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Abstract: 

This study presents the first part of a CFD study on the performance of a downer 

reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid 

separation method, developed by the co-authors from the ICFAR (Canada). The 

separator, which was designed to allow for fast separation of clean pyrolysis gas, 

consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. 

A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the 

kinetic theory of granular flow was used to simulate the multiphase flow. The effects 

of the various parameters including operation conditions, separator geometry and 

particle properties on the overall hydrodynamics and separation efficiency were 

investigated. The model prediction of the separator efficiency was compared with 

experimental measurements. The results revealed distinct hydrodynamic features 

around the cone separator, allowing for up to 100% separation efficiency. The 

developed model provided a platform for the second part of the study, where the 

biomass pyrolysis is simulated and the product quality as a function of operating 
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conditions is analysed.  
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1. Introduction 

The escalating global concern over the exhaustion of non-renewable energy sources 

lead to the recent development of a range of novel technologies for the use of 

renewable energy resources, such as biomass, solar and wind. Among these 

resources and technologies, biomass pyrolysis has emerged as a very promising 

renewable alternative for bio-oil production. In a large commercial scale, this could 

be carried out in a dual fluidized bed (DFB) system with various optional 

arrangements. The schematics in Fig. 1 demonstrate examples of these 

arrangements. In this study, we are interested in the downer-riser type of a dual 

fluidized bed, shown in Fig. 1-b, where the biomass pyrolysis takes place in the 

downer side of the reactor, while the riser side is used for combustion, thus providing 

the heat required for the pyrolysis through the circulating inert heat carrier solid (such 

as sand). This arrangement has the following specific advantages for bio-oil 

production through fast pyrolysis:  

i. The downer pyrolysis reactor can be operated with very low carrier gas (e.g. 

nitrogen) flow rates, which is desirable in some cases to reduce up-stream 

pre-heating and downstream processing.    

ii. Reducing the gas and solid back-mixing [1, 2, 3] thus, limiting the spread of 

the gas/solid residence time distribution, i.e. near to plug flow. 

iii. Relatively low cost, simple operation/control and high energy efficiency. 

iv. The char combustion in the second reactor will guarantee sustainable 

operation and better control of the pyrolysis temperature in the first reactor. 

 

However, in order to achieve high conversion efficiency (more than 70% bio-oil yield) 

in a downer reactor there remains two main technical challenges: 
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i. Control of the pyrolysis gas residence time within the hot zone of the reactor 

(ideally 1-2 seconds). Longer residence time of the pyrolysis gas at high 

temperature initiates a range of undesirable side reactions, which could 

adversely affect the quality of the product bio-oil [4, 5]  

ii. Control of the downstream contact between the pyrolysis gas and bio-char. 

The bio-char, formed during pyrolysis, acts as a vapor cracking catalyst, 

therefore should be separated as soon as the pyrolysis vapor is released [6]  

 

Char, as well as other entrained fine particles, can primarily be separated from the 

pyrolysis gas by using conventional cyclones (reverse and co-current flow types). 

However, this carries the risk of increasing the contact time between the gas and 

char inside the cyclone. In addition, the cyclone inlet is commonly placed external to 

the reactor or away from the pyrolysis zone, thus, causing extra contact time 

between the solid and gas. The extensive review conducted by Huard et al. [7] and 

Cheng et al. [8] on downer reactors and rapid gas-solid separation techniques 

revealed that there are limited attempts on implementing new design methods for 

rapid gas-solid separation in these reactors.  

 

Recent research at the Institute for Chemicals and Fuels from Alternative Resources 

(ICFAR) has led to the development of a novel gas-solid separation device for a 

downer pyrolysis reactor. The device features a cone-shaped solid deflector 

positioned above a gas outlet pipe, both positioned concentrically in the downer pipe 

(see Fig. 2). This was designed to achieve primary solid-gas separation and gas 

removal within the same device [9] The separator allows for better control of the 

pyrolysis vapor residence time, therefore, reducing the severity of vapor over-

cracking compared to other fast separation methods. Experimental work by Huard et 

al. [10] has shown that this separator can achieve very high solid-gas separator 

efficiency above 99.99% when using spherical silica sand particles of 200 μm 
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diameter. 

 

Computational Fluid Dynamics (CFD) modeling is one of the powerful tools to 

analyse gas-solid flow behavior, including that involves intense heat transfer and 

chemical reactions. The co-authors from the ICFAR have previously used an 

Eulerian-Lagrangian modeling approach to investigate the effect of the particle 

elasticity on the separator efficiency in the same novel separator investigated in this 

study [9]. While this approach revealed important details of the particle-wall collision 

and its effects on the separator efficiency and mechanism, the simulation domain 

was limited to the separator zone only and the total solid volume fraction was limited 

to a maximum of 4×10-5. The Eulerian-Eulerian (also referred to as two-fluid) is 

another modeling approach that has the advantage of being robust and realistic in 

computational time, especially when considering a large number of particles or large 

simulation domain. Unlike the Eulerian-Lagrangian approach, which treats each 

single particle as a dispersed phase in the continuum fluid flow, the Eulerian-Eulerian 

approach treats both of the fluid and solid phases as an interpenetrating continuum. 

Studies on the Eulerian-Eulerian simulation of solid-gas hydrodynamics in a downer 

reactor have been previously reported by Ropelato et al. [11], Kim et al [12] and 

Samruamphianskun [13] This modeling approach was found to be especially useful 

in predicting the effects of inlet design and flow conditions on the solid distribution 

and dispersion behavior. This CFD modeling approach has also been used by 

different researchers to study the phenomena of solid-gas separation in cyclones 

[14, 15, 16]  

 

In this study, the main objectives are: 

i. to develop a valid Eulerian-Eulerian (multi-fluid) CFD model capably of 

predicting the detailed hydrodynamic behaviour in a downer reactor equipped 

with a novel gas-solid separation device; 
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ii. to use the developed model in investigating the effect of the operating 

conditions and various separator design parameters on the overall 

hydrodynamics, with particular focus on the separator efficiency; 

iii. to provide a platform for the development of a predictive model of the 

pyrolysis reactions and yield in the downer reactor equipped with the novel 

gas-solid separator. 

 

The investigation was carried out theoretically and experimentally in a cold flow 

reactor model equipped with the ICFAR novel gas-solid separator and gas removal 

mechanism, as described in details in the experimental section. The theoretical 

transient model was solved in three-dimensional coordinates using the Eulerian-

Eulerian (two-fluid) approach, employing constitutive relations from the kinetic theory 

of granular flow (KTGF) [17]. In the second part of this study, the developed 

hydrodynamic model will be extended to include heat transfer and reaction kinetics 

to demonstrate the advantages of the ICFAR separator in improving the performance 

and product quality in a biomass downer pyrolysis reactor. 

 

2. Experiments and procedure 

The experimental work described here was carried out by the co-investigators at the 

ICFAR in Canada. The equipment consisted of a cold flow gas-solid flow downer of 

133.5 cm height and 7.0 cm diameter, equipped with the ICFAR novel gas-solid 

separator as shown in Fig. 2 and 3. This separator included a gas removal pipe and 

a cone deflector, where the bottom of the deflector and tip of the pipe were located 

98.6 cm below the downer inlet. A solid collection tank of 20.4 cm diameter and 21.8 

cm height was placed at the bottom of the downer column around 34.9 cm below the 

cone deflector. Compressed air at room temperature was supplied to the downer 

from a bank of calibrated sonic orifice nozzles. The Sauter mean diameter of the 

particle mixture used was 188 µm and its skeletal density was 2650 kg/m3. The 
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particle size distribution of the mixture is shown in Fig. 4. 

 

The solid particles were delivered to the downer column from an air pressurized tank 

mounted above the downer main air inlet. The total mass flowrate of air in the 

downer was gm� = 0.0039 kg/s, which corresponded to a superficial gas velocity of Ug 

= 0.73 m/s. The solids mass flowrate was adjusted by changing the feed tank air 

pressure and this was varied between sm� = 0.017 kg/s and 0.083 kg/s, which 

corresponded to solids-to-gas loading ratios of gs mm �� / = 4.3 to 21. The gas-solids 

mixture flowed co-currently in the downer before entering the gas-solids separation 

zone. Three different cone deflectors with various internal angles of 60°, 90° and 

120° were used. The downward falling particles were collected in the tank at the 

bottom of the unit, while the gas stream, along with any entrained particles, exited 

the system through the gas outlet pipe mounted in the centre of the downer cross 

section and below the cone deflector. A bag filter connected at the end of the gas 

exhaust line was used to collect the particles entrained in the exiting gas stream. 

 

At the start of each experiment, the total mass of solids fed into the system, min, was 

measured. The mass of the entrained solids collected in the bag filter, mcollected, was 

then measured at the end of each experiment. Thus, the experimental percentage 

total solids separation efficiency, η, was calculated from the following expression: 

 

 

The mass flowrate of solids was determined by measuring the total mass of solid 

collected in the filter bag and tank against the recorded time. 
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3. Hydrodynamic model 

The overall reactor hydrodynamics and gas-solid separation was investigated using 

the Eulerian-Eulerian (multi-fluid) model approach based on the Kinetic Theory of 

Granular Flow (KTGF). The developed model was solved using the CFD software 

ANSYS FLUENT (Ver. 14). In order to mimic the wide size distribution of the solid 

mixture used in the experiment, the simulation was carried out using a solid mixture 

of three different particle sizes, as detailed in section 3.3. The main model equations 

for non-reacting isothermal gas-solid flow are given by: 

Continuity equations: 

 

 

 

Momentum equations: 

 

 

 

where: 

 

 

 represents solid or gas phase. 

 

To obtain the granular temperature, the FLUENT code was optionally set to use a 

partial differential equation (Pseudo Energy Equation) as follows [18]: 
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The various closure and constitutive relations used in the model are given in Table 2. 

In order to take into consideration the solid-solid frictional stresses at the dense 

regions of the reactor, the friction equation proposed by Schaeffer [19], as given in 

Equation T1-5, was used. Due to the highly turbulence of the flow near the deflector 

zone the standard K-epsilon turbulence and energy dissipation equations proposed 

by Launder and Spalding [20] were also incorporated in the model and these are 

given as follows: 

Turbulence momentum equations: 

 

Turbulent kinetic energy dissipation equation: 

 

(6b) 

where: 

 

 

 

3.1. Computational domain and meshing  

Fig. 5 shows the computational domain and the meshing used in solving the model. 

This was generated using a finite volume method with hybrid cells of structured and 

unstructured grids, giving a total of 30,785 cells. In order to capture the steep 

hydrodynamic variations around the walls of the separation device (the conical 

deflector and the gas exit pipe), the grid size was refined by setting the minimum and 
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maximum grid size at 0.3 and 1.0 cm respectively. In the rest of the simulation 

domain the minimum and maximum grid size was set at 1.0 and 5.0 cm respectively. 

The impact of the grid size on the solution accuracy was initially tested by setting 

three different meshing schemes and the grid size used in this study was found to 

give acceptable grid independent solution.  

 

 

3.2. Computation procedure  

The model equations were solved using the finite volume approach. First-order 

discretization schemes were used for the solution of the convection terms in all 

governing equations. The relative error between any two successive iterations was 

specified by using a convergence criterion of 10-3 for each scaled residual 

component. The phase-coupled SIMPLE (PC-SIMPLE) algorithm [21], which is an 

extension of the SIMPLE algorithm to multiphase flows, was applied for the 

pressure-velocity coupling. The linearized equations for governing equations were 

solved using a block algebraic multigrid method. In order to ensure easy 

convergence of the various partial differential equations (PDE) in the model, 

the Courant–Friedrichs–Lewy (CFL) condition for three-dimensional PDE is followed:  

 

where Cmax is specified by the CFL condition to fall within the range of ~1-5 [22]. In 

this study, a time step of 0.005 seconds was found to satisfy this condition.  

 

3.3. Boundary and simulation conditions 

The particle-wall restitution coefficient and the specularity coefficient are two 

important parameters in determining the dynamics of particles at the wall region. The 

following wall boundary conditions were employed in the model [23]: 
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where  is the specularity coefficient and  is the particle–wall restitution 

coefficient. In order to reasonably match the particle size distribution used in the 

experiments, the simulations were carried out assuming the solid mixture to consist 

of three different particle sizes. The fraction of each particle size group was 

estimated from the experimental size distribution given in Fig. 4. The simulation 

particle sizes and percentages are given in Table 3. For the gas phase, the velocity 

at the wall was assumed zero (no slip condition). Table 4 summarizes the various 

operating conditions considered in the simulations. Some of these conditions were 

carefully selected to allow for the comparison of the model predictions with the 

corresponding experimental data.  

 

4. Results and discussion  

4.1. Mechanism of gas-solid separation     

It is postulated that the drag and gravity forces, the last two terms in the left hand 

side of Eq. 3b, are the main forces dominating the hydrodynamic behavior of the 

gas-solid phases within the separator zone. Fig. 6 gives an overall description of the 

flow structure with close zoom-in at the cone deflector region. The gas velocity in the 

gap between the deflector and the wall is very high due to the considerable pressure 

drop, similar to gas expansion through a throttling device. In the region under the 

cone and below the gas exit pipe there is an upward gas drag force due to the high 

reverse gas phase velocity. However, the extremely dilute solid concentration in this 

zone means very little solids are being entrained. It is therefore desirable to minimize 

the upward gas drag force in this region in order to achieve high separator efficiency. 

On top of the cone deflector, the solid phase is diverted radially towards the wall and 
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then accelerates through the gap between the deflector and the downer wall, pushed 

by a strong gas drag force. The influence of the gravity force in this region is also 

significant due to the high solid concentration. Accordingly, it is believed that any 

particles entrained through the exit pipe are falling under the influence of two 

different drag mechanisms: 

i. Reverse gas flow (upward) under the cone deflector due to the abrupt gas 

pressure drop at the tip of the gas exit pipe. This makes the tip of the exit pipe act 

as a vacuum to the surrounding solids.  

ii. Radial gas flow from the walls towards the core in the region just below the cone 

deflector. This results in the solids being first dragged towards the core, and then 

further dragged/sucked by the gas leaving through the exit pipe. 

 

This is to some extent similar to the solid-gas separation mechanism in a cyclone, 

where in both cases the reverse gas flow in the core is responsible of solid 

entrainment. However, in the cyclone, the particles move radially towards the walls 

under the influence of centrifugal forces, while in the cone deflector, the particles are 

deflected radially by the cone wall to fall under the strong downward gas drag force 

in the “throttling” gap, as described earlier. It is worth noting that the modeling results 

reported by the co-authors from the ICFAR suggested that the solid rebound upon 

hitting the walls, investigated through changing the wall-particle restitution 

coefficient, may have a dominant role in the mechanism of gas-solid separation in 

the cone deflector. This hypothesis will be discussed in some details in the following 

sections. 

 

Fig. 7 shows the predicted solid concentration and the gas velocity profiles at the 

level of 3.9 cm below the tip of the gas exit pipe (see Fig. 6b for the sampling line 

level). These profiles reveals a very interesting hydrodynamic behavior where the 

solid concentration profile is shown to take the shape of a dense-wall and dilute-
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core, while the gas velocity takes the shape of an upward parabolic flow profile at the 

core and a downward flow at the walls. It appears that, due to the existence of the 

cone deflector, the overall flow pattern below this device has been completely 

changed from the classic gas-solid down flow pattern, commonly observed in downer 

reactors, to a more complex flow similar to that existing in a turbulent solid-gas flow 

riser.  

 

4.2. Gas disengagement height (GDH) 

Fig. 8 shows that there are four distinct flow zones each with characteristic flow 

behavior. These are mainly arising from the changes induced by the cone deflector 

and these can be described as flows: 

Zone I: This is where fully developed flow and uniform distribution of the solid and 

gas phases take place, typical to that observed in a conventional downer reactor. 

Zone II: This the where both of the solid and gas phases are first hitting the inclined 

plane to create a dense moving solid layer at the cone walls before being pushing by 

a strong gas drag force through the gap between deflector and the downer walls. 

Under the cone, the lowest solid concentration in the whole system exists and the 

gas is removed through the exit pipe driven by the rapid pressure drop at the exit 

pipe tip.   

Zone III: This is where the disengagement of gas from the gas-solid flow mixture 

takes place. The overall flow hydrodynamics in this region is very complex due to the 

effect of sharp changes in pressure, which consequently leads to reverse gas flow 

towards the top and radial solid movement from the dense walls towards the dilute 

core.  

Zone IV: This is where the solid phase is mainly concentrated at the walls. The 

radial flow diminishes and the particles fall under the strong influence of the gravity 

force before entering the solid collection tank at the bottom of the downer system. 
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As described earlier, the main objective of the cone separator is to allow for fast and 

efficient separation of the gas from the downward gas-solid flow stream. In a 

biomass pyrolysis downer reactor, this separation should ideally take place 

immediately at the level of the gas outlet pipe tip and with zero solid entrainment. 

The first reason is to prevent undesirable secondary gas reactions by removing the 

gas from the reactor hot zone, and second, to prevent catalytic char cracking by 

limiting the contacts between the solid and gas. However, in reality, the gas 

separation from the solid-gas stream takes place a little further down beyond the 

level of the tip of the gas removal pipe. It is therefore particularly interesting to 

quantify the height of Zone III, in which the gas separation takes place. This is 

defined here as the gas disengagement height (GDH), analogous to the definition of 

the transport disengaging height (TDH) in gas-solid fluidized beds. The method used 

in this study to estimate the GDH is demonstrated in Fig. 9. The GDH is defined at 

the intercept of the lines tangential to the low pressure gradient curve and the steep 

changing pressure gradient curve, or alternatively, the GDH can be estimated from 

plotting the axial gas velocity against height as shown in Fig. 9-b. The pressure 

gradient method is similar to the method used by Geldart et al. [24] in determining 

the transport disengaging height (TDH).  

 

Fig. 10 shows the result of a sensitivity analysis of the GDH to a range of operating 

conditions. Please note that the y-axis in Fig. 10 represents the summation of the the 

GDH and the separation distance , where the separation distance is defined as the 

distance from the cone rim to the tip of the gas exit pipe. The GDH range under the 

various operation conditions considered in the simulation was found to fall between 

2.5 cm and 6 cm. It is clear that the GDH is most sensitive to the solid loading and 

the solid flow rate. The increase in the separation distance from 0 cm to 7 cm and 

the solid flow rate from 0.004 kg/s to 0.08 kg/s caused a corresponding increase in 

GDH of around 30% for both cases. Clearly, the cone angle and gas flow rate appear 
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to cause negligible effect in this regard. It should be noted that, while it is desirable to 

decrease the GDH as discussed earlier, this does not necessarily mean improving 

the separation efficiency, as will be demonstrated in the next section.  

    

4.3. Separator efficiency 

The theoretical separator efficiency was obtained by dividing the predicted solid flow 

rate at the gas exit pipe (entrained solids) by the inlet solid mass flow rate, such that, 

 

 

The separator efficiency was analysed with respect to various operating conditions. 

This also included a sensitivity analysis of the separation efficiency towards varying 

the wall-particle interactions mechanism, through changing the particle-wall 

restitution coefficient and specularity coefficient. Both parameters appear in the solid 

boundary condition of Eq. 8-9. The first coefficient is a measure of the degree of 

energy loss when the particles hit the walls, hence determining the rebound velocity, 

and the second coefficient defines the angle of rebound. It is therefore possible to 

determine the effect of the wall surface material and particle properties on the 

separation efficiency through changing these two parameters in the model. 

 

In this study, 100% separator efficiency was obtained when operating with: large 

particle size of  328 µm, separation length = 0 cm, cone angle = 60o, gas 

mass flow rate = 0.0039 kg/s and high solid flow rate = 0.08 kg/s. This was 

found to dramatically decrease when decreasing the particle size. This result is in 

good agreement with the experimental study by Huard et al [10] where it was shown 

that the separator efficiency, when using FCC catalyst of 43 µm and glass 

beads of 63 µm, is much lower than that achieved with sand of 200 µm. 

Fig. 11 shows the values of the predicted separator efficiency obtained within the 

range of operating conditions considered in this study. The detailed results and 
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discussion on the effect of each of these parameters on the overall hydrodynamics 

and separator efficiency are given in the next sections. According to this data, it is 

concluded that the sensitivity of the separator efficiency towards the operating 

conditions can be ranked in order of decreasing impact on the separation efficiency 

as follows; (1) separation length (2) cone angle (3) gas flow rate (4) solid flow rate 

(5) particle physical properties (expressed in terms of the restitution and specularity 

coefficients). Note that, the impact of particle size on the separation efficiency comes 

on top of all the above parameters. 

 
4.3.1. Effect of the separation length (Ls) 

The effect of separation distance on the separator efficiency was studied using three 

different separation lengths of 0 cm, 3.5 cm and 7 cm, which corresponds to the 

normalized separation length (Ls/D) of 0, 0.5 and 1 respectively.  All the other 

parameters were set at the default values.   

 

Figure 12 shows the separator efficiency as a function of the normalized separation 

length. The overall trend indicates a negative impact on the separator efficiency. The 

maximum mean efficiency was 99.986% and this dropped to 99.633 % at Ls/D=1. 

The greater separation efficiency achieved with the particle size of 206 µm compared 

to the size group of 324 µm can be explained by the fact that the concentration of 

this particle group (60 wt%) was greater than the latter one (20 wt%). Therefore, the 

more frequent particle-particle interaction within the same group can neutralized part 

of radial velocity which may cause entrainment of particle. The same phenomenon 

was observed in Fig 15. In terms of sensitivity, the effect of the separation length on 

the separation efficiency is the highest compared to the other parameters 

investigated, as shown earlier in Fig. 11.  It was also demonstrated earlier that the 

separation distance has also a relatively high effect on the GDH. The velocity vectors 

shown in Fig. 13 indicate that the increase in Ls resulted in the creation of two 

vortices in the space between the cone deflector and the tip of the gas exit pipe. This 
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can be attributed to the strong radial gas flow in this region, resulting from the 

considerable pressure drop at the exit pipe.  

 

Fig. 14 shows the changes in the solid concentration and velocity profiles with 

changing the separation length at the sample level of 3.9 cm below the bottom of the 

cone deflector. It is clear that the solid concentration increases with increasing Ls, 

while the vertical upward gas velocity at the core decreases. This suggests that the 

upward gas drag force may have limited influence on the separation efficiency. It is 

the increased radial gas velocity (radial drag), the subsequent formation of vortices 

and the increased solids concentration at the core that collectively play the dominant 

role in decreasing the separator efficiency as the separation length increases. 

 

4.3.2. Effect of the cone deflector angle (θ) 

The effect of the cone deflector angle on the separator efficiency was studied using 

various angles = 60°, 90° and 120°. All other operating conditions were set at the 

default values. Fig. 15 shows that the separator efficiency decreases with increasing 

the cone angle. The maximum mean separator efficiency (taking into account the 

three particle sizes) was 99.986%, this dropped to 99.869 % efficiency when the 

angle is increased to 120°. This trend is in satisfactory agreement with the 

experimental data of Huard et al. [10]; however, the experiments showed less 

pronounced changes compared to the predictions, and this may be attributed to the 

differences between the particle size distribution in the experiment and the assumed 

size mixture in the model.   

  

In Fig. 16 the magnitude and direction of the gas velocity vectors suggest that as the 

cone angle increases there is a greater chance the particles rebound more in the 

reverse direction from the cone inner surface and normal to the gas exit. This would 

slow down the particles and make them easier to be entrained, thus having a 

negative impact on the separator efficiency. In Fig. 17 there is clear increase in the 
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solid concentration on top of the cone’s upper surface due to flattering of the cone 

external surface as shown in Fig. 17; however this is not expected to have 

contributed to the change in the separation mechanism or efficiency.  

 

4.3.3. Effect of the gas mass flow rate 

The effect of inlet gas mass flow rate on the gas separator efficiency was 

investigated at three different flow rates of 0.0039 kg/s, 0.0239 kg/s and 0.0439 kg/s 

and a fixed solid flow rate of 0.004 kg/s. This corresponds to inlet gas velocities of 

0.73 m/s, 4.5 m/s and 8.2 m/s, respectively. All other operating conditions were set to 

the default values. Fig. 18 shows that the effect of the gas mass flow rate on the 

separator efficiency is negligible. This is in good agreement with the experimental 

observation  reported by Huard et al. [10].  

 

To gain further understanding on the effect of gas flow rate on the overall 

hydrodynamics, Fig. 19 shows the gas velocity vectors as function of the gas mass 

flow rate. It is clear that there is a significant change in the magnitude of the gas 

velocity but little change in the flow pattern. There is also evidence of a significant 

change in the solid concentration around the cone deflector as shown in Fig. 20. 

Despite this, such a dramatic change caused no effect on the separator efficiency 

due to counterbalance of forces, which are described as follows: 

i. At a high gas velocity, there is considerable increase in the pressure drop 

between the gas exit pipe and its surroundings, hence high upward gas 

velocity (drag force), as shown in Fig. 21a. However, this is counterbalanced 

by the considerable reduction in the solid concentration in the wall and the 

core region below the exit pipe, as shown in Fig. 21b. 

ii. At a low gas velocity, there is high solid concentration at the wall (i.e. high 

gravity force), as shown in Fig. 21b. This is associated with low pressure drop 

between the wall and the tip of the exit pipe. Hence, there is reduction in the 



18 
 

solid migration from the wall to the core (i.e. low radial gas drag force) or solid 

carry over by the reversing gas (i.e. low upward gas drag force) 

 

According to the above analysis, it is concluded that the gas velocity has little effect 

on the separator efficiency, at least within the operating conditions considered here. 

In biomass pyrolysis, however, the gas velocity has a critical effect on the product 

quality due to its effect on the gas and solid residence time. The residence time can 

be quantified through the average gas velocity, particularly within the GDH region, as 

discussed in Section 4.2. The interrelation between the gas velocity, gas/solid 

residence times and the GDH in a downer pyrolysis reactor is a complex one and 

requires careful optimization in order to achieve the best product quality.  

 

4.3.4. Effect of solid mass flow rate 

The effect of solid mass flow rate on the separator efficiency was investigated using 

four different flow rates of ms = 0.004 kg/s, 0.02 kg/s, 0.04kg/s and 0.08 kg/s at a 

fixed gas mass flow rate of mg =0.0039 kg/s. This corresponded to solid to gas flow 

ratios (solid loading) of ms/mg= 1, 5, 10 and 20 respectively. All the other operating 

conditions were set to the default values. The experimental and predicted results, 

shown in Fig. 22, suggest that the separator efficiency improves as the solid loading 

increases within the range of <10, beyond which the efficiency appears to be 

independent of solid loading. This trend is less pronounced in the predicted data, 

which show very limited changes. Quantitatively, there is an over-prediction of 

separator efficiency when compared with the experiment data; particularly at low 

solid loading.  

 

Fig. 23 shows the velocity vectors as a function of the solid loading. In the wall 

region below the cone deflector, there is a clear change in the magnitude and 

direction of the gas velocity vector, particularly in the right hand side below the gas 
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exit pipe. This implies an increased downward gas drag force, which positively adds 

to the solid gravity force. It is therefore concluded that as the solid loading increases 

the amount of solid entrained by the reversing gas at the central region below the 

cone deflector reduces. The solid concentration in the wall region massively 

increases while the core region remains relatively constant which can be seen in Fig. 

24.  The solid concentration and velocity profiles at the sample level, shown in Fig. 

25, indicate considerable hydrodynamic changes below the cone deflector as the 

solid loading increased. The gas velocity, however, shows exactly the opposite 

behavior with the axial velocity in the core region more than doubled when 

increasing the solid flow rare from 0.004 to 0.08 kg/s, while the velocity near the 

walls is slightly increased. Because the increase in the axial upward gas velocity in 

the centre takes place in a region that is at extremely low in solid concentration, the 

separator efficiency remains almost independent of the increase in solid loading. 

Accordingly, it is recommended to operate this downer reactor at a high solid flow 

rate for the following three main advantages: 

i. Increased upward gas velocity towards the gas outlet pipe within the GDH region, 

therefore reducing the gas residence time in the reactor. 

ii. Improved separator efficiency, as evident from the experimental and predicted 

results. 

iii. Increasing the reactor processing capacity for biomass pyrolysis.   

 
4.3.5. Effect of the particle restitution and specularity coefficients 

It is understood that the particle size plays a major role on the separator efficiency 

such that the larger the particles size the higher the separator efficiency. Another 

important parameter of interest here is the degree of particle momentum loss or 

rebound upon hitting the solid surfaces, which is defined in the model through the 

restitution coefficient and specularity coefficient. The effective particle-wall restitution 

coefficient ( ) was determined experimentally by the co-authors from the ICFAR 

by measuring the rebound velocities of silica sand when hitting various types of solid 
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surfaces; giving restitution coefficients ranging from 0.73 (Plexiglas surface) to 0.48 

(paper surface). In this study, the same range of particle restitution coefficient was 

implemented in the model to investigate the effect of this parameter on the separator 

efficiency. The effect of the specularity coefficient ( ) was investigated by using 

values of =0 , 0.1 and 1.0, thus covering the two extreme ends of particle-wall 

interaction; free slip condition at =0 and no slip condition at =1. Reported studies 

(e.g.  [25] ) have shown that the restitution coefficients have an effect on the solid 

velocity, gas velocity and solid concentration. It is also understood that as the 

restitution coefficient increases there is a corresponding increase in the wall shear 

stress. The specularity coefficient, on the other hand, has been reported to have a 

pronounced effect on the solid concentration, as increasing this parameter results in 

reducing the solid concentration at the wall.  

 

Fig. 26 shows a comparison between the predicted and measured separator 

efficiency as a function of the particle restitution coefficient. It is clear that the 

predicted separator efficiency is a very weak function of this parameter. This is in 

good agreement with some of the reported literature (e.g. [25]) which suggest that 

the particle restitution coefficient (in the range 0.6~0.99) has limited effects on the 

solid velocity, gas velocity and the solid concentration in circulating fluidized bed 

reactors. The experimental data shows a slight decrease in the efficiency as the 

restitution coefficient decreases; however, this is still within a very limited range.  

 

Fig. 27 shows the changes in the predicted separator efficiency with changing the 

value of the secularity coefficient. While there is clear drop in the efficiency as the 

specularity coefficient increases, this is still within a very limited range. This change 

is believed to be a result of the increase in the wall shear stress (no-slip condition), 

which in turn results in hindering the downward flow of the dense wall layer and 

hence giving rise to particle migration from the wall to the core followed by 
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entrainment by the reversing gas towards the exit pipe. This phenomenon is 

demonstrated by the changes in the solid velocity and concentration profiles shown 

in Fig. 28. The specularity coefficient appears to have a significant effect on the gas 

velocity and solid concentration at the wall regions, which is in good agreement with 

the observation reported by Jin et al [25], and in spite of this there is a negligible 

effect on the separator efficiency.  

 

5. Conclusions  

The hydrodynamics in a downer pyrolysis reactor equipped with a novel gas-solid 

separator have been investigated theoretically using an Eulerian-Eulerian (two-fluid) 

CFD model. The novel separator, which consists of a cone deflector and a gas outlet 

pipe, was designed by the co-authors from the ICFAR (Canada). The model 

predictions were compared with experimental measurements of separator efficiency. 

This study revealed interesting hydrodynamic features around the cone deflector, 

where due to the restriction of the flow passage and solid deflection towards the 

walls, the region below the deflector in the downer reactor was completely 

transformed to behave like a riser, characterized by distinct upward gas flow at the 

core and dense falling solid layer at the walls. These distinct hydrodynamic features 

allowed for high efficiency of gas-solid separation up to 100%. A new method for 

estimating the gas disengagement height (GDH) was developed to help in estimating 

the gas residence time in this novel reactor. This study also included detailed 

sensitivity analysis of the separator efficiency towards the various operating 

conditions, including the effect of particle restitution and secularity coefficients. In the 

second part of this study, the present hydrodynamic model will be extended to 

include reaction kinetics and heat transfer to simulate the reactor thermochemical 

performance during the pyrolysis of biomass. 
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Notation 

 Gap between conical deflector and reactor wall (m)   

A Model parameter (-) 

B Model parameter (-) 

 Courant number (-) 

 Drag coefficient (-) 

 Constants (-) 

 Friction coefficient between solid  phase  and phase   (-) 

 Particle diameter of solid phase  (m) 

 Reactor diameter (m) 

 Diameter of gas outlet pipe (m) 

 Particle-particle restitution coefficient (-) 

 Particle-wall restitution coefficient (-) 

 Gravity (m s-2) 

 Radial distribution function (-) 

 Production of turbulent kinetic energy (kg m-1 s-2)   

 Unit vector (-) 

 Second invariant of the deviatoric stress tensor (s-2) 

 Reactor dimension (m) 

 Separation length (m) 

 Turbulence kinetic energy (m2 s-2) 

 Mass of collected and fed solid particles respectively (kg) 

 Mass flow rate of gas and solid respectively (kg s-1)  

 Pressure (pa) 
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 Strain rate (s-1) 

 Reynolds number of solid phase   (-)  

 Time (s) 

 Gas and solid velocity vector (m s-1) 

 Particle velocity at wall (m s-1) 

 Terminal velocity correlation (-) 

 Particle size at accumulative volume fraction at 10%,50%,90% 

  
Greek symbols  

 Angle of conical deflector (Degree) 

 Volume fraction of gas and solid phase  respectively (-)  

 Momentum exchange coefficient (kg m-3 s-1) 

 Collisional energy dissipation (kg m-1 s-3) 

 Turbulent dissipation rate (m2 s-3) 

 Separation efficiency (-) 

 Granular temperature of solid phase  (m2 s-2) 

 Diffusion coefficient of granular energy (kg m-1 s-1) 

 Particle bulk viscosity (kg m-1 s-1)   

 Viscosity of gas phase due to laminar, turbulent flow  (kg m-1 s-2)   

 Viscosity of solid phase  due to collision (kg m-1 s-1)   

 Viscosity of solid phase  due to kinetics (kg m-1 s-1) 

 Viscosity of solid phase  due to friction (kg m-1 s-1) 

 Influence of solid phases on gas phase (m2 s-3)  

 Influence of solid phases on gas phase (m2 s-4) 

 Solid and gas densities respectively (kg m-3)  

 Shear stress tensor (kg m-1 s-2) 

 Constants (-) 

 Angle of Internal friction (Degree) 
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 Energy exchange between phase k and solid phase  (kg m-1 s-1) 

 Specularity coefficient (-) 
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Abstract: 

This study presents the first part of a CFD study on the performance of a downer 

reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid 

separation method, developed by the co-authors from the ICFAR (Canada). The 

separator, which was designed to allow for fast separation of clean pyrolysis gas, 

consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. 

A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the 

kinetic theory of granular flow was used to simulate the multiphase flow. The effects 

of the various parameters including operation conditions, separator geometry and 

particle properties on the overall hydrodynamics and separation efficiency were 

investigated. The model prediction of the separator efficiency was compared with 

experimental measurements. The results revealed distinct hydrodynamic features 

around the cone separator, allowing for up to 100% separation efficiency. The 

developed model provided a platform for the second part of the study, where the 

biomass pyrolysis is simulated and the product quality as a function of operating 
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conditions is analysed.  

 

Key words: Biomass pyrolysis, downer reactor, gas-solid separation, CFD modeling, 
hydrodynamics 
 

1. Introduction 

The escalating global concern over the exhaustion of non-renewable energy sources 

lead to the recent development of a range of novel technologies for the use of 

renewable energy resources, such as biomass, solar and wind. Among these 

resources and technologies, biomass pyrolysis has emerged as a very promising 

renewable alternative for bio-oil production. In a large commercial scale, this could 

be carried out in a dual fluidized bed (DFB) system with various optional 

arrangements. The schematics in Fig. 1 demonstrate examples of these 

arrangements. In this study, we are interested in the downer-riser type of a dual 

fluidized bed, shown in Fig. 1-b, where the biomass pyrolysis takes place in the 

downer side of the reactor, while the riser side is used for combustion, thus providing 

the heat required for the pyrolysis through the circulating inert heat carrier solid (such 

as sand). This arrangement has the following specific advantages for bio-oil 

production through fast pyrolysis:  

i. The downer pyrolysis reactor can be operated with very low carrier gas (e.g. 

nitrogen) flow rates, which is desirable in some cases to reduce up-stream 

pre-heating and downstream processing.    

ii. Reducing the gas and solid back-mixing [1, 2, 3] thus, limiting the spread of 

the gas/solid residence time distribution, i.e. near to plug flow. 

iii. Relatively low cost, simple operation/control and high energy efficiency. 

iv. The char combustion in the second reactor will guarantee sustainable 

operation and better control of the pyrolysis temperature in the first reactor. 

 

However, in order to achieve high conversion efficiency (more than 70% bio-oil yield) 

in a downer reactor there remains two main technical challenges: 
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i. Control of the pyrolysis gas residence time within the hot zone of the reactor 

(ideally 1-2 seconds). Longer residence time of the pyrolysis gas at high 

temperature initiates a range of undesirable side reactions, which could 

adversely affect the quality of the product bio-oil [4, 5]  

ii. Control of the downstream contact between the pyrolysis gas and bio-char. 

The bio-char, formed during pyrolysis, acts as a vapor cracking catalyst, 

therefore should be separated as soon as the pyrolysis vapor is released [6]  

 

Char, as well as other entrained fine particles, can primarily be separated from the 

pyrolysis gas by using conventional cyclones (reverse and co-current flow types). 

However, this carries the risk of increasing the contact time between the gas and 

char inside the cyclone. In addition, the cyclone inlet is commonly placed external to 

the reactor or away from the pyrolysis zone, thus, causing extra contact time 

between the solid and gas. The extensive review conducted by Huard et al. [7] and 

Cheng et al. [8] on downer reactors and rapid gas-solid separation techniques 

revealed that there are limited attempts on implementing new design methods for 

rapid gas-solid separation in these reactors.  

 

Recent research at the Institute for Chemicals and Fuels from Alternative Resources 

(ICFAR) has led to the development of a novel gas-solid separation device for a 

downer pyrolysis reactor. The device features a cone-shaped solid deflector 

positioned above a gas outlet pipe, both positioned concentrically in the downer pipe 

(see Fig. 2). This was designed to achieve primary solid-gas separation and gas 

removal within the same device [9] The separator allows for better control of the 

pyrolysis vapor residence time, therefore, reducing the severity of vapor over-

cracking compared to other fast separation methods. Experimental work by Huard et 

al. [10] has shown that this separator can achieve very high solid-gas separator 

efficiency above 99.99% when using spherical silica sand particles of 200 μm 
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diameter. 

 

Computational Fluid Dynamics (CFD) modeling is one of the powerful tools to 

analyse gas-solid flow behavior, including that involves intense heat transfer and 

chemical reactions. The co-authors from the ICFAR have previously used an 

Eulerian-Lagrangian modeling approach to investigate the effect of the particle 

elasticity on the separator efficiency in the same novel separator investigated in this 

study [9]. While this approach revealed important details of the particle-wall collision 

and its effects on the separator efficiency and mechanism, the simulation domain 

was limited to the separator zone only and the total solid volume fraction was limited 

to a maximum of 4×10-5. The Eulerian-Eulerian (also referred to as two-fluid) is 

another modeling approach that has the advantage of being robust and realistic in 

computational time, especially when considering a large number of particles or large 

simulation domain. Unlike the Eulerian-Lagrangian approach, which treats each 

single particle as a dispersed phase in the continuum fluid flow, the Eulerian-Eulerian 

approach treats both of the fluid and solid phases as an interpenetrating continuum. 

Studies on the Eulerian-Eulerian simulation of solid-gas hydrodynamics in a downer 

reactor have been previously reported by Ropelato et al. [11], Kim et al [12] and 

Samruamphianskun [13] This modeling approach was found to be especially useful 

in predicting the effects of inlet design and flow conditions on the solid distribution 

and dispersion behavior. This CFD modeling approach has also been used by 

different researchers to study the phenomena of solid-gas separation in cyclones 

[14, 15, 16]  

 

In this study, the main objectives are: 

i. to develop a valid Eulerian-Eulerian (multi-fluid) CFD model capably of 

predicting the detailed hydrodynamic behaviour in a downer reactor equipped 

with a novel gas-solid separation device; 
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ii. to use the developed model in investigating the effect of the operating 

conditions and various separator design parameters on the overall 

hydrodynamics, with particular focus on the separator efficiency; 

iii. to provide a platform for the development of a predictive model of the 

pyrolysis reactions and yield in the downer reactor equipped with the novel 

gas-solid separator. 

 

The investigation was carried out theoretically and experimentally in a cold flow 

reactor model equipped with the ICFAR novel gas-solid separator and gas removal 

mechanism, as described in details in the experimental section. The theoretical 

transient model was solved in three-dimensional coordinates using the Eulerian-

Eulerian (two-fluid) approach, employing constitutive relations from the kinetic theory 

of granular flow (KTGF) [17]. In the second part of this study, the developed 

hydrodynamic model will be extended to include heat transfer and reaction kinetics 

to demonstrate the advantages of the ICFAR separator in improving the performance 

and product quality in a biomass downer pyrolysis reactor. 

 

2. Experiments and procedure 

The experimental work described here was carried out by the co-investigators at the 

ICFAR in Canada. The equipment consisted of a cold flow gas-solid flow downer of 

133.5 cm height and 7.0 cm diameter, equipped with the ICFAR novel gas-solid 

separator as shown in Fig. 2 and 3. This separator included a gas removal pipe and 

a cone deflector, where the bottom of the deflector and tip of the pipe were located 

98.6 cm below the downer inlet. A solid collection tank of 20.4 cm diameter and 21.8 

cm height was placed at the bottom of the downer column around 34.9 cm below the 

cone deflector. Compressed air at room temperature was supplied to the downer 

from a bank of calibrated sonic orifice nozzles. The Sauter mean diameter of the 

particle mixture used was 188 µm and its skeletal density was 2650 kg/m3. The 
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particle size distribution of the mixture is shown in Fig. 4. 

 

The solid particles were delivered to the downer column from an air pressurized tank 

mounted above the downer main air inlet. The total mass flowrate of air in the 

downer was gm� = 0.0039 kg/s, which corresponded to a superficial gas velocity of Ug 

= 0.73 m/s. The solids mass flowrate was adjusted by changing the feed tank air 

pressure and this was varied between sm� = 0.017 kg/s and 0.083 kg/s, which 

corresponded to solids-to-gas loading ratios of gs mm �� / = 4.3 to 21. The gas-solids 

mixture flowed co-currently in the downer before entering the gas-solids separation 

zone. Three different cone deflectors with various internal angles of 60°, 90° and 

120° were used. The downward falling particles were collected in the tank at the 

bottom of the unit, while the gas stream, along with any entrained particles, exited 

the system through the gas outlet pipe mounted in the centre of the downer cross 

section and below the cone deflector. A bag filter connected at the end of the gas 

exhaust line was used to collect the particles entrained in the exiting gas stream. 

 

At the start of each experiment, the total mass of solids fed into the system, min, was 

measured. The mass of the entrained solids collected in the bag filter, mcollected, was 

then measured at the end of each experiment. Thus, the experimental percentage 

total solids separation efficiency, η, was calculated from the following expression: 

 

 

The mass flowrate of solids was determined by measuring the total mass of solid 

collected in the filter bag and tank against the recorded time. 

 



7 
 

3. Hydrodynamic model 

The overall reactor hydrodynamics and gas-solid separation was investigated using 

the Eulerian-Eulerian (multi-fluid) model approach based on the Kinetic Theory of 

Granular Flow (KTGF). The developed model was solved using the CFD software 

ANSYS FLUENT (Ver. 14). In order to mimic the wide size distribution of the solid 

mixture used in the experiment, the simulation was carried out using a solid mixture 

of three different particle sizes, as detailed in section 3.3. The main model equations 

for non-reacting isothermal gas-solid flow are given by: 

Continuity equations: 

 

 

 

Momentum equations: 

 

 

 

where: 

 

 

 represents solid or gas phase. 

 

To obtain the granular temperature, the FLUENT code was optionally set to use a 

partial differential equation (Pseudo Energy Equation) as follows [18]: 
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The various closure and constitutive relations used in the model are given in Table 2. 

In order to take into consideration the solid-solid frictional stresses at the dense 

regions of the reactor, the friction equation proposed by Schaeffer [19], as given in 

Equation T1-5, was used. Due to the highly turbulence of the flow near the deflector 

zone the standard K-epsilon turbulence and energy dissipation equations proposed 

by Launder and Spalding [20] were also incorporated in the model and these are 

given as follows: 

Turbulence momentum equations: 

 

Turbulent kinetic energy dissipation equation: 

 

(6b) 

where: 

 

 

 

3.1. Computational domain and meshing  

Fig. 5 shows the computational domain and the meshing used in solving the model. 

This was generated using a finite volume method with hybrid cells of structured and 

unstructured grids, giving a total of 30,785 cells. In order to capture the steep 

hydrodynamic variations around the walls of the separation device (the conical 

deflector and the gas exit pipe), the grid size was refined by setting the minimum and 
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maximum grid size at 0.3 and 1.0 cm respectively. In the rest of the simulation 

domain the minimum and maximum grid size was set at 1.0 and 5.0 cm respectively. 

The impact of the grid size on the solution accuracy was initially tested by setting 

three different meshing schemes and the grid size used in this study was found to 

give acceptable grid independent solution.  

 

 

3.2. Computation procedure  

The model equations were solved using the finite volume approach. First-order 

discretization schemes were used for the solution of the convection terms in all 

governing equations. The relative error between any two successive iterations was 

specified by using a convergence criterion of 10-3 for each scaled residual 

component. The phase-coupled SIMPLE (PC-SIMPLE) algorithm [21], which is an 

extension of the SIMPLE algorithm to multiphase flows, was applied for the 

pressure-velocity coupling. The linearized equations for governing equations were 

solved using a block algebraic multigrid method. In order to ensure easy 

convergence of the various partial differential equations (PDE) in the model, 

the Courant–Friedrichs–Lewy (CFL) condition for three-dimensional PDE is followed:  

 

where Cmax is specified by the CFL condition to fall within the range of ~1-5 [22]. In 

this study, a time step of 0.005 seconds was found to satisfy this condition.  

 

3.3. Boundary and simulation conditions 

The particle-wall restitution coefficient and the specularity coefficient are two 

important parameters in determining the dynamics of particles at the wall region. The 

following wall boundary conditions were employed in the model [23]: 
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where  is the specularity coefficient and  is the particle–wall restitution 

coefficient. In order to reasonably match the particle size distribution used in the 

experiments, the simulations were carried out assuming the solid mixture to consist 

of three different particle sizes. The fraction of each particle size group was 

estimated from the experimental size distribution given in Fig. 4. The simulation 

particle sizes and percentages are given in Table 3. For the gas phase, the velocity 

at the wall was assumed zero (no slip condition). Table 4 summarizes the various 

operating conditions considered in the simulations. Some of these conditions were 

carefully selected to allow for the comparison of the model predictions with the 

corresponding experimental data.  

 

4. Results and discussion  

4.1. Mechanism of gas-solid separation     

It is postulated that the drag and gravity forces, the last two terms in the left hand 

side of Eq. 3b, are the main forces dominating the hydrodynamic behavior of the 

gas-solid phases within the separator zone. Fig. 6 gives an overall description of the 

flow structure with close zoom-in at the cone deflector region. The gas velocity in the 

gap between the deflector and the wall is very high due to the considerable pressure 

drop, similar to gas expansion through a throttling device. In the region under the 

cone and below the gas exit pipe there is an upward gas drag force due to the high 

reverse gas phase velocity. However, the extremely dilute solid concentration in this 

zone means very little solids are being entrained. It is therefore desirable to minimize 

the upward gas drag force in this region in order to achieve high separator efficiency. 

On top of the cone deflector, the solid phase is diverted radially towards the wall and 
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then accelerates through the gap between the deflector and the downer wall, pushed 

by a strong gas drag force. The influence of the gravity force in this region is also 

significant due to the high solid concentration. Accordingly, it is believed that any 

particles entrained through the exit pipe are falling under the influence of two 

different drag mechanisms: 

i. Reverse gas flow (upward) under the cone deflector due to the abrupt gas 

pressure drop at the tip of the gas exit pipe. This makes the tip of the exit pipe act 

as a vacuum to the surrounding solids.  

ii. Radial gas flow from the walls towards the core in the region just below the cone 

deflector. This results in the solids being first dragged towards the core, and then 

further dragged/sucked by the gas leaving through the exit pipe. 

 

This is to some extent similar to the solid-gas separation mechanism in a cyclone, 

where in both cases the reverse gas flow in the core is responsible of solid 

entrainment. However, in the cyclone, the particles move radially towards the walls 

under the influence of centrifugal forces, while in the cone deflector, the particles are 

deflected radially by the cone wall to fall under the strong downward gas drag force 

in the “throttling” gap, as described earlier. It is worth noting that the modeling results 

reported by the co-authors from the ICFAR suggested that the solid rebound upon 

hitting the walls, investigated through changing the wall-particle restitution 

coefficient, may have a dominant role in the mechanism of gas-solid separation in 

the cone deflector. This hypothesis will be discussed in some details in the following 

sections. 

 

Fig. 7 shows the predicted solid concentration and the gas velocity profiles at the 

level of 3.9 cm below the tip of the gas exit pipe (see Fig. 6b for the sampling line 

level). These profiles reveals a very interesting hydrodynamic behavior where the 

solid concentration profile is shown to take the shape of a dense-wall and dilute-
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core, while the gas velocity takes the shape of an upward parabolic flow profile at the 

core and a downward flow at the walls. It appears that, due to the existence of the 

cone deflector, the overall flow pattern below this device has been completely 

changed from the classic gas-solid down flow pattern, commonly observed in downer 

reactors, to a more complex flow similar to that existing in a turbulent solid-gas flow 

riser.  

 

4.2. Gas disengagement height (GDH) 

Fig. 8 shows that there are four distinct flow zones each with characteristic flow 

behavior. These are mainly arising from the changes induced by the cone deflector 

and these can be described as flows: 

Zone I: This is where fully developed flow and uniform distribution of the solid and 

gas phases take place, typical to that observed in a conventional downer reactor. 

Zone II: This the where both of the solid and gas phases are first hitting the inclined 

plane to create a dense moving solid layer at the cone walls before being pushing by 

a strong gas drag force through the gap between deflector and the downer walls. 

Under the cone, the lowest solid concentration in the whole system exists and the 

gas is removed through the exit pipe driven by the rapid pressure drop at the exit 

pipe tip.   

Zone III: This is where the disengagement of gas from the gas-solid flow mixture 

takes place. The overall flow hydrodynamics in this region is very complex due to the 

effect of sharp changes in pressure, which consequently leads to reverse gas flow 

towards the top and radial solid movement from the dense walls towards the dilute 

core.  

Zone IV: This is where the solid phase is mainly concentrated at the walls. The 

radial flow diminishes and the particles fall under the strong influence of the gravity 

force before entering the solid collection tank at the bottom of the downer system. 
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As described earlier, the main objective of the cone separator is to allow for fast and 

efficient separation of the gas from the downward gas-solid flow stream. In a 

biomass pyrolysis downer reactor, this separation should ideally take place 

immediately at the level of the gas outlet pipe tip and with zero solid entrainment. 

The first reason is to prevent undesirable secondary gas reactions by removing the 

gas from the reactor hot zone, and second, to prevent catalytic char cracking by 

limiting the contacts between the solid and gas. However, in reality, the gas 

separation from the solid-gas stream takes place a little further down beyond the 

level of the tip of the gas removal pipe. It is therefore particularly interesting to 

quantify the height of Zone III, in which the gas separation takes place. This is 

defined here as the gas disengagement height (GDH), analogous to the definition of 

the transport disengaging height (TDH) in gas-solid fluidized beds. The method used 

in this study to estimate the GDH is demonstrated in Fig. 9. The GDH is defined at 

the intercept of the lines tangential to the low pressure gradient curve and the steep 

changing pressure gradient curve, or alternatively, the GDH can be estimated from 

plotting the axial gas velocity against height as shown in Fig. 9-b. The pressure 

gradient method is similar to the method used by Geldart et al. [24] in determining 

the transport disengaging height (TDH).  

 

Fig. 10 shows the result of a sensitivity analysis of the GDH to a range of operating 

conditions. Please note that the y-axis in Fig. 10 represents the summation of the the 

GDH and the separation distance , where the separation distance is defined as the 

distance from the cone rim to the tip of the gas exit pipe. The GDH range under the 

various operation conditions considered in the simulation was found to fall between 

2.5 cm and 6 cm. It is clear that the GDH is most sensitive to the solid loading and 

the solid flow rate. The increase in the separation distance from 0 cm to 7 cm and 

the solid flow rate from 0.004 kg/s to 0.08 kg/s caused a corresponding increase in 

GDH of around 30% for both cases. Clearly, the cone angle and gas flow rate appear 



14 
 

to cause negligible effect in this regard. It should be noted that, while it is desirable to 

decrease the GDH as discussed earlier, this does not necessarily mean improving 

the separation efficiency, as will be demonstrated in the next section.  

    

4.3. Separator efficiency 

The theoretical separator efficiency was obtained by dividing the predicted solid flow 

rate at the gas exit pipe (entrained solids) by the inlet solid mass flow rate, such that, 

 

 

The separator efficiency was analysed with respect to various operating conditions. 

This also included a sensitivity analysis of the separation efficiency towards varying 

the wall-particle interactions mechanism, through changing the particle-wall 

restitution coefficient and specularity coefficient. Both parameters appear in the solid 

boundary condition of Eq. 8-9. The first coefficient is a measure of the degree of 

energy loss when the particles hit the walls, hence determining the rebound velocity, 

and the second coefficient defines the angle of rebound. It is therefore possible to 

determine the effect of the wall surface material and particle properties on the 

separation efficiency through changing these two parameters in the model. 

 

In this study, 100% separator efficiency was obtained when operating with: large 

particle size of  328 µm, separation length = 0 cm, cone angle = 60o, gas 

mass flow rate = 0.0039 kg/s and high solid flow rate = 0.08 kg/s. This was 

found to dramatically decrease when decreasing the particle size. This result is in 

good agreement with the experimental study by Huard et al [10] where it was shown 

that the separator efficiency, when using FCC catalyst of 43 µm and glass 

beads of 63 µm, is much lower than that achieved with sand of 200 µm. 

Fig. 11 shows the values of the predicted separator efficiency obtained within the 

range of operating conditions considered in this study. The detailed results and 
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discussion on the effect of each of these parameters on the overall hydrodynamics 

and separator efficiency are given in the next sections. According to this data, it is 

concluded that the sensitivity of the separator efficiency towards the operating 

conditions can be ranked in order of decreasing impact on the separation efficiency 

as follows; (1) separation length (2) cone angle (3) gas flow rate (4) solid flow rate 

(5) particle physical properties (expressed in terms of the restitution and specularity 

coefficients). Note that, the impact of the particle size on the separation efficiency 

comes on top of all the above parameters. 

 
4.3.1. Effect of the separation length (Ls) 

The effect of separation distance on the separator efficiency was studied using three 

different separation lengths of 0 cm, 3.5 cm and 7 cm, which corresponds to the 

normalized separation length (Ls/D) of 0, 0.5 and 1 respectively.  All the other 

parameters were set at the default values.   

 

Figure 12 shows the separator efficiency as a function of the normalized separation 

length. The overall trend indicates a negative impact on the separator efficiency. The 

maximum mean efficiency was 99.986% and this dropped to 99.633 % at Ls/D=1. 

The greater separation efficiency achieved with the particle size of 206 µm compared 

to the size group of 324 µm can be explained by the fact that the concentration of 

this particle group (60 wt%) was greater than the latter one (20 wt%). Therefore, the 

more frequent particle-particle interaction within the same group can neutralized part 

of radial velocity which may cause entrainment of particle. The same phenomenon 

was observed in Fig 15. In terms of sensitivity, the effect of the separation length on 

the separation efficiency is the highest compared to the other parameters 

investigated, as shown earlier in Fig. 11.  It was also demonstrated earlier that the 

separation distance has also a relatively high effect on the GDH. The velocity vectors 

shown in Fig. 13 indicate that the increase in Ls resulted in the creation of two 

vortices in the space between the cone deflector and the tip of the gas exit pipe. This 
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can be attributed to the strong radial gas flow in this region, resulting from the 

considerable pressure drop at the exit pipe.  

 

Fig. 14 shows the changes in the solid concentration and velocity profiles with 

changing the separation length at the sample level of 3.9 cm below the bottom of the 

cone deflector. It is clear that the solid concentration increases with increasing Ls, 

while the vertical upward gas velocity at the core decreases. This suggests that the 

upward gas drag force may have limited influence on the separation efficiency. It is 

the increased radial gas velocity (radial drag), the subsequent formation of vortices 

and the increased solids concentration at the core that collectively play the dominant 

role in decreasing the separator efficiency as the separation length increases. 

 

4.3.2. Effect of the cone deflector angle (θ) 

The effect of the cone deflector angle on the separator efficiency was studied using 

various angles = 60°, 90° and 120°. All other operating conditions were set at the 

default values. Fig. 15 shows that the separator efficiency decreases with increasing 

the cone angle. The maximum mean separator efficiency (taking into account the 

three particle sizes) was 99.986%, this dropped to 99.869 % efficiency when the 

angle is increased to 120°. This trend is in satisfactory agreement with the 

experimental data of Huard et al. [10]; however, the experiments showed less 

pronounced changes compared to the predictions, and this may be attributed to the 

differences between the particle size distribution in the experiment and the assumed 

size mixture in the model.   

  

In Fig. 16 the magnitude and direction of the gas velocity vectors suggest that as the 

cone angle increases there is a greater chance the particles rebound more in the 

reverse direction from the cone inner surface and normal to the gas exit. This would 

slow down the particles and make them easier to be entrained, thus having a 

negative impact on the separator efficiency. In Fig. 17 there is clear increase in the 
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solid concentration on top of the cone’s upper surface due to flattering of the cone 

external surface as shown in Fig. 17; however this is not expected to have 

contributed to the change in the separation mechanism or efficiency.  

 

4.3.3. Effect of the gas mass flow rate 

The effect of inlet gas mass flow rate on the gas separator efficiency was 

investigated at three different flow rates of 0.0039 kg/s, 0.0239 kg/s and 0.0439 kg/s 

and a fixed solid flow rate of 0.004 kg/s. This corresponds to inlet gas velocities of 

0.73 m/s, 4.5 m/s and 8.2 m/s, respectively. All other operating conditions were set to 

the default values. Fig. 18 shows that the effect of the gas mass flow rate on the 

separator efficiency is negligible. This is in good agreement with the experimental 

observation  reported by Huard et al. [10].  

 

To gain further understanding on the effect of gas flow rate on the overall 

hydrodynamics, Fig. 19 shows the gas velocity vectors as function of the gas mass 

flow rate. It is clear that there is a significant change in the magnitude of the gas 

velocity but little change in the flow pattern. There is also evidence of a significant 

change in the solid concentration around the cone deflector as shown in Fig. 20. 

Despite this, such a dramatic change caused no effect on the separator efficiency 

due to counterbalance of forces, which are described as follows: 

i. At a high gas velocity, there is considerable increase in the pressure drop 

between the gas exit pipe and its surroundings, hence high upward gas 

velocity (drag force), as shown in Fig. 21a. However, this is counterbalanced 

by the considerable reduction in the solid concentration in the wall and the 

core region below the exit pipe, as shown in Fig. 21b. 

ii. At a low gas velocity, there is high solid concentration at the wall (i.e. high 

gravity force), as shown in Fig. 21b. This is associated with low pressure drop 

between the wall and the tip of the exit pipe. Hence, there is reduction in the 
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solid migration from the wall to the core (i.e. low radial gas drag force) or solid 

carry over by the reversing gas (i.e. low upward gas drag force) 

 

According to the above analysis, it is concluded that the gas velocity has little effect 

on the separator efficiency, at least within the operating conditions considered here. 

In biomass pyrolysis, however, the gas velocity has a critical effect on the product 

quality due to its effect on the gas and solid residence time. The residence time can 

be quantified through the average gas velocity, particularly within the GDH region, as 

discussed in Section 4.2. The interrelation between the gas velocity, gas/solid 

residence times and the GDH in a downer pyrolysis reactor is a complex one and 

requires careful optimization in order to achieve the best product quality.  

 

4.3.4. Effect of solid mass flow rate 

The effect of solid mass flow rate on the separator efficiency was investigated using 

four different flow rates of ms = 0.004 kg/s, 0.02 kg/s, 0.04kg/s and 0.08 kg/s at a 

fixed gas mass flow rate of mg =0.0039 kg/s. This corresponded to solid to gas flow 

ratios (solid loading) of ms/mg= 1, 5, 10 and 20 respectively. All the other operating 

conditions were set to the default values. The experimental and predicted results, 

shown in Fig. 22, suggest that the separator efficiency improves as the solid loading 

increases within the range of <10, beyond which the efficiency appears to be 

independent of solid loading. This trend is less pronounced in the predicted data, 

which show very limited changes. Quantitatively, there is an over-prediction of 

separator efficiency when compared with the experiment data; particularly at low 

solid loading.  

 

Fig. 23 shows the velocity vectors as a function of the solid loading. In the wall 

region below the cone deflector, there is a clear change in the magnitude and 

direction of the gas velocity vector, particularly in the right hand side below the gas 
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exit pipe. This implies an increased downward gas drag force, which positively adds 

to the solid gravity force. It is therefore concluded that as the solid loading increases 

the amount of solid entrained by the reversing gas at the central region below the 

cone deflector reduces. The solid concentration in the wall region massively 

increases while the core region remains relatively constant which can be seen in Fig. 

24.  The solid concentration and velocity profiles at the sample level, shown in Fig. 

25, indicate considerable hydrodynamic changes below the cone deflector as the 

solid loading increased. The gas velocity, however, shows exactly the opposite 

behavior with the axial velocity in the core region more than doubled when 

increasing the solid flow rare from 0.004 to 0.08 kg/s, while the velocity near the 

walls is slightly increased. Because the increase in the axial upward gas velocity in 

the centre takes place in a region that is at extremely low in solid concentration, the 

separator efficiency remains almost independent of the increase in solid loading. 

Accordingly, it is recommended to operate this downer reactor at a high solid flow 

rate for the following three main advantages: 

i. Increased upward gas velocity towards the gas outlet pipe within the GDH region, 

therefore reducing the gas residence time in the reactor. 

ii. Improved separator efficiency, as evident from the experimental and predicted 

results. 

iii. Increasing the reactor processing capacity for biomass pyrolysis.   

 
4.3.5. Effect of the particle restitution and specularity coefficients 

It is understood that the particle size plays a major role on the separator efficiency 

such that the larger the particles size the higher the separator efficiency. Another 

important parameter of interest here is the degree of particle momentum loss or 

rebound upon hitting the solid surfaces, which is defined in the model through the 

restitution coefficient and specularity coefficient. The effective particle-wall restitution 

coefficient ( ) was determined experimentally by the co-authors from the ICFAR 

by measuring the rebound velocities of silica sand when hitting various types of solid 
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surfaces; giving restitution coefficients ranging from 0.73 (Plexiglas surface) to 0.48 

(paper surface). In this study, the same range of particle restitution coefficient was 

implemented in the model to investigate the effect of this parameter on the separator 

efficiency. The effect of the specularity coefficient ( ) was investigated by using 

values of =0 , 0.1 and 1.0, thus covering the two extreme ends of particle-wall 

interaction; free slip condition at =0 and no slip condition at =1. Reported studies 

(e.g.  [25] ) have shown that the restitution coefficients have an effect on the solid 

velocity, gas velocity and solid concentration. It is also understood that as the 

restitution coefficient increases there is a corresponding increase in the wall shear 

stress. The specularity coefficient, on the other hand, has been reported to have a 

pronounced effect on the solid concentration, as increasing this parameter results in 

reducing the solid concentration at the wall.  

 

Fig. 26 shows a comparison between the predicted and measured separator 

efficiency as a function of the particle restitution coefficient. It is clear that the 

predicted separator efficiency is a very weak function of this parameter. This is in 

good agreement with some of the reported literature (e.g. [25]) which suggest that 

the particle restitution coefficient (in the range 0.6~0.99) has limited effects on the 

solid velocity, gas velocity and the solid concentration in circulating fluidized bed 

reactors. The experimental data shows a slight decrease in the efficiency as the 

restitution coefficient decreases; however, this is still within a very limited range.  

 

Fig. 27 shows the changes in the predicted separator efficiency with changing the 

value of the secularity coefficient. While there is clear drop in the efficiency as the 

specularity coefficient increases, this is still within a very limited range. This change 

is believed to be a result of the increase in the wall shear stress (no-slip condition), 

which in turn results in hindering the downward flow of the dense wall layer and 

hence giving rise to particle migration from the wall to the core followed by 



21 
 

entrainment by the reversing gas towards the exit pipe. This phenomenon is 

demonstrated by the changes in the solid velocity and concentration profiles shown 

in Fig. 28. The specularity coefficient appears to have a significant effect on the gas 

velocity and solid concentration at the wall regions, which is in good agreement with 

the observation reported by Jin et al [25], and in spite of this there is a negligible 

effect on the separator efficiency.  

 

5. Conclusions  

The hydrodynamics in a downer pyrolysis reactor equipped with a novel gas-solid 

separator have been investigated theoretically using an Eulerian-Eulerian (two-fluid) 

CFD model. The novel separator, which consists of a cone deflector and a gas outlet 

pipe, was designed by the co-authors from the ICFAR (Canada). The model 

predictions were compared with experimental measurements of separator efficiency. 

This study revealed interesting hydrodynamic features around the cone deflector, 

where due to the restriction of the flow passage and solid deflection towards the 

walls, the region below the deflector in the downer reactor was completely 

transformed to behave like a riser, characterized by distinct upward gas flow at the 

core and dense falling solid layer at the walls. These distinct hydrodynamic features 

allowed for high efficiency of gas-solid separation up to 100%. A new method for 

estimating the gas disengagement height (GDH) was developed to help in estimating 

the gas residence time in this novel reactor. This study also included detailed 

sensitivity analysis of the separator efficiency towards the various operating 

conditions, including the effect of particle restitution and secularity coefficients. In the 

second part of this study, the present hydrodynamic model will be extended to 

include reaction kinetics and heat transfer to simulate the reactor thermochemical 

performance during the pyrolysis of biomass. 
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Notation 

 Gap between conical deflector and reactor wall (m)   

A Model parameter (-) 

B Model parameter (-) 

 Courant number (-) 

 Drag coefficient (-) 

 Constants (-) 

 Friction coefficient between solid  phase  and phase   (-) 

 Particle diameter of solid phase  (m) 

 Reactor diameter (m) 

 Diameter of gas outlet pipe (m) 

 Particle-particle restitution coefficient (-) 

 Particle-wall restitution coefficient (-) 

 Gravity (m s-2) 

 Radial distribution function (-) 

 Production of turbulent kinetic energy (kg m-1 s-2)   

 Unit vector (-) 

 Second invariant of the deviatoric stress tensor (s-2) 

 Reactor dimension (m) 

 Separation length (m) 

 Turbulence kinetic energy (m2 s-2) 

 Mass of collected and fed solid particles respectively (kg) 

 Mass flow rate of gas and solid respectively (kg s-1)  

 Pressure (pa) 
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 Strain rate (s-1) 

 Reynolds number of solid phase   (-)  

 Time (s) 

 Gas and solid velocity vector (m s-1) 

 Particle velocity at wall (m s-1) 

 Terminal velocity correlation (-) 

 Particle size at accumulative volume fraction at 10%,50%,90% 

  
Greek symbols  

 Angle of conical deflector (Degree) 

 Volume fraction of gas and solid phase  respectively (-)  

 Momentum exchange coefficient (kg m-3 s-1) 

 Collisional energy dissipation (kg m-1 s-3) 

 Turbulent dissipation rate (m2 s-3) 

 Separation efficiency (-) 

 Granular temperature of solid phase  (m2 s-2) 

 Diffusion coefficient of granular energy (kg m-1 s-1) 

 Particle bulk viscosity (kg m-1 s-1)   

 Viscosity of gas phase due to laminar, turbulent flow  (kg m-1 s-2)   

 Viscosity of solid phase  due to collision (kg m-1 s-1)   

 Viscosity of solid phase  due to kinetics (kg m-1 s-1) 

 Viscosity of solid phase  due to friction (kg m-1 s-1) 

 Influence of solid phases on gas phase (m2 s-3)  

 Influence of solid phases on gas phase (m2 s-4) 

 Solid and gas densities respectively (kg m-3)  

 Shear stress tensor (kg m-1 s-2) 

 Constants (-) 

 Angle of Internal friction (Degree) 
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 Energy exchange between phase k and solid phase  (kg m-1 s-1) 

 Specularity coefficient (-) 
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Table 1. Dimensions of the downer reactor and the cone separator 

 parameters Value parameters Value 
L1 [cm] 98.6 Dc [cm] 7 
L2 [cm] 34.9 Ls [cm] 0, 3.5, 7 
a [cm] 0.35 Dgo [cm] 0.95 

 [Degree] 60, 90, 120   
 

 

Table 2. Constitutive relations for the gas-solid flow 

solids pressure 

 

 
solids shear viscosity 

 
 
Collisional viscosity [21]  

 
 
Kinetic viscosity [22]  

    

 
Friction viscosity [23]  

  

 
Bulk viscosity [24]  

 
 
Radial distribution function  
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Gas viscosity 

 

 
Gas-solid drag coefficient [25]  

 

 

 

 

 

Solid-solid drag coefficient [19]  

 

 
Diffusion coefficient of granular energy [21]  

 

 

Collisional energy dissipation [24], 

 

 

 

 

 

 

Table 3. Particle size distribution employed in the CFD model 

 Solid Phase I Solid Phase II Solid Phase III 
Particle size (µm) =124 =206 =328 

Volume fraction (%) 20% 60% 20% 
 



 

Table 4. Gas and solid phase boundary/operating conditions used in the CFD model 

Boundary/operating condition Experiment Model 

Gas mass flow rate,  [kg/s] 0.0039, 0.0239, 
0.0439 

0.0039*, 0.0239, 
0.0439 

Gas density,  [kg/m3] 1.2 1.2* 
Gas dynamic viscosity 
[kg/(m.s)] 1.8x10-5 1.8x10-5* 

Gas outlet pressure,  [Pag] 0 (ambient) 0* (ambient) 
Particle density,  [kg/m3] 2650 2650* 
Solid mass flow rate,  [kg/s] 0.017, 0.083 0.004*, 0.02, 0.04, 0.08 

Mean particle size,  [µm] 188 Mixture* (124, 206, 
328) 

Angle of cone deflector [degree] 60, 90, 120 60*, 90, 120 
Separation length,   [m] 0 0*, 0.035, 0.07 
* Default simulation conditions, unless otherwise specified 

 



List of figures 

Figure 1. Demonstration of biomass pyrolysis in various dual fluidized bed reactor 

configurations.  

 

Figure 1. Schematic diagram of the experimental apparatus  

 

Figure 3. Illustration of experimental (a) cold model downer setup and (b) gas-solids 

separation zone. 

 

Figure 4. Particle size distribution of silica sand used in the experiment  

 

Figure 5. Computational domain and meshing in a cross-sectional view. 

 

Figure 6. Example of the gas-solid flow structure in the overall downer column and 

around the separation device. (a) Gas phase velocity vectors, with the color code 

restricted to a maximum of 5 m/s to allow visualization (b) Solid phase volume 

fraction in a section, with the color code restricted to a maximum of 4  to allow 

visualization. 

 

Figure 7. Example of the radial profiles of the (a) axial gas velocity and (b) solid 

volume fraction. The data was taken at the sample level of 3.9 cm below the gas exit 

tip. 

 

Figure 8. Sectional view of the solid and gas axial velocity vectors demonstrating the 

various characteristic flow zones in the downer reactor and around the separation 

device. To allow visualization of the low ranges, the magnitude of the velocity vector 

was restricted to a maximum of 5 m/s. The color code bar indicates the range of 

gas/solid velocity. 

 

Figure 9. Illustration of the method used to determine the GDH demonstrated in 

typical results obtained at the default model operating conditions (a) pressure 

gradient method (b) axial gas velocity method. 
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Figure 10. The effect of operation contitions on the gas disengagement height. The 

default simulation conditions (Table 4) were used in all simulations, unless otherwise 

specified.  

 

Figure 11. Overall sensitivity analysis of the effect the of operating conditions on the 

separator efficicny. The default simulation conditions (Table 4) were used in all 

simulations, unless otherwise specified.  

 

Figure 12. Effect of the separation length on the separator efficiency. The simulation 

was carried out using the default operating conditions.  

 

Figure 13. Gas velocity vectors at various normalized separation lengths. To allow 

visualization of the low ranges, the magnitude of the velocity vector was restricted to 

a maximum of 5 m/s. The color code bar indicates the range of gas velocity. 

 

Figure 14. Effect of the separation length on the (a) radial profiles of axial gas 

velocity and (b) solid volume fraction (for the selected particle size ). 

The data was taken at the sample level of 3.9 cm below the gas exit pipe tip. 

 

Figure 15. Effect of the cone deflector angle on the separator efficiency. The 

experiment data was obtained from Hurad et al. [10] The simulation was carried out 

using the default operating conditions.  

 

Figure 16. Gas velocity vectors at various cone deflector angles. To allow 

visualization of the low ranges, the magnitude of the velocity vector was restricted to 

a maximum of 5 m/s. The color code bar indicates the range of gas velocity. 

 

Figure 17. Solid volume fraction for the particle size of  at two different 

deflector angles. To allow visualization of the low ranges, the solid volume fraction 

was restricted to 5×10-4. The color code bar indicates the range of solid volume 

fraction. 

 

Figure 18. Effect of the gas mass flow rate on the separator efficiency. The 

simulation was carried out at the default operating conditions.    



 

Figure 19. Gas velocity vectors at various gas flow rates. The color code bars 

indicate the range of gas velocity.  

 

Figure 20. Solid volume fraction at various gas mass flow rate for the particle 

size . To allow visualization of the low ranges, the magnitude of the solid 

volume fraction is restricted here to a maximum of 2 . The color code bar 

indicates the range of the solid volume fraction. 

 

Figure 21. Effect of the gas flow rate on the (a) radial profiles of axial gas velocity 

and (b) solid volume fraction (for the selected particle size ). The data 

was taken at the sample level of 3.9 cm below the gas exit pipe tip.   

 

Figure 22. Effect of the solid loading on the separator efficiency. The simulation was 

carried out at the default operating conditions.   

 

Figure 23. Gas velocity vectors at various solid flow rates. To allow visualization of 

the low ranges, the magnitude of the velocity vector was restricted to a maximum of 

5 m/s. The color code bar indicates the range of gas velocity. 

 

Figure 24. Solid volume fraction at various solid flowrates for the selected particle 

size . The color code bars indicate the range of solid volume 

concentration. 

 

Figure 25. Effect of the solid mass flow rate on (a) radial profiles of axial gas velocity 

and (b) solid volume fraction (for the selected particle size ). The data 

was taken at the sample level of 3.9 cm below the gas exit pipe tip. 

 

Figure 26. Effect of the particle-wall restitution coefficient ( ) on the separator 

efficiency. The simulation was carried out at the default operating conditions.     

 

 Figure 27. Effect of specularity coefficient on the separator efficiency. The simulation 

was carried out at the default operating conditions.      



 

Figure 28. Effect of the specularity coefficient on the (a) radial profiles of axial gas 

velocity and (b) solid volume fraction (for the selected particle size ). 

The data was taken at the sample level of 3.9 cm below the tip of the gas exit pipe. 
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