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Regeneration limit of classical Shannon capacity
M.A. Sorokina1 & S.K. Turitsyn1

Since Shannon derived the seminal formula for the capacity of the additive linear white

Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free

information transmission rate. However, the capacity above the corresponding linear channel

limit can be achieved when noise is suppressed using nonlinear elements; that is, the

regenerative function not available in linear systems. Regeneration is a fundamental concept

that extends from biology to optical communications. All-optical regeneration of coherent

signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration

on the Shannon capacity has remained unstudied. Here we propose a new method

of designing regenerative transmission systems with capacity that is higher than the

corresponding linear channel, and illustrate it by proposing application of the Fourier

transform for efficient regeneration of multilevel multidimensional signals. The regenerative

Shannon limit—the upper bound of regeneration efficiency—is derived.
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S
hannon capacity1 defines the maximum amount of error-
free information that can be transmitted through a
communication channel. Although the linear Shannon

limit1 was calculated in 1948, there is no unique nonlinear
Shannon limit, as nonlinearity can occur and can be designed and
modified in various ways. However, the current existing
estimations for lower bounds2–5 on the Shannon capacity are
still referenced as the nonlinear Shannon limit. The calculation of
the Shannon capacity for different nonlinear channels is an open
and challenging problem.

The existing optical communication systems and technologies,
which are primarily responsible for the global data traffic, are
facing serious challenges due to nonlinear properties of fibre
channels2–5. It is fair to say that the optical communication sector
has reached a bifurcation point and a number of fundamentally
new methods to improve information transmission are under
investigation around the world (see, for example, refs 6–8 and
references therein). All-optical regeneration, being energy efficient
and effective mitigation of noise impairments, attracts attention as
a powerful tool for improving quality of signal transmission9–19.

In the current study, we develop a theoretical framework for
calculating the Shannon capacity (mutual information optimized
over input signal distribution, as defined by Shannon) for
nonlinear regenerative channels illustrating it on the example of
the proposed regenerative Fourier transform (RFT). Moreover,
the maximum gain in Shannon capacity due to regeneration (that

is, the Shannon capacity of a system with ideal regenerators—the
upper bound on all regenerative schemes) is calculated analyti-
cally; thus, the regenerative limit to which the capacity of any
regenerative system can be compared, as analogue of the seminal
linear Shannon limit, is derived for constructive nonlinearity.

Results
Regenerative mapping. We propose a new technique—the
regenerative mapping (see Fig. 1a,b)—for designing the classes
of nonlinear communication channels with capacity exceeding
the Shannon capacity of the linear additive white Gaussian noise
(AWGN) channel. An important new feature introduced by the
considered nonlinear mapping is the potential for continuous
nonlinear filtering with signal regeneration without requiring a
hard decision. This differs from traditional approaches based on
ideal regenerators19, which are characterized by step-like
piecewise transfer function. The proposed practical example of
regenerative mapping incorporates experimentally verified
regenerative models12,20 and enables analytical optimization.
Whenever the nonlinear transformation has multiple fixed points
(Fig. 1c), the consequent interleaving of the accumulating noise
with the nonlinear filter produces effective suppression of the
noise (see Fig. 1d). The created washboard potential (Fig. 1c)
quantizes the signal and improves transmission, with a
consequent increase in capacity. A similar idea has been
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Figure 1 | The regenerative transfer function. y¼ T(x)¼ xþ a sin(bx) (a) plotted with fixed b¼ p shows periodic washboard potential with the slope

defined by the parameters; (b) transfer function (TF) with varying a and b at x¼p higher intensity is shown by a lighter colour, the optimal values

are shown by dashed lines; (c) y¼ T(x) for the parameters b¼p and a¼ 1/b—the optimal set of parameters defines zero slope at the stationary points

(maximum noise suppression); (d) Gaussian conditional PDF P(y|x) for the channel with one filter with TF, y¼ xþ p� 1 sin(px) illustrates the

regeneration effect at the points defining the signal alphabet.
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discussed in multiple contexts, ranging from physical systems21 to
the interpretation of biological memory effects in terms of
potentials with multiple minima22. In quantum theory, a
qualitatively similar phenomenon is known as the Zeno effect,
where continuous measurement of the quantum system and
associated von Neumann collapse of wave function prevents the
natural dispersion of the wave function and causes the quantum
system to remain in the same state23.

Consider a regenerative channel with R identical nonlinear
filters placed along the transmission line. The cascaded
regeneration was demonstrated for various regenerative
schemes16–18. The signal transmission (for simplicity, signal
propagation between the regenerators is assumed to be linear) is
distorted by an AWGN that is uniformly distributed along the
line, which can be considered as an analogue of the random force
in the time-continuous case or noise mixing with the signal
during transmission through the media. The regenerative map
has a set of special points that are optimal for the nonlinear
filtering. The nonlinear transformations y¼T(x) (see Fig. 2)
result in the effective potential, which creates attraction regions in
the signal mapping. When the points are ‘attracted’ to the
alphabet, the alphabet should remain stable. This leads to the
following set of conditions imposed on the transfer function:

T½x�� ¼ x�; ð1Þ

T 00½x�� ¼ 0; ð2Þ

jT 0½x�� jo1: ð3Þ
The first condition means that the alphabet is defined by the

stationary points x* of the mapping. Next, the transfer function
should change curvature at the alphabet; in other words, the
alphabet point is the centre of the attraction region. The third
expression reflects the stability condition; that is, the distortion of
the signal points is effectively suppressed (see geometry in

Fig. 2b). When the first derivative is equal to zero, the alphabet is
called superstable.

Regenerative Fourier transform. As an illustration, we propose
the regenerative Fourier transform (RFT). The concept of RFT
(see Supplementary Fig. 1, Supplementary Note 1) may be
generalized to any complete orthogonal system of functions.
Without any loss of generality, we use sine functions as the basis
for the expansion. The input signal is described by the waveform:
s ¼

P
lðxRl þ ixIl Þf ðt� lTsÞ, here summation is performed over

the number of symbols, f(t) is a carrier pulse shape and Ts is a
symbol period. We apply RFT to each quadrature and add the
original and transformed signals:

yRl þ iyIl ¼ ½xRl þ a sinðbxRlÞ� þ i½xIl þ a sinðbxIl Þ�
Integrated optics-based realization makes FT practically available

for numerous emerging applications in optics24–29. We show that
FT can be used for efficient signal regeneration: RFT. Being the FT
of the ideal regenerator, described by the stepwise transfer function,
RFT represents the highest achievable regeneration efficiency and
can be applied to multilevel multidimensional signals. The RFT
mapping is shown in Fig. 2a. According to the previously described
optimization procedure, in the considered example the alphabet is
placed at the points p(2kþ 1)/b, where kAZ, that are stable if and
only if abr1. In particular, the system is superstable when ab¼ 1,
this gives the optimum parameter values, whereas inequality
defines the suboptimal parameters range.

As indicated in ref. 30, it is challenging to regenerate high-order
constellations (higher than 32) using the conventional approach of
regenerating phase and amplitude, as such constellations have tight
phase packing due to energy efficiency requirements. Therefore, a
new approach for regenerating separately the two signal quadratures
will be required. The proposed RFT is the first scheme to operate on
both quadratures and enable an infinite number of regenerative
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Figure 2 | The regenerative channel model. (a) The regenerative transfer functions, plotted for the ideal regenerator and RFT: y¼ xþ a sin(bx) with the

alphabet shown by vertical lines; (b) the graphical interpretation of the stability analysis; (c) the scheme with regenerative filters (denoted by F)

placed equidistantly along the line; noise distortions are effectively filtered by the ideal regenerators (see constellations before and after noisy transmission

with attraction regions shown by straight lines); and (d) numerically calculated Shannon capacity and gain (compared with the linear AWGN channel) for

RFT channel with R¼ 20 and R¼ 10 filters (showed by red and green colours, respectively) for both the superstable (dashed-dotted) ab¼ 1 and

stable (dotted) ab¼0.5 mapping. The upper bounds of regeneration efficiency for the given number of the ideal filters R¼ 10 and R¼ 20 are shown by

solid green and red curves, respectively.
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levels. In this sense, this scheme will also potentially enable
regeneration of the conventional modulation formats (like, for
example, rectangular quadrature amplitude modulation). Moreover,
RFT enables the high regeneration efficiency without making a hard
decision. The calculated corresponding Shannon capacity shows
that such a channel can provide a capacity above the classical
Shannon capacity of the linear AWGN channel.

Shannon capacity. The definition of the Shannon capacity for an
arbitrary channel (in what follows, capacity C is per unit band-
width) involves maximizing the mutual information functional1:

C ¼ max
PðxÞ

Z
DxDyPðxÞPðy jxÞlog2

Pðy jxÞR
DxPðxÞPðy jxÞ ; ð4Þ

over all valid input probability distributions P(x) subject to the
power constraint

R
DxP(x)|x|2rS. Here, the statistical properties

of the channel are given by the conditional output–input
probability density function (PDF) P(y|x).

Shannon capacity (equation (4)) of the considered systems is a
function of the signal-to-noise ratio (SNR), the number of
nonlinear filters R and the parameters of nonlinear mapping. SNR
is defined here as the ratio of the input signal power S to the noise
added linearly to the signal during transmission at each node
k¼ 1,y, R: SNR¼ S/N, where the accumulated noise is given by
N¼S Nk with k being a temporal31,32 or spatial index.

Note that in the nonlinear communication system the
definition of the in-line SNR is a nontrivial issue, due to the
mixing of signal with noise during propagation. The introduced
SNR has the meaning of the signal-to-noise ratio in the respective
linear system in the absence of nonlinear in-line elements. This
enables the comparison between the performance of the
considered system and the corresponding linear AWGN channel
with the same noise level. Evidently, the effect of noise squeezing
is enhanced as the number of regenerators/nonlinear filters
increases (see Fig. 3). To quantify the overall effect, we studied the
capacity of the source-destination transmission as a function of
the SNR that incorporates the resulting power of all added noise
at the source-destination link, which is fundamentally different
from the decode-and-forward channel model.

The numerically calculated Shannon capacity (mutual informa-
tion optimized over all input PDF P(x)) is shown in Fig. 2d, which
demonstrates visible capacity gain over the Shannon capacity of
the linear AWGN channel. In the limit of a large SNR and/or large

number of nonlinear filters, all regenerative schemes tend towards
asymptotic behaviour, when the gain gap between regenerative and
linear AWGN channel capacity is constant. Using the method of
steepest descent, we derive the capacity increase for the n-
dimensional channel with the RFT transfer function for the
suboptimal parameters’ relation (see equation (3)) q¼ abo1:

lim
SNR!1

DCS ¼ DCRðRÞ�
n
2

log2
1�ð1� qÞ2ðRþ 1Þ

1�ð1� qÞ2

 !

Regenerative limit. The capacity analysis of the system with the
ideal regenerators defines the upper bound of regeneration
efficiency. The ideal regenerators assign each transmitted symbol to
the closest element of the given alphabet (the corresponding step-
wise transfer function is plotted in Fig. 2a by the dashed blue line).

At low SNR range, the Shannon capacity is well approximated
by the following expression:

CR ¼ n½1þmþ log2ðmþ Þþm� log2ðm� Þ� ð5Þ
with the transition matrix elements (denote SNR as r): mþ ¼
m� ¼ ð½1þ erf ½

ffiffiffiffiffiffiffiffiffiffiffi
Rr=2

p
��=2ÞR and m±¼ 1�mþ .

As the SNR increases, the distance between the closest
neighbours reaches the optimal cell size, which is defined by the
noise variance and the number of in-line regenerators,
d2

opt ¼ 8Nk=RWðe2R2=8pkÞ, with k¼ 1þ 10R� 1 and W is the
so-called Lambert W function (further, we use normalized value
D ¼ dopt

ffiffiffiffiffiffiffiffiffiffiffiffi
R=8N

p
). Therefore, with the growing signal power, the

amplitude distribution remains equidistant, whereas the maximum
entropy principle defines Maxwell–Boltzmann distribution as the
optimal PDF for a fixed average energy constraint (which is in
agreement with performed numerical optimization). Thus, with the
growing SNR, a constant gap (that quantifies improvement) can be
seen between the regenerative channel and linear AWGN channel
capacities (see Supplementary Note 2). The capacity improvement
is defined by the noise variance and the number of regenerators:

DCR ¼
n
2

log2
2peN
d2

opt

 !
þ nR

e�D2

D
ffiffiffi
p
p log2 R

e�D2

4D
ffiffiffi
p
p

 !
ð6Þ

An additional noise induced from a device itself NT can be
incorporated in equation (6), by substituting: N-NþRNT.
Moreover, one can estimate a critical value for the noise variance,
which can be squeezed by the transformation. By using
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regenerative mapping technique, it is possible to define a half-
width D of a plateau (superstable choice of parameters:
T0(x*)¼ 0) around an alphabet point x* by solving: T0(x*þ
D)¼ 1 (in particular, for RFT the condition defines: D ¼

ffiffiffi
2
p

=b).
Therefore, the noise is reduced if N/RþNTrD.

The maximum capacity gain due to regeneration (that is, the
maximum regeneration efficiency) is observed for the binary
channel. The capacity gain reflects the trade-off between the
system complexity and capacity improvement. As the number of
regenerators increases, the peak of the capacity gain shifts to a
smaller SNR. Therefore, employing a low SNR regime and using
regeneration, one can achieve high transmission performance
with low energy consumption. The minimum SNR value, when
dopt is achieved, defines the maximum capacity ratio to its linear
analogue; that is, SNRopt ¼ d2

opt=4N . At this SNR value, both
analytic formulae equations (5) and (6) can be interpolated to
describe capacity at the full range of the SNR.

Numeric validation. The analytical approximations shown by the
black lines in Fig. 4a demonstrate an excellent agreement with the
result of numerical computations of the Shannon capacity that
exceeds the linear Shannon limit for different number of regen-
erators (here numerical optimization over input PDF was per-
formed). Figure 4b shows the mutual information (here all
symbols were assumed to be equiprobable) for rectangular (left
panel) and ring (right panel) packing. Moreover, here we stress
the importance of input signal optimization for capacity calcu-
lations in nonlinear regenerative channels; otherwise, nonlinearity
(even constructive one) will degrade system capacity.

Discussion
Note that the nonlinear regenerative channel is a fundamentally
different (to linear AWGN channel) information channel with
the constructive use of nonlinearity. In such nonlinear channels,
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the derived regenerative limit can be considered as the analogue
of the Shannon linear limit—it is the maximum error-free
transmission rate in regenerative channels. In fibre-optic
channels, one can incorporate the impact of Kerr nonlinearity
and dispersion on the channel capacity as first-order perturba-
tion, whereas the main order is given by equations (5) and (6).
The developed capacity calculation model can generally be
applied to various regenerative schemes, where methodology (in
Supplementary Note 3, further illustrated on RFT Supplementary
Note 4) can be adapted accordingly.

The introduced class of regenerative channels has information
capacity that exceeds the Shannon capacity of the linear AWGN
channel. The gain is achieved by noise squeezing due to the
introduced mapping filter that creates attraction regions around
the stable alphabet. The model is generic and the obtained results
can be applied to a wide range of physical problems. The results
reveal a fascinating new aspect of the interplay between stochastic
processes and system nonlinearity, stressing the impact on the
channel capacity.

Methods
The Shannon capacity is calculated by defining the conditional PDF, which is
expressed through Onsager–Machlup functional or action of the path given by the
stochastic map—a discrete version of the Langevin equation for the stochastic
processes at each node (see Supplementary Note 3). The detailed description of the
capacity functional optimization is given in the Supplementary Note 5.
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