, since |F ′(φ∗)| < 1.
An analytical expression can be derived for the attraction region’s half-width δ in the
limit of δ ≪ 1 by performing perturbation analysis on the equation F ′(φ∗+ δ)| = 1,
resulting in:

δ ≃

√(
1−
∣∣∣−1−m+mM

1+m

∣∣∣)/(mM3(1−m)

2(1+m)3

)
(5.5)

here for simplicity we consider the absolute value m = |m|. The parameter δ has the
meaning of the maximum phase noise distortion that can be suppressed by the regener-
ator. It acquires the maximal value δmax for the plateau condition m=mopt , whereas for
sub-optimal m values it narrows and tends to zero when m approaches mcr. Fig. 5.4a)
depicts the phase transfer functions of regenerative PSAs with eight discrete phase
states. The green solid line corresponds to the mopt selection of the regenerative param-
eter. The condition, |F ′(φ∗)|< 1results in simultaneous suppression of phase-to-phase
and phase-to-amplitude noise conversion mechanisms. The red dashed line has been
taken for the critical value mcr, above which the PSA elements amplify phase noise
and degrade the system performance. Fig. 5.4b) shows the dependence of the optimal
and critical values of the regenerative parameter m on the constellation size M. One
can see that for high-order modulation formats the gap between mopt and mcr is nar-
rowed, making the PSA optimization more critical. The variation of the corresponding
half-width δmax is also depicted in the same figure.
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5.2.2 Simulation Model

As in previous chapter we focused on the effect of noise squeezing due to nonlinear
transformations. Thus, we have considered a transmission system of identical cascaded
3R regenerators (as in Fig. 4.1) based on PSA technology placed equidistantly along
the fiber link, see Fig. 5.5a). Since the goal of this study is to capture the main per-
formance features of the transmission system and to focus on the impact of the signal
regenerative mechanisms in the selection of the optimum format, a simplified repre-
sentation of the full system model has been adopted, where due to the properties of
gating functionality of 3R element we can represent continuous-time signal y(t) by its
discrete-time form, see Fig. 5.5b). According to this, PSAs have been modelled by
static elements of specific amplitude and phase response (66) and the impairments by
additive white Gaussian noise (AWGN). AWGN can be considered as a representation
not only of the amplified spontaneous emission noise (108, 172) (linear channel be-
tween regenerators), but also of the inter-channel distortions due to Kerr nonlinearity
in the fiber (nonlinear channel between regenerators) (173), as well as, of the signal-
nonlinear noise interactions that might also arise (174). The validity of the approach
has been verified both theoretically (12, 173) and experimentally (175), and it has been
widely used for estimating capacity limits in nonlinear fiber channels (12, 18, 138).

Figure 5.5(b) illustrates the details of the proposed simplified simulation model.
The propagation of the complex signal Yk at the kth (k = 1...R+1) regenerative section
is described by the stochastic equation Yk = T (Yk−1)+ηk, where T is the regenerative
transfer function of the PSA and ηk is the zero-mean AWGN noise of the k-th section
with variance Nk, and S is the average signal power at the input of the transmission
link. To ensure that the average signal power is not changed by the regenerative trans-
formation, we assume that the signal T (Yk) at the output of each PSA is normalized
so that ⟨|Yk|2⟩= ⟨|T (Yk)|2⟩. We assume that within each section the fiber loss of each
span is compensated by a subsequent amplifier and that deterministic impairments are
ideally removed. We also note that our proposed model is generic and it can be used
for various sets of parameters and amplification schemes. Whilst here we focused on
the effectiveness of the noise suppression mechanisms rather than the origins of the
Gaussian noise itself, effective channel signal to noise ratios may be readily calculated
from physical link parameters using the conventional formalism. Thus for simplicity,
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k

Figure 5.5: Schematic diagram - (a) of a future high capacity digital link formed by cas-
cading R PSA-based 3R-regenerators, R+1 links, each comprising a number of optically
amplified spans adding noise with variance Nk, (b) Representation of simplified simulation
model.

the point-to-point transmission system may be characterized by a single parameter, i.e.
the signal-to-noise ratio (SNR), defined as the ratio of the average signal power at the
input of the transmission system to the total power of the linearly added noise along
the line:

SNR =
⟨|Y0|2⟩

∑R+1
k=1 ⟨|ηk|2⟩

=
S

∑R+1
k=1 Nk

=
S
N

(5.6)

This is equivalent to the signal to noise ratio of the corresponding linear system
having the same power of noise added to the signal during transmission, i.e. at the ab-
sence of regenerative elements, and provides a common reference for a fair comparison
of systems with different regenerative properties.

In the considered regenerative system we have investigated numerically the trans-
mission of different advanced modulation formats and have compared their perfor-
mance by calculating the symbol error rate (SER) at the receiving end. The SER has
been chosen as the most suitable figure of merit for performance characterization as
it reflects directly the impact of regeneration on the transmitted symbols and enables
comparison of different constellation diagrams, including those for which coding (in-
cluding Gray coding) has not yet been developed. The SER has been calculated using
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the Monte Carlo method (176) on transmitted 225-length sequences of randomly gen-
erated symbols.

5.2.2.1 Optimization of transfer function parameter

Next, the accuracy of the proposed analytical optimization method is verified by sim-
ulating numerically the performance of quasi-linear transmission regimes with cas-
caded PSA based regenerators. The PSAs have identical transfer functions and are
placed equidistantly along the transmission line. The transmission impairments are
represented by additive white Gaussian noise (AWGN) distributed uniformly along the
line. The introduced degradation has been quantified in terms of signal to noise ra-
tio (SNR) defined as the ratio of the input signal power to the power of the linearly
accumulated noise along the transmission link, i.e. in the absence of PSA regenera-
tors. This convention provides a common reference for the benchmarking of different
nonlinear transmission channels (72). The system performance has been characterized
in terms of symbol error rate (SER) calculated by direct error counting of 223 Monte
Carlo generated symbols. By comparing the SER while varying system parameters,
we analyzed the general trends and evaluated the performance gain due to the regen-
erative functionality in the transmission system. Constellation diagrams of an 8-PSK
signal after propagation through a transmission line of 10 cascaded PSAs at SNR = 12
dB are depicted in Fig. 5.6. The results have been taken for different selections of
the parameter m, highlighting the influence of the PSA transfer function on the qual-
ity of the propagated signal. The un-regenerated case is depicted, in Fig. 5.6a). It is
clear, that a significant SER improvement occurs for m = mopt (see Fig. 5.6b), when
the PSA achieves efficient suppression of the induced phase noise. At the same time,
a slight increase of the amplitude variation is noticed, as the gain of the PSA is also
phase dependent. For m ≥ mcr (see Fig. 5.6c) the phase distortion at each PSA stage
is enhanced leading to a worse system SER performance than the un-regenerated case.
However, the constellation shape of the signal maintains the basic star-like features of
the regenerated case (middle panel) due to the sinusoidal amplitude response.

Figure 5.7 depicts the SER performance as a function of the SNR for various num-
bers of cascaded PSAs and for 4, 8, and 16-PSK modulation formats. For compari-
son the results are presented as two sets: the optimal and non-optimal values of the
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Figure 5.6: Constellation diagram of 8-PSK - after transmission with SNR = 12 dB a)
without regeneration and after 10 PSAs in cascade with b)optimal m = 1/7 and c) non-
optimal m = 0.4. One can observe the dramatic gain in system performance due to the
PSA optimization for the cascaded scenario. Arrows highlight the increase of amplitude
noise (colored arrows) due to phase-to-amplitude noise conversion effect compared the
amplitude noise in the absence of regeneration (black arrows). This effect is crucial in
downgrading the SER for unoptimized systems (panel c).

m-parameter. For the non-optimal selection of m, a rapid degradation of the system
performance occurs. On the contrary, when m = mopt the strongly regenerative be-
havior of the PSAs leads to a significant performance enhancement along the cascade,
which is more profound for higher order modulation formats. Indeed, at SER of 10−3

the SNR improvement, with respect to the un-regenerated (linear) system, is only 1.5
dB for the QPSK signals, whereas for the 8 and 16- PSK signals it is 5.2 dB and 8
dB, respectively. The results underline the increasing importance of all-optical regen-
eration with the constellation size of the transmitted signal. Specifically, they suggest
that future PSA implementations should target modulation formats of higher order than
QPSK, for larger improvements in system performance. As the number of cascaded
PSAs increases, an asymptotic behavior in in performance improvement is also ob-
served, see Fig. 5.7. This occurs because the transmission line is divided into a large
number of sections and the noise power generated by each of them becomes signifi-
cantly low to create phase errors. For higher order modulation formats it takes a larger
number of inline regenerators to reach this saturation point as the signal sensitivity to
phase noise is also increased. We have investigated further the performance dynamics
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along the PSA cascade by calculating the corresponding SNR improvement (for fixed
SER = 10−3) as a function of the regenerative parameter m.

Figure 5.8 depicts results for the case of an 8-PSK signal and for different numbers
of inline regenerators. The aforementioned saturation effect in the performance is more
apparent in this figure. By increasing the number of inline regenerators from R = 1 to
R = 2, it gives the same SNR gain of 1 dB, as going from R = 10 to R = 20. The
dependence of the phenomenon on the regenerative parameter m is also shown. The
saturation occurs faster for sub-optimal m values. This is attributed to the non-ideal
transfer function of the PSA, which allows an amount of residual phase distortion to
accumulate between the regenerative sections enhancing the overall SER degradation.
In Fig. 5.8, we have also identified the analytically predicted mopt values along with the
corresponding optima mnum indicated by the numerical simulations. A slight deviation
is apparent between them for a small number of cascaded PSAs. However, since in this
regime the system performance is relatively insensitive to m, the corresponding impact
in SNR improvement is minimal, i.e. less than 4%.

Figure 5.9 extends the results of the previous figure Fig. 5.8 to different modu-
lation formats (i.e. 4, 8 and 16-PSK). We may observe that a plateau in the transfer
function of the regenerator is not a necessary condition for demonstrating phase re-
generation along the cascade. It is also possible to achieve effective noise suppression
for suboptimal choices of the m-parameter. For example, selecting a suboptimal value
m = 0.3 gives, for the case of 8-PSK signals, an SNR improvement of 2 dB, whereas
the corresponding transfer function does not show any plateau-like behavior. On the
other hand, non-optimal m = 0.36 provides a similar transfer function, but it degrades
the system performance compared to the channel in the absence of PSA, as it slightly
exceeds the critical value of m = 0.33, which our theory has predicted.

5.2.3 Optimal packing for cascaded regenerative transmission based
on phase sensitive amplifiers

We investigate the transmission performance of advanced modulation formats in non-
linear regenerative channels based on cascaded phase sensitive amplifiers. We identify
the impact of amplitude and phase noise dynamics along the transmission line and
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Figure 5.7: SER as a function of SNR with cascaded regenerative PSA elements - for
a) 4-PSK, b) 8-PSK and c) 16-PSK formats. The SER of the linear channel is shown for
comparison by black dash-dotted line. The SER of the system with the optimal and critical
values of the parameter m are shown by green and red curves, respectively. The arrows
show the SER evolution for increasing number of in-line PSAs.
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PSA elements gives significant improvement for high order PSK. The optimal value of m
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show that after a cascade of regenerators, densely packed single ring PSK constella-
tions outperform multi-ring constellations. This is due to phase-to-amplitude noise
conversion, which significantly increases amplitude noise and, therefore, amplitude
modulation is not effective. Thus, as the number of phase regenerators increases
along the transmission link the optimum modulation format is single ring modula-
tion – densely packed phase shift keying format. The results of this study will greatly
simplify the design of future nonlinear regenerative channels for ultra-high capacity
transmission.

5.2.4 Results and discussion
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Figure 5.10: Phase symmetric constellations for 8-symbols - before (leftmost) and after
transmission in linear channels and nonlinear regenerative channels with cascaded 1, 10,
20 phase regenerators for the fixed value of SNR =15 dB. The M-level PSA was used with
M = 8 for a) and b) rows and M = 4 for c) row.
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Figure 5.11: SERs as a function of SNR for the examined 8-symbol constellation
types - 1 amplitude level: 8-PSK (index a, blue lines) and 2 amplitude levels: 2-ASK/4-
PSK (index b, red lines) and 8-star QAM (index c, green line) for linear channel (sub-index
0) and nonlinear regenerative channels with cascaded 1, 10, 20 phase regenerators (sub-
indexes 1, 10, and 20 respectively). Formats are also identified by line color, whilst the
number of regenerators in the link is identified by the dashing of the line (dash length
increases with number of regenerators).
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Here we use simulation model described above and use optimal value of transfor-
mation parameter m = 1/(M−1). We start our analysis by investigating the transmis-
sion performance of three different 8-symbol constellations with phase symmetry, as
a function of the number of cascaded PSA regenerators in the link. The single ring 8-
PSK is compared against the 2-ASK/4-PSK and 8-star QAM formats, which combine
phase shift keying and amplitude shift keying modulation. To make the comparison fair
the average symbol energy was kept the same for all these cases. Figure 5.10 shows the
corresponding constellation diagrams and symbol error rates (SER) calculated at fixed
SNR=15dB for the linear system (index 0), and when having 1, 10, and 20 regenerators
in the link, indicated by respective indexes. The impact of PSAs in suppressing phase
noise is apparent in each constellation and it becomes more effective when the num-
ber of in-line regenerative elements is increased. However, this does not necessarily
bring improvement in the symbol error rate performance. From three examined cases,
the PSK format experiences the largest improvement as its log10(SER) drops from -
2.62 for the linear system to -10 after inserting 20 equally spaced PSA regenerative
elements into the same system. For the 2-ASK/4-PSK the SER improves significantly
less in comparison to the non-regenerated case, whilst for the 8-star QAM the improve-
ment is negligible for regenerators with either M=4 or M=8 (M=4 is shown in Fig.
5.10). This is because the latter two formats are more susceptible to amplitude dis-
tortions, which remain unsuppressed along the transmission line and, moreover, their
performance is further degraded by the phase-to-amplitude conversion mechanism in
the PSA, see Fig. 5.1(b).

The SER performance of the 8-star QAM cannot be improved due to the dominance
of unsuppressed amplitude noise see curves c10 and c20 in Fig. 5.10. Therefore, their
use is not suitable for PSA based regenerative links as it brings negligible impact in
performance improvement. Furthermore, despite the π/4 phase shift the points of the
2-ASK/4-ASK constellation have experienced, the robustness of the format against
amplitude distortion has not been increased due to the erroneous transitions between
the inner ring points (see constellations with index b in Fig. 5.10), that are still high
and affect the overall SER performance.

The SER as a function of the SNR for the aforementioned 8-symbol constellations
and for different number of regenerative elements is shown in Fig. 5.11. As expected,
in the absence of in-line regeneration the best performing format is the 2-ASK/4-ASK,
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5.2 Phase regeneration

followed by the 8-PSK and then the 8-star QAM. Placing a phase regenerator in the
middle of the link changes this order as the 8-PSK is improved significantly in contrast
to the other two cases. For the latter formats a slight SER degradation is noticed,
due to phase-to-amplitude noise conversion. The influence of this mechanism can be
moderated by cascading more PSA elements in the link to bring down the average
phase noise power so that a minimum amount of additional amplitude noise is created.
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Figure 5.12: Amplitude and phase error for the received signal. - (a) Phase, amplitude
and total distortion of the output constellation (b) as a function of the number of in-line
regenerators for the fixed value SNR=15 dB and (c) as a function of the SNR for 10
cascaded regenerators.

We have analyzed further the amplitude and phase distortion dynamics of the afore-
mentioned constellations at the receiver as a function of the number of cascaded re-
generators in the transmission line. Figure 5.12(a) shows how the errors in amplitude
εr = ⟨(rout − rin)

2⟩ and phase εφ = ⟨r2
in(φout −φin)

2⟩ were defined with respect to the
individual error vectors εT = ⟨|routeiφout − rineiφin |2⟩. Figures 5.12(b,c) depict the to-
tal, amplitude and phase distortions, normalized to the total accumulated noise power
of the linear system ⟨|ε0|2⟩. The normalization factor is independent on the type of
modulation format and is a function of SNR only. Therefore, it allows us to make fair
comparison of the distortion in the units of the linear system (in the linear system the

111



5.2 Phase regeneration

16-PSK (a20)  20 PSA
log

10
(SER)=-7

(a10) 10 PSA
log

10
(SER)=-6

    (a1)  1PSA
log

10
(SER)=-2.05

          (a0) 
log

10
(SER)=-1.5

2-ASK/8-PSK
(b20)  20 PSA
log

10
(SER)=-4

   (b10) 10 PSA
log

10
(SER)=-4

      (b1)  1PSA
log

10
(SER)=-3.1

           (b0) 
log

10
(SER)=-2.5

2ASK/8-PSK
    Shifted

      20 PSA
log

10
(SER)=-4.3

   10 PSA
log

10
(SER)=-3

         1PSA
log

10
(SER)=-2.3

            
log

10
(SER)=-2.5

4-ASK/4-PSK
     Shifted

      20 PSA
log

10
(SER)=-1.53

      10 PSA
log

10
(SER)=-1.54

         1PSA
log

10
(SER)=-1.51

           
log

10
(SER)=-1.5

16-star QAM (c20)   20 PSA
log

10
(SER)=-2.7

    (c10) 10 PSA
log

10
(SER)=-2.6

      (c1)  1PSA
log

10
(SER)=-2.5

          (c0) 
log

10
(SER)=-2.7

Figure 5.13: Phase symmetric constellations formats for 16 symbols - before (left-
most) and after transmission in linear channels (index 0) and nonlinear regenerative chan-
nel with cascaded 1, 10, 20 phase regenerators (indexes 1,10, and 20 respectively) for the
fixed value SNR=18 dB. The M-level PSA was used with M = 16 for a) and c) rows, M = 8
for b) and M = 4 for d) row.
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Figure 5.14: The SERs as a function of SNR for the various types of modulation
formats - shown in Fig. 5.13, 1 amplitude level: 16-PSK (index a), 2 amplitude levels:
2ASK/8PSK (index b), and 4 amplitude levels: 16-star QAM (index c) and 16-QAM (in-
dex d) for linear channel (index 0) and nonlinear regenerative channels with cascaded 1,
10, 20 phase regenerators (indexes 1, 10 and 20 respectively). Formats are also identified
by line color, whilst the number of regenerators in the link is identified by the dashing of
the line (dash length increases with number of regenerators).
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5.2 Phase regeneration

normalized total distortion is unity and phase and amplitude distortions are equal to
0.5). In Fig. 5.12(b) the transmission link was characterized by a fixed SNR of 15 dB.
Note, that for large SNR values, when the phase noise is small so that the phase dis-
tortion occurrs within the plateau area, increasing the number of in-line regenerators
reduces the accumulated phase distortion at the end of the link equally for each of the
examined formats. However, for lower SNRs values, signals with a lower number of
phase states are expected to have good performance as they will experience a more ef-
fective suppression of their phase noise from the corresponding PSA transfer function.
This is demonstrated in Fig. 5.12(c), where the normalized distortion (in green the
amplitude distortion and in blue the phase distortion) has been calculated for signals
of different PSK order as a function of the SNR at the end of a line with 10 cascaded
regenerators. The influence of the PSA transfer function on the accumulation of the
amplitude noise is also depicted in Figs. 5.12(b,c). Due to the PSA induced phase-to-
amplitude conversion an increase of the amplitude distortion is observed at the end of
the line, which is different for each constellation. Specifically, 8-star QAM signals ex-
perience the least amplitude noise enhancement, as they are processed by 4-level PSAs
that are more robust to this effect, compared to the other two cases (2-ASK/4-ASK, 8-
PSK), which require PSAs of 8-levels. Furthermore, since the nonlinear transformation
induces a mixing of signal and noise, the phase-to-amplitude noise is additionally en-
hanced for two amplitude level signals compared to the PSK formats with the same
average energy, see Fig. 5.12(c). However, the enhancement is incremental and satu-
rates to a constant value as the number of regenerators is increased.

Finally, we have extended the analysis to modulation formats of higher complex-
ity by considering 16-symbol constellations of different geometry and evaluating their
performance in systems of cascaded phase regenerators. The performance of the sin-
gle ring 16-PSK constellation has been benchmarked against the dual ring diagrams
of 2-ASK/8-PSK and 2-ASK/8-PSK shifted, the four-ring 4-ASK/4-PSK shifted for-
mat, and finally the 16-star QAM. Figure 5.13 depicts the corresponding constellation
diagrams at the input of the link as well as at the receiver after different numbers of
cascaded regenerators. For the formats presented here, the effects of phase regenera-
tion discussed above become more pronounced, in particular the trade-off between the
efficiency of phase squeezing and the impact of phase-to-amplitude conversion.
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The SER performance as a function of the SNR of the 16 point constellations of
Fig. 5.13 is depicted in Fig. 5.14. Though amplitude modulated formats surpass
densely-packed PSK for linear transmission, as the number of PSAs increases the SER
associated with 16-PSK is gradually improved, and eventually the 16-PSK outperforms
all other examined formats. Therefore, PSK signal modulation proves to be the most
beneficial for transmission in PSA based regenerative links as it experiences the best
SER improvement. As with the 8-symbol example, this is attributed to the intrinsic
robustness of the PSK format against the amplitude noise, whereas, the multi-ring con-
stellations are more vulnerable to this effect. Applying phase shift on the different rings
of the constellations does not bring major improvement in their SER performance.

Since our goal was not to confine the study to a particular transmission scenario
assuming a fixed distance between consecutive regenerators, on the contrary, we pre-
ferred to build a rather generic model of the transmission system with in-line PSAs,
which can be used for various sets of parameters and amplification schemes. The
length of the transmission line can be directly related to the effective SNR of the equiv-
alent linear system at the receiving end. In particular, assuming operation with EDFAs,
the SNR formula (see Eq. 5.6) may be transformed as follows:

SNR =
⟨|Y0|2⟩

∑R+1
k=1 < |ηk|2 >

=
⟨2|Y0|2⟩

NA(eαLa −1)NFhνsB
(5.7)

where ⟨|Y0|2⟩ is the average power of the input signal, B is the signal bandwidth, NA

is the number of amplified spans in the transmission line, α is the fiber loss per unit
length and La is the length of each amplified span. For a system of 16-PSK signals and
system characterized by the following set of numerical parameters:

we calculate at the end of the line an SNR = 16.05dB. By making use of the
proposed model we can then identify the number of required PSA regenerators in the
link to bring down the SER to acceptable levels. In the specific example, the SER is
improved from about 10−1 to 10−4, when 10 PSAs are equidistantly placed in the line
at each 750 km, or to 10−6 for the case of 20 cascaded PSA at each 375 km. The
SER results for this 16-PSK signal case were derived from Fig. 5.14 (for 8-symbol
constellations see Fig. 5.11).
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total length L = NALa = 100×75km = 7500km
noise figure NFdB = 5dB
amplifier spacing La = 75km
fiber loss per unit length α = 0.2

10log10(e)
km−1

signal bandwidth B = 33GHz
average power of the input signal S = ⟨|Y0|2⟩= 1mW
carrier frequency νs = 193.41T Hz

Table 5.1: Transmission parameters.

5.3 Design of multilevel amplitude regenerative system

5.3.1 Introduction

A nonlinear optical loop mirror (NOLM) proposed in (177) was experimentally demon-
strated as an efficient amplitude regenerator (146, 160, 178). In particular, the cas-
cadability of a NOLM in applications for long-haul transmission was experimentally
proved (41, 61, 69, 70). However, the existing schemes are limited to 2 amplitude
levels.

Here we propose and examine a novel scheme, which creates multiple regenera-
tive levels in the amplitude transfer function. This is achieved by coupling the NOLM
transformed signal with the original wave. The scheme is flexible: additional param-
eters give more freedom for optimization – the number of levels and their positioning
can be easily varied. We demonstrate the model on various circular (from 16- to 256-
symbol) constellations and observe efficient amplitude regeneration. Moreover, the
scheme is compatible with phase regenerators, which can be relevant for applications
in coherent optical communications.

5.3.2 Design

The initial signal Ain =
√

Pineiφin is split by a 3dB coupler and then one of the waves is
transformed by the NOLM. The corresponding transfer matrix of the coupler is given
by:

Ĉ1 =
1√
2

(
1 i
i 1

)
(5.8)
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A1 Aout

- 2: 2

- 1: 1
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C1
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C2

Figure 5.15: Scheme of the coupled NOLM - A NOLM, which induces nonlinear trans-
formation given by due to coupling of counter-propagating waves with a coupling ratio
1−ρ1 : ρ1, is coupled with a linear path by two couplers with coupling ratio of the first
coupler 1 : 1 for the first coupler (coupling matrix) and 1− ρ2 : ρ2 for the last coupler
(coupling matrix). As a result, the amplitude response Pout of the output wave Aout versus
input power Pin of input wave Ain.

The NOLM transformation results in the following:

N̂
(√Pin

2

)
=
[
− (1−ρ1)ei(1−ρ1)γLPin/2 +ρ1eiρ1γLPin/2

]√Pin

2
(5.9)

where ρ1 denotes the coupling ratio, L is the length of highly nonlinear fiber, and γ is
the fiber nonlinear coefficient. Then, the two waves (output of the NOLM and the sec-
ond wave of the first coupler rotated by ∆ϕ = 3π/2) are coupled by the second coupler
with the power ratio between them being κ2. The latter is a significant parameter, it
can be adjusted as the characteristic of the second coupler: κ =

√
ρ2/(1−ρ2) (see the

scheme in Fig.5.15) where the transfer matrix is given by:

Ĉ2 =

( √
1−ρ2 i

√ρ2
i
√ρ2

√
1−ρ2

)
(5.10)

alternatively, having the second coupler to be 1 : 1 and placing an attenuator after the
NOLM before the coupler. The obtained wave is amplified by 2/(1−ρ2) to restore the
initial power. The resulting total transfer function is expressed via the initial field as:

Aout =
√

Pouteiφout =
√

Poutei(φin+δϕ) = (5.11)

(
1+ iκ

[
− (1−ρ1)ei(1−ρ1)γLPin/2 +ρ1eiρ1γLPin/2

])√
Pineiφin (5.12)
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P
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out
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in
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b)

Figure 5.16: Transfer function of the coupled NOLM - (a) TF for the dimensionless
output power normalized by γL/2 and (b) associated phase shift for parameters: ρ1 =

0.267;∆ϕ = 3π/2;κ =
√

ρ2/(1−ρ2) = 0.014 (solid curves). By changing parameters as
ρ′

1 = 1− ρ1 one can achieve sign-reversed phase shift and the amplitude levels will be
shifted (dashed curves).
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As a result of the transformation, the transfer function (TF) of the output power versus
the initial power has multiple plateau regions around the given stationary and stable
points of the transformation (see Fig.5.16(a)). The number and positioning of the levels
can be easily varied by adjusting TF parameters: ρ1 and κ by applying the optimization
procedure of regenerative mapping (168, 171) (see section 4.3) to the amplitude and
phase response:

Pout = Pin

(
1+2κ2 −2κ2(1−ρ1)ρ1 cos[(1−2ρ1)ψ]+ (5.13)

2κ
[
(1−ρ1)sin[(1−ρ1)ψ]−ρ1 sin[ρ1ψ]

])
, ψ =

γLPin

2
(5.14)

δϕ = arctan
(

ρ1κcos(ρ1ψ)− (1−ρ1)κcos((1−ρ1)ψ)
1−ρ1κsin(ρ1ψ)+(1−ρ1)κsin(1−ρ1)ρ1ψ)

)
(5.15)

Also, the transformation is accompanied by an additional power-dependent phase
shift (see Fig.5.16(b)), which is reduced compared with the traditional one NOLM
scheme. Moreover, since the phase shift is sign-varied, by changing the parameters one
can easily achieve phase shift to be sign-reversed. In particular, if one chooses ρ′

1 →
1−ρ1 or, alternatively, κ′ →−κ (or ∆ϕ′ → ∆ϕ+π), then the new phase shift will be
sign reversed (see Fig.5.16(b)) and the stable points of the amplitude TF will be shifted
(see Fig.5.16(a)) to the different set of stationary points: T (Pin) = Pin. This highlights
the importance of the regenerative mapping requirements (stability and stationarity) to
be completely fulfilled for efficient regeneration.

The dimensionless output power P̄out = γLPout/2 and phase shift δϕ versus the
normalized initial power P̄in = γLPin/2 for parameters ρ1 = 0.267; κ= 0.014 are shown
in Fig.5.16(a-b) correspondingly.

5.3.3 Numerical simulations

Next we demonstrate through numerical modelling the regenerative effect of the pro-
posed scheme by simulating numerically the transmission of circular 16-, 64- and 256
- quadrature amplitude modulation (QAM) (also referred in literature as APSK) via a
noisy channel. The amplitude regenerators are placed equidistantly in cascades along
the line. Noise is modelled as an additive white Gaussian noise uniformly distributed
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1a)  SER=1.3*10-4 1b)  SER=1.4*10-6
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Figure 5.17: Constellation diagrams (normalized to signal power S = 1) for circular
(1) 16-, (2) 64- and (3) 256-QAM - after transmission (a) without and with (b)10 and
(c)20 equidistantly placed amplitude regenerators (see Fig.1 with γL = 2W−1 and (1,2)
ρ1 = 0.24, κ = 0.03 and (3) ρ1 = 0.267, κ = 0.014)) with OPC placed in the middle of
the transmission line. In the absence of regeneration, the respective linear system has (1)
SNR=20dB, (2) SNR=25dB and (3) SNR=30dB.

120



5.3 Design of multilevel amplitude regenerative system

Figure 5.18: Constellation diagrams (normalized to signal power S = 1) for circu-
lar a) 24- and b) 32-QAM - after transmission (1) 10 phase- and (2–4) 10, 20, 30
phase&amplitude – regenerators equidistantly placed along the line (with parameters:
γL = 2W−1 and ρ1 = 0.24, κ = 0.03). In the absence of regeneration, the respective linear
system has (a) SNR=15dB and (b) SNR=20dB.
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along the line. The transmission between the spans is assumed to be linear. Here we
focus on the demonstration of the regenerative properties and neglect nonlinear and
dispersive effects in-line. For benchmarking we use the corresponding linear system
(the respective channel in the absence of regeneration) and characterize it by the signal-
to-noise ratio (SNR) of the linear channel. The performance was characterized by the
symbol error rate (SER) obtained by direct error counting of 225 simulated equiproba-
ble symbols.

In the circular symbol constellations the amplitude levels were defined by the sta-
tionary and stable points of the amplitude transfer function (determined by the method
of (171)), whereas the phase distribution was chosen from the analogous 16-, 64- and
256- circular QAM (179, 180, 181). Though the constellations are non-optimal for the
linear channel and in the absence of regeneration their performance is worse than the
optimized circular or rectangular QAM. Nevertheless, the effective amplitude noise
suppression enables us to improve performance and outperform significantly the SER
of the corresponding linear channel. Further simultaneous optimization of the input
format and TF parameters will increase performance. The results demonstrate the im-
portance of optimization of signal packing for regenerative channels (182).

The power-dependent phase shift, δϕ, which, though being small, can be significant
for densely packed constellations in the cascaded regime. It can be reduced by an
optical phase conjugator (OPC) inserted in the middle of the transmission line (this was
assumed in the simulations) or by the consequent regenerator (using the fact that the
sign of the phase shift can be inverted by a different set of parameters). Alternatively,
one can employ phase regenerators, which will remove the phase shift together with a
reduction of the phase noise (as demonstrated in the the next section).

Figure 5.17 shows constellations at the receiver and the improvement in SER after
transmission in the linear channel without regenerators (blue, left) and the regenerative
channel with 10 (green, central) and 20 (red, right) regenerators. By varying parame-
ters, we change the number of the regenerative levels and their positions. The scheme
is flexible and able to handle multilevel circular formats. Increasing the number of
regenerators in the cascade above the critical number leads to the saturation effect.
Thus, we have illustrated that the amplitude noise is effectively squeezed, whereas the
residual phase noise affects the SER. To improve further system performance, phase
regeneration is required.
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5.4 Multilevel phase and amplitude regeneration

Next we demonstrate that the proposed scheme is compatible with phase regenerators.
In particular, we consider a phase regenerator based on a phase sensitive amplifier
(PSA) to be placed after each amplitude regenerator. The TF of the M-level phase
regenerator (66) (cascadability of which was demonstrated in (71)) is given by (see
Eq. 5.1:

√
Pouteiφout =

√
Pineiφin(1+me−iMφin) (5.16)

The amplitude ratio between the signal and its M−1-harmonic was put to its optimal
value: m = 1/(M−1) (171).

Here we consider 6 and 8 level PSAs (66, 67). Figure 5.18 shows the received
constellation diagrams after 10, 20 and 30 combined phase&amplitude-regenerators
(for reference we also plotted the received constellation after 10 PSAs). One can see
that the simultaneous suppression of the amplitude and phase noise is achieved for
multilevel formats.

5.5 Regenerative Fourier Transformation

We propose a new scheme of high efficiency regeneration of quadrature amplitude
modulation (QAM) based on the regenerative Fourier transformation. Numerical mod-
elling shows simultaneous noise suppression in both signal quadratures illustrated on
4- to 256-QAM formats.

5.5.1 Potential implementation of RFT

Our aim here is not to present a comprehensive analysis of implementation of the math-
ematical concept presented in the paper, but rather to offer a particular scheme showing
a principal possibility of such transfer function. We anticipate that various practical so-
lutions are feasible, and we aim to stimulate further discussions and research in this
direction.

The proposed RFT can potentially be implemented as shown schematically in Fig.
5.19. One starts by separating two quadratures of the field (here we used a phase
sensitive amplification (PSA) (see Eq. 5.1) with m = 1 and M = 2 (see Fig. 5.19(a)).
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Figure 5.19: Scheme of RFT - (a) At first, we separate two quadratures of the field
(denoted by YR and YI); (b) then, each quadrature undergoes a nonlinear transformation,
which results in the sine transformation; (c) general scheme: after the sine-transformation,
the two outputs are coupled together and with the original wave; (d) simplified schematics
of the proposed scheme.

Then, each of the coordinates (YR,YI) is propagated through a highly nonlinear fiber
(HNLF) to achieve four-wave mixing with a continuous wave ⟨|ξ|2⟩ ≫ ⟨|Y |2⟩, further
ξ > 0 (see Fig. 5.19(b)). Subsequently, the output is shifted by exp(iγL2/2) where γ
and L are nonlinear coefficient and length of HNLF, with the resulting wave:

F(Y(R, I)) =
ξ√
2

exp
( iγLξYR,I√

2

)
=

ξ√
2
(cos(bYR,I)+ isin(bYR,I)) (5.17)

this defines a parameter b = γLξ/
√

2. Taking an imaginary part of F(Y ) will result
in the sine transformation. Alternatively, with an interest in the transformation in the
vicinity of the alphabet point defined by π(2k + 1)/b where k ∈ Z, one can approx-
imate cos(bYR,I) ≃ 1, which is valid up to the second order perturbation. The unity
factor inside the brackets can be removed by coupling the wave with the correspond-
ing constant wave. This procedure is applied to both quadratures simultaneously at
the last coupler by using the wave: ψ = ξ

√
ρ/4(1−ρ)(i−1), where ρ is the coupling

parameter of the previous coupler. Once the two waves (the sine transformation of
the two coordinates) have been added together, they are then coupled with the original
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wave to finally achieve the desired RFT for both quadratures (see Fig. 5.19(c-d)). All
the couplers have a splitting ratio of 0.5:0.5 (3dB couplers), except for one coupler that
has: 1−ρ : ρ with ρ ≪ 1. To restore the original power, the resulted wave is amplified
with the amplifier gain G = 4/(1−ρ)≃ 4.

This achieves the RFT: Y ′
R,I = YR,I + asin(bYR,I), with a = ξ

√
ρ/2(1−ρ) and

b = γLξ/
√

2. It is challenging to regenerate high-order constellations (higher than
32) using the conventional approach of regenerating phase and amplitude in circu-
lar formats, as such constellations have tight phase-packing due to energy efficiency
requirements. Therefore, a new approach for regenerating separately the two signal
quadratures will be required. The proposed RFT is the first scheme to operate on
both quadratures and enable an infinite number of regenerative levels. In this sense,
this scheme will also potentially enable regeneration of the conventional rectangular
(QAM) modulation formats. Moreover, being the Fourier transform of the ideal regen-
erator, it enables the highest regeneration efficiency without making a hard decision.

5.5.2 Numerical Simulations

 

c) SNR=10; R=50 b) SNR=5; R=40 a) SNR=1; R=30 

Figure 5.20: Constellation diagrams (normalized to signal power S = 1) for rectan-
gular (a) 4-, (b) 16- and (c) 64-QAM - after transmission without (blue) and with (red)
R equidistantly placed RFT filters with the transfer function: Y ′

R,I = YR,I + asin(bYR,I).
In the absence of regeneration, the corresponding linear system is characterized by the
signal-to-noise ratio – SNR (dB).
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 SNR=15; R=50 

Figure 5.21: Constellation diagrams (normalized to signal power S = 1) for rectan-
gular 256-QAM - after transmission without (blue) and with (red) 50 equidistantly placed
RFT filters with the transfer function: Y ′

R,I = YR,I +asin(bYR,I).
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Figure 5.22: SERs as a function of SNR for 16- and 64-QAM ) for rectangular 256-
QAM - with a different number (placed in circles for each curve) of RFT filters with the
TF: Y ′

R,I =YR,I +asin(bYR,I) are shown by red solid curves. The SER of the corresponding
system with the ideal regenerators are plotted by greed dashed curves (denoted by symbol
i) and the SERs of the linear channel are shown for comparison by blue dotted lines.
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5.5 Regenerative Fourier Transformation

Next we investigated numerically the regenerative effect of the proposed scheme
by simulating the transmission of rectangular 4-,16-, 64-, and 256 - QAM via noisy
channel. The RFT filters were placed equidistantly along the transmission line and
signal distortion was modelled as additive white Gaussian noise uniformly distributed
along the line. Here, we aimed at the demonstration of the regenerative properties and
considered a simplified linear transmission model, where destructive nonlinear and
dispersive effects were neglected. Figure 5.20 shows constellations at the output of the
last RFT filter after transmission via 30, 40, and 50 regenerators. We characterize the
system by the signal-to-noise ratio (SNR) defined as the ratio of the input signal power
to the power of the linearly added noise accumulated along the link, thus coinciding
with the SNR of the equivalent linear system (in the absence of regeneration). One can
see that the RFT filters placed in cascades enable high performance of noise suppres-
sion in both quadratures simultaneously. We plot constellations after transmission via
linear system distorted by additive white Gaussian noise (depicted by blue) compared
to regenerated constellations at the output of the R-th RFT filter (depicted by red).
Due to the transformation the residual noise statistics is changed and the distortion is
effectively reduced. The RFT is unlimited in the number of levels and can be applied
to any rectangular constellation. By changing the transformation parameters (here, we
varied the value of the parameter b) one can adapt the scheme for any modulation for-
mat. In Fig. 5.21 we plot the corresponding results for a rectangular 256-QAM. Thus,
we demonstrate that the scheme is flexible and able to handle various constellations.
Next, we calculated a symbol error rate (SER) by direct error counting of simulated
equiprobable 225 symbols as a function of the SNR for rectangular 16- and 64-QAM
for different number of RFT regenerators in cascades. The results depicted in Fig.
5.22 show a dramatic improvement in SER by several orders. Moreover, the gain due
to regeneration rises as the modulation complexity increases. Also, the RFT repre-
sents the highest efficiency regeneration without requirement of transponders (Tx/Rx)
inserted along the transmission line. Compare the SER improvement due to RFT (see
Fig. 5.22, red curves) with that due to employment of the ideal regenerators (Fig. 5.22,
green curves). Thus, we have demonstrated that the noise is effectively squeezed in
both quadratures and the signal transmission is highly improved.
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5.6 Conclusions

5.6 Conclusions

We have proposed an analytical technique to define, in terms of a single transfer func-
tion parameter, the optimum conditions and operating margins of cascaded PSA based
regenerators in multi-level phase encoded transmission links. Extensive numerical
simulations have been carried out and have confirmed the analytical predictions of
our theory. Furthermore, they have revealed the performance dynamics along the cas-
caded system. It has been found that all-optical phase regeneration brings significant
performance gain to the system, when moving to larger signal complexities, but re-
duces the operating margins. A saturation effect in performance improvement has been
also predicted, which evolves more rapidly for non-optimal transfer functions and high
modulation orders. The developed theory will be essential for the design of future high
capacity transmission systems with all-optical regenerators.

Next, we have investigated the transmission performance of non-linear regenera-
tive channels based on cascaded PSAs and we have explored the impact of the phase
and amplitude noise accumulation mechanisms in the selection of the optimum mod-
ulation format. The results demonstrate that densely packed PSK formats are highly
favored by the phase squeezing properties of the channel for high capacity transmis-
sion. On the other hand, the use of multi-amplitude level ring constellations brings
minor improvements in SER performance as the benefits of phase regeneration are
counterbalanced by the enhancement of the amplitude noise imposed by the phase to
amplitude conversion in the PSAs. In particular, we find that the use of PSA regener-
ation with a 16-PSK signal (with 20 PSA-based regenerators) outperforms the linear
transmission performance of the 16-QAM system by 20dB (4 order o magnitude) in
SER at an SNR of 16dB, suggesting that a system employing phase regenerators has
the potential to offer higher point to point capacities than conventional dual quadrature
transmission systems.

Also, we have proposed a novel scheme for multilevel amplitude regeneration and
demonstrated effective amplitude noise suppression for 9 (or more) amplitude levels.
The design is simple and flexible, where by varying parameters one can change the
number of levels and adjust their positioning. The model was illustrated on circular
16-, 64- and 256-QAM. Combined with PSAs, the simultaneous suppression of both
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5.6 Conclusions

phase and amplitude noise was achieved and demonstrated on circular 16- and 32-
QAM.

Finally, we demonstrated regeneration of conventional multilevel rectangular QAM
with effective noise suppression in both quadratures simultaneously. The design is
simple and flexible, by varying transfer function parameters one can adapt a design for
any modulation format. The cascadability of the model was illustrated on rectangular
4-, 16-, 64-, and 256-QAM.
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6

Conclusion and discussion

Future communication systems are expected to combine advanced technological in-
novations in an integrated and optimized way to ensure high capacity transmission.
The ever-increasing capacity demand resulted in the surge of new techniques that ap-
peared over the decade. Thus, new technology led to new channel types with different
properties: stochastic (e.g. noise source due to EDFA or Raman amplification) and
deterministic, both destructive (due to Kerr effect or mode coupling in optical fibers)
and constructive (regeneration based on nonlinear signal transformations).

These created a new field of information theory research with a vast area of appli-
cations. However, calculating the Shannon capacity for nonlinear channels is limited
since, for a number of channels, the conditional pdf was not derived. As a result, in-
stead of the Shannon capacity (the maximum limit of zero error transmission rate), a
number of approximate estimations were made.

We derived the Shannon capacity for regenerative channels. We adapted the math-
ematical method – stability analyses of dynamical systems to regeneration. This re-
sulted in a simple, general and analytical scheme – regenerative mapping, which con-
sists of the system of three equations. Further, applied to the existing regenerative
phase quantizer scheme (practically realized by PSAs), the method showed the excel-
lent agreement with the numerical simulations and defined the optimal parameter value
and operating margins of PSAs.

Furthermore, we proposed the model of the regenerative Fourier transform (RFT),
which is the closest continuous approximation of the ideal regenerator. This can be
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further used for benchmarking different regenerative schemes. RFT, being general and
based on FT, enables efficient regeneration of multilevel, multidimensional signals.

Hence, the analytical procedure for optimizing arbitrary regenerative elements was
derived and thoroughly verified numerically. Using it, we have developed a method
for calculating the conditional pdf that characterizes a regenerative channel and is nec-
essary for the capacity calculation. Here, we generalized the result of (72), where the
conditional pdf for the system with the ideal regenerators was presented. The method
proposed here is suitable for calculating the conditional pdf for arbitrary regenerative
models with smooth transfer functions.

Next, using the obtained result, we calculated the Shannon capacity of the RFT
nonlinear channel. Moreover, we calculated the analytical asymptotical formula for
the Shannon capacity at high SNR.

Also, we calculated the analytical upper bound of regeneration efficiency – the
maximum Shannon capacity achieved by regeneration. The corresponding capacity
gain due to regeneration was derived.

Furthermore, we showed that by optimizing a regenerative system in accordance
with the proposed regenerative mapping technique, one can approach the derived re-
generative limit at high SNR. This was demonstrated and proved on the example of the
RFT channel.

Also, we demonstrated the importance of optimization in the regenerative channel
by studying the efficiency of different modulation formats. It was shown that without
optimization, regeneration can degrade system performance; whereas accurately opti-
mized systems can result in capacity a few times higher than the corresponding linear
limit. This was further demonstrated on the example of the regenerative system with
cascaded PSAs, where the optimal packing was proved to be a densely packed PSK
format, which in the case of regenerated cascaded PSAs outperform the conventional
multilevel QAM, suboptimal in linear Gaussian channels.

Finally, we proposed a novel scheme for multilevel amplitude regeneration based
on a nonlinear optical loop mirror (NOLM) and demonstrated through numerical mod-
elling its efficiency and cascadability on circular 16-, 64- and 256-symbol constella-
tions. We showed that the amplitude noise is efficiently suppressed. The design is
flexible and enables varying the number of levels and their positioning. The scheme is
compatible with phase regenerators. Also, compared to the traditional scheme of one
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NOLM, new features, such as reduced and sign-varied power-dependent phase shifts,
are available in the proposed scheme. The model requires only two couplers in addi-
tion to the traditional NOLM, and offers a vast range of optimization parameters.

Overall, we calculated the Shannon capacity of different communication channels
with constructive regenerative nonlinearity. Novel results of the Shannon capacity for
the new channel types were obtained with the emphasis on optimizing input distribu-
tion and the regenerative element. The described effects lead to new and important
insights into the nature and characteristics of nonlinear information channels. We be-
lieve that the work will open new possibilities for information transmission leading
towards the revaluation of the fundamental nonlinear Shannon limit.
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