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Abstract: 
Bacterial lipoproteins have many important functions and represent a class of possible vaccine candidates.  The prediction 
of lipoproteins from sequence is thus an important task for computational vaccinology.  Naïve-Bayesian networks were 
trained to identify SpaseII cleavage sites and their preceding signal sequences using a set of 199 distinct lipoprotein 
sequences.  A comprehensive range of sequence models was used to identify the best model for lipoprotein signal 
sequences.  The best performing sequence model was found to be 10-residues in length, including the conserved cysteine 
lipid attachment site and the nine residues prior to it.  The sensitivity of prediction for LipPred was 0.979, while the 
specificity was 0.742.  Here, we describe LipPred, a web server for lipoprotein prediction; available at the URL: 
http://www.jenner.ac.uk/LipPred. LipPred is the most accurate method available for the detection of SpaseII-cleaved 
lipoprotein signal sequences and the prediction of their cleavage sites. 
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Background: 
Bacterial lipoproteins in Gram-positive bacteria perform a 
variety of important roles: promote antibiotic resistance, 
cell signalling and substrate binding in ABC transport 
systems, protein export, sporulation, germination, 
bacterial conjugation, and many others. [1] Biosynthesis 
of bacterial lipoproteins is conducted via a pathway that 
appears to be highly conserved and unique to prokaryotes. 
[2] Following signal peptide-directed export of the 
prolipoprotein, processing occurs by the enzyme 
prolipoprotein diacylglycerol transferase (Lgt). Lgt uses 
phospholipid substrates and catalyses the addition of a 
diacylglycerol unit onto the thiol of a crucial conserved 
cysteine, which is located within the ‘lipobox’ motif at the 
cleavage region of the prolipoprotein signal peptide. [3] 
The lipid-modified prolipoprotein is processed by SpaseII, 
a lipoprotein-specific signal peptidase. SpaseII cleaves the 
signal peptide from the lipoprotein at the conserved 
cysteine present at the C-terminal end of the lipobox. This 
cysteine therefore forms the N-terminus of the mature 
lipoprotein. [3] It has been experimentally confirmed that 
these two steps are necessary and sufficient for protein 
lipidation in Gram-positive bacteria. [4] In certain 
organisms, the N-terminus of the lipoprotein is further 
modified by the addition of an amide-linked fatty acid. 
The additional processing step only occurs in some 
organisms as the enzymes responsible, lipoprotein 
aminoacyl transferases, are not found in low G+C Gram-
positive bacteria. 
 

Lipoprotein processing is controlled by two factors: signal 
peptide structure, which directs protein export, and an 

appropriately placed lipobox, which is essential for 
prolipoprotein recognition and modification by the 
appropriate enzymes. Lipoprotein signal peptide features are 
typical of signal sequences and consist of a positively 
charged N-region (owing to the presence of lysine and/or 
arginine), a central hydrophobic region and a cleavage C-
region. [5] Differences in structure and composition between 
a lipoprotein signal peptide and a typical signal peptide have 
been described. Both Gram-negative and Gram-positive 
lipoprotein signal peptides are usually shorter in length than 
the typical signal peptide primarily due to shorter C-regions, 
which also possess apolar amino acids. The decreased length 
and apolar composition of the C-region effectively makes it a 
continuation of the H-region, which is primarily 
distinguished by sequence conservation that precedes the 
invariant lipid-modified cysteine. [5] This conserved 
sequence is referred to as the lipobox and is present at 
positions –3 to +1, typically taking the form of leucine, 
alanine/serine, glycine/alanine and cysteine. 
 
The lipobox lipidation motif is represented in PROSITE by 
the regular expression {DERK}(6)-[LIVMFWSTAG}(2)-
[LIVMFYSTAGCQ]-[AGS]-C (PS00013). The permitted 
lipobox amino acids preceding the invariant cysteine at 
positions –1 to –4 are characterised by a lack of charged 
residues (no D, E, R, K) within the H-region.  The PROSITE 
expression is also constrained by additional features of 
lipoprotein signal sequences: the cysteine at the cleavage site 
must be present between residues 15-35 of the sequence; and 
one lysine or arginine must be present in the first seven 
positions of the sequence. Taxon-specific variations in the 
lipobox have been discovered.  Hakke showed that the 
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lipobox consensus of an experimentally determined set of 
spirochaetal lipoproteins varied in composition compared 
to that of E. coli. [6] A subset of Gram-positive lipobox 
sequences were also shown to be more restrictive than the 
PROSITE expression at positions –3 and –2. [2]  
 
Lipoproteins are important vaccine targets in pathogenic 
bacteria. [7] Current vaccine design endorses the utilisation 
of in silico bacterial genome analysis to discover putative 
candidate vaccine. An algorithm for identification of 
lipoproteins would be essential to implementing a viable 
approach to ‘reverse vaccinology’ (the in silico and in vitro 
screening of whole genomes to identify antigens and hence 
candidate vaccines). In this context, we present LipPred, a 
web server for the identification of lipoproteins in bacteria, 
whose characteristics are tuned to the needs of reverse 
vaccinology.  
 
Methodology: 
Datasets 
The training set for LipPred comprises 199 GRAM +VE 
and GRAM –VE bacterial lipoproteins obtained from 
DOLOP. [8] The use of unverified experimental data in 
model building raises obvious concerns over the ultimate 
quality of prediction. However, the number of 
experimentally verified lipoproteins is low, and using 
unverified data combined with probable lipoproteins 
increases accuracy.  
 
Three distinct test sets were used. Firstly, data from 
Reinhardt and Hubbard [9], which comprised 2031 non-
membranous eukaryotic sequences, 268 prokaryotic inner 
membrane α-helical sequences and 997 non-membranous 
prokaryotic sequences. Both eukaryotic and prokaryotic 
sequences were used in the negative set to test the method’s 
ability to distinguish bacterial lipoproteins from other 
sequences. Secondly, to assess accurately the ability of the 
method to predict experimentally confirmed lipoproteins, 
the 81 lipoproteins described by Gonnet et al. were used. A 
third test set was used to test the ability of the method to 
distinguish between lipoproteins and proteins with Type I 
signal peptides: this consisted of 307 GRAM +VE and 
GRAM -VE proteins extracted from a SignalP [11] non-
redundant secreted data-set. 
 
Algorithm  
A probabilistic sequence model was used to allow for 
lipobox sequence variations. A range of sequence models 
were tested from 3-21 residues in length. As all lipoproteins 
possess a conserved cysteine at the C-terminus this was 
used as the central residue of the sequence model. A Naive-
Bayesian network was trained using this data as described 
elsewhere (unpublished data). The network structure used 
one input node for each residue of the sequence model 
(hence 21 for the first model tried) and one output node. 
The output node can take the value of lipoprotein or non-
lipoprotein. To train using the negative data-set, a cysteine 

was searched for between residues 10 and 50, and a 
sequence model was built centred on that cysteine. A lack of 
cysteine reduced the final negative data-set of 695 proteins.  
 
To test a query protein, residues 10-50 were scanned to 
identify the presence of a cysteine, and a probability score 
calculated for whether the protein is a lipoprotein. The 
threshold for a positive score was taken to be 70%. Scanning 
for a cysteine was repeated up to the 50th residue, allowing 
the best-scoring lipobox to be found. Testing was conducted 
on all lipoproteins of the test-set using five-fold cross-
validation, overall accuracy being obtained by averaging the 
five test-set results. The secreted protein set was also used to 
test the method. To be able to benchmark LipPred against 
other lipoprotein prediction methods, the same data-sets 
were used to query the LipoP server [12] and PROSITE. The 
SignalP data-set was also used to query LipoP to ascertain 
the ability of the method to distinguish Type I signal 
sequences from Type II lipoprotein signal sequences. 
 
Implementation 
The method is available as a web server: 
www.jenner.ac.uk/LipPred. Sequences can be entered or 
uploaded in either FastA or plain text format. Results are 
returned in standard or simple formats. Standard format 
provides a comprehensive description of lipoboxes and 
cleavage site locations, with associated probabilities. Simple 
format is plain text on one line, detailing the protein name (if 
provided), prediction of the protein class and the most likely 
cleavage site.  
 
Utility and Caveats: 
The best performing sequence model was found to be the -9 
+0 model (data not shown); predicting with a sensitivity of 
0.979 and a specificity of 0.742. To make a comparison with 
existing methods, the same positive and negative sequences 
were analysed using an algorithm that exploits the PROSITE 
regular expression PS00013 and the LipoP algorithm. [12] 
The results of all three methods are shown in Table 1. 
Comparison with other well-known methods of lipoprotein 
prediction indicates that LipPred achieves a significantly 
higher sensitivity but lower specificity of prediction. A 
detailed examination of the results indicated the relatively 
low specificity resulted from a high number of false 
positives. These sequences were of proteins of extra-cellular 
location, which is unsurprising as the lipoprotein signal 
sequence has a composition similar to that of the classical N-
terminal signal sequence. 
 
To assess the ability of the method to discriminate between 
lipoproteins and Sec-dependent signal sequences, the 
SignalP data-set was used. LipPred correctly identified 80% 
of the SignalP sequences as non-lipoproteins, compared to 
95% by LipoP and 100% using regular expressions. It is 
good practice, when classifying proteins on the basis of 
sequence, to combine methods and thus obtain the best 
prediction. When SignalP was combined with LipPred, all of 
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the false positives of extra-cellular nature were identified as 
containing Type I signal peptides. This filter increases the 
overall specificity of LipPred to 0.846. 
 

Method Current dataset SN 

 SN SP VLP SPD 
LipPred 0.979 0.742 1.000 0.80 
LipoP 0.860 0.989 0.926 0.95 
PS00013 
regex 

0.791 0.996 0.951 1.00 

Table 1: Results of LipPred in comparison with two 
currently used lipoprotein prediction methods. SN = 
sensitivity; SP = specificity; VLP = verified lipo-proteins; 
SPD = SignalP dataset  
 
As the results show, the PS00013 regular expression also 
had the lowest sensitivity. This approach is a rather 
inflexible, simplistic method for protein function 
prediction. The method relies on a motif that is not always 
present within lipoproteins and hence cannot act as the 
definitive sequence marker for the protein class. The higher 
specificity of the LipoP method is likely a consequence of 
the method also identifying SpaseII-cleaved signal peptides 
and transmembrane proteins. The additional functionality 
built into LipoP gives an impressive degree of false-
positive filtering, but this can be achieved by using other 
dedicated methods. The lower specificity of LipPred results 
from its flexibility in recognising highly variable 
lipoprotein signal sequences, but which also produces a 
higher rate of false-positive predictions. This flexibility 
makes LipPred a useful tool for lipoprotein discovery. The 
high sensitivity of LipPred is well illustrated by the 
accuracy of prediction obtained when the verified 
lipoproteins are used as the query set. 100% of the verified 
data-set was correctly identified as being lipoproteins, 
while LipoP identified 92.59%. This validates the use of 
training sets which lack conclusive experimental evidence 
of lipoprotein identity in order to achieve a high degree of 
prediction sensitivity. 
 
LipPred is a fast, accurate tool for bacterial lipoprotein 
identification, whose characteristics are tuned to meet the 
needs of in silico ‘reverse vaccinology’. Lipoproteins 
represent a class of vaccine target that has been exploited in 
many pathogenic bacteria. The outer-surface lipoprotein A 
of Borrelia burgdorferi was used as the basis of a vaccine 
for Lyme disease. [7] Studies using a variety of animal 
models have also demonstrated the ability of lipoproteins to 
provide protective immunity against bacterial pathogens. 
[13]  
 
The suitability of lipoproteins as vaccine candidates results 
from their ability to be potent modulators of the host 
immune system owing to the presence of the lipolyated N-
terminus. The lipoproteins of M. gallisepticum have been 
shown to be the most active immunogens during 

experimental chicken infections [14] with similar results 
having been obtained in cattle infections by M. mycides and 
M. bovis. [15]  
 
Conclusion: 
Current advances in vaccine development promote the use of 
in silico analysis of pathogen genomes to identify viable 
vaccine candidates. An algorithm to identify lipoproteins 
would form an essential part of any such ‘reverse 
vaccinology’ analysis, as their surface-exposed nature makes 
them more accessible to the receptors of the immune system. 
LipPred provides a highly sensitive algorithm for the 
identification of lipoproteins from sequence and the 
recognition of possible cleavage sites, together with their 
associated probabilities. The method is also capable of 
accepting genome-size data-sets. Its properties are honed to 
the needs of in silico vaccine identification: the high 
sensitivity of prediction provides an all-inclusive approach 
to protein classification, reducing the likelihood that a true 
lipoprotein will be missed. In this regard, LipPred compares 
well with alternative strategies. A false negative is, 
potentially, a worse misclassification than a false-positive 
prediction, which can be filtered out using methods specific 
for other protein classes or features. As lipoproteins are key 
vaccine targets [7], this is of special relevance to 
computational vaccinology, where it is not desirable to miss 
proteins that may be vaccine candidates. LipPred is designed 
to address these requirements. 
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