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Abstract: Using the integrable nonlinear Schrödinger equation (NLSE)
as a channel model, we describe the application ofnonlinear spectral
managementfor effective mitigation of all nonlinear distortions induced by
the fiber Kerr effect. Our approach is a modification and substantial devel-
opment of the so-called “eigenvalue communication” idea first presented
in A. Hasegawa, T. Nyu, J. Lightwave Technol.11, 395 (1993). The key
feature of the nonlinear Fourier transform (inverse scattering transform)
method is that for the NLSE, any input signal can be decomposed into the
so-called scattering data (nonlinear spectrum), which evolve in a trivial
manner, similar to the evolution of Fourier components in linear equations.
We consider here a practically important weakly nonlinear transmission
regime and propose a general method of the effective encoding/modulation
of the nonlinear spectrum: The machinery of our approach is based on
the recursive Fourier-type integration of the input profile and, thus, can be
considered for electronic or all-optical implementations. We also present
a novel concept of nonlinear spectral pre-compensation, or in other terms,
an effective nonlinear spectral pre-equalization. The proposed general
technique is then illustrated through particular analytical results available
for the transmission of a segment of the orthogonal frequency division
multiplexing (OFDM) formatted pattern, and through WDM input based
on Gaussian pulses. Finally, the robustness of the method against the
amplifier spontaneous emission is demonstrated, and the general numerical
complexity of the nonlinear spectrum usage is discussed.
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1. Introduction

Signal transmission down the fiber-optic line is affected simultaneously by several physical phe-
nomena in fibers: dispersion, signal corruption due to the amplifier spontaneous emission, fiber
nonlinearity, and other effects [1,2]. The fiber Kerr nonlinearity is the important feature distin-
guishing the fiber-channel transmission from the radio-type (open air or space) channel [2]: The
dependence of the transmitting media properties on the signal intensity results in a number of
detrimental effects produced by the coupling and nonlinear intertwining between the signal de-
grees of freedom, accompanied by the influence of noise and dispersion. Thus, the data encoded
into the signal propagating through the nonlinear channel become corrupt, leading to loss of the
transmitted information and decrease in the spectral efficiency of transmission [3–15]. For the
suppression of nonlinearity-induced distortions, a number of techniques have been proposed
and studied, e.g. digital backpropagation [16], receiver-based digital signal processing [17–20],
pilot-based nonlinearity compensator [21], optical [22] and twin-wave [23] phase conjugation,
fractional Fourier-based pre-compensation [24], to mention several recent advancements, and
many other types of pre-compensation, in-line and post-compensation methods [19,23]. In this
work we describe the application of a method (developed a long time ago in the theory of non-
linear evolutionary equations [1, 25–29]) that allows effective linearization of some classes of
nonlinear communication channels, to the problem of optical communications.
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An important subclass of nonlinear transmission channels is governed by the so-calledinte-
grableevolutionary equations [1, 25–29]. One of the particular manifestations of thisintegra-
bility property is that given the initial conditions (in the considered context, the waveform of the
input signal), we can propagate the signal to a distanceL in three steps, which have direct analo-
gies with the same stages in the consideration of linear problems (although the implementation
of these steps differs significantly from the linear case). (i) The first step is the mapping of the
input profile to thespectral domain. For a linear channel, this operation corresponds to the ordi-
nary forward Fourier transform (FT), and according to the already established terminology, we
will call this stage theforward nonlinear Fourier transform (NFT), by analogue with the linear
situation. For nonlinear propagation, this stage involves solving the specific direct scattering
problem associated with an integrable equation and produces a set ofscattering data, where
the particular quantities (continuous spectrum and a set of localized complex eigenvalues, if the
latter exists) are then associated with orthogonal nonlinear “normal modes”. (ii) The next step
is the propagation of the initial spectral distribution (again, a continuous spectrum and com-
plex eigenvalues) to distanceL: Here, in both linear and nonlinear cases, the spectrum evolves
according to the linear dispersion law, and this operation is usually quite trivial, amounting to
the phase rotation of the corresponding decoupled spectral component. We would like to stress
that even if the original problem is nonlinear, the nonlinear spectral components evolve without
interaction with each other in full analogy with the linear problem, which explains the term “lin-
earization”. (iii) The last stage is the recovery of the solution profile in the space-time domain: It
is the backward FT in the linear case. For the nonlinear integrable problem, the backward NFT
amounts to the solution of the so-called Gelfand-Levitan-Marchenko equations [1,25–29], and
this step accomplishes the finding of a solution (signal profile) at distanceL. These three stages
which provide the solution of a nonlinear equation at distanceL, constitute the method of the
inverse scattering transform (IST) [1, 25–29]. Another important aspect of the NFT [1, 25–30]
is that, due to effective linearization of the channel, all nonlinear propagation effects such as
self-phase modulation, cross phase modulation, and four-wave mixing are effectively removed
owing to the orthogonality property of the nonlinear spectrum (NS) components (involving both
discrete (soliton) and continuous spectrum) [31], thus removing the very reason for the spectral
efficiency decay at high signal power. In engineering terms, the NFT method can be treated as
effective nonlinear orthogonal frequency division multiplexing [30]. In practical terms, the us-
age of NS is a novel approach to combat the nonlinear distortions, being an alternative/addition
to the commonly used engineering techniques (see e.g. [16, 17, 19, 20, 22–24] and references
therein).

The evolution of the slow-varying optical field envelope in a passive optical single-mode
fiber is described by the nonlinear Schrödinger equation (NLSE) [1, 2, 32, 33], which intro-
duces the effects of the mutual counteraction of dispersion and nonlinearity. In the absence of
losses and external actions, the NLSE isintegrable, and so the explicit form for the three afore-
mentioned operations (forward/backward NFT and the spectrum evolution law) is known [25].
Since we can decompose the input signal into analogues of orthogonal Fourier modes by per-
forming the forward NFT operation, the dynamics of the signal through the NLSE channel can
be completely described by the evolution of these orthogonal modes [1, 25–29], and then, the
informational content encoded at the transmitter can be potentially recovered at the receiver
without distortions.

The quest for the optimal design of a nonlinear transmission channel and usage of the non-
linearity in a ‘constructive’ way has occupied researchers for a long time. This includes soliton
transmission techniques, dispersion management (e.g. dispersion-managed soliton) for miti-
gation of nonlinear impairments, optical regeneration, and other approaches. The idea of ma-
nipulating the robust NS of NLSE for the purposes of optical transmission was already put
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forward nearly 20 years ago [34] and has been intensively scrutinized recently in [30]. Notably,
in the original study [34], only the soliton part of the nonlinear spectrum was considered (and
these ideas were advanced further in [30]) and no practical fiber optical implementation scheme
was suggested. The solitons are described by the localized (complex) eigenvalues of the corre-
sponding spectral problem defining NS. These eigenvalues are the conserved quantities: Their
particular magnitudes emerge directly from the parameters of the input profile (encoded sig-
nal) and do not change during the propagation. Therefore, these eigenvalues (or even the total
number of discrete eigenvalues) can be utilized for encoding and transferring the information,
owing to their conservation. However, the usage of pure solitons for transmission purposes has
a number of challenges, e.g., the soliton collision problems in WDM systems, low symbol rates
etc. [2, 32], although this direction has been revived recently [35, 36] through plugging in the
multilevel modulation formats and using coherent transmission with the subsequent effective
increase in the transmission rate.

We would like to point out that the direct implementation of the transmission based on the
NS brings about significant technical challenges. First, there is no fully developed electronic or
optical scheme that could perform forward/backward NFTwithout the computer processing of
the signal. Second, the properties of the NS can be significantly different from its linear coun-
terpart, and therefore, if one deals with the “conventional” linear formats, no general method
for encoding and recovery of the information exists: Each particular configuration of the NS
emerging from the input signal should be studied from scratch, as the NS is a nonlinear func-
tional of the input. Even the number of analytically solvable cases for the forward NFT is very
limited [37]. Thus, the principal possibility of NLSE channel linearization should not create
any wrong impression, digressing one from the hurdles and challenges in the practical imple-
mentation of this technique.

The major goal of the current paper is to outline some solutions for the aforementioned prob-
lems. First, in our study, we withhold the use of solitons (so that we do not deal with the discrete
part of the NS), thus disposing of the problems associated with the soliton WDM collisions, etc.
In this paper, we propose to utilize thecontinuous part of the NSfor information encoding and
transmission. As mentioned earlier, the advantage of using NS in the integrable NLSE channel
is that the nonlinear modes of the continuous NS part are still orthogonal and evolve according
to the linear dispersion law: The NS coding is free from the “coupling” nonlinearity influence
allowing virtually undistorted transmission of initial data provided that the linear dispersion is
compensated at the endpoint.

Further, we describe a general method of calculating the continuous NS when the average
power of the input signal (localized within the boundaries of a considered time interval) is
not very high and nonlinearity can be treated as a perturbation. We show that in this case, the
forward NFT can be performed iteratively and that the NS can be computed with a desirable
precision in terms of expansion with respect to the input signal power by implementing the
Fourier-type recursive integrations, involving only the input signal itself. Note that these oper-
ations can already be suggested for the electronic and/or all-optical implementation.

Finally, based on the expansions of the NS, we are able to cancel the “nonlinear” additions
of the NS and, thus, canequalizethe nonlinear and linear spectra by means of nonlinearpre-
distortion of the input signal. The equalization of the linear and nonlinear spectra after the
nonlinear pre-distortion paves the way for the utilization of “linear” methods, such as ordinary
FT for information encoding and decoding. This approach is then studied in detail for illus-
trative purposes in application to a fragment of an OFDM input pattern with the phase-shift
keying (PSK) encoding of OFDM coefficients. It is shown that pre-distortion allows one to
obtain an almost undistorted initial signal profile at the receiver after winding out the accumu-
lated linear dispersion in the NS. In the case of the OFDM input, the pre-distortion amounts to
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the extraction of the lowest-order terms associated with the inter-carrier (IC) and inter-slot (IS)
interference effects.

Our paper is organized as follows. First, in Section 2, we introduce the NLSE and the associ-
ated normalizations, determining the scales of the entering parameters, and provide the details
of the forward NFT, explaining the relevant quantities characterizing the NS (i.e., we present
the elements of the direct scattering problem associated with the NLSE). Section 3 deals with
thegeneral theory of NSwhen the amplitude of the input signal is sufficiently low: We present
the expression of the NS in terms of the signal amplitude series. Subsection 3.2 explains how
these results can be geared for theeffective equalization of the linear and nonlinear spectra,
used further for ournonlinear pre-distortion method. In Section 4, we consider the NFT for the
OFDM-type inputs. First, in Subsection 4.1, we remind the basics of the OFDM format. After
that, in Subsection 4.2, we derive the analytic form of the NS for a single OFDM tone with a
finite base extent, and in Subsection 4.3, we mention some general properties of NS associated
with the OFDM-type input. Section 5 deals with the direct application of our spectra equal-
ization method. First, we consider the pre-distortion of a single OFDM tone (Subsection 5.1).
Then, Subsection 5.2 contains the results for the pre-compensation of a sequence of OFDM-
coded slots. Section 6 contains the extension of our approach and discusses how to deal with the
situation where the recursive spectra equalization is not effective. First, in Subsection 6.1 we
consider precompensation of the input in the form of Gaussian-based WDM pulse and show,
that our method is applicable in this case as well. In Subsection 6.2 we analyze the robustness
of our method against the amplifier spontaneous emission (ASE). Finally, in Subsection 6.3 we
present the estimation of the numerical complexity of the methods based on NFT as compared
to digital back-propagation and outline the way of how to further extend the ideas of NFT-based
transmission. Our findings are summarized in the Conclusion.

Throughout the paper, we adopt the following conventions for the linear forward/backward
FT:

Q(ω) =

∞
∫

−∞

q(t)e−iωtdt, q(t) =
1

2π

∞
∫

−∞

Q(ω)eiωtdω . (1)

The overline, e.g. ¯q(t), will mark the complex conjugation of the corresponding quantity. The
frequency in the linear FT is denoted asω , and the analogous variable referring to the nonlinear
spectral domain isξ .

2. The model, normalizations, and NFT basics

2.1. NLSE and normalizations

To illustrate key ideas, we consider as a master model the NLSE governing the propagation of a
complex slow-varying optical field envelopeq(z, t) along a single-mode optical fiber [1,2,33]:

iqz−
β2

2
qtt + γq|q|2 = 0, (2)

wherez stands for the propagation distance andt is the time in the frame co-moving with the
group velocity of the envelope. Here, we focus on the case of anomalous dispersion (i.e., the
constant chromatic dispersion coefficientβ2 < 0 in Eq. (2)) and hence deal with the so-called
focusingtype of NLSE. We take the typical value ofβ2 = −22 ps2/km, and the higher-order
dispersion terms are not considered here. The instantaneous Kerr nonlinearity coefficientγ is
expressed through the nonlinear part of refractive indexn2 and an effective mode areaAe f f:
γ = n2ω0/cAe f f, with c being the vacuum speed of light andω0 = 2πν0 being the carrier
frequency of the envelopeq(t,z); the typical value isγ = 1.27 (W·km)−1.
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We normalize time in Eq. (2) to the characteristic time related to an input signalTs, which
can be, e.g., the extent of the RZ signal or the duration of a single OFDM slot, and then use the
effectivez-scale associated withTs: Zs = T2

s /|β2|. Then, we measure the power of the input in
units ofγ Zs and normalize the signal amplitude. The summary of normalizations is as follows

t
Ts

→ t,
z
Zs

→ z, q
√

γ Zs → q. (3)

Further, we typically assume, without loss of generality, the following values:Ts ≈ 300ps,
giving the characteristicz normalization scale asZs ≈ 4000km. For instance, for the typical
input peak power ofP0 ∼ 0.1mW, the characteristic measure of the effective nonlinearity is
ε = (γ ZsP0)

1/2 ≈ 0.5, and forP0 = 1mW,ε ≈ 2.5
The normalized NLSE (2) is rewritten as

iqz+
1
2

qtt +q|q|2 = 0, (4)

where time is measured in units ofTs, distance in units ofZs, and power of the signal in units
of (γ Zs)

−1.
As mentioned before, the NLSE, Eqs. (2), (4), is integrable by the IST method, i.e., the

explicit form of the NFT is known (see below).

2.2. Forward NFT as a part of the IST method

The forward NFT operation for the NLSE (4) requires solutions of the so-called Zakharov-
Shabat spectral problem (ZSSP) [1, 25–29], which corresponds to the scattering problem for a
non-Hermitian (in the case of anomalous dispersion) Dirac-type system of equations for two
auxiliary functionsφ1,2(t), with the NLSE input pulse profileq(0, t)≡ q(t) serving as an effec-
tive potentialentering the equations

dφ1

dt
= q(t)φ2− iζφ1 ,

dφ2

dt
=−q̄(t)φ1+ iζφ2 . (5)

Here,ζ is a (generally complex) eigenvalue,ζ = ξ + iη , and the potentialq(t) is supposed to
decay ast →±∞ (see the specific constraints imposed onq(t) decay in [1,25,29]).

At the left endt →−∞ we fix the “initial” condition for the incident wave scattered by the
potentialq(t) to have the so-called Jost solution~Φ(t,ζ ) = [φ1(t,ζ ),φ2(t,ζ )]T :

~Φ(t,ζ )
∣

∣

∣

t→−∞
=

(

1
0

)

exp(−iζ t).

With this initial condition, at the right end,t →+∞, we define two Jost scattering coefficients,
a(ζ ) andb(ζ ), constituting the essence of the forward NFT:

a(ζ ) = lim
t→∞

φ1(t,ζ ),exp(iζ t), b(ζ ) = lim
t→∞

φ2(t,ζ )exp(−iζ t), (6)

with φ1,2 being the corresponding elements of vector~Φ(t,ζ ). The (right) reflection coefficient
associated with Eq. (5) is then defined as

r(ξ ) =
b(ξ )
a(ξ )

= lim
t→∞

φ2(ζ , t)
φ1(ζ , t)

exp(−2iζ t). (7)

The forward NFT operation corresponds to the mapping of the initial field,q(0, t) = q(t), onto
the set ofscattering data:

Σ =

[

r(ξ ), ξ ∈ R,

{

ζn,Cn ≡
b(ζn)

a′(ζn)

}]

, (8)
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where indexn runs over all discrete eigenvalues of ZSSP Eq. (5) (if these are present). The
quantityr(ξ ) from Eqs. (7), (8) defined for realξ (“frequency”) plays the role of the contin-
uous nonlinear spectral distribution, while the quantities associated with discrete eigenvalues
describe solitonic degrees of freedom and do not have analogues in the linear problems. In our
case, we deal with the situation whereno solitons are present, and therefore, the ZSSP (5) does
not contain a discrete eigenspectrum:

Σ = [r(ξ ), ξ ∈ Re] , (9)

i.e., thecompletescattering data consist only of the quantityr(ξ ).
The backward NFT maps the scattering dataΣ onto the space-time domain and requires the

solution of the Gelfand-Levitan-Marchenko (GLM) system of equations [1, 25, 29] associated
with a particularΣ. However, for the method explained in the beginning of the paper we need
only the forward NFT, so that we postpone the discussion of backward NFT to Section 6.3.

The evolution of the reflection coefficient is given by [1,25,29]

R(L,ξ ) = r(ξ )exp(2iξ 2L), (10)

whereR(L,ξ ) is the value of the coefficient after the propagation distanceL, andr(ξ ) is its
initial value determined by Eq. (7), i.e. via solving the ZSSP (5) where the input profile serves
as a potential. From Eq. (10), one can see that the NS obeys the linear dispersion law of NLSE
(4) if one associates the linear frequencyω with the quantityξ asξ = −ω/2. Indeed, from
the IST theory, it is known [29] that asymptotically in the linear limit|q(t)| → 0, the following
formula is valid:

r(ξ ) =−Q̄(−2ξ ), (11)

whereQ(...) identifies the ordinary forward FT of the signalq(t) defined in Eq. (1). In view of
Eq. (11), it is useful to define thespectral function N(ω) associated with forward NFT via the
reflection coefficient:

N(ω) =− r̄(ξ )
∣

∣

∣

ξ=− ω
2

. (12)

The obvious benefit of such a definition is that in the linear limit, the NFT transform (12)
coincides with its linear counterpart. Further, the term NS implies the spectral functionN(ω)
defined in Eq. (12), rather than the reflection coefficientr(ξ ) itself.

3. Expansions for the low signal amplitudeε ≪ 1 and the concept of spectra equalization

In this section we first, considering the amplitude of the input signal|q(t)| ∼ ε to be small,
derive the expansion for the reflection coefficientr(ξ ) in terms ofε. Note that the results given
in Subsection 3.1 beloware generaland do not imply any specific modulation format. In fact,
the only limitation of the method is the relative smallness of the input signal power, given by
ε. The smallness ofε allows one to obtain the desired expression using perturbation theory,
similar to that used in [38] in the context of the fiber Bragg gratings design. After that, for
the sake of illustration and outlining how the method can be applied to specific formats, we
successively consider the application of the results obtained to a single tone of OFDM, a single
slot of OFDM, and several OFDM slots serving as the NLSE input.

3.1. NFT in the case of a weak nonlinearity (small enough input signal power)

We start with Eqs. (5) looking for the solution expansion in terms of the scattering data (the
situation is analogous to the expansion of the trajectory integrals [38]).
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First, one makes the transformation to the slow varying functionsϕ1,2 as:ϕ1,2 = e∓iξ tφ1,2.
In terms ofϕ1,2, the expression forr(ξ ) (7) now changes to

r(ξ ) = lim
t→∞

ϕ2(ξ , t)
ϕ1(ξ , t)

. (13)

Substituting these functions,ϕ1,2, in Eqs. (5), we arrive at the system

dϕ1

dt
= e2iξ tq(t)ϕ2 ,

dϕ2

dt
=−e−2iξ t q̄(t)ϕ1 , (14)

with the transformed initial condition:[ϕ1(−T/2,ξ ),ϕ2(−T/2,ξ )] = [1,0] (recall that we as-
sume the finite extent of the input as[−T/2,T/2]). Then, we express the solution of the second
equation from set (14) as

ϕ2(t,ξ ) =−

t
∫

−T/2

dt1e−2iξ t1q̄(t1)ϕ1(t1,ξ ), (15)

and the solution of the first one as

ϕ1(t,ξ ) = 1+

t
∫

−T/2

dt2e2iξ t2q(t2)ϕ2(t2,ξ ). (16)

Now, we substitute Eq. (15) into Eq. (16) and vise versa recursively to obtain the following
expansions:

ϕ2(t,ξ ) =−

t
∫

−T/2

dt1e−2iξ t1q̄(t1)+

t
∫

−T/2

dt1

t1
∫

−T/2

dt2

t2
∫

0

dt3e2iξ (t2−t1−t3)q̄(t1)q(t2)q̄(t3), (17)

up toε3 (each power ofq gives the contribution∼ ε), and

ϕ1(t,ξ ) = 1−

t
∫

−T/2

dt1

t1
∫

−T/2

dt2e2iξ (t1−t2)q(t1)q̄(t2), (18)

up toε2. Note that this recursion can be used for obtaining the Jost coefficientsa(ξ ) andb(ξ )
separately up to a desired precision.

The expression forr(ξ ) takes the formr ≈ r0(ξ )+ r1(ξ ), wherer0 ∼ ε andr1 ∼ ε3 are given
as follows (the next term in this expansion is∼ ε5):

r0(ξ ) =−

T/2
∫

−T/2

dt1e−2iξ t1q̄(t1), (19)

r1(ξ ) =−

T/2
∫

−T/2

dt1

T/2
∫

t1

dt2

t2
∫

−T/2

dt3e2iξ (t2−t1−t3)q̄(t1)q(t2)q̄(t3). (20)

Now we “propagate” ourr(ξ ) to the distanceL using Eq. (10)

R(L,ξ ) = R0(L,ξ )+R1(L,ξ ) = [r0(ξ )+ r1(ξ )]e2iξ 2L, (21)
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Fig. 1. The flowchart of the precompensation scheme for the equalization of the linear
and nonlinear spectra up toε5 and the subsequent recovery of the informational content
encoded at the transmitter.

to obtain the expression for the nonlinear spectral distribution atz= L, whereR0 ∼ ε and
R1 ∼ ε3. The direct perturbation theory (i.e. the usage of NLSE (2) itself rather than spectral
domain) may also be used for calculation of the NS corrections.

We note, that of course one could also in principle achieve the equalization result without
resorting to IST by linearizing NLSE (4) directly in the time domain. Yet when considering
the effects of other perturbations on signal propagation (like e.g. ASE noise) the NS-based ap-
proach is the best way to go forward. This is due to the very mathematical structure of integrable
NLS [28]: The nonlinear spectrum plays the role of so called adiabatic invariants and as such
represents a valid basis for any perturbative expansion (as it does not develop secular terms).
The NS based approach also provides the correct anzatz for the large distance asymptotes of
the NLSE solutions [28].

3.2. Linear and nonlinear spectra equalization using signal pre-distortion

Suppose that at the inputz= 0, we apply pre-distortions(t)∼ ε3 to the initial signal waveform
q(t):

qs(t) = q(t)+ s(t). (22)

The idea of nonlinear pre-distortion is to remove the quantityr1(ξ ) given by Eq. (20) and,
thus, the termR1(L,ξ ) from the spectral density at the end pointz= L in Eq. (21), by using
the additional pre-processing given bys(t). Looking at the form ofr(ξ ) expansion, we see
that when a small quantitys(t) ∼ ε3 is added to the input signal, then we gain a correction
rs(ξ )∼ ε3 to the expression forr1(ξ ), see Eq. (20):

r(ξ ) = r0(ξ )+ r1(ξ )+ rs(ξ )+O(ε5),

where

rs(ξ ) =−

T/2
∫

−T/2

dt1e−2iξ t1s̄(t1). (23)

For two terms of the same order,r1(ξ ) andrs(ξ ), to cancel each other, we chooses(t) in such
a way that the following relation is satisfied:

rs(ξ ) =−r1(ξ ). (24)
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Using the definition of the NS (12), we can now obtain the ordinary Fourier spectrumS(ω) for
our corrections(t) as

S(ω) = r̄1(ξ )
∣

∣

∣

ξ=− ω
2

, (25)

and performing the backward FT of Eq. (25), we restore the profile ofs(t) in the time domain.
Thus, for the predistorted signalqs(t) = q(t)+ s(t) with the FT ofs(t) given by Eq. (25), the
addition to the nonlinear spectrum∼ ε3 disappears altogether andthe NS associated with qs(t)
coincides with the linear spectrum of initial q(t) up to the terms∼ ε5.

The flowchart of the pre-distortion scheme and the signal recovery from the pre-processed
NS at distancez= L is given in Fig. 1.

Note that by considering the higher-order nonlinear pre-distortions toq(t), we can cancel the
higher terms in the expansion of NS. At the same time, we emphasize that the recursive Fourier-
type integration in Eq. (20), used to obtainr(ξ ), can be potentially implemented through the
electronic or all-optical realization in order to calculate the NS associated with a particular given
signal. One of the novel and significant points of our approach is that we are able, by means
of precompensation described above, to translate the information encoded in the traditional
way in time domain to the nonlinear spectral domain without using any sophisticated special
new formats, and control the accuracy of the data mapping. Finally, the transmission itself is
effectively performed through the NS evolution.

4. An illustration of the NFT application: OFDM-modulated input signal

4.1. OFDM basics

Coherent optical OFDM (CO-OFDM) has recently become a popular transmission technique
owing to its robustness against chromatic dispersion, polarization mode dispersion, and practi-
cality of implementation [19–22,39,40]. OFDM is a multi-carrier transmission format where a
data stream is carried with many lower-rate sub-carriers (tones):

q(t) =
∞

∑
α=−∞

Nsc−1

∑
k=0

cα k sk(t −α T)ei Ωk t . (26)

Here,cαk is the α-th informational coefficient in thek-th subcarrier,sk is the waveform of
thek-th subcarrier,Nsc is the total number of the sub-carriers,Ωk is the frequency of thek-th
subcarrier, andT is the symbol length. (The Greek indexesα, β , etc., enumerate the slots, while
Latin letters indicate the subcarrier numbers). The shape of each subcarrier,sk(t), is usually a
rectangleΠ(t) of width T and unit height, and such a choice ensures the orthogonality condition

δkl =
1
T

T
∫

0

sk(t)s̄l (t)ei (Ωk−Ωl ) t dt,

which is met as long as the subcarrier frequencies satisfy

Ωk−Ωl = (2π/T)m

with an integerm. The coefficientscα j are then recovered by an FT of the signal

cαk =
1
T

(α+1)T
∫

α T

q(t)e−i Ωk t dt.
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This signifies that these orthogonal subcarrier sets, with their frequencies spaced at multiples
of the inverse of the symbol rate,

Ωk = (2π/T)(k−1), (27)

can be recovered without intercarrier (IC) and interslot (IS) interference, in spite of strong
spectral signal overlapping.

The linear spectrum of the OFDM-modulated signal (26) is a comb of sinc-like shapes:

Q(ω) = 2
∞

∑
α=−∞

Nsc

∑
k=1

cαk exp
[

− i ω α T +(i/2)(Ωk−ω)T
]

sin
[

(Ωk−ω)T
2

]

Ωk−ω
. (28)

In this work, for illustration purpose, we employ the widely used QPSK encoding of the
coefficientscα k [19, 36, 40–42] (without losing the generality of the analytical results), with
four allowed phase levels used for encoding the informational content: This means that the
absolute value ofcα k is the same for each coefficient,|cα k|= c= const., and the phase of each
cαk takes four discrete values from the set:

Arg{cαk}= 2π p/4,

with p= 0,1,2,3.

4.2. NFT in the case of a single OFDM tone

Let us start with the idealized but analytically solvable case when we have only one OFDM
slot of lengthT (extending, say, from−T/2 to T/2) with a single encoded coefficient, see Eq.
(26), as the input for the NLSE channel. This means that, atz= 0, we have the following profile
q(0, t) = q(t)

q(t) =

{

ck exp(iΩkt) if t ∈
[

− T
2 ,

T
2 ],

0 otherwise,
(29)

to be inserted as a potential into the ZSSP (5). The solution for Eqs. (5) for the potential given
by Eq. (29) can obtained analytically using the results for the rectangular pulse [43,44]:

~Φ(t +T/2,ξ ) =
(

cos(ξk t)−
i ξk/2

Ξk
sin(Ξk t)

)(

eiΩkt/2

0

)

−
c̄k

Ξk
sin(Ξkt)

(

0
e−iΩkt/2

)

, (30)

whereξk andΞk are the functions of the spectral parameterξ :

ξk(ξ ) = 2ξ +Ωk, Ξk(ξ ) =
√

(ξk/2)2+ |ck|2.

The reflection coefficient, defining the NS, is then obtained by using Eq. (7):

r(ξ ) =−
2c̄k sinΞkT

2Ξk cosΞkT − iξk sinΞkT
exp

[

− iTξk/2
]

. (31)

The nonlinear power spectrum emerging from Eq. (31) is

|r(ξ )|2 =
cos2 ψk sin2 ΞkT

cos2 ΞkT + sin2 ψk sin2 ΞkT
, ψk = arctan

ξk

2|ck|
. (32)

#193450 - $15.00 USD Received 5 Jul 2013; revised 12 Sep 2013; accepted 14 Sep 2013; published 4 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024344 | OPTICS EXPRESS  24355



4.3. Correspondence between the NS and linear spectrum, soliton creation threshold, and
general remarks on the NS associated with the OFDM input

Now, we compare the expression of NS (12), obtained by using reflection coefficient (31) -
(32), with the linear FT of a single OFDM slot with a single subcarrier:

|Q(ω)|2 = 4|ck|
2 sin2

[

(Ωk−ω)/2
]

(Ωk−ω)2 . (33)

In this particular case, one can check directly the relations (11), (12) by seeking the limiting
expression of a single-carrier NS when|ck| → 0. Indeed, in the limit of a smallck from Eq. (12)
using (31) or (32), one immediately gets Eq. (33).

Fig. 2. Dependencies of the absolute value of NS spectral function|N(ω)|, Eq. (12) [red
line] and linear spectrum|Q(ω)|, Eq. (33) [black line], calculated for a single tone of
OFDM with Ωk = Ω2 = 2π and (normalized) base extentT = 1, for the different values of
ck: (a) ck = 0.5; (b) ck = 1.5; (c) ck = 2.5.

In [45], it was demonstrated that the singularities ofr(ξ ) arising on the real axisξ due
to the increase of the amplitude/length of the signal correspond to the appearance of bound
(discrete) states in the ZSSP (5), i.e., bright optical solitons. Such a creation process has a
threshold character with respect to both pulse width and amplitude. In the case of a single-
carrier OFDM pulse, the amplitude threshold for|ck| needed for creating the first soliton can
be easily obtained from Eq. (32): The expression forr(ξ ), Eq. (31), has a singularity when the
denominator vanishes, which happens ifψk = 0 andξkT = π/2. These two conditions give

|ck|thT = π/2, ξth =−
Ωk

2
. (34)

The threshold value|ck|th coincides with the well-knownarea criterion(see [29]) for a soliton
nucleation, although the latter is strictly valid only for single-hump pulses with a constant
phase [46] and is usually violated in the case of chirped inputs [45, 47], where the creation
of solitons is significantly suppressed (the latter fact was utilized in the concept of a soliton-
based discriminator [48]). In the context of coherent optical communication, due to highly
mixed phases of the optical signal resulting from signal overlap from different time slots or
from the use of many sub-carriers in OFDM, the phase of an optical signal becomes effectively
random [49] and the soliton formation is dramatically suppressed [48]. Note that such a phase
mixture together with the signal considered as noise (for technical purposes) can be enhanced
by initial pre-dispersion technique [50]. Finally, the value ofξth gives the position of appearance
of the first bound state on the real axis and is related to the velocity of the emerging soliton:
vsol = Ωk.

Now, let us compare the nonlinear and linear spectra of an OFDM tone, i.e., Eq. (31) and
the corresponding NS, Eqs. (12) and (33). The comparison is made in Fig. 2, where we plotted
an NS (red) and a linear spectrum (black) for different values of the input amplitude. In the
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linear case, the main spectral peak corresponds to the single OFDM frequencyΩk, and the
sinc-shape of the spectrum is the consequence of the rectangular pulse-shaping function in the
time domain. The NFT spectrum (32) after transformation (12) maintains a similar shape—it
is also symmetric with respect to the main peakΩk regardless of the value ofck. The only
property that changes drastically is the scaling of the peak with the amplitude. In the linear case
it scales as|ck|

2, but in the nonlinear case, it actually scales as tan2(|ck|T), becoming infinite
at the threshold|ck|th. So, for the subthresholdck, the NS deviates only insignificantly from
the linear spectrum, see Fig. 2(a). Then, when we approach|ck|th, we observe an appearance
of a pronounced peak indicating the tendency for soliton nucleation, see Fig. 2(b). For the
values ofck beyond the threshold, we already observe the significant structural changes of NS
as compared to the linear spectrum, in Fig. 2(c).

For the general form of the OFDM input (26) inserted as a potential in the ZSSP (5), it is
impossible to find the analytical expression for the reflection coefficientr(ξ ) and, therefore,
for the NS (12), as well as for the soliton creation thresholds in terms of the signal extent
and amplitude. Moreover, when random values of coefficients entering Eq. (26) are used, each
particular realization produces its own NS profile and threshold parameters, and hence, one has
to resort to numerical methods [51] for finding the form of NS [see Fig. 3(a)]. However, the
conclusions reached above remain qualitatively valid: In the case of low power of the pulse
(i.e. below the soliton creation threshold), the NS should have the structure similar to the linear
spectrum of the signal (see Fig. 3) with only quantitative deviations, the measure of which is
stipulated by how close to the threshold values we are. This fact is used in the next section
for performing effective equalization of the NS and linear spectrum by extracting these small
deviations between them.

Note that for the chirped and random profiles, the soliton nucleation is strongly suppressed
by both the chirp intensity (rapid phase variations) [47] and the incoherence in the input signal
[44, 45, 48–50], and one can expect the mitigation of the threshold values (34) produced by a
single tone in the case of a multitone randomly coded signal.

In Fig. 3 we also present the results for the dynamics of the linear and nonlinear spectra
associated with a fragment of the OFDM input (26): We took 3 slots of the 10-subcarrier OFDM
with the pseudo-random QPSK encoding of coefficients for each subcarrier. The extent of each
OFDM slot isT = 1, and the amplitude of each coefficient is|cαk|= 0.25. The case considered
produced the subthreshold pattern, i.e., no solitons were nucleated from the input used in our
plot. The propagation distance wasz= 1.2 in normalized units, which corresponds toL ≈
5000km for the normalization values described at the end of Subsection 2.1. First, we calculated
the NSN(ω), red line in Figs. 3(a) and 3(b), propagated the input pattern to the distancez= 1.2
and again calculatedN(L,ω), blue line in Figs. 3(a) and 3(b) (for the latter case, we removed the
linear dispersion). One can see that the NS does not change, which is in accordance with the NS
dynamics formula (10): By winding out the linear dispersion corresponding to the distanceL,
one obtains the exactly initial spectral distributionN(0,ω) up to the numerical errors associated
with the NLSE integration and calculation of NS. In contrast, the profile ofQ(L,ω), green line
in Figs. 3(c), 3(d), visibly differs fromQ(0,ω), black line in Figs. 3(c), 3(d), even when we
remove the dispersion, because of the nonlinear distortions of the signal during the propagation.
Some results for the NS attributed to several other types of input profiles are given in [30].

5. Implementation of the nonlinear pre-distortion

Let us now consider how the general pre-distortion scheme considered above works in a partic-
ular case of the OFDM-modulated pulses.
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Fig. 3. Nonlinear (a,b) and linear (c,d) spectra for 3 slots of 10-subcarrier QPSK-OFDM
before and after the propagation. Panes (a) and (b): the real and imaginary parts of NS
N(ω), for the initial distribution (red) and distribution after the propagation atz= 1.2
(i.e. L ≈ 5000km), blue line. The red and blue parts forN(ω) are almost indistinguishable
insofar as the initial and final NS coincide. Panes (c) and (d): the real and imaginary parts of
linear spectrumQ(ω) for the initial distribution (black) and after the propagation atz= 1.2
(i.e.L ≈ 5000km), green line. For both spectra atz= 1.2 (blue and green), the accumulated
linear dispersion was removed.

5.1. Pre-distortion of a single OFDM subcarrier in a single time slot

First, we consider the pre-distortion for the input in the form of a single OFDM subcarrier
in a single slot given by Eq. (29) having the finite extent[−T

2 ,
T
2 ] with |ck| ∼ ε (recall that

Ωk = 2π(k− 1)/T) [Fig. 4(a)]. Then, we implement the pre-distortion of the NS associated
with such an input using the results given in the previous section. Since, in this case, we have
the exact analytical expression for the reflection coefficient, Eq. (31), we can simultaneously
test the validity of ther(ξ ) expansion given in Subsection 3.1. Indeed, one can expand the exact
formula (31) in terms of the pulse amplitudeck to ensure that the general expansion formulas,
Eqs. (19) and (20), are correct.

First, for such an input, the first-order NS term is given by

r0(ξ ) =−2c̄k
sinξkT/2

ξk
, (35)

and correspondingly, after the propagation to distanceL, the first order-term in the NS expan-
sion is (see Eq. (21))

R0 =−2c̄k
sinξkT/2

ξk
e2iξ 2L. (36)
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For the nonlinear addition∼ ε3, we have

r1(ξ ) = 2c̄k |ck|
2 exp

[

iξkT/2
] sinTξk−Tξk

(ξk/2)3
. (37)

Note that the expressions above are valid irrespective of the frequencyΩk value, including the
case of an RZ rectangle pulse withΩ1 = 0 (i.e., the first tone of the OFDM). The magnitude of
r1 (37) atξ =−Ωk/2 is (εT)3, and therefore, we see that the expansion takes place in terms of
the pulse areaεT; so, it is actually valid ifεT is small.

Fig. 4. Pane (a): Real (magenta) and imaginary (purple) parts of the input profile corre-
sponding to a single second OFDM tone withT = 1, Ωk =Ω2 = 2π, amplitude of the input
ck = 0.5. Pane (b): real (dark red) and imaginary (green) parts of the second OFDM tone
nonlinear pre-distortion profiles(t) ∼ ε3, given by the backward FT of Eq. (25) with the
expression (37) inserted forr1(ξ ). Pane (c): The absolute errors, obtained by the direct
integration of NLSE (4) and dispersion removal at at distancez= 1 (L = 4000km) [black],
the usage of the pre-processed NS at the same distancez= 1 (L = 4000km) [blue] and the
(expected) error of the associated with the pre-distorted signal at the inputz= 0 (red dots,
almost indistinguishable). The more detailed explanations of the error definitions are given
in the text, see Subsection 5.1 .

Now, we can calculate the pre-distortion correction in the NS domain using Eqs. (24) and the
explicit expression (37), and the corresponding correction in the time domain is then obtained
by using the backward FT of Eq. (25). The resulting functions(t) is given in Fig. 4(b) for the
caseT = 1, ε = 0.5, where we used the OFDM subcarrier withk = 2, i.e., withΩ2 = 2π [see
the profile ofq(t) in Fig. 4(a)]. Interestingly, the resulting profile ofs(t) is asymmetricwith
respect to time axis origin, in contrast to the obvious symmetry of the input pulse.

In Fig. 4(c), we present the comparison of the absolute errors,|q(L, t)−q(0, t)|, for the fol-
lowing three cases.

• First, we numerically calculated the NSN(ω) for the input given by Eq. (29), pre-
distorted it using Eq. (37), and performed the backward FT to obtain the new pre-
processed waveform profileqs(0, t) in the time domain. Then, we computed the absolute
error|qs(0, t)−q(t)| (red dots, almost indistinguishable on the figures): As expected, the
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error is small∼ c5
k. The sharp peaks at the borders of the pulse base are due to the aliasing

caused by the abrupt variation of the profileq(0, t).

• Then, we propagated the pre-distorted profileqs(0, t) to the normalized distancez= 1
(corresponding toL = 4000km for the normalizations given in Subsection 2.1), thus re-
ceivingqs(L, t). This quantity was used again to compute the NS at distanceL, N(L,ω).
After that, we removed linear dispersion from the resulting NS using Eq. (10) and per-
formed the backward FT to obtain ˜qs(0, t). The absolute error|q̃s(0, t)− q(0, t)| in this
case is plotted in Fig. 4, represented by blue points. We see that the error almost precisely
coincided with the initial error (expected error, red dots), as it should be, with very slight
deviations occurring because of numerical errors.

• In the third run, we launched the pure initial profileq(t) without any pre-distortion and
then simply removed the linear dispersion after the signal passed the distancez= 1,
getting the nonlinearity-distorted quantity ˜q(0, t). The black points indicate the absolute
error|q̃(0, t)−q(t)| obtained without the pre-distortion.

Thus, one can see that even in the case of higher numerical errors in the calculation ofR(L,ξ )
andN(L,ω), the resulting error (blue) is generally 4-5 times smaller as compared to the case
with the simple linear dispersion post-compensation (black). Note that the largest errors for the
pre-distorted pulses occurred at the pointst = ±T/2, i.e., where we had a sharp change in the
input profile: These errors are caused by numerical discretization aliasing.

5.2. Nonlinear pre-distortion of a general finite OFDM-modulated pattern

Now, consider a finite sequence of OFDM slots, each having lengthT. The input pulse has the
form

q(t) =
Nα

∑
α=0

Nsc

∑
k=1

cαk∏(τα , t)exp(iΩkt), (38)

whereα numerates different slots;Nα is the total number of different OFDM slots in our se-
quence;τα indicates the center position for each slot numberα; cαk is, as before, the coefficient
in the slotα belonging to thek-th OFDM subcarrier; and∏(τα , t) is the real unit height rect-
angle profile of the durationT, positioned symmetrically with respect to the pointt = τα :

∏(τα , t) =

{

1 if t ∈
[

− T
2 + τα ,

T
2 + τα ],

0 otherwise.

Again, the leading order term in ther(ξ ) expansion can be straightforwardly obtained by
generalizing Eq. (35):

rOFDM
0 (ξ ) = ∑

α
rα
0 (ξ ), (39)

where the partial contributionsrα
0 (ξ ) are given by

rα
0 (ξ ) =−2∑

k

c̄α k exp(−iτα ξk)
sinξkT/2

ξk
. (40)

In the next order, we have different contributions:

rOFDM
1 (ξ ) = ∑

α
rα
1 (ξ )+∑

α
∑

β>α
∑

γ<β
rα
0 (ξ )r̄

β
0 (ξ )r

γ
0(ξ )

+ ∑
α

∑
γ<α

rα
12(ξ )r

γ
0(ξ )+∑

α
∑

β>α
rα
0 (ξ )r

β
21(ξ ), (41)
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whererα
1 (ξ ) is the contribution from the inter-carrier (IC) interference given by

rα
1 (ξ ) = ∑

i jk

exp(−iτα Fi jk)r
ic
i jk(ξ ). (42)

The expression forr ic
i jk(ξ ) is

r ic
i jk(ξ ) = − 2i

cα i c̄α j cαk

ξi ξ j ξk Fi jk(Ωi −Ω j)(Ωk−Ω j)

[

− ĒkE j Ēi ξ j (Ωk−Ω j)(Ωi −Ω j)

− 2Ek Ē j Ei ξk ξi (Ωk+Ωi −2Ω j)+EkE j Ēi ξ j Fi jk (Ωk−Ω j)

+ Ek E j Ei Fi jk (Ωi −Ω j)(Ωk−Ω j)/2+ ĒkE j Ei ξ j Fi jk (Ωi −Ω j)
]

, (43)

with
Ei(ξ ) = eiξi T , Fi jk(ξ ) = 2ξ +Ωi −Ω j +Ωk,

and the sums overi, j, andk run from 1 toNsc. It can be easily verified that expression (43) is
nonsingular for anyξ . The second term in Eq. (41) is the contribution from the inter-slot (IS)
interference, the expression for each partial entryrα ,β ,γ

0 (ξ ) is given by Eq. (40). The two last
terms are responsible for the mixed IC/IS interference effects, and the expressions forrα

12(ξ )
andrβ

21(ξ ) are given by

rα
12(ξ ) = i ∑

i, j

c̄α icα j
eiτα (Ω j−Ωi)

ξ j

(

Tδi j −2exp(iTξ j/2)
sinTξi/2

ξi

)

, (44)

rβ
21(ξ ) = i ∑

j ,k

cβ j c̄β k
eiτβ (Ω j−Ωk)

ξk

(

Tδ jk −2exp(iTξk/2)
sinTξ j/2

ξ j

)

. (45)

Now, using Eqs. (41) and (25), we can calculate the precompensation profiles(t). The ab-
solute errors associated with the propagation of the precompensated OFDM versus the error
induced by the nonlinear distortions of the same OFDM sequence are summarized in Fig. 5.
We can see that the error is relatively low (notice the aliasing contribution at the ends of each
slot) in spite of the extended total duration of the pulse (for the simulation in Fig. 5, we used
3 OFDM slots; so, the duration is now 3T). This is because the rapid abrupt changes of the
OFDM-coded pattern still arrest soliton formation and the NS remains similar to the linear
spectrum.

We also checked the preprocessing error for the longer OFDM sequence and found that the
precompensation worked relatively well up to 10 OFDM slots with normalized parameters: slot
durationT = 1 and|cα k|= 0.1.

6. Other input profiles, noisy propagation and general comments on NS modulation be-
yond the perturbative approach.

6.1. Precompensation of other profiles: WDM input with Gaussian base

We have so far considered only OFDM-type input, where the form of NS expansion (20) and
the corresponding precompensation profile (23), (25), can be obtained analytically. However,
the method described in Section 3 is general and can be applied to arbitrary input forms, with
the only requirement that the input pulse does not generate singularities in the NS expansion,
i.e., as before, we are far from soliton creation threshold. To give an example of such a situation,
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Fig. 5. The absolute errors for the propagation of 3 slots (duration of each slotT = 1) of
the 10-mode QPSK-OFDM (with the amplitudes of individual coefficients|cα k| = 0.15),
obtained by the direct dispersion removal at distancez= 1 (L= 4000km) [black]; the usage
of the nonlinear pre-distorted NS at the same distancez= 1 (L = 4000km) [blue]; and the
(expected) error associated with the pre-processed signal at the inputz= 0 (red, almost
indistinguishable). The error definitions are given in Subsection 5.1.

we consider a finite WDM sequence based on Gaussian pulses. The input pulse in this case has
the form

q(t) =
Nα

∑
α=0

Nch

∑
k=1

cαk G(τα ,ρ , t) exp(iΩkt), (46)

where, again,α numerates different slots,G(τα ,ρ , t) is a Gaussian function centered atτα with
the (same for each slot) widthρ ,

G(τα ,ρ , t) = exp

[

−
(t − τα)

2

ρ2

]

, (47)

cαk is, as before, the information coefficient in the slotα belonging to thek-th WDM channel of
Nch total. For the Gaussian-based WDM input (46) the explicit analytical form of the precom-
pensation profile (25) cannot be obtained, and thus we resort to the numerical procedure [51]:
first, we calculate numerically the NSN(ω) associated withq(t) in the form (46), and then
the spectral profile of the pre-compensation correctionS(ω) is given byS(ω) = N(ω)−Q(ω),
whereQ(ω) is the linear FT of Eq. (46). The descired pre-compensation profile in the time-
domain is given by the backward FT ofS(ω), and, same as it was done in previous sections,
one can evaluate the errors associated with the propagation of precompensated input (cf. Fig.
5) and compare them with the errors arising in the propagation without precompensation.

The absolute errors calculated for the propagation of the precompensated Gaussian-based
WDM versus the error induced by the nonlinear distortions of the same symbol sequence as
in Fig. 5 are summarized in Fig. 6. In the simulation we used 3 slots with the QPSK encoding
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Fig. 6. The absolute errors for the propagation of 3 slots of the 10-mode Gaussian-based
QPSK-WDM input (with the amplitudes of individual coefficients|cα k|= 0.15), with ex-
tent ρ = 0.3 (see Eq. (47)), obtained by the direct dispersion removal at distancez= 1
(L = 4000km) [black]; the usage of the nonlinear precompensated NS at the same distance
z= 1 (L = 4000km) [blue]; and the (expected) error associated with the pre-processed sig-
nal at the inputz= 0 (red, almost indistinguishable). The error definitions are given in
Subsection 5.1, normalizations are the same as in Figs. 4, 5.

of cαk, the absolute value of each coefficientc= 0.15 (cf. Fig. 5); the extent of each Gaussian
from (46) is ρ = 0.3 (in normalized units), the (normalized) distance between the adjacent
Gaussians (slot duration)τα+1− τα = 1. We see that the error now is even lower than that for
the QPSK-OFDM with the same parameters, Fig. 5 (the aliasing errors are absent at all since
the Gaussians are smooth, in contrast to the rectangular OFDM bases). This is because the
Gaussians withρ = 0.3 contain less energy compared to the OFDM with the same parameters,
and the remaining terms from the expansions given in Section 3, responsible for the error of the
precompensated pulse (i.e. for the difference between the NS and FT), are effectively smaller.

To end up, we see that the spectral equalization method works well for different kinds and
power of input profiles provided that the conditions of the validity of expansions from Section
3 are fulfilled.

6.2. Channel with noise.

Let us study the robustness of our method against the amplifier spontaneous emission (ASE).
In our case we employ the model with distributed Raman amplification, and consider stochastic
NLSE [7] with the additive symmetric white Gaussian noise (AWGN) termη(t,z):

iqz−
β2

2
qtt + γq|q|2 = η(t,z). (48)
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Fig. 7. The average integral absolute errors for the propagation of 3 slots of the 10-mode
QPSK-OFDM input (the parameters are the same as in Fig. 5) in the noisy NLSE, Eq. (48),
versus the noise intensity 2Γ, obtained (a) by the direct dispersion removal [black] and the
usage of the nonlinear precompensated NS at distanceL = 2000km [red]; (b) - the same
for the propagation distanceL = 4000km. The averaging for each point was made over 50
realizations.

Here the parameters are the same as in Subsection 2.1, and the AWGN correlation properties
are (〈. . .〉 means averaging):〈η(t,z)〉 = 0,

〈η(t,z)η̄(t ′,z′)〉= 2Γδ (t − t ′)δ (z− z′). (49)

The AWGN intensityΓ is expressed through the fiber parameters as [7]:

2Γ = hν0nspKT χ ,

whereχ is the fiber loss coefficient, typically typicallyχ ∼ 0.2dB/km,KT is the temperature-
dependant factor (related to the phonon-occupancy factor) that characterizes the Raman pump
providing the distributed gain; for the fiber-optic communication systems in normal conditions
KT is close to unity,KT = 1.1÷ 1.2; nsp is the spontaneous emission factor, usuallynsp =
1.3÷1.6; ν0 is the carrying frequency of the signal, we take it to beν0 = 193.55THz. Taking
these typical values of parameters, one estimates the order of characteristic noise intensity to
beΓ ∼ 10−21÷10−20. When proceeding to normalized time and distance, Subsection 2.1, the
normalized noise intensityD scales as follows:D = Γγ Z2

s/Ts.
Now, to study how the noise influences the interrelation of errors associated with the pre-

compensated and undistorted signal, we take the example input from Subsection 5.2: 3 slots
of 10-mode QPSK-OFDM with the same parameters as were used in Fig. 5, and launch the
undistorted and precompensated inputs into noisy channel (48). As there possibly exists a very
small probability that for certain critical values of signal amplitude the addition of noise can
cause creation of solitonic components in the received signal, one must chose the signal am-
plitude even weaker than the singularity condition; however, this situation is, generally, highly
unlikely as the addition of noise usually arrests the creation of new solitons rather than helps
it [44, 45, 48]. However we note that, when performing the Monte-Carlo simulations of signal
propagation in noisy model, Eq. (48), and evaluating average errors over several runs (i.e. over
several realizations of the AWGNη(z, t)), each randomly-coded set of OFDM coefficientscαk

used in a certain run produces its own particular input profileq(t) and, hence, its own respective
output error picture. Because of this the average local absolute error, like the one depicted in
Fig. 5, is not informative, as its profile strongly depends on the particular realization ofcαk

and, thus, disguises the ASE-induced distortions themselves. Therefore we take theintegral
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absolute errorfor each particular realization ofcαk as the measure of signal corruption (here
the corruption occurs already due to both noise influence and nonlinearity). For the 3 OFDM
slots it means that we take the integral of local absolute error (the error definition is given in
Subsection 5.1) over the full signal extent, i.e. from -1.5 to 1.5 in normalized time, evaluating it
for precompensated and undistorted inputs separately (see Fig. 5). Next we evaluate the average
of this quantity over several runs as a function of i) noise intensityΓ and ii) propagation length
L.

The results of our simulations are shown in Fig. 7, where the averaging over 50 realizations
was made for each point and we plotted separate graphs forL = 2000km, Fig. 7(a), andL =
4000km, Fig. 7(b). One can observe that even for the noisy channel the transmission based
on the precompensated signaloutperformsthe ordinary transmission (the linear dispersion at
the end point was, as before, removed): the average integral absolute error associated with
the precompensated inputs (red dots) is lower than that for the non-preprocessed inputs (black
squares) for every value of the noise intensityΓ studied. We notice, however, that as far as we
operate in the quasilinear regime, the transmission is effectively noise-dominated, so that the
nonlinearity induced absolute error, compensated by the preprocessing, is several times lower
than the noise-induced error even for the lowest value of noise intensity used, 2Γ = 10−21. In
spite of this, the usage of precompensation obviously contributes towards the improvement of
the transmission and decrease of distortions in the noisy channel, and our methodis robust
against the ASE-induced corruption.

6.3. General remarks on the NS-based transmission.

In our current study, due to the validity requirements of our spectra equalization method, Sec-
tion 3, we have addressed the case of quasilinear transmission, where the power of the input is
sufficiently low and soliton formation is arrested. However, we want to emphasize that even if
the nonlinearity strength and pattern length are such that a simple perturbation-based approach
of Section 3 fails, the general idea of the transmission based on NS can still have a significant
practical advantage over split-step back-propagation (BP) compensation schemes [16]. Indeed,
in any split step back-propagation scheme the number of operations needed for one elementary
step scales asN logN (whereN is the resolution in time domain). This, however, is compounded
by the need to adjust the coordinate step to compensate for the nonlinear phase shift (this is
particularly important for the high pulse power), so that the total number of operation scales as
M ·N · logN, whereM ≫ 1 is the number of coordinate steps that grows linearly with distance
and signal power. In the IST scheme the propagation of the spectral data is the trivial phase
rotation soM = 1 always, independent of nonlinearity or initial power. As for the direct and
inverse NFT, the former requires solving the ZS problem (5) (or a first order Ricatti equation for
the scattering coefficient, see e.g. [45]): well-developed methods based on e.g. the piece-wise
linear approximation (peeling) of the inputq(t) [51] usually take order ofN2 operations. Other
methods, based on the reformulation of ZS problem (5) as a matrix eigenvalue problem (see
e.g. the part II of [30]), can require a larger number of operations but provide some advantages
in the accuracy or more efficiency in the search for complex ZS eigenvalues (solitons). Note
that the processing schemes utilizing the NFT have already been proposed [52, 53], although
those rather dealt with complex ZS eigenvalues responsible for solitons.

The inverse NFT can be solved using∼ N2 operations, by employing fast Gelfand-Levitan-
Marchenko solvers, see e.g. [54] and references therein. So the computational speed-up of the
NFT over conventional split step BP is∼ (M logN)/N operations. To make a real world esti-
mate we have chosen the latest state-of-the-art massively parallel simulations recently reported
in [55] with N = 211 andM = 8000. Even with the reported impressive speed-up of 30 due to
highly efficient parallel algorithm used in the above paper, the potential speed-up of the fully

#193450 - $15.00 USD Received 5 Jul 2013; revised 12 Sep 2013; accepted 14 Sep 2013; published 4 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024344 | OPTICS EXPRESS  24365



numerical NFT scheme is still 8000×11/(30×211) ≈ 1.5, i.e. even in the quasilinear regime
and for a relatively small number ofz-steps considered in [55], a simple serial numerical NFT-
based scheme performs at least as good as a massively parallel direct propagation algorithm.
And at higher values of nonlinearity where the required number of coordinate steps,M, is about
to grow, the potential effectiveness of the NFT-based modelling schemes is likely to increase.
What is most important here is the fact that both algorithms for direct and inverse NFT can be
modified to include the appearance of discrete spectra at no extra computational cost. This cer-
tainly proves the viability of NFT even beyond the domain of validity of perturbative iteration
scheme proposed in Section 3.

Finally we notice that the matrix methods for both the ZS problem [53], and for the GLM
equations [54] can be effectively reduced to the Toeplitz matrix inversions. There already exist
“superfast” stable algorithms allowing one to perform the Toeplitz matrix inversion by using
only∼N logN operations [56,57]. Therefore, in view of the arguments given above, we believe
that the NFT-based processing and transmission methods can be highly competitive, no less ef-
fective than ordinary BP, and even seriously outperform the traditional split-step BP processing.

One of the ideas that allows one to use an encoded continuous NS at larger powers, i.e.
when the iterative approach of Section 3 does not rapidly converge failing to produce the cor-
rect approximation of NS in a small number of steps, can be the method ofnonlinear inverse
syntheses. The strategy of this method is similar to that widely used in the fiber Bragg grat-
ings design [54]: one starts from the given (encoded) NS profile in the spectral domain (and
corresponding reflection coefficientr(ξ ), Eq. (7)) and then reconstructs the corresponding pro-
file in time domain by employing the backward NFT, i.e. by solving the corresponding GLM
equation. For the focusing NLSE in the absence of discrete ZS spectrum (solitons), the GLM
equation (in normalized units) has the form [26–28]:

K(t, t ′)+ F̄(t + t ′)−
∫ ∞

t

∫ ∞

t
K(t,λ )F(λ +σ) F̄(σ + t ′)dσ dλ = 0. (50)

Here F(t) designates the backward linear FT ofr(ξ ) (or of R(L,ξ ), if one is interested in
the solution at distanceL); having solved GLM equation (50) forK(t, t ′), the sought profile
in time domain is eventually recovered asq(t) = −2K(t, t ′)|t′→t . After the particular form of
q(t) corresponding to the encoded NS has been found, one launches this profile into the NLSE.
At the receiver we read the output fieldq(t,L), perform the forward NFT, thus getting the NS
N(ω ;L), wind out the accumulated dispersion, and recover the information encodedwithout
nonlinearity-induced distortions. The detailed analysis of this approach is beyond the scope of
this paper and will be published elsewhere.

7. Conclusion

In this paper, we have examined an application of the inverse scattering transform (nonlinear
Fourier transform) to digital signal processing in the coherent communication channel mod-
eled by the integrable NLSE channel. We have demonstrated that thenonlinear spectrum(NS)
associated with this channel can be used for the improvement of the quality of long-haul in-
formation transmission. Without loss of generality, we have illustrated the use of the NS in the
case of the OFDM-coded signal. The advantage of using the NS is that the encoded spectral
content undergoes just a trivial transformation, similar to the dispersive evolution of spectral
component in the linear problem. We would like to stress that the linear spectrum in a nonlinear
channel is distorted and its evolution differs drastically from the evolution in a linear dispersive
channel. In contrast, the change in the spectral phase of the NS can be easily eliminated at the
receiver side, and thus, the informational content can be straightforwardly restored.

To explain the method, we first calculated analytically the NS in the case of a single tone
of OFDM and studied the threshold for the nucleation of solitons. We demonstrated that the
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threshold in the considered case coincided with that for a pure rectangular pulse of the same
energy. For the general situation of several OFDM slots serving as an NLSE input, we showed
that NS is qualitatively close to the linear signal spectrum when the energy of the signal is below
the soliton-creation threshold: In this situation, the NS can be used for information encoding
in the same way as we do with the linear spectrum. The important nontrivial point here is a
calculated nonlinear correction to the linear spectrum.

The approach considered in our paper allows one to perform consecutive elimination of the
nonlinearity-induced interference effects appearing during the transmission through a nonlin-
ear channel, when the input energy of the single information-carrying pulse is not very high.
When the input energy of the pulses block is above the soliton threshold, a more sophisticated
modulation can be needed, e.g. separation of small individual information-bearing blocks, such
that the shape-sensitive soliton creation threshold is not reached; but the straightest way in this
case is to employ the inverse syntheses method briefly described at the end of Subsection 6.3.

Using the expansion of the NS, we propose thenonlinear pre-distortion technique, which
allows one toequalizethe NS with the linear spectrum of the undistorted input signal. Then,
the informational content encoded on the NS can be recovered at the receiver with standard lin-
ear methods after the linear accumulated dispersion has been compensated. We found that our
technique worked well even for a relatively long OFDM sequence, provided that the input pulse
does not nucleate a soliton. We have also demonstrated that our approach is general and works
well also for the Gaussian-based WDM input, where the NS expansion cannot be computed an-
alytically. Further, we analyzed the robustness of our approach against the noise associated with
amplifier spontaneous emission and revealed that even though the quasilinear regime is noise-
dominated, the average error associated with the pre-compensated inputs is always lower than
that for non-processed transmission. We hope that our work represents an important first step in
the development of efficient digital signal techniques based on the inverse scattering transform
capable of eliminating nonlinear distortion of the optical signal in the NLSE channel via pre-
or post-processing using the integrability of the NLSE (2). The forward NFT itself consists in
the solution of just the linear system – the ZS spectral problem (5). We note that the squares
of ZS eigenfunctions (Jost solutions) constitute an orthogonal basis (5), and this paves the way
for various perturbative approaches for the consideration of noise influence and other nearly-
integrable (weakly perturbed NLSE) cases. We anticipate that with the further development of
practical implementation of the proposed approaches, certain nonlinear fiber communication
channels can be effectively linearized. The numerical complexity of the transmission based on
NS and, generally, of the NFT-based methods, can be of the same order of even lower than that
for traditional slit-step back propagation.
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