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Summary 
 

This thesis presents the experimental investigation into two novel techniques 
which can be incorporated into current optical systems. These techniques have 
the capability to improve the performance of transmission and the recovery of 
the transmitted signal at the receiver. The experimental objectives are 
described and the results for each technique are presented in two sections: 

The first experimental section is on work related to Ultra-long Raman 
Fibre lasers (ULRFLs). The fibre lasers have become an important research 
topic in recent years due to the significant improvement they give over 
lumped Raman amplification and their potential use in the development of 
system with large bandwidths and very low losses. The experiments involved 
the use of ASK and DPSK modulation types over a distance of 240km and 
DPSK over a distance of 320km. These results are compared to the current 
state-of-the-art and against other types of ultra-long transmission 
amplification techniques. 

The second technique investigated involves asymmetrical, or offset, 
filtering. This technique is important because it deals with the strong filtering 
regimes that are a part of optical systems and networks in modern high-speed 
communications. It allows the improvement of the received signal by 
offsetting the central frequency of a filter after the output of a Delay Line 
Interferometer (DLI), which induces significant improvement in BER and/or Q-
values at the receiver and therefore an increase in signal quality. 

The experimental results are then concluded against the objectives of 
the experimental work and potential future work discussed. 
 
 
Keywords: asymmetric filtering, nonlinear optics, Raman amplification, offset 
filtering, ultra-long Raman fibre laser 
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Chapter 1 
 

Introduction 
 

1.1. Introduction 

 

In today’s world of readily increasing demand for the transmission of large 

amounts of data at high-speed, optical communications has become the 

backbone of the infrastructure of a highly connected global community. With 

an increase in the use of cloud computing networks to store the data of 

millions of individuals and companies, along with heavy usage services such as 

video and TV streaming services on the rise, the push for higher data rates 

and larger bandwidths is consequential, but also improved data quality has 

become imperative. 

 

When optical fibre was first considered for data transmission it had very high 

loss and the light sources which were used, such as LEDs, had very broad-

linewidths, this meant that the distance the light could travel before being 

absorbed was only a few kilometres. 

With the invention of the laser by Theodore Maiman [1], plus significant 

enhancements by Don F. Nelson and Willard S. Boyle at Bell laboratories [2], 

and further significant improvements led by Charles K Kao in optical 

waveguides and the manufacture and design of optical fibres, for which he 

won the Nobel Prize for Physics in 2009 [3, 4]; led to an upsurge in the late 

1960s and early 1970s into how light travelling through an optical fibre could 

be successfully used and commercialised [5]. 

 

One of the first commercial silica fibres was SMF-28 by Corning, which gave an 

attenuation of 0.2dB/km. There are now a range of different fibres, from low 

absorption fibre to those with large effective areas (LEAF and TW) [6, 7, 8, 9, 

10]. 
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Later developments came within the area of optical amplifiers with the 

invention of Erbium-doped Fibre Amplifiers (EDFAs) [11], which meant low 

loss and low noise optical transmission was available and would lead to an 

increase in the lengths light could be transmitted. 

 

Raman amplification is based on Raman scattering, a type of inelastic radiative 

effect discovered by Sir Chandrasekhara V. Rāman and Sir Kariamanickam S. 

Krishnan in liquids [12], and by Grigory Landsberg and Leonid Mandelstam in 

crystals [13]; both discoveries were in 1928. This effect allows the 

amplification of light over long distances without the need for repeatered 

sections, although Raman amplifiers can be used to reduce the number of 

repeatered sections, as it allows almost lossless transmission up to 250km 

[14, 15], where EDFA is repeatered typically every 70km [16]. 

 

One of the major constraints for ultra-long haul transmission is cost. To build 

or replace transmission network infrastructure is very costly, so it is intended 

that these networks, once built, can be used for many decades. With the need 

for high data rates and larger bandwidth requirements some of the older 

systems cannot cope and will need replacing, but a lot of these are of a 

repeatered design [16, 17], which means there are amplifier sections 

stationed every few kilometres within the transmission network. 

 

In more modern transmission spans unrepeatered techniques can be used. 

Examples of this are remote optically pumped amplifiers (ROPA) which are 

mainly based on Erbium-doped Silica fibres [18, 19, 20, 21, 22, 23, 24, 25], 

but techniques using Raman are increasingly being considered as they do not 

require specially doped fibre but can use normal silica fibres such as SMF-28. 

These techniques can be used in either repeatered or unrepeatered 

transmission designs. 

 

Ultra-long Raman fibre lasers are a good example of an amplification method 

with relatively low loss, flat gain, and low power difference over the 

transmission span [26, 14, 15, 27, 28, 29, 30, 31]. 
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In submarine spans repeatered techniques are still used; this is due to the 

extremely long distances needed for intercontinental communications, and the 

fact that fibre passes through a medium that is very difficult to access i.e. at 

oceanic depths [16], so reliable tried and tested technology is required. 

 

 

1.2. Thesis Overview 

 

This thesis explores the following specific areas: The first area to be explored 

was the potential improvements within long-haul transmission by using Raman 

amplification techniques. The second area explored was to confirm simulated 

improvements at the receiver using offset filtering in DPSK modulated signals. 

By using specific types of Raman amplification, in this case ultra-long Raman 

fibre lasers, a comparison with the current state-of-the-art can be made to 

find which technique gives the best overall improvement. This comparison is 

made with EDFA as well as with other Raman amplification techniques, plus 

the difference between repeatered and unrepeatered amplification. 

Offset filtering improvements depend on the configuration and the number of 

filters, as the strongly filtered regime is in effect a cascade of devices that 

have filtering effects on the signal. Using DPSK requires a Delay Line 

Interferometer (DLI) and it is the effect on the outputs from this device, by 

using filters, which is investigated.  

 

This thesis contains the following chapters: 

 

 Chapter 1 is a general introduction to the topic of optical systems and 

states the objectives of the experimental work within this thesis. 

 

 Chapter 2 gives background information on optical systems, including 

optical fibres, optical noise mechanisms, linear effects such as 

dispersion, non-linear effects such as SPM, XPM, FWM, Rayleigh 

scattering, Brillouin scattering and Raman scattering. Also discussed are 

transmitter and receiver types and their advantages and disadvantages 

along with amplification techniques; for instance EDFA and Raman 

amplification. Different modulation techniques are also considered. 
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 Chapter 3 is an experimental chapter with more specific background on 

ultra-long transmission using Raman amplification, specifically ultra-

long Raman fibre lasers (ULRFL), with comparisons against lumped 

Raman amplification and other amplification techniques. The 

experimental results and conclusions are contained after the discussion. 

 

 Chapter 4 is mainly an experimental chapter, with a small amount of 

background on offset filtering and it’s applications in optical systems. 

The experiments consist of placing filters in different combinations to 

compare with previously simulated results [32]. The results of the 

different experimental configurations are then summarised and 

concluded. 

 

 Chapter 5 is the culmination of the thesis and is where the overall 

conclusions, based on the experimental results, are given and compared 

to the initial objectives of the thesis. 

 

 

My contribution to the state of the art consist of setting up the dispersion 

compensation for use with the ULRFL experiment; altering the time delays 

between the different photodiodes used for balanced receiving; splicing 

together of the Raman fibre spans used in the experiments; the 

characterisation of the pre and post compensation amplifiers for 240km and 

320km distances, and the recording of BER measurements for the 240km 

distance for ASK and DPSK modulation types. 

 

For the offset filtering, my contribution was the setup of the experiments, 

making the correct length of fibre for the delay between the Constructive and 

Destructive ports, adjusting the losses so that both filters had the same loss, 

measuring the BER with respect to offset wavelengths and making sure the 

measurements were optimised. The recording of all measurements relating to 

the process of offset filtering using the DLI and the Waveshaper, and the 

analysis of those results. 
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Chapter 2 
 

Optical Communication Systems 
 

2.1. Introduction to Optical Systems 

 

Optical systems are simply those systems which deploy light to transmit data 

in comparison to electrical or RF systems which use RF frequencies to do the 

same. 

 

A typical optical system uses many connections to route transmitted signals to 

their expected receive points. These systems consist of components such as 

Optical Crossconnects (OXC) for wavelength switching, Add/Drop Multiplexers, 

Filters and Regenerators. 

 

OXC’s allow the coupling of signals to different paths; this is usually via 

different wavelengths being switched. Most OXC’s consist of an Arrayed 

Waveguide Grating (AWG) which conjugates multiple wavelengths together or 

separates them, these are also known as wavelength cross-connects or WXC’s. 

These can either be static or dynamic; the difference being that dynamic WXC 

has optical switches between the multiplexer and the demultiplexer [33]. 

 

Multiplexers are a major part of optical networks and are used to switch 

between 2 or more inputs or outputs thus allowing multiple signals to be 

passed through a system, demultiplexers do exactly the opposite. Alternatively 

multiplexers can be used as a type of wavelength switching device, and are 

used in the modulation of signals for Wavelength Division Multiplexing (WDM) 

as well as Time Division Multiplexing (TDM). They can also be used in a 

filtering device as they will reject some wavelengths but not others, they also 

help in equalising the gain from optical amplifiers and filtering out noise and 

this is what we are simulating in the experimental setups. 
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There are different kinds of multiplexer; most common are Wavelength 

Add/Drop Multiplexers, they are used to change the bit-rate of the incoming 

signals to a higher or lower bit-rate, depending on what is required [34]. 

An example of the above devices in a network is shown in Figure 2.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.1 – Typical network with Optical Cross-connects (OXCs) and Optical Add-
Drop Multiplexers (OADMs) and connecting Fibres. 

 

There are many different techniques that allow signals to be regenerated 

purely by optical means without using techniques involving electrical-optical-

electrical conversion. The main types of repeatered techniques are in the 

realm of using amplification with a physical presence in the network such as 

EDFA’s and Hybrid MZI’s, the latter use Silicon Optical Amplifiers (SOAs) in 

their design. The Unrepeatered fibre techniques use a number of amplification 

technologies; some have laser sources based just after the transmitter and/or 

just before the receiver in the network, such as with Raman amplification, 

whilst others use doped fibre within the transmission span. Unrepeatered 

amplification based on Raman scattering is also used to create a 

Supercontinuum, which is a flat gain broadband technique that is useful for 

WDM signals. 

 

A 

B 
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Some unrepeatered techniques involve the use of a piece of Erbium-doped 

fibre, called a ROPA (Remote Optically Pumped Amplifier), which is placed 

around 100km from the receiver to boost the signal [25, 35]. This process 

involves sending a pump laser with a wavelength around 1480nm from the 

receive end of the transmission span. The 1480nm laser pumps the ROPA in a 

counter-propagating direction when compared to the direction the signal is 

travelling in the fibre. The use of 1480nm as the pump wavelength rather than 

980nm is due to 1480nm having a lower loss when travelling through silica 

fibres, and the availability of lasers at this wavelength with higher output 

powers when compared to 980nm pumps. These advantages outweigh the 

issues of 1480nm pumps being less efficient and generating more noise 

comparative to 980nm pumps. Although ROPA is a successful technique, it 

involves the addition of Erbium Doped Fibre (EDF) within the transmission 

fibre span, which adds costs to the network. More on EDFAs can be found in 

Section 2.6. 

 

A list of recent unrepeatered experiments is shown in [17], while an example 

of an Erbium-Doped Fibre (EDF) Repeatered experiment is summarised in 

[25]. A review of the current literature on repeatered and unrepeatered 

transmission can be found in Chapter 3 Section 3.1. 

 

The design of the receiver is important; these can be either of Coherent or 

Direct-Detection design. The Coherent receiver is much more complex as it 

needs information relating to the modulation format being used, as with phase 

or frequency modulations where the phase or frequency needs to be known at 

the receiver so the signal can be demodulated. Polarisation, phase and 

frequency tracking are usually used so the receiver can identify how to 

correctly demodulate the signal. For Direct-Detection the receivers are much 

simpler, not needing any prior information for demodulation they can use 

purely optical means, such as Mach-Zehnder Interferometers and photodiodes.  

 

This does mean that in general these types of receiver are less sensitive as the 

information about the signal is unknown and ambiguous, so polarisation and 

phase will not be known. It also means that the transmitter and transmission 

span need to be controlled in the way they affect the phase and polarisation as 
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it emerges and then travels down the fibre, as any changes may corrupt the 

data and effect the received signal. Optical noise such as ASE is not filtered 

out automatically, as with Coherent designs, as the Coherent receiver mixes 

the signal with a Local Oscillator (LO) which reduces the effect of optical noise 

[36, 37]. More on these types of receiver can be found in Section 2.5. 

 

Special fibres can also be used, such as True Wave (TW), Large Effective Area 

Fibre (LEAF), both types of Non-Zero Dispersion Shifted Fibres (NZDSF), and 

Ultra-Low Loss (ULL) fibres, but using these means replacing current network 

infrastructure and therefore adds cost [33]. For more information on these 

types of fibres see Section 2.2. 

 

Electrical dispersion compensators are also used; these can be placed before 

or after transmission spans to create pre or post-compensation for known 

chromatic dispersion. An Electrical dispersion compensator was used in some 

of the experiments presented in this thesis and compared with dispersion 

compensation using fibre [36]. The results and analysis relating to this can be 

found in Section 3.4 and Dispersion management can be found in Section 

2.7.1.1. 

 

Modulation is also a key issue in optical communication systems, as the 

modulation chosen will depend on many factors, such as how many WDM 

channels are used, how much data needs to be sent, the quality of the 

resulting signal and the complexity of the transmitter and receiver. Common 

types are On-Off Keying (OOK), which is the simplest type of Amplitude Shift 

Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying 

(DPSK) and Differential Quadrature Phase Shift Keying DQPSK.  More on 

Modulation can be found in Section 2.4.2. 

 

Linear and Non-linear impairments are major issues in optical communication. 

Linear effects are those such as Dispersion, which broadens optical pulses in 

time as they travel through the fibre; see Section 2.7. For Non-Linear 

impairments such as Brillouin Scattering and Rayleigh scattering, which reduce 

the signal quality and power, will be discussed in Section 2.8. 
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2.2. Optical Fibre Types 

 

The most common optical fibre in use in optical fibre networks and 

transmission spans is SMF-28 which is a single mode fibre that has been 

around commercially since the 1970s. It has become ubiquitous due to its cost 

per km and fairly low loss of 0.2dB/km. Although Single Mode Fibres (SMFs) 

were around prior to Multi-Mode fibres, MMFs have larger Numerical Aperture 

(NA) and so can couple more light, this was important when using LED light 

sources where it was difficult for the diffuse light to couple into SMFs with their 

low NA. When semiconductor lasers were invented this marked a sea-change 

as it was now easier to couple light into SMFs, so their higher bandwidth and 

use at longer wavelengths could be taken advantage of. Since then however 

SMF has been increasingly used in many applications, especially long-haul 

applications. MMFs are still used for low power short-links. Other advantages 

of SMF over MMF include smaller loss per km and attenuation consistency, as 

MMFs loss depends on the mode profiles travelling through the fibre, plus 

dispersion is a major issue which precludes its use at longer lengths [7].  

Although SMF-28 is the main fibre type in use today, there are many other 

types that have important advantages, as well as disadvantages, when 

comparisons are made. 

 

 

 

 

 

 

Figure 2.2.1 – Typical structure of an SMF-28 optical fibre. 

 
Large Effective Area Fibre (LEAF) and True-Wave (TW) fibres are types of Non-

Zero Dispersion Shifted Fibre (NZDSF).  

 

Due to the ଵ
∝
 relationship larger Aeff has with non-linearities, where ∝ is the 

fibre loss, the Aeff for NZDSF can be smaller than for SMF-28 type fibres; this 

is due to balancing the reduction in dispersion, a linear effect, with non-

Core ~ 8.2m 
 Cladding 
 ~ 125m 

Protective Coating 
~ 245μm 
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linearities, as fibres with larger Aeff suffer from an increase in dispersion while 

the non-linearities are decreased.  

The larger effective area of the fibre core means that LEAF has an advantage 

over SMF-28, but in practice this balancing effect depends on the wavelength 

of light passing through the fibre, as there is some wavelength dependency for 

both dispersion and non-linear effects which can reduce this advantage [6, 7, 

33, 38, 39, 40, 41]. 

 

NZDSF were designed to minimise Four-Wave Mixing (FWM) (see Section 

2.8.3), as FWM occurred when the dispersion in the fibre was at zero. It made 

sense to create a fibre where the dispersion was non-zero to minimise FWM, 

this also minimises other non-linear effects, but the dispersion inherent in the 

fibre must be small so as not to significantly increase the overall dispersion in 

a system; typically the dispersion figure is somewhere between 3ps/km/nm 

and 8ps/km/nm [7] of either normal or anomalous dispersion, with the zero 

dispersion wavelength outside of the EDFA bandwidth. 

 

NZDSF can also be useful in pre-chirping a signal before transmission, or post-

chirping before a signal reaches a receiver, and therefore correcting the known 

amount of dispersion either before or after transmission. 

 

In summary, the design of LEAF gives an advantage over fibre such as SMF-28 

by allowing more light into the fibre core because its acceptance angle is 

larger, this means the loss can be reduced and the effects from non-linearities 

are smaller when the signal power is high [42]. The reduction in the effect of 

non-linearities which occurs in LEAF is due to a larger effective area having an 

inversely proportional relationship with non-linear regimes [7]. A disadvantage 

is the increase in chromatic dispersion, which although small can build up over 

ultra-long distances. When used with distributed Raman Amplification LEAF 

reduces the efficiency as it is based on non-linear effects [1]. 

 

Ultra-Low Loss (ULL) fibres are fibres made to produce very low attenuation 

over long distances by doping to supress Rayleigh scattering (see Section 2.6), 

for example Corning SMF-28 ULL fibre and Sumitomo Pure Advance SE-12 

fibre both have an attenuation of 0.18dB/km [8, 43], while the Corning 
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Vascade EX2000 has an attenuation factor of 0.16dB/km [9] and the 

Sumitomo Z-Fiber has an attenuation factor of 0.17dB/km [10]; both of these 

fibres are suitable for submarine transmission spans. There are lower 

attenuation fibres but they are usually specifically made to order and can 

reach as low as 0.1484dB/km (at 1570nm) [7]. 

 

ULL fibres are usually low attenuation versions of SMF-28, NZDSF or LEAF, so 

you have the advantages those types of fibre bring, along with low loss [8, 9, 

43]. 

 

 

2.3. Optical Loss and Noise Mechanisms 

 

Two major issues for long and ultra-long transmission are loss and noise. An 

example of loss is in a silica optical fibre where signal attenuation occurs at 

approximately 0.2dB/km. This loss is due to the absorption of light within the 

fibre and the refracting of light from the core and into the cladding, where 

most of it is either totally refracted out of the fibre or absorbed in the 

cladding. The loss, although small, can over thousands of kilometres have a 

significant impact on the transmitted signal and receive errors can be huge.  

 

One of the regimes found to overcome this problem is using optical amplifiers 

to amplify the signal and increase the eventual receive power, the problem 

here is that whilst the signal is amplified so is the noise associated with the 

signal, and this adds up as each amplifier, as well as amplifying the original 

transmission noise, adds its own noise to the signal. The noise from amplifiers 

is known as Amplified Spontaneous Emission or ASE, and is discussed in more 

detail in Section 2.3.1. 

 

Other types of noise that are important in optical systems are: 

 

 Relative Intensity Noise transfer:  RIN transfer is where the noise of the 

laser is transferred to the signal within the laser cavity. This is similar to 

Signal-Spontaneous Beating but occurs mainly in high power Raman 
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pumps. RIN transfer is a major issue in Raman amplification and is 

covered in more detail in Chapter 3 Section 3.3. 

 

 Signal-Spontaneous Beating: This type of noise is caused by the mixing 

of the signal frequencies with frequencies that are contained within the 

noise caused by spontaneous emission; this creates a frequency 

difference of ∆݂ which is seen as additional noise at the output. Also the 

amount of ASE transferred is only half as the signal is polarised while the 

noise is not polarised at all. 

 

 Spontaneous-Spontaneous Beating: this is the different noise frequencies 

within the ASE mixing with each other causing a frequency difference of 

∆݂ which then interacts in the system as additional noise. 

 

 Shot Noise: this is produced by the current created by the uneven flow of 

electrons caused by their random distribution within the gain medium, 

and the timing difference in the arrival of photons due to this distribution. 

 

 Thermal Noise: this type of noise is caused by the vibration of electrons 

within the gain medium. This is similar to how molecules behave. As the 

temperature of the gain medium increases, the vibrations of the electrons 

intensify and therefore the noise increases. This type of noise is also 

known as Johnson or Nyquist noise. 

 

There is also beat-noise relating to the beating of shot noise and the signal, 

and shot noise and ASE; this type of noise is small compared to the other 

signal and ASE beat noises considered previously, and can therefore generally 

be neglected when using laser sources and high gain amplifiers. Shot noise is 

a greater problem with LEDs and related light sources and low gain amplifiers 

due to their lower output powers. Thermal noise can also be an issue, but for 

temperature controlled lasers and amplifiers, for example those using a 

Thermo-Electric-Controller (TEC), it is usually relatively stable and it can be 

ignored. 

 



   
 

28 
 

The noise output from an amplifier such as an EDFA can be given by the 

following equations, assuming a narrow bandpass filter is used. If a filter is not 

used the optical bandwidth of the amplifier should be used instead and added 

as a term in the equations. 

 

The output power of the amplifier with noise in Watts is: 

 
      〈 ௢ܲ௨௧〉 ൌ ܩ ௦ܲ ൅ ஺ܲௌா   Eq. 2.3.1 
 

Where ܩ ௦ܲ is the amplified signal and ஺ܲௌா the ASE noise developed in the 

amplifier. Then the noise power can be written as: 

 
      ஺ܲௌா ൌ  ௢   Eq. 2.3.2ܤ஺ௌாߩ2
 

Where the term ߩ஺ௌா is the noise spectral density in a single polarisation and ܤ௢ 

is the bandwidth of the narrow bandpass filter at the central wavelength of the 

signal. The ASE terms are made up of Shot noise, Signal-Spontaneous beating 

and Spontaneous-Spontaneous beating [44]. 

 

The signal-spontaneous beating is caused by the interference between the 

signal and ASE noise and is therefore additional to the ASE. As the signal light 

is polarised the ASE is not, thus the ASE only interferes with one polarisation 

of the signal-spontaneous beating, which means that only half of the ASE 

noise power will contribute to signal-spontaneous beating noise. 

The spontaneous-spontaneous beating can be classed as the intensity noise of 

the ASE, and so, unlike signal-spontaneous beating, it is not an addition to 

ASE but a part of it. The separate noise terms can be calculated using the 

following. 

 

The signal-spontaneous beating can be given by: 

 
ௌ௜௚ିௌ௣௢௡ߪ     

ଶ ൌ ܩ	ଶݎ4 ௦ܲߩ஺ௌாܤ௘    Eq. 2.3.3 
 

Where ߪௌ௜௚ିௌ௣௢௡ଶ  is the variance of the photocurrent due to the signal-

spontaneous beating while ݎ is the responsivity and ܤ௘ is the electrical 

bandwidth of the filter. 
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For the spontaneous-spontaneous beating we have: 

 
ௌ௣௢௡ିௌ௣௢௡ߪ     

ଶ ൌ ஺ௌாߩଶݎ2
ଶ ௢ܤ௘ሺ2ܤ െ  ௘ሻ   Eq. 2.3.4ܤ

 

Where ߪௌ௣௢௡ିௌ௣௢௡ଶ  is the again variance of the photo current due to the beating 

noise, this time spontaneous-spontaneous, all the other terms have been 

identified previously. 

 

The output SNR can be calculated using the equation Eq. 2.3.5. The noise 

term takes into account only signal-spontaneous beat noise. Spontaneous-

spontaneous and shot noise can usually be neglected due to the signal-

spontaneous beat noise being much larger in magnitude.  

 

Therefore it can be shown that: 

 
      ܴܵܰ௢௨௧ ൌ

ሺ௥ீ௉ೞሻమ

ସ௥మ	ீ௉ೞఘಲೄಶ஻೐
   Eq. 2.3.5 

 

With ܫ ൌ ܩݎ ௦ܲ, Eq. 2.3.5 can simplify to: 

 
      ܴܵܰ௢௨௧ ൌ

ூమ

ఙೄ೔೒షೄ೛೚೙
మ     Eq. 2.3.6 

 

An example of how loss and noise in optical systems effects how they are 

transmitted and received is given here: 

 

Amplifiers are placed at intervals along the transmission span, which is 

determined by the point at which any additional attenuation would make it 

very difficult for amplification to recover the OSNR sufficiently, as amplification 

of the noise floor occurs by the same amount as amplification of the signal. If 

the signal is at low levels then the ratio of signal to noise is much lower, hence 

lower OSNR, whilst if the signal is amplified at a higher power then the OSNR 

is much larger. There is a balancing point for when the OSNR is at its 

minimum and can still have the signal data recovered at the receiver without 

any errors. This states that the loss in the fibre plus the noise mechanisms 

such as ASE create a position that, if not managed, will make a signal become 

unrecoverable, hence why loss and noise management are important factors in 

optical systems [33, 40, 44, 45]. 
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2.3.1. Amplified Spontaneous Emission (ASE) 

 

Amplified Spontaneous Emission, or simply Spontaneous Emission, is the 

process where atoms drop energy states without any need for additional 

energy being available via electrical or optical means, but because it happens 

at random and the photons released travel in a multitude of different 

directions, it cannot be classed as amplifier gain. This means that ASE can be 

classed as “noise” in optical systems as it is a totally random process (see 

Section 2.6 for an explanation of stimulated emission in EDFAs and Section 

3.2. in Raman Amplification). 

 

Looking at it in more detail, we have different energy levels available for 

electrons to travel between. As an example there are 2 levels, E1 and E2, 

available for electrons to change between, so when an electron drops from E2 

to E1 there is a photon released with the energy hfp. The rate at which the 

electrons change between these levels is based on the Planck Hypothesis and 

is instantaneous; any time delay is due to other interactions occurring within 

the energy level or band, slowing the total emission/absorption process. 

 

The population inversion is dependent on the number of atoms that have 

electrons at those levels and is defined by: 

 
 ௦ܰ௣ ൌ ଶܰଵ ൌ

ேమ
ேమିேభ

    Eq. 2.3.7 
 

Where the electron densities are represented by N1 and N2, and the overall 

state of the population inversion is represented by Nsp [45, 46, 47, 48].  

 

 

Also the rate of spontaneous emission is the inverse of the spontaneous 

emission lifetime, so that: 

 
 ଶܰଵ ൌ

ଵ

ఛమభ
    Eq. 2.3.8 
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From all of the previous equations it can be shown that the spontaneous 

emission is equal to N2/21 and the power of the spontaneous emission is 

hfpN2/21. 

  

The overall effect is an incoherent emission over a wide range of frequencies, 

which appears as noise at the output of the amplifier. An increase in the ASE 

from the amplifier is realised when the amplifier output power is increased and 

eventually reaches its saturation point. As the amplifier becomes saturated, 

the amount of ASE generated rises due to an escalation in the rate of 

wideband spontaneous emissions, which overtakes the production of 

narrowband stimulated emission by the light from the input signal; hence at 

this point ASE becomes almost self-generating and thus the ASE overwhelms 

the signal and the output from the amplifier is noisy. The overwhelming of the 

signal by ASE is represented by a lowering of the signal to noise ratio. This 

lowering of SNR can be mitigated by using filters and isolators to control the 

ASE [45, 46, 47, 48]. 

 

Another aspect of ASE is called ASE Beat Noise, which is made up of two 

separate components. These components are the beat noise between the 

signal frequency and the frequency of the ASE, and are known as the signal-

ASE beat noise. Secondly there are the frequency components of the ASE 

acting against themselves; this is called the ASE-ASE beat noise. The signal-

ASE beat noise is channel dependent, while the ASE-ASE beat noise is not. The 

beat noise itself is caused by minute vibrations between frequencies that are 

very close to each other, causing addition and subtraction to occur, in turn 

creating a “beat” between the frequencies [49]. 

 

 

2.4. Optical Transmitters 

 

Optical transmitters turn information in the electrical domain into information 

in the optical domain using the manipulation of light. In general there are two 

main types of transmitter, those where the light is modulated within the laser, 

called internal or direct modulation, and those that use external modulation. 
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The direct modulation uses the input current to the laser itself to adjust the 

output power, above threshold, to indicate a 1 or a 0. This type of modulation 

is fine for simple modulation techniques such as On-Off Keying (OOK) and is 

cheaper, but it is limited for use with more complex modulation techniques. 

One exception to this is semiconductor lasers due to the material that they are 

made from. These can incorporate a modulator called a semiconductor electro-

absorption (EA) modulator; this uses the Stark Effect to reduce the band gap 

within the modulator when an electrical field is present, thus allowing greater 

absorption of photons. This creates a compact transmitter which can be used 

up to fairly high transmit rate such as 10Gbps, at higher data rates external 

modulation becomes the better choice [33]. 

 

External modulation allows much more freedom as external modulator can 

change the amplitude, the phase, or the timing of the light pulses. These can 

be EA or, most usually, Lithium-Niobate (LiNbO3) modulators. The Lithium-

Niobate modulator use the electro-optic effect where the refractive index of 

the waveguides inside the modulator, which are made of lithium niobate 

crystal, can be altered by a voltage applied to the surface. They are usually 

based on thin-film technology. The designs of the Lithium Niobate modulator 

are based on a Mach-Zhender Interferometer which is more flexible when 

compared to an EA modulator, plus induces less chirp on the optical pulses 

[33]. 

 

 

2.4.1. ITU 100GHz and 50 GHz DWDM Grids 

 

The ITU 50GHz and 100GHz Dense Wavelength Division Multiplex (DWDM) 

Grids are the standard channel spacing set by the International 

Telecommunications Union for all telecommunications across the globe [50].  

 

A standardised set of channels is important as there is a need for the 

knowledge that a channel, for example Channel 27, is set at 1550.52nm in the 

C-Band in the 50GHz grid, or 1550.92nm in the 100GHz grid. If these 

channels are not adhered to then communication between continents would be 

impossible, as one country could use 1550.34nm whilst another might use 
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1550.62nm. This alone would create incompatibility, but it would also create 

problems when data from other countries using the grid tried to use a receiver 

from a non-compatible country, plus if data using grid Channels, and those 

that are not, are passed through a network, ISI and crosstalk would become a 

major problem possibly degrading data beyond recognition and thus 

undermining global communications. An ITU grid at 200GHz is also available. 

 

 

2.4.2. Modulation Formats 

 

There are a number of different modulation formats, the simplest being On-Off 

Keying (OOK) which is an example of Amplitude Shift Keying (ASK). 

 

Firstly there are two ways of converting a train of electrical pulses by 

modulating the lightwave. These are Return-to-Zero or RZ and Non-Return-to-

Zero or NRZ. These relate to the way the light is transformed from a 

Continuous Wave (CW) to a modulated one.  

 

The NRZ is the simpler of the two as it only requires a single modulator to 

convert light to on or off over the bit slot of the clock rate being used, which is 

equal to 1 and 0 respectively and could be said to have a duty cycle of 100%, 

where the duty cycle is the percentage of the bit slot that is used during 

modulation.  One disadvantage of using NRZ is when there is a train of 1’s in a 

row they become a block where transitions between the bits is 

indistinguishable, this is the same with 0’s; this can make it difficult to recover 

the clock rate. One of the advantages is that a much smaller bandwidth is 

occupied due to  ݂ ൌ ଵ

்
  where a larger temporal pulse means a smaller spectral 

pulse and visa-versa. 

 

RZ only uses part of the bit slot which is where the comparison to duty cycle 

comes in. NRZ can be said to have a duty cycle of 100% as it fills the bit slot, 

while RZ can have numerous different duty cycles which can be calculated by 

ߩ ൌ ೚்೙

೚்೙ି்೚೑೑
, although the most common are 33%, 50% or 67%. This duty cycle 

is created by using a second modulator to alter the amount of time the light 
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occupies the bit slot. This is done by having a pulse carver which can be 

adjusted to provide the correct duty cycle.  

 

Since RZ has a gap between pulses, i.e. the transitions between pulses can be 

seen, the clock rate can be recovered more easily, but the same issue as NRZ 

applies with a train of 0’s. This also limits Inter-Symbol Interference (ISI) and 

it is therefore more of an issue with NRZ. A downside is that a higher peak 

power is required per bit for RZ than the equivalent NRZ pulse to keep the 

overall energy of the bit slot the same [33, 45]. 

 

An example of the differences between RZ and NRZ can be seen in Figure 

2.4.1. 

 

 
 

 

 

 

 

 

 

 
Figure 2.4.1 – Diagram showing difference between RZ (a) and NRZ (b) formats. 

 

A summary of some of the most commonly used modulation formats are as 

follows: 

 

 RZ: Return to Zero is where the pulse bit 1 occupies only a fraction of 

the bit period, this is usually a 50% duty cycle, but can be varied to 

other duty cycles such as 67% and 33%. The 0 bit is not represented by 

a pulse, but by the lack of one, so therefore the noise floor. One 

advantage is that it is easier to get a clock recovered due to the pulses 

not joining up, but this means a larger bandwidth, up to double 

compared to NRZ, and a higher peak power at the transmitter to 

maintain the same energy per bit as NRZ [33]. 

Examples of RZ spectra can be seen in Figure 2.4.3 (b) and (d). 

     0                 1                 0                 1                 1                  0 

RZ 
Format 

(a) 

NRZ 
Format 

(b) 
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 NRZ: Non-Return to Zero is a format that uses the whole of the bit 

period for 1, and no pulse in the bit period for 0. The advantage here is 

the smaller Bandwidth used to transmit NRZ data, however, if the bit 

rate clock needs to be recovered it is very difficult to do without 

additional information, as a string of 1’s or 0’s means there are no pulse 

transitions for the clock recovery to latch on to [33]. 

 

 CSRZ: Carrier Supressed Return to Zero is the same as RZ, but the 

signal carrier is supressed, just leaving the sidebands with the data 

encoded in them.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.2 – Diagram showing CSRZ modulation format. 
 

Due to the broad spectrum of CSRZ, caused by its generation using MZI 

and half-bit rates, the resultant effect on the temporal pulse is the same 

as having an RZ 67% duty cycle. The half-bit rates used in the 

generation of CSRZ cause the spectrum to show peaks at േܤோ 2⁄ 	from 

the centre of the spectrum, as shown in Figure 2.4.3 (b), which means 

there is no central peak present when compared to RZ [51]. 

 

CSRZ can be classed as a pseudo-multilevel modulation, which is a type 

of “memory modulation”, which when the data is transmitted an 

additional bit is present, in this case the transmitted bits are +1, 0, -1, 

where 0 = 0 while +1 and -1 = 1. This is caused by using a MZM to 

modulate the signal, where the peak relating to 1 is seen alternately on 

each arm of the MZM, this in turn causes the resulting total phase to be 

0 which cancels out the carrier, hence the name. The difference in the 

sign is a phase shift, but in the context of the transmitted data the 

phase information is not used, but as the phase stays the same it has 

     0               + 1                0               + 1              - 1               + 1 

CSRZ 
Format 
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“memory”. However, the additional symbol can be harnessed to 

improve the performance against non-linear impairments [51]. 

 

 
(a)       (b) 

 
(c)       (d) 

Figure 2.4.3 – Graphs showing Spectral responses of (a) CSRZ-ASK, (b) 33%RZ-ASK, 
(c) CSRZ-DPSK and (d) RZ-DPSK formats. 

 
The phase shifts in CSRZ reduce the potential for Intersymbol 

Interference (ISI), and therefore the effects of dispersion; they also 

make the signal more robust to non-linear impairments as the π phase 

changes at every bit, reducing the potential of Self Phase Modulation 

(SPM) and Cross-Phase Modulation (XPM) through concurrent pulses 

interfering, i.e. destructive interference; this can also reduce 

Intrachannel Four-Wave Mixing (IFWM). 

Examples of CSRZ spectra can be seen in Figure 2.4.3 (a) and (b). 
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 ASK: Amplitude shift keying, an example of which is On-Off Keying or 

OOK, is the simplest type of modulation, as it involves either turning the 

light source on or off, or using an external modulator to do the same 

thing [33]. Examples of ASK spectra can be seen in Figure 2.4.3 (a) and 

(b). 

 

 PSK: Phase Shift Keying involves the use of the phase of the light 

source carrying information. An external phase modulator is driven by 

an electrical signal that uses the absolute phase to encode data, usually 

giving a phase of either 0ᵒ or 180ᵒ. The biggest issue is that once the 

phase drifts off then it is difficult to retrieve and errors can occur [52]. 

 

 DPSK: Differential Phase Shift Keying, like PSK, uses phase to carry 

information. In this case it is the relative difference between the phases 

of two adjacent pulses, rather than absolute phase of a pulse that is 

encoded with information, for example 0 can equal 0ᵒ and 1 can equal 

90ᵒ changes. This can only be carried out by coding an already created 

signal, such as an RZ pulse train, which is synchronised with the 

modulator to allow the phase information to be “added” to the RZ 

signal. This requires the data to be prepared at the transmitter by going 

through an XOR gate which has a feedback loop; hence a differential in 

the phase is created. 

 

For a receiver all that is needed is a MZI with a known delay in one of 

its arms; this allows simple demodulation of the phase information 

when the two outputs from the MZI are connected to a balanced 

receiver (see section 2.5). In effect this can double the useful data rate 

by doubling the number of symbols per bits, which means that the 

efficiency per bit increases compared to PSK, also using phase 

transitions means that it doesn’t matter if the actual phase drifts off as 

long as the phase difference stays the same [52]. 

Examples of DPSK spectra can be seen in Figure 2.4.3 (c) and (d). 

 

 QPSK: Quadrature Phase Shift Keying is a level modulation technique 

which quadruples the amount of data one optical pulse can carry by the 
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way it is encoded, in this case 4 symbols per bit, where the change in 

the actual phase needs to be known. The downside to this is the same 

as PSK that if the phase isn’t constant over the transmitted distance 

then errors will occur [52]. 

 

 DQPSK: Differential Quadrature Phase Shift Keying is similar to DPSK in 

that is uses transitions in phase rather than absolute. It uses 4-symbols 

instead of 2, but uses 2-bits to encode information rather than one as 

with DPSK. An example of using DQPSK is a simple 2 bit code, which 

would have 4 positions, 00, 01, 10, 11, which can be read as 0, 1, 2, 3. 

When these bits are encoded they can have 90ᵒ phase shifts for each 

bit, so 0ᵒ, 90ᵒ, 180ᵒ, 270ᵒ, so a change from 00 to 10 would equal a 

change of 180ᵒ in phase. As with DPSK, the information being encoded 

within the phase transitions rather than the absolute phase gives 

greater protection against errors [52]. 

 

 DB: Duobinary is a type of Correlative-Level Coding, which is in effect 

the process of creating ISI to get the correct data output. When coded 

DB uses a three level signal, 1, 0 and -1 of which 0 always has to follow 

1 or -1, which leads to some resilience to dispersion.  

In this case DB is not generated but is a consequence of DPSK being 

used, as after demodulation the output from the DLI is DB. This occurs 

as the DLI is setup to introduce a 1 bit delay, in effect automatically 

converting any signal to DB. The downside is that if one error is 

transmitted, then that error cascades through the data until another 

error occurs. For these experiments it is only used just before the 

receiver to help create the building block for improved balanced 

receiving. It initially occurs on the Constructive port, but using offset 

filtering means it can be in effect transferred to the Destructive port 

[51, 53]. 

 

 AMI: Alternate Mark Inversion modulation format is a Line Code and is 

also known as BRZ or Bipolar Return to Zero modulation. As with DB, it 

uses three levels, except that positive and negative pulses are 
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recognised as 1, whilst no pulse is a 0 and so requires no additional 

encoding, but has a higher bandwidth requirement than DB.  

In a DLI, or an MZI, this is the output usually seen on the Destructive 

Port, or alternative port to where the DB output is found [51, 53].  

 

Modulation techniques using Amplitude are the simplest as it involves the laser 

being switched on or off, whilst this is effective it is limited by the optical noise 

build-up as well as dispersion. However those systems that use ASK with 

coherent receivers must use external modulation, as the phase still needs to 

be kept nearly the same even though it is not actually used to encode data 

[45]. Another advantage is it is cheap to create transmitters and receivers 

using this type of modulation. 

 

Phase modulation is more complex in that the phase information has to stay 

unaltered as it travels through the fibre, which is a specific requirement for 

PSK, as the data is modulated using actual phase. The receiver must be 

coherent for PSK as the phase information would otherwise be lost. For 

Differential Phase modulation this is not the case, as it is changes in phase 

that need to be recovered, not the absolute phase. The changes in phase 

should be recognised at the receiver as long as the actual phase is stable over 

2 bit slots [45]. The advantages are that they can be coded for use as multi-

symbol modulation which increases the spectral efficiency per bit [33]. 

 

Details of some modulation formats which were used or involved in the Offset 

Filtering experiments can be found in Chapter 4 Section 4.4. 

 

 

2.4.3. Forward Error Correction (FEC) 

 

Forward Error Correction (FEC) is a type of coding used at the beginning of 

data to improve the error rate at the receiver. 

 

There are two types of FEC, Hard-decision and Soft-decision; hard–decision 

FEC is where the error checking gives a probability and chooses either a 1 or a 

0, while with soft-decision FEC gives an output that is a probability of the 
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original symbol plus a confidence level in that probability. This is given as a 

quantised code that usually has more levels than symbol values in the data 

stream, Soft-decision FEC can have a 1.5dB improvement on hard-decision, 

but the receivers are more complex [54, 55]. 

 
 
  

 

 

 

 

Figure 2.4.4 – System with Forward Error Correction (FEC) coding showing bit errors 
in an (8,2) block code. 

 
An example of how FEC works is shown in Figure 2.4.2. An overhead of 2 bits 

is added to the data being sent, which when checked by the FEC decoder 

indicates errors in the data by flagging up one of the parity bits. If a block 

code is used such as in Figure 2.4.2, the FEC encoder adds k dummy check 

bits in front of the data bits which gives a total of n bits to construct an n-bit 

code-word, in this case  k=2 bits and n=10 bits, therefore the n-k bits are 8. 

The parity bits indicate the checksum of the data which is encoded as 00, a 1 

appearing in either parity bit indicates an error has been received. 

 

The terms 1st generation, 2nd generation and 3rd generation refer to the data 

rate that the FEC will be used with; 2.5Gbps and above for 1st Generation 

which gives an improvement of 5.8dB for 7% overhead; 10Gbps and above for 

2nd Generation which gives an improvement of 8dB for 7% overhead, but can 

give a 9.5dB improvement with a 20% overhead, although this can increase 

bandwidth significantly; 100Gbps and above for 3rd Generation can give 10dB+ 

improvement with a 20% overhead. 

 

FEC does not continuously improve with ever higher overhead because with 

higher overheads the data rate has to be increased. An increase in errors 

could be caused in two ways; first by employing higher data rates which 

affects latency when receiving data, plus higher data rates usually mean an 

increase in the complexity of the transmitter and receiver, and therefore a rise 

in the potential for data errors. 

O/E E/O 
FEC 

Encoder 
O/E E/O  FEC 

 Decoder 
Input Output 

Fibre Span 

1 0 1 0 0 1 1 0 0 0  

Transmitted bits Received bits Parity 
Bits 

Parity 
Bits 

1 0 1 1 0 0 1 0 1 0   
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The overhead for a specific data transmission is calculated using the ratio of 

the number of parity or check bits to the number of data bits. So for our 

example in Figure 2.4.2, this would be ܴ ൌ ݇ ݊ െ ݇⁄  which is then 2 8 ൌ 0.25⁄  or 

25% [55]. For real systems, increasing the overhead doesn’t necessarily give 

a relative increase in the systems error correction performance. 

The reason for these differences is that with high data rates more errors are 

likely, plus adding a small amount of redundancy in the data will not make a 

huge difference when increasing the bandwidth, which is a major factor for 

lower data rates. 

 

The FEC limit is based on the Shannon limit, which is defined as the ratio of 

the energy per bit ܧ௕ over the noise power spectral density ଴ܰ which is ܧ௕ ଴ܰ⁄ , 

this gives errorless transmission when the bandwidth has no limitations at full 

channel capacity. This limit in decibels is -1.6dB [54, 55]. Obviously for real 

systems there are many factors that determine that actual Shannon limit for 

that particular system. 

 

 

2.5. Optical Receivers. 

 

Optical receivers are devices that can receive light signals and covert them to 

RF signals, allowing electrical processing of the data. 

 

The receiver design is another aspect that can improve the quality of the 

received signal, but it is a balance of complexity versus actual improvement. 

 

Comparing Direct-Detection and Coherent detectors we see that Coherent 

receiving requires a Local Oscillator (LO) and sometimes a Frequency Lock 

Loop (FLL) which adds design complexity for DPSK receiving, which Direct-

Detection does not. An increase in receiver noise can occur due to ASE noise 

from the LO laser and also noise from the LO beating frequency, although this 

is only small. Due to increased use of amplifiers in these systems, ASE has a 

greater effect on Direct Detection. When compared to Direct Detection, 

Coherent receiver has between 0.4-0.8dB less SNR penalty [52] but the 

simplicity of Direct-Detection needs to be taken into account. 
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2.5.1. Direct Detections Receivers 

 

Direct-detection receivers are comparatively simple receivers in that they 

consist of a photodiode which “detects” the light of the incoming signal and 

converts the signal from optical intensity to RF power. 

 

Direct-detection receivers can be joined with Delay Line Interferometers, also 

known as Asymmetric Mach-Zehnder Interferometers, to demodulate incoming 

DPSK signals. This happens by the way of two paths, one with a 1 bit delay, 

which interferes and results in two outputs that are out of phase by 90ᵒ, thus 

when detected by the photodiodes at the receiver the signal amplitude is 

doubled and the BER is significantly improved. 

The DLIs, as part the Direct-Detection receiver, improves the quality of the 

received signal by using interferometry in place of an LO mixer to recover 

phase information [52].  

 

Disadvantages relate to issues with noise and polarisation, both of which are 

of a random state unless actively controlled using polarisers and filters. 

 
 
 
 
 
 

Figure 2.5.1 – Schematic of single path DPSK direct-Detection link. 
 

A Direct-Detection DPSK receiver consists of a MZI, where the split signals 

interfere, and the resultant outputs have a 2/π difference in phase. This is also 

known as a DLI, (section 2.5.3). These outputs are known as “Constructive” 

and “Destructive” and are passed to two photodiodes which convert the optical 

signal to an RF signal; once converted the total signal then becomes 

differential in nature and are passed through an RF amplifier and an ELPF 

(Electrical Low Pass Filter) and are then measured for their error rate per bit, 

which is known as the BER. 
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2.5.2. Coherent Receivers 

 

A more complex receiver than Direct-detection is a Coherent Receiver, which 

requires mixing of a Local Oscillator (LO) frequency to demodulate data 

correctly. For instance a Coherent detector will be able to receive a lower 

quality signal, but it must be able to detect the phase of the signal using 

phase tracking and therefore be synchronous. A Local Oscillator for frequency 

locking may be used depending on whether the receiver is homodyne or 

heterodyne [52].  

 

In general Heterodyne Receivers have the advantage of having greater 

sensitivity than Direct-Detection receivers, but the disadvantages can 

outweigh this with greater complexity than with Direct-Detection receivers. 

One example is of the complexity is that both the transmit source and the LO 

source have to have their frequencies stabilised to be kept from drifting, 

otherwise the Intermediate Frequency (IF) will be incorrect and the 

demodulation will have errors because both the phase and polarisation 

information need to be exactly the same. 

 

 

 

 

 

 
Figure 2.5.2 – Schematic of a Heterodyne Coherent Receiver. 

 

If the LO and the transmitted frequency are the same in a Heterodyne 

receiver, this will in effect be a Homodyne receiver. In a purpose designed 

Homodyne the frequencies of both transmitted signal and the LO must be 

locked together otherwise demodulation will not occur. For both Homodyne 

and Heterodyne types of receiver the LO, which is mixed in a 90 degree optical 

hybrid with the signal, acts as a signal amplifier [56]. 

 

Coherent receivers can give advantages over direct-detection when WDM 

systems are involved, the use of an IF means instead of using a demultiplexer 

+  

 
LO 
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Signal 
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Coupler 
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or filter to pick out channels it could be done electronically. Instead of using 

demultiplexers or tuneable filters the IF is adjusted electronically to pick out 

channels which can be done rapidly. On the downside is the issue of 

complexity where controllable lasers with highly stable wavelengths would be 

needed [33]. 

 

Using a Balanced receiver is also advantageous for use in coherent or direct-

detection receiver as it reduces noise and increases the amount of signal 

power received [52]. 

 

A major issue when using phase modulation is Nonlinear Phase Noise, this is 

caused by the Kerr Effect [49] and its interaction with the intensity of optical 

noise such as ASE, this produces SPM and XPM which can cause issues with 

phase modulation, hence the term phase noise. It can also trigger an increase 

in issues related to Relative Intensity Noise (RIN). Two such sources of phase 

noise are the transmitter laser and the local oscillator in coherent receivers. 

The phase noise can be reduced by laser design and also by using phase-

diversity receivers [45]. 

 

There are also techniques using Digital Signal Processing (DSP) which corrects 

signals after they have been received, and these can be used for the outputs 

of either repeatered or unrepeatered configurations. These techniques will not 

be discussed in this thesis. 

 

 

2.5.3. Delay Line Interferometer (DLI) 

 

Delay Line Interferometers (DLI) are basically Mach-Zehnder Interferometers 

except that they have an inherent delay in one arm of the MZI. This design is 

useful in the demodulated of optical DPSK modulation.  

 

In one arm of the Delay Line Interferometer there is a time delay, ∆τ, which is 

equal to one bit slot. This time delay is created either via an additional bit of 

fibre, or via a voltage controlled thin-film device which alters the length of the 
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fibre minutely by heating it, this leads to only a few picoseconds (ps) change, 

but it is enough to cause a delay.  

The delay needs to be chosen for the data rate which is being used, for 

instance, at 10.664Gbps the delay of 1-bit would need to be 93.77ps, while at 

42.656Gbps it would have to be 23.44ps. 

 

An example is as follows. A MZI is used to modulate the signal phase wise 

using a precoded data pattern. An example is a data pattern of 110010, you 

will have [53]: 

 
Original Data:    •		1 1 0 0 1 0 

Precoded Data:  1 1 1 0 1 1 0 

Phase Mod:												0		0		0		π		0		0		π	 

 
 
For a demodulator the incoming DPSK signal is split 50:50 so that equal 

amplitudes appear on each arm of the delay line. A time delay, ∆τ, is also 

present in one of the arms of the MZI. 

The expected output is shown below [53]: 

 
Arm A:     •			0			0		0		π		0		0		π	 

Arm B:    -π	‐π	‐π		0	‐π	‐π	0		•	

Output 1:  •  0 0 1 1  0 1 

Output 2:  •	  1 1 0 0 1 0 

 
 
 

 

 

 

 

 

 

Figure 2.5.3 – Basic diagram of an MZI with phase changes. 

 
For more complex modulation techniques, such as DQPSK, DLI’s are used at 

the transmitter to add relative phases of 0ᵒ, 90ᵒ 180ᵒ and 270ᵒ, as the data 

I/P 

O/P 1 

O/P 2 

Coupler 

 Δτ 
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passes through to allow four state, or two bit per symbol, therefore increasing 

the data rate. 

 

For a detailed explanation of Mach-Zehnder Interferometers, see Chapter 4 

Section 4.3. 

 

 

2.5.4. Probability of Error in Digital signals 

 

The number of errors in received signals is one of the most important factors 

to measure as they indicate issues within a transmission system or network, 

and by looking at additional data such as eye diagrams, their cause can be 

surmised. Linear effects such as dispersion cause ISI and crosstalk, which is 

shown as widened vertical elements of an eye diagram, while with non-linear 

effects such as SPM and XPM the horizontal elements are affected. From this 

we can calculate the effect of these issues on the signal by calculating the 

probabilities that a 1 or 0 will be received. The basic equations for this are 

shown and explained below. 

 

Probability of error for the 0|1 threshold can be defined as: 

 
௘ܲ ൌ ܽ ଵܲሺ߭௧௛ሻ ൅ ܾ ଴ܲሺ߭௧௛ሻ     Eq. 2.5.1 

 

The weighting factors a and b refer to the probabilities that a 1 or 0 occurs, 

this depends on the data modulation, but for unbiased data, a and b both 

equate to 0.5 or 50% chance of either being received. The problem then 

becomes finding the decision threshold (υth) where Pe is at a minimum. 

 

The complementary error function or erfc is a useful statistical formula that 

allows the calculation of the difference between the normal Gaussian 

distribution and the statistical error of the measured signal, which can indicate 

noise mechanisms within the measured system affecting the signal. The erfc is 

the basis of the Q-Value measurements. It can be defined by. 

 
        erfcሺݔሻ ൌ

ଶ

√గ
׬ ݁ି௬

మ
ݕ݀

ஶ
௫    Eq. 2.5.2 
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Noise variance is calculated by using the statistical variance calculation: 

 
ଶߪ ൌ ∑ ܲሺݔ௜ሻ

ே
௜ୀଵ ሺݔ௜ െ  ሻଶ   Eq. 2.5.3ߤ

 

It also needs to take into account the standard deviation, which is the square 

root of variance, as it covers the total width of the probability distribution at 

1/e of the maximum amplitude. 

 

ߪ ൌ ට∑ ܲሺݔ௜ሻே
௜ୀଵ ሺݔ௜ െ  ሻଶ   Eq. 2.5.4ߤ

 

Where, ߤ is the expected value and ݔ is the actual value. The next section 

goes into more detail in how these formulas are applied. 

 

 

2.5.5. Bit Error Rate (BER) and Q-Value 

 

Calculating BER can be done, using the techniques shown, by using the 

threshold value of the decision circuits in the receiver. 

 
ܴܧܤ ൌ ሺ1ሻܲሺ0|1ሻ݌ ൅  ሺ0ሻܲሺ1|0ሻ  Eq. 2.5.5݌

 

Where p(1) and p(0) are the probabilities of having transmitted a 1 bit or a 0 

bit, respectively, with P(0|1) being the probability of 0 occurring when a 1 is 

received, and P(1|0) being the probability of a 1 occurring when a 0 is 

received. In general the probability of either a 1 or a 0 being received is 0.5, 

so p(1) = p(0) = 0.5 (or ½), and the BER becomes 

 
ܴܧܤ     ൌ

ଵ

ଶ
ሾܲሺ0|1ሻ ൅ ܲሺ1|0ሻሿ   Eq. 2.5.6 

 

In reality the probability is not exactly ½ and can be skewed towards either 1 

or 0 being more likely, this depends on many external factors affecting the 

received signal, as well as factors relating to the actual receiver. 

 

The probabilities for 1 and 0 rely on the sampled Intensity value, I, of the 

received signal, of which a probability density function can be calculated, p(I). 

This value depends on statistical properties of the noise sources causing 
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current fluctuations, in the main these factors are Thermal noise and Shot 

noise. 

 

Thermal noise can be represented by ்݅ which when described by Gaussian 

statistics gives a zero mean and a variance of ்ߪଶ. The Shot noise can also be 

described through Gaussian statistics, but only for a p-i-n receiver, however 

an Avalanche Photodiode (APD) cannot be described in this way. To get 

around this problem the variance is assumed to be different for p-i-n and 

APD’s, which allows a Gaussian approximation for both types of receivers. 

 

The variance for a p-i-n receiver is given by: 

 
௦ଶߪ ൌ ௣ܫሺݍ2 ൅  ௗሻ∆݂   Eq. 2.5.7ܫ

 

Whilst for an APD receiver the variance is: 

 
௦ଶߪ      ൌ ஺ሺܴܨଶܯݍ2 ௜ܲ௡ ൅  ௗሻ∆݂  Eq. 2.5.8ܫ

 

where ܨ஺ is the excess noise factor of the APD, ∆݂ is the effective noise 

bandwidth, ܫௗ is the dark current, ܫ௣ ൌ ܴ ௜ܲ௡ is the average current, M is the 

multiplication factor that relates to the internal gain improvement over p-i-n, 

and q is related to the spectral density given by 2qIp which relates to the 

positive side of the spectrum only, where qIp is the double sided spectrum for 

the shot noise, which is also a description of White Noise. 

 

The sampled value I, mentioned previously, has a Gaussian probability density 

function with a variance of ߪଶ ൌ ௦ଶߪ ൅ ்ߪ
ଶ. In addition the average current Ip and 

the variance are different for 1 and 0, because Ip in equation 2.5.9 can be 

equal to either of the currents, I1 or I0, depending on the received bit. 

 
ሻݐሺܫ      ൌ ௣ܫ ൅ ݅௦ሺݐሻ ൅ ்݅ሺݐሻ   Eq. 2.5.9 

 

Where ்݅ሺݐሻ is the current fluctuation due to thermal noise and ݅௦ሺݐሻ the current 

fluctuation due to shot noise. 

 

If ߪଵଶ and ߪ଴ଶ are the corresponding variances, the conditional probabilities are 

given by 
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ܲሺ0|1ሻ ൌ 	

ଵ

ఙభ√ଶగ
׬ exp
ூವ
ିஶ ቀെ

ሺூିூభሻమ

ଶఙభ
మ ቁ   ܫ݀

 

       ܲሺ0|1ሻ ൌ ଵ

ଶ
erfc ቀூభିூವ

ఙభ√ଶ
ቁ    Eq. 2.5.10 

 

ܲሺ1|0ሻ ൌ 	
ଵ

ఙబ√ଶగ
׬ exp
ஶ
ூವ

ቀെ
ሺூିூబሻమ

ଶఙబ
మ ቁ   ܫ݀

 

ܲሺ1|0ሻ ൌ
ଵ

ଶ
erfc ቀ

ூబିூವ
ఙబ√ଶ

ቁ     Eq. 2.5.11 
 

 

Where, erfc stands for the complimentary error function, as defined by. 

 
       erfcሺݔሻ ൌ ଶ

√గ
׬ ݁ି௬

మ
ݕ݀

ஶ
௫    Eq. 2.5.12 

 

Using Eq. 2.5.11 and 2.5.12 and substituting them into Eq. 2.5.6, the BER can 

be calculated by 

 
ܴܧܤ   ൌ 	

ଵ

ସ
ቂerfc ቀ

ூభିூವ
ఙభ√ଶ

ቁ ൅ erfc ቀ
ூವିூబ
ఙబ√ଶ

ቁቃ  Eq. 2.5.13 
 

This equation shows that the BER depends on the decision threshold, ܫ஽, at the 

receiver, where it is optimised to minimise the BER, the expression of this is 

 
       ሺூವିூబሻ

మ

ଶఙబ
మ ൌ

ሺூభିூವሻమ

ଶఙభ
మ ൅ ݈݊ ቀ

ఙభ
ఙబ
ቁ  Eq. 2.5.14 

 

Although ݈݊ ቀఙభ
ఙబ
ቁ can be neglected for most purposes. ܫ஽ can be approximately 

found from: 

 
  ூವିூబ

మ

ఙబ
ൌ

ூభିூವ
మ

ఙభ
≡ ܳ   Eq. 2.5.15 

 

The term	ܫ஽ is given by: 

 
஽ܫ     ൌ

ఙబூభାఙభூబ
ఙభାఙబ

   Eq. 2.5.16 
 

When ߪଵ ൌ ஽ܫ then	଴ߪ ൌ ሺܫଵ ൅  ଴ሻ/2, this is equal to setting the decision thresholdܫ

to half way. This is the status for most p-i-n receivers as their noise figure is 
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mostly due to the Thermal noise within the receiver, this confirms the noise is 

independent from the average current noise of the received signal. 

Shot noise however is different for received bits 1 and 0, with 1 having a 

larger shot noise, since the variance ߪ௦ଶ	is linear with respect to the average 

current. 

 

For APD receivers, the decision threshold should be set to a value pertaining to 

Eq. 2.5.16.  

 

The optimum setting for the decision threshold for the minimum BER is 

calculated by combining Eqs. 2.5.13 and 2.5.15, and depends on the Q factor, 

which can be found by 

 
ܴܧܤ ൌ

ଵ

ଶ
erfc ቀ

ொ

√ଶ
ቁ   Eq. 2.5.17 

 

ܴܧܤ ൎ
௘௫௣൬ି

ೂమ

మ
൰

ொ√ଶగ
   Eq. 2.5.18 

 

Where, the parameter Q is obtained from Eqs. 2.5.15 and 2.5.16 and is then 

given by 

 
ܳ ൌ

ூభିூబ
ఙభାఙబ

       Eq. 2.5.19 
 

The above equations are from [45]. 

 

Another way that BER and Q Value can be defined is: 

 
ܴܧܤ ൌ

ே೐
ே೟
ൌ

ே೐
஻௧

    Eq. 2.5.20 
 

Where ܤ ൌ
ଵ

்್
 is the bit rate, ௘ܰ is the number of errors and ௧ܰ is the number of 

pulses and ݐ is the time interval over which the measurements takes place [40]. 

 

The Q-value can be found by 

 
ܳ ൌ

జ೟೓ି௕೚೑೑
ఙ೚೑೑

ൌ
௕೚೙ିజ೟೓
ఙ೚೙

    Eq. 2.5.21 
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Where for a binary 1 ܾ௢௡ is the mean signal level and ߪ௢௡ the variance, for a 

binary 0, ܾ௢௙௙ and ߪ௢௙௙ are the mean and variance, while ߭௧௛ is the threshold 

voltage [40]. 

 

 

2.6. Optical Amplifiers 

 

In optical systems there are two common types of optical amplifier; 

Semiconductor Optical Amplifiers (SOAs) and Erbium Doped Fibre Amplifiers 

(EDFAs) which are used extensively throughout optical systems worldwide. A 

third type of amplifier is the Raman Amplifier; this type is currently used less 

widely than the previous two, but is increasingly being used in long and ultra-

long distance transmission [14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 35, 57, 58, 

59, 60, 61, 62, 63, 64]. 

 

A small summery of SOAs are mentioned here as SOAs were not used in any 

experiments contained within this thesis. 

 

More detail on the operation and usage of EDFAs and Raman Amplifiers are in 

the next two sections. 

 

 

2.6.1. Erbium Doped Fibre Optical Amplification 

 

Erbium Doped Fibre Amplifiers (EDFAs) are used regularly in optical networks 

as an effective amplifier which is transparent to modulation formats, has high 

gain over a wide bandwidth, has a low noise figure and amplifies at 

wavelengths in the C-Band with a centre wavelength at around 1550nm [56]. 

 

The actual physical layer of a basic EDFA design, shown in Figure 2.6.1, 

includes an Erbium-doped Fibre loop connected to WDMs at either end that 

multiplex the pumps lasers at 980nm and 1480nm wavelengths with the 

incoming signal. The reason for two different pump wavelengths being used is 

described further on in this section.  
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There are three ways to pump EDFAs, these are: Co-propagating and Counter-

propagating, both of which use a single pump laser; and Dual-pumping, which 

uses two pumps, one in co-propagating direction usually at 980nm wavelength 

and one counter propagating using 1480nm. The advantage of co-propagation 

is the improved noise performance, so therefore less ASE, whilst counter-

propagation has a higher potential gain. Using Dual-pumping therefore gives 

you high gain and lower noise when compared to individual pumping in either 

direction. The potential gain for single pumping is +17dB while dual pumping 

is +35dB [40]. The reasons for using these wavelengths are described in more 

detail further on in this section. 

 

 

 
 
 
 
 
 
 
 

Figure 2.6.1 – Schematic of Erbium Doped Fibre Amplifier (EDFA). 
 

An isolator is placed at each end of the amplifier to limit back reflected 

wavelengths propagating within the EDFA in the reverse direction to the 

signal, as these reflections can increase amplifier noise and decrease the 

amplifiers efficiency by reducing gain. The isolators also reduce the probability 

of laser oscillation by supressing the reflected laser and therefore limiting the 

feedback mechanism. 

 
An EDFA used in transmission spans would have to deal with many 

wavelengths at the same time at different powers, plus the spectral gain 

profile is un-uniform so different channels would receive differing amounts of 

gain. To deal with these issues the EDFAs are more complex and would have 

additional elements such as filters, gratings and taps. 

 

The taps are placed at either end of the amplifier to compare the input power 

and the output power; these taps have a ratio of 99:1 or 95:5 and take a 

small percentage of the overall power which is then fed back for comparison to 

980nm 1480nm 

WDM WDM Output Input 

Erbium-Doped 
Fibre Loop 
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calculate the amount of gain. This information can then be used externally to 

see whether the amplification process is working as designed. 

 

Optical filters are used to add loss at specific bands to flatten the gain profile; 

this reduces the need for external techniques such as pre-emphasising 

individual channels prior to them passing through the EDFA, therefore giving a 

more uniform gain over all channels. There are different types of filters which 

can be used [45], such as thin-film interference filters [65, 66] and Mach-

Zehnder filters [67], which both work by using phase changes to achieve 

cancellation within high-gain areas and enhancement of low-gain areas to 

create a flattened gain, although with thin-film filters there does not have to 

be the exact inverse for cancellation or enhancement to occur. Acousto-optical 

filters [68] work by using a structure that can vibrate, such as a crystal, to 

change the optical properties of the light passing through it, the interaction is 

through phonons which build into a shear wave, this then either diffracts or 

retards the optical wave and changes the polarisation. Using polarisers this 

can reduce the gain through amplitude reduction due to non-orthogonal 

polarisation loss.  

 

There are also Long-period Fibre Gratings [69] which are used in EDFAs for 

fixed gain flatness. These LPFGs are different to Fibre Bragg Gratings (FBGs) 

in two main ways; The LPFGs have a much longer wavelength period of 

between 200μm and 700μm [70], whilst a FBGs period is around 0.1μm [70]. 

LPFGs have low insertion loss and back reflections when compared to other 

techniques, but are limited to only one specific wavelength. The way around 

this is to use a combination of lots of LPFGs of different wavelengths and 

phase-shifted LPFG which would cover the C-band and lower the main gain 

peaks more than using a phase-shifted LPFG on its own. [69]. 

 

 

2.6.1.1. EDFA - Principle of Operation 

 

The amplifiers work by using Silica fibre doped with Erbium to enable the fibre 

to create additional photons when a pumped laser beam is passed through the 

fibre, this is caused by the absorption of photons in the Erbium-doped fibre, 



   
 

54 
 

this in turns creates an excitation of the atoms which causes what is known as 

a population inversion, this is where more atoms are at higher energy levels 

than at lower energy levels. This causes the stimulated atom to emit photons 

at long wavelengths; hence they emit photons around 1550nm. 

 

 
Figure 2.6.2 – Graph showing the typical wavelength ranges of the causes of 

attenuation within Optical fibres. The first (800-900nm), second (1250-1360nm), and 
third (1530-1625nm) optical windows are also shown [72]. 

 

The result is, as explained above and in Figure 2.6.3, the signal wavelength at 

around 1550nm gets a boost by using lower wavelength pumps to excite the 

erbium to give additional photons at 1550nm, and hence signal amplification. 

The advantage here is that 1550nm lies in the lowest point of the absorption 

spectra of silica due to OH molecules [40, 71, 72]. 

 

The signal beam and the 980nm pump travel in the same direction which 

depletes the pump power in the Erbium-doped fibre loop, whilst at the other 

end the 1480nm pump enters in the opposite direction to the signal and 

980nm pump and induces amplification at that end, this compensates for the 

pump depletion at 980nm giving less amplification further along the Erbium-

doped fibre loop. 
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How this occurs is that the 980nm pump excites ions from the ground state up 

to the pump energy level, which is at a higher energy than the energy band 

needed for signal amplification. Ions are atoms or molecules with either 

missing electrons which give an overall positive charge, e+, or an additional 

electron that gives a negative charge, e-, in this case they are missing an 

electron and are positive ions or e+.  

 

The ions in an EDFA are Er3+ which means there are three electrons missing 

on the outer shell of the Erbium atom, this gives the potential for high gain by 

photons being absorbed by electrons in lower energy bands moving up into 

the holes available in the outer shell of the atom. These electrons are only at 

these higher energy levels of the 980nm pump for a short period of time and 

decay within 1μs, this decay releases phonons which are absorbed and 

scattered within the fibre material. When the ions are excited by signal 

photons the resulting photons emitted are of the same wavelength, 

polarisation and orbital momentum as the original signal photons, which will 

be in the 1530-1560nm band. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 2.6.3 – Energy transitions in Erbium Doped Fibre. 
 

The use of the 980nm wavelength is due to the fact that population inversion 

occurs at an energy level of 1.27eV [40] which relates to wavelengths around 

980nm. The 1480nm wavelength relates to energies at the high end of the 

energy gap between the ground state (G) and the metastable band (E1) which 

has an energy level of 0.841eV [40]. Because 1480nm is limited to the 

metastable band, the population inversion is not as great as with 980nm. 
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The 1480nm pump raises ions to the top of the metastable band from the 

bottom of the ground state. 980nm is less efficient at exciting those ions at 

the lowest ground energy states than the 1480nm wavelength. These ions, 

once in the metastable band, then slowly move down towards the lower 

energies within the band. This is where most of the ions are found. As with 

980nm pumping, once a signal photon is absorbed by one of these ions it 

decays releasing photons with the same information as the original photons. 

This process is known as stimulated emission. 

 

The metastable band is the term for the energy band at which electrons stay 

for a relatively long period of time before decaying to the ground state, this 

time period is greater than that at the pump energy band, and is therefore 

>1μs and usually in the 10ms region. The metastable band energy is in the 

region relating to 1520-70nm and is one of the reasons for Erbium’s use in 

optical amplification. 

 

Also shown in Figure 2.6.3 is the excited-state absorption (E3) which causes a 

reduction in amplifier gain and therefore a loss. As pump photons are 

absorbed by the already high energy atoms, this increases their energy even 

more and thus reduces the available population. These electrons will then emit 

spontaneously at wavelengths outside of those useful for telecommunication 

purposes and will be seen purely as ASE.  

The effect of excited-state absorption is minimised at 980nm and 1480nm 

wavelengths as they are more efficient when used in Erbium doped silica fibres 

than other wavelengths. The selection of the Erbium doping arrangement can 

also minimise the effect of excited-state absorption. An example of the Erbium 

dopant content in a Silica fibre is 1000ppm for light doping [40]. 

 

The energy changes shown in Figure 2.6.3 are generalised as higher energy 

level can be made available by higher pump powers, but this leads to an 

increase in amplifier inefficiency due to gain saturation and an increase in ASE. 

Saturation occurs when the population inversion is at its maximum, i.e. most 

electrons are at the higher energy levels, and there is no more space for other 

elections at lower energies to move up, this leads to a flattening out of the 
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gain when the pump power is increased past this point as only lower energy 

states are available. 

 

The energies that the electrons inhabit are not purely discrete but are bands of 

energy levels. This phenomenon is caused by Stark Splitting, which is due to 

the area surrounding the Erbium ions being made from silica. Silica does not 

have a crystalline structure but is classed as an amorphous material and this 

leads to each Erbium ion having its own energy level separate from all other 

Erbium atoms. This means discrete energy levels do not exist alone but are 

part of a collection of energy levels. In other words where normally an 

individual energy level is seen an energy band is present instead, giving a 

range of energy levels that are being occupied. 

This “banding” of the energy levels gives an advantage in that a larger range 

of wavelengths can be amplified with one amplifier rather than a narrow band 

of wavelengths. Therefore bandwidths of EDFAs can be large and can amplify 

many WDM channels at the same time over a 40 to 50nm bandwidth, as 

shown in Figure 2.6.4 [26]. 

 

 
Figure 2.6.4 – Example of Gain flattened EDFA Bandwidth with 8 WDM Channels. 

 

This band is from 1520nm to 1570nm and is known as the C-Band for 

telecommunication purposes. The central wavelength of this band is 1545nm 

whilst the peak gain is at 1532nm, as mentioned previously this band is 

adjacent to one of the lowest attenuation windows [40, 71, 72]. 
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The typical output power of EDFAs are around +20dBm to +30dB, whilst the 

dual-pump configuration gives a flatter gain spectrum than with just co-

propagation and counter-propagation, the gain spectrum is still heavily 

influenced by silica being amorphous along with any other dopants present 

within the fibre. 

 

Each EDFA, whilst having a similar spectral shape, will have differences no 

matter how similar they are made, as variations in the pump powers will have 

an effect along with variations of the pump laser due to RIN (see Chapter 3, 

Section 3.1.3), and the effects of the medium they are passing through. The 

1480nm pump wavelength has higher power lasers available, whilst there is 

also a requirement for the doped fibre to be longer to achieve high gain due to 

the smaller population inversion available compared to 980nm[45] as 

explained previously. 

 

 

2.6.1.2. Amplifier Gain in EDFAs 

 

The gain of an amplifier is one of its most important aspects, as it is basically 

the measure of how much amplification a signal traveling through an amplifier 

will achieve. This relationship is generally linear until gain saturation occurs. 

 

Gain saturation is the point where no matter how much power the signal has it 

will not receive an increase in amplification; in fact the opposite can be true, 

where a slight decrease happens due to noise generated in the amplifier (see 

ASE Section 2.5). 

The Gain is a ratio of the powers of the input and output signals of a device, 

this can be represented as: 

 

          in

out

P

P
G      Eq. 2.6.1 

 

The actual gain of an optical amplifier is slightly more complex than equation 

2.6.1 and is different due to the design and materials used, as well as the 

physics behind the reason for amplification. 
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The gain of an EDFA relates to a number of factors including the concentration 

of the Erbium dopant, the length of the doped fibre within the amplifier, the 

fibre core diameter and the pump powers. In some cases excited state 

absorption (ESA) will need to be taken into consideration depending on the 

pump wavelengths being used and the type of fibre, such as fluorosilica [40], 

but for 980nm and 1480nm pump wavelengths and silica fibre, excited state 

absorption can be ignored.  

 

The relationship of all factors appropriate to determine the gain is described 

by: 

 
ܩ ൌ ݌ݔ݁	ௌ߁ ቂ׬ ሺߪௌ

௘
ଶܰ െ ௌߪ

௔
ଵܰሻ݀ݖ

௅
଴ ቃ  Eq. 2.6.2 

 

The term ߁ௌ denotes the confinement factor, or cross sectional area, which is 

related to the amount of doped fibre in the amplifier, and is therefore related 

to the active section of the fibre. Terms ߪௌ௘ and ߪௌ௔ are the emission and 

absorption density cross-sections at the signal wavelength, with ଵܰ and ଶܰ 

being the ion densities relating to the pump energy band and the signal, or 

metastable, band. The total ion density is ௧ܰ ൌ ଵܰ ൅ ଶܰ. The term ܮ at the top 

integral limit is the total amplifier fibre length. 

 
This shows in general that the gain increases exponentially with length, while 

the maximum gain is limited to the total ion density available and the 

relationship of the absorption and emission of photons with the signal 

wavelength. Along with noise factors such as ASE, these are the main 

relationships which affect the total available output power of the amplifier. 

 

 

2.6.2. Raman Amplification 

 

Raman Amplification uses the phenomenon known as Stimulated Raman 

Scattering or SRS to amplify optical signal. 

 

SRS occurs when two or more signals at different wavelengths are put into a 

fibre which makes the power from the lowest wavelength transfer to the 

highest wavelength. In Raman Amplification this effect is used by having a 
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signal wavelength and a pump wavelength inserted into the same fibre which 

causes amplification of the signal wavelength. 

 

The effect is similar to Spontaneous Raman Scattering and is due to the 

photons of the lower wavelengths having a larger amount of energy than 

those at the higher wavelengths. Due to the natural behaviour of photons the 

energy of the photons at lower wavelengths, thus higher energies, wants to 

decay towards the ground state. When these photons change in energy state 

they emit a photon at a higher wavelength than the original photon. This also 

produces an optical phonon, as not the all the energy departs from the atom 

or molecule, this phonon is the vibrational energy or frequency of the 

atom/molecule [40, 45, 56, 73]. 

 

For more detail on Raman Amplification see Chapter 3, Section 3.2. 

 

 

2.7. System impairments: Linear Effects 

 

Linear effects are those types of effects that have a linear relationship; such 

an example is the electrical current increase on a 1Ω resistor, with every 1V 

increase the current increases by 1A. 

In the optical world, an example of such a relationship is dispersion, as it 

increases or decreases by the same amount per kilometre, a similar 

relationship is seen with distance and optical loss, which for silica fibre is a 

loss of 0.2dB/km. 

 

 

2.7.1. Chromatic Dispersion 

 

Chromatic dispersion is a linear process that causes light to spread out as it 

travels through an optical fibre. The cause of Chromatic Dispersion, or just 

dispersion, is down to two different types of reactions of light within the fibre; 

material dispersion and waveguide dispersion. 
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Material dispersion is induced by the reaction of light with the material the 

fibre is made from. This interaction is caused by the variation in the refractive 

index which changes depending on the wavelength of the light travelling 

through the fibre core. The wavelength dependent variability of the fibre core 

refractive index causes the light to travel at slightly different velocities, hence 

the spreading out of the pulse, which affects the group velocity of light pulses 

passing through the fibre; the effect is known as chirping, an example of 

which can be seen when light shines through a prism. 

 

Waveguide dispersion is due to the ratio of light passing through the core and 

the cladding, of which up to 80% passes through the core, the rest through 

the cladding. Because the cladding is of a different refractive index to the core, 

the velocity of the light is greater in the cladding than the core, hence light 

that is recoupled from the cladding to the core, and vice-versa, causes pulse 

spreading. This type of dispersion can be limited by fibre design i.e. the 

diameter of the core, as shown in Figure 2.7.1, and also the core and cladding 

with respect to one another and the refractive index of the cladding can be 

chosen to limit light loss into the cladding from the core thus reducing 

attenuation as well as dispersion. 

 
Figure 2.7.1 – Intramodel Dispersion change with different fibre core diameters [74]. 

 
The types of dispersion mentioned above are intramodel; this is the name for 

any type of dispersion that causes the group velocities, and therefore the 
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group velocity delay (GVD) to increase or decrease, this leads to temporal 

broadening of light pulses and it can also cause phase changes. An example of 

this is normal dispersion, where the velocities of the individual frequency 

components slow at the shorter wavelengths and increase in the longer 

wavelengths. 

 

There is also intermodal dispersion, which is where individual modes of the 

group velocity have different values at the same frequency, this mainly affects 

multi-mode fibres. Since only single-mode fibres are dealt with in this thesis, 

this type of dispersion will be ignored. 

 

To calculate the amount of dispersion in a fibre, the following equations can be 

used.  Firstly, a definition of the group velocity can be written as: 

 

௚ܸ ൌ ቀௗఉ
ௗఠ
ቁ
ିଵ

    Eq. 2.7.1 
 

Where ௚ܸ is the group velocity, ߚ is the propagation constant, and ߱ is the 

optical angular frequency. The propagation constant ߚ ൌ ത݊
ଶగ

ఒ
 with ݊ଵ ൐ ത݊ ൐ ݊ଶ. 

Eq. 2.7.1 can be related to wavelength and refractive index by ௚ܸ ൌ
௖

௡ത೒
, where 

ത݊௚ is the group refractive index and when substituted gives: 

 
௚ܸ ൌ

௖

௡തିఒቀ
೏೙ഥ
೏ഊ
ቁ
    Eq. 2.7.2 

 

With ത݊ being the mode effective refractive index and ߣ the wavelength of the 

optical pulse. To find out how much a pulse would broaden when propagating 

in an optical fibre the following can be used: 

 
ଶߚ ൌ

ௗమఉ

ௗఠమ    Eq. 2.7.3 
 

This is known as the Group Velocity Dispersion or GVD parameter, and is 

useful to help calculate the dispersion. 

The group dispersion can now be calculated using the dispersion parameter D, 

which is: 

 
ܦ ൌ െ

ଶగ௖

ఒమ
 ଶ    Eq. 2.7.4ߚ



   
 

63 
 

Eq. 3.1.4 shows that the spread of the pulse is related to the wavelength and 

the group refractive index through the propagation constant. 

The group delay difference, which is the difference between the lowest and 

highest spectral components, is given by: 

 
     ∆ܶ ൌ  Eq. 2.7.5    ߣ∆ܮܦ
 

Where, ܦ is the group dispersion, ܮ is the fibre length and ∆ߣ is the laser 

source spectral width. For the individual sections of dispersion we have the 

following two equations: 

 

For Material Dispersion: 

 
ெܦ ൌ െ

ଶగ௖

ఒమ
ௗ௡మ೒
ௗఠ

ൌ
ଵ

௖

ௗ௡మ೒
ௗఒ

    Eq. 2.7.6 
 

Where ݊ଶ௚ is the group refractive index of the cladding. 

 

For Waveguide Dispersion: 

 
ௐܦ ൌ െ

ଶగ∆௡

ఒమ
൤
௡మ೒
మ

௡మఠ

௏ௗమሺ௏௕ሻ

ௗ௏మ
൅

ௗ௡మ೒
ௗఠ

ௗሺ௏௕ሻ

ௗ௏
൨  Eq. 2.7.7 

     

Where ܾ ൌ ௡തି௡మ
௡భି௡మ

 and ܸ ൌ
ଶగ௔

ఒ
ሺ݊ଵ

ଶ െ ݊ଶ
ଶሻ଴.ହ, ܸ being the cut-off parameter regarding 

the number of modes available in a fibre, ݊ଵ is the core refractive index, ݊ଵ the 

cladding refractive index and ܽ is the core radius. For single mode fibres 

ܸ ൑ 2.405. The overall dispersion can then be found by: 

 
ܦ ൌ ெܦ ൅  ௐ    Eq. 2.7.8ܦ

 

The effect of dispersion on the bit-rate can be found using: 

 
ܤ ൑

ଵ

ସ|஽|∆ఒ௅
    Eq.2.7.9 

 

For Broad-linewidths ∆ߣ is determined by the laser, while for Narrow-linewidths 

ߣ ൌ
∆௙ఒమ

௖
ൌ

஻ఒమ

௖
, which means the bit rate has to be smaller than the linewidth on 

the laser. 
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There are different orders of dispersion; Chromatic dispersion is 1st order 

whilst 2nd order is known as the dispersion slope. The dispersion slope is the 

change in dispersion with wavelength.  

This can be summarised as: 

 
     ܵ ൌ

ௗ஽

ௗఒ
     Eq. 2.7.10 

 

where ݀ߣ is the wavelength difference of the maximum and minimum  

wavelengths for the fibre being used, while 	݀ܦ is the difference in the 

dispersion between the maximum and minimum wavelengths. The dispersion 

slope, ܵ, is measured in ps/nm2*km. 

 

The dispersion slope is especially important for systems using WDM, where it 

is desirable to have the same dispersion over all channels. A large dispersion 

slope will mean some channels are affected by dispersion more than others, 

an issue seen in the experimental results in Section 3.4. 

 

 

2.7.1.1. Dispersion Management 

 

It is important that dispersion is controlled within optical transmission spans 

as its effects can degrade data to become unrecoverable depending on the 

fibre length and the data rate. The most common way is to use dispersion 

compensated fibre (DCF) to correct the relevant dispersion measured in 

ps/nm*km. 

 

Dispersion in optical signals can be compensated for, but the amount of 

dispersion needs to be calculated beforehand as well as whether it is normal 

(positive) or anomalous (negative) dispersion [33]. Some examples of 

commercially available optical fibres are given in Table 2.7.1 with the typical 

values for attenuation and dispersion. 
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ITU-T 

Standard 
Fibre Type 

Typical 

Attenuation 

value 

(C-band) 

Typical Chromatic 

Dispersion value 

(C-band) 

Dispersion 

Slope 

(C-Band) 

Refs 

  [dB/km] [ps/nm*km] [ps/nm2*km]  

G.652 SMF-28 0.20 +18.0 +0.089 [75] 

G.652 SMF-28 ULL 0.18 +18.0 +0.092 [8] 

G.655 
LEAF 

(NZDSF) 
0.19 +2.0 to +6.0 na [6] 

G.654 LEAF ULL 0.16 +20.4 +0.06 [9] 

G.654 
LEAF-EP 

(NZDSF) 
0.20 -3.0 +0.12 [9] 

G.655 
TW-RS 

(NZDSF) 
0.25 +2.6 to +6.0 +0.05 [76] 

G.655 
TW-RS LWP 

(NZDSF) 
0.22 +2.6 to +6.0 +0.05 [39] 

G.655 

G.656 

TW-Reach LWP 

(NZDSF) 
0.20 +5.5 to +8.9 +0.045 [38] 

G.654 Z-Fiber 0.17 +18.5 +0.055 [10] 

G.652 DCF 0.265 -49 to -30 
-0.155 to -

0.075 
[77] 

G.652 DCF 0.20 -97.7 -0.328 [78] 

 

Table 2.7.1. – Optical Fibres and their Attenuation and Dispersion parameters. 
 
The fibres shown in Table 2.7.1 are a cross section of typical attenuation and 

dispersion parameters of optical fibres, most of which have anomalous 

dispersion. For more information on the ITU-T standards see references [79, 

80]. 

 

Non-Zero Dispersion Shifted Fibre (NZDSF) and Non-Zero Dispersion fibre 

(NZDF) can be confused but are two different types of fibre, a type of NDSF is 

SMF-28 i.e. normal silica fibre. NZDSF has the wavelength at which dispersion 

is zero, moved to counteract the dispersion in fibres like SMF-28. Figure 2.7.2 

shows measurements for typical fibres used in optical communications. It can 
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be seen that due to the large dispersion slope for SMF, that normal dispersion 

regimes must be used to combat the anomalous dispersion present. 

 

 
Figure 2.7.2 – Dispersion parameter D versus wavelength for several commercial 

optical fibres [81]. 
 

The wavelength at which the dispersion is zero separates the dispersion into 

two separate regions. The region below zero is the negative or normal 

dispersive region, while above zero it is known as the positive or anomalous 

region. The reason for the regions being normal or anomalous is down to how 

the light pulses travel through the fibre. For normal dispersion, the lower 

frequencies, or longer wavelengths, travel faster than the higher frequencies 

or shorter wavelengths, which is classed as normal behaviour for light as it 

propagates through a medium. In the anomalous region the opposite happens, 

the higher frequencies (shorter wavelengths) travel faster than the lower 

frequencies (longer wavelengths), this is therefore the opposite to how light 

normally propagates, and hence it is anomalous. 

 

There are ways of making sure the dispersion has a minimal effect at the 

receiver and these usually involve Dispersion Compensating Fibres (DCF). As 

the name suggests, DCF compensates for the amount of dispersion that will be 

caused by a certain length of normal fibre, such as SMF-28. The DCF will be 
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chosen for its compensation figure, this is the amount of compensation needed 

for a stated length of normal SMF fibre, in SI units the compensation value is 

ps/nm-km. So for example a 1km length of SMF-28 has a dispersion of 

16ps/nm, to compensate for that you need a 1km DCF with compensation of   

-16ps/nm.  For normal dispersion you need to compensate with anomalous 

dispersion. 

 

             
(a)                                     (b) 

Figure 2.7.3 – Dispersion at 40Gbps with dispersion of 17ps/nm*km over a distance of 
5km. (a) is at 0km (b) is at 5km [74]. 

 

These fibres can be placed either before the fibre span, known as pre-

compensation, or placed after the fibre span, or post-compensation. Either 

set-up has to be correctly managed to make sure that there is the right 

amount of dispersion compensation. If there is not enough compensation, the 

light will be in the anomalous region and still positive, meaning at the receiver 

the data is unreadable. 

 

Figure 2.7.3 shows the eye diagrams of how an uncompensated signal 

degrades due to dispersion, with the dispersion being 17ps/nm*km. 

Having too much dispersion compensation will also have the same effect, but 

the spectral frequencies will be opposite. 

 

Electronic Dispersion Compensating Modules (EDCM) are a type of dispersion 

compensation technology that is used instead of, or with, DCFs. The 

advantage of these types of device are that the dispersion correction which 

can be made is on a much smaller scale than with DCFs, they can be tuneable 

either within a continuous band or tuneable to a grid, such as ITU 50GHz and 

100GHz grids, which was the type of EDCM used in Section 3.4. These 

modules can also be “active”. In other words if the dispersion changes due to 
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different wavelengths being used e.g. in a WDM system, there will be a 

significant dispersion slope. An EDCM is able to be software controlled to track 

the changes in dispersion and correct as needed [82]. 

 

One of the disadvantages with EDCMs is that they use Array Wave Guides 

(AWGs) which channel optical power at discrete wavelengths. Due to the 

broad noise floor that passes through AWGs, averaging of the power can 

occur, which can limit these type of devices to signals that have higher powers 

and larger OSNRs (>20dB) as high attenuation is possible. This can lead to the 

dispersion not actually being the main issue, and therefore the device is 

compromised in how it works, meaning using DCF fibre may actually be a 

better choice for the system even if dispersion is a little worse. 

 

 

2.7.2. Polarisation Mode Dispersion 

 

Polarisation Mode Dispersion (PMD) is caused by an optical effect in fibres 

known as birefringence. Birefringence is caused by small defects in the 

circularity of the fibre core and leads to changes in the fundamental mode of 

the signal, which in turn affects the polarisation. These effects can be less 

than 1% of the total circularity of the fibre. Other causes of birefringence are 

bending and twisting of the fibre, flattening of the fibre and temperature 

differences, but obviously these effects vary throughout the fibre [33, 46]. 

The effect of birefringence on the state of polarisation (SOP) causes pulse 

broadening which is a greater problem at higher data rates as the pulse width 

of the signal decreases. It will also cause the polarisation to change as a signal 

travels through a fibre as each polarisation mode will have a different velocity. 

This results in a difference in propagation time, , and causes the previously 

discussed pulse broadening. If we look at PMD in more detail, where there are 

two orthogonal polarisation modes, v1 and v2, the differential time delay pol 

can be found between the two polarisation modes as it travels through a fibre 

of distance L. From this we can see that: 

 

21 v

L

v

L
pol     Eq. 2.7.11 
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PMD, unlike other dispersion effects, is not stable. The reasons for this have 

been described previously. What this means however is that at the output of 

the fibre a time varying fluctuation appears. This shows that PMD cannot be 

totally accounted for using Eq. 2.7.11, and a probabilistic method has to be 

used. 

For long fibre lengths PMD can be calculated as a mean value of the 

differential group delay of the polarisation modes. Hence: 

 
LDPMDpol     Eq. 2.7.12 

 

Where DPMD is the average PMD, which is measured in ps/√km, where typical 

values are between 0.1 and 1.0 [46, 83]. 

 

 

2.7.3. Rayleigh Scattering 

 

Rayleigh scattering is caused by the density of the fibre not being completely 

homogenous throughout its length. This inhomogeneity causes some 

molecules of the material that the fibre is constructed from to be in clumps; 

this is due to the heating processes which play a part in the creation of optical 

fibres. These molecules are much smaller than the optical wavelengths of the 

laser light passing through the fibre, but there are enough collisions within 

these denser areas to cause light to be scattered in all directions and to 

deplete the amount of power available. This becomes more significant when 

the wavelength decreases as the relationship is proportional to ିߣସ. 

The loss attributed to Rayleigh scattering can be approximated by 

 

ߙ       ൌ 1.7 ቀ
଴.଼ହ

ఒ
ቁ
ସ
    Eq. 2.7.13 

 

Where, ߙ is the loss in dB/km and λ the wavelength in μm. 

 

As well as issues at shorter wavelengths, the potential for the laser beam 

coming into contact with higher density areas increases over long distances 

and this can have a significant impact by increasing the amount of scattering 

present. No wavelength shift is attributed to this type of scattering [73, 56]. 
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This type of scattering is also known as Rayleigh-centre scattering, there is 

also Rayleigh-wing scattering, this occurs on the spectral wings of the signal 

rather than at the centre peak, this is caused by interactions with oxides 

within the fibre which have fluctuations of composition due to the creation 

process. 

 

Rayleigh scattering can be measured in any direction, but it is the scattering 

measured in the same axis as the signal which can be an issue. The most 

problematic version of Rayleigh scattering is double Rayleigh back scattering 

as it significantly increases noise in a transmission span. This process occurs 

when a spontaneously emitted photon travelling in the forward direction, 

which in itself adds to the overall noise, is reflected by an atom and enables 

the photon to counter propagate. The photon then gets reflected again, hence 

the double back scattering, and once again travels in the co-propagating 

direction.  

 

The issue here is when a distributed amplification scheme is in place, i.e. 

Raman amplification. The Rayleigh scattering interacts with the pump laser 

energy in counter and co-propagating direction, which then amplifies the 

overall noise and becomes a significant loss with distance, especially when the 

signal is of low power and is amplified along with the Rayleigh scattering 

noise. This noise can be construed as a type of crosstalk as it is wavelength 

dependent and is sometimes referred to as Rayleigh crosstalk [45]. 

 

Rayleigh scattering can be useful however. An example of which is when the 

loss in an optical fibre needs to be found. An Optical Time Domain 

Reflectometery (OTDR) trace is taken which uses the Rayleigh back scattering 

to record a trace showing the increasing loss as light travels through a fibre. 

The OTDR measures the time it takes for the Rayleigh back scattered light and 

shows it as a decreasing line [84]. 

 

In relation to Stimulated Raman Scattering, Rayleigh back-scattering can 

impact at high energies, which causes additional noise to occur within the 

system, limiting the energy available for SRS. 
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Both Rayleigh scattering and Brillouin scattering (Section 2.8.4) can have 

significant impacts in long-haul transmission spans and are partially related 

phenomena, but they can be minimised by using the right signal input powers 

to balance the potential scattering that could occur. 

 

 

2.8. System impairments: Nonlinear Effects 

 

All optical systems suffer from the effects of nonlinear phenomenon to one 

degree or another. The majority of the time these effects are unwanted and 

are minimised as much as possible, but these effects can be harnessed to 

create interesting and novel ways around problems transmitting optical data 

over long distances. 

 

Three non-linear effects have already been mentioned, Brillouin scattering, 

Rayleigh scattering and Raman scattering. A summary of these effects is 

supplied in the subsections below: 

 

 

2.8.1. Self-Phase Modulation (SPM) 

 

Self-Phase Modulation (SPM) occurs due to the intensity dependency of the 

refractive index of optical fibre (also known as the Kerr effect) as shown by 

the following equation:  

 
Inn 2     Eq. 2.8.1 

 

Where n is the change of the refractive index, n2 is the refractive index and I 

the intensity of the light pulse [33, 85]. 

 

SPM causes a phase shift that is proportional to the intensity of the light pulse, 

consequently, due to the shape of the pulse (e.g. Gaussian) the intensity is 

different, and so the induced phase shift is also different when looking at 

different parts of the pulse, so it is therefore temporal. This phase shift causes 

the “chirping” of the pulse. 
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Chirp is when the frequencies inherent in the light pulse spread as the light 

travels through a fibre. Gradually the frequencies at the red end (lower 

frequencies) of the spectrum are travelling at a faster rate than those at the 

blue end (higher frequencies) of the spectrum, this then causes an increase in 

the pulse broadening effects relating to chromatic dispersion. 

SPM occurs more with shorter pulses and therefore higher data rates, as well 

as systems using high transmitter powers, and so is an ever-increasing 

problem [45, 86]. 

 

 

2.8.2. Cross-Phase Modulation (XPM) 

 

Cross-phase modulation (XPM) is the process where the interaction of two 

light waves in a fibre causes the phase of the first light wave to change. This 

phase change can be represented as a change in the refractive index, similar 

to SPM, by the following equation: 

 

     Inn 22     Eq. 2.8.2 
 

This equation is similar to the one representing SPM, except that there is an 

additional factor of 2. This factor represents the interaction of two beams of 

light in the same polarisation, if the polarisations of the beam are different by 

/2, then the factor is 2/3 [85, 87]. 

 

XPM can be used in the wavelength conversion process, but this is not directly 

related to the Kerr Effect. In most cases it is a problem rather than a helping 

hand as it causes unwanted crosstalk in Wavelength Division Multiplexing 

(WDM) systems through the intensity fluctuation present in the Group Velocity 

Dispersion (GVD). It can also be affected by the amount of Polarisation Mode 

Dispersion (PMD) which is present in a system [88, 89]. 
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2.8.3. Four Wave Mixing (FWM) 

 

Four Wave Mixing is a non-linear process that occurs when a minimum of two 

beams of light, each with a different wavelength, interact and create scattered 

light at a wavelength different to the original beams of light. It is usually 

described as there being three frequencies propagating through a fibre, which 

then interact to create a fourth frequency. 

 

The process is also phase dependent, and this interaction can make FWM a 

problem over larger distances when the phases are matched. If the phases are 

unmatched cancellation occurs and FWM is suppressed. 

 

An example is two frequencies, f1 and f2 which interact, with f2 being higher in 

frequency then f1, creating two additional frequency components f3 and f4. This 

happens by: 

 

    211213 2)( ffffff     Eq. 2.8.3 
 
And, 

 
    121224 2)( ffffff    Eq. 2.8.4 
 

Hence we have f3 lower in frequency than f1 and f2 while f4 is higher in 

frequency than f1 and f2. We can therefore see that f3 and f4 are upper and 

lower sidebands, while in a three frequency interaction the resultant outcome 

is nine sidebands. These sidebands degrade the power of the main frequencies 

as they travel through the fibre until eventually becoming larger than the 

original frequencies. 

 

FWM causes problems within WDM systems where crosstalk can occur between 

multiple channels and possible power differences. This issue can be reduced by 

having channels of unequal spacing, and yet this can cause other problems in 

itself. 
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There are actually many uses for FWM, such as pulse broadening effects in 

Supercontinuum Generation (which is a strong broadening of the light 

spectrum but not in the temporal domain), and in Phase Conjugation, where 

light of different phases causes an additional frequency to be created [90, 91]. 

 

 

2.8.4. Brillouin Scattering 

 

Brillouin scattering is the process where light is scattered from acoustic 

phonons. While similar to optical phonons mentioned in section 3.2, acoustic 

phonons are vibrations which are related to the frequency of the atoms they 

are emitted from; they are in essence sound waves [73]. The process of the 

coupling of optical fields and acoustic waves is called electrostriction. 

 

Electrostriction, or the elasto-optic effect, is caused by the change in the 

density of a dielectric, such as an optical fibre, under the influence of an 

electric field. An example of this is the electric field component of a high 

intensity laser. This process can cause dielectric materials to change in shape, 

but only slightly as this effect is only small [73, 92, 93]. 

 

Looking at the atomic level, the atoms are attracted towards the field because 

of the higher energy available; hence the material has a larger increase in 

density where the field is at its strongest. As a result this process changes the 

refractive index of a fibre and is one of the mechanisms that can cause non-

linear refractive index, which in this case is related to the changes in density 

of the optical fibre structure. 

This density increase affects how the phonons interact with the laser light by 

increasing the number of phonon-photon interactions, and therefore increases 

the number of potential scattering effects.  

 

Phonons have thermal energies of around 0.024eV at room temperature, and 

so the energy can change dependent on the system temperature, i.e. the 

higher the temperature the greater their energy, which can have significant 

impacts on optical communications. Phonons are usually a greater problem at 

lower signal powers because the signal can be significantly impacted by 
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phonon scattering causing additional noise; at higher signal energies the 

phonons have less energy in comparison with the signal energy and therefore 

have less of an impact. 

 

In relation to using Stimulated Raman Scattering, Brillouin scattering causes 

problems by interacting at lower energies and reducing the available energy 

for Stimulated Raman scattering to occur. 

 

Brillouin scattering and Rayleigh scattering (Section 2.7.3) are partially related 

phenomena, but both can be minimised by using the right signal input powers 

to balance the potential scattering that could occur. 

 

 

2.8.5. Raman Scattering 

 

The phenomenon known as Stimulated Raman Scattering or SRS occurs when 

two or more signals at different wavelengths are put into a fibre which makes 

the power from the lowest wavelength transfer to the highest wavelength. An 

example of this is having a signal wavelength and a pump wavelength inserted 

into the same fibre which then causes amplification of the signal wavelength.  

 

The effect is similar to Spontaneous Raman Scattering and is due to the 

photons of the lower wavelengths having a larger amount of energy than 

those at the higher wavelengths. Due to the natural behaviour of photons, the 

energy of the photons at lower wavelengths, thus higher energies, want to 

decay towards the ground state, so when these photons change in energy 

state they emit a photon at a higher wavelength than the original photon. This 

also produces an optical phonon as not all the energy departs from the atom 

or molecule, this phonon is the vibrational energy or frequency of the 

atom/molecule [40, 45, 56, 73]. 

 

For more detail on Raman Scattering see Chapter 3, Section 3.2. 
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Chapter 3  
 

Ultra Long Raman Fibre based 
Amplification over Long Transmission 
Distances 
 

3.1. Introduction 

 

There are different types of Optical systems around the globe, ranging from 

long or ultra-long distance extending from hundreds of kilometres to tens of 

thousands of kilometres, many of which are submarine connections linking 

continents, e.g. North America to Europe under the Atlantic Ocean, through to 

Metropolitan networks which interconnect cities and areas together, and down 

to Fibre-To-The-Home (FTTH), which is the short link between a local 

exchange and a household or business and are usually only a few kilometres 

long. 

 

The need to constantly improve these connections is tangible, but the 

additional costs in replacing network equipment needs to be limited as much 

as possible. The main costs involved are the fibre itself plus the cost of 

maintenance of devices within the transmission span, such as repeatered 

EDFA where physical amplifiers are placed within the span. Newer techniques 

used remote EDFA pumping, but this means replacing the usual silica SMF-28 

type fibre with Erbium doped fibre. 

 

Another issue is transparency; this is where the modulation format, signal 

wavelengths and phase information can pass through without having 

conversion to electronic means. In most cases it is now normal to have purely 

optical means rather than Optical-Electrical-Optical conversion, as the most 

common technique in long distance transmission is discrete EDFA 

amplification. 
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There are two broad categories which the techniques to improve received 

signal quality come under, these are Repeatered and Unrepeatered. The 

following discussion will be limited to the following Repeatered and 

Unrepeatered techniques: 

 

 EDFAs and related technologies. 

 Raman amplification, ultra-long Raman fibre lasers and quasilossless 

spans. 

 

The discussion will include advantages and disadvantages of both repeatered 

and unrepeatered transmission techniques, especially effects that can cause 

problems in ultra-long fibre transmission (ULFT).  

Experimental results relating to Raman Amplification can be found in Section 

3.2. 

 

Repeatered amplification consists of multiple EDFAs along the transmission 

span amplifying the signal as it travels through the fibre medium. These 

amplifiers are placed at stages where the attenuation of the fibre medium has 

not reduced the signal power so much, that, when the signal is amplified the 

noise floor is amplified by the same amount, thus reducing the OSNR of the 

signal over the length of the transmission span. Once the signal is passed 

through multiple amplifier sections this can lead to very low OSNR and high 

error counts at the receiver. 

 

These repeatered sections mean higher infrastructure costs and an increase in 

system complexity. Unrepeatered sections therefore have advantages in these 

respects as the fibre has no need to be sectioned between amplifiers, and one 

span is virtually uninterrupted between transmitter and receiver. 

 

Using repeatered EDFA configurations in transmission spans, such as those 

used in [17], can be utilised for transmission distances of thousands of 

kilometres. However the fibre between each EDFA can be classed as a span in 

its own right, so in fact repeatered transmission is lots of smaller spans placed 

together to make one large one. An example of this is shown in [16], where a 

10Gpbs x 96 channel WDM system needs 130 repeaters to transmit a clear 
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signal which works out at one every 70km. This increases the cost of such 

installations, and if the technology used in the repeaters is too old it may be 

useable in the future for higher data rates and more complex modulation 

techniques. Therefore any change in the transmission infrastructure is costly, 

so the simplification and ease with which the infrastructure has the ability to 

be upgraded in the future, is an important consideration. 

 

Gain flatness is also an issue, as with so many amplifiers in series each one 

will have some gain tilt, even if small, which will build up over the fibre span. 

For repeatered systems the only option is to include gain equalisers within the 

span to counteract the tilt, this obviously adds complexity [16]. Dispersion 

compensation is added to every span with a normal dispersion profile, then 

after every 10 repeater span sections anomalous dispersion is present, which 

when joined with the normal dispersion fibre equalises the dispersion. This 

dispersion compensation needs to be carried out every 70km [16].  

 

EDFAs are still the main technology for long transmission spans, especially for 

submarine spans, and will be for the foreseeable future for spans of thousands 

of kilometres. Despite the additional cost of the amplifier sections, e.g. every 

50km [17], using more efficient modulation formats such as Quadrature Phase 

Shift Keying (QPSK), along with Polarisation Division Multiplexing (PDM), over 

extremely long distances, as in [17], is a significant improvement over current 

technologies. However these same modulation formats can also be used in 

none repeatered schemes and can give similar improvements [16, 36, 37, 94, 

95, 96].  

Coherent Detection was also used in many experiments involving repeatered 

transmission as it provides better sensitivity than Direct-Detection receivers 

(see Chapter2 Section 2.5.1), but again, complexity and cost are the main 

issues against using those types of receiver. 

 

High data rates in the region of 100Gbps can be comfortably transmitted using 

these techniques [17, 36, 37, 94, 95, 96]. Exotic fibres have also been used, 

such as in [36] where a 7-core fibre was used to increase the amount of data 

transmitted. The Q-Values for these configurations are between 11dB and 7dB. 
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Unrepeatered transmission spans use a variety of techniques to keep the 

signal OSNR at a level where the receiver enables the data to be successfully 

demodulated with a low number of errors, or low BER, to facilitate the 

recomposition of the transmitted data at the receiver. There are various ways 

to keep the signal at a sufficiently high OSNR so the data is readable at the 

receiver, such as: Remote Pumping of EDFAs; Ultra Low Loss Fibre (ULL), 

which can give fibre attenuation down to 0.162dB/km for Commercially 

available fibres; Large, Very Large and Ultra Large Effective Area Fibre which 

are known as LEAF fibres. 

 

These techniques can also be used in combination to limit the attenuation and 

reduce the amount of amplification needed, such as [19, 20, 21, 22, 23, 24, 

25, 35, 60, 61]. 

 

Remote Optical Pumping Amplifiers require the doping of optical fibre with 

Erbium at a point, or at points, along the transmission span where the OSNR is 

large enough that the amplification of the signal and the noise makes little 

difference at the receiver. If the points where the fibre has been doped are too 

far apart, the OSNR will be too low to be recovered at the receiver and provide 

good BER values. 

This can be similar to repeatered spans, but the main use of ROPAs is at a 

distance of around 100km from the end of the transmission span to give a 

boost to the signal before it reaches the receiver. A single ROPA is more 

commonly used because it is cheaper than using multiple ROPAs, although 

that type of scheme would give a better balance to the OSNR over the 

transmission span, plus a single ROPA can be added close to the receiver 

equipment, usually in the same room, rather than replacing a whole 

transmission span. Experiments involving ROPAs are [18, 19, 20, 21, 22, 23, 

24, 25]. 

 

Large Effective Area Fibre (LEAF) is a type of Non-Zero Dispersion Shifted 

Fibre (NZ-DSF) that trades off the reduction in non-linear effects that NZ-DSF 

gives, but with an increase in dispersive effects, although the dispersion is still 

less than with SMF-28. This compromise is partly due to its larger acceptance 

angle and therefore wider light cone compared to normal NZ-DSF. This wider 
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light cone allows more light to enter the fibre, which means that the light is 

distributed over a wider area therefore reducing the peak power and non- 

linear effects. However this same design of a large effective area increases the 

dispersive effects, but when compared with SMF-28 fibre they are still much 

lower [6, 9, 33].  

 

Ultra Low Loss Fibre has dopants added to lower the normal attenuation of 

0.2dB/km for Silica fibres, such as SMF-28, down to 0.16dB [9, 10] for 

commercial fibres, although figures of 0.148dB/km have been measured in the 

laboratory [7, 8, 10]. For more on optical fibres see Chapter 2 section 2.2. 

 

Regarding the actual configuration for Raman amplification, the majority use 

simple Raman Amplification which relies on either 1st Order processes using 

1455nm pumps, 2nd Order using 1365nm pumps, or 3rd Order using 1285nm 

pumps, to produce the Stoke shift wavelength at 1550nm [18, 24]. 

 

For other configurations, such as those used within this thesis, FBGs were 

utilised to create a laser cavity, with the FBG working at the 1st Stoke shift 

wavelength of 1455nm after being pumped at the 1365nm wavelengths [14], 

other examples of ULRFL are shown in [63].  

 

There is also the consideration whether single or bi-directional pumping should 

be used. Single pumping can be either forward or backward; forward pumping 

has a lower noise profile whilst backward pumping gives a reduction in the 

effects of non-linearities. More on pump direction configurations can be found 

in Sections 3.2 and 3.3.1.  

Examples of experiments using single pumping are found in [20, 23, 25, 61] 

whilst bi-directional pumping experiments can be found in [18, 19, 20, 28, 35, 

58, 59]. 

 

All of these techniques can be used together to improve the received OSNR. 

Such configurations have been used in [25] where the average OSNR across 

all 64 channels was 10.6dB, at 0.1nm resolution, over a 468km span. 
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Apart from the experiments in this thesis which used SMF-28 fibre up to 

320km, the maximum distance where SMF-28 was employed in a transmission 

system was 240km [29]; it was also used for sensor applications using 300km 

[63]. Other experiments using SMF-28 can be found in [94]. 

 

For other fibres the maximum distance was 601km [18] for 1 channel 

transmission, 574km with 4 channels using Enhanced Pure Silica Core Fibre 

(EPSCF), which is a type of LEAF and ULL combined; the experiment also used 

ROPA and 3rd order Raman pumping and gave a Q-value of 9.5dB with an 

OSNR of 5.8dB/0.1nm with 4 channels. 

 
As with EDFA based amplification, there is a mix of using Coherent Receivers 

and Direct-Detection with Raman amplification techniques. For experiments 

involving Raman amplification configurations, the following papers used 

Coherent receivers [17, 20, 21, 22, 25, 58, 61], while Direct detection was 

used in [18, 23, 24, 35, 57]. More detail on these types of receiver can be 

found in Section 2.5.  

 

There are also some experiments using hybrid Raman-EDFA configurations, 

[21, 58, 61, 64, 95] in which EDFAs can be physically repeatered, or Erbium 

doped fibre is used for the transmission span, whilst Raman pumping is also 

employed to generate additional gain. 

 

 

3.2. Raman Amplification and Ultra-long Raman Fibre Lasers (ULRFL) 

 

The process of Raman amplification is based on a phenomenon known as 

Stimulated Raman Scattering or SRS. SRS occurs when two or more signals at 

different wavelengths are put into a fibre, this makes the power from the 

lowest wavelength transfer to the highest wavelength. An example of this is 

having a signal wavelength and a pump wavelength inserted into the same 

fibre which causes amplification of the signal wavelength. Raman amplification 

can be used over a broad range of wavelengths, which is another advantage 

over other amplification types. 
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Raman amplification uses an effect similar to Spontaneous Raman Scattering 

(SRS) and is due to the interaction of photons with silica atoms that cause the 

photons to scatter but with less energy and at lower frequencies (higher 

wavelengths), this is because some of the photons energy is absorbed by the 

atom it has interacted with.  

 

The difference between spontaneous and stimulated versions of Raman 

scattering are mainly down to the control of the Raman scattering process by 

use of a laser that has been generated with a limited range of wavelengths; 

the spontaneous scattering can occur at any wavelength and produce a photon 

with a random wavelength dependent on the atom the photon has interacted 

with. The presence of a pump laser aggregates the majority of the atoms to 

have similar energies, and therefore produce new photons of wavelengths 

within a known band. These photons will then produce more photons at ever 

higher wavelengths as the Raman scattering will continue to take place, and is 

only limited by the length of the optical medium that the light is travelling 

through; although in reality optical fibre is not lossless therefore absorption of 

these photons will occur, which means there is a limit to the length of the 

medium before other noise mechanisms take over [14, 15]. This process is 

described in more detail below. 

 

 
 
 
 
 
 

 
Figure 3.2.1 – The effect of SRS through a typical fibre span. 

 

The energy of the photons at lower wavelengths, thus higher energies, wants 

to reduce towards the ground state, and so when these photons change in 

energy state they emit a photon at a higher wavelength than the original 

photon. This also produces an optical phonon as not all the energy departs 

from the atom or molecule, this phonon is the vibrational energy or frequency 

of the atom/molecule. 

 

λ1  λ2  λ3  λ4 λ1  λ2  λ3  λ4 

Fibre 
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In SRS, this occurs when a photon hits an atom/molecule and starts the 

process described above. 

  

A description of the physical process that causes the effect is detailed thus: 

When a photon of wavelength ߱	is absorbed by the transmission medium a 

photon with the wavelength ߱ௌ ൌ ߱ െ ߱௩	 is produced; where ߱ௌ is the Stokes 

wavelength, ߱	is the wavelength of the initial photon and	߱௩	the excitation 

energy that was contained in the atom/molecule the original photon interacted 

with. The excitation state the atom is left in is ħ߱௩, where ħ is the Planck 

constant divided by 2π, which is equal to 1.055x10-34J.s, and relates the 

Planck Constant to radians and angular frequency [40, 56, 73]. 

 

The virtual or intermediary state (Ei in the diagram) is created by the 

absorption of the photon but this is not a stable energy level, while G, E1 and 

E2 are stable. Due to Ei being unstable, a photon is emitted at a higher 

wavelength but only with the energy that allows the atom/molecule to reduce 

to an energy state that is stable; hence a phonon is created at E1. This phonon 

has a frequency determined by the material it belongs to, so for Silica this is 

13.2THz calculated by ߱௉௛௢௡௢௡ ൌ ሺܧଶ െ  ଵሻ/݄. This frequency is the materialsܧ

resonant frequency [56, 73]. 

 

 

 
 
 
 
 
 
 

                   (a)                                                    (b)      

Figure 3.2.2 – (a) Stokes and (b) Anti-Stokes scattering. 
 

Taking the resonant frequency and the frequency of the initial absorbed 

photon, the frequency of the emitted photon can be calculated by ߱ா௠௜௧ ൌ

߱஺௕௦௢௥௕ െ ߱௉௛௢௡௢௡. The Raman scattering effect is not fixed directly at 13.2THz 

but has a bandwidth of 6THz giving a range of 10THz to 16THz [56, 73]. 

Therefore the Raman Effect is generally broadband and can be effective up to 

16THz (or 125nm in the 1550nm window) away from the original transmitted 
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frequency (or wavelength). The overall response is linear, but drops 

significantly around the 16THz [40]. 

 

For Raman amplification we take this effect and use it to increase the number 

of photons present in the fibre, hence amplification. Using a high powered 

pump at around 1450nm gives an amplified signal around 1550nm, which is 

useful for telecommunication applications. 

 

SRS works for two or more wavelengths; consequently two different pumps 

can be used to generate even more amplification for a broader range of 

wavelengths, and can help towards creating a phenomenon known as 

Supercontinuum [27, 30, 99]. 

 

 

 

 
 
 
 
 
 
 

 
        Figure 3.2.3 – Multiple stimulated Raman scattering using 2 pumps. 

 
Figure 3.2.3 shows the configuration of the energy levels using two pumps, 1st 

pump P1 is a lower wavelength, whilst the 2nd pump, P2 is a higher 

wavelength [56]. 

 

Using the above properties, a technique using a forward pump and a backward 

pump into the transmission fibre can give good Ultra-long Transmission 

results, as shown in [18, 19, 20, 21, 22, 23, 24, 25, 27, 35, 57, 58, 59, 60]. 

Single pump configurations are still used due to their own individual 

advantages for example forward pumping is relatively low noise while 

backward pumping has a high tolerance to non-linear effects. This means for 

certain experimental setups forward or backward pumping may be used 

depending on the desired outcome; some examples are shown in [20, 21, 23, 

25, 59, 61, 64, 98] of this type of usage. Using bi-directional pumps is a 
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compromise that realises the advantages of incorporating both directions 

within experimental configurations. 

 

The basic setup is shown in Figure 3.2.4 and shows a signal being transmitted 

into a transmission span; first the signal passes through a 3dB coupler which 

has the forward pump laser introduced through the 2nd input. For a signal at 

1550nm this pump laser would be set between 1450nm and 1460nm to get 

the 1st Stokes shifted wavelength. 

 

 

 

 
 
 
 
 
 
 
 

Figure 3.2.4 – 1st Order Raman Amplification with dual pumping in a ULFL. 
 

The change in the signal power PS, with regards to the pump power PP, along 

the fibres longitudinal axis z, can be demonstrated using the following 

equations: 

 
      ௗ௉ೞ

ௗ௭
ൌ ݃ோ ௣ܲ ௦ܲ െ ௦ߙ ௦ܲ   Eq. 3.2.1 

 

            േௗ௉೛
ௗ௭

ൌ
ఠ೛

ఠೞ
݃ோ ௣ܲ ௦ܲ െ ௣ߙ ௣ܲ   Eq. 3.2.2 

 

Where ݃ோ is the fibre Raman gain coefficient normalised with respect to the 

effective area of the fibre, ܣ௘௙௙. The attenuation coefficient for both signal and 

pump wavelengths is represented by ߙ௦ and ߙ௣ respectively and ߱௦ and ߱௣ are 

the angular frequencies of the signal and pump. േ is the representation of the 

co-propagation and counter-propagation of the CW input from the pump 

lasers. The first term on the right-hand-side of Eq. 3.2.1 represents the signal 

gain due to SRS with the second term representing the signal loss; for Eq. 

3.2.2 the first term represents the depletion of the pump due to SRS and the 

second term the pump loss [100]. 

Tx Rx 
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Figure 3.2.5 – Gain bandwidth over C-Band using Raman Amplification. 

 

For the experiments in Chapter 3 of this thesis, Ultra-long Raman laser based 

amplification was used which is based on 2nd Order processes but utilises 

FBG’s to create a laser cavity. This arrangement exploits the 2nd order process 

to create 1455nm wavelengths in the FBG from the 1365nm pump, which then 

creates Stokes wavelengths within the cavity which appear at 1550nm, hence 

causing gain at the signal wavelength. 

 

In this case, the 2nd Order process required a similar setup to that shown in 

Figure 3.2.4, but with Fibre Bragg Gratings (FBGs) inserted after the high 

power couplers. The FBGs were inscribed for the wavelength 1455nm, which is 

95nm below 1550nm wavelength of the signal. The reason for using FBGs in 

this way was to create  a double Stokes Shift by using Amplifiers in the 

1365nm region to create a 1st order Stokes shift around 1455nm, which would 

then make a 2nd Stokes shift around 1550nm, with both FBG’s having a 

bandwidth of 0.1nm.  

 

The setup for this is shown in Figure 3.2.6. Isolators were included within the 

high power couplers, although it is shown separately in Figure 3.2.6. 
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Figure 3.2.6 – 2nd Order Raman Amplification with dual pumping using 
FBGs in a ULFL. 

 

The effect of Raman amplification, as described previously, is broad, with up to 

125nm bandwidth from the central wavelength, which means the whole of the 

C-Band can be amplified using this technique, and therefore multiple channels 

can be amplified at the same time. 

 

This configuration, shown in Figure 3.2.6, gives us in effect a Raman laser, as 

the FBGs act as a cavity with high reflectivity >95%, this allows the power to 

build up within the cavity to a certain point before it is released. This type of 

configuration was used in [14, 15, 26, 27, 28, 29, 30, 31]. 

 

Unrepeatered long distance amplification was investigated using distributed bi-

directional Raman amplification [29], this showed a higher gain using b-

directional pumping when compared with co-propagating and counter-

propagating schemes.  When compared to EDFA only schemes, it was shown 

that there were significant improvements of between 2 and 6 Log BER for a 

240km span with post-compensation for the dispersion, using data rates of 

2.5Gbps and 10gbps, respectively. Numerical model in [28] confirmed that 2nd 

order bi-directional Raman amplification gives a better OSNR up to 200km. 

 

The essence of [14] was a numerical model that compared bi-directional 

Raman pumping with ULRFLs. This showed that ULRFL has a distinct 

advantage over regular bi-directional pumping in noise performance and gain 

excursion. It was also found that there existed a point where the noise from 

DRBS could cause a reduction in OSNR after 250km span lengths, and that 
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moderate input signal powers should be used rather than higher signal 

powers. 

 

In [15] the model in [14] was put to the test with a ULRFL cavity of 270km, 

the longest laser cavity at that time. This showed that the balance of gain over 

loss was possible over very long distances creating a quasilossless span; this 

was investigated in [31], although this paper in effect used a repeatered 

technique by creating an 82km ULRFL cavity. Using this cavity, a signal was 

passed through 2500km of fibre using a recirculating loop with the ULRFL 

within the loop; the comparison was made with repeatered EDFA transmission 

and it showed that 6dB less input power was needed for the same received 

signal quality. However a quasilossless span can see an increase in non-linear 

distortions at low powers as explored in [30] but gives better results at higher 

powers for a true non-repeatered quasilossless span. 

 

The results in [31] expanded on the notion of quasilossless spans, which led to 

the development of Supercontinuum generation as described in [27] where TW 

and highly non-linear fibre (HNLF) were used, where not only was a 

quasilossless span created but the gain was developed over a bandwidth of 

200nm. 

 

The summary of the results presented in section 3.4 of this thesis is shown in 

[26]. 

 

 

3.2.1. Advantages and Disadvantages of Raman Amplification and Ultra-long 

Raman Fibre Lasers (ULRFL) 

 

There are two measures that can be used so that Raman Amplification can be 

proven to be superior to EDFA. These are the Noise Figure and Gain Flatness. 

 

The Noise Figure (NF) is the ratio of the OSNR at the input and the OSNR at 

the output; this shows how much the signal is degraded by an amplifier such 

as an EDFA. In the context of Raman amplification, the Noise Figure is the 

equivalent noise figure that would need to be measured at the receive end of 
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the transmission span by an amplifier without Raman amplification present, 

but which would be obtainable with the same OSNR as if Raman amplification 

was present. 

 

For the equivalent EDFA based system: 

 
௦௬௦ܨܰ       ൌ  Eq. 3.2.3   ܮ௦ߙ௘௤ܨܰ
 

While with Raman pumping within the span instead: 

 
௦௬௦ܨܰ       ൌ  ோ    Eq. 3.2.4ܨܰ
 

Because: 

 
௘௤ܨܰ       ൌ

ேிೃ
ఈೞ௅

    Eq. 3.2.5 
 

Where ߙ௦ܮ cancels out when Eq. 3.2.5 (ܰܨ௘௤) is placed in Eq. 3.2.3 and 

therefore confirms the validity of Eq. 3.2.4. 

 
The above equations show the total system Noise Figure, ܰܨ௦௬௦, is a 

combination of attenuation and fibre length giving the total loss of the 

transmission span plus the amplifier Noise Figure: ܰܨ ൌ
ௌேோ೔೙
ௌேோ೚ೠ೟

. Thus under 

Raman conditions there would be little or no loss over the transmission span 

and can be classed as quasi-lossless.  

 

At the other end of the scale is a signal with a total loss through the span 

before being amplified. This would mean the signal would be almost 

unrecoverable at the receiver, as the OSNR would be very low due to the ASE 

in the system being amplified along with the low signal, therefore more ASE is 

generated and this lowers the OSNR even more. This then gives an increase in 

the NF. 

 

In Raman amplification the Gain is, in effect, evenly distributed throughout the 

fibre span, as in a repeatered span, but using no discrete amplified sections to 

achieve this, plus higher signal power is maintained along the length of the 
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span. It was also found in [98] that gain flattening in Raman amplification can 

be helped by the use of broader linewidth Raman pumps. 

 

The Gain Flatness of an amplifier or a system is the product of multiple 

wavelengths being amplified, with one or more wavelengths being amplified to 

a greater extent when compared to other wavelengths. Due to there being a 

limited amount of Gain from the amplifier it means some wavelengths 

consequently receive less gain than other wavelengths; these wavelengths are 

the shorter wavelengths, whilst longer wavelengths receive more gain.  

An amplifier with high gain flatness is one where all wavelengths receive the 

same, or nearly the same, amount of gain, i.e. the gain is spread equally 

amongst all wavelengths passing through the amplifier. 

 

To reduce the gain difference between wavelengths in EDFA based systems, 

lossy elements are placed in the amplifier path to reduce the power of those 

wavelengths which receive the most gain, and therefore spread the gain more 

equally over the bandwidth of the amplifier. The total gain will be limited by 

the lowest gain wavelength which is obviously worse for an amplifier with a 

highly tilted gain. The disadvantage of this is it reduces the amount of gain in 

the system, and therefore the maximum output power of the amplifier. 

 

The wavelength dependent profile of the gain, when signals are being 

amplified, is also known as the Noise Figure Tilt. As described above NFT is the 

difference between the wavelength with the highest gain and the wavelength 

with the lowest gain. Which means the greater the difference in the achievable 

gain the larger the NFT. The NFT is also reliant on the amount of ASE, and this 

is greater at lower gain wavelengths and therefore affects the overall NFT. 

 

Multipath Interference is when photons hit an atom or molecule in the fibre 

and they are reflected backwards in the opposite direction to the signal 

photons. These photons can then collide with another atom or molecule and 

travel in the forward direction again, co-propagating with the signal. This 

effect is known as Double Rayleigh Backscattering (DRB). 
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DRB can travel in many directions, but those scattered photons that are co-

linear with the signal, can have a degrading effect through the addition of 

noise. One example of this is when DRB travels through an amplifier; due to 

its inherent mechanism it travels through two lots of gain as, in effect, the 

amplifier will see two separate photons. The direction of travel through the 

gain medium does not matter in these instances thus additional ASE is 

observed at the receiver.  

 

The mechanism, explained above, occurs throughout the fibre length and is 

entirely random; this apparent randomness is due to where denser areas 

appear within the fibre material (as mentioned in Section 2.8.4). This can have 

two effects; firstly intensity of the signal can fluctuate, and secondly small 

changes in phase can become apparent. Both of these when multiplied many 

times can have major issues at the receiver. 

 

Pump Noise Transfer is the process where the fluctuations of the Raman 

amplification, which occur at less than 1ps intervals, combine with pump 

frequencies that are lower than 1THz and cause intensity fluctuations in the 

power of the signal. Relative Intensity-to-Noise transfer is the measurement of 

this phenomenon and is described in more detail in Section 3.3. 

 

Bi-directional pumping reduces the Multi-Path Interference (MPI) penalty by 

reducing the amount of Double Rayleigh Backscattering (DRB) and as such the 

gain excursion is reduced. A lower noise figure can be achieved compared to 

just counter-propagation [102, 103]. 

 

Turning to ultra-long Raman fibre lasers (ULRFLs), the main advantages of this 

type of distributed Raman amplification over lumped Raman amplification are 

two fold; in that the power profile is flatter with the gain profile closely 

matched with the span loss, and also the noise performance is improved 

compared to non-ULRFL based techniques [14, 15, 30, 31]. 

 

Some experimental measurements showing the power distribution for different 

fibre span lengths are shown in Figure 3.2.7. It can be seen that the longer 

the distance the larger the change in the power distribution. This is caused by 
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the gain excursion through the fibre span which changes with distance, as the 

gain from the forward pump starts to decrease after ~35km and only 

increases again around 85km. This power distribution change is seen as a 

peak when the signal sees the gain from the forward pump, it then reduces in 

gain as it travels through the fibre. The measured power is reduced by half out 

around ¾ of the way through the fibre. The signal then begins to interact with 

the gain from the backward power and thus gives a lossless output. 

 

 
Figure 3.2.7 – Power distribution of ULRFL for span lengths of 80km, 

100km and 120km. Sixth order polynomial fits also shown. 
 

It can be seen that the power excursion at the different span lengths ~1.5dBr 

for 80km, ~2.5dBr for 100km and is ~4dBr at 120km. The fit shown is a 

statistical fit calculated via a 6th order polynomial which shows the overall 

response of power over distance with the noise removed. 

 

The power change through the fibre span was measured using the optical 

time-domain reflectometery (OTDR) technique which measures the amount of 

reflected power from the light transmitted into the fibre. For very long lengths 

beyond 150km this technique cannot be used as the loss in the fibre, due to 

absorption, is too great to get full measurements, hence why no OTDR traces 

at 240km and 320km distances have been included. 
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Figure 3.2.8 – OSNR vs transmission distance (Linear (a) and Log (b)) 
using a recirculating loop with a length of 101km. 

 

The distribution of the noise over the length of the fibre is shown in Figure 

3.2.8 with OSNR measured against fibre distance. This shows that the main 

reduction in OSNR due to noise occurs within the first 500km after which the 

OSNR continuous to decrease in an exponential fashion. It shows that if the 

noise can be controlled and minimised near the beginning of the fibre span, 

then the OSNR will have a less significant reduction overall when using an 

ULRFL. These measurements used a recirculating loop with a span of 101km 

up to 2600km, similar to [31]. 
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3.3. Relative Intensity-to-Noise (RIN) Transfer 

 

Relative Intensity-to-Noise transfer, or RIN, is the measurement of the total 

amount of noise generated by a laser. This noise can be described as 

fluctuations between the pump laser and the signal. These fluctuations are 

caused by spontaneous emission within the laser cavity, as well as thermal 

noise and shot noise, depending on the type of laser used; i.e. semiconductor 

lasers or fibre-based lasers. The fibre based lasers are not affected by thermal 

and shot noises directly only indirectly through the pump laser used, which is 

quite often semiconductor based. Large RIN is usually found in low-quality 

laser sources and can cause significant degradation of signals, similar in effect 

to ASE. 

 

There are a number of RIN measurement techniques. The most common 

technique is direct measurement via a pump-probe method in which a laser 

pulse, with known characteristics, is passed through a Raman amplifier whilst 

a pump laser is injected, either to study forward pumping behaviour, or 

backward pumping behaviour, depending on the setup; both studies occur 

whilst the Raman amplifier is in an undepleted state. 

 

The output of the amplifier is connected to an electrical spectrum analyser 

using a photodetector to detect the resulting pulse intensity. In this process 

the RIN transfer is seen as a change in the modulation frequency on the 

analyser. 

 

Although this measurement technique seems simple, there are issues that 

need to be overcome to get a true reading of the RIN: 

 

 Calibration of the spectrum analyser to measure random noise instead 

of sinusoidal waves. Typically 2 dB is added to the noise floor, but this 

can depend on how the spectrum analyser is setup. 
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 DC component of the photocurrent needs to be accounted for in the 

photodiode, this is usually corrected as part of the calibration of the 

spectrum analyser. 

 

 The photo diode must operate within the unsaturated linear region, as 

noise within the photodiode builds up at saturation, making it harder 

to measure the RIN in the system. 

 

 The timing jitter within the signal needs to be known to remove this 

from affecting the RIN measurements as RIN and timing jitter are 

correlative. 

 

Once these issues are corrected for, it can be agreed that the measurements 

are accurate within typical error margins [73, 104]. 

 

Within the rest of this section, RIN is considered from the point of view of 

Raman amplification, with examples of RIN shown, and a summary of the 

reasons for some of the configurations used within Raman amplified systems is 

given.  

 

Initially backward Raman pumping was the main option when Raman 

amplification was used due to the low noise and small amount of gain 

excursion. The gain excursion is defined as a transient gain error which 

includes a gain offset, or the difference in the maximum and minimum of the 

average power as it travels through a fibre. 

The use of bidirectional pumping has benefits over single direction pumping 

when used with long span lengths, benefits such as higher gain and lower 

noise, when compared with EDFA based amplification. 

 

One major issue however is due to the fast gain dynamics of the Raman 

amplification process, which is in the order of femtoseconds (fs). The RIN 

present on the pump laser couples efficiently with the signal when forward 

pumping is used. To minimise the RIN signal transfer, low noise pump lasers 

with broad line-widths can be used; examples of these pumps are spectrally 
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broadened DFBs (SB-DFBs) [102] and inner-grating-stabilized multimode 

(IGM) lasers [102].  

 
 
The type of lasers which are useful in Raman amplification have to achieve 

both low RIN and a sufficiently broad line-width, as it allows Forward, 

Backward and Bidirectional pumping by minimising the Raman gain ripple, 

whilst boosting the possible gain available from the Raman Amplifiers and 

giving a flattened gain spectrum [101]. 

 

The amount of laser noise transferred to the signal will depend upon the 

wavelength of the laser noise, plus the configuration of the Raman pumps 

needs to be taken into consideration. The configurations for Raman 

amplification are: single co-propagating, single counter propagating, bi-

counter-propagating and bi-co-propagating [102]. 

 

The total RIN, in dB, can be calculated using the RIN of the pump and the 

signal, hence: 

 
்ܰܫܴ ൌ ݃݋10݈ ൬

ோூேೞ
ோூே೛

൰   Eq. 3.3.1 

 

Where, ܴܫ ௦ܰ represents the signal RIN, ܴܫ ௣ܰ is the RIN from the pump laser 
source, and ்ܴܰܫ is the total system RIN. 
 

The direction of the pump laser can affect the amount of RIN transferred from 

the pump wavelength to the signal wavelength, as well as having other 

positive and negative effects (see section 3.1). With Forward pumping the 

noise is less than with backward pumping, but vis-à-vis, the effects from non-

linearities are reduced with backward pumping. 

 

The difference in the Group Velocity Dispersion (GVD) of the pump and signal 

is called “walk-off”; it is dependent on the starting condition of the light from 

both the pump and the signal, plus the inherent dispersion of the fibre used. 

The walk-off is something that needs to be considered when calculating the 

RIN as it affects the interaction between pump and signal. 

If the pump and signal do walk-off then the coupling of the intensity noise 

reduces with increased walk-off as the walk-off averages the RIN. 
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The corner frequency for co-propagation is 1-100MHz, and is calculated using 

௖݂ ൌ
ఈ೛

ଶగ஽∆ఒ
 or ௖݂ ൌ

ఈ೛

ଶగௌฬ
ഊೞ	షഊ೛

మ	
	ఒబฬ൫ఒೞିఒ೛൯

, where ܵ is the dispersion slope and ߣ଴ is the 

zero-dispersion wavelength of the fibre. The corner frequency is the frequency 

where the 3dB point of a filter is measured. This shows that RIN transfer, due 

to walk-off, acts like a low-pass filter, because as the frequency of the 

intensity noise increases the RIN transfer decreases. The same effect applies 

to the increase in dispersion, pump-signal wavelength separation and the 

effective length of the fibre, whilst a similar outcome can occur if the fibre 

attenuation decreases. 

 

With regard to RIN in non-zero dispersion fibres, if the zero-dispersion 

wavelength is between the pump and the signal wavelengths then there is a 

reduction in walk-off, which leads to an increase in the RIN corner frequency 

and hence the RIN transfer. In the worst case scenario the zero dispersion 

wavelength is exactly half way between the pump and signal wavelengths, 

thus there is no walk-off and the RIN transfer is at its most efficient. For 

forward pumping Raman amplifiers the worst choice of fibre would be NZDSF 

as its non-zero dispersion wavelength is around 1550nm. 

 

For the backward pumping case, the signal encounters an ever strengthening 

pump from its forward direction, which means the walk-off is not the most 

important factor, but instead the fibre attenuation takes precedence.  

 

Compared to the forward or co-propagating case, the corner frequency of the 

counter-propagating case depends on the fibre attenuation only, this results in 

lower RIN transfer.  The RIN for the counter-propagating case is less, as the 

corner frequency is in the 1kHz range and can be calculated using ௖݂ ൌ
ఈ೛	௏೒
ସగ

, 

whilst for co-propagation it is in the 1-100MHz range [102, 105, 107]. 

 

The presence of low dispersion can significantly increase the sensitivity to RIN 

for fibres types such as NZDSF and SMF-28. When using either of these types 

of fibre, the pump-RIN would have to have a value of <−130 dB/Hz, even for 

a single amplifier. The issue of RIN transfer would be worse if low dispersion 

fibres are used, especially if the zero-dispersion wavelength is half-way 
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between the pump and signal wavelengths, as discussed in Section 3.3.1 

[102, 105, 107]. 

 

For Bidirectional pumping the RIN transfer occurs mainly in the forward-

pumping direction, so the RIN from backward pumping can be ignored. 

 

For 2nd Order Raman amplification the RIN is increased compared to 1st Order 

Raman amplification, but the other noise mechanisms are decreased [109, 

110]. 

 

Some experimental work was carried out into the potential degradation due to 

RIN, with the Q-value measured at 10dB in [105], this showed that forward 

pumped amplification was much more sensitive to RIN than backward pumped 

amplification with a penalty difference of 50dB between them, which means to 

avoid pump-RIN transfer penalties a maximum pump RIN of <-120dB/Hz for 

forward pumping, and -70dB/Hz for backward pumping, is needed to avoid an 

increase in RIN. If there is more than one amplifier then the RIN will build up 

linearly with each additional amplifier. 

 

 

3.3.1. RIN Measurement and Suppression techniques 

 

In the previous section it was shown how significant RIN can be when looking 

at the direct causes of some issues within transmission systems. There are a 

number of ways to try and supress RIN and improve the performance of 

optical transmission systems. 

 

The suppression of RIN within lightwave systems is a difficult but important 

consideration. The majority of RIN is from the laser sources used within optical 

systems, so the majority of suppression techniques are concentrated in this 

region. The RIN of a laser can be reduced by operating laser diodes with 

stabilised injection current, and also through laser design which minimises 

external noise susceptibility and quantum fluctuations [104]. 
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One such technique to reduce RIN in lasers is Laser Cavity Injection (LCI), this 

is the process of injecting the light from one laser into the cavity of another 

laser. This process reduces the RIN by inhibiting unwanted modes, whilst 

promoting the wanted modes. The use of a polarisation controller to control 

the polarisation of the light entering the laser cavity enhances the control by 

minimising one polarisation, and hence reduces the build-up of RIN by half, in 

addition to the reduction of unwanted modes [111]. 

A similar technique of RIN suppression to LCI is via Self-Injection Locking 

(SIL), where the light from the laser is injected, via a circulator, back into the 

laser cavity rather than using a separate laser. This increasingly promotes the 

wanted modes over those unwanted modes by way of a feedback process. RIN 

suppression was around 20dB/Hz [112, 113]. 

Both LCI and SIL, as described above, have been used in DFB lasers, whilst a 

similar technique has been explored in semiconductor lasers [114]. 

 

Turning to Raman systems, as discussed previously in Section 3.3, it is stated 

that in co-propagating regimes the higher frequency RIN >10MHz is reduced 

whilst the low frequency RIN is increased. In counter-propagating systems, 

owing to the opposite directions of pump and signal, the RIN is reduced due to 

the averaging out of the resultant pump and signal combination. 

 

It is difficult to implement any feedback loop derivatives, such as SIL, in 

Raman cavities due to their length, so alternative methods need to be used. 

One such method is to reduce RIN in 2nd order RFLs, where the 1st and 2nd 

order wavelengths are produced via low power semiconductor lasers. It was 

found that by matching the frequency of the 2nd order laser current 

fluctuation, via the modulation of the 1st order laser by the same frequency, it 

stymies the RIN transfer between 1st order pump laser and the signal and 

achieves a RIN transfer reduction of -20dB over a bandwidth of 10MHz [115].  

 

Other techniques for Raman based systems include the use of a double cavity, 

in which the Stokes wavelengths are produced, at specific powers. This set-up 

produces a lower RIN because there is a low amount of RIN transfer from one 

cavity to another and therefore between different order Stokes wavelengths, 

this also smooths the output of the Raman fibre laser (RFL) [116]. 
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Also developed was the suppression of RIN at the 1st Stokes wavelength, 

which would decrease the potential for RIN transfer to 2nd order wavelengths 

even further than in [116]. This technique uses a point which allows the 

clamping of the 1st order output power to around 1.2W, meaning the resultant 

2nd order wavelength has little RIN transfer due to the lack of fluctuations in 

the 1st order wavelength as a result of power clamping [117]. 

 

Another technique which builds upon the ones already mention for RFLs 

includes a type of feedback, but it is not a SIL-type feedback. This technique 

uses a small signal that is modulated according to the information given by the 

negative feedback loop to control electronics. The signal is of the same 

wavelength as the 2nd Stokes wavelength. The frequency of modulation does 

not have to be resonant with the RIN, but close to the typical frequencies, 

which means there is a greater amount of pump power available than with the 

other techniques [118]. 

 

Another RIN suppression technique relates to the use of the intensity 

modulator, this is a device present in pretty much all optical transmission 

systems. Typically an additional modulator is added to correct for amplitude 

fluctuations using a tap to couple light to a photodiode, which indicates an 

offset when compared to a reference voltage. This offset is then used to 

change the modulation current, and hence cancel out the RIN [119].  

In this design the additional modulator is not needed as the feedback is used 

to slightly adjust the modulation that supplies the data to the light wave to 

supress the RIN, and also reduces the additional insertion loss within the 

system. This technique can also reduce phase noise in certain circumstances. 

As with previous experiments, a bandwidth of 10MHz was used to measure the 

RIN [120]. 

 

A Similar technique, as described here, used a Semiconductor Optical Amplifier 

(SOA), and by controlling the injected current, which controls the amount of 

gain supplied by the SOA, when the amplifier is at saturation, the RIN can be 

reduced [121, 122, 123]. 
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There is also a suppression technique which relates to the improvement of 

noise rejection at the receiver. It is standard within the design of coherent 

receivers due to the reduced complexity in using a MZI and one photodiode, 

instead of beam splitters and four photodiodes. The technique which is applied 

at the receiver consists of a coherent receiver, where the Local Oscillator (LO), 

used to demodulate the incoming signal, has RIN which could be transferred to 

the incoming signal. The MZI is the main reason for the RIN suppression, as 

long as the FSR is equal to twice the Intermediate Frequency (IF). The IF is 

the difference between the signal and LO frequencies. The frequency 

difference between the LO and the RIN means that within the MZI, the signal 

and LO power is coupled to the wanted output, whilst the LO RIN is transferred 

to the opposite output, where it is discarded. The reduction in photodiodes 

meant there is less shot and thermal noise to be transferred as well [124]. 

 

It can be stated that, overall, to achieve low RIN within optical systems, the 

pump lasers used in Raman amplification techniques, need low RIN.  

Pump lasers such as FBG-FP lasers typically have RIN of -120dB/Hz, whilst 

those with a narrow line width, such as DFBs, can achieve RIN of -160db/Hz. 

Narrow linewidths however cause an increase in SBS, and can therefore 

negate the RIN improvement by causing system noise elsewhere, therefore a 

pump laser need low RIN, plus a linewidth that is not narrow enough to cause 

SBS, yet narrow enough to reduce the system RIN. Pump lasers which can 

lead to low system RIN are the Inner-Grating Multimode lasers (IGMs) and 

Spectrally Broadened Distributed Feedback laser (SB-DFBs) [100, 125]. 

 

Other more general effects can also be used to contribute significantly to the 

reduction in RIN, such as having low fibre dispersion, which limits the increase 

in RIN purely by limiting the dispersion of the light, also balanced receivers 

which reduce RIN by, in effect, “seeing” more signal than noise i.e. higher 

OSNR. 
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3.4. Experimental Results 

 

The experiments into unrepeatered transmission were reduced to two main 

experiments, both of which used Raman amplification and an ultra-long fibre 

span; one was at 240km and the second at 320km. A further experiment of 

around 400km was not completed due to time constraints and equipment 

issues. 

 

The experiments and their results are shown and discussed in the following 

sections: 

 Section 3.4.1 – 240km ultra-long transmission. 

 Section 3.4.2 – 320km ultra-long transmission. 

 

These results are shown and analysed in the sections mentioned above, then 

conclusions made from them in Section 3.5. 

 

The channels that were used during the transmission experiments are shown 

in Figures 3.4.1 to 3.4.2 and Tables 3.4.1 to 3.4.2 as follows: 

 

 
Figure 3.4.1 – Transmitted WDM Channel wavelengths for 240km experiments. 
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Table 3.4.1 – Transmitted WDM Channel wavelengths for 240km experiments. 
 

The channel spacing is within the ITC 50GHz grid, although not at the central 

wavelength of each 50GHz channel, with an approximate average 500GHz 

channel separation between channels. The non-uniformity of the channel 

spacing is down to the laser sources available for the experimental 

configuration at 240km. The channels were also chosen to give a general 

indication of the response across the majority of the C-Band, which runs from 

1530nm to 1565nm and is the normal medium for modern 

telecommunications.  

 

This is due to superior amplifiers and a useful amount of naturally anomalous 

dispersion at these wavelengths. 

 

 
Figure 3.4.2 – Transmitted WDM Channel wavelengths for 320km experiments. 
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Channel Wavelength (λ) 
1 1531.62 
2 1534.91 
3 1539.64 
4 1543.59 
5 1546.04 
6 1550.84 
7 1556.47 
8 1560.53 
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Table 3.4.2 – Transmitted WDM Channel wavelengths for 320km experiments. 
 

These channels were chosen to be within the ITU 50GHz Grid, as described in 

Chapter 2 Section 2.1.2, which gives a separation between the channels of 

200GHz so as to minimise ISI and Crosstalk. The spectral width at 42.7Gbps is 

0.342nm, whilst the 50GHz Grid gives a channel spacing of 0.40nm; this gives 

a difference of 0.058nm, or ±0.029nm either side of the signal pulse. 

 

The wavelengths used for the 320km experiments used a narrower bandwidth; 

this was due to problems with correcting dispersion over the whole bandwidth 

of the channel wavelengths used for the 240km experiments at the longer 

fibre span length. 

The problem was there was not enough Raman gain over the larger bandwidth 

of 30nm used for the 240km experiments, owing to the extra losses 

experienced with the additional fibre to make the span 320km. This issue 

required a reduction in the bandwidth, which gave an increase in the possible 

gain due to the average power being increased when using a narrower 

bandwidth. 

 

The Raman amplification used was 2nd order Raman amplification, which uses 

FBGs at either end of the transmission span; this technique was described in 

section 3.1.3. The power variation over the transmission span is less using 2nd 

order Raman amplification with a variation of 2.72dB with bi-directional 

amplification, with 1st Order amplification having an approximately 11dB bi-

directional variation. This meant the population depletion in 2nd order 

amplification should be less, giving the potential for additional overall gain 

when compared to 1st order setups.  

Channel Wavelength (λ) 
1 1549.30 
2 1550.92 
3 1552.52 
4 1554.13 
5 1555.75 
6 1557.36 
7 1558.98 
8 1560.61 
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Single direction pumping obviously gives a larger variation over the whole 

transmission span when compared to bi-directional pumping [20, 21, 23, 25, 

59, 61, 64, 98, 99]. 

 

 
Figure 3.4.3 – An OTDR measurement from a 120km span. 

 

For the 240km and 320km configurations, the total fibre span loss was 

measured using the Optical Time-Division Reflectometery (OTDR) technique 

[90], and came out as 48.3dB for 240km and 67.1dB for 320km. An example 

of an OTDR trace is shown in figure 3.4.3 which is over a 120km span, this 

shows how much of the power is reflected. 

 
The power used in the Raman pumps at 240km was 1.4W (31.46dBm) for the 

forward pump and 1.25W (30.97dBm) for the backward pump. For the 320km 

experiment the forward and backward Raman pump powers were 1.85W 

(32.67dBm) and 1.4W (31.46dBm) respectively. 

 

The forward and backward powers basically “tilt” the Raman gain, which is 

useful when one end of the spectrum has channels with a greater peak power 

than those at the other end, therefore by changing the power output of the 

Raman pumps this can be equalised. However other problems can emerge as 

noise mechanisms appear when the pump power is too low or too high. When 

the pumps powers are too low there isn’t enough power to create the Stoke 

wavelength(s), so any light from the pumps appears as noise. 

15

17

19

21

23

25

27

0 20 40 60 80 100 120 140

M
ea

su
re

d
 R

ef
le

ct
ed

 P
ow

er
 (

d
B

)

Fibre Length (km)

OTDR for 120km SMF-28 Fibre



   
 

106 
 

In the reverse situation where the pump powers are too high, the amplified 

signal is increased to a level that causes the light to back scatter, and it 

therefore becomes part of the noise caused by Brillouin Scattering and Double 

Rayleigh Back-Scattering. 

 

All spectra and OSNR measurements were taken using a 0.1nm bandwidth on 

the Optical Spectrum Analyser (OSA). 

 

10 0 20 0 30 0
Length [k m ]

0

1 0

2 0

3 0

4 0

5 0

6 0

O
S

N
R

[d
B

]

0

10

20

30

40

50

60

O
n

-O
ff

G
a

in
[d

B
]

 
Figure 3.4.4 – The relationship of OSNR (black line) and On-Off Gain (red line) with 
distance. Solid lines represent best case scenario and dashed line the worst [24]. 

 

Figure 3.4.4 shows experimental results [26] for OSNR and On-Off Raman 

Gain as they change with distance. This shows that for 240km the OSNR 

should be between 26dB and 30dB, whilst for 320km the OSNR could be as 

low as 9dB and as high as 12dB. These measurements were taken with Raman 

pumping only. The OSNR and On-Off Gain results in Figure 3.4.4 will be tested 

in the following experimental sections. 

 

DPSK receivers are a common type of receiver used in optical transmission 

systems. This is due to DPSK being a modulation technique that gives a 

potential 3dB improvement and double spectral efficiency when compared to 

OOK. There are a number of different detection techniques that could have 

been used for DPSK, but the two main types of receiver which were considered 
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were Direct-Detection and Coherent receiving. Due to its simplicity Direct-

Detection was chosen for these experiments. For detail on modulation 

techniques see Chapter 2 Section 2.4.2, and for Optical Receivers see Chapter 

2 Section 2.6. 

 

 

3.4.1. 240km Ultra-long Transmission 

 

Carrying out an experiment at 240km was for proof of concept before going 

onto longer transmission spans. Simulations had previously been carried out  

[14, 108] for up to 300km comparing both 1st order bi-directional Raman 

amplification and 2nd order bi-directional Raman amplification, with the 2nd 

order using FBGs as per the experiments in this chapter. It was found that 2nd 

order Raman amplifier had a smaller Nonlinear Phase Shift of 1.80 compared 

to 2.31 for 1st order, and a reduced difference in power variation was also 

found for the same OSNR values [15, 99]. 

 

Experimental investigation into using FBGs in a 1st order Raman amplifier to 

create an ultra-long fibre laser were carried out in [15] to confirm whether 

there was a limit to the length of a laser cavity. The limit was found to be 

around 270km, although the experimental investigation went up to 303km. 

The Rayleigh backscattering was found to cause the signal to degrade 

significantly due to the intra-cavity modes becoming indistinguishable, 

therefore reducing the effect of the mode reflections from the FBGs within the 

cavity; as a result, after being amplified, the noise is increased thus rendering 

it almost impossible to recover the signal at the receiver. 

 

In this experiment 2nd Order Raman amplification is used in an Ultra-long 

Raman Laser which should decrease the nonlinearity seen within the fibre 

cavity [126]. Referring back to the simulations in [14] they dictate an 

improved resilience to nonlinearities along with added OSNR improvements, 

and a slight increase in amplification of the signal at around 1550nm. Each 

FBG was reflective of >95% of the light within the fibre cavity. 
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Using ULRF in unrepeatered Raman amplification, which in essence becomes a 

quasi-lossless span [14, 27, 30], means the gain across the total length of the 

transmission fibre span should equalise the total loss of the span. The setup 

for this experiment involved creating a span of 240km of SMF-28 fibre, with 

240km of DCF to compensate for the dispersion. A Transmit-side and a 

Receive-side were constructed using EDFA’s and DCF’s on either side of the 

transmission span, as explained in section 3.2. 

 

A transmitter was setup to transmit 8 channels, with the wavelengths as 

shown in Table 2.4.1; these were then passed through a multiplexer and then 

a data modulator, which modulated data that consisted of a PRBS 231-1, using 

RZ-DPSK modulation. In total this gave an 8x42.7Gbps output, and a total 

capacity of 341.6Gbps. 

 

RZ was used instead of NRZ because the ability to recover the clock rate with 

RZ is less complex. DPSK was used because it has a number of advantages 

over other modulation techniques. It has a 3dB improvement in sensitivity 

over ASK modulation and XPM effects on the differential phase are limited, it is 

also comparatively easy to demodulate compared to other types of phase shift 

keying. For more on modulation see Chapter 2 Section 2.4.2. 

 

As well as RZ-DPSK modulation, RZ-ASK modulation was used for the 240km 

experiments. ASK is a much simpler type of modulation requiring a transmitter 

that uses a single data modulator to encode the transmitted data using the 

signal amplitude. These amplitude changes can be directly detected by a 

photodiode. Using RZ requires an additional pulse carver as described in 

Section 2.4. 

 

The modulated data was then passed to a Pre-Amplifier which was a dual 

pumped Gain Flattened (GF) EDFA. The signal was directed through 160km of 

DCF to effectively pre-chirp the signal and then through a Booster Amplifier, 

this was also a GF-EDFA but with three pumps for additional power 

amplification, before it was sent through the transmission span. This was the 

Transmit-side. 
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The signal was then sent through the 240km transmission span, where Raman 

amplification would take place (Raman Amplification is described in more 

detail in Section 3.1.3) and a quasi-lossless span generated. 

The Raman pumps were set at 1.4W (31.46dBm) for the Forward pumping, 

and 1.25W (30.97dBm) for the backward pumping powers. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.5 – System setup for 240km 8-Channel WDM Transmission. 
 

Once the signal had passed through the transmission span the loss was 

measured and came out at 48.3dB, consistent with 0.2dB/km for SMF-28. The 

signal on the Receive-side passed through a GF-EDFA Pre-Amplifier, and then 

through 80km of DCF, plus an additional 2.5km DCF-LEAF†, before finally 

passing through a second GF-EDFA Booster Amplifier. 

 
†An explanation for using the additional small amount of DCF-LEAF is as 

follows: The lowest amount of DCF available was 5km, but this amount of fibre 

was insufficient for complete correction of the dispersion for the whole span. A 

DCF for Low Effective Area Fibre (LEAF) was used for “tuning” the dispersion 

compensation in small 2.5km amounts of fibre. The need for this additional 

fibre was due to the type of DCF fibre used. The length of the 80km DCF fibre 

reel used for the fibre span compensation was set for use within the L-Band 
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(1565-1625nm); this meant the ܮ௘௙௙ within the C-Band (1520-1565nm) was 

approximately 82km, hence the need for additional dispersion compensation 

using small amounts of DCF-LEAF. 

 

The addition of 2.5km of DCF actually meant using 10km of DCF-LEAF, but 

due to the dispersion compensation of 4ps/nm for DCF-LEAF, the effective 

length of the fibre for compensating SMF was 2.5km, as SMF-28 is 16ps/nm. 

Consequently to achieve 10km of SMF compensation 40km of DCF-LEAF would 

have to be used. This did not compensate for the dispersion in full as the lower 

two channels were still affected, but it was as close as possible using the fibre 

available. 

 

The asymmetric split of using 80km pre fibre span, and 160km post fibre 

span, existed due to having only 80km lengths of DCF available, so the only 

splits available for pre/post fibre span were 240km/0km; 160km/80km; 

80km/160km; and 0km/240km. Through trial and error, we found that 

80km/160km gave the best dispersion compensation compared to the other 

DCF configurations. 

 

The resulting signal was then sent through a tuneable filter which was used as 

a wavelength demultiplexer. The receiver consisted of a Delay Line 

Interferometer (DLI) where the two outputs were attached to two 

photodiodes, one on DATA and the other on DATAതതതതതതതത. For more detail on DLIs see 

Chapter 2 Section 2.5.3. 

 

A Clock Recovery module was used to control the temporal drift in the system. 

The CR took 30% of the signal using a 70%/30% optical splitter which allowed 

the data rate to be properly measured at the receiver and for the received bits 

to be in the correct sequence. 

 

Figure 3.4.6 shows eye diagrams of each channel measured at the receiver 

after 240km transmission, with 80km of SMF-28 and two modules of LEAF, 

one of 5km and the other of 2.5km, which gave a total of 87.5km of fibre. 
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        (a)                                                          (b) 

 
 
 
 
 
 
 

          
        (c)                                                          (d) 

 
 
 
 
 
 
 

          
        (e)                                                          (f) 

 
 
 
 
 
 
 

         
        (g)                                                          (h) 

 
Figure 3.4.6: - Eye diagrams showing received signals from Ch1 (a) to Ch8 (h) after 

240km transmission span with 160km DCF before transmission span and 87.5km DCF 
after transmission span. 

 

Channel 1 has a significantly closed eye and Channel 2 also has a reduced 

opening when compared with channels 3 to 8. It wasn’t known if this was due 

to too much dispersion compensation or not enough, so the amount of fibre 

was decreased to 85km. 

 

Figure 3.4.7 shows the eye diagrams for the 8 WDM channels received after 

240km transmission, with 80km of SMF-28 and 5km of LEAF to compensate 

for the dispersion.  
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         (g)                                                          (h) 
 

Figure 3.4.7: - Eye diagrams showing received signals from Ch1 (a) to Ch8 (h) after 
240km transmission span with 160km DCF before transmission span and 85km DCF 

after transmission span. 
 

Compared to the diagrams in Figure 3.4.6, Channels 1 and 2 are improved 

with Channel 1 significantly so, but channels 3 to 8 are comparatively 

degraded. Because the overall results for the transmission system was more 

important than individual channels, it was decided that the 80km+5km was 

the better “average” as Q-values could be measured from all 8 channels, even 

though the Q-values were lower overall. 

 



   
 

113 
 

The received data for both ASK and DPSK modulation formats are shown in 

Figure 3.4.8 showing the improvement due to using DPSK over ASK; both 

measurements used direct-detection and balanced receiving. A 2dB to 3dB 

improvement can be seen apart from on channels 1 and 2, where gain tilt and 

dispersive effects limited the expected improvement. 

 

 
Figure 3.4.8 – 240km 8-Channel WDM Transmission Results for 42.7Gbps RZ-ASK and 

RZ-DPSK modulation. 
 

The red dotted line is the limit below which Forward Error Correction (FEC) 

could not be used to obtain any usable data. 

The results show that for all WDM channels FEC would not be needed.  

 

Channel 6 at 1553.4nm is the closest to the line at around 11dB, and is 2dB 

above the FEC limit [26]. The FEC limit is equal to 8.86dB Q-Value or 3x10-3 

BER. The FEC limit that is being used is a hard decision 2nd generation limit 

with an overhead of 7%. See Chapter 2 section 2.1.3 for more details on FEC 

limits. 

These results are comparative to those using ROPA techniques where Q-Values 

of between 7dB and 12dB were measured and OSNRs of 7dB to 15dB [18, 19, 

20, 21, 22, 23, 24, 25]. Only [22] had higher OSNR and that was using Digital 

Signal Processing. 
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The spectra in Figure 3.4.9 is that of the initial input into the WDM before 

modulation takes place (shown in red), and the output of the system just 

before entering into the receiver (shown in blue). The reduction in the peak 

power and increase in noise floor is apparent, and is partially caused by the 

linear effects of ASE and attenuation due to the fibre length (as described in 

Chapter 2 Section 2.3.1). 

 

 
Figure 3.4.9 – 240km 8 Channel WDM 42.7Gbps RZ-DPSK transmit and receive 

Spectra. 
 

Dispersion was an issue, and was not matched completely because the 

dispersion compensation could only be tuned to within 2.5km using DCF fibre. 

This meant that the transmit power had to be increased for the first three 

channels, namely 1531.62nm, 1534.91nm and 1539.64nm, to try and achieve 

a decrease of the BER at the receiver. This obviously meant additional noise 

was apparent on these channels which, with the high attenuation over the 

length of the fibre, also affected the gain flattening within the EDFAs present 

on the receive path, hence the slight tilt seen in the spectrum. This is a 

generally recognised problem which causes capacity issues, as explored in 

[23], although a Remote Optically Pumped Amplifier (ROPA) is used and the 

experiments are at lower data rates than used here, the same issues are still 

apparent, if not more so [18, 19, 20,21, 22, 23, 24, 25, 35, 57, 58, 59, 60, 

61, 64, 98]. 
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3.4.2. 320km Ultra-long Transmission 

 

The actual setup for the 320km experiments was the same as that used for 

the 240km experiments, apart from using a longer transmission span and 

adding the appropriate amount of DCF for dispersion compensation. In this 

case the DCF used for dispersion compensation was symmetrical, with 160km 

before and after the transmission span; this was because the 80km DCF reels 

could be split equally. The setup is shown in Figure 3.4.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.10 – System setup for 320km 8-Channel WDM Transmission. 
 

With the longer transmission span a higher original input power of +3dBm was 

required to compensate for the reduction in the amount of Raman gain 

obtainable. Furthermore, the attenuation was approximately 64dB (at 

0.2dB/km for SMF-28) for 320km compared to 48dB for 240km, which meant 

the span was not quasi-lossless. 

 

The downside is that this combination creates additional noise in the system 

and lowers the OSNR. The Raman pumps had to be increased in power to 

1.85W (32.67dBm) and 1.4W (31.46dBm) for forward and backward pumping 

respectively due to the attenuation increase mentioned above. These values 
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are not far off those simulated for 300km, 32.4dBm and 33.4dBm, in [14]. 

The drawback was an increase in the instance of Raman backscattering, which 

reduced the population in the fibre, hence the reason why both the input 

power and the Raman pumps were increased. 

 

 
Figure 3.4.11 – The output from the transmission span with different Forward and 

Backward Raman pump powers. 
 

Due to the increase in power there is also a rise in the uncontrolled processes 

of spontaneous Brillouin and Rayleigh back scattering. Figure 3.4.11 shows 

how the output power changes with the increase or decrease of the backward 

pump power. For the BER measurements, the forward pump power was fixed 

at 1.85W and the backward pump power at 1.4W as the gain spectrum is 

flatter therefore requiring less pre-emphasis at the input to the transmission 

span. If there is a gain tilt the channels can have different output powers. This 

can be fairly extreme at the end of the Raman spectrum, so when, as an 

example, the higher wavelengths have an OSNR of 25dB the lower ones can 

have an OSNR of 5dB or even disappear totally due to there not being enough 

gain at that wavelength. 

 

Due to the increased loss, dispersion and the need for higher pump powers 

increasing DRBS, the wavelengths used for 320km experiments were of a 

narrower bandwidth consistent with the ITU 200GHz grid. This reduced the 

variation of the gain, OSNR and dispersion slope. 
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There are no ASK results for this distance as it was not possible to achieve 

error free transmission at this distance. 

 

The problems with dispersion which were discovered for the 240km 

experiments were also present at 320km, and due to the tighter arrangement 

of the WDM channels in the 1549nm to 1560nm range, because of lower 

output power, a tuneable dispersion compensator was tried. 

 

 
Figure 3.4.12 – The measured spectral output from a TeraXion Tuneable Dispersion 

Compensation Module (TDCM) [127]. 
 

A TDCM works by electronically adjusting the refractive index by heating of the 

waveguides through the device with thin-film devices. An AWG is used to 

demultiplex wavelengths into channels that fit into the 50GHz grid. For more 

on TDCMs please see Section 2.7.1.1. 

 

As can be seen in Figure 3.4.12, there were 25 channels, and each channel 

has light coming through due to the broadband noise present from ASE and 

DRBS, which meant that there was an effective reduction in the OSNR of the 

WDM channels after the TDCM, so although it was effective in compensating 

for the dispersion, the problems caused by the broadband noise being 

channelled by the device afterwards outweighed the initial enhancement. 
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The dispersion compensation of the TeraXion TDCM was +/-1200ps/nm*km 

and had a dispersion resolution of 5ps/nm*km [127].  

 

Figure 3.4.13 shows the initial WDM signal input to the transmission span and 

the difference in the output of the fibre span with and without Raman 

amplification. This difference can be measured and is known as the On-Off 

Gain. From the results in Figure 3.4.13 it can be seen that the On-Off Gain is 

in the range of 50dB, which is exactly as shown in the experimental results in 

Section 3.4, Figure 3.4.4. 

 

 
Figure 3.4.13 – The input into the transmission span and the output with Raman 

pumping on and Raman pumping off. 
 

The measured OSNR is slightly low by about 2dB from the previously 

measured OSNR at 320km, whilst the On-Off Gain is just above the centre of 

the expected gain value. 

 

In Figure 3.4.14 the results show a fairly similar Q-Value across all 8 channels. 

The key reason for this is that the channels are tightly spaced and are only 

present within a 12nm bandwidth, thus concentrating the power over a small 

band. This also meant that the dispersion compensation could be kept the 

same for all channels transmitted through a distance of 320km as the 

variation with using a wider bandwidth is not a problem, unlike with the 
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240km transmission results in Figure 3.4.8 which show a worse Q-Value for 

both ASK and DPSK on Channel 1 compared to other WDM channels. 

 
The biggest issue at 320km distance was the significant increase in noise 

relating to ASE and DRBS compared with 240km. This appears to be 

attributable to where the light from the backward pump starts to cause gain in 

the fibre, which appears to be after 280km and leaves 30km of further signal 

loss, which is enough to drop the OSNR from 26dB down to 15dB, a drop of 

11dB compared to 3dB at 240km. 

 

 
Figure 3.4.14 – 320km 8-Channel WDM Transmission Results for 42.7Gbps RZ-DPSK 

modulation. 
 

The major downside of these experimental results is that the amount of power 

necessary to achieve results at 320km is required to be significantly higher 

than with the 240km results, as the additional fibre meant an increase in 

attenuation and also led to a significant impact from Rayleigh back scattering. 

As shown by [18] there is a physical limit to just purely Raman transmission 

above 250km without using alternative techniques [25, 35] or finding a simple 

way to reduce the DRBS. 

 

The spectra shown in Figure 3.4.15 shows the initial 8-channel WDM signal, 

the blue graph, with the corrected transmit powers for each channel which 

were set to achieve an overall flatness at the receiver, as is displayed by the 

output from the transmission span, shown as the red graph. Each channel was 
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also pre-emphasised to give each channel a similar OSNR of 7dB at the 

receiver. 

 

 
Figure 3.4.15 – 320km 8-Channel WDM 42.7Gbps RZ-DPSK Spectra with pre 

emphasis on Channels 1 and 2. 
 

The resultant reduction in power is around 15 to 20dB, although the noise 

floor has increased by around 20dB also, which is giving around 5dB of power 

relative to the noise floor at the receiver. 

 

 

3.5. Conclusions 

 

From the experimental results in Section 3.4, it can be concluded that for 

240km spans there is the potential for the exploitation of ULRF within current 

long haul fibre networks, such as MANs, as either a replacement for EDFA or 

as part of a hybrid Raman-EDFA amplification scheme. For extremely long 

spans in the thousands of kilometres EDFA is still the best choice 

 

For 320km spans the results were not as encouraging, as nonlinear effects 

such as DRBS built up to significantly degrade the WDM channels, giving 

OSNRs of 7dB and Q-Values of 10-10.5dB, although this is within the FEC 

limit. If FEC were added the signal could be improved by as much as 2dB, and 
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with a larger FEC header, such as 3rd generation FEC with 20% overhead, the 

error rate could be improved even further. 

 

When compared to other experimental techniques such as ROPAs, the length 

of the transmission span is smaller than for many of these types of 

experiment. The advantages are that the Q-value for both the 240km and 

320km experiments are in the same region as these other systems, with a 

minimum of 9.9dB for the 320km span with DPSK, whereas for the 240km 

span the minimum was 10.8dB for ASK and 11.9dB for DPSK. The high Q-

values were 15dB for the 240km span using DPSK and 13.3dB using ASK, 

whilst the 320km span using DPSK was 10.5dB. 

 

There was however a problem with dispersion which led to Channels 1 to 3 

being compromised, especially with DPSK when compared with ASK, where the 

channels were within 1dB of each other. Channels 4 to 8 had a difference of 

2dB or wider, which was as expected [52]. 

If it had been possible to control the dispersion minutely the improvement 

overall would have been expected to be around 2dB to 3dB per channel. 

 

For 320km this was slightly mitigated by using a narrower bandwidth for the 

WDM channels, hence all channels were within 0.6dB of each other. 

More work needs to be done to investigate if the degradation at longer 

distances due to DRBS, which causes the lasing within the ULRFL cavity to 

reduce significantly, can be inhibited, and therefore the transmission of WDM 

channels over a wider bandwidth made possible. 

 

As well as DRBS, RIN could also be a factor for the increase in noise, as the 

forward pumps in both experimental setups were higher than the backward 

pumps, thus RIN transfer could occur to a greater extent. 

 

Through the experimental work undertaken it can be considered that ULRFL 

amplification techniques show the potential for improving the performance of 

transmission spans, particularly those with existing infrastructure, as it has 

been shown that normal silica based fibre, such as SMF-28, can be used with 
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such a system. This would mean that no additional cost would be incurred by 

the need to replace fibre with types of LEAF or ULL fibres. 

 

There is still further work to be done however, at distances greater than 

250km, to improve the noise figure and reduce the significant degradation 

from nonlinear effects such as DRBS. 

 

In conclusion, the use of ULRFL to upgrade existing infrastructure using data 

rates up to 42.7Gbps, utilising fibre span lengths below 320km, along with the 

employment of simple direct-detection, has been shown. In future work the 

impact of using receiver types with greater complexity could be investigated. 

Particular types that could be considered are coherent receivers, which can 

give significant improvements when compared with direct-detection, this could 

therefore enable the use of ULRFL over much greater distances.  

 

There are a number of potential avenues for future work, but each brings an 

increase in the issue already seen. As an example a greater number of WDM 

channels could be tested using this approach, but unless there is tight 

dispersion control and a reduced amount of excursion in the gain profile, 

positive results greater than 320km are unlikely. Moreover, as the fibre span 

distance is increased, the gain bandwidth is reduced, along with the OSNR, so 

coherent receivers would not necessarily give an improvement in these 

circumstances. Higher data rates >100Gbps would also need to be considered, 

but this brings its own difficulties with an increased likelihood of cross-talk due 

to ISI, a need for very tight dispersion compensation, and higher average 

power per bit slot, means there is a potential for lower OSNR values; this 

indicates higher gain over the transmission span would be required, which 

would bring its own problems with noise mechanisms such as RIN transfer and 

DRBS effecting an increase in system noise as a result of higher initial Raman 

pump powers. 
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Chapter 4 
 

Offset Wavelength Filtering 
 

4.1. Introduction to Offset Filtering Theory 

 

The improvement of received signals is an important factor for optical 

networks. This improvement can be specifically determined as a reduction in 

bit-error rates (BER), and/or an increase in OSNR, for the received signals. 

There are many different approaches which can be incorporated into optical 

systems to help recover the transmitted signal. Most methods involve using 

amplification and more efficient modulation, but there are also methods to 

improve the quality of the received signal at the receiver. 

 

Optical Filtering and optical attenuation are two major problems within optical 

transmission networks. Attenuation occurs via a signal travelling through a 

transmission fibre span; this loss accrues within the optical fibre due to its 

inherent physical properties, as discussed in Section 2.2.  

Filtering is caused by passive and active devices within the transmission 

system. As light travels through these devices there are numerous filtering 

events, which, due to the inherent design of these devices, reduce the signal 

quality at the receiver. This is especially clear within WDM systems using 

devices such as add/drop multiplexers and cross connects, this is because as 

the signals come across the filtering effects caused by passing through each 

device, a decrease in the signal amplitude occurs; after multiple passes 

through these types of devices there is a high potential for the OSNR to 

decrease to very low levels, and therefore significantly lower the received BER. 

One such technique identified to help signal recover from this significant 

impairment is known as asymmetric, or offset, wavelength filtering. 
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         (a) 

 
      (b)           (c) 

Figure 4.1.1 – (a) Input spectra into DLI; (b) Output spectra from Constructive port of 
DLI; (c) Output of Destructive port of DLI. 

 

Offset wavelength filtering is all about the improvement of the quality of the 

received signal after transmission through networks with tight optical filtering 

(TOF), where a series of devices cause a filtering effect on the signal as it 

travels through a network, thus decreasing the bandwidth of the signal as well 

as reducing the signal power due to insertion losses. Another technique called 

Band-Limited Filtering (BLF) could be used, but this uses a filter on both 

sidebands of the signal (Double Side Band (DSB)) whilst Offset Filtering uses a 

single filter on a Single Side Band SSB or Vestigial Side Band (VSB). The 

advantage of this technique is that only part of a signal needs to be filtered 

because for offset filtering, second side bands and the carrier are unneeded 
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although in VSB a small portion of the second side band is visible, but this 

gives a wider bandwidth; this was studied in [128]. 

 

Each received signal will have issues such as Inter Symbol Interference (ISI) 

and an increase in Amplified Spontaneous Emission (ASE). This is due to 

Optical Repeating within the transmission line reducing the signal quality. 

Insertion Loss is also a factor. Whenever light encounters an optical device, 

such as an amplifier or a filter, some of the light is absorbed as it enters and 

then travels through the device. This is known as Insertion loss and is the 

actual fixed loss in the device due to its physically inherent properties. This 

insertion loss increases the total loss within the system and therefore helps 

reduce receive power. 

 

These types of issues are especially relevant in Wavelength Division 

Multiplexing (WDM) and Demultiplexing (WDD), where multiple channels are 

combined or divided according to their wavelength. Crosstalk is one of the 

causes related to ISI along with Chromatic Dispersion; these are very 

important issues to control. Crosstalk occurs when a portion of λ1 is measured 

at the output for λ2, this can affect the quality of the received signal by 

introducing additional noise and can potentially corrupt the 1’s and 0’s and 

change the Threshold Level. The cause is mainly due to the laser source 

wavelength and the channel wavelength not matching up completely [56]. 

 

An important subject is the applicability of BER and Q-Value for optical 

transmission system measurements.  

BER is an absolute measurement which takes into account the threshold level 

and bitrate over a certain time period. This means for low BER such as 1015 

measurement times need to be exceedingly long.  

The Q-Value on the other hand is a statistical measurement and can therefore 

approximate the BER considering the noise variance on logical 0 and logical 1, 

as well as the threshold value. 

The statistical properties of the signal information are imperative for Q-Value 

calculations and are approximated as Gaussian distributions. If the signal 

distribution is non-Gaussian then the Q-value cannot be calculated. Q-value 

gives a better understanding of the relationship between the eye-opening of a 
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signal eye diagram and the BER [110]. The relationship of BER and Q-value 

are explained in more detail in section 4.2. 

 

DPSK has advantages over modulation formats such as PSK due to its 

simplicity and ease of demodulation, plus its sensitivity is superior when 

compared to other modulation types [52, 129].  

All measurements within this chapter were taken using a DPSK receiver, with 

more information relating to this type of receiver available in Chapter 2 

Section 2.5. 

 

 
Figure 4.1.2 – Diagram showing the typical setup of DLI and Filters detailing the cause 

of improved signal quality when using offset filtering. 
 

Offset or Asymmetric filtering enhances the received signal by using the 

destructive port of the DLI, used in DPSK demodulation, to improve the overall 

Q-value. The mechanism taking place is that each demodulated DPSK output 

from the DLI is in effect two different modulation formats, Duobinary (DB) and 

Alternate Mark Inversion (AMI); where AMI is basically the spectral inverse of 

DB, where DB has one peak AMI has two with a null between them. By 

“detuning” a filter on the destructive output port the filter can be centred on 
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one of the AMI peaks, therefore in effect demodulating to a DB signal rather 

than an AMI, making both DLI output DB and improving the overall output of 

the received signal. 

 

Figure 4.1.2 shows the representation of a DLI, with measured spectra for the 

input and outputs of the DLI. The shape of the spectra from the constructive 

and destructive ports, show the expected outputs of Duo-binary (DB) from 

Filter 1 and Alternate Mark Inversion (AMI) from Filter 2. 

This effect can be seen in the single ended results shown at the beginning of 

the experimental section 4.6 and was simulated in [32]. More on the 

modulation formats used and generated as part of the system are in Section 

4.3. 

 

Offset filtering has been used previously in [130], but those experiments used 

Amplitude modulation formats and lower data rates of 10Gbps, although WDM 

transmission was also considered. Data rates of 40Gbps have been used in 

some other experiments, as in [131]. Positively, all the experimental results 

discussed here show that offset filtering is a useful technique when 

implemented to improve received signal quality.  

Offset filtering can also be part of dispersion control, where it has been 

demonstrated that improved Q-values at higher dispersion rates are 

achievable [32, 130, 131, 132, 133, 134, 135]. 

 

 

4.2. Optical Filters and Filter Shapes  

 

Filters, optical or otherwise, are defined as devices which allow only a certain 

band of wavelengths to pass through. This control of frequencies or 

wavelengths is useful in many ways, the main use being filtering noise from 

signals. The filter is tuneable if it is able to choose different wavelengths; this 

property can be used for demultiplexing certain signals when a number of 

them are present. Filters are useful for equalising the gain and filtering out 

noise, and can therefore improve SNR in a specific bandwidth as the filter 

averages out the noise over a smaller bandwidth, rather than the larger 

bandwidth apparent before the filter. 
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There are also some devices that are not filters but respond to signals in 

similar ways to filters. Examples of these are optical switches, modulators, 

optical cross-connects, AWGs and multiplexers. The filtering effect of these 

types of devices, especially within a network where these devices are 

cascaded, is of interest with regards to the experiments in this thesis. 

 

 

4.2.1. Optical Filter Types 

 

There are many types of optical filters, but the main types used in optical 

communications are those based on diffraction of light through a prism or the 

absorption of wavelengths outside of the wanted bandwidth  

 

Most modern filters are based on either fibre or waveguide technologies. These 

can contain structures such as Gratings which allow only certain wavelengths, 

using diffraction, to interfere wavelengths with different phases; those wanted 

wavelengths will have constructive phases and transmit, while those with 

destructive phases get reflected.  

 

The most important characteristics of a filter are as follows: 

 

 The centre wavelength is the mean wavelength between the filter band 

edges. 

 

 The peak wavelength is the wavelength at which attenuation is lowest, 

but this does not always match with the centre wavelength. The 

attenuation wavelength and centre wavelengths are most closely 

matched at 1550nm bandwidths when compared with other 

transmission bands. 

 

 The Nominal wavelength is the wavelength which the manufacturer 

designed the filter to be used at; the actual centre wavelength is usually 

slightly different to this due to variations in the manufacturing process. 
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 The bandwidth of the filter is the space between the edges of the filter 

shape, but it is totally dependent on where you measure the width 

from. In many manufacturers data sheets this is measured at 3dB down 

(-3dB) from the filter band peak, additionally the 1dB or 30dB 

bandwidth are sometimes quoted. 

 

A maximum and minimum can also be mentioned if there is a high polarisation 

dependency of the filter. 

 

Some key factors that a filter should adhere to are a low insertion loss, have 

polarisation independent loss i.e. low Polarisation Dependent Loss (PDL), and 

be insensitive to temperature variations, or at least have extremely low 

sensitivity that generates a wavelengths shift smaller than the wavelength 

spacing in the WDM system being used.  

 

As will be explored in this chapter, a flat pass-band is needed when used 

within a network due to the cascading of devices causing a narrowing of the 

bandwidth, and as described previously, a sharp edge or skirt on the filter will 

limit crosstalk in WDM systems and is known as the isolation of the filter. 

 

Filters using gratings are very useful, the main types of gratings used in these 

filters being Fibre Bragg Gratings, a type of reflective grating, and Long-period 

Gratings, which are transmission gratings.  

FBGs can be used as notch filters, or bandstop filters, as they reflect unwanted 

wavelengths. The reflected light will however travel back towards the source, 

so isolation and absorption of the reflected wavelengths must be part of any 

filter design using FBGs. To calculate the wavelength, which will be reflected 

by a certain FBG, the following equation can be used 

 
଴ߣ ൌ 2݊௘௙௙߉    Eq. 4.2.1 

 

Where ߉ is the grating period, ݊௘௙௙ is the effective refractive index of the 

waveguide the FBG is in and ߣ଴ is the Bragg wavelength. 
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Long-period Gratings can be used as bandpass filters as they reflect unwanted 

wavelengths into the cladding, which is extremely lossy, thus allowing the 

wanted wavelengths(s) to pass through.  

 

The wavelength which will be transmitted can be calculated using: 

 
ߣ ൌ ൫݊஼௢௥௘ି௘௙௙߉ െ ݊஼௟௔ௗି௘௙௙

௉ ൯   Eq. 4.2.2 
 

Where ݊஼௟௔ௗି௘௙௙௉  is the effective refractive index of the cladding. This depends 

on the pitch of the grating as to which cladding modes will propagate and give 

the appropriate effective refractive index. ߣ is the resulting transmitted 

wavelength. 

 

In addition to their use in filters, FBGs are also employed in Add/Drop devices 

such as circulators and cross-connects.  These devices are used to switch 

channels and they can also be incorporated as part of a dispersion 

compensation regime, which is why such devices need to be included in 

system wide filtering processes. 

 

Long-period Gratings are used within EDFAs as filters and to flatten the gain 

profile (see Section 2.6.1). Both types of grating can have multiple gratings 

placed within a device to accept or reject different wavelengths, and hence can 

be used as multiplexers and demultiplexers, such as AWGs. However AWGs 

usually use different lengths to multiplex or demultiplex wavelengths. 

 

Another type of filter, using partially reflective mirrors with up to 99% 

reflectivity, are known as Etalons or Fabry-Perot Etalons, as they use the same 

setup as a laser cavity in Fabry-Perot Lasers. These devices use partially 

reflective mirrors which are at a fixed distance to create a cavity. The cavity 

has a length which, for certain wavelengths, is equal to half of those 

wavelengths, and because the cavity is reflective this means the whole 

wavelength is equal to the reflection off both mirrors in the cavity, or 2L. 

 

Smaller fractions of the wavelength, i.e. a quarter, 1/8th, 1/16th etc., can also 

create a standing wave, but the interference patterns are weaker as the 

number of cycles of the wavelength within the cavity increase. This leads to 



   
 

131 
 

only one main wavelength, or a narrow band of wavelengths, plus some of the 

lower energy harmonics relating to the wavelengths, being transmitted. All 

other wavelengths are strongly attenuated. This type of filter is an example of 

a narrowband filter. A simplified diagram of the design of a Fabry-Perot cavity 

is shown in Figure 4.2.1. 

 

 

 
 

 

 

 

 

 

Figure 4.2.1 – Diagram showing structure of a Fabry-Perot cavity. 
 

A similar type of filter to the etalon is a type of interferometer in which at least 

one of the mirrors is able to move away, or towards, the other mirror at the 

opposite end of the cavity. This will then allow the filter to be tuneable for 

different wavelengths, where the limits on the wavelengths which can be 

allowed through the filter, depend on how far apart the mirrors are. If too far 

away additional loss will mean a significant degradation of the signal power on 

top of the insertion loss, too close and the optical power may be too high and 

the majority of wavelengths may be passed through rather than reflected, 

meaning additional noise in the system. 

 

One type of filter using FP cavities is the thin-film multi-cavity filter; this uses 

thin film technology to change the refractive index, and therefore the 

wavelength dependence of the mirrors at either end of the cavity, which 

creates tuneability in a different way. 

 

Free Spectral Range is the separation between two peaks at which resonance 

occurs, an example of which could also be said to be two successive 

passbands, and is given by: 

 
ܴܵܨ ൌ

ఒమ

ଶ௡ௗ
    Eq. 4.2.3 
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Where, ߣ is the wavelength of the resonant peak, ݊ is the refractive index of 

the material between the mirrors and ݀ is the distance between the mirrors. 

From the FSR the Finesse, or how accurate the filter is at accepting or 

rejecting wavelengths, can be calculated using: 

 
݁ݏݏ݁݊݅ܨ ൌ

ிௌோ

ிௐுெ
   Eq. 4.2.4 

 

Where, FWHM is the Full-Width Half-Maximum of the filter shape. FWHM is 

used because it represents the mean energy in the pulse over its mean width.  

Therefore it can be stated the higher the Finesse, the narrower the filter 

passband and the sharper the edges of the passband.  

 

Another way to define Finesse is using the reflectivity, R, of the mirrors, as 

shown in Eq. 4.2.5. 

 
݁ݏݏ݁݊݅ܨ ൌ

గ√ோ

ଵିோ
    Eq. 4.2.5 

 

The finesse of the filter is increased when the number which is calculated is 

higher. 

 

A couple of major factors affecting the finesse is the reflectivity of the mirrors, 

where the less reflective the mirrors the broader the spectral width of the 

transmission peak, due to more wavelengths being transmitted. Absorption 

within the filter is another major cause of the decrease in Finesse as this 

lowers the available energy and causes the filter peaks to reduce in sharpness; 

this is due more to the absorption of light by the mirrors than other means. 

 

Filters within a system can be cascaded; this has the effect of increasing the 

amount of filtering by the narrowing of the passband, and is in effect what 

happens when there are a number of devices which act as filters in a system. 

The ultimate width of the narrowed passband is the bandwidth at the point 

where the FSR coincides, and is the lowest common FSR between the filters. 

The narrowing in turn increases the Finesse and the FSR is also increased. 

Where the FSR does not coincide with the bandwidth, the overall passband is 

much narrower, because the FSR is much larger than when the FSR coincides. 
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Acousto-Optic Tuneable Filters (AOTFs), also known as Bragg Cells [136], are 

very versatile because they can select multiple wavelengths at the same time. 

This allows them to be used as crossconnects allowing different wavelengths 

to be passed through at the same time, which is useful when using WDM 

channels. A similar technology is used in lithium niobate modulators [137]. 

The operation of AOTFs is carried out by using the properties of an acoustic 

wave to create an FBG within a waveguide. This process happens by using 

birefringent material to make a waveguide, the density of which can be altered 

in a periodic manner by using an acoustic wave generated by an acoustic 

transducer, such as those using the piezoelectric effect. This wave travels in 

the opposite direction to the light wave which only contains the lowest 

polarisation states, or modes, due to the waveguide material. Polarisation can 

be seen as Transverse Electric and Transverse Magnetic modes, TE and TM, of 

a wave. The acoustic wave, through its interaction with the medium, changes 

the refractive index of the waveguide which effects the polarisation of the 

light. This is the same effect as an FBG, so in effect a temporary FBG has been 

created within the waveguide. This allows the light to be transferred from one 

polarisation, TE, to another, TM, by way of the Bragg condition.  

 

This specific condition can be found by: 

 
௡೅ಾ
ఒ
ൌ

௡೅ಶ
ఒ
േ

ଵ

௸
    Eq. 4.2.6 

 

Where ்݊ெ and ்݊ா are the refractive indices relating to the relevant 

polarisation modes, ߣ is the wavelength the mode conversion occurs at, and ߉ 

is the period of the grating. The general term for the Bragg condition can be 

found in Eq. 4.4.1. A polariser is used at the end of the waveguide to choose 

the desired mode. 

Another way to remove the polarisation dependence of the filter is to use 

couplers, or a Mach-Zhender Interferometer, with polarisers at the input to 

split the polarisation into its two modes, which are then converted, as 

previously mentioned, and then recombined. 

 

When using AOTFs as wavelength crossconnects instead of a filter, the only 

difference is due to sending more than one acoustic wave into the device 
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simultaneously through the separate arms. This allows wavelength switching 

at the two output ports. 

For a basis on the theory of Bragg grating based optical filters see [138]. 

Mach-Zhender Interferometers can also be used as filters, and their operation 

is discussed in Section 4.3. 

 

 

4.2.2. Waveshapers, including Wavelength Selective Switches 

 

Waveshapers are devices which are used to manipulate optical signals. These 

devices are based on Wavelength Selective Switches (WSS), but have 

additional programmable elements which can be used to change the phase, 

width, and even the shape of an optical pulse. 

WSS’s are devices that, as their name suggests, select wavelengths and 

switch them onto output ports of the devices, this is very useful in wavelength 

multiplexed systems and are usually a part of Random Optical Add/Drop 

Multiplexers (ROADMs) which are used as optical system switches. 

 

A typical WSS is comprised of the following devices: diffraction gratings, 

cylindrical mirror, Liquid Crystal on Silicon (LCoS) multi-pixel sensor and a 

polariser, plus focusing optics. 

 

The operation of the Finisar WSS [139] is as follows: light is passed from the 

input fibre and through a polariser, which separates the orthogonal 

polarisation states and fixes them to the same state as accepted by the 

diffraction grating. The light is then reflected off the cylindrical mirror towards 

the grating. 

Once at the grating, only light close to the Littrow incidence i.e. the angle at 

which dispersion is maximised with minimum path deviation, is passed 

through. This light is dispersed and reflected back towards the mirror and onto 

the LCoS sensor. The dispersed light lands on different parts of the sensor 

after it has passed back through the imaging optics; this is therefore 

analogous to each channel, depending on the ITU grid selected. 
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The LCoS sensor is programmed via embedded software. This allows a range 

of functions to be chosen, such as the selection of different frequency grids, 

the central frequency of each channel, the bandwidth, the phase, and the 

amplitude, to be selected and measured and also to be manipulated, e.g. 

using the phase and amplitude details and creating a function in software 

which works like a virtual Delay Line Interferometer, as seen in the 

experiments in Section 4.4. This works because each channel is isolated from 

the others on the LCoS sensor using the frequency grid pattern. 

The light returned from the LCos sensor is steered to a particular output port. 

The port can be chosen, again using software, to control the beam steering at 

the LCoS sensor [139]. 

 

An example of the Waveshapers multifunction approach is shown in the 

experiments in Section 4.4, these use the Waveshaper to create a DLI and 

also filter responses on each output. The Waveshaper was programmed using 

MATLAB script. 

 

 

4.2.3. Optical Filter Shapes 

 

The ideal filter shape is a square filter because all wanted frequencies are 

allowed through with no attenuation and all other frequencies rejected with 

total attenuation. In practice this does not happen and all filters, no matter 

how square, are an approximation of a square filter. This allows some 

unwanted frequencies through with very low energy, but also reduces the 

energy of those wanted frequencies near the edge of the filter shape. 

 

There are issues however with square shaped filters as the sharp edges of a 

filter of that shape can cause significant harmonic frequencies to occur. This 

causes energy from the fundamental frequency to be transferred to 

frequencies beyond the bandwidth of the filter, and as the harmonics are 

caused by the filter, they appear after the filter and therefore reduce the 

spectral efficiency of the filter. 
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A balance therefore needs to be made with a filter designed to limit the 

unwanted frequencies, but also not cause a large transfer of energy to the 

harmonic frequencies. 

 

The most typical filter shape used are Gaussian or Super-Gaussian in shape, 

this is due to a Gaussian distributions similarity to actual filter designs and the 

shape of signal pulses are also generally Gaussian in shape, unless otherwise 

amended into other possible shapes such as triangular, saw or square. 

 

A Gaussian distribution is represented by the following equation: 

 
For Intensity distribution:   ܫ ൌ ௢݁ିଶ௥ܫ

మ/ఠమ   Eq. 4.2.7 
 

Where e = 2.718 is the base of the natural logarithm. And because e0 = 1, Io 

is therefore the intensity of the light at the centre of the beam, ݎ is the radius 

of the distribution (where ݎ ൌ 0 at the centre of the distribution), and ߱ is the 

“flatness” at the top of the distribution [56]. 

 

An example of a Gaussian shaped filter is shown in Figure 4.2.2, which has 

normalised intensity and relative frequency. 

 

 
Figure 4.2.2 – Example of a Gaussian pulse with an 80GHz bandwidth. 

 

The filter shape in Figure 4.2.2 can be called a 1st order Gaussian filter shape, 

as the top of the filter shape becomes flatter it becomes known as a higher 

order Gaussian filter, such as 2nd or 3rd order and can be calculated using: 
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ܨீ ሺ∆݂ሻ ൌ ݌ݔ݁ ൬െ
௟௡ଶ

ଶ
ቀଶ

ሺ∆௙ି௙ሻ

ఔ
ቁ
ଶ௡
൰  Eq. 4.2.8 

 

Where ீܨ ሺ∆݂ሻ is the Gaussian filter output, ݂ is the central frequency of the 

filter with ∆݂ being the frequency offset of the filter, ߥ is the bandwidth of the 

filter at 3dB and ݊ is the order of the Gaussian filter. 

 

 
Figure 4.2.3 – Measurements of Bandpass shapes of Santec OTF-950 Bandpass Filter 

for bandwidths from 0.25nm to 1nm; each bandwidth measured via ASE passing 
through the filter. 

 

The measurements shown in Figure 4.2.3 are from the Santec OTF-950 filter 

[120] used in the experiments in Section 4.4. These show a fairly square top 

at wider bandwidths >1nm which is equivalent to a 3rd order, or super 

Gaussian filter, while those <1nm represent a response closer to 1st or 2nd 

order Gaussian distributions. 

 

Investigation into filter shapes relating to this topic were carried out in [32, 

132, 133] and found that a 3rd Order Gaussian filter shape was the most 

reliable fit for the physical filters to be used, as per the measurements 

described previously. 
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In the first set of experiments, physical Santec filters were used, whilst in the 

additional experiments, Waveshapers were used.  

To try and confirm whether the filter shapes were the same, we took 

bandwidth measurements via an optical spectrum analyser, using the method 

of passing ASE though the filter, so as to simplify the measurements without 

modulation issues if actual signals were used. 

 

 
Figure 4.2.4 – Bandwidth used: 35GHz (0.28nm); Measurements of Bandpass shape 
of Santec OTF-950 Bandpass Filter (Blue) and Finisair Waveshaper programmed Filter 

(Red); each bandwidth measured via ASE passing through the filter. 
 

Figure 4.2.4, shows the physical Santec Filter shape, a typical Gaussian of 

around 2nd order, whilst the Waveshaper Filter is steeper, which is indicative of 

a 3rd or even 4th Order Gaussian filter, although the top is not flat as would be 

expected with higher orders, but this is because of the way the Waveshaper 

works. The Waveshaper is in essence a Wavelength Selective Switch (WSS) 

and has many channels available, of which three are shown here, but it is a 

programmable device so we can select the wanted channels only. However, 

due to how the WSS has to be programmed, the comb of channels is visible at 

all times, unless a notch filter is designated, which is what we have here.  
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The problem is that this comb effect means it is difficult to find out whether 

this shape is actually Gaussian within the channel, which would actually make 

the filter a lower order if using the middle channel and similar in shape to the 

top of the Santec Filter, or that the shape we see in Figure 4.2.4, which could 

have potentially undesirable effects, is the actual filter shape. How it would 

affect the offset filtering processes with these other channels visible, if not 

actually in use, are questions that will need to be answered in future detailed 

work. 

 

 

4.3. Interferometers - Mach-Zehnder and Michelson Types 

 

The Interferometers used in the experimental setups are of two types, 

Michelson, where there is one input and one output, and Mach-Zhender where 

there can be one or two inputs, and two outputs. 

 

Mach-Zehnder Interferometers (MZI) are constructed using two 3dB couplers 

interconnected through two paths of differing lengths, this allows a wide range 

of uses, such a multiplexing and switching due to constructive and destructive 

signal outputs. 

 

Firstly a single directional coupler should be considered, where 0P  is a single 

input into the upper fibre of the coupler, and there are two outputs, 1P  and 2P , 

representing the power of the upper and lower fibres respectively. The 

equation below describes the power coupled from the upper fibre into the 

lower fibre. 

 
ଶܲ ൌ ଴ܲ sin

2ሺ݀ߢሻ   Eq. 4.3.1 
 

With  being the coupling coefficient and d the length of the coupling region. 

 

Using conservation of power (for identical core fibre): 

 
ଵܲ ൌ ଴ܲ െ ଶܲ ൌ ଴ܲൣ1 െ sin

2ሺ݀ߢሻ൧ ൌ ଴ܲ cos2ሺ݀ߢሻ Eq. 4.3.2 
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Hence the phase of the upper fibre is 90 ahead of the lower fibre. The same 

can be shown for an MZI, which is basically two couplers connected back-to-

back but with one arm slightly longer than the other to create a known phase 

difference [40]. The basic theory of a MZI can then follow on from the above.  

The propagation of light though a MZI can be represented by the matrix 

below: 

	

஼௢௨௣ܯ ൌ ൤
cos ݀ߢ ݆ sin ݀ߢ
݆sin ݀ߢ cos ݀ߢ ൨   Eq. 4.3.3 

 

This basically shows that the lower fibre arm lags the upper fibre arm by 90, 

and with 3dB couplers being involved, 2d	=	/2, so therefore we have: 

 

஼௢௨௣ܯ       ൌ
ଵ

√ଶ
൤
1 ݆
݆ 1൨   Eq. 4.3.4 

 

We then have a phase shift relative to each of the arms to consider due to 

either a difference in the length of the arms (L), or a difference in the 

refractive index (where 21 nn  ) with L = 0. 

 

The phase difference is given by: 

 
߶߂ ൌ

ଶగ௡భ
ఒ

ܮ െ
ଶగ௡మ
ఒ

ሺܮ ൅  ሻ   Eq. 4.3.5ܮ∆
 

Considering the above with respect to L we can see that Eq. 4.3.5 can be 

reduced to: 

 
߶߂ ൌ  Eq. 4.3.6    ܮ∆ߢ

 

Where ߢ ൌ ଶగ௡೐೑೑
ఒ

. 

 

This can now be represented in matrix form as: 

 

௱థܯ ൌ ൤݁
ሺ݆఑∆௅ ଶ⁄ ሻ 0
0 ݁ሺെ݆఑∆௅ ଶ⁄ ሻ

൨   Eq. 4.3.7 

 

We can now see the output of the MZI with the combination of Eq. 4.3.3 and 

Eq. 4.3.7 in the following equation: 
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ை௨௧ܯ ൌ ஼௢௨௣ܯ • ௱థܯ • ஼௢௨௣ܯ ൌ ൤
ଵଵܯ ଵଶܯ
ଶଵܯ ଶଶܯ

൨ ൌ ൤
sin ܮ∆ߢ 2⁄ cos ܮ∆ߢ 2⁄
cos ܮ∆ߢ 2⁄ െsin ܮ∆ߢ 2⁄

൨	 Eq. 4.3.8 

 

The equations above [40] show that the following occurs: a signal is put into 

the Input, which then meets the first coupler. Here the signal is split into two, 

with half the power going into either arm. However, we also get a phase 

change relating to both arms i.e. this means the upper arm leads the lower 

arm by a phase shift of /2 with respect to the upper arm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.1 – Basic diagram of a Mach-Zehnder Interferometer (MZI) with phase 
changes. 

 

At the second coupler there is again a phase change, therefore we have the 

following: గ
ଶ
൅

గ

ଶ
ൌ for the upper leg గ ߨ

ଶ
െ

గ

ଶ
ൌ 0 for the lower leg, so there is an 

overall  phase shift which equals to constructive interference at output 1 and 

destructive interference at output 2. 

 

 

4.4. Experimental Results 

 

These experiments were carried out to find out whether the theoretical basis 

for improvements in the received signal using offset filtering [32, 132, 133, 

134] could be confirmed. Experiments were designed, using different filter 

configurations, to see whether the theoretical improvements could be shown 

to be real and significant for each simulated configuration, and to see if the 

improvements are consistent for filter placement within the receive path and 

whether they have a significant impact in signal quality. All experiments 
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   = 0 
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included in this chapter were back-to-back measurements; no transmission 

experiments were carried out. 

 

The receiver used was a type of Direct-detection, with clock recovery used in 

certain where indicated within this section. Both single ended detection with 

one photodiode, and balanced receiving using two photodiodes, were used. 

Balanced detection has fibres attached to the photodiodes that are of equal 

length, this is to minimise the time delay between the pulses when they arrive 

at each of the diodes. This time delay can cause timing jitter and decreases 

the quality of the received signal, so needs to be as small as possible. 

 

Different duty cycles, ranging from NRZ-DPSK to 33% RZ-DPSK modulation, 

were also used to see whether the theoretical improvement due to offset 

filtering was the same across different formats. 

 
The amount of filtering used in these experiments is analogous to the Strong 

filtering regime. In an optical system or network, this would indicate that there 

are a number of cascaded filters or devices that can cause filtering effects, as 

discussed in section 4.1. These devices produce concatenation of the filtering 

effect, hence narrowing the bandwidth of the system considerably and 

consequently a significant amount of filtering is apparent. In Weak filtering 

regimes there are a small number of filters, or devices acting as filters, this 

means the filtering effect is small within a system or network. 

 
For filter configurations using one filter on the destructive port, the RZ-DPSK 

signal is demodulated using the DLI thus creating a Duobinary (DB) output on 

the constructive port and an Alternate Mark Inversion (AMI) output on the 

destructive port. The destructive port is used because the spectrum of the AMI 

has a double peak; hence offsetting the filter on the destructive port will in 

essence create a duobinary output. 

 

The reason that DB and AMI are created from the DPSK modulated signal, 

when demodulated using a DLI, is due to the offset in length between the two 

arms of the DLI. This difference in length of 1-bit creates a phase difference. 

When the original DPSK modulated input signal is interfered with the delayed 

version of itself, it produces a DB output on the constructive port since it is an 
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additive effect, and AMI on the destructive port which is a subtractive effect, 

for this reason a peak appears on the DB spectra whilst a dip appears on the 

AMI spectra, both at the centre frequency of the original input signal. 

 

 
Figure 4.4.1 – Single Ended: DLI Constructive Port. Filter1 with a 35GHz (0.28nm) 

Bandwidth with offset changed. 
 

 
Figure 4.4.2 – Eye Diagram showing the output of the DLI Constructive port; Filter1 

with a 35GHz (0.28nm) Bandwidth. 
 

The improvements indicated by the simulations would give a relative 

improvement of between 1dB and 5dB [32, 132, 133, 134] dependent on filter 

placements. More detail is given in the individual configuration sections. 
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Before taking measurements with different configurations both outputs from 

the DLI were measured separately with single ended detection to record the 

base result from offsetting the filter frequency. 

 

 
Figure 4.4.3 – Single Ended: DLI Destructive Port. Filter1 with a 35GHz (0.28nm) 

Bandwidth with offset changed. 
 

 

 
Figure 4.4.4 – Eye Diagram showing the output of the Destructive port; Filter1 with a 

35GHz (0.28nm) Bandwidth. 
 

This setup simply used one filter, with each output connected through the filter 

and measured in turn; both filters were set to a bandwidth 35GHz (0.28nm). 

The results from single ended receiving are shown in Figures 4.4.1 and 4.4.3 

for Constructive and Destructive ports respectively, while Figures 4.4.2 and 

4.4.4 show the relevant eye diagrams of the constructive and destructive 
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outputs. This gave an indication that improvements in the output were 

possible and that by using balanced receiving it could be possible to improve 

on these results depending on the configuration. 

 

The configurations are grouped into three subsections; single filter 

configurations, dual filter configurations and three filter configurations. 

Each subsection has a number of different configurations using the number of 

filters stated, apart from the three filter configuration where the only 

configuration tested was with one filter (Filter 3) used before the DLI, with the 

other two filters (Filters 1 and 2) placed on each output of the DLI. 

 

Unless otherwise stated, all measurements were taken with the OSNR at 20dB 

(with a 0.1nm resolution bandwidth). 

 

 

4.4.1. Single Filter Configurations 

 

The first configurations consisted of a single filter placed either before the 

Delay Line Interferometer (DLI) in the receive path, or in the receive path on 

the destructive output of the DLI. This was to try and prove that the theory for 

offset filtering would work experimentally. 

 

With the single filter two measurement techniques were used, balanced 

receiving and single ended receiving; Balanced receiving using two 

comparable photodiodes connected to the SHF Error Analysers DATA and DATA 

inputs. Single ended receiving using destructive and constructive ports 

individually to compare their outputs. 

 

BER measurements were taken using the SHF Error Analyser and converted in 

Q-Values, as it is easier to compare like-for-like as all simulated results were 

in Q-values. Q-values take into account the variance of the received noise 

powers of a logical 1 and a logical 0, with 0 generally having a lower variance 

[40] see Section 4.2 for the theoretical basis. 

Some previous work had been done with a single filter before the DLI but no 

frequency offset was carried out on the filter [140]. 
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4.4.1.1. Single Filter before the Delay Line Interferometer (DLI) 

 

The first configuration was the simplest in construction, with a single filter 

placed between the Transmit Amplifier and the DLI on the Receiver side of the 

configuration. This combination is also known as pre-filtering. 

 

 
Figure 4.4.5 – Single Filter before DLI with Balanced Receive. 

 
The configuration shown in Figure 4.4.5 is the single filter configuration with 

the filter placed before the DLI. This gives an example of the filtering seen in a 

short transmission span where some attenuation of the signal occurs, but the 

overall signal is improved by removing the ASE built up over the span. The 

data is in DPSK modulation format which is created by passing the initial PRBS 

231-1 data through an MZI that has a 1-bit delay. This creates a Phase Shift in 

one path compared to the other. The data is then either passed through a 

second modulator to give RZ data or the modulator is switched off, which 

gives NRZ data. 

 

The ASE source is supplied via an EDFA with tuneable drive current connected 

to the 70% port of the coupler, while the data signal is sent through the 30% 
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port. The combined signal and noise is sent through another EDFA to boost 

signal power before it enters the filter.  

 

The filter is of a typical 3rd order Gaussian shape [32, 132, 133, 134]. After 

the filter a Variable Optical Attenuator (VOA) is used to control the signal 

power going into the DLI, the DLI then decodes the DPSK modulation format 

into simple ASK, with Constructive and Destructive outputs connected to two 

separate photodiodes, which convert the received optical signal into an RF 

signal for the SHF Bit Error Rate Test-set (BERT) to read the errors based on 

the decision threshold of the receiver. 

 

The results shown over the next few pages are mainly for proof of concept, 

and show whether investigations into further configurations were worthwhile. 

 

 
Figure 4.4.6 – Q-Value change with Frequency offset, using 42.7Gbps RZ-DPSK 

modulation and fixed bandwidth of 35GHz (0.28nm). 
 

The results shown in Figure 4.4.6 illustrate the Q-value measured with respect 

to the frequency offset of the filter. The centre frequency of the filter was set 

at 193.402THz (λ = 1550.1nm) as this was the frequency where the intensity 

peak of the laser was highest. 
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For the first measurement the BER was taken every 2.5Ghz (λ = 0.12nm) 

from -40GHz to +40GHz, with one measurement carried out up to +50GHz; 

this gave a wide enough band to see whether any of the improvements 

indicated by the simulations could be measured, and if there was an 

improvement indicated, what was the amount of Q-value improvement. 

 

It can be seen that, in general, as the filter is offset, an improvement in the 

received Q-value is apparent with an increase of ~1.5dB after 20GHz to 30GHz 

offset. This result is in line with those predicted by the simulations [32, 132, 

134]. 

One result was only measured to 30GHz, but it dips before the others 

suggesting there is still some issue with repeatability; this seems mainly down 

to system stability. 

 

The results shown in Figures 4.4.7, 4.4.8 and 4.4.9 show the Constructive and 

Destructive outputs of the DLI for filter bandwidths of 0.26nm, 0.28nm and 

0.32nm. This was to demonstrate whether the improvement seen was 

consistent over different bandwidths or whether the improvement disappeared 

and therefore only existed at 0.28nm.  

 

All graphs show the results at two different receive powers, indicating that 

there is some consistency in the measurements even when the receive power 

is changed. 

The results show, as expected, that the destructive port does exhibit an 

improvement with an offset of 8GHz to 30.5GHz with a Q-value of just above 

12dB for 0.32nm and slightly higher for 0.28nm, whilst the Q-value was 

around 13.5dB at 0.26nm. 

 

We can compare these results to those in [141] where a similar setup was 

used, but the filter before the DLI was not offset which gave a worse 

performance on the destructive port, as expected, compared to that of the 

constructive port. We have proved here that, by offsetting the filter, an 

improvement is realised using single ended or balanced receive. 
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(a)           (b) 

Figure 4.4.7 – 32.5GHz (0.26nm) BW: (a) Constructive Port (b) Destructive Port. 
 

 
(a)            (b) 

Figure 4.4.8 – 35 GHz (0.28nm) BW: (a) Constructive Port (b) Destructive Port. 
 

 
(a)            (b) 

Figure 4.4.9 – 40GHz (0.32nm) BW: (a) Constructive Port (b) Destructive Port. 
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The conclusion for using one filter before a DLI is that an improvement of 

about 2dB can be gained, at an offset of 8GHz to 30.5GHz at a data rate of 

42.7Gbps using RZ-DPSK modulation. 

 

 
Figure 4.4.10 – Q-Value change with Frequency offset for 42.7Gbps 33%RZ-DPSK and 

CSRZ-DPSK. 
 

The single filter result using 33%RZ-DPSK, from negative to positive offset, 

was repeated using a Waveshaper for comparison purposes; these results can 

be seen in Figure 4.4.10. Also shown is CSRZ-DPSK, which confirms that only 

limited improvement is expected with this modulation format in the strong 

filtering regime [134, 141, 142, 143]. 

 

The Waveshaper was used for the completion of experiments for both 2 and 3 

filter configurations, and can be seen in Sections 4.5 and 4.7 
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4.4.1.2. Single Filter after the Delay Line Interferometer (DLI) 

 

In this experimental setup, as shown in Figure 4.4.11, a single filter was 

placed on the destructive port of the DLI with a balanced receiver. 

 

 
Figure 4.4.11 – Single Filter after the Destructive port of the DLI with Balanced 

Receive. 
 

For comparison different modulation formats were used to see if any 

sensitivity improvements were maintained, improved, or became worse, whilst 

using the same physical setup. 

The modulation formats used were all DPSK using the following bit slot duty 

cycles; RZ with 33% duty cycle, CSRZ (equivalent to 67% RZ) and NRZ 

(100% duty cycle). 

 

The results are shown in Figure 4.4.12 for two different received powers and 

Figures 4.4.13 and 4.4.14 with three different received powers. This was 

purely down to the measurements for RZ-DPSK modulation not being recorded 

to a receive power as low as -16dBm. 
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Figure 4.4.12 – 35GHz (0.28nm) BW: Return-to-Zero Modulation (RZ). 

 

Figure 4.4.12 shows the case for 33%RZ-DPSK modulation with the filter 

being offset up to 25GHz. The results of two separate received powers are 

shown to see if there was any dissimilarity when different transmitted powers 

were received. The resulting graphs show there is a slight improvement of 

about 1dB in the Q-value when the frequency offset is close to 23GHz. 

 

 
Figure 4.4.13 – 35GHz (0.28nm) BW: Carrier Supressed Return-to-Zero Modulation 

(CSRZ). 
 

For the results shown in Figure 4.4.13, the modulation format was CZRZ-

DPSK, which is the same as 67% RZ-DPSK. The format had been used 
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previously and had shown no improvement [32], so it was important to repeat 

the measurements to confirm the original findings. 

 

The results show a slight degradation of performance until 12GHz, where 

performance picked back up slightly, but then degraded again after 17GHz 

until there was a 2dB-2.5dB drop at 35GHz. This confirms results from 

previous simulations [32, 132, 134]. 

 

 
Figure 4.4.14 – 35GHz (0.28nm) BW: Non-Return-to-Zero Modulation (NRZ). 

 

Figure 4.4.14 shows the results for NRZ-DPSK; these show an improvement of 

1.5dB-2.25dB; however the peak improvement is 1dB lower than for RZ-DPSK 

and the Q-value at zero offset is 2dB-2.25dB below RZ-DPSK. This seems to 

be due to more noise on the NRZ eye diagram when compared to the RZ eye 

diagram creating an increase in ISI, where the difference in the noise is due to 

the RZ format being more resilient to ISI, this is due to its shorter pulse 

widths when compared to NRZ. 

 

Comparing the three different modulation formats, 33% RZ-DPSK, CSRZ-DPSK 

and NRZ-DPSK, we can see that CSRZ-DPSK shows no improvement, only a 

comparable result at 15GHz as with the result at 0GHz, after which the Q-

value drops by 2.2dB at 35GHz. 
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In section 4.4.1.1, it was shown that there was improvement using 33%RZ-

DPSK of ~3dB, where CSRZ showed almost none. There have been 

experiments using CSRZ that have reported slight improvements which used 

“pre-filtering”, namely measurements were taken using a single filter which 

was offset prior to the DLI or receiver [143], but this occurred within weak 

filtering conditions where bandwidths of >50GHz were used.  

The reason for this absence of improvement in strong filtering conditions 

(<50GHz) using CSRZ is related to the fact that the demodulation of the signal 

by the DLI has a 1-bit delay for the DPSK demodulation. This 1-bit delay 

causes the phase changes, related to the CSRZ format, to be different when 

compared to the phase of the original signal; so while this would not affect the 

data, it would affect the resulting spectrum by creating a small amount of 

carrier, therefore causing a flattening of the DLI output and no improvement 

after the DLI. 

 

The measurement results using 33% RZ-DPSK showed an increase of 1dB 

over a 25GHz offset, which is explained via the AMI to DB conversion, and also 

owing to this duty cycle of 33% being less robust to narrow filtering when 

compared to CSRZ as it has a broader spectrum. Therefore, narrow filtering 

will have more of an effect, and a greater improvement from the offsetting of 

the AMI port should be seen, as establish in Figure 4.4.13. 

 

Turning to NRZ-DPSK modulation, an improvement of 2.2dB at 20GHz is 

shown in Figure 4.4.14, which again can be explained via the AMI to DB 

conversion and the broader spectrum. However, there is a comparative loss at 

20GHz between NRZ and the RZ formats, with 33% RZ and CSRZ being 0.9dB 

higher. 

 

The above difference can be explained because of the averaged power over 

the bit slot, which for both RZ formats gives a higher peak power, thus less 

signal loss. Also, due to the lower duty cycles, the RZ formats have a higher 

tolerance to fibre non-linearity compared to the higher duty cycle NRZ. 

In general NRZ is inferior in receive sensitivity terms than RZ, which accounts 

for the ~1dB difference in maximum Q-Value, thus can be up to 3dB lower in 

general due to a lower peak power per bit slot. However, NRZ has other 
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advantages such as simpler transmitter design which leads to lower system 

costs. 

 

 
Figure 4.4.15 – Using RZ-DPSK Modulation, Q-Values measured for different Filter 

Bandwidths with no filter offsets. 
 
Figure 4.4.15 shows the Q-Values calculated for three different receive powers 

across a range of bandwidths, from 32GHz to 40GHz with an offset set at 

0GHz. As expected, it shows a general deterioration with tighter filtering, but 

flattens out slightly between 33.7GHz and 35GHz before the general trend 

resumes. This may be caused by some frequency dependent loss within the 

filter as the effect also seems to be present at the half-wavelengths of these 

frequencies. 

 

If the results are compared with the simulations and previous experimental 

results in [32] there is a slight difference in the number of bandwidth 

measurements which were taken; 33GHz to 35GHz for the simulations and 

31GHz to 37.5GHz for the experimental case in [32], whilst the measurements 

were taken over 31GHz to 40GHz in the experimental case in this section in 

Figure 4.4.15. The general trend is similar, with an increase in Q-values by 

~3dB, and also the slight improvement at 33.7GHz (0.27nm) is seen in the 

experimental results, Figure 7.5 in [32]. The results in Figure 4.4.15 need to 

be repeated with different offset frequencies for the same filter bandwidth 

changes. 
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4.4.2. Two Filter Configurations 

 

The use of two filters meant that a number of additional configurations were 

available. The first configuration was to keep one filter in between the DLI 

destructive output and the receiver. 

As with all configurations, the frequency offset of the filter that was nominally 

called Filter 2, was changed first and then Filter 1 was adjusted, with Filter 2 

either being kept at the frequency offset which gave the maximum output, or 

at zero offset. 

 
 

4.4.2.1. One Filter before the DLI and one Filter after the DLI 

 
For this configuration only CSRZ-DPSK modulation was used. CSRZ-DPSK is 

similar to 67% RZ-DPSK as the temporal pulse of CSRZ is the same as having 

a 67% RZ duty cycle. This is because of the broad spectrum of CSRZ, which is 

caused by its generation using DLI and half-bit rates. 

 

 
Figure 4.4.16 – Single Filter before DLI and single filter after the Destructive port of 

the DLI with Balanced Receive. 
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CSRZ modulation was selected as this was the worst case scenario from the 

previous experiments with one filter, due to having no visible improvement, 

which can be seen in Section 4.4, specifically in Figure 4.4.13 within that 

section. Any noted improvement using CSRZ-DPSK would therefore indicate 

the potential for even larger improvements using other the modulation 

techniques of 33%RZ-DPSK and NRZ-DPSK. 

 

The configuration shown in Figure 4.4.16 is of two filters. One filter is placed 

before the DLI, as in section 4.4.1.1, and the second is placed after the 

Destructive output of the DLI, as in section 4.4.1.2. 

 

No simulation work was carried out for this configuration. 

 

The output on the Constructive side had fibres lengths calculated with the 

correct delay to match the addition of the filter and its connected fibres, 

between the DLI output and photodiode at the receivers, so that the partially 

demodulated output for each side is measured at the same bit slot. 

 

 
Figure 4.4.17 – 35GHz (0.28nm) BW: one filter before DLI and one on the DLI 

Destructive Port. 42.7Gbps CSRZ-DPSK modulation 
 

The results shown in Figure 4.4.17 show a slight improvement at 17-18GHz 

offset, apart from at a receive power of -13.1dB where the highest Q value is 

seen at 19GHz with an improvement of 0.6dB. 
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Figure 4.4.18 – 35GHz (0.28nm) BW: one filter before DLI and one on the DLI 
Destructive Port. 42.7Gbps CSRZ-DPSK modulation – Measurements repeated. 

 

Unfortunately at the lower receive powers there is a decrease in Q-value 

imparted by a small dip in the graph. The reason for this is unknown, but 

could be down to variations in the balanced receive detection point due to 

equipment temperature drift, which meant the correct balance point wasn’t 

reached when measured and recorded. There could also be an issue relating to 

this offset frequency being close to the half-wavelength of the filter bandwidth, 

the bandwidth being 35GHz. Some form of SPM may be present, causing the 

peak of the AMI signal to change in the spectral domain. 

 

A similar response is seen with the change in bandwidth measurements in 

Figure 4.4.15 between 33.7GHz and 34.9GHz, in one of the filters before the 

DLI which may be explained by some wavelength dependent loss being 

present at those frequencies, which would also affect their half-wavelengths. 

 

Owing to the graphs showing different results at 19GHz for the three receive 

powers measured, the results were repeated. This time they showed no 

improvement over that recorded at 0GHz offset, even though the graphs were 

of similar shape, so it was concluded that there was some sort of system issue 

between these and the original BER measurements. This could be down to 

temperature drift during the time interval between the first and second 

measurements, or a software issue. 
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4.4.2.2. Two Filters before the DLI 

 

Using two filters in series before the DLI maximises the attenuation and 

filtering effects, which is similar to a transmission line with high data rates 

passing through it; in this instance 42.7Gbps. 

 

 
Figure 4.4.19 – Two Filters before DLI with Balanced Receive. 

 
In section 4.4.1.1 there was one filter placed before the DLI which showed 

some improvement. Adding a second filter will reduce the receive power but 

there will still be an improvement in Q-values, as seen in the previous 

configurations. 

 

No simulated results were carried out for this configuration. 

 

Figure 4.4.19 shows the configuration with the two filters before the DLI. Each 

filter started with a bandwidth of 35GHz (0.28nm) and 0GHz offset, where 

filter 2 was changed and filter 1 kept at the initial starting condition and BER 

measurements taken.  We took measurements at three different bandwidths; 
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35GHz (0.28nm), 40GHz (0.32nm) and 50GHz (0.40nm), to see how much 

effect the change in bandwidth had. 

 

 
Figure 4.4.20 – 35GHz (0.28nm) BW: two filters before DLI; 42.7Gbps CSRZ-DPSK 

modulation. 
 

We see for Figure 4.4.20 there is no improvement with frequency offset over 

no offset, although there is a slight upward trend at the last few 

measurements past 31GHz offset. 

 

 
Figure 4.4.21 – 40GHz (0.32nm) BW: two filters before DLI; 42.7Gbps CSRZ-DPSK 

modulation. 
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In Figure 4.4.21 we see again that there is no improvement up to 0.35nm 

offset compared to 0nm offset, although as with the previous results, there 

was a slight upward trend near the end of the measurements, but, there is a 

slight deviation at -16dBm receive power where the return gradient starts 

earlier than for -14dBm and -17dBm. 

 

 
Figure 4.4.22 – 50GHz (0.40nm) BW: two filters before DLI; 42.7Gbps CSRZ-DPSK 

modulation. 
 

For the widest bandwidth of 50GHz in Figure 4.4.22, we see there is less 

degradation overall, but no improvement is seen when compared with the 

results for the previous bandwidths. The reason for this could be that the 

amount of filtering apparent reduces the signal power too much, so that any 

offsetting gives a minimal improvement in the first filter, but this is not seen 

by the second filter due to the extra loss, hence no improvement is seen. 

 

 

4.4.2.3. Two Filters after the DLI using Physical Filters 
 
This configuration was an important benchmark for confirming the simulations 

as described in [32]. The results should show an improvement of 2dB when 

compared to non-offset filtered measurements within a 50GHz grid. 
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The configuration shown in Figure 4.4.23 has two filters after the DLI, one on 

the Constructive port and the second on the Destructive Port; these were 

initially set at 35GHz (0.28nm) bandwidths with no offset. Then Filter 2 had its 

offset changed up to a value of 22.5GHz (0.18nm). 

 

 
Figure 4.4.23 – Two filters after DLI, Filter 1 after the Constructive port and Filter 2 

after the Destructive port. Balanced Receive. 
 

After measurements were taken at 1GHz steps, the offset with the lowest BER 

was set. Filter 1 was then changed in the same manner, up to 22.5GHz, to see 

if any additional improvement was seen. 

 

The results shown in Figure 4.4.24 are for the first case, which is where the 

offset of Filter 2 was changed. They show a general decrease in Q-value up to 

6GHz offset, at this point the Q-value starts to increase in value, apart from a 

small dip at 13GHz. This is equal to the point where the half-wave of the filters 

central frequency is found. 

 

After this point the gradient increases to 20GHz, which was where the highest 

Q-value occurred. At the point of highest Q-value, the measurements were 

stopped as after this, according to simulations, there should be a decrease in 
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Q-value due to being past the optimal frequency for Q-value improvement 

within the 50 GHz bit slot [32]. 

 

 
Figure 4.4.24 – 35GHz (0.28nm) BW: Filter1 after Constructive port with offset fixed 
at 0GHz; Filter2 after Destructive port with offset changed; 42.7Gbps CSRZ-DPSK 

modulation. 
 

We can see in Figure 4.4.24 that there is an improvement at 20GHz using 

offset filtering, but it is only around 0.5dB compared to the measurements at 

the 0GHz offset for the filtered Carrier. 

 

 
Figure 4.4.25 – 35GHz (0.28nm) BW: Filter1 after Constructive port with offset 

changed; Filter2 after Destructive port with offset fixed at 20GHz; 42.7Gbps CSRZ-
DPSK modulation. 
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Next, Filter 2 was fixed at 20GHz and Filter 1 was offset from 0GHz to 20GHz, 

this was to see if any additional improvement could be found. The results are 

shown in Figure 4.4.25, and apart from a very small improvement around 

1GHz, the Q-Value decreases slowly until 9GHz offset where there is a slight 

peak in the Q-value, which is 0.5dB lower than at 1GHz offset. After this point 

it decreases by 0.5dB and then steadily decreases even further. 

 

As can be seen, having the second filter offset, as well as Filter 1, shows no 

significant improvement when compared to no offset in Filter 2. 

 

Overall, this configuration does show an improvement. In the case where 

there is no offset for filter 1, but an offset of 20GHz for filter 2, an 

improvement of between 0.4dB and 1.1dB was measured depending on the 

received power, with the highest relative improvement at -17dBm. This is an 

interesting finding and could be useful for systems with low received power. 

 

 

4.4.2.4. Two Filters after the DLI using a Waveshaper (WSS) 
 

The previous results in section 4.4.2.3, used CSRZ-DPSK, and show a potential 

improvement, or at least a recovery, appearing at 20GHz frequency offset. 

Due to time limitations, this was not fully explored at the time. When time 

became available to be able to repeat these experiments, only one physical 

filter was accessible, so it was decided to look for an alternate way to achieve 

the same setup without them. The alternative was to use a Waveshaper, which 

is a device that can be programmed to replicate switching and filtering 

actions; more on how Waveshapers work can be found in section 4.2.2.  

 

Due to time constrains it was decided to use 33%RZ-DPSK after comparing 

with CSRZ-DPSK, as seen in Figure 4.4.10 in Section 4.4.1.1, as it could 

potentially show a greater improvement than with CSRZ-DPSK, and would be 

quicker confirmation of improvements using the Waveshaper. 

 

The setup is shown in Figure 4.4.26 and is the same as Figure 4.4.23, apart 

from the Filters and the DLI replaced directly with the Waveshaper. 



   
 

165 
 

 
Figure 4.4.26 – Two filters after WSS, Filter 1 after the Constructive port and Filter 2 

after the Destructive port. Balanced Receive. 
 

The DLI and the filter responses were programmed using Matlab. This allowed 

the variables of the filters to be changed, whilst the output from the DLI 

remained at its most efficient. The variables which could be changed were the 

centre frequency, the bandwidth, and the offset, and also whether one, or 

both filters, were “on” or “off”; the “on” selection meant they were included in 

the system whilst the “off” selection in effect removed them from the system, 

allowing the pure DLI output to be measured. For this configuration both filters 

were on, i.e. the light was passed through an emulated bandpass filter before 

travelling to the output, rather than directly to the output with no filter 

emulation present; this is the off condition. The filter shapes were set to be 3rd 

Order Gaussian as the best fit. 

 

For completion of the results from this configuration, the measurements were 

taken out to an offset of 60GHz so as to cover any potential points of interest. 

As can be seen in Figure 4.4.27, there are three distinctive lines. These are 

the measurements taken from Filters 1 and 2, which were changed alternately 

i.e. whilst the one is offset, the other is fixed, hence the blue and green lines. 
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The brown/pink line represents the offsetting of both filters together to the 

same offset frequencies. 

 

 
Figure 4.4.27 – 35GHz (0.28nm) BW: Filter1 after Constructive port; Filter2 after 
Destructive port; Filter1 offset changed when Filter2 offset fixed (Blue) and Filter2 

offset changed when Filter1 offset fixed (Green); Both Filters changed equally 
(Brown/Pink). 

 

First looking at the blue line, where Filter1 was offset and Filter2 fixed at 

0GHz, we can see there is no improvement indicated at 20GHz, which is the 

opposite of what was seen in the CSRZ-DPSK results shown in Figure 4.4.24. 

However, at 35GHz offset, the same frequency as the filter bandwidth, we see 

a recovery which peaks at 40GHz, but this is still 0.36dB below the peak at 

0GHz. The green line represents Filter1 fixed at 0GHz and Filter2 offset; this 

shows a general trend of a decrease in Q-value with increasing offset. 

 

One reason for no noticeable increase in Q-value at 20GHz may have been 

down to the length of time it took for the original measurements to be taken, 

resulting in a slight drift in the system output, whilst the BER test-set used is 

not dynamic and is set around a fixed point. 

Another reason may be that the filter shapes generated by the Waveshaper 

are not a close enough match to the physical filters used originally, as the 
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flatness of the filter can make a difference in its response to an incoming 

signal. 

Looking at the pink/brown line, we can see that when both filters are offset at 

the same time, the quality of the output decreases, which indicates that there 

is no improvement to be garnered by offsetting both with large offsets. 

 

In conclusion, from the latest results shown in Figure 4.4.27 we can see that 

there is a recovery after 35GHz when filter 1 is offset which Filter2 fixed, but 

no improvement was achievable. This could be due to the Waveshaper filter 

shapes not being close enough to the physical filters used previously. The 

33%RZ-DPSK result is unlike the CSRZ-DPSK results in Figure 4.4.24, where 

an improvement was seen after 20GHz, and shows the potential differences 

depending on the modulation type used. 

The repetition of the CSRZ-DPSK had been planned, but unfortunately there 

was limited amount of time with the Waveshaper, so the three filter 

configurations were prioritised. Further investigation should therefore be 

carried out into the measurements using CSRZ-DPSK. 

 

 

4.4.3. Three Filter configuration 

 

The three filter configuration involves one filter before the DLI, and one each 

on the Constructive and Destructive output ports of the DLI. For the 

measurements in this section only Filter 2, placed at the output of the DLIs 

destructive port, was offset. 

The ultimate aim of trying the three filter configuration experimentally is to 

confirm the results of the simulations in [32]. 

 

 

4.4.3.1. Three Filter configuration using Physical Filters 

 

According to the simulation results there was expected to be an improvement 

of between 2dB and 4.7dB for an OSNR of between 15dB and 22dB [32, 133, 

134]. For these measurements we used an OSNR of 20dB (0.1nm resolution). 

The expected improvement was down to the crossover of the Destructive port 
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to DB from AMI, at the same time the highest peak on the Constructive port is 

apparent. This gave the best balanced output. 

 

 
Figure 4.4.28 – Three Filters: one before the DLI, Filter 3; two after the DLI; Filter 

1 after the Constructive port and Filter 2 after the Destructive port of the DLI. 
Balanced Receive. 

 

The simulations used an offset of up to 20GHz (0.16nm) for offset 

measurements, but up to 30GHz (0.24nm) for the filter bandwidth graph 

(Figure 4.4.15). This showed an increase in Q-values for wider bandwidths, as 

expected, for the 1 filter configuration as shown in Figure 4.4.11 in section 

4.4.1.2. 

 

The configuration in Figure 4.4.28 shows no improvement over the measured 

range, however there is a recovery beyond 24GHz which starts to flatten out 

after 51.9GHz, but this is still 2dB less than at 0GHz offset. This result may 

therefore only be of interest in strongly filter regimes which use a large 

amount of offsetting, where wavelength or frequency offsetting of the laser or 

other devices are used. 
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The simulations in [32] predicted that after 3GHz of offset on Filter 2 that a 

slight increase of ~1dB should be present, followed by a decrease of 2dB after 

12GHz, with a steady decrease to a loss of 4dB to 5dB by 20GHz. This is the 

furthest that the simulated measurements go to. This seems to tie in with the 

measurements seen in Figure 4.4.29, although we see a decrease of ~7dB at 

20GHz. The highest Q-value in the simulations came where Filter 1, on the 

constructive port, was offset by around 8GHz, and Filter 2 was then offset by 

5GHz. 

 

 
Figure 4.4.29 – 40GHz (0.32nm) BW: Filter 1 and Filter 3 fixed at 0GHz, Filter 2 

offset changed up to 62GHz (0.5nm); 42.7Gbps CSRZ-DPSK modulation. 
 

The result in Figure 4.4.29 needs to be repeated with appropriate offsets on 

both filter 1 and 2 at the DLI outputs to see whether the simulated result can 

be confirmed. This would also discover if there were any imbalances present in 

the receiver or the DLI that caused the loss at 20GHz, but otherwise the result 

seems to confirm the simulation, as seen in Figure 7 of [134] and in [32].  

A simulation extending out to offsets around 60GHz to confirm the above 

result needs to be carried. In the next section a CSRZ-DPSK simulation was 

carried out, but only to an offset of 20GHz, and can be viewed in Figure 

4.4.35. Time constraints limited the repetition of this experiment and also a 

more in-depth inquiry into this configuration. In essence, future work would 

include all filters being offset with respect to one another, and then all of the 
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filters offset at the same time to completely cover any unexpected issues 

and/or improvements. 

In Section 4.4.3.2, we used a Waveshaper to complete some of the 

experimental work not carried out above. 

 

 

4.4.3.2. Three Filter configuration using Waveshaper (WSS) 

 

Here we repeat and extend the 3 Filter configuration experiments using a 

Waveshaper to replicate the DLI and both filters after the DLI. Filter 1 was a 

standalone Santec Filter as previously. 

 

 
Figure 4.4.30 – Three Filters; One before the Waveshaper and Two filters within the 

Waveshaper; Filter 1 after the Constructive port and Filter 2 after the Destructive port. 
Balanced Receive. 

 

We programmed the Waveshaper using MATLAB script which enabled the 

process of the DLI and to change the filter shapes, bandwidths, and frequency 

offset from the central frequency for each filter. The filters could be changed 

together, or separately. 
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As with the two filter configuration, we first offset Filter2 and fixed Filter3 at 

0GHz, and then swapped the Filter situation for fixed and offset. Filter3 was 

then used as the offset filter from 0GHz to 60GHz offset, whilst Filter2 was 

fixed at a certain offset frequency. This was repeated up to an offset of 

60GHz. Those Filter2 frequencies were: 0GHz, 9.980GHz, 19.961GHz, 

29.941GHz, 39.921GHz, 49.902GHz and 59.882GHz. 

Filter1 was kept fixed for all measurements and increased the amount of 

filtering in the system, causing an attenuation of 3dB. 

 

 
Figure 4.4.31 – 35GHz (0.28nm) BW: Filter1 after Constructive port; Filter2 after 
Destructive port; Filter1 offset changed when Filter2 offset fixed (Blue) and Filter2 

offset changed when Filter1 offset fixed (Green); Both Filters changed equally 
(Brown/Pink). 

 

As we can see in Figure 4.4.31, the general trend shows a very small 

improvement of 0.13dB after Filter 3 was offset by 52.4GHz, with Filter2 at 

0GHz offset. From there on in, the Q-value decreases as Filter2 is increasingly 

offset, leading to a large drop of over 6dB at an offset of 60GHz for Filter3. 

Within this area the potential for any measured improvement, or recovery, is 

reduced after 40GHz. 
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This process is better shown on the contour plot show in Figure 4.4.32, as the 

two “peaks” are easily visible, whilst the signal degradation is complete at the 

low point near 60GHz. 

 

The 33%RZ-DPSK modulation format is a good proxy for the 50%RZ-DPSK 

format, as previous results show [134, 144] although 50%RZ-DPSK has the 

best improvement, 33%RZ-DPSK was not far behind, so could also still be 

useful. 

 
Figure 4.4.32 – 35GHz (0.28nm) BW: Contour plot showing result of offsetting Filter 2 

(Constructive port) and Filter 3 (Destructive port) whilst passing through 33%RZ-
DPSK modulated data. 

 

Although there is only a very small improvement, the confirmation of the 

procedure and configuration has been shown, especially when compared with 

the simulation results showing the expected outcomes. This could be due to 

Q-Value (dB) 
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issues with the Filter shapes as discussed in Section 4.2 and shown in Figure 

4.2.4. 

 

We repeated the measurements for the CSRZ-DPSK modulation format. No 

improvements were expected due to the simulation output and also previous 

work as in [134, 143, 144, 145]. 

 

 
Figure 4.4.33 – 35GHz BW: Filter1 after Constructive port; Filter2 after Destructive 

port; Filter1 offset changed when Filter2 offset fixed (Blue) and Filter2 offset changed 
when Filter1 offset fixed (Green); Both Filters changed equally (Brown/Pink). 

 

With these measurements, Filter2 was changed while Filter3 was fixed at the 

following frequency offsets; 0GHz, 9.980GHz, 19.961GHz, 29.941GHz, 

39.921GHz, 49.902GHz and 59.882GHz. This measurement process was 

chosen due to the measurements being easier to record as very low Q-values 

were present at the furthest end (60GHz offset) of the measurements, which 

made it difficult to record the measurements where Filter2 was fixed at 60GHz 

and Filter3 adjusted, as seen with the measurements in Figure 4.4.31; a series 

of low Q-values had to be recorded, which took more time due to the software 

used; swapping the order of which of the Filters were changed, as explained 

above, made this easier. 
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We see in Figure 4.4.33 that as Filter2 is changed, the Q-value reduces 

considerably after 25GHz. 

If we look at the measurements in the opposite direction i.e. Filter3’s offset 

against Filter2, there is a steady decrease. At 0GHz the decrease is only 

1.27dB, while at 60GHz the decrease is almost 10dB. A small upward tick seen 

when Filter2 is offset by 5GHz and Filter3 was offset by 10GHz. This may be 

the representation of the high point of the peak, if we compare the 

experimental results with the simulation results for CSRZ-DPSK in Figure 

4.4.35, but the value of the improvement is relatively small in practice. 

 
Figure 4.4.34 – 35GHz (0.28nm) BW: Contour plot showing result of offsetting Filter 2 

(Constructive port) and Filter 3 (Destructive port) whilst passing through 33%RZ-
DPSK modulated data. 

 

If we look at the contour plot, we see the peak performance is at 0GHz. For 

CSRZ-DPSK, this is as expected. There is a slight recovery around 40GHz, 

Q-Value (dB) 
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similar to 33%RZ-DPSK, but no improvement, unlike 33%RZ-DPSK where 

there was a slight improvement here. 

 

The Q-values do degrade at a greater pace after 20GHz, so by 60GHz offset, 

the level seen is at 0.5dB. The peak, however, does spread out past 10 GHz 

by 5GHz, which could suggest that there is a potential for improvement within 

this area, as seen with the simulation results for CSRZ-DPSK in Figure 4.4.34, 

which show a peak at 4.5GHz by 8GHz, and the relative shape of the contour 

lines is similar. A contour plot with measurements taken at a higher resolution, 

ideally every 1GHz, would have to be taken to revel whether that is the case. 

Again, some of these issues could be due to differences with the Filter shapes 

as discussed in Section 4.2 and shown in Figure 4.2.4. 

 
Figure 4.4.35 – Simulation at 35GHz (0.28nm) BW: CSRZ-DPSK 3 filter configuration. 

Frequency offset of both Filter2 (Destructive Port), Filter 3 (Constructive Port). 
 

If we look at the simulation separately, there is a peak when the offset of 

Filter2 is 4.5GHz, and Filter3 is offset by 8GHz. This region is very small, 

which indicates the peak is only just above 18dB in value. The reason for a 
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peak here is the offsetting of the destructive port, which has an effective AMI 

signal on it, basically “sees” one of the double peaks of the AMI spectrum, as 

shown earlier in the Chapter in Figures 4.2.1 and 4.2.2, but also in the DLI 

there is a vestigial on the Constructive port, which together gives this 

improvement [134, 144]. 

 

Due to the unavailability of an appropriate transmitter to generate 50%RZ-

DPSK modulation, it meant that, unfortunately, no measurements using 

50%RZ-DPSK were able to be taken, this means only simulation results are 

available as can be seen in Figure 4.4.36. 

 

 

  
Figure 4.4.36 – Simulation at 35GHz (0.28nm) BW: 50%RZ-DPSK 3 filter 
configuration. Frequency offset of both Filter2 (Destructive Port), Filter 3 

(Constructive Port). 
 

However, from these simulations it can be inferred, taking into account the 

comparisons of the measurements for 33%RZ-DPSK and CSRZ-DPSK and their 

relevant simulation results, to suggest that actual measurements using 

50%RZ-DPSK Q value (dB) contour plot for novel model with 0GHz 
offset at filter 1, frequency offset of filters 2 and 3 (GHz) 
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50%RZ-DPSK, under ideal conditions, should see an improvement of ~3dB, 

when Filter 2 is set with a 5GHz offset and Filter 3 with an 8GHz offset. 

 

The improvement seen within the simulation in Figure 4.4.36 is a result of the 

way AMI and DB interact when they are formed from 50%RZ-DPSK, in which a 

vestigial, or “left over”, part of the AMI double peak causes a spectral peak 

that is higher than with other RZ-DPSK formats [132, 133, 140, 144]. 

 

 

4.5. Conclusion 

 

From the results of the different offset filtering configurations, we can 

conclude the following: 

 

The use of one filter before a DLI, as in section 4.4.1.1, has demonstrated that 

by offsetting the filter, an improvement is seen using a single ended receiver 

or a balanced receiver, as was reported in [134, 143] and was in line with 

those predicted by the simulations [32, 132, 134]. The improvement of the 

received Q-value was found to be in the region of 2dB, and was gained using 

an offset of 25GHz to 31GHz with RZ-DPSK modulation at a data rate of 

42.7Gbps. It was also found that if the filter before the DLI was not offset, a 

decrease in performance was recorded on the destructive port when compared 

to the constructive port. This was as expected and reported in [132, 134, 

142].  

 

In Section 4.4.1.2, different modulation techniques were compared, these 

being 33% RZ-DPSK, CSRZ-DPSK and NRZ-DPSK. 

 

The best relative improvement was seen with NRZ-DPSK, shown in Figure 

4.4.13. This increased by 2.2dB from 0GHz to 20GHz, but when compared to 

RZ and CSRZ formats there was a reduction of 0.9dB. The true peak output 

was 12.8dB.  The measurements in Figure 4.4.12, for CSRZ-DPSK, showed no 

improvements, only degradation after 20GHz, and 50% RZ showed an 

improvement at 25GHz of 1dB, this has been shown previously in [32, 142]. 

The peak output was 13.8dB.  The results for 33% RZ-DPSK, Figure 4.4.11, 
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showed a relative improvement of 0.9dB after 25GHz and the best peak 

output of 14dB. 

 

The reason for the lack of increase when using CSRZ-DPSK modulation is 

because the demodulation process of the signal by the MZI requires a 1-bit 

delay for the DPSK demodulation, this causes the phase changes related to the 

CSRZ format to be different to those phases transmitted initially. Whilst this 

would have no effect on the transmitted data, it would affect the resulting 

received spectrum by creating a small amount of carrier to appear, therefore 

causing a flattening of the spectral output and no improvement after the DLI. 

 

In section 4.4.1.1 CSRZ-DPSK had been used in “pre-filtering”, namely before 

the DLI or receiver, where results have shown an improvement [143].  

In situations where cascaded filtering appears over a transmission link [145], 

CSRZ-DPSK has also been proved to show little improvement, which is 

consistent with the findings here. 

 

The results using 33% RZ-DPSK shows an increase of 1dB over 25GHz offset, 

this is explained via the AMI to DB conversion on the destructive port, and 

owing to this duty cycle having a broader spectrum compared to CSRZ-DPSK, 

narrow filtering has a greater affect. Therefore a larger improvement from 

offsetting the AMI should be realised, as can be seen in Figure 4.4.11. 

 

For NRZ-DPSK a relative improvement of 1.5dB to 2.2dB was seen at the 

offset of 20GHz. However, this relative improvement is 1dB lower than for RZ-

DPSK. This could be due to a greater amount of noise inherent within the NRZ 

format when compared to RZ, thus creating an increase in ISI. The difference 

between NRZ and RZ can be explained by the amount of power averaged over 

the bit slot, which for both RZ formats gives a higher peak power and thus less 

signal loss. Also because of the lower duty cycles of the RZ formats, these 

have a higher tolerance to fibre non-linearity compared to higher duty cycle 

formats, such as NRZ. 

 

For the two filter configuration in section 4.4.2.1, this involved placing one 

filter before the DLI and one on the destructive port of the DLI. The result 
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from this experiment was mixed. The first set of results showed an 

improvement of between 0.6dB and 0.8dB at 18GHz, for a received power of -

13.1dBm and -15.1dBm. This was encouraging and was supported by the one 

filter experiments on the destructive port of the DLI. 

However, a dip in the received power was noted at 19GHz for -14dBm and -

15.1dBm received powers. Because this frequency is close to the half 

wavelength of the filter bandwidth of 35GHz, it is assumed there are some 

issues that may be produced by SPM causing the peak of the AMI signal to 

change in the spectral domain. 

 

A similar response can be seen with the bandwidth measurements with one 

filter before the DLI in Figure 4.4.14, where, with the change in bandwidth at 

33.7GHz to 34.9GHz, a slight change in the linear response is seen. This may 

indicate some frequency or wavelength dependent loss is present at this 

frequency range which would also affect their half-wavelengths. 

 

The measurements described above were repeated. This time they showed no 

offset improvement over that recorded at 0GHz with a -13.1dBm received 

power. An actual degradation of 0.4dB at 17GHz was measured, although as 

previously, a dip appeared around 18GHz but this time it only occurred on the 

-13.1dBm power measurement. For the -14dBm, a decrease of 0.2dB at 

17GHz is apparent compared to 0GHz, whilst for -15dBm there is no difference 

between 0GHz and 17GHz. 

 

Other issues, such as temperature drift during the time interval between the 

first and second measurements, or system or software issues, could also play 

a part in these noted differences. 

 

For the two filter configuration before the DLI, seen in Section 4.4.2.2, no 

measured improvement was seen. It is assumed that this result is caused by 

additional loss, meaning the improvement seen by offsetting Filter 1 would be 

lost due to attenuation. When Filter 2 was offset, the signal had been 

attenuated to a level where offsetting gave a negligible result. 
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The two filter configuration in section 4.4.2.3 uses an individual filter on the 

constructive and destructive ports of the DLI. This allows potential for the 

signal quality to be improved by changing the offset of both filters to induce 

the lowest BER, or highest Q-value. 

 

It is known that offsetting the destructive port will achieve a comparative 

improvement for that output, accordingly it was expected that some 

improvement would be seen. The greatest improvement on the destructive 

port (using Filter 2) was an offset of 20GHz, which gave an improvement of 

between 0.4dB and 1.1dB depending on the received power. 

 

For the constructive port (Filter1) the offset frequency that gave the best 

output was found to be 0GHz. This is not a huge surprise, as shown in the 

previous sections. In general the constructive port will only get worse as the 

filter is offset away from the central peak, however, sometimes the filter may 

not be exactly on the central peak, and so offsetting the constructive port may 

be worthwhile. 

The highest relative improvement on the destructive port was found at -17dBm 

with an increase of 1.1dB. This is an interesting finding and could be useful for 

systems with low received powers. 

 

In Section 4.4.2.4, where a Waveshaper was used as a comparison with the 

actual physical filter used in Section 4.4.2.3, we can see that the improvement 

at 20GHz is not present and we do not see any improvement until 30 GHz 

offset. This suggests that either there was an issue with the original 

measurements, or that this could be due to the physical filter shapes and the 

Waveshaper filter shapes having slight differences. 

 

For very tightly filtered systems, such as the three filter experiments in section 

4.4.3.1, no notable improvement was realised when offsetting the filters.  

With no offset i.e. 0GHz offset, a Q-value of 9.5dB was measured, when filter 

2 was offset, there was the start of a recovery after 24GHz, where the Q-value 

was 2.47dB until an offset of 51.9GHz where the Q-value of 7.45dB was 

recorded and did not increase significantly afterwards. The reason for this was 

that the filter on the constructive port, Filter1, was not offset, so when we 
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compare to Figure 7 in [133] it can be seen that Filter1 was at 0GHz and so no 

improvement should have been expected. 

 

In Section 4.4.3.2, the three filter configuration was repeated using a 

Waveshaper to simulate the filters on the destructive and constructive ports of 

a DLI, where the Waveshaper were also programmed with a DLI. A separate 

Santec 950 optical filter was deployed before the input to the Waveshaper. 

As with the previous experiments with physical filters, Filter1, the Santec 

Filter, was fixed with a Bandwidth of 35GHz and no offset, while Filter2 and 

Filter3, which were within the Waveshaper, were offset up to 60GHz to cover 

the range seen with the incomplete experiment in Section 4.4.3.1. 

 

In these experiments, we compared three different modulations to see how 

they performed in the narrow filtering regime; these were 33%RZ-DPSK, 

50%RZ-DPSK and CSRZ-DPSK. NRZ-DPSK was not repeated due to the 

previous results showing an improvement significantly below the other 

modulation types. 

 

For all the measurements included in Section 4.4.3.2 a lower resolution of 

4.5GHz had to be used to achieve them due to time constrains, rather than a 

higher 1GHz resolution as hoped.  

 

For 33%RZ-DPSK a slight improvement was seen around 50GHz, but this was 

only about 0.5dB, there was potential for an improvement peak to appear 

between filter offsets of 5-10GHz. No simulation results were available for this 

modulation type, but from other results [132, 133, 134], it is suggested that 

33%RZ-DPSK should show improvements over CSRZ-DPSK, but they would 

not be as good as with 50%RZ-DPSK. 

 

When we then look at CSRZ-DPSK results, there was no improvement, 

although an additional peak did appear around 37GHz, but this was much 

lower than at 0GHz. This was partially expected as it had been proven [132, 

133, 134, 144] that CSRZ-DPSK gives only slight improvements at bandwidths 

of 35GHz, unlike at bandwidths of around 50GHz, where it can give significant 

improvements. 
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Comparisons with the simulation results are limited, as those results only go 

as far as 20GHz, but they still show a potential small improvement around    

5-10GHz. Simulations showed there may have been scope for significant 

improvement, but previous experimental and simulation results have proved 

to be lower. 

 

Unfortunately for 50%RZ-DPSK, no transmitter capable of producing this 

modulation type was available, only the simulation results have been included 

for a general overview. The simulation results show a significant improvement 

of around 3dB to 4dB when Filter2 is offset at 5GHz and Filter3 offset of 8GHz. 

No details are available past 20GHz as the simulations were limited to that 

amount of offset. When taken as a whole with the experimental and simulation 

results for 33%RZ-DPSK and CSRZ-DPSK, we can assume with some 

confidence that there would be some improvement, but whether it would be as 

marked is unknown until actual experimental validation takes place. 

 

The fact the filter shapes resulting from the Waveshapers did not match those 

of the Santec filters, and the filter shapes used in the simulations potentially 

had lower order Gaussian shapes when compared to the actual filters used, 

could be limiting factors for the measurements, and therefore by inference, 

the simulation comparisons, as discussed in Section 4.2. This means the 

attainment of an acceptable and comprehensive conclusion for this section 

cannot be made. 

 

In general we can conclude the following: 

 

Using one filter on the destructive port to offset the central wavelength, whilst 

leaving the constructive port set at 0GHz offset (either with or without a 

filter), can give an increase in the Q-value for the received signal of up to 2dB. 

This could have some impact within those systems that have strongly filtered 

regimes. 

 

When two filters are applied on each output of the DLI, an extra bit of 

flexibility can be added to a system by the fine tuning of the peak outputs of 

both ports to secure the best signal quality. 
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It has been seen that for certain filtering regimes offset filtering could be a 

useful technique for increasing the quality of the received signal, especially at 

low powers, further work needs to be done by using these techniques with 

long-haul transmission spans to see if any improvements could be measured 

that would indicate a simple way to improve current systems. 

 

The findings within this chapter are of interest to those systems that have 

strong filtering regimes, i.e. those systems that have either cascaded and/or 

multiple devices that cause filtering of transmitted signals, such as add-drop 

multiplexers, wavelength switches and cross-connects, as well as filters. The 

use of offset filtering could improve the received signals in these systems by 

1dB or 2dB when using either pre-filtering for ASK or DPSK modulation 

techniques, or offset the destructive port of a DLI when using only DPSK. 

Another way of achieving similar results is to offset the laser source instead of 

offsetting filters; however this may cause excessive cross-talk. 

 

For very narrow filtering (<0.25nm bandwidth), offsetting the filter is limited 

as this technique depends on using broader spectral pulses and finding the 

peak performance within that spectral band, which for long haul transmission 

spans and complex systems with multiple switches may indicate a significant 

block for its suitability. This inference is supported by results in [141]. 

 

The use of Waveshapers in lieu of physical filters needs more work, as the 

comparison of the filter shapes from both Waveshapers and physical filters 

showed there was a significant difference, which could explain the lack of high 

Q-Value improvements in the experiments compared to the simulation results.  

 

More complex modulation systems, such as DQPSK and Polarisation 

modulation techniques, should also be investigated as these types of 

modulation can improve the received signal considerably, while the effect of 

the type of offset filtering detailed in this chapter, on these modulation 

formats, is unknown in practice. Coherent detection could also be used instead 

of direct-detection. 
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Offset filtering, whilst shown to be an interesting effect, may not be suitable 

for networks with a vast selection of cascaded devices, or those using long-

haul transmissions due to the very narrow filtering that occurs, but may be 

useful for short to medium haul systems and systems with some cascaded 

devices within a 50GHz grid. For systems with broad filtering (>1nm 

bandwidth) these techniques will not work. 

 

The next step would be to use offset filtering in conjunction with an ULRFL 

over long distance spans. A similar experiment has been carried out in [124] 

with pre-filtering and using 2 forward pumping spans and 1 backward pumping 

span within a recirculating loop of 360km. 

The proposed system would differ by using the ULFRL and the two filter 

“tuning” technique on both DLI outputs. This would create a novel 

transmission system and confirm whether or not both offset filtering, and 

ULRFL, could work in the field as part of a tightly filtered long haul 

transmission system. 

 

Although we have shown proof of concept, future higher resolution 

measurements of 1GHz, with either physical filters, or better fitting filter shape 

using Waveshapers, should be carried out to demonstrate whether the 

improvements seen can be better pinpointed and improved upon. 
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Chapter 5 
 

Conclusions 
 

This thesis is concluded by comparing the main objectives with the resultant 

outcomes. The overarching aim was to provide evidence that there are new 

ways to use current techniques to improve the transmission of optical signal 

over long distances with as little loss as possible, and secondly to confirm 

whether simulated results, pointing towards a possible simple way to improve 

the received signal at the receiver, could be confirmed. 

 

First we tackle the transmission objectives.  

Our aim here was to prove that long distance transmission could be improved 

by the use of Ultra-long Raman Fibre Lasers (ULRFLs) over a single 

unrepeatered span, instead of using other amplification techniques over 

unrepeatered and/or repeatered spans. The use of standard transmission 

fibre, such as SMF-28, was also a priority, rather than using large effective 

area fibres such as LEAF or TrueWave, or special ultra-low loss fibres. 

Experiments using non-SMF-28 fibres can be found in the following references 

[19, 20, 21, 22, 23, 24, 25, 35, 60, 61]. 

 

The experimental work was planned to build on previous work where an ULRFL 

cavity of 270km was developed creating a quasilossless span [15], and 

simulations in [14] found that ULFL had an improved noise figure and a better 

gain profile when compared to bi-directional 1st order and 2nd order Raman 

amplification. Bi-directional pumping [18, 19, 21, 28, 35, 58, 59] has been 

advantageous compared to single pumping [20, 23, 25, 61] for some time. 

Other examples of ultra-long transmission experiments can be seen in the 

following [22, 24, 27, 57, 60,]. 
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Un-repeatered 
Transmission 

Distance  
(km) 

Total  
Transmission 

Distance  
(km) 

Number of 
Channels and 

Data Rate (Gb/s) 

Modulation 
Type 

Transmission 
Technique 

Fibre 
Types 
Used 

Refs 

100 100 1x640 RZ-OOK WTC SMF [97] 

240 240 1x10 NRZ-OOK Backward RP SMF-28 [29] 

298 298 20x10 
WDM 

Ethernet 
Bi-direction RA 

+ EDFA 
NZDSF [59] 

300 300 1x107 RZ-DQPSK Bi-direction RA NZDSF [57] 

300 300 8x112 
TI-PDM-
RZ-QPSK 

Forward RP  
+ Coherent Rx 

NZDSF [58] 

300* 300* N/A* CW* ULRFL* SMF-28* [63]* 

320 320 8x43 
WDM RZ-

DPSK 
ULRFL SMF-28 [26] 

440 440 64x43 
PDM-RZ-

BPSK 

3rd Order 
Backward RP  

+ ROPA 
EPSCF [20] 

444 444 8x120 
PDM-NRZ-

QPSK 
DRA+ROPA  

No DA 
PSCF [21] 

462 462 4x100 PDM-QPSK  
Bi-Dir RP + 

ROPA + RTP + 
Coherent Rx 

EPSCF + 
ULL-
LEAF 

[22] 

468 468 10x43 NRZ-DPSK 
Bi-Dir DRA + 

ROPA 
PSCF [19] 

468 468 
64x43  

(33GHz Spacing) 
PDM-RZ-

BPSK 
RFL for ROPA 

EPSCF + 
ULL-
LEAF 

[25] 

505 505 32x12.3 WDM 
Dual λ RP + 

ROPA 
PSCF [23] 

525 525 4x10 WDM 
3rd Order CRP 

+ ROPA 
EPSCF [24] 

574 574 4x10 
WDM-RZ-

DPSK 
3rd Order Bi-RP 

+ ROPA 
ULL-
LEAF 

[18] 

601 601 1x10 
WDM-RZ-

DPSK 
3rd Order Bi-RP 

+ ROPA 
ULL-
LEAF 

[18] 

Table acronyms:  

CRP: Cascade Pumping; DA: Discrete Amplification; DRA: Distributed Raman Amplification; EPSCF: Enhanced 

Pure Silica Core Fibre; MC: Multicore; MCF: Multicore Fibre; QL: Quasilossless; RA: Raman Amplification; R-EA: 

Raman EDFA Amplification; RFL: Raman Fibre Laser; ROPA: Remote Optical Pump Amplification; RP: Raman 

Pumping; RTP: Real Time Processing; TI: Time Interleaved; WTC: Wavelength Transparent Conjugation.  

* This configuration was tested as a strain sensor only, not as a communications system. 

 

Table 5.1 – Summary of unrepeatered long-distance transmission experiments. 
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Table 5.1 shows a summary of unrepeatered transmission results, while Table 

5.2 shows a summary of results for repeatered transmission; both tables 

illustrate the usage of a range of different techniques. The inclusion of 

repeatered transmission results is to show a comparison with the lengths of 

unrepeatered systems, with the actual lengths of unrepeatered fibre sections 

used within repeatered systems. 

 
Un-repeatered 
Transmission 

Distance  
(km) 

Total  
Transmission 

Distance  
(km) 

Number of 
Channels and 

Data Rate (Gb/s) 

Modulation 
Type 

Transmission 
Technique 

Fibre 
Types 
Used 

Refs 

50 9000 80x100 PDM-QPSK EDFA PSCF [17] 

55 6160 40x128 PDM-QPSK MC-EDFA 
7-Core 
MCF 

[94] 

80 7040 72x100 PDM-QPSK 
Hybrid R-EA  
+ Coherent 

Rx 
LEAF [64] 

82 2500 1x43 RZ-ASK QL Span SMF-28 [31] 

100 100 1x640 RZ-OOK WTC SSMF [97] 

100 7200 16x112 PM-QPSK EDFA ULL-LEAF [61] 

100 11400 40x112 PM-QPSK Backward RA ULL-LEAF [61] 

200 6000 32x112 PM-QPSK Hybrid R-EA ULL-LEAF [61] 

200 1000 40x43 
NRZ-DPSK  
RZ-DQPSK 

EDFA ULL-SMF [98] 

Table acronyms:  

CRP: Cascade Pumping; DA: Discrete Amplification; DRA: Distributed Raman Amplification; MC: Multicore; MCF: 

Multicore Fibre; PSCF:  Pure Silica Core Fibre; QL: Quasilossless; RA: Raman Amplification; R-EA: Raman EDFA 

Amplification; RFL: Raman Fibre Laser; ROPA: Remote Optical Pump Amplification; RP: Raman Pumping; RTP: 

Real Time Processing; TI: Time Interleaved; WTC: Wavelength Transparent Conjugation. 
 

Table 5.2 – Summary of repeatered long-distance transmission experiments with 
unrepeatered sections stated. 

 

The biggest advantage of using an ULRFL is the comparative flatness of the 

gain when compared to bi-directional 2nd order Raman pumping, since the 

cavity is the whole transmission medium rather than just a section. This limits 

the gain excursion and therefore the power profile is flatter over the 

transmission length. ULRFL were also used in [14, 15, 26, 27, 29, 31, 63]. 

 

Numerical modelling of Raman pumping, including 2nd and 3rd order, single and 

dual, including co and counter propagating, can be found in [28, 30. 35]. 
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The most common technology currently used is EDFA, due to its ease of use 

within current systems, but on its own it is limited to repeatered systems, or 

short-haul (<100km) unrepeatered systems. Examples of their use in 

repeatered system are in [17, 94, 98]. 

 

A technology that is increasingly being used is Remote Optically Pumped 

Amplification (ROPA), which consists of a piece of fibre doped with a gain 

material such as Erbium, these are usually placed at the centre of the 

transmission span for ROPA only amplification, or placed near the end of the 

transmission span when ROPA is used with other amplification techniques, as 

this give a gain boost at the far end of the transmission span, examples of this 

are [20, 21, 22, 23, 25]. 

 

There are those systems which use a combination of EDFA and Raman 

amplification, such as in [59, 61], where the EDFA is used as a pre-amplifier 

prior to the Raman section. This aspect is different to their usage within the 

experiments in Section 3 of this thesis, where the EDFAs were used for 

balancing out the losses within the dispersion compensation sections. In [59] 

negative dispersion NZDSF fibre was included within the actual transmission 

span rather than within the transmitter or receiver sections as in Section 3. 

The EDFA and Raman Amplification combination could potentially make 

available a higher overall system OSNR, thus allowing longer transmission 

spans, with or without repetition. The unrepeatered transmission lengths were 

between 200-300km with OSNRs of 15.5dB (after 27x200km repeaters) and 

27.5dB. 

 

The majority of the longer transmission experiments use Raman pumping, 

although there are different configurations. These configurations are Forward 

Raman pumping, Backward Raman pumping and bi-directional Raman 

pumping. 

 

The longest unrepeatered transmission span was identified as 601km in [18], 

this system used 3rd Order Bi-directional Raman Pumped Amplification (RPA) 

as well as ROPA situated 146km from the end of the transmission span, the 

transmission rate was at 10Gbps using RZ-DPSK modulation. This system also 
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used ULL-LEAF, which had an attenuation of 0.162dB/km, compared to normal 

SMF-28 whose attenuation is nominally 0.2dB/km. The Q-value averaged 

around 9.5dB. 

If we compare with those results using special fibre types, we can see an 

improvement over standard SMF of up to 0.05dB, which can add up to a 

significant reduction in the system loss over hundreds of kilometres of fibre, 

this can also realise higher gain profiles when using Raman amplification 

techniques. The cost of replacing SMF-28 with speciality fibre would be a 

major undertaking in any current installation, which is why those techniques 

that can be implemented within current fibre stock are important, hence using 

Raman amplification, and specifically ULRFLs. The use of speciality fibres can 

be found in [18, 22, 24, 25, 57, 58, 59, 61, 64, 94]. 

 

The modulation type and the amount of channels used are also important, 

with phase based modulation, such as DPSK and QPSK, showing the best 

results, although this is balanced by the increase in complexity of the 

transmitter and receivers. The number of channels used can also have an 

impact as there is only so much gain available, which is why multi-bit 

transmission is important in WDM systems. The maximum number of channels 

used was 64 at 43Gbps for 468km unrepeatered transmission, and 80 at 

100Gbps for repeatered transmission (50km unrepeatered length) [17, 25]. 

 

In Chapter 3 we used Raman amplification over the distances of 240km and 

320km using ASK and DPSK modulation formats. We found that it was 

possible to receive signals over this distance with a good enough recovery, 

this would mean Forward Error Correction could be used in the receiver to 

further improve the received signals from the transmission system. 

 

When looking at the 240km results, it was found the amount of dispersion 

present on channels 1 to 3 caused a significant reduction in the received signal 

quality of around 4dB, which is significant over very long distances and 

actually erased the expected improvement between ASK and DPSK. This 

problem could not be overcome due to the inability to optimally tune the 

dispersion compensation for all channels. A bandwidth of 30nm was used for 

these measurements, which is close to the total bandwidth of the C-band. 8-
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channels were transmitted here with an average 500GHz separation, which 

means many more channels could be transmitted using the appropriate grid 

spacing. 

 

For the experimental results at 320km, the bandwidth of the WDM channels 

was reduced to 11nm, giving a channel spacing of 200GHz. This reduction in 

bandwidth was because the Raman pump power required for a 30nm 

bandwidth was unachievable. The increase in the length of the span meant the 

gain spectrum was narrower, the consequence of which was that a much 

narrower channel bandwidth at the Ramen gain peak had to be used. Outside 

of the narrower bandwidth the OSNR was too low to achieve error-free 

transmission. 

The actual measurements for the 320km span were fairly flat across the range 

with Q-Values only differing by 0.5dB (10-10.5dB) with an OSNR of 7dB. This 

significant reduction in OSNR when compared with the 240km experimental 

results, was caused not only by the extra 20dB loss due to the increase in fibre 

length, but also by nonlinear effects such as DRBS, which built up because the 

gain over the span was not enough to compensate for the significant 

degradation of the WDM channels. The Q-value measurements, however, were 

still beyond the 7% FEC limit. 

 

The work in Chapter 3 using ULRFL has to be compared to other techniques 

used in long-haul systems. The alternative systems include the use of devices 

such as EDFAs, including hybrid Raman-EDFA configurations [21, 59, 61, 64, 

98], and ROPAs [18, 19, 20, 21, 22, 23, 24, 25], some of which include the 

requirement to use specific fibre types, such as ultra-low loss (ULL) fibre 

and/or doped fibre (used in ROPAs) to achieve the improvement, rather than 

only using the already existing standard fibre systems. 

The techniques installed in transmission systems are those which balance cost, 

compatibility with existing infrastructure, and which give the greatest 

improvement within the system. However, for new system installations ULRFLs 

are unlikely to be considered as systems using ROPAs and ULL fibres would be 

a significantly better choice due to the long term benefits. ULRFL may still be 

considered for current system installations, but only for long-haul systems 
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using higher loss fibre, although older short and medium-haul transmission 

spans could also gain some benefit. 

 

It is clear from these results that there is still further work to be done at 

distances greater than 250km to improve the noise figures and reduce the 

significant degradation from nonlinear effects, such as DRBS, when 

transmitting over SMF-28 type fibres. 

 

 

The second task was to see whether using filters within the transmission path 

could improve the received signal in a strongly filtered system, the results of 

which appear in Chapter 4. 

 

To see whether the improvements predicted by previous simulation results or 

experimental work [32, 129, 130, 132, 133, 134, 135, 142, 143, 144, 145, 

146, 147, 148, 149, 150, 151] were achievable, or repeatable, back-to-back 

measurements were taken using different configurations. These configurations 

consisted of the following: one filter only, two filters or three filters. 

The various configurations were analogues of different types of tight optical 

filtering found in optical systems, and to show how, by offsetting filters at 

certain places within a system, a potential way to improve the received signal 

could be establish. 

 

Pre-filtering was a simple example of strong filtering before the receiver, 

where a 35GHz filter bandwidth was used to try and match the type of narrow-

band filtering seen when using channels within the 50GHz grid, whilst placing 

filters after the DLI, or “post-filtering”, was an attempt to see how the outputs 

from the DLI, after demodulating a DPSK signal, could be used to improve 

received signals. 

 

An amalgamation of “pre” and “post” filtering was used to confirm some 

simulated results [32, 132, 133, 134] and this showed that up to 5dB of 

improvement could be found. 
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The highest improvement using this setup was around 2.2dB, under half of the 

predicted value, although the results showed the model and the general 

theory behind the offset filtering effect could be confirmed. 

 

Other configurations were also tried, such as two filters before the delay line 

interferometer, and a three filter setup which had one filter prior to the DLI 

and one filter on each output of the DLI (the constructive and destructive 

ports). In the first situation no improvement in the received signal was 

measured, whilst in the latter case there was also no improvement, but the 

results may fit with the simulation [32, 133] where only one filter was offset 

on the destructive port, however the model had both filters offset, which 

means both the experimental setup and the simulation need to be rechecked. 

 

Additional experiments were carried out using a Waveshaper. This device was 

used for comparison purposes with the physical Santec filters used in the 

previous experiments. The Waveshaper was programmed to process the input 

signals as a DLI, and was also programmed with two “post” filters on each arm 

which allowed their bandwidth and frequency offsets to be independently 

altered. A physical “pre” filter was placed prior to the Waveshaper input.  

The Waveshaper therefore permitted the emulation of the two filter 

configuration, one on each arm of the DLI “post” filtering, and the three filter 

configuration, this was the same as the two filter configuration mentioned but 

with the addition of a “pre” filter before the DLI. 

 

The Waveshaper confirmed that offset filtering is viable using programmable 

devices to emulate physical filters; however it was found that the programmed 

filter shape did not closely match the filter shape of the original physical 

filters, which is an issue that will need more investigation. 

 

For the offset filtering measurement using the Waveshaper, the greatest 

improvement was with 33%RZ-DPSK, of around 0.5dB, but no simulation was 

available for comparison.  

For CSRZ-DPSK there is some potential for improvement, unfortunately the 

measurement resolution was too low for certainty, but it could be as high as 

3dB-4dB with a 5GHz by 8GHz (Filter2 by Filter3) offset, as shown by the 
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simulation results. Only simulation results were available for 50%RZ-DPSK, 

these showed the potential for an improvement of 3dB to 4dB. 

All of the Waveshaper measurements used a resolution of 5GHz, which was 

found to be too coarse; this suggests the experiments should be repeated at 

1GHz resolution to seek experimental confirmation with the simulations. 

 

It has been shown that offset filtering is a technique which should be looked 

into further, although these results were limited to back-to-back only. In 

general the majority of the results from simulations have been confirmed, 

where they have not, more work needs to be carried out to see if the issues 

are system related or inherent to the filters and/or configurations used. 

 

Although we did not use the offset filtering technique over long distances, only 

back-to-back configuration were used, we ascertained that it was possible to 

simply enhance the signal and reduce the error count by increasing the 

measured Q-values by up to 2.2dB, and have succeeded in finding some 

simple configurations which could be used in the real world for a comparatively 

small additional cost. We also found that the use of programmable devices 

such as Waveshapers, to emulate DLI and filters, is a potential alternative 

and/or addition to physical filters. 

 

Further work, which could not be completed in time for this thesis, included 

incorporating both the long-distance Raman amplification, with the offset 

filtering, in order to investigate the possibility of improvements in received 

signal quality in tightly filtered long-haul transmission systems. 

 

It has been seen that for certain filtering regimes offset filtering could be a 

useful technique for increasing the quality of the received signal, especially at 

low powers. Further work, to utilise these techniques within long-haul 

transmission spans, should be carried out, to see whether there are any 

measurable improvements that could indicate a simple way to improve current 

systems. 

 

Offset filtering has been shown to be an interesting effect, although it may not 

be 100% suitable for networks with a vast selection of cascaded devices or 
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those using long-haul transmissions due to the very narrow filtering that 

occurs, the use of devices such as Waveshapers may change this.  

However, offset filtering may be useful for short to medium haul systems and 

systems with some cascaded devices within a 50GHz grid. For systems with 

broad filtering (>1nm bandwidth) these techniques will not work. 

 

In conclusion, it has been shown that both ultra-long Raman fibre lasers 

(ULRFL), and offset filtering, are interesting techniques which could be easily 

installed into current optical systems, giving a noteworthy improvement to 

systems which have suffered some degradation in signal quality over time. 

However, the findings for both techniques are somewhat limited to specific 

systems requirements, such as legacy systems that need to recover some of 

their original performance. In the near future there is some doubt that either 

technology would be utilised within brand new installations, although in the 

longer term, ULRFL is the more likely candidate to be considered due to its 

flexibility and potential. 
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