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Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid,

we investigate the linear and non-linear steady state solutions for both a homogeneously

and a laterally heated fluid, with finite Prandtl Number (Pr = 7) in the vertical orientation

of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and

under constant flux conditions with the channel closed.We use direct numerics to identify

the linear stability criterion in parametric terms as a function of Grashof Number (Gr)

and streamwise infinitesimal perturbation wavenumber (making use of the generalised

Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a res-

onance of 1:3 exist, for both of the heating models considered. We proceed to identify 2D

secondary steady state solutions, which bifurcate from the laminar state. Our studies show

that 2D solutions are found not to exist in certain regions of the pure manifold, where we

find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For

the homogeneously heated fluid , we notice a jump phenomenon existing between the

pure and resonant mode secondary solutions for very specific wavenumbers. We attempt

to verify whether mixed mode solutions are present for this model by considering the

laterally heated model with the same geometry. We find mixed mode solutions for the lat-

erally heated model showing that a bridge exists between the pure and 1:3 resonant mode

2D solutions, of which some are stationary and some travelling. Further, we show that

for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations

and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within

this manifold we proceed to identify 3D tertiary solutions and find that the stability for

said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated

model we identify a closed loop within the neutral stability curve for higher perturbation

wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for

identical wavenumber and find that a temperture inversion occurs within this loop. We

conclude that for a homogeneously heated fluid it is possible to have abrupt transitions

between the pure and resonant 2D solutions, and that for the laterally heated model there

exist a transient bifurcation via mixed mode solutions.

Keywords: Floquet, Stability, Chebyshev, Hopf, Eckhaus, Resonance
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Chapter 1 INTRODUCTION

1.1 Nomenclature
α

β

g

ψ

q

φ

u

T

π

ν

κ

ρ

γ

t

R

Pr

Gr

streamwise perturbations

spanwise perturbations

acceleration of gravity

toroidal part of velocity field

volume strength of the heat source

poloidal part of velocity field

velocity field

temperature

pressure term

kinematic viscosity

thermal diffusivity

density

coefficient of thermal expansion

time

Reynolds Number

Prandtl number

Grashof number

1.2 Rational

"Waves follow our boat as we meander across the lake, and turbulent air currents

follow our flight in a modern jet. Mathematicians and physicists believe that an ex-

planation for and the prediction of both the breeze and the turbulence can be found

through an understanding of solutions to the Navier-Stokes equations. Although

these equations were written down in the 19th Century, our understanding of them

remains minimal. The challenge is to make substantial progress toward a mathe-

matical theory which will unlock the secrets hidden in the Navier-Stokes equations."

[htt p : //www.claymath.org/millenium/Navier−Stokes−Equations]

The extract above comes from the Clay Institute, which set out five Millenium Prob-

lems each with a 1,000,000 dollar prize. This study hopes to add some further insight

into the problem of solving elliptical partial differential equations and illustrate some in-
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Chapter 1 INTRODUCTION

teresting solutions to the equations. As yet there is no analytical method to solve these

equations as they have an infinite number of degrees of freedom [29] p.73. We use nu-

merical methods to analyse the quantitive and qualitative nature of the solutions.

Ever since the time of the ancient greeks scientists and philosophers have debated and

investigated the nature of fluids and fluid flow, we all recall Archimides’ bouyancy princi-

ple from our school physics lessons. Bernoulli in the 18th century produced a plethora of

work on fluid dynamics which is studied by many undergraduate students. Hand-in-hand

with any investigations into the nature of fluid flow is the development of the necessary

mathematics. After the discoveries by Newton and Leibnitz the door was opened to extend

The Calculus into many physical phenomena. In the early 19th century Navier developed

the early theories for fluid motion, which were incomplete but nevertheless an important

advancement in understanding for the time. Sometime later Stokes perfected the work by

Navier and the well known Navier-Stokes equation was born. During this time Poincare

was working on the foundations of Chaos Theory, whose theories we use to this day.

Major advancements in knowledge and understanding the complex nature of fluids came

with the onset of the industrial revolution in the Britain. As mankind began to use steam

and hydraulic systems the importance of understanding the mechanics of fluids became

ever more important, especially the nature of turbulence. In the modern age of speed there

is still a great deal of research required to understand the mechanisms of turbulence and

how systems become turbulent. Formula 1 racing cars and modern aircraft are constantly

changing geometries to both enhance and reduce drag. Understanding and being able to

predict weather patterns has become increasingly critical in light of current research into

global warming. Many around the globe have been effected by the effects of volcanic ac-

tivity and the movement of tectonic plates caused by the mechanisms of internal magma

heating and flow. We are surrounded by natural and man-made boundaries that effect the

fluid flows in their direct vicinity. Being able to predict seemingly random events has

become one of the major modern world physical and mathematical challenges.

Of the scientists working in the field of thermodynamics around the turn of the 19th

century, five stand out; Reynolds, Rayleigh, Kelvin, Prandtl and Helmholz. Reynolds

[42] important work in 1883 looked at the nature of turbulence for fluid flow in pipes and

came to the conclusion that the link between the transition of a fluid to a turbulent state

was a stability problem, a fundamental paradigm still used today. He also demonstrated

that open channels show abrupt transitions to turbulence termed "Bypass Transitions".

14



Chapter 1 INTRODUCTION

Rayleigh’s work developed the fundamental means for stability analysis by normal modes

[16], which we also employ to this day. Kelvin and Helmholz developed the ideas of

vortex flow and we use theorems today to decompose a solenoidal velocity field into

in-phase and quadrature components. Prandtl’s paper in 1905 describes boundary layer

separation for low viscosity fluids.

One of the major advancements in the later half of the C20th has been the study of

Chaos and non-linearity and the idea that seemingly random behaviour can be determin-

istic. Chaotic [29] p.13, behaviour can be time evolving and/or spatially evolving, the

later being of particular interest in fluid flows. Hilborne [29] uses the Lorentz Model (a

simplified Rayleigh-Benard) to describe the transitions or bifurcations [p.11] that a fluid

can undergo when heated from below (the Rayleigh-Benard model), which show that a

closed channel exhibits specific steps or transitions on the journey to turbulence. He gives

an overview of how a fluid changes from a laminar (steady time independent) state to a

convective state, where 2D convection rolls are able to circulate in differing directions

dependent on a change in control parameter. He describes how the convection rolls can

oscillate between directions periodically and aperiodically as time evolves. We know

also that other spatial bifurcations can take place leading to cell structures forming in the

fluid layer [13], dependant on how rapidly the fluid is heated, in terms of supercritical

and subcritical bifurcations [16]. It is known that under certain conditions both spatial

and temporal symmetries can be broken [29] p.28. Recent work on pattern competition

[11] for a horizontal channel, homogeneously heated, with one boundary adiabatic and

the other conducting attempts to predict where blow-holes will occur on the surface using

CFD techniques. Imagine being able to predict exactly where the blow holes will occur

when heating a pan of rice. This leads on to bubble chamber modelling which has safety

applications within the nuclear industry. A more recent study of Rayleigh-Benard con-

vection with a free boundary looks at a large gap model for atmospheric modeling with

direct-numerical methods, which moves atmospheric modeling towards better weather

prediction [46].

The process by which fluid flows undergo transition from smooth time-independant

laminar flow to chaotic turbulent flow is a very complex and popular topic of research,

however, the mechanisms of the early stages of turbulent birth are still not fully under-

stood and are currently the focus of much research.

Finding 3D or higher order solutions is of particular importance because we begin to

15



Chapter 1 INTRODUCTION

approach fully turbulent flow. Prandtl’s paper of 1905 begins to explore the mechanisms

of boundary layer separation which are explained well in [1]. Robinson [44] extends ear-

lier ideas on the nature of the 3D structure present in a low Reynolds number turbulent

boundary layer in terms of hairpin vortices. Recent research by Itano and Generalis has

calculated some higher 3D stable solutions for plane couette flow in a vertical slot [32]

using the same numerical methods as applied in this work. Thus providing numerical

proof that earlier hypotheses regarding the hairpin structures were indeed correct. Recent

research by Waleffe [49] into coherent 3D structures within the turbulent regime for Cou-

ette and Pouseiulle flow by direct numerical methods shows the existence of a Generic

Self-Sustaining Process within shear flow that gives another insight into the transition to

turbulent flow. Understanding the nature of boundary layer separation is of fundamental

importance due to it’s effects. We many wish to reduce drag created on airplane wings,

racing cars or on the hulls of ships. We may wish to increase drag by designing small

imperfections into the surface layer, i.e. a golf ball.

Current challenges faced within the nuclear reprocessing industry 1 require research

into how radioactive self-heating materials undergo transition through the various stages

up to fully turbulent flow. Understanding the mechanisms and parameters that govern the

hydrodynamic stability of internally heated plasmas has major implications for the safety

and design within the industry [http://www.irss-usa.org/pages/documents/HLWRevJun00.pdf].

Past studies were initiated by knowledge gained in the nuclear industry regarding safety

in water-cooled reactors (Chernobyl) where high Rayleigh numbers combined with low

Prandtl numbers were considered [30]. Current research in planetary geophysics [18] in-

volves the existence of internal heat sources and their effect. Recent interest indicating

strong evidence for the existence of a strong internal heat source driving the jets seen on

the Jovian atmosphere [18] highlight the need for further research regarding the nonlin-

ear stability of internal heat models in various states including rotation. The idea of a

strong internal heat source on Jupiter was originally put forward by Busse [9]. Even un-

der conditions governed by the Proudman-Taylor theorem [1] p. 280, the incidence of the

convection column with latitude leads to the onset of instability thus giving the horizontal

zonal flows characteristic of Jupiter. Questions regarding the existence of an internal heat

source via radioactive heating in the model of the Earth’s mantle are posed [15, 4], in [4]

the question of heat dissipation and effects of magma flow on crustal heating is investi-

1BNF Sellafield HAL and HAST Management - Though personal time spent at NNL Warrington.

16



Chapter 1 INTRODUCTION

gated with an internal heat source. There exists a link between the angle of inclination

of a vertical channel and the onset of instability raised in more recent work by Nagata

and Generalis [22], which may have implications from the design of nuclear reactors to

domestic tumble dryers. Much attention has been given to flows between differentially

heated vertical parallel plates (LHF). Batchelor’s [5] work into the rate and nature of heat

transfer between vertical channels in a rectangular closed section identifies differing flow

regimes for different ratios of rectangular section. Batchelor’s work was driven by experi-

mentation into cavity insulations for building design and for research into double glazing.

Gershuni, Zhukhovitsky and Tarunin [24] later amended Batchelor’s findings by identi-

fying the nature of the convection motion within the heat transfer regime. We extend the

considerable work already available by Gershuni and Zhukhovitsky [27] ch.X, which also

considered a LAR channel with closed ends, constant flux and differing Prandt Number

for the linear case only. More recent studies by Liakopolous et. al. [26] on lateral heating

and cooling semiconductors show that the convection rolls persist at very high Grashof

numbers. Liakopoulos et al. use spectral methods to identify weakly non-linear solu-

tions by reducing the governing set of PDEs to a lower order approximation. This allows

for the implementation of more complex geometries as in [26] and to more complex 3D

simulations [28].

This work investigates the nature of the transition to turbulence for both a homoge-

neously heated fluid (HHF) and a laterally heated fluid (LHF) in a vertical channel but

with no applied pressure gradient. We choose a closed channel with a large aspect ratio

(LAR) because this geometry favours the upper harmonics. In high AR tubes the upper

harmonics have greater amplitudes (relative to the fundamental) than do lower AR tubes.

Whether harmonics are existent is just a question of their amplitudes. Brass instruments

have high aspect ratio and hence sound "brassy" whereas wood instruments have a low as-

pect ratio so sound "woody". There is an excellent website [www.navaching.com/shaku/]

that relates some of the mathematics used in this study to the design of Shakuhachi flutes

used by Japanese zen buddhist monks. Having a closed channel also enables the mainte-

nance of constant flux.

This study confirms the linear results from previous related studies [25, 27] and ex-

tends the current research in view of important advancements in the understanding of

higher dimensional solutions within the highly non-linear region within turbulence [32].

The work presented here extends the work initiated by Gershuni and Zhukovitsky [25] as
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Chapter 1 INTRODUCTION

well as complementing and extending the more recent work by Generalis and Nagata [39]

who did not have constant flux, instead constant pressure. We confirm that higher order

harmonic resonant linear and non-linear solutions exist and extend the work by Fujimura

[20] and Knobloch et al. [33], albeit for a different geometry. We perform a similar

analysis for our model in extending the work by Gershuni [25, 27], Generalis [39] and

Nagata [22] where a viscous incompressible fluid is bounded between two vertical paral-

lel plates of infinite extent maintained at a constant temperature, T = T0. Much work has

already been completed by [39] with pr→ 0 for an open channel without constant flux,

and Generalis [22] for an internally heated channel with inclination and the application of

a pressure gradient with no inflection points in the basic flow profile, we introduce a basic

flow profile with two inflection points where we expect the onset of instability as rolls as

dictated by Rayleigh’s Inflection Point Theorem [1]. This work extends and compliments

these works by investigating the cause and effects of resonant solutions on the linear and

secondary equilibrium states of the fluid for pr = 7 as well as identifying subsequent 3D

solutions. This study begins by setting out the required mathematical model for HHF ,

then linear stability analysis is carried out. Where possible calculation of single mode 2D

secondary equilibrium solutions bifurcating from the laminar state are found. Where not

possible investigation of whether higher harmonic resonance modes exist is investigated.

The works by Knobloch [33] and Fujimura [36] are used as paradigms in the prepara-

tion of this study, both of which analysed higher order harmonic resonant solutions for a

horizontal model heated from below. Once identified we find the 2D secondary solutions

bifurcating from the resonant laminar state. We proceed to analyse the stability of the 2D

states outlining the Eckhaus stability criteria and the Hopf stability boundaries. Once we

have identified where the 2D solution becomes unstable we proceed to find a steady state

3D tertiary solution and investigate its stability.

Due to the findings for HHF further investigation is required and thus LHF is inves-

tigated. Once benchmarking the calculations against known results for Rayleigh-Benard

convection [13] was achieved the study proceeds to incline the channel to the vertical ori-

entation and further benchmark against the work by Chait and Korpela [12] and Nagata

and Busse [38] who took a vertical channel laterally heated with Prandtl Numbers 0.71,

1000 and 0 respectively. It was necessary to replicate resonant results for the Rayleigh-

Benard model produced by [36] where as well as resonant solutions, mixed mode sec-

ondary solutions were found also. Based on reliable information from the Rayleigh-

18



Chapter 1 INTRODUCTION

Benard calculations this knowledge was applied to the LHF model. Understanding more

about the nonlinear dynamics for a vertical channel acts as an important basis for advance-

ment in the understanding of the dynamics governed by the aforementioned applications.

The author has decided to put the mathematics into appendices at the end of the study due

to the fact that the mathematics is somewhat bulky and would distract the reader from the

main points discussed. The appendices are referred to in the main body of the text as nec-

essary. The outcomes of this study are then put forward in conclusions and discussions,

offering a brief outline of future intended research based on these findings. This study is

the first to investigate resonant linear and non-linear solutions for an even flow profile with

constant flux as well as being the first to find 3D solutions for the homogeneously heated

fluid. This work is also the first to numerically calculate resonant secondary solutions for

both HHF and LHF.
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Chapter 2 PROGRAMMING

2.1 Overview

A major part of the study involves the use of various computer platforms. For the linear

analysis, a desktop PC running Windows XP using Compaq Visual Fortran V6.0 with

the necessary IMF libraries is sufficient. However, for the non-linear analysis HPC was

required due to memory limitations, namely a Cray XD1 running a modified Cray specific

build of Linux 9. Programs have been developed for parallel processor implementation

and also investigation is underway into the possible use of GPU hardware running the

MAGMA1 library.

2.1.1 High Performance Computing

In order to solve both the matrix algebra problem and the eigenvalue problem a Cray

XD1 cluster was used. The memory requirements meant using distributed memory ap-

plications. Because the number of terms in the approximation determines the size of the

matrix to be solved, efficient and fast solutions of large matrix problems is essential to

obtain correct results, at present we can work with matrices up to 10000 square. The

programs are written in Fortran 77 and use the set of Chebyshev approximating polyno-

mials which transform the problem into matrix equations. The matrix equations are of

two types; 1. The Steady State problem which searches for steady state solutions using a

Newton-Raphson iteration. 2. The Dynamic problem which utilises the generalised eigen-

value problem to examine the stabilty of the steady state solutions. The software installed

on the Cray is SuSi Linux 9 using the gnu64 complier and the programs are written with

fortran 77. The main solver libraries are ScaLAPACK 2, a distributed memory version of

LAPACK the Linear Algebra Solver Package and ParPACK the multiprocessor version.

The following libraries are also used; acml (v3.5), blacs and BLAS (Basic Linear Algebra

Subroutines, level 3 - matrix to matrix operations) and PBLAS for the parallel version.

In addition mpich is adopted for the message passing protocol. Developmental programs

written for multiprocessor implementation are being investigated and tested at present but

were not used for the results obtained in this study. The software implementation allows

the matrix and associated processes to be sub-divided across n x n processors. Further op-

timisation of the system was achieved by only assigning memory to the non-zero elements

1http://icl.cs.utk.edu/magma/
2The referenced manuals [6, 35], are published online and can be viewed in their entirety at

www.netlib.org
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of any block.

2.1.2 The Steady State Problem

The program solves the set of equations for f (x) = 0 by the Newton method where f

is a vector of n functions of the n variables. The solutions of interest lie on surfaces in

the space formed by the parameters. Lines within these surfaces are found by obtained

solutions for a series of nearby parameters values. An initial vector x0 obtained by finding

a "seed", i.e. a solution that is found by hand using the symmetries to find a converged

solution. One forces the code to converge on a solution by "perturbing" it by a small

amount in the necessary coefficient table as dictated by the symmetries until the solution

converges. Once a converged solution is found this is used to find further solutions with

differing Grashof and perturbation wavenumber. This is used to solve the matrix equation

f +Gδx = 0 (2.1)

Gi j = d fi
dx j

(2.2)

to obtain corrections δx to the solution vector x = x + δx. There are two stages to each

iteration; setting up the Jacobian G and the vector f from a given x and solving the matrix

equations for the corrections. The ScaLAPACK [6] library was used with the DGESV

subroutine. Where the solution space is folded is located at an infinite gradient the New-

ton method may cause problems, this is overcome in the program by reducing the num-

ber of Newton iterations significantly and applying suitable small increments in Grashof

Number.

2.1.3 The Dynamic Problem

The dynamic problem consists of solving the complex generalised eigenvalue problem

described by eqn.(3.24) for given A and B to find out whether any of the eigenvalues have

positive real parts, which indicates instability. The size of the task corresponds to the size

of the steady solution which is needed to make the calculation, and the solution depends

on a small number of parameters. What is needed is to compute the small number of

eigenvalues which have the largest real part (the most dangerous ones). In practice, we

have adopted a shift operation to find a small number of these eigenvalues of the largest

magnitude of a related problem, which finds the eigenvalues of the true problem which
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are nearest to a trial complex number τ. The eigenvalues found, µ, are related to the true

ones, λ, by the relation [35]

µ =
1

λ− τ
, (2.3)

from which the value λ can be found. The modified eigenvalue problem becomes,

µx = (A− τB)−1Bx. (2.4)

when developing the parallel processor version using ParPACK . Where A and B are

singular we introduce a scalar factor to both sides of eqn.(2.4) to solve the modified simple

eigenvalue problem

(I−K(A+KI− τB)−1)−1(A+KI− τB)−1Bx = µx (2.5)

where eqn.(2.3) applies and putting K = 0 deselects the mode. The user can specify one or

more sets of parameters and a series of trial points τ in a region of interest in the complex

plane, and the program will compute 2, 4 and 8 eigenvalues nearest to that point for each

set of parameters, thus reducing the computing time. ScaLAPACK was used to set up the

matrices and perform the matrix multiplications (pzgemv subroutine) alongside ParPACK

which solved the generalised eigenvalue problem. Extra library functions and subroutines

were required to interface ScaLAPACK and ParPACK (pzgemr2d, pzgetrs etc.) as the

structure of the memory arrays differed between the packages.

2.1.4 Graphics

The curve plots were visualised using TecPlot, as were the stream and contour plots of

the fluid flow. However, a preprocessing program written using Fortran 3 was required

that structures the data into an ordered I, J 2D [31] format that TecPlot can interpret. A

desktop PC was sufficient for the graphics preprocessing on the 2D models but due to

the memory requirements it was found that writing distributed memory routines could be

avoided by using an AppleMac desktop due to the way the OS-X manages virtual memory

for the 3D models.

3Programs supplied by S.C. Generalis - Aston University
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Chapter 3 VERTICAL CHANNEL INTERNALLY HEATED

3.1 Linear Analysis

Firstly consider a homogeneously heated fluid between two finite perfectly conducting

isothermal boundaries with LAR, where the temperature is maintained at the same ref-

erence temperature (zero for ease of calculations). The viscous fluid is incompressible

with constant density, what goes into the fluid particle comes out. Beginning with an

overview of the linear stability then moving onto investigate non-linear solutions for a

vertical channel, internally heated fluid (e.g. a vacuum flask) with pr = 7. Previous linear

results provided by Gershuni and Zhukovistksi [27] for pr = 0 were reproduced in the

preparation of this work to act as a control for the results obtained herein. This work

also extends the work by Generalis and Nagata [39, 22] where in [39] pr = 0, there is no

constant flux and a pressure gradient was present, in order to analyse the effect of purely

hydrodynamic transition to instability. In [22] temperature was included and the chan-

nel was inclined at varying angles. The basic velocity profile in [22] was analogous to

a Pouseille flow profile with no inflection points within the channel. In this section we

investigate the laminar stability of the basic flow with dual inflection points as [27] but

with a finite Prandtl number of 7, to analyse the effects of both hydrodynamic and thermal

mechanisms on the stability of the system. Importantly we maintain a constant flux by

keeping a closed channel of infinite extent, large aspect ratio. The model presented here

is very simplified. Because of the setup of the model it is possible to look at the centre

of the channel and not at the boundaries thus avoiding boundary layer separation 1. It

is worth noting that travelling waves are more prevalent in pipe flows whereas stationary

waves are more prevalent in the models considered in this study. As far as the author is

aware there exists no experimental research available at present except for the study pre-

sented by Wilkie and Fisher [50], in which the boundary conditions were different, which

is discussed later in this section when the boundary conditions are defined.

1In subsequent sections it is further shown how the model overcomes boundary layer separation.
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3.1.1 Problem Modeling

Figure 3.1: Model Geometry.

Firstly the coordinate system used is outlined as is the orientation axes in relation to

the physical problem, see figure 3.1, with x,y,z as cartesian co-ordinates in the stream-

wise, spanwise and normal directions with unit vectors î,ĵ,k̂, respectively.

The Boussinesq Approximation [13] is employed, which states that density differ-

ences are sufficiently small to be neglected, except where they appear in terms multiplied

by g, the acceleration due to gravity for bouyancy driven flows, and also include ∇π [1-3]

, the applied dynamic pressure gradient on the fluid particles 2, to obtain the following

Navier-Stokes equations for the velocity vector u and the temperature variation T:

∂u
∂t +u ·∇u =− 1

ρ
∇π+gγT î+ν∇2u (3.1)

∂T
∂t +u ·∇T = κ∇2T +q (3.2)

∇ ·u = 0 , (3.3)R 1
−1 udz = 0 (3.4)

u = 0 , T = 0 at z =±1 (3.5)

Derivations of Eqns. (3.1) and (3.2) can be readily found in many texts [1] [37] as is

an outline of the use of the Boussinesq Approximation [13] and proof of the incom-

pressibility condition (3.3) is dealt with in Appendix C section C.3 using tensors. The

incompressibility condition is used as the fluid is Newtonian. Applying that the Div of

2refer to the following section on derivation of the perturbation equation for a further handling of the
pressure term
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the velocity field is zero ensures that this condition is met. 3 Incidentally, this condition is

also met automatically when applying the curl and curl curl operators later. The boundary

conditions are reflected by eq.(3.5). This model requires isothermal temperature bound-

aries so set T0 = 0 for the fixed temperature of both the boundaries. For convenience zero

is used as this makes computation easier and thus avoiding the introduction of arbitrary

constants into any formulations. No-slip conditions at the boundaries for the velocity

field U0(z)i = 0 is adopted. These boundaries are readily modified for diverse models, i.e.

an adiabatic boundary where there is no transfer of temperature all along the boundary,

so no temperature gradient exists δT
δz (z) = 0 [50] or, heated laterally where there exists a

temperature difference across the boundaries which is demonstrated in a further chapter

where a vertical channel laterally heated is investigated.

The narrow gap approximation is used which enables the use of cartesian geometry

with this model and proceed to non-dimensionalize the system of equations with respect

to kinematic viscosity ν for bulk flow because there is a basic flow present, as opposed

to thermal diffusivity κ, as thermal diffusivity is greater in air (Pr = 0.71) than for honey

with a high Prandtl Number hence for small Pr (7 is acceptable) the equations can be non-

dimensionalised with respect to kinematic viscosity. Generalis and Fujimura’s work [23]

gives a full justification of this theory. It was Kropp and Busse [34] who orginally non-

dimensionalised using κ. Based on the previous work with Rayleigh-Benard convection

where non-dimensionalisation was carried out with respects to κ because the channel is

flat and there is no basic flow, the only force driving the flow is thermal diffusivity. See

Appendix A for a full treatment of the non-dimensionalisation. The necessary basic flow

and temperature profiles with dual inflection points and even profiles are derived from the

linear parts of the N.S. equations, the derivation of the basic flow and temperature profiles

using the stated boundary conditions is covered in Appendix B.

The non-dimensionalisation of both the momentum and the temperature equations

must be done so that the number of variables are reduced to a few manageable parameters.

This is also needed to ignore scaling factors in the model which makes it more applicable.

For the non-dimensional description of the problem the following parameters were used:

• d for length,

• d2

ν
for time,

3An excellent resource that explains the basic use of the Div and Curl operators can be found at
www.khanacademy.com.

27



Chapter 3 VERTICAL CHANNEL INTERNALLY HEATED

• ν

d for velocity field(u),

• 1
d for ∇,

• 1
d2 for ∇2,

• qd2

2κGr for temperature,

• gγqd5

2ν2κ
for Gr, and

• −d3∇π

2ν2ρ
for R.

The Grashof number gives the strength of the internal heat source. The Reynolds

number R = Umaxd/ν =−d3∇π/2ν2ρ, measures the strength of the applied pressure gra-

dient in the streamwise direction(Umax is the maximum laminar velocity), and is the ratio

between the inertial forces and the viscous forces, R = 0 in the current study. Full non-

dimensionalisation of both the momentum and energy equations is given in Appendix

A.1 and A.2. After non-dimensionalisation the following Navier-Stokes equations for the

velocity vector u and the temperature variation T are obtained

∂u
∂t +u ·∇u = 2R+T î+∇2u (3.6)

∂T
∂t +u ·∇ T =− 1

Pr (∇
2T +2Gr) (3.7)

∇ ·u = 0 (3.8)

Mass conservation is applied and constant flux is maintained by applying eq.(3.4)

which is dealt with in Appendix D, where it is also shown how to derive the integral of

the infinite iterative equation in order to apply the mass flux condition into our software

model for plotting purposes only.

Taking only the linear parts of the N.S. equations and applying the boundary condi-

tions to the resulting second order differential equation as shown in Appendix B.1 and

B.2, results in the basic flow and temperature [27]:

Uo(z) = Gr
60 (5z4−6z2 +1) (3.9)

To(z) = Gr(1− z2). (3.10)

This basic steady state is derived by assuming that the total mass flux vanishes across

any lateral cross- section of the channel. In comparison and for this work, the assump-

tion is made that the remote ends of the channel are closed with LAR and long enough
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to support the wavelike perturbations applied and therefore the calculations assume the

presence of a constant vertical pressure gradient and hence avoiding any boundary layer

separation. In the next section derivation of the perturbation equations are made for linear

stability analysis employing the Helmholz Decomposition of our solenoidal velocity field

[47] , including derivation of the Orr-Somerfeld equation.
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3.1.2 Perturbation Equations

To derive the perturbation equations, separate the velocity deviations û from the primary

variables, basic flow u0(z)î and the temperature deviations θ from the basic temperature

T0(z) into average parts (over the x and y coordinates) Ŭ(z, t) ≡ û and T̆ (z, t) ≡ θ and a

fluctuating part ŭ, θ̆ respectively:

û = Ŭ(z, t)î+ ŭ (3.11)

θ = T̆ (z, t)+ θ̆. (3.12)

Where the average, indicated by the overbar, is obtained by applying

(αβ/4π
2)

Z 2π/α

0

Z 2π/β

0
dxdy. (3.13)

Appendix E gives a full mathematical treatment for the derivation of the mean flow and

mean temperature, Ŭ(z, t) and T̆ (z, t) resulting in

∂2
zŬ + T̆ +∂z∆2φ(∂x∂zφ+∂yψ) = ∂tŬ , (3.14)

∂2
z T̆ +Pr∂z(∆2φ)θ = Pr∂t T̆ . (3.15)

Equations (3.14) and (3.15) comprise of the mean terms and the nonlinear contribu-

tion/interaction of the perturbation terms.

It is worth noting that under the laminar regime oscillatory mean flow is not evident

and thus it may be ignored at this stage. However, in later calculations it may exist or

become time dependent, thus it is included in the necessary calculations and included in

the software model. Initially, there is no interest in the time dependence of the mean flow

because we do not want to look at fluctuations over the whole surface, only locally. Again,

Appendix E discusses this issue further
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Further, the soleniodal field ŭ is separated into the poloidal (stream) and toroidal (vor-

ticity) parts φ,ψ, by applying the operators δi = (∇× (∇×k·))i and εi = (∇× (k·))i, i.e.

ŭ = δφ+ εψ. By taking the curl and curl curl we also overcome the problem of boundary

layer separation, thus avoiding any adverse pressure pressure gradients, i.e. the pressure

is scalar. The curl and curl curl is taken with respects to k across z as the components of

the flow normal to the channel boundaries and then normal to the direction of stream flow

are required. Decomposition of equation [3.6] is completed by taking the curl and curl

curl in z, as it is required to see how the field propogates perpendicular to the stream flow

and transverse flow. The non-linear parts of the advection term are ignored at this point.

Note that the temperature equation is scalar and is not decomposed. Where, using tensors

the curl and curl curl operators are defined as

ε = εi jkλiδ j (3.16)

δ = ∂i∂z +λi∆ (3.17)

respectively. See Appendix C.2 for a full derivation of these operators. This method

is modeled on the same method first used by Schluter, Lortz and Busse [45], where

Rayleigh-Benard convection is considered for both linear and weakly non-linear solu-

tions. In [45] the authors derive the perturbation equations and solve them without the use

of computers which seems incredible now. It is shown in Appendix C.3 that employing

δ and ε assures that the incompressibility condition is satisfied automatically, thus play-

ing no further part in the calculations. Appendix C.4 outlines the mathematics involved

in application of the δ and ε operators on the linear parts of the momentum equation,

subsequently the perturbation equations become

∂

∂t ∇2∆2φ−∇4∆2φ+Û∂x∇2∆2φ− (∂2
zÛ)(∂x∆2φ)

−∂x∂zθ = δ · (u ·∇u) (3.18)

∂

∂t
∆2ψ−∂yθ−∇2∆2ψ− (∂zÛ)(∂y∆2φ)+Û∂x∆2ψ

= ε · (u ·∇u) (3.19)

with eqn. 3.18 being the Orr-Somerfeld Equation, while the temperature equation can be

rewritten in the form

∂

∂t θ+2Gr(z)∆2φ+Û∂xθ−∆2φ∂zT̆ − 1
Pr ∇2θ = (δφ+ εψ) ·∇θ, (3.20)

where the ˘ has been dropped from the temperature fluctuations and ∆2 ≡ ∂2
x + ∂2

y is the

planform Laplacian. δ ·(u ·∇u) and ε ·(u ·∇u) are the nonlinear parts of the Navier-Stokes
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Equations and are not decomposed until section 3.2., the non-linear analysis. Eqns.(3.18-

3.15) are subject to the homogeneous boundary conditions

φ = ∂φ/∂z = ψ = θ = 0 at z =±1. (3.21)
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3.1.3 Chebyshev Point Collocation Method

Legendre [43] or Laguerre polynomials [2] could have been used but in this model Cheby-

shev Polynomials were chosen as they have a faster convergence and simplify the problem

with respects to the boundaries used, i.e. ±1, see [7]. Orzag gives a sound argument for

their use in numericaly solving the Orr-Somerfeld equation [41]. Figure 3.2 shows how

the flow field is descretised across the channel using coefficients resulting from the nor-

mal mode analysis, equation (3.22) the poloidal terms. The channel is also descretised for

equation(3.23) but not shown.

Figure 3.2: Schematic Representing Chebyshev Descretisation of Poloidal Part Only.

The 3D problem is reduced to a 2D problem according to Squires Theorem [48]

which states that the 2D perturbations are the most dangerous for the linear case and

take temperature into account. It is known that the streamwise periodic 2D modes (α)

are the most dominant according to [48], hence this study focuses on examining the sta-

bility of the basic flow with infinitesimal perturbations of the transverse roll (TW) types

(∂y = 0;β = 0;α 6= 0), neglecting equation 3.19 and the non-linear parts of eqns. 3.18

and 3.20. It is worth noting that for Rayleigh-Benard convection there is no basic flow

and hence no preferred direction of pertubations that are more stable, i.e. both Transverse
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Wave (TW) and Longitudinal Wave (LW) perturbations result in the same linear stability

characteristics. However as the channel is vertical in this study there exists a basic flow

due to gravity and the preferred direction for perturbations is the the streamwise direction.

Hence, TWs cause linear instability at lower Grashof than do LWs which cause instability

at much higher Grashof, this is illustrated by figure 3.3. For Normal Mode analysis [13]

a method of separating variables is employed choosing:

φ = exp{iα(x− ct)}
L

∑
l=0

al fl(z), (3.22)

θ = exp{iα(x− ct)}
L

∑
l=0

blgl(z), (3.23)

where fl(z) = (1− z2)2Tl(z) and gl(z) = (1− z2)Tl(z) with Tl being the lth order Cheby-

shev polynomial and a0, ...,al,b0, ...,bl are the unknown complex coefficients. In order

that the boundary conditions [eqn. 3.21] are satisfied for φ and θ, (1− z2)2 and (1− z2)

are introduced into the expansions. The Chebyshev collocation point method is used, with

the resulting equations defining an algebraic eigenvalue problem

Ax̃ = σBx̃ (3.24)

where σ =−iαc, x=(a0, ...,al,b0, ...,bl)T , and A and B are 2(L+1) by 2(L+1) complex

matrices. The QZ method is utilised along with the IMF visual fortran libraries to solve

eqn.(3.24). The real part of σ, σr is the rate of decay or amplification of the perturbations

and hence used for stability. The imaginary part, σi = −αRe[c], is the phase velocity

Re[C] of the propagating perturbations in the flow.

An important aspect of this work is to define the symmetry groups that define the

structure of the surviving harmonics after computation by analysing the nature and struc-

ture of the output matrix symmetries by looking at the effect of odd and even values of l

and m in the coefficient of phi. The intention is to produce a set of symmetries that en-

able structures produced by the output files after calculations to be identified. A minimal

closed set for alm is calculated (i.e. do not include trivial elements of the set like T0 = 1

(a000), which correspond to arbitrary shifts of the solution) and this output set will help

to identify converged solutions within the output data produced by the computer by their

symmetries. Full mathematical treatment and a more in depth explanation of the construc-

tion of the symmetry group is given in Appendix F, where in F.1 we construct the linear

model symmetry group. Firstly the set of symmetries produced by the linear equations
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are found. Later, further calculations are made to ascertain which of these symmetries

continue to exist once application of the 2D and 3D non-linear part of the decomposed

Navier Stokes Equations is applied as this non-linear contribution is the most critical and

defines which symmetries survive.

The resulting closed symmetry group emanating from the linear terms of the perturbed

Navier-Stokes equation is found to be;

T +
l sinm+,T +

l cosm+,

T ++
l sinm+,T ++

l cosm+, (3.25)

Where + and ++ indicate odd and even functions respectively.
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3.1.4 Linear Results

Figure 3.3: Neutral Stability Curves for both LWs and TWs Vertical Channel.

The linear stability boundary was calculated using a bisection method that is accu-

rate to 4 decimal places. The region above the locus of the neutral stability curve is

linearly unstable. Fig. (3.4) shows the neutral curve obtained with the critical param-

eters (αc,Grc) = (1.37,211.323). It can be seen that the thermal effects have a strong

influence on the basic state stability with TW perturbations. The neutral stabilty curve

for LW perturbations is not shown as it is manifest at much higher Grasshoff numbers

and hence, as previously stated, is not required. We see that a closed loop or "island" is

present which was caused by thermal convection, this island is as a result of an increase

in Prandtl number, from zero, which is to be expected. This island was also identified in

[25]. The neutral stability boundary was found that when the order of Chebyshevs was 30

a good convergence was obtained. The eigenvalue associated with the island was identi-

fied as lying in the temperature section of the solution matrix. The region above the curve

is linearly unstable and below stable, in addition the region enclosed by the island was

found to be linearly unstable.

In tracing the island care was taken when using the bisection method as the leading

eigenvalues were both positive inside and outside this loop, the second most dangerous

eigenvalue was used in tracing this island as it belongs to another mode. The island
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Figure 3.4: Neutral Stability Curve for TWs.

boundary was traced using the second eigenvalue as the guide to neutrality.

It is possible to verify that a second mode exists by using the results of the neutral

stability calculations, by looking at the leading eigenvalues it is evident that more than

one solution bifurcates from different parts of the neutral curve. Four points at various

positions around the neutral curve (see figure 3.5 ) were used and the results of the real

parts of the leading eigenvalues are shown in table 3.1.

Table 3.1: Linear Stability Analysis in Loop Manifold

Ref. α Grashof Matrix Position Eigenvalue

(i) 1.70 231.515 1 0.2594977342923E-08

(ii) 1.72 1829.678 1 0.9180557725350E+00

1.72 1829.678 2 -0.2433592690590E-08

(iii) 1.72 1957.917 1 0.17449532217655E+01

1.72 1957.917 2 0.48440826524054E-08

(iv) 2.00 1565.740 1 0.50096172180642E-09

An observation is that the leading eigenvalues inside the island are considerably larger

than those outside because the area inside the island is highly unstable. As is shown in

table 3.1, at points (i) and (iv) the expectation is to only have one bifurcating secondary
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Figure 3.5: Neutral Stability Curve.

solution, but at points (ii) and (iii) there are two bifurcating secondary solutions. From

the linear analysis there are two distinct neutral curves corresponding to two different

modes. One originates from the LHS and low wavenumber perturbations and the other

from the RHS with higher wavenumber perturbations. One of the aims of this study is to

investigate the nature and interaction of the secondary solutions around the island where

the two modes overlap. It is worth noting that the existence of mixed mode solutions

needs to be investigated. It is known that mixed mode solutions exist in Rayleigh-Benard

convection [36] and are associated with resonant solutions at higher harmonics. Hence,

identification of any resonant solutions is now studied.

3.1.5 Resonant 1:3 Analysis

In order to investigate the existence of higher harmonic resonances in the linear regime the

classic problem of Rayleigh- Benard convection with well documented, known solutions

was reproduced in order to benchmark all the work in this study against the paradigms

set out by Chandrasekhar [13], also reproduced were the results for odd and even modes

found in [13] p.39 in order to ascertain that the second eigenvalue is required for odd

modes and the first for even, this helps us to realise the resonant modes as they are found

in the linear regime. Figure 3.6 shows the recreation of the odd and even modes as per
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[13].

Figure 3.6: Rayleigh-Benard Neutral Curve with Odd/Even Modes.

For the linear resonant solutions benchmarking against the work by Fujimura and

Mizushima [36], who found a 1:3 resonant solution that gives rise to 1:3 secondary so-

lutions and mixed mode solutions was required. In fact it was this work which outlined

the solutions that Busse had earlier overlooked [14]. Fujimura and Mizushima’s work

had quite an impact because their solutions had additional stability characteristics from

those described in Busse’s Balloon (stability analysis is undertaken in a later section). It

was in [10] where the theoretical work in [14] is shown experimentally, where the mixed

mode solutions were also overlooked. Also reproduced were the relevant results found

by Knobloch et. al [33] who find 1:2 mode resonant solutions for the Rayleigh-Benard

model.

It was subsequently found that a 1:3 mode linear solution exists for our HHF model.

We see examples of where resonant solutions may exist in other system configurations

[38] for a Pr=0, laterally heated model with a cubic flow profile shows that nonlinear

two-dimensional solutions were not obtained for low streamwise wavenumber.

Previous work with Rayleigh-Benard convection on the presence of these resonant

solutions are used as a reference for this work [33, 21]. Fujimura’s results [21] were also

replicated in order to assertain the nature of the resonant solutions found here. During

this benchmarking was found a 1:4 resonance within the Rayleigh-Benard model, thus
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extending the research findings of [21]. As there are identical boundary conditions, the

presence of any resonant mode interactions will play a part in the breaking of the mid-

plane symmetry [33].

Fujimura [21] introduced z̃ = 2z and expanded φ and θ in terms of Chebyshev poly-

nomials Tn(z̃) as

φ = exp{iα(x− ct)}
N

∑
n=0

an fn(z̃), (3.26)

θ = exp{iα(x− ct)}
N

∑
n=0

bngn(z̃), (3.27)

where fn(z̃) = (1− z̃2)2Tn(z̃) and gn(z̃) = (1− z̃2)Tn(z̃). In this study it is found that it

was not necessary to adopt this method directly. We note that the values of Grashof found

for the 1:3 resonant neutral stability boundaries are exactly the same as those for the pure

mode, both with N=30 but we must take a third of the perturbation wavenumber (α). This

fits with the existence of an O(3) symmetry as eluded to by [21] and [33].

Fig. 3.7 shows the interaction between the pure and 1:3 resonant neutral modes.

The intersection of the 1:3 resonance mode and the pure mode curves is found at (αc =

0.67,Grc = 319.3). This intersection point is where the search for the first secondary

equilibrium solutions begins.

Figure 3.7: Pure and 1:3 Resonant Mode Neutral Stability Curves.

40



Chapter 3 VERTICAL CHANNEL INTERNALLY HEATED

3.2 Non-Linear Analysis

3.2.1 Secondary Equilibrium States

Figure 3.8: Roll Evolution Schematic.

In fig 3.8 it is possible to visualise, albeit in a simplistic manner, how secondary 2D

non-linear solutions may evolve as we increase the TW perturbation. In this section cal-

culation of the two-dimensional non-linear TW equilibrium solutions that evolve from

transverse roll type perturbations on the neutral stability boundaries is outlined. Ignor-

ing the equation for the toroidal part, Eqn.(3.19) and the spanwise dependency (∂y = 0),

but retaining eqn.(3.18), eqn.(3.20) and eqns. (3.14) and (3.15) as well as retaining the

original boundary conditions. φ and θ are expanded in terms of the set of orthogonal

functions

φ =
∞

∑
m=−∞,m6=0

∞

∑
l=0

alm exp{imα(x− ct)}(1− z2)2Tl(z), (3.28)

θ =
∞

∑
m=−∞,m 6=0

∞

∑
l=0

blm exp{imα(x− ct)}(1− z2)Tl(z), (3.29)

while we write the means:

Ŭ =
∞

∑
l=even,l=0

(1− z2)Tl(z), (3.30)

T̆ =
∞

∑
l=even,l=0

(1− z2)Tl(z), (3.31)
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Subject to the boundary conditions

φ = ∂φ/∂z = Ŭ = ψ = T̆ = θ = 0 at z =±1. (3.32)

For the 2D calculations decomposition of the non-linear terms of the N.S. equations in

3.18 is required by taking the curl curl, δ ·(u ·∇u) using eqn 3.17. For the 2D solutions the

poloidal part of the φ equation 3.18 is only necessary. It is worth noting that the poloidal

flow can have many parts hence φ is more complex with more components and partial

derivatives. The toroidal part of the flow is easier to calculate because it is across the

channel (±z) and there are not so many terms as can be seen in Appendix C.5, where a

complete derivation is included. (Decompostion of the toroidal parts is left until required

in the section where tertiary (3D) solutions are sought. It is left to the reader to derive,

preceeding as follows;

δ̃ ·
(
ũ · ∇̃ũ

)
= δ̃ ·

[(
δ̃φ+ ε̃ψ

)
· ∇̃
(

δ̃φ+ ε̃ψ

)]
= δi

(
u j∇ jui

)
= δi

[(
δ jφ+ ε jψ

)
∇ j (δiφ+ εiψ)

]
= δi

{(
δ jφ+ ε jψ

)
∂ j
[
(∂i∂z−λi∆)φ+ εipqλp∂qψ

]}
= δi

{(
δ jφ+ ε jψ

)[(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= δi

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= (∂i∂z−λi∆)

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
Now apply the product rule twice for ∂i∂z and λi∆ letting ∆ = ∂t∂t in second expan-

sion. Then expand, simplify, apply the necessary tensor algebra and collect sets of partial

derivatives in terms of φ− φ, φ−ψ and ψ−ψ, as shown in Appendix C. For the 2D

symmetry group we only require the partial derivatives of the φ−φ that are in terms of x

and z in the curl-curl decomposition. Eventually, one should arrive at the following result,

where the remaining partial derivatives remaining are;

+(∂x∂zφ)
(
∂5

xφ
)
+(∂x∂zφ)

(
∂3

x∂2
z φ
)
−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)

−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂2
x∂3

z φ
)
+
(
∂2

x∂zφ
)(

∂4
xφ
)
+
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)
.

The next task is to find the associated output symmetry group for the 2D problem. Ap-

pendix F.2 outlines the method employed which is similar to that for the linear problem
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but taking into account the the non-linear terms above. After 2D non-linear analysis it

was found that the symmetry set reduced to;

T +
l sinm++,T +

l cosm++,T ++
l sinm+,T ++

l cosm+. (3.33)

That is, the single symmetry involving φ is alm = 0 for l + m even. For φ and θ we

impose the reality condition a−lm = a∗lm and b−lm = b∗lm , where ∗ represents the complex

conjugate. The outlining mathematics to apply the reality condition can be found at the

very end of Appendix F.

The nonlinear secondary equilibrium solutions are found numerically using the Cheby-

shev collocation point method and the Newton-Raphson iterative method for high enough

truncation numbers L and M, see table 3.2.

As a measure of the numerical convergence we employ the vector l2− norm of the

secondary solutions , which is defined by

|la
2 |=

{
L

∑
l=0

M

∑
m=−M,m 6=0

alma∗lm

}1/2

, (3.34)

for alm and a similar expression for blm. Fujimura [21] used another method for plotting

the strength of the secondary solution by using ω1 = iαφ1, i.e. the imaginary part of the

Fourier expansion, which is the equilibrium amplitude of the particle velocity component

at z = 0 (midplane) for the primary roll.

Well converged supercritical TW secondary solutions are obtained at L=39 and M=5

for α > 0.5 for this the pure mode. See table 3.2, where values for the l2− norm for

the poloidal component of the velocity field are shown for a sample integer range of Lth

order Chebyshev and M harmonics for secondary solutions obtained close to the critical

Grashoff . The total number of real coefficients in the Fourier expansion of the poloidal

part of the velocity fluctuations are given.

The |l2| is not examined for Gr > 401 except for α ≥ 1.6 where an initial value of

Gr = 3156 is taken and decremented to avoid the island in the neutral stability curve, also

for α = 1.6 a value of Gr = 2191. is not exceeded.
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Table 3.2: Values of the lnorm
2 for various L and M at α = 1.37, Gr = 220.

lnorm
2 L M alm

0.1978706106333731 3 37 266

0.1978706106333282 3 39 280

0.1978641941579140 4 39 360

0.1978642000637219 5 29 330

0.1978642001234143 5 31 352

0.1978642001187010 5 33 372

0.1978642001180187 5 35 396

0.1978642001183240 5 37 418

0.1978642001182701 5 39 440
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Figure 3.9: Secondary Solutions.

Supercritical TW 2D solutions for φ were obtained for a variety of parameters. Figure

3.9 shows all the secondary solutions found. For α < 0.5 secondary solutions could not

be found for this mode. Secondary solutions for 0.5 < α < 1.65 bifurcate from the neutral

curve and the strength of the solution continues to rise as the strength of the internal heat

source rises, figure 3.11. It is interesting to note that for 1.65 < α < 1.8 the solutions

bifurcate from the bottom of the neutral curve (Gr < 250) and from the top of the island

vertically above for the same wavenumber. This is better visualised in Figure 3.10 where

it can be seen that the secondary solution is closed. This indicates that the strength of the

secondary solution begins to increase as the strength of the internal heat source increases,

however, as the strength of the internal heat source continues to rise the strength of the

secondary solution diminishes to zero. Figure 3.9 also shows that for 1.8 < α < 2.1 and

1750 < Gr < 240 there are again, secondary solutions that are closed and bifurcate for

the same α. Secondary solutions where α > 1.8 and Gr > 1750 are not closed and do

not rejoin the neutral curve and behave as for the solutions where 0.5 < α < 1.65, that is

the strength of the solution continues as the heat strength increases. It can be seen that

the profiles of the secondary solutions close to the LHS of the island in figure 3.11(b)

(put in here 2D solutions curves), which shows how the solutions behave around the

island. It is interesting to note that the solution for α = 1.6, just to the left of the island

has itself a loop included in the solution. As can be see in figure 3.11(b) the secondary
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Figure 3.10: Secondary Solutions in 3D.

solutions for α ≤ 1.65, start and finish at the bottom and top of the neutral curve. It

is now necessary to investigate whether the solutions from the far RHS of the neutral

curve continue across to the left and into the bottom of the island. This is, in fact the

case, we are able to trace secondary solutions from the far RHS with large wavenumbers

across into the island. For these solutions the Lnorm
2 values continue to rise steadily in

the same manner as the solutions where α > 1.8,Gr > 1500. Figure 3.12 shows these

secondary solutions which bifurcate from the RHS of the neutral curve and continue to

bifurcate from the bottom of the island as α is decreased. There exists a situation where

Figure 3.11: Secondary Steady-State Solutions (a)-(b)
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Figure 3.12: Secondary Solutions for α > 1.7.

two secondary solutions overlap inside the island. This leads on to investigation into the

nature of the interaction between the secondary solutions within this region (we may well

have mixed mode solutions here), as well as the behaviour of the secondary solutions

as they approach from either side of this closed region. Beginning by investigating the

secondary solutions as α increases from 1.6 and seeing how the solutions behave as they

approach the island. Figure 3.13 is a close-up of the solutions as they approach the LHS

of the island. For α = 1.63 the secondary solution itself loops (as seen in figure 2.8 for

α = 1.6) and does not rejoin the neutral curve at any point (perhaps another 2D solution

mixed mode is bifurcating from around here). Incrementing α by very small amounts it

can be seen that as α approaches the very LHS of the neutral curve a transition from the

looping and diverging away from the island to a point where the secondary solution joins

the island at α = 1.63175. Continuing to increase α the secondary solution moves around

the LHS of the island upwards towards the top of the island boundary where α = 1.65 the

secondary solution does join the top of the island. At this point no mixed mode is evident.

But there is an overlap of the secondary solutions found at these points, a 3D diagram of

the overlap illustrates this clearly, see figure 3.14. A 2D plot of Grashof versus Lnorm
2 for

α = 1.75 shows clearly how the secondary solutions overlap within the enclosed region of

the island, see figure 3.15. It is necessary to further consider the non-ordered eigenvalues

at points close to the neutral curve as indicated on figure 3.17 in order to ascertain the
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Figure 3.13: Secondary Solutions to LHS of Loop.

matrix position of the most dangerous eigenvalues to determine whether indeed there

exists a uniquely different secondary solutions bifurcating from points either side of the

loop. The results are shown in table 3.3.

Table 3.3: Nonlinear Stability Analysis

Ref. α Grashof Matrix Position Eigenvalue Eigenvalue

(i) 1.90 1385 110 -0.591111378764E-01 0.293127646276E+02

(ii) 1.83 1616 110 -0.145627782627E+00 0.330157641622E+02

(iii) 1.83 1673 114 0.271460352413E+00 0.209514482847E+02

(iv) 2.03 1556 114 0.404905612569E+01 0.171967682529E+02

As can be seen from table 3.3 the solutions originating from the RHS of the island

are different from those originating from the LHS (below) of the island (matrix positions

are 110 and 114). In fact as one approaches the loop intersection point the real parts of

the eigenvalues converge. After inspecting and comparing the non-zero coefficients for

the secondary solutions (keeping the same α and Gr) it is seen that the coefficients are

exactly the same but with opposite signs (+/-) and so these solutions are invariant (the

same single solution) which again complies with the linear eigenvalues at that value of α,

i.e. a single bifurcating secondary solution. However, inside the island region there are
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Figure 3.14: Secondary Solutions for α = 1.75.

more secondary solutions bifurcating from the lower branch of the loop and continuing

upwards with the same Lnorm
2 values as those secondary solutions which have been traced

from the upper RHS of the neutral curve. The leading coefficients are different but some

higher harmonic coefficients are exactly the same but with opposite signs (invariant). It

would seem that there are indeed two solutions bifurcating from the lower section of the

island and passing through the upper section of the island, which complies with the linear

eigenvalues at those wavenumbers. So there are two separate linear solutions, one from

the LHS and one from the RHS which intersect at α = 1.8, cross over to produce the

island which connects at α = 1.63. It is also found that there are the correct number of

bifurcating secondary solutions within the closed loop.

In figure 3.18 I have called the solutions bifurcating from the LHS mode 1 solutions

and those from the RHS mode 2 solutions.

There is now a need to investigate the nature of the steady solutions by visualising

the temperature, stream functions and total flow at varying α and Gr. It is known that

for Pr=0 [27] the even modes are the most dangerous as shown in figure 3.16, where

the stream flow is included at Grc = 1721,αc = 2.05 to illustrate the benchmark testing

against the results of [27]. Note that [27] only did linear analysis, the non-linear diagrams

were produced from the eigenvalues they calculated just above the neutral curve.

As the pertubation wave travels through the fluid we would expect transverse rolls
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Figure 3.15: Secondary Solutions for α = 1.75.

to form as illustrated in figure3.19. The fluid should be isotropic and have the same

rolls throughout with no preference to roll direction. Here we are not forcing a break in

isotropy by applying an odd basic flow profile as in [32]. However, the rolls will become

distorted as we increase Grashof as will be shown. By looking at the mode 1 solution

at α = 1.75 and low Gr, very close to the bifurcating point on the neutral curve, we see

ordered transverse vortices forming aligned along the vertical axis figure 3.21(a) and the

initiation of deformation of the stream function figure 3.21(b). Figure 3.21(c) shows the

total flow. Continuing to increase the internal heating for mode 1, figure 3.22 shows how

the steady state solutions develop just below the island in the neutral curve, we clearly see

deformations of the temperature profile 3.22(a) caused by the presence of more than one

simple mode. In 3.22(b) we see the onset of well formed vortices offset about the vertical

axis, which is in line with the findings of [27], see figure 3.16. In [50] we see that the

experimental results, although with one boundary having a constant temperature gradient,

we still see the same vortex structures. Further increasing Gr it is found that the solution

is lost at the top of the island in the neutral curve as outlined previously. This effect is

seen in figure 3.23(b), as well as seeing that the temperature profile reverts back to a more

ordered form figure 3.23(a) as does the total flow profile in figure 3.23(b). Figure 3.24(a)

shows the total mean flow and the total mean temperature in figure 3.24(b) for various

Grashof and fixed wavenumber α = 1.75 across the channel.
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Figure 3.16: Pr = 0 Stream Flow.

Moving on to investigate the nature of the secondary steady state solutions that are

traced from the RHS of the neutral curve (mode 2) and continue to the left bifurcating

from the bottom of the island in the neutral curve. A value of Grashof just above the

bifurcation point is taken. From previously mentioned observations it follows to now

focus on the nature of the steady mode 2 solutions and compare the two solutions that

bifurcate at the same points on the neutral curve. Although the strengths of the stream

function steady state solutions perfectly match and follow each other it is noted that many

of the coefficients in the solutions were indeed different. Figure 3.25(a) and (b) show

clearly how the solutions differ. The temperature profiles show an inversion of the tem-

perature rolls , whereas the stream flows remain identical 3.26(c) and (d). Figure 3.27(e)

and (f) illustrate that the total mean temperatures for both mode 2 solutions are identical

also. Temperature inversion is a physical phenomenon when heating fluids from below

as discussed in the beginning of this study. As a point of reference we now focus on the

solutions to the left of the closed loop in the neutral curve by starting with solutions at

Grcrit = 211.323,αcrit = 1.37. Figure 3.28 shows the profiles as we increase Grashof. It

was noted that deformation of the temperature rolls begins at low Grashof, as well as the

formation of well defined vortices in the stream fluctuations. It was seen that the char-

acteristic meandering effect of the fluctuating stream function present in the total flow

similar to that seen in [39]. Ideally the mean flow (or perturbed flow) should be flat as it
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Figure 3.17: 2D Bifurcations on Linear Curve.

is an average flow, however we do see a slight bend and seems to meander or fluctuate,

see figure 3.20.
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Figure 3.18: Secondary Solutions α = 1.75.

Figure 3.19: Evolution of Convection Rolls.

Figure 3.20: Effect of Constant Terms on Mean Flow.
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Figure 3.21: a = 1.75 Gr = 239 Pure Mode Solutions (a)-(b)-(c)

This effect is caused by the total flow comprising of the mean temperature and the per-

turbations, which are distorted by the nonlinear advection terms. This is a physical effect

seen over the bulk flow similar to the meander of a river. These effects are further ampli-

fied as we increase Grashof further as the temperature perturbations have a harmonic and

hence the meander. Figure 3.31 shows the associated total mean flow and temperatures.

Focusing now on the nature of the steady state 2D solutions as we approach the island

increasing α from the critical value. We focus on the solutions for α = 1.60 in figures

3.32 - 3.35. At the bifurcation point there are well defined temperature profiles and the

onset of vortices in the stream flow figures 3.32(a) - (c). Increasing Grashof and very

quickly we begin to see a more pronounced deformation of the temperature and stream

profiles as well as a very pronounced meandering structure in the total flow figure 3.33(d)

to (f). These characteristics are maintained as we continue to increase Gr in figures 3.32

- 3.35, however, as on entering the island in the steady state equilibrium solution curve

(figure 3.11) we notice that the temperature and stream profiles begin to become more

regular again and the meandering contribution of the velocity fluctuations in the total flow

become less periodic. Figure 3.37 illustrates the total mean flow and temperature for the

ranges of Grashof used in figures 3.32 - 3.36. For completeness illustration of the nature

of the steady solutions for mode 2 solutions at the RHS of the island in the neutral curve,

figures 3.38 - 3.39. Notice that the temperature vortices are well defined and increasing

Grashof again results in the formation of rolls in the stream function (e) as well as the

characteristic meandering effect of the velocity fluctuations in the total flow (f).
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Figure 3.22: a = 1.75 Gr = 1776 Pure Mode Solutions (a)-(b)-(c)

Figure 3.23: a = 1.75 Gr = 1869 Pure Mode Solutions (a)-(b)-(c)

Figure 3.24: a = 1.75 Mean Flow and Temperatures Mode 1 (a)-(b)
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Figure 3.25: a = 1.75 Temperatures Mode 2 First and Second Solutions (a)-(b)

Figure 3.26: a = 1.75 Steam Flows Mode 2 First and Second Solutions (c)-(d)

Figure 3.27: a = 1.75 Mode 2 Mean Temperatures (e)-(f)
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Figure 3.28: a = 1.37 Gr = 211 Pure Mode Solutions (a)-(b)-(c)

Figure 3.29: a = 1.37 Gr = 300 Pure Mode Solutions (d)-(e)-(f)

Figure 3.30: a = 1.37 Gr = 400 Pure Mode Solutions (g)-(h)-(i)

Figure 3.31: a = 1.37 Mean Flow and Temperatures Pure Mode (a)-(b)
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Figure 3.32: a = 1.6 Gr = 220 Pure Mode Solutions (a)-(b)-(c)

Figure 3.33: a = 1.6 Gr = 1000 Pure Mode Solutions (d)-(e)-(f)

Figure 3.34: a = 1.6 Gr = 2000 Pure Mode Solutions (g)-(h)-(i)

Figure 3.35: a = 1.6 Gr = 2666 Pure Mode Solutions (j)-(k)-(l)
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Figure 3.36: a = 1.6 Gr = 2258 Pure Mode Solutions (m)-(n)-(o)

Figure 3.37: a = 1.6 Mean Flow and Temperatures Pure Mode (a)-(b)

The solutions found around the island are as expected because the second solution that

bifurcates from the bottom of the loop is the one which comes from the second eigenvalue

and will dominate the first solution that comes from the bottom of the neutral curve (first

eigenvalue). The third solution is NOT a mixed mode solution as it is invariant as there are

swapped φR and φI coefficients only, so it is not unique. This may explain the temperature

inversion in the loop and hence no mixed mode.

Figure 3.38: a = 2 Gr = 1565 Pure Mode Solutions (a)-(b)-(c)

59



Chapter 3 VERTICAL CHANNEL INTERNALLY HEATED

Figure 3.39: a = 2 Gr = 2005 Pure Mode Solutions (d)-(e)-(f)

3.2.2 Secondary Flow Stability Analysis

In wall bounded shear flows it has been shown that 2D finite amplitude waves are unsta-

ble to 3D infinitesimal disturbances [40] for Couette flow. This is also found to be the

case for HHF [39] with Prandlt Number zero. For the stability analysis of the secondary

equilibrium solutions the method used by Nagata and Generalis [39] is adopted, where

Floquet theory is employed, to search for stability changes in the eigenvalues. Floquet

theory is a linear stability (perturbation) analysis on every mode of the strongly nonlinear

state. In this sense it is possible to mimic the linear (primary) stability analysis but on

a nonlinear state comprising of many modes. In Floquet theory the perturbation is split

into a finite amplitude contribution and an infinitesimally small secondary perturbation.

As the disturbances augment to a finite amplitude the flow develops fully to some higher

transitional state. The imaginary part of the eigenvalue is the most critical if the result is

zero we have stationary waves and this means that we may have vortices forming in the

fluid layer. Note that as per [48] Squire’s Theorem applies to our problem, hence the most

dangerous modes are 2D and periodic in the streamwise direction thus 2D-infinitesimal

perturbations are applied to the secondary flow Ŭ î+ ŭ as

ũ = δφ̃+ εψ̃, (3.35)

where the tilde is complex. We use the following secondary linear stability theory to

find the bifurcations that arise from the associated secondary equilibrium solutions:
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φ̃ =
∞

∑
m=−∞

∞

∑
l=0

exp{imα(x− ct)+ id(x− ct)+ iby+σt}

×(1− z2)2ãlmTl(z), (3.36)

ψ̃ =
∞

∑
m=−∞

∞

∑
l=0

exp{imα(x− ct)+ id(x− ct)+ iby+σt}

×(1− z2)b̃lmTl(z), (3.37)

θ̃ =
∞

∑
m=−∞

∞

∑
l=0

exp{imα(x− ct)+ id(x− ct)+ iby+σt}

×(1− z2)c̃lmTl(z), (3.38)

where d and b are Floquet parameters applied in the span and streamwise direction re-

spectively. In some texts [16] these parameters are often referred to as Characteristic

Values.

As per [39] σr < 0 is a stable solution and σr = 0 is a possible bifurcation of the

secondary flow. We maintain the same boundary conditions applied in the earlier linear

stability model. In order to derive the corresponding equations for the disturbance field{
φ̃, ψ̃

}
, we replace {φ,ψ} with

{
φ+ φ̃,ψ+ ψ̃

}
in eqs.(2.13-2.14) and subtract the equa-

tions for the secondary solutions at the same time we ignore the nonlinear terms in the

perturbations, arriving at:

∂

∂t
∇

2
∆2φ̃−∇

4
∆2φ̃+Û∂x∇

2
∆2φ̃

= ∂
2
zÛ∆2∂xφ̃+∂x∂zθ̃+ c∂x∇

2
∆2φ̃

−δ ·
{
(δφ̃+ εψ̃) ·∇(δφ)+(δφ) ·∇(δφ̃+ εψ̃)

}
(3.39)

∂

∂t
∆2ψ̃−∇

2
∆2ψ̃

= ∂zÛ∆2∂yφ̃−Û∂x∆2ψ̃+ c∂x∆2ψ̃+∂yθ̃

−ε ·
{
(δφ̃+ εψ̃) ·∇(δφ)+(δφ) ·∇(δφ̃+ εψ̃)

}
(3.40)

∂

∂t
θ̃ =−2Gr(r · k̂)∆2θ̃+∆2φ̃∂zT̆ −Û∂xθ̃+ c∂xθ̃

+Pr−1
∇

2
θ̃+(δφ̃+ εψ̃) ·∇θ+(δφ+ εψ) ·∇θ̃ (3.41)

As per [39] the resulting generalised eigenvalue problem is solved numerically. The

same truncation levels were used as for the previous section. The real part of σ1r of the

leading eigenvalue σ1 defines the damping rate of amplification of the perturbation. The

stability boundary is found by applying the condition σ1r = 0. The imaginary part defines
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the phase velocity of the propagating disturbances in the flow (σ1r = −αRe[c]). Finally

we note that in all cases examined the symmetry relations σ1r(b,d) = σ1r(b,±d) (b fixed),

σ1r(b,d) = σ1r(±b,d) (d fixed), were always observed.

3.2.3 Eckhaus Stability

Following both [17] and [16] (p.417-18) we calculate the sideband stability also known

as the Eckhaus stability.

Comparing figure 3.40 with the diagram on p.417 of [16] and taking a value of Gr =

214 it is possible to verify that the Eckhaus boundary shown is in accordance with the

theory laid out in [16], that is;

αc−α3(Gr)≈ (αc−α1(Gr))/
√

3→ 1.37−1.3≈ (1.37−1.25)/
√

3

and

α4(Gr)−αc ≈ (α2(Gr)−αc)/
√

3→ 1.44−1.37≈ (1.49−1.37)/
√

3

Numerically we have indeed met the Eckhaus criterion that d�α in the case above,i.e.

0.07� α in both cases.

Figure 3.40 shows the Eckhaus (b = 0) stability boundary in relation to the Neutral

curve for 0.53 ≤ α ≤ 1.61. Several values of the Grashof number were studied and the

maximum real part of the leading eigenvalue was found. The value of Gr, which deter-

mines the boundary of the curve , was calculated by interpolation. From the curve we see

that the sideband instability is extremely close to the neutral curve.

As can be seen in figure 3.41 the highest growth rate of σ1r occurs around b = 0.5 and

hence we use this value to calculate the Hopf bifurcation.

3.2.4 Hopf Bifurcation

A hopf bifurcation will occur at a point where σr = 0 and σi 6= 0. The resulting limit

cycle may or may not be phased-locked with the associated 2D state, if the limit cycle is

not phase locked to the 2D state it is not possible to proceed to analyse the 3D state as

the model for this study does not have time evolution capability. Instead, if the imaginary

part of the output eigenvalue is equal the phase velocity the bifurcation is phase locked.

For time dependent stability analysis without equilibrium points direct spectral numerical
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Figure 3.40: Stability boundaries of secondary TWs.

calculation of the Navier Stokes equations would have to be used. However, as the initial

conditions are never exactly known this leads to problems when performing time evolving

calculations. We proceed to slowly reduce d (the Floquet Parameter) to zero to see if the

limit cycle is phase locked to the phase velocity of the 2D state. If phase velocity in the

2D state is phase locked at d = 0 then it is the condition required proceed to find a 3D

state. In order to find the boundaries for a Hopf bifurcation it is necessary to look for

the values of the Floquet parameters (characteristic values [29]) b and d at the highest

growth rate of σr, then look for a change of stability for those parameter values. With

the use of a linear interpolation it is possible to ascertain the specific value of Grashof for

the two distinct changes of stability. The stability software program allows for stability

analysis on many contiguous secondary equilibrium solutions contained in the input file.

This enables a rapid search for changing σr for many given values of Grashof, it was

noticed that the values for the maximum σr are identical for any Grashof for a fixed α

perturbation. Once the Hopf bifurcation is obtained it’s phase velocity (σi) is compared

at that point to the phase velocity of the 2D solution. If they are equal it is possible to

proceed to investigate the tertiary state arising as the phase velocities are phase-locked.

If these values are not equal investigation is possible by slowly reducing d whilst fixing

b to see if the phase velocity becomes the same for the associated 2D state. Immediately

it is seen that the 2D state is very unstable as the Hopf bifurcation curve is very close to
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Figure 3.41: 2D Stability.

the neutral curve. It was also found that in the output data for σr the value is decreasing

as the Grashof increases for the 2D state (i.e. at d = 0), this is unexpected but this can

be accounted for by looking at the plots of σr versus d where we notice the shape of the

peaks and troughs in the curves as they pass through σr = 0. Because of the small stable

region it is wise to proceed to look for a 3D (tertiary) state that bifurcates from a 2D state.

3.2.5 Resonant 1:3 Analysis

Having found that a 1:3 higher harmonic resonance exists in the linear results, the nature

of the 1:3 resonant secondary equilibrium solutions require investigation as well as seeing

whether these solutions can be found for α < 0.5. It was found that well converged 1:3

resonant secondary solutions do exist. Note that for the 1:3 resonant secondary solutions

the collocation points are not altered in the nonlinear code. Changing the collocation

points makes no difference to the results of the secondary equilibrium solutions, which is

what one would expect. Tables 3.4 and 3.5 compares the first few coefficients of the pure

mode and 1:3 mode solutions. Incidently, it is noted that the initial 1:3 mode solution

was found by taking a converged pure solution at α = 1.2 with a value of Grashof just

above the bifurcation point on the neutral curve and changing the value of α = 0.4 (i.e.

a third) in the output file and rerunning the program until a converged 1:3 solution was
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Figure 3.42: 2D Stability Gr.

obtained. It was found that there exist specific points where the solution is able to "jump"

(or burst) from the pure mode 2D solution to a 1:3 mode resonant solution directly but not

visa versa, the output files where a jump was first found are shown in tables 3.4 and 3.5

for the α = 1.2 fundamental to the α = 0.4 resonant 1:3 mode.

Figure 3.47 shows how narrow the bandwidth is within which these bursts were pos-

sible for varying values of α in the context of the neutral stability curve. There is now a

need to investigate whether there exist mixed mode solutions that would show us a less

abrupt transition between the modes found. In order to do this further benchmarking is re-

quired. Firstly it is necessary to refer to the important work completed by Mizushima and

Fujimura [36] where 1:3 resonances and mixed mode solutions where found in Rayleigh-

Benard convection. In order to investgate further the 1:3 resonant solutions for homoge-

neously heated fluid reproduction of the work in [36] is necessary. Figure 3.44 shows the

results for the neutral stability curve for Rayleigh-Benard convection which confers with

the results of [36].

The results obtained for the weakly non-linear secondary solutions in [36] use ωi =

iαφ1 (the imaginary part of the fourier expansions) as a measure of the strength of the

solution whereas we employ the Lnorm
2 as previously stated. We too find the bridge or

mixed mode secondary solution that joins the pure to resonant mode found in [36], our

visual representation is shown in figure 3.45. We clearly see the bridge between the 1:3
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Table 3.4: Fundamental α = 1.2 Mode Output File for Gr = 223

Chebyshev Harmonic M Harmonic N almn

0 1 0 0.7953887748949154E-01

0 2 0 -0.1166467388361531E-18

0 3 0 -0.1852912932184240E-04

0 4 0 -0.3896269096767016E-22

0 5 0 0.3452185936253233E-07

0 6 0 -0.5246338355593326E-23

0 7 0 0.3671510636526089E-09

0 8 0 -0.3050638699850794E-25

0 9 0 -0.9310976940711341E-12

0 10 0 0.3630870221220881E-27

1 1 0 0.3802045898695263E-17

1 2 0 -0.4708098708559432E-02

1 3 0 0.2435179707607905E-19

1 4 0 -0.1398334364158642E-05

1 5 0 -0.3698501294042346E-22

1 6 0 0.8419488952170249E-08

1 7 0 -0.1068865765849753E-23

1 8 0 0.2626134339053322E-10

1 9 0 0.2260324770725527E-26

1 10 0 -0.3043522127262350E-12

and pure mode as found in [36]. Incidentally, a 1:4 mode 2D solution was found in the

course of this study but further investigation is not warranted here.

Using the replicated methods for reproducing the Rayleigh-Benard results as per [36]

it is possible to proceed to search for any mixed mode solutions that bridge the pure and

resonant modes for the HHF model considered in this work. After extensive investigations

mixed mode solutions could not be found, even close to the intersection point of the

1:3 and pure neutral curves. Figure 3.46 shows the pure and 1:3 resonant secondary

solutions for the homogeneously heated fluid model where there is no bridge, or mixed

mode solution is evident.
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Table 3.5: α = 0.4 Resonant 1:3 Mode Output File for Gr = 223

Chebyshev Harmonic M Harmonic N almn

0 1 0 0.1309594746364094E-32

0 2 0 0.9380770742754546E-34

0 3 0 -0.1453681675131011E+00

0 4 0 -0.1131626816760070E-34

0 5 0 0.2620412006853043E-33

0 6 0 0.9881216609480334E-18

0 7 0 -0.7193437679856988E-34

0 8 0 -0.8482412631052800E-37

0 9 0 0.1756146758213647E-04

0 10 0 0.3288602257454599E-37

1 1 0 0.2919666903997230E-34

1 2 0 -0.2602685552042643E-32

1 3 0 -0.2504951072821455E-17

1 4 0 -0.1413567221694325E-32

1 5 0 -0.2343378749948379E-35

1 6 0 0.2267271864392766E-02

1 7 0 0.6105499758273396E-36

1 8 0 -0.6099346312829144E-34

1 9 0 -0.2155682894314998E-20

1 10 0 0.8181808023707753E-35

In fact it is possible to find further jump phenomena, where it is possible to jump

directly from pure mode solutions to 1:3 mode resonant solutions. [36] does mention that

transition between mode occurs abruptly for high Prandtl Number in Rayleigh-Benard

convection.

Of particular interest is the the relationship between the strength of the secondary solu-

tion where the bursts can occur. Figure 3.48 shows that we see sudden troughs in curve at

a point where the burst can occur. This is better seen in figure 3.49 where we superimpose

figure 3.48 onto the curves showing the pure and 1:3 mode secondary solutions.

Comparing the stream flow and the temperature profiles of the pure mode solution at
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Figure 3.43: Pure and Resonant 1: 3 Secondary Solutions.

α = 1.2 and the 1:3 resonant solution at α = 0.4 for the same Grashof where a jump, or

burst is possible it can be seen that the stream flows and temperatures are congruent but

with a small phase shift, hence the ability to jump from one solution to the other directly,

which is illustrated in figures 3.50 and 3.51. If the shift becomes too large the ability to

jump between said solutions is lost.
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Figure 3.44: Rayleigh-Benard Pure and Resonant Linear Stability

Figure 3.45: Rayleigh-Benard Pure and Resonant 1: 3 Secondary Solutions.
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Figure 3.46: Pure and Resonant 1: 3 Secondary Solutions.

Figure 3.47: Pure and Resonant 1: 3 Secondary Solutions.
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Figure 3.48: Jump Profile.

Figure 3.49: Pure and Resonant 1: 3 Secondary Solutions.
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Figure 3.50: a = 0.4 1:3 Stream Flow and Temperature

Figure 3.51: a = 1.2 Stream Flow and Temperature Pure Mode
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3.2.6 Tertiary Equilibrium States

For the 3D calculations we need to decompose the non-linear terms of the N.S. equations

in 3.18 as before in section 3.2.1 but this time keeping all the components φ− φ, φ−ψ

and ψ−ψ and retaining terms in y also, which are; In addition we need to decompose the

toroidal equation 3.19 by taking the curl, ε · (u ·∇u) using eqn 3.16;

ε̃ ·
(
ũ · ∇̃ũ

)
= ε̃ ·

[(
δ̃φ+ ε̃ψ

)
· ∇̃
(

δ̃φ+ ε̃ψ

)]
= εi

(
u j∇ jui

)
= εi

[(
δ jφ+ ε jψ

)
∇ j (δiφ+ εiψ)

]
= εi

{(
δ jφ+ ε jψ

)
∂ j
[
(∂i∂z−λi∆)φ+ εipqλp∂qψ

]}
= εi

{(
δ jφ+ ε jψ

)[(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= εi

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= (εirs∂sλr)

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
Then expand, simplify, apply the necessary tensor algebra and collect sets of partial

derivatives in terms of φ− φ, φ−ψ and ψ−ψ, as shown in Appendix C which for the

poloidal terms are;

Poloidal φ−φ:

(∂x∂zφ)
(
∂5

xφ
)
+(∂x∂zφ)

(
∂x∂4

yφ
)
+2(∂x∂zφ)

(
∂3

x∂2
yφ
)
+(∂x∂zφ)

(
∂3

x∂2
z φ
)

+(∂x∂zφ)
(
∂x∂2

y∂2
z φ
)
+(∂y∂zφ)

(
∂4

x∂yφ
)
+(∂y∂zφ)

(
∂5

yφ
)
+2(∂y∂zφ)

(
∂2

x∂3
yφ
)

+(∂y∂zφ)
(
∂2

x∂y∂2
z φ
)
+(∂y∂zφ)

(
∂3

y∂2
z φ
)
−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂2
y∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)
−
(
∂x∂2

yφ
)(

∂3
x∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂2
y∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂3
z φ
)

−
(
∂2

x∂yφ
)(

∂2
x∂y∂zφ

)
−
(
∂2

x∂yφ
)(

∂3
y∂zφ

)
−
(
∂2

x∂yφ
)(

∂y∂3
z φ
)
−
(
∂3

yφ
)(

∂2
x∂y∂zφ

)
−
(
∂3

yφ
)(

∂3
y∂zφ

)
−
(
∂3

yφ
)(

∂y∂3
z φ
)
−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂4
y∂zφ

)
−2
(
∂2

xφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

xφ
)(

∂2
x∂3

z φ
)
−
(
∂2

xφ
)(

∂2
y∂3

z φ
)
−
(
∂2

yφ
)(

∂4
x∂zφ

)
−
(
∂2

yφ
)(

∂4
y∂zφ

)
−2
(
∂2

yφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

yφ
)(

∂2
x∂3

z φ
)

−
(
∂2

yφ
)(

∂2
y∂3

z φ
)
−
(
∂2

x∂zφ
)(

∂4
yφ
)
−
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂4
xφ
)

+
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)
+
(
∂2

x∂zφ
)(

∂4
xφ
)
+
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)

+4(∂x∂y∂zφ)
(
∂3

x∂yφ
)
+4(∂x∂y∂zφ)

(
∂x∂3

yφ
)
+4(∂x∂y∂zφ)

(
∂x∂y∂2

z φ
)

+
(
∂2

y∂zφ
)(

∂4
yφ
)
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Poloidal φ−ψ:

=
(
∂3

xφ
)(

∂y∂2
z ψ
)
+2
(
∂x∂2

yφ
)(

∂y∂2
z ψ
)
+2(∂x∂y∂zφ)

(
∂2

x∂zψ
)

−2
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+2

(
∂2

y∂zφ
)
(∂x∂y∂zψ)−2(∂x∂y∂zφ)

(
∂2

y∂zψ
)

−
(
∂2

x∂yφ
)(

∂x∂2
z ψ
)
−
(
∂3

yφ
)(

∂x∂2
z ψ
)
+
(
∂4

x∂yφ
)
(∂xψ)+

(
∂5

yφ
)
(∂xψ)

+2
(
∂2

x∂3
yφ
)
(∂xψ)+

(
∂2

x∂y∂2
z φ
)
(∂xψ)+

(
∂3

y∂2
z φ
)
(∂xψ)−

(
∂5

xφ
)
(∂yψ)

−
(
∂x∂4

yφ
)
(∂yψ)−2

(
∂3

x∂2
yφ
)
(∂yψ)−

(
∂3

x∂2
z φ
)
(∂yψ)−

(
∂x∂2

y∂2
z φ
)
(∂yψ)

−
(
∂3

xφ
)(

∂2
x∂yψ

)
−
(
∂3

xφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂2
x∂yψ

)
+
(
∂2

x∂yφ
)(

∂3
xψ
)
+
(
∂2

x∂yφ
)(

∂x∂2
yψ
)
+
(
∂3

yφ
)(

∂3
xψ
)
+
(
∂3

yφ
)(

∂x∂2
yψ
)

+2
(
∂3

x∂yφ
)(

∂2
xψ
)
+2
(
∂x∂3

yφ
)(

∂2
xψ
)
+2
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−2
(
∂4

xφ
)
(∂x∂yψ)

−2
(
∂2

x∂2
z φ
)
(∂x∂yψ)+2

(
∂4

yφ
)
(∂x∂yψ)+2

(
∂2

y∂2
z φ
)
(∂x∂yψ)−2

(
∂3

x∂yφ
)(

∂2
yψ
)

−2
(
∂x∂3

yφ
)(

∂2
yψ
)
−2
(
∂x∂y∂2

z φ
)(

∂2
yψ
)

Poloidal ψ−ψ:

= 4(∂x∂y∂zψ)(∂x∂yψ)−2(∂2
xψ)(∂2

y∂zψ)−2(∂2
yψ)(∂2

x∂zψ)

Then collect sets of partial derivatives in terms of φ−φ, φ−ψ and ψ−ψ, as shown in

Appendix C which for the toloidal equation are;

Toroidal φ−φ
(
∂x∂2

z φ
)(

∂2
x∂yφ

)
+
(
∂x∂2

z φ
)(

∂3
yφ
)
−
(
∂y∂2

z φ
)(

∂3
xφ
)
−
(
∂y∂2

z φ
)(

∂x∂2
yφ
)

Toroidal ψ−ψ
(
∂2

x∂yψ
)
(∂xψ)+

(
∂3

yψ
)
(∂xψ)−

(
∂3

xψ
)
(∂yψ)−

(
∂x∂2

yψ
)
(∂yψ)

Toroidal φ−ψ
(
∂2

xψ
)(

∂2
x∂zφ

)
+
(
∂2

yψ
)(

∂2
y∂zφ

)
We need to now find the associated output symmetry group for the 3D problem. Ap-

pendix F.3 outlines the method employed which is similar to that for the linear and 2D

problem but taking into account the toroidal component of the perturbed flow and the

partial derivatives in y. Identifying the closed symmetry set emerging from the non-linear

terms facilitates the construction of a suitable non-converged solution used by the soft-

ware program to find a converged "seed", or solution which can then be traced.
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After 3D non-linear analysis it was found that the full symmetry set becomes;

T +
l cosm+ cosn+,T +

l sinm+ sinn+,

T +
l cosm+ sinn+,T +

l sinm+ cosn+,

T ++
l cosm++ cosn++,T ++

l sinm++ sinn++,

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++,

T ++
l cosm+ cosn+,T ++

l sinm+ sinn+,

T ++
l cosm+ sinn+,T ++

l sinm+ cosn+,

T +
l cosm++ cosn++,T +

l sinm++ sinn++,

T +
l cosm++ sinn++,T +

l sinm++ cosn++, . (3.42)

We can see that for m+n = odd we have no members, hence

m+n = odd almn = blmn = clmn = 0 (3.43)

Obviously as this is the full symmetry group one must realise that not all symmetries

will be evident in any particular 3D solution, or any higher degree (quaternary) solution.

Symmetries will be different for each higher degree solution.

In order to find any 3D equilibrium solution modification of a converged 2D solution

is required (here α = 1.37 and Gr = 211.423 was used). Along with the addition of

the necessary harmonics into the input file and then perturb the system by some small

amount (0.1 in this case) governed by the symmetries for a possible converged 3D state.

It was found that for d 6= 0 it was not possible to obtain phase-locked 3D solutions, so the

condition d = 0,b 6= 0 was fixed.

According to the 2D stablity analysis for α = 1.37, figure 3.41 we see that the highest

stable point is around b = 0.5 and this value is chosen for β and hence a converged 3D

equilibrium solution is found. Once a converged 3D solution is found this is used as a seed

to find others as required. Figures 3.54 and 3.53 show how the 3D solution bifurcates from

the 2D solution for α = 1.37 and α = 1.6 respectively.

Unfortunately 3D stability analysis tells us that the 3D states are not phase locked and

hence as we do not have programs that are time evolving we cannot proceed. Our models

are steady state only.
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Figure 3.52: 3D Bifurcations.

Figure 3.53: 3D Bifurcation α = 1.6.
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Figure 3.54: 3D Contour Plot α = 1.37

Figure 3.55: 3D Contour Plot α = 1.37
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Chapter 4 VERTICAL CHANNEL LATERALLY HEATED

Figure 4.1: Co-ordinate system for the laterally heated vertical fluid layer with LAR.

4.1 Linear Analysis

In order to understand and verify the mechanisms involved in the homogeneously heated

model the need is to begin with a known problem with known solutions, this enables

benchmark testing, beginning with the classic, well researched Rayleigh-Benard model.

Next it is necessary to incline the channel to the vertical orientation and benchmark

further against the work by Chait and Korpela [12] and Nagata Busse [38] who took

a vertical channel laterally heated with Prandtl Number 0.71, 1000 and 0 respectively.

Ensuring that our results for the critical Grashoff and wavenumber corresond to those

given by [12] and [38].

4.1.1 Problem Modeling

The problem is modeled in exactly the same way as that for the homogeneously heated

model. The system of equations is the same also, except that the temperature boundary

condition is modified and hence the term for T in eq.(3.5) is represented by T = T1−T2

for the temperatures of the boundaries, and no-slip condition at the boundaries for the

velocity field. After applying the changed boundary conditions to the linear parts of the

N.S. equations to derive the basic flow and temperature following the same methods for
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Internal heat as described in Appendix B.2:

Uo(z)î = Gr
6 (z− z3) (4.1)

To(z) =±Grz. (4.2)

The basic velocity profile of eq.(4.1) gives an inflection point and hence linear instability

is expected. Deriving the perturbation equations is exactly the same as that for the internal

heat model and hence it is not necessary to repeat the theory here, but instead move onto

the results of the linear analysis.

4.2 Linear Results

Well converged solutions where found for l = 30 Fig. (4.2) shows the pure mode neutral

curve with the critical parameters (αc,Grc) = (1.38,491.78).

It was found that there also exists higher harmonic resonant linear solutions for both a

1:2 and 1:3 resonance where the second most dangerous ordered eigenvalue couple with

its specific harmonic was used. Note that the values of Grashof found for the 1:2 and 1:3

resonant neutral curves are exactly the same as those for the pure mode curve but we must

half and third the perturbation wavenumber (α) respectively.

Figure 4.2 shows the interaction between the pure, 1:2 and 1:3 neutral curves. The

intersection of the 1:2 resonance curve and the pure mode curve is found at α = 0.88,Gr =

619. Similarly, the intersection of the 1:3 resonant curve and the pure mode is found at

α = 0.62,Gr = 825. Also noting that the critical values at αc = 0.69,Grc = 491.78 and

αc = 0.46,Grc = 491.78 for the 1:2 and 1:3 modes respectively.

4.3 Secondary Equilibrium States

As a measure of the numerical convergence we employ the vector l2− norm as before.

Well converged secondary solutions are obtained at L=23 and M=9 for all wavenumbers,

we choose M=9 to ensure we include the 1:3 solutions in our amplitude coefficients output

file.

80



Chapter 4 VERTICAL CHANNEL LATERALLY HEATED

Figure 4.2: Neutral Stability Curves.

Figure 4.3: a = 1.2 Stream Flow and Temperature Pure Mode
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Figure 4.4: a = 1.2 Mean Flow and Temperature Pure Mode

4.3.1 Nonlinear Mode Interactions

For α ≥ 0.9 pure mode secondary solutions bifurcate supercritically from the neutral

curve and the strength of the solutions continues to rise as the strength of the temper-

ature gradient rises, see figure 4.5. As we decrease α and approach the intersection point

of the pure and 1:2 resonant modes, figure 4.6, we see the emergence of the 1:2 mode

with zero phase velocity bifurcating from it’s associated 1:2 neutral curve, the strength of

the 1:2 secondary solution continues to rise as the temperature parameter rises. In figure

4.6 we note that the pure mode bifurcates from the neutral as expected but as we decrease

Gr the pure model secondary solution has a turning point (Gr = 640) that bifurcates to a

mixed mode solution (Gr = 652) if we then increase Gr or if we continue to decrease Gr

the pure mode bifurcates from the 1:2 mode solution (Gr = 578). The pure mode also has

a zero phase velocity. It is worth noting that for the mixed mode solution (c) on figure

4.6 all coefficients of the solution are non-zero (amn 6= 0) and the phase velocity is non-

zero indicating that this mixed mode is not stationary, i.e a traveling wave TW. Further

increase of Gr with the mixed mode solution (c) show another bifurcation to another dis-

tinct mixed mode solution (d) where the odd coefficients of m in amn 6= 0. It was found

that the mixed mode solution (d) also bifurcates from the 1:2 mode solution at a high Gr,

with zero phase velocity. So we see many interactions between the 1:2 and pure modes

that give rise to two distinct mixed mode solutions. As we continue to decease α to 0.7,

figure 4.7 we see that we gradually lose the mixed mode solution (d) in figure 4.6 but are

still left with the mixed mode solution where amn 6= 0 which bifurcates from a turning

point on the pure mode as for α = 0.8, the pure mode also bifurcates from the 1:2 mode
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as for α = 0.8. In this section we now continue to reduce α to explore what happens to

the secondary solutions as we approach the intersection point where the pure, 1:2 and 1:3

mode solutions overlap. Figure 4.8 shows the secondary solutions obtained for α = 0.6,

where we clearly see the all the mode interactions, which are complex. For α = 0.6 we

find that the pure mode bifurcates now from the 1:3 mode and we see a bridge between

the 1:2 and 1:3 resonant mode solutions. It is interesting to see that the mixed mode at

high Gr bifurcates into two solutions as we began to see previously for α = 0.7, also we

note that the 1:2 solution does not bifurcate with the pure mode.
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Figure 4.5: Secondary Steady-State Solutions
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Figure 4.6: Secondary Solutions α = 0.8
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Figure 4.7: Secondary Solutions α = 0.7
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Figure 4.8: Secondary Solutions α = 0.6
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5 Conclusions and Discussions
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In summary, this study found that for both heating models (HHF and LHF) there

exist higher harmonic resonances for low perturbation wavenumber. For LHF the study

has identified that there is a smooth transition between the fundamental and 1:3 resonant

mode via mixed modes. This smooth transition is not evident for the homogeneously

heated model, instead it is possible to have abrupt transitions between the modes found.

It was also found that for the homogeneously heated model there exists more than one

fundamental mode for higher perturbation wavenumbers in conjunction with a higher in-

ternal heating parameter. Where the two modes interact there exist overlapping secondary

states that appear to be invariant but results in a temperature inversion of the secondary

convection rolls. Although mixed mode solutions were expected for higher wavenumber

perturbations in HHF none were found as the solutions for these wavenumbers were not

resonant.

In investigating the LHF model a tapestry of resonant solutions was found with mixed

mode solutions bridging them. The resonant and mixed mode secondary solutions were

found to be of stationary and travelling wave types.

Ideally the author would like to further research the models investigated by introduc-

ing a parameter that allowed the gradual imposition of the HHF basic flow profile whilst

reducing the LHF basic flow profile and slowly inclining the channel from horizontal

to the vertical orientation in order to better understand the mechanics of transition from

mixed mode bridges to the jumps or bursts found. The author has completed linear analy-

sis of the HHF model when the channel is inclined and found that an exchange of stability

took place at an angle of 69◦, where LW perturbations become the most dangerous and

TW perturbations the least.

Further investigation is required in the stability analysis as the 3D stability model .

Much work was undertaken to construct a parallel version of the 3D stability software,

which gave identical results as the serial program for σr but inconclusive results for σi.

In parallel to this study the author has replicated the linear results produced by Kropp

and Busse [34] for a differentially heated rotating annulus using the same software models

as used in this study. The results are not included in this study because inclusion of the

spanwise momentum would have introduced additional symmetries outside the aims of

this thesis.

It is envisaged that the author would develop the non-linear model in future research.

The implications of any research into a rotating, differentially heated annulus would be
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far reaching. The research would add to the understanding of atmospheric modeling of

the Earth, and move forward the understanding of weather prediction.

The author would also like to persue 3D solutions in line with the research findings of

Generalis and Itano [32] who in a recent analysis of heirarchical organisation of coherent

structures in turbulent shear flow identified a hairpin vortex structure in Plane Couette

Flow (PCF) by superimposing spanwise vortex solutions of Laterally Heated Flow in a

vertical channel. They reduced the LHF solutions from the model by means of a homo-

topy parameter and found the associated symmetries by using the Floquet parameters. As

demonstrated 3D solutions were found in this study but this could be extended in future

research. I believe the secret to arriving at an analytical solution to the NS equations lies

in the nature of the symmetry groups and how they interact with the NS equations and

the partial derivatives contained therein. With careful adaption of abstract algebra theory

it may be possible to analytically predict the structure of the symmetry groups for higher

order bifurcations thus allowing research into higher dimensional bifurcations towards

fully developed turbulent flow.

One may ask, "how do we test the theory in an experiment?". In practice one would

perturb the system with slow changes in temperature. As the system of equations (Navier-

Stokes) are coupled the changes in temperature would emulate the pertubations in the

theory. However, due to the fact that the system is HHF it would be difficult to modify the

temperature manually, one would have to use a self-heating nuclear plasma or chemical

reaction.

Further investigation into the nonlinear stability characteristics for the LHF is re-

quired, with a view to benchmarking any results obtained against the weakly nonlinear

solutions documented by [36] for Rayleigh-Benard convection. The author would like to

note that any possible future collaboration with Prof. K. Fujimura would be an excel-

lent opportunity and feels that the methods adopted in this study into the characteristics

of the bifurcations in the highly nonlinear region of the phase space would complement

Prof. Fujimura’s already considerable research into the nature of higher order harmonic

resonances and there interactions with the fundamental mode. Already nonlinear stability

programs have been developed and are in current testing by the author in collaboration

with Dr. Generalis.
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A
Appendix -

Non-Dimensionalisation of the

N.S. Equations

A.1 Non-dimensionalisation of the momentum equation

The motion equation is

∂u
∂t

+u ·∇u =−∇π

ρ
+gγT î+ν∇

2u. (A.1)

For the non-dimensional description of the problem the following parameters are used:

• d for length,

• d2

ν
for time,

• ν

d for velocity field(u),

• 1
d for ∇,

• 1
d2 for ∇2,
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• qd2

2κGr for temperature,

• gγqd5

2ν2κ
for Gr, and

• −d3∇π

2ν2ρ
for R.

Using the parameters defined above, we can rewrite the motion equation as

ν

d2 ·
ν

d
(
∂u∗

∂t∗
)+

ν

d
· 1

d
· ν

d
(u∗ ·∇∗u∗) =−1

ρ
π

1
d
(−1

ρ
π∇
∗)+

gγî · ν2

gγd3 (gγîT ∗)+ν · 1
d2 ·

ν

d
(∇2∗u∗). (A.2)

Simplifying the above equation gives

ν2

d3 (
∂u∗

∂t∗
)+

ν2

d3 (u∗ ·∇∗u∗) =− π

ρd
+

ν2

d3 (T ∗î)+
ν2

d3 (∇2∗u∗). (A.3)

Note that the constants are not non-dimensionalised and that the (*) indicates dimension-

full parameters .

Multiplying by d3

v2 gives

(
∂u∗

∂t∗
)+(u∗ ·∇∗u∗) =−d2

ν2
π

ρ
+T ∗î+∇

2∗u∗. (A.4)

But −d2

ν2
π

ρ
= 2R, therefore, the non-dimensional momentum equation is

∂u
∂t

+(u ·∇)u = 2R+T î+∇
2u. (A.5)

A.2 Non-dimensionalisation of energy equation

The non-dimensionalisation of the energy equation starts off by substituting the parame-

ters defined above into the temperature equation, which is equation (3.2).

The resulting equation is

ν

d2 ·
qd2

κ
· ν2κ

gγqd5 (
∂T ∗

∂t∗
)+

ν

d
· 1

d
· qd2

κ
· ν2κ

gγgd5 (u∗ ·∇∗T ∗) =

κ · 1
d2 ·

qd2

κ
· ν2κ

gγqd5 (∇2 ∗T ∗)+q, (A.6)
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which after simplification becomes

ν3

gγd5 (
∂T ∗

∂t∗
)+

ν3

gγd5 (u∗ ·∇∗T ∗) =
κν2

gγd5 (∇2 ∗T ∗)+q. (A.7)

By multiplying by (gγd5

ν3 ), we get

∂T ∗

∂t∗
+u∗ ·∇∗T ∗ =

κ

ν
(∇2 ∗T ∗)+

gγqd5

ν2κ
. (A.8)

To simplify the equation further, we multiply by the Pandtl number1, which is ν

κ
, to get

ν

κ
(
∂T ∗

∂t∗
)+

ν

κ
(u∗ ·∇∗T ∗) = ∇

2∗T ∗+
gγqd5

ν2κ
(A.9)

Since gγqd5

ν2κ
is 2Gr,we can divide by the Prandtl number, ν

κ
, so that we obtain

(
∂T ∗

∂t∗
)+(u∗ ·∇∗T ∗) = Pr−1(∇2∗T ∗+2Gr), (A.10)

where Gr already non- dimensional.

Therefore, the non- dimensional temperature equation is

∂T
∂t

+u ·∇T = Pr−1(∇2T +2Gr) (A.11)

1Pr (the Prandtl number) measures strength of shear or viscous forces against convective forces.
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B Appendix - Basic Flow and

Temperature Derivations

B.1 Internal Heat Basic Flow and Temperature

In order to analyse the stability of the system against infinitesimal perturbations, we need

to find the basic flow (u0) and basic temperature (T0), which satisfy the no-slip condition

for the velocity, u = 0, and the fixed temperature, T = T0, on the boundary at z =±1. We

choose the narrow-gap boundaries between +1 and -1 as this allows us to use cartesian

coordinates. All along the vertical channel, we assume there is laminar flow of the heated

fluid, as shown in figure 1.2.

B.1.1 Basic Temperature

In the non-dimensional equation for temperature:

∂T
∂t

+u ·∇T = Pr−1(∇2T +2Gr), (B.1)

∂T
∂t = o because of no time dependence due to the steady state of temperature, and also

u ·∇T = 0.
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This is because

(B.2)

As there is no flow in either the y or z direction and applying the boundary condition

(T0(z) = 0) eventually make u ·∇T = 0 due to the constant internal heating between the

two plates.

Hence,

0 = ∇
2T +2Gr, (B.3)

which implies

−2Gr =
∂T 0

2

∂z2 , (B.4)

and thus

T ′′0(z) =−2Gr. (B.5)

Now, to get T0(z), we solve the ordinary differential equation [B.5]. First, we integrate

equation [B.5] once to get

T ′0(z) =−2Grz+C. (B.6)

Then, we integrate equation [B.6] and get

T0(z) =−Grz2 +Cz+D, (B.7)

where C and D are arbitrary constants.

We now apply the boundary condition, which is T0(z) = 0 at z =±1, to equation [B.7]:

at z = 1

0 =−Gr +C +D, (B.8)

at z = -1

0 =−Gr−C +D. (B.9)

Adding equation [B.8] and equation [B.9], gives 0 =−2Gr +2D, which implies D = Gr

and subtracting equation [B.9] from equation [B.8] gives 0 = 2C,which implies C = 0.

Thus, substituting D = Gr and C = 0 in equation [B.7] we get the basic temperature:

T0(z) =−Grz2 +Gr = Gr(1− z2). (B.10)
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B.1.2 Basic Flow

The basic flow is the time independent steady state laminar flow. So, we take the basic

flow of the non- dimensionalised momentum equation:

∂u
∂t

+(u ·∇)u = 2R+T î+∇
2u. (B.11)

First of all, ∂u
∂t goes to zero because the velocity field does not depend on time as the fluid

is in steady state for the basic flow. Secondly, (u ·∇)u also goes to zero because

(u ·∇)u = u0(z)î.(∂xu0(z)î+∂yu0(z)î+∂zu0(z)î), (B.12)

where ∂xu0(z)î = 0, ∂yu0(z)î = 0, and only ∂zu0(z)î is left. But, we do not expect flow in

the z-direction.

Therefore, we get

0 = 2R+T0(z)î+∇
2u0(z)î. (B.13)

But, 2R = 0 because there is no pressure gradient or forced flow in our system, however

it is required to allow for no net vertical flow in the plane i.e.Z 1

−1
udz = 0 (B.14)

This can be allowed for by adding a new unknown term X to equation B.13 also, T0(z)î =

Gr(1− z2). Thus, we get

∂2

∂z2 u0(z) =−Gr +Grz2−X , (B.15)

u
′′
0(z) =−Gr +Grz2−X . (B.16)

As this is a second order ordinary differential equation, we need to integrate equation

[B.16] to get u0(z). Firstly, we integrate equation [B.16] once, which gives

u
′
0(z) =−Grz+

Grz3

3
−Xz+C, (B.17)

and then, we integrate equation[B.17], to get

u0(z) =−Grz2

2
+

Grz4

12
− Xz2

2
+Cz+D. (B.18)
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The boundary conditions state that u0(z) = 0 for z = 1 and -1 at the boundaries only. So,

we apply these boundary conditions to equation [B.18]:

at z = 1

0 =−Gr
2

+
Gr
12
− X

2
+C +D, (B.19)

while at z =−1

0 =−Gr
2

+
Gr
12
− X

2
−C +D. (B.20)

We must now find the two constants. Adding equation [B.20] to equation [B.19] gives

C = 0 and D = 5Gr
12 + X

2 .

Hence

u0(z) =−Grz2

2
+

Grz4

12
− Xz2

2
+

5Gr
12

+
X
2

u0(z) =−Grz2

2
+

Grz4

12
+

X
2

(1− z2)+
5Gr
12

(B.21)

In order to find X it is necessary to allow for no net vertical flow in the plane i.e.Z 1

−1
udz = 0

So, [
Gr(−z3

6
+

z5

60
+

5z
12

)+
X
2

(z− z3

3
)
]1

−1
= 0

2
[

Gr(−1
6

+
1

60
+

5
12

)+
X
2

(1− 1
3
)
]

= 0

2
[

Gr(
16
60

)+
X
2

(
2
3
)
]

= 0

Hence,

X =
−4Gr

5
.

Substituting into equation [B.21] gives the basic flow as;

U0(z) =
Gr
60

(5z4−6z2 +1) (B.22)
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B.2 Lateral Heat Basic Flow and Temperature

B.2.1 Basic Temperature

We know that we have a linear relationship between z and T0, so we can begin with

∂T
∂t

+u ·∇T = κ∇
2T, (B.23)

where as before we are only interested in the linear terms in z:

∇
2T = 0,

so;

T
′′

0 (z) = 0, T
′

0(z) = A, T0(z) = Az+B.

Using the boundary conditions;

T0(1) = T1 = A+B

T0(−1) = T2 =−A+B

T1−T2 = 2A

T2 +T1 = 2B

we arrive at

T0(z) = (T1−T2)z+(T1 +T2).

Removing the arbitrary constants an writing in non-dimensional form [27];

T0(z) = Grz. (B.24)

B.2.2 Basic Flow

From B.13 we remove the non-linear terms to get;

U
′′
0 (z) =−Grz, U

′
0(z) =−Gr

2
z2 +C, U0(z) =−Gr

6
z3 +Cz+D.

Using the boundary conditions;

U0(1) = 0 =−Gr
6

+C +D

U0(−1) = 0 =
Gr
6
−C +D
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Solving, gives the Basic Flow;

U0(z) =
Gr
6

(z− z3). (B.25)
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C Appendix - Derivation of the

Perturbation Equations

C.1 Preliminary Notes on Tensor Algebra

Notes on Tensors

For more information consult Kendall’s book on Cartesian Tensors [8] and Ruther-

ford Aris’s book on Fluid Tensors [3].

1. Permutation Tensor (Anti-symmetric)

εi jk = 1 if ijk is cyclic 123, 312 etc. εi jk = −1 if ijk is anticyclic 321,132 etc. and

εi jk = 0 if any two i,j or k are the same.

The anti-symmetric rule states that : εi jkε jmn =−ε jikε jmn.

2. The Kronecker Delta (Symmetric)

105
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δi j = 1 if i = j and δi j = 0 if i 6= 0. Therefore δii = δ11 +δ22 +δ33 = 1+1+1 = 3.

The Kronecker Delta is used when combining a pair of Permutation Tensors with

differing indices. It is worth taking the reader through the process of contracting indices

as this is required later.

εi jkεlmn =

∣∣∣∣∣∣∣∣∣
δil δim δin

δ jl δ jm δ jn

δkl δkm δkn

∣∣∣∣∣∣∣∣∣ = δil(δ jmδkn−δ jnδlm)−δim(δ jlδln−δ jnδkl)+δin(δ jlδkm−δ jmδlk). (C.1)

One Index Contracted (i = l) Equation (D.1) becomes: δ jmδkn− δ jnδkm, hence we

obtain a widely used identity;

εi jkεimn = δ jmδkn−δ jnδkm. (C.2)

Two Indices Contracted (i = l, j = m) Equation (D.1) becomes 2δkn

εi jkεi jn = 2δkn (C.3)

Three Indices Contracted (i = l, j = m,k = n) Equation (D.1) becomes 6

εi jkεi jk = 6 (C.4)

3. ε jlmλl∂mψ · εipqλiλp∂q∂ j∂
2
t ψ = ε jlmλl∂mψ · ε33qλiλp∂q∂ j∂

2
t ψ = 0

4. λiλi = λ1λ1 +λ2λ2 +λ3λ3 = 0+0+1 = 1 where λ = k̂ =


0

0

1


5.
(
λ j∆φ

)(
λi∂ j∂

2
t ∆φ
)

= (∆φ)
(
λiλ j∂ j∂

2
t ∆φ
)

= (∆φ)
(
λi∂z∂

2
t ∆φ
)

as λ is a multiplier

and can be taken out of the brackets to act on a derivative.

6. εipqλp∂ j∂q∂zψ · ε jlmλl∂i∂mψ l = p = 3; [so i, q, j and m6= 3 (do δz)]

1st index contracted so;

εi3qε j3m =
[
δi jδqm−δimδq j

]
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7. εipqλp∂q∂ j∂z∂iψ = εi3q∂1∂ j∂z∂2ψ+ εi3q∂2∂ j∂z∂1ψ =−1+1 = 0

8. ε jlm · εipqλlλp∂m∂q∂ j∂i∂zψ = ε j3m · εi3q∂m∂q∂ j∂zψ = 0 for reason in 5.

9. εipqλp∂q∂ j∂zψ→ εi3q∂q∂ j∂zψ the index i is outside the contraction. If we had ∂i

we could contract i and eliminate all with antisymmetric properties.

10. ∂t∂t = ∂2
t = ∆ as does ∂m∂m = ∂2

m = ∆ etc. but not ∂z∂z = ∂2
z 6= ∆ as z already

allocated.

11. ∂1 = ∂x;∂2 = ∂y;∂3 = ∂z

12. Example of procedure for eliminating permutation tensor notation by considering

the assignment of indexes to ensure non-zero status of εi jk;

(
∂i∂ j∂

2
z φ
)

ε jlmλl∂m∂iψ

= ∂i∂ j
(
∂2

z φ
)
[ε231∂1∂iψ+ ε132∂2∂iψ]

= ∂i∂ j
(
∂2

z φ
)
[1×∂1∂i−1×∂2∂i]ψ

= ∂i∂ j
(
∂2

z φ
)
[∂x∂i−∂y∂i]ψ

= ∂i∂y
(
∂2

z φ
)
(∂x∂iψ)−∂i∂x

(
∂2

z φ
)

∂y∂iψ

,

when ∂1∂i→ j = 2;∂2∂i→ j = 1

C.2 Derivation of εi and δi

The solenoidal fluid velocity field is u = k̂ ·∇×∇×φ+ k̂ ·∇×ψ, we shall derive the curl

curl operator firstly for the poloidal component of u.

k̂ ·∇×φ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂x ∂y ∂z

0 0 φ

∣∣∣∣∣∣∣∣∣ = î(∂yφ)− ĵ(∂xφ)+ k̂(0). (C.5)
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Now take curl again,

∇×∇×φ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂x ∂y ∂z

∂yφ −∂xφ φ

∣∣∣∣∣∣∣∣∣ = î(∂x∂zφ)+ ĵ(∂y∂zφ)+ k̂(−∂
2
x−∂

2
y)φ. (C.6)

Now we can say,

ui = (∂i∂z−λi∆)φ (C.7)

Where ∆ = ∂2
x + ∂2

y + ∂2
z and λi · ∆ =


0

0

1

 · (∂2
x + ∂2

y + ∂2
z ), λx = λy = 0 with λz =

1 ·


0

0

1


Working through using values of i = 1,2,3=x,y,z respectively

i = 1→ ∂x∂z−0, i = 2→ ∂y∂z−0 and i = 3→ ∂2
z − (∂2

x +∂2
y +∂2

z ) = ∆2.

So we can define δi = ∂i∂z−λi∆ as our curl curl operator.

Now let us derive our curl operator for the toroidal component of the velocity field

k̂×∇×ψ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 0 ψ

∂x ∂y ∂z

∣∣∣∣∣∣∣∣∣ = − î(∂yψ)+ ĵ(∂xψ)+ k̂(0). (C.8)

We can make use of the permutation tensor outlined in the previous section in this ap-

pendix to say,

εi = εi jkλ j∂kψ (C.9)

Working through using values of i = 1,2,3=x,y,z respectively

i = 1→ ε123λ2∂z− ε132λ3∂y =−∂y,

i = 2→−ε213λ1∂z + ε231λ2∂x = ∂x,

i = 3→−ε321λ2∂x + ε312λ1∂y = 0.

So we can define εi = εi jkλ j∂k as our curl operator.
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C.3 Proof of Incompressibilty Condition

0 = ∇ ·u

= ∇ · (δφ+ εψ)

= ∂x(δφ+ εψ)x +∂y(δφ+ εψ)y +∂z(δφ+ εψ)z

= ∂i[∂i∂zφ−λi∆φ+ εi jkλ j∂kψ]

= ∂i∂i∂zφ+ εi jkλ j∂i∂kψ−λi∆φ∂i

= ∂i∂i∂zφ− ε1 j3λ j∂1∂3ψ+ ε3 j1λ j∂3∂1ψ−λi∆φ∂i

= ∆∂zφ−λi∆∂iφ

= 0.

(C.10)

C.4 Curl and curl curl of the motion equation

C.4.1 Curl of the motion equation

We take the non-dimensionalised motion equation and apply the ε operator on each part

separately;

∂u
∂t

+(u ·∇)u = 2R+T î+∇
2u. (C.11)

For convenience I shall drop the use of the bold font.

1. ε ·u :

εiui = εi(δiφ+ εiψ) = εiδiφ+ εiεiψ (C.12)

In this equation, εiδiφ = 0. This is because εi and δi are orthogonal to each other,

and also

δiεi = (∂i∂z−λi∆)εi jkλ j∂k

= ∂i∂zEi jkλ j∂k−∆εi jkλiλ j∂k.
(C.13)

However, λi, λ j andλk are always


0

0

1

. Therefore, i = j and therefore according

to the property of permutation tensor εi jkλiλ j∂k will be 0 due to the fact that two
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indices are the same.

Also, if we fix j = 3 in ∂i∂zεi jkλ j∂k, we get ∂i∂zεi3kλ j∂k which is

εi3k∂i∂z∂k = ε132∂1∂z∂2 + ε231∂2∂z∂1

=−∂x∂z∂y +∂y∂z∂x

= 0.

(C.14)

Therefore,

εiui = εiεiψ

= εi jkλ j∂kεilmλl∂mψ

= εi jkεilmλ jλl∂k∂mψ

= (δ jlδkm−δ jmδkl)λ jλl∂k∂mψ

= δ jlδkmλ jλl∂k∂mψ−δ jmδklλ jλl∂k∂mψ

(C.15)

Now, for δ jl to be 1, j must equal to l. Similarly, k = m for δkm = 1, j = m for

δ jm = 1, and k = l for δkl = 1.

Therefore, εiui = λ jλ j∂k∂kψ−λ j∂ jλl∂lψ.

But, λ j∂ j = λl∂l =


0

0

1




∂x

∂y

∂z

= ∂z, and λ jλ j =


0

0

1




0

0

1

= 1.

Therefore,

εiui = ∂
2
kψ−∂

2
z ψ

= (∂2
x +∂

2
y +∂

2
z )ψ−∂

2
z ψ

= ∂
2
xψ+∂

2
yψ+∂

2
z ψ−∂

2
z ψ

= ∂
2
xψ+∂

2
yψ

= (∂2
x +∂

2
y)ψ

(C.16)

Here, we can apply the Planform Laplacian, ∆2. Thus, εiui = ∆2ψ.

2. The Reynolds number is a scalar. Therefore, we cannot apply the curl on R.

3. Likewise we cannot apply the curl on temperature as it is also scalar and hence this

term disappears.
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4. The curl on ε ·∇2u is simply the curl on u because the curl on ∇2 is ∇2 is itself.

And, the curl on u was already found out in (1). So,

ε ·∇2u = ε ·∇2(ε ·u)

= ∇
2
δ2ψ.

(C.17)

5. The curl of the linear components of u ·∇u.

The velocity field, u is comprised of 2 components:

u = u0(z)î+ ŭ,

where

• u0(z) is the basic flow, and

• ŭ is the deviation.

Further, ŭ = û+ ū, where

• û is the perturbation, and

• ū is the mean flow.

So,

u ·∇u = (u0(z)î+ û+(u0(z)î+ û+ ū) (C.18)

giving u0(z)î ·∇u0(z)î+ other terms which may be linear in perturbations.

i.e:

u ·∇u = ū ·∇ŭ+ ŭ ·∇ū+ ŭ ·∇ŭ, (C.19)

where ŭ ·∇ŭ is the non-linear term, which we ignore because my system is linear.

The curl of (u ·∇)u:

ε · (u ·∇u) = ε · (ū ·∇ŭ)+ ε · (ŭ ·∇ū) (C.20)
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ε · (ū ·∇ŭ) = εi(ū ·∇ui)

= εi jkλk∂ j[∇(∂i∂z−λi∆)φ− εilmλm∂lψ]ū

= εi jkλk∂ j[∂i∇∂zφ−∇∆λiφ− εilmλm∂l∇ψ]ū

= [ε1 j3∂ j∂i∇∂zφ− ε3 j3∂ j∇∆λiλkφ− εl jkεilmλkλm∂ j∂l∇ψ]ū

= 0−0(−εi jkεilmλkλm∂ j∂l∇ψ)ū

=−(δ jlδkm−δ jmδkl)λkλm∂ j∂k∇ψū

= (−∇
3
ψ+∇∂

2
z ψ)ū

= ∆2∇ūψ

= ū ·∇∆2ψ

(C.21)

ε · (ŭ ·∇ū) = εi(u j ·∇ū)i

= εipqλq∂p(ŭ j ·∇ ju0(z))

= ε123∂p(ŭ j ·∇ ju0(z))

= ∂y(ŭ j ·∂ ju0(z))

(C.22)

Here, ŭ j ·∂ ju0(z) = (ux∂x +uy∂y +uz∂z)u0(z). But, we want only the z-component.

Therefore,

ε · (ŭ ·∇ū) = ∂y(∂ j∂z−λ j∆)φu0(z)

= ∂y(∂z2−∆)φu0(z)

= ∂y∆2φu0(z)

(C.23)

Therefore,

ε · (u ·∇u) = ū ·∇∆2ψ+∂y∆2φu0(z) (C.24)

C.4.2 The curl curl of the motion equation

Let us take the double curl of each component individually.

112



Appendix C APPENDIX - DERIVATION OF THE PERTURBATION EQUATIONS

1.

δ ·u = δiui

= δi(δiφ+ εiψ)

= δiδiφ+δiεiψ

= δiδiφ (δi is orthogonal to εi and thus, δiεiψ goes to zero)

= (∂i∂z−λi∆)(∂i∂z−λi∆)φ

= (∂2
i ∂

2
z −2∂i∂zλi∆+λ

2
i ∆

2)φ

(C.25)

Now,

∂2
i = ∂2

x +∂2
y +∂2

z = ∆, ∂iλi =


0

0

1




∂x

∂y

∂z

= ∂z, and λ2
i =


0

0

1




0

0

1

= 1.

Therefore,

δ ·u = (∆∂
2
z −2∂

2
z ∆+∆

2)φ

= (∆2−∂
2
z ∆)φ

= ∆(∂2
x +∂

2
y +∂

2
z −∂

2
z )φ

= ∆(∂2
x +∂

2
y)φ

= ∆∆2φ

= ∇
2
∆2φ

(C.26)

2. Again, we cannot apply the curl operator to R as it is scalar and so can be excluded.

3.

δ ·T î = δiT î

= (∂i∂z−λi∆)îT

= (∂i∂zî−λi∆i)T

(C.27)

Here, ∂i∂z =


∂x

∂y

∂z




1

0

0

= ∂x and λi∆i = 1. Therefore,

δ ·T î = (∂x∂z−∆)T. (C.28)

4.

δ ·∇2u = (δ ·∇2)(δ ·u) (C.29)
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But, (δ ·∇2) gives ∇2 and (δ ·u). Therefore,

δ ·∇2u = ∇
2
∇

2
∆2φ

= ∇
4
∆2φ

(C.30)

5. The curl curl of the linear components of u ·∇u.

• The curl curl of (u ·∇u)

δ · (u ·∇u) = δ · (ŭ∇ū)+δ · (ū∇ŭ) (C.31)

δ · (ŭ∇ū) = δi(ŭ j ·∇ ju0(z)i)

= (∂i∂z−λi∆)[((∂ j∂z−λ j∆)φ

+ ε jlmλm∂lψ) ·∂ j−u0(z)i]

(C.32)

But, δiε jlmλm∂lψ = 0, λx = λy = 0 and λz = 1. To make things easy, let us

define ∇ ju0(z) as u′0.

Therefore, we get

δ · (ŭ∇ū) = (∂x∂z)[(∂z2)−∆)φ ·u′0]

= ∂x(−∂z∆2φ ·u′0−∆2φ ·u′′0)

=−∂x∂z∆2φ ·u′0−∂x∆2φ ·u′′0

(C.33)

δ · (ū∇ŭ) = δi(u0(z) ·∇ jŭi)

= (∂i∂z−λi∆)[uo(z) ·∂ j((∂i∂z−λi∆)φ+ εilmλm∂lψ)ŭi]
(C.34)

But, δiεilmλm∂lψ = 0 and ui = ux + uy + uz where ux = ∂x∂yφ, uy = ∂y∂z and

uz =−∆2φ. Hence,

δ · (ū∇ŭ) = (∂i∂z−λi∆)(u0(z) ·∂xŭi)

= ∂i∂z(u0 ·∂iui)+∆(u0 ·∂x∆2φ)

= ∂x∂z(u0 ·∂x2∂zφ)+∂y∂z(u0 ·∂x∂y∂zφ)−∂z2(u0 ·∂x∆2φ)

+∆(u0 ·∂x∆2φ)

(C.35)
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But, −∂z2(u0 ·∂x∆2φ)+∆(u0 ·∂x∆2φ) = ∆2(u0∂x∆2φ). Hence,

δ · (ū∇ŭ) = ∂x(u′0 ·∂x2∂zφ)+∂x(uo ·∂x2∂z2φ)+∂y(u′o ·∂x∂y∂zφ)

+∂y(u0 ·∂x∂y∂z2φ)+∆2(u0 ·∂x∆2φ)

= u′0 ·∂x3∂zφ+u′0 ·∂x∂y2∂zφ

= u′0 ·∂x∂z∆2φ

(C.36)

Therefore,

δ · (u ·∇u) =−∂x∂z∆2φ ·u′0−∂x∆2φ ·u′′0 +u′0 ·∂x∂z∆2φ

= u0∂x∂z2∆2 +∆2(u0∂x∆2φ)−∂x∆2φ ·u′′0

= u0∂x∇
2
∆2φ−u′′0∂x∆2φ.

(C.37)

δ · (u ·∇u) = u0∂x∇
2
∆2φ−u′′0∂x∆2φ. (C.38)

Now, replacing each term back into the momentum equation, we get

∂

∂t
∇

2
∆2φ+u0∂x∇

2
∆2φ−u′′0∂x∆2φ = (∂x∂z−∆)T

+∇
4
∆2φ.

(C.39)

C.5 The curl and curl curl of the non-linear components of

u ·∇u

Phi Equation

δ̃ ·
(
ũ · ∇̃ũ

)
= δ̃ ·

[(
δ̃φ+ ε̃ψ

)
· ∇̃
(

δ̃φ+ ε̃ψ

)]
= δi

(
u j∇ jui

)
= δi

[(
δ jφ+ ε jψ

)
∇ j (δiφ+ εiψ)

]
= δi

{(
δ jφ+ ε jψ

)
∂ j
[
(∂i∂z−λi∆)φ+ εipqλp∂qψ

]}
= δi

{(
δ jφ+ ε jψ

)[(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= δi

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= (∂i∂z−λi∆)

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
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Now apply the product rule twice for ∂i∂z and λi∆ letting ∆ = ∂t∂t in second expansion.

= ∂i∂z

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
−λi∂t∂t

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}

= ∂i


[(

∂ j∂z−λi∆
)

φ+ ε jlmλl∂mψ
] [

∂z
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂zψ

]
+
[(

∂ j∂i∂z−λi∂ j∆
)

φ+ εipqλp∂q∂ jψ
] [

∂z
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂zψ

]


−λi∂t


[(

∂ j∂z−λ j∆
)

φ+ ε jlmλl∂mψ
] [

∂t
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂tψ

]
+
[(

∂ j∂i∂z−λi∂ j∆
)

φ+ εipqλp∂q∂ jψ
] [

∂t
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂tψ

]


=
[(

∂ j∂z−λ j∆
)

φ+ ε jlmλl∂mψ
] [

∂i∂z
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂i∂zψ

]
+
[
∂z
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂zψ

] [
∂i
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂iψ

]
+
[(

∂i∂ j∂z−λi∂ j∆
)

φ+ εipqλp∂q∂ jψ
] [

∂i∂z
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂z∂iψ

]
+
[
∂z
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂zψ

] [
∂i
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂iψ

]
−
[(

∂ j∂z−λ j∆
)

φ+ ε jlmλl∂mψ
] [

λi∂t∂t
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλpλi∂q∂ j∂

2
t ψ
]

−
[
∂t
(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ j∂tψ

] [
λi∂t

(
∂ j∂z−λ j∆

)
φ+ ε jlmλlλi∂m∂tψ

]
−
[(

∂ j∂i∂z−λi∂ j∆
)

φ+ εipqλp∂q∂ jψ
] [

λi∂
2
t
(
∂ j∂z−λ j∆

)
φ+ ε jlmλlλi∂m∂2

t ψ
]

−
[
∂t
(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂m∂tψ

] [
∂tλi

(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλpλi∂q∂ j∂tψ

]
Notes on Tensors

1. ε jlmλl∂mψ · εipqλiλp∂q∂ j∂
2
t ψ = ε jlmλl∂mψ · ε33qλiλp∂q∂ j∂

2
t ψ = 0

2. λiλi = λ1λ1 +λ2λ2 +λ3λ3 = 0+0+1 = 1

3.
(
λ j∆φ

)(
λi∂ j∂

2
t ∆φ
)

= (∆φ)
(
λiλ j∂ j∂

2
t ∆φ
)

= (∆φ)
(
λi∂z∂

2
t ∆φ
)

as λ is a multiplier

and can be taken out of the brackets to act on a derivative.

4. εipqλp∂ j∂q∂zψ · ε jlmλl∂i∂mψ l = p = 3; [so i, q, j and m6= 3 (do δz)]

One index contracted so;
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εi3qε j3m =
[
δi jδqm−δimδq j

]
5. εipqλp∂q∂ j∂z∂iψ = εi3q∂1∂ j∂z∂2ψ+ εi3q∂2∂ j∂z∂1ψ =−1+1 = 0

6. ε jlm · εipqλlλp∂m∂q∂ j∂i∂zψ = ε j3m · εi3q∂m∂q∂ j∂zψ = 0 for reason in 5.

7. εipqλp∂q∂ j∂zψ→ εi3q∂q∂ j∂zψ the index i is outside the contraction. If we had ∂i

we could contract i and eliminate all with antisymmetric properties.

8. ∂t∂t = ∂2
t = ∆ as does ∂m∂m = ∂2

m = ∆ etc. but not ∂z∂z = ∂2
z 6= ∆ as z already

allocated.

9. ∂1 = ∂x;∂2 = ∂y;∂3 = ∂z

10. Example of procedure for eliminating permutation tensor notation by considering

the assignment of indexes to ensure non-zero status ofεi jk;

(
∂i∂ j∂

2
z φ
)

ε jlmλl∂m∂iψ

= ∂i∂ j
(
∂2

z φ
)
[ε231∂1∂iψ+ ε132∂2∂iψ]

= ∂i∂ j
(
∂2

z φ
)
[1×∂1∂i−1×∂2∂i]ψ

= ∂i∂ j
(
∂2

z φ
)
[∂x∂i−∂y∂i]ψ

= ∂i∂y
(
∂2

z φ
)
(∂x∂iψ)−∂i∂x

(
∂2

z φ
)

∂y∂iψ

,

when ∂1∂i→ j = 2;∂2∂i→ j = 1

11. For code put terms collected by order of z derivatives.
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=
[
∂ j∂zφ−λ j∆φ+ ε jlmλl∂mψ

] [
∂2

i ∂2
z ∂ jφ−∂ j∂

2
z ∆φ+ εipqλp∂q∂ j∂i∂zψ

]
+
[
∂i∂ j∂

2
z φ−λi∂ j∂z∆φ+ εipqλp∂q∂ j∂zψ

] [
∂i∂ j∂zφ−λ j∂i∆φ+ ε jlmλl∂m∂iψ

]
+
[
∂i∂ j∂zφ−λi∂ j∆φ+ εipqλp∂q∂ jψ

] [
∂i∂ j∂

2
z φ−λ j∂i∂z∆φ+ ε jlmλl∂m∂z∂iψ

]
+
[
∂ j∂

2
z φ−λ j∂z∆φ+ ε jlmλl∂m∂zψ

] [
∂2

i ∂ j∂zφ−∂ j∂z∆φ+ εipqλp∂q∂ j∂iψ
]

−
[
∂ j∂zφ−λ j∆φ+ ε jlmλl∂mψ

] [
∂2

t ∂2
z ∂ jφ−λiλi∂ j∂

2
t ∆φ+ εipqλpλi∂q∂ j∂

2
t ψ
]

−
[
∂i∂ j∂t∂zφ−λi∂ j∂t∆φ+ εipqλp∂q∂ j∂tψ

] [
λi∂ j∂z∂tφ−λiλ j∂t∆φ+ ε jlmλlλi∂m∂tψ

]
−
[
∂i∂ j∂zφ−λi∂ j∆φ+ εipqλp∂q∂ jψ

] [
λi∂ j∂z∂

2
t φ−λiλ j∂

2
t ∆φ+ ε jlmλlλi∂m∂2

t ψ
]

−
[
∂ j∂z∂tφ−λ j∂t∆φ+ ε jlmλl∂m∂tψ

] [
∂ j∂t∂

2
z φ−λiλi∂ j∂t∆φ+ εipqλpλi∂q∂ j∂tψ

]
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=
(
∂ j∂zφ

)(
∂2

i ∂2
z ∂ jφ

)
−
(
∂ j∂zφ

)(
∂ j∂

2
z ∆φ
)
+
(
∂ j∂zφ

)
εipqλp∂q∂ j∂z∂iψ

+
(
λ j∆φ

)(
∂2

z ∂ j∆φ
)
−
(
λ j∆φ

)(
∂2

i ∂2
z ∂ jφ

)
−
(
λ j∆φ

)
εipqλp∂q∂ j∂z∂iψ

+
(
∂2

i ∂2
z ∂ jφ

)
ε jlmλl∂mψ−

(
∂ j∂

2
z ∆φ
)

ε jlmλl∂mψ+ ε jlmλl∂mψ · εipqλp∂q∂ j∂z∂iψ

+
(
∂i∂ j∂

2
z φ
)(

∂i∂ j∂zφ
)
−
(
∂i∂ j∂

2
z φ
)(

λ j∂i∆φ
)
+
(
∂i∂ j∂

2
z φ
)

ε jlmλl∂m∂iψ

−
(
λi∂ j∂z∆φ

)(
∂i∂ j∂zφ

)
+
(
λi∂ j∂z∆φ

)(
λ j∂i∆φ

)
−
(
λi∂ j∂z∆φ

)
ε jlmλl∂m∂iψ

+εipqλp∂q∂ j∂zψ · ε jlmλl∂m∂iψ+
(
∂i∂ j∂zφ

)
εipqλp∂q∂ j∂zψ−

(
λ j∂i∆φ

)
εipqλp∂q∂ j∂zψ

+
(
∂ j∂i∂zφ

)(
∂i∂ j∂

2
z φ
)
−
(
∂i∂ j∂zφ

)(
λ j∂i∂z∆φ

)
+
(
∂i∂ j∂zφ

)
ε jlmλl∂m∂z∂iψ

−
(
λi∂ j∆φ

)(
∂i∂ j∂

2
z φ
)
+
(
λi∂ j∆φ

)(
λ j∂i∂z∆φ

)
−
(
λi∂ j∆φ

)
ε jlmλl∂m∂i∂zψ

+
(
∂i∂ j∂

2
z φ
)

εipqλp∂q∂ jψ−
(
λ j∂i∂z∆φ

)
εipqλp∂q∂ jψ+ εipqλp∂q∂ jψ · ε jlmλl∂m∂i∂zψ

+
(
∂ j∂

2
z φ
)(

∂2
i ∂ j∂zφ

)
−
(
∂ j∂

2
z φ
)(

∂ j∂z∆φ
)
+
(
∂ j∂

2
z φ
)

εipqλp∂q∂ j∂iψ

−
(
λ j∂z∆φ

)(
∂2

i ∂ j∂zφ
)
+
(
λ j∂z∆φ

)(
∂ j∂z∆φ

)
−
(
λ j∂z∆φ

)
εipqλp∂q∂ j∂iψ

+
(
∂2

i ∂ j∂zφ
)

ε jlmλl∂m∂zψ−
(
∂ j∂z∆φ

)
ε jlmλl∂m∂zψ+ ε jlmλl∂m∂zψ · εipqλp∂i∂q∂ jψ

−
(
∂ j∂zφ

)(
∂ j∂

2
t ∂2

z φ
)
+
(
∂ j∂zφ

)(
λiλi∂ j∂

2
t ∆φ
)
+
(
λ j∆φ

)(
∂2

t ∂2
z ∂ jφ

)
−
(
∂ j∂zφ

)
εipqλpλi∂q∂ j∂

2
t ψ+

(
λ j∆φ

)
εipqλpλi∂q∂ j∂

2
t ψ−

(
λ j∆φ

)(
λiλi∂ j∂

2
t ∆φ
)

−
(
λi∂

2
t ∂2

z ∂ jφ
)

ε jlmλl∂mψ+
(
λiλi∂ j∂

2
t ∆φ
)

ε jlmλl∂mψ+ ε jlmλl∂mψ · εipqλiλp∂q∂ j∂
2
t ψ

−
(
∂i∂ j∂t∂zφ

)(
λi∂ j∂z∂tφ

)
+
(
∂i∂ j∂t∂zφ

)(
λiλ j∂t∆φ

)
−
(
∂i∂ j∂t∂zφ

)
ε jlmλlλi∂m∂tψ

+
(
λi∂ j∂t∆φ

)(
λi∂ j∂t∂zφ

)
−
(
λi∂ j∂t∆φ

)(
λiλ j∂t∆φ

)
+
(
λi∂ j∂t∆φ

)
ε jlmλlλi∂m∂tψ

−
(
λi∂ j∂t∂zφ

)
εipqλp∂q∂ j∂tψ+

(
λiλ j∂t∆φ

)
εipqλp∂q∂ j∂tψ+ εipqλp∂q∂ j∂tψ · ε jlmλlλi∂m∂tψ

−
(
∂i∂ j∂zφ

)(
λi∂ j∂

2
t ∂zφ

)
+
(
∂i∂ j∂zφ

)(
λiλ j∂

2
t ∆φ
)
−
(
∂i∂ j∂zφ

)
ε jlmλlλi∂m∂2

t ψ

+
(
λi∂ j∆φ

)(
λi∂ j∂z∂

2
t ∆φ
)
−
(
λi∂ j∆φ

)(
λiλ j∂

2
t ∆φ
)
+
(
λi∂ j∆φ

)
ε jlmλlλi∂m∂2

t ψ

−
(
λi∂ j∂z∂

2
t ∆φ
)

εipqλp∂q∂ jψ+
(
λiλ j∂

2
t ∆φ
)

εipqλp∂q∂ jψ+ εipqλp∂q∂ jψ · ε jlmλlλi∂m∂2
t ψ

−
(
∂ j∂z∂tφ

)(
∂ j∂t∂

2
z φ
)
+
(
∂ j∂z∂tφ

)(
λiλi∂ j∂t∆φ

)
−
(
∂ j∂z∂tφ

)
εipqλpλi∂q∂ j∂tψ

+
(
λ j∂t∆φ

)(
∂ j∂t∂

2
z φ
)
−
(
λ j∂t∆φ

)(
λiλi∂ j∂t∆φ

)
−
(
∂ j∂t∂

2
z φ
)

ε jlmλl∂m∂tψ

−
(
λ j∂t∆φ

)
εipqλpλi∂q∂ j∂tψ+

(
λiλi∂ j∂t∆φ

)
ε jlmλl∂m∂tψ− ε jlmλl∂m∂tψ · εipqλpλi∂q∂ j∂tψ

Now eliminate where possible using the previously outlined notes.
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=
(
∂ j∂zφ

)(
∂ j∂

2
z ∆φ
)
−
(
∂ j∂zφ

)(
∂ j∂

2
z ∆φ
)
+0

+(∆φ)
(
∂3

z ∆φ
)
− (∆φ)

(
∂3

z ∆φ
)
−0

+
(
∆∂2

z ∂ jφ
)

ε jlmλl∂mψ−
(
∂ j∂

2
z ∆φ
)

ε jlmλl∂mψ+ ε jlmλl∂mψ · εipqλp∂q∂ j∂z∂iψ

+
(
∂i∂ j∂

2
z φ
)(

∂i∂ j∂zφ
)
−
(
∂i∂

3
z φ
)
(∂i∆φ)+

(
∂i∂ j∂

2
z φ
)

ε jlmλl∂m∂iψ

−
(
∂ j∂z∆φ

)(
∂ j∂

2
z φ
)
+
(
∂2

z ∆φ
)
(∂z∆φ)−

(
λi∂ j∂z∆φ

)
ε jlmλl∂m∂iψ

+εipqλp∂q∂ j∂zψ · ε jlmλl∂m∂iψ+
(
∂i∂ j∂zφ

)
εipqλp∂q∂ j∂zψ−

(
λ j∂i∆φ

)
εipqλp∂q∂ j∂zψ

+
(
∂ j∂i∂zφ

)(
∂i∂ j∂

2
z φ
)
−
(
∂i∂

2
z φ
)
(∂i∂z∆φ)+

(
∂i∂ j∂zφ

)
ε jlmλl∂m∂z∂iψ

−
(
∂ j∆φ

)(
∂ j∂

3
z φ
)
+(∂z∆φ)

(
∂2

z ∆φ
)
−
(
λi∂ j∆φ

)
ε jlmλl∂m∂i∂zψ

+
(
∂i∂ j∂

2
z φ
)

εipqλp∂q∂ jψ−
(
λ j∂i∂z∆φ

)
εipqλp∂q∂ jψ+ εipqλp∂q∂ jψ · ε jlmλl∂m∂i∂zψ

+
(
∂ j∂

2
z φ
)(

∆∂ j∂zφ
)
−
(
∂ j∂

2
z φ
)(

∂ j∂z∆φ
)
+0

−(∂z∆φ)
(
∆∂2

z φ
)
+(∂z∆φ)

(
∂2

z ∆φ
)
−0

+
(
∆∂ j∂zφ

)
ε jlmλl∂m∂zψ−

(
∂ j∂z∆φ

)
ε jlmλl∂m∂zψ+ ε jlmλl∂m∂zψ · εipqλp∂i∂q∂ jψ

−
(
∂ j∂zφ

)(
∂ j∂

2
t ∂2

z φ
)
+
(
∂ j∂zφ

)(
∂ j∂

2
t ∆φ
)
+(∆φ)

(
∂2

t ∂3
z φ
)

−0+0− (∆φ)
(
∂z∂

2
t ∆φ
)

−
(
∂2

t ∂2
z ∂ jφ

)
ε jlmλl∂mψ+

(
∂ j∂

2
t ∆φ
)

ε jlmλl∂mψ+ ε jlmλl∂mψ · εipqλiλp∂q∂ j∂
2
t ψ

−
(
∂ j∂t∂

2
z φ
)(

∂ j∂z∂tφ
)
+
(
∂t∂

3
z φ
)
(∂t∆φ)−

(
∂i∂ j∂t∂zφ

)
ε jlmλlλi∂m∂tψ

+
(
∂ j∂t∆φ

)(
∂ j∂t∂zφ

)
− (∂z∂t∆φ)(∂t∆φ)+

(
λi∂ j∂t∆φ

)
ε jlmλlλi∂m∂tψ

−
(
λi∂ j∂t∂zφ

)
εipqλp∂q∂ j∂tψ+

(
λiλ j∂t∆φ

)
εipqλp∂q∂ j∂tψ+ εipqλp∂q∂ j∂tψ · ε jlmλlλi∂m∂tψ

−
(
∂ j∂

2
z φ
)(

∂ j∂
2
t ∂zφ

)
+
(
∂3

z φ
)(

∂2
t ∆φ
)
−
(
∂i∂ j∂zφ

)
ε jlmλlλi∂m∂2

t ψ

+
(
∂ j∆φ

)(
∂ j∂z∂

2
t ∆φ
)
− (∂z∆φ)

(
∂2

t ∆φ
)
+
(
λi∂ j∆φ

)
ε jlmλlλi∂m∂2

t ψ

−
(
λi∂ j∂z∂

2
t ∆φ
)

εipqλp∂q∂ jψ+
(
λiλ j∂

2
t ∆φ
)

εipqλp∂q∂ jψ+ εipqλp∂q∂ jψ · ε jlmλlλi∂m∂2
t ψ

−
(
∂ j∂z∂tφ

)(
∂ j∂t∂

2
z φ
)
+
(
∂ j∂z∂tφ

)(
∂ j∂t∆φ

)
−0

+(∂t∆φ)
(
∂t∂

3
z φ
)
− (∂t∆φ)(∂z∂t∆φ)−

(
∂ j∂t∂

2
z φ
)

ε jlmλl∂m∂tψ

−0+
(
∂ j∂t∆φ

)
ε jlmλl∂m∂tψ−0

Now eliminate or collect like terms where we can and separate into derivatives of phi-

phi , phi-psi and psi-psi:-

φ - φ Terms
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=
(
∂i∂ j∂

2
z φ
)(

∂i∂ j∂zφ
)
−
(
∂i∂

3
z φ
)
(∂i∆φ)−

(
∂ j∂z∆φ

)(
∂ j∂

2
z φ
)
+
(
∂2

z ∆φ
)
(∂z∆φ)

+
(
∂i∂ j∂zφ

)(
∂i∂ j∂

2
z φ
)
−
(
∂i∂

2
z φ
)
(∂i∂z∆φ)−

(
∂ j∆φ

)(
∂ j∂

3
z φ
)
+(∂z∆φ)

(
∂2

z ∆φ
)

−
(
∂ j∂zφ

)(
∂ j∂

2
t ∂2

z φ
)
+
(
∂ j∂zφ

)(
∂ j∂

2
t ∆φ
)
+(∆φ)

(
∂2

t ∂3
z φ
)
− (∆φ)

(
∂z∂

2
t ∆φ
)

−
(
∂ j∂t∂

2
z φ
)(

∂ j∂z∂tφ
)
+
(
∂t∂

3
z φ
)
(∂t∆φ)+

(
∂ j∂t∆φ

)(
∂ j∂z∂tφ

)
−(∂t∂z∆φ)(∂t∆φ)−

(
∂ j∂

2
z φ
)(

∂ j∂
2
t ∂zφ

)
+
(
∂3

z φ
)(

∂2
t ∆φ
)

+
(
∂ j∆φ

)(
∂ j∂

2
t ∂zφ

)
− (∂z∆φ)

(
∂2

t ∆φ
)
−
(
∂ j∂z∂tφ

)(
∂ j∂t∂

2
z φ
)

+
(
∂ j∂t∂zφ

)(
∂ j∂t∆φ

)
+(∂t∆φ)

(
∂t∂

3
z φ
)
− (∂t∆φ)(∂z∂t∆φ)

φ - ψ Terms

=
(
∂i∂ j∂

2
z φ
)

ε jlmλl∂m∂iψ−
(
λi∂ j∂z∆φ

)
ε jlmλl∂m∂iψ

+
(
∂i∂ j∂zφ

)
εipqλp∂q∂ j∂zψ−

(
λ j∂i∆φ

)
εipqλp∂q∂ j∂zψ

+
(
∂i∂ j∂zφ

)
ε jlmλl∂m∂z∂iψ−

(
λi∂ j∆φ

)
ε jlmλl∂m∂i∂zψ

+
(
∂i∂ j∂

2
z φ
)

εipqλp∂q∂ jψ−
(
λ j∂i∂z∆φ

)
εipqλp∂q∂ jψ

−
(
∂2

t ∂2
z ∂ jφ

)
ε jlmλl∂mψ+

(
∂ j∂

2
t ∆φ
)

ε jlmλl∂mψ

−
(
∂i∂ j∂t∂zφ

)
ε jlmλlλi∂m∂tψ+

(
λi∂ j∂t∆φ

)
ε jlmλlλi∂m∂tψ

−
(
∂i∂ j∂zφ

)
ε jlmλlλi∂m∂2

t ψ+
(
λi∂ j∆φ

)
ε jlmλlλi∂m∂2

t ψ

−
(
∂ j∂t∂

2
z φ
)

ε jlmλl∂m∂tψ+
(
∂ j∂t∆φ

)
ε jlmλl∂m∂tψ

ψ - ψ Terms

ε jlmλl∂mψ · εipqλp∂q∂ j∂i∂zψ(= 0)

+εipqλp∂q∂ j∂zψ · ε jlmλl∂m∂iψ

+εipqλp∂q∂ jψ · ε jlmλl∂m∂i∂zψ

−ε jlmλl∂m∂zψ · εipqλp∂q∂i∂ jψ(= 0)

−ε jlmλl∂mψ · εipqλpλi∂q∂ j∂
2
t ψ(= 0)

−εipqλp∂q∂ j∂tψ · ε jlmλlλi∂m∂tψ(= 0)

−εipqλp∂q∂ jψ · ε jlmλlλi∂m∂2
t ψ(= 0)

−ε jlmλl∂m∂tψ · εipqλpλi∂q∂ j∂tψ(= 0)

Now eliminate the permutation tensors where possible.

φ - φ Terms

121



Appendix C APPENDIX - DERIVATION OF THE PERTURBATION EQUATIONS

=−3
(
∂ j∂z∆φ

)(
∂ j∂

2
z φ
)
+2(∂z∆φ)

(
∂2

z ∆φ
)
−
(
∂ j∂zφ

)(
∂ j∆∂2

z φ
)

+
(
∂ j∂zφ

)(
∂ j∆∆φ

)
+(∆φ)

(
∆∂3

z φ
)
− (∆φ)(∂z∆∆φ)+

(
∂3

z φ
)
(∆∆φ)

−(∂z∆φ)(∆∆φ)− (∂t∆φ)(∂z∂t∆φ)+2
(
∂ j∂t∂zφ

)(
∂ j∂t∆φ

)
Now using note 10 we can simplify the Φ - ψ terms.

φ - ψ Terms

=
(
∂i∂y∂2

z φ
)
(∂i∂xψ)−

(
∂i∂x∂2

z φ
)
(∂i∂yψ)− (∂y∆∂zφ)(∂x∂zψ)

+(∂x∆∂zφ)(∂y∂zψ)+
(
∂ j∂y∂zφ

)(
∂ j∂x∂zψ

)
−
(
∂ j∂x∂zφ

)(
∂ j∂y∂zψ

)
−(∂y∆φ)

(
∂x∂2

z ψ
)
+(∂x∆φ)

(
∂y∂2

z ψ
)
+(∂i∂y∂zφ)(∂i∂x∂zψ)

−(∂i∂x∂zφ)(∂i∂y∂zψ)− (∂y∆φ)
(
∂x∂2

z ψ
)
+(∂x∆φ)

(
∂y∂2

z ψ
)

+
(
∂ j∂y∂2

z φ
)(

∂ j∂xψ
)
−
(
∂ j∂x∂2

z φ
)(

∂ j∂yψ
)
− (∂y∂z∆φ)(∂x∂zψ)

+(∂x∆∂zφ)(∂y∂zψ)−
(
∂y∆∂2

z φ
)
(∂xψ)+

(
∂x∆∂2

z φ
)
(∂yψ)+(∂y∆∆φ)(∂xψ)

−(∂x∆∆φ)(∂yψ)−
(
∂t∂y∂2

z φ
)
(∂t∂xψ)+

(
∂t∂x∂2

z φ
)
(∂t∂yψ)

+(∂t∂y∆φ)(∂t∂xψ)− (∂t∂x∆φ)(∂t∂yψ)−
(
∂y∂2

z φ
)
(∂x∆ψ)+

(
∂x∂2

z φ
)
(∂y∆ψ)

+(∂y∆φ)(∂x∆ψ)− (∂x∆φ)(∂y∆ψ)+
(
∂t∂x∂2

z φ
)
(∂t∂yψ)−

(
∂t∂y∂2

z φ
)
(∂t∂xψ)

+(∂t∂y∆φ)(∂t∂xψ)− (∂t∂x∆φ)(∂t∂yψ)

ψ – ψ Terms (Employing Kronecker Delta)

εipqλp(∂q∂ j∂zψ) · ε jlmλl(∂m∂iψ)

= εi3q(∂q∂ j∂zψ) · ε j3m(∂m∂iψ)

εi3qε j3m = ε3iqε3 jm = δi jδmq−δimδ jq

⇒
(
δi jδmq−δimδ jq

)
(∂q∂ j∂zψ)(∂m∂iψ)

= (∂q∂i∂zψ)(∂q∂iψ)− (∆∂zψ)(∆ψ)

And similarly,

εipqλp(∂q∂ jψ) · ε jlmλl(∂m∂i∂zψ)

= εi3q(∂q∂ jψ) · ε j3m(∂m∂i∂zψ)

εi3qε j3m = ε3iqε3 jm = δi jδmq−δimδ jq

⇒
(
δi jδmq−δimδ jq

)
(∂q∂ jψ)(∂m∂i∂zψ)

= (∂q∂iψ)(∂q∂i∂zψ)− (∆ψ)(∆∂zψ)

[ i, q, j, m 6= 3 so no δz ]

Combining the two results gives;
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= 2(∂q∂i∂zψ)(∂q∂iψ)−2(∆ψ)(∆∂zψ)

Now we need to expand the derivatives employing Einstein’s Summation Convention

and simplify where possible. We shall expand the ψ - ψ terms first to illustrate the tech-

nique and because there are not many terms.

ψ - ψ Terms

= 2(∂q∂i∂zψ)(∂q∂iψ)−2(∆ψ)(∆∂zψ)

= 2
[(

∂q∂x∂zψ
)(

∂q∂xψ
)
+
(
∂q∂y∂zψ

)(
∂q∂yψ

)
− (∆ψ)(∆∂zψ)

]
= 2(∂2

x∂zψ)(∂2
xψ)+2(∂x∂y∂zψ)(∂x∂yψ)+2(∂x∂y∂zψ)(∂x∂yψ)

+2(∂2
y∂zψ)(∂2

yψ)

−2(∂2
xψ)(∂2

x∂zψ)− (∂2
xψ)(∂2

y∂zψ)− (∂2
yψ)(∂2

x∂zψ)− (∂2
yψ)(∂2

y∂zψ)

We are left with;

= 4(∂x∂y∂zψ)(∂x∂yψ)−2(∂2
xψ)(∂2

y∂zψ)−2(∂2
yψ)(∂2

x∂zψ)

φ - φ Terms

Now expand the terms;

=−3(∂x∂z∆φ)
(
∂x∂2

z φ
)
−3(∂y∂z∆φ)

(
∂y∂2

z φ
)
−3
(
∂2

z ∆φ
)(

∂3
z φ
)

+2(∂z∆φ)
(
∂2

z ∆φ
)
− (∂x∂zφ)

(
∂x∆∂2

z φ
)
− (∂y∂zφ)

(
∂y∆∂2

z φ
)

−
(
∂2

z φ
)(

∆∂3
z φ
)
+(∂x∂zφ)(∂x∆∆φ)+(∂y∂zφ)(∂y∆∆φ)+

(
∂2

z φ
)
(∆∆∂zφ)

+(∆φ)
(
∆∂3

z φ
)
+
(
∂3

z φ
)
(∆∆φ)− (∂x∆φ)(∂x∂z∆φ)− (∂y∆φ)(∂y∂z∆φ)

−(∂z∆φ)
(
∆∂2

z φ
)
− (∆φ)(∆∆∂zφ)− (∂z∆φ)(∆∆φ)

+2
(
∂ j∂t∂zφ

)(
∂ j∂t∆φ

)
Now remove the del operators;

Note:

∆∆ = (∂2
i )

2 =
(
∂2

x +∂2
y +∂2

z
)2 = ∂4

x +2∂2
x∂2

y +2∂2
x∂2

z +2∂2
y∂2

z +∂4
y +∂4

z
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So,
=

−3
(
∂3

x∂zφ
)(

∂x∂2
z φ
)
−3
(
∂x∂2

y∂zφ
)(

∂x∂2
z φ
)
−3
(
∂x∂3

z φ
)(

∂x∂2
z φ
)

−3
(
∂2

x∂y∂zφ
)(

∂y∂2
z φ
)
−3
(
∂3

y∂zφ
)(

∂y∂2
z φ
)
−3
(
∂y∂3

z φ
)(

∂y∂2
z φ
)

−3
(
∂2

x∂2
z φ
)(

∂3
z φ
)
−3
(
∂2

y∂2
z φ
)(

∂3
z φ
)
−3
(
∂4

z φ
)(

∂3
z φ
)

+2
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)
+2
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
+2
(
∂2

x∂zφ
)(

∂4
z φ
)

+2
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)
+2
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)
+2
(
∂2

y∂zφ
)(

∂4
z φ
)

+2
(
∂3

z φ
)(

∂2
x∂2

z φ
)
+2
(
∂3

z φ
)(

∂2
y∂2

z φ
)
+2
(
∂3

z φ
)(

∂4
z φ
)

−(∂x∂z)
(
∂3

x∂2
z φ
)
− (∂x∂z)

(
∂x∂2

y∂2
z φ
)
− (∂x∂z)

(
∂x∂4

z φ
)

−(∂y∂z)
(
∂2

x∂y∂2
z φ
)
− (∂y∂z)

(
∂3

y∂2
z φ
)
− (∂y∂z)

(
∂y∂4

z φ
)

−
(
∂2

z
)(

∂2
x∂3

z φ
)
−
(
∂2

z
)(

∂2
y∂3

z φ
)
−
(
∂2

z
)(

∂5
z φ
)

+(∂x∂z)
(
∂5

xφ
)
+(∂x∂z)

(
∂x∂4

yφ
)
+(∂x∂z)

(
∂x∂4

z φ
)

+2(∂x∂z)
(
∂3

x∂2
yφ
)
+2(∂x∂z)

(
∂3

x∂2
z φ
)
+2(∂x∂z)

(
∂x∂2

y∂2
z φ
)

+(∂y∂z)
(
∂4

x∂yφ
)
+(∂y∂z)

(
∂5

yφ
)
+(∂y∂z)

(
∂y∂4

z φ
)

+2(∂y∂z)
(
∂2

x∂3
yφ
)
+2(∂y∂z)

(
∂2

x∂y∂2
z φ
)
+2(∂y∂z)

(
∂3

y∂2
z φ
)

+
(
∂2

z φ
)(

∂4
x∂zφ

)
+
(
∂2

z φ
)(

∂4
y∂zφ

)
+
(
∂2

z φ
)(

∂5
z φ
)

+2
(
∂2

z φ
)(

∂2
x∂2

y∂zφ
)
+2
(
∂2

z φ
)(

∂2
x∂3

z φ
)
+2
(
∂2

z φ
)(

∂2
y∂3

z φ
)

+
(
∂2

xφ
)(

∂2
x∂3

z φ
)
+
(
∂2

xφ
)(

∂2
y∂3

z φ
)
+
(
∂2

xφ
)(

∂5
z φ
)

+
(
∂2

yφ
)(

∂2
x∂3

z φ
)
+
(
∂2

yφ
)(

∂2
y∂3

z φ
)
+
(
∂2

yφ
)(

∂5
z φ
)

+
(
∂2

z φ
)(

∂2
x∂3

z φ
)
+
(
∂2

z φ
)(

∂2
y∂3

z φ
)
+
(
∂2

z φ
)(

∂5
z φ
)

+
(
∂3

z φ
)(

∂4
xφ
)
+
(
∂3

z φ
)(

∂4
yφ
)
+
(
∂3

z φ
)(

∂4
z φ
)

+2
(
∂3

z φ
)(

∂2
x∂2

yφ
)
+2
(
∂3

z φ
)(

∂2
x∂2

z φ
)
+2
(
∂3

z φ
)(

∂2
y∂2

z φ
)

−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂2
y∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)

−
(
∂x∂2

yφ
)(

∂3
x∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂2
y∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂3
z φ
)

−
(
∂x∂2

z φ
)(

∂3
x∂zφ

)
−
(
∂x∂2

z φ
)(

∂x∂2
y∂zφ

)
−
(
∂x∂2

z φ
)(

∂x∂3
z φ
)

−
(
∂2

x∂yφ
)(

∂2
x∂y∂zφ

)
−
(
∂2

x∂yφ
)(

∂3
y∂zφ

)
−
(
∂2

x∂yφ
)(

∂y∂3
z φ
)

−
(
∂3

yφ
)(

∂2
x∂y∂zφ

)
−
(
∂3

yφ
)(

∂3
y∂zφ

)
−
(
∂3

yφ
)(

∂y∂3
z φ
)

−
(
∂y∂2

z φ
)(

∂2
x∂y∂zφ

)
−
(
∂y∂2

z φ
)(

∂3
y∂zφ

)
−
(
∂y∂2

z φ
)(

∂y∂3
z φ
)

−
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)
−
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

x∂zφ
)(

∂4
z φ
)

−
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂4
z φ
)

−
(
∂3

z φ
)(

∂2
x∂2

z φ
)
−
(
∂3

z φ
)(

∂2
y∂2

z φ
)
−
(
∂3

z φ
)(

∂4
z φ
)
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−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂4
y∂zφ

)
−
(
∂2

xφ
)(

∂5
z φ
)

−2
(
∂2

xφ
)(

∂2
x∂2

y∂zφ
)
−2
(
∂2

xφ
)(

∂2
x∂3

z φ
)
−2
(
∂2

xφ
)(

∂2
y∂3

z φ
)

−
(
∂2

yφ
)(

∂4
x∂zφ

)
−
(
∂2

yφ
)(

∂4
y∂zφ

)
−
(
∂2

yφ
)(

∂5
z φ
)

−2
(
∂2

yφ
)(

∂2
x∂2

y∂zφ
)
−2
(
∂2

yφ
)(

∂2
x∂3

z φ
)
−2
(
∂2

yφ
)(

∂2
y∂3

z φ
)

−
(
∂2

z φ
)(

∂4
x∂zφ

)
−
(
∂2

z φ
)(

∂4
y∂zφ

)
−
(
∂2

z φ
)(

∂5
z φ
)

−2
(
∂2

z φ
)(

∂2
x∂2

y∂zφ
)
−2
(
∂2

z φ
)(

∂2
x∂3

z φ
)
−2
(
∂2

z φ
)(

∂2
y∂3

z φ
)

−
(
∂2

x∂zφ
)(

∂4
xφ
)
−
(
∂2

x∂zφ
)(

∂4
yφ
)
−
(
∂2

x∂zφ
)(

∂4
z φ
)

−2
(
∂2

x∂zφ
)(

∂2
x∂2

yφ
)
−2
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
−2
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)

−
(
∂2

y∂zφ
)(

∂4
xφ
)
−
(
∂2

y∂zφ
)(

∂4
yφ
)
−
(
∂2

y∂zφ
)(

∂4
z φ
)

−2
(
∂2

y∂zφ
)(

∂2
x∂2

yφ
)
−2
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)
−2
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)

−
(
∂3

z φ
)(

∂4
xφ
)
−
(
∂3

z φ
)(

∂4
yφ
)
−
(
∂3

z φ
)(

∂4
z φ
)

−2
(
∂3

z φ
)(

∂2
x∂2

yφ
)
−2
(
∂3

z φ
)(

∂2
y∂2

z φ
)
−2
(
∂3

z φ
)(

∂2
x∂2

z φ
)

+2
(
∂2

x∂zφ
)(

∂4
xφ
)
+2
(
∂2

x∂zφ
)(

∂2
x∂2

yφ
)
+2
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)

+2(∂x∂y∂zφ)
(
∂3

x∂yφ
)
+2(∂x∂y∂zφ)

(
∂x∂3

yφ
)
+2(∂x∂y∂zφ)

(
∂x∂y∂2

z φ
)

+2
(
∂x∂2

z φ
)(

∂3
x∂zφ

)
+2
(
∂x∂2

z φ
)(

∂x∂2
y∂zφ

)
+2
(
∂x∂2

z φ
)(

∂x∂3
z φ
)

+2(∂x∂y∂zφ)
(
∂3

x∂yφ
)
+2(∂x∂y∂zφ)

(
∂x∂3

yφ
)
+2(∂x∂y∂zφ)

(
∂x∂y∂2

z φ
)

+2
(
∂2

y∂zφ
)(

∂2
x∂2

yφ
)
+2
(
∂2

y∂zφ
)(

∂4
yφ
)
+2
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)

+2
(
∂y∂2

z φ
)(

∂2
x∂y∂zφ

)
+2
(
∂y∂2

z φ
)(

∂3
y∂zφ

)
+2
(
∂y∂2

z φ
)(

∂y∂3
z φ
)

+2
(
∂x∂2

z φ
)(

∂3
x∂zφ

)
+2
(
∂x∂2

z φ
)(

∂x∂2
y∂zφ

)
+2
(
∂x∂2

z φ
)(

∂x∂3
z φ
)

+2
(
∂y∂2

z φ
)(

∂2
x∂y∂zφ

)
+2
(
∂y∂2

z φ
)(

∂3
y∂zφ

)
+2
(
∂y∂2

z φ
)(

∂y∂3
z φ
)

+2
(
∂3

z φ
)(

∂2
x∂2

z φ
)
+2
(
∂3

z φ
)(

∂2
y∂2

z φ
)
+2
(
∂3

z φ
)(

∂4
z φ
)

φ - φ Terms

Collect and delete terms:-
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=

+(∂x∂zφ)
(
∂5

xφ
)
+(∂x∂zφ)

(
∂x∂4

yφ
)

+2(∂x∂zφ)
(
∂3

x∂2
yφ
)
+(∂x∂zφ)

(
∂3

x∂2
z φ
)
+(∂x∂zφ)

(
∂x∂2

y∂2
z φ
)

+(∂y∂zφ)
(
∂4

x∂yφ
)
+(∂y∂zφ)

(
∂5

yφ
)

+2(∂y∂zφ)
(
∂2

x∂3
yφ
)
+(∂y∂zφ)

(
∂2

x∂y∂2
z φ
)
+(∂y∂zφ)

(
∂3

y∂2
z φ
)

−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂2
y∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)

−
(
∂x∂2

yφ
)(

∂3
x∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂2
y∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂3
z φ
)

−
(
∂2

x∂yφ
)(

∂2
x∂y∂zφ

)
−
(
∂2

x∂yφ
)(

∂3
y∂zφ

)
−
(
∂2

x∂yφ
)(

∂y∂3
z φ
)

−
(
∂3

yφ
)(

∂2
x∂y∂zφ

)
−
(
∂3

yφ
)(

∂3
y∂zφ

)
−
(
∂3

yφ
)(

∂y∂3
z φ
)

−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂4
y∂zφ

)
−2
(
∂2

xφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

xφ
)(

∂2
x∂3

z φ
)
−
(
∂2

xφ
)(

∂2
y∂3

z φ
)

−
(
∂2

yφ
)(

∂4
x∂zφ

)
−
(
∂2

yφ
)(

∂4
y∂zφ

)
−2
(
∂2

yφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

yφ
)(

∂2
x∂3

z φ
)
−
(
∂2

yφ
)(

∂2
y∂3

z φ
)

−
(
∂2

x∂zφ
)(

∂4
yφ
)
−
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂4
xφ
)
+
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)

−
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)

+
(
∂2

x∂zφ
)(

∂4
xφ
)
+
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)

+4(∂x∂y∂zφ)
(
∂3

x∂yφ
)
+4(∂x∂y∂zφ)

(
∂x∂3

yφ
)
+4(∂x∂y∂zφ)

(
∂x∂y∂2

z φ
)

+
(
∂2

y∂zφ
)(

∂4
yφ
)

φ - ψ Terms

126



Appendix C APPENDIX - DERIVATION OF THE PERTURBATION EQUATIONS

=
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−
(
∂2

x∂2
z φ
)
(∂x∂yψ)+

(
∂2

y∂2
z φ
)
(∂x∂yψ)−

(
∂x∂y∂2

z φ
)(

∂2
yψ
)

+
(
∂y∂3

z φ
)
(∂x∂zψ)−

(
∂x∂3

z φ
)
(∂y∂zψ)− (∂y∆∂zφ)(∂x∂zψ)+(∂x∆∂zφ)(∂y∂zψ)

+(∂x∂y∂zφ)
(
∂2

x∂zψ
)
−
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+

(
∂2

y∂zφ
)
(∂x∂y∂zψ)

−(∂x∂y∂zφ)
(
∂2

y∂zψ
)
+
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)
−
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
− (∂y∆φ)

(
∂x∂2

z ψ
)

+(∂x∆φ)
(
∂y∂2

z ψ
)
+(∂x∂y∂zφ)

(
∂2

x∂zψ
)
−
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+

(
∂2

y∂zφ
)
(∂x∂y∂zψ)

−(∂x∂y∂zφ)
(
∂2

y∂zψ
)
+
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)
−
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
− (∂y∆φ)

(
∂x∂2

z ψ
)

+(∂x∆φ)
(
∂y∂2

z ψ
)
+
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−
(
∂2

x∂2
z φ
)
(∂x∂yψ)+

(
∂2

y∂2
z φ
)
(∂x∂yψ)

−
(
∂x∂y∂2

z φ
)(

∂2
yψ
)
+
(
∂y∂3

z φ
)
(∂x∂zψ)−

(
∂x∂3

z φ
)
(∂y∂zψ)− (∂y∂z∆φ)(∂x∂zψ)

+(∂x∆∂zφ)(∂y∂zψ)−
(
∂y∆∂2

z φ
)
(∂xψ)+

(
∂x∆∂2

z φ
)
(∂yψ)+(∂y∆∆φ)(∂xψ)

−(∂x∆∆φ)(∂yψ)−
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
+
(
∂2

x∂2
z φ
)
(∂x∂yψ)−

(
∂2

y∂2
z φ
)
(∂x∂yψ)

+
(
∂x∂y∂2

z φ
)(

∂2
yψ
)
−
(
∂y∂3

z φ
)
(∂x∂zψ)+

(
∂x∂3

z φ
)
(∂y∂zψ)

+(∂x∂y∆φ)
(
∂2

xψ
)
−
(
∂2

x∆φ
)
(∂x∂yψ)+

(
∂2

y∆ψ
)
(∂x∂yφ)− (∂x∂y∆φ)

(
∂2

yψ
)

+(∂y∆∂zφ)(∂x∂zψ)− (∂x∆∂zφ)(∂y∂zψ)−
(
∂y∂2

z φ
)
(∂x∆ψ)+

(
∂x∂2

z φ
)
(∂y∆ψ)

+(∂y∆φ)(∂x∆ψ)− (∂x∆φ)(∂y∆ψ)−
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
+
(
∂2

x∂2
z φ
)
(∂x∂yψ)

−
(
∂2

y∂2
z φ
)
(∂x∂yψ)+

(
∂x∂y∂2

z φ
)(

∂2
yψ
)
−
(
∂y∂3

z φ
)
(∂x∂zψ)+

(
∂x∂3

z φ
)
(∂y∂zψ)

+(∂x∂y∆φ)
(
∂2

xψ
)
−
(
∂2

x∆φ
)
(∂x∂yψ)+

(
∂2

y∆φ
)
(∂x∂yψ)− (∂x∂y∆φ)

(
∂2

yψ
)

+(∂y∆∂zφ)(∂x∂zψ)− (∂x∆∂zφ)(∂y∂zψ)

Tidy up.

= 2(∂x∆φ)
(
∂y∂2

z ψ
)
+2(∂x∂y∂zφ)

(
∂2

x∂zψ
)
−2
(
∂2

x∂zφ
)
(∂x∂y∂zψ)

+2
(
∂2

y∂zφ
)
(∂x∂y∂zψ)−2(∂x∂y∂zφ)

(
∂2

y∂zψ
)
+2
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)

−2
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
−2(∂y∆φ)

(
∂x∂2

z ψ
)
−
(
∂y∆∂2

z φ
)
(∂xψ)

+
(
∂x∆∂2

z φ
)
(∂yψ)+(∂y∆∆φ)(∂xψ)− (∂x∆∆φ)(∂yψ)

−
(
∂y∂2

z φ
)
(∂x∆ψ)+

(
∂x∂2

z φ
)
(∂y∆ψ)+(∂y∆φ)(∂x∆ψ)

−(∂x∆φ)(∂y∆ψ)+2(∂x∂y∆φ)
(
∂2

xψ
)
−2
(
∂2

x∆φ
)
(∂x∂yψ)

+2
(
∂2

y∆φ
)
(∂x∂yψ)−2(∂x∂y∆φ)

(
∂2

yψ
)

Now expand the del and del-del terms;
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= 2
(
∂3

xφ
)(

∂y∂2
z ψ
)
+2
(
∂x∂2

yφ
)(

∂y∂2
z ψ
)
+2
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
+2(∂x∂y∂zφ)

(
∂2

x∂zψ
)

−2
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+2

(
∂2

y∂zφ
)
(∂x∂y∂zψ)−2(∂x∂y∂zφ)

(
∂2

y∂zψ
)

+2
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)
−2
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
−2
(
∂2

x∂yφ
)(

∂x∂2
z ψ
)
−2
(
∂3

yφ
)(

∂x∂2
z ψ
)

−2
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)
−
(
∂2

x∂y∂2
z φ
)
(∂xψ)−

(
∂3

y∂2
z φ
)
(∂xψ)

−
(
∂y∂4

z φ
)
(∂xψ)+

(
∂3

x∂2
z φ
)
(∂yψ)+

(
∂x∂2

y∂2
z φ
)
(∂yψ)

+
(
∂4

x∂yφ
)
(∂xψ)+

(
∂5

yφ
)
(∂xψ)+

(
∂y∂4

z φ
)
(∂xψ)+2

(
∂2

x∂3
yφ
)
(∂xψ)+

(
∂x∂4

z φ
)
(∂yψ)

+2
(
∂2

x∂y∂2
z φ
)
(∂xψ)+2

(
∂3

y∂2
z φ
)
(∂xψ)−

(
∂5

xφ
)
(∂yψ)−

(
∂x∂4

yφ
)
(∂yψ)

−
(
∂x∂4

z φ
)
(∂yψ)−2

(
∂3

x∂2
yφ
)
(∂yψ)−2

(
∂3

x∂2
z φ
)
(∂yψ)−2

(
∂x∂2

y∂2
z φ
)
(∂yψ)

−
(
∂y∂2

z φ
)(

∂3
xψ
)
−
(
∂y∂2

z φ
)(

∂x∂2
yψ
)
−
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)
+
(
∂x∂2

z φ
)(

∂2
x∂yψ

)
+
(
∂x∂2

z φ
)(

∂3
yψ
)
+
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
−
(
∂3

xφ
)(

∂2
x∂yψ

)
−
(
∂3

xφ
)(

∂3
yψ
)

−
(
∂3

xφ
)(

∂y∂2
z ψ
)
−
(
∂x∂2

yφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂2
x∂yψ

)
−
(
∂x∂2

z φ
)(

∂2
x∂yψ

)
−
(
∂x∂2

z φ
)(

∂3
yψ
)
−
(
∂x∂2

z φ
)(

∂y∂2
z ψ
)
+
(
∂2

x∂yφ
)(

∂3
xψ
)
+
(
∂2

x∂yφ
)(

∂x∂2
yψ
)

+
(
∂2

x∂yφ
)(

∂x∂2
z ψ
)
+
(
∂3

yφ
)(

∂3
xψ
)
+
(
∂3

yφ
)(

∂x∂2
yψ
)
+
(
∂3

yφ
)(

∂x∂2
z ψ
)

+
(
∂y∂2

z φ
)(

∂3
xψ
)
+
(
∂y∂2

z φ
)(

∂x∂2
yψ
)
+
(
∂y∂2

z φ
)(

∂x∂2
z ψ
)

+2
(
∂3

x∂yφ
)(

∂2
xψ
)
+2
(
∂x∂3

yφ
)(

∂2
xψ
)
+2
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−2
(
∂4

xφ
)
(∂x∂yψ)

−2
(
∂2

x∂2
yφ
)
(∂x∂yψ)−2

(
∂2

x∂2
z φ
)
(∂x∂yψ)+2

(
∂2

x∂2
yφ
)
(∂x∂yψ)+2

(
∂4

yφ
)
(∂x∂yψ)

+2
(
∂2

y∂2
z φ
)
(∂x∂yψ)−2

(
∂3

x∂yφ
)(

∂2
yψ
)
−2
(
∂x∂3

yφ
)(

∂2
yψ
)
−2
(
∂x∂y∂2

z φ
)(

∂2
yψ
)

Now collect terms and cancel down;

φ – ψ Terms

=
(
∂3

xφ
)(

∂y∂2
z ψ
)
+2
(
∂x∂2

yφ
)(

∂y∂2
z ψ
)
+2(∂x∂y∂zφ)

(
∂2

x∂zψ
)

−2
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+2

(
∂2

y∂zφ
)
(∂x∂y∂zψ)−2(∂x∂y∂zφ)

(
∂2

y∂zψ
)

−
(
∂2

x∂yφ
)(

∂x∂2
z ψ
)
−
(
∂3

yφ
)(

∂x∂2
z ψ
)
+
(
∂4

x∂yφ
)
(∂xψ)+

(
∂5

yφ
)
(∂xψ)

+2
(
∂2

x∂3
yφ
)
(∂xψ)+

(
∂2

x∂y∂2
z φ
)
(∂xψ)+

(
∂3

y∂2
z φ
)
(∂xψ)−

(
∂5

xφ
)
(∂yψ)

−
(
∂x∂4

yφ
)
(∂yψ)−2

(
∂3

x∂2
yφ
)
(∂yψ)−

(
∂3

x∂2
z φ
)
(∂yψ)−

(
∂x∂2

y∂2
z φ
)
(∂yψ)

−
(
∂3

xφ
)(

∂2
x∂yψ

)
−
(
∂3

xφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂2
x∂yψ

)
+
(
∂2

x∂yφ
)(

∂3
xψ
)
+
(
∂2

x∂yφ
)(

∂x∂2
yψ
)
+
(
∂3

yφ
)(

∂3
xψ
)
+
(
∂3

yφ
)(

∂x∂2
yψ
)

+2
(
∂3

x∂yφ
)(

∂2
xψ
)
+2
(
∂x∂3

yφ
)(

∂2
xψ
)
+2
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−2
(
∂4

xφ
)
(∂x∂yψ)

−2
(
∂2

x∂2
z φ
)
(∂x∂yψ)+2

(
∂4

yφ
)
(∂x∂yψ)+2

(
∂2

y∂2
z φ
)
(∂x∂yψ)−2

(
∂3

x∂yφ
)(

∂2
yψ
)

−2
(
∂x∂3

yφ
)(

∂2
yψ
)
−2
(
∂x∂y∂2

z φ
)(

∂2
yψ
)
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Finding Curl of Non-Linear N.S. Terms

Psi Equation.

ε̃ ·
(
ũ · ∇̃ũ

)
= ε̃ ·

[(
δ̃φ+ ε̃ψ

)
· ∇̃
(

δ̃φ+ ε̃ψ

)]
= εi

(
u j∇ jui

)
= εi

[(
δ jφ+ ε jψ

)
∇ j (δiφ+ εiψ)

]
= εi

{(
δ jφ+ ε jψ

)
∂ j
[
(∂i∂z−λi∆)φ+ εipqλp∂qψ

]}
= εi

{(
δ jφ+ ε jψ

)[(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= εi

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}
= (εirs∂sλr)

{[(
∂ j∂z−λ j∆

)
φ+ ε jlmλl∂mψ

] [(
∂ j∂i∂z−λi∂ j∆

)
φ+ εipqλp∂q∂ jψ

]}

=
[
∂ j∂zφ−λ j∆φ+ ε jlmλl∂mψ

] [
εirsλr∂s

(
∂ j∂i∂z−λi∂ j∆

)
φ+ εirsλr∂sεipqλp∂q∂ jψ

]
+
[
∂ j∂i∂zφ−λi∂ j∆φ+ εipqλp∂q∂ jψ

] [
εirsλr∂s

(
∂ j∂zφ−λ j∆φ

)
+ εirsλr∂sε jlmλl∂mψ

]
=
[
∂ j∂zφ−λ j∆φ+ ε jlmλl∂mψ

] [
εirsλr∂i∂ j∂s∂z−0+ εirsλr∂sεipqλp∂ j∂qψ

]
+
[
∂i∂ j∂zφ−λi∂ j∆φ+ εipqλp∂ j∂qψ

] [
εirsλr∂ j∂s∂zφ− εirsλrλ j∂s∆φ+ εirsλr∂sε jlmλl∂mψ

]
=
(
∂ j∂zφ

)(
εirsλr∂i∂ j∂s∂zφ

)
+
(
∂ j∂zφ

)(
εirsλr∂sεipqλp∂ j∂qψ

)
−
(
λ j∆φ

)(
εirsλr∂i∂ j∂s∂zφ

)
−
(
λ j∆φ

)(
εirsλr∂sεipqλp∂ j∂qψ

)
+
(
ε jlmλl∂mψεirsλr∂i∂ j∂s∂zφ

)
+
(
ε jlmλl∂mψεirsλr∂sεipqλp∂ j∂qψ

)
+
(
∂i∂ j∂zφ

)(
εirsλr∂ j∂s∂zφ

)
−
(
∂i∂ j∂zφ

)(
εirsλrλ j∂s∆φ

)
+
(
∂i∂ j∂zφ

)(
εirsλr∂sε jlmλl∂mψ

)
+ εipqλp∂ j∂qψεirsλr∂ j∂s∂zφ

−εipqλp∂ j∂qψεirsλrλ j∂s∆φ+
(
εipqλp∂ j∂qψεirsλr∂sε jlmλl∂mψ

)
Another, result of interest;

∂̃ · ε̃ = (∂i∂z−λi∆)εi jk∂ jλk = ∂i∂zεi jk∂ jλk−∆εi jkλkλi∂ j = 0

We are combining symmetric and anti-symmetric tensors, which eliminate each other.

Kronecker Delta – Notes
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δ is


1 0 0

0 1 0

0 0 1

 i.e. δi j = 1 if i = j and δi j = 0 if i 6= j

I.e. δ j j = δ11 +δ22 +δ33 = 3

One Index Contracted

εi jkεimn = δ jmδkn−δ jnδkm

Two Indices Contracted

εi jkεi jn = δ j jδkn−δ jnδk j = 3δkn−δkn = 2kn

Three Indices Contracted

εi jkεi jk = 2δkk = 6

Also, recall the fact that; εi jk =−εik j antisymmetric j 6= k.

Another result that we may require is;

εi jkεilmε jlm

=
(
δ jlδkm−δ jmδkl

)
ε jlm

= δ jlδkmε jlm−δ jmδklε jlm

= εllk− εmkm

= 0

Now we shall extract and expand the terms.

φ – φ Terms

(
∂ j∂zφ

)
εirsλr∂i∂ j∂s∂zφ =

(
∂ j∂zφ

)[
ε132∂x∂ j∂y∂zφ+ ε231∂y∂ j∂x∂zφ

]
= 0

−
(
λ j∆φ

)[
εirsλr∂i∂ j∂s∂zφ

]
=−(∆φ)

[
ε132∂x∂y∂

2
z φ+ ε231∂y∂x∂

2
z φ
]
= 0
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(
∂i∂ j∂zφ

)
εirsλr∂ j∂s∂zφ =

(
∂i∂ j∂zφ

)[
ε132∂ j∂y∂zφ+ ε231∂ j∂x∂zφ

]
=
(
∂ j∂y∂zφ

)(
∂ j∂x∂zφ

)
−
(
∂ j∂x∂zφ

)(
∂ j∂y∂zφ

)
= 0

−
(
∂i∂

2
z φ
)
[ε132∂y∆φ+ ε231∂x∆φ] =

(
∂x∂2

z φ
)
(∂y∆φ)−

(
∂y∂2

z φ
)
(∂x∆φ)

=
(
∂x∂2

z φ
)(

∂2
x∂yφ

)
+
(
∂x∂2

z φ
)(

∂3
yφ
)
−
(
∂y∂2

z φ
)(

∂3
xφ
)
−
(
∂y∂2

z φ
)(

∂x∂2
yφ
)

ψ – ψ Terms

ε jlmλl∂mψεirsλr∂sεipqλp∂ j∂qψ

= ε j3m∂mψεi3s∂sεi3q∂ j∂qψ

= ε3 jm∂mψε3is∂sε3iq∂ j∂qψ

=
[(

δi jδms−δ jsδim
)
(∂mψ)(∂s)

]
εi3q∂ j∂qψ

= (∆ψ)ε3iq∂i∂qψ−
(
∂i∂ jψ

)
ε3iq∂ j∂qψ

= 0−
(
∂i∂ jψ

)[
ε312∂y∂ jψ+ ε321∂x∂ jψ

]
=−

(
∂x∂ jψ

)(
∂y∂ jψ

)
+
(
∂y∂ jψ

)(
∂x∂ jψ

)
= 0

εipqλp∂ j∂qψεirsλr∂sε jlmλl∂mψ

=
[(

δsq
)

∂ j∂q∂sψ
]

ε jlmλl∂mψ

=
(
∂ j∆ψ

)
ε jlmλl∂mψ

=
(
∂ j∆ψ

)
[ε231∂xψ+ ε132∂yψ]

= (∂y∆ψ)(∂xψ)− (∂x∆ψ)(∂yψ)

=
(
∂2

x∂yψ
)
(∂xψ)+

(
∂3

yψ
)
(∂xψ)

−
(
∂3

xψ
)
(∂yψ)−

(
∂x∂2

yψ
)
(∂yψ)

[ Note: j 6= 3]

φ – ψ Terms
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−
(
λ j∆φ

)[
εirsλr∂sεipqλp∂q∂ jψ

]
=−(∆φ)

[
εi3s∂sεi3q∂q∂zψ

]
=−(∆φ)

[
ε3is∂sε3iq∂q∂zψ

]
=−(∆φ)

[(
δiiδsq−δ3qδ3s

)
∂q∂z

]
δii = δ11 +δ22 = 2

=−(∆φ)
[(

2δsq−δsq
)

∂q∂z
]

=−(∆φ)
[(

δsq
)

∂s∂q∂zψ
]

=−(∆φ)(∆∂zψ)

(Two Indices Contracted)

Next;

=−
(
∂

2
xφ
)(

∂
2
x∂zψ

)
−
(
∂

2
yφ
)(

∂
2
y∂zψ

)
−
(
∂

2
xφ
)(

∂
2
y∂zψ

)
−
(
∂

2
yφ
)(

∂
2
x∂zψ

)

−
(
εipqλp∂ j∂qψ

)(
εirsλrλ j∂s∆φ

)
=−

(
εipqλp∂q∂zψ

)
(εirsλr∂s∆φ)

=−
[
εi3q∂q∂zψ(εi3s∂s∆φ)

]
=−

[(
δqs
)

∂q∂zψ(∂s∆φ)
]

=−
(
∂q∂zψ

)(
∂q∆φ

)
=−(∂x∂zψ)(∂x∆φ)− (∂y∂zψ)(∂y∆φ)

=−(∂x∂zψ)
(
∂3

xφ
)
− (∂x∂zψ)

(
∂x∂2

yφ
)
− (∂y∂zψ)

(
∂2

x∂yφ
)
− (∂y∂zψ)

(
∂3

yφ
)

[ Note: q 6= 3]

(
∂ j∂zφ

)
εirsλr∂sεipqλp∂ j∂qψ

=
(
∂ j∂zφ

)[
εi3s∂sεi3q∂ j∂qψ

]
=
(
∂ j∂zφ

)[
(δsq)∂s∂ j∂qψ

]
=
(
∂ j∂zφ

)(
∂ j∆ψ

)
= (∂x∂zφ)

(
∂3

xψ
)
+(∂x∂zφ)

(
∂x∂2

yψ
)
+(∂y∂zφ)

(
∂2

x∂yψ
)
+(∂y∂zφ)

(
∂3

yψ
)

ε jlmλl∂mψεirsλr∂i∂ j∂s∂zφ

=
[
ε j3m∂mψεi3s∂i∂ j∂s∂zφ

]
=
[
ε3 jm∂mψε3is∂i∂ j∂s∂zφ

]
=
[
−
(
δ33δ jm−δ3iδ3m

)
∂mψ∂i∆∂zφ

]
=
[(

δi jδms−δ jsδim
)
(∂mψ)(∂i∂ j∂s∂zφ)

]
= (∂mψ)(∆∂m∂zφ)− (∂iψ)(∆∂i∂zφ) = 0

(One Index Contracted)
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(
∂i∂ j∂zφ

)
εirsλr∂sε jlmλl∂mψ

=
(
∂i∂ j∂zφ

)[
εi3s∂sε j3m∂mψ

]
=
(
∂i∂ j∂zφ

)[
(δi jδsm−δimδ js)(∂s)(∂m)ψ

]
=
(
∂i∂ j∂zφ

)[
(∆ψ)−

(
∂i∂ jψ

)]
For first expansion i and j cannot be different hence,

= (∆∂zφ)(∆ψ)−
(
∂i∂ j∂zφ

)(
∂i∂ jψ

)
=
(
∂2

x∂zφ
)(

∂2
xψ
)
+
(
∂2

y∂zφ
)(

∂2
yψ
)
+
(
∂2

x∂zφ
)(

∂2
yψ
)
+
(
∂2

y∂zφ
)(

∂2
xψ
)

−(∂x∂y∂zφ)(∂x∂yψ)− (∂x∂y∂zφ)(∂x∂yψ)−
(
∂2

x∂zφ
)(

∂2
xψ
)
−
(
∂2

y∂zφ
)(

∂2
yψ
)

=
(
∂2

x∂zφ
)(

∂2
yψ
)
+
(
∂2

y∂zφ
)(

∂2
xψ
)
−2(∂x∂y∂zφ)(∂x∂yψ)

εipqλp∂ j∂qψεirsλr∂ j∂s∂zφ

=
[
εi3q∂ j∂qψεi3s∂ j∂s∂zφ

]
=
[(

δsq
)
(∂ j∂qψ)(∂i∂s∂zφ)

]
=
(
∂ j∂qψ

)(
∂ j∂q∂zφ

)
=
(
∂2

xψ
)(

∂2
x∂zφ

)
+2(∂x∂yψ)(∂x∂y∂zφ)+

(
∂2

yψ
)(

∂2
y∂zφ

)
The 2(∂x∂yψ)(∂x∂y∂zφ) terms cancel in the last two expansions.

Expanding Non-Linear N.S. Terms

Theta Equation

We do not need to find the curl or curl curl of the non-linear parts of the temperature

equation (Eqn. 12) as temperature is scalar.

Hence,
ũ · ∇̃θ

=
(

δ̃φ+ ε̃ψ

)
· ∇̃θ

= ui∇iθ

= (δiφ+ εiψ)∇iθ

=
[
(∂i∂z−λi∆)φ+

(
εi jkλ j∂k

)
ψ
]
·∂iθ

= ∂i∂zφ∂iθ−∆φ∂zθ+ εi jkλ j∂kψ∂iθ
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This gives;

(∂i∂zφ)(∂iθ)− (∆φ)(∂zθ)

= (∂x∂zφ)(∂xθ)+(∂y∂zφ)(∂yθ)+
(
∂2

z φ
)
(∂zθ)−

(
∂2

xφ
)
(∂zθ)−

(
∂2

yφ
)
(∂zθ)−

(
∂2

z φ
)
(∂zθ)

= (∂x∂zφ)(∂xθ)+(∂y∂zφ)(∂yθ)−
(
∂2

xφ
)
(∂zθ)−

(
∂2

yφ
)
(∂zθ)

and

(∂iθ)εi jkλ j∂kψ

= (∂iθ) [ε231∂2ψ+ ε132∂1ψ]

= (∂iθ) [∂xψ−∂yψ]

= (∂iθ)(∂xψ)− (∂iθ)(∂yψ)

= (∂xθ)(∂xψ)+(∂yθ)(∂xψ)+(∂zθ)(∂xψ)− (∂xθ)(∂yψ)− (∂yθ)(∂yψ)− (∂zθ)(∂yψ)
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D Appendix - Constant Flux

Chebyshev Calculations

D.1 Chebyshev Polynomials - Definitions

NOTE: In this Appendix the subscript used is n as opposed to l in the main body of

the thesis.

The Constant Flux condition is generalised byZ +1

−1
U∂z = 0

which can be readily performed for the basic flowZ +1

−1
U0∂z = 0.

However, we need to find the same integral for the perturbed flowZ +1

−1
Ŭ∂z = 0.

Which can be expressed as Z +1

−1
an(1− z2)Tn(z)∂z = 0.
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We begin initially by familiarising the reader with an overview of Chebyshev Polynomi-

als.

Let x = cosϑ or cos−1 x = ϑ.

Then the Chebyshev polynomial is defined as Tn(x) = cos
(
ncos−1 x

)
Expanding the terms we arrive at;

T0(x) = 1

T1(x) = x

T2(x) = 2x2−1

T3(x) = 4x3−3x

T4(x) = 8x4−8x2 +1

T5(x) = 16x5−20x3 +5x

T6(x) = 32x6−48x4 +18x2−1

T7(x) = 64x7−112x5 +56x3−7x

Recurrence relation is ; Tk(x) = 2xTk−1(x)−Tk−2(x)

We can derive each term of the sequence using some basic trigonometric identities as fol-

lows;

Using

cos2ϑ≡ 2cos2 ϑ−1

cos2 ϑ+ sin2
ϑ≡ 1

sin2ϑ≡ 2sinϑcosϑ

cos2ϑ≡ 2cos2 ϑ−1

,

it follows that

T0(x) = cos0 = 1

T1(x) = coscos−1 x = x

T2(x) = cos
(
2cos−1 x

)
⇒ cos2ϑ = 2cos2

ϑ−1 = 2x2−1

T3(x) = cos
(
3cos−1 x

)
⇒ cos(ϑ+2ϑ)

= cosϑcos2ϑ− sinϑsin2ϑ

= cosϑ(2cos2 ϑ−1)− sinϑ(2sinϑcosϑ)

= 2cos3 ϑ− cosϑ−2sin2
ϑcosϑ

= 2cos3 ϑ− cosϑ−2cosϑ(1− cos2 ϑ)

= 2cos3 ϑ− cosϑ−2cosϑ+2cos3 ϑ

= 4cos3 ϑ−3sinϑ = 4x3−3x
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Derivation of higher orders of Chebyshevs follow in the same manner. We need to also

analyse the effect of n < 0 in Tn(z);

For example take T−2(z)

cos(−2θ)

= cos(−θ+−θ)

= cos(−θ)cos(−θ)− sin(−θ)sin(−θ)

= cos2(−θ)− sin2(−θ)

= cos2(−θ)− (1− cos2(−θ))

= 2cos2(−θ)−1

= 2x2−1

Due the symmetrical nature of cosine function we can summise that;

T|n|(z) = Tn(z)

because

cos |θ|= cosθ

.

D.2 Integrating Recurrence Relationship

The objective of the following section is to find a general formula for the integral of the

Chebyshev recurrence formula between the limits of -1, z and ±1.

We begin by quoting the formula [19]:

z2Tn =
1
22

2

∑
i=0

 r

i

Tn−2+2i
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Where,  r

i

=
r!

i!(r− i)! n

0

=
n!

0!(n−0)!
= 1

 n

1

=
n!

1!(n−1)! n

2

=
n!

2!(n−2)!
=

n(n−1)
2

So that:

z2Tn = 1
4 ∑

2
i=0

2!
i!(2−i)!Tn−2+2i

= 1
4

{
2!

0!2!Tn−2 + 2!
1!(2−1)!Tn−2+2 + 2!

2!(2−1)!Tn−2+4

}
= 1

4 {Tn−2 +2Tn +Tn+2}

= 1
4Tn−2 + 1

2Tn + 1
4Tn+2

Therefore: (
1− z2)Tn = Tn− 1

4Tn−2− 1
2Tn− 1

4Tn+2

= 1
2Tn− 1

4Tn−2− 1
4Tn+2

Then,
R x
−1 ∑

N
r=0 arTrdz = ∑

N
r=0 ar

R
Trdz = ∑

N+1
r=0 brTr.

Suppose at this stage that;

∑
N
r=0 arTr = a0T0 +a1T1 +a2T2.

Then,

a0
R x
−1 To +a1

R x
−1 T1 +a2

R x
−1 T2 = a0T1|x−1 + a1

4 {T0 +T2}x
−1 + a2

2

{1
3T3−T1

}x
−1.

Which shows that;

Z
a0T0 +a1T1 +a2T2

= a0(T1+1)+ a1
4 (T0 +T2−T0−T0 = T2−T0)

+a2
2

(
T3
3 −T1 + 1

3 −1 = T3
3 −T1− 2

3T0

)
= a0(T1 +T0)+

a1

4
(T2−T0)+

a2

2

(
T3

3
−T1−

2
3

T0

)
(D.1)
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=
N+1

∑
r=0

brTr =
3

∑
r=0

brTr

= b0T0 +b1T1 +b2T2 +b3T3 (D.2)

Where we have equated coefficients of T0,T1,T2 and T3 and where

b1 = a0− a2
2 , b2 = a1

4 and b3 = a2
6 .

In order to find b0 we set x = -1 in Eqn. D.1;

0 = a0(−1+1)+
a1

4
(1−1)+

a2

2

(
−1

3
+1− 2

3

)
Or in Eqn. D.2;

0 = b0−b1 +b2−b3⇒ b0 = b1−b2 +b3

⇒ b0 = a0− a2
2 −

a1
4 + a2

6 = a0−a2
(1

2 −
1
6 = 1

3

)
− a1

4 = a0− a2
3 −

a1
4

Which is precisely the terms multiplying T0 in Eqn. D.1.

Then;

(
1− z2)Tn =

1
2

Tn−
1
4

Tn−2−
1
4

Tn+2

So that;

N

∑
n=0

Z x

−1
an(1− z2)Tn =

N

∑
n=0

an

4

Z x

−1
(2Tn−Tn−2−Tn+2) = Y (D.3)

We shall now proceed to see if the formula zrTn = 1
2r ∑

r
i=0

 r

i

Tn−r+2i(z) works;

We need to use T|n|(z) = Tn(z) established previously.

(1− z2)T0 = T0− z2T0

z2 = z2T0 = 1
4 ∑

2
i=0

 2

i

T0−2+2i = 1
4 {T0−2 +2T0 +T2}= 1

4

{
2z2−1+2+2z2 = 1

}
= z2

z2T1 = z3 = 1
4

{
T−1 +2T1 +T3 = 3z+4z3−3z = 4z3}= z3
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Going back to Eqn. D.3;

Y =
N

∑
n=0

an

4

{
2

Z x

−1
Tndx−

Z x

−1
Tn−2−

Z x

−1
Tn+2

}
(D.4)

Z x

−1
Tndx =

Tn+1

2(n+1)
− Tn−1

2(n−1)
− (−1)n+1

(n+1)(n−1)
(D.5)

⇒ 2
Z x

−1
Tndx =

Tn+1

n+1
− Tn−1

n−1
− (−1)n+1.2

(n+1)(n−1)

We need to further consider;

Z x

−1
Tn+2dx =

Tn+3

2(n+3)
− Tn+1

2(n+1)
− (−1)n+3

(n+3)(n+1)

and

Z x

−1
Tn−2dx =

Tn−1

2(n−1)
− Tn−3

2(n−3)
− (−1)n−1

(n−1)(n−3)

Consider Eqn. D.3 again;

Y =
N

∑
n=2

an

4

{
Tn+1

n+1
− Tn−1

n−1
− 2(−1)n+1

(n+1)(n−1)

}
+a0(T1 +T0)+

a1

4
(T2−T0)

− Tn−1

2(n−1)
+

Tn−3

2(n−3)
− (−1)n−1

(n−1)(n−3)
− Tn+3

2(n+3)
+

Tn+1

2(n+1)
− (−1)n+3

(n+3)(n+1)

Now we can deduce;

z2T0 = 1
4 {T2 +2T0 +T2}= 1

4 {2T2 +2T0}= 1
2(T2 +T0)

z2Tn = 1
4 {Tn−2 +2Tn +Tn+2}= 1

4 {2Tn +2Tn+2}= 1
2(Tn +Tn+2)

z2T2 = z2(2z2−1) = 2z4− z2 = 1
4 {T0 +2T2 +T4}

=
1
4
{

1+4z2−2+8z4−8z2 +1
}

= 2z4−4z2

z2T3 = z2(4z3−3z) = 4z5−3z3

= 1
4 {T1 +2T3 +T5}= 1

4

(
z+8z3−6z+16z5−20z3 +5z

)
= 1

4T1 + 1
2T3 + 1

4T5

And;
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(1− z2)T0 = T0− z2T0 = T0− 1
4 {2T0 +2T2}= 1

2(T0−T2)

(1− z2)T1 = T1− z2T1 = T1− 1
4 {3T1 +T3}= 1

4(T1−T3)

(1− z2)T2 = T2− 1
4T0− 1

2T2− 1
4T4 = 1

2T2− 1
4T0− 1

4T4

(1− z2)T3 = 1
2T3− 1

4T1− 1
4T5

We can now proceed to a general formula, taking a sufficiently large n for our approx-

imation;

∑
45
n=0

R z
−1 an(1− z2)Tn(z)dz = a0

R z
−1(1− z2)Todz

= a0
R z
−1(1− z2)Todz+a1

R z
−1(1− z2)T1dz+a2

R z
−1(1− z2)T2dz+a3

R z
−1(1− z2)T3dz

+
45

∑
n=4

an

Z z

−1
(1− z2)Tndz

= a0
R z
−1

1
2(To−T2)dz+a1

R z
−1

1
4(T1−T3)dz

+a2
R z
−1
(1

2T2− 1
4T0− 1

4T4
)

dz+a3
R z
−1
(1

2T3− 1
4T1− 1

4T5
)

dz

+∑
45
n=4 an

R z
−1
{1

2Tn− 1
4Tn−2− 1

4Tn+2
}

Using Eqn. D.5 we have;

a0

2

Z z

−1
(T0−T2)dz =

a0

2

{
T0 +T1−

T3

6
+

T1

2
+

T0

3

}
=

a0

2

{
4T0

3
+

3T1

2
− T1

6

}

a1

4

Z z

−1
(T1−T3)dz =

a1

4

{
T2

4
− T0

4
− T4

8
+

T2

4
− T0

8

}
=

a1

4

{
−3T0

8
+

T2

2
− T4

8

}

a2
R z
−1
(1

2T2− 1
4T0− 1

4T4
)

dz = a2

{
T3
12 −

T1
4 −

T0
6 −

T0
4 −

T1
4 −

T5
40 + T3

24 + T0
60

}
= a2

{
−2T0

5 −
T1
2 + T3

8 −
T5
40

}

a3
R z
−1
(1

2T3− 1
4T1− 1

4T5
)

dz = a3

{
T4
16 −

T2
8 + T0

16 −
T2
16 + T0

16 −
T6
48 + T4

32 −
T0
96

}
= a3

{
11T0
96 + 3T4

32 −
3T2
16 −

T6
48

}

+
45

∑
n=4

an

4


Tn+1
n+1 −

Tn−1
n−1 + 2(−1)n+1

(n+1)(n−1)T0− Tn−1
2(n−1) + Tn−3

2(n−3) −
(−1)n−1

(n−1)(n−3)T0

− Tn+3
2(n+3) + Tn+1

2(n+1) −
(−1)n+3

(n+1)(n+3)T0


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D.3 General Formulae for Definite Integrals

∑
45
n=0

R z
−1 an(1− z2)Tndz

= a0

{
2T0
3 + 3T1

4 −
T3
12

}
+a1

{
−3T0

32 + T2
8 −

T4
32

}
+a2

{
−2T0

5 −
T1
2 + T3

8 −
T5
40

}
+a3

{
11T0
96 + 3T4

32 −
3T2
16 −

T6
48

}
+∑

45
n=4

an
4


Tn+1
n+1 −

Tn−1
n−1 + 2(−1)n+1

(n+1)(n−1)T0− Tn−1
2(n−1) + Tn−3

2(n−3) −
(−1)n−1

(n−1)(n−3)T0

− Tn+3
2(n+3) + Tn+1

2(n+1) −
(−1)n+3

(n+1)(n+3)T0


This formula is applicable to both odd and even values of n.

We shall now derive a general formula for
R +1
−1 (1− z2)Tndz.

It is useful to note that;

Tn1 = 1 for all n, and Tn(−1) =−1 for odd n Tn(−1) = 1 for even n.

So, Z +1

−1
(1− z2)Tndz =

Z +1

−1
Tndz−

Z +1

−1
z2Tndz

Use Eqn. D.5 and split into two parts then analyse odd and even n;

odd n;

Z +1

−1
Tndz =

[
Tn+1

2(n+1)
− Tn−1

2(n−1)

]1

−1
=

1
2

[
1

n+1
− 1

n−1

]
− 1

2

[
1

n+1
− 1

n−1

]
= 0

even n;

R +1
−1 Tndz =

[
Tn+1

2(n+1) −
Tn−1

2(n−1)

]1

−1

= 1
2

[
(n−1)−(n+1)
(n+1)(n−1)

]
− 1

2

[ −1
n+1 −

−1
n−1

]
= 1

2

[
n−1−n−1

(n+1)(n−1)

]
− 1

2

[
−n+1+n+1
(n+1)(n−1)

]
=− 1

(n+1)(n−1) −
1

(n+1)(n−1)

=− 2
(n+1)(n−1)

odd n;
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−
R +1
−1 z2Tndz

=−1
4

R +1
−1 Tn−2dz− 1

2
R +1
−1 Tndz− 1

4
R +1
−1 Tn+2dz

= 1
4

R +1
−1 Tn−2dz−0− 1

4
R +1
−1 Tn+2dz

=−1
8

[
Tn−1
n−1 −

Tn−3
n−3

]+1

−1
− 1

8

[
Tn+3
n+3 −

Tn+1
n+1

]+1

−1

= 1
8

[ 1
n−1 −

1
n−3

]
− 1

8

[ 1
n−1 −

1
n−3

]
+ 1

8

[ 1
n+3 −

1
n+1

]
− 1

8

[ 1
n+3 −

1
n+1

]
= 0

Even n;

−
R +1
−1 z2Tndz

=−1
4

R +1
−1 Tn−2dz− 1

2
R +1
−1 Tndz− 1

4
R +1
−1 Tn+2dz

=−1
8

[
Tn−1
n−1 −

Tn−3
n−3

]+1

−1
− 1

4

[
Tn+1
n+1 −

Tn−1
n−1

]+1

−1
− 1

8

[
Tn+3
n+3 −

Tn+1
n+1

]+1

−1

1 2 3

1.

−1
8

[ 1
n−1 −

1
n−3

]
+ 1

8

[ −1
n−1 −

−1
n−3

]
=−1

8

[
n−3−n+1

(n−1)(n−3)

]
+ 1

8

[
−n+3+n−1
(n−1)(n−3)

]
=−1

8

[
−2

(n−1)(n−3)

]
+ 1

8

[
2

(n−1)(n−3)

]
= 1

4(n−1)(n−3) + 1
4(n−1)(n−3)

= 1
2(n−1)(n−3)

2.

−1
4

[ 1
n+1 −

1
n−1

]
+ 1

4

[ −1
n+1 −

−1
n−1

]
=−1

4

[
n−1−n−1

(n+1)(n−1)

]
+ 1

4

[
−n+1+n+1
(n+1)(n−1)

]
=−1

4

[
−2

(n+1)(n−1)

]
+ 1

4

[
2

(n+1)(n−1)

]
= 1

2(n+1)(n−1) + 1
2(n+1)(n−1)

= 1
(n+1)(n−1)

3.

−1
8

[ 1
n+3 −

1
n+1

]
+ 1

8

[ −1
n+3 −

−1
n+1

]
=−1

8

[
n+1−n−3

(n+3)(n+1)

]
+ 1

8

[
−n−1+n+3
(n+3)(n+1)

]
=−1

8

[
−2

(n+3)(n+1)

]
+ 1

8

[
2

(n+3)(n+1)

]
= 1

4(n+3)(n+1) + 1
4(n+3)(n+1)

= 1
2(n+3)(n+1)

Hence, when n is even we have;Z +1

−1
(1− z2)Tndz =

1
2(n+3)(n+1)

− 1
(n+1)(n−1)

+
1

2(n−1)(n−3)
(D.6)

If n is odd we have;

Z +1

−1
(1− z2)Tndz = 0 (D.7)

143



Appendix D APPENDIX - CONSTANT FLUX CHEBYSHEV CALCULATIONS

Testing General Formulae

The derived formulae for the definite integrals containing the Chebyshev functions

were tested for accuracy. A mathematical software package (Derive) was used to produce

the definite integrals required, some of the integrals were verified correct by hand in order

to test the results obtained by Derive. The general formulae were then tested correct by

ensuring that the results obtained using the formulae were exactly as those obtained using

Derive. I tested for n = 1 to 5 and then for n = 12 and 13, I can conclude that the derived

formulae are correct and can be confidently used in the computer model.
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Calculations

E.1 Components of ũ

We need to state the components of the flow as follows, as this is required later in this

Appendix.

Ux(i = 1)

and
δi = ∂i∂z−λi∆

εi = εi jkλ j∂k

and λi = [0,0,1]

u = ∂x∂zφ−λ1
(
∂2

x +∂2
y +∂2

z
)

φ+ ε132∂yψ

u = ∂x∂zφ−0−∂yψ

u = ∂x∂zφ−∂yψ

Uy(i = 2)
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v = ∂y∂zφ−λ2
(
∂2

x +∂2
y +∂2

z
)

φ+ ε231∂xψ

v = ∂y∂zφ−0+∂xψ

v = ∂y∂zφ+∂xψ

Uz(i = 3)

w = ∂2
z φ−λ3

(
∂2

x +∂2
y +∂2

z
)

φ+ ε332∂yψ+ ε331∂xψ

w =−∆2φ

E.2 Mean Flow

We have the N.S. equation:

∂u
∂t +u ·∇u = 2R+T î+∇2u (E.1)

The total flow is given by,

ũ(z, t) = Uo(z)+u(z, t)+ ŭ(x,y,z, t) (E.2)

Where, Uo(z) is the basic laminar flow (time independent), u(z, t) is the mean flow (it

shall be shown in section 3 that there are no toroidal x, or poloidal y parts and also that

there is no time dependence) and ŭ(x,y,z, t) is the fluctuating flow, where;

ŭ = δφ̆+ εψ̆ (E.3)

ŭ(x,y,z, t) =
m,n=∞

∑
m,n=−∞;m,n6=0

∞

∑
l=0

amnbmn fl(z)e−i(mα·x+nβ·y)+σt (E.4)

θ̆(x,y,z, t) =
m,n=∞

∑
m,n=−∞;m,n 6=0

∞

∑
l=0

cmn fl(z)e−i(mα·x+nβ·y)+σt (E.5)

Alternatively, we may write the poloidal and toroidal parts of the fluctuating flow as,

φ̆(x,y,z, t) =
m=∞

∑
m−∞;m,n6=0

∞

∑
l=0

amn fl(z)e−i(mα·x)+σt (E.6)

ψ̆(x,y,z, t) =
m=∞

∑
m−∞;m,n6=0

∞

∑
l=0

bmn fl(z)e−i(mα·y)+σt (E.7)

We proceed by substituting Eqn. E.2 into Eqn. E.1 term by term. We can ignore the

basic flow substitution in the N.S. equation as the N.S. equation does not exist for laminar
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flow. We now substitute the mean flow term into the N.S. equation. Because we have flow

in the x and y directions we average the flow over x and y by applying the operatorZ 2π

α

0

Z 2π

β

0
dxdy (E.8)

on the x and y components of equation Eqn. E.1, as well as applying the fixed pressure

condition ∂xyπ = 0. We can show that we are able to eliminate the linear terms of Eqn.E.1,

by showing that averaging over 2π is zero, using the Eulerian identity:

ea+ib = ea.eib = ea [cosb+ isina]⇒ eib = cosb+ isinb, (E.9)

Taking Eqn. E.4 and E.5 and using the Eulerian and some trigonometric identities we can

arrive at, Z 2π

α

0

Z 2π

β

0
amn fl(z) [cos(mαx+nβy)+ isin(mαx+nβy]dxdy = 0 (E.10)

We must further assert that the waveform is assumed periodic and no phase shift in the pe-

riod takes place and the wavelengths are equal. So once we have applied the above theory

to Eqn. E.1 we are only left with the non-linear term ũ.∇̃ũ. We need the incompressibility

condition:

∇ũ = ∂xUx +∂yUy +∂zUz = 0 (E.11)

We shall now derive the mean flow of the velocity field;

E.2.1 X Component of Flow (using integration by parts)

Z Z
u.∇ux =

Z Z
ux∂xux +

Z Z
uy∂yux +

Z Z
uz∂zuxZ Z

ux∂xux = uxux|
2π/β

0 −
Z

ux∂xux = 0−
Z

ux∂xux =−
Z

ux∂xuxZ Z
uy∂yux = uyux

∣∣2π/α

0 −
Z

ux∂yuy = 0−
Z

ux∂yuy =−
Z

ux∂yuyZ Z
uz∂zux = uxuz|

2π/α

0 −
Z

ux∂zuz = 0−
Z

ux∂zuz =−
Z

ux∂zuz

Note that the ∂x, or ∂y will cancel the dx or dy operator and its integral, i.e.Z 2π/α

0

Z 2π/β

0
ux∂xuxdxdy = uxux|

2π/β

0 −
Z 2π/β

0
ux∂xuxdy =−

Z 2πβ

0
ux∂xuxdy

Note also that, uxux|
2π/α

0 = 0,uyux
∣∣2π/α

0 = 0 and uxuz|
2π/α

0 = 0 as again this is periodic

over 2π, see Eqn. E.10. Adopting the over-bar notation,

u.∇ux =−ux∂xux−ux∂yuy +uz∂zux
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Replacing, −ux∂xux−ux∂yuy for +ux∂zuz using Eqn. E.11, we have,

u.∇ux = ux∂zuz +uz∂zux = ∂z(uzux) 6= 0

u.∇ux =−∂z∆2φ(∂x∂zφ−∂yψ) (E.12)

E.2.2 Y Component of Flow

Z Z
u.∇uy =

Z Z
ux∂xuy +

Z Z
uy∂yuy +

Z Z
uz∂zuyZ Z

ux∂xuy = uxuy
∣∣2π/β

0 −
Z

uy∂xux = 0−
Z

uy∂xux =−
Z

uy∂xuxZ Z
uy∂yuy = uyuy

∣∣2π/α

0 −
Z

uy∂yuy = 0−
Z

uy∂yuy =−
Z

uy∂yuyZ Z
uz∂zuy = uzuy

∣∣2π/α

0 −
Z

uy∂zuz = 0−
Z

uy∂zuz =−
Z

uy∂zuz

As before;

u.∇ux =−uy∂xux−uy∂yuy +uz∂zuy

Replacing, −uy∂xux−uy∂yuy for +uy∂zuz using Eqn. E.11, we have,

u.∇uy = uy∂zuz +uz∂zuy = ∂z(uzuy)u.∇uy =−∂z∆2φ(∂y∂zφ+∂xψ) (E.13)

We now shall show that there is no mean flow in the z-direction as expected.

E.2.3 Z Component of Flow

Z Z
u.∇uz =

Z Z
ux∂xuz +

Z Z
uy∂yuz +

Z Z
uz∂zuzZ Z

ux∂xuz = uxuz|
2π/β

0 −
Z

uz∂xux = 0−
Z

uz∂xux =−
Z

uz∂xuxZ Z
uy∂yuz = uyuz

∣∣2π/α

0 −
Z

uz∂yuy = 0−
Z

uz∂yuy =−
Z

uz∂yuyZ Z
uz∂zuz = uzuz|

2π/α

0 −
Z

uz∂zuz = 0−
Z

uz∂zuz =−
Z

uz∂zuz

Again,

u.∇uz =−uz∂xux−uz∂yuy +uz∂zuz

Replacing, −uz∂xux−uz∂yuy for +uz∂zuz using Eqn. E.11, we have,

u.∇uz = uz∂zuz +uz∂zuz = ∂z(uzuz) = ∂z
(
u2

z
)

u.∇uz = (uz)
2 = 0 (E.14)
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Note: Z 2π/α

0

Z 2π/β

0
dxdyuz∂zuz =

[
u2

z
]2π/α,β

0 −
Z 2π/α

0
dx

Z 2π/β

0
dyuz∂zuz = 0

and
RR

2uz∂zuz =
R

u2
z dy and d

dz (uz)
2 = 2uz∂zuz. Both of the mean flow Equations E.12

and E.13 are also supplemented with du
dz2 and du

dt , because we must substitute u into all the

terms of Eqn. E.1, although du
dt = 0 as we have shown that there is no time dependence,

i.e. u(z, t)becomes u(z) in Eqn. E. 2.

Summarizing, and not forgetting the coupled mean temperature term T î

T +∂
2
z u+∂z∆2φ(∂xy∂z∓∂yxψ) = ∂tu (E.15)

E.2.4 Time Averaging Mean Flow

Taking, Z T+t0

t0
−∂z∆2φ(∂x∂zφ−∂yψ)dt (E.16)

we may eliminate all the non-time elements (constants) for simplicity and focus on only

the time dependent elements of φ and ψ, which is the eigenvalue σt from Eqns. E.6 and

E.7.Z T+t0

t0
eσt(eσt + eσt)dt =

Z T+t0

t0
eσt(eσt + eσt)dt = 2

Z T+t0

t0
e2σtdt =

[
1
σ

e2σt
]T+t0

t0

=
[
e2σT e2σt0− e2σt0

]
=

1
σ

e2σt0
(
e2σT −1

)
(E.17)

We can see that if σ = 0 Eqn. E.17 gives zero, and hence u [z] and not u [z, t], no time

dependence. When we are analysing the points of transition from stable in unstable in our

bifucation diagram we are looking for critical points where the real part of the eigenvalue

σR is zero. This is repeated as we continue to analyse the bifurcation diagram moving

from secondary to higher solutions. For all our solutions we also use a moving frame of

reference hence our mean flow is time independent.

When we arrive at turbulent flow we are constantly approximating the waveform struc-

ture by using many cosine harmonics. At the bifurcation points we will see a transition

from one fluctuating flow structure to another structure and have to re-approximate the

new structure, at these points σR = 0 and hence we assert u [z].

The mean of the fluctuating flow ŭ is also not time dependent [37] (pp. 418-419).
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E.3 Mean Temperature

Temperature is a scalar variable hence only one calculation required. From our previous

document outlining the Linear Analysis we have:

∂θ

∂t +u ·∇θ =− 1
Pr (∇

2T +2Gr) (E.18)

As for mean flow the linear terms are eliminated, hence we are left with only the non-

linear term.

Pr
Z Z

u.∇θ = Pr
Z Z

ux∂xθ+Pr
Z Z

uy∂yθ+Pr
Z Z

uz∂zθ

Pr
Z Z

ux∂xθ = uxθ|2π/α

0 −Pr
Z

θ∂xux =−Pr
Z

θ∂xux

Pr
Z Z

uy∂yθ = uyθ
∣∣2π/α

0 −Pr
Z

θ∂yuy =−Pr
Z

θ∂yuy

Pr
Z Z

uz∂zθ = uzθ|
2π/α

0 −Pr
Z

θ∂zuz =−Pr
Z

θ∂zuz

Again,

Pru.∇θ =−Prϑ∂xux−Prθ∂yuz +Pruz∂zθ

Replacing,

Prθ∂xux−Prθu∂yuy +Prθ∂zuz

using Eqns. E.4 and E.5, we have,

Pru.∇θ = Prθ∂zuz +Pruz∂zθ = Pr∂zuzθ

Pru.∇θ =−Pr∂z (∆2φ)θ

In Eqn. E.19 this gives Pr∂tT for the time dependent term and taking the z component

of the RHS gives ∂2
z T . Hence we can write;

∂
2
z T +Pr∂z (∆2φ)θ = Pr∂tT (E.19)
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We shall now analyse the nature and structure of the output matrix symmetries by looking

at the effect of odd and even values of m and n in the coefficient of phi. We intend to

produce a set of symmetries that enable us to ascertain structures produced by the output

files after calculations. We are going to produce a minimal closed set for amn (i.e. we

will not include trivial elements of the set like “1”) and this output set will help us to

identify converged solutions within the output data produced by the computer by their

symmetries. We attempt to limit the size of the closed symmetry set to also optimise the

computing time required and to find the smallest number of set members that still enable

us to describe fully the symmetry of the problem.

We start by looking at the set of symmetries produced by the linear equations. We

then proceed to see which of these symmetries continue to exist once application of the

2D non-linear part of the equations is applied as this non-linear contribution is the most

critical and defines which symmetries survive. We then move onto the 3D symmetries.
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We have

φ =
m=∞

∑

m =−∞

m 6= 0

∞

∑
l=0

alm
(
1− z2)2

Tl(z)e−imαx+σt .

We do not require σt as the following analysis will not be affected by it. Hence,

$φ =
m=∞

∑

m =−∞

m 6= 0

∞

∑
l=0

alm
(
1− z2)2

Tl(z) [cos(mαx)+ isin(mαx)]

We can see that
(
1− z2)2 will always follow Tl , i.e. be the same because of multiplication.

For ∂z we only need to take into account derivatives of Tl(z) and we need the derivatives

of sine and cosine functions, i.e.

x sin m cos m z T +
l T ++

l

∂x cos m -sin m ∂z T ++
l T +

l

∂2
x -sin m -cos m ∂2

z T +
l T ++

l

∂3
x -cos m sin m ∂3

z T ++
l T +

l

∂4
x sin m cos m ∂4

z T +
l T ++

l

∂5
x cos m -sin m ∂5

z T ++
l T +

l

We have adopted the notation + means odd and ++means even, also note that we have

started with both l and m odd to include l,m = 1.

F.1 Symmetries Emerging from the Linear Terms

Taking our homogeneously heated flow profile as an even profile U(−z) = U(z)and using

the fact that in the linear system we are working with a single harmonic within a single

φ and hence we only need one function of sine and cosine, i.e. m+, i.e. m = 1 only. We

use the terms from the poloidal perturbation equation noting that Ŭ is fixed at an even

chebyshev as our initial conditions require an even function in U(z).

∇
2
∆2φ→

(
∂

2
x +∂

2
z
)(

∂
2
x
)

φ→
(
∂

4
x
)

φ+
(
∂

2
x∂

2
z
)

φ

∇
4
∆2φ→

(
∂

4
x +2∂

2
x∂

2
z +∂

4
z
)(

∂
2
x
)

φ→
(

∂
6
x

)
φ+
(
2∂

4
x∂

2
z
)

φ+
(
∂

2
x∂

4
z
)

φ
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Ŭ∂x∇
2
∆2φ→ T ++

l (∂x)
(
∂

2
x +∂

2
z
)(

∂
2
x
)

φ→ T ++
l (∂5

x)φ+T ++
l

(
∂

3
x∂

2
z
)

φ

Ŭ∂
2
z ∂x∆2φ→ T ++

l (∂x)
(
∂

2
z
)(

∂
2
x
)

φ→ T ++
l

(
∂

3
x
)(

∂
2
z
)

φ

We now analyse the output set produced by applying the above derivative operators when

starting with the initial conditions l+,m+, l++,m+.

l+,m+l++,m+

T +
l cosm+ +T +

l sinm+T ++
l cosm+ +T ++

l sinm+

−T +
l cosm+−T +

l sinm+−T ++
l cosm+−T ++

l sinm+

−T +
l cosm+−T +

l sinm+−T ++
l cosm+−T ++

l sinm+

T +
l cosm+ +T +

l sinm+T ++
l cosm+ +T ++

l sinm+

−T +
l cosm+−T +

l sinm+−T ++
l cosm+−T ++

l sinm+

−T +
l sinm+ +T +

l cosm+−T ++
l sinm+ +T ++

l cosm+

T +
l sinm+ +T +

l cosm+T ++
l sinm+ +T ++

l cosm+

T +
l sinm+−T +

l cosm+T ++
l sinm+−T ++

l cosm+

Without proceeding any further we can readily see that the output is a closed set with

all possible members;

T +
l cosm+T ++

l sinm+

T +
l sinm+T ++

l cosm+

We now have to analyse which members of this set of symmetries will survive after

application of the non-linear term.

F.2 2D Non-Linear Symmetries

We shall remind ourselves of the surviving φ−φ terms of δ̃ · ũ · ∇̃ũ, after taking the curl

curl of the non-linear part of our N.S. Equation. We only require terms in ∂x,∂z:

+(∂x∂zφ)
(
∂5

xφ
)
+(∂x∂zφ)

(
∂3

x∂2
z φ
)
−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)

−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂2
x∂3

z φ
)
+
(
∂2

x∂zφ
)(

∂4
xφ
)
+
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)
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We consider that both of the φ−φ are the same, this is an important starting premise.

We shall only fully work through the symmetries for the first non-linear term leaving the

reader to work through the other terms as they wish. Taking the first non-linear term we

proceed as follows:

(∂x∂zφ)(∂5xφ)

(∂x∂zφ)→−T ++
l sinm+ +T ++

l cosm+

(∂5xφ)→−T +
l sinm+ +T +

l cosm+

(∂x∂zφ)
(
∂5xφ

)
→
(
−T ++

l sinm+ +T ++
l cosm+)(−T +

l sinm+ +T +
l cosm+)

→ T ++
l sinm+T +

l sinm+→ T +
l sin2 m+→ T +

l cos2m++→ T +
l cosm++

∵ cos2 m+− sin2 m+ ≡ cos2m++ ∴ sin2 m+ ∝ cosm++

→ T ++
l cosm+T +

l cosm+→ T +
l cos2 m+→ T +

l cos2m++→ T +
l cosm++

∵ cos2 m+− sin2 m+ ≡ cos2m++ ∴ cos2 m+ ∝ cosm++

→−T ++
l cosm+T +

l sinm+→−T +
l cosm+ sinm+→−T +

l sin2m++→−T +
l sinm++

∵ 2sinm+ cosm+ ≡ sin2m++ ∴ 2sinm+ cosm+ ∝ sinm++

→−T ++
l sinm+T +

l cosm+→−T +
l sinm+ cosm+→−T +

l sin2m++→−T +
l sinm++

The negative signs are immaterial as amn can be positive or negative. Also we are only

interested in the element produced by the product as we are finding φ−φ terms.

Proceeding as above with the remaining terms we can summarise as follows;

(∂x∂zφ)(∂3x∂
2zφ)→ T +

l cosm++,−T +
l sinm++

In the above result, note that although there are four terms only two are unique so are

kept.

−(∂3xφ)(∂3x∂zφ)→−T +
l cosm++,T +

l sinm++

−(∂3xφ)(∂x∂
3zφ)→ T +

l cosm++,−T +
l sinm++

−(∂2xφ)(∂4x∂zφ)→ T +
l cosm++,T +

l sinm++

−(∂2xφ)(∂2x∂
3zφ)→ T +

l cosm++,−T +
l sinm++

(∂2x∂zφ)(∂4xφ)→−T +
l cosm++,−T +

l sinm++
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(∂2x∂zφ)(∂2x∂
2zφ)→ T +

l cosm++,T +
l sinm++

Closed Set

T +
l sinm++,T +

l cosm++

We shall now analyse different start points for l and m to be thorough. by taking our l

and m values as both even, in order to check whether we need to append our symmetry

group already found. (l++,m++)

(∂x∂zφ)(∂5xφ)→ T +
l cosm++,−T +

l sinm++

(∂x∂zφ)(∂3x∂
2zφ)→−T +

l cosm++,T +
l sinm++

−(∂3xφ)(∂3x∂zφ)→−T +
l cosm++,T +

l sinm++

−(∂3xφ)(∂x∂
3zφ)→ T +

l cosm++,−T +
l sinm++

−(∂2xφ)(∂4x∂zφ)→ T +
l cosm++,T +

l sinm++

−(∂2xφ)(∂2x∂
3zφ)→ T +

l cosm++,−T +
l sinm++

(∂2x∂zφ)(∂4xφ)→−T +
l cosm++,−T +

l sinm++

(∂2x∂zφ)(∂2x∂
2zφ)→ T +

l cosm++,T +
l sinm++

Closed Set

T +
l sinm++,T +

l cosm++, as before.

We shall now proceed by taking our l and m values as opposites, in order to check

whether we need to append our symmetry group already found. (m++, l+)

(∂x∂zφ)(∂5xφ)→ T +
l cosm++,−T +

l sinm++

(∂x∂zφ)(∂3x∂
2zφ)→−T +

l cosm++,T +
l sinm++

−(∂3xφ)(∂3x∂zφ)→−T +
l cosm++,T +

l sinm++

−(∂3xφ)(∂x∂
3zφ)→ T +

l cosm++,−T +
l sinm++

−(∂2xφ)(∂4x∂zφ)→ T +
l cosm++,T +

l sinm++

−(∂2xφ)(∂2x∂
3zφ)→−T +

l cosm++,−T +
l sinm++

(∂2x∂zφ)(∂4xφ)→−T +
nl cosm++,−T +

l sinm++

(∂2x∂zφ)(∂2x∂
2zφ)→ T +

l cosm++,T +
l sinm++
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Closed Set

T +
l sinm++,T +

l cosm++, as before.

At this point it can be induced that if we start with (m+, l++) we will also have the

same closed set, because we will always be left with even sine or cosine functions and

even Chebyshev polynomials.

We should now proceed to look at the output set produced when φ− φ are differ-

ent. This will lead to all the members of the minimal closed set required to realise our

symmetry group. We only need to analyse when;

φ1 = l+,m+;φ2 = l++,m++. ——- A

φ1 = l++,m+;φ2 = l+,m++ ——- B

We shall look at A first, but missing out all the intermediate steps.

(∂x∂zφ)(∂5xφ)

T ++
l T ++

l

[
sinm+ + cosm+][sinm++ + cosm++]

→ T ++
l [cos(m+ +m++)+ sin(m+ +m++)]

→ T ++
l cosm+

→ T ++
l sinm+

Now B.

(∂x∂zφ)(∂5xφ)

T +
l T +

l

[
sinm+ + cosm+][sinm++ + cosm++]

→ T ++
l [cos(m+ +m++)+ sin(m+ +m++)]

→ T ++
l cosm+

→ T ++
l sinm+

We can proceed very quickly at this point and providing we start with l and m different

we create the above elements for every φ−φ term.

We now have to perform the same analysis with temperature included.

We shall remind ourselves of the surviving φ−θ terms of δ̃ · ũ · ∇̃ũ, the non-linear part

of our N.S. Equation.
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(∂x∂zφ)(∂xθ)−
(
∂

2xφ
)
(∂zθ)

We have;

θ =
m=∞

∑

m =−∞

m 6= 0

∞

∑
l=0

blm
(
1− z2)Tl(z) [cos(mαx)+ isin(mαx)]

The only difference between this function and the velocity function is
(
1− z2), this

again will follow the nature of Tl due to multiplication.

We shall begin with l and m odd. (m+, l+)

(∂x∂zφ)(∂xθ)→ T +
l cosm++,−T +

l sinm++

−(∂2xφ)(∂zθ)→ T +
l cosm++,T +

l sinm++

(
m++, l++)

(∂x∂zφ)(∂xθ)→ T +
l cosm++,−T +

l sinm++

−(∂2xφ)(∂zθ)→ T +
l cosm++,T +

l sinm++

(
m++, l+

)

(∂x∂zφ)(∂xθ)→ T +
l cosm++,−T +

l sinm++

−(∂2xφ)(∂zθ)→ T +
l cosm++,T +

l sinm++

Closed Set

T +
l sinm++,T +

l cosm++.

By the same reasoning as used during the φ−φ analysis we induce that (m+, l++) will

give the same results as above.

Conclusion

We can now conclude that the closed set for our 2D symmetry group is made up of
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T +
l sinm++,T +

l cosm++,T ++
l sinm+,T ++

l cosm+

For l + m = even then alm = 0, and we should see zero eigenvalues where this condition

is met in the ouput files.

There is a simpler method for finding the 2D symmetries which is outlined here; Re-

ferring to Figure 3.1 we can immediately state that f (x,z) = f (−x,−z).

f (x,z) =

∑ac
lmcos(mαx)Tl(z)+as

lmsin(mαx)Tl(z)

⇐⇒

∑ac
lmcos(−mαx)Tl(−z)+as

lmsin(−mαx)Tl(−z)

= ∑ac
lmcos(mαx)Tl(z)+as

lmsin(mαx)Tl(z)

∴

∑[ac
lmcos(mαx)][Tl(−z)−Tl(z)]+as

lm[sin(−mαx)Tl(−z)− sin(mαx)Tl(z)] = 0

(F.1)

Where [Tl(−z)−Tl(z)] = 0 for l = even , and [Tl(−z)Tl(z)] 6= 0 for l = odd.

Note: cos[−mαx] = cos[mαx]

F.3 3D Symmetries.

For the 3D symmetries there seems to be no easy way to find a closed symmetry group.

We begin with the poloidal symmetries first then continue with the toroidal symmetries.

F.3.1 Poloidal Symmetries

We need to proceed with more care as we now have to include all the terms produced by

the curl curl of the non-linear u ·∇u. Which are listed below;

ϕ - ϕ Terms from curl curl of u ·∇u
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+(∂x∂zφ)
(
∂5

xφ
)
+(∂x∂zφ)

(
∂x∂4

yφ
)

+2(∂x∂zφ)
(
∂3

x∂2
yφ
)
+(∂x∂zφ)

(
∂3

x∂2
z φ
)
+(∂x∂zφ)

(
∂x∂2

y∂2
z φ
)

+(∂y∂zφ)
(
∂4

x∂yφ
)
+(∂y∂zφ)

(
∂5

yφ
)

+2(∂y∂zφ)
(
∂2

x∂3
yφ
)
+(∂y∂zφ)

(
∂2

x∂y∂2
z φ
)
+(∂y∂zφ)

(
∂3

y∂2
z φ
)

−
(
∂3

xφ
)(

∂3
x∂zφ

)
−
(
∂3

xφ
)(

∂x∂2
y∂zφ

)
−
(
∂3

xφ
)(

∂x∂3
z φ
)

−
(
∂x∂2

yφ
)(

∂3
x∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂2
y∂zφ

)
−
(
∂x∂2

yφ
)(

∂x∂3
z φ
)

−
(
∂2

x∂yφ
)(

∂2
x∂y∂zφ

)
−
(
∂2

x∂yφ
)(

∂3
y∂zφ

)
−
(
∂2

x∂yφ
)(

∂y∂3
z φ
)

−
(
∂3

yφ
)(

∂2
x∂y∂zφ

)
−
(
∂3

yφ
)(

∂3
y∂zφ

)
−
(
∂3

yφ
)(

∂y∂3
z φ
)

−
(
∂2

xφ
)(

∂4
x∂zφ

)
−
(
∂2

xφ
)(

∂4
y∂zφ

)
−2
(
∂2

xφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

xφ
)(

∂2
x∂3

z φ
)
−
(
∂2

xφ
)(

∂2
y∂3

z φ
)

−
(
∂2

yφ
)(

∂4
x∂zφ

)
−
(
∂2

yφ
)(

∂4
y∂zφ

)
−2
(
∂2

yφ
)(

∂2
x∂2

y∂zφ
)
−
(
∂2

yφ
)(

∂2
x∂3

z φ
)
−
(
∂2

yφ
)(

∂2
y∂3

z φ
)

−
(
∂2

x∂zφ
)(

∂4
yφ
)
−
(
∂2

x∂zφ
)(

∂2
y∂2

z φ
)
−
(
∂2

y∂zφ
)(

∂4
xφ
)
+
(
∂2

y∂zφ
)(

∂2
y∂2

z φ
)

−
(
∂2

y∂zφ
)(

∂2
x∂2

z φ
)

+
(
∂2

x∂zφ
)(

∂4
xφ
)
+
(
∂2

x∂zφ
)(

∂2
x∂2

z φ
)

+4(∂x∂y∂zφ)
(
∂3

x∂yφ
)
+4(∂x∂y∂zφ)

(
∂x∂3

yφ
)
+4(∂x∂y∂zφ)

(
∂x∂y∂2

z φ
)

+
(
∂2

y∂zφ
)(

∂4
yφ
)

We have already analysed the terms containing ∂x∂z and need to now look at the terms

containing ∂y∂z, then finally the terms containing all ∂x∂y and ∂z.

Looking at the 8 terms containing ∂y and ∂z only, they are exactly the same as the 8

terms containing the ∂x∂z terms only and thus we can conclude that the symmetries must

be the same for each set.

For terms containing ∂x and ∂y with or without ∂z we need;

m,n=∞

∑

m,n =−∞m,n 6= 0

∞

∑
l=0

amnbmn
(
1− z2)2

Tl(z)e−(imαx+nβy).

m,n=∞

∑

m,n =−∞

m,n 6= 0

∞

∑
l=0

amnbmn
(
1− z2)2

Tl(z) [cos(mαx)+ isin(mαx)] [cos(nβy)+ isin(nβy)]
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Now we assign; ∂x→ m,∂y→ n,∂z→ l.

Start with both φ′s the same in this case l+,m+,n+ all odd

We have Tlei(mαx+nβy)→ T +
l [cosm+ + isinm+] · [cosn+ + isinn+]

Note that we must use the derivative product, where if we have terms in x only and

are finding ∂y, the outcome for that derivative is zero.

(∂x∂zφ)
(
∂x∂

4yφ
)

1)(∂x∂zφ)→ T ++
l

[
−sinm+ + cosm+] · [cosn+ + sinn+]

2)
(
∂x∂

4yφ
)
→ T +

l

[
−sinm+ + cosm+] · [cosn+ + sinn+]

1) is ∂x we now find ∂4y of this term to get 2)

We now multiply these terms together:

T +
l [−sinm+ + cosm+]2 · [cosn+ + sinn+]2

→ T +
l [cosm++ + sinm++] · [cosn++ + sinn++]

The symmetries produced are;

T +
l cosm++ cosn++

T +
l sinm++ sinn++

T +
l sinm++ cosn++

T +
l cosm++ sinn++

We can see straight away that Tl will always be odd for m+,n+ or m++,n++

combinations because we always combine an odd with an even power of ∂z in each

pair of φ−φ combinations.

If we analyse the orders of each derivative for each pair of the non-linear terms, we

can quite quickly see that will produce the output set below. The sine and cosine terms

will always be even because of the resulting double angle identities.

We should now proceed to look at the output set produced when φ−φ are different,

i.e. we need to analyse when;

φ1 = l++,m++,n++;φ2 = l+,m+,n+. ——- A

φ1 = l+,m+,n++;φ2 = l++,m++,n+ ——- B

We shall look at A first.

(∂x∂zφ)
(
∂x∂

4yφ
)
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(∂x∂zφ)→ T +
l

[
−sinm++ + cosm++] · [cosn++ + sinn++]

(
∂x∂

4yφ
)
→ T +

l

[
−sinm+ + cosm+] · [cosn+ + sinn+]

We now multiply these terms together:

T ++
l [cos(m++ +m+)+ sin(m++ +m+)] · [cos(n++ +n+)+ sin(n++ +n+)]

→ T ++
l [cosm+ + sinm+] · [cosn+ + sinn+]

Which gives the output set

T ++
l cosm+ cosn+

T ++
l sinm+ sinn+

T ++
l sinm+ cosn+

T ++
l cosm+ sinn+

We shall now look at B.

(∂x∂zφ)
(
∂x∂

4yφ
)

(∂x∂zφ)→ T ++
l

[
−sinm+ + cosm+] · [cosn++ + sinn++]

(
∂x∂

4yφ
)
→ T ++

l

[
−sinm++ + cosm++] · [cosn+ + sinn+]

We now multiply these terms together:

T ++
l [cos(m++ +m+)+ sin(m++ +m+)] · [cos(n++ +n+)+ sin(n++ +n+)]

→ T ++
l [cosm+ + sinm+] · [cosn+ + sinn+]

Which gives the same elements as currently in the set.

In summary, our closed output set is made up of 16 terms;

T ++
l cosm+ cosn+

T ++
l sinm+ sinn+

T ++
l sinm+ cosn+

T ++
l cosm+ sinn+

and

T +
l cosm++ cosn++

T +
l sinm++ sinn++

T +
l sinm++ cosn++

T +
l cosm++ sinn++

.

We must now proceed to analyse the symmetries produced by the φ−ψ and ψ−ψ

terms for completeness.

ϕ-ψ Terms
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(
∂3

xφ
)(

∂y∂2
z ψ
)
+2
(
∂x∂2

yφ
)(

∂y∂2
z ψ
)
+2(∂x∂y∂zφ)

(
∂2

x∂zψ
)

−2
(
∂2

x∂zφ
)
(∂x∂y∂zψ)+2

(
∂2

y∂zφ
)
(∂x∂y∂zψ)−2(∂x∂y∂zφ)

(
∂2

y∂zψ
)

−
(
∂2

x∂yφ
)(

∂x∂2
z ψ
)
−
(
∂3

yφ
)(

∂x∂2
z ψ
)
+
(
∂4

x∂yφ
)
(∂xψ)+

(
∂5

yφ
)
(∂xψ)

+2
(
∂2

x∂3
yφ
)
(∂xψ)+

(
∂2

x∂y∂2
z φ
)
(∂xψ)+

(
∂3

y∂2
z φ
)
(∂xψ)−

(
∂5

xφ
)
(∂yψ)

−
(
∂x∂4

yφ
)
(∂yψ)−2

(
∂3

x∂2
yφ
)
(∂yψ)−

(
∂3

x∂2
z φ
)
(∂yψ)−

(
∂x∂2

y∂2
z φ
)
(∂yψ)

−
(
∂3

xφ
)(

∂2
x∂yψ

)
−
(
∂3

xφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂3
yψ
)
−
(
∂x∂2

yφ
)(

∂2
x∂yψ

)
+
(
∂2

x∂yφ
)(

∂3
xψ
)
+
(
∂2

x∂yφ
)(

∂x∂2
yψ
)
+
(
∂3

yφ
)(

∂3
xψ
)
+
(
∂3

yφ
)(

∂x∂2
yψ
)

+2
(
∂3

x∂yφ
)(

∂2
xψ
)
+2
(
∂x∂3

yφ
)(

∂2
xψ
)
+2
(
∂x∂y∂2

z φ
)(

∂2
xψ
)
−2
(
∂4

xφ
)
(∂x∂yψ)

−2
(
∂2

x∂2
z φ
)
(∂x∂yψ)+2

(
∂4

yφ
)
(∂x∂yψ)+2

(
∂2

y∂2
z φ
)
(∂x∂yψ)−2

(
∂3

x∂yφ
)(

∂2
yψ
)

−2
(
∂x∂3

yφ
)(

∂2
yψ
)
−2
(
∂x∂y∂2

z φ
)(

∂2
yψ
)

Start with both φ−ψ the same in this case l+,m+,n+ all odd

(
∂x3

φ
)(

∂y∂
2zψ
)

This results in the closed set;

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++
(F.2).

The following terms will also give F.2 by inspection directly;

(∂x∂y∂zφ)
(
∂2x∂zψ

)
,
(
∂x3φ

)(
∂y∂2zψ

)
,(

∂2x∂zφ
)
(∂x∂y∂zψ) ,

(
∂2y∂zφ

)
(∂x∂y∂zψ) ,(∂x∂y∂zφ)

(
∂2y∂zψ

)
,(

∂2x∂yφ
)(

∂x∂2zψ
)
,
(
∂3yφ

)(
∂x∂2zψ

)
We can see immediately that all the pairs of derivatives have either no ∂z component

or one ∂2z component or a pair of ∂z and ∂z. This leads us to the conclusion that for l+ we

will always have T ++
i outputs and for l++ we will always have T ++

i outputs. Continuing

we also find that the following also give F.2.

(
∂4x∂yφ

)
(∂xψ) ,

(
∂5yφ

)
(∂xψ) ,(∂x∂y∂zφ)

(
∂2x∂zψ

)
In fact all the pairs will give the same results to F.2 due to the combinations of cosines

and sines with all of the harmonics.
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Now with (l++,m++,n++) all even. This will always give bracket pairs of sinm++,cosm++

and sinn++,cosn++, which on combination will always give the outputs as F.2.

Now make harmonics different (l++,m+,n++).

(
∂x3

φ
)(

∂y∂
2zψ
)

This also results in the closed set F.2.

We again can see that this result is repeated for all pairs given that m+,n++ as well

as for m++,n+ because the pairs of brackets have the same odd or even harmonics. More

crucially we need to investigate when φ 6= ψ.

We remind ourselves of the start conditions.

φ = l++,m++,n++;ψ = l+,m+,n+ ——- A

φ = l+,m+,n++;ψ = l++,m++,n+ ——- B

Start with A first(
∂

3xφ
)(

∂y∂
2zψ
)
→T +

l cosm+ cosn+,T +
l sinm+ sinn+,T +

l sinm+ cosn+,T +
l cosm+ sinn+

It can be see that for all pairs of terms this new output symmetry set will emerge.

Start with B now.(
∂

3xφ
)(

∂y∂
2zψ
)
→T +

l cosm+ cosn+,T +
l sinm+ sinn+,T +

l sinm+ cosn+,T +
l cosm+ sinn+

Which gives the same as A.

ψ -ψ Terms

(∂x∂y∂zψ)(∂x∂yψ)− (∂2
xψ)(∂2

y∂zψ)− (∂2
yψ)(∂2

x∂zψ)

Start with both ψ−ψ the same in this case l+,m+,n+ all odd

(∂x∂y∂zψ)(∂x∂yψ) ,
(
∂

2yψ
)(

∂
2x∂zψ

)
,
(
∂

2xψ
)(

∂
2y∂zψ

)
This results in the closed set;

T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++
(F.3)
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With (l++,m++,n++) all even we will also arrive at the same result as F.3 due to the

double angle identities always being even in this case.

Now make harmonics different (l+,m++,n+), l+ or l++ will aways give T +
l due to

the odd and even combinations of orders of ∂z in the ψ−ψ pairs.

(∂x∂y∂zψ)(∂x∂yψ) also gives F.3.

We can quite quickly see that other derivative pairs of ψ−ψ will give the same result

as above.

More crucially we need to investigate when ψ1 6= ψ2.

Again with the same initial conditions as previous.

ψ1 = l++,m++,n++;ψ2 = l+,m+,n+. ——- A

ψ1 = l+,m+,n++;ψ2 = l++,m++,n+ ——- B

Start with A first.

(∂x∂y∂zψ)(∂x∂yψ)→T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+,T ++
l cosm+ sinn+,T ++

l sinm+ cosn+

Start with B.

(∂x∂y∂zψ)(∂x∂yψ)

This gives the same output set as that for A. Examining the other derivative pairs we

will always arrive at the same output symmetry group

We now need to analyse the terms from the toroidal part of the equations as we are in

3D space.

F.3.2 Toroidal Symmetries

ϕ−ϕ terms from curl of u ·∇u

(
∂x∂

2
z φ
)(

∂
2
x∂yφ

)
+
(
∂x∂

2
z φ
)(

∂
3
yφ
)
−
(
∂y∂

2
z φ
)(

∂
3
xφ
)
−
(
∂y∂

2
z φ
)(

∂x∂
2
yφ
)

Start with both φ−φ the same in this case l+,m+,n+ all odd and we need only check(
∂x∂2

z φ
)(

∂2
x∂yφ

)
,
(
∂x∂2

z φ
)(

∂3
yφ
)

as the others have the same generic structure

(
∂x∂

2zφ
)(

∂
2x∂yφ

)
,
(
∂x∂

2zφ
)(

∂
3yφ
)

Results in the closed set;

164



Appendix F APPENDIX - SYMMETRIES

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++
.(F.4)

Now make harmonics (l++,m++,n++).

We see that T ++
l will always remain T ++

l for any start point l++ or l+, so immediately

we see that T ++
l is always in the output set.

(
∂x∂

2zφ
)(

∂
2x∂yφ

)
(
∂x∂

2zφ
)(

∂
3yφ
)

Give the same closed set F.4..

Now make harmonics all different (l++,m+,n++).

(
∂x∂

2zφ
)(

∂
2x∂yφ

)
(
∂x∂

2zφ
)(

∂
3yφ
)

Give the same closed set F.4.

More crucially we need to investigate when φ1 6= φ2.

φ1 = l++,m++,n++;φ2 = l+,m+,n+. ——- A

φ1 = l+,m+,n++;φ2 = l++,m++,n+ ——- B

Start with A first.

(
∂x∂

2zφ1
)(

∂
2x∂yφ2

)
,
(
∂x∂

2zφ1
)(

∂
3yφ2

)
This gives the output symmetry group;

T +
l cosm+ cosn+,T +

/ sinm+ sinn+,T +
l cosm+ sinn+,T +

l sinm+ cosn+(F.5)

Now start with B.

(
∂x∂

2zφ1
)(

∂
2x∂yφ2

)
,
(
∂x∂

2zφ1
)(

∂
3yφ2

)
Also result in F.5.

ψ -ψ Terms
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(
∂

2
x∂yψ

)
(∂xψ)+

(
∂

3
yψ
)
(∂xψ)−

(
∂

3
xψ
)
(∂yψ)−

(
∂x∂

2
yψ
)
(∂yψ)

We only need to check
(
∂2

x∂yψ
)
(∂xψ) ,

(
∂3

yψ
)
(∂xψ) as the others are the same generi-

cally.Very quickly if we look at Tl we notice no ∂z terms at all so we will always have;

T ++
l ·T +

l → T ++
l

T ++
l ·T ++

l → T ++
l

when ψ1 = ψ2 and

T +
l ·T

++
l → T +

l when ψ1 6= ψ2.

Start with both ψ−ψ the same in this case l+,m+,n+.

(
∂

2x∂yψ
)
(∂xψ)

This results in the closed set;

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++
.(F.6)

(
∂

3yψ
)
(∂xψ)

Give F.6, in fact we can see that with m++,n++and m++,n+ and m++,n++ and

m+,n++ we will always arrive at the same set as above. We need to look at the out-

put symmetry group when ψ1 6= ψ2. Refering to A and B combinations of l, m and

n as before we can quite readily conclude that we will always arrive at the same output

symmetry set as F.5.

ϕ-ψ Terms

−(∂x∂zψ)
(
∂

3
xφ
)
− (∂x∂zψ)

(
∂x∂

2
yφ
)
− (∂y∂zψ)

(
∂

2
x∂yφ

)
− (∂y∂zψ)

(
∂

3
yφ
)

(∂x∂zφ)
(
∂

3
xψ
)
+(∂x∂zφ)

(
∂x∂

2
yψ
)
+(∂y∂zφ)

(
∂

2
x∂yψ

)
+(∂y∂zφ)

(
∂

3
yψ
)

(
∂

2
xψ
)(

∂
2
x∂zφ

)
−
(
∂

2
xφ
)(

∂
2
x∂zψ

)
−
(
∂

2
xφ
)(

∂
2
y∂zψ

)
−
(
∂

2
yφ
)(

∂
2
x∂zψ

)
(
∂

2
x∂zφ

)(
∂

2
yψ
)
+
(
∂

2
y∂zφ

)(
∂

2
xψ
)

Of the above we only need analyse(
∂2

xφ
)(

∂2
x∂zψ

)
,(∂x∂zψ)

(
∂3

xφ
)
,(∂x∂zψ)

(
∂x∂2

yφ
)

because (∂x∂zφ)
(
∂3

xψ
)

where φ and ψ are swapped will give the same results as some
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of the terms above, hence
(
∂2

xφ
)(

∂2
x∂zψ

)
,(∂x∂zψ)

(
∂3

xφ
)
,(∂x∂zψ)

(
∂x∂2

yφ
)

are the only

unique combinations to consider.

Start with both φ−ψ the same in this case l+,m+,n+.

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)

Gives the closed set;

T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++
.(F.7)

l++,m++,n++

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)

Also gives F.7.

l∗,m++,n+ l∗ this will always be T +
l .

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)

Also gives F.7.

We need to investigate when φ 6= ψ.

φ = l++,m++,n++;ψ = l+,m+,n+. ——- A

φ = l+,m+,n++;ψ = l++,m++,n+ ——- B

Start with A first.

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)

This gives the output symmetry group;

T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+,T ++
l cosm+ sinn+,T ++

l sinm+ cosn+(F.8)

Now B.

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)
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Gives F.7.

Because of the interchanging between φ and ψ we should check the following;

ψ = l++,m++,n+;φ = l+,m+,n++.

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂x∂

2yφ
)
,(∂x∂zψ)

(
∂

3xφ
)

Which gives F.8.

φ = l++,m+,n++;ψ = l+,m++,n++

(
∂

2xφ
)(

∂
2x∂zψ

)
,(∂x∂zψ)

(
∂

3xφ
)
,(∂x∂zψ)

(
∂x∂

2yφ
)

Which gives F.8.

3D Symmetries - Summary

Poloidal Symmetries

φ−φ

T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+

T ++
l cosm+ sinn+,T ++

l sinm+ cosn+

T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++

φ−ψ

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++

T +
l cosm+ cosn+,T +

/ sinm+ sinn+

T +
l cosm+ sinn+,T +

l sinm+ cosn+

ψ−ψ
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T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++

T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+

T ++
l cosm+ sinn+,T ++

l sinm+ cosn+

Toroidal Symmetries

φ−φ

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++

T +
l cosm+ cosn+,T +

/ sinm+ sinn+

T +
l cosm+ sinn+,T +

l sinm+ cosn+

φ−ψ

T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++

T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+

T ++
l cosm+ sinn+,T ++

l sinm+ cosn+

ψ−ψ

T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++

T +
l cosm+ cosn+,T +

/ sinm+ sinn+

T +
l cosm+ sinn+,T +

l sinm+ cosn+

Summary

The complete symmetry group for the complete system is:-

T +
l cosm+ cosn+,T +

/ sinm+ sinn+

T +
l cosm+ sinn+,T +

l sinm+ cosn+
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T ++
l cosm++ cosn++,T ++

/ sinm++ sinn++

T ++
l cosm++ sinn++,T ++

l sinm++ cosn++

T ++
l cosm+ cosn+,T ++

/ sinm+ sinn+

T ++
l cosm+ sinn+,T ++

l sinm+ cosn+

T +
l cosm++ cosn++,T +

/ sinm++ sinn++

T +
l cosm++ sinn++,T +

l sinm++ cosn++

We can see that for m+n = odd we have no members of the set, so for m+n=odd we

should have zero coefficients for the fundamental pure mode. Finally; when m+n = odd;

almn = blmn = clmn = 0

F.4 Imposing the Reality Condition

Real life only deals with real situations so we impose the Reality Condition

φ∗ = φ, where (*) denotes the complex conjugate

φ = ∑almnei(mαx+nβy)Tn

= ∑
(
aR

lmn + iaI
lmn

)
[cos(mαx+nβy)+ isin(mαx+nβy)]Tl

φ∗ = φ

= aR
lmn cos(mαx+nβy)−aI

lmn sin(mαx+nβy)+ i
[
aI

lmn cos(mαx+nβy)+aR
lmn sin(mαx+nβy)

]
= aR

lmn cos(mαx+nβy)−aI∗
lmn sin(mαx+nβy)− i

[
aI∗

lmn cos(mαx+nβy)+aR
lmn sin(mαx+nβy)

]
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