
Advanced perturbation technique for digital 
backward propagation in WDM systems 

Lian Xiang,1,2 Paul Harper,2 and Xiaoping Zhang1,* 
1School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 73000, China 

2Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK 
*zxp@lzu.edu.cn 

Abstract: An improved digital backward propagation (DBP) is proposed to 
compensate inter-nonlinear effects and dispersion jointly in WDM systems 
based on an advanced perturbation technique (APT). A non-iterative 
weighted concept is presented to replace the iterative in analytical recursion 
expression, which can dramatically simplify the complexity and improve 
accuracy compared to the traditional perturbation technique (TPT). 
Furthermore, an analytical recursion expression of the output after 
backward propagation is obtained initially. Numerical simulations are 
executed for various parameters of the transmission system. The results 
indicate that the advanced perturbation technique will relax the step size 
requirements and reduce the oversampling factor when launch power is 
higher than −2 dBm. We estimate this technique will reduce computational 
complexity by a factor of around seven with respect to the conventional 
DBP. 
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1. Introduction 

In long-haul, high-speed wavelength-division-multiplexed (WDM) optical fiber system non-
constructive effects of fiber nonlinearity can significantly degrade signal quality [1]. 
Therefore, mitigating or compensating these impairments becomes crucial to increasing 
capacity for optical communication [2]. Many researches have been reported to investigate 
nonlinearity effect on fiber capacity and indicated that nonlinearity will degrade the capacity 
obviously [3]. Recently, due to the fast development of digital coherent receiver technology, 
digital compensation methods have attracted significant attention to mitigate linear and 
nonlinear impairment effectively as it’s flexible and less costly [4,5]. Many digital 
compensation techniques for different impairments have been already presented [6–8]. 
Among these techniques, the digital backward propagation (DBP) method has proved to be 
quite promising for jointly compensating linear and nonlinear impairments [9]. This method 
is based on solving the nonlinear Schrödinger equation (NLSE) in the backward direction 
starting with the received signal as the input and producing the signal at the transmitter as its 
output [10]. But as the high complexity of the NLSE when fiber loss, dispersion and 
nonlinearity play a crucial role in WDM systems simultaneously, one of the technically 
challenging for DBP is solving the NLSE effectively in a trade-off between accuracy and 
computational load [11]. Xiaoxu proposed a universal post-compensation scheme for fiber 
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impairments in WDM systems using split-step method (SSM) for DBP [12]. Then, SSM as 
the typically method for conventional DBP (C-DBP) has been applied in many different 
systems [13–16] and was demonstrated in experiment as well [17,18]. However, this 
numerical algorithm required a number of iterative processing steps to achieve acceptable 
accuracy, which is quite a high computational load, thus making it difficult to implement in 
real-time [19]. Therefore, based on SSM a number of enhanced methods have been reported 
[20–22]. According to the method proposed by Liebrich et al. [23], Eduardo F. Mateo et al. 
derived an advanced SSM for DBP in WDM systems, which consisted in the factorization of 
the walk-off effect within the nonlinear step, and then applied it to the polarization-
multiplexed WDM systems [24,25]. It was estimated in that works that such advanced SSM 
relaxes the step size requirements resulting in a factor of 4 reductions in computational load. 
However, the accuracy of these numerical methods mentioned previously can be accepted 
only when the step size h  is set within a thin range to keep a small degree of nonlinear phase-
shift [26]. But, as a typical value of h  is equal to span length in backward propagation [27], a 
small nonlinear phase-shift is hardly to maintain along each distance h , so that an unsatisfied 
accuracy is inevitable especially for a large h . Then some other algorithms distinguished from 
SSM are proposed for backward propagation [28–30]. Based on perturbation analysis, a 
version of digital back-propagation was proposed to compensate intra-channel nonlinearity in 
polarization-division multiplexed WDM systems [31,32]. In their work, the inter-channel 
nonlinear effects which should be the major part of nonlinear effects in WDM system were 
neglected, meanwhile, the combined nonlinear distortion caused by Kerr nonlinearity and 
dispersion was also not considered. Therefore, this result is limited in application to the actual 
WDM systems. 

In this paper, an advanced perturbation technique (APT) is developed and basing on this 
technique, an improved digital backward propagation (DBP) is proposed to compensate inter-
nonlinear effects and dispersion jointly in WDM systems. In this advanced perturbation 
technique, a non-iterative weighted concept is presented to replace the iterative in the 
analytical recursion expression, which can dramatically simplify the complexity and improve 
accuracy compared to the traditional perturbation technique (TPT). Furthermore, an analytical 
recursion expression of the output after backward propagation is obtained initially, which the 
inter-channel walk-off effect and the combined nonlinear distortion caused by Kerr 
nonlinearity and dispersion can be consisted in. Comparing to C-DBP, an expression for the 
total number of required multiplications per sample per channel is given and a rigorous 
analysis of the computational cost is carried out. Numerical simulations are performed in the 
corresponding transmission system with various parameters. Our research indicates that APT 
is more accurate than C-DBP for nonlinearity compensation when launch power is higher 
than −2 dBm and step size is larger than 20 km, especially about 2.4 dB benefits than C-DBP 
at 3 dBm with one step per span, which will allow larger step size for equivalent performance. 
Meanwhile, APT requires a lower sampling rate when launch power is higher than −2 dBm. 
For a transmission system with a weaker nonlinear, the Q-factor of APT appears to be a larger 
peak value. We estimate that there is a reduction in computational complexity by a factor of 
around seven. 

2. Digital backward propagation for WDM systems using advanced perturbation 
Technique 

In the receiver of a coherent optical system, the optical field of each WDM channel, including 
both the optical amplitude and phase can be measured. To compensate the transmission 
impairments, DBP processes the received signals by launching them into a virtual fiber with 
inverse optical link parameters. In practice, it can be implemented by solving the inverse 
NLSE. For a single polarization the NLSE in WDM systems for backward-propagation is 
written as [33]: 
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length, N is the number of spans and anz are amplifier locations, distributed amplification can 
be included in G(z) [34]. This equation describes the backward evolution of optical field of 
WDM channels where dispersion, SPM and XPM can be compensated. As a long step length 
is demanded for reducing computational cost, the accuracy of SSM will be decreased 
simultaneously. Combining the flexibility of SSM and the accuracy of perturbation theory, a 
developed perturbation technique was proposed [35]. Based on this algorithm, firstly, the 
whole transmission link should be divided into sections and the length (h) of each section can 
be set flexibly to achieve acceptable accuracy. Then it is considered that the output of 

thl section is treated as the input of ( 1)thl + section. In each section, the NLSE is solved using 

perturbation theory. Applying Fourier transform ˆ ( , )= ( , )][k kE z E t zω  to Eq. (1), the output of 
thl section can be obtained in the frequency domain as follows: 
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where [ ]⋅  represents the Fourier Transform and 
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To properly evaluate the phase shift induced by channel q  over channel k , the dispersive 

walk-off induced by a different group delay has to be tracked. This delay between channels q  

and k  occurs on a length scale given by the walk-off length, 21 / ( )wo qkL Bβ ω= Δ  [24], 

where qkωΔ is the frequency difference and B is the baud-rate. By including the time delay 

caused by the dispersive walk-off, we rewrite Eq. (4) as follows: 
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where ∗  represents the convolution and 2( )qk k qd β ω ω= − is the walk-off parameter between 

channels k  and q . As a nonlinear operator, Eq. (6) includes the time delay caused by the 

dispersive walk-off. By substituting Eq. (5) and Eq. (6) into Eq. (2), the output of thl section 
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where (0)ˆ
kE is the received signal which is used as the input of backward propagation. As it is 

impractical to implement integrals in DSP, an approximation of the integral should be applied 

to Eq. (7). Usually, 
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− +  is treated as constant during each h  in 

traditional perturbation technique (TPT). Then the integral can be solved analytically. But it 
does not accord with the actual case and will bring a huge error especially in a large h . Here 
we use the trapezoidal rule for integral. Although the accuracy of trapezoidal rule will be 
improved with its grid points increasing, a higher computational load will be required. From 
the computational perspective, trapezoidal rule with one grid point is applied and a discretized 
form of Eq. (2) can be given by: 
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It is necessary to follow an iterative procedure that is initiated by 
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turn is used to calculate the new value of ( 1) ( , )l
kNL z hω

∧
− + . Since iteration is time-consuming, 

a faster non-iterative weighted concept is used instead and a similar form is given by: 
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where (0,1)ε ∈ is a constant which typically is set to 0.5. In this concept, the integral in Eq. 

(2) is replaced by ( 1) ( , )l
kh NL z hω ε

∧
− + , which can reduce the computational complexity 

effectively. Meanwhile, the constant ε  can be set flexibly in different systems to achieve a 
satisfied accuracy. In this vein, after rewriting Eq. (7), an analytical recursion expression of 
the output after backward propagation is obtained as follows: 
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The schematic for implementation of the develop perturbation technique in the lth section 

is shown in Fig. 1 where for simplicity, ˆexp[ ( , )]dH D hω= , ,
ˆexp[ ( , )]dH D hε ω ε= , 

,
ˆexp[ ( , )]dH D hε ω ε− = −  and the dispersive walk-off is not included. 
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Fig. 1. Block diagram for the implementation of the 
thl  section using the develop perturbation 

technique. 

3. Analysis of computational complexity 

It is significant to investigate the computation requirements for APT and C-DBP where 
conventional symmetric SSM is employed. For simplicity only the number of complex 
multiplications will be considered, neglecting the number of additions. Furthermore, 
considerations regarding the numeric representation (fixed point/floating point) will be 
ignored. By following the schematic diagram in Fig. 1, the total number of required 
multiplications per sample per channel for each method is given by: 

 2[2( ) log ( ) 3( ) ] / ,DPT
DPT

L
Nmul s p s p s p s s

h
= + + + + +  (11) 

 2[2( ) log ( ) 2( ) 8 ] / ,C DBP
C DBP

L
Nmul s p s p s p s s

h−
−

= + + + + +  (12) 

where S is the number of samples per channel, L is the total transmission distance, h is the 
corresponding step size and p is the overhead samples for each filter operation when the filter 
implementation in the frequency domain is done by the overlap-and-add method and can be 
obtained by [24]: 22p BhRπ β= , where R is sampling rate and B is bandwidth. The number 

of multiplications for each operation involved in backward propagation is calculated as 
follows. The filter requires 22( ) log ( ) ( )s p s p s p+ + + +  multiplications; intensity operator 

requires s multiplications; exponential operator ( 4th order Taylor expansion) requires 
6s multiplications and the further details of the approach to calculate the number of 
multiplication can be found in [25]. As s is much larger than p normally (s >> p), when the 
step size of both methods is assumed to equal span length, it is obvious that about 6N  more 
multiplications per sample per channel will be required for C-DBP than APT. 

4. Numerical simulation results and discussion 

Numerical simulations using MATLAB were conducted to investigate the benefit of the 
advanced perturbation technique compared with C-DBP where conventional symmetric SSM 
is employed. An 8 × 80 Gbit/s channel QPSK WDM system distributed around 1550 nm with 
channel spacing of 50 GHz has been simulated as shown in Fig. 2. The optical link consists of 
20 spans of single mode fiber (SMF) with a length of 80 km per span, a dispersion parameter 
of D = 16.5 ps/nm/km and a dispersion slope of Ds = 0.04 ps/nm2/km. The attenuation of the 
fibre is 0.2 dB/km and the nonlinear coefficient is γ = 1.46 (W.km)−1. Fibre loss is 
compensated per span using an EDFA, which will introduce ASE noise with the average 
power 0( 1)ASE spI N G Bω= −  where G is the amplifier gain,   is Plank’s constant, B is the 

bandwidth, and spN is the spontaneous emission factor. 102 pseudo-random bit sequences 

(PRBS) with non-return-to-zero QPSK modulation were transmitted through the system. The 
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forward propagation is modeled by solving the exact NLSE using symmetric SSM [21]. To 
provide an accurate result, the step-size is sufficiently short to keep the nonlinear phase-shift 
much less than 0.05 degrees. Local oscillators are used for reconstruction of each WDM 
channel and assumed to have zero linewidth. After transmission and coherent detection, the 
received signal is filtered using a 0.75 times bit rate bandwidth sixth order Bessel band-pass 
filter. Then each channel is sampled at 2 samples/symbol and backward propagated using Eq. 
(1). After backward propagation, demultiplexing is performed. Then the signal in each 
channel is re-sampled to one sample per symbol and phase estimation is performed to recover 
the data. 
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Fig. 2. Scheme of the WDM transmission system with coherent receiver. 

Figure 3 shows the Q-factors as functions of step size (SS) and a long fiber transmission 
distance for C-DBP, APT and TPT implementations with launch power at −2 dBm, which is 
optimum launch power for APT when γ = 1.46 (W.km)−1. Agreeing with theoretical analysis 
in section 2, the Q-factor of TPT declines very fast with raising step size as shown in Fig. 
3(a). Meanwhile, as shown in Fig. 3(b), when step size of both TPT and APT are set to 8 km 
in a long fiber transmission distance, the Q-factor of TPT is far less than APT and even less 
than APT with step size 80 km, which means TPT is unsuitable for application to DBP. Figure 
3(a) shows that since the performance of C-DBP will be improved with a shorter step size, the 
Q-factors of both C-DBP and APT are almost the same when step size is sufficiently short 
(<20 km). But, with the step size increasing, the Q-factor of C-DBP decays faster than APT. 
When step size is greater than 20 km, APT performs significantly better than C-DBP. 
Particularly, APT produced an improvement about 0.85 dB than C-DBP for one step per span, 
which is a typical value of step size in practice. It indicates that APT will reduce the number 
of steps for similar performance. Therefore, the majority of the benefit of APT is obtained 
with larger step. Figure 3(b) shows an efficient compensation of fiber inter-nonlinear and 
dispersion impairments using ATP. Comparing to chromatic dispersion (CD) compensation, a 
large benefit about 6.7 dB for SS = 8 km and 5.2 dB for SS = 80 km with 1600 km 
transmission distance is provided by APT from inter-nonlinear compensation. 

 

Fig. 3. (a) Q-factors as a function of step size for APT, C-DBP and TPT, (b) Q-factors versus a 
long fiber transmission distance for APT, C-DBP, TPT and only chromatic dispersion 
compensation with different step size. 
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To show the benefit of APT in a transmission system, the relationship between Q-factor 
and launch power with various fiber nonlinear coefficients γ for linear equalization and 
nonlinear equalization using APT and C-DBP is the most interesting issue, which is shown in 
Fig. 4. The step sizes of both methods are located at one step per span. At low powers, as the 
nonlinear effects are weak, the system behaves as a linear system. Due to a good linearity 
compensation for both of APT and C-DBP, no improvement is produced by nonlinearity 
compensation and for γ = 0 (W.km)−1 both methods give the same performance. 

Figure 4 show that APT gave better performance than C-DBP. For both methods there 
was <1 dB penalty compared to the linear case (γ = 0) for launch powers lower than −6 dBm. 
The penalty increases rapidly at higher launch powers with the onset of the increase being 
dependent on the value of γ and the method used. The optimum launch power was 
approximately 1 dBm higher for APT than C-DBP and that the performance of APT was 
approximately 0.5-0.7 dB higher than C-DBP at their respective optimum powers. For the 
same launch power the benefit of APT increases with launch power and that the nonlinear 
tolerance of APT is significantly better than C-DBP for launch power greater than −5 dBm for 
γ = 3.5 (W.km)−1 and −2 dBm for γ = 1.46 (W.km)−1, especially, APT produced a benefit about 
2.4 dB at 3 dBm for γ = 1.46 (W.km)−1 and 2.7 dB at −1 dBm for γ = 3.5 (W.km)−1. This 
suggests that APT is a more accurate method for nonlinearity compensation than C-DBP, 
especially for higher launch power. The nonlinear coefficient 3.5 (W.km)−1 does not represent 
any practical interest. 
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Fig. 4. Q-factors versus launch power per channel for both methods for γ = 1.46 and 3.5 
(W.km)−1 

Due to the significant influence of oversampling rate for computational load, it is 
necessary to display the performance of APT and C-DBP with different oversampling factors, 
as shown in Fig. 5. One step per span is used as the step size in this comparison. The results 
in Fig. 5(a) show the Q factor for APT and C-DBP for oversampling factors of 2 and 4. By 
comparing the Q value at the optimal launch powers in Fig. 5(a) it is clear that the 
oversampling factor can be reduced by using APT with only a small Q penalty. When launch 
power is −10 dBm, there is about 3.2 dB benefit of oversampling factor of 4 than 2. This is 
because a higher oversampling rate provides each symbol carrying more information to get a 
better distinction between signal and noise levels in backward propagation. Therefore larger 
Q-factors were obtained with a higher oversampling factor for both methods. The maximum 
Q value for C-DBP with an oversampling factor of 4 was 13.8dB at a launch power of −4dBm 
which is only 0.3dB higher than the 13.5dB optimal Q value of APT with an oversampling 
factor of 2 at −2dBm launch power. This factor of two reduction in oversampling factor 
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would significantly relax the specification of analogue to digital converter hardware in the 
receiver as well as being more computationally efficient. 

Further analysis of these results as shown in Fig. 5(b) indicates that when the same 
oversampling factor is used for both methods and the launch power is low (below −4 dBm) 
there is less than 0.5 dB difference in the Q factors. This is as expected as the transmission at 
these launch powers is largely unaffected by nonlinear impairments. However as launch 
power is increased and nonlinear impairments increase, APT performs better than C-DBP. 
The performance difference is similar for both oversampling factors used and the results show 
that the difference in Q factors increases approximately linearly with a slope of ~0.4 dB/dBm 
over the range of input powers from −2 dBm to 3 dBm. 

 

Fig. 5. (a) Q-factors versus launch power per channel for APT and C-DBP with oversampling 
factors of 2 and 4, (b) Q penalty for reduced oversampling factor for APT and C-DBP and (c) 
Q factor difference between APT and C-DBP for oversampling factors of 2 and 4. 

Figure 5(c) shows the penalty associated with reduction of the oversampling factor from 4 
to 2 for each method. It is clear that both methods show very similar performance: since the 
power of ASE noise doesn’t change with channel power, when launch power is low (<-2 
dBm), as the explanation mentioned-above, larger Q-factors were obtained with a higher 
oversampling factor for both methods. As the launch power was increased, the advantage of 
using the higher oversampling factor decreased approximately linearly at a rate of ~0.1 
dB/dBm up to a launch power of −2 dBm. For launch power greater than 0 dBm, the 
oversampling factor had little influence due to the higher OSNR, which agrees with previous 
experimental results [6,19]. For this high power nonlinear regime the results show a clear 
advantage for APT over C-DBP: for a launch power of 3 dBm, APT gives an improvement of 
2.7 dB in Q-factor compared to C-DBP. Due to the benefits of APT discussed previously, 
reductions in both step size and sampling rate can be obtained when both methods perform at 
the same accuracy, launch power is higher than 0 dBm and the nonlinear coefficient is larger 
than 1.46 (W.km)−1, and meanwhile, combining a reduction in multiplications per sample per 
channel per section by a factor of around six which is discussed in section 2, we estimate that 
there is a reduction in computational complexity by a factor of around seven. 
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Further studies about the performance of APT and C-DBP with different number of WDM 
channels have been done at −2 dBm. Step sizes of both methods are located at one step per 
span. The results indicate that APT give better performance than C-DBP with various number 
of WDM channels and the benefit of APT increases with number of WDM channels, 
especially, APT produced a benefit about 1.2 dB for 8 channels and 2.5 dB for 24 channels. 

5. Conclusion 

We propose an advanced perturbation technique (APT) for digital backward propagation in 
WDM systems using the coupled nonlinear Schrodinger equations for the compensation of 
inter-channel nonlinearities. An analytical expression of the output after backward 
propagation is obtained initially, which could be extended to include the inter-channel walk-
off effect. Computer simulations have been carried out comparing the proposed technique 
with conventional digital back-propagation (C-DBP) for various simulation parameters. Our 
research indicates that this advanced perturbation technique can reduce computational load 
significantly and is more accurate than C-DBP for nonlinearity compensation when launch 
power is higher than −2 dBm and step size is larger than 20 km, which will allow larger step 
size for equivalent performance. Meanwhile, APT requires a lower sampling rate when 
launch power is higher than −2 dBm. Furthermore, our technique also has the potential to ease 
requirements of receiver hardware components which would be used in a practical 
implementation. We estimate a reduction by a factor of around seven in computational load 
with respect to the C-DBP technique. This computational efficiency improvement and 
potential reduced hardware performance requirements of the advanced perturbation technique 
reported here a step towards making nonlinear compensation based on back propagation 
implementable in real-time. 
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