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Thesis Summary

Protein-DNA interactions are an essential feature in threetie activities of life, and
the ability to predict and manipulate such interactions dqgglications in a wide range
of fields. This Thesis presents the methods of modelling tbpeaaties of protein-DNA
interactions. In particular, it investigates the methofisisualising and predicting the
specificity of DNA-bindingCysHis, zinc finger interaction. Th€ysHis, zinc finger
proteins interact via their individual fingers to base pabistes on the target DNA. Four
key residue positions on thee helix of the zinc fingers make non-covalent interactions
with the DNA with sequence specificity. Mutating these kesidaes generates combi-
natorial possibilities that could potentially bind to aniNB segment of interest. Many
attempts have been made to predict the binding interac8omgstructural and chemical
information, but with only limited success.

The most important contribution of the thesis is that theetlgved model allows for
the binding properties of a given protein-DNA binding to beualised in relation to
other protein-DNA combinations without having to expligiphysically model the spe-
cific protein molecule and specific DNA sequence. To prov tharious databases were
generated, including a synthetic database which includipsssible combinations of the
DNA-binding CysHis; zinc finger interactions. NeuroScale, a topographic visatibn
technique, is exploited to represent the geometric strastaf the protein-DNA interac-
tions by measuring dissimilarity between the data pointsorder to verify the effect
of visualisation on understanding the binding propertiethe DNA-bindingCysHis;
zinc finger interaction, various prediction models are taresed by using both the high
dimensional original data and the represented data in lavedsional feature space. Fi-
nally, novel data sets are studied through the selectedhgstion models based on the
experimental DNA-zinc finger protein database.

The result of the NeuroScale projection shows that diffedessimilarity representa-
tions give distinctive structural groupings, but clusterin biologically-interesting ways.
This method can be used to forecast the physiochemical gregpef the novel proteins
which may be beneficial for therapeutic purposes involviegamne targeting in general.

Keywords: DNA-bindingCysHis; zinc finger interaction, dissimilarity measures,
high-dimensional data visualisation, new data prediction
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Chapter 1 INTRODUCTION

This thesis addresses a key unsolved problem in the analygsy high-dimensional
yet topologically-ordered data, and in particular focgson predicting properties of
protein-DNA interactions. Protein-DNA interactions a® forocess of proteins recog-
nizing nucleic acids, play a central role in transcriptioregulation and other biological
processes (Wolfe et al., 2000). In general, the interastéoe of mainly two types: spe-
cific interaction and non-specific interaction (CA et al.9&8% In this work, the specific
interaction is selected as the main research target. Bgigliotein engineering tech-
niques (Isalan et al., 2001; Wu et al., 1995; Rebar and P&$#3)Imake it possible to
manufacture proteins which can bind with specific DNA segesn However, unless the
properties of the protein are determined beforehand, ieene uncertainty as to whether
the manufactured protein would bind with the desired DNAusggte. Usually, such bind-
ing activity can be verified through experiments, whichmsdiconsuming and repetitive,
especially when there are millions of potential combinagioTo make it more efficient,
various mathematical prediction models have been appiits field, which have shown
some promising results in predicting the binding statusr@dov et al., 2005; Siggers
and Honig, 2007; Persikov et al., 2008; Nakata, 1995). Incadker sense, additional
to binding status it would be useful for biological discoyén be able to estimate other
properties of such molecular interactions, such as hydrbojeity and hydrophilicity with
a target molecule.

The work presented in this thesis concentrates on studhagnteraction between
CysHis; zinc fingers and DNA sequences. One of the challenges is &ircmh effective
models that can search for and discover implied relatigpsdbetween the interactions that
can be verified by experiments. Moreover, this thesis wilbahvestigate whether these
models can be applied to analyse the biochemical charstitsrof novel DNA-binding
CysHisy zinc finger interactions.

The following sections in this chapter will discuss theestaitthe art in understanding
theCysHis, zinc finger binding DNA interaction, present the objectigéthis work and

give a summary of results. Finally, an outline of the thesisrovided.
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Chapter 1 INTRODUCTION

1.1 The study of CysHis; zinc finger binding DNA interac-
tion

The protein-DNA combination interacts when a protein biaasolecule of DNA to reg-
ulate the biological function of DNA, which usually is thepgrssion of a gene. In this
thesis, we focus on a small but highly significant subset bpassible protein-DNA
interactions by analysinGysHis; zinc fingers. It is significant because it is the com-
mon type of DNA-binding domain found in the majority of eukatic genomes (JP and
M., 1998; Shastry, 1996). Moreover, the original discovefryhe CyHis; zinc finger
and the elucidation of its structure led it to be a major footisesearch over the past
decades, especially the ability to recognise specific DNgusaces (Vallee and Auld,
1993; Pavletich and Pabo, 1991, Elrod-Erickson et al., 199@lfe et al., 2000). Al-
though theCysHis; zinc finger is a relatively simple motif, there still are siggrant
challenges in understanding this protein and in developiethods which are designed
to find widespread application in biochemical research akegherapy (Wolfe et al.,
2000). In addition, it is expected that the developed mettand be extended to study
more complex protein-DNA interactions.

Since there are twenty naturally occurring amino acids annl positions within a
CysHisy zinc finger to make non-covalent interactions or bonds wWithfour bases de-
noted by the standard positions of (-1, 2, 3 and 6) within a Dé¢uencé, the total
number of possible protein-DNA binding sites reaches atmbsnillion, which makes it
very difficult to discover potential protein-DNA interagtis through random laboratory
experiments. Although some physical techniques, such s/ Xrystallography and Nu-
clear magnetic resonance (NMR) spectroscopy (Pavletiditabo, 1991; Elrod-Erickson
et al., 1996), have successfully shown the structure ofibgnohteractions, various pre-
diction methods have only managed to show limited resulidentifying and predicting
the protein-DNA binding specificity and affinity. For exaraptombinatorial randomized

protein libraries (Hughes et al., 2005) have been genefatdtie purpose of identifying

1The detailed structure of the interaction and the mechawithe interaction will be explained in
Section 2.1.2.
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Chapter 1 INTRODUCTION

novel zinc finger proteins without display, purification egsiencing.

Recently, a range of statistical models have been develojtbdthe aim of trying
to predict protein-DNA interactions (Morozov et al., 200&ggers and Honig, 2007;
Kaplan et al., 2005; Wingender et al., 2001). According ®tifpe of experimental data,
the methods can be divided into two classes: structuredbase sequence-based. The
structure-based methods mainly depend on crystallograpfarmation of protein-DNA
interaction. Through studying the structural charactiessof the typical DNA-binding
CysHis, zinc finger interactions, such as binding enefggnd amino-acid-nucleotide
distance (Morozov et al., 2005; Siggers and Honig, 200 Hwkedge-based parameters of
the prediction models can be determined. Accordingly, fuoeel prospective interaction,
the models have the ability to evaluate relative affinittdewever, as the structure-based
models strongly rely on the selected template, the rangpmication is restricted. This
problem can, however, be effectively tackled by using tlogisace-based methods, where
only the information of protein and target DNA sequence juieed for constructing
prediction models (Kaplan et al., 2005; Wingender et al0130

The binding predictions made by either structure-basedquence-based models are
purely based on current knowledge. Therefore, it is ratifécult to predict the binding
status for previously unseen protein-DNA interactionsisTdeficiency can, however, be
rectified through investigating relationships betweema#isible DNA-bindingCysHisy
zinc finger interactions, which is a key contribution of tthiesis. This has the disadvan-
tage of generating huge amounts of high-dimensional datehwtherefore presents an
enormous analysis problem. To overcome the analysis prohlarious visual informat-
ics approaches to the representation and characterisaticomplex data will be intro-
duced into the study of the protein-DNA interaction focusse theCysHis; zinc finger,
which can provide more insight into the data before impletingrprediction models or

experimental protocols.

2Definition of binding energy and relevant impact factord wé explained in Section 2.1.1.
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Chapter 1 INTRODUCTION

1.2 Objectives

Visual informatics is the area of statistical pattern pssteg concerned with the dis-
covery, analysis and interpretation of structure in complata primarily through low-
dimensional visualisation techniqueBopographicvisualisation is one of the visual in-
formatics methods used to map the data from a high dimenspaae into a low dimen-
sional space by preserving the structure of the data. Theagei structures of the data
are usually defined through measures of relative dissiitidabetween the data samples
in the high dimensional space, where a suitable dissirtylaretric is used to reflect the
prior knowledge of the domain (Sivaraksa and Lowe, 2008}histhesis, the study has
been divided into four phases which are shown in Figure latu data collection and
representation, data relationship visualisation, visatibn results verification and novel
data investigation. The purpose of this section is to elaigoobjectives of each phase,
respectively.

To better understand the relationships between the pesBiNA-bindingCysHis;
zinc finger interactions, it is essential to select an appatgrepresentation model to de-
scribe the features of available interactions as compsaely as possible. Meanwhile,
as visualisation intends to reflect the relationships betwaoth real and theoretical in-
teractions, it requires a representation model capablewiotstrating the core charac-
teristics of any zinc finger binding DNA interactions, evehem the experimental data is
sparse. All these problems have to be solved in phase 1 imé=ig(.

Although various approaches have been developed to impieime function of find-
ing data structures, a topographic visualisation methedugised in phase 2 will be se-
lected in this work, which has the capability to visualise@laata directly by appropri-
ately optimised models. Moreover, the format of the recoies¢d data is also considered
a key factor. Since a good visualisation method is expectedc¢over biologically-useful
structural and functional relationships between the datapdes, which in other words, is
to relate data samples with similar structures into singlaups, the study of similarity
measures becomes another major objective.

Besides analysing the structural relationships of intewas discovered through the
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Chapter 1 INTRODUCTION

data visualisation techniques, it is necessary to expgheitvisualisation representations
in predicting DNA-binding or other properties, 6His; zinc finger interactions. This
can be achieved by using conventional (nonlinear) preshatiodels, which will be dis-
cussed in depth later on (in phase 3). Finally, novel DNAdbig protein interactions
will be studied based on the developed visual informat@asfwork and verified through

experiment in the laboratory in phase 4.

Y

Data

|
|
|
|
|
|
|
|
|
|
:
Phase 1 Representation I
{Chapter 3] |
L I |
__________________________ |
| —l ¥ | |
| ! ! |
| | Relationship | | |
I : Measurement | I

|
l | | ’_ |
| ' [ |
| | ¥ | Prediction Resul |
: I Topographic : :?d'f:tmn et a :
I " [ Visualisation [ erltlca-tmn by |
| Phase2 | Techniaues [ Experiment |
L (Chapter 4) : 1Iqu : I

e A E
| | B |
I | ) 4 : |
I ' Prediction | [
| Phase3 | '
! ase | Models | |
: (Chapter 5) I | |
____________ _[_____________J :
: ¥ |
|
: Properties of |
| New Laboratory :
I Data discovery Phase 4 |
| {Chapter 6) :

|

Figure 1.1: Process of studying the DNA-bindinGysHis; zinc finger interactions. The
flowchart shows the four phases in studying the structutatiomships of the interactions: data
representation, data relationship visualisation, visatibn results verification and novel data in-
vestigation. In phase 4, the in-silico predicted propsrtienovel potential zinc finger-DNA inter-
actions can be verified through in vivo experiment in labamat
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Chapter 1 INTRODUCTION

1.3 Contributions

In the process of achieving the objectives set out in Sedtidna series of interesting dis-
coveries have been made. Among them, the most importaratshte developed model
allows the binding properties of a given protein-DNA intgran to be visualised in re-
lation to other protein-DNA combinations without having @xplicitly physical model,
of the specific protein molecule and specific DNA sequenceadufition, through study-
ing the visualisation results, the binding properties maylbtermined using a relatively
comprehensive input training data set. In other words,esthe visualisation represen-
tation is mainly implemented by a topographic feature ettoa method, théunctional
properties of a given target interaction may be determineah the structural properties;
i.e. neighbours which have similar topological properirethe data space, which can be
verified by the relevant visualisation results based on exy@atal databases. In the pro-
cess of creating the topographic representation model aptéhn 4, it is stressed that the
binding status of known pairings is not applied. Apart frdre experimental databases,
a synthetic database which includes all possible comhlinsf the DNACysHis, zinc
finger interactions will be generated for this thesis. Basegbartial data randomly se-
lected from the synthetic database as a training set toeceetdpographic projection, it
will be shown that the experimental interactions occurmiagurally are probably evolu-
tionary favoured combinations.

In order to represent the relationships in the data and theéiroy properties of the
protein-DNA interactions, various visualisation methbdsed on machine learning were
investigated. A topographic transformation method wascietl to preserve the geomet-
ric structure of the data in transforming from the originahfiguration space to the feature
space. In such modelling, the geometric structure is desdrby relative dissimilarities
between the data. Another contribution of the thesis wasdbse that biological knowl-
edge may not be best represented by a Euclidean dissimilanid we explored for the
first time the use of an indefinite metric to reveal differemtisture in theCysHis; zinc
finger -DNA binding data.

Since visualisation is beneficial for providing insightdrthe properties of the DNA-
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binding CysHis; zinc finger interaction, relevant results will be exploitedconstruct
non-linear prediction models in order to verify the patteseen in the visualisation. So
a final contribution of the thesis was to verify that theresexipredictive information
on structural and physical properties of DNy His, zinc finger combinations based
solely on the data distribution in the encoding space asmated by the dissimilarity

metric.

1.4 Outline of thesis

According to the flowchart in Figure 1.1, the thesis is destto consist of seven chap-
ters, each of which, except this chapter, is summarisedilasvi

Chapter 2 reviews applied methods for studying the intemastbetween the zinc
fingers and the target DNA sequences. X-ray crystallograpid/NMR spectroscopy
approaches are briefly discussed to illustrate the backgrand evidence to support the
structural mechanism of the processes in whichGiigHis, zinc fingers recognise spe-
cific DNA sequences. Two classes of prediction approachessttucture-based models
and the sequence-based models, are discussed. A litecatuggarison between the ap-
proaches is also included in this chapter.

The DNA-zinc finger protein database used to support thsshe described in Chap-
ter 3. There are two completely different sources of datd uséhis thesis: one is a meta
dataset taken from multiple publications from the literafland the other is data extrap-
olated from laboratory experiments conducted at Aston. dftegacteristics of the data
sources led to the decision that the canonical structureeirttas more advantages for
data representation than the method known as biomedicarfingting. Also found in
this chapter is the description of generating the datakas®the conversion process in
which the original data is transformed into binary featueetors.

The methods of visualising the converted 320-dimensioatalzthse are the main top-
ics of Chapter 4. Various dimension reduction methods areewed, most of which
are deemed inapplicable for this work after analysing tharatteristics of the recon-

structed database. The method known as NeuroScale wasabenctopographic feature

20



Chapter 1 INTRODUCTION

extraction method applied to implement the lower dimensidopographic mapping for

the 320-dimensional data visualisation. Euclidean andkbiski metrics will be used

to represent the dissimilarities in the high-dimensiomeace. The related visualisation
results are also analysed from different aspects.

Whereas previous chapters focussed on unsupervised rsetfiaidta analysis, the
focus of Chapter 5 is on investigating various supervisedigtion models from machine
learning, and comparing the accuracy of each model baseaoeier Operating Char-
acteristic (ROC) curves. The visualisation results fronagtbr 4 suggest the possibility
of predicting the interaction by using the low-dimensiopajected data. The prediction
results are evaluated by selected quality criteria. Théopaance comparison between
the prediction models based on different types of data iseget by cross validating the
quality criteria. A conclusion is provided at the end of tirapter as a reference for new
data analysis.

The selected visualisation models are validated in thigp@ha through visualising
groups of novel experimental data. The characteristicowéhdata are described in the
chapter. Apart from the visualisation results, some ptexicmethods are selected to
quantify the visualisation results. During this processiahod is discussed to overcome
some issues related to extreme outliers in the data samples.

The conclusions and contributions of the work and the recendations for future

research are given in Chapter 7.

This thesis is the work of the author but parts of it have apgzkan the public domain
including:

Conference Paper

e Xueting Wang, Anna V. Hine and David Lowe. Signal processssgies of high-
dimensional visual informatics: A study in protein-DNA bing patterns. In 9th
IMA International Conference on Mathematics in Signal Rgsing, Birmingham,

UK, 2012.
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Patent

e Xueting Wang, Anna V. Hine and David Lowe. Predicting prasrof molecules.
Patent: UK Patent Office. Patent Application Number: 122262Filing Date: 14
Dec. 2012.
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Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

CysHisp zinc fingers, as a class of transcription factors, play atplvwle in the
genetic transcription from DNA to mRNA. In Chapter 1, the ltdrage of predicting the
protein binding specificity and affinity has been present&@tie main purpose of this
chapter is to review some applied methods of studying theraction between the zinc
fingers and the target DNA sequences. Initially the backgudinowledge of the DNA-
binding protein interaction, related biochemical conseptd interaction mechanisms are
discussed. Then, the commonly employed prediction methelish are based on both
biochemical structure and sequence information, are gégrlin the first part of Section
2.2. To conclude, some specific methodologies which have Bpplied to analyse and

predict interactions between DNA and proteins are briefigooiuced.

2.1 Protein-DNA interaction

Protein macromolecules and nucleic acids, are responfsibleroviding the behaviour
of cells and performing various functions associated wfth IThe interaction between
protein and DNA is a process whereby the protein recognisesiticleic acids by the
basic rule of macromolecular recognition (Berg et al., 20Q&ually the interaction reg-
ulates the biological function of DNA and provides strueltand catalytic roles in other
cellular processes. The proteins involved in this procesgranscription factors (TF)
that can activate or repress gene expression in the vi@hitye binding site. In general,
the proteins contact with the bases of DNA in the major grpaithough there are also
some known minor groove DNA-binding ligands (CA et al., 1998ich as Netropsin,
Distamycin, Pentamidine amongst others. For the purpot@sthesis, those within the
major groove are considered.

In order to elucidate the mechanisms of DNA-binding proteiaractions, X-ray crys-
tallography and nuclear magnetic resonance (NMR) spexipyshave been employed to
provide three-dimensional structural models of the irdgoa. In this section, the bind-
ing energy of protein-DNA interactions is introduced fiystlAs the foundation of this
work, the characteristics @ysHis, zinc finger protein, the function of the protein, and

relevant X-ray structures are reviewed as well as the reseaethods that were used to

24



Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

interpret the protein-DNA binding process interaction.

2.1.1 Protein-DNA binding energy

In the DNA-binding protein interaction, the chemical borade considered as primary
factors in structure-based approaches. The chemical bzandbe categorised into two
groups: covalent bonds and non-covalent bonds (Berg €2@06). A covalent bond is

formed by the sharing of a pair of electrons between adjaatemis. It defines the struc-
ture of molecules, which is the strongest among all chentioalds (Berg et al., 2006).

In contrast to the covalent bonds, the non-covalent borelsiaeker, but crucial for bio-

chemical processes such as the formation of a double hdhgreTare four fundamental
non-covalent bond types: (1) electrostatic interactig@shydrogen bonds; (3) van der
Waals interactions and (4) hydrophobic interactions (Bergl., 2006). According to the

three-dimensional structures of protein-DNA complexies,dontact between the protein
and DNA backbone mainly involves non-covalent bonds (Q&84) where the hydrogen
bonds play a crucial role during recognition.

Binding energy is the physical index of assessing bindiregsigity of the proteins
when interacting with DNA sequences. It is usually dividetbitwo parts: specific and
non-specific (Berg and von Hippel, 1987; Gerland et al., 2008e specific binding en-
ergy exhibits a very strong dependence on the actual nudéeséquence such as the hy-
drogen bonding, electrostatic and hydrophobic interastidrhe non-specific part arises
from interactions that do not depend on the DNA sequenceivthe TF is bound to, such
as interactions with the phosphate backbone. To estimateitiding affinity, the binding
free energy, defined as a sum of an intermolecular energylvatem free energy term
and an entropic term is applied. This free energy can be reatlby a ‘position weight
matrix’ (PWM)(Stormo et al., 1982) which will be discussedidr as a prediction param-
eter. In general, when the bound pair has lower free endugypitotein-DNA binding is

thought to occur with higher affinity.
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Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

2.1.2 CysHisy zinc finger

By studying the structures of various regulatory protelret bind to specific DNA se-
quence, it has been revealed that roughly 80% of such psoteim be assigned to one of
three classes based on their possession of one of three disitictive structural motifs:
the helix-turn-helix (HTH), the zinc finger, and the leucmeper (bZIP) (Berg et al.,
2006). TheCysHis; zinc finger known as “classic zinc finger”, was first identified
the Xenopus laevigranscription factor TFIIIA (H et al., 1995), and its thrdenensional
structure was elucidated thereafter. SinceG@lggHis, zinc finger class has common in-
teraction mechanisms when binding to the DNA sequence,stse&ected as main focus

of analysis in this thesis.

Characteristics of CysHis; zinc fingers

About one-third of the proteins in the Protein Data Bank (P[Eernstein et al., 1978)
contain metals, yet metal atoms are reported to be criticéié function, structure and
stability of proteins (Shu et al., 2008). Approximately Hrer one-third are metallopro-
teins (Holm and Sander, 1996) that are capable of bindingh®ay more metal ions
(Passerini et al., 2007).

Zinc is the second most important metaplaying crucial roles in many biological
functions. In zinc proteins, zinc ions can be observed ialgat, co-catalytic or structural
roles. For example, a catalytic zinc ion directly partitgsin the bond-making or bond-
breaking step at the active site of an enzyme (McCall et 800, in a co-catalytic zinc
site, there are several metal ions bound in proximity to ameleer, where one plays a
catalytic role and other metal ions enhance the catalytiwigcof the site (Vallee and
Auld, 1993); in structural zinc sites, the zinc ion mainlalstizes the structure of the
enzyme. The zinc finger is a nucleic acid binding nfotiThe zinc fingers coordinate
one or more zinc ions with a combination of cysteine and dhiséi residues to stabilize
the protein architecture which is named as a fold. They carldssified by the type and

order of the following zinc coordinate residues: ghiissy, Cys, and Cysg. This thesis will

LIron is the most important metal in the biological functions
2motif: is a sub-sequence which is thought to be an indepgmdemponent or region of amino acids in
one protein.
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Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

be focused on Cyslis; zinc fingers, which are the most common type of DNA-binding
domain found in the majority of eukaryotic genomes (Figufg.2

Each CysHis; zinc finger contains approximately 30 amino acids and cosepran
antiparallelB-sheet followed by an-helix around a tetrahedrally coordinated single zinc
ion. lIts structure is described &% _gCX12HX> _gH, shown in Figure 2.1. In the struc-
ture, C denotes Cysteine, aramino acid with the chemical formula HOCH(NH,)CH,SH
where SH is thiol. Cysteine is a non-essential amino acidghvimeans that it is biosyn-
thesized in the human body. The side chain on cysteine i$, tivlch is non-polar.
Therefore, cysteine is usually classified as a hydrophahio@aacid. H in the structure
represents Histidine, which is an essential amino aciddaatot be synthesized within
a human body and must be supplied through diet. It also hasitvedy charged func-
tional group. X in the structure below can be any amino acethECysHis; zinc finger
domain has a conserv@a structure, and amino acids on the surface ofaheelix can

recognize bases in a contiguous DNA sequence.

%
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Figure 2.1:CysHis; zinc finger structure. Based on the figure in (Berg et al., 2005 Cys-
teine, H: Histidine. Other amino acids located in the rest pithe structure, such as: L:Leucine,
F:Phenylalanine, P:Proline, G:Glycine, E:Glutamate, ysihe, Y:Tyrosine, X is any possible
amino acid.

In the 1980s, the first high-resolution three-dimensiotraicsure of aCysHis, zinc
finger was determined by Nuclear magnetic resonance (NM&}tsgscopy, and its struc-
ture was analysed by using distance geometry and molecutanuics (MD) calculations
(MS etal., 1989). In general, the typi€aysHis; zinc finger domain has a consen&gt
structure as shown in Figure 2.2. The anti-pargllsheets encompass the two cysteine

ligands which coordinate the zinc ion. Thehelix contains the two histidine residues
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Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

that complete the zinc ion coordinate sphere (Laity, 2006¢ Zihc ion is buried in the

core of the protein, and the structure of the protein is stabilised by the coordinate bonds
between the cysteine, histidine residues and the zinc ion. According to the crystal struc-
ture of the interaction complex which was determined in the 1990s, the four amino acid
residues are localised in specific positions (-1, 2, 3 and 6) on the surface efhiléx,

which participate in DNA recognition by interacting with hydrogen donors and acceptors

exposed in the DNA major groove.

Aston University

lustration removed for copyright restrictions

Figure 2.2: Three-dimensional structure Gfys;Hisy zinc finger. Taken from
http://emergentcomputation.com/endo.html

Based on the location and number of zinc fingers,GggHis; zinc finger proteins
can be divided into three major groups (luchi, 2001). The first group, which is the main
research target in the work, consolidates the proteins containing one cluster of three close
zinc fingers. The proteins in the second group contain one pair or more of zinc fingers
but with increased distance from each other. The third group of zinc finger proteins is
characterised by the composition of four or more zinc fingers.

The major functional role of the CyHllis, zinc finger, which is also characteristic of
the protein, is to influence transcription of individual genes or gene groups. As transcrip-
tion factors, the CygHis; zinc finger proteins can control the flow of genetic information

from DNA to messenger RNA through binding to specific DNA sequences (Latchman,
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1997; Karin, 1990). Amids€ysHis; zinc finger, transcription activation proteins pro-
mote the recruitment of RNA polymerase and vice versa sggprs. In the next subsec-
tion, the interaction between DNA sequences andygH s, zinc finger protein will be

explained.

2.1.3 DNA-binding CysHis; zinc finger interactions

Zinc finger proteins are responsible for DNA or RNA bindingotein-protein interac-
tions and membrane association. SpecificygHis; zinc fingers, many of these proteins
are transcription factofghat can be used to recognize specific DNA sequencesaThe
helical portion of each finger fits in the major groove of the MBequence, and the
binding of successive fingers causes the protein to wramdrthe DNA. The majority
of base contacts occur in three pair segments along the gyristia@nd of the DNA. The
sequence recognition is mediated mainly by amino acid iitipas -1, 3 and 6 of the
helix (Figure 2.3) (Hughes et al., 2005), whereas the amirbat position 2 can contact

to the complementary strand of the DNA to stabilize the sxtgon.

2 (M) ' cooH
Zn NS = )

Figure 2.3: CysHis, zinc finger 3D structure with 3 base subsites. Based on theefigu
(Tachikawa and Briggs., 2006).

3 transcription factors which control when, where, and hoficieintly RNA polymerases function, are
vital for the normal development of an organism.
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Research methods in DNA-bindingCysHis; zinc finger interaction

Since theCysHis; zinc finger has the ability to recognize a variety of diffareequences
and may be able to “mix and match” fingers for new sites (Wotfale 2000), many
methods have been developed to understand the zinc fingaridraction, and analyse
base contacts that are made by zinc finger-like proteins.

X-ray crystallography is commonly used to determine theat@nd molecular struc-
ture of a crystal. The principle of this method is mainly mhe& measuring the angles
and intensities of X-ray beams which are diffracted by thestadline atoms. Through
crystallography, a three-dimensional picture can be preduwhich describes the den-
sity of electrons within the crystal. Thereby the mean pasg of the atoms, the chemical
bonds, the disorder and various information can be deteuniNuclear magnetic reso-
nance (NMR) spectroscopy is another widely used methoduttysnolecular structure.
The energy of electromagnetic radiation which is absorlmetira-emitted by nuclei in a
magnetic field depends on the strength of the magnetic fieldl@magnetic properties
of the atom isotopes. NMR spectroscopy is frequently usenviestigate the properties
of organic molecules. These methods provide the chanceidly she zinc-finger-DNA
interaction in depth.

Since theCysHisy zinc finger protein can recognize the DNA target site withhhig
affinity and specificity, there must exist structural prdigsr which permit the linking
between specific residues in the helix with identified basesubsite locations (Wolfe
et al., 2000). These properties ought to be evident in featextracted from experimental
evidence. The experimental results can provide new infoomabout the best protein
finger for recognizing a given DNA subsite. Meanwhile, aiddial studies (Tsuchiya
et al., 2004; Kaplan et al., 2005; Wingender et al., 2001;ddov et al., 2005; Siggers
and Honig, 2007; Nakata, 1995; Persikov et al., 2008) haee beveloped to predict the
interaction between a functional protein and entirely mees. Although these meth-
ods have constructed libraries which contain a broadererahgequences as predicting

references, mathematical methods are widely applied inetbearch.
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2.2 Methodologies for biochemistry information analysis

As there are twenty naturally occurring amino acids in pogitl, 2, 3 and 6 of a zinc
finger to interact with the four bases of a DNA sequence, thakes the total number
of possible protein-DNA binding sites, for zinc fingers aom the order of 41 million.
It is infeasible to construct libraries and investigatednny possibilities through exper-
iments for all these combination. Therefore, numerousmgitgTsuchiya et al., 2004;
Kaplan et al., 2005; Wingender et al., 2001; Morozov et 0% Siggers and Honig,
2007; Nakata, 1995; Persikov et al., 2008) have been madeler to predict the inter-
action using models derived from structural and chemidalrmation based on smaller
experimental data sets.

In this section, the methods which are commonly applied &aliot the interactions
between proteins and DNA sequences will be reviewed firsenThoth structure-based
and sequence-based prediction methods for DNA-bin@iygiHis, zinc finger interac-

tion will be discussed, followed by a few specific methodadsgised in this work.

2.2.1 General discussion of methods in biochemistry bindin g predic-
tion

Structural and physical properties of DNA provide impotteonstraints on the binding
sites with which only the specific protein has the ability écagnise and interact. The
three-dimensional crystallographic information of thetpin-DNA structures provide the
opportunities to understand the mechanism and the chasdicte of the interaction. In
this section, some typical prediction methods such as gatmw structure-activity re-
lationship (QSAR), docking methods and molecular dynarfi®) simulations will be

discussed.

Quantitative Structure-Activity Relationship (QSAR)

Structure-Activity Relationship (SAR) (Sims and Somm@a&g5) is the relationship

between the chemical or three-dimensional structure of leente and its biological ac-
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tivity. It can be represented by molecular descriptoBhe QSAR models as a kind of
prediction tool was developed by analysing the computatidata based on molecular
descriptors (the SAR data) to measure the binding likeih@heng et al., 2006). This

idea comes from the physicochemical properties of the camgohat the variations of

the chemical structure would affect biological activit{egher reduce or increase activ

ity) (Hames, 2000). The biological activities of a group ofirgpounds are studied math

ematically based on the physicochemical properties orrétieal molecular descriptors
of chemicals. Moreover, quantitative values are measurealoulated for the physical
features. In general, the QSAR models can be divided intonfigi types according to
the different training algorithmsk-nearest neighbour&-(NN) (Altman, 1992), support
vector machine (SVM) (Cortes and Vapnik, 1995), multipfeehr regression (MLR), ar-
tificial neural network (ANN) (McCulloch and Pitts, 1943)dpartial least square (PLS)
(Wold et al., 2001). To implement a prediction, the QSAR nisdiest extract the rela-
tionship between chemical structures and biological dgtim a training dataset of chem-
icals. Secondly, the optimised QSAR models provide an edérof the likely biological

activities of new chemicals.

Docking methods

Docking algorithms which were first suggested in 1978 (WaatadkJanin, 1978; Janin
and Wodak, 1985) are the methods for predicting preferrezhtation of one molecule
to another when they bound together to form a stable comflaged on the knowledge
of the preferred orientation, the binding affinity betweba two molecules can be esti-
mated through using various scoring functidnghe basic idea of molecular docking is

to computationally simulate the molecular recognitiongass which can be thought as

4As Roberto Todeschini (Puzyn et al., 2010) defined: “Molacdkscriptor is the final result of a logic
and mathematical procedure which transforms chemicafrmdtion encoded within a symbolic represen-
tation of a molecule into a useful number or the result of sstaadardised experiment.”

5Scoring functions are fast approximate mathematical nustiwehich are used to predict the binding
affinity between two molecules after they have been dockaid,(2006). The scoring functions can be di-
vided into three classes: force field which by estimatingstima of strength of intermolecular van der Waals
and electrostatic; Empirical which is based on countingntin@ber of various types of interactions between
the two binding molecules (Bohm, 1998); knowledge-basetthvis based on statistical observation of
intermolecular close contacts in large three-dimensidatdbases.
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a “ lock-and -key” relatioR. An accurate predictive docking method can provide sub-
stantial structural knowledge about complexes. In gendirate are two popular docking
approaches: shape complementarity (Meng et al., 2004;i8/tral., 1998; Goldman and
Wipke, 2000) and simulation (Feig et al., 2004). The shapemementarity methods de-
scribe the protein and ligand as a set of features that make dockable. The simulation
approach focuses on mimicking the actual docking processsthis method, the related
energy cost due to any “moves” in the process of the ligandrfgndnd binding to the
active site of the protein is calculated. In general, thejoteon accuracy of the docking
methods is limited by the type of molecules and the biochahindormation. However,
current docking methods are accurate enough to guide dsigrder for rational muta-

genesis studies (Mendez et al., 2003).

Molecular dynamics (MD) simulation

Molecular dynamics (MD) was originally conceived withiretiretical physics in the
late 1950s (Alder and Wainwright, 1959; Rahman, 1964). Ifi71%he first molecular dy-
namics simulation of a macromolecule of biological intéreas published (McCammon
et al., 1977). Today, MD simulation has been developed amporitant tools for under-
standing the physical basis of the structure and functiobi@bgical macromolecules.
The principal concept of the method is using computer to rif@sc¢he interactions be-
tween the atoms and moleculars which govern microscopigvaatoscopic behaviours
of physical systems (Rahman, 1964). Specific to biophygioathlem, MD simulation
can provide detailed information on the fluctuations and@anational changes of pro-
teins and nucleic acids (McCammon et al., 1977). Moreovégs been shown that MD
simulations together with free-energy calculations cavisle quantitative predictions of
protein-DNA binding energies (Yamasaki et al., 2012).

Applying MD simulations to study the interactions betwe&wniolecules, the model
uses a total potential energy functioP?( to describe the molecule as a collection of

atoms which are connected by harmonic bonds (two-bodyaatens), angles (three-

8Lock or receptor is the “receiving” molecule, most commoalgrotein or other biopolymer; Key or
ligand is the molecule which binds to the receptor.

33



Chapter 2 DNA-BINDING PROTEIN INTERACTIONS AND INFORMATION PROCESSING

body interactions) and dihedrals (four-body interact)anrsd the interaction forces such
as the Coulomb and van der Waals potentials. Based on the MOlaion models, the
data structures obtained from experiment can be deterroinedined. It also can provide
the description of the physical system which includes stmat¢ and motional properties,
and examine the actual dynamics (Karplus and McCammon,)2002 energy equation

is usually expressed as follow:

E= Y Kb(r—r0>2+ar%esKe(e_eo>2+dih; Ko[1 + cogng— )]

bonds ras

iy Kw(LU—llJo)ZJrZs[(rTm)lz—ZCTm)e]+gj%

impropers 1>]

2.1)

wheree (r—m)lz—z(r—m)6 reperesents the potential of van der Waals interacti iq,j
r r TEEQEN

is used to calculate the Coulomb potential comes from thetrelgtatic interactions.

Methods in DNA-binding Cy$Hisy zinc finger interaction prediction

Which method should be used for predicting the DNA-binddygpH s, zinc finger inter-
action usually depends on data representation models.r@néhere are two types of
commonly used methods, namely structure-based (Tsuchigla €004) and sequence-
based (Kaplan et al., 2005; Wingender et al., 2001) prexfictiethods for representing
the data of the zinc finger-DNA interaction. The biochemicajerprinting model is the
foundation for the structure-based method and is focusedesnoribing the kinetics of
several biochemical reactions, while the sequence-bassticion method relies on a
canonical structure model which only describes the streatfi DNA-bindingCysHis,

zinc finger. The two methods will be elaborated in Section 3.2

Structure-based prediction of DNA-binding sites on protens

The transcription factors, as mentioned in Subsectior?22dre groups of proteins that
bind to specific DNA sequences, known as the transcriptictofdbinding sites that con-
trol the transcription of genetic information from DNA to MR. The structure-based

prediction method uses the crystallographic informatibthe protein-DNA structures
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obtained by either X-ray crystallography or NMR spectrgscto predict binding speci-
ficity and affinity.

Given a structure of a protein-DNA complex, a model is neddeglantify the simi-
larity and evaluate relative affinities, such as the oneldgesl by Alexandre et al. (Moro-
zov et al., 2005) that is based on all-atofree protein-DNA binding energy. As proteins
can recognize specific DNA sequences mainly by way of direatiout through base-
amino acid contact and indirect readout through DNA confdrom, free energy is de-
fined to consist of protein-DNA ener§yand DNA conformation enerdy. Another well-
known method uses knowledge-based structure potentiaggfS and Honig, 2007).
These potentials are based on the selected structural pansuch as amino-acid-
nucleotide distance; twist, roll and tilt parameters of base-pair (Siggers and Honig,
2007). Since the prediction is based on the structure of tbeip-DNA complex, for
a novel pair of proteins and target DNA sequences, seleetisigjtable structurally ho-
mologous protein that has a sufficiently similar structilseagemplate becomes a nec-
essary prerequisite. Due to the limited number of protelAlzomplexes obtained by
experiments, and since these models strongly rely on tistiegidata examples in pro-
tein databases (PDB), the prediction accuracy is restrioyethe similarity between the
structure template and the target protein-DNA complex. dercome this obstacle, the
sequence-based prediction method is introduced as anatitex to predict the protein-

DNA binding interaction.

Sequence-based prediction of DNA-binding sites on protem

Sequence-based prediction can be understood as usirgjisthestimation procedures
to estimate the context-specific DNA-recognition prefeemnbased on a set of pairs of
transcription factors and the target DNA sequences (Kagtiah, 2005; Wingender et al.,

2001). The set of pairs of transcription factors and targdA®equences can be rep-

resented by a canonical structure motfalvhich describes the residues and nucleotides

"All-atom means every atom in the protein.

8The protein-DNA interaction energy is used to describeafireadout of the DNA sequence by the
protein, such as polar interactions (electrostatics amildgen bonds), van der Waals forces and solvation
energies.

9The DNA conformation energy considers distortion of B-fdbiNA caused by protein binding.

10 Details of the canonical structure model will be discusseSéction 3.2.2.
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participating in the protein-DNA interaction. With pregmessed data, various prediction
methods can be employed, such as support vector machin®4)(gxobabilistic models
and multilayer perceptrons.

As one example of a prediction model, the SVM as a supervisaching algorithm
is widely employed in bioinformatics (Persikov et al., 2D0B DNA-bindingCysHisy
zinc finger protein prediction research, the SVM classiftes feature vectors of pro-
teins as positive (DNA-binding) and negative (non-DNA4itg) based on the posterior
probability of zinc-binding for a residue in the chain. Inr§lkov’s research (Persikov
et al., 2008), both linear and polynomial kernels have beepl@yed in SVM models to
predict zinc finger protein-DNA binding on the basis of theaaical binding model. Un-
like the structure-based prediction method, known exampienon-binding zinc finger-
DNA pairs are also incorporated in the database. The moddiéen evaluated by cross-
validation tests and the results show that the predictionracy of the SVM is better than
previously published methods when comparing receiveraipey characteristic (ROC)
curves and area under the curves (AUC) (Persikov et al.,)2008

For the probabilistic models, first of all, four matrices oahditional probabilities of
the four nucleotides given all 20 amino acid are calculae®®A-recognition prefer-
ences for the model. Since the database only reports the [@Néesces that contain the
binding sites, without the exact binding locations proddgerative expectation maxi-
mization (AP et al., 1977) is used to learn both the probiasliassociated with the con-
tacts in the canonical model as well as the binding locati®hen, using the appropriate
set of DNA-recognition preferences, given a novel pair atZinger protein and a target
DNA sequence, the potential binding probability can bedakted.

Besides the two methods mentioned above, multilayer ptarep (MLP) can also
be applied to anonymous protein sequence analysis of amtiFg sites (Nakata, 1995).
The MLP provides an optimised non-linear mapping functiuat maps the input feature
vectorx to an output that represents the binding affinity.

Between the structure-based and sequence-based prediwibods, the most obvi-

ous advantage of the latter is that the model is independéhéantegrity of the crystal-
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lographic information. Moreover, since the dependencéefsequence-based model on
the similarity between the structure template and the tangeein-DNA complex is less
significant than that of the structure-based model, thetditimn which is caused by the

number of existing data samples is reduced.

2.2.2 Specific methodologies used in this thesis

To study the important role @ysHis; zinc finger proteins in sequence-specific DNA-
binding interactions, besides the methods discussed aboree specific methodologies
are adopted. It mainly includes a data coding model for poegssing; high dimensional
data visualisation; and non-linear prediction models ef EINA-bindingCysHis,zinc
finger interaction. Attempts to characterise similaritjvizEen a new data set and a known

data set are also addressed herein.

Sequence-based data coding

As discussed in Subsection 2.2.1, the method of selectiosttmlying the DNA-
bindingCysHis; zinc finger interaction strongly depends on the properti¢iseoriginal
data samples. In the current study, the canonical bindindeinas a sequence based
method is employed to convert the original data to a spaBelB2ensional binary vector,

which will be the main topic of Chapter 3.

Topographic Visualisation

Before constructing a prediction model, this thesis dg¥®l@rious data visualisation
models to gain insights into the relative distributions loé protein-DNA combinations
that exist in nature. Although several techniques exis¢present high dimensional data
as low dimensional objects, NeuroScale as a topographigreeaxtraction method will
be selected to implement a lower-dimensional topograptappimg representation for
high-dimensional data visualisation (Tipping, 1996). fi@oys a nonlinear transforma-

tion to preserve geometric structure while mapping the ftata the original configura-
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tion space into the feature space. The geometric structurébe described by relative
‘dissimilarities’ which are the distances between featieetors in the original and trans-
formed spaces. More discussion and related results willrbsepted later in Chapter

4.

Prediction models

Different prediction models will be applied to predict thecfinger-DNA binding
affinity. Besides the commonly used neural networks and SVbdleh (Nakata, 1995;
Persikov et al., 2008), thienearest neighbour&-NN) algorithm, the relevance vector
machine (RVM) and linear regression are also investigatekdis thesis. Th&NN algo-
rithm will focus on studying the projected visualisatiosuéts that reflect the distribution
of data samples in the high-dimensional feature space. Meaé the RVM (Tipping,
2001) which is a probabilistic model and has similar streadtfiorm to the SVM, will
be utilised to derive a prediction model based on both visatibn results and the high-
dimensional original space. In Chapter 5, the predicticults obtained by the various

models will be evaluated and compared using ROC/AUC andgdred error criteria.

Similarity measures

In this thesis, we explore several measures of dissimyjjantboth the data and visu-
alisation spaces. In this work, NeuroScale which is useduyshigh-dimensional data,
requires a measure of the dissimilarity between two patteators. Moreover, the sim-
ilarity is applied to evaluate the possibility of predigibinding status of novel data. In
general, the suitability of a measure depends on the dataatkastics and the problem
domain and should ideally be driven by expert knowledge.r&la@e many dissimilar-
ity measures for numeric variables, such as EuclideanrdisteCity-block distance and
Minkowski distance. For binary variables, other measureiskvare more specific to dis-
crete data are also available, including Hamming and Jdatatances (Webb, 1999). In

Chapter 4, different measures of dissimilarity and theltesdi various experiments based
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on different dissimilarity measures will be explained andlgsed. It is a topic for future
research to determine what measure of similarity is optinsaiggested by the biological

prior knowledge.

2.3 Summary

In this chapter, basic biochemical concepts and the prhiesgf the DNA-bindingCysHisy
zinc finger interaction were introduced. T@gsHis, zinc fingers, as one of the most
common transcription factors, have the ability to recogsisecific DNA sequences prin-
cipally by the amino acids in positions -1, 3 and 6 of thhelix. In order to understand
the zinc finger-DNA interaction, X-ray crystallography aXMR spectroscopy have been
applied by others to analyse the protein-DNA complexesfeght data representation
models will be used in models to predict the likelihood ofdiig interaction between
functional zinc finger proteins and an entirely novel DNAding site. Correspondingly,
two classes of prediction approaches were mentioned: thetste-based models and the
sequence-based models. The structure-based methodsadsdmgphysical and chemical
structures of observed experimental protein-DNA com@eXée prediction accuracy of
these models strongly rely on the structure of the observpdramental template. Con-
trasting with the structure-based models, sequence-tasddls depend only on pairs of
transcription factors and the target DNA sequences. The &u®multilayer perceptron
to be discussed in Chapter 5 are two typical sequence-basddlsrapplied to estimate
the context-specific DNA-recognition preferences.

This thesis will focus on the sequence-based predictiomodst The experimental
data represented by the canonical binding model will bethiced in Chapter 3. Visu-
alisation models, utilised to project the high-dimenslafata into the low-dimensional
feature space based on the dissimilarities between dafaessmill be discussed in Chap-
ter 4. By analysing the visualisation representationsygsof prediction models will be
developed and discussed in Chapter 5. In the next chapteigsitle the data represen-
tation models, the characteristics of the selected exgeriah data and the process of

creating the various databases used by the predictive svadébe outlined.
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Chapter 3 CODING AND CREATION OF CY S$SHIS;-DNA BINDING DATABASES

The purpose of this chapter is to describe the special catihgme and the creation
of the DNA-zinc finger protein database used for subsequetysis and model-building.
The DNA-binding zinc finger (ZF) protein interaction is orfélte essential features in the
genetic activities of life. More and more researchers attingetheir sights on the ability
to predict and manipulate such interactions. With the inarg experimental techniques
and methods in the past two decades, databases that cadbstically possible interac-
tions have been constantly enriched, leading to more ofg&areh opportunities.

In this thesis, all experiments and discussions are baseéalrexperimental data
obtained from different laboratories. Although the totasgibilities of particular protein-
DNA binding sites are almost 41 millioh relatively few interactions occur in nature.
Therefore, how to process the existing data sources, aracéand represent the features
by an appropriate model become the first of the crucial proble

The focus of the chapter is on the analysis of charactesisfithe experimental data
for the database generation based on the canonical seuotadel. The properties of the
samples in the original data sets are analysed in Sectio®3dnge of biochemical data
representation models are discussed in Section 3.2, whereanhonical binding model
is selected to implement the data features representalioa.process of generating the
database is described in Section 3.2.2. Finally, a denatitsirof the converting process

from original data to analytical vector is provided in SentB.3.

3.1 Data source

Data samples, collected from numerous experiments, pedkiglopportunity to study and
understand the principle of the DNA binding zinc finger iaigtion using mathematical
methods. In this thesis, some publicly available experialedata from different sources
have been studied. Meanwhile, a randomized protein libralfybe selected as a novel
data set (out of sample) for validation. The charactessticeach data source are also

discussed in this section. Moreover, the basic principldaif selection and database

There are 28 4 = 80 possibilities in each binding position. Consideriagtebinding pair includes
four positions, the total possibilities is 880x 80x 80 = 40960000.
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generation are introduced.

3.1.1 Characteristics of published experimental data and s election

The original set of data was kindly provided by Anton V. Pkosi2(Persikov et al., 2008).
The original data consists of 26 separate literature dateces representing experiments
performed across separate laboratories around the wodkling at the binding status of
DNA andCysHis; zinc finger proteins. An example of the main structure of tamds
shown in Table 3.1, and more detailed examples can be foandTable A.2 in Appendix
A. All original data samples include only the informationtbe primary chain of DNA
sequence in the 5’-3’ order, the amino acids in every single finger from left to right

which are numbered as -1 td &nd the quantitative information about binding affinity

(e.9.Kg?)

DNA f1 f2 3 Kg (NM)

ctcgcgGGGQCggGCKSADLKRHIRI | RSDHLTTHIRT | RSDERKRHTKI 0.5

Table 3.1:Example of original data. In the first column, the primaryseace of the DNA is
provided in the 5’ to 3’ direction. The capital letters are ttases which would be contacted by
amino acids at -1, 3 and 6 positions. The second to fourtmmadcontain the detailed information
of 3 zinc fingers, but in some cases, only the second zinc filsgetiudied during the designed
experiment. The last column includes quantitative infdiamaabout binding affinity, such as ‘0.5
nM’ in this example.

By re-organizing the original data, the 26 data sources &idetl into three groups
based on different characteristics. The first group whidilstied in Appendix A Table A.3
only features the interaction between the DNA sequenceladdcond zinc finger. The

data sources which discuss the interactions between the €#dfence and three zinc

2With thanks to Dr. Persikov for direct correspondence amessto data.

3The variable part of each zinc finger (such as the sequende IHIRI’ in Table 3.1) normally holds
exactly same information in the same experiment, and mae®ntribution toward the interaction, it is
omitted from further processing.

4A dissociation constamgl = % is a specific type of equilibrium constant that measurestbpgn-
sity of a larger object to separate reversibly into smakenponents. Units dfq is nM, whenkKy<200 nM,
the data sample can be considered as a positive binding éxamp
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fingers were assigned to the second group (Appendix A Talle Athe third group as
listed in Appendix A Table A.5, consists of the publicatiomisich contain comparative
examples without any quantitative information about bigoaffinity. These comparative
examples are generated by comparing the valué€of. In the process of the database
creation, all duplicated data samples have been filtereftmutthe original dataset. Only
a small number of data samples (a total of 31 data samplesjwshiare the same protein-
DNA pairs but reported with contradictory binding statusliffierent experiments are kept

and used as part of a validation data set later in Chapter 6.

3.1.2 Characteristic of laboratory data and selection

Besides the published data described in Subsection 3.Xkdmainatorial randomized
protein library is selected to create a test dataset. Thgsnat data set was provided by
Dr. Anna V. Hine® (Hughes et al., 2005). In the data set, the primary DNA secgien
5-T10GGGXXXGCTT10-3’ where ‘XXX’ refers to any codon at positions -1, 3 and 6
is designed to interact with various zinc finger proteins.

Figure 3.1 shows an example of the original data sample fremandomized protein
library 8. All theoretical interactions between each specific DNAugege and 8,000
proteins at position -1, 3 and 6 can be described by threengraphe resulting data of
each position are normalizédand sorted by the highest signal (Hughes et al., 2005).
When identifying possible candidate proteins for intamactvith a target DNA sequence,
data from both three and four washes need to be considert#thuih the data from three
washes are considered as the staple factor which can basefldct the interaction trend,
the data from four washes show similar trends to that froreehvashes, there are some

exceptions that may be used to eliminate possible interas{Hughes et al., 2005).

5In this case, a protein-DNA pair witkg; is considered to have a stronger binder than a protein-DNA
pair with Kqo (Kg1 < Kg2)(Persikov et al., 2008). By reorganizing the comparatikeneples, finally gives
a total of 673 data samples without binding affinity.

8Thanks for data source providing and research guidance.

’All 64 codons are included in the data set (4 baskbases 4 bases).

8There are 60 randomized protein libraries reconstructadsbng ‘MAX’ randomization (Hughes et al.,
2003). Each library contains compounds with one specifiduesfixed’ as a single building block and the
remaining residues fully randomized. Then, the data froelittrary screening is scaled according to the
total amount of GFP fluorescence presentin each library ljldsgt al., 2005).

SWhere 100% = the highest signal after three washes (Huglats 2005)
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Aston University

Hlustration removed for copyright restrictions

Figure 3.1:Processed screening data for zinc finger libraries. The triplet in DNA sequence is
‘ATA’. *-1’, ‘3’ and ‘6’ indicate the positions of contacting residues. Blue bars represent data
measured after three washes and red bars represent data obtained after four washes (Hughes et al.,
2005). Values on the ordinate are normalized DNA binding signals, and letters on the abscissa are
the amino acids at three positions.
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3.2 Data processing

As discussed in Chapter 2, the study of protein-DNA inteoasthas proved zinc fingers
can be used in developing novel transcription factors whiohld regulate the transcrip-
tion of genetic information from DNA to mRNA(Hughes et alQ(5). More and more
biologists are trying to develop various methods to coms$tauwwide range artificial zinc
finger libraries. In order to utilize and study the collectida sources introduced in Sec-
tion 3.1 efficiently, the canonical binding model is empldya this thesis. Compared
with other structural models (e.g. biochemical fingerpnigt®), such a canonical model
only relies on the interaction information between a DNAws&tce and proteins. It re-
duces the requirement of the amount of information, but khstill be able to describe
the features of each data sample properly. In this secti@rgdnonical structure model is

first introduced followed by the description of databasatoa.

3.2.1 Datarepresentation in binary format - Canonical stru ctural model

Through studying the structures of the DNA-binding protaiteractions, the canoni-
cal binding model as a structural model was recommendeddrickson et al., 1996;
Pavletich and Pabo, 1991) and widely applied in predictifngfEbinding protein interac-
tion (Persikov et al., 2008; Kaplan et al., 2005).

The basic idea of the canonical structural model focusesesuribing the structure
of DNA-binding CysHis, zinc finger. Thea-helix in each finger fits into the major
groove of the DNA, and each consecutive finger contacts thieatides within four base
subsites. For each zinc finger, there are three amino acitignss -1, 3 and 6 which
contact the primary DNA strand, while the amino acid at tAépsition makes contact
with the complementary DNA strand. A simple model which exps$ the principal of
representing the experimental data based on the canonraihg model is shown in

Figure 3.2. The amino acids numberedaag, ag andag contact the basds, b, andb;

10Bjochemical fingerprinting is defined as a phenotyping metimowhich the kinetics of several bio-
chemical reactions are recorded based on specializedtan@ghniques. Specific to the DNA-binding
zinc finger protein interaction, the methods, such as X-rggtallography and nuclear magnetic resonance
(NMR) spectroscopy, are selected to describe the struofuhe interaction.
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respectively. Onlya, contactsy), in the complementary strand. As the experimental data
only includes the information of the primary DNA chaipl, should be the paired base
of b4 in the complementary chain. According to Figure 3.2 and dahb in Appendix

B, each experimental data sample can be denoted in a bine8gQ vector and studied
by different data analysis models. The process of creatitigiming data set using the

canonical binding model is introduced in Subsection 3218, an example is provided in

Section 3.3.
IF1 IF2
Ca | & | A & & & | 4 | & % C

v | |

A /v\ /'\ /'\ DNA Primary Chain
3« by by — by ~ b~ 5
5, \-/ b4, ;\-/, b3, ;\-/, bz, k\/'bl‘ N 3;

\__/ \__/ \__/ \___/ Complementary Chain

Figure 3.2:The canonical DNA bindin€ysHis; zinc finger model based on the figure in (Per-
sikov et al., 2008). Residues at position 6, 3, 2 and -1 inotheelix interact with nucleotides
which are numbered sequentially from 5 to 3 of the primary Ddtain, and are primed in the
complementary DNA chain.

3.2.2 Database creation description

Out of the original 26 data sources, 25 data sources weretsdl® generate the training
dataset used later in this thesis. The 26th data source Igdextbecause the related
data samples provide implicit binding statuSesAs mentioned in Subsection 3.1.1, the
selected data sources are divided into 2 groups dependitigearumber of zinc fingers.

In this thesis, the analysis is focused on the 13 citatiofiabie A.3 where one zinc finger

The 26th data source contains comparative examples wigtyuguantitative information about bind-
ing affinity
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is studied and the 12 citations in Table A.4 where three zingefis are investigated. The
unused data source and part of the data samples from théeskttata sources, where the
binding status is also implicit, will be exploited as a validn data set. Therefore, there
are 1860 data samples available in total for the study.

Based on the concept of the canonical structural model, éaizhsample can be ex-
pressed as a 320-dimensional vetiorAs shown in Figure 3.3, each vector is divided
evenly into four sections. Each section denotes one bingasition of the interaction.
For example, the first section, i.e., from index 1 to 80, iatks the binding of one amino
acid with one nucleotide on complementary strand at pasRioThe second section (81
to 160) for position -1, the third (161 to 240) for position Bdathe fourth (241 to 320)
for position 6 . Once the nucleotide and amino acid in the fmsitions are determined,
it is easy to convert the binding pairs into a set of model nerslby using Table A.9
in Appendix A3, The model numbers of each data sample indicate the indfdesio
elements in each vector that are set with 1. The rest of thewvicfilled with 0 as shown

in the fourth layer in Figure 3.3.

2Every amino acich € {Ala,Cys..., Trp}interacting with base € {A,C,G, T} at specific contact po-
sition can be defined using the binding model. All possiblebinations are numbered and marked in a
feature space containing 320 dimensions representingnfeacidsx 4 bases< 4 contacts).

13since the binding interaction at position 2 occurs on theglementary DNA chain, it is necessary to
convert the base to paired base before checking the index.
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Figure 3.3:The architecture of the 320-dimensional vector. In the #gtour layers are used to
describe the principle of the vector generation. The fingdandicates the four binding positions
of each data sample. At each binding position, there aregossible bases in the second layer
which can be recognised by an amino acid shown in the thirdrlaidy checking the look-up
dictionary in Table A.9, the elements with connections a&tds ‘1’; other elements are set to ‘0'.

Table 3.2 shows an example of a 320-dimensional vector whjatesents the binding
pair: GCGg (DNA) and THRD (zinc finger). The binding statuslefined as [0 1] for
binding or [1 0] for non-binding based on tlg value or the binding status provided
in the data sources. A threshold K§ = 200nM is used to specify binding or not. The

detailed process of the database generation is explain&pliendix A.4.

1..-22 | 23| 24---134 | 135 | 136---266 | 267 | 268---296 | 297 | 298.--320
0---0 | 1 0---0 1 0---0 1 0---0 1 0---0

Table 3.2:Example of an 320-dimensional vector. This 320-dimengiwaator example is cre-

ated based on the binding pair: GCGg (DNA) and THRD (zinc fihg8ince the model number
of the binding pair at 2 position is 23, the twenty-third ethin the 320-dimensional vector is
set with 1. Other elements between 1 and 80 are set with 0,aod &r position -1, position 3

and position 6.

As discussed in Subsection 3.1.1, the removed duplicatplsawith unknown bind-

ing status are re-organized to create a test dataset, wileetnaining data with vague
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binding information are merged with the unused data sousca ®alidation data set.
Moreover, as there are twenty naturally occurring amindg@nd four positions within
a zinc finger to interact with the four bases within a DNA setg this makes the total
number of possible protein-DNA binding sites, for zinc firggalone, almost 41 million
possible configurations. A synthetic database (DB5 in Tal8¢has been created which
contains all the 41 million possibilities. It will be used study high dimension visuali-
sation in the next chapter. Table 3.3 lists all generateddastes which will be utilised in
this work. DB1 as the training data set will be applied to gttiee relative distributions
of the protein-DNA combinations that exist in nature. Théaded information of the
data sampels are listed in Appendix A Table A.10. Moreovewjll be used to train the
prediction models before involving the test data set (DB#) the validation data sets

(DB3 and DB4).

Database (DB)| Type of Database | Total number of samples Sources
DB1 Training data set 1860 Published papers
DB2 Test data set 673 Comparing data from papels
DB3 Validation data set| 7615 Laboratory data
DB4 Validation data set 31 Duplicated data from papers
DB5 All combination 41 million Sythetic data

Table 3.3: Summary of databases. DB1 is the combined, filtered dataleartigted in Table
B.1.2 and A.3. DB2 is the database which only includes therétt data which is listed in Table
A.4. DB3 is generated based on the laboratory data. Detadieating the data will be described
in Chapter 6. DB4 only has 31 data samples. These sampldedikdred duplicated data without
binding status from the published papers listed in TableZBahd A.3.

Interaction status | Number of data samples| Propotion

Binding 882 47.42%
Non-binding 978 52.58%
Total 1860 100%

Table 3.4:Detailed information of database DB1. In database DB1, &8 Hata samples consist
of 882 binding and 978 non-binding examples where the nurab#re non-binding samples is
slightly more than the binding samples.
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3.3 A data reconstruction example

In this section, an example is provided to demonstrate hoexaerimental data sample

is converted to a 320-dimensional vector, shown in Figude 3.

Step 1: Order an original data sample as a DNA sequeBt@’(): ctcgatTGGgceggcc,
three fingers: KSADLKRHIRI, RSDHLTTHIRT, TSGNLVRHTKI andlgg value;

Step 2: By determining the primary interaction finger, the int#ian bases 'TGGg’
which bind to specified amino acids 'RSDHLTTHIRT’ are se&tfrom the pri-
mary DNA chain ;

Step 3: The sequence of target bases is reordered from TGGEE  to gGGT @'-5’)
for convenience in the future;

Step 4: The binding pairs at each position are stored. In this gtejraccording to
the rule of interaction, bases and amino acids are storechainy pair format:
Base+Amino Acid (CD, GR, GH, TT);

Step 5: According to the definition in Table A.3 in Appendix, thending pairs are
numbered based on amino acid positions as: 01cD(2 posif@gR(-1 position),
03gH(3 position), 04tT(6 position);

Step 6: The numbered pairs are represented by a serial numberesijlect to Table A.9:
01cD(23), 02gR(135), 03gH(207), 04tT(317);

Step 7: A 1x320 zero vector is created for the binding pairs. Four elegaith speci-
fied indices in the vector are marked 1, otherwise, marked BileMhe threshold
of K4 value is set as 200nM. Whe<{y is smaller than 200nM, it is stored as bind-
ing [0 1], otherwise not binding [1 0]. Since 400>20Q; is stored as [1 O] in this
example. This label will be used in classification experitaem Chapter 5.
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RSDHLTT «Step3— ZF2: RSDHLTTHIRT ~ DNA (5'-3'): ctcgatTGGgeggee —Step 3» gGGT

Stepd ‘

Kd: 400nM >200nM

01cD Step5 | 02GR
(23) Step6 ¥ (135)

3« by:g b;:G

o :
DNA Primary Chain
51

5 by i by Qi/ Qi/ 3

Complementary Chain

1| |23(24--134 | 135 |136- 206| 207 |208 +-316| 317 |318- 320
Step7 Kd: [10]
o(~|1{0-.0|1(0=0|1|0=01]0=0

Figure 3.4:Example of 320-dimensional vector generation. In the figtire first two steps are
omitted as the binding pair information is highlighted inlreélhe rest of the steps are expressed
using the canonical binding model.

3.4 Summary

In this chapter the coding, creation and characteristithetollected data sources were
described. In total, 25 data sources were selected to foertrdining data set. Another
combinatorial randomized protein library based on expenits will be used as the test
data set. Two representation models, biochemical fingdarpg and canonical binding
model are available to describe the characteristics of thlgnal data. Although bio-
chemical fingerprinting can retain observed biochemicalcstire information, the lim-
ited number of available data samples compared to that ofthwmillion samples in the
theoretical database limits its capability. Therefore ¢anonical binding model is se-
lected as the primary data representation model to corverdriginal data to the sparse
binary vector. It has the advantage of preventing the databam including the biased

binding data samples, as it only focuses on describing thetste of the DNA-binding
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zinc finger protein. Even though the number of the experialefdta is limited, a theoret-
ical database is generated by considering all possible c@ibns between 4 bases in a
DNA sequence and 20 amino acids in a zinc finger protein baséueocanonical binding
model. The theoretical database will be used to validatetieet of the lack of experi-
mental data in the next chapter. In order to explain the m®oédatabase generation, an
example which demonstrated how to use:xa320 vector to represent an original datum
was provided in the last section and the details of each seeipeluded in Appendix A.

In this thesis, the converted database is the basis for gineglithe DNA-binding
CysHisy zinc finger interaction. Since it is difficult to study thewsttural relationship in
high dimensional space, various visualisation methodkbeilapplied and discussed in

the next chapter.
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Chapter 4 ANALYSIS METHODS (I): DATA VISUALISATION

In Chapter 3, through analysing the characteristics oféfexrsed data sources applied
in this work, the canonical binding model was employed agtiveary data representa-
tion model to convert the original data to the high dimenal@parse binary vector. This
chapter discusses how the constructed 320-dimensioredats was visualised. In par-
ticular, NeuroScale will be discussed as the main visuadisanethod in this work, which
is used to implement lower-dimensional topographic magppepresentation for the 320-
dimensional data visualisation. This chapter begins véthewing various visualisation
methods for the high-dimensional database. Then, the cleaistics of the represented
320-dimensional database are analysed in Section 4.2wked by the visualisation re-
sults of various standard visualisation techniques. Irti@ea.3, the dissimilarity and
relevant preconditioning and quality criteria of the Nesicale are introduced at the be-
ginning. Then, before analysing the visualisation resoiltthe high-dimensional binary
data using NeuroScale in Subsection 4.3.5, the visuaisati both high-dimensional
and low-dimensional numerical data is discussed. Finaflya supplementary analysis,

the visualisation results of generated synthetic datarnéged in Subsection 4.3.6.

4.1 High—dimensional data visualisation methods

Data visualisation is an important means of extractingulseformation from large quan-
tities of raw data. When such data is in a high dimensionalespdata visualisation makes
the data more understandable to researchers and helpsdib smwe properties within
the data that are difficult to observe in the high dimensi@palce. Various techniques
for dimensionality reduction have been developed, whighiacreasingly essential in
analysing biology related data.

According to the structural properties of data, the datasfiamation can be divided
into two classes: linear and non-linear. Principal Compmoiaalysis (PCA)(Pearson,
1901) is a classical linear projection method. As the mostroonly used feature extrac-
tion and visualisation technique, it is widely applied imgtice due to its speed and easy
to implement advantages in computing. However, this metkathly suitable for the

linear datasets. The introduction of the non-linear dinmaraity reduction techniques
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effectively remedy this drawback. The non-linear methaasloe broadly classified into
two groups based on their functions. One group focuses opimgthe data either from
the high dimensional space to the low dimensional embedoingce versa. Another
group just provides a visualisation. A visualisation methequired in this work ought
to retain the structure of the high dimensional dataseteénalwv dimensional projection
space.

Topographic models based on the conception of topograpdyppimg is considered in
this work. Generally, the topographic models can be subdivinto deterministic projec-
tion methods and probabilistic and generative models (8ksa, 2008). Generative mod-
els such as Generative Topographic Mapping (GTM) (Bishah.£1998) and Stochastic
Neighbour Embedding (SNE) (G.E.Hinton and Roweis, 2002%, probabilistic intuition
by assuming a Gaussian distribution centred around eaealpdait. On the contrary, the
deterministic methods provide more direct projectionshauit use of distributions over
generator space. In addition, the approaches can also égociged into global and lo-
cal techniques, each of which has pros and cons (Silva anenbanim, 2003). Local
algorithms such as Locally Linear Embedding (LLE) (Roweisl &aul., 2000), Lapla-
cian Eigenmaps (Belkin and Niyogi, 2001), attempt to presehe local geometry of
the data by seeking to map neighbouring points on the mahitohearby points in the
low-dimensional representation. Global methods such asd&eale (Lowe and Tipping,
1997) and Isomap (Tenenbaum et al., 2000) preserve geoatadtlyscales. This means
overall properties and structure are retained while locad@hs sometimes may not reflect
global metric properties. However, the representatioapbcity of local methods make
them attractive, when the intrinsic distance is differeatf the global metric properties.

Specific to this work, the selected approach should be caplgrojecting new un-
seen binary data. Although both probabilistic based GTM SN can preserve the
topology of the data, they are weak on projecting sparseypih@a. On the contrary, a
latent-variable density model (Tipping et al., 1999) whighlso based on the distribution
of the two-dimensional latent variable vector, is proposedisualise high dimensional
binary data. However, since this distribution must be arpspecified, it is not suitable

for visualising new unseen data directly. NeuroScale wihiak the advantage of pre-
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serving the structure of the data by measuring dissimigribetween the data samples
becomes the most appropriate approach to project suchasplatasets. In Section 4.2,
characteristics of the converted DNA-binding protein datawill be reviewed, followed
by a discussion of selected dimensionality reduction naghiased on their visualisation

results of the dataset.

4.2 DNA-binding protein interaction information visualis a-
tion

Although there are various dimensionality reduction md#hat can represent the high-
dimensional data into the low dimensional space, it is diffito achieve satisfying vi-
sualisation results for the DNA-binding protein interactinformation due to its specific
structure. In the previous section, various visualisati@thods have been discussed. The
purpose of this section is to analyse the characteristittseofreated database and discuss

the visualisation results of selected standard visuadisamodels based on the database.

4.2.1 Characteristic of data

As introduced in Subsection 2.1.1, 8g3His; zinc fingers recognise specific DNA se-
guences via the amino acids on the surface otthelix to contact the nucleotides within
four base subsites in the target DNA sequence. Given thatrmapf 20 amino acids may
preferentially bind to one of four bases A, C, G, T, there &lg8ssible combinations
for each binding site on the helix which can be representedlafom-80 binary coding
scheme. Therefore, using 4 sites in the canonical modes gise to 320 binary dimen-
sions where only 4 '1’s are present for the specific intecacpositions and 316 '0’s.
Moreover, as mentioned in Section 3.2.2, since there areafiraily occurring amino
acids and 4 positions within a zinc finger that interact withe4es in a DNA sequence, a
synthetic database with almost 41 million data exampleganerated and will be used
to verify and explain the visualisation results based orettperimental data samples.

In this chapter, the created database DB1 defined in Tablés&8lected to study
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the high dimensional structural relationship. There angy @860 available data exam-
ples which is 0.0045% of all potential binding siteén this database, due to the lim-
ited number of real data sources, and the restriction frabthding status requirement.
Therefore, the database DB1 can be represented as ax1820 matrix. The relevant

visualisation results will be discussed in the followingtsens.

4.2.2 Visualisation results from standard visualisation t echniques

At the beginning of this chapter, the techniques for vigiag the high dimensional data
have been discussed. By studying the characteristics ofdheerted database in the
last subsection, some standard visualisation technigqueateempted to implement the

visualisation of this database.

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a technique to recutarge number of corre-
lated variables into a new set of uncorrelated variabldif€]l@002). These uncorrelated
variables are called Principal Components (PCs) and thddinsPCs are considered to
retain the maximum variance of the original data. In thiskydris employed to extract
the structural features from the 320 dimensional sparsarpidatabase and project the
data samples into a 2-dimensional feature space using gteéviio PCs. As shown in
Figure 4.11, the proportion of variances which is explaibgdlifferent number of PCs
increases gradually from 9.72% to 100%. According to TableiBAppendix B, the first
two PCs only represent 16.10% feature information of thgioal data. Therefore, the
PCA model is not suitable to visualise the database DB1 inalwedimensional space,
where the projection result is plotted in Figure 4.2. In figsire, the 1860 data samples
are generally projected into four clusters. From each etushe data samples labelled
with binding or non-binding are difficult to separate. THere, although the first two
PCs retain the maximum variance of the dataset, they slilsFeort in describing the

structural features of the dataset.

11860 data samples compare with 41 million possible bindieg s
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Variances explained by PCs

0 40 80 120 160 200 240 280 320
Number of PCs

Figure 4.1: Variances explained by different principal componentsgPQan the figure, only
16.1% variances can be explained by the first two PCs. Thisoption increases gradually and
reach 100% when 232 eigenvectors are used. Relative inflamean be found in Appendix B
Table B.1

Binding
O Non-binding
-1 -0.5 0 0.5 1
R1

Figure 4.2:The visualisation of PCA. All data samples are generallyguted into four clusters,
but as in each cluster, the data samples with binding/nodiing status are overlapped, it is hard
to study the structural properties.

Generative Topographic Mapping (GTM)
The Generative Topographic Mapping (GTM) is a probabdistiodel which can project
the data from a high dimensional data space into a low dimeasiisualisation space

by using a generative model, transforming from the latente to the data space by
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using a Radial Basis Function (RBF) network (Bishop et @98). This algorithm is

based on the constrained mixture of Gaussians, and usexpleet&tion Maximisation

(EM) algorithm to optimise the parameters of the GaussiBasause of the probabilistic
approach in the GTM model, it is more tolerant to noise in thead However, since

the number of the RBF basis functions and distribution ofiibent space sample points
are chosen by hand, the visualisation result strongly dégpem the choices of these
parameters. Figure 4.3 shows the visualisation resultthasehe GTM approach. This
figure is plotted with magnification factors which is used hg@re that the projected data
samples can be well represented. Referencing the colowrbtire right hand side, the
areas with white colour indicate high probability or vicersee Since there are many
data samples projected on the same point, it is difficult stimyuish them and study the

relevant structure properties.

120
1100

180

60

40

20

x  data samples

-1 -0.5 0 0.5 1
M1

Figure 4.3:The visualisation result of GTM. The cross denotes the 1888 damples. In this
figure, the white area indicates high probability or viceseerThere are many data samples are
projected into the same location which is hard to study thec&ire properties of them.

Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) (Roweis and Saul., 2000) ieal method which
focuses on preserving the topographic distance in smajhbeurhoods by using an
eigenvector method (Saul and Roweis, 2003). It begins bynind set of theK near-

est neighbours for each point. Then, it computes a set ofiieigr each point that can
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best describe the point based on th&seearest neighbours. Finally, the eigenvector-
based optimisation technique is applied to find the low disimmal embedding of points.
In this algorithm, the number of neighbours per data pdintis a key parameter to be
defined. Higher values df cause the algorithm to be more similar to the PCA model.
Otherwise, it will be hard to preserve the topographic stmecof the data point in the
low dimensional space. In this experiment, as shown in [EigL2, a few eigenvectors are
unable to represent the majority of information of the arajidata, the visualisation re-
sult of the LLE model which depends on the selection of themigctors is also affected
2. Through comparing the visualisation results with respete number of neighbours,
Figure 4.4 plots the best projection result with 12 neighbon the LLE algorithm for
the DNA-binding protein database. In this figure, due to ndasa samples concentrated
around the origin point, the structural relationships lestwthe data samples can not be

confirmed.

Binding
O Non-binding
-04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4
R1

Figure 4.4:The visualisation result of LLE using 12 nearest neighbout data samples are
projected into a cross and most points concentrate in tigengobint which is hard to investigate
the structure distribution.

Stochastic Neighbour Embedding (SNE)
Stochastic Neighbour Embedding (SNE) (G.E.Hinton and Rev2902) is a non-linear
dimensionality reduction method which measures dissnitidga between points using

a probabilistic distance approach to preserve the neighibod identities. A Gaussian

2Details of the LLE model can be found in Appendix B.1.2.
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distribution is centred on each data sample in the high deneal data space and a prob-
ability distribution is defined over all the potential neliglurs of the point. This approach
permits a 1-to-many mapping of the high dimensional datg$esio the projection space
(Sivaraksa, 2008). In accordance with the probabilityritigtion 2, the high dimensional
space is determined by the dissimilarity which can be schled smoothing factoo;.

If the value ofo is too large, the projection data is likely to collapse to gk point.
However, there lacks a well defined approach of determirtiegsmoothing factor. In
this work, Figure 4.5(a) presents the visualisation rdsagied on the SNE algorithm. Al-
though theo is adjusted to 5, most of data samples are still projectedaisimall area. By
zooming in this area, the detailed structure can be checkEjure 4.5(b). Compared to
the data samples labelled as non-binding, the points witindirig symbol are closer to

the origin. However, it is impossible to obtain any struatyroperties from the figure.

—d?
3The probability distribution is defined amj = % wherei is data point in the high dimen-
| ik
sional spacej, denotes each potential neighbodi. = w is the dissimilarity between each point and

its neighbours.
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(a) In this figure, most of data samples are projected into a sane@#l which is hard to obtain the

detailed distribution of them.
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(b) This figure plots the zoomed in area. Comparing with the damaptes with non-binding sta-
tus, most of binding samples concentrates in the centreeoligualisation area, but no cluster

information can be found from this result.

Figure 4.5:The visualisation result of SNE usirg= 5. (a) is the visualisation result and (b)
plots the zoomed in area.

Sammon mapping
The Sammon mapping (Sammon, 1969) is an algorithm that maassémples from

high dimensional space to a space of lower dimensionalitypioymising the differences
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between the corresponding inter-point distances in thedpaces. Unlike traditional
linear dimensionality reduction techniques (such as P@#g,Sammon mapping does
not explicitly represent the transformation function.té&esl, it provides an error function

that is defined as
§ 2
R G
Zdi*ii<1 d;

i<

E

(4.2)

where the distance betwegh andjth data points in the original space is denoted:ipy
anddj is their distance in the projection space. To minimise therggradient descent
can be applied. The Sammon mapping algorithm uses the fiosPtimcipal Component
from PCA as an initial configuratioh and gradient descent is used to minimise the error.
This approach is not sensitive to the dimensionality, aslly depends on the measured
dissimilarities between the data samples which is irrelev@the dimensionality of the
original data. The relevant projection result is plotte&igure 4.6. In this figure, the 1860
data samples are projected into different clusters which regkect distinctive structural
properties. In the next section, NeuroScale, a Sammon mgpelated algorithm will be

introduced and the related visualisation results will s=dssed.

Binding
Non-binding
-3 -2 -1 0 1 2 3
R1

Figure 4.6:The visualisation result of Sammon mapping. In the figulejath samples are pro-
jected into different clusters which may reflect distinetstructural properties. The data samples
with binding/non-binding status can not be separated basdhke result.

4Similar to the PCA model, only 9.72% of the variance can bdampd by the first PC.
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4.3 NeuroScale in DNA-binding protein interaction infor-
mation visualisation

The characteristics of the database (Database DB1) forishi@lisation study have been
discussed in Subsection 4.2.1. Through analysing the hgstian results of such a
dataset using the selected dimensionality reduction ndsthib was discovered that the
Sammon Mapping provides the best projection result for tgke Himensional sparse bi-
nary database. According to the objective of this work toetigy a system that can indi-
cate the structural properties of the novel data samplegglbvant visualisation method
is expected to have the capability of representing the naa wéhout re-training the
model. Therefore, the Sammon Mapping-related NeuroSggdeoach is exploited as
a topographic feature extraction method to visualise tlueepr-DNA interaction data
samples in this work. During visualisation, the class of-inaar parametrised trans-
formations provided by Radial Basis Function (RBF) netvgagkchosen, and the model
parameters are optimised through minimising3a@nmon stress metriammon, 1969)
which will be introduced in Section 4.3.2. In general, thetnees developed based on
the error function 4.1 mentioned in Section 4.2.2.

In this section, the visualisation mechanism of the NeuatsSmodel will be explained
in Subsection 4.3.1. Then, the preconditioning of the RBiwag&k andSammon stress
metric as the quality criteria will be introduced, which is follod/®y the discussion of
different dissimilarity measurements employed to degctiite geometric structure of the
input data. Since the protein-DNA interaction data samplesrepresented in a high
dimensional sparse binary matrix, it is essential to stisdyvisualisation results of nu-
merical data using the NeuroScale approach before disauise projection results of

the selected DNA-binding protein database.

4.3.1 Visualisation mechanism of NeuroScale

The NeuroScale approach, as discussed in Section 4.1,pegraphic feature extraction

method which employs a nonlinear transformatién boldsymbolR — boldsymbolR' : f (x) =
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y} from the original configuration space that maps into theuieaspace. The architecture
of this model is shown in Figure 4.7.

In this figure, the input datg; is projected into the transformed feature spacg;as
by a class of non-linear parametrised transformationsigeohby Radial Basis Function
(RBF) networks (Lowe and Tipping, 1997). The advantage & #pproach is that a
transformation can be obtained, while interpolationd atibwed. Since the weights in
the output layer of the RBF model are used to indirectly detee the location of the
feature points, the method of initialising the weights ha$¥¢ decided. There are two
choices available: randomly generated or using Principah@nent Analysis (PCA) to
project the input data and find the output layer using a least squares fit (Nabney)200
In this work, both of them have been attempted and evaluagetthdoSammon stress
metric(defined asSTRESSalue). By comparing th8 TRESSalue, the PCA algorithm
is selected to initialise the weights at the beginning ofvlseialisation process. Then,
the temporary pointg are generated by the RBF network, given the data points as.inp
Thatis,yq= f (xq;8), wheref is the non-linear transformation effected by the RBF model
with parameters, i.e. output layer weights and kernel shingtfactors,8. The model
parameters are adjusted to minimise the gI®BRESSEsanm Y11 5 (dij — d{ﬁ)z,
whered; =|| xi —Xj || are the distances between data points in the original spate a
dij =|| yi —yj || are the distances in the transformed space. Consideringotidinear
transformation and the relevant parameters, the (squatistince’ in the feature space

may thus be given by

2
di = f(yi) - f) 1= Z(ZWW (Il xi = e 1) — @ Xj—UkH)]) (4.2)

whereq are the basis functions of the RBF netwqukare the fixed centres of those
functions®, andwi are the weights from the basis functions to the output (dutyer
weights) (Lowe and Tipping, 1997).

Since the topographic nature of the transformation is iregdsy theSTRESSerm

5In this work, data samples in the original space are randa®lgcted to be the centrgg of those
functions.
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which attempts to match the inter-point distances in theufesspace with the dissimilar-
ities in the input space, there is no specific target for gagbhere a relative measure of
target separation between eagh ¥;) pair is provided. Therefore, no ‘target’ information
such as binding properties is required as only the distare@sorement between points
is used, meaning that the training set makes no assumptadogiae binding. Moreover,
as the dissimilarity measurement is irrelative with the elision of the input data, this

model is not sensitive to the high dimensionality.

ERROR MEASURE

FEATURE SPACE

DATA SPACE

Figure 4.7:The NeuroScale architecture (Lowe and Tipping, 1997).imftgure, the RBF model

is used to implement the projection function. The relevaarameters such as weights and any
kernel smoothing factors, are optimised by minimisBagmmon stress metrietween the inter-
point distance;j in the feature space and the distaudgen the input space.

In next subsection, the preconditioning of the RBF netwaré theSammon stress
metricwill be introduced, where the latter will be applied to opsethe relevant param-
eters of the nonlinear transformation. In addition, theatise measurement as the key

factor in the projection process will be discussed in Sulised.3.3.

4.3.2 Preconditioning and quality criteria

In the process of building the NeuroScale model, the RBF ortvg used to transform the
represented data samples in the 320 binary dimensions toesponding set of feature

vectors in a two-dimensional space. Moreover, the quafitp@projected feature vectors
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is measured by th8ammon stress metricThe aim of this subsection is to discuss the
preconditioning of the RBF by using the Principal Componmalysis (PCA) and how

the Sammon stress metmgorks to control the quality of the visualisation results.

Principal component analysis (PCA) in RBF

From the definition of the RBF network, it comprises a singtilkn layer ofh neurons
which represents a set of basis functions, each of which lentie selected from the
input data examples in this work. The hidden units implenaenatdial activated function.
The output is a weighted sum of the hidden unit outputs. Inrbi8cale, the output
layer weights of the RBF are optionally initialised usingrapipal component projection
of the training data to set an initial projection of patteri@therwise an initial random
choice of projections can be made. In this work, both of theenatempted, and the
relevant visualisation results are evaluated bySaenmon stress metri@he advantage
of applying PCA to initialising the weight is to shorten thenmber of optimisation steps
because the initial value tfBammon stress metiigcloser to the minimum value. On the
contrary, the randomly selected weight usually causes énmwacse maximum value at
the beginning of the optimisation, but may have a better mim STRES$alue for the

visualisation.

Sammon stress metric
In order to project the data, the model parameters cormigpthe behaviour of the RBF
network which govern the position of the projected patteynare adjusted to minimise

the Sammon stress metricl'he stress metric is expressed as :

E=5515qepltn(p, a)—d2(p, q)]7 (4.3)

wheredn (p, ) = ||Xp — Xq|| is the distance between data points in the original space
anddy (p, ) = ||yp — Yq|| are the distances in the transformed space. The topographic
nature of the transformation is imposed by BERESSerm which attempts to match
the inter-point distances in the feature space with thardikgities in the input space.

Specific to the DNA-binding protein interaction, only a tela measure of target separa-
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tion between eachy{,yp) pair is provided, and no ‘target’ information such as bini

properties.

4.3.3 Dissimilarities

As mentioned in Subsection 2.2.1, the dissimilarity measig a metri¢is a concrete
way of describing the similarity between two data sampledéuroScale modelling, the
dissimilarity measure is used to represent the structefationship between the DNA-
binding protein interactions. In general, many dissinitjaneasures have been proposed
for distance measurement (Webb, 1999), such as Euclidestande, City-block distance,
p norm distance and Minkowski distance. The Euclidean dégtaor Euclidean metric
is the ‘ordinary’ distance between two points that can besuesd by the Pythagorean
formula: de = [zi”:l (X —yi)z] %. As the distance measure of the Euclidean metric com-
plies with human visual experience, it is widely used in tiesignilarity measurement.
The City-block distance, which is also known as the Manimattabox-car or absolute
value distance is defined as the sum of the differences ofdtresponding components
of two points:dep = i | Xi — Vi |(Webb, 1999). This metric is suitable for calculating the
distance between rIJT)ints that follow a grid-like path. Jh®orm orLPnorm distance is a

more general form of the Euclidean and City-block distanEes a real numbep>1, the
1

N P
metric isdp = Z |xi—vi|P| where the City-block metric is equivalentpo=1, and

1=
the Euclidean metric is equivalentpe=2. Finding an appropriate value fpidepends on

whether the large difference is preferred. Normally, largdue ofp gives progressively
more emphasis towards the larger differences.

Different from the metrics explained above, the Minkowslidgtance or Minkowski
inner product is based on the concept of the Minkowski spadgiokowski spacetimé
in mathematical physics. To unify space and time, the Mirddwnetric is defined as
(X1, X2, X3, X4) = (X, Y, Z, ict)® wherec is the speed of light (Petkov, 2010). For two events,

the separation between them is measured by the intervakbattihe two events, which

6The dissimilarity can also be understood as distance.

Different from the three ordinary dimensions of space, thieKdwski space also has one timelike
dimension.

8%, y, zare the three variables in the spaicis, the time.
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take into account not only the spatial separation, but dleae¢mporal separation. The

interval,s?, between two events is defined as:

= Ar? — ?At? (4.4)

whereAr and/At denote differences of the space and time coordinates,atagg(Petkov,
2010). The choice of signs faf follows the space-like convention (- + +%)

Specifically to the dissimilarity measure in the NeuroScaledel, since the radial
basis function used in the Neuroscale model can deploy naitiym definite metrics
and basis functions, the inner product can be negative. i@enirsg the properties of
the zinc finger-DNA interactions, the Minkowski inner pratas well as the classical
Euclidean metric as a benchmark to measure the dissinekaete exploited to describe
the structural relationships between the DNA-binding @irointeractions. As introduced
in Subsection 2.1.2, the sequence recognition is mediatdlynby an amino acid in
positions -1, 3 and 6 of tha helix, and the amino acid at position 2 contacts to the
complementary strand of the DNA to stabilise the interarctido reflect this property
in the dissimilarity metric, the Minkowski indefinite innproduct is selected, where the
dimensions of the input space corresponding to connectotisee complementary DNA
strand are weighted with -1 and the connections related noexions to the primary
DNA helix are weighted with +1. In this work, by fixing the wéits for the connections
in the primary strand, the weight for the connection in thenpementary strand are
adjusted from O to -3. This range is defined by considerindithetion of each connection
position in the interaction. If the weight is set to 0, thewaBsation model ignores the
contribution from position 2 for the interaction. If the \gét is -3, the binding pair
at this position is considered to have equal effect on theraation with other binding
positions in the primary strand. Through verifying the glboBTRESS and comparing
the projection results, the weight for position 2 is defined’ Moreover, cubic basis
functions are used for the interpolation model inside N8gede.

Since the input dataset is a 320 dimensional sparse binatyximidie dissimilarity

9The squared differences in the space coordinate are defimmabsiive, where the difference in the time
coordinate is negative.
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measures for binary variables are also considered, sudieddamming distance. The
Hamming distancel(x,y) between two vectors, y € RY is the number of coefficients
in which they differ. As each data sample in this work is cotee into a %320 vector

in which only four ‘1’s are present for the specific interactipositions and the rest are
all ‘0’s. The dissimilarities between two data samples \Wtace calculated by the Ham-
ming distance can only be 0 or 2 or 4 or 6 or 8, which is same asdhared Euclidean
distance. Using the NeuroScale model for further inveitigathe projection result is
same as the Euclidean metric based result. Due to the darttgiof the DNA-binding
zinc finger protein interactions, any dissimilarity metliscussed above can be exploited
in the model. Moreover, some additional metrics (i.e. Bragrdivergence ) can also be

explored for the visualisation study (Sun, 2011).

4.3.4 Computational Methodology

Specific to this work, the implementation process of thequitipn is presented in Fig-
ure 4.8. As mentioned in subsection 4.3.1, the created 32@rional sparse binary
database DBL1 is applied as the training data set for the hgatian model. Then the
RBF network is chosen to predict the coordinates of the datat in the transformed
feature space. To initialise the weights of the RBF mod& REA algorithm is applied.
Through minimising th&TRESSalue, relevant parameters such as output layer weights
and kernel smoothing factors, are optimised. One novelthisfthesis is that different
distance metrics are attempted to measure the dissingkabétween the data samples.
The results which will shown in following sections were adlrgerated using bespoke
Matlab code based on the Netlab library (Nabney, 2002). Tdue avas modified to
employ different metric functions in input (data) space antput (visualisation) space.
The input data is taken from the generated datasets andldvamée database DB1, and
calculated by the appropriate dissimilarity metrics. Amliidnal dimension of colour
is used in the output space to represent additional pregestich as hydrophobicity and
DNA labels in Subsection 4.3.6. However, these additionaperties were not used as

part of the metrics or as part of the learning process.
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Figure 4.8:Visualisation mechanism of NeuroScale. The flowcharttitates the process of vi-
sualising the given dataset by the NeuroScale approachRBRenetwork is applied to implement
the transformation, while the relevant parameters areragsid by minimising th&ammon stress

The PCA is used to initialise the output layer weights.
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4.3.5 Discussion of numerical data visualisation

In the last subsection, various dissimilarity metrics haeen discussed. Since the Eu-
clidean distance and Minkowski metric are not usually defifee binary variables, it is
worth examining the visualisation results of the numeradatihset based on the dissimi-
larity metrics before applying them in the NeuroScale medé@hplement the projection.
In this subsection, two respective datasets with 320 dilrnaakand three dimensional
numerical data samples are generated. Combined with theghasns of the distances
between the data samples in the original space, the relgisardlisation results will be

discussed.

Visualisation of the 320 dimensional numerical dataset

For this experiment, a 320 dimensional numerical datasetdated, which includes
3000 data samples containing pseudo-random values dranntfre standard normal
distribution. Itis considered as a reference for the 32@disional sparse binary database.
Figures 4.9 and 4.10 plot the relevant projection resultls different dissimilarity metrics
using the NeuroScale approach.

Figure 4.9(a) shows the representation result of the 32@mismonal numerical dataset
where the dissimilarities in both original space and feagjrace are measured by the clas
sical Euclidean metric. In the 2-D feature space, the ptegedata samples are distributed
as a sphere, where the density of data samples is seen highibstedge of the sphere
and lower gradually towards the centre. Imagine that th®3@a samples form a hy-
persphere in the data space, when the data samples hawar sitmitture information, the
dissimilarities between them can be very small, and viceazeApplying the NeuroScale
model to project these data by preserving the structur¢ioakhips, the data samples
with similar structures in the original space should be grtgd into the same area. This
expectation is supported by the histogram of the Euclidéstance between data samples
in the data space shown in Figure 4.9(b). As highlighted enabrner of the figure, zero
distances indicate the data samples themselves. The cbstdetween them and other
data samples vary between 6 and 9. At a distance of 7.4, theere@e data samples than

at any other distances.
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(a) This is the visualisation of generated 320-D numericalsitbased on the Euclidean metric. In
the figure, the projected data samples are distributed dsesiesspvhere the density of data samples

is seen highest at the edge of the sphere and lower gradaoaiéyds the centre.

x 10°

=
T

3000 zero distances.

o

1 2 3 4 5 6 7 8 9
Index of distance between data samples.

Frequency of data samples at each index distance.
w

(b) This is the histogram of the Euclidean distance betweenéhergted dataset in the 320-D data
space. As highlighted in the figure, there are 3000 zerordisg which indicate the data them
sample themselves. The distances between the most of dapéesaare falling into the range from
61009.

Figure 4.9:Analysis result of generated 320-D numerical dataset basettie Euclidean met-
ric. (a) is the 2-D visualisation result and (b) is the ret@vaistogram of the Euclidean distance
between data samples in the original space.

Compared with Figure 4.9(a), the Minkowski inner producdzhvisualisation result
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of the 320 dimensional numerical dataset is more complicael elusiv’. As shown in
Figure 4.10(a), the plane in the projective space is twises@ral times, and the densities
of the represented data samples in the twisting areas ardéicagtly higher than in other
areas. Through verifying the relevant histogram of the Mimgki distance between data
samples in the original space shown in Figure 4.10(b), midsiecdata samples are found
to have similar structures with the range of the measuredmdikrities between -1 and 1.
Since all visualisation results represented in this sutimseare reliant on PCA to initialise
the weights of the output layer of the RBF network, it needasattention whether such
initialisation affects the projection result. Therefotlee visualisation experiments with-
out PCA are also conducted several times. By comparing titeatb TRES ®etween the
models with and without the PCA initialisation, it is fourttht theSTRESSalues of the
randomly initialised models are always higher than the Pdit\alised the models. This
indicates that the random weights initialisation has ncefieral effect on the projection
result. However, there may still be some other factors that@ause this result such as
the dissimilarity metric applied in the feature space areldélection of the smoothing
function for the NeuroScale model. The investigation ofsthéactors will be left as a

direction of future research.

80 320
10The Minkowski metric applied here is defined dg: = — Z (Xik —xjk)2+ % (Xik —Xjk)z wherek is
k

= 81
the numbered coordinates. Specific to this work, the firsi@0dinates are weighted with -1, the remaining
coordinates are weighted with +1.
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(a) This is the visualisation of generated 320-D numerical skftthased on the Minkowski metric.
In this figure, the plane in the projective space is twistecbi® times, and the densities of the

represented data samples in the twisting areas are signi§i¢cagher than in other areas.

Frequency of data samples at each index distance.

-1 -0.5 0 0.5 1
Index of distance between data samples.

(b) This is the histogram of the Minkowski distance between tbregated dataset in the 320-D
data space. According to the figure, most of data samplesdiaiar structure information as on
the zero point the number of data samples reaches the higilast

Figure 4.10: Analysis result of generated 320-D numerical dataset basethe Minkowski

metric. (a) is the 2-D visualisation result and (b) is theevaht histogram of the Minkowski
distance between data samples in the original space.
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Visualisation of the three dimensional numerical dataset

Besides discussing the visualisation of high dimensionaierical dataset , the pro-
jection of the low dimensional data samples is also wortliyshg. Figures 4.12 and
4.13 plot the projection results of a three dimensional micakdataset. Similar to the
320 dimensional numerical dataset, 5000 three dimensdatalsamples are also gener-
ated by containing pseudo random values drawn from the atdrmbrmal distribution.
As in each coordinate, each data sample is between 0 and lgeAdrated data sam-
ples are distributed in a cube as shown in Figure 4.11. Whelyiag the Euclidean
metric to measure the dissimilarities between these datglsa in the original space,
the histogram is presented in Figure 4.12(b). As beforey destances indicate the data
samples themselves. The distances between the most ofatapdes are falling into the
range from 0.5 to 0.7. The relevant visualisation resulhs in Figure 4.12(a). In this
figure, the distribution of the projected data samples idlamto a square which has a
relatively clear contour. This result coincides with theusture relationship presented in
Figure 4.11. For the Minkowski metric, since there are ohhgé coordinates existing in
the data space, the X coordinate is weighted with -1, wherythad Z coordinates are
both weighted with 1. Compared with Figure 4.10(b), thedgsam of the distances be-
tween the three dimensional data samples is similar to fihed20 dimensional dataset,
but the visualisation result in Figure 4.13(a) is more reabte. Since most of the data
samples have zero distance from others, when projectimy ihi® the feature space, the
origin shows the highest density. With the expansion of ttogegtion range, the density
reduces gradually. By investigating the visualisationltssof the numerical datasets, it
becomes clearer about the effect of dissimilarity metricglata visualisation. In the next
subsection, the projection results of the 320 dimensiopalse binary database will be

presented and discussed.
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Figure 4.11 Distribution of the generated 3-D numerical dataset. Atadeamples distributed in
a cube.
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(a) This is the visualisation of generated 3-D numerical dathased on the Euclidean metric. In
the figure, the distribution of the projected data samplegmdar to a square which has a relatively

clear contour.

BB s e :

Frequency of data samples at each index distance.

0.5 1 15 2
Index of distance between data samples.
(b) This is the histogram of the Euclidean distance between ¢nergted dataset in the 3-D data
space. As highlighted in the figure, there are 5000 zero rdisa which indicate the data them
sample themselves. The distances between the most of dap¢esaare falling into the range from
0.5t0 0.7.
Figure 4.12: Analysis result of generated 3-D numerical dataset baseitheuclidean met-

ric. (a) is the 2-D visualisation result and (b) is the reteévaistogram of the Euclidean distance
between data samples in the original space.
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(a) This is the visualisation of generated 3-D numerical dataased on the Minkowski metric. In
the figure, lots of data samples are concentrated to the wiuish is centred on the origin, and on

the four edges, the densities of data samples are lower lieacentre.

Frequency of distance at each index distance.

-1 -0.5 0 0.5 1
Index of distance between data samples.

(b) This is the histogram of the Minkowski distance between thieegated dataset in the 3-D data
space. According to the figure, most of data samples havéasiatructure information as on the
zero point the number of data samples reaches the highest val

Figure 4.13:Analysis result of generated 3-D numerical dataset basedeolinkowski metric.

(a) is the 2-D visualisation result and (b) is the relevastdgram of the Minkowski distance
between data samples in the original space.
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4.3.6 Visualisation results

In Subsection 4.3.5 the visualisation results and relenestdgrams of the generated nu-
merical datasets in both the high-dimensional (320-D) dredlow-dimensional (3-D)
spaces have been presented and analysed as the referehegsirfose of this subsec-
tion is to compare the resulting NeuroScale projectionsefparse binary DNA-binding
CysHisy zinc finger interaction data samples in the 2-D Euclideartsfixy using ei-
ther the Euclidean dissimilarity metric or Minkowski ind&te inner product in the input
space. Moreover, through colouring the data samples basdiferent conditions, such
as DNA sequence, amino acids combination and binding stasoene revelatory proper-

ties are shown in the results.

Visualisation results coloured based on amino acids
In chemistry, hydrophobicity is the physical property of alatule that is repelled from
a mass of water (Ben-Naim, 1980). In contrast, a hydrophilitecule is the one that has
a tendency to interact with or be dissolved by water and qibkr substance (McNaught
and Wilkinson, 1997). Specific to ti@ysHis; zinc finger, this pair of physicochemical
properties can affect the protein interaction or formingmctional domain. Therefore, it
is useful to observe the coloured result of the projected EiAling zinc finger interac-
tion data samples based on the hydrophobic or hydrophitipgaties of the amino acids
combinations in the zinc finger proteins. Figures 4.14 ah8 gdhow highly structured re-
lationships for both different types of the metric space: ¢fassical Euclidean metric and
the Minkowski indefinite inner product. Moreover, in thesgifies, the relevant physico-
chemical properties of the amino acids combinations ar@ei@fin different colours for
which the definition details can be found in Appendix B Tabl2.B

Figure 4.14(a) plots the representation result of the 1&88 damples with the Eu-
clidean dissimilarity metric applied in the input spacetha figure, the data samples with
different structure properties are projected into différelusters. In addition, given the
colour map provided on the right hand side of the figure, mb#iezinc finger proteins
with similar hydrophobic or hydrophilic properties can bengrally represented in the

same areas. For example, most of the data samples with hadybogtilicity are mainly
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represented at the bottom left area. However, it is notetdsiime data samples which
also have high hydrophilicity are projected external todhea. This phenomenon is con-
sidered to be caused by the similarities of the structuréseoDNA sequences. To verify
the inferences, the highlighted area in Figure 4.14(a) e in and plotted in Figure
4.14(b). From Figure 4.14(b), it is clear that the two seldadata samples with the same
physicochemical properties have the same amino acids catndims and similar DNA
sequences. Therefore, for the data samples projectechiatdusters which present dif-
ferent hydrophobic or hydrophilic properties, their stural features must be similar to

the neighbours.
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(a) This is the visualisation using the Euclidean metric in tatéadspace to measure the dissimi-
larities. From this figure, it is found that proteins with higydrophilicity properties are mainly
projected on the bottom left of the main visualisation avetile the amino acid combinations with

relatively lower hydrophilicity properties are represshtt the top and right hand side.
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(b) In this figure, structure information of two adjacent datmpkes are presented. They have the
same amino acids combinations (GDNV at position 2, -1, 3 gndn@ similar DNA sequences
5-ANTg-3'.

Figure 4.14:The Euclidean metric based projection results colouringroperties of the amino

acids combination. (a) is the visualisation results basethe Euclidean metric and (b) is the
zoomed in visualisation result.
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Compared with the visualisation result based on the Euamfigeetric, the NeuroScale
model using the Minkowski metric to measure the dissintikesiin the data space gives
a strong different result as shown in Figure 4.15(a). Dggtished from Figure 4.14(a),
the data samples are mainly represented into two clusteywevter, the coloured distri-
bution of the amino acids combinations shows irregulafitgnetheless, by zooming in
the circled area in Figure 4.15(a), the selected group & damples still have similar
structure information as illustrated in Figure 4.15(b),iethmeans that the Minkowski
metric based visualisation model can also represent thetate relationships in the high

dimensional space properly, albeit with a different medtrcicture.
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(a) This is the visualisation using the Minkowski metric in thegt@ space to measure the dissimilar-
ities. It is coloured by the hydrophobicity of the amino ac@mbination. Generally, data samples

with different hydrophobicities appear in all clusters.
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(b) In this figure, structure information of two adjacent datmpbes are presented. They not only
have the same amino acid combination (DKRT), but also hawdasi information of the DNA
sequence (5-GANg-3)).

Figure 4.15:The Minkowski metric based projection results of colourlmgproperties of the

amino acids combination. (a) is the visualisation resudsell on the Minkowski metric and (b) is
the zoomed in visualisation result.
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Visualisation results coloured based on DNA

Since the NeuroScale model is employed to represent thetsteuproperties of the
interactions between the DNA sequences and the zinc fingégips, it is also worth in-
vestigating the coloured results based on the DNA seque@oessidering that four bases
participate in the interactions, colour coding of the DNAsence is defined from ANNN
to TNNN which is in 5’-3’ order, where each ‘N’ represents afdases: A,C,Gand T
at the binding positions 6, 3 and -1. Figures 4.16 and 4.1Wghe coloured projection
results based on the information of the DNA sequences. hteyesting that the inter-
actions in the bottom right area of Figure 4.16(a) and theutar ‘thumbprint’ of Figure
4.17(a) are to DNA sequence 5’-GNN-3’ on the primary straBy further investigating
the information of the amino acids in Figures 4.16(b) and ¢}, the proteins in the areas
containing R at the 6 position of tlee-helix, also explains why some data samples with
the same DNA sequences are projected into other clustemsewdo, the remaining data
samples with other DNA sequences such as 5’-ANN-3’, 5’-CBINind 5’-TNN-3’ are
projected into the overlapping clusters, which is hard &iidguish. Moreover, the no-
table clustering of th€ysHis; zinc finger-DNA combinations in the both visualisation
results are separated by distinctive ‘gaps’. These gapsoasdered to reflect the lack of
existence of certain types of combinations that do not a#lfuoccur. This surmise will

be verified in Subsection 4.3.7.
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(a) This is the visualisation using the Euclidean metric in tatéadspace to measure the dissimi-
larities. Except the group of clusters on the bottom righy @montains the data samples with the

DNA sequence ‘5’-GNN-3’ on the primary strand, the remagnaiusters have all kinds of DNA
sequences.
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(b) In this figure, three data samples are selected to verify tituetare information. Although
the three samples have the same colour, even the samplestOBDahd ID 1264 have the same
information of the DNA sequence, as the amino acid at the &ipo<f the a helix are different
(for ID 1102 is ‘R’, ID 1264 is ‘T’.), they are projected intafterent clusters.

Figure 4.16:The Euclidean metric based projection results colourinddbA sequences. (a)

is the visualisation results based on the Euclidean metdc(b) is the zoomed in visualisation
result.
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(a) This is the visualisation using the Minkowski metric in thetal space to measure the dissimi-
larities. It is coloured by the information of DNA sequenttas notable that the smaller cluster on
the bottom right only contains the data samples with the DBdugnce ‘5’-GNN-3’ on the primary

strand.
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(b) In this figure, details of three selected data samples asepted. By comparing the relevant
structure information, it is found that although they haame base at position 6 in DNA sequences,
only the data samples which have amino acid ‘R’ at the 6 mysibf thea helix are projected into
the circle cluster.

Figure 4.17:The Minkowski metric based projection results of colouriiygDNA sequences. (a)

is the visualisation results based on the Minkowski metnid ¢) is the zoomed in visualisation
result.
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Visualisation results coloured based on binding status

By studying the coloured projection results based on eitineproperties of the amino
acids combination or the information of the DNA sequences proved that the Neu-
roScale model is able to represent the relevant structui@mation of the data samples
from the high dimensional data space to the low dimensiogsture space. The bind-
ing status as one of the key features of the interaction atsals1to be studied. Fig-
ures 4.18(a) and 4.18(b) plot the representative resultaid by the binding statuses
(binding/non-binding) respectively. Through comparihg distributions of the binding
and non-binding data samples in the visualisation resaléed on the different dissimi-
larity metrics, the representation corresponding to tkefimite Minkowski metric shows
a better separation of binding versus non-binding experimeThis discovery implies
that the deployment of non positive definite metrics has sberefit in this situation.
The choice of the Minkowski metric has no fundamental bialagmotivation, but nei-
ther does the assumption of a Euclidean or other positivaiteefimetric defining the
dissimilarity space. Therefore, searching the most aptgometric on the dissimilarity

description can be a direction for future research.
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(a) The visualisation result based on Euclidean distance. ignfidure, except one cluster on the
right mainly including non-binding data, most of sampleghwéither binding or non-binding status

are distributed in all clusters.

Binding
Non-binding

(b) The visualisation result based on Minkowski distance. &nftgure, the data samples with non-
binding properties are mainly projected on the top of chssteith the crescent shape and bottom
right of the figure, and binding data samples are represenéialy gathering in the bottom left and
centre of the figure.

Figure 4.18:The NeuroScale projection results of the interaction cahguby binding statuses.
(a) is the visualisation result based on classical Eudtidéssimilarity and (b) is the Minkowski

metric based projection result. Comparing them, the remtasion corresponding to the indefinite
Minkowski metric shows a better visual separation of bigdimersus non-binding experiments.

89



Chapter 4 ANALYSIS METHODS (I): DATA VISUALISATION

4.3.7 Generated synthetic data visualisation

In Subsection 4.3.5, the projection results of the DNA-bgdCysHis; zinc finger in-
teractions using the NeuroScale model was discussed. Ghrawalysing the results, it
is notable that there are some distinctive ‘gaps’ betweenptiojected data. Since the
total number of possible protein-DNA binding sites, forziingers alone, is almost 41
million, and the current training dataset only includesd8&ata samples, these gaps in-
dicate that certain combinations do not naturally occurpive this surmise, groups of
synthetic data samples are randomly selected from the synttatabase(Database DB5
which was defined in Subsection 3.2.2) and visualised wighd#ita samples from the
database DB1. Figures 4.19 and 4.20 show representatiiesrés both the classical
Euclidean and Minkowski metrics. Restricted by the commuspeed of the server, in
Figure 4.19, a maximum of, 12,000 synthetic data are selemme visualised with the
1860 experimental data samples. In the figure, almost al gapearing in the visuali-
sation results which were discussed in the previous subseate filled by the synthetic
data samples. A similar result is obtained in Figure 4.2c&ionly 8,000 synthetic
data samples were used to train the NeuroScale model, thbegagen the two major
clusters still exists, but is narrowed. On the other hanig, fitund that the experimental
data samples are projected into certain areas of the \gstialh space. This phenomenon
illustrates that the naturally occurring interactionsyodilstribute in a specific area of the
high dimensional structural space.

As explained in Subsection 3.2.2, & 320 vector is used to represent the structural
information of the DNA-binding zinc finger proteins. The erdf four sections for rep-
resenting the binding pairs at four positions are randomelgiinined. For example, the
first section, i.e., from index 1 to 80, indicates the bindaigone amino acid with one
nucleotide on the complementary strand at position 2. Toersesection (81 to 160) for
position -1, the third (161 to 240) for position 3 and the touyf41 to 320) for position 6.
So the specific coding scheme used does not determine tlotusérin the visualisation
space. Additional experiments have been carried out tdyéire the order of the four

sections has no effect on the visualisation result.
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Figure 4.19:The visualisation result using synthetic data based onidaa distance. In the
figure, the gaps discussed in Subsection 4.3.5 are now fylélddosynthetic data, and the original
dataset is mainly projected on the right hand side of thedigur

Figure 4.20:The visualisation result using synthetic data based on d#iski distance. Similar
to Figure 4.19, the gap between the two clusters is narroweddi filled. It is considered due to
the limited number of applied synthetic data.

4.4 Summary

This chapter has focussed on the mathematics of a specitigraphic low-dimensional
representation approach in which the input space metrid neé be positive definite.
Through studying and comparing various candidate norafidénensionality reduction
methods, the NeuroScale model was exploited to represertpolate and project the
high dimensional data under such circumstances. It wasled¢hat this approach can
elucidate interesting structure in very high dimensiomal krge data problems. In the

specific case here of theysHis; zinc finger interactions with DNA it was discovered
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that the dissimilarity representation using Minkowski et gives structural groupings
of binding/non-binding examples which cluster in biolaglg-interesting ways. It is
worth emphasising that the binding/non-binding knowledges not used in any part of
the modelling other than to label the final figures, and soliliiding attribute was gen-
uinely ‘discovered’ by the process. An interesting featisrthe existence of ‘forbidden
bands’ in the low-dimensional representation which areljikeflect evolutionary pref-
erences for certain types of zinc finger-DNA complexes. Phigerty has been investi-
gated through visualising the created synthetic dataseif the topographic visualisation
space is reflecting functional properties of the DNA- pnot@teractions, perhaps adap-
tive classifiers could be constructed using the structwdlng of the input data, or its
projection visualisation, to predict possible bindingrafi.

In order to evaluate the potential of the representationlt®sn predicting the func-
tional properties of the given data samples, various dlassiwill be applied in Chapter
5. Besides the 2-D visualisation results, the 320-D origitztiaset and the PCA based
reconstruction dataset will also be employed with seleptediction models. The classi-

fication results will be assessed by various quality ciateri
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In the previous chapter, the geometric structure of DNAdbigCysHis; zinc finger
interaction in high dimensions has been represented byd$eaie in low dimensions
based on different dissimilarity measures. Through aimadythe visualisation results,
several prediction approaches have been employed. Thierhaill be focused on in-
vestigating various prediction models, and comparing ttweiacy of each model based
on Receiver Operator Characteristic (ROC). The chapteinbegith the characteristics
of the database which includes both high dimensional dadarepresented data in the
low dimensional feature space. Then, the quality critexiech as ROC curve, are intro-
duced in the second part of Section 5.1, followed by the ptexh algorithms and relevant

results in Section 5.2.

5.1 Experimental Methodology

The created database DB1 (as defined in Table 3.3) formsdinel&ion of predicting the
DNA-binding CysHis, zinc finger interaction. Moreover, as the visualisatioruhss il-
lustrated in Chapter 4 cluster the data samples in bioltigiogteresting ways, it is worth
utilising the projection data as another database to imgagst various prediction mod-
els. In this section, the creation of data sets, such adsrnrpoata set, test data set and
validation data set, based on different databases is imtemtifirstly. Then, the charac-
teristics of each database, especially those of the lowmbina reconstructed databases,
are discussed in Subsection 5.1.2 and 5.1.3. Finally, tabtgariteria which are used to

evaluate the accuracy of each prediction approach areieggla

5.1.1 Characteristics of re—organized database

In order to apply prediction techniques, the database DBilvtlas created based on the
published papers, is further sorted into three categoassd on Monte Carlo methods:
training dataset, test dataset and validation datasettraimeng dataset takes 50% of the

total data available, while the test dataset includes 4084ta@ validation dataset 1096

LIn this work, the training dataset was used to train the ptedi models. Then, the test dataset was ap-
plied to determine relevant parameters such as hidderesaritneural networks and neighourseaiearest
neighbours model. Finally, the validation dataset is usezlaluate the performance of each prediction ap-
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Moreover, in order to ensure the consistency and comprefeess of predictions, the
1860 binary data samples in DB1 consisting of 882 binding@r&linon-binding exam-
ples are randomly reconstituted one hundred times acaptdithe proportion defined
above. It has been ensured that, there is no overlappingebatihe training, test and
validation data in each reconstitution. The one hundred glabsets then form a 320 di-
mensional (320-D) database. This new database is call@dD3&iginal database’ in this
work. It will be used as a database for prediction, and tonstract three more databades
for prediction models investigation. The details of cnegtihe 320-D original database is
described in Appendix D.1.

In the 320-D original database, there are 100 groups of eftaEach dataset is stip-
ulated to include 933 training data samples, 737 test datalea and 190 validation data
samples. In each category, the data samples are seleatethigd®5 data sources listed in
Appendix A Table A.3 and A.4. Besides being used in the 320r2dy original database,
the data samples can also be represented using the subispmoEssing methods, such
as NeuroScale and PCA. The binding affinity as target vagigbdefined as [0 1] for
binding, [1 O] for non-binding in building the prediction rel.

5.1.2 Two dimensional (2-D) reconstruction database

The 2-D reconstruction database in the work is composed ofgreups of projection
results which are obtained through applying NeuroScaledas different dissimilar-
ity measures: Euclidean distance and Minkowski distance. di&cussed in Chapter
4, the representations corresponding to the two metricckester the data samples in
biologically-interesting ways. Moreover, although thetuedge of binding/non-binding
is not used in any part of the visualisation modelling, thesohilarity representation using
the Minkowski metric shows a better separation of bindingue non-binding samples.
The observation motivates us to now analyse the accuracgiog predictive models

based, not on the input patterns, but on the projected tweisional data as generated

proaches.
2The three databases include a 2-D Euclidean distance beseuktruction database, a 2-D Minkowski
distance based reconstruction database and a 320-D PCé femssmstruction database.
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by the NeuroScale visualisation map.

5.1.3 320-D database

Alongside the 320-D original database and the 2-D recocistru databases aforemen-
tioned, a 320-D reconstruction database created based AmsR{s0 used in the predic-
tion model training.

Although the visualisation result of the PCA model discdsiseSubsection 4.2.2 is
unsatisfactory, the varying trend of eigenvalues whicth@s in Figure 5.1 still arouses
the interest in studying the accuracy of prediction, by gshe reconstruction database
based on the PCA. According to Table B.1 in Appendix B.1.1lemwthe number of eigen-
vectors reaches 232, 100% variances can be represented mottel. In order to verify
this finding, extra visualisation experiments have beerawhout, based on NeuroScale
using the data samples that are reconstructed by diffetenbar of eigenvectors. The re-
sults can be found in Appendix C.2, which confirm that the datanstructed by the first
232 eigenvectors from PCA can describe the characteristittee interaction as the 320-
D original data. Therefore, besides the 320-D original biasa, another 320-D database
is created to contain these reconstructed data. The sarhe ad databases, the 320-D

reconstructed vectors are represented in the form of reabets as shown in Table 5.1.
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Figure 5.1:The varying trend of eigenvalues of relative componentreigetors. As the original
data is represented by 320 dimensional vector, the maximumbar of component eigenvectors
is 320. By plotting the eigenvalues in descending orderniimaber of eigenvectors which have
relative important contributions for representing thegimral data in the feature space can be de-
termined. Specific to this work, the first 232 eigenvectoessaiected to reconstruct the database.

1 2 3 319 320
1|-1.8909<10 16| 0| 2.9490<10 17 1.4452<10°16 | 0
2| 7.2858<10°17 | 0| 1.0443x10°1° 2.4709<10°16 | 0
3| -1.4051x1016 | 0 | 5.6032<10° 16 -4.5439%<10°16 | 0
4| 8.5869<10°17 | 0| -1.9776<10°16 -2.2595¢10°16 | 0

Table 5.1: Examples of 320-D reconstruction data. In this table, fo2@-B reconstruction
data samples are provided. Different from the original dtia reconstructed data samples are
represented by continuous numbers instead of the binamgafior This change may affect the
performance of prediction models.

5.1.4 Quality criteria

Receiver Operating Characteristic (ROC) analysis is atuatian technique applied in
signal detection theory (Swets, 1988). In recent yeardyemtachine learning commu-
nity, the ROC curve has been exploited to depict relativeéei@fs between benefits (true

positive) and costs (false positive) (Fawcett, 2006). Is thork, for the four different
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reconstituted databases described above, the ROC graghslamant parameters, such
as true positive rate (TPR), false positive rate (FPR) acdracy (ACC), computed as in
Appendix C.3 are used for comparing the selected predictiethods. It is generated by
varying a threshold across the defined output range of argrorodel which is explained
in Appendix C.3 Figure C.11. Since the ROC graph has an &tteagroperty that it is
insensitive to changes in class distribution, the changésden the one hundred subsets
in each database would not affect the performance evatuatithe models. In this work,
the ROC curve is computed at each subset and these curveseaged for every selected
methods by computing an average number of predicted truévessat every false posi-
tive rate. Besides comparing the two-dimensional curvel@prediction models in the
same graph, an area under the ROC curve, which is abbrewatddC (Bradley, 1997,
Hanley and McNeil, 1982), is also calculated to represeatpgrformances of methods
as a single scalar value. In general, an area of 1 represgetsext performance of the
classifier. When the area equals to 0.5, the prediction medehsidered to be worthless
as the classification is arbitrary. The ROC curves and rate&%aC will be provided and

discussed in Section 5.2.

5.2 Prediction algorithms and results

The focus of this Section is on discussing the various pteti@approaches employed
in this work, and evaluating the performances of these nsatiebugh plotting the ROC

graphs of the classifiers and comparing their area under@ ¢&urve (AUC).

5.2.1 Prediction algorithms

Since the vector representation of the DNA-bindil@gsHis, zinc finger interaction
based on the canonical binding model has a natural biocla¢nmtzrpretation corre-
sponding to the potential contacts between the bases arahth® acids, the goal of
prediction is to deduce the possibilities of amino acidteatide interactions in the four
canonical contacts. In this work, six prediction methodaedr regressionk-nearest

neighbours K-NN), multi-layer perceptron (MLP), radial basis functi@®BF), support
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vector machine (SVM) and relevance vector machine (RVM)amglied to predict the
binding label of the data. The principles of these modelsb@afound in (Bishop, 2007).
In the following paragraphs, specific choices of the varjpaiameters of the models will

be explained.

Linear regression

Linear regression is an approach of modelling the relakignisetween a scalar variabte
and one or more input variablegBishop, 2007). In linear regression, data are modelled
using linear functions, and unknown model parameters amna®d from the data. In
this work, although polynomial functions which are appliedind the best expression
between each parameter and the target binding statusesratamear, the parameters in
the linear regression model are still determined lineaflye reason for choosing linear

regression as one of the prediction method is to use it a®eerefe for other methods.

k-nearest neighbours k-NN)

k-NN is a non-parametric method for classifying objects daseclosest training exam-
ples in the feature space. In this work, the nearest neighdmection is implemented by
finding out the smallest Euclidean distance between thetaata samples and the sur-
rounding reference samples (i.e., training data sampléshugh changing the number of
neighbour$ and verifying the binding statuses of the selected neagéstance samples,
the binding affinity of the target data can be determined. BJuating the classification
accuracy of the test dataset, the number of neighboursas@bk determined and applied

to predict the binding affinities of the validation dataset.

Multi-layer perceptron (MLP)

Multi-layer perceptron (MLP) neural network is a non lineegression model originally
inspired by the structure and functional aspects of biaalgieural networks (Rumelhart
et al., 1986). In this work, it provides an optimised non énenapping function that
maps the input feature vectgrto an output that represents the binding affinity. When

building the MLP model, the training dataset is selectedhasriput data and the relevant

3In this work, the number of neighbours was changed from 1 twiti the interval of 2.
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binding status is the target output. The network is constdievith a logistic output
function which is suitable for a two-classes problem). Tdirose the weights of the
output function, back-propagation as a general techniguevialuating derivatives of the
activation functions is applied. In this work, the main ftion of the MLP network was
called from Natlab library. A Scaled Conjugate Gradient @@lgorithm is utilised to
train the weights based on the training dataset by changmgumber of hidden centres
from 3 to 150 with the interval of 3. Due to the high dimensidgaf the input data, a big
number of parameters are generated which makes the modétotlee training data. To
avoid overfitting, some additional techniques are necgssach as early stopping, cross-
validation, regularization etc.. Specific to this work, teet dataset is use to implement
the cross-validation by comparing the normalised errorcivliiefined later in Equation

5.1. The details will be discussed in subsequent sectiotispsediction results.

Radial basis function (RBF)

The radial basis function (RBF) network is a non-linear tiowal interpolation model
where the parameters of interest multiplying non lineardfasmctions can be determined
using linear techniques (Webb, 1999). Similarly to the Mihie, RBF provides a transfor-
mation of the training dataset to a 2-D output space accgridira functiony = f (x, W),
whereW is the weight matrix of the output layer. Different from theLF] the activation
of the hidden centres in the RBF network is given by a nonalifienction which calcu-
lates the distance between the input vector and a weighbvepecific to this work, the
Matlab code based on the Netlab library selected a thin glaliee (TPS) as the basis
function due to its advantage in fitting a surface throught afggoints and using a rough-
ness penalty (Meinguet, 1979). The number of hidden certmess from 2 to 150 with
the interval of 2, and is finally determined by cross-valigthe normalised error with
the test dataset. The values of centres and weights arallinitandomly selected from

the training dataset, and are optimised by the EM algorithm.

Support vector machines (SVM)

In machine learning, the support vector machine (SVM) isarimg system (Cortes
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and Vapnik, 1995) that uses associated learning algoritbragalyse training data and
produce an inferred function, which can be used for clasgiio and regression analysis
(Cortes and Vapnik, 1995; Cristianini and Shawe-TayloQ®0 Given a set of training
examples, each marked as belonging to one of two categeri8¥M creates a linear
classifier between the two classes in a high-dimensionalespé the training dataset
feature vectors. A weight vectov is found by a constrained optimisation process such
that a hyperplane is defined which separates positive frayative examples. In order to
achieve a good separation, the selected hyperplane oulgwéahe largest distance from
it to the nearest training data or any class. For a non-lideta space, a kernel function
is needed to project the input data into a high dimensionakli feature space for the
hyperplane construction. In this work, LIBSVM version 3.(Zhang and Lin, 2011) is
used to train the SVMs. Moreover, both support vector d&sgion and regression have

been used, and RBF is selected as the kernel function.

Relevance vector machine (RVM)

The relevance vector machine (RVM) is a Bayesian sparseeké&gnhnique that uses
Bayesian inference to obtain parsimonious solutions fgnagsion and classification (Tip-
ping, 2001; Bishop, 2007). The RVM has an identical funaidorm to the SVM, but
provides probabilistic classification. In this work, SgEBayes version 1.1 (Tipping,
2001) is used to train the RVM. Given the training datasethasinput data examples,
the relevant binding status is the target output. The kefumadtion is defined as Gaus-
sian, where its default relative noise is 0.1 and the keemgjth scale is adjusted according
to different input datasets.

Through reviewing the employed prediction models, the iigesettings of each
method have been clarified. In order to keep the consisteinayiloling prediction mod-
els, the setting is not changed when different databasassadtas the input data exam-
ples. Moreover, in the classification process, the referdaitoel which has either binding
(defined as [0 1] or [1] for SVM) or non-binding (defined as [100]0] for SVM) status is
used as the target output. As introduced in Subsection,3Hedissociation constaK

which is a specific type of equilibrium constant that meastine propensity of a larger

101



Chapter 5 ANALYSIS METHODS (Il): DATA PREDICTION

object to separate reversibly into smaller componentses to describe the binding pref-
erence in part of the data samples. The thresholydiere is set to be 200 nm. iy <
200 nm, the status is defined as binding, and expressed as¢th&fwise, the status is
defined as non-binding which is [1 0].

In order to obtain the most accurate results from varioudiptien models, adjusting
parameters of the models, suchkadN, MLP and RBF becomes necessary. Therefore, a
normalised classification error is defined as a preliminatgron to evaluate the perfor-
mance of each model. Given a dataselNalata samples, the reference target output and
the prediction result are representedyyget andypredict respectively. The normalised

error is then defined as:

1 N | Vpredict — Yearget ||

E=
N4  [[Yeargey — VI

(5.1)

wherey is the average of the target output. The more accurate tlticpon result
is, the smaller the error is. In subsequent subsectiongrtioe of each model based on

different databases will be compared and discussed.

5.2.2 Prediction results based on 2-D reconstruction data

In Subsection 5.1.2, the characteristics of two 2-D recoctibn databases were intro-
duced. The incentive of creating these two databases basgitferent dissimilarity met-
rics is that in the visualisation results the data sampleshstered in the biologically-
interesting ways. Can the 2-D reconstruction databaspscidly the Minkowski based
database, provide more advantages than the 320-D origatabase for a prediction
model? Will thek-NN model have the best performance by using the low dimaasio
database? In the following paragraphs the results of vangoediction models based on

two databases will be presented.

Prediction results based on Euclidean metric
When NeuroScale was applied to project the 320-D data sampkhe 2-D Euclidean

space, a classic Euclidean dissimilarity metric was useterinput space. By reconsti-
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tuting the projection data samples, a 2-D database basedtanli@ean metric is recon-
structed and is employed to investigate various predictiethods.

Figure 5.2 is a plot of the normalised error of tkdNN model computed on test
and validation datasets. For the 2-D Euclidean metric besashstruction database, the
number of nearest neighbours is adjusted from 1 to 11 withntteeval of 2. According
to the normalised error, when 5 neighbours are used to défnatget test data samples,
the normalised error which is averaged by 100 groups reabledswest point: 0.3338.
With the same number of the nearest neighbours for verifthegvalidation dataset, the

obtained error is 0.3369.

® Test
® Validation

o1 o o O 8
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Error in different neighbours.
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0o 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 5.2k-NN normalised classification error for the 2-D reconstiuttiatasets based
on Euclidean distance. When the number of neighbours i€hdhmalised classification
errors for the test and validation datasets reach the giolmamum at 0.3338 and 0.3369,
respectively.

Figure 5.3 is the graph of the normalised classificationresfdhe MLP based on
2-D Euclidean metric based reconstruction database. $rgthph, the number of hidden
centres is changed from 3 to 150 with the interval of 3. Théésggerrors of the three data
subsets occur at the beginning where the number of hidddreses smallest; then, the
errors diminish quickly when the number increases and nerata low level. With the
errors of both training and test datasets taken into ac¢édrttidden centres are selected
as the relatively lowest points to implement the predictbualidation data samples. The

normalised classification error of validation dataset wdhidden centres is 0.4288. The
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relevant ROC curve and AUC will be discussed later.
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Figure 5.3: The MLP normalised classification error for tHe Beconstruction data based
on the Euclidean distance, with respect to the number ofedma@ntres. The normalised
errors for training dataset are generally better than thogee test and validation datasets.
When the hidden centres set to be 54, the error of trainingseats 0.3066, the error of

test dataset is 0.4280, and the error of validation datase#P88.

Figure 5.4 shows the normalised error of the RBF model basagsing a 2-D Eu-
clidean metric reconstruction database. The number ofe®ig adjusted from 2 to 150
with the interval of 2. Compared with the error from the MLB@ilithm, the error of the
RBF is much higher and the error of the training dataset resnati a high level, decreas-
ing slowly. When there are more than 100 hidden centres rtbeseof test and validation
datasets rebound, caused by over-training of the modehguke errors of both training
and test data as a reference, the number of the hidden cens&tsat 80 where the error
of the test data reaches the lowest value and that of thergailata is also at a low level.

The normalised classification error of validation datas#t ®0 hidden centres is 0.5883.

104



Chapter 5 ANALYSIS METHODS (Il): DATA PREDICTION

2.2 v Dy A o ]
Training : : : : S . ]

2 ® Test
Validation

1.8

Error in different hidden centres.

0.2 i i i i i i i J
0 20 40 60 80 100 120 140 160

Number of Hidden centres.

Figure 5.4: The RBF normalised classification error for tHe 22construction data based
on the Euclidean distance. When the number of hidden ceistisaller than 100, the
normalised errors differ little between three datasetgebfter, due to over-training, the
difference becomes rather obvious. Also, the error barthiotest and validation datasets
enlarge quickly. When the hidden centres is 80, the erroestf dataset has the lowest
value: 0.5866, while the error of training dataset is 0.52881 the error of validation
dataset is 0.5883.

Table 5.2 is a summary of the normalised classification efail applied prediction
models. With this evaluation criteria alone, tkédN model shows the best prediction
performance for both test and validation data subsetswelibby RVM, while linear

regression shows the worst.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.9202 —— | 0.3066| 0.5258 —_— 0.6767 0.3349
Test 0.9349 0.3338| 0.4280| 0.5866 0.5463 0.7317 0.3720
Validation 0.9693 0.3369| 0.4288| 0.5883 0.5949 0.7216 0.3726

Table 5.2: The normalised classification error of the 2-D reconstanctiata based on the Eu-
clidean distance. From this table, tkélN has the lowest normalised classification error for both
test and validation data subsets: 0.3338 and 0.3369.

Besides the normalised classification error, the accdratgach prediction method
is calculated according to the definition explained in AprrC.3. Table 5.3 lists the
accuracy of all prediction models for different data supsdthe performance of the

NN is still the best one, where the accuracy of the test data€e8331 and that of the

TP+TN
PN

4The accuracy as defined in Appendix C.3, is calculateatasracy=
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validation dataset is 0.8323. As highlighted in this Talihe, prediction accuracy of the
SVM regression model is also as goodkaldN (test dataset: 0.8312, validation dataset:
0.8327), but the normalised error of this method is unsattsty (test dataset: 0.7317,
validation dataset:0.7216). This is because of the cheniatits of the output and because
the normalised error is calculated between the predictenlts and the target output. If
the value of a 2-D prediction output is geometrically famfr¢0 1] or [1 O] (all target
outputs are represented in this format), such as [0.596730]4 the normalised error
would be very high. Despite of this, the data example calbgtitlassified into the correct
group using the defined threshold and through considermgtitlidean distance between
the target output and the prediction result. Thereforehis work, the normalised error
is not suitable to evaluate the performance of the SVM regoasmodel. More related

information on accuracy can be found in Appendix C.4 Tabl C.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.6201 —— | 0.8984| 0.8384 —_— 0.9090 0.8331
Test 0.6191 0.8331| 0.8260| 0.8075 0.7668 0.8312 0.8152
Validation 0.6118 0.8323| 0.8249| 0.8067 0.7681 0.8327 0.8143

Table 5.3:The accuracy of the 2-D reconstruction data based on thedeadl distance. In this
table, thek-NN and SVM regression model have the best prediction paidioce specific for the
2-D Euclidean distance based reconstruction databaseactiieacy of test and validation datasets
of thek-NN is 0.8331 and 0.8323 respectively, meanwhile for the SNression, the accuracy
is 0.8312 and 0.8327.

The ROC curve is another quality criterion that can show grégpmance of the pre-
diction models. Figure 5.5 shows the ROC curves of the tgintest and validation
datasets for the MLP, RBF, SVM regression and RVM methodspeaetively. In these
figures, the ROC curves of training dataset always have tsegaeformance, the differ-
ences between the test and validation datasets are verly sinigh verifies the results of
accuracy in Table 5.3. Figure 5.6 shows the ROC curves farrtbes-validation analysis.
For three different datasets, the MLP, SVM regression anlflRvodels outperform the
RBF. Though the SVM regression holds the top true posititesrat same low false pos-
itive rate on all datasets, the areas under ROC curves (AU®IL® found in Table 5.4

are nonetheless better than that of the SVM regression and iRddels, with the RBF
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trailing behind them.
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Figure 5.5:The ROC curves of different classifiers using the 2-D regontibn datasets based
on the Euclidean distance. (a) MLP classifier (AUC value€68582, 0.8844 and 0.8862.); (b)
RBF classifier (AUC values:0.7543, 0.7081 and 0.7134.) \t)1®egression classifier (AUC val-
ues:0.9221, 0.8433 and 0.8509.) and (d) RVM classifier (Abl0eas:0.8963, 0.8734 and 0.8764.).
Generally, the classifiers performs much better than rangloessing (AUC: 0.5).
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True positive rate for 2D training data sets.
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(a) The ROC curves of 2-D training dataset.
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(b) The ROC curves of 2-D testing dataset.
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(c) The ROC curves of 2-D validation dataset.

Figure 5.6:The ROC curves for the cross-validation analysis using 2d»mstruction database
on the Euclidean distance. (a) Training dataset; (b) Tessdaand (c) Validation dataset.
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Subset MLP RBF | SVM Regression| RVM
Training | 0.9652| 0.7543 0.9221 0.8963
Test 0.8844| 0.7081 0.8433 0.8734
Validation | 0.8862| 0.7134 0.8509 0.8764

Table 5.4:AUC values for cross validation testing on training, tesd &alidation subsets based
on Euclidean distance. The AUC values of three datasets #awhe overall performance of
the MLP is slight better than the SVM regression. The perforoe of RBF is the worst one
comparing with the other two.

Prediction results based on Minkowski

Different from the Euclidean metric based database, thabdat that is reconstructed

by NeuroScale uses the Minkowski indefinite inner producerehthe dimensions of

the input space corresponding to the connections to the leongmtary DNA strand are

weighted with -1 and the connections related to the primawAbelix are weighted +1.

In this part, the performances of various classifiers byaisiie 2-D Minkowski metric

based reconstruction database are compared with the Baglidetric based results.

According to the normalised classification error of taBN, MLP and RBF models

which are shown in Appendix C.4.1, the normalised clasgitioserrors of all classifiers
using the Minkowski metric based reconstruction dataliatsdlin Table 5.5 are generally
worse by comparing with Table 5.2. Although the visual@atiesults of NeuroScale
based on the Minkowski metric shows a better separationrafity versus non-binding
samples, the normalised error of théIN is inferior to that for the Euclidean metric based
reconstruction database. In contrast to kN, the performance of the RVM model is

stable, as the normalised error for the test dataset is 0.87@& the validation dataset is

0.3726. The normalised error of linear regression is $tédlhighest one.

Linear Reg. | KNN | MLP | RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.9155 | —— | 0.4203] 0.6642 — 0.6767 | 0.3349
Test 0.9158 | 0.4351| 0.5557| 0.7136| 0.5826 0.7317 | 0.3720
Validation 0.9127 | 0.4384| 0.5559| 0.7133|  0.5499 0.7216 | 0.3726

Table 5.5: The normalised classification error for the 2-D reconstonmcidata based on the
Minkowski distance. From this table, the RVM has the lowesitnmalised classification error
for both test and validation data subsets: 0.3720 and 0.3726

109



Chapter 5 ANALYSIS METHODS (Il): DATA PREDICTION

The accuracy of all classifiers is presented in Table 5.6 ather relevant ROC curves
are included in Appendix C.4.1 Figure C.15. Comparing withtesults in Table 5.3, the
performance of thé&-NN becomes worse this time. The SVM regression outperforms
other methods, although the normalised error of this madetuch higher than that of
the RVM as shown in Table 5.5. The reason for this phenomehonld be same as the
discussion in the previous part: the normalised error isutated by the differences be-
tween the prediction results and the target output; but¢beracy is calculated depending
on the classification results which are obtained by compatie defined threshold and
the Euclidean distance between the target output and thiecpom results.

Figure 5.7 shows the ROC curves for the cross-validatioyaisa For the training
dataset, the MLP gives the best result with an AUC of 0.9348&0Ahgh the SVM regres-
sion produces the top true positive rate at the same lowse fabsitive rate for the test
and validation datasets, the MLP classifier still obtaireslikst AUC value as presented

in Table 5.7.
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(b) The ROC curves for the 2-D testing dataset.
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(c) The ROC curves for the 2-D validation dataset.

Figure 5.7:The ROC curves for the cross-validation analysis using 2d»mstruction database
on the Minkowski distance. (a) Training dataset; (b) Tesaskt and (c) Validation dataset.
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Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.6442 —— | 0.8549| 0.7844 e 0.8458 0.7753
Test 0.6461 0.7178| 0.7680| 0.7606 0.7739 0.7840 0.7674
Validation 0.6424 0.7287| 0.7698| 0.7586 0.7736 0.7846 0.7645

Table 5.6:The accuracy for the 2-D reconstruction data based on thé&diski distance. In
this table, the SVM regression model has the best predigeiormance specific for the 2-D
Minkowski distance based reconstruction database. Th&aog of test and validation datasets
of the SVM regression is 0.7840 and 0.7836 respectively.

Subset MLP RBF | SVM Regression| RVM
Training | 0.9346| 0.7301 0.8680 0.8390
Test 0.8310| 0.6921 0.7934 0.8212
Validation | 0.8315| 0.6965 0.7970 0.8184

Table 5.7:AUC values for cross validation testing on training, test ealidation subsets based on
Minkowski distance. The AUC values of three datasets shaivttie MLP classifier outperforms
other two methods.

Discussion

In this Subsection, the prediction methods are evaluatdad®-D reconstruction databases.
Through comparing the normalised classification error aogszvalidating the ROC curves
and the area under ROC curves, the overall performances 8\M regression and MLP

are better than other classifiers for the 2-D databases. Wk although the visual-
isation results of NeuroScale indicate a better percesephration of binding versus
non-binding samples when the database is Minkowski meased, the Euclidean metric
based database demonstrates better prediction resutiatticular, thek-NN has the best

performance in such a database.

5.2.3 Prediction results based on 320-D data

Different from the 2-D reconstruction databases, the 32fafabases retain all informa-
tion of the DNA-bindingCysHis, zinc finger interaction. In this Subsection, the pre-
diction results of various classifiers based on the 320-Rluetes will be analysed. In

particular, it is interesting to reveal the effect of the J20PCA based reconstruction
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database on the accuracy of these methods.

Prediction results based on 320-D original data

The 320-D original database is the only database which septs the characteristics of
the experimental data samples without any post-process3ing focus of this part is on

discussing the prediction results of various predictionhods using the 320-D original

database. Furthermore, these results can be the refer@neeatuating another 320-D
database which is reconstructed based on PCA.

Similar to Subsection 5.2.2, the normalised classificagioor of all applied predic-
tion models based on the 320-D original database are susedain Table 5.8, where
relevant figures can be found in Appendix C.4.2 Figure C.167@nd C.18. As shown
in the table, the overfitting occurred when the training slet#s applied to build the MLP
model. By confirming the global minimum error of the test datathe number of hid-
den centres of the prediction model can be defined and the Madehhas the lowest

normalised classification error for the validation datéskbwed by RVM.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.5584 —— | 7.7504x 10713 | 0.4685  — 0.5540 0.0128
Test 0.6723 0.3425 0.2104 0.5597 0.3753 0.6073 0.2269
Validation 0.6625 0.3710 0.2144 0.5616 0.3327 0.6063 0.2257

Table 5.8:The normalised classification error for the 320-D originatad From this table, the
MLP has the lowest normalised classification error for begt &nd validation data subsets: 0.2104
and 0.2144.

The accuracy of all prediction models are listed in Table 58though the MLP
has the best normalised error result, the prediction acguwfthe SVM classification
outperform the MLP and other methods (i.e. test dataseti329validation dataset:
0.9168). The reason for the MLP having the lowest normalesedr but without the
best prediction accuracy is due to how the binding statubefiata samples is defined.
Particularly in this case, though the prediction resulés\ary close to the target outputs,
the final predicted binding status still depends on the seleof the threshold in the
ROC curve. Thus, since the SVM classification model sepsu@ddéa samples into one

of two classes directly, it is able to offer better predinteccuracy, despite that the false
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classified samples may increase the normalised error.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.9295 —_— 1 0.9138 —_— 0.9802 0.9936
Test 0.8683 0.8221| 0.8923| 0.8482 0.9132 0.8828 0.8879
Validation 0.8656 0.8157| 0.8896| 0.8509 0.9168 0.8801 0.8876

Table 5.9:The accuracy for the 320-D original data. The SVM classificamodel has the best
prediction performance followed by the MLP, RVM and SVM reggion classifiers. The accuracy
of test and validation datasets of the SVM classification®4.82 and 0.9168 respectively.

Figure 5.8 are the ROC curves of the selected models baseueds20-D original
database. Similar to Figure 5.6 or Figure 5.7, Figure 5.8vshtbe ROC curves for the
cross-validation analysis. As seen in Figure 5.8(a), dubecover-training of the high
dimensional input, the MLP model obtains the best AUC restiinity for the training
dataset. Moreover, in Figure 5.8(b) and 5.8(c), the MLP ewa¢o contains the top true
positive rates at the same low false positive rates for teedaed validation datasets.
However, by comparing the general performances of the RQ@sufor the test and
validation datasets, the RVM model obtains the best reshiltinis proved by the related

AUC results as presented in Table 5.10.
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(a) The ROC curves for the 320-D training dataset.
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(b) The ROC curves for the 320-D testing dataset.
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(c) The ROC curves for the 320-D validation dataset.

Figure 5.8:The ROC curves for the cross-validation analysis using B2figinal database. (a)
Training dataset; (b) Test dataset and (c) Validation @atas
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Subset MLP RBF | SVM Regression| RVM

Training 1 0.7357 0.9142 0.9997
Test 0.9140| 0.6837 0.8633 0.9440
Validation | 0.9118| 0.6904 0.8665 0.9439

Table 5.10:AUC values for cross validation testing on 320-D originairing, test and validation
subsets. The AUC values of three datasets show that the Ra8difier outperforms other methods
for the test and validation datasets with the AUC values440%nd 0.9439.

Prediction results based on 320-D reconstruction data

In Subsection 5.1.3, the 320-reconstruction databased®sihtroduced. The purpose
of creating this database and applying it in the predictimdets is to verify the little
effect of the removed eigenvectors on describing the cheniatics of the DNA-binding
CysHis; zinc finger interaction. In this part, the related resultd e presented and
discussed.

In Table 5.11, the normalised classification error of all legapprediction models
based on the 320-D reconstruction database are summaBsede as the 320-D orig-
inal database, the MLP shows the lowest normalised errobdtin test and validation
data subsets followed by the RVM. Details of the normalidedsification error for the

selected methods are represented in Appendix C.4.3.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.5584 —— | 7.5916x 10712 | 0.4685  — 0.5540 0.0128
Test 0.6723 0.2693 0.2116 0.5571 0.3753 0.6073 0.2269
Validation 0.6625 0.2835 0.2133 0.5607 0.3327 0.6063 0.2257

Table 5.11:The normalised classification error for the 320-D recomsipn data. The MLP has
the lowest normalised classification error for both test ealiation data subsets: 0.2116 and
0.2133.

Shown in Table 5.12, the SVM classification has the best ptiedi accuracy for both
the test and validation data sets. Moreover, the predictmuracy of some classifiers,
such as the SVM classification, SVM regression, RVM and limegression, is identical
to that of the 320-D original database. It can be inferretittiafirst 233 eigenvectors ob-

tained by PCA are adequate to represent the charactenstios DNA-bindingCysHis,
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zinc finger interaction. For other prediction models, theuaacy is slightly better than
that in Table 5.9. This can be understood that the unusedwegtors in reconstructing
the 320-D database are relatively irrelevant to describecttaracteristics of the DNA-

binding protein interaction.

Linear Reg. | KNN MLP RBF | SVM (Clas.) | SVM (Reg.) | RVM
Training 0.9295 —_— 1 0.9115 —_— 0.9802 0.9936
Test 0.8683 0.8626| 0.8944| 0.8481 0.9132 0.8828 0.8879
Validation 0.8656 0.8581| 0.8941| 0.8473 0.9168 0.8801 0.8876

Table 5.12: The accuracy for the 320-D reconstruction data. The SVMsifiaation model
have the best prediction performance again, and followeithé&yLP, RVM and SVM regression
classifiers. The accuracy of test and validation datasetiseoEVM classification is 0.9132 and
0.9168 respectively.

In Figure 5.9, the ROC curves for the cross-validation agialgre plotted using the
320-D reconstruction database, respectively. Since ttoenmation represented by the
reconstructed database is almost identical to the origiatabase, the ROC curves illus-
trated in Figure 5.9 have similar trends as with Figure 5.8e RVM approach still has
the best performance in the ROC curves and the highest AUtseghich are listed in

Table 5.13.
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(a) The ROC curves for the 320-D training dataset.
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(b) The ROC curves for the 320-D testing dataset.
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(c) The ROC curves for the 320-D validation dataset.

Figure 5.9: The ROC curves for the cross-validation analysis using B2f@&construction
database. (a) Training dataset; (b) Test dataset and (cjgtiah dataset.
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Subset MLP RBF | SVM Regression| RVM

Training 1 0.7367 0.9142 0.9983
Test 0.9145| 0.6838 0.8633 0.9543
Validation | 0.9162| 0.6944 0.8665 0.9542

Table 5.13:AUC values for cross validation testing on 320-D recong&ddraining, test and

validation subsets. Due to the overfitting, the MLP modelghthe best fitting of the training

dataset. However, through comparing the AUC values of téteatred validation datasets, the RVM
classifier outperforms other methods for the test and v#didadatasets with the AUC values:
0.9983, 0.9543 and 0.9542, respectively.

Discussion

In this Subsection, the prediction methods were evaludweaigh using the 320-D orig-
inal and reconstruction databases. ldentified through thealised classification error
and cross validating the ROC curves and the area under R€s;uhe SVM classifica-
tion has the best performance on predicting the data example the 320-D databases.
Meanwhile, based on the accuracy and the ROC curves, the B&I320-D reconstruc-
tion database can be confirmed to have the ability of reptieggtine integral information

of the DNA-bindingCysHisy zinc finger interaction.

5.2.4 Discussion

In Subsection 5.2.2 and 5.2.3, the prediction results abuarselected classifiers based
on both the 2-D reconstruction databases and the 320-D at#alhave been analysed
and discussed, respectively. For the 2-D reconstructioabdses, the performance of
the prediction models using the 2-D Euclidean based renmi&in database as input is
generally better than using the 2-D Minkowski based recansbn database. Moreover,
the SVM regression classifier outperforms other predictr@thods when adopting the
2-D reconstruction databases as inputs. Different fronrékalts for 2-D reconstruction

databases, the performance of the classifiers using eltbe820-D original database or
the 320-D reconstruction database is similar. The perfoo@af the SVM classification

model is the best for the 320-D databases. The purpose oSthisection is to cross

validate the results depend on these four databases.
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Figure 5.10 and Figure 5.11 show the ROC curves of the MLP atM Rodels which
use the test and validation datasets from different daésbas the inputs. The related
area under the ROC curves (AUC) are presented in Table 5d44%64d% respectively.
Through comparing the ROC curves in Figure 5.10 and 5.11 andidering the AUC
results as the reference, it is discovered that the 320-8bdats have the superiority of
building the classification models over the 2-D reconstamctlatabases. Furthermore,
the performance of the MLP classifier is better than the RvVMieho This conclusion
provides guidance on predicting the binding status of theehdata samples in the next
chapter. Table 5.16 summarises the accuracy of each pogdicethod for the databases,

where the SVM classification model as the best classifier éas highlighted.
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(a) The AUC values for the ROC curves for different datasets stediin the figure are 0.8844,
0.8310, 0.9140 and 0.9145 respectively.
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(b) The AUC values for the ROC curves for different datasets stediin the figure are 0.8734,
0.8212, 0.9543 and 0.9440 respectively.

Figure 5.10:The ROC curves of test datasets. (a) The MLP and (b) The RVlihgithe 320-D
test datasets helps to produce better prediction resaltsubing the 2-D reconstruction datasets.
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Subset MLP RVM

2-D (Euclidean) 0.8844| 0.8734

2-D (Minkowski) | 0.8310| 0.8212

320-D (Original) | 0.9140| 0.9543

320-D (Reconstruction)| 0.9145| 0.9440

Table 5.14:The AUC values for the cross validation testing on test datzsats. As shown
in the table, for the 2-D reconstruction datasets, the ML& RMM models have similar AUC
values, where the MLP is slightly better than the RVM. Howefa the 320-D datasets, the RVM
classifier has better AUC results than the MLP.
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(a) The AUC values for the ROC curves for different datasets stediin the figure are 0.8862,
0.8315, 0.9118 and 0.9162
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(b) The AUC values for the ROC curves for different datasets stediin the figure are 0.8764,
0.8184, 0.9542 and 0.9439

Figure 5.11.The ROC curves for the validation datasets. (a) The MLP apdt{p RVM. Similar
to Figure 5.10, using the 320-D validation datasets helggdduce better prediction results than
using the 2-D reconstruction datasets and the RVM modekoigipns other classifiers.
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Subset MLP | RVM Regression
2-D (Euclidean) 0.8862 0.8764
2-D (Minkowski) 0.8315 0.8184
320-D (Original) 0.9118 0.9542
320-D (Reconstruction)| 0.9162 0.9439

Table 5.15:The AUC values for the cross validation testing on the véilisadata subsets. The
320-D validation datasets have better prediction reshls the 2-D reconstruction datasets de-
pend on the selected classifiers.

Subset Linear Reg. KNN MLP RBF SVM (Clas.) | SVM (Reg.) | RVM

2-D (Euclidean) 0.6191 0.8331 | 0.8260 | 0.8075 0.7668 0.8312 0.8152

= 2-D (Minkowski) 0.6461 0.7178 | 0.7680 | 0.7606 0.7739 0.7840 0.7674
QL

320-D (Original) 0.8683 0.8221 | 0.8923 | 0.8482 0.9132 0.8828 0.8879

320-D (Reconstruction) 0.8683 0.8626 | 0.8944 | 0.8481 0.9132 0.8828 0.8879

2-D (Euclidean) 0.6118 0.8323 | 0.8249 | 0.8067 0.7681 0.8327 0.8143
c

-% 2-D (Minkowski) 0.6424 0.7287 | 0.7698 | 0.7586 0.7736 0.7846 0.7645
p=l
S

> 320-D (Original) 0.8656 0.8581 | 0.8941 | 0.8509 0.9168 0.8801 0.8876

320-D (Reconstruction) 0.8656 0.8157 | 0.8896 | 0.8473 0.9168 0.8801 0.8876

Table 5.16:The accuracy for the cross validation testing on differeatadases. The SVM clas-
sification outperforms other classifiers with the accurafciest datasets: 0.9132 and validation
datasets: 0.9168.

5.3 Synthetic data study

In Section 5.2, various prediction models have been vetifjedsing both 2-D projection
datasets and 320-D reconstruction and original datasétsugh evaluating the perfor-
mance of the models, the SVM, RVM and MLP classifiers prodietéeb performance.
The purpose of this section is to apply the best three modgisedict the binding affini-
ties of a set of synthetic data samples. As there is no gaémétbinding information for
the synthetic data, the visualisation model is used to ptofe synthetic data in the 2-D

feature space and colour the projected samples bindingti@iiaccording to the different
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prediction models trained on real data from DB1.

Since only 1860 data sample (DB1 database) are providedthsgtibinding status,
to optimise the selected classifiers, 460 data examplesaat®mly removed from the
DB1 database to constitute a know-target test dataset heneitmaining 1400 data sam-
ples form the training dataset for the prediction models.rédger, 1600 synthetic data
samples are selected using the Monte Carlo method as tloatrah dataset.

Figure 5.12 shows the visualisation results of the selestathetic data samples based
on the NeuroScale model. The projected data samples aneredlbased on the predicted
binding status (binding vs. non-binding). Although the S\¢iMssification model outper-
forms the SVM regression and RVM models according to theiptieth accuracies of the
test dataset shown in Table 5.17, through comparing thealssuion results, it is easy
to notice that the SVM classification model provides sigatiity different distribution
patterns of prediction results where the predicted numbeowr-binding examples is far
smaller than that of other classifiers. As there is no bindiffigity provided for the syn-
thetic data, itis difficult to verify the accuracy, which islg possible through experiments
in the laboratory. The visualisation is used as an intuithethod to represent the rela-
tionships between data samples depending on their retagighbours in the visualisation

space.

125



Chapter 5 ANALYSIS METHODS (Il): DATA PREDICTION

SVM Clas. | SYVM Reg.| RVM | MLP
Accuracy of testset| 0.9244 0.8935 | 0.9109| 0.9261

Table 5.17:Accuracy of test dataset based on the selected predictiaelsioAccording to the
table, the MLP model outperforms other classifiers with tfeglction accuracy: 0.9261 followed
by the SVM classification model.
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Figure 5.12:Visualisation results of the synthetic dataset based ond8aale model. (a) SVM
classification: 87 non-binding examples; (b) SVM regrassia73 non-binding examples; (c)
MLP prediction result: 271 non-binding examples; and (dyR¥égression result 169 non-binding
examples. Generally, comparing with the SVM classificatioodel, the prediction results of the
SVM regression, RVM and MLP model are similar.
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5.4 Summary

This chapter has revealed that, without using explicit béical information, there is
sufficient information in the geometric knowledge to alloe tconstruction of semi-
parametric prediction models capable of predicting bigdstatus with high accuracy.
The methods of reconstituting the databases and the chesgicts of each database were
introduced. In this work, the database DB1 which was creasath the canonical binding
model was selected to constitute the 320-D original dawlddsreover, based on the vi-
sualisation results presented in the previous chapte?-iheatabases which are based on
the dissimilarity metrics and the 320-D database which dépen the PCA model were
reconstructed. In order to evaluate the performance ofdleet®d predication methods,
the defined normalised classification error and the ROC cuese introduced as the
quality criteria. To implement the prediction of the bingistatus, six prediction models,
i.e., linear regressiork-NN, MLP, RBF, SVM and RVM have been employed. Based
on the cross validation analysis on the the prediction testhe prediction models us-
ing the 320-D databases as the inputs perform better thag tis¢ 2-D reconstruction
databases. Among all the models, the SVM produces the bdstmpance for both the
2-D reconstruction databases and the 320-D databasesyéallby the RVM and MLP
classifiers. In the last section, a group of synthetic datapéas were applied to verify
the classifiers which are selected based on the performaNmagover, the NeuroScale
is used to project relationships between the predictedrgahd non-binding examples.
In the next chapter, novel data samples will be introducesfoi® applying the pre-
diction models, the data samples will be projected and aedlyising NeuroScale based
on different dissimilarity metrics. Hereafter, using thedings in this chapter, the binding

status of the novel data samples will be predicted and verifie
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In the previous chapters the approaches which are specifistialise and predict
the interaction between DNA and tRysHis, zinc finger protein have been discussed.
NeuroScale, as a topographic visualisation method, hamarmsrated capability of pro-
jecting the geometric structure of such protein-DNA intgi@ans from a high dimensional
space into a low dimensional feature space by preservingttheture of data samples.
The focus of this chapter is to utilise the properties of trevjusly developed non-linear
topographic visualisation techniques to infer charasties of novel data collected in dif-
ferent experiments. Although the potential binding bebavbetween th€ysHis; zinc
finger protein and DNA sequence will be explored, other attarastics including physic-
ochemical properties such as hydrophobicity and hydragptyilwill also be explored.
In addition, we also investigate classification models sog@osed on the visualisation
space to aid with prediction of potential behaviour.

In Section 6.1 the characteristics of the new experimerdtd dre explained. Then,
the visualisation results of the novel data are present&dation 6.2, which is followed

by the discussion of the results.

6.1 Database of new experimental data

Data, collected from numerous experiments, are the basidfing and understanding
the principles of DNA binding zinc finger interactions. Iretiprevious chapters, the
training data set which was named as the DB1 database, wkntegpo study structural
relationships by visualisation techniques and build prtoin models for binding status
determination. In this chapter, alongside the trainingadadt, another three data sets
which were mentioned in Chapter 3 and listed in Table 3.3| bl applied as novel
sources of data to investigate the utility of topographigugilisation as a tool for high
dimensional data analytics in the DNA-protein interactimmain.

As defined in Table 3.3, the DB1 database is still utilisednasttaining data set in
this chapter. Moreover, the DB2 database which containsc6i@arative examples is
selected as the test data set for cross validating the igatiah results of NeuroScale.

Different from the DB1 and DB2 databases, the validatioadats used in this chap-
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ter are created based on two totally different data sourthe.31 data examples in the
DB4 database are obtained by filtering out the duplicate skataples from the original
data set which is comprised of the experimental data in théigations.

On the other hand, the validation data set defined as DB3 ileTaB is generated
based on a combinatorial randomized protein library froal f@boratory experiments.
As described in Subsection 3.1.2, in the data set, the lgnuhir at position 2 is fixed as
‘GD’. The three binding pairs at position -1, 3 and 6 are delécegarding certain specific
data examples in the training data set. Since the bindinggbaiosition 2 is fixed, the
published data with different binding pairs at position & fitered out at the beginnifg
Then, by fixing any two binding pairs in the primary DNA chaitine remaining principal
DNA-contacting residue is varied with all 20 amino acidsr Egample, the interacting
bases in the DNA sequence of a data example can be ‘gAAA’(3sbthe binding pair at
position 2 is fixed. The corresponding amino acids at pasRio1, 3 and 6 are ‘DRHW'.
If the bases in the DNA sequence and the corresponding ancide at the first three
positions: 2, -1 and 3 are fixed, 19 new data examples can eajed by altering the
amino acid at position 6. The 'DRHW'’ is excluded due to datplaation. Therefore, for
each data sample in the DB3 database, only one binding pdiffésent from the certain

specific data examples in the DB1 database.

6.2 New data visualisation

Protein-DNA interactions as introduced in Chapter 2, aressential feature in the ge-
netic activities of life. The aim of this work is to use preiilre modelling to forecast
the properties of engineered zinc-finger proteins, suclpesificity and efficacy. In the
previous chapters, visualisation and prediction meth@i® lbeen applied to study the
DNA-binding CysHis, zinc finger interactions using published data examples.pline
pose of this section is to investigate the ability to pot@htipredict the characteristics of

new data samples using the methods based on the existinfusmms from Chapter 4

There are 593 data samples (31.88%) in the training databstdining binding pair ‘GD’ at position
2.
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and Chapter 5.

Topographic visualisation techniques, especially Necats are employed to obtain
in-sights into the relative distributions of the proteitN® combinations that exist in na-
ture. In Chapter 4, the structure distributions of the irajrdata set have been analysed.
In this subsection, the study is focused on using NeuroSoaéwaluate how new data
is mapped conditional on previous trained models. Moreaver visualisation results
which represent the similarities between the data sampéesxpected to provide some
clues for the possibility of studying the potential bindlmghaviour and properties of new
data.

The schematic of the NeuroScale model is aimed at projettisiqgeometric structures
of data samples from high-dimensional data space into llomedsional feature space
through preserving the dissimilarities. To visualise tlogel dataxney USINg a previous
trained model based on the training dataegt, the distance’,, 4> between them in
the original space is measured by the dissimilarity melnithis thesis, the Euclidean and
Minkowski metrics are exploited. Then, through applying tion-linear transformation
f which is effected by the RBF model with well trained paramgtéhe novel data can be

projected in the feature spaceasy’.

6.2.1 Modifications to the projection model

NeuroScale, as discussed in Subsection 4.3.1, employsknean transformation to pre-
serve geometric structure while mapping the data from tiger@a configuration space
into the feature space. In other words, it is trying to preseahe relative ‘dissimilar-
ities’ between data samples when projecting the data framotiginal space into the
transformed space where ‘dissimilarity’ can be chosen fieaebiological knowledge.
Although the training database is created based on datzeddrom 25 publications, the
number of data samples is still limited compared with the 4llian possible configura-

tions in the theoretical space of all combinations. Theeesfih is worth studying the most

2 —
whered; ;1= d* (Xnew Xold) -

SWhereynew= f (Xnew W).
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extreme situation where data samples are completely diftérom the training data set.

By counting the number of occurrences of each possible binpéif at four binding
positions (position 2, -1, 3 and 6) based on the training dataa group of statistical
histograms are plotted in Figure 6.1. According to the stigal histograms, some binding
pairs have been found which never happened at the positiotheitraining data set as
highlighting in the figure. Through listing these bindingrpanine data samplesvhich
are completely different from the training data set are gaed by randomly selecting
the never occurring binding pairs at each position.

Applying NeuroScale to project the structure relationgbgtween the training data
samples and the generated data samples from the 320 dimahspace into the feature
space, the visualisation result is shown in Figure 6.2. linexpected that the nine gen-
erated data samples are projected to the same positionlagghtgd. By checking the
dissimilarities between the new data and the training dettaitswas discovered that all
generated data samples have the same Euclidean distartbesitaining data set in the
original space. This discovery can explain why the progctew data samples overlap
at the same position. The reason for having the same disam¢ke high-dimensional
space is because of the representation model. As describ8dhisection 3.2.2, each
data sample is represented as a sparse, binaB2Q vector in which only four ‘1’s are
present for the specific interaction positions and the restad ‘0’s. Moreover, when
using NeuroScale to implement the visualisation, the mdckntres of the RBF model
are randomly selected from the training data set. Since ¢nergted data samples are
completely different from the training data set, the diskinties measured by the Eu-
clidean metric between the hidden centres and the genedatadn the original space
always have the same maximum value at 2.828. Therefore, proggcting the preserved
structural relationships in the feature space, the gesiddta samples are plotted at the

same positions as the black stars in Figure 6.2.

4According to the canonical binding model, at each bindingjtan, there are 80 possible binding pairs
(20 amino acids< 4 bases).
SDetailed information of the nine data samples are listedppendix D Table D.1.

132



Chapter 6 ANALYSIS METHODS (lll): NEW EXPERIMENTAL DATA STUDY

6001 3001
5 5
§ so0f E 250}
(= c
x x
] S
£ 400} £ 200F
< <
S g
g 8
® 300} T 150F
c c
k=] kel
3] 3]
© @
@ 200} © 100F
2 £
ks ks
3 100f & 50t
j= =
[ (]
S =1
: Ll :
I:EL ollaC Nk A1) E 0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8C 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Index number of the binding pair at position 2. Index number of the binding pairs at position —1.
(a) Position -1. (b) Position 2.
150 8001
2 5
e € 700f
> =}
c c
% % 600}
e} =]
£ 100} £
5 5 500}
[+ [
4] (]
© ® 400}
c c
2 8
3 & 300f
o 50f 9]
= =
5 %5 200F
> >
o o
5 & 100f | |
=] =]
o o
T 0 T 0
- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 - 0 5 10 15 20 25 30 35 40 50 55 60 65 70 75 80
Index number of the binding pairs at position 3. Index number of the binding pairs at position 6.
(c) Position 3. (d) Position 6.

Figure 6.1:Statistical histogram of the interaction frequency atetht binding positions. Ac-
cording to the histograms, the binding pairs which do nostexi the training data set at the four
positions are indicated by the highlight bubbles. By raniyoselecting the highlighted binding
pair from each position and combine them together, the cetelyl different protein-DNA inter-
action data sample is generated.
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Figure 6.2:The visualisation result of nine generated data sampleg dturoScale. As pointed
out in the figure, nine data samples overlap at the same @osithich means the ‘dissimilarities’
between these generated data samples and the trainingetiaie same in the high-dimensional
structure space. This phenomenon is caused by the spearaksppinary expression of the data
samples. In addition, the visualisation result is colousedording to the hydrophilicity and hy-
drophobicity of the proteins.

To overcome this problem, each RBF centre is treated as aaons point in the 320
dimensional space, sampled from a 4-component Gaussianifdisnodel. Four normal
distribution$ are considered to substitute for the ‘1’s at the four spedifieraction po-
sitions. For example, given a hidden centre, the positidrisw ‘1’s can be confirmed
from the 1x320 vector. The meap is the position of the ‘1’, and the value afcan
change between 1 and 320. To obtain the best substitutiecteffifferent choices of the
standard deviatiow were investigated. Whea = 1, the Sammon stresachieved the
lowest stress value. Then, four generated normal distobsitare combined together and
normalised. Figure 6.3 shows an example of the generatehicentres. In this figure,
the standard deviatiamis changed from 1 to 5, and the relevant results are plottdd-in
ferent colours. Using the optimised hidden centres, thegded data samples can now

be plotted separately in Figure 6.4, and the created vadidata set will be visualised in

_ew? _ .
6 The normal distribution is defined d$x) = —1—e 202" wherep is the mean and is the standard

oV2m
deviation.
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the same way. In Figure 6.4, some generated data samplesgreted outside the main
area of the training data set. It illustrates that the trajrand the validation data sets
have significant dissimilarities, and for these data sasypies hard to infer the binding

properties.
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Figure 6.3:The generated hidden centre using the normal distributiimen the standard devia-

tion o equals to 1, the generated hidden centre is closer to thimarmne. Increasing the value of
o, the overlapping between each specific interaction poshiscomes more and more significant.
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Figure 6.4:The visualisation result of nine generated data sampleg WéeéuroScale based on
the optimised hidden centres superimposed on the trairatey projections colour coded by the
hydrophilicity and hydrophobicity of proteins. Comparingth Figure 6.2, the positions of the

nine generated data samples are separated in the featwe spa pointed out in the Figure,

four data samples are projected external to the main araahwahe therefore considered to have
significant distances from the training data set.

6.2.2 Visualisation results of the new data

Through applying the normal distribution to define the sieldtidden centres of the RBF
model, specific binary data samples that are significanflgidhilar can be projected into
low dimensional feature space by NeuroScale. This circuntswbe problem of constrain-
ing the centres to be located on the discrete grid which ledgé@nomalies observed in
Figure 6.2. In this subsection, the visualisation resuithe selected test and validation
data sets based on the Euclidean metric as the dissimilaggsurement in high dimen-
sional space are represented in Figures 6.6, 6.7 and 6.8ctasgly /. Moreover, as a

benchmark of the visualisation study, the PCA model is eggaldo project the test data
into the feature space, shown in Figure 6.5. Similar to teealisation result of the train-
ing data set in Subsection 4.2.2, the represented testalataless with different structure

properties are not separated appropriately, due to tharlmeture of PCA.

"The visualisation results of the selected test and vatidatata sets based on the Minkowski metric are
represented in Appendix D.
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Figure 6.5:Visualisation result of the test data set based on the PCAemBadth training and test
data projections colour coded by the hydrophilicity androytiobicity of amino acids. Although
in the feature space, all test data can be projected intor#ii@ing data clusters, it is hard to
distinguish the properties of the interactions such asibgnstatus and biochemical structures.

Figure 6.6(a) shows the projection result of the test dat#6568 data samples from
the DB2 database) where only the DB1 database (1860 datdesgngpused to train the
NeuroScale network. Compared with Figure 6.7(a) where #teark is trained based
on both the training and test data sets, several of the téstsdanples in Figure 6.6(a)
are projected external to the main visualisation area. Witlestata samples (both train-
ing and test data sets) are applied to train the model, theléta set can be clustered
more appropriately. As NeuroScale implements the highedsional data visualisation
by preserving the geometric structure from the originalfigumation space into the fea-
ture space, the data samples with similar structures camdugped together. Specific to
Figure 6.6(a), the data samples which are projected away tine majority groups illus-
trate that the structures of these data ought to be moredalitfeompared with others.
However, through studying the biochemical informationtede data as shown in Figure
6.6(b), there is no significant structural difference betwéhe test data samples which
are projected external and internal to the main visuabisatdirea. In addition, although
the selected test data in Figure 6.6(a) have the same amiha@our coding with the

surrounding training data, the structural informatioreatively independent.
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(a) In this figure, a few test data samples are projected extéortale main visualisation area. In
order to find out the reason for this phenomenon, a small rahgata samples are selected and
magnified.
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(b) In the figure, the structural information of the selectecadsmples are represented. The data
points with IDs 554, 552 and 566 are selected from the test siett They have the same amino
acid combinations ‘HRHV’. The training data sample with IB55in the middle has a completely
different structure information where the DNA sequencéABAg’ in the order from 5 to 3, and
the amino acid list is ‘THTN’ with position order 2, -1, 3, 6.

Figure 6.6:Visualisation result of the test data set in which only tlening data set has been
trained. (a) is the result using only the training data sdtdm the visualisation model. (b) is

the magnified visualisation result with the detailed suiat informations of the selected data
samples.
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In order to understand the phenomenon in Figure 6.6(a),isthegrams of the dissim-
ilarities 8 in the high-dimensional space are represented in FigureThé structures of
the outside data samples are rather similar. Compared vgthd-6.8(b), the range of the
averaged dissimilarities between the test and training siatnples in Figure 6.8(a) varies
slightly with a similar distribution. There is a smaller partion of the test data samples
with distances between 2.55 and 2.65 than the statistisaltren which the histogram
of the average distance between the training data sampbesésl. Moreover, given the
visualisation result in Figure 6.6(a), it can be seen thattést data samples which are
projected away from the main area are not bound to have thedadistance from the
training data sets. The reason for this phenomenon is stilkéuinvestigation. It may be
caused by the selection of the dissimilarity measure, ortdtee quality criteria consid-
ered or an issue of extrapolation by the RBF model. Therefsea possible direction
for future work, a reliable and robust method that can eveltlae biochemical similarity

between a novel data sample and the existing database odaelgdentified.

8Different from the histogram in Subsection 4.3.4, the hysamns plot in Figure 6.8 are based on the
averaged distance from each test data samples to all tgailsita samples or the averaged distance from
each training data samples to all other training data points
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(a) When both training and test data sets are used to train theoSeale model, all data samples
can be projected into the main visualisation area. Most &if data are projected to the clusters
which have the same amino acid colour coding. To verify te&ictural relationships, a small

range of data samples are selected and plotted in Sub-Higure
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(b) In the zoomed in area, four data samples compose two exantplesample 1 the information
of the two data samples are CTTg-GTNE (training non-bindemgd CGTg-GTNE (test data); the
information of example 2 are CTAg-GTAE (training non-bingj and CCAg-GTAE (test data). In
the two examples, the DNA sequences have similar informatiod the amino acids have the same
hydrophobicity and combinations.

Figure 6.7:Visualisation result of the test data set in which both tlaéntng and the test data
set were used to optimise the mapping. (a) is the result osdythie training data set to train

the visualisation model. (b) is the visualisation resulinich both the training data set and the
validation data set have been used to create the mapping.
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(a) Histogram of the averaged Euclidean distance between eatlddta samples and the training

data set in the feature space.
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(b) Histogram of the averaged Euclidean distance betweenaimétg samples in the feature space.

Figure 6.8:Histogram of the averaged Euclidean distance betweerreiiffelata sets. The dis-
tance changes from 2.4 to 2.85, and data samples are maihisem distance ranges: 2.45 to 2.5,
2.5510 2.65 and 2.7 to 2.8. (a) is the histogram of the averaigance between each test data
samples and the training data set. (b) as a reference pttidtogram of the averaged distance
between each test data sample and the training data set.

Different from Figure 6.6, when the novel data samples ae applied to train the
model, the visualisation results shown in Figure 6.7(b) i&lect more accurate struc-

tural relationships which are verified by two selected exXasygn the two examples, the
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selected data samples not only have the same hydrophoproiperties (same colour-
ing code of the amino acid combinations), but also contammilar structural information
in DNA sequences. To further confirm it, a validation data(3étl5 data samples in
database DB3) was employed, and the relevant projectiaiftsese shown in Figure 6.9.
Figure 6.9(a) represents the visualisation result whidiased on only the 1860 training
data samples. Although the validation data set is much ddlgen the training data set,
as each validation data sample only has one position différem the training data set,
most of the validation data samples still can be projectealtime main visualisation area
in the feature space, while a few of data samples are refegsentside. The relevant
histograms of the dissimilarities in the high-dimensios@dce are shown in Appendix D
Figure D.4. Similar to Figure 6.8, itis hard to find any clueedily only depending on the
dissimilarities to explain this phenomenon. Contrast tthié NeuroScale model trained
using both training and validation data sets provides a défgrent result as shown in
Figure 6.9(b). In this figure, the training data samples @imimg completely different
structural informations are projected into cluster 6, vehali of the validation data sam-
ples and the relevant training data samples are projectedhia main visualisation area.
Through studying the data samples of the clusters, it istiiied again that the visuali-
sation capability of the NeuroScale model trained usinglalh samples can reflect the
structural relationships between the data samples, anutdiperties of the new data sam-
ples can be inferred according to the well known neighbauaiing data samples), such
as binding specificity, hydrophobicity and hydrophilicitthe amino acid combinations,
structural features of the interactions and polarisatibine visualisation results of both
the test and validation data sets by using the Minkowskiripneduct to measure the dis-
similarities in the data space are plotted in Appendix D FeglD.2 and D.3, respectively.

The relevant histograms are shown in Appendix D Figure D.4.
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R2

Training binding

O Training non—-binding
Test data

-8 -6 -4 -2 0 2 4

(a) In this Figure, most of validation data samples are ptefonto the left side of the main visualisation
area. However, by checking the structural information, aenfd that the validation data samples projected
in this area do not have similar amino acid combinations adrdining data samples. Moreover, there is
no significant difference between the data samples whiclpajected external and internal to the main

visualisation area.

X

Training binding
Training non—binding
Test data

(0]

R1

(b) Inthis Figure, the clusters are numbered from 1 to 11 epkfor cluster 6 which has completely different
interaction structures, most clusters are projected basdtle DNA sequence, as the amino acids have the
similar combination information: ‘DRXX’ following the biding position 2, -1, 3, and 6. In cluster 1 and 7,
the DNA sequences are ‘XXAg’; Cluster 2 and 8 have the DNA sege: ‘XXGg’ and ‘XXCg’ appear in
cluster 4 and 11. In cluster 5, the DNA sequence is ‘GXXg’ dareldmino acids is ‘DKXX'. Cluster 9 has
DNA pattern ‘GXXg’ and the amino acids ‘DTXX’.

Figure 6.9:Visualisation results of validation data set (database D& is the result only using

the training data set to create the visualisation modeljs(ktfe result of using both the training
and validation data sets to optimise the NeuroScale model.
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6.3 Summary

Different from the databases which were applied to investighe visualisation and pre-
diction methods in the previous chapters, the validatida dats using in this chapter are
created based on two totally different data sources: oneemted based on the dupli-
cated data samples from the same database as the traingngetiathe other is generated
depending on the combinatorial randomized protein libeemg with only one binding
pair selected different from the specific data examplesertithining data set. Since the
training data set is small compared with the theoreticallokate, the most extreme situa-
tion where the data samples are completely different framdata set were considered.
A Gaussian distribution method was exploited to pre-preche hidden centres of the
RBF model when using NeuroScale to implement the visuaisatAlthough the vali-
dation data samples are similar to the training data set e samples projected away
from the majority of clusters in the visualisation resultshwut retraining. The reason
for the phenomenon is still under investigation, but thestn of the dissimilarity met-
ric and the stress function are considered to be possiblerfacOn the contrary, when
the NeuroScale model was re-trained on the whole data setefintesentation results for
the binding status prediction become much improved. Thidbhg visualisation results,
the characteristics of novel data samples, such as bingegf&ity, hydrophobicity and
hydrophilicity of the amino acid combinations, the struetfeatures of the interactions
can be inferred based on the neighbouring data samples. rdiogoto the visualisa-
tion results, there is sufficient information in the binanding space for DNA-binding
CysHisy zinc finger interactions. Moreover, it also proves that thapprties of novel
interactions are predictable based on neighbour progdrtithe map which is obtained

by the visualisation model.

144



Conclusions

CONTENTS

7.1 Summary of the Thesis
7.2 Directions for future work

145



Chapter 7 CONCLUSIONS

CysHisp zinc finger binding DNA interaction as one of the typical @iotDNA in-
teractions has been widely studied in the past two decadesodts ability of recognis-
ing specific DNA sequences. The characteristics of theantem can be represented
by high-dimensional data. Topographic visualisation, as of the visual informatics
methods, can be used to map the data from a high dimensicaee $pto a low dimen-
sional space by preserving the structure of the data. Intligsis an analysis system
has been developed to indicate properties of novel DNAibhn@ysHis, zinc finger
interaction through exploiting the topographic visudimamethod to represent the high-
dimensional structure properties of the well known intéaars into low-dimensional fea-
ture space.

This chapter aims to review the findings which have been dssaiin the previous
chapters following the four study phases mentioned in 8edti2, and indicate directions

of future research of the analysis system.

7.1 Summary of the Thesis

To create an analysis system that can indicate propertiaeva DNA-binding protein
activity, the main contributions of the thesis include thé&roduction of a dimension-
reducing, topographic transformation of the reconstaibiaary data to investigate struc-
tural relationship in high-dimensional space which defimeQysHis; zinc finger inter-
action space. There are various techniques availableffoersionality reduction. As the
purpose of this work was to study the structural propertfethe interaction, the mod-
els which can implement topographic visualisation weresabgred such as GTM, SNE,
LLE and Sammon mapping approaches. Moreover, PCA as aclasgection model
was also employed as a benchmark. Through applying theeckelatabase to investigate
the performances of such methods, it was discovered that @hdsem are not suitable
for this work. For the probabilistic based GTM and SNE modiéley have advantages on
mapping the continuous data samples, but not the sparsg biataset. The PCA method
as a linear model is not good at visualising the high dimeradinon-linear data samples.

According to the results, the Sammon mapping has the befsirpemce, but can not vi-

146



Chapter 7 CONCLUSIONS

sualise new unseen data directly. Due to the reasons medtiove, the NeuroScale
model as a Sammon mapping related algorithm was exploitiilsnvork. NeuroScale is
a topographic feature extraction method that can be useddiement lower-dimensional
topographic mapping representations for high-dimensidaia visualisation. To the au-
thor’s best knowledge, this thesis is the first to apply N8gale and consider different
dissimilarity measurements in studying the structurahtrehship of the partially pub-
lished DNA-bindingCysHis, zinc finger interactions (partially due to the fact that most
of the theoretical interactions do not exist in nature.)s&hon the visualisation results,
various prediction methods were considered to investit@ossible advantages of us-
ing the projection data, rather than the original or reanaséd high-dimensional data as
the input to implement the interaction prediction.

Before applying various analysis methods to study the ptmseof the interactions,
an appropriate representation model was essential to ddieeoriginal data to sparse
binary vectors. As analysed in Section 3.1, the number o&tladlable data samples of
the DNA-binding zinc finger protein interaction in this tiewas restricted by laboratory
experiments and affects the subsequent analysis and rhotigilhg. A canonical binding
model that is only based on the information of the DNA seqeeamedCysHis; zinc
finger was employed to describe features of the selectedsdaples as explained in
Section 3.2. Moreover, a synthetic database which cordafiehe 41 million possible
interactions was created as a reference.

The investigation of dimensionality reduction methodsvisualising the converted
320-dimensional database on real experimental data agtbhad step of this work was
discussed in Chapter 4. As the database was formed by 328hdional sparse binary
vectors and the visualisation models are expected to prihjecovel data only based on
the prior data samples, most of the reduction methods suSamsnon’s mapping, were
abandoned since they are intrinsically inappropriate tajgaied to novel data without
retraining the full modet. NeuroScale, as the primary visualisation approach wakyfina

exploited. The principle of the model is to preserve geoimstructures with a non-linear

1The relevant visualisation results of various visual@atinodels, such as PCA, GTM, LLE, SNE and
Sammon’s mapping were plotted in Subsection 4.2.2.

147



Chapter 7 CONCLUSIONS

transformation while mapping the data from the originalfaguration space into the fea-
ture space. The geometric structure is described by relatigsimilarities’ which is the
‘distance’ between data points in the original and tramafsa spaces, respectively. Since
the contributions of the four binding positions in the iateion are different, although
the application of the commonly used Euclidean metric cgnesent the dissimilarities
very well, this thesis also explored other metrics such asMimkowski indefinite in-
ner product to measure the ‘dissimilarities’. Tr®@ammon stress metnigas discussed
in Subsection 4.3.2 as the approach to measure and corgrgugdity of the visualisa-
tion results, especially when different dissimilarity met are applied. The details of the
employed dissimilarity metrics were introduced in Subieectt.3.3. The representation
corresponding to the indefinite Minkowski metric, shown irbSection 4.3.6, revealed a
better separation of binding versus non-binding sampteglying that the deployment of
non positive definite metrics has some benefits in this stmatompared with the visu-
alisation result based on the Euclidean metric. This isterg discovery indicates that
ideally a more biologically-plausible dissimilarity meas should be explored, which is
worth further investigations in the future.

To investigate this inference, in Chapter 5, some typicassification models were
applied, such as linear regressitéNN, MLP, RBF, SVM and RVM, whereNN was
specially selected for the 2-dimensional projective d&@C curves and relevant AUC
figures were also used to evaluate the performance of eatiochiey using different input
data. Although the visualisation result shows that the Mngki metric based model can
obtain a better separation result, the related predicgsnlt was worse than those from
the classifiers that were re-trained using the 2-dimensiBaealidean metric based pro-
jective dataset. Moreover, through comparing the norredlesror of each classification
model and cross validating the ROC curves and relevant gesssuch as accuracy (sen-
sitivity) and the value of AUC, the classifiers re-trainedthg 320-dimensional dataset
has greater advantage. Furthermore, regarding the RO€scand the value of AUC, the

MLP, SVM and RVM models outperform traditional classifietel as the linear regres-

2The Minkowski metric is defined by the dimensions of the ingpeéice corresponding to connections
to the complementary DNA strand (th&%position) are weighted with -1 and the connections related t
connections to the primary DNA helix are weighted +1.
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sion and the RBF models.

The final stage of the work investigated the possibility afieating the properties of
the novel DNA-binding protein interactions based on lidiexperimental data sources.
As discussed in Subsection 6.2.1, the NeuroScale model xpdsited to represent the
generated novel data based on the combinatorial randompioégin library. Although the
NeuroScale model has the capability to visualise new dapkes without re-training the
model, some data samples having similar structure prasetdi other samples were still
projected external to the main visualisation area, whicfuires further investigation. On
the contrary, when using the whole dataset (both trainiryreovel datasets) to re-train
the model, the structure relationships between the datplsawere reflected very well.
Thus, one can infer the properties of the new data sampléls,respect to the known
neighbours. In Subsection 6.2.2, the abilities of the seteprediction models (MLP,
SVM and RVM) were investigated on the performance of pradicthe new data samples
using the 320-dimensional datasets for the training. Adéedy the class-imbalanced
validation dataset, there is no difference in the predicdocuracy between the selected
classifiers. Moreover, through verifying the predictedding statuses of the validation
data samples, all models show the same classification sesutich may need further

verification through laboratory experiments.

7.2 Directions for future work

The future work discussed below aims to improve the existinglysis approach intro-
duced in the thesis to implement the prediction of the imtgoa between DNA and mu-

tated engineered zinc fingers by:

e Developing the approach on evaluating the dissimilaritiedetween the exist-
ing experimental data and the novel data.ln Chapter 6, the visualisation results
reflected that given some new data similar to the traininglzkge in the high di-
mensional space, it is possible that the projected positidime new data is outside
the main data group. Therefore, developing an approach fisidering the mathe-
matical and biochemical knowledge to evaluate the sintyléetween the new data
and the training dataset will be helpful to obtain clues alvawere the novel data
will be projected in the feature space before the visuatisatOn the other hand,
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the compatibility of the model can also be improved by meaydhe synthetic data
which have different characteristics from the experimietdida.

e Further investigation of the prediction methods on predicing the DNA-binding
activity proteins with limited data sources. In this thesis, only six classic and
commonly used prediction models were employed to inveigze four differ-
ent databases, where good performance has been obsenesg. arb some other
prediction methods that may implement better predictiaritis problem domain.
Moreover, the performance of the selected models in thesle®uld be improved
by optimizing parameters, through extending the validatiatabase. In Chapter 4,
it has been proved that the visualisation models have therguijy to discover the
properties of the DNA-binding protein interactions. Iretef applying the visuali-
sation results as the input data of the prediction modedgnating the visualisation
results from various visualisation approaches and apgliias a prediction factor
could be another option.

¢ Introducing data fusion methods to the predictive system agording to the se-
lected prediction models. As proved in Chapter 5 and 6, according to the ROC
curves and relative AUC, more than one prediction model canigle a more ac-
curate prediction for the given data. Applying data fusicgtimods to integrate the
prediction results of the best prediction models could mrprthe accuracy of the
prediction for the DNA-binding activity proteins.

e Searching for the most appropriate metric on the dissimilaity description.
Topographic projection uses a ‘distance’ function in ingpéce, a ‘distance’ func-
tion in output space, and a ‘distance’ function to evaluadgrmance (Sammon
STRESP Each of these distances could be modified. In this thesiexpéored,
briefly, the effect of modifying the input space metric. Reabe others have ex-
plored different metrics for performance evaluation (dge Bregman divergence
(Sun, 2011)) and used likelihood functions to map simiksitbetween distribu-
tions (Lee, 1999) rather than isolated data points. A fuitovestigation should try
and reflect explicit biological knowledge into construgtimore appropriate met-
rics.

e Generalise the obtained results to a wider class of proteidNA interactions. In
the thesis, only the interactions between@ysHis, zinc finger proteins and DNA
sequences have been explored. Whilst this can be justifigiteogrounds that zinc
fingers represent one of the most common types of DNA-bindorgains found in
the majority of eukaryotic genomes, extending the work teeoproteins requires
a modification of the coding scheme used to encode the ddffarét approaches
need to be explored in the future to encode more generalipsote
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Dataset

A.1 Published data list

Data samples which consist of the 26 data sources contaipdirts: paper title of the
source, DNA sequence, number of binding zinc fingers, th@amacids with the correct
positions [-1, 2, 3, 6] in zinc finger regions with the patt@X,_¢CXi2HXo_gH, and a
dissociation constardy * which is used to identify the binding affinity.

Table A.1 lists 26 published data sources.

LA dissociation constari is a specific type of equilibrium constant that measures thpgnsity of a
larger object to separate reversibly into smaller comptmeédnits ofKy is nM, whenKy < 200 nM, the
data sample can be considered as a positive binding example.
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N

o

Number Source Reference
1 DBSFBO1 Dreier et al. (2001)
2 DFSLBHKBO05 Dreier et al. (2005)
3 SDBB99 Segal et al. (1999)
4 DSBO00 Dreier et al. (2000)
5 BMBO03 Blancafort et al. (2003)
6 BFS02 Benos et al. (2002)
7 BJCO2 Bulyk et al. (2002)
8 BKSHRPO3 Bae et al. (2003)
9 CGU99 Cook et al. (1999)
10 CK94a Choo and Klug (1994b)
11 CK94b Choo and Klug (1994a)
12 DB92 Desjarlais and Berg (1992
13 DB93 Desijarlais and Berg (1993
14 GP97 Greisman and Pabo (199]
15 ICK97 Isalan et al. (1997)
16 IKCO1 Isalan et al. (2001)
17 JKW94 Jamieson et al. (1994)
18 KFMO05 Kaplan et al. (2005)
19 LXC02 Liu et al. (2002)
20 NGC92 Nardelli et al. (1992)
21 PDB Berman et al. (2000)
22 RP94 Rebar and Pabo (1994)
23 RUMIWCKCO03 Reynolds et al. (2003)
24 TB90 Thiesen and Bach (1990
25 WGRP99 Wolfe et al. (1999)
26 WYB95 Wu et al. (1995)

Table A.1: Cited published sources list.
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Source DNA No. of zf. f1 f2 3 ex Kd
DBSFBO1 | ctcgcgGGGgeggee 3 KSADLKRHIRI | RSDHLTTHIRT | RSDERKRHTKI Kd 0.5
CK94a tatatagcgGTGgcgtatata 3 RSDELTRHIRI | REDVLIRHGKT | RSDERKRHTKI + —
BJCO2 tatatagcgTTGgcgtatat 3 RSDELTRHIRI | KASNLVSHIRT | RSDERKRHTKI Kd 0.00110647
DSBO0O0 cccgegGCCgcegtec 3 KSADLKRHIRI | QSSNLVRHIRT | RSDERKRHTKI - —
SDBB99 cccgegGGGgcegtee 3 KSADLKRHIRI | RSDKLVRHIRT | RSDERKRHTKI Kd 6.0
BFS02 -gcgtgggagt 3 rsdeltrhir rsdhltthir | rsderkrhtk + —
KFMO05 -GCGTGGGTG- 3 RSDELTRHIRI | SDHLTTHIRTT | RSDERKRHTKI + —
JKW94 gatccgegtggGTTetgd 3 ESRALTRHIRI | RSDHLTTHIRT | RSDERKRHTKI Kd 2.1
WYB95 cctgegtggTGTece 3 RSDELTRHIRI | RSDHLTTHIRT | RSDERKRHTKI Kd 81.8
NGC92 gtacgcgAGGgcggtta 3 RSDELTRHIRI | QSSHLTRHIRT | RSDERKRHTKI Kd >20
PDB agcgtgggacc 3 DSSNLTR RSDHLTT RSDERKR + —
WGRP99 | —ggctataaaag— 3 QKTNLDTHIRI | QQASLNAHIRT | TLHTRTRHTKI Kd 120
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A.3 List of published data

In this section, the published data sources are dividedtima®e groups according to the
structure information provided. Table A.3 lists all dataiszes which only provide the
information of the 2nd zinc finger. In Table A.4, the data sesrwhich include the
information of three zinc fingers are listed. Table A.5 islibeof the data sources which

have compared DNA sequences without binding status infooma

Source No. of Finger | No. of Samples No. of Selected Ref.
Samples
DBSFBO0O1 1 322 264 1
DFSLBHKBO5 1 220 214 2
SDBB99 1 201 43 3
DSB00O 1 458 326 4
BJCO2 1 320 288 7
BKSHRPO3 1 33 31 8
CK94a 1 67 0 10
CK94b 1 19 11 11
ICK97 1 4 1 15
JKW94 1 18 18 17
NGC92 1 140 110 20
RP94 1 12 10 22
WYB95 1 26 20 26
Total 1336
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Source No. of Finger | No. of Samples| No. of Selected | Ref.
Samples
BMBO03 3 44x3 52 5
BFS02 3 1005x3 385 6
CGU99 3 5x3 0 9
DB93 3 9x3 6 13
GP97 3 24x3 9 14
IKCO1 3 7x3 0 16
KFMO05 3 40x3 13 18
LXCO02 3 32x3 18 19
PDB 3 14x3 5 21
RUMIWCKCO03 3 8x3 19 23
TB90 3 11x3 14 24
WGRP99 3 6x3 3 25
Total 524
Table A.4: List 2(three zinc finger selected)
Source No. of used zf.| No. of Samples| No. of selected | Ref.
samples
DBSFBO1 1 124 77 1
DFSLBHKBO5 1 220 197 2
DSBO00 1 410 247 4
SDBB99 1 320 45 3
DB92 1 12 0 12
IKCO1 3 50x3 107 16
Total 673

Table A.5: List 3 (Comparing data)
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A.4 Database generation explain

The original data samples which represent the ZF-DNA bigdineraction can be un-

derstood with respect to the ‘canonical structural modélere each zinc finger contacts

DNA in an antiparallel manner Pavletich and Pabo (1991pdErickson et al. (1996).

Once the data sources are determined, the interacting inethesDNA sequences can be

selected and stored in the 3'-5’ order in the database ofdtteddata sources, as shown

in Table A.6. Also included in the database are the specifinaicid labels at position

2, -1, 3 and 6, their binding status and tgvalue where it has been reported.

No. DNA a a 1 az ag Binding Ky
(3-5)

253 gGCG D R H T — 206.7

1275 gTAG G T N R 4+’ —

554 gACA G T N Vv —

1143 cCCG D R E R — 3

1245 gGGG D R Q R — <25

Table A.6: Examples of categorised data samples. In this table, ther ofdhe DNA sequence
is arranged from 5’-3’ to 3'-5’. The amino acid at the contagtpositions 2, -1, 3, 6 are retained.
The number in the first column can be used to reference badketoriginal experiment. For
example, DNA sequence gTAG in the second row was GATg betmganged. Amino acids G,
T, N and R would bind the DNA sequence at position 2(GG), -3(BJAN) and 6(GR) separately.
From the record of the experiment, the binding status is défas binding (+).

Table A.7 illustrates the databases regarding the canatrcatural model number.
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No. a a1 az ag Kg4/Binding
253 23 135 267 297 206.7

1275 | 26 157 | 172 | 295 +
554 26 97 192 | 258 -
1143 | 43 115 | 184 | 295 3
1245 | 23 135 | 214 | 295 <2.5

Table A.7:Converted data source with reference number. In this tééehinding pairs at 2, -1,

3 and 6 position are represented by a number according tatieept of the canonical structural
model. Using the model numbers, the 320-Dimensional véot@ach data sample can be created
as shown in Table 3.2. Using a binding pair ‘01gD’ in the fiswrin Table A.6 as an example,
‘01’ indicates that the index of this binding pair should tedvieeen 1 and 80. Considering the base
‘g’ is on the primary DNA strand, the interaction happens orctiraplementary strandg”should

be replaced byc when define the index of this binding pair. According to T&@hl.9 in Appendix

A, the order of nucleotides was defined as: A, C, G, T. Theegfthrere should be 20 possibilities
for each nucleotide by binding with 20 amino acids. Morepsarce ‘D’ was numbered as th&'3
amino acids in this study, the index of ‘01gD’ was defined &s fihally.

Using Table A.9 as a look-up dictionary, it is quite strafghtvard to find the binding
pairs between nucleotides and amino acids in differentiposi by checking the indices
of non-zero elements in these vectors. Table 3.2 in sulose8tR.2 shows an example
where the value of "1’ appear at locations 23, 135, 267 and J@ble A.9 equates the
a_1 position to nucleotideg’ and amino acidR'.

Table A.8 shows the transformed database that integrdtéeeahformation of each
binding pair. In the table, the original number correspaiadie location of each pair in
the database illustrated in Table A.7. For example, ‘25&sreeto the 25 row in Table
A.7. This makes it possible to track the original citationtloé datum. The order of the
DNA sequence in this database is reversed back to 5’-3’. Tiher@f the amino acids is
set to benag, az, a_1 anday for reading conveniencdy and the binding status are merged
into one column, which can also be used for information chegkand helps understand
the distribution of data samples. For example, in a dataalizsation process, each data
sample was plotted following the order which is shown in @Garrent No.” column, and
labelled based on the value iK4/Binding’ column. Then, if any relative information

of selected points is requested to be shown, by linking ther&ht No.” columns, the
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corresponding information can be found in DNA and amino aocidmns.
Original Current DNA as, az, a1, ax | Kg/Binding
No. No. (5-3)
070013 253 GCGg T,HR,D 206.7
031784 1275 GATg R,N, T,G +
010506 554 ACAg V,N, T,G -
171449 1143 GCCc R,E,R,D 3
201516 1245 GGGg R,Q,R,D <25

Table A.8: Binding status and related information database. The foltnen represents the
address of the selected data sample in the original citafi¢tve first two numbers represent the
location in the list of data sources used. The last four numbenotes the index of the selected
data sample in the data source. For example, based on ‘17h4he6 fourth row, the index of this
original data sample is 1449which could be found from the I&itation.

Table A.9 defines all possible binding pairs at each bindwgjtpn, which is created

base on the canonical binding model.

01 - between amino acaband nucleiotiddn,’
02 - between amino acia_1 and nucleotidéd;
03 - between amino acias and nucleotidd,
04 - between amino acis and nucleotidds

Index | ax-bs’ | Index | a_1-b1 | Index | az-by | Index | ag-bs
1 0OlaA| 81 02aA | 161 | 03aA | 241 | 04aA
2 0l1aC| 82 02aC | 162 | 03aC| 242 | 04aC
3 OlaD| 83 02aD | 163 | 03aD | 243 | 04aD
4 OlakE 84 02akE | 164 | 03aE| 244 | OdaE
5 OlaF | 85 02aF | 165 | 03aF | 245 | OdaF
6 0laG| 86 02aG | 166 | 03aG | 246 | 04aG
7 OlaH 87 02aH | 167 | 03aH | 247 | O4aH
8 O1al 88 02al | 168 | O3al | 248 | O4al
9 0laK 89 02aK | 169 | 03aK | 249 | 04aK

10 OlaL 90 02aL | 170 | 03aL | 250 | O4daL
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11 OlaM| 91 02aM | 171 | 03aM | 251 | O4aM
12 OlaN | 92 02aN | 172 | 03aN | 252 | O4aN
13 OlaP | 93 02aP | 173 | 03aP | 253 | O4aP
14 0laQ| 94 02aQ | 174 | 03aQ | 254 | 04aQ
15 OlaR | 95 02aR | 175 | 03aR | 255 | O4aR
16 0laS| 96 02aS | 176 | 03aS| 256 | 04aS
17 OlaT | 97 02aT | 177 | 03aT | 257 | OdaT
18 Olav | 98 02aVv | 178 | 03aV | 258 | O4aVv
19 | O0law| 99 | 02aWw | 179 | 03aW| 259 | O4aw
20 OlaY | 100 | O2aY | 180 | 03aY | 260 | O4aY
21 OlcA | 101 | 02cA | 181 | 03cA | 261 | O4cA
22 01cC | 102 | 02cC | 182 | 03cC | 262 | 04cC
23 OlcD | 103 | 02cD | 183 | 03cD | 263 | 04cD
24 OlcE | 104 | O2cE | 184 | 03cE | 264 | O4cE
25 OlcF | 105 | O2cF | 185 | 03cF | 265 | O4cF
26 01cG| 106 | 02cG | 186 | 03cG | 266 | 04cG
27 OlcH | 107 | O2cH | 187 | 03cH | 267 | O4cH
28 Olcl 108 | 02cl 188 | 03cl | 268 | 0OA4cl
29 OlcK | 109 | 02cK | 189 | 03cK | 269 | 04cK
30 OlcL | 110 | O2cL | 190 | O3cL | 270 | O4cL
31 OlcM | 111 | 02cM | 191 | 03cM | 271 | O4cM
32 OIcN | 112 | 02cN | 192 | 03cN | 272 | O4cN
33 OlcP | 113 | 02cP | 193 | 03cP | 273 | 04cP
34 01cQ | 114 | 02cQ | 194 | 03cQ | 274 | 04cQ
35 OlcR | 115 | 02cR | 195 | 03cR | 275 | 04cR
36 0lcS| 116 | 02cS | 196 | 03cS| 276 | 04cS
37 01lcT | 117 | 02cT | 197 | 03cT | 277 | 04cT
38 Olcv | 118 | 02cV | 198 | 03cV | 278 | 04cV
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39 | 0lcW | 119 | 02cW | 199 | 03cW | 279 | 04cW
40 OlcY | 120 | 02cY | 200 | 03cY | 280 | O4cY
41 01gA | 121 | 020A | 201 | 03gA | 281 | O40A
42 01gC | 122 | 029C | 202 | 03gC | 282 | 049C
43 01gD | 123 | 029D | 203 | 03gD | 283 | 049D
44 Ol1geE | 124 | O29E | 204 | O3gE | 284 | 0O4qgE
45 OlgF | 125 | 02gF | 205 | 03gF | 285 | O4gF
46 019G | 126 | 029G | 206 | 039G | 286 | 049G
47 OlgH | 127 | 02gH | 207 | 03gH | 287 | 04gH
48 Olgl | 128 | 02gl 208 | 03gl | 288 | 044l
49 01gK | 129 | 02gK | 209 | 03gK | 289 | 049K
50 OlgL | 130 | 02gL | 210 | 03gL | 290 | O4gL
51 | 01gM| 131 | 02gM | 211 | 03gM | 291 | 04gM
52 O1gN | 132 | 02gN | 212 | 03gN | 292 | 04gN
53 O1gP | 133 | 02gP | 213 | 03gP | 293 | 049gP
54 01gQ | 134 | 029Q | 214 | 03gQ | 294 | 049Q
55 O1gR| 135 | 02gR | 215 | 03gR | 295 | 049gR
56 01gS | 136 | 029S | 216 | 039S | 296 | 049S
57 01gT | 137 | 029T | 217 | 03gT | 297 | 04qT
58 OlgVv | 138 | 02gV | 218 | 03gV | 298 | 049V
59 | 01gW | 139 | 02gW | 219 | 03gW | 299 | 04gW
60 0lgY | 140 | 02gY | 220 | 03gY | 300 | O4gY
61 O1ltA | 141 | 02tA | 221 | O3tA | 301 | O4tA
62 01tC | 142 | 02tC | 222 | 03tC | 302 | 04tC
63 01tD | 143 | 02tD | 223 | 03tD | 303 | 04tD
64 OLtE | 144 | 02t | 224 | O3tE | 304 | O4tE
65 OltF | 145 | 02tF | 225 | O3tF | 305 | O4tF
66 OLtG | 146 | 02tG | 226 | 03tG | 306 | 04tG
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67 OltH | 147 | 02tH | 227 | 03tH | 307 | 04tH
68 01t 148 02tl 228 | 0a3tl 308 | 04tl
69 01tk | 149 | 02tK | 229 | 03tK | 309 | 04tK
70 OltL | 150 | 02tL 230 | O3tL | 310 | 04tL
71 O1ltM | 151 | 02tM | 231 | 03tM | 311 | O4tM
72 OItN | 152 | O2tN | 232 | O3tN | 312 | O4tN
73 01tP | 153 | O02tP | 233 | 0O3tP | 313 | O4tP
74 O1tQ | 154 | 02tQ | 234 | 03tQ | 314 | 04tQ
75 O1tR | 155 | 02tR | 235 | 03tR | 315 | O4tR
76 OLtS | 156 | 02tS | 236 | 03tS | 316 | 04tS
77 OLtT | 157 | 02tT | 237 | O3tT | 317 | 04tT
78 Oltv | 158 | 02tv | 238 | 03tV | 318 | 04tV
79 01tw | 159 | 02tW | 239 | 03tW | 319 | 04tW
80 01ty | 160 | 02ty | 240 | 03ty | 320 | 04ty

Table A.9: Reference vector information

Table A.10 lists the 1860 example included in the DB1 databé#s the table, each

example consists of the bases information in the DNA secgighe amino acids in the

zinc finger and the quantitative information for the bindattinity.

No. | DNA | Amino acid | binding affinity | No. | DNA | Amino acid | binding affinity
1 | AAGg DRHT 194.2505 931 | GATg GQHR -
2 | TGAg | DRHT 197.2296 932 | GACg | GQHR -
3 | AAAg DRHT 202.1278 933 | GTGg | GQHR -
4 | AGAg DRHT 222.4485 934 | GTAg GQHR -
5 | CCAg DRHT >250.1176 935 | GTTg GQHR -
6 | ATAg DRHT >250.1325 | 936 | GTCg | GQHR -
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7 | TAAg | DRHT >250.1717 | 937 | GCGg| GQHR -
8 | CAAg | DRHT >250.2686 | 938 | GCAg | GQHR -
9 | AACg | DRHT >250.3442 | 939 | GGGg| GONR -
10 | ATCg | DRHT >250.3446 | 940 | GGAg | GONR -
11 | TCAg | DRHT >250.4797 | 941 | GGTg| GONR -
12 | CATg | DRHT >250.6928 | 942 | GGCg| GONR -
13 | ACAg | DRHT >250.6975 | 943 | GTGg | GONR -
14 | TCCg| DRHT >250.7384 | 944 | GTAg | GONR -
15 | CGAg| DRHT >250.7482 | 945 | GTTg | GONR -
16 | CACg| DRHT >250.7573 | 946 | GTCg | GONR -
17 | ATGg | DRHT >250.8497 | 947 | GCGg| GONR -
18 | TGCy| DRHT >250.8562 | 948 | GCAg | GONR -
19 | CTCg| DRHT >250.8937 | 949 | GCCg| GONR -
20 | AGCg| DRHT >250.9051 | 950 | GAAg | GDNR -
21 | CGTg| DRHT >250.9306 | 951 | GGGg| GDAR -
22 | AATg | DRHT >250.9499 | 952 | GGTy | GDAR -
23 | TGTg | DRHT >250.9651 | 953 | GGCg| GDAR -
24 | ATTg | DRHT >251.0043 | 954 | GAGg | GDAR -
25 | ACCg| DRHT >251.0085 | 955 | GATg | GDAR -
26 | CTGg| DRHT >251.0416 | 956 | GACg | GDAR -
27 | ACTg | DRHT >251.0466 | 957 | GTGy | GDAR -
28 | AGTg | DRHT >251.1115 | 958 | GCAg | GDHR -
29 | CCTg| DRHT >251.1308 | 959 | GCTg | GDHR -
30 | CTTg | DRHT >251.1341 | 960 | GAGg | SEKR -
31 | CTAg | DRHT >251.1786 | 961 | GTTg | SEKR -
32 | TATg HLNT 6.3953 962 | GCAg | SEKR -
33 | GATg | HLNT 71.7559 963 | GCTg | SEKR -
34 | TGTg | HLNT 121.1643 | 964 | GCCgy| SEKR -

173




Appendix A

DATASET

35 | CGTyg HLNT 158.8128 965 | GCGg SDKR -
36 | TACg HLNT 178.8053 966 | GTGg GDHR -
37 | TAGg HLNT 192.0235 967 | GAAgQ GDER -
38 | ATTg HLNT 215.4926 968 | GTGg GDER -
39 | GGTg HLNT 243.5163 969 | GTAg GDER -
40 | AACg HLNT >429.2377 970 | GCGg GDER -
41 | AAGg HLNT >429.2377 971 | GGGy RDDR -
42 | ACAg HLNT >429.2377 972 | GGAg RDDR -
43 | ACCg HLNT >429.2377 973 | GGTg RDDR -
44 | ACGg HLNT >429.2377 974 | GGCg RDDR -
45 | AGGg HLNT >429.2377 975 | GAGg RDDR -
46 | ATAg HLNT >429.2377 976 | GATg RDDR -
47 | ATCg HLNT >429.2377 977 | GACg RDDR -
48 | ATGg HLNT >429.2377 978 | GTAg RDDR -
49 | CAAg HLNT >429.2377 979 | GTCg RDDR -
50 | CACg HLNT >429.2377 980 | GCGg RDDR -
51 | CAGg HLNT >429.2377 981 | GCAg RDDR -
52 | CCAg HLNT >429.2377 982 | GGGg RGER -
53 | CCCgqg HLNT >429.2377 983 | GAAg RGER -
54 | CCGg HLNT >429.2377 984 | GCGg RGER -
55 | CGCg HLNT >429.2377 985 | GGAg GTNR -
56 | CGGg HLNT >429.2377 986 | GGTg GTNR -
57 | CTAg HLNT >429.2377 987 | GGCg GTNR -
58 | CTCg HLNT >429.2377 988 | GACg GTNR -
59 | GAAg HLNT >429.2377 989 | GTGg GTNR -
60 | GACg HLNT >429.2377 990 | GCCg GTNR -
61 | GACg HLNT >429.2377 991 | GACg GTER -
62 | GAGg HLNT >429.2377 992 | GCGg GTSR -
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63 | GCAg | HLNT >429.2377 | 993 | GGGy | GTDR -
64 | GCCg| HLNT >429.2377 | 994 | GGAg | GTDR -
65 | GCGg| HLNT >429.2377 | 995 | GAAg | GTDR -
66 | GCTg | HLNT >429.2377 | 996 | GTAg | GTDR -
67 | GGAg| HLNT >429.2377 | 997 | GTTg | GTDR -
68 | GGCg| HLNT >429.2377 | 998 | GTCg | GTDR -
69 | GGGg| HLNT >429.2377 | 999 | GCGg| QTTR -
70 | GTAg | HLNT >429.2377 | 1000| GCGg| ARKR -
71 | GTCg| HLNT >429.2377 | 1001| GCAg | ARKR -
72 | GTGg| HLNT >429.2377 | 1002| GCGg| AQKR -
73 | GTTg | HLNT >429.2377 | 1003| GCGg| GTHR -
74 | TAAg | HLNT >429.2377 | 1004| GCGg| GTKR -
75 | TCAg | HLNT >429.2377 | 1005| GTGg | DTHR -
76 | TCCg| HLNT >429.2377 | 1006| GCGg| DTHR -
77 | TCGg| HLNT >429.2377 | 1007 | GGGg| SONR -
78 | TCTg | HLNT >429.2377 | 1008| GGTg | GTSR +
79 | TGAg | HLNT >429.2377 | 1009| GTTg | DRKR -
80 | TGCg| HLNT >429.2377 | 1010| GCGg| SONR -
81 | TGGg| HLNT >429.2377 | 1011| GGAg | GQHR +
82 | TTAg | HLNT >429.2377 | 1012| GCCg| RGER +
83 | TTGg | HLNT >429.2377 | 1013| GAAg | DRKR -
84 | CCGg| PRDR 325.7161 | 1014| GGAg | DRKR -
85 | GCAg| PRDR 515.1555 | 1015| GATg | DRKR -
86 | GCCg| PRDR 528.3086 | 1016| GACg | DRKR -
87 | GAGg| PRDR 672.2521 | 1017 | GCGg| DRKR -
88 | TCTg | PRDR 688.0570 | 1018| GCAg | DRKR -
89 | ACGy| PRDR 698.5050 | 1019| GCTg | DRNR -
90 | ATGg | PRDR 720.4991 | 1020| GCCg| DRER -
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91 | TTTg | PRDR 748.0965 | 1021| GGCg| SQNR -
92 | CTCg| PRDR 755.8037 | 1022| GTGg | SONR -
93 | ccCg| PRDR 764.1514 | 1023| GTTg | SONR -
94 | GGGg| PRDR 768.9106 | 1024| GCAg | AQHR -
95 | CAGg| PRDR 810.1641 | 1025| GGCg| SEKR +
96 | AGGg| PRDR 826.8736 | 1026| GGGg| DTKR +
97 | ACAg| PRDR 831.6538 | 1027| GCTg| QSTR +
98 | AAAg | PRDR >842.9475 | 1028| GCCgy| DRHR -
99 | AACg | PRDR >842.9475 | 1029| GTAg | DRKR -
100 | AAGg | PRDR >842.9475 | 1030| GTCg | DRKR -
101 | AATg PRDR >842.9475 | 1031| GCCgy| DRKR -
102 | ACTg | PRDR >842.9475 | 1032| GGTg | SOQNR -
103 | AGAg | PRDR >842.9475 | 1033| GTCg | SONR -
104 | AGCg| PRDR >842.9475 | 1034| GACg | AQHR -
105 | AGTg | PRDR >842.9475 | 1035| GTGg | AQHR -
106 | ATAg PRDR >842.9475 | 1036| GTCg | AQHR -
107 | ATCg | PRDR >842.9475 | 1037| GCGg| AQHR -
108 | ATTg PRDR >842.9475 | 1038| GCTg | AQHR -
109 | CAAg | PRDR >842.9475 | 1039| GCCgy| AQHR -
110 | CACg| PRDR >842.9475 | 1040| GCGg| SQHR -
111 | CATg | PRDR >842.9475 | 1041| GGCg| GQDR -
112 | CCAg| PRDR >842.9475 | 1042| GTCg | GQDR -
113| CCTg| PRDR >842.9475 | 1043| GCGg| GQDR -
114 | CGAg| PRDR >842.9475 | 1044| GTGg | GDNR -
115| CGCg| PRDR >842.9475 | 1045| GCGg| GDNR -
116 | CGGg| PRDR >842.9475 | 1046| GCAg | GDNR -
117 | CGTg| PRDR >842.9475 | 1047| GCGg| GDHR -
118 | CTAg | PRDR >842.9475 | 1048| GCGg| GTNR -
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119 | CTGg PRDR >842.9475 1049 | GAAg DTKR -
120 | CTTg PRDR >842.9475 1050 | GTGg DTKR -
121 | GAAg PRDR >842.9475 1051 | GTTg DTKR -
122 | GACg PRDR >842.9475 1052 | GCGg DTKR -
123 | GATg PRDR >842.9475 1053 | GCAg DTKR -
124 | GGAg PRDR >842.9475 1054 | GCTyg DTKR -
125 | GGCg PRDR >842.9475 1055 | GCCg DTKR -
126 | GGTg PRDR >842.9475 1056 | GAGg DRSR +
127 | GTAg PRDR >842.9475 1057 | GAGg DRTR +
128 | GTCg PRDR >842.9475 1058 | GCCg AKER +
129 | GTTg PRDR >842.9475 1059 | GAAg DRHR -
130 | TAAg PRDR >842.9475 1060 | GATg DRHR -
131 | TACg PRDR >842.9475 1061 | GACg DRHR -
132 | TAGg PRDR >842.9475 1062 | GTAg DRHR -
133 | TATg PRDR >842.9475 1063 | GTTg DRHR -
134 | TCAg PRDR >842.9475 1064 | GCAg DRHR -
135 | TCCg PRDR >842.9475 1065 | GCTyg DRHR -
136 | TCGg PRDR >842.9475 1066 | GCTyg DRKR -
137 | TGAg PRDR >842.9475 1067 | GTCg DRNR -
138 | TGCg PRDR >842.9475 1068 | GGAg DRNR -
139 | TGGg PRDR >842.9475 1069 | GGTg DRNR -
140 | TGTg PRDR >842.9475 1070 | GGCqg DRNR -
141 | TTAg PRDR >842.9475 1071 | GTTyg DRNR -
142 | TTCg PRDR >842.9475 1072 | GCAg DRNR -
143 | TTGg PRDR >842.9475 1073 | GCCg DRNR -
144 1 ACCg PRDR >866.6677 1074 | GGAg DRDR -
145 | GAGg DRVR 794.8918 1075 | GGTg DRDR -
146 | CCGg DRVR 898.2653 1076 | GGCg DRDR -
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147 | GGGg| DRVR 1248.9258 | 1077 | GAAg | DRDR -
148 | GCCg| DRVR 1595.0438 | 1078| GATg | DRDR -
149 | TCTg | DRVR 1608.0865 | 1079 | GACg | DRDR -
150 | ATGg | DRVR 1690.9878 | 1080 | GGAg | DRTR -
151 | ACGg| DRVR 1831.6623 | 1081 | GAAg | DRTR -
152 | cCCg| DRVR 1842.2048 | 1082 | GATg DRTR -
153 | ATAg | DRVR 1843.9296 | 1083 | GACg | DRTR -
154 | CTCg| DRVR 1888.1037 | 1084| GTTg | DRTR -
155 | CAGg | DRVR 1902.3728 | 1085| GGAg | AKER -
156 | AAAg | DRVR >2535.9460 | 1086 | GAAg | AKER -
157 | AACg | DRVR >2535.9460 | 1087 | GCGg| AKER -
158 | AAGg | DRVR >2535.9460 | 1088| GCCg| SOQNR -
159 | AATg | DRVR >2535.9460 | 1089| GGAg | SONR -
160 | ACAg | DRVR >2535.9460 | 1090| GACg | SQSR -
161 | ACCg| DRVR >2535.9460 | 1091| GCGg| SQSR -
162 | ACTg | DRVR >2535.9460 | 1092 | GAGg | AQHR -
163 | AGAg | DRVR >2535.9460 | 1093| GTTg | AQHR -
164 | AGCg| DRVR >2535.9460 | 1094| GTGg | SQHR -
165 | AGGg | DRVR >2535.9460 | 1095| GGGg| GQDR -
166 | AGTg | DRVR >2535.9460 | 1096| GGTg | GQDR -
167 | ATCg | DRVR >2535.9460 | 1097 | GACg | AKER -
168 | ATTg | DRVR >2535.9460 | 1098| GTGg | GQDR -
169 | CAAg | DRVR >2535.9460 | 1099| GTAg | GQDR -
170| CACg| DRVR >2535.9460 | 1100| GTTg | GQDR -
171| CATg | DRVR >2535.9460 | 1101| GTAg | GDNR -
172 | CCAg| DRVR >2535.9460 | 1102| GTTg | GDNR -
173| CCTg| DRVR >2535.9460 | 1103| GTCg | GDNR -
174| CGAg| DRVR >2535.9460 | 1104| GGGg| GDNR -
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175 | CGCg DRVR >2535.9460 | 1105| GGAg GDNR -
176 | CGGg DRVR >2535.9460 | 1106 | GGTg GDNR -
177 | CGTg DRVR >2535.9460 | 1107 | GGCg GDNR -
178 | CTAg DRVR >2535.9460 | 1108 | GGAg GDAR -
179 | CTGg DRVR >2535.9460 | 1109 | GAAg GDAR -
180 | CTTg DRVR >2535.9460 | 1110| GCGg GDAR -
181 | TAAg DRVR >2535.9460 | 1111 | GCAg GDAR -
182 | TACg DRVR >2535.9460 | 1112 | GAAg GDHR -
183 | TAGg DRVR >2535.9460 | 1113| GTAg GDHR -
184 | TATg DRVR >2535.9460 | 1114 | GTTg GDHR -
185 | TCAg DRVR >2535.9460 | 1115| GAAg SEKR -
186 | TCCg DRVR >2535.9460 | 1116 | GACg SEKR -
187 | TCGg DRVR >2535.9460 | 1117 | GTGg SEKR -
188 | TGAg DRVR >2535.9460 | 1118 | GTAg SEKR -
189 | TGCg DRVR >2535.9460 | 1119| GCGg SEKR -
190 | TGGg DRVR >2535.9460 | 1120 | GAAg RDDR -
191 | TGTg DRVR >2535.9460 | 1121 | GTGg RDDR -
192 | TTAg DRVR >2535.9460 | 1122 | GGGg GTNR -
193 | TTCg DRVR >2535.9460 | 1123 | GTAg GTNR -
194 | TTGg DRVR >2535.9460 | 1124 | GTTg GTNR -
195 | TTTg DRVR >2535.9460 | 1125| GTCg GTNR -
196 | ATTg SKNS 273.0889 1126 | GCAg GTNR -
197 | TATg SKNS 289.6233 1127 | GACg DTKR -
198 | CGTg SKNS 334.1258 1128 | GGGg GTER -
199 | TGTg SKNS 360.3204 1129 | GGAg GTER -
200 | TAGg SKNS 417.7175 1130 | GGCqg GTER -
201 | CGCg SKNS 420.8763 1131 | GAGg GTER -
202 | GAAg SKNS 519.4723 1132 | GAAg GTER -
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203 | GACg SKNS 540.2045 1133 | GCGg GTER -
204 | GGCg SKNS 572.9782 1134 | GGAg QSTR -
205 | CGGg SKNS 577.8656 1135| GTGg DRVR 1.3
206 | GGGg SKNS 585.3109 1136 | GCGc DRER 0.5
207 | GGTg SKNS 593.1785 1137 | GAGc DRER 2.8
208 | GAGg SKNS 645.5238 1138 | GCAc DRER 2.4
209 | ATGg SKNS 691.3845 1139 | GCGc DRDR 0.4
210 | TTAg SKNS 728.1302 1140 | GTGc REAR 0.6
211 | ACCg SKNS 744.6446 1141 | GGGc DRER 5.6
212 | CACg SKNS 754.9179 1142 | GTGc DRER 34
213 | TACg SKNS 789.5803 1143 | GCCc DRER 3
214 | GCTg SKNS 793.4383 1144 | GCTc DRER 3.7
215 | GATg SKNS 809.5039 1145 | GAGc DRDR 3
216 | TCTg SKNS 819.0844 1146 | GGGc DRDR 3.7
217 | TCCqg SKNS 840.1106 1147 | GTGc DRDR 4
218 | ACGg SKNS 872.5159 1148 | GAGc REAR 1.5
219 | TCAg SKNS 882.3649 1149 | GCGc REAR 1.5
220 | CAAg SKNS 882.9749 1150 | GGGc REAR 1.8
221 | TAAg SKNS 910.2854 1151 | GTAc REAR 1.7
222 | GTTg SKNS 916.6901 1152 | GTCc REAR 1.8
223 | TCGg SKNS 938.3442 1153 | GTTc REAR 2.1
224 | TTGg SKNS 941.0204 1154 | CGGg DRER >20
225 | CTCg SKNS 948.5505 1155 | AGGg DRER >20
226 | GTAg SKNS 950.6004 1156 | GGAg DRER >20
227 | GTCg SKNS 958.0037 1157 | GGTg DRER >20
228 | TGCg SKNS 967.5087 1158 | CGCg DRER >20
229 | AGGg SKNS 976.4161 1159 | CCCg DRER >20
230 | GCGg SKNS 1001.5048 | 1160 | CGGg DRHR >20
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231 | CCCyg SKNS 1004.2405 | 1161 | GTGg DRHR >20
232 | GCAg SKNS 1031.4143 | 1162 | GGCg DRHR >20
233 | GTGg SKNS 1038.0891 | 1163 | GGAg DRHR >20
234 | CAGg SKNS 1050.7944 | 1164 | GGTg DRHR >20
235 | TGGg SKNS 1069.5372 | 1165| CGCg DRHR >20
236 | AAGg SKNS 1087.5174 | 1166 | CCCg DRHR >20
237 | CTGg SKNS 1115.3425 1167 | GGGg DRET >20
238 | GGAg SKNS 1122.7580 | 1168 | CGGg DRET >20
239 | CTAg SKNS 1127.0108 | 1169 | AGGg DRET >20
240 | GCCg SKNS 1161.9639 | 1170 | GGCg DRET >20
241 | TGAg SKNS 1170.0327 | 1171 | GGAg DRET >20
242 | CCGg SKNS 1172.9459 | 1172 | GGTg DRET >20
243 | AACg SKNS 1184.7393 1173 | CCGg DRET >20
244 | ATCg SKNS 1207.4539 1174 | CGCg DRET >20
245 | ACAg SKNS 1219.8222 | 1175| GCCg DRET >20
246 | CCAg SKNS 1247.5460 | 1176 | CCCg DRET >20
247 | ATAg SKNS 1325.2193 | 1177| CGGg| DRQR >20
248 | TCGg| DRHT 175.1083 | 1178 | AGGg DRQR >20
249 | TAGg DRHT 9.4150 1179 | GGCg DRQR >20
250 | CGGg DRHT 38.4801 1180 | GGAg DRQR >20
251| GCGg| PRDR 17.5549 1181 | GGTg DRQR >20
252 | AGGg DRHT 52.6027 1182 | CCGg DRQR >20
253 | GCGg DRHT 206.7075 1183 | CGCg DRQR >20
254 | GTGg| PRDR 608.5536 | 1184 | GCCg| DRQR >20
255| GAGg | DRHT 72.0834 1185| CCCg| DROR >20
256 | CAGg DRHT 188.0843 1186 | CGGg TRNR >20
257 | GAAg DRHT >250.3034 | 1187 | AGGg TRNR >20
258 | GCCg DRHT >250.6847 | 1188 | TGGg TRNR >20
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259 | GTTg DRHT >250.7146 | 1189 | GGCg TRNR >20
260 | TTCg DRHT 212.3228 1190 | GGAg TRNR >20
261 | GATg DRHT >250.0091 1191 | GGTg TRNR >20
262 | GTAg DRHT >250.3676 | 1192 | CCGg TRNR >20
263 | GCTg DRHT >250.3855 | 1193 | CGCg TRNR >20
264 | TTAg DRHT >250.4347 1194 | GCCg TRNR >20
265 | GACg DRHT >250.5304 1195| CCCg TRNR >20
266 | TATg DRHT >250.5614 | 1196 | CGGg SQHR >20
267 | GTCg DRHT >250.5934 | 1197 | AGGg SQHR >20
268 | TCTg DRHT >250.7132 | 1198 | TGGg SQHR >20
269 | TACg DRHT >250.7840 | 1199 | CCGg SQHR >20
270 | TTTg DRHT >250.9452 | 1200 | CGCg SQHR >20
271 | CCCyg DRHT >251.1349 | 1201 | GCCg SQHR >20
272 | CGCg DRHT >251.2141 | 1202 | GGGg SQHT >20
273 | AATg HLNT 54.7124 1203 | CGGg SQHT >20
274 | AGTg HLNT 96.9239 1204 | AGGg SQHT >20
275 | CATg HLNT 110.6445 | 1205| GCGg| SQHT >20
276 | ACTg HLNT 156.8135 | 1206 | GAGg SQHT >20
277 | CCTg HLNT 190.3357 1207 | GTGg SQHT >20
278 | GCAg DRVR 1373.9895 | 1208 | GGCg SQHT >20
279| GCTg| DRVR 1673.2345 | 1209 | GGAg SQHT >20
280 | GAAg DRVR >2535.9460 | 1210 | GGTg SQHT >20
281 | GACg DRVR >2535.9460 | 1211 | CCGg SQHT >20
282 | GATg DRVR >2535.9460 | 1212 | CGCg SQHT >20
283 | GGAg DRVR >2535.9460 | 1213 | GCCg SQHT >20
284 | GGCg DRVR >2535.9460 | 1214 | CCCg SQHT >20
285 | GGTg DRVR >2535.9460 | 1215| GGGg SEHT >20
286 | GTAg DRVR >2535.9460 | 1216 | CGGg SEHT >20
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287 | GTCg DRVR >2535.9460 | 1217 | AGGg SEHT >20
288 | GTTg DRVR >2535.9460 | 1218 | GCGg SEHT >20
289 | GTCt SDAR 0.021 1219 | GAGg SEHT >20
290 | GCCt SDCR 0.22 1220 | GTGg SEHT >20
291 | GTTt SHSR 0.043 1221 | GGCg SEHT >20
292 | GAGt SKNR 0.094 1222 | GGTg SEHT >20
293 | GGAt AQHR 0.47 1223 | CCGg SEHT >20
294 | GAGt FONR 3.7 1224 | CGCg SEHT >20
295 | GAAt GONR 0.069 1225 | GCCg SEHT >20
296 | GGAt SQHR 0.11 1226 | CCCg SEHT >20
297 | CGAt SQHV 3.6 1227 | GGGg SLHT >20
298 | CAAt SONI 2.9 1228 | CGGg SLHT >20
299 | GAAt SQNK 0.15 1229 | AGGg SLHT >20
300 | GTAt SQTR 0.051 1230 | TGGg SLHT >20
301 | GGAt TQHR 0.089 1231 | GCGg SLHT >20
302 | GGGt DRHR 0.049 1232 | GAGg SLHT >20
303 | GGGt DRKR 0.25 1233 | GTGg SLHT >20
304 | GAGt SSNR 0.075 1234 | GGCg SLHT >20
305 | GGTt SWNR 0.073 1235 | GGAg SLHT >20
306 | GACt SCNR 0.13 1236 | GGTg SLHT >20
307 | GACt SHNK 10 1237 | CCGg SLHT >20
308 | GATt SINR 0.0062 1238 | CGCg SLHT >20
309 | AGAt SQHT 0.96 1239 | GCCg SLHT >20
310 | CAAt SQNV 0.23 1240 | CCCg SLHT >20
311 | GTAt SQSR 0.046 1241 | GGGc SQHR <2.5
312 | CGAt TQHQ 0.034 1242 | GAGg DRER <25
313 | AGGt DRHT 0.38 1243 | GGTg DRHT 5,20
314 | GGGt SRHR 0.01 1244 | GAGg DRHR 255
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315 | GAGt SRNR 0.04 1245 | GGGg DRQR <25
316 | AATt SVNV 0.14 1246 | GCGg DRQR <2.5
317 | GTGt SVSR 0.12 1247 | TGGg DRER 5,20
318 | GCTt SVTR 0.81 1248 | AGGg DRHR 5,20
319 | GCGt DRER 0.056 1249 | TGGg DRHR 255
320 | GCTg GNNR - 1250 | TGGg DRET 255
321| GCTg| AQSS - 1251 | GAGg DRET 25,5
322 | GTCg AQSS - 1252 | TGGg DRQR 5,20
323 | GACg SDNR 2.6 1253 | GAGg DRQR <25
324 | TTGg DRHT 3 1254 | GTGg DRQR <25
325 | GTGg DRAS 8.9 1255 | GGGg TRNR <25
326 | GATg GNNR 15.6 1256 | GCGg TRNR 255
327 | GTAg AQSS 8 1257 | GAGg TRNR <25
328 | GATg SDNR 35 1258 | GTGg TRNR 255
329 | TGGg DRAS 10.8 1259 | GGGg SQHR <25
330 | GCAg AQSS 56.6 1260 | GAGg SQHR 255
331 | AAAg AQNA + 1261 | TGGg SQHT 5,20
332 | AACg GDNV + 1262 | TGGg SEHT 5,20
333 | AAGg DRTN + 1263 | GGAg SEHT 5,20
334 | ACAg ASDR + 1264 | GTTg GTAT +
335| ACCg| KDDR + 1265| GGGg| DRTR +
336 | ACGg DRTD + 1266 | GTGg DRTR +
337 | ACTg LTDR + 1267 | GCTg DRTR -
338 | AGAg AQHA + 1268 | GGCg GTHR >2400
339 | AGGg| DRHE + 1269 | GGGg| DRNR 45
340 | AATg THTN + 1270 | GCCg GDNR 90
341 | ATTg NHAN + 1271 | GCCg GDAR >4400
342 | ACAg SSDR + 1272 | GCTg GQDR 10
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343 | ACAg GNER 1273 | TGGg DRHT 0.5
344 | ACTg KSDR 1274 | GGGg DRHR 0.4
345 | AGGg DRHN 1275 | GATg GTNR 3
346 | ATTg HTGT 1276 | GCAg GQDR 2
347 | AAGg DRNQ 1277 | GTGg DRER 15
348 | AGGg DRHQ 1278 | GCGg DRTR +
349 | AGTg THTN 1279 | GTGg DRSR 3
350 | ATGg DREV 1280 | GAGg DRNR 1
351| AAGg | GDNV 1281 | GGTg| GTGR +
352 | ACAg | GDNV 1282 | GAAg SONR 0.5
353 | ACCg GDNV 1283 | GGTg GTHR 15
354 | ACGg GDNV 1284 | GCAg GQTR +
355| ACTg | GDNV 1285| GGAg | AQHR 3
356 | AGAg GDNV 1286 | GACg GDNR 3
357 | AGCg GDNV 1287 | GTTg GTSR 5
358 | AGGg GDNV 1288 | GTAg SQSR 25
359 | AGTg | GDNV 1289| GTCg | GDAR 40
360 | ATAg GDNV 1290 | GCCg RDDR 80
361 | ATCg GDNV 1291 | GTAg GQSR +
362 | ATGg GDNV 1292 | GAGg DRDR 6
363 | ATTg GDNV 1293 | GGCg GDHR 40
364 | AAAg DRTN 1294 | GTGg DRKR >1400
365 | AACg DRTN 1295 | GCGg DRDR 9
366 | AATg DRTN 1296 | GCTg GTER 65
367 | ACAg DRTN 1297 | GTGg SQSR >1000
368 | ACCg DRTN 1298 | GGTg DTKR +
369 | ACTg DRTN 1299 | GGTg STSR +
370 | AGAg DRTN 1300 | GACg RAMQ +
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371 | AGCg DRTN 1301 | GTAg SESR +
372 | AGTg DRTN 1302 | GTAg SQGR +
373 | ATAg DRTN 1303| GTTg | WEMR +
374 | ATCg DRTN 1304 | GTCg GETR +
375 | ATTg DRTN 1305| GCTg SRDR +
376 | AGTg GTNV 1306 | GCCg KGDR +
377 | AAAg ASDR 1307 | GCGc AKDR 0.5
378 | AACg ASDR 1308 | GCGc CKVR 6.5
379 | AAGg ASDR 1309 | GCGc QKLT 25
380 | AATg ASDR 1310 | TGTc TQAA 29.7
381 | ACCg ASDR 1311 | TGTc TPHT 41.6
382 | ACTg ASDR 1312 | TGTc DRER 81.8
383 | AGAg ASDR 1313 | TGTc AKDR 54.4
384 | AGCg ASDR 1314 | TGTc QKLT 46.7
385 | AGGg ASDR 1315 | GCGc TQAA 108.3
386 | AGTg ASDR 1316 | GCGc TPHT 188.9
387 | ATAg ASDR 1317 | GACc SDNR 0.019
388 | ATCg ASDR 1318 | GCAc ARDR 0.068
389 | ATGg ASDR 1319 | GCAc GQSR 0.055
390 | ATTg ASDR 1320 | GACc ARDR 9.3
391 | AAAg DRTD 1321 | TTGg MVQT 15.9
392 | AACg DRTD 1322 | TTGg VEST 6.4
393 | AATg DRTD 1323 | TTGg RRTT 27.5
394 | ACAg DRTD 1324 | TTGg GRNT 4.6
395 | ACCg DRTD 1325 | CTGt DRER 101
396 | ACTg DRTD 1326 | GCGt GSQR 13.1
397 | AGAg DRTD 1327 | TGGg MVQT 22.2
398 | AGCg DRTD 1328 | TGGg VEST 22.8
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399 | AGTg DRTD 1329 | TGGg RRTT 47.9
400 | ATAg DRTD 1330 | TGGg GRNT 20
401 | ATTg DRTD 1331 | GCAc SDNR 2.5
402 | AAAg LTDR 1332 | GCGc SDNR 1.8
403 | AACg LTDR 1333 | GCGc ARDR 0.035
404 | AAGY LTDR 1334 | GACc GQSR 1.8
405 | AATg LTDR 1335| GCGc GQSR 0.54
406 | AGAg LTDR 1336 | GACc DRER 33
407 | AGGg LTDR 1337 | GATa GTNR +
408 | ATAg LTDR 1338 | TAGg DRKR +
409 | ATCg LTDR 1339 | TGAg GQHS +
410 | ATGg LTDR 1340 | GGTt GTHR +
411 | ATTg LTDR 1341 | GATa DRKR -
412 | AAAg DRHE 1342 | GAAa DRKR -
413 | AACg DRHE 1343 | GTTg DRNT -
414 | AATg DRHE 1344 | GGTt DRNT -
415 | ACAg DRHE 1345 | GAAG GTNR -
416 | ACCg DRHE 1346 | TGAG GTNR -
417 | ACTg DRHE 1347 | GGGG GTSR -
418 | AGAg DRHE 1348 | GGTT GTSR -
419 | AGCg| DRHE 1349 | GAAA GQHS -
420 | AGTg DRHE 1350 | GGGG GTHR -
421 | ATAg DRHE 1351 | GAAG GQHS -
422 | ATCg DRHE 1352 | GTTG GTHR -
423 | ATGg DRHE 1353 | GCGG GQHS -
424 | ATTg DRHE 1354 | GGGG GQHS -
425 | AAAg NHAN 1355 | GACc SONR 105
426 | AACg NHAN 1356 | AGGG DRKR 25533
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427 | AAGg NHAN 1357 | CAAA DRNT 25533
428 | AATg NHAN 1358 | GACa SONR 14175
429 | ACAg NHAN 1359 | GATG DRNT 14175
430 | ACCg NHAN 1360 | GATa SONR 14243
431 | ACGg NHAN 1361 | CATG DRNT 14243
432 | ACTg | NHAN 1362 | ACAg SONR 5158
433 | AGAg NHAN 1363 | GGGA DRKR 5158
434 | AGCg NHAN 1364 | GGGt SONR 297
435 | AGGg NHAN 1365 | TTGG DRNT 2435
436 | AGTg NHAN 1366 | GACG DRNT 12228
437 | ATAg NHAN 1367 | GACt SONR 78
438 | ATGg NHAN 1368 | AAGG DRNT 78
439 | AGCg DRNN 1369 | GAGa SONR 823
440 | AAAg SSDR 1370 | AAAG DRNT 823
441 | AACg SSDR 1371 | GAGc SONR 5944
442 | AAGg SSDR 1372 | CCTG DRNT 5944
443 | AATg SSDR 1373 | GAGt SONR 1741
444 | AGAg SSDR 1374 | GCAG DRNT 1741
445 | AGCg SSDR 1375 | GATc SONR 6115
446 | AGGg SSDR 1376 | GATg SONR 89
447 | AGTg SSDR 1377 | TGAG DRKR -
448 | ATAg SSDR 1378 | GAGG DRNT 89
449 | ATCg SSDR 1379 | TAGG DRNT 95
450 | ATGg SSDR 1380 | GAAA SONR 1009
451 | ATTg SSDR 1381 | CAGG DRNT 98
452 | AAAg GNER 1382 | TTTG DRNT 6115
453 | AACg GNER 1383 | GGGG DRNT -
454 | AAGg GNER 1384 | TGAG DRNT -
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455 | AATg GNER 1385 | GGTT DRKR -
456 | ACCg GNER 1386 | TGAG SONR -
457 | ACGg GNER 1387 | TGAG GTSR -
458 | ACTg GNER 1388 | TGAG GTHR -
459 | AGAg GNER 1389 | GGGt SQDR 15
460 | AGCg GNER 1390 | GCGG DRER 2
461 | AGGg GNER 1391 | GCTG SQDR 10
462 | AGTg GNER 1392 | GCTt SQDR 2
463 | ATAg GNER 1393 | GCGt SQDR 1000
464 | ATCg GNER 1394 | GCTt DRER 66
465 | ATGg GNER 1395 | GGTG DRHK +
466 | ATTg GNER 1396 | AAGG DRHK +
467 | AACg KSDR 1397 | AGGG DRHL +
468 | AAGg KSDR 1398 | GGGG HSLH +
469 | AATg KSDR 1399 | GGGG DRHK +
470 | AGGg KSDR 1400 | GGGG DRER +
471 | AGTg KSDR 1401 | GTGT DRER +
472 | ATAg KSDR 1402 | TGGG DRHK +
473 | ATCg KSDR 1403 | TGGG HSLH +
474 | AAAg DRHN 1404 | AGGG DRHK +
475 | AACg DRHN 1405 | TCGG DRER +
476 | AATg DRHN 1406 | CCGT DRER +
477 | ACAg DRHN 1407 | CCGG DRER +
478 | ACCg | DRHN 1408 | tcgg DRET 50
479 | ACTg DRHN 1409 | gagt DRNR 50
480 | ATAg DRHN 1410 | gtag GQAR +
481 | ATCg DRHN 1411 | gtag AQSR +
482 | ATGg DRHN 1412 | gttg SQAR +
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483 | ATTg DRHN 1413 | gtgg SQDR 2
484 | AAAg SQSA 1414 | gggg DRAR 31
485 | AATg SQSA 1415| gtgg DRAR 2
486 | ACCg SQSA 1416 | ggag SQHR 0.5
487 | ACTg SQSA 1417 | gotg SQHR 1
488 | AGAg SQSA 1418 | gcgg SQDR 2
489 | AGCg SQSA 1419| gtgg DRET 12.5
490 | AGTg SQSA 1420 | ggcg SQHR 1
491 | ATCg SQSA 1421 | gccg SDDR +
492 | ATTg SQSA 1422 | gatg ATNR +
493 | AACg HTGT 1423 | ggcg SDHR +
494 | AAGg HTGT 1424 | gttg GTAR +
495 | AATg HTGT 1425| gtcg SDAR +
496 | ACCg HTGT 1426 | gctg ARER +
497 | ACGg HTGT 1427 | ataa TQGQ +
498 | ACTg HTGT 1428 | gcgg ARER +
499 | AGCg HTGT 1429 | gcgt SDNR +
500 | AGGg| HTGT 1430| gcgt ARDR +
501 | ATAg HTGT 1431 | GCCT SDVR 4.9
502 | AAAg DRNQ 1432| GCGg| DRVR 4.9
503 | AACg DRNQ 1433 | TGAG | AQHT 36.6
504 | AATg DRNQ 1434 | GCAG AQTR 4
505 | ACAg DRNQ 1435 | GGAg ADHR 1
506 | ACCg DRNQ 1436 | GACT ADNK 1
507 | ACTg DRNQ 1437 | GCAt AADR 13.7
508 | AGAg DRNQ 1438 | GCTG SNDR 13.7
509 | AGCg DRNQ 1439 | GATG STNK 13.7
510 | AGTg DRNQ 1440 | GCTt SHDR 4
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511 | ATAg DRNQ 1441 | GCTG SQDK 4
512 | ATCg DRNQ 1442 | GCCt SDSK 36.6
513 | ATTg DRNQ 1443 | ATCT SDSK 36.6
514 | AAAg DRHQ 1444 | CTCt DADQ 13.3
515 | AACg DRHQ 1445 | GCTC SRDR 13.3
516 | AATg DRHQ 1446 | GGAG | AQHK 13.3
517 | ACAg DRHQ 1447 | TAGg DRAQ 40.3
518 | ACCg DRHQ 1448 | AACT ADNT 40.3
519 | ACGg DRHQ 1449 | GCTA SATK 40.3
520 | ACTg DRHQ 1450 | CGGA| SKHA +
521 | AGAg DRHQ 1451 | GGCT SKHA +
522 | AGCg DRHQ 1452 | TATA SKHA +
523 | AGTg | DRHQ 1453 | GTGG | DRHK +
524 | ATAg DRHQ 1454 | GGGA SKHA +
525 | ATCg DRHQ 1455 | GGCC SKHA +
526 | ATGg DRHQ 1456 | GGAT SKHA +
527 | ATTg DRHQ 1457 | CGGG DRHK +
528 | AAAg DREV 1458 | GGGC SKHA +
529 | AACg DREV 1459 | TCGG DRHK +
530 | AATg DREV 1460 | GGGT DRER +
531 | ACAg DREV 1461 | GCAG DRER +
532 | ACCg DREV 1462 | GTGT SKHA +
533 | ACTg DREV 1463 | GTAG DRER +
534 | AGAg DREV 1464 | TCAG TNDK 14.1
535 | AGCg DREV 1465 | TCAG GQDK 21.6
536 | AGGg DREV 1466 | TGTT QTHE 2.1
537 | AGTg DREV 1467 | gggg drer +
538 | ATAg DREV 1468 | cccg dcht +
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539 | ATCg DREV - 1469 | gacc sqghr +
540 | ATTg DREV - 1470 | gacc QSNR +
541 | TACg DRNT - 1471 | gacc ADNR +
542 | TATg DRNT - 1472 | gacc TSNR +
543 | TCAg DRNT - 1473 | gacc ATNR +
544 | TCCg| DRNT - 1474| gacc PTNR +
545 | TCGg DRNT - 1475| gcac SRDR +
546 | TCTg DRNT - 1476 | gcac PRDR +
547 | TTAg DRNT - 1477| gcac GRDR +
548 | GGGg| DRHT 0.5 1478 | gcac SHDR +
549 | ATGg DRAV + 1479 | gcac VRDR +
550 | AAGg DRNN + 1480 | gcac AADR +
551 | AAAg GTNV - 1481| gcac SKDR +
552 | AACg GTNV - 1482 | gcac ARER +
553 | AAGg GTNV - 1483 | gcac GNSR +
554 | ACAg GTNV - 1484 | gcac GSSR +
555| ACCg | GTNV - 1485| gcac GTTR +
556 | ACGg GTNV - 1486 | gacc SNNR +
557 | ACTg GTNV - 1487 | gcgc SKER +
558 | AGAg | GTNV - 1488| gcge EKDR +
559 | AGCg| GTNV - 1489 | gcge YSDR +
560 | AGGg GTNV - 1490 | gcgc TTGR +
561 | ATAg GTNV - 1491 | gcgc GKDR +
562 | ATCg GTNV - 1492 | gcge WAER +
563 | ATGg GTNV - 1493 | gcge TEGR +
564 | ATTg GTNV - 1494 | gcgc KGDR +
565 | AAAg THTN - 1495 | gcgc DKDR +
566 | AACQ THTN - 1496 | gcge RNDH +
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567 | AAGg | THTN 1497 | gege ERGR +
568 | ACAg | THTN 1498 | gcgc |  WTER +
569 | ACCg | THTN 1499 | gcgce SNDR +
570 | ACGg | THTN 1500| gcgc | ANDR +
571 | AGAg | THTN 1501 | gcge ERDR +
572| AGCg | THTN 1502 | gege RNDR +
573| AGGg | THTN 1503 | gcgc SSDR +
574 | ATAg | THTN 1504 | gcgc | YDGR +
575| ATCg | THTN 1505| gcgc | KDDR +
576 | ATGg | THTN 1506 | gcgc RDDR +
577 | AACg | SQSA 1507 | gtgc GTAR +
578 | AAGg | SQSA 1508 | tcge EQDR +
579 | ACGg| SQSA 1509 | tcge SRDK +
580 | AGGg | SQSA 1510 | tcge NRDK +
581 | ATGg | SQSA 1511 | acgc RDDR +
582 | AAAg | DRNN 1512 | acgc TGEK +
583 | AACg | DRNN 1513 | acgc RERT +
584 | AATg | DRNN 1514| acgc | GRQE +
585| ACAg | DRNN 1515 | acgc EYER +
586 | ACCg | DRNN 1516 | acgc GESR +
587 | ACTg | DRNN 1517 | TTAg agss +
588 | AGAg | DRNN 1518 | GTTg dntr +
589 | AGTg | DRNN 1519 | GGAg gghe +
590 | ATAg | DRNN 1520 | GAGg drgt +
591 | ATCg | DRNN 1521 | gcgg drgt +
592 | ATTg | DRNN 1522 | TAGg drgt +
503 | AATg | GTNV 1523 | ttgg drgt +
594 | ATAg SQSA 1524 | TCGg drgt +
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595 | CAAg HQHE 1525 | GGGg drhd +
596 | CAAg GSHE 1526 | TGGg drhd +
597 | CAAg GQHQ 1527 | gcgg ardr +
598 | CAAg KNQN 1528 | GAGg gsnr +
599 | CAAg TNHH 1529 | ogatg slnr +
600 | CCAg HQHE 1530 | gacg sinr +
601 | CCAg SSHE 1531 | gcgg drvs +
602 | CCAg RTDQ 1532 | gtgg drvs +
603 | CGAg AQHE 1533 | TCGg drvs +
604 | CGAg DRHN 1534 | ttgg drvs +
605 | CTAg HQSE 1535| ogatg sinr +
606 | CACg HQHE 1536 | gacg sinr +
607 | CACg GSHE 1537 | gcgc CKDR +
608 | CACg HQHD 1538 | gcgc YKCR +
609 | CACg NNHE 1539 | gcgc NKSP +
610 | CACg AGGR 1540 | gcgc CKQS +
611 | CCCg GSHE 1541 | gcgc QQVT +
612 | CCCgq RSNE 1542 | gcgc QTSP +
613 | CCCg KSHE 1543 | gcgc HVIN +
614 | CGCg| HQHE 1544 | tgtc EPRP +
615| CGCg| GSHE 1545 | tgtc ESQP +
616 | CGCg KGWV 1546 | tgtc QHQP +
617 | CGCg RDWV 1547 | totc GRQA +
618 | CGCg| GHHE 1548 | tgtc ARRG +
619 | CGCg| RNTT 1549 | tgtc NESD +
620 | CTCg HQHE 1550 | tgtc VNMD +
621 | CAGg HQHE 1551 | tgtc RNGK +
622 | CAGg | NRNV 1552 | tgtc RSPW +
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623 | CAGg KDVT 1553 | tggg NYTt +
624 | CAGg IHDH 1554 | tggg AYAL +
625 | CAGg DRNI 1555 | tggg YYHt +
626 | CAGg TNHH 1556 | tggg VTNt +
627 | CAGg NNPP 1557 | tggg HRQt +
628 | CCGg HQHE 1558 | tggg PFYt +
629 | CCGg GSHE 1559 | ttgg LQSt +
630 | CCGg TNRS 1560 | ttgg GRLt +
631| CCGg| DRTA 1561 | ttgg FRSt +
632 | CGGg AIDQ 1562 | ttgg SKRt +
633 | CGGg RRGK 1563 | ttgg RGKt +
634 | CGGg RETA 1564 | ttgg NGSt +
635| CGGg| DRHE 1565 | ttgg RQPt +
636 | CTGg IHDH 1566 | gcgt DRLS +
637 | CTGg KTES 1567 | gcgt LSLA +
638 | CATg HQHE 1568 | gcgt SVVL +
639 | CATg GSHE 1569 | ctgt VNGP +
640 | CATg GNHE 1570 | ctgt WSl +
641 | CATg LGIG 1571 | ctgt AIWL +
642 | CATg GAHE 1572| ctgt MIMF +
643 | CATg HQHD 1573| ctgt ERCL +
644 | CATg VSHE 1574 | ctgt AILT +
645 | CATg GTHE 1575| ctgt VNQR +
646 | CATg YSKE 1576 | GGGA drer +
647 | CATg GSGA 1577 | gaac sgnk +
648 | CCTg HQHE 1578 | gcag sqdk +
649 | CCTg GQHA 1579 | atgg drtg +
650 | CCTg SGKE 1580 | CTGg drtg +
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651 | CCTg ACHE 1581 | acgg drtg +
652 | CGTg QDDI 1582 | gcgT drea +
653 | CGTg RDSS 1583 | gcct drer +
654 | CGTg RQHS 1584 | gcat dger +
655 | CGTg RLQH 1585| gcct dger +
656 | CGTg RRNK 1586 | gctt dger +
657 | CGTg RSTA 1587 | gcgg eryr +
658 | CGTg RQHE 1588 | gcgg trhr +
659 | CTTg HQHE 1589 | gcgg srer +
660 | CTTg GSHE 1590 | gcgg srar +
661 | CTTg QNHE 1591 | gcag tqtr +
662 | CAAg GONE 1592 | gcag aqsr +
663 | CACg KSAE 1593 | gcTG aqsr +
664 | CAGg DRNE 1594 | gcag tqsr +
665 | CATg GTNE 1595 | gcAT tqsr +
666 | CCAg HTSE 1596 | gcTG gsdr +
667 | CCGg DRTE 1597 | gcTG ssar +
668 | CCTg NTSE 1598 | gcTG qlvr +
669 | CGAg GQHE 1599 | gcTG atsr +
670 | CGGg DRKE 1600 | gcTG stgr +
671 | CTAg SQTE 1601 | gcTG ttar +
672 | CTTg GTAE 1602 | gcTG atar +
673 | CAAg DRNI 1603 | gcgg atar +
674 | CACg DRNI 1604 | gcCG sdvr +
675 | CATg DRNI 1605 | gcCG sdtr +
676 | CCAg DRNI 1606 | gcCG sdar +
677 | CCCg DRNI 1607 | gcTG sdsr +
678 | CCGg DRNI 1608 | gcCC sdsr +
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679 | CCTg DRNI 1609 | gcTC sdsr +
680 | CGAg DRNI 1610 | gcgc hrdr +
681 | CGCg DRNI 1611 | gcAC hrdr +
682 | CGTg DRNI 1612 | gcgc hssr +
683 | CTAg DRNI 1613 | gcgc ytsr +
684 | CTCgqg DRNI 1614 | gcTC ytsr +
685 | CTGg DRNI 1615| gcgc grnr +
686 | CTTg DRNI 1616 | gcga qrnr +
687 | CCAg KSHE 1617 | gcTC grnr +
688 | CGAg KSHE 1618 | gcTA grnr +
689 | CTAg KSHE 1619 | gcAC aqtr +
690 | CGAg RSNE 1620 | gcAC tgnr +
691 | CAAg DRTA 1621 | gcAC gqgar +
692 | CACg DRTA 1622 | gcAC tqtr +
693 | CATg DRTA 1623 | gcgc stsr +
694 | CCAg DRTA 1624 | gcag stsr +
695 | CCCg DRTA 1625| gcTG stsr +
696 | CCTg DRTA 1626 | gcgg stsr +
697 | CGAg DRTA 1627 | gcAC sstr +
698 | CGCg DRTA 1628 | gcAT sstr +
699 | CGTg DRTA 1629 | gcTC sstr +
700 | CTAg DRTA 1630 | gcTT sstr +
701 | CTCg DRTA 1631 | gcTC stnr +
702 | CTTg DRTA 1632 | gcTC ttar +
703 | CAAg DRHE 1633 | gcTC stlr +
704 | CACg DRHE 1634 | gcTC stir +
705 | CATg DRHE 1635 | gcAC stir +
706 | CCAg| DRHE 1636 | gcTT stir +
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707 | CCCqg DRHE 1637 | gcAT stir +
708 | CCTyg DRHE 1638 | gcTC ntsr +
709 | CGAg DRHE 1639 | gcTT ntsr +
710 | CGCyg DRHE 1640 | gcAT stsr +
711 | CGTg DRHE 1641 | gcTC gtsr +
712 | CTAg DRHE 1642 | gcTT gtsr +
713| CTCg| DRHE 1643 | gcTC titr +
714 | CTTg DRHE 1644 | gcAC titr +
715 | CCAg RSTA 1645| gcCC titr +
716 | CGAg RSTA 1646 | gcTC sltr +
717 | CGGg RSTA 1647 | gcTT sltr +
718 | CTAg RSTA 1648 | gcCC sltr +
719 | CTGg RSTA 1649 | gcCT str +
720 | CCGg HQSE 1650 | gcCC hdnr +
721 | CGGg HQSE 1651 | gcCC khsr +
722 | CTGg HQSE 1652 | gcCC ghnr +
723 | CAAg DRAE 1653 | gcTC ghnr +
724| CACg| DRAE 1654 | gcCA adnr +
725 | CATg DRAE 1655| gcga qrdr +
726 | CCAg DRAE 1656 | gcCA grdr +
727 | CCCgq DRAE 1657 | gcaa gghr +
728 | CCTg DRAE 1658 | gcaa aqtr +
729 | CGAg DRAE 1659 | gcAT aqtr +
730 | CGCg DRAE 1660 | gcTA qtar +
731| CGTg| DRAE 1661 | gcTA atsr +
732 | CTAg DRAE 1662 | gcTC atsr +
733 | CTCg DRAE 1663 | Acgg drhk +
734 | CTTg DRAE 1664 | gcTA qltr +
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735 | CTAg KSAE 1665| gcga rrdr +
736 | CTGg KSAE 1666 | gcTC rrdr +
737 | CAAg DRNE 1667 | gcTA ahtr +
738 | CACg DRNE 1668 | gcTC ahtr +
739 | CATg DRNE 1669 | gcTA thtr +
740 | CCAg| DRNE 1670 | gcCA thtr +
741| CCCg| DRNE 1671 | gcCC thtr +
742 | CCTg DRNE 1672 | gcTA hvhr +
743 | CGAg DRNE 1673 | Gcgg drhl +
744 | CGCg| DRNE 1674 | gcTG hvhr +
745 | CGTg DRNE 1675 | gcCA ahtr +
746 | CTAg DRNE 1676 | gcCA ahnr +
747| CTCg| DRNE 1677 | gcCA shnr +
748 | CTGg| DRNE 1678 | gcTA shnr +
749 | CTTg DRNE 1679 | gcCC shnr +
750 | CAAg GTNE 1680 | gcTC shnr +
751 | CACg GTNE 1681 | gcCA rdar +
752 | CAGg GTNE 1682 | gcgg hrdr +
753 | CCCyg GTNE 1683 | gcTT hrdr +
754 | CCGg GTNE 1684 | gcTG hrdr +
755 | CGAg GTNE 1685| gcgT sryr +
756 | CGCg GTNE 1686 | gcAT sryr +
757 | CGGg GTNE 1687 | gcTT sryr +
758 | CTAg GTNE 1688 | gcgT srsr +
759 | CTCgqg GTNE 1689 | gcgC srsr +
760 | CTGg GTNE 1690 | gcAT Srsr +
761 | CTTg GTNE 1691 | gcAC Srsr +
762 | CACg HTSE 1692 | gcTT Ssrsr +
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763 | CAGg HTSE 1693 | gcTC Srsr +
764 | CGCg HTSE 1694 | gcAT aqsr +
765 | CGGg HTSE 1695| gcAC aqsr +
766 | CAAg DRTE 1696 | gcTT aqsr +
767 | CACg DRTE 1697 | gcTC aqsr +
768 | CATg DRTE 1698 | gcAT qghr +
769 | CCAg DRTE 1699 | gcAC qghr +
770 | CCCg DRTE 1700 | gcAT sghr +
771 | CCTg DRTE 1701 | gcag sqtr +
772 | CGAg DRTE 1702 | gcTT sttr +
773 | CGCg DRTE 1703 | gcTC sttr +
774 | CGTg DRTE 1704 | gcTT sthr +
775 | CTAg DRTE 1705| gcTC sthr +
776 | CTCg DRTE 1706 | gcTT stvr +
777 | CTTg DRTE 1707 | gcTC stvr +
778 | CAAg NTSE 1708 | gcAT stvr +
779 | CACgqg NTSE 1709 | gcAC stvr +
780 | CAGg NTSE 1710| gcTT thsr +
781 | CTCg NTSE 1711| gcTC thsr +
782 | CTAg GQHE 1712 | gcTT ghtr +
783 | CAAg DRKE 1713| gcTC ghtr +
784 | CACg DRKE 1714 | gcAT ghtr +
785 | CAGg DRKE 1715| gcAC ghtr +
786 | CATg DRKE 1716| gcgT ghtr +
787 | CCAg DRKE 1717| gcgC ghtr +
788 | CCCg DRKE 1718 | gcTT thtr +
789 | CCGg DRKE 1719 | gcCT sdsr +
790 | CCTg DRKE 1720 | gcCT shtr +
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791 | CGAg DRKE 1721| gcTT shtr +
792 | CGCg DRKE 1722 | gcCT sdrr +
793 | CGTg DRKE 1723 | gcCC sdrr +
794 | CTAg DRKE 1724 | aaag GAAN +
795| CTCg DRKE 1725| aaag HQNL +
796 | CTGg| DRKE 1726 | aaag GNNT +
797 | CTTg DRKE 1727 | aaag NQNL +
798 | CAAg SQTE 1728 | aaag TQNN +
799 | CAGg SQTE 1729 | aaag GQNA +
800 | CCGg SQTE 1730| aaag HQNV +
801 | CGGg SQTE 1731| aaag GQNT +
802 | CAGg GTAE 1732 | aaag TQNH +
803 | CTAg GTAE 1733 | ataa AQSL +
804 | CCAg GSHE 1734 | ataa GQAA +
805 | CGCyg FNHE 1735| ataa GQST +
806 | CCGg DRHD 1736 | ataa NQGQ +
807 | CTGg DRAE 1737 | ataa GQSS +
808 | CCTg GSHE 1738 | ataa IQST +
809 | GAGg DRAR 1739 | tcag NTLR +
810 | GAGg| ARSR 1740 | tcag HQDR +
811 | GTGg SRSR 1741| tcag TTDK +
812 | GAGg DKAR 1742 | gogtt SEHR +
813 | GCCg DKDR 1743 | tgtt HMHH +
814 | GAGg | DKSR 1744 | tgtt HHHV +
815| GAGg| DKTR 1745 | tgtt HHHQ +
816 | GGCg DKVR 1746 | tgtt HHHA +
817 | GCCg AKDR 1747 | tgtt HHHN +
818 | GGGg| DRDK 1748 | tgtt HLHQ +
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819 | GAGg DREK 1749 | gcga drer +
820 | GTAg GQER 1750 | tggt drht +
821 | GTAg GQTR 1751 | gcgg drhr +
822 | GGCg SDKR 1752 | ccgg drht +
823 | GGCg GDKR 1753 | ccgg drhS +
824 | GCCg GDDR 1754 | TCGg drhs +
825| GCTg| GDER 1755| tcgc NKDK +
826 | GGTg GTAR 1756 | gtgg drht +
827 | GCTg GTDR 1757 | gagt drer +
828 | GCTg GTTR 1758 | ccgg drha +
829 | GCTg QTSR 1759 | ccgg drhv +
830 | GCTg QTTR 1760 | acgg drhE +
831 | GAGg ARKR 1761 | acqgt drer +
832 | GGCqg AQKR 1762 | ataa TQAQ +
833 | GGCg SQKR 1763 | ggtt SDHR +
834 | GGCg GTKR 1764 | tcag TTNS +
835| GGTg| DTHR 1765| tgga drht +
836 | GTCg| DRHR 1766 | ggga HRHV +
837 | GAAg DRNR 1767 | gcga arer +
838 | GATg DRNR 1768 | acgg drht +
839 | GACg DRNR 1769 | ccgg drhr +
840 | GTAg DRNR 1770 | aaag NQNA +
841 | GGAg DRAR 1771 | aaag NQNN +
842 | GGTyg DRAR 1772 | gcgt arer +
843 | GGCg DRAR 1773 | gcgg drhk +
844 | GAAg DRAR 1774 | gcgc TRdr +
845 | GATg DRAR 1775| acgg drhY +
846 | GACg| DRAR 1776 | aaag GNAN +
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847 | GTTg DRAR 1777 | ccgg drhN +
848 | GTCg| DRAR 1778| tcgg drhv +
849 | GCAg| DRAR 1779 | acgg drhv +
850 | GCTg DRAR 1780 | tott QHHT +
851 | GCCg DRAR 1781 | gaga drer +
852 | GTAg DRDR 1782 | gtgg drtg +
853 | GTTg DRDR 1783 | gcgg drtg +
854 | GTCg DRDR 1784 | ttgg drtg +
855| GCAg| DRDR 1785| TCGg drtg +
856 | GGAg DRSR 1786 | gcgg drvn +
857 | GGTg DRSR 1787 | gcta QTTR +
858 | GGCg DRSR 1788 | gcta ATTR +
859 | GAAg DRSR 1789 | tcta GTTR +
860 | GATg DRSR 1790| gcta GTDR +
861 | GACg DRSR 1791 | ggga HRHA +
862 | GTTg DRSR 1792 | aagg DRGA +
863 | GTCg DRSR 1793 | aagg DRNV +
864 | GGTg| DRTR 1794 | aagg DRND +
865 | GGCg DRTR 1795 | aagg DRQA +
866 | GTCg DRTR 1796 | aagg DRGI +
867 | GGAg DKDR 1797 | aagg DRQT +
868 | GGAg DKTR 1798 | gcgc arer +
869 | GAAg DKTR 1799 | gcat dger +
870 | GATg DKTR 1800| gcTC stsr +
871 | GACg DKTR 1801 | gcgg drha +
872 | GTTg DKTR 1802 | gcTA RRdr +
873 | GCAg DKTR 1803 | Acgg drhn +
874 | GGTg| AKDR 1804 | gcAT sqtr +
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875 | GAAg AKDR 1805 | aaag NONT +
876 | GGGg AKER 1806 | aaag VQONT +
877 | GTGg AKER 1807 | GGCG drer +
878 | GCAg AKER 1808 | gcgg dret +
879 | GGAg DRDK 1809 | GCAA drer +
880 | GAAg DRDK 1810| gacc RDNR +
881| GTAg | DRDK 1811| gacc SSNR +
882 | GGAg DREK 1812 | gcgc GKER +
883 | GAAg DREK 1813| gcge SRER +
884 | GATg DREK 1814 | gcge YDTR +
885 | GTAg DREK 1815| gcgc ATDR +
886 | GTTg DREK 1816 | gtgc GTGR +
887 | GTCg| DREK 1817 | gtgc KESR +
888 | GCAg| DREK 1818 tgtc STEH +
889 | GTAg SONR 1819 | ttgg WHMt +
890 | GCAg SONR 1820 | gcat drer +
891 | GCTg SONR 1821 | gaag sqgnk +
892 | GGGg SQSR 1822 | GTGA drer +
893 | GGAg SQSR 1823 | gcgg ERdr +
894 | GGTg SQSR 1824 | gcTG GNdr +
895 | GGCg SQSR 1825 | gcgT trdr +
896 | GAGg SQSR 1826 | gcgc srtr +
897 | GAAg SQSR 1827 | gcgT srtr +
898 | GATg SQSR 1828 | gcAC RTdr +
899 | GTTg SQSR 1829 | gcAT gqgar +
900 | GTCg SQSR 1830 | gcAT tqtr +
901 | GTAg AQHR 1831 | gcAC stsr +
902 | GATg GQDR 1832 | gcTC NGdr +

204




Appendix A DATASET
903 | GGGy SQDR 1833| gcTT stsr +
904 | GGAg SQDR 1834 | gcTC star +
905 | GGTyg SQDR 1835| gcTT star +
906 | GGCg SQDR 1836 | Ccgg drhg +
907 | GAAgQ SQDR 1837 | Tcgg drhg +
908 | GATg SQDR 1838 | gcCC adnr +
909 | GACg SQDR 1839 | gcCT adnr +
910 | GTTg SQDR 1840| gcaa QRdr +
911 | GTCg SQDR 1841 | gcAT gghr +
912 | GGGy GQER 1842 | gcTC thtr +
913 | GGAg GQER 1843 | Acgg drhl +
914 | GGTg GQER 1844 | gcgT SKdr +
915 | GGCg GQER 1845| gcgT SSdr +
916 | GAGg GQER 1846 | gcgT HRdr +
917 | GAAgQ GQER 1847 | gott SVHR +
918 | GATg GQER 1848 | tgtt HHHS +
919 | GACg GQER 1849 | tgtt HMHA +
920 | GTGg GQER 1850 | tgtt HMHD +
921 | GTTg GQER 1851 | tgtt HMHQ +
922 | GCGg GQER 1852 | AAAT TONT 0.12
923 | GGGy GQTR 1853 | TCAG HQDK 0.038
924 | GGTg GQTR 1854 | ACAT GQTR 0.11
925 | GGCg GQTR 1855 | TGTT HMHE 0.11
926 | GAGg GQTR 1856 | GGTT SDKR 0.038
927 | GATg GQTR 1857 | GGGA HRHL 0.11
928 | GTGg GQTR 1858 | GCTA HTTR 0.12
929 | GTTg GQTR 1859 | ATAA AQSA 0.12
930 | GCGg GQTR 1860 | AAGG DRNA 0.038
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Table A.10:Information of training dataset in DB1 database. In
the table, the bases of the DNA sequence are in the 5’-3’ order
The amino acids at the contacting positions 2, -1, 3, 6 asened.
The binding affinities are described by either the quaitéain-

formation or binding status (binding /non-binding).
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B.1 Non-linear dimensionality reduction methods

Visualization Colouring

B.1.1 Relative information from PCA

Table B.1 provides the detailed information about the i@teship between the number of

the principal components (PCs) and the data samples. Adonedtin Subsection 4.2.2,

it is impossible to use the first two PCs to explain the spe8Ria-D binary data set.

Number of | Explained| Number of | Explained| Number of | Explained| Number of | Explained

Eigenvec- | Variances| Eigenvec- | Variances| Eigenvec- | Variances| Eigenvec-| Variances
tor tor tor tor
1 9.72% 59 79.72% 117 94.50% 175 98.90%
2 16.10% 60 80.11% 118 94.63% 176 98.93%
3 20.08% 61 80.49% 119 94.76% 177 98.97%
4 23.82% 62 80.87% 120 94.88% 178 99.00%
5 26.60% 63 81.24% 121 95.00% 179 99.04%
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6 29.11% 64 81.61% 122 95.13% 180 99.07%
7 31.56% 65 81.98% 123 95.25% 181 99.10%
8 33.97% 66 82.34% 124 95.36% 182 99.13%
9 36.13% 67 82.69% 125 95.48% 183 99.16%
10 38.21% 68 83.04% 126 95.59% 184 99.19%
11 40.20% 69 83.39% 127 95.71% 185 99.22%
12 41.91% 70 83.72% 128 95.82% 186 99.25%
13 43.50% 71 84.05% 129 95.92% 187 99.27%
14 45.06% 72 84.38% 130 96.03% 188 99.30%
15 46.58% 73 84.70% 131 96.13% 189 99.33%
16 48.00% 74 85.02% 132 96.23% 190 99.35%
17 49.34% 75 85.33% 133 96.33% 191 99.38%
18 50.59% 76 85.63% 134 96.42% 192 99.41%
19 51.82% 77 85.93% 135 96.51% 193 99.43%
20 53.01% 78 86.23% 136 96.60% 194 99.46%
21 54.17% 79 86.53% 137 96.69% 195 99.48%
22 55.28% 80 86.81% 138 96.78% 196 99.50%
23 56.34% 81 87.08% 139 96.86% 197 99.53%
24 57.37% 82 87.35% 140 96.94% 198 99.55%
25 58.36% 83 87.62% 141 97.02% 199 99.57%
26 59.31% 84 87.89% 142 97.09% 200 99.59%
27 60.25% 85 88.15% 143 97.17% 201 99.61%
28 61.16% 86 88.42% 144 97.24% 202 99.63%
29 62.04% 87 88.67% 145 97.31% 203 99.64%
30 62.87% 88 88.93% 146 97.38% 204 99.66%
31 63.69% 89 89.18% 147 97.44% 205 99.67%
32 64.50% 90 89.43% 148 97.51% 206 99.69%
33 65.28% 91 89.68% 149 97.58% 207 99.70%
34 66.05% 92 89.92% 150 97.64% 208 99.72%
35 66.81% 93 90.16% 151 97.71% 209 99.73%
36 67.55% 94 90.39% 152 97.77% 210 99.75%
37 68.26% 95 90.62% 153 97.83% 211 99.76%
38 68.96% 96 90.84% 154 97.89% 212 99.78%
39 69.64% 97 91.06% 155 97.95% 213 99.79%
40 70.28% 98 91.27% 156 98.01% 214 99.81%
41 70.91% 99 91.48% 157 98.07% 215 99.82%
42 71.53% 100 91.69% 158 98.13% 216 99.84%
43 72.13% 101 91.89% 159 98.18% 217 99.85%
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44 72.71% 102 92.09% 160 98.24% 218 99.86%
45 73.28% 103 92.28% 161 98.29% 219 99.88%
46 73.82% 104 92.47% 162 98.34% 220 99.89%
47 74.34% 105 92.65% 163 98.39% 221 99.90%
48 74.84% 106 92.83% 164 98.44% 222 99.91%
49 75.33% 107 93.00% 165 98.49% 223 99.93%
50 75.81% 108 93.17% 166 98.53% 224 99.94%
51 76.28% 109 93.34% 167 98.58% 225 99.95%
52 76.75% 110 93.50% 168 98.62% 226 99.96%
53 77.20% 111 93.66% 169 98.67% 227 99.97%
54 77.64% 112 93.81% 170 98.71% 228 99.98%
55 78.07% 113 93.95% 171 98.75% 229 99.98%
56 78.50% 114 94.09% 172 98.79% 230 99.99%
57 78.91% 115 94.23% 173 98.82% 231 99.99%
58 79.32% 116 94.37% 174 98.86% 232 100%

Table B.1: Statistical information of eigenvectors. In this table,
the proportion of data information which can be explaineditfy
ferent number of PCs are summarised.

B.1.2 Locally Linear Embedding (LLE)

According to the description in Subsection 4.2.2, the perénce of the Locally Lin-
ear Embedding (LLE) model depends on the selection oKthnearest neighbours. To
identify K nearest neighbours for the model, a cost function whichseth@n Euclidean

distance is defined as follow:

N K
e(W) =3 Ix —IZ\VVinHZ (B.1)
[ j=

whereWj is a weight between a pointind its neighbourgs The appropriate weights
are obtained by optimising the cost function which is sut@éto two constraints: 1) each
data pointx; is reconstructed only from its neighbours; 2) the rows ofileéght matrix

sum to one:zﬁ-;lW{j = 1. With the two constraints, the cost function can be mingdis
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by minimised by using a Lagrange multiplier to enforce thestmaint thatzlf:]_v\/”' =1

Through comparing the value efthe number of nearest neighboukg ¢an be identified.

B.2 Amino acids classification check list

Table B.2 provides the definition of the colour codes basetherhydrophobicity and
hydrophilicity of amino acids. As listed in the table, theiamacids with the hydropho-
bicity properties are defined to be coloured in red or oraagd,the relevant values are
marked as ‘1’ or ‘2’. With the changes of the physicochemjaralerties, the colour code
is altered from red to blue, and the relevant values are ase@ from ‘1’ to ‘6’. Since
there are four amino acids in each zinc finger protein to gpste the interaction with
DNA sequence, the colour codes which are applied in the Wssu@n results are calcu-
lated based on the properties of the four amino acids. Fanpbka when the four amino
acids in the protein is ‘VLIF’, the relative value of the calocode ought to be ‘4’. Table
B.3 lists the statistical information of the training dagtlsased on the hydrophobicity and

hydrophilicity of the zinc finger in each data sample.
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Characteristic | Value | Colour | Amino acid | Abbreviation

Hydrophobic (4) Valine Vv

Leucine L

1 red

Isoleucine

Phenylalanine

Glycine

Alanine

2 Orange| Methionine

Cysteine

Proline

Tryptophan

+ 3 Yellow
Tyreonine

Serine

4 Green
Threonine

Asparagine

5 Cyan
Glutamine

Aspartic

Glutamic

6 Blue Lysine

Arginine

Il | A mojlOo|lZzZ|ld|lun|<|S|T|0o|Z|> 60|

Hydrophilic (24) Histidine

Table B.2: Amino acid colour map
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Hydrophobicity | Number of data | Proportion
4 0 0
5 0 0
6 2 0.10%
7 2 0.10%
8 2 0.10%
9 1 0.05%
10 3 0.16%
11 4 0.22%
12 22 1.18%
13 6 0.32%
14 33 1.77%
15 76 4.09%
16 138 7.42%
17 115 6.18%
18 177 9.52%
19 331 17.80%
20 277 14.89%
21 129 6.94%
22 238 12.80%
23 101 5.43%
24 203 10.91%
Hydrophilicity Total: 1860 100%

Table B.3: Statistics of training dataset based on phykewdcal characteristic of amino
acid. This table summaries the hydrophobicity and hyddagptyi of the zinc fingers in
the training dataset.
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C.1 D.1 320-D original database creation

As summarised in Table 3.3, there are in total 1860 data ssmpthe training dataset. In
order to reconstitute the 320-D original database for tleeligption models investigation,
Table C.1 is generated as a reference for the databaseoardatithe table, 25 published
papers are listed using the defined index in Appendix B.1€TAbl. The second column
provides the number of adopted data samples from each pablgaper. And the related
proportion is listed in the third column. Since the propamtof three categories is defined
as 5:4:1, the adopted data samples from each individualstatace are separated into
three groups according to the proportion and the number efdtita samples in each
group is presented in the last three columns. When credi®820-D original database,
for example, from the first data source, 132 data samplesaadomly selected to be the

training data, 107 data samples for the test data set, andta&dmples for the validation
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data set. Repeating the random selection process one lutidres, the database is
reconstituted. This method can ensure that all of the 26 stateces are covered in each

category, and the number of data samples in each group remiaghanged.
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Data source No. of Percentage No. of No.of test No. of
adopted data of data training data data validation

samples samples data
1 264 14.19% 132 107 25
2 214 11.505% 107 86 21
3 43 2.312% 21 17 5
4 326 17.53% 163 131 32
5 52 2.80% 26 21 5
6 385 20.70% 193 153 39
7 288 15.48% 144 116 28
8 31 1.67% 15 12 4
9 0 0 0 0 0
10 0 0 0 0 0
11 11 0.59% 6 4 1
13 6 0.323% 3 2 1
14 9 0.484% 5 3 1
15 1 0.054% 1 0 0
16 0 0 0 0 0
17 18 0.968% 9 7 2
18 13 0.699% 7 5 1
19 18 0.968% 9 7 2
20 110 5.914% 55 44 11
21 5 0.269% 3 1 1
22 10 0.538% 5 4 1
23 19 1.02% 10 5 4
24 14 0.753% 7 5 2
25 3 0.161% 2 1 0
26 20 1.075% 10 6 4

Total 1860 100% 933 737 190

Table C.1:Statistical information of the adopted 25 data sourceserotiiginal database.
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C.2 PCA based reconstruction data visualisation

This section includes nine Figures which show the Neur@SasaUlalisation results of the
reconstruction datasets based on different number of eég#ors. In these Figures, the
number of eigenvectors increase from 50 to 234. The subrésgior 233 eigenvectors
and 234 eigenvectors, respectively, show identical visaabn results, which proves that
the data reconstructed by the first 233 eigenvectors from ¥ describe the character-

istics of the interaction as effectively as the 320-D orajidata.

Binding
Non-binding
3 -2 -1 0 1 2

Figure C.1:Visualisation result of the reconstructed database udngjgenvectors.
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Binding
Non-binding
-3 -2 -1 0 1 2 3
R1

Figure C.2:Visualisation result of the reconstructed database uddigeigenvectors.

Binding
Non-binding
-3 -2 -1 0 1 2 3
R1

Figure C.3:Visualisation result of the reconstructed database ushgeigenvectors.
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Binding
Non-binding
-3 -2 -1 0 1 2 3

Binding
Non-binding
-3 -2 -1 0 1 2 3
R1

Figure C.5:Visualisation result of the reconstructed database uslfigeByenvectors.
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Binding
Non-binding
-3 -2 -1 0 1 2 3

ust@geRyenvectors.

24
22
20
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16
14
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Binding
Non-binding
-3 -2 -1 0 1 2 3

Figure C.7:Visualisation result of the reconstructed database usdgejenvectors.

219



Appendix C PREDICTION MODELS

Binding
Non-binding
-3 -2 -1 0 1 2 3

usidgeyenvectors.

Binding
Non-binding 6
-3 -2 -1 0 1 2 3
R1

Figure C.9:Visualisation result of the reconstructed database usddgeRyenvectors.

C.3 Quality criteria - Receiver operator characteristic(R ~ OC)

As defined in Subsection 5.1.4, the ROC curve as a two-dirarakgraph is employed to
depict relative tradeoffs between benefits (true posiawe) costs (false positive) Fawcett
(2006). Figure C.10 shows a confusion matrix Fawcett (2006yhich there are four

possible outcomes compared with target outputs, givenssifler and a group of data
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examples which contains only either one of two statuseslilbgnand non-binding. If
P is the total number of the binding examples and N repredkattotal number of the
non-binding examples, then theie positive rate (sensitivity) of a classifier is estimated

as:

Positivescorrectlyclassified TP

tp rate~ Totalpositives — TP+FN

Thefalse positive rateof the classifier is:

Positivesfalseclassified. ~ FP
fp rate~ Totalpositives ~ FP+TN

And theaccuracy of the classifier is:

TPLTN

accuracy= PN

The specificity of the classifier is:

specificity= p-r

In this thesis, the binding status of a given data examplegeesented as [0 1] (bind-
ing) or [1 0] (non-binding). To verify the binding status bkt prediction outcome for the
example, the Euclidean distance between the predictiaott sesd the target output (either
[0 1] or [1 Q]) is calculated. If the predicted outcome is [1 1]t the target output is [0 1],
the maximum Euclidean distance approximately equal to4t.#ihe predicted outcome
is [1 0], and the target output is [1 0], the minimum Euclidelistance between them is
0. In Figure C.11, the intermediate value of the Euclideatadice, 0.707, is marked. The
red solid line is the adjustable threshold. Through altetire value of the threshold , the
prediction binding status changes. The ROC curve can beeglatcording to different

tp rate andp rate which are calculated by adjusting the threshold.
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P N
True False
Positives Positives
False True
Megatives Negatives

Figure C.10:Confusion matrix. In this matrix, the four possible outcenage arranged into four
blocks. P denotes the total number of the positive samplas;tihe total number of the negative
samples.

istance

Threshold

1

Figure C.11: The ROC curve calculation standard. The distance is catmlilbased on the
Euclidean metric. The two points marked on the X, Y axis repné the binding and non-binding
statuses: [0 1] and [1 0]. The range of the threshold adjustisdrom 0 to 1.414.
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C.4 Parameters and results of relevant prediction algorith ms

C.4.1 Prediction results based on Minkowski

Figure C.12, C.13 and C.14 are the plots of the normalisessifieation error of th&-NN,
MLP and RBF models. For the 2-D Minkowski metric based retmietion database, the
number of nearest neighbours for thé&IN is adjusted from 1 to 21 with the interval of
2. According to Figure C.12, when 9 neighbours are used toel¢fie target test data
samples, the normalised error of tkéN reaches the smallest value at 0.4351 and the
error for the validation data is 0.4384. Figure C.13 showsbrmalised error of the MLP
classifier where the range of the hidden centres is sametaa tha model when used for
the 2-D Euclidean distance based reconstruction dataldégethe similar reducing trend
as of Figure 5.3, 57 hidden centres are selected this timaptement the prediction of
validation data samples. The relevant normalised errdi@talidation dataset is 0.4288.
Figure C.14 presents the results of the normalised errdh&RBF model. The number of
centres is changed from 2 to 80 with the interval of 2. Comghavigh the MLP, the RBF
classifier is more erroneous than the MLP. With respect t@thas of both training and
test data, 46 hidden centres are selected for this modatptimealised error of validation

dataset with 46 hidden centres is 0.7133.
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Number of nearest neighbours.

N normalised classification error of the 2-D reconstiuttdata based on

the Minkowski distance. When the number of neighbours iso#h lest and validation datasets
have the smallest normalised classification error: 0.43f6110a4384.
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Figure C.13:The ML

0. L. .. @

0 i i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100110120130140150

e Training
® Test
e Validation
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P normalised classification error for the the 2-D restourction data based

on the Minkowski distance. The normalised errors for thming dataset are generally better than

those for the test and

validation datasets. When the hideletnes set to be 57, the error of training

dataset is 0.4203, the error of test dataset is 0.5557, aneltbr of validation dataset is 0.5559.
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Figure C.14:The RBF normalised classification error for the 2-D recardton data based on

the Minkowski distance. When the number of hidden centrésaisr than 55, the differences of

the normalised errors between three datasets are very. disabafter, due to over-training, they
become larger and larger as well as the error bar of the n@®dagrror for the test and validation
datasets. When the hidden centres is 46, the error of testetdbas the lowest value: 0.7136,
while the error of training dataset is 0.6642, and the erfeabdation dataset is 0.7133.

Figure C.15 depicts the ROC curves with respect to the dlassior the 2-D Minkowski

metric based reconstruction database.
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Figure C.15:The ROC curves of different classifiers using the 2-D regontibn datasets based
on the Minkowski distance. (a) MLP classifier (AUC value9316, 0.8310 and 0.8315); (b) RBF
classifier (AUC values: 0.7301, 0.6921 and 0.6965); (c) S\étression classifier (AUC values:
0.8680, 0.7934 and 0.7970) and (d) RVM classifier (AUC valu@8390, 0.8212 and 0.8184).
Generally, the classifiers performs much better than rangloessing (AUC: 0.5).

C.4.2 Prediction results based on 320-D original data

Figure C.16, C.17 and C.18 show the normalised classificaioor of thek-NN, MLP

and RBF models respectively. For the 320-D original datapdee number of nearest

neighbours for thé&-NN is adjusted from 1 to 11 with the interval of 2. According t

Figure C.16, when one neighbour is selected to define thettéegt data samples, the

normalised error is at its smallest of 0.342; and for thedadlon data it is 0.3710. Figure

C.17 shows the normalised error of the MLP classifier. In Bagure, the normalised
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error for the training dataset is zero when the number of tddem centres is changed
from 3 to 150 with the interval of 3. This is because of the avaining of the high
dimensional input. When 21 hidden centres are selectedpdhmalised error for the
validation dataset is 0.2144. Figure C.19 presents thdtsesithe normalised error for
the RBF model. The number of hidden centres is changed frami8Q with the interval
of 2. Comparing with the error in the MLP algorithm, the erodrthe RBF classifier is
higher. Regarding the errors for both training and test data, 142 hidden centres are
selected for the validation data set, where the normalisext & 0.5616. Figure C.19

plots the ROC curves of the MLP, RBF and SVM regression models
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Figure C.16:Thek-NN normalised classification error for the 320-D originatal When there
is only one neighbour. the normalised classification erfarshe test and validation datasets are
smallest at 0.3275 and 0.3257, respectively.
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Figure C.17the MLP normalised classification error for the 320-D orajidata. The normalised
errors for the training dataset are zero due to the ovaritiguiof the high dimensional input. When
the hidden centres set to be 21, the error of training datasi7504x 10713, the error of test
dataset is 0.2104, and the error of validation dataset 44.2
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Figure C.18:The RBF normalised classification error for the 320-D omdjstata. When there are
fewer than 80 hidden centres, the normalised error is sildtween three datasets. Hereafter, the
error difference becomes significant. When the hidden een$r142, the error of test dataset has
the lowest value: 0.5597, while the error of training dat#s®.4685, and the error of validation
dataset is 0.5616.
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Figure C.19:The ROC curves for the 320-D original data. (a) MLP classifdC values: 1,
0.9140 and 0.9118); (b) RBF classifier (AUC values: 0.7358887 and 0.6904); (c) SVM re-
gression classifier (AUC values: 0.9142, 0.8633 and 0.8668)d) RVM classifier (AUC values:
0.9997, 0.9440 and 0.9439). Generally, the classifieropad much better than random guessing
(AUC: 0.5).

C.4.3 Prediction results on 320-D reconstruction data

In Figure C.20, C.21 and C.22, the normalised classificaroors of thek-NN, MLP and
RBF models are plotted. For the 320-D reconstruction dambihie number of nearest
neighbours for th&-NN is adjusted from 1 to 11 with the interval of 2. According t
Figure C.20, when 5 neighbours are selected to define thettigt data samples, the
normalised error has the smallest value at 0.2693 and tbeferrthe validation data is

0.2851. Figure C.21 shows the normalised error of the MLBsifi@r. In this Figure, the
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same as the results of the 320-D original database, theie n®malised errors for the
training dataset as the number of hidden centres changas3fto 150 with the interval
of 3. When 45 hidden centres are selected, the normalisedferrthe validation dataset
is 0.2144. Figure C.22 presents the results of the norntbéser for the RBF model.
The number of hidden centres is changed from 2 to 180 withritezvial of 2. Taking
the errors of both training and test data as a reference, itld21 centres are selected for
the validation data set, resulting the normalised erroratithation dataset being 0.5607.
Figure C.23 shows the ROC curves of the selected regressadelswhich constructed

using the 320-D reconstruction database.
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Figure C.20:Thek-NN normalised classification error for the 320-D reconsinn data. When
there is only one neighbour, the smallest normalised ¢leston errors are achieved for the test
and validation datasets at 0.2104 and 0.2144, respectively
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Figure C.21:The MLP normalised classification error for the 320-D re¢arttion data. When
the hidden centres is 45, the error of training dataset B81B5610 13, the error of test dataset is
0.2116, and the error of validation dataset is 0.2133.
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Figure C.22:The RBF normalised classification error for the 320-D retrmicsion data. The
differences of the normalised errors between the threseé@t®decomes significant for more than
90 hidden centres. When the hidden centres is 140, the drtestadataset has the lowest value:
0.5571, while the error of training dataset is 0.4686, aedetinor of validation dataset is 0.5607.
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Figure C.23: The ROC curves for the 320-D reconstruction data. (a) MLBsifier (AUC
values: 1, 0.9145 and 0.9162); (b) RBF classifier (AUC valie$367, 0.6838 and 0.6944); (c)
SVM regression classifier (AUC values: 0.9142, 0.8633 a86d&5b) and (d) RVM classifier (AUC
values: 0.9983, 0.9543 and 0.9542). Generally, the classifierforms much better than random
guessing (AUC: 0.5).
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Data set Linear | KNN MLP RBF | SVM(Cla.) | SVM(Reg.) | RVM
Training (438) | 256.98| —— | 399.92| 365.24 —_— 399.16 | 366.70
TP Test (345) | 197.01| 276.93| 282.25| 268.86| 259.28 277.14 | 276.23
Validation(99) | 54.93 | 77.28 | 78.75 | 75.16 72.49 77.69 76.85
Training (0) 168.33| —— 51.64 | 72.89 e 40.98 76.40
FP Test (0) 134.2 | 56.36 | 66.97 | 67.19 87.61 58.03 67.32
Validation (0) | 33.34 | 13.79 | 16.67 | 16.54 21.20 14.13 18.50
Training (495) | 321.57| —— | 438.26| 417.01| —— 448.92 | 410.61
TN Test (392) | 259.25| 337.09| 326.48| 326.26| 305.84 335.42 | 324.59
Validation (91) | 61.31 | 80.86 | 77.98 | 78.11 73.45 80.52 77.87
Training (0) 186.12| —— 43.18 | 77.86 e 43.94 79.29
FN Test (0) 146.54| 66.62 | 61.30 | 74.69 84.27 66.41 68.86
Validation (0) | 40.42 | 18.07 | 16.60 | 20.19 22.86 17.66 16.78

Table C.2:The ROC parameters of prediction models using the 2-D Eealidlistance.

Data set Linear | KNN MLP RBF | SVM(Cla.) | SVM(Reg.) | RVM
Training (438) | 286.34| —— | 383.33| 365.86 —_— 389.51 | 362.65
TP Test (345) | 223.64 | 249.64| 264.24| 272.22| 283.62 278.55 | 276.70
Validation(99) | 61.56 | 70.80 | 74.06 | 75.52 79.14 77.46 76.92
Training (0) | 175.24| —— | 75.62 | 123.96 —_— 90.28 80.45
FP Test (0) 140.91| 114.04| 91.66 | 105.10 106.70 94.17 66.85
Validation (0) | 34.15 | 26.99 | 22.44 | 26.03 26.80 23.03 18.43
Training (495) | 314.66| —— | 414.28| 365.94 e 399.62 360.69
TN Test (392) | 252.54| 279.41| 301.79| 288.35| 286.75 299.28 | 288.89
Validation (91) | 60.50 | 67.66 | 72.21 | 68.62 67.85 71.62 68.34
Training (0) | 156.76 | —— | 59.77 | 77.24 S 53.59 129.21
FN Test (0) 119.91| 9391 | 79.31 | 71.33 59.93 65 104.56
Validation (0) | 33.79 | 24.55 | 21.29 | 19.83 16.21 17.89 26.31

Table C.3:The ROC parameters of prediction models using the 2-D Mirgkowistance.
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Data set Linear | KNN MLP RBF | SVM(Cla.) | SVM(Reg.) | RVM
Training (438) | 403.86| —— | 443.10| 404.78 —_— 399.16 | 440.01
TP Test (345) | 283.86| 236.45| 300.33| 282.01| 310.30 277.14 | 305.57
Validation(99) | 78.84 | 66.11 | 83.34 | 78.97 87.05 77.69 84.79
Training (0) | 26.58 | —— 0 42.13 — 40.98 3.09
FP Test (0) 37.69 | 24.04 | 36.18 | 50.34 30.70 58.03 37.98
Validation (0) 9.16 5.77 8.96 11.95 7.50 14.13 10.56
Training (495) | 463.32| —— | 489.90| 447.77 —_— 448.92 | 487.02
TN Test (392) 356.10| 369.41| 357.27| 343.11 362.75 335.42 348.78
Validation (91) | 85.61 | 88.88 | 85.69 | 82.70 87.15 80.52 83.86
Training (0) | 39.24 | —— 0 38.32 — 43.94 2.88
FN Test (0) 59.35 | 107.10| 43.22 | 61.54 33.25 66.41 44.67
Validation (0) | 16.39 | 29.24 | 12.01 | 16.38 8.30 17.66 10.79

Table C.4:The ROC parameters of prediction models using the 320-Dnaiiglata.

Data set Linear | KNN MLP RBF | SVM(Cla.) | SVM(Reg.) | RVM
Training (438) | 403.86| —— | 443.10| 403.09 —_— 434.35 | 440.01
TP Test (345) | 283.86| 273.67| 300.47| 282.15| 310.30 29541 | 305.57
Validation(99) | 78.84 | 76.07 | 83.72 | 78.52 87.05 81.95 84.79
Training (0) | 26.58 | —— 0 42.56 — 9.76 3.09
FP Test (0) 37.69 | 31.38 | 34.78 | 50.55 30.70 38.21 37.98
Validation (0) | 9.16 7.68 8.49 | 12.18 7.50 9.38 10.56
Training (495) | 463.32| —— | 489.90| 447.34 —_— 480.14 | 487.02
TN Test (392) | 356.10| 362.07 | 358.67| 342.90| 362.75 355.24 | 348.78
Validation (91) | 85.61 | 86.97 | 86.16 | 82.47 87.15 85.27 83.86
Training (0) | 39.24 | —— 0 40.01 — 8.75 2.88
FN Test (0) 59.35 | 69.88 | 43.08 | 61.40 33.25 48.14 44.67
Validation (0) | 16.39 | 19.28 | 11.63 | 16.83 8.30 13.40 10.79

Table C.5:The ROC parameters of prediction models using the 320-Dnstnaction data.
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New data study

D.1 Visualisation results

According to the statistical histograms shown in Figureférkstudying the most extreme
situation where data samples are completely different fitwertraining dataset, the nine

data samples are generated and listed in Table D.1.
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Table D.1: Structure informations of the nine generated damples. According to the
histograms shown in Figure 6.2, the nine data samples whielt@mpletely different
from the training dataset (database DB1) are generatedDNAesequence are presented
in the 5’-3’ order, and the listed amino acids labels at posig, -1, 3 and 6.

In Subsection 6.2.1, the visualisation results of the degaldB2 based on the Eu-
clidean metric has been discussed. Figure D.1 plots thedrat of the dissimilarities
between the validation and training datasets in data spc€igures D.2 and D.4(a),
the visualisation results of the test dataset which usiegMimkowski metric as the dis-
similarity measure, and relevant histogram of the dissirties in the input space are
are presented, respectively. Moreover, the representeggults of the validation dataset
(DB3) based on the Minkowski metric and relevant histograeradso provided in Figures

D.3 and D.4(b).

236



Appendix D

NEW DATA STUDY

1000
900
800

600
500
400
300

200

Frequency of data samples at each index distance.

100

b

0 : :
2.45 25 255 2.6

2.65 2.7

Index of averaged distance between validation and training data samples.

(a) Histogram of the averaged Euclidean distance between editation data samples and the

training dataset in the data space.
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(b) Histogram of the averaged Euclidean distance betweenahmny dataset in the data space.

Figure D.1: Histogram of the averaged Euclidean distance between fitatian and training
datasets. The distance changes from 2.45 to 2.7, and dapdesaane mainly in the ranges: 2.6 to
2.7. (a) is the histogram of the averaged distance betwedntest data samples and the training
dataset. (b) as a reference plots the histogram of the aedigtance between each test data
samples and the training dataset.
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(a) Visualisation result of the test dataset which only thenirey dataset has been trained. Similar

as Sub-Figure 6.7(a), some test data samples are projetezdad to the main visualisation area.

(b) Visualisation result from re-training on the whole datasethe figure, all data samples can be
projected into the main visualisation area. The test datgkss are projected to the clusters which
have same amino acid colour coding and similar structuiimdtion.

Figure D.2:The visualisation results of the test dataset based on Migkiometric. Data samples

in bule colours are from the training dataset, yellow catorgpresent the test data samples. (a)

is the result only use the training dataset to train the Visaigon model. (b) is the visualisation
result which both the training dataset and the validaticaskt have been trained.
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Minkowski-training data set only

Training data
Validation data

(a) Inthe figure, as the validation dataset is much larger thatrétining dataset, the training dataset

are completely overlapped by the projected validation dataples.

Minkowski—-both training and validation data sets

Training data
Validation data

(b) Similar as Sub-Figure 6.10b, while the model is re-trainedhe whole dataset, the projected
validation dataset can be clustered into the relevant grotipe training dataset represented in the
centre of the main area have different structure featums the validation data samples.

Figure D.3: Visualisation results of validation dataset (database )O83using the Minkowski

metric in the data space. (@) is the result only use the rgidataset to train the visualisation
model; (b) is the result use both the training and validatiatasets to train the NeuroScale model.

239



Appendix D NEW DATA STUDY

Test data set vs. training data set
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(a) Histogram of the averaged Minkowski distance between thieaied training datasets.
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(b) Histogram of the averaged Minkowski distance between tlidat&on and training datasets.

Figure D.4:Histogram of the averaged Minkowski distance between miffedatasets. (a) is the

histogram of the averaged distance between each test dapdesaand the training dataset. The
distance changes from 2.8 to 4.4, and data samples are nraitwy distance ranges: 2.8 to 3.4

and 3.4 to 4.4. (b) the histogram of the averaged distanaecket each validation data samples
and the training dataset. The distance changes from 3.4tadd data samples are mainly in the
distance range: 4 to 4.6.
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