

 Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either

yours or that of a third party) or any other law, including but not limited to those relating to

patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please

read our Takedown Policy and contact the service immediately

THE MULTIPLE PHEROMONE

ANT CLUSTERING ALGORITHM

VOL 1 OF 1

JAN CHIRCOP

Doctor of Philosophy in Computer Science

ASTON UNIVERSITY

MAY 2014

c© Jan Chircop, 2014

Jan Chircop asserts his moral right to be identified as the author of this thesis

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation from the

thesis and no information derived from it may be published without appropriate permission or

acknowledgement.

1

ASTON UNIVERSITY

Thesis Summary

The Multiple Pheromone Ant Clustering Algorithm

by Jan CHIRCOP

Degree: Doctor of Philosophy

May 2014

Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to

important locations. Pheromone traces are followed and reinforced by other ants, but also evap-

orate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful

paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect

features of objects represented as nodes within graph space. Each node has one or more ants

assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing

pheromone traces on the way. This use of multiple pheromone values is a key innovation.

Ants record other ant encounters, keeping a record of the features and colony membership

of ants. The recorded values determine when ants should combine their features to look for

conjunctions and whether they should merge into colonies. This ability to detect and deposit

pheromone representative of feature combinations, and the resulting colony formation, renders

the algorithm a powerful clustering tool.

The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii)

ants roam the graph space searching for nodes with matching features; (iii) when departing

matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with

the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at

a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi)

a similar mechanism is used for colony merging.

The model varies from traditional ACO in that: (i) a modified pheromone-driven movement

mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents

accordingly; (iii) ants merge into colonies, the basis of cluster formation.

The MPACA is evaluated over synthetic and real-world datasets and its performance compares

favourably with alternative approaches.

2

University Web Site URL Here (include http://)

Acknowledgements

Without the patience and assistance of several people this thesis would have never materialised.

A thesis which required a considerable amount of commuting, in conjunction with a full time

job in an area unrelated to the field of research was harder than I could have ever imagined.

I immeasurably thank my supervisor, Dr. Christopher Buckingham who was happy to dedicate

extra hours when required and met with me innumerable times after office hours. Furthermore, I

would also like to thank Dr. M. Chli and Prof. F. Guinand, respectively the internal and external

examiners for their helpful feedback on the thesis.

Other important people to thank include my family for their unfailing support and lastly, but not

the least, Steph who got onto the ride with me at the very start, and by the end, even though the

ride got bumpy, was still there to encourage me through it.

3

Contents

Abstract 2

Acknowledgements 3

Contents 4

List of Figures 8

List of Tables 9

Abbreviations 10

1 Introduction 13
1.1 Problem of Data Explosion and Motivation 13
1.2 Understanding and Interpreting Data: Top-Down and Bottom-Up approaches . 14
1.3 Swarm Intelligence . 15

1.3.1 Self-organisation . 16
1.3.2 Stigmergy . 16
1.3.3 Positive Feedback . 17
1.3.4 ACO in a Nutshell . 18

1.4 Objectives of this Thesis . 19
1.4.1 The New ACO Model . 19
1.4.2 Evaluation Techniques . 20

1.4.2.1 Datasets . 20
1.4.3 MPACA Overview . 20

1.5 Publications . 21
1.6 Organisation of Work . 21
1.7 Chapter Conclusion . 22

2 Literature Review 23
2.1 Chapter Overview . 23
2.2 Clustering and Classification . 23

2.2.1 Definition of Clustering . 24
2.2.1.1 The Clustering problem as an NP-hard Problem 25

2.2.2 Operands within Clustering Algorithms 25
2.2.2.1 Architectures . 25
2.2.2.2 Distance Metrics . 25
2.2.2.3 Similarity Metrics - Distance as the Similarity Proxy 27
2.2.2.4 Curse of Dimensionality . 29

2.2.3 Comparing Models . 29
2.2.3.1 External Evaluation Techniques 29

2.2.4 General Clustering Techniques . 31

4

2.2.4.1 Hierarchical Clustering . 31
2.2.4.2 Flat or Partitional Clustering 33
2.2.4.3 Density-based Clustering 35
2.2.4.4 Graph-theoretic Clustering approaches 36

2.2.5 The Relevance of Traditional Clustering Algorithms 37
2.3 Swarm Intelligence . 39

2.3.1 General Swarm Intelligence Approaches 39
2.3.2 Particle Swarm Optimisation . 40
2.3.3 Bio-Inspired SI Algorithms . 41

2.3.3.1 Bee Colony Algorithms . 41
2.3.3.2 Ant Algorithms . 42

2.3.4 Towards the Ant Colony Optimisation Meta-Heuristic 43
2.3.4.1 Relevance and novelty to the MPACA 47

2.4 Conclusions from SI literature . 48
2.5 Ant Algorithms and their Application to Clustering 48

2.5.1 Fundamental Operators Behind the Chosen Models 48
2.5.1.1 Type I - Knowledge Structure Forming Ants 49
2.5.1.2 Type II - Ant Aggregations and Ants’ Self-Aggregation . . . 49
2.5.1.3 Type III - Clustering Inspired by the Chemical Recognition

System of Ants . 51
2.5.1.4 Type IV - Clustering using Ant Colony Optimisation Algorithms 52

2.5.2 Comparison Criteria . 54
2.6 Selected Models in Detail . 57

2.6.1 Type I - Clustering using Ants’ Self-Aggregation 57
2.6.1.1 The AntTree Algorithm . 57

2.6.2 Type II - Clustering using Ant Aggregations and Ants’ Self-Aggregation 59
2.6.2.1 Standard Ant Clustering Algorithm (SACA) 59
2.6.2.2 Self-Aggregation within a 2D Grid 62
2.6.2.3 Ant Aggregation through Pheromone in a 2D Grid 63

2.6.3 Type III - Clustering Inspired by the Chemical Recognition System of
Ants . 66

2.6.4 Type IV - Clustering using Ant Colony Optimisation Algorithms 70
2.6.4.1 Multi-Objective Problem Solving 70
2.6.4.2 Multi-Colony and Multi-Pheromone ACO Approaches 71
2.6.4.3 Ant Colony Optimisation (ACO) and its Application to Clus-

tering . 73
2.6.4.4 ACO Applied to Graph Partitioning 75
2.6.4.5 Rule Learning Algorithms 82

2.7 Chapter Conclusion and Introduction to the MPACA 86

3 The MPACA Model 87
3.1 Chapter Overview . 87
3.2 Introduction to the MPACA . 87

3.2.1 Relationship to the Generic Ant Colony Algorithm 88
3.3 The Main Model Architecture and Processes 88

3.3.1 Partially-Connected Graph Space . 90
3.3.2 Connecting Nodes and Measuring Distances 90
3.3.3 Multiple-steps within Edges . 92

3.4 Placing Ants on Nodes . 92
3.4.1 Assigning Features to Ants . 92
3.4.2 Feature Matching a Node . 93

3.5 Ant Movement . 93

5

3.5.1 Pheromone . 93
3.5.1.1 Ant Deposit State . 94
3.5.1.2 Pheromone Quantity Deposited 94
3.5.1.3 Pheromone Evaporation . 95

3.5.2 Edge Selection Mechanism . 96
3.5.3 Ant Encounters . 97

3.5.3.1 Identifying Ant Feature Encounters 98
3.5.3.2 Data Structures for Recording Encounters 98

3.5.4 Merging Features and Colonies . 100
3.5.4.1 Merging Features: A Learning and Forgetting Mechanism . . 100
3.5.4.2 Colony Merging . 101

3.6 Overall Operation of the MPACA . 102
3.7 The MPACA and Cluster Derivation . 105

3.7.1 Mapping Colonies to Clusters . 105
3.7.2 Termination Criteria . 105
3.7.3 Cluster Membership and Evaluation 105

3.7.3.1 Centroid Cluster Membership Calculation 106
3.8 The MPACA Parameters . 106

3.8.1 A Synthetic Dataset for Demonstrating the Parameters’ Impact 106
3.8.2 Baseline Analysis . 107
3.8.3 Domain Initialisation Analysis . 109

3.8.3.1 Maximum Edge Length Parameter 110
3.8.3.2 Step Size Parameter . 111

3.8.4 Ant Initialisation Analysis . 113
3.8.4.1 Ant Complement Parameter 113
3.8.4.2 Detection Range for Ordinal Dimensions Parameter 114

3.8.5 Pheromone Deposition and Movement Analysis 115
3.8.5.1 Pheromone quantity, maximum coefficient and the evapora-

tion parameters . 115
3.8.5.2 Residual Parameter . 117

3.8.6 Merging Thresholds . 118
3.8.6.1 Feature Merging Threshold Parameter 118
3.8.6.2 Colony Merging Threshold Parameter 120
3.8.6.3 Visibility on Edge Parameter 121
3.8.6.4 Time-window Parameter . 122

3.9 The MPACA as a Classifier . 123
3.9.1 Training Termination Criteria . 124
3.9.2 Evaluation of the MPACA as a Classifier 124

3.10 Novelty and Contribution of the MPACA . 125
3.10.1 Distinctive Elements of the MPACA 125
3.10.2 Variations of the MPACA from the Traditional Clustering Algorithms . 126
3.10.3 Variations from Ant Based Clustering Literature 127
3.10.4 Advantages of the MPACA Architecture 128
3.10.5 Novelty in Ant Movement . 129
3.10.6 Ability to Learn and Acquire Features 130
3.10.7 Multiple Pheromones and Multiple Colonies 131

3.11 Chapter Conclusion . 132

4 The MPACA Applied 133
4.1 Chapter Overview . 133
4.2 Evaluation Criteria and Experiment Set-up . 133

4.2.1 Synthetic Datasets: the 2D-4C and 10D-10C Datasets 134

6

4.2.2 Real-world UCI datasets . 134
4.2.2.1 Iris dataset . 134
4.2.2.2 Wine dataset . 134
4.2.2.3 Soya-bean dataset . 135
4.2.2.4 Wisconsin Breast Cancer dataset 135
4.2.2.5 Pima Indians Diabetes dataset 135
4.2.2.6 Yeast dataset . 135

4.3 Experimentation Framework . 136
4.3.1 Basic Set-up . 136
4.3.2 Analysis based on a Simulated Annealing Technique 136

4.4 Baseline Experiments . 137
4.4.1 Observations from Baseline Experiments 141
4.4.2 Evaluating the MPACA Clustering Performance 142

4.5 Sensitivity Analysis of chosen Parameters . 146
4.5.1 Sensitivity Metric . 146
4.5.2 Pheromone Driven versus a Random Model 147

4.6 Real-world GRiST and ADVANCE datasets 148
4.6.1 GRiST - Mental health risk assessment 148
4.6.2 ADVANCE - Hub-and-Spoke Logistics Networks 150

4.6.2.1 Predicting Shipments . 151
4.7 Discussion of Results Attained . 154

5 Conclusion and Future Work 155
5.1 Summary . 156

5.1.1 Unique properties of the MPACA . 156
5.1.1.1 Modified Ant Transition Mechanism 156
5.1.1.2 Feature Learning and the Multi-Pheromone Mechanism . . . 156
5.1.1.3 Multi-Colony Clustering via Colony Formation 157

5.1.2 Goals and Objectives met by the MPACA 157
5.2 Alternative Paths . 157

5.2.1 Variation in the Ant Types . 158
5.2.2 Acquisition of Multiple Features on Each Dimension 158
5.2.3 Feature Merging with No-Forgetting Mechanism 158
5.2.4 Cluster Representation in First Order Logic 158

5.3 Advances of the Algorithm . 159
5.4 Current Limitations and Recommended Improvements 160

5.4.1 Parallel versus Non-Parallel . 160
5.4.2 Parameters and Parameter Adjustment 161
5.4.3 Termination Criteria . 161
5.4.4 Tackling Uneven Datasets . 161

5.5 Future work . 162
5.5.1 Bayesian Cluster Membership Calculation 162
5.5.2 K-Nearest Neighbourhood Cluster Membership Calculation 163
5.5.3 Ongoing Research . 164
5.5.4 Application of the MPACA as a Classifier 165

5.6 Concluding Arguments . 165

7

List of Figures

1.1 Experimental set-up demonstrating the shortest path finding 17

2.1 Dwellings that appertain to the two parishes and possible configurations. 24
2.2 Euclidean versus City block distance problem depiction 26
2.3 Dendrogram representation of the animal kingdom categorisation 31
2.4 Density-reachability and density-connectivity in the DBSCAN 35
2.5 Fire ants coalesce together to form a bridge with their bodies 49
2.6 A sequential clustering task of corpses performed by a real ant colony 50
2.7 Principles of the ANTCLUST . 52
2.8 Clustering as an Optimisation Problem . 53
2.9 The tournament selection mechanism . 79

3.1 A finite state machine representing the changes in ant behaviour as it traverses
the graph. 103

3.2 Results of varying the maximum edge length parameter 110
3.3 Results of varying the step size parameter . 112
3.4 Results of varying the ant complement parameter 113
3.5 Results of varying the detection range for continuous domains parameter 115
3.6 Results of varying the pheromone related parameters 116
3.7 Results of varying the residual parameter . 117
3.8 Results of varying the feature merging parameter 119
3.9 Results of varying the colony merging parameter 120
3.10 Results of varying the visibility range parameter 121
3.11 Results of varying the time-window parameter 123

4.1 Transportation in a multiple hub-and-spoke logistics system. 150
4.2 Fluctuations in the number of pallets each day for a specific depot 151

8

List of Tables

3.1 The MPACA parameter settings as applied to the Square1 dataset 108

4.1 Summary of the selected datasets . 136
4.2 The MPACA as applied to the Square1, 2D-4C, 10D-10C, Iris and Wine datasets. 138
4.3 The MPACA as applied to the Soya-Bean, WBC, Pima and Yeast datasets. . . . 139
4.4 The MPACA performance applied over synthetic datasets 142
4.5 The MPACA performance applied over real-world datasets 143
4.6 Parameter sensitivity analysis as applied to the Iris and Wine dataset. 147
4.7 Pheromone Driven versus a Random Model applied to the Iris and Wine dataset. 148
4.8 Parameter settings for the MPACA as applied to the GRiST dataset 149
4.9 Parameter settings for the MPACA as applied to the ADVANCE dataset 153
4.10 Results of the MPACA as applied to the ADVANCE dataset 154

5.1 Parallel versus Non-Parallel execution over the Iris dataset 160

9

List of Algorithms

1 ANTCLUST main algorithm . 66
2 Ant Colony Optimisation with Different Favour (ACODF) algorithm 80
3 Overview of Ant-Miner . 83
4 The MPACA Outline . 89
5 Pheromone deposition . 94
6 Updating Feature and Colony Encounters . 99
7 Feature and Colony Merging . 102
8 The core of the MPACA algorithm . 104
9 Proximity to Centroid calculation . 106
10 Bayesian Approach to cluster membership calculation 163
11 K-Nearest Neighbourhood approach to cluster membership calculation 163

10

Abbreviations

A4C Adaptive artificial ants clustering
AS Ant system
AACA Adaptive ant-based clustering algorithm
ABC Artificial bee colony algorithm
ACO Ant colony optimisation
ACODF Ant colony optimisation with different favour
ACS Ant colony system
AI Artificial intelligence
AIS Artificial immune system
AL Artificial life
ALife Artificial life
ANTCLUST Ant clustering based on a modelling of the chemical recognition system of ants
ANTS Approximate non-deterministic tree search
AntTAG Ant tree adjunct grammar
APC Aggregation pheromone density based clustering
APS Aggregation pheromone system
ASM Ant sleep model
AST Absolute sensory threshold
ATTA Adaptive time dependent transporter ants
ATTA-C ATTA applied to explicit cluster-retrieval
ATTA-TM ATTA applied to specific for topographic mapping
BCO Bee colony optimisation
BM Basic model
BWAS Best-worst ant system
CA Cellular automata
CAS Colour ant system algorithm
CST Contrast sensory threshold
DAG Directed acyclic graph
DBSCAN Density based spatial clustering of applications with noise
EM Expectation maximization
FSOM Fuzzy self-organising map
FOL First order logic
FP Foraging pheromone
FP False positive
FN False negative
GA Genetic algorithm
GRiST The Galatean risk and safety tool
HMACO Homogeneous MACO
HPP Hamiltonian path problem
ISBN International standard book number
IWD Intelligent water drops
K-NN K-nearest neighbours
LF Lumer and Faieta
MACO Multiple ant colony optimisation
MCL Markov cluster algorithm
MDL Minimum description length
MDS Multi-dimensional space
ML Maximum likelihood
MMACO Multi-Object MACO
MMAX Max-Min ant system
MPACA Multiple pheromone ant clustering algorithm
MST Minimum spanning tree
NP-Complete Non-deterministically polynomial-complete
NP-hard Non-deterministic polynomial-time
ODUEC Organisation detection using emergent computing
PABC Parallel artificial bee colony
PACO Parallel ACO
PAM Parallel Ant-Miner on high performance cluster

11

PAPI Partially asynchronous parallel implementation
PDF Probability density function
PSO Particle swarm optimisation
QAC Quick ant clustering
RFD River formation dynamics
SA Simulated annealing
SACA Standard ant clustering algorithm
SD Standard deviation
SDS Stochastic diffusion search
SI Swarm intelligence
SSE Sum of squared errors
SI-ACC State information-based ant colony clustering
TN True negative
TP True positive
TSP Travelling salesman problem
UCI UC Irvine
WBC Wisconsin breast cancer
WEKA Waikato environment for knowledge analysis
XML Extensible markup language

12

Chapter 1

Introduction

1.1 Problem of Data Explosion and Motivation

Ninety percent of the world’s data has been generated over the last two years [A, 2013]. Every

minute hundreds of hours of video are uploaded to YouTube [YouTube, 2013], each day 175

million tweets are sent, each month seven petabytes of photo content are added on Facebook

(statistics till end of 2012) [Pingdom, 2013]. Big data is meaningless unless it can be converted

into comprehensible and relevant information. Accurate information has to be separated from

noise, whilst existing patterns should be made easily comprehensible to the consuming party.

Most importantly, all these activities must happen within a timely fashion. In many cases infor-

mation is only valid for minute intervals of time. For example, a trade executed on erroneous

information in high-frequency trading can have an impact costing billions of pounds [Kablan

and Ng, 2010].

The majority of datasets are unstructured, distributed, and massive. This poses a serious chal-

lenge to the current categorisation processes. In many cases, human intervention in tagging data

is not financially viable. Turning such immense quantities of data into usable information is one

of the biggest ongoing challenges for computer scientists [Yadav et al., 2013].

This challenge is taken up in this thesis, where an algorithm that can convert unstructured data

into meaningful information is introduced. This algorithm is based on a swarm intelligence

technique, more specifically, an ant-inspired one. The Multiple Pheromone Ant Clustering Al-

gorithm (MPACA) is a clustering method that is comparable to other swarm-based techniques,

as well as alternative generic clustering approaches. In this thesis MPACA is applied to synthetic

and standard datasets, as well as two real-world large datasets, one from the logistics domain

and the other for mental health risk assessments.

13

In literature, two main approaches are used to categorise data; either a structured and supervised

top-down tactic or an unstructured, unsupervised bottom-up route, both of which are described

below.

1.2 Understanding and Interpreting Data: Top-Down and Bottom-

Up approaches

Extracting hidden information from big data is non-trivial [Yadav et al., 2013]. One approach

involves analysing the data from the top-down, using existing knowledge structures that in many

cases are labelled by human experts in the field. Acquiring such information is expensive, inef-

ficient [Weinstein and Deyo, 2000] and, worst of all, error-prone [James et al., 2008]. Experts in

the field can dispute or mislead such tasks [Raykar et al., 2009]. This makes supervised learn-

ing approaches infeasible on large, less structured datasets. Thus, algorithms that can learn and

adapt are required [Silver, 2011].

An alternative to the above is unsupervised learning where no preconceptions exist and the data

is tackled from the bottom-up [Berkhin, 2006]. This eliminates the need for expensive field

experts, whilst downsizing the time and cost. What makes this approach even more interesting

is that the structure is built around the data, in the manner it is deemed to fit best.

Top-down and bottom-up approaches differ on the level of information known a priori. Referring

to the wine dataset [Bache and Lichman, 2013], this contains data elements having 13 descriptive

attributes each, where each attribute represents a measure regarding a property of the wine. Each

data element has a variable identifying the particular variety of the grape from which the wine

is produced, namely “the cultivar”. This variable represents the class that each data element

belongs to.

In relation to the above, in terms of classification, class information is used as part of the training

information. A training set is used to build rules which determine class membership. Accuracy

of these rules is verified by determining the success rate of allocating data elements, unused for

training, into their correct class membership.

In clustering, on the other hand, the perspective changes, as the required output is unknown.

For example the Wine dataset has no structure other than the 13 attributes. The entire dataset is

processed, and areas of similarity are defined as the clusters. A successful clustering algorithm

splits the data into meaningful clusters, that should in theory correlate to known class separa-

tions. This implies that clustering adds structure to the data. In essence, identifying clusters is

the task of partitioning datasets into clusters which have a higher common likeness, so that a data

14

element shares more similarities with its member group rather than any other group [Chircop

and Buckingham, 2011b].

There is a correlation between clustering, which is the discovery of patterns from unlabelled

datasets, and how a collection of simple entities collectively perform complex tasks in a swarm,

or swarm intelligence. Clustering can be seen as an emergent property of particular swarm intel-

ligence activities. Swarm intelligence is purely a bottom-up approach. It is an ideal candidate for

tackling the clustering problem since it is distributed, decentralised and operated by the repeated

actions of primitive entities.

1.3 Swarm Intelligence

Living within a swarm has its advantages [Kordon, 2010] and it can also prove crucial for sur-

vival [Bonabeau et al., 1999]. The power of a swarm comes from the collaboration of decen-

tralised primitive entities, where the whole is greater than the sum of its parts. The entities of a

swarm are mostly powerless, with restricted intelligence. It is only via their collective interac-

tions that complex behaviour emerges out of simpler individuals [Zhu and Tang, 2010]. These

interactions form the basis of swarm intelligence (SI), which is defined as:

“any attempt to design algorithms or distributed problem-solving devices inspired by the

collective behaviour of social insects and other animal societies,” [Bonabeau et al., 1999].

Flocking in birds is a mechanism which inspired Particle Swarm Optimisation (PSO) [Kennedy

and Eberhart, 1995]. Bee colony optimisation algorithms (BCO) [Teodorovic et al., 2006]

[Teodorović and Dell’Orco, 2005], and ant colony optimisation algorithms (ACO) [Dorigo,

1992], are inspired by the foraging behaviour of honey bees and ant colonies respectively.

A typical example of this swarming in action applied to the clustering problem is inspired by

the organisation of cemeteries and larvae in ants [Deneubourg et al., 1990b]. Ants move around

randomly in space, while picking or dropping corpses of other ants. When applied collectively

at the colony level, and each action is repeated enough times, clusters of dead corpses provide

an analogy to data clustering.

Bottom-up analysis is a term often linked with collective or swarm intelligence. This is a mech-

anism which provides problem-solving abilities and is highly adaptable to dynamic environ-

ments. This approach induces complex global behaviours through local interactions among

agents [Nakahori, 2000]. Three key terms are linked with understanding SI techniques: self-

organisation, stigmergy and positive feedback.

15

1.3.1 Self-organisation

“Self-organisation is a set of dynamical mechanisms whereby structures appear at the global

level of a system from interactions of its lower-level components.” [Bonabeau et al., 1999].

A dominant principle in SI is the process of self-organisation, or the attempt to create order

out of a disordered system [Prigogine et al., 1984]. From fire ants which form bridges with

their bodies [Akbar, 2008], to termites building complex mounds [Worall, 2011], and even the

flocking of birds, these are all examples of self-organising activities. The latter is a common

example of self-organisation in SI literature [Kennedy and Eberhart, 1995]. Birds flock using

three simple rules; separation (collision avoidance), alignment (velocity matching) and cohesion

(flock centring). These rules allow birds to form interesting formations, sometimes involving

hundreds or thousands of birds.

Self-organisation is interesting for bottom-up analysis, since a set of simple instructions, re-

peated numerous times, is capable of creating complex structures. In many swarming insects,

this self-organisation is aided by the use of scents within the environment, which increase the

interaction and collaboration within the swarm. These scents represent stigmergy.

1.3.2 Stigmergy

Pheromones, or hormonal chemicals, are used to relay information to other members of the

same swarm. For instance, the typical ant colony has about 10-20 different pheromone types.

Differing pheromones play different roles, including alerting the colony of an attack [Powell and

Clark, 2004], helping ants to recognise fellow nest mates [Labroche, 2003] and indicating food

sources [Deneubourg et al., 1990a].

Stigmergy is defined as the effect of an external influence placed within an environment; pheromone

trails, which are marked paths to be followed, represent a prime example of this. These external

stimuli manipulate the behaviour of other entities within the same environment without inter-

acting directly with them. In 1959, biologist Pierre-Paul Grassé defined this as the “stimulation

of workers by the performance they have achieved.” This is derived from stigma (stain) + ergon

(work), or work through the process of following signs/stains [Grassé, 1959].

The beauty of stigmergy is that it serves as a mechanism of indirect coordination that promotes

spontaneous coordination. It induces the formation of apparently-intelligent structures, without

the need for any planning, control, or even any direct communication between the participants.

As such, it supports efficient collaboration between extremely simple agents, which can lack

memory, intelligence or even awareness of each other. Stigmergy is a catalyst of the actions

16

performed by the swarm. This self-organisation through stigmergy catalysis is defined as a

positive feedback.

1.3.3 Positive Feedback

Initially, ants foraging for food walk in a more-or-less random manner. Whilst doing this, they

deposit a pheromone trail. When an ant finds food, it returns home, depositing a stronger trail.

As ants have trail-following behaviour, the number of ants which tend to follow such a trail

grows. In turn, each ant traversing this trail reinforces it, with this amplification termed as

“positive feedback” (auto-catalytic system).

This is demonstrated by Deneubourg et al. in their double bridge experiment [Deneubourg et al.,

1990a], figure (1.1). In this experiment Argentine ants, Iridomyrmex humilus, are allowed to

roam the environment searching for nourishing sources. Initially ants tend to randomly choose

one of the two bridges. Paths gradually weaken and disappear due to pheromone evaporation,

with a proportional relationship existing between distance and time for evaporation. As a result,

the shorter paths tend to accumulate more pheromone, which in turn attract more ants in this

positive feedback effect.

FIGURE 1.1: An experimental set-up demonstrating that the ants are capable of finding the
shortest path between the nest and a food source. In figure (a) the bridge is initially closed,
figure (b) demonstrates the initial distribution of ants after the bridge is open, and figure (c)
shows the distribution of ants after some time has passed since they were allowed to exploit the

food source [de Castro, 2007].

Positive feedback is formally defined as a closed loop system, where changes in the output tend

to be amplified back within the system, with negative feedback being its antonym, or the stabil-

ising factor [Monmarché et al., 2010]. A practical combination of all three SI terms described

previously is found in the ant colony optimisation algorithm.

17

1.3.4 ACO in a Nutshell

The ability of ants to find the shortest paths, as outlined in the double bridge experiment, forms

the basis of ant colony optimisation (ACO). Dorigo applies this mechanism to the travelling

salesman problem (TSP) [Dorigo, 1992]. The TSP is used as the common representation for

ACO problems. Here the domain space is set up as a graph, with cities being represented by

nodes, where n nodes are connected by a number of edges, e. These edges provide possible paths

that the ants can traverse. The distance between two nodes is the distance on the edge(i, j). The

problem is considered asymmetric when the distance on edge(i, j) 6= edge(j, i). The aim is to

find the shortest-possible distance that covers all the nodes in a graph, at least once. This is

called a Hamiltonian Path.

In the TSP, each ant constructs a Hamiltonian path by initially moving randomly by departing

a node and visiting each and every other node in the sequence it deems best. At each step,

the ant probabilistically chooses the edge to traverse next among edges that lead to unvisited

nodes. This decision is calculated depending on which edge leads to the node with the highest

combination of two-factors; (i) the highest pheromone amount present (trail) and (ii) a heuristic

value which is the inverse of the distance function (visibility). Once all the ants have completed

their tour, the pheromone on the edges is updated. Over time, the same positive feedback loop

which caused ants in the double bridge experiment to choose the shortest path, causes ants to

act accordingly over graph space. The process is repeatedly applied until a termination criterion

is satisfied. Founding terminologies in ACO include:

• The entity is an ant, a primitive being with both limited abilities and memory;

• A collection of ants is a colony;

• A path is a collection of edges that have been traversed in a sequence;

• When an ant completes a traversal of nodes within a graph, this is called an ant tour or

cycle;

• Nodes visited by an ant are stored within a TABU list, a structure used to ensure that ants

visit the same node only once within a tour.

ACO is applied in literature to a multitude of problems; in route finding, [Manjurul Islam et al.,

2006], [Agarwal et al., 2005], load-balancing [Bertelle et al., 2007], [Wang and Wang, 2008],

scheduling problems [Chen et al., 2007b], [Liu and Chai, 2006], [Kheirkhahzadeh and Bar-

foroush, 2009], constraint satisfaction problems [Shi et al., 2004], [Solnon, 2001], [Merkle et al.,

2002], [Sun and Teng, 2002] and quadratic assignment problems [Maniezzo, 1999], [Talbi et al.,

1998], [Mouhoub and Wang, 2008], [Tsutsui and Liu, 2007].

18

In a similar fashion as ACO is applied to finding the minimal tour distance in the TSP, similar

approaches can be used for solving the clustering problem. Spatially distributed nodes within

a graph are allocated to one cluster over another depending on their inherent composing values

and the similarity that exists between them. The edges that connect nodes are additional dis-

torted by pheromone traces increasing the likelihood of certain node connections over others.

Eventually, nodes are grouped as sub-graphs, and it is these sub-graphs which are representative

of clusters. This forms the basis of clustering via the use of ACO as presented in this thesis. The

importance of this ACO technique is that it uses all three of the pivotal elements found in SI;

self-organisation, stigmergy and positive feedback.

1.4 Objectives of this Thesis

The objective of this thesis is to introduce and evaluate a new clustering algorithm, the Multiple

Pheromone Ant Clustering Algorithm (MPACA). The MPACA is further benchmarked against

other clustering algorithms both traditional and nature-inspired. The algorithm uses multiple

colonies of decentralised ants, distributed in a problem space for the final aim of clustering ob-

jects depending on their composing feature values. Simple ants with limited centralised control,

that communicate indirectly with other ants via the use of pheromone traces, catalyse their ac-

tions using ACO principles and self-organise to form larger colonies. Whilst doing so, ants also

learn about other features present in the given problem space. The final colonies consist of a

common description of the surrounding environment within which the ants are found. These

colonies are a representation of clusters. The MPACA is therefore a clustering algorithm that is

critically reviewed and benchmarked against the state of the art clustering algorithm literature.

1.4.1 The New ACO Model

A number of distinct features are introduced in this clustering algorithm, which collectively are

not found in any other ant-driven algorithm in literature, namely:

1. The utilisation of a modified pheromone-driven ant movement mechanism. This mecha-

nism encourages further path searching, and is more stochastic than other methods found

in literature.

2. The ability of ants to learn and acquire new features, and deposit pheromone depending

on the features being sought by the ant. This utilises a multi-pheromone system unlike

any other technique.

3. The utilisation of a multi-colony approach as a bottom-up cluster-forming algorithm, in-

spired by the parallel, asynchronous and independent activities of ants. This includes the

19

ability of colonies to vary in size, with ants migrating from colonies and merging into

larger ones.

1.4.2 Evaluation Techniques

Benchmarking against a number of standard datasets is key. However, as a well-known side

effect of bottom-up clustering, direct mapping of clusters is challenging. Clustering is, in itself, a

subjective term. A number of measures are presented which capture the reformulated structured

data from the MPACA and are subjected to traditional evaluation mechanisms.

Upon execution of the algorithm, a number of clusters are formed. These clusters are defined

by populations of ants, with each population having a number of features. The main technique

used to determine cluster membership consists of a centroid calculation and proximity to the

centroid value. Subsequently the centroid of each cluster is discovered and data points used for

clustering purposes, are allocated to the cluster that is closest to the centroid.

A number of metrics are used for evaluation, further detailed in section (2.2.3), which include

Precision, Recall, F-Measure, Rand-Index, and Jaccard Coefficient.

1.4.2.1 Datasets

The MPACA is applied to a number of standard benchmark datasets commonly used in lit-

erature, both synthetic datasets including the Square1, 2D-4C, 10D-10C generated by normal

distributions, and also real-world datasets. The latter originate from the UCI data repository

[Bache and Lichman, 2013], namely the Iris, Wine, Soya-beans, Wisconsin breast cancer, Pima

Indians diabetes, and the Yeast datasets. The MPACA is further applied to real world datasets,

which are much larger and less structured, namely the Galatean Risk and Safety Tool, GRiST

[Buckingham and Adams, 2013] and a hub-and-spoke logistics domain, that is the ADVANCE

[adv, 2013] dataset.

1.4.3 MPACA Overview

The MPACA is a clustering algorithm, where a cluster is expressed as a colony of ants. Initially

each ant has its own specific colony. It is only through a process of ant interactions that ant

colonies merge into bigger colonies, thus clustering. The ants move around in graph space, based

on the concept of positive feedback, common to ACO, where stronger paths are reinforced, and

weaker paths are allowed to dissipate. Initially, ants are born into a node in graph space, and are

imprinted with a feature existing at such point, within a particular dimension. This is the base

feature and represents the feature which the ant will set out to look for. The ant traverses the

20

graph looking for other nodes which match this feature, and also deposits a pheromone value

corresponding to this feature.

As the ant continues to traverse the graph, it encounters other ants. Each ant will carry other

feature values for other particular dimensions. If the ant keeps on encountering a key feature

carried by a number of ants for an exceedingly high number of times, and this feature dimension

is not already carried by the ant, this co-occurrence of features is an indicator that the features

are related. Therefore, the ant absorbs this other feature, and starts to search for pheromone

traces which lead to the combination of all features now carried by the ant. From this point on,

the ant deposits and searches for multiple-pheromone combinations. This process is repeated

until an ant acquires a feature for each dimension present in the search. This process of feature-

acquisition is contained within a time-window, allowing ants to drop the features they acquire.

Thus, a forgetting mechanism is inbuilt in the system, which over time clears possible invalid

combinations.

As ants acquire more features, the number of nodes they can react to is reduced. This causes

the ants to remain localised within an area of graph space, causing them to encounter some ants

more frequently than others. Each ant has a label representing the colony it is part of. If a count

for a particular colony occurs more than a number of times, that ant migrates to this colony by

changing its own label. Therefore, all processing is asynchronous and localised to the ant in

scope.

Finally, as stable colonies form, the algorithm terminates, thus producing colonies of ants which

represent clusters. The values of these clusters are defined by the feature values being carried

by the ants within each colony.

1.5 Publications

The work presented in this thesis has been in part published or accepted for publication. Publi-

cations in reverse chronological order, are as follows; [Chircop and Buckingham, 2013], [Chir-

cop and Buckingham, 2014], [Chircop and Buckingham, 2011b], [Chircop and Buckingham,

2011a]. These publication present a concise and concrete representation of the research work

carried out.

1.6 Organisation of Work

Chapter (1) introduced the thesis subject matter and outlined the investigation which shall prop-

agate throughout this thesis. This chapter highlighted the importance of dealing with data from

21

an underlying bottom up approach. Chapter (2) presents the literature overview investigating

swarm intelligence and ant algorithms, evaluating the state of the art clustering algorithms, both

for traditional clustering and those originating from the ant metaphors, against the MPACA.

Chapter (3) introduces the MPACA itself; the data structure necessary, its core operating princi-

ples, the MPACA in pseudo-code, and an explanation of the applicable parameters. This chapter

serves to highlight the core activities and interacting parameters, and also locates the MPACA

within the literature review, concluding by highlighting the novelty and contribution introduced

by the MPACA. Chapter (4) applies the algorithm to a number of standard synthetic and readily

available UCI repository datasets, a task which serves to determine the sensitivity analysis of

the parameters applicable to the MPACA. Finally, the results attained in chapter (4) are bench-

marked against values attained by the algorithms introduced in chapter (2). Chapter (5) con-

cludes this work with a critical evaluation of what has been achieved, potential improvements to

the algorithm and how this can be applied in future work.

1.7 Chapter Conclusion

This chapter introduced the problem domain that the MPACA strives to tackle. The concepts

of top-down and bottom-up approaches, together with key SI and ACO terms, are introduced.

Amongst other SI algorithms, the ant algorithm, based on the foraging theory, was chosen. This

is mainly due to its use of stigmergy, optimisation ability and its decoupling from supervisory

control. Other algorithms utilise similar mechanisms, but none offer the extent of literature as

can be found under the umbrella of ant algorithms, thus making comparisons more intuitive.

This is not the first ant algorithm applied to clustering, however, the inclusion of a number of

variations implemented ensure its uniqueness.

The chapter which follows consists of the literature overview, in which the problem domain is

explored into further detail. The chapter reviews traditional clustering algorithms, and evalua-

tion metrics to be used throughout the thesis.

22

Chapter 2

Literature Review

2.1 Chapter Overview

This chapter reviews the state of the art with regards to algorithms relevant to the MPACA in-

troduced in chapter (3) of this thesis. This review is conceptually split into three parts. Firstly,

the clustering problem is defined and with it the classical clustering approaches are introduced.

Next, swarm intelligence algorithms are investigated, with special focus on the ant colony op-

timisation (ACO) algorithm. Finally, a critical review of ant algorithms aimed at solving the

clustering problem is undertaken.

2.2 Clustering and Classification

Clustering and classification together form the basis of machine learning [Mitchell, 1997]. The

distinction between both lies in the level of previous knowledge. Classification is a supervised

learning approach, where a class is known and training sets are used to train algorithms to

recognise which data elements correspond to which class values. Classification is based on

the Inductive Learning Hypothesis. That is, “any hypothesis found to approximate the target

function well over a sufficiently large set of training examples will also approximate the target

function well over other unobserved examples” [Mitchell, 1997]. Clustering, on the other hand,

represents an unsupervised learning approach, as it allows learning of a hidden data concept.

Through clustering it is possible to acquire a knowledge structure without a training set, or any

correcting mechanism [Jain et al., 1999].

23

2.2.1 Definition of Clustering

Clustering is the task of partitioning datasets into groupings of common likeness, so that a data

element shares more similarities with its member group rather than any other group. High

quality clusters are identified by the high intra-cluster similarity (homogeneity) and the low

inter-class similarity (separation). Clustering is often a complex problem because of ambiguous

boundaries between classes, for example when does a plant become a tree rather than a shrub?

This classic fuzzy problem, combined with uncertainty about what classes one is even expecting

from a large dataset, has led to a variety of approaches for optimising clusters, including ones

that are modelled on insect behaviour [Chircop and Buckingham, 2011b].

A trivial two cluster problem is depicted in figure (2.1). In this example a two dimensional

(2D) map representative of a geographic space is illustrated, in which the location of dwellings

belonging to two parishes are plotted. Traditionally village cores are built around a church

or some other landmark building. Dwellings mushroom around these central points, where

proximity to such points increases dwelling density. Each parish claims a number of dwellings

under its territory. A dwelling is more likely to belong to one of the two parishes, depending on

the proximity to the particular centre. Arbitrary configurations are possible, a process dependent

on the selection criteria applied to the clustering process.

FIGURE 2.1: Figure (a) depicts dwellings that appertain to the two parishes. Figure (b) depicts
parish configurations coloured in red and blue, (Author self).

Clustering is mathematically defined as follows; for a given space S, k subsets are created, with

each subset represented by a cluster C. This implies that C =C1, ..,Ck ∈ S, such that S =
⋃k

i=1Ci

and Ci
⋂

C j = 0 for i 6= j. Consequently, any instance in S belongs to exactly one and only one

subset [Maimon and Rokach, 2005]. Mathematically this represents the optimal configuration,

however the problem arises when dealing with ambiguous situations.

24

2.2.1.1 The Clustering problem as an NP-hard Problem

In a clustering problem, N data points must be allocated into K clusters, in a process which aims

to minimise total distortion. Clustering problems are known to be NP-hard problems [Mettu,

2002]. NP-hard problems are in turn defined by Cook and Karp [Hochbaum, 1997], [Demontis,

2009] as problems which to date cannot be solved in polynomial time. This is because a super-

polynomial lower bound has not yet been defined.

2.2.2 Operands within Clustering Algorithms

Clustering algorithms have a number of key operands. Such operands include architectures used,

distance and similarity metrics.

2.2.2.1 Architectures

Clustering requires a spatial context in which data elements are located. Three possible archi-

tectures exist; grid based, multi-dimensional space and graph based.

In grid based clustering, clustering takes place on a two dimensional (2D) grid. Objects are

initially laid down randomly, with the initial spatial positioning of objects irrespective of their

underlying properties. Objects are subsequently repositioned according to their similarity, re-

sulting in areas of higher similarity. The final positioning of objects is based on the cluster they

belong to. This mechanism is used in ant clustering based on organising bodies in cemeteries.

Unlike grid space, in the multi-dimensional space (MDS) architecture, each data element at-

tribute within an object is expressed in terms of a dimension within Cartesian or geometric

space. The location of objects is based on their descriptive properties. It would be infeasible to

have entities traverse any point of the MDS for problems with higher dimensionality, such as

the subject problems of this thesis, since huge areas of empty space would exist but be of no

relevance. A better way to explore this architecture is to exclude the ability of entities to visit

these gaps in space, by linking geometric data points with “roads” or edges, hence the use of

graph space.

Tightly coupled with the aforementioned architectures is the analysis of the distance metrics.

That is, the distance between any two objects within a selected spatial configuration.

2.2.2.2 Distance Metrics

The distance between two data elements represents the degree of similarity. There are a number

of metrics which are used to calculate the distance between two points, P and Q. Common

25

approaches included; (i) Euclidean, and (ii) City block distance.

The Euclidean distance given in equation (2.1) uses the ordinary distance between two points.

This is calculated using the Pythagorean formula, where the square of the hypotenuse is equiv-

alent to the sum of the squares of the other two sides. For two positions in space, this distance

z, is calculated as the difference on the x and y axis, where z =
√

x2 + y2. Figure (2.2) depicts

the problem of traversing between two blocks. The shortest distance between two blocks would

entail a diagonal route, which would imply flying over city blocks as per figure (b). Walking,

on the other hand, would entail a longer route to reach block B from block A, as it is impossible

to circumvent buildings, hence the term city block or Manhattan distance, figure (c). This is

defined in equation (2.2)

FIGURE 2.2: Figure (a) block A and block B, marked in red; Figure (b) distance between
block A and block B using Euclidean distance; Figure (c) distance between block A and block

B using City block distance, (author self).

The Minkowski distance [Kruskal, 1964] can be considered as a generalisation of both the Eu-

clidean and Manhattan distances. In this metric, the distance between two vectors is the norm

of their difference equation (2.3).

d(P,Q) = d(Q,P) =
√

(q1− p1)2 +(q2− p2)2 + ...+(qn− pn)2 =

√
n

∑
i=1

(qi− pi)2 (2.1)

d(P,Q) =
n

∑
i=1
|qi− pi| (2.2)

d(P,Q) = (
n

∑
i=1
|pi−qi|r)

1
r (2.3)

In the above equations, p and q are Cartesian co-ordinates where P = (p1, p2, ..., pn), Q =

(q1,q2, ...,qn), d is the value associated with the selected distance measure, n is the number of

dimensions, and r is a parameter which when set to 1, 2 correlates the Minkowski respectively

to the Manhattan and the Euclidean distance.

26

More complex metrics such as the Mahalanobis distance [Maesschalck et al., 2000] provides a

way to measure the similarity between a set of conditions. This measure takes into account the

covariance amongst variables. The Mahalanobis distance is used to find outliers in a dataset.

Another similarity measure used is the Cosine similarity [Kryszkiewicz, 2013]. It calculates the

cosine of the angle between two vectors of an inner product space, and is therefore a measure-

ment of orientation and not magnitude. The cosine between two vectors ~a,~b is calculated as in

equation (2.4):

~a ·~b = ||~a|| ||~b||cosθ , cosθ =
~a ·~b
||~a|| ||~b||

, therefore
∑

n
i=1 Ai×Bi√

∑
n
i=1(Ai)2×

√
∑

n
i=1(Bi)2

(2.4)

where ~a = A and ~b = B. The resulting similarity ranges from −1, representing a complete

mismatch, to 1 representing an exact match. In order to obtain a distance measure, one must

subtract the cosine similarity from one; dist(a,b) = 1− cos(a,b).

Many clustering algorithms operate on ordinal data, allowing distance calculations and com-

parisons to be more intuitive. However, not all distance measures can be equally applied to

every problem domain, this since not all data is ordinal data. Tagging non-ordinal values with a

corresponding numeric value in ordinal space introduces a bias. One alternative to determine dif-

ferences between mix-type datasets, is to sum the difference between matches and mismatches

for each dimension. This effectively normalises the data [Maimon and Rokach, 2005].

Another distance measure that operates on strings is the Hamming distance [Hamming, 1950],

which represents the number of differing coefficients between two strings of equal length. This

returns the minimum number of changes required to convert one string into another, or the

minimum error value.

Distance measures are synonymous with dissimilarity, which implies that the inverse of the

distance is a measure of similarity.

2.2.2.3 Similarity Metrics - Distance as the Similarity Proxy

The application of distance metrics as similarity proxies is a fundamental approach within clus-

tering algorithms. In grid space, the differences between objects is computed using the distance

of their composing attributes. In a spatial context, as in MDS, objects are positioned according

to their attributes, thus objects which are closer to each other have higher similarity than objects

which are further away.

27

The standard or z-score: A common mechanism to standardise the granularity of differences

for values within dimensions to more discrete intervals is the z-score [Kreyszig, 2000]. For a

given data element, x, it returns the absolute value represented in units of standard deviations

that this element is above or below the mean. This standard score is calculated as in equation

(2.5):

z =
x−µ

σ
(2.5)

where µ is the mean and σ is the standard deviation calculated over the selected dimension val-

ues. Standardisation mitigates the problem of having an uneven distribution of sample attributes

along each dimension.

Weighted Dimensions: In many cases the data elements used do not have an equal number of

representations for each dimension. This is especially so when dealing with incomplete datasets,

wherein some of the data elements fail to represent on one or more of the relevant dimensions.

For example, in some cases dimension α might be represented ten times, whereas dimension β

would just be represented five times. Thus, dimensions cannot have the same weight as they do

not have the same relevance and this could skew results.

To overcome such a bias, the represented dimensions are weighted. This involves the applica-

tion of higher or lower weights to reflect more or less the influence of a particular dimension

on clustering. This is achieved by adding coefficient weights, w, assigned to each dimension,

having a value from 0 < w ≤ 1. The inverse of frequency is used in such a way that, whilst

the weight of a variable with low variance is high, the weight of a variable with high variance is

low. For a J-dimensional vector, with s j being the sample standard deviation of the j-th variable,

w j = 1/s2
j , and is the inverse of the j-th variance calculated as in equation (2.6):

d(p,q) =

√√√√ J

∑
j=1

= w j(pi−q j)2 (2.6)

where p and q are Cartesian co-ordinates, where p = (p1, p2, ..., pn) and q = (q1,q2, ...,qn)

[Greenacre, 2013]. This is not the only compensation mechanism that exists, but is the method

which has been chosen to be applied in the MPACA.

A more intricate problem is that occurring due to the sparsity of data samples, as dimensionality

is increased. This is referred to as the curse of dimensionality.

28

2.2.2.4 Curse of Dimensionality

The “curse of dimensionality” as coined by Bellman [Bellman, 1957], represents a challenge

in statistics. The increase in dimensionality increases the volume of space, making data points

more sparse. This in turn, makes it less likely that a sample set exists for each dimensionality

setting, and the data points tend be unique to a given specific set of dimensions. This prohibits

accurate clustering from occurring, as data points do not gather the statistical significance re-

quired to form a cluster. This increase in dimensions must be coupled with a substantial increase

in observations, which is unlikely to happen, hence dimensionality compression is required. Al-

gorithms such as the MPACA mitigate such a problem by applying normalisation techniques.

2.2.3 Comparing Models

Models are evaluated using internal and external evaluation. Internal evaluation metrics measure

the distance between clusters and within the clusters, whilst external evaluation metrics measure

the quality of the cluster formed for the known class value. Internal evaluation measures are

difficult to benchmark with other existing literature, since different normalisation techniques

and other factors manipulate the data and hence are not used in this thesis. External evaluation

measures are more consistent, however they usually require some manual intervention, that is

matching the cluster to the class value.

2.2.3.1 External Evaluation Techniques

Precision and Recall: The term “Precision”, as defined by equation (2.7), is used to measure

how many of the correctly classified samples are positive samples, whilst the term “Recall”, as

defined by equation (2.8), is used to measure how many positive samples are correctly classified

[Theodoridis and Koutroumbas, 2006].

Precision =
TruePos

TruePos+FalsePos
(2.7)

Recall =
TruePos

TruePos+FalseNeg
(2.8)

where TruePos is the number of cases covered by the rule and having the same class as that

predicted by the rule, FalsePos is the number of cases covered by the rule and having a different

class from that predicted by the rule, FalseNeg is the number of cases that are not covered by

the rule, whilst having the class predicted by the rule and TrueNeg is the number of cases that

are correctly not assigned to the class.

29

Rand-Index and Jaccard Coefficient: The Rand-Index determines the degree of similarity

with the known correct solution, reflecting its class label (group) and the solution obtained by

the clustering algorithm [Theodoridis and Koutroumbas, 2006]. It is defined in equation (2.9):

Rand =
SS+DD

SS+SD+DS+DD
(2.9)

where SS, SD, DS, DD represent the number of possible pairs of data points, i and j. In SS both

data points belong to the same cluster and the same group, in SD both data points belong to the

same cluster but different groups, in DS both data points belong to different clusters but the same

group and in DD both data points belong to different clusters and different groups. The value of

Rand is in the range [0,1] and the higher the value, the better is the clustering performance.

On the other hand, the Jaccard coefficient (J) which also measures the similarity between sample

sets, is defined as the size of the intersection divided by the size of the union of the sample sets

as in equation (2.10):

J(A,B) =
|A∩B|
|A∪B|

(2.10)

where A and B are two sets of data. In essence the Jaccard coefficient is the same as the Rand-

Index, except that it excludes DD, as |A∩B| = SS and |A∪B| = SS+ SD+DS, as defined in

equation (2.11):

J =
SS

SS+SD+DS
(2.11)

The value of J lies in the interval [0,1]. The higher the value of J, the better is the clustering

solution.

F-Measure: This is a more elaborate measure of accuracy, which takes into account both the

precision and the recall to compute a score. The F-Measure can be interpreted as the weighted

harmonic mean of Precision (P) and Recall (R) [equation (2.12)], [van Rijsbergen, 1979]. The

harmonic mean H of N positive values a1,a2,a3, ...,aN , is equal to the value N divided by the

reciprocal of the summation of the reciprocals of N, or H(a1,a2,a3, ...,aN) =
N

1
a1
+ 1

a2
+...+ 1

aN

F-Value =
2×Precision×Recall

Precision+Recall
(2.12)

Further generalisations apply, where a weighted parameter, β > 1, is added to penalise false

negatives more strongly than false positives, as defined in equation (2.13):

F-Value =
(β +1)×Precision×Recall

Precision+Recall
(2.13)

30

In order to comply with the results attained from other studies, β is set to 1. The overall F-value

for the partition computed between possible class i and cluster j is given by equation (2.14):

F-Measure = ∑
i

ni

n
max j{F-Value(i, j)} (2.14)

where n is the total size of the dataset and the F-Measure is limited to the interval [0,1], which

value is to be maximised.

The evaluation measures allow comparisons with a number of classical and swarm based clus-

tering algorithms. The overview undertaken above, relating to the clustering problem, distance

metrics, and evaluation techniques serves as a prelude to the review of general clustering tech-

niques discussed below.

2.2.4 General Clustering Techniques

Clustering is an essential tool related to many fields, including statistics [Wu and Ren, 2008],

pattern recognition [Baraldi and Blonda, 1999], financial modelling [Wei and Ji, 2011] and

data-mining [Kriegel et al., 2009]. The variety of clustering algorithms applied in these areas

and their importance to the MPACA are collectively reviewed in section (2.2.5). Traditional

clustering techniques are broadly divided into hierarchical and partitioning mechanisms.

2.2.4.1 Hierarchical Clustering

FIGURE 2.3: Dendrogram representation of the animal kingdom categorisation, an adaptation
from [1902encyclopedia, 2013].

Hierarchical clustering is subdivided into agglomerative and divisive clustering, differentiated

by the direction of clustering. In agglomerative clustering, the direction is bottom-up where

various data elements are each in a cluster of their own, and merge into larger clusters. In

divisive clustering, each cluster is split into smaller and smaller clusters until there can be no

more divisions. Both mechanisms are essentially different sides of the same coin, since they both

utilise a structure referred to as a dendrogram [Chen et al., 2009]. The animal kingdom is used

as an example in figure (2.3) to illustrate the equivalence of a dendrogram to this categorisation

31

of animals. A partition of the data elements can be obtained by cutting the dendrogram at the

desired level [Grira et al., 2004].

This algorithm operates by linking sets of observations together, until all observations link into

the hierarchy. The repeated application of this process causes larger clusters to form. That is, at

each step sets of observations are linked together depending on the pairwise distance between

observations, using mechanisms called linkage techniques. A number of variations exist for

such linkage techniques, including; the single-link, the complete-link, the average-link [Sneath

and Sokal, 1973], or a technique which utilises minimum-variance [Ward Jr, 1963], [Murtagh,

1984].

The single-link distance between clusters, Ci and C j, is the minimum distance between any

object in Ci and any object in C j. The distance is defined by the two most similar objects,

equation (2.15):

min{d(a,b) : a ∈ A,b ∈ B} (2.15)

The complete-link distance between clusters, Ci and C j, is the maximum distance between any

object in Ci and any object in C j. The distance is defined by the two most dissimilar objects,

equation (2.16):

max{d(a,b) : a ∈ A,b ∈ B} (2.16)

The group average distance between clusters, Ci and C j, is the average distance between any

object in Ci and any object in C j, equation (2.17):

1
||A||B|| ∑a∈A

∑
b∈B

d(a,b) (2.17)

The distance between clusters, Ci and C j, is the difference between the total within-cluster sum

of squares for the two clusters separately, and the within-cluster sum of squares resulting from

merging the two clusters into cluster Ci j. This is also known as the Ward minimum criterion as

it minimises total within-cluster variance, equation (2.18):

di j = d({Ai},{B j}) = ||Ai−B j||2 (2.18)

In all cases, a and b are the observation points in space A and B respectively, and d is the chosen

distance metric, as described in section (2.2.2.2).

Hierarchical clustering is typically fast and efficient. The simplicity of the linkage metrics used

gives it a high level of flexibility and is applicable across any attribute type. Disadvantages

include vagueness of termination criteria and the fact that only one clustering parse takes place.

32

This implies that constructed clusters are not iteratively improved [Berkhin, 2006].

Other types of algorithms aim to directly obtain a single partition of the collection of items

into clusters. This is done by decomposing the dataset into a set of disjoint clusters, namely

partitional clustering, which follows.

2.2.4.2 Flat or Partitional Clustering

Flat or partitional clustering attempts to determine a number of partitions that optimise an ob-

jective function, or a cluster quality measure. Cluster optimisation is an iterative process [Jain

et al., 1999]. Unlike hierarchical methods, where clusters are formed in one parse, partitioning

algorithms operate on a gradual improvement mechanism. Depending on the quality of the clus-

ter formed, further iterations are computed, a process which is continued until either a maximum

number of iterations has been reached, or until the improvement between iterations is below a

specified threshold. This approach returns higher quality clusters, however, is more computa-

tionally heavy than the single parse hierarchical approach. There are two main subtypes in the

field of partitional clustering, namely centroid-based clustering and probabilistic clustering [Jain

and Dubes, 1988].

Centroid-based clustering, K-Means: In centroid-based clustering a number of partitions are

generated and for this configuration of partitions an objective function is used, which represents

overall cluster quality. Seeds are used as initial cluster placements. The remaining data points

are allocated to each “seed point”, thus forming a cluster. The most popular clustering algorithm

of this type is the K-Means algorithm.

The term “K-Means” was first used by MacQueen [MacQueen, 1967], with the original idea it-

self being proposed earlier by Steinhaus [Steinhaus, 1956]. In the K-Means, the objective func-

tion is to minimise the squared distances from the mean. K centroids are chosen, each represent-

ing a seed point, with each seed point being also a cluster centre, thus the name K-Means. For

a set of observations, or data points, x1,x2, ...,xn, with each observation being a d-dimensional

real vector, the nearest cluster centroid is calculated using a distance function. This determines

cluster membership. In most cases the distance function is calculated using Euclidean distance.

Other variations apply the Minkowski or Mahalanobis metrics, section (2.2.2.2). This process

is repeated until all points have been assigned to a centroid. When this occurs, new k-centroids

are calculated [Grira et al., 2004]. Thus N data points are converted into K disjoint subsets, S j,

each containing N j data points in such a way that the sum of squared errors (SSE) is reduced to

33

a minimum, with the objective function expressed as equation (2.19):

J =
K

∑
j=1

∑
n∈S j

||xn−µ j||2. (2.19)

where xn is the vector representing the n-th data point and µ j is the geometric centroid of the

data point in S j.

K-Means is a straightforward algorithm. The way clustering is performed in the K-Means makes

the sequence of data entry non-influential to the final clusters formed. Despite this, it suffers

from a number of shortcomings, mainly revolving around the pre-selection of the seed points.

In the standard approach, random seeds are selected, however numerous literature demonstrates

that improved results and quicker convergence is achieved with an appropriate seed selection

mechanism (see [Pavan et al., 2012]). Multiple algorithms result in various seed selections,

potentially causing a combinatorial explosion problem. The K-Means also requires real-valued

data, lacks scalability, is sensitive to outliers, and the objective function can be misleading when

contrasted with the entire spatial context [Berkhin, 2006], all of which are considered algorithm

deficiencies. Other variations apply different SSE methods, the most popular being the Fuzzy

C-Means [Bezdek et al., 1984]. These fuzzy methods tend to be more successful at avoiding

local minima.

Other algorithms operate on a similar iterative mechanism. However, the allocation of a data

point into a cluster is based on a probability distribution rather than the distance from the mean.

Probabilistic Clustering: In Expectation Maximization (EM) each data point has a probability

value of belonging to a cluster [Dempster et al., 1977]. The algorithm presumes that there is a

statistical distribution, that is, a probability density function (PDF), that can be approximated

over a cluster distribution. The EM algorithm is also an iterative procedure that computes the

Maximum Likelihood (ML) estimate in the presence of missing or hidden data. The ML es-

timates the model parameters which are most likely for the data points presented. Each EM

iteration consists of two steps, an expectation step (probabilistic) which assigns points to clus-

ters and a maximisation step, that is estimating model parameters that maximize the likelihood

for the given assignment of points.

Convergence is assured since the algorithm is guaranteed to increase the likelihood at each it-

eration [Jain and Dubes, 1988]. The key lies within the ML estimation, which aim is to find

parameters which maximise the probability of finding the PDFs which best describe (approxi-

mate) the clusters being sought.

34

Traditional partitioning clustering algorithms tend to define a cluster by the proximity to the

locus of the cluster, which represents a point where each parameter value is the mean of the

parameter values of all the points in the cluster. This approach favours recognition of spherical

shapes, whilst its weakness is recognition of non-spherical shapes and outliers. Other method-

ologies exist which compensate for the drawbacks of both the K-Means and EM algorithms,

these include density-based algorithms.

2.2.4.3 Density-based Clustering

Clusters can be defined as consisting of denser regions of space, separated by regions of lower

object density. This concept is used in the density-based clustering algorithms. The advantage

of these algorithms is that they create arbitrary shaped clusters [Jain et al., 1999]. The principle

algorithm under this capping is the Density Based Spatial Clustering of Applications with Noise

(DBSCAN) [Ester et al., 1996a], later generalised by the OPTICS algorithm [Ankerst et al.,

1999].

FIGURE 2.4: Figure (a) density-reachability, Figure (b) density-connectivity, [DBS, 2013].

In DBSCAN, new clusters are formed when there is an exceeding number of data points, de-

fined by the MinPts, within a certain maximum spatial neighbourhood value, defined as the

ε-neighbourhood (eps). A new cluster forms when the critical mass, MinPts, occurs within the

eps neighbourhood. This is the point that defines the inner part of a cluster, namely a core point.

Data points are categorised in three ways:

1. A core point is said to be so if it has more than a specified number of points (MinPts)

within eps;

2. A border point has fewer points than MinPts within eps, but is in the neighbourhood of a

core point;

3. A noise point is any point that is neither of the above.

The algorithm grows its clusters by utilising two mechanisms; density-reachability and density-

connectivity. Density-reachability takes two forms; direct and indirect reachability. A point q

35

is said to be directly density-reachable from a point p, if p is a core point and q is in p’s ε-

neighbourhood. Subsequently, a point q is said to be indirectly density-reachable from a point

p, if there exists a direct density-reachability between q and another common point c, which

is itself directly density-reachable to point p. Therefore, a point is indirectly density-reachable

if there are chains of associations which are directly density-reachable to each other. Figure

(2.4, a) depicts a chain of points, p1, ..., pn where p1 = q, and pn = p, such that pi+1 is directly

density-reachable from pi. A pair of points, p and q, are density-connected if they are commonly

density-reachable from a point o, as depicted in figure (2.4, b). This is repeated until all data

elements are placed within a cluster.

The advantage of DBSCAN is that clusters can have arbitrary shape and size. The algorithm

does not require the number of final clusters, as this is determined automatically. The algorithm

works well with surrounding noise and can be supported by spatial index structures. The main

disadvantage of DBSCAN is that it is sensitive to parameter settings and is unable to cluster well

within large differences in density.

Other algorithms use density to their advantage and partition space into a finite number of cells

within a grid [Maimon and Rokach, 2005]. This forms the basis of grid-based clustering.

Grid-based clustering: These are algorithms mainly used for spatial data mining. They are

coupled within the same category of density-based algorithms, since density is a key operand

[Grira et al., 2004]. Data is converted into a grid by using a density measure, where cells which

have higher densities are retained, and isolated data items are removed. Clustering is subse-

quently applied to this grid. This approach is independent of the number of objects [Han, 2005]

and data ordering [Berkhin, 2006]. Algorithms based on this approach include the DenClue

[Hinneburg and Keim, 1998] and the CLIQUE [Agrawal et al., 1998].

In the algorithms presented above, the MDS has been used for spatial distribution. The next

algorithm introduces the more structured graph-theoretic clustering.

2.2.4.4 Graph-theoretic Clustering approaches

In graph-based clustering, each data point is taken to be a node of a graph. Edges are paths

between nodes, and are allocated a weight, which is representative of proximity (similarity).

Nodes which are closer to each other offer a higher degree of similarity, versus nodes which

are more distant. A cluster here is defined as a sub-graph [Schaeffer, 2007]. A number of

mechanisms are applied to the graph in which clusters are formed, being either driven top-down

36

or bottom-up. In the former, a fully connected graph is used, which is split into smaller sub-

graphs. In the latter each node is seen as a new sub-graph, and constructs larger sub-graphs.

In the top-down technique, sets of nodes branch off into new smaller clusters. This is deter-

mined by the minimum spanning tree (MST) of the graph [Zahn, 1971], which derives from the

spanning tree of the graph. Given an undirected weighted graph, G, the spanning tree of this

graph is a sub-graph, T of G, that includes all the nodes within G, and some or all of the edges

of G. Thus, T is said to be a tree that spans G. The weight of the spanning tree is calculated as

the sum of all weights within it. The minimum spanning tree of G, is the spanning tree which

has the least weight [Chazelle, 2000]. Longer edges are eliminated from the graph forming new

sub-graphs. By deleting the MST edges with the largest lengths, this in turn generates clusters

which are denser to each other. A cluster is a sub-graph that remains connected after the removal

of the longest edges of the graph [Jain and Dubes, 1988]. This is repeated until the number of

clusters required is found.

In the bottom-up approach, as in the k-nearest neighbour (k-NN), smaller sub-graphs are itera-

tively merged into larger ones, until the desired number of clusters has been reached. The k-NN

graph is defined as a weighted-directed graph, in which every node represents a single cluster

and the edges represent pointers to neighbouring clusters. Every node has exactly k edges to

the k nearest clusters [Franti et al., 2006]. At first a k-NN graph is created, where all nodes

are converted into clusters. The distance between the k-nearest neighbours of every clusters is

analysed and the smallest weight (distance) between clusters returns the best pair of clusters to

be merged. Let these values be ca and cb, which once they merge are set to cab. Next the k

nearest neighbours of this new cluster, cab, are calculated. This merging process is continued

until M clusters are formed [Franti et al., 2006].

The main advantage of graph based methods is simplicity. However, these clustering algorithms

exhibit problems including high time complexity, since they require a brute force calculation on

all pairwise distances. This requires a O(N2) search before clustering can even commence.

2.2.5 The Relevance of Traditional Clustering Algorithms

This chapter has so far outlined the state of the art of traditional clustering algorithms, where

it has been shown that collectively a valid clustering algorithm must have the following quali-

ties; the ability to scale up to larger datasets with high dimensionality, discover arbitrary shapes

without the lack of a given structure even when this data is cluttered with noise, and that the

clustering output should not change irrespective of the sequence of data entry. Traditional clus-

tering algorithms describe the principle methodologies by which unsupervised data clustering is

37

achieved, serving as a foundation upon which the MPACA is developed.

The MPACA is an unsupervised bottom-up approach, which contrasts heavily with the top-

down hierarchical techniques described in section (2.2.4.1). Clustering in the MPACA is driven

by ants merging into bigger colonies, where the term “cluster” is interchangeable with “colony”.

Clustering occurs when ants merge into colonies. The clustering process in the MPACA consists

of an iterative approach. That is, ants can keep migrating from one colony to another, and merg-

ing colonies until a suitable colony for the majority of ants is found, thus sharing similarities

with partitional clustering [section (2.2.4.2)]. The MPACA does not use any probability density

function (PDF) to determine cluster allocations, distinguishing it from algorithms such as the

Expectation Maximization (EM) [Dempster et al., 1977]. The MPACA instead bases its colony

formation on ant densities. The more frequently ants encounter each other in a specific area of

space, the more likely it is that ants belong to the same colony (cluster). This density driven

approach shares similarities with other density based algorithms, section (2.2.4.3).

The MPACA uses a graph architecture to represent the problem domain, where node proximity

in space also signifies a higher degree of relevance. That is, the MPACA is a graph-based cluster-

ing approach [section (2.2.4.4)]. Ants in the MPACA traverse this structure and lay pheromone

to link nodes of higher relevance. The effect of this pheromone causes ants to form higher den-

sities around certain regions at the expense of other regions. Thus, the occupation of certain

areas of space by ants represents the clustering process.

Finally, once the cluster representative colonies are formed, the MPACA allocates the data ele-

ments to belong to each of these colonies using a weighted approach. This approach operates

using cluster centroid values, similar to the K-Means [MacQueen, 1967].

The novelty of the MPACA is that it uses a nature-inspired bottom-up clustering algorithm, an

approach which is distributed and decentralised and returns results which are comparable to both

traditional and other swarm based approaches. The MPACA introduces another major difference

when compared with traditional clustering algorithms. In the MPACA clustering is not achieved

over the original objects but by ants within a colony and the collective properties within each

colony as defined by the values carried by the ants. The operational differences are easier to

appreciate after the MPACA is described in section (3.10.2).

Clustering is a problem which has been tackled by a multitude of algorithms, including those

inspired by nature. In many cases nature-inspired algorithms, like swarm based techniques, are

decentralised, scalable and are ideally suited for unstructured data. The next section reviews

representative techniques under which the MPACA is categorised.

38

2.3 Swarm Intelligence

Swarm intelligence (SI) as introduced in section (1.3), is the collective problem-solving be-

haviour of groups of entities, which interact with each other and their environment to create

interesting emergent phenomena ([Zhu and Tang, 2010], [Chu et al., 2011], [Blum and Merkle,

2008], [Yang et al., 2013], [Lim and Dehuri, 2012]).

A key aspect of SI is that these are population based approaches. Other population bio-inspired

methods exist, with genetic algorithms (GA) being emblematic. GA share key overlapping fea-

tures with SI. Introduced by Holland [Holland, 1973], these have been applied to a multitude of

problems [Thengade and Dondal, 2012]. GA operate on the principle of survival of the fittest,

where candidate solutions which offer the best results are given the ability to procreate their

solutions further. The key operands are the crossover and mutation functions. The crossover

function creates new candidate solutions by selecting the best parents, whilst the mutation func-

tion allows the next generation of candidate solutions to randomly adjust the current maximal

solution. This process counteracts the problem of local maxima and is a popular technique.

Despite being population based and used in a widespread manner, GA do not share all fun-

damental elements of SI which have been identified and are of interest to this thesis, namely;

self-organisation [section (1.3.1)] and stigmergy [section (1.3.2)]. On the other hand, the itera-

tive improvement at each generation be only be considered loosely as a positive feedback in SI

terms [section (1.3.3)], as there is no element of reinforced recruitment between agents. Hence,

GA are not investigated further.

2.3.1 General Swarm Intelligence Approaches

Many prevailing SI approaches exist, as follows; Bacterial Communities [Flikkema and Leid,

2005], [Eker et al., 2003], Stochastic Diffusion Search (SDS) [Bishop and Torr, 1992] ([Bishop,

1989]), Artificial Immune Systems (AIS) [de Castro and Von Zuben, 1999], [Analoui et al.,

2010], [Morrison and Aickelin, 2002] and DNA computing [Adleman, 1994] [Watada and

binti Abu Bakar, 2008], [Dong et al., 2009], [Ono, 2009]. SI techniques do not exclude non-

biologically inspired approaches, such as the gravitational search algorithm [Hsiao et al., 2005],

Intelligent Water Drops (IWD) [Shah-Hosseini, 2007], [Kamkar et al., 2010], [Duan et al., 2008]

and River Formation Dynamics (RFD) [Rabanal et al., 2010], [Rabanal et al., 2008],

The focus of this thesis is to explore and contrast the most prevalent algorithms in SI litera-

ture, which excludes a deeper analysis of the above mentioned algorithms. Within the vast-

ness of SI literature, the major methods can be categorised under two families of algorithms;

39

those traditionally considered to be SI techniques like Particle Swarm Optimisation (PSO)

[Kennedy and Eberhart, 1995], and Bio-Inspired SI techniques, of which Ant Colony Optimi-

sation (ACO) [Dorigo, 1992] and Bee Colony Optimisation (BCO) [Teodorović and Dell’Orco,

2005], [Teodorovic et al., 2006] are flagship algorithms. Three algorithms that have been cho-

sen to be further explored based on their significance to the MPACA are PSO, BCO and ACO,

sections (2.3.2, 2.3.3.1, 2.3.4).

2.3.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [Kennedy and Eberhart, 1995] is aimed at producing com-

putational intelligence via social interaction, rather than via a purely individual cognitive ability.

PSO is influenced by the flocking of birds in search for corn [Heppner and Grenander, 1990].

In PSO candidate solutions called particles, are initially placed in the problem search space,

with the population of such particles constituting a swarm. Each particle evaluates an objective

function at its current location, this evaluates the quality of the candidate solution generated.

The terms “objective function” and “fitness function” are used interchangeably in literature.

The search space is represented by a network topology which allows particles to move from one

area to another. A particle keeps track of the topological coordinates associated with the best

solution (fitness) that it has achieved so far, its personal best, pbest .

Since the action of an individual particle is equivalent to random movements in space, there is

an inherent difficulty at solving optimisation problems. This necessitates interaction with other

particles (the swarm) to gather directional guidance. Particles cooperate by exchanging infor-

mation on what they have discovered about visited areas. Particles which have achieved best

results (optimum particles), known as the global best, gbest , represent the best candidate solution

found (graded by the fitness function) within the neighbourhood topology of that particle. Parti-

cles fly through this topological problem space. Each particle adjusts its position by calculating

a bearing, based upon the following considerations; the current position and velocity, the dis-

tance between the current position and the pbest , the distance between the current position and

the gbest , together with some other random perturbation. A bearing calculation is based on the

following vectors:

1. The −→xn , or the current position of the particle in a search space;

2. The −→pn, previous best, or the best solution found so far by the particle; and

3. The −→vn , velocity gradient, a gradient for which the particle will travel in, if undisturbed.

In the above, n represents the n-th interval, as well as two fitness values, the fitness of the−→xn , and

40

the fitness of the −→pn. At each iteration the solution is evaluated. If the solution for the current

problem found is better than what has been found so far, the previous vector (−→pn) is updated.

The value of the best function result so far is stored in a variable, pbestn , which is then compared

with later iterations. The aim is to keep finding better positions and update −→pn and pbestn accord-

ingly. The particle moves towards a new point by creating a new −→xn , which is the summation of

the current −→xn and velocity vector vn; −→xn =−→xn +
−→vn . Due to the nature of the topological layout

and the manner in which particles interact with their neighbours, progressively improved solu-

tions are achieved. This continues until the minimum error criteria is reached, or the maximum

iteration occurs. After a sequence of iterations, the collective and emergent behaviour will guide

the swarm towards an optimal fitness function.

PSO is widely accepted as a powerful global optimisation algorithm because of its simplicity in

implementation and low constraints on the environment [Poli et al., 2007]. PSO is a benchmark

algorithm in SI and has numerous applications in literature, however the interest of this thesis

are PSO applications applied to clustering, which include [Niknam et al., 2009], [Sharma and

Omlin, 2009], [Hasan et al., 2011], [Chuang et al., 2012], and [Van Der Merwe and Engelbrecht,

2003] amongst others.

Relevance to the MPACA

PSO introduces the notion of a population-wide mechanism applied to problem solving, where

each particle is a basic entity, with limited knowledge of its surroundings. Even if the swarm

itself is a set of particles with limited top-down coordination, it is still not a purely decentralised

technique, since in order to compute the next movement particles need to know not only their

current best, but also the global best, and this can only be retrieved by explicit synchronisation

with other particles. Another crucial limitation is the lack of the influence of stigmergy in PSO,

since direct communication between particles is required through synchronisation.

2.3.3 Bio-Inspired SI Algorithms

The primary focus of Bio-Inspired algorithms are insect based algorithms, rather than particles

or actions of automata. The field of Bio-Inspired SI can be further subdivided into two insect

algorithms, namely Bee Colony Optimisation (BCO) and Ant Colony Optimisation (ACO).

2.3.3.1 Bee Colony Algorithms

Nobel Laureate von Frisch decoded the language used by honey bees to communicate the lo-

cation of a food source, coining the term “waggle dances”, and by means of a series of ento-

mological experiments showed how bees have their own colour vision and are attracted by their

41

hive mates [von Frisch, 1993]. Honey bees, just like their fellow ant cousins, are self-less crea-

tures and are capable of exploring and exploiting large areas simultaneously [Teodorović and

Dell’Orco, 2005], [Teodorovic et al., 2006], [Nikolić and Teodorović, 2013].

In bee colonies, scout bees forage for food sources and upon finding such source they return to

the hive and perform the waggle dance to share this information, and attempt to recruit other bees

in following them. The waggle dance contains information relating to the direction of flower

patches, distance from the hive and a quality rating (fitness). Through this dance, other bees

direct themselves towards the best food source. Due to the distributed nature of the algorithm,

there are always bees which preform random foraging missions. The biological bee colony

resembles the biological ant colony in the way they cause a positive feedback to occur. In a bee

colony, after bees perform the waggle dance inside the hive, the scout bee returns to the flower

patch accompanied by more bees, that repeat this action causing a positive feedback loop to

occur.

In computing terms, scout bees are seen as candidate solutions. These candidate solutions are

comparatively evaluated against other possible solutions, out of which the candidate solution

deemed best is assigned more scouting resources, causing the search effort to focus within a

specific result of a candidate solution. The additional random scouts that are still present further

avoid stagnation in local maxima, as they are free to seek other solutions without any influence.

BCO is applied to clustering problems [Shanthi and Amalraj, 2012], [Nesamalar and Chandran,

2012], [Oleynik et al., 2010]. Notwithstanding, the lack of stigmergy and the more intricate

bee-to-bee communication mechanisms than exist in ants, both BCO and ACO algorithms are

composed of multiple homogeneous individuals which interact locally on a set of simple rules.

Through self-organisation and positive feedback these algorithms are capable of tackling NP-

hard computational tasks. In a similar fashion to PSO and BCO, ACO is population based.

However, ACO operates on a fundamentally different metaphor, since it does not make use of

direct peer-to-peer communication present in both PSO and BCO. Central to ACO is the indirect

communication mechanism that uses pheromones.

2.3.3.2 Ant Algorithms

Omnipresent in Bio-SI literature are models relating to various ant metaphors, ranging from self-

aggregating ants [Azzag et al., 2003], to ants organising cemeteries [Deneubourg et al., 1990b],

ants using colonial odour recognition [Labroche, 2003], the behaviours of heterogeneous ant

types [Admane et al., 2006], pheromone aggregation mechanisms as deposited by ants [Ghosh

et al., 2008], and lastly, crucial to this thesis, the ant metaphor based on ant foraging theory.

42

Many ant species use pheromones to communicate with fellow colony members. This pheromone

acts as a trail and marks the path from the nest to the food sources and back. This is the core

metaphor behind this thesis.

2.3.4 Towards the Ant Colony Optimisation Meta-Heuristic

The focus of Ant Colony Optimisation (ACO) is the meta-heuristic search, section (1.3.4), a

mechanism partly driven by pheromone (the trail) and partly by a heuristic function (the visibil-

ity). The latter function is a local optimisation function which aims to improve solution quality

at each ant movement. For example, in the travelling salesman problem (TSP) where the overall

aim is to minimise total tour distance, the heuristic function is defined as the inverse of the dis-

tance function. Dorigo first applied this to the TSP [Dorigo, 1992], where it is experimentally

shown that ACO algorithms can solve NP-hard problems [section (2.2.1.1)]. Numerous ACO

applications have been introduced. The elements of ACO applications that distinguish their

operations from each other are:

1. The mechanism by which an ant moves from one node to the next in graph space, referred

to in literature as the ant movement or transition function;

2. The pheromone update rules; and

3. Quantity of pheromone that is deposited.

Further terminologies complement section (1.3.4), as follows:

• An iteration is a step within the algorithm at which all ants perform a tour.

• A traversal of an ant between one node and another over an edge is called a transition.

• Local pheromone updates take place when they occur at each of these traversals, whilst

global pheromone updates occur only at the end of the ant tour, thus updating a path which

constitutes a collection of traversed edges with pheromone.

• The global best is the ant tour which returns the best result so far in terms of optimisation.

• The iteration best is the ant tour which returns the best result within the iteration.

The Ant System (AS), also known as the ant-cycle, is the first ant colony optimisation algorithm

in literature [Dorigo, 1992], [Dorigo et al., 1991b], [Dorigo et al., 1991a], which apply the TSP

as the de-facto example. In the ant-cycle pheromone updates are effected at the end of a cycle

(global pheromone updates). Within the AS, the heuristic function is expressed in terms of the

inverse of the Euclidean distance [section (2.2.2.2)] of the edge. After every iteration, that is

after each and every ant has completed its tour consisting of several edge traversals, pheromone

values are updated by all the ants. The pheromone quantity to be deposited is calculated as in

43

equation (2.21), where the constant value Q, is divided by the length of its tour, hence a shorter

tour results in a higher value to be deposited, and on the contrary a longer tour results in a lesser

value. This value is equally distributed over the tour taken by the ant, with the tour consisting

of multiple edge segments. The pheromone value, τi j, which is associated with the edge joining

nodes i and j representing cities i and j, is updated as in equation (2.20). This equation includes

the complement of the pheromone value, ρ , which represents the evaporation taking place on

the existing edge τi j. For each ant present in the system, an amount of pheromone is also added

to this edge as follows:

τi j← (1−ρ) · τi j +
m

∑
k=1

∆τi j(t) (2.20)

where ρ is the evaporation rate, m is the number of ants and ∆τi j(t) is the quantity of pheromone

laid on edge (i,j) by ant k at time t, which follows from equation (2.21):

∆τi j(t) =

Q/Lk, if ant k used edge (i, j) in its tour

0, otherwise
(2.21)

where Q is a constant and Lk is the length of the tour constructed by ant k at time t. During

the construction of any one solution, ants choose which node to visit next by making use of a

transition mechanism which is core to ACO literature. When ant k is in node i and has so far

constructed partial solution sp, the probability of choosing node j is given by equation (2.22):

pi j(t) =

τα

i j ·η
β

i j

∑cil∈N(sp) τα
i j ·η

β

i j
, if ci j ∈ N(sp),

0 otherwise
(2.22)

where N(sp) is the set of feasible components, c, on edges (i, l), where l is a node which has not

yet been visited by the ant k at time t. Parameters α and β control the relative importance of the

pheromone or trail versus the heuristic function or visibility. The visibility function is calculated

by ηi j, as in equation (2.23):

ηi j =
1

di j
(2.23)

where di j is the Euclidean distance between nodes i and j [Dorigo et al., 2006] or the heuristic

component.

As a side note, if the amount of pheromone deposited Q is kept constant, and the amount of

ants increase to accommodate larger domains, the influence of the α parameter can be adversely

impacted by this scaling increase, as the quantity of pheromone deposited would be larger.

44

This algorithm allows ants to deposit pheromones only at the end of each tour, whilst also

allowing an unrestricted quantity of pheromone to be deposited. This positive reinforcement,

whilst required for the general scope of the algorithm, can cause local maxima to occur, as ants

would repeatedly reinforce a specific path. This raises two considerations; should all ants be

allowed to reinforce paths by pheromone deposition, and if so, what is the maximum amount

of pheromone that should be allowed on each edge? In such a case a capping on the amount of

pheromone deposited would be more coherent. These considerations led to improvements based

on the concept of the “best ant”.

The best ant, that is the ant which performs the tour which returns the best results. The elitist

strategy [Dorigo et al., 1996] allows this best performing ant to add an additional amount of

pheromone, therefore adding a bias towards the best solution. An extension to the elitist strategy

is the ASRank [Bullnheimer et al., 1999], where the tour quality produced by the ants is ranked,

and only the n th best ants together with the overall global best are allowed to deposit pheromone

on the traversed paths. A further extension is presented by the Best-Worst Ant System (BWAS)

algorithm [Maniezzo, 1999], in which only the best-so-far ant is allowed to deposit pheromone,

whilst the worst solution is subject to further pheromone decrease.

The Ant Colony System (ACS) is a further contribution in literature in which a local pheromone

update is also included. This differs from global pheromone update which is applied only once

the ant tour has been completed. Local pheromone updates occur whilst the ant is moving from

one node to another, at each constructed step. This is given by equation (2.24):

τi j = (1−ϕ) · τi j +ϕ · τ0, (2.24)

where ϕ ∈ (0,1] is the pheromone decay coefficient and τ0 is the initial value of the pheromone.

The main goal of the local update within the ACS is to increase the diversity of the search

performed during an iteration. A decrease in pheromone concentration on the edge which has

just been traversed encourages other ants to choose other edges, and thus increases the variation,

a measure which reduces early convergence [Dorigo and Gambardella, 1997b], [Dorigo and

Gambardella, 1997a], [Gambardella and Dorigo, 1996].

The process behind the ACS consists of each and every ant constructing a solution by making

stochastic decisions, in response to a deposited pheromone. The colony then reinforces decisions

in the construction process according to its successes by adding pheromone. This pheromone

45

can also decay (evaporate) to mitigate against poorer decisions.

pi j(k) =

argmaxcil∈N(Sp){τilη

b
il}, if q≤ q0

equation (2.22) otherwise
(2.25)

Another important difference between the ACS and the AS is in the decision rule used by the

ants during the construction process. The transition function, or ant movement, in the ACS

uses what is called as pseudo proportional rule, determining the probability of going from node

i to node j. This depends on the random variable q, uniformly distributed over [0,1], and a

parameter q0 as per equation (2.25). The ACS, does not include an element of capping the

quantity of pheromone on each edge. The next algorithm reverses this limitation.

The MAX-MIN Ant System (MMAS) introduced by Stützle and Hoos, is considered to be

the state of the art ACO algorithm [Stützle and Hoos, 2000]. The MMAS increases the search

capability of the standard algorithm by combining exploitation with exploration of the search

space, and by imposing bounds to the pheromone update level, thus helping to avoid premature

stagnation. The term premature stagnation means that the edges connecting nodes have such a

high amount of pheromone, that ants will most likely always choose the same edges. In doing

so they create a sub-optimal path, which might lead to a local maxima.

The MMAS differs from the ACS/AS as follows:

1. Only the best ant tour is allowed to updates the pheromone trails;

2. The value of the pheromone is bound within a minimum and maximum update range

[τmin,τmax], a process which avoids stagnation;

3. The pheromone trails are deliberately initialised to τmax, achieving higher exploration of

solutions at the start of the algorithm.

In the MMAS the pheromone update rule is implemented as in equation (2.26):

τi j← [(1−ρ) · τi j +∆τ
best
i j]τmax

τmin
, (2.26)

where ρ represents the evaporation rate at each iteration and τmax and τmin are respectively the

upper and lower bounds imposed on the pheromone quantity that can be deposited. ∆τbest
i j is

defined in equation (2.27):

∆τ
best
i j =

1/Lbest if (i, j) belongs to the best tour,

0 otherwise,
(2.27)

46

where Lbest is the length of the tour of the best ant, which can be either the best tour found in

the current iteration, known as the iteration best, Lib, or the best global solution found, known

as the best so far, Lbs. Guidelines exist on choosing suitable τmin and τmax [Stützle and Hoos,

2000].

2.3.4.1 Relevance and novelty to the MPACA

The previous section has outlined the standard ant algorithms and referenced the state of the

art ACO algorithm. The AS and its subsequent derivations share the key movement operator

with the MPACA. The core operator is the collective action of ants moving from one node to

another within a graph, together with the laying of pheromones used to strengthen edges of

higher relevance over other edges. The relevance of the connection is dependent on a similarity

function. Key variations between the methods reviewed so far revolve around the mechanism

which the ants in the MPACA use to move around in graph space, tackled further in chapter (3).

Typical ACO implementations use TABU lists, an exclusive list which keeps track of the se-

quence of nodes that have been visited within each ant tour. This TABU list ensures that within

each solution the ant visits a node just once. This is the general ACO approach, and variations

exist in literature (e.g. [Bertelle et al., 2006]) which do not use such a strict TABU list. The

MPACA offers yet another variation; whilst it still uses a TABU list, this list is restricted to size

one, since there is no concept of ant performing tours. The MPACA stores only the last node

which has been visited, naturally limiting the ant from visiting the node it just visited. Ants in

the MPACA do not perform any tours, and respectively there is no fitness function to determine

the amount of pheromone that should be laid down. Pheromone is laid down in a way that edges

which connect interesting nodes are reinforced. The absence of a fitness function enables the

MPACA to be considered truly decentralised and distributed.

The MPACA employs a more innovative mechanism for ant movement. This movement mecha-

nism does not require any foresight about the potential nodes that can be visited, further enhanc-

ing decentralisation. It removes the need to use a meta-heuristic function as per equation (2.22),

which requires both pheromones on edges (trail) and a heuristic function (visibility). The lead-

ing contributor to the selection process is the pheromone present on each edge, which is used

in conjunction with a weighted random selection. Therefore, the MPACA is part-random, part-

pheromone driven. The probabilistic process means that an ant is most likely to choose the path

with the most pheromone matching its features. Any edge can be selected, yet the edges with

higher pheromone levels are more likely to be selected than others.

All the above mentioned changes and their subsequent benefits towards the decentralisation of

47

the process, lead to the primary benefit of the MPACA. That is, that there is no longer the need

to implement a direct fitness function; it is the action of the collective behaviour of ants which

determines this action. In the MPACA pheromone is always deposited at the local level where

there is no centralised optimisation controller, with pheromone being deposited as soon as ants

traverse the edge. This coupled with the lack of a fitness function, implies that the algorithm is

much more decentralised than other ACO implementations.

2.4 Conclusions from SI literature

Bio-SI algorithms have been introduced and defined as population based, bottom-up approaches

which allow unsupervised learning without any preconceptions, being distributed and asyn-

chronous, and allowing scalability. The extended population base allows redundancy, thus the

overall robustness and resilience of the solution is improved. This makes them ideal to be ap-

plied to the clustering domain.

2.5 Ant Algorithms and their Application to Clustering

2.5.1 Fundamental Operators Behind the Chosen Models

A review of ant algorithms and their application is given by Jafar and Sivakumar [Jafar and

Sivakumar, 2010], from which it is apparent that there are numerous confusing ant models and

terminologies. This section describes ant clustering algorithms by categorising them into four

types. Comparisons between the different types and also with the MPACA is made on a set

of criteria defining each model. This makes it easier to show how they are similar or different

and, in particular, how the MPACA is positioned within them. These operational rationales are

subdivided as follows:

• Type I - Knowledge Structure Forming Ants, section (2.6.1);

• Type II - Ant Aggregations and Ants’ Self-Aggregation, section (2.6.2), where clustering

is achieved by ants as they aggregate objects or themselves as representative of objects,

within a 2D grid;

• Type III - Chemical Recognition System of Ants, section (2.6.3), where ants determine

colony membership by exchanging pheromones within a virtual architecture;

• Type IV - Ant Colony Optimisation Algorithms, section (2.6.4), which is also the category

which the MPACA is best categorised under, where ACO inspired techniques are used

within graph space to formulate clustering solutions.

48

2.5.1.1 Type I - Knowledge Structure Forming Ants

Various ant metaphors are linked to self-organisation. Mechanisms which found their way in

clustering algorithms include; cemetery and larvae sorting [Deneubourg et al., 1990b], colo-

nial odour [Labroche, 2003] and ant foraging [Dorigo, 1992]. This typology applies to another

biologically observed behaviour in real ants, that is the ability of ants to build mechanical struc-

tures using self-assembly, such as the building of chains of ants with their bodies in order to link

leaves together, as depicted in figure (2.5), [Akbar, 2008]. In nature different types of chains are

observed, from crossing an empty space to building nests [Lioni et al., 2001].

FIGURE 2.5: Fire ants coalesce together to form a bridge with their bodies to reach a distant
leaf in Jakarta, Indonesia, [Akbar, 2008].

This structure-forming metaphor in ants is used to partition data, by allowing ants to mould

around data giving it more structure. This structure forms a hierarchical clustering technique.

Algorithms falling under this category include the AntTree algorithm [Azzag et al., 2003]. Each

ant represents a data element that is to be classified. Ants subsequently fix themselves on sup-

ports, with other ants attaching themselves to the already fixed ants, thus allowing the creation

of bridges. Artificial ants build a tree according to the similarity between the data they rep-

resent. This mechanism is used to build a hierarchical knowledge structure through these ant

connections.

2.5.1.2 Type II - Ant Aggregations and Ants’ Self-Aggregation

The ability of ants to aggregate objects and the alternative ability of ants to aggregate themselves

serve as key analogies to the clustering process defined next. This concept originates from

the work of Chrétien who investigates the Lasius niger ant and the organisation of cemeteries

[Chrétien, 1996]. Similar experiments are also undertaken by Deneubourg using the Pheidole

pallidula ant, figure (2.6) [Deneubourg et al., 1990b]. Another biological analogy is that of

brood sorting, as observed by Franks and Sendova, in the ant Leptothorax Unifasciatus, where

workers of this species gather the larvae according to their size [Sendova-Franks and Franks,

1995].

49

FIGURE 2.6: From (a) to (d), a sequential clustering task of corpses performed by a real ant
colony. 1500 corpses are randomly located in a circular arena with radius = 25 cm, where
Messor Sancta workers are present. The figure shows the initial state (a), 2 hours (b), 6 hours

(c) and 26 hours (d) after the beginning of the experiment, [Chrétien, 1996].

Deneubourg coins the clustering methodology inspired by such activity as the Basic Model

(BM). In the BM, a population of ants moving randomly on a grid, pick up or drop off corpses

(data points) so as to cluster them. These drops occur only when the similarity with objects in

the immediate neighbourhood exceeds a certain threshold. The ants operate according to local

rules and have only local perceptual capacities. Notwithstanding this limitation, and the decen-

tralised nature of the ants, the ant colony itself demonstrates global and coordinated control.

Distinguishing this typology is the 2D architecture in which ants operate, and the ability of ants

to aggregate either objects or themselves within a particular sub-space. Various models follow

this typology, such as the eponymous Lumer and Faieta (LF) model [Lumer and Faieta, 1994].

This sub-category is called the Standard Ant Clustering Algorithm (SACA).

This typology can be extended to include other ant driven self-aggregation metaphors, such as

the search for safety in the Ant Sleeping Model (ASM), later implemented as the Adaptive Arti-

ficial Ant Clustering (A4C) algorithm [Chen et al., 2004]. This is inspired by the aggregation of

ants towards safer areas in a given space. A safe area represents an area where the neighbouring

ants share many similarities. Ants depart unsafe locations, in search of safe places where to

sleep. The expression “birds of the same feather flock together” is a fitting statement for such

aggregations. Algorithms classified under this type utilise the ants themselves to generate cluster

information. This sub-category is called Self-Aggregation within a 2D Grid.

The spatial transition probabilities in the SACA and the ASM allow ants to needlessly explore

regions without interest. Further extensions include the incorporation of bio-inspired spatial

transition probabilities to compensate for such a lack of orientation by the use of stigmergy [see

section (1.3.2)] [Chialvo and Millonas, 1995]. This latter sub-categorisation revolves around the

50

aggregation of pheromones that causes the conglomeration of ants, or clustering behaviour, in

a species and brings individuals into closer proximity. The ACLUSTER algorithm [Ramos and

Pina, 2002], [Ramos and Merelo, 2002] is a prime example. In this algorithm pheromones are

deposited into a structure accessible by all ants within the immediate proximity. This avoids

the need of short-term memory based strategies, the use of several heterogeneous ants running

at different speeds and other mechanisms frequently associated with the SACA inspired mod-

els. The ant transition probabilities depend on the spatial distribution of pheromone across the

environment. The ant determines its location depending on the change in pheromone from its

current cell towards the most likely cell it can travel to, combining both factors of geo-location

together with the pheromone present in the environment. Thus, areas with higher pheromone are

explored more frequently than areas with lower pheromone. This pheromone orientation allows

ants to avoid roaming in areas void of any objects, a measure which enhances the exploration

capabilities of the ants, and reduces time consuming movements.

Building upon the ACLUSTER, one finds other more recent algorithms in literature, these in-

clude the Aggregation Pheromone Systems (APS) and the Aggregation Pheromone Clustering

(APC) [Ghosh et al., 2008], [Tsutsui et al., 2005]. In these algorithms, ants are used as proxies

of objects that move closer towards each other depending on the pheromone being distributed.

This sub-category is called Ant Aggregation through Pheromone in a 2D Grid.

Other ant metaphors use additional pheromones to exchange information, therefore not relying

solely on location information, including pheromones that determine nest belonging.

2.5.1.3 Type III - Clustering Inspired by the Chemical Recognition System of Ants

Labroche et al. [Labroche, 2003], [Labroche et al., 2002a], [Antoine et al., 2008], [Labroche

et al., 2002b] introduce the ANTCLUST algorithm, which builds around the idea of colonial or

“Gestalt” odour theory. This theory exploits the ability of ants to use a colony wide odour to

discriminate between nest-mates and non-nest-mates, a recognition based on phenotype match-

ing. The ANTCLUST algorithm models this chemical recognition in such a way that the ants of

the same nest share a similar odour, and gather to form a class [Labroche, 2003].

Type III differs from Type II as in this mechanism ants only operate within a virtual environment,

without the need of a physical operating space. Ants exchange knowledge information on colony

belonging by the interaction of pheromone traces. In this typology, colony membership is key

to the clustering process.

There are two key terms to be noted; the label and the template. The label is the individual odour

51

FIGURE 2.7: Principles of the ANTCLUST. Labels and Templates are represented in a 2D-
space for a better understanding. In figure (a) ants have no Label and are just described by their
Genetic odour. In figure (b) the first labels have been computed by the algorithm. In figure (c)
the final classification groups in the same nest, the ants that share a similar Label, [Labroche

et al., 2002a].

which the ant is imprinted with, whilst the template is the odour which the ant is interested in.

The template indicates the odour that nest mates should have on their cuticle for a positive

match to occur. Over time, labels and templates change accordingly. Ants gather around a finite

number of nests, which are representative of the final classification groups. Each nest represents

ants that share a similar label [Labroche et al., 2002b], and are effectively ants which share a

higher similarity to each other, figure (2.7), thus resulting in a collective clustering algorithm.

The use of pheromones which is most relevant to this thesis, is that inspired from the ant foraging

mechanism. This is the founding mechanism behind ACO.

2.5.1.4 Type IV - Clustering using Ant Colony Optimisation Algorithms

Algorithms categorised under this type involve ants that lay down pheromone onto a graph

structure to encourage other ants to increasingly choose edges with higher pheromone. In this

typology, graph space is crucial and is used to represent the problem which is unlike previous

types, where data elements move around in 2D grid space. There are a number of approaches

which fall under this category, including multi-objective, multi-colony and multi-pheromone

implementations using ACO.

In the field of ACO based clustering, two predominant approaches exist; either (i) the conversion

of the clustering problem into an optimal assignment problem, alternatively (ii) the application

of ACO for spatial clustering within a graph.

52

FIGURE 2.8: Objects are placed into clusters 1,2, or 3 by ant tours. Depending on the overall
placement quality, edges between objects and clusters are updated, (author self).

In the former, nodes are allocated to clusters depending on ant traversals between nodes rep-

resenting objects and nodes representing cluster centres [figure (2.8)]. Thus the problem is

converted into graph space by having a sequence of objects, N, each having edges that reach

any cluster K. Ants are used to allocate objects to clusters, with the number of clusters being

known, but the value of the cluster centre still being unknown. Clustering is achieved via an

iterative improvement process, where at each iteration potential cluster configurations, or so-

lutions, are generated and are evaluated through a fitness function. Depending on the overall

fitness of the solution, improved or degenerated, an amount of pheromone is deposited on edges

connecting nodes, reinforcing certain cluster configurations over others. The fitness function

aims to minimise the total cluster error [Shelokar et al., 2004b], [Shelokar et al., 2004a]. This

process eventually leads to increased likelihood of an improved overall solution.

The alternative approach builds on the notion of spatial graph-based clustering [section (2.2.4.4)].

Spatially distributed nodes within a graph are allocated to one cluster over another depending

on their inherent composing values and the similarity that exists between them, the key differ-

ence being that this is achieved without the need of an overall fitness function. That is, nodes

are re-grouped and form sub-graphs which are effectively the clusters sought. The edges that

connect nodes are additional distorted by pheromone traces increasing the likelihood of certain

node connections over others. That is, nodes within the graph itself are set to belong to one

cluster or another. This mechanism is further separated into two approaches. The first approach

uses multiple ant colonies competing for colouring nodes within a graph, where each colony

has a specific colour, and nodes get coloured by the population of ants present on them. Nodes

53

adjust by changing colour [Bertelle et al., 2006], and the final settlement forms the clusters.

The second approach uses ants to populate graph space in a discriminatory manner, that allows

certain cluster areas to form according to node distribution and proximity. These algorithms

assume that the spatial distribution of nodes is directly built on the properties of the data points.

Therefore, spatial configurations are indicative of cluster formations. Ants populate specific ar-

eas of the graph in various densities, a process which further expedites the formation of clusters

[Tsai et al., 2004].

A further application of ACO is in the field of classification and data mining, with its flagship

algorithm being the Ant-Miner [Parpinelli et al., 2001]. Graph space is once more used, with

the added difference that in this configuration nodes do not represent objects to be clustered, but

instead each node represents categorical attributes within a larger sequence or logical combina-

tion. The logical combinations are used to represent rules for a specific condition. For every

initial condition a number of rules are generated. This is achieved by having ants traverse nodes

by selecting an attribute value amongst a possible set of attribute values. The choice of attribute

value is driven by the standard ACO meta-heuristic, which considers the quality of the next

move (heuristic) and the amount of pheromone present on the edge connecting it (trail). The

sequence of traversed attribute value pairs constitutes partial rules. On completion of a number

of traversals, rules are pruned depending on their successful approximation and quality of the

initial condition. The rule which generates the best result has the nodes within its attribute val-

ues and the edges that link these respective nodes incremented with further pheromone. Thus,

in principle a classification rule is discovered via ant traversals over a rule domain.

A number of ant algorithms belonging to each of the mentioned typologies are used to highlight

the variations between such algorithms and the MPACA. To standardise the way this evaluation

is executed, the following criteria are used.

2.5.2 Comparison Criteria

Problem Space (architecture): Section (2.2.2.1) introduces three spatial architectures; the 2D

grid, the MDS and graph space. Graph space does not always directly correlate to MDS, as

is the case in standard ACO optimisation clustering [type IV, (i)], where graph space is used

to contain the solution space. The spatial arrangement used is irrespective of its underlying

properties, where edges are created between objects and possible cluster locations, as in figure

(2.8).

54

Ant Movement: Spatial arrangements allow ants to execute movement (ant transition). Two

mechanisms are most relevant to this research; random movement, where ants are not influ-

enced by external peer-to-peer or environmental factors, and meta-heuristic movement, in which

external factors contribute to the ants’ decision on movement selection.

Interpretation of clusters: Clustering algorithms reorganise the given dataset into subdivisions

of higher similarity. Interpreting the final cluster can be somewhat challenging. In a hierarchical

structure, as in the AntTree, clusters are defined as the sub-trees which are connected to the

primary node. The subsequent datasets within each sub-tree, thus contain the separate cluster

values.

In some cases the clustering process is not fully completed by the action undertaken by the ants.

A case in point is clustering within a grid, where ants either aggregate themselves or aggregate

data elements into clusters. In this case, even if the 2D space returns a clear spatial separation

amongst clusters, there still needs to be a mechanism to extract the cluster value, and include or

eliminate outliers. In these circumstances, additional algorithmic parses are performed, as the

K-Means [Kuntz et al., 1998], and pattern recognition mechanisms are employed to identify the

size of clusters within the grid [Martin et al., 2002]. Other mechanisms include agglomerative

clustering applied over the resultant grid.

Other cluster interpretations include the following:

• In ant algorithms where colony membership is used as a discriminant, as in the ANTCLUST,

the final colony is used to define the cluster. In such a case, a colony is synonymous with

a cluster.

• In ant algorithms where ACO is used as an optimisation tool, the cluster is defined as the

configuration of data elements within the known clusters, which minimises the Error Sum

of Squares (SSE).

• In graph spatial clustering, sub-graphs are formed when edges are cut-off from the main

graph. This edge connectivity is determined by a process where ants reinforce edges

between nodes and create areas of higher pheromone intensity on edges which link closer

(similar) nodes. Depending on a population average applied to all edge weights, edges

with a weight lower than a threshold are cut off from the main graph.

Colony usage: Although the term colony is frequently used in ant literature, it does not nec-

essarily imply that the colony itself has any computational significance, since in many cases

colonies only serve as the operating basin collecting ants together. Evident cases falling un-

der this fold are all ant algorithms which use a single colony. On the other hand colonies, in

55

multi-colony algorithms, can be split into two categories:

1. Distinct ant colonies, possibly in distinct architectures, having limited inter-colony inter-

action at specific synchronisation points;

2. Multiple ant colonies interacting within the same architecture, heavily influencing each

others’ actions, where pheromones used by a colony directly influence other colonies. In

addition to this category, ants may opt to form new colonies in reaction to the ongoing

processing. Thus, the final set of colonies is the emergent behaviour.

Distributed versus Centralised: In any multiple entity algorithm, coordination and commu-

nication exchange mechanisms are crucial. Information exchange determines the level of cen-

tralisation, where lesser coordination and more asynchronous communication leads to a higher

level of decentralisation and vice-versa. The level of centralisation is dependent on the overall

controlling mechanism and the co-ordination it exerts.

Communication between Ants: Centralisation, or the lack of it, is intertwined with the ability

of ants to interact with their peers. This is considered to be explicit when direct ant communica-

tion is used, and implicit if indirect communication exists between ants. The latter is achieved

through pheromone deposition, with a combination of both also being possible. Pheromone use

is further categorised into ants which use just one pheromone type, and ants which use multiple

pheromone types.

The Ant Entity, Abilities and Properties: In its simplest form, the ant is a primitive entity

with a variety of limitations:

• It can access only local information and perform only local evaluations;

• It is unaware of the global solution, being aware only of its own processing;

• It does not keep track of previous solutions;

• It possess restricted sensory abilities. That is the ant is not allowed to view internal states

of other ants which are not in its immediate proximity;

• It is only capable of constrained interaction with other ants and its surrounding environ-

ment.

One of the aims of this thesis is to conform with the cardinal rule of biological swarm intel-

ligence, which forbids giving entities (in this case ants) additional abilities to circumvent the

above mentioned limitations, especially centralised global control, unlike some ant algorithm

variations which fail to do this.

56

Application Area: A further selection criteria is the area of applicability (domain) of the al-

gorithm. Whilst clustering and classification algorithms tend to be coupled together, there is a

difference in the way they operate, as outlined in section in (2.2). Clustering and the analysis

of clusters formed is usually a prelude to classification and respective learning algorithms. This

discriminant is used to distinguish between clustering and classification applications, and when

the algorithm overlaps into both domains.

2.6 Selected Models in Detail

This section analyses in further detail the most pertinent algorithms in literature and contrasts

the key operating mechanisms against the MPACA. These algorithms have been chosen as they

highlight the core elements of each of the four types of algorithms listed in section (2.5.1),

contrasted using the comparison criteria as per section (2.5.2).

2.6.1 Type I - Clustering using Ants’ Self-Aggregation

2.6.1.1 The AntTree Algorithm

This consists of an algorithm inspired by the “chains of ants”, where ants of the species Linep-

ithema humiles Argentina and the Oecophylla longinoda, become fixed to one another to build

structures in order to fill gaps between two points. In the AntTree, artificial ants build a tree

depending on the similarity between nodes [Azzag et al., 2003]. Each ant represents a node of

the tree being assembled or the data being clustered. Ants add themselves onto an initial node,

called the support, then successively onto the ants fixed to this node and so on, until all ants are

attached to the structure. This creates fixings or connections. The structure grows according

to the interactions performed by ants traversing it. Ants can disconnect themselves from the

structure, with ants on the leaf nodes being more prone to exit than ones in the middle of the

structure.

The basic principle involves the ant, ai, moving downward in the tree by following the path

of maximum similarity. If at a given level along this path, ai is sufficiently dissimilar to the

children of apos, then ai is connected to apos in order to create a new sub-category. When ai

meets a leaf, it is connected to this leaf. The threshold for similarity is equal to Smean, taken

to be the arithmetic mean of Smin and Smax, which are respectively the minimum and maximum

similarities. In this case the similarity measure is denoted by Sim(di,d j), represented by the

Euclidean distance for numeric values and the Hamming distance for symbolic values, with all

results being normalised within [0,1] [Norouziy et al.]. Additionally, once detached, ant ai can

57

be placed back on the support node, moving along the tree until it finds a better place to connect

itself to. When all ants are connected within the structure, the algorithm stops, resulting in data

partitioning. The emergent property is the creation of a tree structure, similar to hierarchical

clustering presented earlier.

Evaluation Criteria

The architecture used in the AntTree is that of a tree (graph). Ant movement is driven by the

particular similarity measures that exist between nodes (or other ants). Therefore, ants traverse

paths which are most similar to them. The interpretation of clustering information is entirely

based on the structure formed, and the sub-trees linked to the primary support. This sub-division

of ants towards each of these clusters is heavily dependent on the initialisation sequence. The

first connections to the support influence tree formation heavily. A number of adjustments are

used, from random sequencing, to applying a decreasing order of similarity when linking ants

to the support. Irrespective of claims by its authors, the ordering of data elements still remains

a present limitation of the AntTree algorithm. The ant itself is a primitive entity, which only

applies a similarity measure on nodes. There is no concept of colony, and ants do not make use

of any pheromones. Furthermore, the collective behaviour and positive feedback action of ants

is severely restricted. Ants interact with each other quite physically in the immediate vicinity.

Despite not having a core controlling mechanism, the algorithm is still not totally decentralised,

as ants have to traverse paths commencing from a central node, going down specific paths.

This top-down structure construction makes it difficult for ants to execute traversals that are

independent of each other. This since ants need a structure to traverse, which is built from other

ants, hence an ant only builds on the structure of other ants. The application area is within the

field of hierarchical knowledge formation.

Relevance to the MPACA

Its relevance to the MPACA is due to its similarity in the phenomenon of self-assembly. The

MPACA does not form any structures in the way the AntTree does. Ants in the MPACA learn

features from other ant encounters, a mechanism which also leads to ants clustering around cer-

tain areas and merging into bigger colonies. In the MPACA ants get engulfed by some colonies

and dropped by others. This dynamic structure occurs within the “colony” formation. Clusters

generated by the AntTree algorithm are contrasted with those achieved by the MPACA in the

results section.

58

2.6.2 Type II - Clustering using Ant Aggregations and Ants’ Self-Aggregation

Following from section (2.5.1), there are three main sub-divisions within this typology; The

Standard Ant Clustering Algorithm (SACA), Self-Aggregation within a 2D Grid, and Ant Ag-

gregation through Pheromone in a 2D Grid.

2.6.2.1 Standard Ant Clustering Algorithm (SACA)

In the LF or SACA [Lumer and Faieta, 1994], an extended measure of similarity between two

data objects is used over the BM. Ants are given the capability to sense objects in their sur-

rounding region, s, however unable to communicate in any way with each other. The notion of

short-term memory is introduced, where each ant is capable of remembering a finite number of

locations where it has successfully dropped off an item. Hence, when picking a new item this

memory is consulted in order to bias the direction the ant moves towards. It follows that the ant

tends to move towards the location where it last dropped a similar item. Lumer and Faieta define

picking and dropping probabilities in equations (2.28, 2.29, 2.30). The function, f , represents

the similarity density dependent function of the objects in the neighbourhood, r, located by the

ant. A value is assigned to α , a parameter that is applied to scale dissimilarity. In this function,

s represents the size of the selected local neighbourhood around the ant’s current position. For

the given object, oi, the function calculates the difference between this object and the objects

in its neighbourhood, o j ∈ Neighs×s(r). This is implemented as the summation of each of these

distances. The Euclidean distance, d, between two objects oi,o j, is divided by α , and subtracted

from the fixed value one, equation (2.28).

f (oi) = max

0,
1
s2 ∑

o j∈Neighs×s(r)

[1−
d(oi,o j)

α
]

 (2.28)

Thus, the difference between two objects is expressed as in terms of the Euclidean distance

within an n-dimensional space, limiting its ability to handle non-ordinal objects.

The pick-up and drop-off probabilities are calculated by applying the f value and contrasting

them against k1 and k2, which are two arbitrary values, respectively in equations (2.29, 2.30).

Ppick(oi) =

(
k1

k1 + f (oi)

)2

(2.29)

Pdrop(oi) =

2 f (oi), if f (oi)< k2

1, if f (oi)≥ k2.

(2.30)

59

A number of features have been added to the SACA to improve performance, namely ants hav-

ing different moving speeds and a short-term memory as well as behavioural switches. The

latter implies that ants can start to destroy clusters if they have not performed any pick-up or

drop-off actions for a given number of time steps [Bin and Zhongzhi, 2001]. Other research

includes Bonabeau who explores the influence of various weighting functions, especially those

with short-term activation and long-term inhibition [Bonabeau et al., 1999].

Evaluation criteria for the BM and the SACA approaches

The architecture used is that of a 2D grid, where spatial positioning of objects is irrespective of

their underlying properties. Each data object represents a multi-dimensional pattern. The ant

movement is either random or guided by a visibility range driven by the entropy of the surround-

ing neighbourhood, where ants move towards areas of higher interest. This is all powered by a

similarity function, whereby the ants attempt to move items into closer clusters of similar items.

The emergent property of these actions is that objects are subsequently repositioned according

to their similarity, into places of higher similarity, effectively resulting in clustering. Clusters

are interpreted by the final aggregation of ants, and the features which these ants represent. The

colony is non-influential. A collection of ants is used, but the colony gives no extra information

on the formation of clusters. The mechanism is decentralised as ants execute actions in isolation,

however apply a degree of visibility which includes an ability to comprehend the surrounding

environment. Ants do not communicate with other ants directly, or indirectly, but are aware of

their spatial positioning. There is a limited element of stigmergy, as ants locate themselves over

the grid influencing the movement and actions of other ants. The ant is a primitive entity with

two states, active or dormant. The ant has limited memory skills. Depending on the variation of

the SACA, the ant itself has an element of memory, visibility and other abilities. The application

area of this algorithm is that of clustering.

Relevance to the MPACA

Numerous ant clustering algorithms use this SACA (or part-SACA) approach. The SACA ap-

proach is considered by many as the de-facto ant clustering algorithm. Besides the fact that the

approach is ant-based, heavily decentralised, and applied to the clustering domain, the MPACA

shares few similarities with the SACA. In the MPACA, data elements (objects) are not aggre-

gated into clusters. These data elements are used to build a spatial sub-representation within a

graph, where each data element is represented by a node, connected with edges between nodes.

The edges make it possible for ants to traverse from one node to the next. In the MPACA ants de-

posit pheromone whilst traversing such edges, and are also influenced by this pheromone when

choosing which edge to traverse next. The SACA approach does not make use of any graph

60

structure or pheromone deposition.

There exists a resemblance between the way in which ants in both models respectively calculate

similarity. Unlike the SACA, in the MPACA the similarity function is not applicable to the

entire object, but merely to the features the ant is interested in. Therefore, the ant does not react

to all attribute values, but only to a selected subset of the possible permutations. This subset

is learnt within the MPACA during ant interaction, yet another crucial difference as the SACA

has no concept of learning, in that ants do not change as the execution progresses. Ants in the

MPACA acquire (learn) new features, and lose (forget) other less relevant features. Thus, ants

in the MPACA have more adaptability throughout various stages of execution. In the MPACA

ant colonies are clusters, whilst in the SACA colonies are effectively irrelevant.

A number of algorithms are found in literature that compensate for the deficiencies of the SACA.

Since the core operand remains the SACA model, these are not critically evaluated further, and

only key variations/extensions are outlined.

Extensions to the SACA model

Gutowitz proposes complexity seeking ants [Gutowitz, 1995], where ants can see local com-

plexity and perform the actions of picking-up and dropping-off items in the regions of highest

complexity. In his work, it is claimed that this complexity seeking attribute increases the ef-

fectiveness of sorting and the clustering process. Monmarché et al. propose a hybridisation

of the SACA by including the K-Means, called the AntClass algorithm [Monmarché, 1999],

[Monmarché et al., 1999b]. The approach differs from the SACA since the algorithm allows

an ant to drop more than one object in the same cell, forming heaps of objects. It makes use

of hierarchical clustering, allowing ants to carry an entire heap of objects. This process can be

described in four steps:

1. Application of the ant-based algorithm; this is used for clustering objects in order to gener-

ate a number of accurate clusters, however this will also have some obvious classification

errors.

2. Application of the K-Means algorithm; this uses the initial partition provided by the ants,

and filters out the classification errors at low level.

3. Application of the Ant-based clustering; this is carried out on previously found heaps.

4. Application of the K-Means algorithm; once again performed on the clustered objects.

Monmarché et al. provide empirical results, with the AntClass algorithm being successfully

tested over several databases, including ones presented later on in this thesis [Monmarché et al.,

61

1999b]. The use of the K-Means algorithm greatly increases the convergence rate of this algo-

rithm, whilst the use of a heterogeneous population of ants avoids complex parameter settings,

which would otherwise require expert domain knowledge.

Handl et al. introduce the Adaptive Time Dependent Transporter Ants (ATTA), incorporating

adaptive heterogeneous ants, a time-dependent transporting activity and a method that trans-

forms the spatial embedding produced by the algorithm into an explicit partitioning [Handl

et al., 2006]. They demonstrate that their proposed modifications yield significant improve-

ments in terms of quality and speed of the solution generated.

The ATTA is yet another SACA inspired approach, which does not offer much further insight

into the variations from the MPACA. Despite this, it offers a very compelling benchmark for

measuring ant clustering algorithms. Handl et al. involve metrics to measure the efficiency of

clustering algorithms, and possibly provide the most compelling experimental evaluation of an

ant-based algorithm [Handl et al., 2003b]. The results are further evaluated against the MPACA.

2.6.2.2 Self-Aggregation within a 2D Grid

The Ant Sleeping Model (ASM) and Adaptive Artificial Ant Clustering

The ASM algorithm originates from a metaphor which is not fully an ant inspired one, but

more of a Cellular Automata (CA) approach, based on the principle of ants aggregating in the

quest of seeking a secure habitat. Data elements in the form of ants are deployed in a 2D grid

environment. This method uses the metaphor that ants are continuously seeking a safe and

comfortable environment where to sleep, upon which Chen et al. base the ant sleeping model

(ASM) [Chen et al., 2004].

The modus operandi surrounding it is very similar to SACA, with the notable difference being

that rather than ants moving objects within grid space, ants are themselves representative of ob-

jects, and hence aggregate themselves. The algorithm starts off with a number of ants randomly

scattered over the 2D grid, topologically equivalent to a sphere grid. The search for safe areas

is thus represented by the search for areas of higher similarity. At each iteration the ants move

to a new location, and calculate a fitness, f , for the relative position. The fitness of the position

occupied by a particular ant is directly linked to the similarity of the neighbourhood around it.

The ant uses a probability, pa, so as to decide whether it needs to continue moving, or if it has

located a safe place and becomes dormant (sleep state). If the current probability (pa) is small,

there is a lesser chance that the ant continues moving, and therefore a higher chance the ant stays

put. If the area surrounding the dormant ant changes substantially, the ant will revert to a wake

62

state and attempt to relocate to a safer location. The collective movement of ants (which are

representative of objects) in search for safety causes agglomeration of ants (objects) to occur,

thus clustering, much in the same way as in SACA.

The algorithm uses a fitness function that makes use of local information, implying that the

entire ant group, dynamically and independently from each other, self-organises into aggrega-

tion areas, within which highly similar ants are closely connected. As part of their collective

behaviour, clusters are eventually formed, even if agents exert only a sphere of influence on the

area surrounding them.

Building on the ASM, the Adaptive Artificial Ants Clustering (A4C) algorithm introduces self-

adjustable parameters which minimise the information of the surrounding neighbourhood [Chen

et al., 2004]. Self-adaptive adjusting parameters represent fewer restrictions and require less

computational cost, whilst giving an overall improved clustering quality over standard SACA

methods.

Evaluation Criteria

The only variation between SACA and ASM-type algorithms is the self-aggregation of ants,

rather than the aggregation of objects. This since SACA moves objects by similarity, whilst

ASM-type algorithms move themselves. Excluding this, the same critique applies.

Relevance to the MPACA

The relevance of this algorithm is in the way ants agglomerate to form a cluster. This is similar

to the MPACA, where groups of ants which continually encounter each other agglomerate into

the same group. Ants in the MPACA do not represent data elements in a fixed place, but a

mechanism which reacts to features present on data elements, which are nodes in a graph.

The aforementioned algorithms focus on the collective ability of a colony of ants to move ob-

jects or proxies for objects around to create aggregation of objects within a 2D spatial arrange-

ment, which eventually form cluster definitions. These are valid clustering algorithms in their

own right, however they lack a mechanism which is crucial to the MPACA. That is the use of

pheromone.

2.6.2.3 Ant Aggregation through Pheromone in a 2D Grid

The SACA based algorithms lack the benefits of cooperative ant actions, tantamount with ant

colonies. The next algorithm eliminates this limitation by allowing ants to deposit pheromone

traces. The pheromone traces enhance the gathering of ants within particular spatial positions

63

within the environment, with the behaviour produced also being a stigmergic one.

Aggregation Pheromone Clustering (APC)

The APC builds on the principle that pheromone causes clumping or clustering behaviour which

brings individuals of the same species closer to each other [Ghosh et al., 2008], [Tsutsui et al.,

2005]. In this model, ants are representative of data elements and are allowed to move in the

search space looking for points with higher pheromone density. Ant movement is controlled by

the pheromone intensity around the ants’ location. The higher the accumulation of pheromone

at a point, the more likely it is that ants will move towards this point. This eventually results

in the formation of homogeneous groups of data. Since the number of clusters formed could

exceed the number of clusters present in the problem, a second agglomerative average linkage

algorithm is used.

The APC operates on a dataset of n patterns, x1,x2,x3,x4, ...,xn, and the population of n ants,

a1,a2,a3,a4, ..,an, where an ant ai represents the data pattern xi. Each ant emits pheromone

within its neighbourhood, which intensity of pheromone by ant ai located at xi decreases with

its distance from xi. The pheromone intensity at a point closer to xi, exceeds that of points far-

ther away from it. The pheromone intensity deposited by ant ai at point x, is ∆τ(ai,x). This

pheromone spread mechanism is modelled by a Gaussian distribution, a mechanism which also

compensates for the similarity between x and xi, where the smaller the Euclidean distance be-

tween the two points, the higher the pheromone concentration is, and vice-versa, as per equation

(2.31):

∆τ(ai,x) = exp−
d(xi ,x)

2

2δ2 (2.31)

where δ denotes the spread of Gaussian function and d(xi,x) is the Euclidean distance between

xi and x. The total aggregation pheromone density at x, deposited by the entire population of n

ants is computed using equation (2.32):

∆τ(x) =
n

∑
i=1

exp−
d(xi ,x)

2

2δ2 (2.32)

Ant ai, initially located at xi, moves to location x′i if the total aggregation pheromone density at

x′i is greater than that at xi. This movement is defined by equations (2.33, 2.34):

x′i = xi +η .
Next(ai)

n
(2.33)

where:

Next(ai) =
n

∑
j=1

(x j− xi).exp−
d(x j ,xi)

2

2δ2 (2.34)

64

with η being a proportionality constant at each step size.

The process of determining new locations is continued until the ant finds a location where the

total aggregation of pheromone is higher than its neighbouring points. When this occurs the

point x′i for ant ai is assumed to be a new potential cluster centre, Z j, where j = 1,2, ...,C, with

C being the number of clusters, and the data point with which the ant was associated earlier, xi,

is assigned to the cluster formed with centre Z j.

Any other data points which are within the distance δ/2 from Z j are assigned to this new cluster.

If the distance between x′i and the existing cluster centre, Z j, is less than 2δ and the ratio of their

pheromone densities is greater than the predefined threshold density, the data point xi is allocated

to the cluster having cluster centre at Z j. Higher density values indicate that data points should

belong to the same cluster.

The APC is first applied to generate a number of clusters. The next step involves determining

which clusters are maintained, and which ones are too small and therefore engulfed into larger

ones. In order to achieve this, the use of an agglomerative hierarchical clustering algorithm

[average linkage, section (2.2.4.1)] is used. This renders the APC a two-stepped approach.

Research by Ghosh et al. validate their results against a number of metrics, which are further

compared against the MPACA algorithm in the evaluation section [Ghosh et al., 2008].

Evaluation Criteria

The architecture used is that of a 2D grid, where the initial spatial allocations are irrespective

to the attributes of the object. Each data element (object) is represented by an ant, and placed

within this 2D grid. The ants move with the aim of creating homogeneous groups of data. Ant

movement is guided by pheromone intensity, and is governed by the intensity of aggregation

pheromone deposited by all other ants at a point. This gradual pheromone build up and move-

ment results in the formation of ant aggregations. The final agglomeration of ants, where ants

are proxies for data elements, represents the clusters formed. The colony is non-influential, and

only represents the collection of ants used. It returns no extra information on the formation of

clusters. The mechanism is decentralised, as the ant executes actions in isolation. There is also

full use of stigmergy, as pheromone traces are key elements for movement and other ant actions.

The ant is primitive, as it does not have any additional functionalities. The application area is

that of clustering.

Relevance to the MPACA

The importance of the APC within this literature review is that it introduces the idea of clustering

by pheromone attraction and aggregation. This approach is closer to the MPACA than any of the

65

other methods introduced earlier. Albeit, the pheromone usage is dissimilar to the way it is used

by the MPACA. The complexity of pheromone usage in the MPACA is by far superior to that

in the APC. In the MPACA, there are pheromone scents which are specific to each feature or

feature combination. The APC only uses a generic pheromone as an indication for ant density.

There is no learning mechanism that takes place within the ants, only aggregation.

The algorithms discussed so far have introduced the use of pheromone scents and the ability to

catalyse the coordination of ant movements. Pheromone scents are not solely used to transfer

information about some position or locale, but they also serve to transfer other colony level

information, resulting in a shared learning mechanism. An algorithm which makes use of such

mechanisms is discussed next.

Unlike other pheromone driven algorithms presented later in type IV, the initial distribution of

objects within space is not significant. If the learning process was to be run again, one would

hope to get the same clustering of ants but not necessarily in the same areas of the 2D grid.

2.6.3 Type III - Clustering Inspired by the Chemical Recognition System of Ants

Labroche et al. transpose the idea of colonial closure to the clustering domain [Labroche, 2003],

[Labroche et al., 2002a], [Antoine et al., 2008], [Labroche et al., 2002b]. That is, the alloca-

tion of ants into a colony and the recognition mechanism for this to occur is based on a set of

comparisons of the perceived label to its template and the emerging behavioural rules from this

reaction. The ANTCLUST assigns an ant for each data element. Initially, ants have no label

and are described solely by their genetic odour. As ant encounters take place, these labels are

adjusted depending on encounters with other ants, modelled by the selection of multiple pairs

of ants at each iteration. This clustering behaviour is outlined in algorithm (1).

Algorithm 1 ANTCLUST main algorithm
(1) Initialize the ants:
(2) Genetici← ith objects of the dataset
(3) Labeli← 0
(4) Templatei is initialised
(5) Mi← 0,M+

i ← 0,Ai← 0
(6) Simulate NbIT ER iterations during which two ants, that are randomly chosen, meet
(7) Delete nests with less than P×n(P� 1) ants
(8) Re-assign each ant having no more nest to the nest of the most similar ant found that have a
nest [Labroche et al., 2002a].

A similarity function is used during ant encounters, this allowing ants to adjust their labels. The

similarity function operates on data elements, i and j, and outputs a value, Sim(i, j). When

Sim(i, j) = 0, the two elements are dissimilar, whereas when Sim(i, j) = 1, the two elements are

66

identical. For n-dimensional numerical data, xi and x j, equation (2.35) is used:

Sim(i, j) =
1
n

n

∑
k=1

(
1−

|xk
i − xk

j|
|maxxk−minxk|

)
(2.35)

This process of adjustment operates as follows, where for each ant i:

1. The Label, Labeli, is determined by the nest which the ant i belongs to, coded by a number

representative of the nest. Initially, all ants have Labeli equals 0. This value adjusts over

time, until each ant finds its best nest.

2. The Template is evenly split into components, the first being the genetic odour, Genetici,

which corresponds to the object within the dataset and does not change, whilst the other

second half is derived by an acceptance threshold, Templatei. This latter component is

learnt during the initialisation phase. Therefore, the Template threshold, Templatei, is

composed of the function of all the similarities observed during this period. This renders

the acceptance threshold, Templatei, dynamic.

3. Mi measures the success of ant encounters. Initially, at time t = 0, an ant which has no

encounters has Mi = 0. Mi is increased when ant i meets another ant with the same Label

and decreased when the opposite occurs. Mi also estimates the size of the nest to which i

belongs to.

4. The estimator, M+
i , measures how well accepted an ant i is within its nest. This measure

of acceptance is increased when ant i meets another ant with the same Label and when

both ants accept each other. The opposite also holds, that is the measure is decreased

when ants of different labels encounter each other.

5. Age is defined by Ai, which at the beginning equals 0, and is used when updating the

acceptance threshold.

6. The maximum similarity formula is Max(Sim(i, ·) and mean similarity Sim(i, ·) which is

observed during its meeting with other ants.

The ANTCLUST consists of two operators, the initialisation of young ants and the ability of

ants to resolve label and nest belonging. In the first operator, the template, Templatei, for each

ant i, is learned during meetings. At the end of this period, the ant i possesses values of mean

and maximal similarities defined in equation (2.36):

Templatei←
Sim(i, ·)+Max(Sim(i, ·))

2
(2.36)

67

The second operator is the ant meeting resolution. The label and acceptance threshold are

changed according to the behavioural rules in equation (2.37).

Acceptance(i, j)⇔ (Sim(i, j)> Templatei)∧ (Sim(i, j)> Template j) (2.37)

The behavioural rules follow:

• R1, new nest creation:

If (Labeli = Label j = 0) and Acceptance(i, j), then create a new Label LabelNEW and

Labeli← LabelNEW , Label j← LabelNEW . If Acceptance is false then rule R6 is applied.

• R2, adding an ant with no Label to an existing nest:

If (Labeli = 0∧Label j 6= 0) and Acceptance(i, j), then Labeli ← Label j. Similarly, the

case (Label j = 0∧Labeli 6= 0) is handled in the same way.

• R3, positive meeting between two nest mates:

If (Labeli = Label j)∧ (Labeli 6= 0)∧ (Label j 6= 0) and Acceptance(i, j) then

Increase Mi,M j,M+
i ,M+

j . This is achieved by increasing equations (2.38, 2.39):

x← (1−α)× x+α (2.38)

x← (1−α)× x (2.39)

• R4, negative meetings between two nest mates:

If (Labeli = Label j)∧ (Labeli 6= 0)∧ (Label j 6= 0) and Acceptance(i, j) = False then

Increase, Mi,M j and Decrease M+
i ,M+

j .

The ant x(x = i,x = j) which has the worst integration in the nest (x|M+
x = Mink∈[i, j]Mk)

loses its Label.

Following which there is more nest (Labelx← 0,Mx← 0 and M+
x ← 0).

• R5, meeting between two ants of different nests:

If (Labeli 6= Label j) and Acceptance(i, j) then decrease Mi and M j.

The ant x with the lowest Mx, therefore belonging to the smallest nest changes its nest

value to that of the encountered ant.

• R6, default, if no other rule applies, nothing happens.

This interaction allows ants to resolve meetings and adjust the labels and templates. Indirectly,

ants migrate from one colony to another, a process which builds bigger colonies, and erases

smaller ones. In the end, this results in a restricted number of colony values, where nest mates

are most similar to each other than the ants of other colonies, providing a partition of the set of

objects. This represents the core of the clustering mechanism.

68

Labroche et al. contrast their work with the K-Means algorithm [Labroche et al., 2002a] and

demonstrate that on the contrary to other clustering algorithms, the approach does not impose

any assumptions on the given dataset and does not require initial partitioning or a known initial

number of classes. This method is easily applicable to many fields including web mining and

other unsupervised domains. There are many cases of ANTCLUST implementations [Labroche

et al., 2003a], [Labroche et al., 2003b], including variants that have been shown to separate

noise from data [Zaharie and Zamfirache], credit evaluation of small enterprises [Xue-chun

et al., 2007], and web-mining [Inbarani and Thangavel, 2006].

Evaluation criteria

The ANTCLUST uses a pairing comparison mechanism, where each ant is matched against any

other ant. This excludes the need for a spatial architecture. Clusters are interpreted by the final

colony position the ants are in, which is their label. This renders the use of multiple colonies in

the ANTCLUST essential. In the ANTCLUST pheromones are not used to guide movement, but

to transfer knowledge between ants. This information gives a sense of belonging into a colony

more than any other colony. The mechanism is distributed, since ants adjust their label at the

local level depending on ant encounters. The ant itself is a primitive entity, which aim is solely

to distribute this pheromone odour within a colony. The application of ANTCLUST is within

the clustering domain.

Relevance to the MPACA

The ANTCLUST shares a number of similar emergent properties, mainly the colony/cluster

forming nature, and the ability of the individual ant to learn the odours belonging to a colony.

Like the MPACA, the ANTCLUST allows ants to form new colonies. Operationally, this is

slightly different since in the MPACA all ants initially belong to a colony, and they eventually

merge into bigger colonies, whilst in the ANTCLUST initially there are no colonies, and these

form only as the execution progresses. Both the ANTCLUST and the MPACA allow ants to

shift colonies depending on ant encounters, albeit using a different operating mechanism.

There is also the mechanism of transferring knowledge between ants. In the ANTCLUST, ants

adjust the label and template according to the odour of their nest mates. In the MPACA, ants

learn to acquire new features which are carried by other ants, depending on the frequency of

encounters. Hence, in both instances, this knowledge transfer happens at the ant level. The

difference between both is that ants in the MPACA learn an additional feature at each merge,

features describing nodes, whilst in the ANTCLUST ants learn to recognise other ants as be-

longing to the colony or not. The MPACA delves deeper into the properties of the objects,

69

since objects are effectively collections of features, whilst the ANTCLUST considers objects as

distinct items to be clustered. Additionally, the similarity function applied by the ANTCLUST

returns a function of difference between two objects, whilst in the MPACA there are functions

which determine the difference between features, mainly if a feature “A” fits into feature “B”

and so on.

A crucial difference between the ANTCLUST and the MPACA is in the way pheromone is

used. Whilst the ANTCLUST uses pheromone for information exchange for colony belonging

purposes only, as it operates only within a virtual environment and there is no real domain

over which ants move. The MPACA on the other hand, uses the pheromone also as a guidance

mechanism, where pheromone scents represent either single features or combinations of features

which are being sought by the ant. The MPACA also allows a much larger element of self-

adjustment to occur, as ants modify themselves according to the other ants they encounter.

The aforementioned algorithms bring us closer to the final and most important set of algorithms,

those that are inspired by ant foraging metaphor. This subset of algorithms is traditionally

grouped under the term Ant Colony Optimisation algorithms.

2.6.4 Type IV - Clustering using Ant Colony Optimisation Algorithms

Crucial to the understanding of the MPACA is the domain within which it operates and the prin-

ciples it builds upon, introduced in section (2.3.4). The MPACA has its core an ACO algorithm

which operates over graph space. The use of graph space makes it dissimilar from types I-III

above. The prevalence of this research is towards ACO algorithms applied to the clustering

problem.

In this typology, objects are converted into nodes and are spatially arranged depending on their

underlying values. The next section is subdivided into the two segments; the multi-objective and

multi-colony implementations which follow from classical ACO literature, and ACO algorithms

which are specifically applied to the clustering problem.

2.6.4.1 Multi-Objective Problem Solving

Clustering problems are not commonly identified as multi-objective problems. Despite this, the

utilisation of multiple pheromones in seeking different feature combinations can be seen as a

multi-objective task. The MPACA is influenced by the work of Montgomery [Montgomery,

2005], where he introduces a framework around higher order pheromones. This framework is

applied to multi-objective constraint searches. A multi-objective optimisation problem involves

several conflicting objectives and has a set of Pareto optimal solutions. The term Pareto set or

70

front, was coined by the economist Vilfredo Pareto [Bruni, 2002]. A Pareto efficient situation

is one in which states of current resource allocation cannot improve for any member without

making another member worse off. Zhou et al. survey the state of the art within this field

including ant algorithms [Zhou et al., 2011].

Relevance to the MPACA

In the MPACA, the ant clusters which form are dependent on the routes taken by the ants.

Throughout its operation, the MPACA combines the features being sought, effectively having

multiple search criteria to match. The following occurrence can manifest itself: three groups

of ants, the first searching for shape, the second group searching for colour, and the final group

searching for a combination of both colour and shape. The pheromone laid for each of the

three differs. Even if these are not conflicting in terms of a proper Pareto front, it still remains

a multi-objective search. Consequently, despite the clustering problem not being traditionally

considered a multi-objective search, the transformations carried out within the MPACA allude

at this being so.

The ability of different ant groups to have specific pheromone values, or a collection of pheromone

values, brings us closer to the MPACA, and to another important aspect of that MPACA, which

is its multi-colonial and multi-pheromone mechanism.

2.6.4.2 Multi-Colony and Multi-Pheromone ACO Approaches

The combination of the two properties, the multi-colony and the multi-pheromone aspects of

ACO, and their utilisation helps to highlight a crucial novelty within the MPACA. Many ACO

instances are considered to be multi-colony, however this is only a term for the collection of in-

dependent ACO instances operating on the same problem and at the same time. This is dissimilar

from the interlinked ants within colonies in the way they are used in the MPACA. This offers

three aspects of relevance to this thesis: (i) the multi-colony mechanism and how pheromone

features in such a configuration, (ii) the polymorphism of ants within a colony and their adapt-

ability within the search, and (iii) the exchange mechanism used to transfer information between

colonies.

The multi-colony ACO consists of two main approaches, either a number of smaller ACO

colonies (sub-instances) are used in an attempt to solve sub-problems within a larger prob-

lem domain, or alternatively different ACO colonies are used in attempting to solve the en-

tire problem and compare the results attained by each. Respectively represented by the Multi-

Object MACO (MMACO), and the Homogeneous MACO (HMACO) [Middendorf et al., 2002],

71

[Guntsch and Middendorf, 2001], [Guntsch, 2004], [Guntsch and Middendorf, 2002]. The term

multi-pheromone differs from its usage within the MPACA, in MMACO/HMACO each colony

has its own single pheromone type. Hence, the term multi-colony and single pheromone is more

appropriate.

In MMACO ants from various colonies interact with each other whilst attempting to solve the

problem, thus they adapt to the new search criteria, which is why ants in the MMACO are

termed as polymorphic ants. Whilst in HMACO, ant colonies are considered homogeneous as

they do not adapt during the search and all ant sub-colonies are provided with the same search

criteria, and results are merged via exchange of information between sub-colonies at the end

of each iteration. By exchange of information this can alternatively represent intermediate re-

sults, pheromone structures or any other information which is pertinent to the overall search.

The exchange strategy is the timing at which the various ant colonies interact with each other.

In MMACO each colony executes in isolation and exchange only occurs at the end, whilst

in HMACO exchanges occur within specific iterations. The information exchange between

colonies is described by Middendorf et al. as being categorised in four main exchange strate-

gies: exchange of globally best solutions, circular exchange of locally best solutions, circular

exchange of migrants, and circular exchange of locally best solutions plus migrants [Middendorf

et al., 2000].

Kruger et al. also show that in the communication between colonies, it is better to only exchange

pheromone matrices for the best found solutions, and transmit these to the rest of the local

pheromone matrices [Krüger and Merkle, 1998].

By their nature of implementing a series of ACO instances, multi-colony ACO are shown to be

generally superior to single colony ACO. This since at its worst case, the solution of a multi-

Colony ACO tends to be equivalent to that achieved by a single ACO. Numerous publications

demonstrate the effectiveness of multi-colony ACO ([Chen et al., 2007a], [Li and Bai, 2010],

[Zhang and Lin, 2010], [Zong et al., 2010], [Chen and Liu, 2009], [Ling and Wei, 2009], [Viet

et al., 2008], [Hao et al., 2009]).

Multi-Pheromone Approaches: Few truly multi-pheromone approaches within the same colony

can be found in literature. Ngenkaew et al. provide an exception, but even so, this approach

is restricted to only two pheromone types; a trailing pheromone and a foraging pheromone

[Ngenkaew et al., 2008b], [Ngenkaew et al., 2008a]. The trailing pheromone (TP) is used to

lead ants to return towards a nest or lead ants towards clusters of other ants, whilst the foraging

pheromone (FP) is used to help ants locate new food sources and explore unknown areas. The

72

MPACA has a much higher number of pheromones. In the MPACA, the pheromones do not

belong to one colony or another, but they belong to the features and the feature combinations

that have formed. Hence, depending on the features ants are seeking, this determines which

pheromone values are used, rendering pheromone traces totally distinct from colonies. This

makes colony formation only a secondary product of the pheromone traces which are deposited,

and the colony itself does not control or co-ordinate in any way the pheromone traces which are

laid down.

Relevance to the MPACA

The MPACA is different from standard multi-colony and multi-pheromone implementations.

Standard approaches do not offer a “complex pheromone guidance” system, which is a core

activity within the MPACA. They are mostly restricted to applying different variations of the

ant algorithm from a variety of angles. In fact the connection between colonies is limited to the

strategic exchange points. In the MPACA there is no exchange of information between various

colonies, as each colony is only a collection of ants within the larger basin of ants within the

system. There is no optimisation which occurs within any specific colony, the interaction occurs

between all ants in the system. Notwithstanding the interest in the above mentioned approach,

this still does not satisfy the multi-pheromone concept present in the MPACA. The approach

is dissimilar from the MPACA, where ants from each colony interact with other ants from any

other colony via pheromones deposition. ACO by its distributed nature, is an ideal algorithm for

parallelisation. Multi-colony and/or multi-pheromone approaches share many similarities and

are interlinked with parallel ACO approaches [Bullnheimer and Strauss, 1997], [Stützle, 1998],

[Talbi et al., 1998], [Middendorf et al., 2000], and [Chu et al., 2003].

So far the literature review has evaluated ant algorithms which use aggregations of other ants to

from knowledge structures, ants which cluster objects by aggregating them based on similarity,

ants which use pheromone to transfer knowledge between other ants and form new colonies,

and finally ACO and its applications to multi-objective, multi-colony and multi-pheromone im-

plementations. These algorithms lead to the ACO algorithms as applied the clustering domain.

2.6.4.3 Ant Colony Optimisation (ACO) and its Application to Clustering

Shelokar apply a direct ACO implementation to clustering, which brings us closer to the main

MPACA concept, that is, clustering directly via standard ACO using auto-catalytic path rein-

forcement [Shelokar et al., 2004b], [Shelokar et al., 2004a].

Multiple ants attempt to solve a clustering problem by determining an optimal assignment,

73

which is iteratively improved, after the evaluation of a fitness function. The fitness function

is the sum of the squared Euclidean differences between each object and the cluster centre of the

cluster it belongs to (SSE). Given N objects in ℜn, objects are assigned to one of the K clusters,

such that the SSE is minimized, figure (2.8). The algorithm considers R ants to build solutions.

An ant starts with an empty solution, string S of length N, where each element of the string

corresponds to one of the test samples. The value assigned to an element of solution string S

represents the cluster number to which the test sample is assigned in S. For a given N objects,

where N = 8, with these being labelled a, b, c, d, e, f, g, h and three possible clusters, i.e. K = 3,

with these having labels as c1,c2,c3, solution S1 is defined as;

S1 = {(a→ c2),(b→ c1),(c→ c3),(d→ c2),(e→ c2),(f → c3),(g→ c2),(h→ c1)}

≡ {c1 has objects(b,h),c2 has objects(a,d,e,g),c3 has objects(c, f)}

Each of these solutions is created by each ant individually. To construct a solution, the ant

uses the pheromone trail information to allocate each element of string S to an appropriate

cluster label. At the start of the algorithm, the pheromone matrix, τ , is initialised to some

small value, τ0. The trail value, τi j at location (i, j), represents the pheromone concentration of

element i associated with cluster j. For the problem of separating N samples into K clusters, the

pheromone matrix is of size N×K. Therefore, every sample has K pheromone concentrations

associated with it.

At every iteration, ants will develop trial solutions via the pheromone driven communication in

an attempt to obtain a near-optimal partition of the given N test samples into K groups, satisfying

the defined objective. Once a population of R trial solutions has been generated, a local search is

performed to further improve fitness of these solutions. Following this, in line with the standard

ACO approach, pheromone trails are updated within the matrix. This step is repeated a number

of cycles until convergence to a near-optimal solution occurs.

Evaluation criteria

In this approach a graph architecture is used, where ant movement follows the transition proba-

bility presented in standard ACO, being fully Bio-Inspired. The fitness function determines the

quality of the clusters formed, and also the amount of pheromone to be deposited on the edges

between nodes. Pheromone plays a crucial aspect in the ant movement function. This is limited

to just one pheromone type. Like in many other cases preceding this algorithm, the colony is

non-influential, and there is no formation of new colonies, a crucial mechanism in the MPACA.

The final cluster positioning is evaluated according to the highest weights existing from each

object to each cluster set. The ant entity utilises functionalities which are in-line with the ACO

74

transition mechanism, with the ant being able to choose which edge to visit next out of the pos-

sible edges, and can see beforehand how much pheromone each edge has, together with being

able to apply a heuristic function which determines the quality of such a move before it happens.

Relevance to the MPACA

The principle similarity between this approach and the MPACA is related to path following and

reinforcement of pheromone. The above mentioned algorithms, rather than minimising tour

distance as in the TSP, minimise the total error of a cluster centre. Ants traverse multiple paths

corresponding to nodes, in an attempt to generate combinations of “object-to-clusters” that result

in lower total error differences between clusters. Despite the application of a pheromone driven

approach, the similarity to the MPACA does not extended any further. Unlike the MPACA,

ants do not merge into different colonies, ants do not carry any features, merge any features or

adapt to the circumstances found in the dataset. There is no notion of self-assembly into bigger

structures, that is, “colonies”, which form the basis of the clusters in the MPACA. There also

exists a difference in the way clustering is achieved. In this method, the problem at hand is

converted into an “optimisation” problem rather than a graph partitioning problem.

The next set of algorithms apply ant based clustering mechanisms over graph distributions,

which in many cases are a form of graph partitioning.

2.6.4.4 ACO Applied to Graph Partitioning

The first algorithm in this sequence uses competing colonies of ants to colour graph nodes. This

colonisation of nodes is also a form of clustering, as it subdivides the graph into regions of

similarity by proximity.

Organisation Detection Using Emergent Computing: Organisation Detection Using Emer-

gent Computing (ODUEC), is an algorithm suited at handling balanced graph partitioning prob-

lems, by subdividing a given graph G, into k disjoint partitions [Bertelle et al., 2006]. The goal

is to obtain a balanced number of nodes in each partition, whilst minimising the number of

edges which are cut [Andreev and Räcke, 2004]. In this algorithm, ants are allowed to travel

within graph space and detect possible organisational layouts, by means of an auto-organising

mechanism. Multiple ant colonies are used, with each colony represented by a distinct colour.

A coloured graph, G, consists of N nodes, with each node being characterised by a colour at time

t, with time being the synchronising mechanism. Edges connecting nodes are characterised by

a weight, |e| ∈ N+, which represents the level of importance between the nodes at each edge

end, e, and a quantity of pheromone representative of each colour. C(t) is the set of colours

75

representing ant colonies at time t. In this construct, ω is the sum of all weights on each edge.

In this method ants do not perform an optimisation process as in standard ACO. That is, the

solution generated by the ants is not subjected to a fitness function, which determines the amount

of pheromone laid down. Ants from various colonies travel along the graph and lay pheromone

corresponding to the colour of their colony. The partitioning mechanism comes into play as

ants are repulsed by different pheromones of other ants, and are attracted towards their own

pheromone type. At each iteration, the ant chooses the node to visit next depending on two

parameters, A and T . A is the value controlling the competition amongst ants; when an ant

detects a node with a proportion of similar colour less than A, this is deemed as a hostile node

and the ant proceeds to move towards another node. T is a resting time value, and acts as a

stabilising factor, limiting the fleeing capabilities of ants. In ODUEC the actual edge selection

mechanism is still based on the ACO mechanism as per equation (2.22).

The algorithm commences with two colonies, and more colonies are added as the solution pro-

gresses. For each node of the graph a colour is computed. This node colour is said to have

stabilised if this is larger than a selected threshold. Once this occurs, it is possible to compute

the proportion for all nodes within the graph and determine global stability. This value is used

to determine if it is possible to add more colonies or not. If the addition of another colony gives

a stability that cannot reach the threshold, then this is the point where no more colonies are to

be added.

Over time this action causes ant colonies to colonise areas of graph space, forming the effective

partitions. In other words, these ant colonies compete in order to colonise separate subsections of

the graph space. Organisational information emerges from the actions of such global behaviour

of decentralised ants. This results in the nodes on the graph being coloured accordingly. The

colour of the node is retrievable depending on the colour which is represented with the highest

pheromone proportion. This algorithm is applied to a number of datasets, amongst which is the

amazon.com book seller database. The ISBN of the book is used to find all other books bought

by customers at the same time, resulting in similar topics being closely matched together.

A similar auto-organising mechanism is also presented in the Colour Ant System algorithm

(CAS) [Bertelle et al., 2003] and AntCO2 [Cardon et al., 2006], both of which are applied to the

problem of load balancing processor loads, whilst minimising communication overhead. This

differs from a traditional clustering problem, however the underlying principle remains the same.

The load is transferred amongst a number of processors, and in order for the communication

overhead to remain low, processes in proximity of each other operate on the same underlying

processor.

76

Each colony consists of a processing unit, which is given a colour. Initially, it is allocated

nodes with this same colour, and in a similar mechanism to competing colonies, ants allocate

pheromone to deter competing ants from other colonies, and attract ants from the same colony.

The colour of the node is obtained from the main colour of its incident edges. From an opera-

tional perspective, this colonisation of nodes is effectively once more equivalent to the clustering

problem.

Evaluation Criteria

Graph space architecture is used, with ant movement being fully Bio-Inspired, following on from

ACO movement functions. This methodology makes use of different “competing pheromone

scents”. An evaluation function is used to determine how much pheromone is to be deposited

on each edge. The mechanism by which ants flee for safety is similar to the ASM introduced

earlier. Two key differences between this approach and the ASM are the use of graph space

rather than 2D space, and the use of multiple pheromones to encourage stigmergy.

Multiple ant colonies are used, which are in competing mode, and these are essential to the

formation of clusters. The colonisation effect happens at the individual node, which is influenced

by a population of ants. This requires a contained level of interaction with other ants. However,

whilst coordination between ants is asynchronous, the inclusion of new colonies is centrally

controlled. Communication between ants happens only indirectly through the use of pheromone.

The ant entity is a primitive one, with no access to memory or other information. The area of

applicability is that of colouring graph nodes, which can be interpreted as colonised areas of

graph space, or a spatial clustering process.

Relevance to the MPACA

The utilisation of various interacting pheromones originating from different colonies and the

mechanism by which spatial graph colouring is achieved, brings us a step closer to the way the

MPACA operates. Like the MPACA, ODUEC does not make use of a centralised mechanical

evaluation or fitness function, and the solution is built from the bottom-up. This makes both

algorithms much more decentralised than many other ant algorithms found in literature. Rather

than being a pure clustering approach, ODUEC is more representative of a mapping mecha-

nism. Despite this, the emergent properties of its collective actions induce a substantial level of

similarity.

A number of dissimilarities exist. The pheromone values utilised by ODUEC are not fine grained

or adjusted throughout its operations. This differs from the MPACA where pheromone values

represent features values and conjunctions of feature values which can change over time. In

77

ODUEC the number of colonies is operator controlled. ODUEC uses a common pheromone

value which is common all throughout the colony. It is true that the colours of the nodes change

according to ant populations, but the colonies themselves do not adapt to change. Ant colonies

retain a static population of ants, so no new ants come in or depart the colony, and this introduces

no variation in the pheromone phenotype. The colonies are identified by one pheromone value

and ants only react positively to this scent and negatively to other scents from other colonies.

Despite this being a powerful approach, the action of multiple scents is subdued when compared

to the MPACA. The MPACA on the other hand uses multiple pheromones, with pheromones

being distinct from colonies, and only linked to the features and feature combinations that are

being carried by the ant.

It is apparent that the mechanism by which spatial colouring of nodes is achieved is primarily

driven by proximity within the graph. Hence, the physical layout of the graph is crucial to the

formation of coloured areas. This means that only feature values which are used in the graph

setup have any significance in the search. This is a further variation from the MPACA, where

even nominal values (even if not used for the graph setup itself) are capable of shifting and

distorting the formation of clusters depending on their values. In the MPACA, pheromones are

used to distort space between nodes to increase their level of similarity. This is not the case in

ODUEC.

This colonisation and partitioning of graph space by a number of colonies serves to bring us

closer to the model which is most similar to the MPACA in literature. That is, the Ant Colony

Optimisation with Different Favour (ACODF) [Tsai et al., 2004]. This algorithm follows on the

preceding ones and uses a set of ant colonies to partition graph space into clusters of higher

similarity.

Ant Colony Optimisation with Different Favour (ACODF)

ACODF shares a number of similarities with the MPACA. It utilises graph space, where ants

are allowed to roam the nodes within the graph by traversing the edges. In both algorithms,

ants are given the ability to form sub-colonies by using spatial exploitation. That is, ants roam a

particular area more frequently than any other, and this causes drifting off of particular subsets.

Clustering is expressed in ACODF as the disconnection of the sub-graphs from the main graph.

As in the ODUEC, and equally in the MPACA, ACO does not use a direct fitness optimisation

function.

In ACODF once a problem is converted into graph space, each node, n, is representative of

the data element being clustered, where the spatial arrangement of nodes is dependent on the

78

attributes within these data elements. Edges, e, are used to connect nodes.

The algorithm consists of three main variations from standard ACO coupled with a consolidation

mechanism. The latter uses the pheromone traces present on edges to determine which edges

can be cut-off, therefore forming new sub-graphs. The consolidation mechanism also allows

the merge of smaller clusters with their nearest neighbouring cluster. The three variations are

outlined as follows:

1. Ants do not visit the entire set of nodes within the graph space. Instead they visit only

a reduced subset which typically consists of 1/10th of the graph size. This subset of

nodes is chosen depending on proximity, hence the term “favourable” positions, as the ant

selects nodes only from this subset. Given that ant movement is partly pheromone driven,

this increases the chances of ants remaining localised within a particular area of space.

2. The number of nodes which an ant visits is decreased at each iteration. This enhances the

positive feedback, where ants are further encouraged to not only choose edges with higher

pheromone, but also edges that lead to nodes which are in the immediate proximity. When

nodes are further away from each other, trail intensity will continue to decrease until its

effect is relatively nullified. Finally, a number of groupings (clusters) are built.

3. The transition function, or ant movement, differs from the traditional Roulette Wheel Se-

lection [Dawson and Stewart, 2013]. Rather than this standard technique for proportionate

meta-heuristic edge selection, the ACODF algorithm uses a tournament selection, which

is also claimed to be more powerful, figure (2.9).

A cycle is a unit of time required for an ant to select a node to traverse to and execute the

traversal. An iteration on the other hand is a number of time-cycles needed for all ants to

traverse the entire list of nodes which are to be traversed. As the number of iterations increase,

the trail intensity between closer nodes will be much higher than nodes which are further apart.

Over time, ants will favour visiting the closer nodes, reinforcing such paths by depositing further

pheromone. Eventually, clusters are built by dividing the pheromone that was laid on the edge

between the data points.

FIGURE 2.9: The tournament selection mechanism, depicting the case of randomly selecting
three lines amongst five possible lines, [Tsai et al., 2004].

79

Two equations determine how many cycles are to be visited in the next iteration (2.40, 2.41).

ns(t +1) = ns(t)×T (2.40)

where ns is the number of visiting nodes of ants during T0, and ns(t + 1) denotes the current

number of visiting nodes of ants, ns(t) represents the number of visiting nodes of ants at last

time (cycle), T is a constant, implemented at (T = 0.95). This formula causes ants to visit a

decreasing number of nodes at each iteration. Equation (2.41) shows the relationship between

n f (t +1) and ns(t), where n f is the number of visiting nodes of ants during T1 function. n f (t +

1) denotes the current number of visiting nodes of the ants, whilst n f (t) represents the number

of visiting nodes of the ants at the last time cycle, where run = 2, i ∈ {1,2}.

n f (t +1) =
2 ·ns(t)

3
− i ·ns(t)

run ·3
(2.41)

The tournament selection technique used for a proportionate selection mechanism and the se-

lection of new nodes is based on a random selection of an edge amongst other available edges.

This is followed by the selection of the shortest edge amongst the previous randomly selected

edges, as in figure (2.9). The previous selected edge is prohibited, implying a TABU list of size

one.

Algorithm 2 Ant Colony Optimisation with Different Favour (ACODF) algorithm
Step 1: Initialisation: n datasets are entered and m ants are assigned randomly to m nodes,
where n represents the number of nodes, m denotes the number of ants, and m is equal to n/2.
Step 2: Compute the number of nodes next time for ants to visit.
Step 3: Compute the number of nodes for ants to visit as Step 2.
Step 4: Select n trails randomly and find the pheromone trail with high quantity, and then select
this trail to visit.
Step 5: Update pheromone quantity of every trail.
Step 6: Repeat Step 2 through Step 5 until all trails of pheromone quantity are in a stable state.
Step 7: Perform clustering using the value of pheromone quantity.

Given 200 nodes, each ant needs only visit 1/10 of this search space, hence 20 nodes. Ants

only need to visit 19 nodes at the next iteration, since (20×T = 0.95) = 19. This progressively

decreases the number of nodes to be visited after each iteration. Trail intensity increases for

nodes which are in close proximity of each other. Ants will eventually “favour” nodes with

higher pheromone and those closest to each other.

The final step in this approach is the consolidation mechanism. In this mechanism, visible

and non-visible trails are set apart, where visible trails are those with a pheromone amount

greater than the average of all the pheromone quantities on the trails, where non-visible edges

80

are removed. Clusters are defined as sub-graph areas which are still connected. This process

can cause a number of small clusters to occur. To compensate for this, the nearest distance

between all clusters is calculated and the smaller clusters are merged with their nearest cluster.

Thus, a number of clusters finally form. Therefore, the ACODF can be seen more as a graph

density partitioning algorithm. According to the results presented by Tsai et al. over a set of

databases, the computation cost and error rate of this are much lower than in other powerful

methods such as FSOM+K-Means and genetic K-Means algorithm [Tsai et al., 2004]. A more

recent application of the ACODF is applied to clustering of MIT-BIH arrhythmias [Korürek and

Nizam, 2008].

Evaluation Criteria

There are a number of similarities between the MPACA and ACODF. Graph space is used,

where the data elements are plotted into nodes and edges are created between nodes. Ants move

by using a stochastic mechanism, which takes into consideration both distance and pheromone

quantity. In the work presented by Tsai et al. this is claimed to be influenced by elements of

simulated annealing. This mechanism further reduces the number of edges at each iteration by

allowing the ant to visit only a reduced subset of the graph space. The cluster that forms is

dependent on two steps. Firstly, sub-graphs form after the removal of edges with non-visible

pheromone, and secondly smaller sub-clusters merge based on a function of proximity. The

final cluster constitutes a sub-graph in the given graph space.

All ants belong to the same colony, and all ants share the same pheromone. The algorithm is

heavily decentralised and ants act independently of each other. The ant entity is a primitive one,

which has limited access to graph space. Communication between ants happens in response to

the pheromone deposited onto the nodes.

Relevance to the MPACA

The main similarity between ACODF and the MPACA is the approach by which clustering is

achieved, using the ants’ ability to form sub-colonies by using spatial exploitation and partition-

ing of spatially distributed nodes, via the collective behaviour of ant movement. Ant movement

is in turn driven by pheromone trails. The MPACA differs from ACODF, since the former is a

multi-colony and multi-pheromone approach, whilst the latter uses just one colony type and one

pheromone type. The MPACA also uses more elaborate ant interactions, which allow learning

to take place. Ants in the MPACA are able learn which features to react to, and move from

one colony, or merge into another colony depending on ant encountering frequencies. In the

81

MPACA, ants recognise if the node present is of interest to them or not, making this a more pow-

erful mechanism. Whilst as in ACODF proximity of nodes is important, ants do not only focus

on the proximity of nodes, but also determine the quality of the node in relation to their search.

Ant algorithms are not solely applied to clustering. The same path optimisation metaphor in ants

can be used to discover rules within a dataset. This is presented in the Ant-Miner algorithm.

2.6.4.5 Rule Learning Algorithms

A final crucial family of ant algorithms is that pertaining to the Ant-Miner. The Ant-Miner

algorithm uses a sequential covering approach to discover a list of classification rules from a

given dataset [Parpinelli et al., 2001]. These rules are added to the list of discovered rules, and

the training cases that are covered correctly by these rules are removed from the training set. The

algorithm covers all, or almost all, the training cases. Ant-Miner searches for a rule list in an

incremental fashion. At every iteration the ant colony discovers one rule, which is subsequently

added to the end of the list of discovered rules, following which the cases covered by the rule

are removed from the training set. This process is repeatedly called to discover other rules from

the remaining training cases, until a stop criterion is met. Finally, the algorithm discovers a list

of classification rules covering almost all the training cases. The main loop of the Ant-Miner

consists of three key steps, namely; rule construction, rule pruning and pheromone updating.

In these three steps, the algorithm defines a number of basic formulas, such as the heuristic

function based on information theory, the transition probability based on ACO, and the quality

measure of the rule and pheromone updating. The Ant-Miner comprises four key steps:

1. The first function is a problem-dependent heuristic function, η , which measures the qual-

ity of items that can be added to the current partial solution. The heuristic function remains

unchanged during the algorithm execution;

2. A rule for pheromone updating, specifying how to modify the pheromone trail τ;

3. A probabilistic transition rule based on the value of the heuristic function and on the

contents of the pheromone trail that is used to iteratively construct a solution; and

4. A pruning function to eliminate low quality rules.

Each rule condition is a term, so that the rule antecedent is a logical conjunction of terms in the

form: IF term1 AND term2 AND ... Each term is a triple tuple < attribute,operator,value >,

such as < Gender = f emale >.

The rule consequent (THEN part) specifies the class predicted for cases whose predictor at-

tributes satisfy all the terms specified in the rule antecedent. The final output of the Ant-Miner

algorithm are the classification rules for a given dataset or problem. Besides the benefits of using

82

an ant based approach, where a flexible, robust and bottom-up approach is used to learn classifi-

cations, Ant-Miner also has the advantage that data representation is intuitively comprehensible

to the user. Algorithm (3) expresses the interaction of a number of key components:

1. Rule construction;

2. Heuristic Function Value;

3. Rule Pruning; and

4. Pheromone Rule Update.

Algorithm 3 Overview of Ant-Miner

TrainingSet = {all training cases};
DiscoveredRuleList = [];
while (TrainingSet ≥Max Uncovered Cases) do

i = 1;
No Ants Converg = 1;
Initialize all trails with the same amount of pheromone;
repeat

Anti starts with an empty rule and incrementally constructs a classification rule Ri, by
adding one term at a time to the current rule;
Prune rule Ri;
Update the pheromone of all trails, by increasing pheromone in the trail followed by
Anti (in proportion to the quality of Ri) and decreasing pheromone in the other trails
(simulating pheromone evaporation);
if (Ri is equal to Ri−1) then

No Ants Converge = No Ants Converge + 1;
else

No Ants Converge = 1;
end if
i = i + 1;

until (i ≥ No of Ants) or (No Ants Converge ≥ No Rules Converge)
Choose the best rule Rbest among all rules Ri constructed by all the ants;
Add rule Rbest to DiscoveredRuleList;
TrainingSet = TrainingSet - {set of cases correctly covered by Rbest};

end while(see [Parpinelli et al., 2001]).

Rule Construction: Each rule in Ant-Miner contains a condition part as the antecedent and a

predicted class. The condition part is a conjunction of attribute-operator-value tuples. Given the

rule condition, such that termi jAi =Vi j, where Ai is the i-th attribute and Vi j is the j-th value in

the domain of Ai, the probability that this condition is added to the current partial rule that the

ant is constructing, is as in equation (2.42).

Pi j(t) =
τi j(t).ηi j

∑
a
i ∑

bi
j τi j(t).ηi j,∀i ∈ I

(2.42)

where a is the total number of attributes, bi is the total number of values on i domain, I are the

attributes i not yet used by the ant, ηi j is a problem dependent heuristic value for termi j, and τi j

83

is the amount of pheromone currently available for time t on the connection between attribute i.

Heuristic Function Value: The heuristic value is an information theoretic measure for the

quality of the term to be added to the rule, which is measured in terms of the entropy based on

the preference of this term over other terms, as defined in equations (2.43, 2.44):

ηi j =
log2(k)− In f oTi j

∑
a
i ∑

bi
j log2(k)− In f oTi j

(2.43)

In f oTi j =−
k

∑
w=1

[FreqT w
i j

|Ti j|

]
× log2

[FreqT w
i j

|Ti j|

]
(2.44)

where along with the notations described earlier, k is the number of classes, |Ti j| is the total

number of cases in partition Ti j, FreqT w
i j is the number of cases in partition Ti j with class w, and

the higher the value of In f oTi j, the less likely that the ant will choose termi j.

Rule pruning: The rule pruning procedure iteratively removes the term that causes the max-

imum increase in the quality of the rule. The quality of the rule is measured using equation

(2.45). This procedure induces the discovery of more comprehensible rules, and helps to avoid

the over-fitting of rules to the training dataset. This procedure is repeated until the quality of the

rule can no longer improve further.

Q =

(
Truepos

Truepos+Falseneg

)
×
(

Truepos
Falsepos+Trueneg

)
(2.45)

with Truepos, Falsepos, Falseneg, Trueneg having the same definition as given in section (2.2.3.1).

Pheromone Rule Update: After each ant completes the construction of its rule, pheromone

updating is carried out following equation (2.46):

τi j(t +1) = τi j(t)+ τi j(t)×Q, ∀i| j ∈ the rule (2.46)

where τi j(t) is the amount of pheromone on a path at time t, and Q is the amount of pheromone

to be added.

To simulate the phenomenon of pheromone evaporation in the real ant colony system, the

amount of pheromone associated with each termi j, which does not occur in the constructed

rule, must be decreased. The reduction of pheromone over an unused term is performed by

dividing the value of each τi j by the summation of all τi j.

Results attained by Parpinelli et al. show that Ant-Miner has good classification performance on

test datasets [Parpinelli et al., 2002b], [Parpinelli et al., 2001]. The algorithm is able to achieve

84

good predicative accuracy and also contemporaneously reduce the number of rules. Numerous

results are given in literature of Ant-Miner (including derivatives) and its applications, amongst

which are the following; [Parpinelli et al., 2002a], [Parpinelli et al., 2002c], [Parpinelli et al.,

2002b], [Parpinelli et al., 2005], [Martens et al., 2010], [Martens et al., 2008], [Cumps et al.,

2009], [Vandecruys et al., 2008], [Thangavel et al., 2005], [Wu and Sun, 2012], and [Jin et al.,

2006].

The Ant-Miner, despite its success as a classification method, has a number of drawbacks:

• During the rule construction phase many unfit terms are unnecessarily added and pruned

at a later stage, a process that heavily increases computational complexity and cost of rule

construction [Thangavel and Jaganathan, 2007].

• If the quality measure Q is very small, then the evolutionary process may stagnate.

• Ant-Miner cannot cope with continuous attributes [Otero et al., 2009].

• State transition rule computation is very complex and lacks proper balancing between

exploration and exploitation [Jiang et al., 2005].

• Lacks of a continuous attribute coping mechanism [Otero et al., 2009], [Otero et al., 2008].

Evaluation Criteria

The most important consideration is that the Ant-Miner is applied to rule learning and classifi-

cation and not clustering. The architecture used is that of graph space. Nodes are representative

of attribute values and attribute value pairs are generated to represent rules. In Ant-Miner, ants

are homogeneous primitive entities and they determine the node to move towards to next by

using the standard ACO movement function, as per equation (2.42). Ants move independently

of each other and depend on pheromone as a guidance mechanism. The algorithm is centrally

controlled, since any pheromone update only occur after being processed by a fitness function.

This is also coupled by a process of pruning of lesser quality rules, once more a centralised

operation.

Relevance to the MPACA

Despite Ant-Miner being a classifier rather than a clustering tool, experimentally a number of

results are presented in literature which are useful for comparative reasons. The Ant-Miner

demonstrates how ant traversals within a graph is used to form rules. In the Ant-Miner, as

with its sub-derivatives, a number of rules are formed, which correspond to a particular class.

Besides the supervised versus unsupervised comparison of the Ant-Miner and the MPACA, there

are a number of other variations which are identified in the Ant-Miner. The MPACA uses the

following approaches which are not found in Ant-Miner:

85

1. Use of multiple-colonies;

2. Use of multiple-pheromone type;

3. Topological information is kept in the graph space; and

4. Self-assembly of ant colonies.

Ant-Miner also suffers from excessive rule generation, which rules are eventually pruned at

a later stage. The possible curse of dimensionality can effectively hinder rule formation and

classification results. In the MPACA, due to its distributed nature, such events are better handled.

2.7 Chapter Conclusion and Introduction to the MPACA

This chapter has introduced the clustering problem and various ways of tackling it, both via clas-

sical approaches and ant based techniques. Classical algorithms which are important, not only

for their crucial benchmark value, but also because they introduce key notions in the MPACA,

namely the bottom-up principle, the concept of density and graph based clustering. This chapter

explored ant methods for analysing data without having prior knowledge of its inherent struc-

ture, which primarily rely on independent entities (ants) with minimal intelligence and limited

coordination. Therefore, it is the collective behaviour of the ant population or colony as a whole

provides the emergent properties that represent pattern recognition information in data. Various

ant algorithms as highlighted in this chapter, are applied to the clustering problem, where spe-

cific models falling under each of the above types have already been compared individually for

their similarity with the MPACA.

Recapping what has been introduced so far, the MPACA is an ant colony driven technique,

chosen since it combines the benefits of self-organisation, stigmergy and positive feedback. It

consists of distributed ants with no centralised controlling mechanism, which only interact with

each other indirectly via pheromone traces. This stigmergic effect allows decentralisation and

asynchronous communication between ants. Key ant algorithms their groupings into typologies

and how the MPACA fits in the type IV more than the others is also explored. These typologies

explored a number of algorithms which their collective difference from MPACA is highlighted

further in section (3.10.3).

The next chapter explores the details of the MPACA, which has so far been only presented in

part for comparison purposes. The presented literature overview provides a background setting

for the MPACA algorithm introduced in chapter (3), which also provides an adequate test bed

for result comparisons presented in later chapters.

86

Chapter 3

The MPACA Model

3.1 Chapter Overview

This chapter explains and specifies the Multiple Pheromone Ant Clustering Algorithm (MPACA).

It commences with an analysis of the domain architecture, its initialisation, and pre-processing

activities such as data normalisation. It then explains how ants are initialised on nodes, and how

features within the domain are assigned to ants so that they can recognise nodes of interest to

them. Also discussed is the pheromone driven ant movement mechanism, which determines

those edges that are selected for traversal by the ants.

An important phenomenon of the MPACA is its ability to detect feature combinations. How ants

contribute to this is by how feature encounters are counted, which leads to the main operators of

the MPACA: the feature and colony merging mechanisms. Each step of the algorithm is detailed.

The chapter then investigates the internal interactions of the MPACA and its key parameters

as applied to a standard synthetic dataset. It concludes by comparing the MPACA with other

algorithms reviewed in chapter (2), highlighting their similarities and differences.

3.2 Introduction to the MPACA

The MPACA is a multi-pheromone and multi-colony ant algorithm. It operates by converting

data elements pertaining to a dataset into nodes connected by edges. Initially, every node has

one or more ants assigned to each feature present on it. The ants attempt to locate nodes with

matching values, by depositing pheromone traces linking these nodes. The process of adding

pheromone to edges increases their likelihood of being selected for traversal by other ants, caus-

ing a positive feedback to occur. Each feature has a specific pheromone representation, thus

introducing multiple pheromones, which is a key innovation of this algorithm.

87

The interaction of ants with pheromones and together with other ants, introduces to the two

fundamental operators; feature and colony merging. Feature merging occurs when an ant which

repeatedly detects co-occurring features, merges these features based on the conjecture that such

features are related. After which point the ant will seek the conjunction of these features. Colony

merging occurs when an ant encounters ants from other colonies an exceeding number of times,

which indicates that the ant should migrate into such colony. It is these colonies which represent

cluster definitions. This process is outlined in algorithm (4).

Throughout this text, the term colony and cluster are considered synonymous. Those properties

of the MPACA that vary from generic ant colony algorithms (ACO) will be highlighted to show

how they make the MPACA more applicable to the clustering domain.

3.2.1 Relationship to the Generic Ant Colony Algorithm

There are cardinal differences between the MPACA and ACO. In many cases an optimisation

process takes place in ACO, where ants perform a visit to all nodes in the given graph space and

then lay down pheromone depending on solution quality, thereby making use of a fitness func-

tion to determine quality. This mechanism is globally applied, therefore requiring centralisation.

ACO is additionally coupled with a meta-heuristic function which uses domain knowledge dur-

ing ant movement, as explained in section (2.3.4). The MPACA differs, as there is no overall

fitness mechanism; ants do not need to visit the entire graph space, or perform any tours. More

importantly ants move from one node to the next solely by detecting pheromone trails which are

of interest to them, without any global input.

3.3 The Main Model Architecture and Processes

The MPACA uses graph space architecture. It converts the given raw dataset (of objects) into

nodes, where ordinal features (continuous or discrete) for each data element dimension are used

as Cartesian points to plot these nodes on the graph, reflecting a spatial arrangement. Nominal

(non-ordinal) features are ignored for the purposes of graph space creation, since these have no

implied order. However, nominal features that influence cluster formation (feature selection is

outside the remit of this thesis) are still present at the node and influence cluster formation by

being part of the pheromone trails. When an ant matches its own feature value, irrespective of

whether it is nominal or ordinal, it lays a pheromone trail. The impact of the trails is to strengthen

connections between nodes with matching feature values rather than moving the nodes closer

together, which some ACO algorithms do. Edge distances are calculated and expressed as the

Euclidean distance rather than, say, the city-block distance that is sometimes used.

88

Algorithm 4 The MPACA Outline
1. A given dataset is normalised and converted into graph space.
2. A number of ants are created for each feature of each node, a number controlled by the

ant complement parameter.
3. Ants are initially imprinted a feature value for the feature of the node they are created

in, called the instinct or base feature, and this feature stays within the ant all throughout
execution. From this point onwards ants react to any other nodes which match this feature.

4. The ant deposits pheromone traces for the feature or the feature combinations, which it is
carrying:

(a) This continues until it keeps reaching nodes which match the feature combinations
it is carrying;

(b) Once this condition no longer holds, pheromone deposition ceases;
(c) This process is only restarted once an ant finds a node which matches the feature

combinations it is seeking.
5. Ants traverse the graph by selecting edges to visit depending on a stochastic mechanism

influenced by the pheromone quantity representative for each feature value. That is, ants
detect pheromone traces deposited by other ants on edges. If these pheromones represent
feature values which are of interest to them, this process increases the likelihood of ants
choosing these edges over others.

6. Ants further reinforce interesting paths by depositing pheromone, causing the positive
feedback to occur. Pheromones evaporate and this evaporation serves to eliminate paths
which are not adequately reinforced.

7. Two crucial operators are feature merging and colony merging, both having separate
thresholds, but both of which gather information at the same points when applying the
ant feature encounter counting mechanism.

8. The ant feature encounter counting mechanism used consists of a number of events:
(a) The ant records those features being carried by other ants;
(b) The ant records the Id of the encountered ant;
(c) The ant records the ant deposit state (active/de-active) the detected ants are in;
(d) The ant records the colony Ids the detected ants are in;
(e) All of the above include a time-stamp when this encounter took place.

Only ants that are within the same vicinity are recorded, defined by the visibility parame-
ter, or a number of steps away.

9. Feature merging occurs when a repeated number of features are encountered by the same
ant within the same time-window. There is an inherent inbuilt forgetting mechanism for
merged features. These features are dropped when ants no longer detect the same features
frequently enough within the same time-window. Only one exception applies, that is the
feature that the ant is initially imprinted with is never dropped.

10. Colony merging occurs by ants determining which colony they should merge into. This
depends on the colony Id which has been detected most frequently amongst the encounters
in deposit mode, which encounters exceed the colony merging threshold. If more than one
colony exists, the ant is set to belong into the colony which has the highest ant population
amongst the detected ants.

11. Once ants reach a stable dynamic equilibrium in the colonies they form, the algorithm
terminates.

12. When this occurs the initial data points are compared against the centroids of the features
which are carried by the ants present in each colony (i.e. cluster), and this value is used to
determine which cluster is best representative for such a data point.

89

Before the MPACA sets its ants loose on the graph space to find clusters, the domain has to be

initialised. The following considerations governed the mechanisms used:

1. the environment must be scalable;

2. nodes must be linked by pathways along with ants can move;

3. pheromones must be laid by ants, which must also be able to detect and follow particular

ones.

3.3.1 Partially-Connected Graph Space

In an ideal world with no computational constraints, the multi-dimensional space (MDS) could

be represented by hypercubes for each point and ants would be able to reach every possible point

in the space. In reality this is not feasible. The sheer number of possible movement positions

would make convergence slow, if not impossible. To overcome this limitation, graph space is

used. This restricts ant movement to only those edges connecting nodes, therefore rendering the

algorithm more scalable.

Another scalability issue concerns the number of connecting edges. In a fully connected bi-

directional graph, the number of edges is dependent on the number of nodes present. The

MPACA adds a node in hyper-space for each existing data element and a large data sample

would result in a correspondingly large graph and thus scalability problems. Excluding the node

it is on, and the node it just arrived from, the ant is allowed to travel towards any other node in

space. Therefore, the number of possible edges from any single node is n−2, where n represents

the number of elements present. This will be a very large number for large datasets and, again

limits convergence because ants can be scattered too widely. This is apart from the time taken to

process so many paths and possibilities. Hence, the MPACA does not utilise a fully-connected

graph. Instead, its truncation is part of the pre-processing phase for setting up the graph and

edge distances.

3.3.2 Connecting Nodes and Measuring Distances

Although attributes used for the graph initialisation process are limited to ordinal ones, their

variety of distributions creates its own challenges. The values for each dimension need to be

standardised, in such a way that the magnitude of different dimensions are scaled to a common

representation. Additionally, when non-uniformly distributes ranges are considered, like ages

ranging from 10 to 15 and from 45 to 55, these values are either re-enumerated as ordinal values,

or considered as nominal features. This choice is at the discretion of the MPACA operator.

90

This normalisation process eliminates the unit of measurement by transforming the data to

scores of standard deviations (SD) from the mean. It is applied to each and every ordinal data

element dimension so that the unit of each dimension becomes comparable to any other dimen-

sion. It is the usual normalisation process of converting values to SDs from the mean, known as

z values, as per equation (3.1), where x is the original value and µ is the mean:

z =
(x−µ)

SD
, (3.1)

The distance between nodes is denoted in terms of the Euclidean distance, E, between each pair

of nodes (a,b) with the dimensions now measured on a comparable scale of z values. However,

each dimension is further converted into a number of steps, where each step equates to the

distance moved by an ant in each time cycle. A step size parameter is calculated on the basis

that four SDs above and below the mean adequately encompasses all the population apart from

outliers. It is generally accepted that 95% of data points are covered within four SDs [Al-Saleh

and Yousif, 2009].

The initial assumption is that dividing one SD unit into 10 steps gives an adequate granularity,

so each step is 0.1 of a SD. This means 40 steps will cover the majority of the population as

discussed, although there is no actual limit to the number of steps for a dimension: the outliers

are still included in the graph.

Having converted dimensions into steps, the Euclidean distance, E, between two nodes is the

square root of the sum of squared number of steps along each dimension. However, as the

number of dimensions in the hyper-dimensional space increases, the corresponding length of the

edges will also increase: this effect is known as the curse of dimensionality [section (2.2.2.4)].

To compensate for it, an adjusted Euclidean step size, U , is used, which is the Euclidean distance

for one step along each dimension. Two points are separated by one Euclidean step, U , if

they are one step apart along each dimension. This makes U the square root of the number of

dimensions, D where U =
√

D. The number of steps along the edge, ES, is calculated using the

normal Euclidean equation and then divided by U , as per equation (3.2):

ES =
E
U

=
E√
D

(3.2)

where E is the length of the edge.

A second problem with the domain initialisation comes with too many data points. If every

one is connected to every other one, then there will be too many edges. The maximum edge

length parameter is used to reduce the number by specifying the maximum length of an edge:

91

any nodes further apart than this are not connected by an edge, as explained per section (3.3.1).

Experimentation will be needed to determine the recommended settings for accurate cluster

definitions.

3.3.3 Multiple-steps within Edges

In the MPACA an edge is divided into a number of steps that an ant takes to traverse it. This

concept is a key variation between the MPACA and other ant colony algorithms, where edges

are traversed in single atomic units. This has been identified as a weak point in other algorithms

because, irrespective of how distant nodes are from each other, it takes an ant just one step to

get from one node to another. This creates a topological structure for the graph rather than one

that conserves distances.

In the MPACA, longer edges have more steps and traversals take more time and pheromone

has longer to evaporate before the path is completed. This reinforces the inverse-relationship

of length to pheromone quantity. The position of the ant along an edge is determined by the

system time, where every time increment represents one step along the edge until its full length

has been traversed. Thus, this process does not delay the clustering process, on the contrary it

adds further emphasis on the distance between nodes.

For the algorithm to operate, a number of ants need to be initialised at each node of the graph,

where the number of ants is proportional to the problem domain size.

3.4 Placing Ants on Nodes

Similarity of nodes is determined by their attribute values and ants need to communicate this

information to generate similarity connections. The MPACA commences by allocating at least

one ant for each feature of each node, with the number of ants per feature controlled by the ant

complement parameter. The value of this parameter determines the total number of ants in the

system and thus how well the population can cover the entire search space with enough ants to

form clusters. The minimum is one ant per feature within each node. Any increase on this is

applied across all nodes and features. The actual number used will be domain dependent, but

the population of ants will obviously increase with the number of features per data element and

the number of elements.

3.4.1 Assigning Features to Ants

During ant initialisation, each ant is assigned a particular feature value, referred to as the base

or instinct feature. This feature is never lost by the ant throughout the execution run. Ants

92

are placed on every feature, both dimensional (that are used to set up the problem space) and

nominal (e.g. colour). The ant takes on the feature value and responds to other nodes that match

it. For nominal features, node values match on a one-to-one basis (e.g. blue with blue). For

ordinal dimensions, a range of values around the ant’s own value will match, determined by a

detection range parameter.

Section (3.3.2) explained how edges are converted into numbers of steps. When an ant is as-

signed a value of a dimension, the detection range parameter will determine how many steps

above or below this value will be considered a match. This detection range parameter applies

uniformly to all dimension values and is necessary because continuous values will rarely match

exactly. If the threshold is too wide, too many features will match, whereas if too narrow, very

few features will match: the actual parameter setting needs to be empirically determined.

3.4.2 Feature Matching a Node

In the MPACA, each ant starts with the feature it is initialised to, but feature combinations

[section (3.5.4.1)] mean that ants can actually end up with a combination of features to match.

Either way, the matching process is the same for each one and all must match if the ant matches

the node. The match applies the detection range parameter to the node’s value and if it is within

the range, it is considered a match.

3.5 Ant Movement

Ants start-off by being placed onto graph nodes. Subsequently, ants depart their home node

and choose an edge to traverse, depending on the pheromone levels on each edge. Initially this

is a random process since edges will not yet have any pheromone. When leaving a node that

matches the ant’s one or more features, the ant will deposit pheromone equating to its features.

Hence, pheromone deposition is dependent on the features which are present on the node, and

if these features are of interest to the ant. The next section outlines the pheromone definition,

deposition state, quantity of pheromone deposited and its evaporation.

3.5.1 Pheromone

Pheromones are central to the whole movement process within the MPACA. In this mechanism

each feature present, irrespective whether ordinal or nominal, has a representative pheromone

value. For example a nominal feature like colour could have pheromone indicating “red”, which

differs from pheromone indicating “blue”. A similar mechanism applies to normalised ordinal

value features: separate pheromones are associated with each feature value on each edge and

93

ants will match any pheromone for that dimension that occurs within its own range. When ants

acquire (learn) new features, they no longer deposit pheromone for a single feature value, but

deposit pheromones for combined features together.

The point at which pheromone deposition takes place is a core consideration in ACO litera-

ture. Does pheromone deposition take place once all ants traverse the entire graph, or does the

pheromone deposition take place at each edge traversal, or is it a combination of both? [see sec-

tion (2.3.4)]. In order to keep in check the decentralisation aspect of the algorithm, the MPACA

only applies pheromone deposition at the local ant movement level.

3.5.1.1 Ant Deposit State

Ants only lay a pheromone trail when departing nodes which have feature values that match

ones being sought by the ant. The ant ceases to deposit pheromone once it arrives at a node

where the features present are uninteresting (i.e. do not match). Pheromone deposition is only

restarted once the ants reach a new interesting node, outlined in algorithm (5).

Algorithm 5 Pheromone deposition

Comment: Each time increment represents a single step moved by an ant
while (MPACA is in running mode) do

if (Ant at a node) then
Ant deposit mode is set to non-deposit
if (Feature set on the node matches ant’s carried features list) then

Set ant to deposit mode
end if
Ant chooses an edge in accordance with the edge-selection process
Ant executes the first step on the edge

end if
if (Ant is on an edge) then

Ant moves one step forward onto the edge it is traversing
if (Ant is in deposit mode) then

Ant deposits a unit of pheromone signalling the features it is carrying
end if

end if
end while

The MPACA can potentially add a pheromone representation on each connecting edge for each

feature value in the system. Thus, the dimensionality of the problem and the dataset size deter-

mine the number of pheromone types that can be laid down.

3.5.1.2 Pheromone Quantity Deposited

The MAX-MIN Ant System (MMAS) is one of the more effective ACO implementations, sec-

tion (2.3.4), and gains much of its power from the fact that it limits the amount of pheromone

94

that can be deposited. The upper bound limits the excessive build-up of pheromone on any one

edge. It is important to note that if unconstrained, the auto-catalytic effect of pheromone can

precipitate stagnation at local maxima. Following from the MMAS, the MPACA uses a simi-

lar mechanism that increases exploration and limits the likelihood of stagnation via an inbuilt

maximum pheromone value.

Each time pheromone is laid down, the amount deposited is compared against a maximum co-

efficient of the standard pheromone deposition value. The upper ceiling is controlled by the

maximum coefficient parameter, τmax. τmax serves as a co-efficient of τQ. That is, when

τ(t)≥ (τQ× τmax), than the amount of pheromone deposited is capped and set to τQ× τmax.

There is no fitness function in the MPACA which determines the quantity of pheromone that

is to be added. Instead, ants deposit pheromone equally on all edges they are traversing for

each feature value they are carrying. This makes the MPACA more decentralised than other

approaches. The amount of pheromone at a step is expressed by equation (3.3):

τ(t) = τ(t−1)+(τQ) where τ(t)≤ τQ× τmax (3.3)

where τ(t) is the amount of pheromone to be deposited at time t, τ(t−1) is the current amount

of pheromone present at this same step t − 1, and τQ is the amount pheromone that can be

deposited.

Coupled with the maximum amount of pheromone, there is also an additional minimum tol-

erance parameter, τmin, which serves as a pheromone cleansing mechanism. If the amount of

pheromone is lower than τmin, then this value is removed from the system. Thus, there are three

key considerations for pheromone deposition:

• The “pheromone quantity being deposited”, τQ;

• The “maximum ceiling value” , τmax, or the maximum coefficient parameter; and

• The “minimum clearing value”, τmin or the minimum tolerance parameter.

3.5.1.3 Pheromone Evaporation

The available literature presents various ways of how pheromone evaporation occurs. In most

cases deposition and evaporation are combined into one process. This cannot be done in the

MPACA, since pheromone deposition does not occur simultaneously on all edges. In the MPACA,

evaporation is applied to each and every pheromone scent present at every given interval in

95

time→ t, via a percentage reduction expressed by equation (3.4):

τ(t) = [τ(t−1)× (1−ρ)] (3.4)

where τ(t) is the amount of pheromone present at a point in time t, τ(t − 1) is the current

amount of pheromone present at the same point previously at time t−1, and ρ is the pheromone

evaporation rate.

Since a percentage reduction applied to any value can never reach zero, the algorithm filters out

values below τmin. This is a variation from the MMAS, which applies a lower bound on each

edge, τmin, where each edge always has a minimum pheromone value.

The quantity of pheromone deposited is interlinked with the size of the graph. The pheromone

evaporation parameter controls the amount of pheromone that can exist on any edge. It follows

that there must be a balance between the amount of pheromone deposited and the pheromone

evaporation rate itself. If the pheromone quantity is Q, and evaporation rate is E, then E should

consist of a value per unit time substantially less than Q, otherwise the Q value would be nulli-

fied. Ideally, these values are chosen by the operator of the algorithm or extracted empirically

via experimentation. Irrespective of the approach, the MPACA cannot at this point self-adjust

these values for optimal performance.

If the graph space is overly-compressed, higher pheromone evaporation is required in order

to ensure that stagnation does not occur, as smaller evaporation intervals would not manage

to decrement enough pheromone and the solution could at some point have equal maximum

amounts of pheromone on each edge.

3.5.2 Edge Selection Mechanism

Ants at a node have a choice of edges to select from. Their choice is driven by the levels of

pheromone on each edge that matches one or more features of interest to the ant. A proba-

bilistic selection process is used that means an ant is most likely to choose the edge with the

most pheromone matching its features. This differs from that used in other ant algorithms, as

described in equations (2.22, 2.25). The MPACA movement mechanism does not require any

foresight about the potential nodes that can be visited, further enhancing decentralisation.

It utilises a limited TABU list of size one [section (1.3.4)], unlike most other ACO algorithms.

This minimal TABU list is only to ensure the ant cannot go back to the node from which it just

departed. However, ants are allowed to visit the same nodes multiple times, with triangulation

being possible, which is why a probabilistic edge-selection mechanism is used.

96

Every edge is given the same residual pheromone, r, that matches the ant’s features so that all

edges are open to the possibility of traversal. This is to prevent stagnation and local maxima,

where a better global solution is masked by the local situation. If a node has n potential edges,

where each edge, i, has a matching pheromone scent, si, then the probability of selecting a

particular edge, e, is governed by the amount si on the edge plus the residual pheromone amount,

r compared to the amounts on all other edges, as given in equation (3.5):

P(e) =
se + r

∑
E
i=1 si +(r×E)

(3.5)

where P(e) is the probability of selecting edge e, E is the total number of edges.

The residual parameter is therefore defined as a percentage of the total pheromone on the

edges leading out of the node. A zero value neutralises this parameter and a high r value creates

random choices. Thus it is possible to check how it is helping prevent local maxima or having

no effect.

Implementation of the probabilistic selection is by assigning each edge an accumulating numeric

range, which is calculated using the probability calculation in equation (3.5). If one edge has

half the total pheromone on the edges and the other two each have a quarter, then the edges are

assigned a number range of 1 to 50, 51 to 75, and 76 to 100 respectively. If the random number

outputs 81, then the third edge is chosen by the ant.

3.5.3 Ant Encounters

A fundamental concept underlying the MPACA is the ants’ ability to acquire features from other

ants, and append them in their carried feature list, effectively learning new feature combinations.

For example, if ants searching for feature “blue”, keep encountering other ants carrying feature

“large”, where such feature combinations have been encountered a number of times which ex-

ceeds the feature merging threshold parameter, then these two distinct features are coupled.

Colony merging represents another crucial operator. If ants co-occur within the same region

of space, then this makes it ever more likely that such ants should belong to the same colony.

This occurs since ants keep a record of other ants they have encountered and their respective

colony Id. When the number of encounters with a specific colony Id exceeds the colony merge

threshold parameter, the ant will set its colony identifier to this other colony Id. Therefore, an

ant colony is a collection of distinct ants, which are collectively labelled with the same colony

Id. Both feature and colony merging are executed asynchronously by the ants and independently

of each other.

97

3.5.3.1 Identifying Ant Feature Encounters

Encounters with other ants are recorded for both feature and colony merging purposes. To help

clarity of the explanation, the ant whose feature list will be updated is termed the focus ant.

Its encounters with other ants are only monitored and recorded when it arrives at a node and

only with ants within its visibility. This is controlled by the visibility parameter, which is the

number of steps along an edge an ant can see.

Ants remain true to their nature of being distributed and decentralised, as there is no communica-

tion between ants apart from when they analyse each other because they are within the visibility

range. The focus ant is able to see what features other ants are carrying and it maintains a queue

for recording them during encounters. This data addition is implemented at the ant level of the

focus ant, hence no other ant is influenced by this change.

If the focus ant is in deposit mode, ants at the same node or departing the same node it is in

which are also in deposit mode, have their features added to the encountered features queue.

This is due to the fact that ants departing such a node and are still in deposit mode, are so as

they found this node interesting to them. Likewise, ants which are travelling towards a node,

irrespective of the deposition mode they are in, have their features added to the encountered

features queue. This since, if ants are travelling towards a node, they must be heading towards

this node in believing that the node is also of interest to them. If the focus ant is not in deposit

mode, then only ants coming towards its current node which are in deposit mode have their

features added to the encountered features queue. This is because they are showing interest in

the node they have left and this is the node chosen by the focus ant due to the pheromones on

the edge.

This mechanism is operationalised by algorithm (6). The result is that ants can detect nodes

with combinations of features and that can merge with other ants into the same colony.

3.5.3.2 Data Structures for Recording Encounters

The MPACA uses collections of carried and detected features, that is the carried feature list, and

the recorded ant feature encounters. The latter also includes a reference to the colony Id the seen

ant was detected in. The carried feature list structure has the following properties:

• Feature Id, the feature identifier, common to all ants and created during the set-up and

normalisation process;

• Value, the value within the feature itself, e.g. colour=blue or height=1.56;

• Feature Dimension, the dimension value for the current feature; and

98

Algorithm 6 Updating Feature and Colony Encounters

if (Ant is in deposit mode) then
Let α = Ants that are in deposit mode at or travelling away from the node
for (ant ∈ α) do

Feature-encounters← record encounter
end for
Let β = Ants coming towards the node whether or not they are in deposit mode
for (ant ∈ β) do

Feature-encounters← record encounter
end for

else
Let γ = ants coming towards the focus ant which are in deposit mode
for (ant ∈ γ) do

Feature-encounters← record encounter
end for

end if

• Time, the time instance when this feature has been acquired;

The mechanism which stores feature encounters is a first-in first-out queue, this allows the oldest

encounters to be removed first. It consists of the following:

• Feature Id, which corresponds to a carried feature Id extracted from the encountered ant;

• Ant Id, representing the ant Id of the encountered ant;

• Colony Id, a value pertaining to the ant it has been derived from;

• Deposit Mode, representing the deposition state the encountered ant was in at that specific

time; and

• Time, a time-stamp value, that is the time instance when this feature is detected, taken

from system time.

The operation of the MPACA requires that each ant is initialised as an entity with the following

properties:

• Id, the unique identification of the ant within the entire system;

• Node At, the current node the ant is on. When traversing an edge this is set to null;

• Traversing Edge, the current edge the ant is traversing. When none this is set to null;

• Tabu List, a single element list that stores the node the ant has just visited;

• Deposit Mode, identifies the pheromone deposit state the ant is in (active/dormant);

• Colony Id, the colony the ant is currently a member of;

• Carried Features List, a collection of features including the base/instinct feature and other

acquired features; and

• Encountered Features Queue, a recorded instance of all the features the ant detects, being

carried by other ants which are within its visibility radius.

99

3.5.4 Merging Features and Colonies

Feature and colony merging are triggered by the number of ant feature encounters and colony Id

recordings. Feature merging occurs if an ant keeps repeatedly seeing the same features carried

by other ants. These features will be acquired by the ant, and from then on the ant will search

for the combination of such features, which is called the carried features list. On the other

hand colony formation occurs when the colony count of encountered ants goes over the colony

threshold. The ant joins the colony with the highest ant population from the colony Ids which

have been detected more than the threshold number of times.

These merging activities are linked, but they are not synonymous with each other, since ants do

not need to share the same features to belong to the same colony. A cluster is expressed in terms

of an ant colony and the features being searched for by each ant member of that colony.

Both feature and colony merging operators are limited by a time-window parameter. There-

fore, only encounters which occur within the last number of steps represented by this time-

window are taken into consideration. The MPACA is synchronised via an incremental system

time process. At each time increment, each and every ant moves one step. If the ant reaches

a node, the ant will update its ant feature encounters queue. When the time-stamp of the ant

feature encounter exceeds the selected time-window, this is removed from the queue. The time-

window keeps the size of the ant feature structure in check, and also ensures that only the most

recent encounters are validated, as more time distant encounters are ignored.

3.5.4.1 Merging Features: A Learning and Forgetting Mechanism

The MPACA combines the features being sought in an asynchronous manner. It is important to

note that this merging is applicable only at each distinct feature dimension. This limit inhibits

the focus ant from having a combinatorial explosion of carried features. A feature vector has at

most only a singular representation for each of the features such as weight, height, colour and

shape.

When the ant merges features, the number of nodes matching the ant’s feature detectors de-

creases, concurrently reducing the pheromone laying chances of the ant. This consequently

leads to a natural check on the combination process, since specialising the detection reduces the

number of matching nodes and the probability of an ant being in deposit mode. This results

in ants becoming more localised to a particular area of graph space. When this happens, the

chances of ants encountering the same subset of ants increases. This subsequently increases the

likelihood of ants belonging to the same colony.

100

Both merging processes are implemented in algorithm (7). A list of features is produced from

counting the frequencies for each encountered feature value within the given time-window, and

where counts exceed the feature merging threshold. For each feature in this list, as long as the

feature dimension is not already being carried by the ant, its carried feature list is augmented

with this new feature. Thus, a feature merge occurs.

When ants become more localised, this reinforces both feature and colony merging. This is

the correct functionality behind the algorithm. However, there might be instances, especially

in the opening phases of the algorithm, where feature merging should not occur so rapidly.

This is rectified by a forgetting mechanism, which is implemented as part of the time-window

concept. The time-window is also used as a forgetting mechanism, this clears carried features

within an ant which are no longer relevant. It helps prevent matching static features, enabling

the ants to learn new feature combinations for different areas of space. Hence, feature merging

is temporary, and this continues until an equilibrium is established, where ants stabilise the

features they are carrying. A crucial aspect is that ants cannot drop the instinct feature that they

were imprinted with at initialisation, since this is time independent.

The process of feature merging is distinct from colony formation for a number of reasons. Most

prominently, this mechanism allows for various levels of feature merging to occur within the

same colony. This means that a colony can consists of various ants which have combined over

multiple but not all dimensions present. This allows various distributions of ants, having dis-

tinct feature combinations to belong to the same colony. More importantly, the separate feature

merging allows the MPACA to detect interactions between variables and encode them for non-

linear separability such as the XOR problem, which draws on the relationship between values

of separate features occurring together.

Another aspect is that the mechanism allows for colony formation that can handle missing data.

Once more, as not all ants need to merge on all dimensions, missing data for particular feature

dimension values can be compensated for.

3.5.4.2 Colony Merging

As the algorithm begins execution, each ant is assigned a colony Id, representative of the ini-

tial node that it is born on which is consists of an increasing numerical sequence. During the

MPACA execution, ants encounter other ants, and determine the colony Id which they carry.

This colony Id is used for colony membership.

Colony merging is achieved as in algorithm (7), by using the same structure which stores the ant

101

Algorithm 7 Feature and Colony Merging

Let α be the frequency grouping of encountered ants by feature Ids, tuple(f ,n), where f and n
represent the feature Id and its respective count.
Apply a filter where only values when (n > feature merging threshold parameter) are kept.
Let β be the frequency grouping of encountered ants only in deposit mode by colony Ids,
tuple(c,n), where c and n represent the colony Id and its respective count.
Apply a filter where only values when (n > colony merging threshold parameter) are kept.
for (all features, f ∈ α) do

if (f /∈ carriedFeatures of the ant) then
Feature carried by ant← include feature f

end if
end for
Let γ be all carried features for the focus ant
for (all carried features, carriedFeature ∈ γ) do

Let δ = frequency of occurrence for the current carried feature
if (carried feature == base/instinct feature) then

Do nothing
else

if (δ < feature merging threshold within time-window parameter) then
Drop carried feature from carried feature list for the focus ant

end if
end if

end for
Let ε be a repository for all ant Ids
for (all colony Ids, c ∈ β) do

Locate ant Ids within the encountered ants that are in deposit mode which correspond to c
Update ε ← with value c

end for
Locate colony Id from, c ∈ β which has the highest number of ants
Set ant’s colony Id← to colony Id to this value

feature encounters. The only additional filter applied is that only ant encounters of ants in deposit

mode are considered, as only such encounters represent ants which were satisfied to be in that

particular area of graph space. The colony Ids grouped by their frequency, and frequency counts,

which exceed the colony merging threshold are used. This will return the colony Id, amongst

the colonies within which the other ants seen belong to, which has the highest population of

ants. The final step adjusts the colony Id value of the focus ant. Thus, merging is done at the ant

level by adjusting the colony Id.

3.6 Overall Operation of the MPACA

Central to the algorithm is the ant itself, since all respective emergent behaviours are ant induced.

The ant has two main states, deposit and movement, and their subsequent combinations, which

are expressed in the finite state machine depicted in figure (3.1).

Ants roam the graph as per algorithm (8). The ant moves from one node to another in ant

102

FIGURE 3.1: A finite state machine representing the changes in ant behaviour as it traverses
the graph.

traversals, depositing a pheromone trail on the way. The ant selects an edge to traverse in

accordance to the path-selection equation (3.5). Each time the ant arrives at a node, it determines

if the node features match the carried feature list it is seeking, and if so resumes or continues

pheromone deposition. On the contrary, if the node does not match the carried feature list,

pheromone deposition ceases. Initially each ant carries an instinct feature as its sole feature

within a carried feature list. Over time, this list increases to reflect feature information that the

ant learns during other ant encounters.

The MPACA exploits the ability of ants to combine into bigger colonies, with each ant in the

colony carrying a particular feature vector, which forms the basis of clusters. Therefore, the

cluster is represented by a representative sample of an ant colony, with the cluster itself being a

collection of the features carried by the individual ants.

The colony is a virtual structure, this since a colony is a collection of ants, which is completely

distributed. Ants do not need to know which other ants belong to the same colony they are in,

or any other colony. Ants do not need to know how large the colony is, for it is enough for the

ants to know that amongst the colonies which they have seen this is the most popular, and its

popularity exceeds the threshold to merge into such a colony. An ant easily migrates the colony

it is in by adjusting the “ColonyId”, with no need for a supervisor mechanism.

It is thus the ant itself that determines with which other ant/s it should merge features. It is also

the ant itself that determines which colonies it should combine into.

103

There are a number of synchronisation considerations which need mentioning. A characteristic

of the MPACA is that since ants traverse edges in steps, some ants might be traversing an edge

whilst others would have already arrived at a node. Unlike other ant colony algorithms, where

ant movement is synchronised, this approach enhances the asynchronous operation of the algo-

rithm. The position of the ant within an edge is determined by the system time, where every

time increment represents one move onto the edge until its full length has been traversed.

Global control is only restricted to the movement of the ant from one point to the next, syn-

chronised by system time, and a process which also keeps the pheromone matrix constantly

evaporating. The global controller is therefore a representative or an implementation of a time

mechanism. In the MPACA, ants move one step within each time interval, as per algorithm (8).

Algorithm 8 The core of the MPACA algorithm

Require: Graph space with connecting edges and ants assigned to each feature.
while (Termination not reached) do

System Time← System Time+1
for (Ant ∈ Ants In System) do

for (encountered Feature ∈ Ant.encountered feature queue) do
if (encountered Feature.TimeStamp < System Time−Time-Window) then

Dequeue encountered Feature
end if
if (Ant at a node) then

Ant deposit mode is set to non-deposit
if (Feature set on the node matches ant’s carried features list) then

Set ant to deposit mode
end if
Ant performs algorithm (6)
Ant executes algorithm (7)
Ant chooses an edge in accordance to the edge-selection equation (3.5)

end if
if (Ant is on an edge) then

Ant moves one step forward onto the edge it is traversing
if (Ant is in deposit mode) then

Ant deposits pheromone signalling the features it is carrying as per equation (3.3)
end if

end if
end for
if (Stopping criterion reached) then

Output cluster definitions
else

Perform system wide evaporation as per equation (3.4)
end if

end for
end while

104

3.7 The MPACA and Cluster Derivation

3.7.1 Mapping Colonies to Clusters

The MPACA algorithm forms colonies of ants, with each ant belonging exclusively to only one

colony, and each ant having its own distinct carried feature list. Since each feature represents

a dimension and a value, the collective features belonging to a colony via ants imply that each

cluster is a weighted collection of these feature values.

Due to the nature of the clustering problems, it is unlikely that a perfect colony-to-cluster repre-

sentation forms. In many cases smaller colonies form which would be negligible in size when

compared to the larger colonies. Therefore, a mechanical tolerance is required which would

filter out these small colonies that may form. In order to achieve this, the colonies are sorted

by their descending population size, and only the top N sized ones are kept. The value N is

determined by the known number of clusters existing in the given dataset. Hence, truncation of

smaller, less densely populated colonies is used as a post-processing mechanism.

3.7.2 Termination Criteria

The MPACA uses two termination criteria, either a maximum number of iterations is reached,

or ants reach a stable dynamic equilibrium in the colonies they form. The latter is defined when

the populations of ants in the top N colonies (above section) stabilises.

Given a cluster, the next step is to determine cluster membership for data elements. The original

data elements are matched to the cluster which best represents them in a cluster membership and

evaluation mechanism.

3.7.3 Cluster Membership and Evaluation

The collection of features within each ant in each colony is used to generate centroid values

for each dimension, in a similar mechanism to Centroid-based clustering algorithms presented

in section (2.2.4.2). Two other secondary approaches namely, the Bayesian and a K-Nearest

Neighbourhood are documented in chapter (5).

This thesis focuses on this centroid based method as there already multiple co-occurring events

and parameters applicable to the MPACA, and this method albeit crude, is the simplest measure

to determine overall success without being itself weighing overly on the results generated.

105

3.7.3.1 Centroid Cluster Membership Calculation

Algorithm 9 Proximity to Centroid calculation

for all data elements, de ∈ Dataset, ds do
Let minimum distance mind ←MaxValue
for all cluster c ∈ Clusters C do

Let d← distance(centroid(c),de)
if (d < mind) then

mind ← d
end if

end for
end for

In the centroid calculation, feature combinations within each ant, and in each colony, are summed

up to their centroid values. When dealing with a ordinal data, the value of each feature value is

accumulated, and a centroid value is calculated for each dimension. For each feature dimension

the values are weighted using the mechanism introduced by Greenacre [Greenacre, 2013], as

per in section (2.2.2.3). Now that the locus of points is known, the next step is to allocate each

data element as belonging to one cluster over another, depending on the proximity to the clus-

ter centroid. In case only ordinal values are present in the data, a standard numeric Euclidean

distance is applied. The data element is assigned to a cluster depending on its proximity to the

centroid value. This mechanism operates as in algorithm (9).

When nominal values are also included, the centroid value is still used, however the matching

process differs slightly, since an accumulated difference tally, dt, is used. In this approach, for

each dimension a count for matches and mismatches takes place. When dimension matches dt

is not incremented, whilst when there is a mismatch dt is incremented.

The evaluation metrics with which these mechanisms are explored is given in section (2.2.3).

3.8 The MPACA Parameters

Much of the MPACA detail resides with how it is parametrised. The determination of the effect

of various intertwined parameters is certainly not a trivial task. This is hindered by the multitude

of possible existing parameter combinations. A synthetic dataset is used to explore the internal

effects of parameter adjustments.

3.8.1 A Synthetic Dataset for Demonstrating the Parameters’ Impact

The chosen synthetic dataset for the internal evaluation is the Square1 dataset. Other synthetic

datasets are evaluated in chapter (4), namely the 2D-4C and 10D-10C datasets [section (4.2.1)].

106

The Square1 dataset is a two-dimensional dataset consisting of four clusters arranged as a

square. Data elements for each individual cluster are generated using the normal distribu-

tion, N(~µ,~σ). The number of clusters, the sizes of the individual clusters, the mean value,

~µ , and vector of the standard deviation, ~σ , for each normal distribution are used to gener-

ate this set. That is, the normal distributions of data elements pertaining to this formulation

are (N(−5,2),N(−5,2)),(N(5,2),N(5,2)), (N(−5,2),N(5,2)) and (N(5,2),N(−5,2)). The

dataset is initialised to 100 data elements.

3.8.2 Baseline Analysis

This set of experiments builds on the research methodology later presented in section (4.3).

In brief, a number of parameter configurations are executed by the MPACA and depending

on the quality of the result attained, the parameters are narrowed further to improve results.

Parameters are not adjusted during the MPACA execution, yet they are adjusted in between

various execution instances. In order to establish a set of baseline values, the MPACA has been

applied for 1,000 instances on varied parameter settings. The applicable parameter ranges used

are given in table (3.1). Each of the experiments which now follow are the combination of

results attained from these baseline experiments augmented with results from 50 execution runs

for each tested parameter.

These experiments only demonstrate the internal interaction of parameters and their influence

on each other. No further comparisons are undertaken as per section (2.2.3), with the latter

produced in chapter (4). The units applicable to this experimental configuration also apply to

other experiments presented in chapter (4) and are as follows:

1. Maximum Edge Length - the maximum number of steps on each edge;

2. Step Size - equates to a fraction of a SD;

3. Ant Complement - an integral unit representing the number of ants present per feature per

node;

4. Detection Range for Ordinal Dimensions - steps above or below a mean;

5. Quantity of Pheromone (Ph.) Deposited - an integral value representing the pheromone,

Q;

6. Maximum Coefficient of Ph. Deposited - an integral value representing a coefficient (for

example Q×2);

7. Minimum Tolerance Value - an integral unit;

8. Evaporation Rate - a percentage applied to pheromone quantity, Q;

9. Residual Parameter - a percentage of the sum of all pheromones on selected edges;

107

Parameter start mean SD
Max. Edge Length 5 8 1.42
Step Size 0.1 0.1 0
Ant Complement 1 5.09 4.51
Detection Range 1 1.5 0.5
Ph. Qty. Deposited 100 175 56
Max. Ph. Coefficient 1 1.49 0.5
Min. Tolerance 1 1 0
Evaporation Rate (%) 0.01 0.06 0.04
Residual Value 0 1.01 0.82
Feature Merging 3 4.51 1.5
Colony Merging 3 4.55 1.5
Visibility 3 3.5 0.5
Time-window 50 74 25

TABLE 3.1: The MPACA parameter settings as applied to the Square1 dataset. Values as
varied over 1,000 instances of the algorithm, consisting of a minimum (start), mean, and stan-
dard deviation (SD). Note: Furthermore, isolated runs are executed on a per parameter basis

(approximately 50 runs each) and are not included in the above baseline evaluation.

10. Feature Merging Threshold - an integral count;

11. Colony Merging Threshold - a separate integral count;

12. Visibility on Edge - an integral representing steps within an edge that an ant can see

through; and

13. Time-window - the number of time stamped intervals which are analysed.

Due to the difficulty in measuring the interaction of all parameters concurrently, parameters are

grouped together by their perceived action, as follows:

1. Domain initialisation, in which the maximum edge length and step size are analysed;

2. Ant initialisation, analysing the ant complement and detection range parameters;

3. Pheromone deposition and movement, in which the quantity, minimum and maximum

amounts of pheromone present on each edge, evaporation rate, and also the residual pa-

rameter are explored; and

4. Merging thresholds, in which feature and colony merging are explored together with the

edge visibility and the time-window parameters.

The evaluations to follow represent a combination of parameter specific experiments combined

with the baseline evaluation, as per table (3.1). Each analysis has a varying optimality range, as

optimality differs from the initial phases of execution towards the latter stages of execution. The

optimal value should in theory build towards the “best” clustering solution. This analysis aims

to determine the optimal value applicable to each parameter, its degree of influence, coupled

with the influence this parameter has on other parameters, and why such behaviour takes place.

108

Graph are used to represent four key benchmarks, as described next.

Figure (a) shows the average feature combinations carried by ants. For the given 2D problem

domain the optimal average feature combination value at the end of processing should be within

the range of 1.5− 1.7. Higher values, especially at the early stage mean premature stagnation,

whilst lower values towards the end mean that feature merging is not occurring. The latter lack

of feature merging is an indication that not enough ant encounters are taking place.

Figure (b) shows the distribution of ants in the top N colonies versus other smaller colonies. The

absorption of ants in the top N colonies is an indication of a good clustering solution. Under

optimal conditions this value should range between 0.6 and 0.8, which indicates that enough

ants are joining the larger colonies, whilst allowing some free ants to exist. It is unlikely that all

ants combine correctly into the major colonies, and when no minor colonies are present this can

indicate over aggregation. An important consideration is that sudden merging of features and

colonies does not imply correct cluster formation.

Figure (c) shows the repetition in node traversals, where a high value indicates less randomness,

whilst a lower value is indicative of a more varied search. In the opening phases, repetition

should be low, indicating that ants are varied around the graph nodes. As time progresses more

ants should be repeating the sequence of nodes that they traverse, which is indicative of correct

pheromone path following. Under optimal conditions this value should range between 0.5 and

0.6, as some freedom in movement should always be present.

Figure (d) shows the progressive decline in the number of colonies present and the termination

criteria. This is also time dependent, where the initial colony count is reduced as more colonies

are engulfed by larger colonies. Coupled with figure (b), whilst the majority of ants are expected

to be in the top N colonies, a number of smaller colonies are likely to exist, indicating correct

functionality. Termination is not necessarily shown in these experiments given the short time

cycles used. The decline in colony counts and the colony membership stabilisation is indicative

of correct termination.

3.8.3 Domain Initialisation Analysis

Domain initialisation influences ant traversals and encounters, which are key building blocks of

the MPACA.

109

FIGURE 3.2: Results of varying the maximum edge length parameter are given as follows;
figure (a) shows the average feature combinations carried by ants, figure (b) shows the distri-
bution of ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in
traversed nodes, and figure (d) shows the progressive decline in the number of colonies present

and the termination criteria.

3.8.3.1 Maximum Edge Length Parameter

Increasing the maximum edge length, increases the graph connectivity. This causes two events

to occur; (i) distant nodes become connected to each other, and (ii) the number of outgoing

edges from each node increases. This parameter determines the likelihood of ant encounters,

influencing activities such as feature and colony merging. As shorter edges are traversed more

quickly, evaporation has less time to take place. Thus, the impact of pheromone quantity is

higher.

The optimal value of this parameter (within this domain being 9), is one which is long enough

to allow proper connectivity and induce an adequate frequency of ant encounters, whilst not

producing a fully connected graph. Figure (3.2, a) demonstrates that a lower edge length causes

110

the average feature combination to rise too quickly. This since lower edge lengths cause ants

to stay located within the same area of space. Likewise, figure (3.2, a) also shows how this

influence differs when larger lengths are selected. On increasing edge lengths the influence is

more subdued than on decreasing edge lengths, this due to the impact of pheromone that drives

ants.

Shorter edge lengths adversely increases the speed at which ant colonies merge. Having ants

merge into the top N colonies too quickly, as is shown in figure (3.2, b) is an indicator that proper

exploration has failed to take place. Longer edge lengths delay this process, giving the ants the

ability to perform a broader search.

Ant movement is driven by pheromone quantity, thus shorter edge lengths cause more repetition

in node traversals. What is interesting to note is that the variation in results between different

edge lengths is not so protracted. This is due to the effect of pheromone deposited on connecting

edges, which stabilises the overall stochastic behaviour [figure (3.2, c)].

Termination is quicker with a shorter edge length, since ants are more likely to be assimilated

into colonies. This process is delayed with longer edges [figure (3.2, d)]. Therefore, too small

values applied to this parameter inhibit correct clustering. Larger values still allow clustering to

take place, however this parameter determines the speed of such occurrence.

3.8.3.2 Step Size Parameter

The step size parameter influence two key activities. Firstly, it determines the number of steps

that exist within an edge, and secondly it determines the granularity of the search. This next

experiment considers two cases, discussed earlier, having a step size of 0.1 of a SD or 0.4 of a

SD, and demonstrates the optimality for the former parameter value.

Figure (3.3, a), shows that having a lower step size produces results which are in line with other

experiments. However, on increasing the step size, the shortening of edges and the ability of

ants react to less granular features, makes ant encounters more frequent. Thus, feature merging

immediately rises to a high value, excluding the possibility of proper exploration.

Similar patterns of activities are shown in figure (3.3, b), where colony formation occurs way

too rapidly for the larger step size. This is accelerated to an extent that all ants are absorbed into

the top N colonies. Even more so, as shown in figure (3.3, d), termination occurs too suddenly,

and most ants combine into just one colony.

Larger step sizes also induce repetition of node traversals, as per figure (3.3, c), resulting in a

value which is too high for correct performance. The closer proximity of nodes and the elevated

111

FIGURE 3.3: Results of varying the step size parameter are given as follows; figure (a) shows
the average feature combinations carried by ants, figure (b) shows the distribution of ants in top
N colonies versus other smaller colonies, figure (c) shows the repetition in traversed nodes, and
figure (d) shows the progressive decline in the number of colonies present and the termination

criteria.

pheromone connections cause ants to loop within the contained space. The smaller step size

returns a more workable percentage repetition.

The above happens since the increased step size reduced edge lengths and heavily increased

spatial compression, whilst at the same time also increased the ants ability to react to a wider

range of features. Hence, both these factors compound to distort the final clusters which form.

This experiment serves to demonstrate that a smaller step size returns a much finer and more

workable granularity.

112

3.8.4 Ant Initialisation Analysis

The ant complement and feature detection ranges are important influences on all parameters, as

evaluated next.

3.8.4.1 Ant Complement Parameter

FIGURE 3.4: Results of varying the ant complement parameter are given as follows; figure
(a) shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

This experiment determines the applicable parameter ranges which provide an optimal balance

in terms of the number of ants, which is heavily dependent on the number of data samples

present. For a smaller 2D domain, such as the one discussed, a higher ant complement is ap-

plicable. An increase in ants impacts all other activities which build on ant encounters. Hence,

irrespective of how high the feature and colony merge thresholds are, having a very high ant

113

complement can nullify their influence. This in turn also dampens the influence of evaporation

as more pheromone is deposited. An increase in ant counts also necessitates a proportionally

smaller time-window.

Figure (3.4, a) demonstrates that the optimal parameter setting ranges at around 3-5. Exceeding

a certain critical mass of ants causes the average feature merge to immediately escalate to the

maximum. This is also evident in figure (3.4, b), where lower ant complements return higher

variation in the colonies that form, whilst higher ant complements are immediately absorbed

into the top N colonies.

The increased ant count increases the pheromone quantity deposited. This in turn increases

the chances of ants traversing the same sequence of nodes, reducing randomness. Thus, as is

shown in figure (3.4, c), higher complements reduce randomness. Interesting to note, is that

randomness is still present. This since the mechanism employed in the MPACA will allow

a degree of randomness. This is also coupled by the maximum coefficient which limits the

amount of pheromone that can be deposited on any edge. Finally, the ant complement increase

accelerates the termination process, as per figure (3.4, d).

3.8.4.2 Detection Range for Ordinal Dimensions Parameter

This parameter determines the granularity of the search; when a lower value is chosen, more

specific connections can be made. When increased, broader less specific connections are cre-

ated. This experiment shows how this parameter influences feature and colony merging, and the

pheromone levels within the system.

The optimal setting for this parameter is a low value, in this case a value of one step in each

direction. Figure (3.5, a) demonstrates that lower detection ranges produce the most suitable

average feature merges. On the contrary, wider ranges cause links between all nodes to be

reinforced. This increases the amount of pheromone deposited, with the result that linkages

between nodes become less specific or meaningful.

A larger detection range is also detrimental to colony formation, this leading once more to a

situation where membership into the top N colonies is too sudden, as shown in figure (3.5, b).

A similar pattern is further observable in the repetition of traversed nodes [figure (3.5, c)]. This

same repetition causes the ants to remain localised within a small area, potentially causing the

ants to triangulate within a set of nodes, and accelerates termination [figure (3.5, d)].

In essence, a small feature detection range value slows down feature and colony merging and

allows a more granular search to occur, a process which encourages better cluster recognition.

114

FIGURE 3.5: Results of varying the detection range for continuous domains parameter are
given as follows; figure (a) shows the average feature combinations carried by ants, figure (b)
shows the distribution of ants in top N colonies versus other smaller colonies, figure (c) shows
the repetition in traversed nodes, and figure (d) shows the progressive decline in the number of

colonies present and the termination criteria.

3.8.5 Pheromone Deposition and Movement Analysis

3.8.5.1 Pheromone quantity, maximum coefficient and the evaporation parameters

This experiment serves as a measure of the degree of pheromone influence. Ant movement is

controlled by pheromone scents present on each edge. The following parameters are effectively

an interpretation of one parameter action, which is pheromone deposition, and are hence eval-

uated collectively. An arbitrary value of one unit has been chosen representing the minimum

pheromone tolerance parameter, whilst evaporation and the maximum coefficient are derived

from average values presented in table (3.1). The focus of this experiment is on the quantity of

pheromone deposited.

115

FIGURE 3.6: Results of varying the pheromone related parameters are given as follows; figure
(a) shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

Pheromone controls the path following feedback mechanism, and as this experiment demon-

strates that the optimal value of this parameter is in the range of 100-250 units of pheromone.

Figure (3.6, a) shows that without pheromone limited feature merging takes place. The same

is deducible in figure (3.6, b), where this inhibits ants from merging into the top N colonies.

This lack of cohesion happens as ant traversals within the graph take place without pheromone

interaction. As pheromone levels are increased, this increases the likelihood of both feature and

colony merging, the former depicted in figure (3.6, a). This also increases colony merging, caus-

ing more ants to appertain to the top N colonies in quicker succession. Eventually, the higher

level of pheromone present in the system reduces randomness, and hence more ants are likely

to traverse a repetition of the same nodes. Interestingly, without the pheromone the ant move-

ment randomness remains near constant all throughout the execution [figure (3.6, c)]. It is also

116

noted that higher pheromone values quicken termination, and this might lead to the formation

of erroneous clusters, whilst also anticipating early termination [figure (3.6, d)].

Therefore, pheromone is required for both feature and colony merging, however overly strong

pheromone quantities might obfuscate the search and precipitate termination, limiting the ex-

ploration required.

3.8.5.2 Residual Parameter

FIGURE 3.7: Results of varying the residual parameter are given as follows; figure (a) shows
the average feature combinations carried by ants, figure (b) shows the distribution of ants in top
N colonies versus other smaller colonies, figure (c) shows the repetition in traversed nodes, and
figure (d) shows the progressive decline in the number of colonies present and the termination

criteria.

This parameter is analysed by starting off with a zero value. That is, no additional residual value

exists, and ants only follow paths with the highest pheromone quantity. Following which more

randomness is included.

117

This experiment builds on section (3.8.5.1), as it impacts the same parameters, and similar results

are achieved. The optimal value for this parameter is set to be a minimal value, ranging between

approximately 2% - 3%. This experiment demonstrates that with a minimum amount of added

randomness, interactions improve. However, feature and colony merging decrease in frequency

as randomness increases, respectively depicted in figures (3.7, a) and (3.7, b). This since less ants

head towards nodes of interest to them, reducing the chances of further pheromone deposition.

Therefore, the residual randomness has to be contained or else the entire search degenerates.

Higher randomness values, even if just 10% have a multiplied adverse effect. This since it

inhibits the positive feedback effect of pheromone from occurring. As the pheromone levels

decrease they are less likely to be reinforced and dissipate, and ant movement becomes even

more random [figure (3.7, c)]. Termination is also severely impacted, with this taking longer to

occur, and in many cases failing to do so [figure (3.7, d)].

3.8.6 Merging Thresholds

Ant encounters determine the features and colonies that are to be merged. The number of en-

counters seen by each ant at each node is determined by the visibility range. Further controlling

all this is the fact that all encounters are only temporarily available to the ant, according to a

time-window.

3.8.6.1 Feature Merging Threshold Parameter

This parameter influences colony merging and pheromone deposition in the following ways.

Lower feature merging thresholds cause ants to immediately combine features as per figure

(3.8, a). This premature combination has another side effect, as feature combinations cause ants

to rapidly become specific to a particular area of graph space. This increases the likelihood of

ants merging into colonies. However, this restricted area causes a number of smaller colonies

to form rather than the complete colonies required, as is shown in figure (3.8, b). Increasing the

feature merging threshold to a mid-value (in this case 6), increases the quality of colony merging

into the top N colonies. Consequently the feature merge delay encourages further exploration

of the domain [figure (3.8, b)]. This colony belonging directly influences the termination of the

algorithm, and this terminates faster when more ants belong to the top N colonies [figure (3.8,

d)].

The influence of this parameter is driven by the various pheromone-feature combinations which

are deposited upon merging. An interesting eventuality occurs when a higher feature merge

threshold is chosen. High values inhibit ants from merging their features so readily, this causing

118

FIGURE 3.8: Results of varying the feature merging parameter are given as follows; figure (a)
shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

ants to look solely for one feature. This turns the MPACA into a singular feature search, similar

to the common ACO, which is known to optimise paths quite rapidly. Thus, as per figure (3.8, c),

higher merge thresholds correspond to the highest repetition of nodes traversed. The contrary of

this does not occur. Lower merge values as in this analysis, where value 6 is chosen, still allow

feature merging to take place, implying that the search is not driven by a singular feature in such

a case, with repetition being much lower than the case for value 9. When the feature merging

threshold is lowered to value 3, in this case repetition increases slightly. This limited increase

occurs as the lower feature merge causes the ants to stabilise quicker the features they are after,

which in turn is reinforced more often than would occur if the ants keep exchanging the features

they are carrying.

119

3.8.6.2 Colony Merging Threshold Parameter

FIGURE 3.9: Results of varying the colony merging parameter are given as follows; figure (a)
shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

The colony merging threshold is the founding mechanism for cluster formation. Colony mem-

bership is an isolated parameter as it does not influence any other parameter. It is only mean-

ingful in the context of the colony formation. Thus, as figures (3.9, a) and (3.9, c) demonstrate,

there is limited statistical significance difference (excluding that attributable to sampling and in-

herent randomness within the model) when varying colony membership levels vis-a-vis feature

merging or ant movement. Hence, whilst feature merging directly influences colony formation,

the opposite is not so. This is due to the fact that a colony can have ants with multiple feature

combinations, and search specialisation occurs at the ant level, not at the colony level. On the

other hand the two benchmarks affected by this parameter change are colony membership into

the top N colonies, and the termination criteria, respectively depicted in figures (3.9, b) and

120

(3.9, d). Low colony membership means more ants are engulfed into the top N colonies, and

algorithm termination on the other hand is heavily dependent on the colony merging thresh-

old. A low threshold implies that excessive merges occur, which can inhibit the algorithm from

reaching correct termination.

3.8.6.3 Visibility on Edge Parameter

This parameter gives the ants the ability to determine the internal content of other ants. The

more extended this visibility is, the greater is the number of ant encounters counted.

FIGURE 3.10: Results of varying the visibility range parameter are given as follows; figure
(a) shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

In this experiment three values are considered; (i) single visibility where ants can only see one

step away, (ii) partial visibility where ants can see steps belonging to approximately half an edge

length away, and finally (iii) complete visibility where ants can see all ants present on the edge.

121

Visibility elongation accelerates feature and colony merging, as the more ants are detected, the

more frequently these operators take place [figure (3.10, a)].

Figure (3.10, b) shows that partial visibility takes longer to place ants within the top N colonies

than full visibility, whilst single step visibility is considerably slower than both. Furthermore,

figure (3.10, c) shows that both single visibility and partial visibility have similar repetitive

traversals. This is likely to occur for different reasons. Single visibility operates on a single

feature, much in the same way as when a high feature merging threshold is chosen, whilst partial

visibility performs node traversals seeking feature combinations. On the other hand complete

visibility tends to have lower repetitive traversals, which can be symptomatic of incorrect feature

merges which do not create correct pheromone traversals to be followed. Thus, even if feature

and colony merging is faster at the maximum value, the partial setting is operationally more

coherent. A large visibility increases the ant encounters, which precipitates termination.

3.8.6.4 Time-window Parameter

This parameter has a primary impact on feature and colony merging, as the longer the time-

window, the higher the rate of feature and colony merging should be, and vice-versa. This

experiment demonstrates the variations of the time-window as this is increased at intervals,

starting from 50, 100, 250 and 500 units. Experimentation shows that for this domain, the

optimal value is around 100 time units.

Short time-windows imply a low feature merging, and respectively a low feature merge average,

as per figure (3.11, a). A similar activity takes place as the lack of having a specific set of

features, and the lack of historical ant encounters imply that colony formation takes longer to

occur at this value [figure (3.11, b)]. As is shown in figures (3.11, a) and (3.11, b), as the time-

window is gradually increased, feature merging increases, and so do the ants belonging in the

top N colonies.

The disparity between ants depositing pheromone and those that are not, and even the random-

ness in search is not particularly influenced by the time-window. This is because the likelihood

of ants locating interesting nodes is unchanged [figure (3.9, c)]. Algorithm termination is di-

rectly influenced by colony formation, hence a delay in colony formation consequently delays

termination [figure (3.11, d)].

122

FIGURE 3.11: Results of varying the time-window parameter are given as follows; figure (a)
shows the average feature combinations carried by ants, figure (b) shows the distribution of
ants in top N colonies versus other smaller colonies, figure (c) shows the repetition in traversed
nodes, and figure (d) shows the progressive decline in the number of colonies present and the

termination criteria.

3.9 The MPACA as a Classifier

The MPACA has an additional second operating mechanism, that of a classifier. This is addi-

tional material which is only briefly introduced, serving as a prelude to ongoing and future work.

Within this classification method two modes of operation exist, a training mode and a testing

mode.

The operator using the MPACA is required to split the dataset into two sets accordingly, one for

training and one for testing. The dataset is first normalised using the both subsets combined.

During the training mode, only data elements which pertain to the training set are used for graph

formulation. The same MPACA learning process takes place with the notable exception that

123

ants are initialised to belong to a specific colony and are prohibited to migrate or merge into

or with any other colony. That is, colonies of ants are assigned to fixed classes. What changes

is the composition of features carried by the ants themselves, this since ants can still learn and

drop features. At the end of training, ants will have acquired feature combinations, and allocated

pheromone weights on edges connecting nodes.

When in testing mode, the entire dataset (training and testing) is once more used to reconstruct

the graph structure. The training data elements are evaluated against this new structure as is

learnt by the ant colonies. This evaluation process returns the most likely class membership that

an unseen data element belongs into.

A number of more specific considerations include the termination criteria and the evaluation

mechanism.

3.9.1 Training Termination Criteria

Classification learning is achieved by allowing the algorithm to run until the carried features

within the ants stabilise or a maximum number of training iterations is set. To date this process

is manually controlled. The speed of learning can be gauged, this since the MPACA allows the

monitoring of the internal visibility of the average number of carried features occurring during

processing, once the average number of carried features by the ants exceeds a reasonable thresh-

old, this value can be arbitrarily used to terminate the training cycles. A reasonable threshold

is considered to be one where the average ants carry an average of N − 1 features, where N

represents the total number of features present in the system.

3.9.2 Evaluation of the MPACA as a Classifier

At the end of learning, an ant colony has various ants each carrying a number of features. This

collection of features determines class membership. The evaluation process works by comparing

the testing data elements and determine which colony (class) they fit in best. This is once more

the same mechanism as is used in the standard MPACA, with the difference being that rather

than assigning a data element to a colony representative of a cluster, this is assigned to colony

which represents the class. This process is achieved by analysing the composing features and

feature values of the data element using the same mechanisms presented in section (3.7.3.1)

[further extendible by methods presented in section (5.5.1, 5.5.2)].

124

3.10 Novelty and Contribution of the MPACA

The MPACA is a bottom-up, distributed swarm based clustering technique. It is a fully fledged

decentralised ant colony algorithm, driven by ant interactions, where in turn movement is con-

trolled by pheromone scents. Pheromones create the corresponding positive feedback that causes

conglomeration of ants in space, which leads to clustering.

3.10.1 Distinctive Elements of the MPACA

Unlike most other ant algorithms found in the literature, the MPACA is used to cluster graph

space in a spatial partitioning process. The main differences between the MPACA and other ant

models are:

1. The ant chooses the edge to traverse next stochastically, where the edge with the highest

amount of similar pheromone is preferred, but not always chosen. Pheromone stigmergy

implies that nodes with similar feature values have higher levels of pheromone connecting

them. As evaporation of pheromone occurs, the least reinforced edges are selected less

frequently and therefore tend to have lower pheromone levels.

2. The MPACA includes a mechanism which allows ants to learn feature combinations, or

interactions, that are central for clustering and classification. The underlying concept

implies that features which frequently co-occur should be combined at the ant level. Ants

record features carried by other ants during ant encounters. These ant recordings take

place when the ant has reached a node. The focus ant locates ants within its visibility

radius and records the feature values carried by each ant. If the feature encounters exceed

a parametrised threshold, the ants combine each other’s features. This results in ants

now responding only to a combination of these features. This ability to learn feature

combinations enables ants to pick up non-linear interactions. In response to such feature

combination merging, each ant deposits a pheromone representative of a particular feature

or feature combination it is after. This makes the MPACA a multi-pheromone mechanism

like no other, as no other mechanism in literature has the ability to handle this many

pheromone combinations.

3. The MPACA has the ability to perform clustering via the use of multiple colonies. The

merging of colonies is similarly driven by the frequency of ant encounters. During the

same ant encounter, the focus ant also stores colony Ids that pertain to the other detected

ants. If the number of colony encounters for the focus ant exceeds the threshold for colony

merging, then the focus ant updates its colony Id property accordingly. Both the feature

125

and colony merging processes are limited by a time-window. More importantly both

merge operators are executed asynchronously and at the ant level, thus decentralisation is

ensured.

It is not obvious whether these distinctive properties mean the MPACA will have equally dis-

tinctive behaviour.

3.10.2 Variations of the MPACA from the Traditional Clustering Algorithms

As highlighted in section (2.2.5), the MPACA is locatable under the graph-theoretic clustering

algorithms, section (2.2.4.4). The graph represents the problem domain, where node proximity

in space also signifies a higher degree of relevance. Ants in the MPACA traverse the graph struc-

ture and lay pheromone to further link nodes of higher relevance. The effect of this pheromone

causes ants to form higher densities around certain regions at the expense of others.

The MPACA does not utilise a direct probabilistic mechanism to create clusters. It instead

uses the ant population density to define the clusters, not the original objects. It then assigns

nodes to the nearest ant colony, which is a representative of a cluster. This is a density function

which differs from that presented in section (2.2.4.3), since the MPACA uses the frequency of

ants, which are themselves proxies of node content, rather than making use of node density

itself. This can be interpreted as a density-by-proxy or a mocked density function. Ants in the

MPACA are not interested in nodes per se, but rather in the features that make up the node.

These feature and ant encounters are used for the two-fold merging mechanism, applied to both

features and colonies. The MPACA merges features which are carried by the ants depending

on the frequency of their encounters, and also ants from different smaller colonies merge into

bigger ones, using a similar mechanism. The MPACA uses the critical number of ants to merge

into one colony, based on a colony level threshold. This can be considered as equivalent to the

MinPts in DBSCAN [Ester et al., 1996b], since once a colony level threshold is exceeded, two

colonies merge.

The MPACA can be viewed as a hybridisation of the algorithm methodologies presented, since

it uses the concepts of density as in the DBSCAN [Ester et al., 1996b] to form clusters, and the

K-Means [MacQueen, 1967] to allocate data elements to one cluster or the other. It also uses a

normalisation function, sharing similarities with Grid-based clustering (section 2.2.4.3). These

classical clustering approaches serve as a benchmark for results.

126

3.10.3 Variations from Ant Based Clustering Literature

This subsection in part explores a global overview of the variations the MPACA variations from

the algorithms presented in the literature overview chapter (2), based on typology groupings

presented earlier. In this text ACO stands for typologies of type IV and their sub-derivative

algorithms.

Type I: Akin to the phenomenon of self-assembly in the AntTree algorithm, ants in the MPACA

also use self-assembly. This differs, as rather than building fixed structures, where the structure

is the representation of the cluster, in the MPACA ants merge into colonies of ants, forming a

dynamic structure. In the MPACA it is this colony of ants and the carried features that ultimately

represent a cluster. This structure is dynamic, as ants can easily move from one colony to

another. In the MPACA ants follow other ants which are searching for similar features. When a

locale is found which has many ants searching for similar features, there is an increased tendency

for the ant to stay fixed within it. The modus operandi of the AntTree, as discussed in section

(2.6.1), remains that of building a hierarchical structure and cluster definitions are extracted

from it. This is totally distinct from the MPACA which is based on ACO principles (type IV).

Type II: The MPACA uses a graph based architecture where data elements are represented

as nodes, which are fixed during the clustering process. This differs substantially from the

SACA approach in which data elements are represented as blocks within a 2D space and are

moved around by ants to form clusters of higher density. Hybrid-SACA approaches introduce

the notion of pheromone driven ants, such as the ACLUSTER and APC. In these algorithms the

final spatial positioning of data elements is a result of the clustering process itself, whilst in the

MPACA graph nodes are fixed. The notion of graph clustering clearly separates the MPACA

from any type II method discussed earlier in section (2.6.2).

Type III: The ANTCLUST algorithm has introduced clustering based on the agreement of a

colonial odour between ants. That is, the ants determine what pheromone values best rep-

resent the colony. This approach introduces a “learning” function within ants, as ants adjust

their pheromone according to the interaction with other ants. This is a mechanism akin to the

MPACA, where ants rather than learning pheromone carried by other ants, learn which fea-

tures they should follow, and into which colonies they should join into. But the similarities

with ANTCLUST are also limited as has been discussed in the relevance to the MPACA, as per

section (2.6.3).

Type IV: The MPACA is graph based, and shares analogies with the core ACO principles.

That is, ants traverse graph space, and during these traversals deposit pheromone traces. This

127

chapter has reviewed two different ACO (graph) based approaches. In the first instance, the

problem is used for purely optimisation purposes, where at the end of each iteration a fitness

function is applied to calculate the best tours performed by the ants and in order to determine

the quantity of pheromone that is to be deposited. Other multi-objective, multi-colony and

multi-pheromone implementations use an extension of this approach. All make use of the core

ant colony optimisation mechanism, thus even if they do provide a multi-colony aspect, they are

still distinct from the MPACA. Although some previous ant models have multiple pheromones,

none of them have a different pheromone associated with each distinguishing feature of the

objects being analysed. This is a key innovation of the proposed model.

In the second case, one finds the closest resemblance to the MPACA, where pheromone traces

are used to create connections between nodes of higher relevance, and where node proximity

also signifies a higher degree of relevance. This is an approach which follows on from graph

theoretic clustering, section (2.2.4.4). Much like ACODF, the MPACA uses this ant population

in specific areas of higher density to create clusters. The MPACA is a mechanism which shares

similarities to ODUEC, where colonies compete to colonise nodes, whereas in the MPACA

colonies seem to compete to take in more ants within their fold. Ants in the MPACA form into

bigger colonies depending on the frequency of their encounters. If an ant detects many other

ants belonging to one colony rather than another, there is a higher likelihood of the ant joining

that colony. Once more, akin to ODUEC, the MPACA uses multiple pheromones. The effect of

this pheromone causes ants to form in higher densities around certain regions.

Despite the MPACA being a graph-based clustering algorithm, a substantial effort has been

invested in pursuing a graph architecture that is scalable and efficient.

3.10.4 Advantages of the MPACA Architecture

The MPACA is a graph-based spatial clustering algorithm, [section (2.2.4.4)], where ants pop-

ulate specific areas of the graph in various densities. To achieve this, ordinal dimensions of the

problem space are normalised in such a way that the effects of outliers are minimised, whilst the

distances between nodes are contained, a process which allows the optimisation of ant move-

ment and an increase in the likelihood of ants encountering each other. These values are then

used to formulate a graph [section (3.3)]. The graph structure in the MPACA is not fully con-

nected, as outlined in section (3.3.1). This architecture is useful since overly distant nodes do

not necessitate to be connected. This also solves the problem of overly sparse ants having too

many edges to choose from. This set-up allows the MPACA to perform well, irrespective of

the size of the problem domain. If large dimensions are not normalised, this may lead to issues

128

pertaining to the curse of dimensionality, section (2.2.2.4). This could happen as the dispersion

of data elements makes sampling inaccessible. Normalisation, although mechanically heavy,

aides the MPACA in improving its operational capabilities.

The MPACA builds the same graph architecture irrespective of the sequence of data entry. This

results in a consistent output, unlike that achieved by the algorithms presented in section (2.6.2),

as the latter algorithms build variational clusters depending on the initial data entry.

The MPACA is not just any other modified ACO algorithm, it is radically different. The MPACA

as a clustering algorithm has novelties which distinguish it from any other clustering algorithm

presented in chapter (2). It consists of a collection of novelties, which although can be identified

in other algorithms, are collectively unique. This section continues to build on sections (1.4) and

(3.10.1), which respectively outline the objectives and the distinctive elements of this algorithm.

3.10.5 Novelty in Ant Movement

Ant movement is driven by the edge selection mechanism, which is itself solely driven by the

pheromone deposited on edges. The mechanism is unique to the MPACA, as other ACO algo-

rithms use transition functions [equations (2.22, 2.25)], whilst the MPACA uses an increased

stochastic mechanism, section (3.5.2). This mechanism increases further exploration. Any edge

can be selected irrespective of the amount of pheromone present. Edge selection is biased to-

wards those edges which have higher pheromone quantities, however this does not eliminate

edges with little or no pheromone irrespective if in the opening, middle or closing phases of the

algorithm execution.

Another variant is the mechanism by which ants deposit pheromone, section (3.5.1.2). Unlike

other ACO algorithms, pheromone deposition takes place at each edge traversal, and the quantity

of pheromone to be deposited is not proportional to any fitness function. The ants deposit

pheromone equally on all edges they are traversing, for each feature value they are carrying, as

long as they are in deposit mode, making the MPACA more decentralised than other approaches.

Another paradigm shift within this movement mechanism is the existence of multiple steps

within edges, section (3.3.3). This compensates for the lack of a distance or visibility function

as in equation (2.22). This visibility in other ACO algorithms artificially increases the chances of

ants choosing shorter edges over longer edges. The MPACA uses solely the pheromone values to

portray both notions of distance and quality, making it truly a pheromone driven implementation.

Longer edges, which take longer to traverse, effectively cause a punishing factor, since they are

more prone to evaporation.

129

Another advantage of such a movement mechanism is that it encourages asynchronous ant move-

ments. This since the MPACA does not require a fitness function, since the algorithm operates

differently from standard ACO, where clustering problems are converted into an optimisation

problem, section (2.6.4). By avoiding a centralised fitness function, this enhances the decentral-

isation of ants within the solution. Together with this, ants do not use a meta-heuristic function

to determine the next edge to be selected, as this is entirely driven by the pheromone quantity

which exists on the edge. This avoids the need to use a heuristic function to determine the qual-

ity of the edge being selected. All the information needed for movement selection is extracted

from the pheromone concentrations which exist on the edges.

In the MPACA the ant does not need to keep a TABU list of all edges which it has visited. This

is limited to just the previous visited node, or TABU list of size one. This means that the ant

within the MPACA is a simple operand, which does not perform complex operations and only

attempts to follow edges with the strongest pheromone signal which is of interest to it.

The only movement mechanism in literature which offers some resemblance to the MPACA

pertains to ACODF [Tsai et al., 2004]. However, even so, as reviewed in section (2.6.4.4), in

ACODF ants reduce the number of nodes they visit at each step, with the influence of pheromone

trail intensity, which encourages ants getting localised within a particular set of nodes. The

MPACA does not reduce the number of edges that can be visited at each iteration. The number

of edges that can be visited from a node remains as is set-up during the graph initialisation phase,

and remains unchanged throughout. Both the ACODF and MPACA vary in their transition

mechanism from traditional ACO, however the mechanism used in the MPACA is still unlike

the one presented in ACODF.

3.10.6 Ability to Learn and Acquire Features

Ants learn features depending on feature encounters. This key distinctive feature is truly unique

to the MPACA. There is no other ant algorithm in literature which implements this mecha-

nism. This mechanism allows colonies of ants to have ants with heterogeneous feature values,

which adjust over time. This means that a distinct ant within a colony could for example match

feature values colour “blue” and size value 15, and another ant within the same colony could

match colour “green” and size value 15. Hence, at the ant level there is a distinction between

nodes which have different colours, however at the colony level both coloured combinations are

marked as positively belonging to the colony. This constitutes the implementation of an OR

operator. This feature merging mechanism is also entirely decentralised and operates at the ant

level.

130

3.10.7 Multiple Pheromones and Multiple Colonies

Ants within the MPACA use pheromones as their guiding principle, as in ACO, a concept which

is adjusted and extended further. The intricacy of how the pheromones operate over each and

every feature and feature combinations is a founding pillar behind the MPACA. At the time

of writing, and to the knowledge of the author, there is no other ant algorithm which uses the

multiple pheromone and feature learning abilities as presented in the MPACA.

The process of ant movement and ant encounters, sections (3.5, 3.5.3) respectively, lead towards

the coupling of features by ants. These ants are eventually grouped into colonies which represent

clusters. Therefore, a cluster consists of a number of co-occurring feature combinations within

the ants present in the colony, allowing clusters to occur even with missing values, since not all

ants need to merge on all feature dimensions. This process of learning features implies that after

a feature merge, ants deposit a combination of pheromone feature values, and not just one single

mono-thematic pheromone value. Although such a mechanism is not correlated to any biological

counterpart, it does rekindle links to real ant colonies, where subsets of ants within the same

colony that have different objectives, and may lay down distinctive pheromones accordingly

[Dussutour et al., 2009]. Computational models of ACO usually exploit multiple pheromones to

distinguish between colonies, not ants within colonies. The lack of multi-pheromone approaches

in ACO literature is apparent, with limited exceptions [Ngenkaew et al., 2008b], [Ngenkaew

et al., 2008a] even so only two types of pheromones are used. The MPACA uses a higher

number of pheromones.

As reviewed in section (2.6.4.2) there are few multi-colony algorithms which in fact use different

pheromone trails concurrently. Many algorithms mention the term multi-pheromone as part

of their operation, but this tends to be misleading. In fact most multi-colony algorithms are

only separate instances of the same ant colony running in sequence or in parallel, having their

results synchronised or merged at some point. In most cases they do not apply any multiple

pheromones, but only have a single pheromone applied to each different colony, and deploy

multiple colonies in an attempt to solve the same problem. Therefore, having a collection of

different pheromones interacting within the same colony is a novelty to the MPACA.

The MPACA uses a decentralised population based learning mechanism which allows ants to

self-determine, that is in isolation at the ant level, into which colony they should belong to. This

mechanism does share resemblance with the ANTCLUST algorithm, section (2.6.3, [Labroche,

2003]), where ants auto-organise into colonies and determine colony membership through the

shared colonial odour. Despite this, the MPACA uses a more elaborate indirect population

131

based system. The underlying structure is still pheromone driven, however the ants determine

colony membership depending on frequency of encounters with other colonies. Hence, ants are

attracted towards the same areas based on pheromone scents, but they do not need to share this

scent to be part of the same colony.

As reviewed in sections (2.6.4.4, 2.6.3), other multi-colony algorithms exist which use mul-

tiple features, such as ODUEC [Bertelle et al., 2006], [Cardon et al., 2006] and the Colour

Ant System algorithm (CAS) [Bertelle et al., 2003]. These algorithms make use of competing

colonies of ants to determine node colonisation (ODUEC). This mechanism is in effect also

a truly multi-colony and multi-pheromone approach, however the underlying structure is still

divergent from the MPACA, since the former still uses a single scent for each colony. In the

MPACA each colony has multiple ants, each reacting to different pheromones and depositing

different pheromone combinations, a process which is restricted only by the feature combina-

tions that occur at the ant level, thus being a multi-colony and multi-pheromone algorithm. The

MPACA uses colonies to form a dynamic structure, which learns the distribution of the cluster

over graph space. The colony is not fixed, and adjusts itself during the execution of the algo-

rithm. Thus, unlike hierarchical clustering algorithms, and even ant algorithms which learn fixed

structures such as the AntTree algorithm [section (2.6.1.1)], the colony values keep adjusting.

3.11 Chapter Conclusion

This chapter has introduced the MPACA, highlighting various aspects behind the way it opera-

tions. It has provided a step-by-step breakdown of the algorithm and an internal evaluation of

the interacting parameters. The next step is to provide evidence on how this algorithm operates

on synthetic and real-world datasets and a discussion around the results attained.

132

Chapter 4

The MPACA Applied

4.1 Chapter Overview

This chapter presents the results obtained by the MPACA over a number of datasets subdivided

into three main categories; (i) synthetic datasets, (ii) real-world UCI datasets, (iii) real-world

GRiST and ADVANCE datasets. The chapter uses the first two dataset groupings for bench-

marking the MPACA against other results presented in the literature. This is followed by a

comprehensive sensitivity analysis of each parameter on a subset of the presented datasets, to

understand better its role in the MPACA optimisation.

The GRiST and ADVANCE domains are chosen to demonstrate the applicability of the MPACA

and its extended classification counterpart to more complex and messy real-world domains.

These include a mental-health risk assessment dataset and a hub-and-spoke logistics dataset for

predicting daily demand on resources. These domains present extremely high dimensions (over

200 for the mental-health domain) and extremely high numbers of cases (many millions for the

logistics domain), presenting serious challenges for tractability. In each of these two domains,

data from human expertise is used [Buckingham et al., 2012], [Buckingham and Adams, 2011],

[Buckingham et al., 2008].

4.2 Evaluation Criteria and Experiment Set-up

External evaluation metrics discussed in section (2.2.3) are used to benchmark results attained

by the MPACA against other algorithms presented in the literature review. These are chosen

over internal evaluation metrics, since the latter are too heavily influenced by normalisation

processes and cannot be adequately used for benchmarking purposes.

133

4.2.1 Synthetic Datasets: the 2D-4C and 10D-10C Datasets

Synthetic datasets are useful because they have a completely specified distribution and thus

known properties. These help analyse the contributions of each model element and parameter

as well as enabling comparisons between models. The data are produced by applying the xD-yC

pattern. In this pattern, x describes the dimensionality (D) which is {2 or 10} and y denotes the

number of Gaussian clusters (C), which is either {4 or 10}. A set of y, x-dimensional normal

distributions N(~µ,~σ) are generated for each data element present in cluster y. The sample size,

s, of each normal distribution, the mean vector, ~µ , and the vector of the standard deviation,

~σ , are randomly determined by using uniform distributions over fixed ranges, µi ∈ [0,100] and

σi ∈ [0,5] [Handl et al., 2003b].

4.2.2 Real-world UCI datasets

The MPACA is applied to a number of standard datasets found in literature, originating from the

UCI data repository [Bache and Lichman, 2013], namely; the Iris, Wine, Soya-bean, Wisconsin

breast cancer (WBC), Pima Indians diabetes (Pima) and the Yeast datasets. The number of data

elements, properties and class distributions for these datasets are given in table (4.1).

4.2.2.1 Iris dataset

The Iris dataset is probably the best known in pattern recognition literature. It is based on

Fisher’s classification of the Iris plant, according to four dimensional attributes; sepal length,

sepal width, petal length and petal width (in cm). Three possible classes exist; “Iris-setosa”,

“Iris-versicolour”, and “Iris-virginica”. The Iris dataset contains 50 instances per class. The

“Iris-setosa” class is linearly separable from the other two, whereas the “Iris-versicolour” and

“Iris-virginica” are non-linearly separable.

4.2.2.2 Wine dataset

The Wine dataset describes chemical analysis of wines grown in the same region in Italy, but

derived from three different cultivars. This dataset contains 13 ordinal attributes, and has 178

instances, which can pertain to three unevenly distributed categories. The categorisation of each

class is as follows; class 1 with 59 elements, class 2 with 71 elements, and class 3 with 48

elements.

134

4.2.2.3 Soya-bean dataset

The Soya-bean dataset is used to diagnose experimental comparisons between various beans

from around the world to determine disease diagnosis. This dataset contains 35 ordinal at-

tributes, and has 47 instances, which can pertain to four unevenly distributed categories. The

categorisation of each class is as follows; class 1 with 10 elements, class 2 with 10 elements,

class 3 with 10 elements, and class 4 with 17 elements.

4.2.2.4 Wisconsin Breast Cancer dataset

The reduced Wisconsin Breast Cancer (WBC) dataset describes characteristics of the cell nu-

clei present in images, which are used for cancer prognosis. This dataset contains 10 ordinal

attributes, and has 569 instances, which can pertain to two unevenly distributed categories, with

instances distributed as 357 benign and 212 malignant.

4.2.2.5 Pima Indians Diabetes dataset

The Pima Indians diabetes dataset describes females that are at least 21 years old of Pima Indian

heritage, a particular ethnic group prone to diabetes. This dataset is often used to highlight

the link between obesity and the development of diabetes. It contains eight attributes, and 768

instances, which can pertain to two categories, either those affected by diabetes (268 instances)

and those who are not (500 instances).

4.2.2.6 Yeast dataset

This database contains information about a set of yeast cells. The task is to determine the local-

ization site of each cell. This dataset contains eight ordinal attributes, and has 1484 instances,

which can pertain to ten unevenly distributed categories. The categorisation of each class is as

follows; CYT (cytosolic or cytoskeletal) with 463 elements, NUC (nuclear) with 429 elements,

MIT (mitochondrial) with 244 elements, ME3 (membrane protein, no N-terminal signal) with

163 elements, ME2 (membrane protein, uncleaved signal) with 51 elements, ME1 (membrane

protein, cleaved signal) with 44 elements, EXC (extracellular) with 37 elements, VAC (vacuo-

lar) with 30 elements, POX (peroxisomal) with 20 elements, and ERL (endoplasmic reticulum

lumen) with 5 elements.

135

Name C S Ni D Type
Square 1 2 100 50, 50 2 Continuous
2D-4C 2 400 100, 100, 100, 100 4 Continuous
10D-10C 2 500 50, 50, 50, 50, 50, 50,

50, 50, 50, 50
10 Continuous

Iris 3 150 50, 50, 50 4 Continuous
Wine 3 178 59, 71, 48 13 Continuous
Soya-Beans 4 47 10, 10, 10, 17 35 Discrete
WBC 2 699 458, 241 10 Discrete
Pima 2 768 500, 268 8 Continuous
Yeast 10 1484 463, 429, 244, 163, 51,

44, 37, 30, 20, 5
8 Continuous

TABLE 4.1: Summary of the selected datasets, where D is the dimensionality, C gives the
number of clusters and, S gives the sample size or the number of data elements present, Ni
gives the number of data elements for each cluster i, whilst the type can either be discrete or

continuous.

4.3 Experimentation Framework

4.3.1 Basic Set-up

A specific test-controlling mechanism has been implemented allowing bulk parameter testing.

This splits the MPACA into a core operator and a separate controlling mechanism. The con-

troller instructs the core module which datasets and which parameter combinations are to be

executed. It operates on a file driven mechanism, accepting as input an XML file with a set of

parameters, and a comma delimited file from which the dataset is loaded. The output of the core

module is a number of XML files, which store the results attained for each execution broken

down by time.

4.3.2 Analysis based on a Simulated Annealing Technique

Parameter configurations are analysed using a mechanism inspired by simulated annealing (SA),

typically used in parameter evaluation settings [Kirkpatrick et al., 1983]. SA originates from

thermodynamics and the analogy of annealing in solids. SA uses a temperature parameter con-

trolling the search. Temperature starts off high and is slowly lowered in every iteration. If the

new configuration returns a better overall evaluation value it replaces the current parameter and

the iteration counter is incremented. It is possible to move towards a worse point, and the prob-

ability of doing so is directly dependent on the temperature parameter. This unintuitive step

sometime helps identify a new search region in hope of finding a better minimum.

The mechanism used in this evaluation is loosely inspired by such an approach facilitating and

directing the search through the huge number of possible parameter combinations. The process

136

operates by executing the MPACA for a chosen set of parameters and storing the corresponding

results. At each step, only one parameter is adjusted, in an attempt to seek a better result. If

the parameter change results in an improved result, the algorithm investigates a further change

increase in that direction (increase/decrease). The change on each parameter values have varying

intervals between parameters, but are fixed within the same parameter, for example the time-

window moves from 25 onto 30 and onto 35 (i.e. intervals of 5), whilst the edge length is

extended by intervals of one unit. When a change in this parameter value no longer provides

an improved result, the operation is repeated on the next parameter. This continues until all

parameters have been processed. Once this is so, the system resumes a parameter by parameter

analysis until results attained do not improve further. Multiple random starting points are chosen

to vary the search as much as possible.

The mechanism used is said to be loosely inspired from SA as there are two limitations in the

approach. Firstly, the variation between parameter adjustments is linear, and this variation is set

to a fixed value applicable per parameter (as per above 5 for time, 1 for edge length). There

is no gradual non-linear increase or decrease on the variation used. Secondly, in the chosen

method only one parameter value is modified between execution instances. Hence, the measure

of combined parameter changes is limited.

4.4 Baseline Experiments

The baseline experiments are executed over varied parameter ranges [section (3.8.2)] with the

intention to determine similarities between chosen settings and adaptability over different do-

mains. Tables (4.2, 4.3) represent the results of applying the MPACA for a number of instances

over each and every dataset described in sections (4.2.1) and (4.2.2). In these tables “Edge”

stands for maximum edge length, “Complement” stands for ant complement, “Detection” stands

for detection range, “Ph. Qty.” stands for pheromone quantity deposited, “Coefficient” stands

for maximum pheromone coefficient, “Tolerance” stands for minimum pheromone tolerance,

“Evaporation” stands for evaporation rate (%), “Residual” stands for residual value, “Feature”

stands for feature merging, “Colony” stands for colony merging and “SD” is the standard devi-

ation.

Not all parameters are adjusted in these baseline experiments, with two parameters being ex-

cluded. These are the step size and the minimum pheromone tolerance parameters. These can

effectively be considered as hidden parameters within the model. This builds on the discussion

presented in section (3.3.2) where the derivation of possible values for the step size parameter

137

Square1 2D-4C 10D-10C Iris Wine
Parameters mean SD mean SD mean SD mean SD mean SD
Edge 8 1.4 7.36 2.24 9.31 1.65 8.56 0.68 8.52 1.60
Step-size 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0
Complement 5.09 4.5 1.51 1.11 1.74 1.56 1.32 1.73 1.36 0.48
Detection 1.5 0.5 1.74 0.44 1.35 0.48 1.69 1.22 1.6 1.13
Ph. Qty. 175 56 205 56 149 54 253 130 173 79
Coefficient 1.49 0.5 1.36 0.48 1 0 1.67 0.54 1.49 0.87
Tolerance 1 0 1 0 1 0 1 0 1 0
Evaporation 0.06 0.04 0.04 0.05 0.05 0.04 0.07 0.04 0.07 0.04
Residual 1.01 0.82 1.66 0.53 1.39 0.78 1.6 2.05 1.68 0.51
Feature 4.51 1.5 3.77 0.59 4.57 1.5 4.39 1.54 4.46 1.36
Colony 4.55 1.5 3.73 0.64 4.81 1.47 3.95 1.11 4.36 1.44
Visibility 3.5 0.5 3.82 0.60 3.34 0.47 3.15 1.53 3.04 0.75
Time-window 74 25 80 57 87 78 73 49 58 18

Square1 2D-4C 10D-10C Iris Wine
Results mean SD mean SD mean SD mean SD mean SD
F-Measure 0.96 0.01 0.95 0.03 0.89 0.02 0.83 0.05 0.86 0.05
Rand-Index 0.98 0.01 0.98 0.02 0.98 0.01 0.89 0.03 0.91 0.03
Precision 0.98 0.01 0.98 0.02 0.98 0.01 0.89 0.03 0.91 0.03
Recall 0.94 0.02 0.93 0.05 0.82 0.03 0.79 0.05 0.83 0.06
Jaccard 0.92 0.02 0.91 0.06 0.80 0.03 0.71 0.07 0.77 0.08

TABLE 4.2: Baseline experimentation applied to the following datasets; Square1 executed for
1,000 instances, 2D-4C executed for 175 instances, 10D-10C executed for 50 instances, Iris
executed for 2,000 instances and the Wine executed for 1,500 instances. Results are represen-

tative of the average best-fits.

are discussed, with these being either using a step size which is 0.1 or 0.4 of a SD. The pre-

liminary investigation in section (3.8.3.2) has determined that a step size value of 0.4 distorts

the granularity required for proper parameter interactions. This parameter also influences the

search granularity, which determines what feature values ants react to. For reasons related to

this experimentation this value has been fixed.

The other fixed parameter is the minimum amount of pheromone that can be present on each

edge. The evaporation rate is applied as a percentage reduction. Hence, irrespective of how

much time has passed, there will always be a minimal trace value present in the system. At a

point, such a value is negligible for operating purposes and needs to be removed. It has been

decided that pheromone traces which are lower than one integral unit are removed.

The baseline experiments attempt to determine the ideal optimal parameter value ranges for each

parameter, and how these change for various domains. Given the substantial number of param-

eters existing in the MPACA, having various “random” starting positions for each parameter

lengthens analysis time. Thus, theoretical starting values are chosen depending on the knowl-

edge of the domains being tested, augmented with information from previous experimentation,

138

Soya-bean WBC Pima Yeast
Parameters mean SD mean SD mean SD mean SD
Edge 7.78 1.34 6.98 0.15 6.29 0.72 6.44 0.5
Step-size 0.1 0 0.1 0.03 0.1 0 0.1 0
Complement 3.27 0.86 1.03 0.32 1.09 0.61 1.10 0.5
Range 1.71 0.62 2 0.08 1.22 0.80 1.5 0.5
Ph. Qty. 285 102 145 37 379 125 173 55
Coefficient 1.11 0.32 1.49 0.5 1.44 0.50 1 0
Tolerance 1 0 1 0 1 0 1 0
Evaporation 0.1 0.05 0.01 0.02 0.05 0.04 0.06 0.04
Residual 1.37 0.66 1.48 0.51 1.07 0.82 0.98 0.84
Feature 4.2 1.32 3.97 0.84 4.81 1.66 3.51 0.5
Colony 4.68 1.42 4 0.85 4.75 1.58 3.41 0.49
Visibility 3.12 1.84 3 0.82 2.97 1.51 3.52 0.5
Time-window 23 4 64 24 52 11 56 25

Soya-bean WBC Pima Yeast
Results mean SD mean SD mean SD mean SD
F-Measure 0.88 0.14 0.94 0.03 0.61 0.22 0.11 0.07
Rand-Index 0.94 0.07 0.94 0.03 0.62 0.22 0.49 0.05
Precision 0.96 0.05 0.94 0.03 0.63 0.22 0.28 0.10
Recall 0.85 0.17 0.94 0.04 0.63 0.22 0.09 0.07
Jaccard 0.82 0.19 0.88 0.06 0.47 0.18 0.07 0.04

TABLE 4.3: Baseline experimentation applied to the following datasets; Soya-bean executed
for 100 instances, WBC executed for 1,200 instances, Pima executed for 175 and the Yeast

executed for 120 instances. Results are representative of the average best-fits.

as presented in chapter (3).

The testing rationale behind each parameter is as follows. The maximum edge length parameter

determines node connectivity. As discussed in section (3.8.3.1), the normalisation process [sec-

tion (3.3.2)] can still result in the needless connection of distant nodes and potentially induce a

combinatorial explosion of outgoing edges from each node. Sufficient node connectivity needs

to be allowed in order to allow ants to move around within the system. The smaller the average

connectivity, the more likely it is that these nodes are completely isolated. Initial empirical ex-

perimentation applied over the Iris dataset demonstrates when selecting maximum edge length

of {1, 2, 3, 4, 5} respectively returns an average node connectivity of {2, 5, 11, 18, 27 } Thus,

the smaller edge lengths were excluded, and the value five has been selected as a minimum

value. This since values lower than five cause too many nodes to be detached from the graph

inhibiting complete cluster formation.

Building on results presented in section (3.8.4.1), the ant complement determines the computa-

tional intensity of the algorithm. In order to minimise computation complexity the starting value

is always selected as the minimum value possible, which is one. Eventually, this is increased to

determine how this accelerates cluster formation. Again using results from section (3.8.4.2), the

139

detection range parameter determines the granularity of the search. Similarly, in order to max-

imise the discriminability of the detectors the minimum value for the detection range is selected

as a starting position, which has value one.

As discussed in section (3.8.5.1), the pheromone quantity deposited and the evaporation rate

are effectively one conjunct parameter. An initial deposition value is required that connects two

nodes in a way that the pheromone scent is strong enough to survive the impact of evaporation

for a predetermined amount of time. Functionally, this is determined by the time needed for the

ant to traverse the longest edge and still have some pheromone on the first step. Given that the

average edge lengths used are of approximately 8 steps, this means an ant takes 8 time cycles

to traverse an edge. Thus, the pheromone on the edge must survive for 8 time cycles. If the

amount deposited is 25 units, subject to an evaporation rate of 10%, after 10 steps it has nearly

completely evaporated. Given this is longer than the average length, it seems a reasonable start-

ing position to have a deposit of 25 units and evaporation rate of 10%. Pheromone evaporation

only requires a small enough value to commence with which can reduce the importance of the

pheromone trace, but not too quickly.

The maximum pheromone coefficient [section (3.5.1.2)] needs to be a value which limits stag-

nation from occurring. The base value for the maximum pheromone coefficient is set to the floor

value of one. This value is increased accordingly to determine the required capping value.

Setting the residual amount parameter to zero stops ants from exploring uncharted territory. As

demonstrated in section (3.8.5.2), small residual amounts produce the best results. The more it

is increased, the less is the influence of the positive feedback loop. The starting point is chosen

to be zero to determine the effect of no parameter, and then small increases are allowed because

we know that it reduces performance when it becomes too large.

Section (3.8.6.2) showed that a low setting of the colony-merging threshold causes over-rapid

colony formation and stops accurate clusters. A value of one means ants immediately join up

on meeting, which is clearly too low. So the minimum operating value was set to two, for both

colony and feature-merging thresholds.

The visibility parameter determines when ants are near enough to be considered an encounter.

Initial experimentation during development stages showed that counting all ants on an edge as

being encountered precipitated feature and colony merging too quickly. In contrast, counting

only ants present on the current node slowed colony formation, and thus returned lower quality

results. Hence the starting position for the parameter is all ants within half the average edge

length for the domain, which means all ants within about four steps of the node.

140

The time-window parameter is dependent on the domain size. Having a large dataset with high

dimensionality means more ants encounter each other, and all activities which revolve around

ant encounters accelerate. The aim is to obtain a representation of ants within the same vicinity

so that frequent colonies or features can be merged. A sensible minimum definition for a vicinity

is three nodes and an ant would need to travel 24 steps on average for domains with an average

edge length of 8. Hence the minimum time window was set to 25 steps or time cycles.

The chosen start values and intervals for parameters have now been established. The next step

is to apply these settings to the selected datasets.

4.4.1 Observations from Baseline Experiments

A number of interesting observations can be derived from the results displayed in tables (4.2,

4.3). Larger datasets favour smaller edge values, as is the case with the Pima and Yeast datasets.

All other smaller datasets return better results at higher edge lengths.

The ant complement in datasets with the largest data sample as in the WBC, Pima, and Yeast

datasets, indicates that a complement equal to the base value of one returns the best results. The

ant complement is only slightly higher in other datasets, and in most cases it is lower than an

ant complement of two. Thus, in many cases the MPACA can safely operate within the range of

between one and two ants per feature per node. The Square1 and the Soya-bean datasets defy

this trend because the former has a small dimensionality and the latter has a low number of data

elements.

Smaller datasets also tend to require more pheromone. This is likely to be due to the reduced ant

counts within the system. Hence, as evaporation takes its toll on the entire system, ants can fail

to keep up with standard pheromone deposition values and require an increase to the quantity

deposited in order to improve result quality.

Pheromone values average vary between 5% and 10% in all databases analysed, which indicates

that higher evaporation values are not recommended. The average maximum pheromone coef-

ficient for all experiments never exceeds value two and underlines the importance of a ceiling

amount. It also shows that this maximum amount can be equivalent to the pheromone quantity

being deposited into the system. The residual value is necessary but only seems to require a

small amount to have a positive impact. This indicates that some randomness is needed but not

to the extent that it impedes stigmergy.

Feature merging and colony counts average out at around a value of four. Colony merge thresh-

olds are slightly lower than feature merging thresholds, which suggests that joining a colony is

141

Square1 2D-4C 10D-10C
Algorithm F- Rand- F- Rand- F Rand-

measure index measure index measure index
Average-link 0.981 0.981 1.001 1.001 1.001 1.001

K-Means 0.991 0.991 0.971 0.981 0.971 0.991

EM-Clustering 0.992 0.992 0.912

PSO/PSO-K-means 0.9614/0.988 0.978

SACA 0.981 0.981 0.991 0.991 1.001 1.001

ATTA 0.9815 0.9915 1.0015

F-measure Rand F-measure Rand F-measure Rand
MPACA 0.96 0.98 0.95 0.98 0.89 0.98

TABLE 4.4: The MPACA performance applied over synthetic datasets and how this compares
to the algorithms reviewed in chapter (2). Columns respectively represent the F-Measure and

Rand Index (accuracy).

slightly more important than merging features.

The visibility across domains fluctuates between three and five. In reality, this tends to be

roughly half the average length (in steps) for each domain, which is close to the starting value.

A pattern emerges on observing time-windows. Higher dimensionality domains have a shorter

average time-window, as is the case with the Wine, Soya-bean, WBC, Pima and Yeast datasets.

This pattern excludes the 10D-10C dataset, because of the low number of instances (50) for

which this dataset has been executed. Smaller time-windows can be used for larger dimension-

ality problems even if there are not many instances because the ant complement increases with

dimensionality as well.

4.4.2 Evaluating the MPACA Clustering Performance

Results presented in tables (4.4, 4.5) demonstrate that the MPACA performance is equitable

with alternative approaches, including both nature-inspired algorithms and more classical clus-

tering approaches. An important point is that these datasets are not necessarily designed for

unsupervised clustering methods, and are often used as benchmarks for supervised techniques.

This puts the MPACA at a disadvantage and its performance is therefore better than it appears

in the tables, in comparison to the supervised methods. In the MPACA, clusters are mapped

to classes at the evaluation level and not able to use the known class membership as part of its

training information. This does not influence the operation of the algorithm in any way.

Unfortunately, not all algorithms presented have corresponding results published applied to the

datasets on which the MPACA has been applied to. In many cases the algorithms do not have

enough detail that allows them to be reverse engineered, and contact with their authors did not

142

Iris Wine Soya-bean
Algorithm F- Rand- F- Rand- F Rand-

measure index measure index measure index
APC 0.944 0.944

Ant-Miner 0.955 0.955 0.9619

KNN 0.915/0.9522 0.9616/0.9622 1.0016

ABC 0.9625 0.9825

SACA 0.821 0.831 0.863 0.833

ATTA 0.8215 0.8815

AntClass 0.859/0.7920 0.949 0.979

AntTree 0.8220 0.8220 0.8820

ANTCLUST 0.7821 0.9321

ACO 0.7810 0.5210

PSO 0.7810 0.5210/0.6914 0.9317

BCO 0.8211 0.8311

Average-link 0.811 0.821 0.8412 0.8112

K-Means 0.831 0.821 0.933/0.8212 0.903/0.8212 0.9216

DBSCAN 0.766 0.736

EM-Clustering 0.702 0.852 1.0016

F-measure Rand F-measure Rand F-measure Rand
MPACA 0.83 0.89 0.86 0.91 0.88 0.94

WBC Pima Yeast
Algorithm F Rand F Rand F Rand

measure index measure index measure index
APC 0.964 0.974 0.654 0.704

Ant-Miner+ 0.965 0.7213 0.4313

KNN 0.965 0.6822

ABC 0.9625

SACA 0.971 0.941 0.473 0.503 0.441 0.681

ATTA 0.9715 0.4415

AntClass 0.979 0.5320

AntTree 0.7924 0.5020

ANTCLUST 0.5521

ACO 0.8210

PSO 0.8210

BCO 0.5011 0.8211

Average-link 0.971 0.931 0.451 0.741

K-Means 0.971 0.931 0.683 0.693 0.431 0.751

DBSCAN 0.6323 0.5423 0.647

EM-Clustering 0.682 0.69 0.7018 0.432 0.5118

F-measure Rand F-measure Rand F-measure Rand
MPACA 0.94 0.94 0.61 0.62 0.11 0.49

TABLE 4.5: The MPACA performance applied over real-world datasets and how this compares
to a subsection of the algorithms reviewed in chapter (2). Columns respectively represent the

F-Measure and Rand Index (accuracy).

143

resolve the issue. References used in tables (4.4, 4.5) are as follows, (1) = [Handl et al., 2003a],

(2) = [Tan et al., 2011], (3) = [Boryczka, 2010], (4) = [Halder et al., 2008], (5) = [Martens et al.,

2007], (6) = [Xiong et al., 2012], (7) = [Chaimontree et al., 2010], (8) = [Breaban and Luchian,

2011], (9) = [Monmarché et al., 1999a], (10) = [Niknam and Amiri, 2010], (11) = [Santos and

Bazzan, 2009], (12) = [Chandrasekar and Srinivasan, 2007], (13) = [Cano et al., 2013], (14) =

[Wan et al., 2012], (15) = [Tan et al., 2006], (16) = [Bougenière et al., 2009], (17) = [Wang et al.,

2007], (18) = [Jebara, 2002], (19) = [Rami and Panchal, 2012], (20) = [Azzag et al., 2007], (21)

= [Labroche et al., 2002a], (22) = [Guo et al., 2003], (23) = [Yang and Zhang, 2007], (24) =

[Ingaramo et al., 2005], (25) = [Shukran et al., 2011].

It is necessary to distinguish classification algorithms from clustering algorithms. For reasons

previously outlined, classifiers have an obvious advantage over clustering approaches. Classi-

fiers such as the APC, the Ant-Miner, or the KNN (as expressed in result publications) produce

results which are superior to the MPACA, on all the presented datasets. This may be due to them

being able to use known class membership in their training data, but also because the MPACA

has a relatively crude method of mapping colonies to classes. A better way of using the MPACA

results to generate class memberships would improve its evaluation without actually changing

its performance.

Despite these caveats over the interpretation of the MPACA results, it still performs at a level

close to or better than the other algorithms. An interesting comparison is with the SACA. To

better understand why SACA returns better results on, for example, the yeast data set, one must

return to the critique mentioned in chapter (2). This explained that the SACA uses a two-stepped

approach. Objects are first re-positioned in space and then subsequently parsed by some other

clustering tool. Thus, the SACA process of re-arranging objects is difficult to gauge because it

is not a complete system in itself. The ATTA, another SACA-type algorithm, performs in much

the same way. The MPACA returns comparative results on the Square1, Iris, Wine and WBC

datasets, whilst being consistently inferior on the Yeast dataset.

A further improvement to the SACA is the AntClass algorithm, which includes a hybridisation

of the K-Means within it. In fact, when applied to the Wine, Soya-bean and WBC, this algorithm

returns results which are slightly superior to those attained by the MPACA. Therefore, the hy-

bridisation of the K-Means algorithm provides the SACA approach core, a substantial boost. It

is possible that using a better interpretation of the MPACA colonies with K-Means may likewise

improve its results.

Investigating further the results attained by other clustering types, discussed earlier in chapter

(2), a consistent pattern emerges. Once more the MPACA returns superior results over the

144

ANTCLUST for the Iris, Soya-bean and Pima datasets. Thus, even for the typology that the

ANTCLUST represents, which differs from that of the MPACA, results still favour the MPACA

approach. Furthermore, the MPACA returns superior results over the AntTree on all datasets

mentioned.

Results for ACO as applied to clustering, despite being limited, also demonstrate the continued

result trend, with the MPACA being superior on all datasets presented. The MPACA is superior

to both clustering implementations of PSO and BCO, again on all datasets presented. As a rule,

ant based clustering, be it the MPACA or otherwise, are demonstrated to be better suited to

tackling the clustering problem than PSO or BCO. Although the MPACA is inferior to the ABC

algorithm, the ABC has an advantage by being used as a classifier.

Mixed results are attained when comparing the MPACA against both hierarchical (average-link)

and centroid based (K-Means) clustering approaches, with both algorithms outperforming it on

most synthetic datasets. The MPACA outperforms them both on the Iris dataset, and again

outperforms the average-link on the Wine dataset. Conversely, the average-link outperforms

the MPACA over WBC and Yeast, whilst for its part K-Means outperforms it on Pima and

Yeast. The simplicity of these mechanisms, and the relative compactness of the domains being

investigated might give both of these approaches an advantage.

Excluding the clear vulnerability that the MPACA has over the Yeast dataset, so far the MPACA

has shown to be on a par with most clustering algorithms, ant based or otherwise. This becomes

interesting when considering more elaborate clustering mechanism, such as the Density based

(DBSCAN) and probabilistic methods (EM-Clustering). The MPACA returns significantly su-

perior results over the DBSCAN on the Iris, Wine, WBC and Pima datasets, and is only inferior

on the Yeast dataset. When compared to the EM-Clustering, the MPACA is on a par for the

synthetic datasets, but by far superior on the Iris, Wine and WBC. EM-Clustering is better at

handling Pima, Soya-bean, and the Yeast dataset.

In general, then, it is possible to affirm that the MPACA returns favourable results when com-

pared to other clustering algorithms. However, it signally fails to return statistically adequate

results on the yeast dataset. One key reason is that the yeast dataset has uneven clusters, with

the top two clusters having more elements than the other eight clusters combined. This imbal-

ance and the lack of data elements inhibit the critical mass required for the MPACA to form

correct clusters. Increasing the ant complement can improve the results, but can also cause fur-

ther unwanted sub-clusters to form. More work is needed to determine how the MPACA can

learn clusters that are grossly unbalanced. It may be that a supervised version is the best way

to achieve this, because then the clusters are known and the MPACA can learn the distinctions

145

between them using known class memberships rather than guessing them. Potential ways in

which this limitation can be overcome are later produced in chapter (5).

4.5 Sensitivity Analysis of chosen Parameters

4.5.1 Sensitivity Metric

In order to better evaluate the results attained, a Sensitivity Index (SI) is used as an operator

to determine the sensitivity of each and every parameter The Sensitivity Index introduced by

Hoffman and Gardner calculates the output difference when varying an input parameter from its

minimum value to its maximum value [Hoffman and Gardner, 1983]. The SI is thus calculated

by averaging the result difference between the minimum and maximum values attained from the

optimal parameter value, as per table (4.6). SI is calculated as per equation (4.1):

SI =
|Best−Low|+ |Best−High|

2
(4.1)

The higher the SI value is the bigger the impact the parameter has on the overall model. The

experiments which now follow are the combination of results attained from these baseline ex-

periments augmented with results from 50 execution runs for each tested parameter.

Important issues for clustering algorithms are the number of parameters and how to find the best

fitting values for different data sets. Too many parameters create an unnecessarily large search

space for optimal settings as well as leading to over-fitting of training data. It is therefore useful

to know how important the parameters are for the MPACA and how to limit the search space

when applying it to different datasets. Tables (4.2) and (4.3) show that the best-fitting values for

each parameter across a wide variety of datasets have low standard deviations, suggesting that

they impact on results consistently across several runs. Furthermore, the ranges are comparable

across the datasets, which means the starting points in the parameter search space can be confi-

dently assumed to be in the region of the eventual optimal settings, which helps ensure they can

be obtained accurately and within an acceptable time-frame.

Table (4.6) explores the problem in a little more detail, using two of the datasets: the Iris and

Wine datasets with dimensionality of four and thirteen respectively. As the earlier analysis

showed, many of the parameters are very tightly constrained, such as the edge length and step

size. In fact, table (4.6) shows that most of them have optimal settings across all datasets that

lie within a narrow range, making it easy to initialise them and learn the best fits. This includes

those that have a high impact on performance, as indicated by the sensitivity values. This is

146

Parameters Best value Low (F-Measure) High (F-Measure) Sensitivity
Iris dataset Index (%)
Edge 8 (0.84) 5 (0.42) 14 (0.77) 0.25
Step-size 0.1 (0.83) 0.1 (0.83) 0.4 (0.53) 0.15
Complement 2 (0.83) 1 (0.83) 5 (0.76) 0.04
Range 2 (0.83) 1 (0.83) 5 (0.70) 0.07
Ph. Qty. 250 (0.84) 25 (0.74) 500 (0.55) 0.20
Evaporation 0.07 (0.83) 0.01 (0.69) 0.15 (0.71) 0.13
Coefficient 2 (0.84) 1 (0.83) 5 (0.62) 0.12
Residual 2 (0.84) 0 (0.76) 10 (0.66) 0.13
Feature 4 (0.84) 2 (0.71) 6 (0.71) 0.13
Colony 4 (0.84) 2 (0.66) 6 (0.68) 0.17
Visibility 4 (0.84) 1 (0.59) 8 (0.68) 0.21
Time-window 75 (0.83) 25 (0.43) 500 (0.59) 0.32

Parameters Best value Low (F-Measure) High (F-Measure) Sensitivity
Wine dataset Index (%)
Edge 8 (0.86) 5 (0.66) 11 (0.67) 0.20
Step-size 0.1 (0.86) 0.1 (0.86) 0.4 (0.50) 0.18
Complement 2 (0.87) 1 (0.86) 4 (0.84) 0.02
Range 2 (0.87) 1 (0.86) 5 (0.64) 0.12
Ph. Qty. 175 (0.86) 25 (0.65) 350 (0.63) 0.22
Evaporation 0.07 (0.86) 0.01 (0.66) 0.15 (0.64) 0.21
Coefficient 2 (0.86) 1 (0.84) 5 (0.60) 0.14
Residual 2 (0.87) 0 (0.79) 10 (0.61) 0.17
Feature 4 (0.86) 2 (0.75) 6 (0.72) 0.13
Colony 4 (0.91) 2 (0.74) 6 (0.71) 0.19
Visibility 4 (0.86) 1 (0.48) 8 (0.56) 0.34
Time-window 60 (0.86) 25 (0.52) 500 (0.69) 0.26

TABLE 4.6: Parameter sensitivity analysis as applied to the Iris and Wine dataset. Columns
represent parameter, the performance of its best value, the starting value, the highest value, and
the sensitivity measure. The parameter values are accompanied by their F-measure in brackets
for the overall model performance. The best performing or optimal values for this parameter
are extracted from the baseline experiments presented in table (4.2). Low and high values are

executed over a set of fixed parameters for 50 instances each.

helpful because it ensures the parameter search does not have to traverse a large range, which

would increase the chances of suboptimal settings. The sensitivity analysis combined with an

understanding of the consistency of optimal settings suggests that the number of parameters

within the MPACA will not undermine its usefulness for clustering different types of datasets.

4.5.2 Pheromone Driven versus a Random Model

A key question to be asked is; to what extent is pheromone important and is a pheromone driven

search more powerful when compared to a random search? Unfortunately, in literature many

ant algorithms are usually not compared against a random driven approach. By analysing the

147

Dataset Parameter Value 1 (F-Measure) Value 2 (F-Measure) Average (F-Measure)
Wine dataset

Iris Ph. Qty. 0 (0.59) 25 (0.74) 250 (0.84)
Wine Ph. Qty. 0 (0.41) 25 (0.65) 175 (0.86)

TABLE 4.7: Pheromone Driven versus a Random Model applied to the Iris and Wine dataset.
Columns indicate the following representations, the dataset being discussed, the applicable
parameter being discussed, value 1 is when pheromone is null, value 2 is when pheromone is
set to a higher value, average value represents an average amount of pheromone, both of the
above have their respective F-Measure included in brackets. The best performing or optimal
values for this parameter are representative of the average best-fits extracted from the baseline

experiments presented in table (4.3).

influence of the pheromone factor, it is possible to determine the direct effect, or lack of it, that

this has on final clustering results.

When a value zero is considered this indicates purely random ant interaction. This is coupled

with an actual minimum value, one which has been derived by theoretical analysis earlier, which

established that a minimum quantity to be deposited is 25 units. Empirical analysis presented in

table (4.2) shows that the average parameter value for the Iris and Wine datasets is respectively

250, and 175 units each. The optimal amount of pheromone deposited varies between dataset

sizes.

Results in table (4.7) demonstrate that when no pheromone is present, cluster quality is very

low. As the amount of pheromone used is increased, the cluster quality increases. Even a small

amount, in this case 25 units, immediately impacts the clustering process. This demonstrates

that clustering results are superior when pheromone is introduced, and proves the importance of

the stigmergic effect of pheromone.

4.6 Real-world GRiST and ADVANCE datasets

This section applies the MPACA to two real-world problem domains. They differ from the

synthetic and UCI datasets by increased uncertainty in the output decisions and by variability of

data quality. One domain is in the field of mental health, which will be discussed first, and the

other is a logistics dataset.

4.6.1 GRiST - Mental health risk assessment

The Galatean Risk and Safety Tool, GRiST [Buckingham and Adams, 2013] analyses mental-

health risk-assessment data. GRiST assists mental-health practitioners assess patient risks of

suicide, self-harm, harm to others, self-neglect, and vulnerability. It is based on the knowledge

of multidisciplinary practitioners working in all areas of mental health and was designed to

148

Grist Dataset
Parameters start mean SD
Max. Edge Length 7 8.09 0.39
Step Size 0.1 0.1 0
Ant Complement 1 1.19 0.5
Detection Range 1 1.94 0.24
Ph. Qty. Deposited 100 193 32
Max. Ph. Coefficient 1 1.13 0.34
Min. Tolerance 1 1 0
Evaporation Rate (%) 0.05 0.10 0.03
Residual Value 0 1.86 0.46
Feature Merging 3 4.00 0.39
Colony Merging 3 3.98 0.39
Visibility 3 3.16 0.54
Time-window 50 85 16

Corresponding
Results

best mean SD

F-Measure 0.90 0.83 0.04
Rand-Index 0.92 0.74 0.09
Precision 0.95 0.74 0.09
Recall 1.00 0.96 0.07
Jaccard 0.83 0.71 0.06

TABLE 4.8: Parameter settings for the MPACA as applied to the GRiST dataset, the start value
at the beginning of clustering and the mean and standard deviation (SD). This dataset has been

executed for 500 instances.

disseminate their expertise to services where people do not have specialist mental-health training

[Chircop and Buckingham, 2013].

In this global GRiST analysis, input patient information potentially consists of 138 individual

attributes. These patient vectors are assigned a clinical risk evaluation by the assessor and the

database contains more than 50,000 patient records. Unfortunately this data varies considerably

in its completeness because of various assessment mechanisms. Hence, clinical judgements are

not based on full vectors, and may have less than 50 per cent of the values present. The output

risk judgements are along a sliding scale from 0 (minimum risk) to 10 (maximum risk). In

effect, this is a sliding scale from 0 to 10 rather than 11 output classes and it is unclear how it

maps onto clinical risk classes. In other words, there is no definition of high or low risk patients

per se.

As introduced so far, the MPACA does not accommodate missing values so the analysis of

GRiST data was conducted on patient vectors for twenty-five most commonly supplied vari-

ables. A random sample of 250 patients was obtained from the database and the MPACA was

applied to it to find any clusters. The task was to detect patients in the low-risk category, defined

149

as having a clinical judgement of three or less, and the high-risk category defined by patients

with a judgement of seven or more.

Table (4.8) displays the initial parameter values and results attained averaging over 500 exe-

cution instances. The results show that the MPACA can correctly learn two clusters, one for

representing low clinical risk and the other for high clinical risk categories, with an average

precision of 74% and an F-Measure of 83%, and with best values reaching a precision of 95%

and an F-Measure of 90%. Although this seems like a sufficiently good result, it was made

easier by only trying to detect gross errors where high and low risks are confused. Attempting

to predict the exact judgement between 0 and 10 would obviously be harder, but enough encour-

agement has been given with these initial results to make it worth pursuing. Certainly there is

evidence that the MPACA has utility for datasets that have high levels of inherent uncertainty

such as GRiST, where the best algorithms such as random-forest classification [Breiman, 2001]

had a precision of 87%, albeit for classifying patients within plus or minus one of the actual

judgement, which is harder than the MPACA task.

4.6.2 ADVANCE - Hub-and-Spoke Logistics Networks

FIGURE 4.1: Transportation in a multiple hub-and-spoke logistics system.

The second real-world dataset is for hub-and-spoke logistics networks. These have a standard

modus operand [Zapfel and Wasner, 2002], that consists of a number of haulage depots col-

lecting and delivering shipments to and from one or more central hubs. Figure (4.1) shows a

simplified diagram of these activities for a network with 3 hubs and 8 depots. The idea is that a

depot takes its own customers’ shipments to the hub and brings back shipments from any of the

other depots that require delivery to the depot’s assigned delivery area.

The problem depots have is with predicting how many shipments will be at the hub by the end

of the day for depot to deliver. Knowing the likely number of shipments improves the decision

150

making process and was a key focus of the EU FP7 ADVANCE project [adv, 2013]. A machine-

learning algorithm was used to generate the predictions and the task for the MPACA is to see

how well it can use these predictions to detect when demand is likely to be greater or less than

expected.

Field work derived from ADVANCE showed that fluctuations in the numbers of shipments (pal-

lets, in this domain) are considerable and have a significant impact on operational performance

figure(4.2). If the shipments are more than expected, depots may not take enough lorries to the

hub and will have to leave shipments behind, with costly penalties if the network has to de-

ploy alternative resources to deliver them. If shipments are less than expected, depots may take

too many lorries and will have wasted space on the return trip. To explore the potential of the

MPACA in supporting hub-and-spoke decision making, the first step was to find out how well

it could predict whether the demand was above or below the mean and compare this with the

machine learning program chosen for ADVANCE [Welch et al., 2012].

FIGURE 4.2: Fluctuations in the number of pallets each day for a specific depot in the AD-
VANCE project (the regular very low troughs represent the weekends).

4.6.2.1 Predicting Shipments

The ADVANCE machine learning program for comparision with the MPACA consists of two

main processes: select the most appropriate attributes for a depot and then learn the accompa-

nying linear regression model for predicting the number of shipments or total demand at the end

of the day [Welch et al., 2012]. The attributes used to predict demand include the known current

demand (what has already been committed to the hub) and a number of other variables to do

with stages of shipment orders, when they were made, and so on. These numbers obviously

change as the day progresses so models were learned for separate time points. In fact, a separate

151

regression model was learned for each depot at selected times of each day for each day of the

week.

The attribute-selection process picked out 15 of the most influential variables from sixty po-

tential ones and these were used to learn the regression model. The same ones, including the

known end-of-day demand, were used by the MPACA to set up the hyper-dimensional graph

space. Each node (or day in this domain) was assigned to one of two classes: “above” if the

known demand was above the mean and “below” otherwise.

At the start of learning, the ants were assigned to the colony matching the class of their starting

node. The ants then moved around the graph according to the algorithm described earlier until

they had formed population clusters. The method differs from the MPACA’s origins in clus-

tering because it exploits known outcomes through supervised learning: the actual number of

shipments required for delivery is made part of the hyper-dimensional space for learning and

then removed when classifying unknown cases.

Testing was conducted by putting the unknown objects into the hyper-graph but with the known-

demand dimension removed. In other words, the outcome information about these unknown

objects was not included in the domain. They were assigned to the colony that had the nearest

centroid (multidimensional mean), measured as the Euclidean distance from the object to that

point. This provided the MPACA with the ability to predict whether the demand was going to

be greater than or less than normal for the day, depending on whether it was in the colony for

demand above the mean or below the mean.

Four depots were tested at two different times of the day and week: 12.00 and 15.00, on a

Wednesday. The mean number of shipments for the depots was around 100 (which equates to

between two and three lorry loads). Thirteen separate training and testing cycles were conducted

for the MPACA and the results are compared with the machine-learning regression model using

precision, which is the percentage of outcomes and predictions agreeing with each other with

respect to the total sample size of predictions. The sample for each depot consisted of 206 days

and these were randomly divided into two equal sets for training and testing.

Table (4.9) shows the same consistent pattern of optimal parameter values as that for the data

used to evaluate the parameters earlier. This also means the settings are very similar across

models for different depots and different times of the day. Hence it is feasible to apply the

MPACA to all depots, week days, and times of the day, despite this requiring learning about five

hundred separate models. Table (4.10) compares the prediction precision of the MPACA with

the machine-learning regression program produced by ADVANCE [Welch et al., 2012]. The

152

12:00 Depot 2 12:00 Depot 3 12:00 Depot 5
Parameters start mean SD start mean SD start mean SD
Max. Edge Length 8 8.58 0.49 8 8.55 0.50 8 8.51 0.50
Step Size 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0
Ant Complement 1 1 0 1 1 0 1 1 0
Detection Range 2 2 0 2 2 0 2 2 0
Ph. Qty. Deposited 100 159 50 100 158 50 100 150 50
Max. Ph. Coefficient 1 1.58 0.49 1 1.58 0.50 1 1.47 0.50
Evaporation Rate (%) 0.01 0.03 0.01 0.01 0.03 0.02 0.01 0.03 0.02
Residual Value 2 2 0 2 2 0 2 2 0
Feature Merging 3 3.99 0.82 3 4.01 0.81 3 4 0.82
Visibility 2 2.94 0.84 2 2.96 0.84 2 3.03 0.78
Time-window 50 63 13 50 63 13 50 63 13

12:00 Depot 7 15:00 Depot 2 15:00 Depot 3
Parameters start mean SD start mean SD start mean SD
Max. Edge Length 8 8.46 0.50 8 8.59 0.494 8 8.57 0.50
Step Size 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0
Ant Complement 1 1 0 1 1 0 1 1 0
Detection Range 2 2 0 2 2 0 2 2 0
Ph. Qty. Deposited 100 157 50 100 161 50 100 159 50
Max. Ph. Coefficient 1 1.47 0.50 1 1.55 0.5 1 1.59 0.50
Evaporation Rate (%) 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02
Residual Value 2 2 0 2 2 0 2 2 0
Feature Merging 3 4.03 0.82 3 4.04 0.82 3 4 0.82
Visibility 2 2.99 0.79 2 2.97 0.84 2 2.96 0.84
Time-window 50 63 13 50 63 13 50 63 13

15:00 Depot 5 15:00 Depot 7
Parameters start mean SD start mean SD
Max. Edge Length 8 8.55 0.5 8 8.51 0.50
Step Size 0.1 0.1 0 0.1 0.1 0
Ant Complement 1 1 0 1 1 0
Detection Range 2 2 0 2 2 0
Ph. Qty. Deposited 100 150 50 100 158 50
Max. Ph. Coefficient 1 1.54 0.50 1 1.45 0.5
Evaporation Rate (%) 0.01 0.02 0.02 0.01 0.02 0.02
Residual Value 2 2 0 2 2 0
Feature Merging 3 4.11 0.85 3 3.97 0.79
Visibility 2 2.97 0.82 2 2.96 0.84
Time-window 50 62 13 50 63 13

TABLE 4.9: Parameter settings for the MPACA. The start value is the one set at the beginning
of learning followed by the mean and standard deviation (SD) are the average values as these
parameters were varied over instances ranging between 75 and 100 training instances for each

individual time-point.

153

Precision
Depot Time ML MPACA SD
2 12:00 0.75 0.76 0.01
3 12:00 0.61 0.84 0.011
5 12:00 0.86 0.92 0.039
7 12:00 0.76 0.85 0.011
2 15:00 0.76 0.76 0.008
3 15:00 0.69 0.91 0.009
5 15:00 0.84 0.98 0.013
7 15:00 0.74 0.93 0.012
MPACA mean 0.75 0.87

TABLE 4.10: Results for predicting whether demand will be above or below the average for
a Wednesday testing for four depots at two times. ML gives the machine-learning regression
model prediction and the MPACA precision is its mean for learning and testing cycles utilising
the parameters as given in table (4.9). The final standard deviation (SD) column gives the SD

of the mean across the cycles.

MPACA compares favourably with it and demonstrates its efficacy for application to real-world

data that have been analysed by more traditional methods. The variation for which of the two

models is better for a particular depot and time is probably due to using categorical outcomes,

where outcome demands only marginally above or below the mean are equally weighted with

those having much larger deviations.

4.7 Discussion of Results Attained

The MPACA has been evaluated in detail against numerous datasets and has been shown to

perform favourably compared with both ant clustering and traditional clustering methods. It

returns results which are comparable and in some cases superior to existing clustering methods.

The parameter analyses demonstrated a degree of consistency for optimal settings that make

it feasible to search for the in many types of problem domain with datasets varying in sizem

dimensionality, and certainty of results. The sensitivity analyses showed that those parameters

where the particular settings had impact on performance had optimal values within a constrained

range covering all the data sets. Again, this shows that finding the best settings for the MPACA

is not searching for a needle in a haystack because it is clear where the search should begin

and the answers lie nearby. The MPACA has thus shown considerable promise as a versatile,

practical, and high-performance clustering algorithm.

154

Chapter 5

Conclusion and Future Work

This thesis explored the Multiple Pheromone Ant Colony Algorithm (MPACA) and its appli-

cation to clustering problems. It builds on the argument introduced in chapter (1), namely the

ongoing difficulty that computer scientists face when dealing with big, messy, unstructured data

and the quest of how such data can be transformed into useful information. The clustering

of unstructured distributed datasets is a problem ideally suited to be tackled by decentralised,

bottom-up approaches. Amongst the variety of nature inspired algorithms are swarm techniques,

which are based on the idea of emergent properties from decentralised behaviour. However, as

is shown in this thesis, not all swarm algorithms conform to the required properties, as some

have too much central control. This thesis proposed an alternative algorithm, the MPACA that

was governed by the need to remove central control as far as possible.

As has been shown, the three key elements present in the MPACA which make it an ideal swarm

based implementation are; its ability to self-organise (section 1.3.1), the use of stigmergy (sec-

tion 1.3.2) and positive feedback (section 1.3.3). A number of ant based typologies were pre-

sented in chapter (2), and, to a degree, each of these offers some similarity to the MPACA, with

the type IV typology [section (2.6.4)] bearing the greatest resemblance. Since the MPACA is

mainly a clustering algorithm, it is also compared with both traditional clustering algorithms and

other ant based clustering mechanisms. Chapter (3) introduces the model details and identifies

where the MPACA is distinctive. Chapter (4) then demonstrates that these distinctive properties

enable the algorithm to produce useful results for multiple clustering problem domains and that

it compares well with alternative models, with some advantages. This final chapter sums up the

qualities of the algorithm and considers avenues of exploration that are still required.

Section (5.1) revisits the overall goal and how this has been achieved. It is followed by section

(5.2), in which alternative paths to the development of the MPACA are briefly reviewed and then

155

the final model advances are given in section (5.3). Limitations of the current mechanism and

possible proposed improvements are given in section (5.4). Finally, sections (5.5) and (5.6) dis-

cuss the future work being implemented in parallel with this thesis write-up and the concluding

arguments are presented.

5.1 Summary

The scope of the MPACA was to deliver a unique swarm inspired clustering algorithm, which

matches the three criteria outlined in section (1.4). Even if each of these criteria in isolation can

be found in one or more typologies outlined in chapter (2), it is the combination of these criteria

and the use of individual pheromone for each node feature that makes the MPACA unique.

5.1.1 Unique properties of the MPACA

The MPACA borrows from and builds on similar properties of other ACO algorithms. However,

it does so in ways that make them uniquely implemented within the MPACA and the overall

system produces clustering behaviour that is demonstrably different.

5.1.1.1 Modified Ant Transition Mechanism

The MPACA uses an adjusted ant movement model, which although similar to typical ACO, is

solely pheromone driven. In ACO, ant movement mechanisms involve ants which have to wait

for all other ants to perform tours, and out of each and every tour implement a quality analysis

to determine which tour has the best quality. The MPACA differs because ant movements do

not depend on any other ants and there is no global mechanism for analysing them. In fact, in

the MPACA there is no real tour concept; ants are isolated and asynchronous from each other.

No one ant can adjust the internal state of any other ant. The only synchronisation mechanism

is a global timer, which gives the ants a notion of time. At each time step, ants move one step

onto an edge, or reach a node and evaluate its content.

5.1.1.2 Feature Learning and the Multi-Pheromone Mechanism

The MPACA gives ants the ability to learn various feature combinations. For each feature they

acquire and its new feature combination, they deposit distinct pheromone values. No other ant

algorithm in literature allows ants to learn features and deposit information about features in

such a way. In fact, there is no other algorithm that attempts to leave pheromones for each and

every descriptive attribute and value of all nodes in the domain. This vast information array of

pheromones makes the MPACA a multi-pheromone approach like no other.

156

5.1.1.3 Multi-Colony Clustering via Colony Formation

The MPACA allows ants to determine which colony they should belong to, on their own ini-

tiative and without a controlling function. Starting with one colony per node and separate

pheromones for every feature value of each node, the MPACA has the information power to

create colony representations that, in theory, can match any cluster definition required.

5.1.2 Goals and Objectives met by the MPACA

The collective action of the criteria discussed above, is shown to perform accurate clustering

via experimentation over a number of datasets. As with any other algorithm, the parameters

offer a great deal of influence on how the algorithm reacts. Certain parameter settings exclude

the formation of clusters, whilst other over-merge and prohibit linear separation to occur. It is

important to know how these parameters work because they are an integral part of the model’s

specification. Synthetic datasets were used along with standard real-world datasets to explore

the MPACA and to benchmark results against other algorithms. Two real-world datasets, one for

logistics and one for mental health, were also used to show its utility for real, messy, and com-

plex decision domains. The structure, dimensionality, and clustering objectives differ widely

between the two sets, but the results show that the MPACA can induce and utilise patterns to

produce helpful advice.

The project can be considered successful because it has created a demonstrably new algorithm

that produces clustering information for multiple domain structures. Of course, there are ele-

ments that can be improved, and this will be the focus of future research. Some of the research

choices and their rationale may need to be explored and the next section gives a brief resume of

their exploration for this thesis.

5.2 Alternative Paths

The MPACA is the result of numerous incarnations. These include differences in the ant data

structure, how they deposited pheromones, their set up for detecting particular pheromone val-

ues, their feature-merging mechanisms, colony formation, and the way the colonies are used to

classify unknown objects. These implementations are of interest since they can still be reused

in future variations.

157

5.2.1 Variation in the Ant Types

Initially, two different ant types were considered; home based ants and nomad ants. Home based

ants always return back to their point of origin and deposit pheromones on their way back home.

This causes star like formations to form as ants will always return back to their point of origin.

On the other hand, nomad ants impose no pattern of ant behaviour specifically linked to their

origin (home). It seemed sensible to let ants roam, constrained only by the paths and nodes they

encounter. This allows clustering to be based on the areas of high-density ants, which are not

constrained by their starting points.

5.2.2 Acquisition of Multiple Features on Each Dimension

In the current implementation of the MPACA, each ant is allowed to learn just one feature value

per dimension. Feature matching consists of AND operators on feature values and there is no

OR operator. In a previous iteration, ants were allowed to merge various feature values over

the same dimension. This is possible by extending the feature range detected for dimensions

or having more than one range. Alternatively it could achieved by allowing different nominal

values for features such as colour or shape that are non-ordinal.

The complexity of allowing OR operators within features rather than only having AND operators

across different attributes was not mitigated by any improvement in clustering results. Instead,

the OR operator is effectively implemented at the colony level, as various ants can react to

different feature values and still belong to the same colony; the colony shows the mixture of

matching feature values rather than individual ants.

5.2.3 Feature Merging with No-Forgetting Mechanism

A key consideration in a previous iteration of the MPACA was the ability to acquire features

and never forget such feature combinations. This meant that ants could eventually match most

data nodes present given enough time and there was a problem with stabilisation of the colonies.

A forgetting mechanism was therefore included in which feature merges that are not adequately

reinforced within the time-window are removed.

5.2.4 Cluster Representation in First Order Logic

Initially, a first order logic description (FOL) was used to describe the clusters which are formed

by the ants. The aim of the use of logic is to generate a description of the cluster in terms of the

features of interests being carried by the ants, which form part of a colony. The FOL description

158

is expressive enough as a tool when describing linearly separable datasets but was less useful

for non-linearly separable datasets. However, it is worth exploring further because FOL gives a

rule-based approach to defining classes that has the potential for efficient implementation. The

expressiveness can certainly accommodate non-linearly separable classes in theory and it really

comes down to how easily the ant colonies provide enough guidance on the form of the FOL

expression.

5.3 Advances of the Algorithm

The aim of the thesis is to demonstrate that a clustering algorithm can successfully operate

by having a fully decentralised and distributed algorithm, that allow ants to learn and define

clusters without any supervision. The presented results validate this objective. The MPACA is a

mechanism which merges features and colonies asynchronously, with no guidance and no pre-

set conditions on the outcome. It renders the approach very desirable in the current environment

where parallel, multi-threaded and multi-CPU computation applications are highly sought after

in industry. The MPACA is more than a collection of tweaks or minor adaptations of other ACO

algorithms, but should be viewed as a new sub-domain for the ant algorithm paradigm. Its key

innovation derives from the lack of global optimisation processes, which is why it is ideally

suited at exploiting parallelisation.

The novelty of the MPACA also translates into general applicability to different data domains.

The MPACA returns results which are often superior and usually equitable to other ant colony

algorithms, as well as comparing favourably with traditional clustering algorithms. The algo-

rithm performs well when the number of elements within a dataset are balanced. However, it

has a certain weakness when applied to imbalanced datasets, such as the yeast dataset presented.

This known limitation and proposed mechanisms to compensate for such limitations are given

in section (5.4.4).

Crucially, although most of the empirical work used the MPACA as a clustering tool, it compared

well with classification algorithms such as the Ant-Miner, which have the advantage of knowing

the assignment of objects to classes during the learning process. Future work with the MPACA

will explore its role in classification and determine whether the exploitation of prior knowledge

about the classes can improve its results even more.

159

Type Execution time
Parallel 10:43
Non-Parallel 12:26

TABLE 5.1: The Iris dataset as executed for100 instances separately with identical parameter
settings for both parallel and non-parallel modes.

5.4 Current Limitations and Recommended Improvements

Developing and implementing a new computational intelligence algorithm has a number of

phases. The most important is clarifying how the algorithm differs from alternatives and how

these differences impact on performance. These have been the focus of this thesis but there are

other issues that are also relevant. Optimisation is a particular concern because the learning pro-

cess is comparatively slow for ACO, making it difficult to explore, for example, the best settings

for parameters. This is where parallelisation may have its biggest influence because speeding up

the learning process will help understand better where the MPACA needs adjustments and how

it can fit different types of data sets such as those with uneven class sizes.

5.4.1 Parallel versus Non-Parallel

A parallel version of the MPACA was implemented using the .NET 4.5 framework, a Microsoft

technology allowing a simplified parallel implementation. It was applied to the movement of

the ants, which is where parallelisation would provide the maximum advantage. In this version,

all ants are generated as separate parallel threads. Each ant moves independently from any other

ant, as there is no selected sequence by which ants move.

Cluster quality derived between standard and parallel approaches does not differ. However,

the variation between speed of execution is certainly significant. A preliminary investigation

contrasting execution speeds is given in table (5.1). This is the result of executing the Iris dataset

using the standard versus the parallel mode for 100 instances each, with both experiments using

the exact same set of parameters. Results indicate that the parallel version is approximately 16%

faster.

Even if parallel execution can significantly shorten execution time, improvements in the data

structures used and superior hardware than currently available to the author, could furthermore

accelerate the MPACA processing.

160

5.4.2 Parameters and Parameter Adjustment

Parameters are an important influence on the model’s operation and all optimisation algorithms

depend on finding the values that provide the best fit. The problem will always be that ACO

methods are computationally expensive and time consuming, requiring careful optimisation of

the MPACA code to generate the necessary execution speed. This would help the search for a

best fit but more work is needed on better methods. There may even be room for improvement

within the algorithm by having certain parameters merged or eliminated. This would benefit the

MPACA and experiments already carried out on the parameters shows that some do not change

their settings much when learning optimal values. This suggests they could be linked in to the

architecture and governed by fewer parameters.

5.4.3 Termination Criteria

Termination is said to occur when ants reach a dynamic equilibrium between colony populations,

or a maximum number of iterations has been reached. In many cases when the clusters to be

recognised are relatively well dispersed, this stabilisation of colonies occurs rapidly. Thus, this

mechanism is successful in cases when balanced datasets exist. However, a clear limitation

occurs when tackling uneven datasets. This since, varying population sizes can cause premature

termination, as too many ants join a particular reduced set of colonies, and from an opposite

perspective, in some cases might cause the algorithm to fail to build the correct colonies and

adequately terminate. A limitation discussed next.

5.4.4 Tackling Uneven Datasets

The MPACA is shown to return results comparable to literature for many datasets. However, it

has failed to return good quality results on datasets which are unevenly distributed, as the case

with the yeast dataset. The evaluation of such a failure is given in section (4.4.2), however it

definitely opens further avenues where improvements can occur.

At present the algorithm has difficulties in defining smaller clusters which would be spatially

positioned within a larger cluster. If the number of nodes representing the cluster to be learn-

t/recognised is too small, this will fail to generate the required critical mass for the creation of

colonies. This occurs because ants join colonies depending on ant encounters, and a small denser

concentration within a larger concentration is counter intuitive to this process. Postulating an

alternative, if the colony level merge threshold is set to an overly high value, the smaller cluster

region within the larger cluster will form a colony to define it. However, the larger cluster might

161

not have a colony which represents it in full, but have a number of smaller colonies. Thus, the

larger cluster might fail to be recognised, which is also an undesired result.

A possible solution which could potentially solve both problems of learning uneven datasets

and correct termination, is to investigate further the influence of the visibility parameter. This

discussion builds on the material presented in chapters (3) and (4), where lower visibility is

shown to slow termination, whilst higher visibility accelerates it. By allowing this parameter

to be self-adjustable, depending on the node concentrations, nodes of higher concentration to

each other would automatically lower visibility, whilst more sparse nodes would have higher

visibility. Therefore, linking this parameter with node density should in theory improve the

results attained.

5.5 Future work

A clear limitation existing within the current MPACA implementation is the final assignment of

data elements to clusters. At present a centroid driven approach is used. Despite this returning

comparable results to other algorithms in literature as given in chapter (4), this analysis is still

deemed to be too crude. This mechanism is also prone to the pitfalls of K-Means and other

centroid based algorithms described in chapter (2). In order to compensate for these limitations

two alternative methods are currently being investigated; (i) a Bayesian driven membership

calculation and (ii) a K-Nearest driven approach. Preliminary results attained for these methods

are too premature to be included in this thesis.

5.5.1 Bayesian Cluster Membership Calculation

The Bayesian approach determines the most likely membership of a given data element depend-

ing on the features which constitute it, this being called the evidence set. This mechanism uses

the notion that each colony consists of multiple ants, and each ant carries multiple features.

Cluster membership for a data element is determined by analysing the population distribution

of the ants in each class based on their feature values. The evidence set is analysed per feature,

and a collective evaluation of all results is performed. For each feature, the count of this feature

within the colony is taken as a ratio of that feature within the entire system. This results in a

mechanism which is dependent on the frequency of encounters to probabilistically determine

which colony data elements should belong to, as outlined in algorithm (10). Therefore, the

probability of a data element de, being in a cluster c, is defined as in equation (5.1):

P(c|de) =
P(de|c)P(c)

P(de)
(5.1)

162

Algorithm 10 Bayesian Approach to cluster membership calculation

for all data elements, de ∈ Dataset, ds do
Let HighestSigma→ 0.0
Let Evidence-Set→ Features at Node
Let |F | → all distinct features in the system
for all colonyId ∈ Colony do

Let colonySigma→ 1.0
for all feature, f ∈ evidenceSet do

Let featuresInColony→ all feature in this colony which match f
Let numerator→ featureInColonyCount + 1
Comment: where the addition of value 1 ensures a level of smoothing
Let featureInSystemCount→ all features in system which match f
Let denominator→ featureInSystemCount + |F |
Comment: where again |F | ensure smoothing
Let colonySigma→ colonySigma× numerator

denominator
end for
if (colonySigma≤ HighestSigma) then

Continue
else

Let HighestSigma→ colonySigma
end if

end for
end for

Smoothing is applied to ensure that non-zero results are handled without skewing the calcula-

tions. Unlike the centroid calculation, which uses a similar proximity method on the locus of

points, this mechanism uses the actual feature match counts to create the probability distribution.

5.5.2 K-Nearest Neighbourhood Cluster Membership Calculation

Algorithm 11 K-Nearest Neighbourhood approach to cluster membership calculation

for all data elements, de ∈ Dataset, ds do
Match de, to Node Id
Let NodesInProximity→ all nodes which are within K-neighbouring distance
Let AntsWithinK-Radius → all ants on all nodes within NodesInProximity which have
their deposit mode set to TRUE
Let ColonyCount→ all distinct colonies which are in AntsWithinK-Radius
Let ColonyVotingArray[ColonyCount]→ 0
for all ant ∈ Ants-Within-K-Radius do

ColonyVotingArray[ant.ColonyId]++
end for
Set Node membership to highest colony count Id in ColonyVotingArray

end for

The K-Nearest Neighbourhood mechanism uses the knowledge of colony distribution on nodes.

Each node is representative of an original data element, and colonies of ants are distributed

unevenly on such nodes, where certain node groupings have a higher tendency to be populated

with ants belonging to one colony rather than another. The mechanism first filters out ants

163

within colonies which are not in deposit mode are filtered since technically they should not

belong there. Subsequently each data element (node) is allocated to a colony depending on the

most frequent colony Id of ants present on it, and also of nodes within its K-Nearest distance,

which is effectively a majority polling mechanism. All nodes which are less than K-steps away

are collectively grouped under this capping, as outlined in algorithm (11).

5.5.3 Ongoing Research

During this research period, the MPACA has been introduced at a number of conferences and

publications, namely; [Chircop and Buckingham, 2013], [Chircop and Buckingham, 2014],

[Chircop and Buckingham, 2011b], [Chircop and Buckingham, 2011a]. Given the success

of applying the MPACA to real-world domains, amongst these the GRiST [Buckingham and

Adams, 2013] and the ADVANCE [adv, 2013] datasets, further work is continuing in these ar-

eas. Both domains have their own set of challenges for ACO and the promising initial results

of the MPACA make them well worth addressing. Both are essentially prediction problems that

are most obviously modelled by regression. However, the exact number produced by the pre-

diction is not as important as the decision class to which it is assigned. For the mental-health

domain, the GRiST clinical risk judgements have one of eleven categories, zero to ten, but the

psychological representation of risk has less granular categories that map onto risk management

decisions. These are more like low, medium, and high risk, where the most important category

is the high-risk one. The MPACA has shown some success in detecting these categories. Future

work will explore how its clustering abilities can be applied to GRiST data more associated

with risk management than risk evaluation to help provide more robust linkage between risk

categories and their management. It is clear from the current GRiST data that only a subset is

required for evaluating the risks and that much of the supporting data is about how to manage

them. There is little understanding about the role of these management data and finding patterns

within them is an ideal application of the MPACA. The rewards are high because it is clear

that the clinically-relevant representations of risk (e.g. none, low, medium, high, maximum) are

linked to how patients in each category are managed. Management data can help define and

refine the categories, which then feeds back into better thresholds for assigning patients via the

evaluation process.

Regarding the ADVANCE logistics domain, the prediction was for the expected demand on

vehicle space each day so that haulier companies know how many lorries to deploy. Again,

the exact number is less important than the impact on decisions. If the demand rises or falls

more than a threshold amount from the normal amount, this has severe consequences, either

164

by wasting space (and money) or by failing to deliver goods on time. The MPACA showed

good results when clustering data to find those days when the thresholds are exceeded. Future

work will attempt to match the thresholds more accurately to the cognitive model of decisions

Buckingham et al. [2012]. In this case, we have a clear understanding of what situations drive

different decisions but not how to detect those situations from the data; the MPACA could be a

valuable resource for achieving the latter.

5.5.4 Application of the MPACA as a Classifier

Results presented in chapter (4) demonstrate that the MPACA can quite easily be used in a

classification mode. This is still ongoing research work, and further experimentation is required.

It would certainly be interesting to compare the MPACA as a classifier versus results of the other

classifiers presented in the results chapter.

An important guideline to remember for future research on the MPACA is to avoid chasing per-

formance optimisation without understanding how it is being achieved. Otherwise, the particular

qualities of the MPACA could be lost or diluted, with improvements failing to come from the

metaphor that has motivated the research in the first place. Future work will attempt to exploit

the novel strengths of the algorithm rather than forcing it to fit unsuitable problem domains by

bloating its functionality and diluting its distinctive properties.

5.6 Concluding Arguments

The basic learning mechanisms of the MPACA are demonstrated over relatively simple do-

mains. These domains were deliberately chosen to display the ability of the MPACA to form

colonies representative of the required clusters. Despite their simplicity they demonstrate that

the MPACA successfully operates as a clustering tool and is tractable. The results illustrate

the potential to learn clusters, with further testing applied to more real-world domains attaining

similar but less ostentatious results.

Finally, the MPACA can be best summarised into the following; “a process of self-determination

with ants choosing which features to merge and which colonies (clusters) they should combine

into”.

165

Bibliography

(2013). Advance: Advanced predictive-analysis-based decision-support engine for logistics.
http://www.advance-logistics.eu/. [Online; accessed Sept-2013].

(2013). University at buffalo, the state university of new york. http://www.cse.
buffalo.edu/faculty/azhang/data-mining/density-based.ppt/. [On-
line; accessed Sept-2013].

1902encyclopedia (2013). Animal kingdom part 3. http://www.1902encyclopedia.
com/A/ANI/animal-kingdom-03.html. [Online; accessed Nov-2013].

A, D. (2013). Sintef (2013, may 22). big data, for better or worse: 90% of world’s data generated
over last two years. ScienceDaily. http://www.sciencedaily.com/releases/
2013/05/130522085217.htm. [Online; accessed Sept-2013].

Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Sci-
ence, 266(11):1021–1024.

Admane, L., Benatchba, K., Koudil, M., Siad, L., and Maziz, S. (2006). Antpart: an algorithm
for the unsupervised classification problem using ants. Applied Mathematics and Computa-
tion, 180(1):16–28.

Agarwal, A., Lim, M. H., Er, M. J., and Chew, C. Y. (2005). Aco for a new tsp in region
coverage. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2005), 2005., pages 1717–1722.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Automatic subspace cluster-
ing of high dimensional data for data mining applications. SIGMOD Rec., 27(2):94–105.

Akbar, Y. (2008). Fire ants form bridge. http://hungeree.com/nature/
fire-ants-form-bridge/. [Online; accessed Sept-2013].

Al-Saleh, M. F. and Yousif, A. E. (2009). Properties of the standard deviation that are rarely
mentioned in classrooms. Austrian Journal of Statistics, 38(3):193–202.

Analoui, M., Beheshti, M., Tayefeh Mahmoudi, M., and Jadidi, Z. (2010). Tecno-streams ap-
proach for content-based image retrieval. In Second World Congress on Nature and Biologi-
cally Inspired Computing (NaBIC), 2010, pages 109–114.

Andreev, K. and Räcke, H. (2004). Balanced graph partitioning. In Proceedings of the Sixteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’04, pages
120–124, New York, NY, USA. ACM.

Ankerst, M., Breunig, M. M., Kriegel, H. P., and Sander, J. (1999). Optics: ordering points
to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, SIGMOD ’99, pages 49–60, New York, NY, USA. ACM.

Antoine, V., Monmarché, N., and Slimane, M. (2008). Data clustering with artificial ants: the
api algorithm case study. In Proccedings of META’08, Hammamet, Tunisia.

Azzag, H., Monmarché, N., Slimane, M., Guinot, C., and Venturini, G. (2003). AntTree: A
new model for clustering with artificial ants. In Banzhaf, W., Christaller, T., Dittrich, P., Kim,
J. T., and Ziegler, J., editors, Advances in Artificial Life - Proceedings of the 7th European
Conference on Artificial Life (ECAL), volume 2801 of Lecture Notes in Artificial Intelligence,
pages 564–571. Springer Verlag Berlin, Heidelberg.

166

http://www.advance-logistics.eu/
http://www.cse.buffalo.edu/faculty/azhang/data-mining/density-based.ppt/
http://www.cse.buffalo.edu/faculty/azhang/data-mining/density-based.ppt/
http://www.1902encyclopedia.com/A/ANI/animal-kingdom-03.html
http://www.1902encyclopedia.com/A/ANI/animal-kingdom-03.html
http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://hungeree.com/nature/fire-ants-form-bridge/
http://hungeree.com/nature/fire-ants-form-bridge/

Bibliography

Azzag, H., Venturini, G., Oliver, A., and Guinot, C. (2007). A hierarchical ant based cluster-
ing algorithm and its use in three real-world applications. European Journal of Operational
Research, 179(3):906–922.

Bache, K. and Lichman, M. (2013). UCI machine learning repository. http://archive.
ics.uci.edu/ml. [Online; accessed Dec-2013].

Baraldi, A. and Blonda, P. (1999). A survey of fuzzy clustering algorithms for pattern recogni-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(6):778–
785.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1 edition.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Kogan, J., Nicholas, C.,
and Teboulle, M., editors, Grouping Multidimensional Data, pages 25–71. Springer Berlin
Heidelberg.

Bertelle, C., Dutot, A., Guinand, F., and Olivier, D. (2003). Color ant population algorithm
for dynamic distribution in simulation. In Proceedings of the ESS Conference, Delft, The
Netherlands.

Bertelle, C., Dutot, A., Guinand, F., and Olivier, D. (2007). Organization detection for dynamic
load balancing in individual-based simulations. Multiagent and Grid Systems, special is-
sue on Nature-Inspired Systems for Parallel, Asynchronous and Decentralized Environments,
3(1):141–163.

Bertelle, C., Dutot, A., Guinand, F., Olivier, D., et al. (2006). Organization detection using emer-
gent computing. International Transactions on Systems Science and Applications, 2(1):61–
69.

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). : The fuzzy c-means clustering algorithm.
”Computers and Geosciences, 10(2–3):191–203.

Bin, W. and Zhongzhi, S. (2001). A clustering algorithm based on swarm intelligence. In ICII
2001 - International Conferences on Info-tech and Info-net Beijing., volume 3, pages 58–66.

Bishop, J. (1989). Stochastic searching networks. In 1st IEE Conf. on Artificial Neural Net-
works, pages 329–331.

Bishop, J. and Torr, P. (1992). The stochastic search network. In Linggard, R., Myers, D., and
Nightingale, C., editors, Neural Networks for Vision, Speech and Natural Language, volume 1
of BT Telecommunications Series, pages 370–387. Springer Netherlands.

Blum, C. and Merkle, D., editors (2008). Swarm Intelligence: Introduction and Applications
(Natural Computing Series). Springer, 1 edition.

Bonabeau, E., Dorigo, M., and Théraulaz, G. (1999). Swarm intelligence: From natural to
artificial systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University
Press, Oxford.

Boryczka, U. (2010). Ant colony metaphor in a new clustering algorithm. Control & Cybernet-
ics, 39(2).

Bougenière, G., Cariou, C., Chehdi, K., and Gay, A. (2009). Non parametric stochastic expec-
tation maximization for data clustering. In Filipe, J. and Obaidat, M., editors, E-business and
Telecommunications, volume 23 of Communications in Computer and Information Science,
pages 293–303. Springer Berlin Heidelberg.

Breaban, M. E. and Luchian, H. (2011). Pso aided k-means clustering: Introducing connectivity
in k-means. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’11, pages 1227–1234, New York, NY, USA. ACM.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Bruni, L. (2002). Vilfredo Pareto and the birth of modern microeconomics. Elgar, Cheltenham
[u.a].

Buckingham, C. D. and Adams, A. (2011). The grist web-based decision support system for
mental-health risk assessment and management. In Proceedings of the First BCS Health in
Wales/ehi2 joint Workshop, pages 37–40.

167

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

Buckingham, C. D. and Adams, A. E. (2013). Grist galatean risk and safety tool. http:
//www.egrist.org/. [Online; accessed Oct-2013].

Buckingham, C. D., Adams, A. E., and Mace, C. (2008). Cues and knowledge structures used
by mental-health professionals when making risk assessments. Journal of Mental Health,
17(3):299–314.

Buckingham, C. D., Buijs, P., Welch, P. G., Kumar, A., and Ahmed, A. (2012). Developing a
cognitive model of decision-making to support members of hub-and-spoke logistics networks.
In Elisabeth Ilie-Zudor, Zsolt Kemény, L. M., editor, Proceedings of the 14th International
Conference on Modern Information Technology in the Innovation Processes of the Industrial
Enterprises, pages 14–30.

Bullnheimer, B., Hartl, R., and Strauss, C. (1999). A New Rank Based Version of the Ant
System: A Computational Study. Central European Journal for Operations Research and
Economics, 7(1):25–38.

Bullnheimer, B., K. G. and Strauss, C. (1997). Parallelization strategies for the ant system. High
Performance Algorithms and Software in Nonlinear Optimization, pages 87–100.

Cano, A., Zafra, A., and Ventura, S. (2013). An interpretable classification rule mining algo-
rithm. Inf. Sci., 240:1–20.

Cardon, A., Dutot, A., Guinand, F., and Olivier, D. (2006). Competing ants for organization
detection application to dynamic distribution. In Aziz-Alaoui, M. and Bertelle, C., editors,
Emergent Properties in Natural and Artificial Dynamical Systems, Understanding Complex
Systems, pages 25–52. Springer Berlin Heidelberg.

Chaimontree, S., Atkinson, K., and Coenen, F. (2010). Clustering in a multi-agent data mining
environment. In Cao, L., Bazzan, A., Gorodetsky, V., Mitkas, P., Weiss, G., and Yu, P.,
editors, Agents and Data Mining Interaction, volume 5980 of Lecture Notes in Computer
Science, pages 103–114. Springer Berlin Heidelberg.

Chandrasekar, R. and Srinivasan, T. (2007). An improved probabilistic ant based clustering for
distributed databases. In Proceedings of the 20th International Joint Conference on Artifi-
cal Intelligence, IJCAI’07, pages 2701–2706, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-ackermann type com-
plexity. J. ACM, 47(6):1028–1047.

Chen, B., Song, S., and Chen, X. (2007a). A multi-ant colony system for vehicle routing problem
with time-dependent travel times. In 2007 IEEE International Conference on Automation and
Logistics, pages 446–449.

Chen, E. and Liu, X. (2009). Multi-colony ant algorithm using both repulsive operator and
pheromone crossover based on multi-optimum for tsp. In Wang, S., Yu, L., Wen, F., He, S.,
Fang, Y., and Lai, K. K., editors, BIFE, pages 69–73. IEEE Computer Society.

Chen, J., MacEachren, A., and Peuquet, D. (2009). Constructing overview + detail dendrogram-
matrix views. IEEE Transactions on Visualization and Computer Graphics,, 15(6):889–896.

Chen, L., Xu, X. H., and Chen, Y. X. (2004). An adaptive ant colony clustering algorithm. In
In Proceedings of the Third International Conference on Machine Learning and Cybernetics,
pages 1387–1392. IEEE.

Chen, M., Fu, Y. C., Ge, J., Zhou, X. K., and Cui, Z. M. (2007b). Study of logistics vehicle
routing problem based on gis. 2007 Workshop on Intelligent Information Technology Appli-
cations,, 0:129–132.

Chen, Y., Chen, L., and Tu, L. (2006). Parallel ant colony algorithm for mining classification
rules. In 2006 IEEE International Conference on Granular Computing, pages 85–90.

Chialvo, D. R. and Millonas, M. M. (1995). How swarms build cognitive maps. In Steels, L.,
editor, The Biology and Technology of Intelligent Autonomous Agents, volume 144 of NATO
ASI Series, pages 439–450. Springer Berlin Heidelberg.

Chintalapati, J., Arvind, M., Priyanka, S., Mangala, N., and Valadi, J. (2010). Parallel ant-miner
(pam) on high performance clusters. In Panigrahi, B., Das, S., Suganthan, P., and Dash, S.,

168

http://www.egrist.org/
http://www.egrist.org/

Bibliography

editors, Swarm, Evolutionary, and Memetic Computing, volume 6466 of Lecture Notes in
Computer Science, pages 270–277. Springer Berlin Heidelberg.

Chircop, J. and Buckingham, C. D. (2011a). Clustering via a multi-pheromone ant colony
algorithm. In EVOLVE 2011, A bridge between Probability, Set Oriented Numerics and Evo-
lutionary Computation, pages 1–6.

Chircop, J. and Buckingham, C. D. (2011b). A multiple pheromone algorithm for cluster anal-
ysis. In ICSI 2011: International conference on swarm intelligence, pages 1–10.

Chircop, J. and Buckingham, C. D. (2013). The multiple pheromone ant clustering algorithm
and its application to real world domains. In 2013 Federated Conference on Computer Science
and Information Systems (FedCSIS),, pages 27–34.

Chircop, J. and Buckingham, C. D. (2014). A multiple pheromone ant clustering algorithm.
In Terrazas, G., Otero, F. E. B., and Masegosa, A. D., editors, Nature Inspired Cooperative
Strategies for Optimization (NICSO 2013), volume 512 of Studies in Computational Intelli-
gence, pages 13–27. Springer International Publishing.

Chrétien, L. (1996). Organisation spatiale du matériel provenant de l’excavation du nid chez
Messor barbarus et des cadavres d’ouvriéres chez Lasius niger (Hymenopterae: Formicidae).
PhD thesis, Département de Biologie Animale, Université Libre de Bruxelles.

Chu, S. C., Huang, H. C., Roddick, J. F., and Pan, J.-S. (2011). Overview of algorithms for
swarm intelligence. In Jedrzejowicz, P., Nguyen, N., and Hoang, K., editors, Computa-
tional Collective Intelligence. Technologies and Applications, volume 6922 of Lecture Notes
in Computer Science, pages 28–41. Springer Berlin Heidelberg.

Chu, S. C., Roddick, J. F., Pan, J. S., and Su, C. J. (2003). Parallel ant colony systems. In Zhong,
N., Ras, Z., Tsumoto, S., and Suzuki, E., editors, Foundations of Intelligent Systems, volume
2871 of Lecture Notes in Computer Science, pages 279–284. Springer Berlin Heidelberg.

Chuang, L. Y., Lin, Y. D., and Yang, C. H. (2012). An improved particle swarm optimization
for data clustering. In Proceedings of the International MultiConference of Engineers and
Computer Scientists 2012 Vol I, IMECS 2012,.

Cumps, B., Martens, D., De Backer, M., Viaene, S., Dedene, G., Haesen, R., Snoeck, M., and
Baesens, B. (2009). Inferring rules for business/ICT alignment using Ants.

Dawson, L. and Stewart, I. (2013). Improving ant colony optimization performance on the gpu
using cuda. In 2013 IEEE Congress on Evolutionary Computation (CEC),, pages 1901–1908.

de Castro, L. N. (2007). Fundamentals of natural computing: an overview. Physics of Life
reviews, 4:1–36.

de Castro, L. N. and Von Zuben, F. J. (1999). Artificial immune systems - part i: Basic the-
ory and applications. Technical report, Department of Computer Engineering and Industrial
Automation, School of Electrical and Computer Engineering, State University of Campinas,
Brazil.

Demontis, R. (2009). A simple np-hard problem. SIGACT News, 40(2):45–48.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39:1–38.

Deneubourg, J. L., Aron, S., Goss, S., and Pasteels, J. M. (1990a). The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2):159–168.

Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., and Chrétien, L.
(1990b). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceed-
ings of the first international conference on simulation of adaptive behavior on From animals
to animats, pages 356–363, Cambridge, MA, USA. MIT Press.

Dong, M., Wang, N., and Tao, J. (2009). Dna computing in control systems: a survey. In
Proceedings of the 21st annual international conference on Chinese control and decision
conference, CCDC’09, pages 4978–4982, Piscataway, NJ, USA. IEEE Press.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

169

Bibliography

Dorigo, M., Birattari, M., and Stützle, T. (2006). Ant colony optimization. Computational
Intelligence Magazine, IEEE, 1(4):28–39.

Dorigo, M. and Gambardella, L. (1997a). Ant Colony Sytem: A Cooperative Learning Ap-
proach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computa-
tion, 1(1):53–66.

Dorigo, M. and Gambardella, L. M. (1997b). Ant colonies for the travelling salesman problem.
Biosystems, 43(2):73 – 81.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991a). Positive feedback as a search strategy.
Technical Report 91-016, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991b). The Ant System: An Autocatalytic Opti-
mizing Process. Technical Report 91-016 Revised, Milano, Italy.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The Ant System: Optimization by a
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1):29–41.

Duan, H., Liu, S., and Lei, X. (2008). Air robot path planning based on intelligent water drops
optimization. In Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computa-
tional Intelligence). IEEE International Joint Conference on, pages 1397–1401.

Dunn, J. C. (1974). Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics,
4:95–104.

Dussutour, A., Nicolis, S. C., Shephard, G., Beekman, M., and Sumpter, D. J. T. (2009). The
role of multiple pheromones in food recruitment by ants. J Exp Biol, 212(15):2337–2348.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., and
Xiong, Y. (2003). Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,
91(1):127–144.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996a). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Simoudis, E., Han, J., and Fayyad,
U. M., editors, KDD, pages 226–231. AAAI Press.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996b). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Simoudis, E., Han, J., and Fayyad,
U. M., editors, Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), pages 226–231. AAAI Press.

Flikkema, P. and Leid, J. (2005). Bacterial communities: a microbiological model for swarm
intelligence. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.,
pages 416–419.

Franti, P., Virmajoki, O., and Hautamaki, V. (2006). Fast agglomerative clustering using a k-
nearest neighbor graph. IEEE Trans. Pattern Anal. Mach. Intell., 28(11):1875–1881.

Gambardella, L. and Dorigo, M. (1996). Solving Symmetric and Asymmetric TSPs by Ant
Colonies. In IEEE, editor, Proceedings of the third IEEE International Conference on Evolu-
tionary Computation (ICEC), pages 622–627, Nagoya, Japan. IEEE Press.

Ghosh, A., Halder, A., Kothari, M., and Ghosh, S. (2008). Aggregation pheromone density
based data clustering. Information Sciences, 178(13):2816–2831.

Grassé, P. P. (1959). La reconstruction du nid et les coordinationsinter-individuelles chez bel-
licositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai dinterpretation du
comportement des termites constructeurs. Insect. Sociaux, 6:41–81.

Greenacre, M. (2013). Correspondence analysis and related methods, department of statis-
tics, stanford university. retrieved novemeber 2013. http://www.econ.upf.edu/
˜michael/stanford/maeb4.pdf. [Online; accessed Sept-2013].

Grira, N., Crucianu, M., and Boujemaa, N. (2004). Unsupervised and Semi-supervised Cluster-
ing: a Brief Survey. A Review of Machine Learning Techniques for Processing Multimedia
Content, Report of the MUSCLE European Network of Excellence (FP6).

170

http://www.econ.upf.edu/~michael/stanford/maeb4.pdf
http://www.econ.upf.edu/~michael/stanford/maeb4.pdf

Bibliography

Guntsch, M. (2004). Ant Algorithms in Stochastic and Multi-Criteria Environments. PhD thesis,
Universität Fridericiana zu Karlsruhe.

Guntsch, M. and Middendorf, M. (2001). Pheromone Modification Strategies for Ant Algo-
rithms Applied to Dynamic TSP. In Boers, E., Gottlieb, J., Lanzi, P., Smith, R., Cagnoni,
S., Hart, E., Raidl, G., and Tijink, H., editors, Applications of Evolutionary Computing :
EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume 2037
of Lecture Notes in Computer Science, pages 213–222, Como, Italy. Springer Berlin / Heidel-
berg.

Guntsch, M. and Middendorf, M. (2002). Applying Population Based ACO to Dynamic Opti-
mization Problems. In Dorigo, M., Di Caro, G., and Sampels, M., editors, Proceedings of
the Third International Workshop on Ant Algorithms (ANTS’2002), volume 2463 of Lecture
Notes in Computer Science, pages 111–122, Brussels, Belgium. Springer Verlag.

Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). Knn model-based approach in clas-
sification. In Meersman, R., Tari, Z., and Schmidt, D., editors, On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in Com-
puter Science, pages 986–996. Springer Berlin Heidelberg.

Gutowitz, H. (1995). Complexity-Seeking Ants. In Moran, F., Moreno, A., Merelo, J., and
Chacon, P., editors, Proceedings of the Third European Conference on Artificial Life (ECAL),
pages 429–439, Granada, Spain. Springer Verlag.

Halder, A., Ghosh, S., and Ghosh, A. (2008). Aggregation pheromone density based clas-
sification. In International Conference on Information Technology, 2008. ICIT ’08., pages
100–105.

Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical
Journal, 26(2):147–160.

Han, J. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Handl, J., Knowles, J., and Dorigo, M. (2003a). Ant-based clustering: a comparative study of
its relative performance with respect to k-means, average link and 1d-som. In Proceedings of
the Third International Conference on Hybrid Intelligent Systems, IOS Press.

Handl, J., Knowles, J., and Dorigo, M. (2003b). On the performance of ant-based clustering. In
Design and Application of Hybrid Intelligent Systems, volume 104 of Frontiers in Artificial
Intelligence and Applications, pages 204–213. Amsterdam, The Netherlands: IOS Press.

Handl, J., Knowles, J., and Dorigo, M. (2006). Ant-based clustering and topographic mapping.
Artificial Life, 12(1):35–61.

Hao, Y., Shen, Z., and Zhao, Y. (2009). Path planning for aircraft based on maklink graph
theory and multi colony ant algorithm. In Proceedings of the 2009 International Joint Con-
ference on Computational Sciences and Optimization - Volume 02, CSO ’09, pages 232–235,
Washington, DC, USA. IEEE Computer Society.

Hasan, A., Jafar, M., and Sivakumar, R. (2011). A survey: hybrid evolutionary algorithms for
cluster analysis. Artif. Intell. Rev., 36(3):179–204.

He, J., Long, D., and Chen, C. (2007). An improved ant-based classifier for intrusion detection.
In Proceedings of the Third International Conference on Natural Computation - Volume 04,
ICNC ’07, pages 819–823, Washington, DC, USA. IEEE Computer Society.

Heppner, F. and Grenander, U. (1990). A stochastic nonlinear model for coordinated bird flocks.
In Krasner, E., editor, The ubiquity of chaos, pages 233–238. AAAS Publications.

Hinneburg, A. and Keim, D. A. (1998). An efficient approach to clustering in large multimedia
databases with noise. In Agrawal, R., Stolorz, P. E., and Piatetsky-Shapiro, G., editors, KDD,
pages 58–65. AAAI Press.

Hochbaum, D. S., editor (1997). Approximation algorithms for NP-hard problems. PWS Pub-
lishing Co., Boston, MA, USA.

171

Bibliography

Hoffman, E. and Gardner, R. (1983). Evaluation of uncertainties in environmental radiological
assessment models. Technical Report NUREG/CR-3332, Till, J.E.; Meyer, H.R. (eds) Radio-
logical Assessments: a Textbook on Environmental Dose Assessment. Washington, DC: U.S.
Nuclear Regulatory Commission, Milano, Italy.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM J. Comput.,
2(2):88–105.

Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., and Chien, C.-C. (2005). A novel optimization algo-
rithm: space gravitational optimization. In IEEE International Conference on Systems, Man
and Cybernetics, 2005, volume 3, pages 2323–2328 Vol. 3.

Inbarani, H. H. and Thangavel, K. (2006). Clickstream intelligent clustering using accelerated
ant colony algorithm. In ADCOM 2006 International Conference on Advanced Computing
and Communications, 2006., pages 129–134.

Ingaramo, D. A., Leguizamón, M. G., and Errecalde, M. L. (2005). Adaptive clustering with
artificial ants. Journal of Computer Science & Technology, 5.

Jafar, O. A. M. and Sivakumar, R. (2010). Ant-based clustering algorithms: A brief survey.
International journal of computer theory and engineering, 2(5):1793–8201.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: A review. ACM Comput.
Surv., 31(3):264–323.

James, E. A., Milenkiewicz, M. T., and Bucknam, A. (2008). Participatory Action Research for
Educational Leadership: Using Data-Driven Decision Making to Improve Schools. SAGE
Publications.

Jebara, T. (2002). Discriminative, Generative and Imitative Learning. PhD thesis. AAI0804044.

Jiang, W., Xu, Y., and Xu, Y. (2005). A novel data mining method based on ant colony algorithm.
In Li, X., Wang, S., and Dong, Z., editors, Advanced Data Mining and Applications, volume
3584 of Lecture Notes in Computer Science, pages 284–291. Springer Berlin Heidelberg.

Jin, P., Zhu, Y., Hu, K., and Li, S. (2006). Classification rule mining based on ant colony
optimization algorithm. In Huang, D.-S., Li, K., and Irwin, G., editors, Intelligent Control
and Automation, volume 344 of Lecture Notes in Control and Information Sciences, pages
654–663. Springer Berlin Heidelberg.

Kablan, A. and Ng, W. (2010). High frequency trading strategy using the hilbert transform.
In 2010 Sixth International Conference on Networked Computing and Advanced Information
Management (NCM),, pages 466–471.

Kamkar, I., Akbarzadeh T, M. R., and Yaghoobi, M. (2010). Intelligent water drops a new
optimization algorithm for solving the vehicle routing problem. In 2010 IEEE International
Conference on Systems Man and Cybernetics (SMC),, pages 4142–4146.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings., IEEE In-
ternational Conference on Neural Networks, 1995., volume 4, pages 1942–1948 vol.4. IEEE.

Kheirkhahzadeh, M. and Barforoush, A. (2009). A hybrid algorithm for the vehicle routing
problem. In CEC ’09. IEEE Congress on Evolutionary Computation, 2009., pages 1791–
1798.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680.

Kordon, A. K. (2010). Swarm intelligence: The benefits of swarms. In Applying Computational
Intelligence, pages 145–174. Springer Berlin Heidelberg.

Korürek, M. and Nizam, A. (2008). A new arrhythmia clustering technique based on ant colony
optimization. Journal of Biomedical Informatics.

Kreyszig, E. (2000). Advanced Engineering Mathematics: Maple Computer Guide. John Wiley
& Sons, Inc., New York, NY, USA, 8th edition.

172

Bibliography

Kriegel, H. P., Kröger, P., and Zimek, A. (2009). Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl.
Discov. Data, 3(1):1:1–1:58.

Krüger, F., M. M. and Merkle, D. (1998). Studies on a parallel ant system for the bsp model.

Kruskal, J. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29:115–129.

Kryszkiewicz, M. (2013). Determining cosine similarity neighborhoods by means of the eu-
clidean distance. In Skowron, A. and Suraj, Z., editors, Rough Sets and Intelligent Systems
- Professor Zdzisław Pawlak in Memoriam, volume 43 of Intelligent Systems Reference Li-
brary, pages 323–345. Springer Berlin Heidelberg.

Kuntz, P., Snyers, D., and Layzell, P. (1998). A stochastic heuristic for vizualising graph clusters
in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3):327–351.

Labroche, N. (2003). Modélisation du système de reconnaissance chimique des fourmis pour
le problème de la classification non-supervisée : application à la mesure d’audience sur
Internet. Thèse de doctorat, Laboratoire d’Informatique, Université de Tours.

Labroche, N., Monmarché, N., and Venturini, G. (2002a). A new clustering algorithm based
on the chemical recognition system of ants. In Harmelen, F., editor, Proceedings of the 15th
European Conference on Artificial Intelligence, pages 345–349, Lyon, France. IOS Press.

Labroche, N., Monmarché, N., and Venturini, G. (2003a). AntClust: Ant Clustering and Web
Usage Mining. In Cantu-Paz, E., editor, Genetic and Evolutionary Computation Conference,
volume 2723 of Lecture Notes in Computer Science, pages 25–36, Chicago. Springer-Verlag
Telos.

Labroche, N., Monmarché, N., and Venturini, G. (2003b). Web sessions clustering with artificial
ants colonies. In WWW2003 Conference, page Poster, Budapest.

Labroche, N., Richard, F. J., Monmarché, N., Lenoir, A., and Venturini, G. (2002b). Modelling
of the chemical recognition system of ants. In Hemelrijk, C. K., editor, International Work-
shop on Self-Organization and Evolution of Social Behaviour, pages 283–292, Monte Verità,
Ascona, Switzerland.

Li, Z. F. and Bai, H. (2010). Multi-ant colony optimization algorithm for the route optimization
of logistic distribution. In Second International Conference on Computational Intelligence
and Natural Computing Proceedings (CINC), 2010, volume 1, pages 141–144.

Lim, C. P. and Dehuri, S. (2012). Innovations in Swarm Intelligence. Springer Publishing
Company, Incorporated.

Ling, S. and Wei, W. (2009). Multi-ant-colony based multi-path routing algorithm for overlay
network. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems - Volume
01, GCIS ’09, pages 188–192, Washington, DC, USA. IEEE Computer Society.

Lioni, A., Sauwens, C., Theraulaz, G., and Deneubourg, J. L. (2001). The dynamics of chain
formation in oecophylla longinoda. Journal of Insect Behavior, 14:679–696.

Liu, S., Dou, Z. T., Li, F., and Huang, Y. L. (2004). A new ant colony clustering algorithm based
on DBSCAN. In 3rd International Conference on Machine learning and Cybernetics, pages
1491–1496, Shanghai.

Liu, Z. and Chai, Y. (2006). A hybrid ant colony algorithm for capacitated vehicle routing
problem. In SMC ’06. IEEE International Conference on Systems, Man and Cybernetics,
2006., volume 5, pages 3907–3911.

Lumer, E. and Faieta, B. (1994). Diversity and Adaptation in Populations of Clustering Ants.
In Cliff, D., Husbands, P., Meyer, J., and W., S., editors, Proceedings of the Third Interna-
tional Conference on Simulation of Adaptive Behavior (SAB), pages 501–508. MIT Press,
Cambridge, Massachusetts.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observa-
tions. In Cam, L. M. L. and Neyman, J., editors, Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, volume 1, pages 281–297. University of California
Press.

173

Bibliography

Maesschalck, R. D., Jouan-Rimbaud, D., and Massart, D. (2000). The mahalanobis distance.
Chemometrics and Intelligent Laboratory Systems, 50(1):1–18.

Maimon, O. and Rokach, L. (2005). Data Mining and Knowledge Discovery Handbook.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS J. on Computing, 11(4):358–369.

Manjurul Islam, M. M., Waselul Hague Sadid, M., Mamun Ar Rashid, S. M., and Kabir, M. J.
(2006). An implementation of aco system for solving np-complete problem; tsp. In In-
ternational Conference on Electrical and Computer Engineering, ICECE ’06. 2006., pages
304–307.

Martens, D., Bruynseels, L., Baesens, B., Willekens, M., and Vanthienen, J. (2008). Predicting
going concern opinion with data mining. Decision Support Systems, 45(4):76–777. Informa-
tion Technology and Systems in the Internet-Era.

Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., and Baesens, B. (2007).
Classification with ant colony optimization. Evolutionary Computation, IEEE Transactions
on, 11(5):651–665.

Martens, D., van Gestel, T., De Backer, M., Haesen, R., Vanthienen, J., Mues, C., and Baesens,
B. (2010). Credit rating prediction using ant colony optimization. Open access publications
from katholieke universiteit leuven, Katholieke Universiteit Leuven.

Martin, M., Chopard, B., and Albuquerque, P. (2002). Formation of an ant cemetery: Swarm
intelligence or statistical accident? Future Gener. Comput. Syst., 18(7):951–959.

Merkle, D., Middendorf, M., and Schmeck, H. (2002). Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computation,, 6(4):333–
346.

Mettu, R. R. (2002). Approximation Algorithms for NP-hard Clustering Problems. PhD thesis.
AAI3099495.

Middendorf, M., Reischle, F., and Schmeck, H. (2000). Information exchange in multi colony
ant algorithms. In Rolim, J., editor, Parallel and Distributed Processing, volume 1800 of
Lecture Notes in Computer Science, pages 645–652. Springer Berlin Heidelberg.

Middendorf, M., Reischle, F., and Schmeck, H. (2002). Multi colony ant algorithms. Journal of
Heuristics, 8(3):305–320.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition.

Monmarché, N. (1999). On data clustering with artificial ants. In Freitas, A., editor, AAAI-99 &
GECCO-99 Workshop on Data Mining with Evolutionary Algorithms: Research Directions,
pages 23–26, Orlando, Florida.

Monmarché, N., Guinand, F., and Siarry, P. (2010). Artificial Ants From collective intelligence
to real-life optimization and beyond. Wiley.

Monmarché, N., Slimane, M., and Venturini, G. (1999a). Antclass: discovery of clusters in
numeric data by an hybridization of an ant colony with the kmeans algorithm.

Monmarché, N., Slimane, M., and Venturini, G. (1999b). On Improving Clustering in Numerical
Databases with Artificial Ants. In Floreano, D., Nicoud, J., and Mondala, F., editors, 5th
European Conference on Artificial Life (ECAL’99), volume 1674 of Lecture Notes in Artificial
Intelligence, pages 626–635, Swiss Federal Institute of Technology, Lausanne, Switzerland.
Springer-Verlag.

Montgomery, E. J. (2005). Solution biases and pheromone representation selection in ant colony
optimisation. Technical report, Bond University, Bond, Australia.

Morrison, T. and Aickelin, U. (2002). An artificial immune system as a recommender system for
web sites. In Proceedings of the 1st International Conference on Artificial Immune Systems
(ICARIS 2002).

Mouhoub, M. and Wang, Z. (2008). Improving the ant colony optimization algorithm for the
quadratic assignment problem. In IEEE World Congress on Computational Intelligence, 2008.
CEC 2008., pages 250–257.

174

Bibliography

Murtagh, F. (1984). Structure of hierarchic clusterings: implications for information retrieval
and for multivariate data analysis. Inf. Process. Manage., 20(5-6):611–617.

Nakahori, I. (2000). Management for emergent properties in the research and development
process. In Proceedings of the 2000 IEEE Engineering Management Society, 2000., pages
491–496.

Nesamalar, E. and Chandran, C. P. (2012). Genetic clustering with bee colony optimization for
flexible protein-ligand docking. In 2012 International Conference on Pattern Recognition,
Informatics and Medical Engineering (PRIME), pages 82–87.

Ngenkaew, W., Ono, S., and Nakayama, S. (2008a). The deposition of multiple pheromones
in ant-based clustering. International Journal of Innovative Computing, Information and
Control, 4(7):1349–4198.

Ngenkaew, W., Ono, S., and Nakayama, S. (2008b). Pheromone-based concept in ant clus-
tering. In ISKE 2008. 3rd International Conference on Intelligent System and Knowledge
Engineering, 2008., volume 1, pages 308–312.

Niknam, T. and Amiri, B. (2010). An efficient hybrid approach based on pso, aco and k-means
for cluster analysis. Applied Soft Computing, 10(1):183–197.

Niknam, T., Amiri, B., Olamaei, J., and Arefi, A. (2009). An efficient hybrid evolutionary
optimization algorithm based on pso and sa for clustering. Journal of Zhejiang University
Science, 10(4):512–519.

Nikolić, M. and Teodorović, D. (2013). Empirical study of the bee colony optimization (bco)
algorithm. Expert Systems with Applications.

Norouziy, M., Fleety, D. J., and Salakhutdinov, R. Hamming Distance Metric Learning. In NIPS
2012.

Oleynik, A., Subbotin, S., and Oleynik, A. (2010). Bee colony optimization for clustering. In
2010 International Conference on Modern Problems of Radio Engineering, Telecommunica-
tions and Computer Science (TCSET),, pages 286–286.

Ono, O. (2009). Dna computing models and practice. In Proceedings of the 2009 Third Asia
International Conference on Modelling & Simulation, AMS ’09, pages 1–2, Washington, DC,
USA. IEEE Computer Society.

Otero, F., Freitas, A., and Johnson, C. (2008). c Ant-Miner: An Ant Colony Classification
Algorithm to Cope with Continuous Attributes. In Dorigo, M., Birattari, M., Blum, C., Clerc,
M., Stützle, T., and Winfield, A., editors, Ant Colony Optimization and Swarm Intelligence
– 6th International Conference, ANTS 2008, volume 5217 of Lecture Notes in Computer
Science, pages 48–59. Springer Berlin / Heidelberg, Brussels, Belgium.

Otero, F., Freitas, A., and Johnson, C. (2009). Handling continuous attributes in ant colony
classification algorithms. In CIDM ’09. IEEE Symposium on Computational Intelligence and
Data Mining, 2009., pages 225–231.

Parpinelli, R., Lopes, H., and Freitas, A. (2001). An ant colony based system for data mining:
applications to medical data. In Spector, L. and Goodman, E., editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO), pages 791–798, San Francisco,
California. Morgan Kaufmann, San Francisco, CA.

Parpinelli, R., Lopes, H., and Freitas, A. (2002a). An Ant Colony Algorithm for Classification
Rule Discovery. In Abbass, H., Sarker, R., and Newton, C., editors, Data Mining: a Heuristic
Approach, pages 191–208. London: Idea Group Publishing.

Parpinelli, R., Lopes, H., and Freitas, A. (2002b). Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation, 6(4):321–332.

Parpinelli, R., Lopes, H., and Freitas, A. (2002c). Mining Comprehensible Rules from Data
with an Ant Colony Algorithm. In Proceedings of SBIA, pages 259–269.

Parpinelli, R., Lopes, H., and Freitas, A. (2005). Classification-Rule Discovery with an Ant
Colony Algorithm. In Khosrow-Pour, M., editor, Encyclopedia of Information Science and
Technology, volume 1, chapter Classification-Rule Discovery with an Ant Colony Algorithm,
pages 420–424. Information Science Reference.

175

Bibliography

Pavan, K. K., Rao, A. A., Rao, A. V. D., and Sridhar, G. R. (2012). Robust seed selection
algorithm for k-means type algorithms. CoRR, abs/1202.1585.

Pingdom (2013). Royal pingdom (2013, jan 16). 2012 internet in numbers. http://royal.
pingdom.com/2013/01/16/internet-2012-in-numbers/. [Online; accessed
Sept-2013].

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm Intelli-
gence, 1(1):33–57.

Powell, S. and Clark, E. (2004). Combat between large derived societies: A subterranean army
ant established as a predator of mature leaf-cutting ant colonies. Insectes Sociaux, 51(4):342–
351.

Prigogine, I., Stengers, I., and Prigogine, I. (1984). Order out of chaos : man’s new dialogue
with nature / Ilya Prigogine and Isabelle Stengers ; foreword by Alvin Toffler. Bantam Books
Toronto ; New York, N.Y.

Rabanal, P., Rodrı́guez, I., and Rubio, F. (2008). Solving dynamic tsp by using river formation
dynamics. In Proceedings of the 2008 Fourth International Conference on Natural Com-
putation - Volume 01, ICNC ’08, pages 246–250, Washington, DC, USA. IEEE Computer
Society.

Rabanal, P., Rodrı́guez, I., and Rubio, F. (2010). Applying river formation dynamics to the
steiner tree problem. In Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner, W., and Zadeh, L. A.,
editors, IEEE ICCI, pages 704–711. IEEE.

Rami, S. P. and Panchal, M. H. (2012). Comparative analysis of variations of ant-miner by
varying input parameters. International Journal of Computer Applications, 60.

Ramos, V., M. F. and Pina, P. (2002). Self-organized data and image retrieval as a consequence
of inter-dynamicsynergistic relationships in artificial ant colonies. hybrid intelligent systems.
In in Javier Ruiz-del-Solar, Ajith Abraham and Mario Köppen (Eds.), Frontiers in Artificial
Intelligence and Applications, Soft Computing Systems Design, Management and Applica-
tions, 2nd Int. Conf. on Hybrid Intelligent Systems, volume 87, pages 500–509. IOS Press.

Ramos, V. and Merelo, J. (2002). Self-organized stigmergic document maps: environments
as a mechanism for context learning. In Proceedings of the first Spanish Conference on
Evolutionary and Bio-Inspired Algorithms, pages 284–293.

Raykar, V. C., Yu, S., Zhao, L. H., Jerebko, A., Florin, C., Valadez, G. H., Bogoni, L., and Moy,
L. (2009). Supervised learning from multiple experts: Whom to trust when everyone lies a
bit. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 889–896, New York, NY, USA. ACM.

Roozmand, O. and Zamanifar, K. (2008). Parallel ant miner 2. In Artificial Intelligence and
Soft Computing – ICAISC 2008, volume 5097 of Lecture Notes in Computer Science, pages
681–692. Springer Berlin / Heidelberg.

Santos, D. and Bazzan, A. (2009). A biologically-inspired distributed clustering algorithm. In
SIS ’09. IEEE Swarm Intelligence Symposium, 2009., pages 160–167.

Schaeffer, S. E. (2007). Survey: Graph clustering. Comput. Sci. Rev., 1(1):27–64.

Sendova-Franks, A. and Franks, N. (1995). Spatial relationships within nests of the antleptotho-
rax unifasciatus(latr.) and their implications for the division of labour. Animal Behaviour,
50(1):121 – 136.

Shah-Hosseini, H. (2007). Problem solving by intelligent water drops. In CEC 2007. IEEE
Congress on Evolutionary Computation, 2007., pages 3226–3231.

Shanthi, D. and Amalraj, R. (2012). Collaborative artificial bee colony optimization clustering
using {SPNN}. Procedia Engineering, 30(0):989–996. International Conference on Com-
munication Technology and System Design 2011.

Sharma, A. and Omlin, C. (2009). Performance Comparison of Particle Swarm Optimization
with Traditional Clustering Algorithms used in Self-Organizing Map. International Journal
of Computational Intelligence, 5(1):1–12.

176

http://royal.pingdom.com/2013/01/16/internet-2012-in-numbers/
http://royal.pingdom.com/2013/01/16/internet-2012-in-numbers/

Bibliography

Shelokar, P., Jayaraman, V., and Kulkarni, B. (2004a). An ant colony approach for clustering.
Analytica Chimica Acta, 509(2):187–195.

Shelokar, P. S., Jayaraman, V. K., and Kulkarni, B. D. (2004b). An ant colony classifier system:
application to some process engineering problems. Computers and Chemical Engineering,
28:1577–1584. In Press.

Shi, L., Hao, J., Zhou, J., and Xu, G. (2004). Short-term generation scheduling with reliability
constraint using ant colony optimization algorithm. In Intelligent Control and Automation,
2004. WCICA 2004. Fifth World Congress on, volume 6, pages 5102–5106 Vol.6.

Shukran, M. A. M., Chung, Y. Y., Yeh, W.-C., Wahid, N., and Zaidi, A. M. A. (2011). Artificial
bee colony based data mining algorithms for classification tasks. Modern Applied Science,
5(4).

Silver, D. (2011). Machine lifelong learning: Challenges and benefits for artificial general
intelligence. In Schmidhuber, J., Thórisson, K. R., and Looks, M., editors, Artificial General
Intelligence, volume 6830 of Lecture Notes in Computer Science, pages 370–375. Springer
Berlin Heidelberg.

Sneath, P. H. A. and Sokal, R. R. (1973). Numerical Taxonomy. The Principles and Practice of
Numerical Classification. Freeman.

Solnon, C. (2001). Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation, 6:347–357.

Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,
1:801–804.

Stützle, T. (1998). Parallelization strategies for ant colony optimization. In Proceedings of
PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, pages 722–
731. Springer-Verlag.

Stützle, T. and Hoos, H. (2000). MAX −MIN Ant System. Future Generation Computer
Systems, 16(8):889–914.

Sun, Z. G. and Teng, H. F. (2002). An ant colony optimization based layout optimization al-
gorithm. In TENCON ’02. Proceedings. 2002 IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering, volume 1, pages 675–678 vol.1.

Talbi, E.-G., Roux, O., Fonlupt, C., and Robillard, D. (1998). Parallel ant colonies for combina-
torial optimization problems. In in J. Rolim et al. (Eds.) Parallel and Distributed Processing,
11 IPPS/SPDP’99 Workshops, LNCS 1586, pages 239–247. Springer.

Tan, S. C., Ting, K. M., and Teng, S. W. (2006). Reproducing the results of ant-based clustering
without using ants. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pages
1760–1767.

Tan, S. C., Ting, K. M., and Teng, S. W. (2011). A general stochastic clustering method for
automatic cluster discovery. Pattern Recogn., 44(10-11):2786–2799.

Teodorović, D. and Dell’Orco, M. (2005). Bee colony optimization–a cooperative learning ap-
proach to complex transportation problems. Advanced OR and AI Methods in Transportation:
Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT (13-16 September
2005).–Poznan: Publishing House of the Polish Operational and System Research, pages
51–60.

Teodorovic, D., Lucic, P., Markovic, G., and Orco, M. D. (2006). Bee colony optimization:
principles and applications. In Neural Network Applications in Electrical Engineering, 2006.
NEUREL 2006. 8th Seminar on, pages 151–156. IEEE.

Thangavel, K. and Jaganathan, P. (2007). Rule mining algorithm with a new ant colony op-
timization algorithm. In 2007. International Conference on Conference on Computational
Intelligence and Multimedia Applications, volume 2, pages 135–140.

Thangavel, K., Karnan, M., Sivakumar, R., and Kaja Mohideen, A. (2005). Ant Colony System
for Segmentation and Classification of Microcalcification in Mammograms. The International
Journal of Artificial Intelligence and Machine Learning, V - III.

177

Bibliography

Thengade, A. and Dondal, R. (2012). Article: Genetic algorithm - survey paper. IJCA Proceed-
ings on National Conference on Recent Trends in Computing, NCRTC(5):25–29. Published
by Foundation of Computer Science, New York, USA.

Theodoridis, S. and Koutroumbas, K. (2006). Pattern Recognition, Third Edition. Academic
Press, Inc., Orlando, FL, USA.

Tsai, C. F., Tsai, C. W., Wu, H. C., and Yang, T. (2004). Acodf: a novel data clustering approach
for data mining in large databases. J. Syst. Softw., 73(1):133–145.

Tsutsui, S. and Liu, L. (2007). Solving quadratic assignment problems with the cunning ant
system. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 173–179.

Tsutsui, S., Pelikan, M., and Ghosh, A. (2005). Performance of Aggregation Pheromone System
on Unimodal and Multimodal Problems. In The IEEE Congress on Evolutionary Computa-
tion, 2005 (CEC2005), volume 1, pages 880–887.

Van Der Merwe, D. W. and Engelbrecht, A. (2003). Data clustering using particle swarm opti-
mization. In CEC ’03. The 2003 Congress on Evolutionary Computation, 2003., volume 1,
pages 215–220 Vol.1.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth.

Vandecruys, O., Martens, D., Baesens, B., Mues, C., Backer, M. D., and Haesen, R. (2008).
Mining software repositories for comprehensible software fault prediction models. Journal
of Systems and Software, 81(5):823 – 839. Software Process and Product Measurement.

Viet, N. H., Vien, N. A., Lee, S., and Chung, T. (2008). Obstacle avoidance path planning
for mobile robot based on multi colony ant algorithm. In Proceedings of the First Interna-
tional Conference on Advances in Computer-Human Interaction, ACHI ’08, pages 285–289,
Washington, DC, USA. IEEE Computer Society.

von Frisch, K. (1993). The dance language and orientation of bees. Belknap Press. Harvard
University Press.

Wan, M., Wang, C., Li, L., and Yang, Y. (2012). Chaotic ant swarm approach for data clustering.
Appl. Soft Comput., 12(8):2387–2393.

Wang, J., Tu, A., and Huang, H. (2012). An ant colony clustering algorithm improved from
{ATTA}. Physics Procedia, 24, Part B:1414–1421. International Conference on Applied
Physics and Industrial Engineering 2012.

Wang, J. B. and Wang, W. (2008). Research on aco with multiple nests cooperation and its
application on narrow tsp. In BICTA 2008. 3rd International Conference on Bio-Inspired
Computing: Theories and Applications, 2008., pages 143–148.

Wang, X., Yang, J., Teng, X., Xia, W., and Jensen, R. (2007). Feature selection based on rough
sets and particle swarm optimization. Pattern Recognition Letters, 28(4):459 – 471.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the
American statistical association, 58(301):236–244.

Watada, J. and binti Abu Bakar, R. (2008). Dna computing and its applications. In ISDA
’08. Eighth International Conference onIntelligent Systems Design and Applications, 2008.,
volume 2, pages 288–294.

Wei, W. and Ji, M. (2011). Spatiotemporal modeling of 2000=2009 financial development
in yangtze river delta using support vector machine and clustering analysis. In 2011 19th
International Conference on Geoinformatics, pages 1–5.

Weinstein, J. N. and Deyo, R. A. (2000). Clinical research issues in data collection. SPINE,
25(24):3104–3109.

Welch, P. G., Kemeny, Z., Ekart, A., and Ilie-Zudor, E. (2012.). “application of model-based
prediction to support operational decisions in logistics networks”. In In Proc. AILog, ECAI,
pages 25–31.

Worall, M. (2011). Homeostasis in nature: Nest building termites and intelligent buildings.
Intelligent Buildings International, 3(2):87–95.

178

Bibliography

Wu, H. and Sun, K. (2012). A simple heuristic for classification with ant-miner using a pop-
ulation. In 2012 4th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), volume 1, pages 239–244.

Wu, L. and Ren, A. (2008). Urban fire risk clustering method based on fire statistics. Tsinghua
Science and Technology, 13(S1):418–422.

Xiong, Z., Chen, R., Zhang, Y., and Zhang, X. (2012). Multi-density dbscan algorithm based on
density levels partitioning. Journal of Information and Computational Science, 9(10):2739–
2749.

Xue-chun, L., Sen-fa, C., and Liu-Yan (2007). The study of small enterprises credit evalua-
tion based on incremental antclust. In IEEE International Conference on Grey Systems and
Intelligent Services, 2007. GSIS 2007., pages 294–298.

Yadav, C., Wang, S., and Kumar, M. (2013). Algorithm and approaches to handle large data- a
survey. CoRR, abs/1307.5437.

Yang, S. and Zhang, Y. (2007). Key point based data analysis technique. In Huang, D.-S., Heutte,
L., and Loog, M., editors, Advanced Intelligent Computing Theories and Applications. With
Aspects of Artificial Intelligence, volume 4682 of Lecture Notes in Computer Science, pages
444–455. Springer Berlin Heidelberg.

Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., and Karamanoglu, M. (2013). Swarm Intelli-
gence and Bio-Inspired Computation: Theory and Applications. Elsevier Science & Technol-
ogy Books.

YouTube (2013). Youtube offical statistics (2013, oct 10). http://www.youtube.com/
yt/press/statistics.html. [Online; accessed Oct-2013].

Zaharie, D. and Zamfirache, F. In Congress on Evolutionary Computation, pages 2395–2401.
IEEE.

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers,, 20(1):68–86.

Zapfel, G. and Wasner, M. (2002). Planning and optimization of hub-and-spoke transportation
networks of cooperative third-party logistics providers. International Journal of Production
Economics, 78(2):207–220.

Zhang, P. and Lin, J. (2010). An adaptive heterogeneous multiple ant colonies system. In
(ISME), 2010 International Conference of Information Science and Management Engineer-
ing, volume 1, pages 193–196.

Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011). Multiob-
jective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation, 1(1):32 – 49.

Zhu, Y.-F. and Tang, X.-M. (2010). Overview of swarm intelligence. In 2010 International
Conference on Computer Application and System Modeling (ICCASM), volume 9, pages V9–
400–V9–403.

Zong, X., Xiong, S., Fang, Z., and Li, Q. (2010). Multi-ant colony system for evacuation routing
problem with mixed traffic flow. In IEEE Congress on Evolutionary Computation, pages 1–6.
IEEE.

179

http://www.youtube.com/yt/press/statistics.html
http://www.youtube.com/yt/press/statistics.html

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem of Data Explosion and Motivation
	1.2 Understanding and Interpreting Data: Top-Down and Bottom-Up approaches
	1.3 Swarm Intelligence
	1.3.1 Self-organisation
	1.3.2 Stigmergy
	1.3.3 Positive Feedback
	1.3.4 ACO in a Nutshell

	1.4 Objectives of this Thesis
	1.4.1 The New ACO Model
	1.4.2 Evaluation Techniques
	1.4.2.1 Datasets

	1.4.3 MPACA Overview

	1.5 Publications
	1.6 Organisation of Work
	1.7 Chapter Conclusion

	2 Literature Review
	2.1 Chapter Overview
	2.2 Clustering and Classification
	2.2.1 Definition of Clustering
	2.2.1.1 The Clustering problem as an NP-hard Problem

	2.2.2 Operands within Clustering Algorithms
	2.2.2.1 Architectures
	2.2.2.2 Distance Metrics
	2.2.2.3 Similarity Metrics - Distance as the Similarity Proxy
	2.2.2.4 Curse of Dimensionality

	2.2.3 Comparing Models
	2.2.3.1 External Evaluation Techniques

	2.2.4 General Clustering Techniques
	2.2.4.1 Hierarchical Clustering
	2.2.4.2 Flat or Partitional Clustering
	2.2.4.3 Density-based Clustering
	2.2.4.4 Graph-theoretic Clustering approaches

	2.2.5 The Relevance of Traditional Clustering Algorithms

	2.3 Swarm Intelligence
	2.3.1 General Swarm Intelligence Approaches
	2.3.2 Particle Swarm Optimisation
	2.3.3 Bio-Inspired SI Algorithms
	2.3.3.1 Bee Colony Algorithms
	2.3.3.2 Ant Algorithms

	2.3.4 Towards the Ant Colony Optimisation Meta-Heuristic
	2.3.4.1 Relevance and novelty to the MPACA

	2.4 Conclusions from SI literature
	2.5 Ant Algorithms and their Application to Clustering
	2.5.1 Fundamental Operators Behind the Chosen Models
	2.5.1.1 Type I - Knowledge Structure Forming Ants
	2.5.1.2 Type II - Ant Aggregations and Ants' Self-Aggregation
	2.5.1.3 Type III - Clustering Inspired by the Chemical Recognition System of Ants
	2.5.1.4 Type IV - Clustering using Ant Colony Optimisation Algorithms

	2.5.2 Comparison Criteria

	2.6 Selected Models in Detail
	2.6.1 Type I - Clustering using Ants' Self-Aggregation
	2.6.1.1 The AntTree Algorithm

	2.6.2 Type II - Clustering using Ant Aggregations and Ants' Self-Aggregation
	2.6.2.1 Standard Ant Clustering Algorithm (SACA)
	2.6.2.2 Self-Aggregation within a 2D Grid
	2.6.2.3 Ant Aggregation through Pheromone in a 2D Grid

	2.6.3 Type III - Clustering Inspired by the Chemical Recognition System of Ants
	2.6.4 Type IV - Clustering using Ant Colony Optimisation Algorithms
	2.6.4.1 Multi-Objective Problem Solving
	2.6.4.2 Multi-Colony and Multi-Pheromone ACO Approaches
	2.6.4.3 Ant Colony Optimisation (ACO) and its Application to Clustering
	2.6.4.4 ACO Applied to Graph Partitioning
	2.6.4.5 Rule Learning Algorithms

	2.7 Chapter Conclusion and Introduction to the MPACA

	3 The MPACA Model
	3.1 Chapter Overview
	3.2 Introduction to the MPACA
	3.2.1 Relationship to the Generic Ant Colony Algorithm

	3.3 The Main Model Architecture and Processes
	3.3.1 Partially-Connected Graph Space
	3.3.2 Connecting Nodes and Measuring Distances
	3.3.3 Multiple-steps within Edges

	3.4 Placing Ants on Nodes
	3.4.1 Assigning Features to Ants
	3.4.2 Feature Matching a Node

	3.5 Ant Movement
	3.5.1 Pheromone
	3.5.1.1 Ant Deposit State
	3.5.1.2 Pheromone Quantity Deposited
	3.5.1.3 Pheromone Evaporation

	3.5.2 Edge Selection Mechanism
	3.5.3 Ant Encounters
	3.5.3.1 Identifying Ant Feature Encounters
	3.5.3.2 Data Structures for Recording Encounters

	3.5.4 Merging Features and Colonies
	3.5.4.1 Merging Features: A Learning and Forgetting Mechanism
	3.5.4.2 Colony Merging

	3.6 Overall Operation of the MPACA
	3.7 The MPACA and Cluster Derivation
	3.7.1 Mapping Colonies to Clusters
	3.7.2 Termination Criteria
	3.7.3 Cluster Membership and Evaluation
	3.7.3.1 Centroid Cluster Membership Calculation

	3.8 The MPACA Parameters
	3.8.1 A Synthetic Dataset for Demonstrating the Parameters' Impact
	3.8.2 Baseline Analysis
	3.8.3 Domain Initialisation Analysis
	3.8.3.1 Maximum Edge Length Parameter
	3.8.3.2 Step Size Parameter

	3.8.4 Ant Initialisation Analysis
	3.8.4.1 Ant Complement Parameter
	3.8.4.2 Detection Range for Ordinal Dimensions Parameter

	3.8.5 Pheromone Deposition and Movement Analysis
	3.8.5.1 Pheromone quantity, maximum coefficient and the evaporation parameters
	3.8.5.2 Residual Parameter

	3.8.6 Merging Thresholds
	3.8.6.1 Feature Merging Threshold Parameter
	3.8.6.2 Colony Merging Threshold Parameter
	3.8.6.3 Visibility on Edge Parameter
	3.8.6.4 Time-window Parameter

	3.9 The MPACA as a Classifier
	3.9.1 Training Termination Criteria
	3.9.2 Evaluation of the MPACA as a Classifier

	3.10 Novelty and Contribution of the MPACA
	3.10.1 Distinctive Elements of the MPACA
	3.10.2 Variations of the MPACA from the Traditional Clustering Algorithms
	3.10.3 Variations from Ant Based Clustering Literature
	3.10.4 Advantages of the MPACA Architecture
	3.10.5 Novelty in Ant Movement
	3.10.6 Ability to Learn and Acquire Features
	3.10.7 Multiple Pheromones and Multiple Colonies

	3.11 Chapter Conclusion

	4 The MPACA Applied
	4.1 Chapter Overview
	4.2 Evaluation Criteria and Experiment Set-up
	4.2.1 Synthetic Datasets: the 2D-4C and 10D-10C Datasets
	4.2.2 Real-world UCI datasets
	4.2.2.1 Iris dataset
	4.2.2.2 Wine dataset
	4.2.2.3 Soya-bean dataset
	4.2.2.4 Wisconsin Breast Cancer dataset
	4.2.2.5 Pima Indians Diabetes dataset
	4.2.2.6 Yeast dataset

	4.3 Experimentation Framework
	4.3.1 Basic Set-up
	4.3.2 Analysis based on a Simulated Annealing Technique

	4.4 Baseline Experiments
	4.4.1 Observations from Baseline Experiments
	4.4.2 Evaluating the MPACA Clustering Performance

	4.5 Sensitivity Analysis of chosen Parameters
	4.5.1 Sensitivity Metric
	4.5.2 Pheromone Driven versus a Random Model

	4.6 Real-world GRiST and ADVANCE datasets
	4.6.1 GRiST - Mental health risk assessment
	4.6.2 ADVANCE - Hub-and-Spoke Logistics Networks
	4.6.2.1 Predicting Shipments

	4.7 Discussion of Results Attained

	5 Conclusion and Future Work
	5.1 Summary
	5.1.1 Unique properties of the MPACA
	5.1.1.1 Modified Ant Transition Mechanism
	5.1.1.2 Feature Learning and the Multi-Pheromone Mechanism
	5.1.1.3 Multi-Colony Clustering via Colony Formation

	5.1.2 Goals and Objectives met by the MPACA

	5.2 Alternative Paths
	5.2.1 Variation in the Ant Types
	5.2.2 Acquisition of Multiple Features on Each Dimension
	5.2.3 Feature Merging with No-Forgetting Mechanism
	5.2.4 Cluster Representation in First Order Logic

	5.3 Advances of the Algorithm
	5.4 Current Limitations and Recommended Improvements
	5.4.1 Parallel versus Non-Parallel
	5.4.2 Parameters and Parameter Adjustment
	5.4.3 Termination Criteria
	5.4.4 Tackling Uneven Datasets

	5.5 Future work
	5.5.1 Bayesian Cluster Membership Calculation
	5.5.2 K-Nearest Neighbourhood Cluster Membership Calculation
	5.5.3 Ongoing Research
	5.5.4 Application of the MPACA as a Classifier

	5.6 Concluding Arguments

