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SUMMARY. 

A systematic approach to the generation of a simplified 

model is presented. The individual sections of the systematic 

approach: 

1. Model Building. 

2. Simulation. 

3. Simplification. 

4, Use 

are discussed in detail. 

A dynamic model of the catalytic tubular reactor for the 

dehydrogenation of iso-propanal to acetone is developed. This model 

was successfully simulated on an analogue computer. The results 

obtained from the analogue computer simulation were successfully 

analysed to produce a considerably simplified dynamic model of the 

reactor. 

At each stage in the systematic approach the theory, and 

practice as applied to the reactor model, is presented.
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Chapter One. 

Introduction. 

The rapidly increasing use of automatic control and 

optimisation in the process industries has led to an increased 

demand for accurate but simple mathematical models of the 

dynamics of the processes involved. The emphasis here is on the 

word 'simple', since while there is no difficulty in the 

formulation of a mathematical model, the model is often 

prohibitively complex. 

Unfortunately there is no completely satisfactory means yet 

known, of simplifying a complex model. Linearisation is the only 

universal method. This of course suffers from the limitation 

that theoretically its accuracy is only within infinitesimal 

limits. Although often practically satisfactory, proof of this 

fact, which is difficult to obtain, is usually required. 

The introduction of the analogue computer has added a means 

of handling both simple and complex models. Methods such as 

frequency response, enable comparison for compatability of the 

different models. Furthermore, these methods which are described 

later, can be used to obtain simplified mathematical representations 

of a system in a form amenable to analysis for optimal 

performance of control systems. 

The object of the work was to simulate an integrated net- 

work of process plant items, using a limited amount of analogue 

computer equipment.



Chapter Two. 

Model Building. 

2.1 Introduction. 

There are two ways of building a model. These are firstly 

the collection of data from an existing plant and its analysis, 

and secondly the quantitative method based on reasonable 

assumptions. The importance of the latter becomes prime when 

considering design, as at that time there may well be means of 

obtaining actual operating data. 

The means of the quantitative method is well published and 

the applicable rules proved successfully. Basically the 

requirement to formulate a model is a mathematicldescription 

based upon reasonable assumptions of ideality, plug flow or 

complete mixing in reactors, and the application of the laws of 

conservation, mass, energy and momentum, to a differential 

increment. : 

The object of this chapter is to show how the quantitative 

method was used to obtain the mathematical model and also how 

the model must be simplified prior to solution by analogue 

computer.



2.2 Choice of the Tubular Reactor. 

For the purpose of the study undertaken it was necessary 

to take, as an example, an existing system. It was accordingly 

decided to study the production of Acetone from Isopropanol by 

dehydration in a catalytic tubular reactor. The reaction involved 

is gas phase and reversible, being first order in the forward 

direction and second order in the reverse. 

Isopropanol — Acetone + Hydrogen 2.1 

=—s (CH), CHOH (gas) — (CH,),CO(gas) + H, (gas) 2.2 

The reason for the decision was that help and information 

of the type required for the study was made available by the 

Ministry of Technology Warren Spring Laboratories, where a plant 

of the type mentioned was being studied as an experiment in direct 

digital control. The system of non-linear partial differential 

equations of the mathematical model also contains most of the 

difficulties typical of chemical engineering systems.



2.3 Tubular Reactor Model. 

The assumption upon which the mathematical derivation of 

the tubular reactor model is based, is that of plug flow. Plug 

flow means that the fluid in its passage along the tube under- 

goes no longitudinal mixing. Hence the fluid moves as if it 

were a solid bar or plug along the tube. This assumption alone 

would leave the model with the complexity of concentration and 

temperature gradients in a radial direction. The temperature 

gradients occur because of the heat transfer at the tube surface 

and the finitenon-zero resistance to heat flow of the fluid. 

The concentration gradients are dependent on the temperature 

gradients because of the different reaction rates at different 

temperatures. If there were no heat transfer between the fluid 

and the tube wall no gradients would exist. This is because the 

heat generated by the chemical reaction taking place within the 

fluid would be constant across a radial cross-section. 

It is necessary to overcome this complexity by assuming 

either infinite thermal conductivity within the fluid, or 

complete lateral mixing. The former while arranging for no 

radial temperature gradients, will infer no longitudinal 

temperature gradients, which is more than is required. The latter 

allows for both temperature and concentration gradients along 

the length of the reactor, while negating any radial gradients. 

Hence complete lateral mixing will be assumed. 

The velocity profiles across the diameter of the tube of



the true and assumed cases show (FIG 2.1), that if the flow is 

turbulent, the assumption of plug flow is very good indeed. 

The accuracy of the assumption of complete lateral mixing is 

more difficult to compare with the true case. It is however, a 

method of averaging which is usually an acceptable simplification. 

Applying these assumptions to an increment of reactor length 

for an increment of time yields the transient mass and heat balances 

as derived in Appendix 1. These represent the mathematical model. 
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The chemical reaction (equations 2.1 and 2.2) has the following 

form of kinetics: 

rate = k 5G Re MeKe 2.6 

where the values of the rate constants are given by the Arrhenius 

relationship: 

kp = Pe exb(-E/RT) et
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In the case under consideration heat transfer takes place from a 

heating medium in a jacket surrounding the tube, and also to the 

catalyst packed in’ the tube. For both heat transfer cases it will 

be assumed that the heat transfer coefficient is constant with 

respect to the fluid properties and actual measured values will be 

used. The equations for the heat transferred, as derived in Appendix 

1, are as follows: 

between the heat transfer medium and the fluid in the reactor, 

Yo te iF Uy a ( 9 - 8) ag 

between the fluid in the reactor and the catalyst 

aa . ¢,(2@,-9) 44 
LE 

The importance of the fact that coefficient 'C," in equation 2.9 

is constant, will be seen later.



2.4 The Continuous Stirred Tank Reactor Model. 

The model is derived in Appendix 2. The conditions in the 

reactor make the contents an intimate mixture of the gaseous 

reactants and products, and the solid catalyst. For the real 

reactor it is assumed that the catalyst is packed to a voidage 

below the level required for free movement. Hence the practical 

significance of the model is not immediately apparent. It is 

shown later, however, that the tubular reactor can be approximated 

to a series of stirred tank reactors. The comparative ease of 

analogue computer simulation of the model of this series of 

reactors gives this model its importance. 

The basic assumption for the theory of a continuous spree 

tank reactor is that the contents of the reactor are completely 

mixed so that the mixture has no concentration or temperature 

gradients in any direction. The outlet stream must, therefore, 

have properties identical to the properties of the contents of 

the tank. 

The second assumption is a simplification. It is assumed 

that there is no variation, due to temperature variation, of the 

total mass contained in the tank. This is, of course not true, 

but if only small variations in temperature occur, then the effect 

of the assumption is minimal. This assumption is equivalent to 

assuming constant molar density. It is shown later, how the vast 

heat capacity of the catalyst present allows only minor 

fluctuations in temperature and therefore, density.



The derivation of the heat and mass balances are shown in 

Appendix 2 and yield the following mathematical model:- 

bur = by + Crate) Vp 2.10. 

dour ee iG + Xjour) (rate) + bw Cor io ee) 

dt 
Vo Bale 

A Oour = qw Aw at qs As + bw Gre — Gor) 

dt Ve Vp 

— rate) AH, +(¢s + Ce Ca) 2 Gor -Q) 

RAL 

Since the reaction is the same, the kinetics are identical 

to those for the tubular reactor. ‘The heat transfer equations 

are as follows:- 

qw Aw Sal Aw (G Pon) PNB, 

dA& = C (G ~ Gor) 

dt 
2h. 

on



2.5 The Difference Approximation. 

Before a comparison of the two models (sections 2.3 and 2.4) 

can be made, the method of Solution of the partial differential 

equation of the tubular reactor model must be considered. ‘The 

method used was by analogue computer and since the analogue 

computer cannot integrate in two dimensions simultaneously a 

technique had to be found for reducing the tubular reactor model 

to a form which could be handled. 

The difference approximation for derivatives with respect to 

one dimension, based upon Taylor's Series expansions, yields 

satisfactory results. By expansions a number of different 

difference approximations can be found. Whichever one is used 

however, the result will always be in the form of a simplified 

model of the tubular reactor as a series of differential 

difference equations. 

The first Taylor's series expansion used is:- 

ye OX eda 
Yo-an =k = AX 3X + ar ax ie 2.15, 

The first and simplest difference equation is derived from 

2 
equation 2.15 by neglecting terms of the order of AX . 

giving:- 

a oo cake 

ae 216,
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The next step is to take another expansion as follows:- 

= ae a AX? PY Viewer) vx ar AX 9x IT 5 2+ 

  

Subtracting equation 2.17 from 2.15 gives the second difference 

approximation :- 

a Ye x+6x X-AX 

aux ZAX AR 

expanstons 
By further additions of Taylor's series expanions for the general 

i) 

term yk + NAX a series of difference approximations is 

formed. By careful choice they can be arranged in order of 

apparent accuracy, in that the first term neglected is of 

increasingly higher order in AX . ds AX is small, the higher 

the power to which it is raised, the smaller the term in which it 

occurs will be. Considering the first two approximations 

(equations 2.16 and 2.18) it can be seen that the first term 

2 
neglected in 2.18 is 2 (‘A x) ry% while that for 2.16 

3! ox: 

2 
is At oS + The expected errors involved should 

mean that equation 2.18 represents the more accurate approximation. 

There is however, the consideration of the application of 

these approximations, and the effect they have on the solution 

of equations to which they are applied. Consider, therefore, as
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an example the solution of the following equation:- 

SO mee ee ome LG 2.19 
ox JW 

Using the two difference approximations on the 'X' dimension 

yields :- 

eee 
ae AX es 

using equation 2.16, and 

”, = - Nerax ~ Yeon 
pe C 2AX 2.2 

using equation 2.18. 

Equation 2.20 shows that the simplest approximation leads 

to negative feedback in the individual equations, whereas 

equation 2.21 shows that the second approximation does not. It 

is possible therefore, that in equation 2.21 there may be 

oscillation introduced by the approximation which is not in the 

original system. Because of negative feedback in equation 2.20, 

oscillation will not occur unless it is a property of the original 

system. 

Another important consideration is that of the boundary 

conditions. Equation 2.20 has only one imaginary boundary, 

denoted by ibe at the initial stage, and represents 

the input. Equation 2.21, on the other hand, has two imaginary



    

  

_ boundary conditions, an initial, or input, and a final value z lee 

denoted by Yet ax _ at the final stage. Higher | r $s 3 . 

  

imations using a greater number of the Taylor 

toe 
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2.6 The Difference Step. 

2.6.1 Introduction. 

One facét of the difference approximation which does not 

appear in the literature is the use of varying step lengths along 

the differenced dimension. The reason is perhaps that the method 

is used mainly in conjuction with digital computation, in which 

case the waste of storage space in using a number of different 

difference step lengths would be prohibitive and unduly complex. 

For analogue computer solution however, each step length is part 

of a coefficient to be set on a coefficient potentiometer, and 

therefore, no further difficulty he encountered in using 

different step lengths. 

The following short study (section 2.6) was made, to determine 

the theoretical errors in the final output stage for a simple 

linear model, and the empirical errors for a non-linear system. 

The aim of the study was to determine whether or not an advantage 

could be gained by varying the difference step length. 

To analyse the empirical results obtained, a graphical 

technique is proposed, which shows how the minimum final stage 

error can be obtained.
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2.6.2 Theory For a Simple Case. 

For a theoretical analysis of the errors involved in a 

linear system, consider the solution of the following equation 

both analytically and by differencing:- 

Cie oy, 218 
AX 

For a constant value of input signal to Ye) the analytical 

solution is:- 

Y = Yo) exp(-FAX) 293 

If the differencing relationship given in equation 2.16 is used, 

ise. a = (% yew) Ax the following 

equation is obtained:- 

Yeon = come te 22h 
| + AAX 

Reduction of the series of equations 2.24 to relate the output 

% to the system input Yo) gives:- 

al aan) jel 
t=) 

Hence, given a limiting value of the 'X' dimension equal to X, 

say, where
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x = Sa: 2.26 

there is an error on the output Y in the difference approximation, 

given by:- 

ator = Yor ( 1 __ — 2xp(-AX) ) 2.27 
Ma + AAXi) 
el 

Analytical minimisation of this error is achieved by setting the 

partial derivatives of the error, with respect to the N 

individual values of AX » equal to zero, ‘then solving 

the N  simulaneous equations obtained. Generally the partial 

derivatives are given by:- 

Benor) | Aiden An) amt) 
(+ AX) 77 (i + ax,) 0 AX; 

ul 

2.28 

Setting O(uror) = O and taking the ratio of any 
JAX; 

two equations in the set 2.28 gives:- 

(+ FAX, seve AAT 

[pea
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2.6.3 Graphical Representation. 

For the system previously discussed (section 2.6.2) a plot 

may be made of the error on the output of an N stage 

approximation, versus the fractional length of the individual 

stages of the total length. For a one stage process this yields 

a single curve Fig.2. The equation of this line is equation 2.27 

for t= 

bg. (amor) = Tey \ = exp(-Aax)) 2.3] 

| + AAX 

For a two stage process the series of curves shown in Fig.3 is 

obtained. The general equation of this set is again given by 

equation 2.27, this time for i = 2 

bt. (4rror)= ee - expt) a sin eee 
(1+ FIAX,i+ AAX,) 

2.32 
Interpolation between these curves shows that there exists a 

curve tangential to all the second stage curves. This represents 

the minimum error obtainable using two stages. This minimum error 

curve (marked 'B', Fig.3) has the equation:- 

(error) = mn Xo) ~ x p[-A(AX+Ax,))l 2.33 
4X, AX 1+ FAX (I+ BAX 
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As shown in section 2.6.2 the minimum is known to be AX, = AX, 

and equation 2.33 becomes:- 

(error) = ho { -2xp(-A2Ax) 23h 
() + AX) 

For stages beyond the second stage similar curves to 'B' 

(Fig.3) exist. These represent minimum error segmentation of all 

the steps in the differenced dimension. They are obtained 

empirically for the no stage by taking values lying on the 

similar curve for the (w-)* stage. Points above the 

minimum error curve for the (N ene stage cannot give 

minimum error values for the nn stage. 

Go find the minimum final error of aN stage process 

requires that all N minimum error curves be plotted. Taking 

the minimum final error shown by the plot and back-tracking gives 

the optimum lengths for all the stages. This is in fact, a 

specialised statement of the Principle of Optimality. The technique 

is, therefore, a graphical Dynamic Programming approach to the 

problem.
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2.6.4 Application of the Analysis. 

An analysis of the type described in section 2.6.3 was 

undertaken on the simulation described in section 3.6. Since 

there was no readily obtainable analytical solution to the 

mathematical model involved, a steady state solution by digital 

computer was used to make a comparison. The program and results 

of the digital calculation, together with the results of the 

analysis are given in Appendix TL 

It was possible to divide the length dimension into a 

greater number of segments for the digital calculation than for 

the analogue simulation. The results of the digital calculation 

were therefore, accepted as being more accurate. In fact, it 

was found that beyond one hundred divisions no perceptable 

increase in accuracy was obtained. Therefore, the division of 

the length dimension into a hundred was said to give the accurate 

solution.
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2.6.5 Summary of Results. 

The optimal fractional lengths for the simulation (section 

3.6) were obtained. They were found to be approximately 3/10, 

2/10, 2/10 and 3/10, for the 1st, 2nd, 3rd and 4th segments 

respectively. 

By way of comparison, the diagram Fig.4 shows the errors 

obtained for two other methods of dividing the length dimension. 

Firstly the length was divided into four equal stages. The use 

of this close approximation to optimal conditions increases the 

error by only 4%. The second method was division into segments 

of equal fractional conversion. Using the digital solution as a 

guide the length fractions are: 2/20, 3/20. 5/20 and 10/20. 

Under these conditions the final error is increased by 20% over 

that for optimal conditions. In fact, a more accurate result 

could be obtained by using an optimal three stage process.



ries mf ere ey  
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2.7 Comparison of Models. 

The model of the tubular reactor is to be simplified by 

differencing using equation 2.16. Equal differencing steps are 

to be used as suggested in section 2.6.6. The result is the 

following model. 

= by + (rate) AEp AL 2.35 boo 

AxXppr = —(1 + Xpourllrate) ~ by (Xa -Xmour) 2.36 

at AEpAL 

moe = Ay + + ba { n ¥ Bory 

dt A€ecdl A€pAL 

— (rate) (AHs* (core. GN26-6)) 2.37 
Cc 

Yu Ae na u, AGG: =63,7) 2.38 

dG, = C, ( Ce Bar) 2.39
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Since the term AE AL is the volume of the reactants and 

products, it equals V. Likewise the term AG=eyial 

is the volume of the catalyst. These equations are therefore, 

identical to the set for the stirred tank reactor section 2.4 

Hence the method of differencing reduces the tubular 

reactor to a series of stirred tank reactors.
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2.8 Comparison with the Real System. 

Information on steady state operation was given by Science 

Research Council's Warren Springs Laboratories and was compared 

with that obtained from the digital simulation (AppendixIV). 

Comparison was made Fig.5. It shows the good agreement between 

the model and the pilot plant at steady state conditions, and 

over a wide range of working temperatures. Unfortunately data 

on transient behaviour was not available.
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Chapter Three 

Simulation 

3-1 Introduction. 

The word simulation has a very wide meaning. Here it refers 

to systems undergoing change. A simulation is therefore, a system 

whose behaviour is analogous to another, with respect to the 

variation of the properties of the original system, along the 

dimensions of space, hence also the word analogue. 

The greater majority of analogues are for special purposes. 

These include physical models and pilot plants. Most of these 

suffer the major difficulty of scale factors, due to the need to 

use in the model values of the dimensionless groups describing the 

system identical to those of the plant. An example is the model of 

a large liner where the characteristic length in the Reynold's 

Number may be smaller by a factor of 1000. To find the conditions 

required, that is a Reynold's Number equal to that for the liner, 

may require a fluid of extreme properties. 

Two types of general purpose analogue computer exist, a 

mechanical one, invented by Bush in 1927, which was slow in 

operation and difficult to program, and the electronic analogue 

computer, which superseded the mechanical one just after the Second 

World War. The most important advantage of the electronic analogue 

computer is that the varying properties are scaled into voltages, 

and scaling problems of the type described above do not occur. 

The purpose of this chapter is to discuss the relative merits 

of the different means of simulating a system, with special 

reference to the partial differenbial equations of the model of the 

tubular reactor derived in chapter two.
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3.2 Description of Apparatus. 

The apparatus used was a parallel hybrid computer made by 

Electronic Associates Limited, and called the TR-48 Hybrid 

Computer. It is a solid state machine and hence the TR, an 

abbreviation of transistor, in the name. It consists of the 

following two major sections. Firstly, the most important section 

is the analogue, built for a basic complement of 48 amplifiers, but 

using certain refinements is capable of expansion up to 54 amplifiers. 

Secondly the logic and electronic mode control section, to enable 

control of the analogue section. 

The total complement of analogue equipment on the machine 

used is given in Table 1. As is shown, there are 44 amplifiers 

available. Of these, ten are track/store amplifiers, eight are 

contained in two blocks of quad amplifiers which may be used as 

inverters or as high gain amplifiers, but not as summers. The 

remaining 26 are general purpose amplifiers. In addition to these 

there are ten inverters contained in the variable diode function 

generation units. 

The 16 integrator networks all have variable time constant 

facilities, achieved by using four condensers in each network. 

These have the values 9 BE 1 FE: 209 pe and .01 ,#F. 

Appropriate selection of different combinations of these condensers 

yield four time constants of 1 sec., 100 ms., 10 ms. and 1 ms.. 

The usefulness of this aspect of the TR-48 is seen later when 

dealing with frequency response analysis. 

A recent addition to the control system of the TR-438 has 

enabled the addition of 30 servo-setting potentiometers which,
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together with 30 hand»setting potentiometers, make up the complement 

of 60 potentiometers. The new control system enables the read-out 

to print or papertape of the values of potentiometer coefficients, 

amplifier outputs and the summing junction potentials of integrator 

networks. The addition also enables the setting of the servo- 

setting potentiometers from the keyboard of the teleprinter used or 

via paper-tape through the tape reader. 

Another recent addition is a specialised TR-20 console, by the 

same maker, containing two four-cup servo multipliers and eight 

inverters. This unit can be slaved to the main computer. 

Patching connections between the two are via trunk connections 

which terminate in the face of both patching areas. 

The logic and electronic mode control complements are given in 

Table 2. A complete daseriprion of the function, and some of the 

simple uses of the individual components are given in the makers 

handbook. 

Only one type of unit sends signals from the analogue section 

to the logic. These are the comparitors which compare two analogue 

voltages and give as an output,logic signals relative to the values 

of the two voltages. 

Three types of unit are controlled by the electronic mode 

control, They are:- 

1. Integrators 

2. Track/store amplifiers 

3. The digital/analogue switches and relays. 

The integrators are controlled by switching them from operate to 

reset mode and vice versa. This type of operation is most useful
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for high speed repetative calculation and iteration. The track/ 

store amplifiers are used as a form of analogue storage and are 

controlled so as to follow the sum of the voltages on their 

summing junctions. When switched into the store mode they hold on 

their output the instantaneous value at the time of switching, 

until returned to the track mode. The switches including the relays 

are either open or closed depending upon their logical inputs. 

Full use was made in the work of all the above facilities of 

the machine, and were used in conjunction with the following three 

input - output devices:- 

1. Oscilloscope 

2. Teleprinter. 

3. Variplotter. 

All are adequately described by the makers handbooks.



TABLE a 

TR-46 Analogue Components. 

Component 

Amplifiers: General Purpose 

Track/store 

Quad. inverters 

Integrator Networks 

Trunks 

Readout panel 

Function switches 

Quarter Square Multipliers 

Variable diode function Generators 

Square Root function Generator 

Potentiometers: Servo-Setting 

Hand-Setting 

Comparitors 

Digital/Analogue switches 

Relays 

29 

Number. 

16 

10 

16 

a 
8 

8 
w
i
s
 

+ 
= 

on
y



TABLE 2. 

TR-48 Logic Components. 

Component 

General Purpose Registers 

AND Gate Blocks 

MONO STABLE Blocks 

DIFFEREN TIATOR Blocks 

Electronic Mode Control Block 

Tiraok/atere - Integrator Block 

Relay - Switch Block 

Indicator Block 

Comparitor Block 

Number 

30
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3.3 Breaking-in the TR-48. 

The analogue computer used in the work was delivered 

approximately one year after the work was begun. After it had 

been checked-out by the engineers, work with it could start. 

Because of its newness, a system of testing each piece of apparatus 

was found necessary. In the first few months a considerable number 

of units Tecate unstable or blew-out. These were repaired at 

frequent intervals by visiting engineers. 

It is significant perhaps, that during the first three months 

no really reliable results could be obtained. 

At a later period when the work was proceeding satisfactorily 

the computer was sent back to the manufacturers for certain 

modifications. These were the inclusion of the servo-setting 

potentiometers and the connections to the read-in and read-out 

facility. These modificationswre in fact, prototypes, and the 

result was to cause a further breaking-in period. 

On a number of occasions it became necessary to completely 

rewire the program in order to by-pass units which became unstable. 

The amplifiers were particularly prone to instability and the 

final program used a number borrowed from a similar machine to 

cover periodswhen unstable amplifiers had to be sent back to the 

makers for repair. 

During this period it was found that in most cases unstable 

amplifiers could be rendered stable by moving them to another 

location in the computer. This in fact, was a short term measure 

recommended by the manufacturers. Its effect was however found to
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be long term and the next stage of the breaking-in process was 

to find the most suitable locations in the computer for the 

amplifier units. This juggling process was time consuming but 

led to much greater amplifier stability. 

A further recommendation by the engineers was to exchange 

the transistors in pairs of amplifier units so as to gain stability 

by matching components. This also, was found very useful in 

rendering unstable amplifiers stable again.
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3.4 Methods of Simulating Partial Differential Equations. 

The mathematical model obtained for the tubular reactor 

contains the difficulty of being based on a set of partial 

differential equations. A number of techniques have been developed 

for the simulation of models of this form. 

One important group of techniques is based on the reduction 

of two-dimensional partial differntial equations by ‘pseudo - 

Laplace transforms'. The mathematical treatment of a simple 

tubular heat exchanger uses the pseudo - Laplace transform to 

enable replacement of the partial derivative of the length 

dimension. The reason that this method is applicable is that only 

the output properties are of real interest and values of properties 

at intermediate points along the length dimension are unimportant. 

Resulting from this analysis the model contains a time delay. 

This is in fact, as difficult to simulate as the original set 

of partial differential equations. There are however, a number of 

specially built units to enable simulation of the time delay. 

There are also a number of simple approximations which can be used. 

The means of solution fall into two groups, electronic and 

mechanical. The electronic are generally based upon algebraic 

approximations for the time delay and include for example, the well 

known Padé approximation. The mechanical means are special units 

designed to delay for a period of time the passage of an electric 

current. They include a rotating drum surrounded by condensers 

which charge and discharge as the drum rotates with the delay 

time being determined by the time taken for the condenser to rotate
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from input to the output points. Also used is a double headed 

tape recorder, where the delay time is the time taken for the tape 

to traverse the gap between the two heads. 

An extension of this pseudo Laplace analysis by Davies 

transforms the equations into an infinite series of simultaneous 

equations. By this method the accuracy of the results obtained is 

dependant upon the number of equations taken before truncation. 

Davies showed that reasonable accuracy could be obtained by 

truncation after five equations. The method however, introduces 

non-linearities even where the original system is linear. Also it 

is difficult if not impossible to use on non-linear systems. 

The simplest method of simulating partial differential 

equations is the method known as 'By Parallel'. This method 

entails setting up the complete set of simultaneous ordinary 

differential equations obtained by application of one of the 

difference approximation techniques. It is called by parallel 

because of the ability of the analogue computer to simultaneously 

solve the complete set of equations. One great disadvantage of 

this method is the need for a large quantity of analogue equipment. 

For example, if the original partial differential equation has a 

single non-linearity such as a multiplication of two varying 

properties, the differential difference approximation consisting 

of N stages, has N non-linearities, and will require N multipliers 

for the simulation. Real systems in fact, have many non-linearities 

often of considerable complexity and hence a very large amount of 

non-linear analogue equipment would be required for their
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simulation. For the system under consideration (chapter 2), 

using four difference steps, some 32 multipliers and 250 amplifiers 

would be needed. This is unfortunately far beyond the range of 

the available equipment. 

An extension to the 'Parallel' method can be made when dealing 

with a hybrid computer. This is the technique known as 'time 

sharing by multiplexing'. This extremely useful technique enables 

the solution of the N differential difference equations with little 

more equipment than is required to solve just one of them. , 

The method is more consistent with the ideas of digital 

computation, in that it is a continuous system of updating values. 

It encompasses the use of some of the extra analogue equipment 

complement of the parallel hybrid computer as well as parts of the 

logic section. Most important is the need in multiplexing to 

use the hybrid machine's ability to store analogue information. 

As the name states, a number of analogue components are to 

be shared in time between the individual difference equations. 

The programming required to achieve this is best described in two 

parts, the multiplexer, derived from the logic section, and the 

analogue equipment which uses the signals generated by the 

multiplexer to achieve the time sharing. 

The multiplexer consists simply of a binary shift register 

into which a single '1' is placed at the most significant end 

on the first clock pulse of the calculation. On each successive 

clock pulse the '1' is shifted to the next less significant place. 

At the last stage the '1' is fed back to the beginning of the
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register. The shift sequence is shown in Fig.6. The number of 

bits required is N+ 1, where N is the number of difference 

increments used. 

The output of each stage is used directly as the control 

signal for the electronic mode control of the controlled analogue 

equipment. 

For the analogue stage consider the solution of the single 

differential difference equation:- 

Peary - f(%s he) a 

The method uses the same set of analogue equipment to compute all 

of the individual values of the derivatives od Y; » This is 

dt 

achieved by a process of switching successive values of the 

components ¥, and es into the single equipment block 

which then computes ah - Each value of a derivative is 

dt 

stored on the subsequent clock pulse by a track/store amplifier. 

On the completion of this series of computations the 'N' 

values of derivatives have been computed and stored. For a single 

increment of time all the integrators are allowed to integrate 

on the appropriate derivative values. This is achieved by using 

the N + 4th bit of the shift register to control the electronic 

hold of the machine. On completion of this time period a new set 

of derivative values is calculated and stored. It can easily be
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seen that the solution thus derived is a series of straight lines. 

If however, the time increment, during which integration takes 

place, is sufficiently small the solution will approximate 

adequately to the true solution, in that the output device would 

not be able to detect the difference. 

The only restriction on the function ' 5 " is that it may not 

itself contain any derivatives. The circuit for this type of 

calculation is shown in Fig.7. 

The simulation of a stirred tank reactor was investigated. 

This, as shown in chapter 2, is identical to the simulation of a 

single increment of the differenced approximation. Hence it is not 

representative of the whole reactor, but only of a part of it. 

The proposed ultimate aim was to simulate the total number 

of units which make up the complete chemical plant. This 

simulation was to be carried out using a very limited quantity of 

analogue equipment. Therefore, the initial aim was to reduce 

the complex model to a dynamically simpler equivalent form. 

Considering simplification to be of prime importance, partial 

simulation offers a means of obtaining suitable information from 

which the simplified model can be built.
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3.5 Comparison of the Advantages and Disadvantages of the Methods. 

Comparison of the methods is in terms of three important 

properties:- 

a) Applicability. 

b) ime taken. 

c) Equipment requirement. 

As discussed in section 3.4 the method using pseudo-Laplace 

transforms may not be applicable to non-linear systems, and the 

tubular reactor is of course, non-linear, but all the other methods 

are applicable. 

In considering time two aspects are important. The first 

is’ the time required for programming and debugging. Obviously 

the ehcrtes and simpler the program the shorter will be the time 

required for this part. Secondly is the operating time. Of the 

methods discussed only the last shows a divergence in this respect. 

In this case, for N difference steps, a study requires N times as 

many runs and takes N times as long to complete. 

For a study involving limited equipment availability methods 

using less equipment are to be preferred. The parallel method is 

extremely demanding in this respect and excessive simplification 

would be needed to allow its use. The method of time sharing by 

multiplexing requires a considerable quantity of such devices as 

logically controlled switches. This is particularly true in the 

case of multiple order systems. In the case of the tubular reactor 

the individual segment is third order and individual derivatives 

are a function of up to five property values. It was found that



          
respect t “switches the requironent was in excess of the ot 

eaneey available. This leaves the qonisica where BEE EIAL eee 
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3-6 Simulation of an Individual Increment. 

The implementation of the simulation presents no difficulty. 

The circuit diagram is shown in FIG.8, and Tables 3 and 4 show the 

individual amplifier outputs and the potentiometer settings 

respectively. Included in FIG.8 is the sinusoidal circuit used for 

frequency response analysis. 

Before implementation can be started, the means of simulating 

each individual non-linearity must be known. Also the model must 

be scaled so that the ranges of the variables of the problem can 

  

be set within the range of the machine. 

Most of the non-linearities in the tubular reactor problem are 

simple multiplications and do not require special analysis. One 

however, is more difficult. This is the value of the forward 

reaction rate coefficient given by the Arrhenius relationship 

equation 2.7. Although it is possible to obtain an absolute circuit 

(FIG.9) for this relationship the equipment requirement of the 

circuit is too great to allow its use. 

The absolute circuit is obtained by implementing the 

differentiated rate equation. The rate equation is: 

A= P sxp(-E/et) one 

Differentiating with respect to 'T' gives 

k : +. 305 

a os
 >
 — 
» 

The analogue computer will however only integrate with respect to
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time, as the remainder of the problem is to be run with time as 

the independant variable. Hence using the ident     

a al
e 

the resulting relationship for the differential of the rate constant 

is: 

35 a W oF : ef
 

Since the values of 6 and dB are available on the machine, 
dt 

the values of JT and dT can be computed from: 
dt 

4
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The absolute circuit is t. 
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A simpler and less equipment demanding method would be to use 

a variable diode function generator to generate the function of the 

rate constant. The shape of the curve however, does not allow a 

very accurate duplication to be made. A better method, suggested 

by Korn and Korn, uses the variable diode function generator to 

give an output equal to the error between the real function and a 

ately estat between two selected points on the curve. for best 

results the two points should be selected at opposite ends of the 

temperature scale to be used. Table 6 shows the function values 

and the errors between the function and the straight line. The 

curve generated by the variable diode function generator is shown in 

FIG.10. 

The scaling of this problem is the scaling of the two 

dependant variables concentration and temperature. The scaling of 

concentration was achieved in the basic theory by using only mele 

fractions, hence further scaling is unnecessary. The scaling of 

temperature presents the difficulty of requiring prior knowledge 

of the maximum temperature to be achieved by the system. In this 

case an approximate maximum temperature is known, as it will 

probably be equal to the temperature of the heating fluid. Allowing 

for a variation in the value of the temperature of the heating 

fluid, a maximum of 500°C is assumed. Setting this maximum as 

equivalent to one machine unit givesthe> range O - 1 machine unit 

equivalent to 0 - 500°C. 

One further property which was considered as requiring scaling 

was the rate constant. It was found however, that the rate constant
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CHAPTER FOUR 

SIMPLIFICATION. 

4.4 Introduction. 

The importance of simplification of a mathematical model for 

an analogue computer study is related to the requirements involved. 

If the simulation is to be of a single piece of equipment, 

simplification may well be unimportant. If a number of individual 

units are to be simulated simultaneously on a computer of limited 

size, simplification becomes of prime importance. 

Two methods of simplification of the model of the tubular 

reactor will be dealt with here. They are: 

1. Theoretical simplification by linearisation. 

2. Building a simple empirical model from experimental 

observations.



4.2 Linearisation, 

  

1 of the tubular reactor about its 

  

Linea: ation of 

  

steady state operating conditions, using or's series expansion 

should yield equations which are a reasonable approximation for 

  

small perturbations. The original model expressed in general form 

for a single incremental difference step is: 

dix, = fs ( Xe Xan 9 Keg 6, b) 4.) 

dt 

dx,“ fa ( Xes Xoms Xs 8 b) Ad 

JilOs Bes Ses Xg vba: 8.) a5 =k
 " 

Although this model is fourth order it can be reduced to third 

order by a simple but realistic assumption. 

ration is of     The assumption is that the reactor feed concen 

constant composition. This will, in fact, be ve nearly true since 

  

the feed is to be an azeotropic mixture of isopropanal and water.
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Under such conditions there will be a simple algebraic relationship 

between the concentrations, in mole fractions, of reactants and 

products. 

The reaction under consideration is of the type: 

Bet By eC. 

If one mole of A enters and m moles react we have: 

1 -m moles of A 

m moles of B 

m moles of C 

If throughout there were WM; moles of an inert present, then the 

total meles present at the finish is !+m+t+m. 

Hence the mole fraction of A (X,) is: 

and of B (Xs) is: 

From equation 4.5: 

Merge ace Eat Ce 
| pe 

Substituting into 4.6: 

ee ae pal ta tone 
atm a+mi 

45S 

Ab 

A7 

4.8



  

1 to a dynamic third order 

system of the form: 

es = Fi (us Xan OB) Ae 

oe aie fans Bus 859 Ber b) 4.10 
det 

48 = f,( 6,6) a 

Application of a first order approximation of a Taylor's series 

expansion to equations 4.9 and 4.10 yields: 
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          4,3 Methods of Dynamic Analysis. m1 

4.3.1 Introduction. 

The empirical methods of analysing system dynamics to obtain 

_ models are best divided into groups. Each group is defined by ra We      
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4.3.2. The Step Change. 

The outputs of systems which have undergone a step change on 

their input are known as process reaction curves. The shapes of 

these curves are well known for a multitude of systems. They are 

amenable to a number of simple forms of analysis. 

The simplest is the fitting of the unknown process reaction 

curve to an equivalent for a series of N equally sized stirred tank 

reactors. For this analysis the unknown process reaction curve 

must be compared with a previously prepared plot of a number of 

process reaction curves of different known values of N. The 

simplicity of this as an overall method is in the next stage of the 

analysis. The reason for the simplicity is that the inverse of the 

transfer function obtained for the equivalent N stage process is a 

known power series of time, and hence the solution is easily found. 

Another graphical method, using constructional techniques 

enables an approximation to the model to be made in the form of 

@ither a first or second order dynamic delay together with a time 

delay.



Ousputs 
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Approximate First Order System     
FIGURE 11 Response to a Ramp
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4.3.3 The Ramp 

The unrestricted nature of a continuous ramp change does not 

allow its use on all types of system. It would be of little use 

in dealing with the variation of any property having limits (e.g. 

concentration). It can be useful in determining certain parameters 

of systems of known dynamic characteristics. It is especially 

useful in showing the difference between the following two first 

order dynamic systems: 

(4) fA 
(Ts + 1) 

(4) eee 

(ses al 

The output curve (FIG 11) has three characteristics. 

1 Initial Slope 

2 Final Slope 

3 The intersection of the asymtote to infinity and the 

time axis. 

System (1) above has only two variable constants, whereas system 

(11) has four. Hence one of the characteristics in system (1) is 

dependant pon the other two. In system (11) all three can vary 

independently. Hence system (1) is a special case of systems of 

type (11) and can be readily identified.
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4.3.4 White Noise. 

The use of white noise as an input for analytical purposes 

arises from the fact that many systems in their natural environment 

will be subjected to an input signal upon which is superinposed 

some form of random disturbance. Disturbances of this type are 

called noise, and completely random disturbances having zero 

correlation and covering a complete spectrum are called white noise. 

The analysis must correlate the probability functions of 

input and output signals. Such a problem is extremely complex 

and may be used only in the simplest cases. The development of 

spectral density analysis has enabled such correlation to be 

achieved by comparison. Using this method a system which has 

white noise as its natural input may be continuously analysed in 

its natural environment. Thus the method is of specific interest 

in control problems where random input signals exist.
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4.3.5 The Sinusoid. 

Frequency response analysis is based upon the use of a 

sinusoidal input signal. The bounded nature of a sinusoid allows 

a system to sustain this type of continuously changing input for 

an unlimited period of time. The unlimited duration of the signal 

means that a system can reach a pseudo-steady state of continuous 

variation. The implication of reaching the steady state is that the 

analysis need not deal with transients. 

Three methods of analysing sinusoidal signals are: — 

  

1. Root Locus. -z 

2. Nyquist Diagrams. 

3. Bode Diagrams. a 

The Root locus method is a purely theoretical method used for r ; 

studying control stability of systems. The Nyquist diagram is 

  

used for a similar purpose but is of greater experimental importance. 

The Bode diagram, also of experimental importance, is used primarily 

for comparing the properties of different types of dynamic systems. 

It is through the use of the Bode diagram that frequency response 

analysis can be used to determine a mathematical model of the 

dynamics of a system.
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4.3.6 The Bode Diagram. 

The Bode diagram is a double plot of both phase lag and 

amplitude attenuation ratio versus the frequency of the input sine 

wave. The phase angle scale is linear while both amplitude ratio 

and frequency are logarithmic. Both plots are of interest, 

although the information obtained from one is duplicated in the 

other. 

The main attribute of the phase angle versus frequency plot tes 

  

is in the asymptotic values of phase angle as the frequency tends 

to both zero and infinity. The angular difference between the 

two values is representative of the order of the system. For a 

first order system this difference equals 90°, and generally for 

an ave order system the difference is 90n°. Hence a system's 3 

order could be obtained from a plot of experimental resulte. e - 

  

This information is duplicated in the amplitude ratio versus 

frequency plot but by a different parameter. It is obtained 

exclusively from the gradient of the asymptote as frequency tends 

to infinity. The asymptote as frequency tends to zero gives the 

value of the gain of the system. This alone makes this plot more 

useful. 

Por an oe order system the gradient passes from zero to n, 

and hence it will pass through all integer values between zero 

and n. The tangents to the curve and having integer values of 

gradient have two special properties. Firstly the verticals 

drawn from the intersection of two adjacent tangents to the curve 

are all the same length and equal to 3 log 2. Secondly the values
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of frequency at the intersections of all of these tangents with 

that of gradient zero yield sufficient information to give all of 

the time constants. 

The former of the above points represents a simple means of 

drawing the tangents, and a useful guide to systems having transfer 

functions which do not follow the form: 

sae 

Af (s + %) 
v= 

but may indicate the more general form: 

K ff (s+t) 
ist 

fis o a)
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4,4 Frequency Response Practice. 

Apart from the system to be analysed two other pieces of 

apparatus are required for frequency response analysis. They are: 

1. A-means of generating an input sinusoid. 

2. Ameans of observing and mesuring the output 

sinusoid. 

There would appear to be little difficulty in generating a sinusoid 

on an analogue computer since it is the solution of the simple 

differential equation: 

d*y 2 -y (where at t-0 ,4y-0 and al) te eee 

However, this equation is critically stable and a minor inaccuracy 

in components will cause the computer solution to be unstable. 

To overcome this effect a number of limiting circuits have been s 

devised to maintain a constant amplitude. This type of circuit 

often gives a sinusoid with slightly squared peaks. A far better 

means of correcting any amplitude variation is to use the natural 

corrective circuit contained in the equation: 

Sin bet, Coss a.=n Aah 

where an error may be obtained from: 

artor = [- suen*t ~cos*e ae
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It was found that using this equation to give a feed back error 

signal, a sinusoid with no measurable inaccuracy could be maintained 

for more than 100 cycles. It was considered that the advantage in 

inereased accuracy achieved outweighed the increase in required 

equipment. 

The simplest measurement of the output signal is to record, 

from any voltage measurement equipment, the voltage difference 

between peaks. 

There are however, two methods of obtaining the measurement 

more easily. 

1. The Quadrature component method. 

2. The null phase method. 

These methods are most useful where noise is a problem, and one — ; 

rather wasteful on apparatus where it does not occur, as on an 

analogue eneucers 

Finally the range of frequency to be used is determined by 

the flexibility of the computer. With the TR - 48's multiple time 

constant integration networks, a total of six logarithiec cycles 

range may be obtained. Since the time constants of the problem 

have a range of only one to a hundred the available range is more 

than ample.
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4.5 The Network Analogy. 

A preliminary investigation was carried out on the simulation. 

This revealed two properties of the system which could be used to 

further simplify the model. 

1. The dynamics relating the reactor inlet temperature and 

the heating medium temperature to the reactor outlet variables 

were essentially the same. This is to be expected since physical 

properties are assumed constant. 

2. The reactor flow rate was very nearly independant of the 

other inlet variables. This, too, is expected since any changes 

will be caused by changes of mass in the reactor. 

The preliminary investigation also enabled the order of the 

transfer functions relating inlet and outlet variables to be 

obtained. The results suggested that: 

1. Outlet temperature and Outlet concentration 
Inlet temperature Inlet concentration 

were first order. 

2. Outlet temperature and Outlet concentration 
Inlet concentration Inlet temperature 

were second order. 

However, a closer investigation of these results revealed 

that the first order systems were not truly first order. In FIG. 

12, the Bode diagram of a first order system is shown. The distance 

marked should be $ log 2. In the experimental plots it was 

found that the equivalent lengths were not 4+ log 2. This suggests 

that although the systems were basically first order, other
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components existed which should be accounted for. 

To attempt to accommodate the discrepancies the following 

form of transfer function was used: 

fos) = mae) iges| me ke 2G 

(Gs + (Ts +1) 

The difficulty of obtaining the individual values of the time 

constants now arises, and a statistical method was tried. 

For a transfer function as given in equation 4.26 the 

amplitude ratio (A.R) is given by: 

E haz (AR) - K + lw 
| +0) Xt + (wy) 

  

From frequency response values of (A.R), Gand K were obtained. 

Rearranging equation 4.27: 

(on) — | 2 es rt 
ee ee (any fa") - fea) Tt by 28 

This may be likened to the linear equation: 

y = A, + AX, + A,X, AQ
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where 

ALM Awe gy heme 1. be. 30, 31 5032 

Values of A, A,and A,obtained from the method of least squares can 

be substituted in equations 4.30, 4.31 and 4.32 to give values of 

Tas Tt and ase However, the accuracy of the values obtained is 

suspect because of the vast ranges of the variables Y, X,and x: 

The method was tried with the result that the values of the time 

constants were found to be too sensitive to the value of 'K' to be 

of any practical use. 

It was noted that the value of the term af, was constant 

Ta73 
with respect to 'K' even though the individual values of Tay qT, 

and qT; varied. The value of this term is the value of '%)' at the 

point 'A' in FIG 12 and may be found graphically. 

The failure of the statistical method led to the need to look 

at the system to enable identification. The symmetry showed that 

there was a simple network equivalent of the system, FIG 13. 

Analysis of the network and comparison with the simulation showed a 

further inadequacy. In all cases at the steady state there was a 

tendency to drift which could not be explained by computer drift. 

Closer analysis of the original mathematics showed the drift to be 

caused by the influence of the large heat capacity of the catalyst 

upon the system. Modification of the network to include this 

catalyst effect gave the network (FIG 14) which was to be used as 

the working simplified model.
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For the network FIG 14 

Bay oath eH eaeen tO, cH, Oe. 4.33 
oy) (Gs Ly) 

ie Ky a HO A Bue 
Xq Ce + ) ( Xai ) 

which yield 

= H,(ts +1 Ts +1) 4.35 
fs) 

(a
 

=o KE He Cgs 1) dese 
fis) $1

 
|r
 

H,( (hs +s +1) - 4, H,) b3] 

f(s) a]
 L
A!

 
2 2 

A EO Tass eal) L..38 
fis) s 

1} 

i} 

where f(s) = (ts +s +1 Ts +l)- KH,Ka(Gs+) -K,H, (T's+1) Bot
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Hence the four gains 

He nest do tae OL pee ee we 
A A i 

where yx i 
a ee telco 

y I= AHH, He dete 

and the four intercept$ of the tangents to infinity and zero will be 

A A ee ; 
Ty TG (UHR) BOP KK)” TE(- KH) 

For practical purposes these expressions do not yield sufficient 

information to obtain a solution. 

Considering the original model it is obvious that for the 

added loop in FIG 14 to be the catalyst effect then the value of 

KS must be unity, and the value of aS must be given by the constant 

'C' in equation 2.9. 

Using this information together with the four gain equations 

leaves only two further equations for a solution. These are 

obtained from the intercepty values of the first order systems. 

The advantage of neglecting the values of the other two
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intercepts is that of accuracy. These intercepts would be obtained 

from dynamic records of second order systems with very low gains. 

The measurement of the very small amplitude of the output sinusoids 

would cause a great loss in accuracy.
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4.6 Results. 

In the preliminary investigation it was noted that there was 

occasionally a small degree of non-repeatability. This was found 

to be caused by: 

1. Reading error 

2. Potentiometer drift. 

To obviate this in the final set of results the following sequence 

was used for obtaining values of amplitude ratio for different 

values of frequency. 

1. The potentiometers were set up. 

2. The computer started and a reading taken. 

3. The computer reset. 

4, 2 and 3 repeated a further nine times. 

5. The potentiometers checked. 

If at any time an odd reading was taken, or if at the end the 

potentiometers did not check, then the results were discarded and 

the sequence repeated. 

In order to take the readings the ascilloscope scale was 

calibrated against the machine scale. 

The final values obtained by frequency response are given in 

Tables 8 and 9 and are also shown in FIG 15. The calculated 

values of the constants in the model section 4.5 are given in 

Tables 10 and 11.



TABLE 3 

Potentiometer Settings. 

Potentiometer Number 

00 

03 

05 

16 

17 

20 

2a 

23 

30 

3A: 

32 

33 

35 

38 

ho 

44 

4 

43 

Value Typical Values. 

Law ~ 8666 

XLno +5506 

214 +1400 

Xo - 1826 

Xeiw +0000 

Ure aw / Wa +7750 

Us ass /ps cs(I-E)A 0050 

as/Voc +3800 

Gee +5506 

556 +5560 

303 +3030 

+333 23332 

b/Ve +2540 

B -6320 

Ge - 8000 

Ory 6000 

AH/c +6500 

2de/c +3200 

66
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TABLE 4 

Amplifier Outputs. 

Amplifier Number Output 

02 Xp 

03 Xp — Caw 

ol =(1-+ %q)/2 

05 -A% ft 

10 1.4.0 - f(@) 

te Xen - %e 

13 Xe — Xew 

44 las 

15 xe 

16 -dax,/dt 

17 + de/ dt 

21 -d6@/dt 

23 =a 

26 - (A, +A, 0) 

27 (rate) 

28 =I (rate)(1 + %9)/2 

29 [rate y+ Xn)/Q 

30 e, 

31 6,-@ 

32 Perae 

33 Ow -@ 

34 -.15/\o



Table 4 (Cont'd) 

Amplifier Number 

42 

Ab 

65 

Output 

g 

- (AH -24cO) fe 

A, +8,0 

68



TABLE 5 

Physical and Chemical Properties. 

Total cross-sectional area of reactor 

Surface area of catalyst 

Surface area of wall 

Voidage 

Density of catalyst 

Specific heat of catalyst 

Specific heat of isopropanol 

Specific heat of acetone 

Specific heat of hydrogen 

Heat transfer coefficient at catalyst surface 

Heat transfer coefficient at wall 

Forward reaction rate constant term 

Forward reaction activation energy 

Reverse reaction rate constant term 

Reverse reaction activation energy 
of reacion 

Enthalpy,at 20°C 

Length of reactor 

" 
" 

69 

46.5 em? 

200 on*/om 

87.2 en“ /cm 

0.4 

2 gn/em? 

2 cal/gm °C 

441 cal/gm mole aC 

40 cal/gm mole % 

8 cal/gm mole °c 

° 
003 cal/on™ sec C 

0014 cal/om™ sec °C 

4,950,000 sec™' 

13,300 cal/gm mole 

148,000 on? /sec gm mole 

zero 

13,000 cal/gm mole 

400 cms



TABLE 6 

Value of the setting points on the 

diode function generator. 

Input Voltage Output Voltage 

0 0 

2.8 

5054 

6.77 

7270 

7294 

7.94 

05 7674 

7028 

se
) 

ao 
n
N
 

n
n
 

ww
 

-
 

N 

wi
 

4.75 

i o °o 

The straight line used is: 

Output = 1.4 (Input) 

The difference between this straight line and the curve obtained 

from the above setting is used to generate the term exp (- E/RT) 

as used in the reaction kinetics.



TABLE 7 

Oscilloscope Calibration 

Computer Voltmeter Oscilloscope Scale 

Reading Reading 

+0000 «0000 

+1000 «1000 

+2000 +2000 

- 3000 = 3000 

~4000 ~4000 

25000 +5000 

~6000 +6000 

+7000 +7010 

~8000 «8010 

+9000 +9020 

1.0000 1.0010 

Since the magnitude of the errors is so small they may be neglected.



TABLE & 

Steady State Gains. 

Segment o Sy Go “em 

Number. or ie Kaw Au 

i 2172 604 2029 3346 

2 +216 +661 +037 +261 

3 +254 2665 +050 +196 

4 +271 +665 +057 2146



TABLE 9 

Frequency Response Results. 

Segment 1 

Frequency of Input 

cycles /socond 

0001 

-000316 

+001 

200178 

-00316 

00564 

201 

ait 

1.0 

1.78 

3.16 

5.64 

10.0 

17.8 

31.6 

56.4 

100.0 

Amplitude Ratio 

6/8 
2172 

«172 

+150 

+120 

082 

2060 

2052 

+050 

+047 

2046 

O44 

2042 

2040 

2029 

2018 

Ya/ Xn 
-60l 

«604 

2604 

-600 

-600 

25A5 

348 

+250 

2025 

73



Segment 2. 

Frequency of Input 

+0001 

+001 

01 

af 

1.0 

1.78 

3.16 

5.64 

10.0 

17.8 

31.6 

56.4 

100.0 

Amplitude Ratio 

6/8 

2216 

-180 

2055 

2055 

+055 

2052 

2048 

-038 

024 

Gs 

661 

661 

-660 

-660 

-610 

2500 

+280 

2165 

2028 

7



Segment 3 

Frequency of Input 

-0001 

2001 

01 

a1 

1.0 

3.16 

5.64 

10.0 

17.8 

31.6 

56.4 

100.0 

Amplitude Ratio 

WO 
0254 

2205 

2075 

+070 

-060 

060 

2055 

2040 

2025 

Xq[%aw 

2665 

-665 

+660 

+660 

+600 

+550 

425 

+316 

2175 

+030 

75



Segment 4 

Frequency of Input 

~0001 

001 

201 

ol 

126 

3.16 

5.64 

10.0 

31.6 

56.4 

100.0 

Amplitude Ratio 

9/6 
2271 

+230 

+090 

+070 

+060 

-060 

+055 

+048 

2025 

Xr | Xay 

-665 

2665 

2665 

-660 

+605 

-600 

2475 

2320 

030 

76
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Segment 

Number 

F
w
 

NM
 

Segment 

Number 

TABLE 

Constants Obtained for the 

10 

segments of the Model. 

54S 

+615 

2625 

- 630 

TABLE 

Time Constants Obtained for 

the segments of the Model. 

2204 

+205 

2206 

2206 

=132 

-168 

2193 

+204 

41 

2112 

140 

3184 

2216 

4.33 

2.34 

1.52 

1.08 

186 

186 

186 

186 

+363 

+331 

389 

+420 

77
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CHAPTER FIVE 

USE OF THE MODEL. 

5.1 Introduction. 

“The use of the model obtained for the reactor would be for 

simulation together with similar models of other process plant 

items in an integrated system. It has been found however, that 

the time involved in developing a number of similar models for 

other process plant units would be too great. 

This section therefore, will deal with the uses of the whole 

or integrated model. The major use of the model would be in the 

control field, either for studying and comparing different control 

configurations, or for determining such optimal characteristics 

of start-up and shut-down trajectories as may exist. 

Because of recent interest in feed-forward control it was 

felt that this aspect should be studied from the point of view of 

the applicability and use of simulation to the design of feed- 

forward controllers. One particular facet presented difficulty in 

the simulation domain. It was found that it was necessary to 

formulate a simulation of differentiation. Therefore, a study of 

differentiators was made. 

The final section of this chapter discusses the methods of 

determining optimal start-up and shut-down trajectories.
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5.2 Simulation of a Differentiator. 

There has not been found a natural phenomenon which has the 

property of being a differentiator. Hence, it would seem that 

there was no need to consider this when dealing with simulations. 

There is however, the fact that the control of certain processes 

may be greatly improved if control based on the derivative of a 

property is included. 

To test this hypothesis requires the use of an electronic 

circuit which differentiates a signal. Such a circuit has been 

found to exist. It is however, of little practical use since it 

is a perfect differentiator and will give an output which is the 

real derivative of the input. In using an analogue computer the 

signals are not pure, they have a certain amount of noise associated 

with them. The true differentiator differentiates the noise as 

well as the signal and the result is erroneous. Furthermore, one 

special class of signals, the step change, has an infinite value 

for its derivatives. Thus this important class of signals could 

not be used with the true differentiator. 

Two circuits which approximate to differentiators have been 

used and are shown FIG 16. The first of these, FIG 16A, has been 

studied both theoretically and using the analogue computer to 

demonstrate the order of magnitude of the errors involved. 

For the demonstration the sine wave was found to be a useful 

function. 

1. It is a continuous finite bounded function.
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2. The gain of the differentiator appeared to be unity. 

3. The approximation had a small phase lag compared with 

the real derivative. 

4, The final steady error was a sinusoid of small amplitude. 

The transfer function of the approximation circuit is: 

Xi) = as Lis) 5.| 

(s + a) 

The transform of the sine wave is: 

J[sinfot) - a2 5.2 
Ss ew 

Therefore, the output of the approximation is: 

Se eee Sas ee 5.3 
Ns (a +s)\(s? + w) 

or yy es wt, ~tan” (#)) - 9-0 Oe 

(ey 

Comparing this with the true derivative of 

= W t 5.6. Va cos Ww



841 

shows: 
-al 

1. The initial exponential in the term & 

2 \ 
2. The gain of i/(1 if, (ey ye which is close to 1 

eee is small. 
. c'() Z 3. The phase lag in the term tan Ca. which is 

small if ) is small. 

4, The final steady state sinusoid produced by the 

difference between the two signals. 

The experimental results were obtained for @=1 and @=+!0 

thus:. 

(2) = 5.6 
a 

Under these conditions the maximum value in the final steady 

sinusoid was of the order of 0.1 per cent of the original signal 

and therefore, of the same order as the errors inherent in the 

apparatus.



5.3 Feed Forward Control. 

One of the possible uses of a dynamic model is for the 

construction of a feed forward controller. The advantage of the 

feed forward control is that in theory it is possible to control 

a system using it, so that the output did not vary from its set- 

point whatever happened to the input. This is of course, absolute 

control. 

There are two conditions necessary for the construction of a 

working absolute controller. 

1. A model which is completely accurate. 

2. All input variablesmust be identified and measured 

continuously. 

In practice neither can be obtained. Also, in the practical 

use of feed forward control, the system would contain dynamic 

delays. The feed forward controller needed to nullify the effect 

of these delayswould have to contain a differentiator. The 

difficulties in this area have been discussed in section 5.2. 

Attempts to construct feed forward controllers have still been 

successful. 

Feed forward control on its own is of little use except when 

the above conditions are met. Where approximations have to be made, 

whether in the model or in the controller's circuits, it must be 

in addition to feed-back control. The implimentation can be made 

in two ways: 

1. The addition of the feed forward and feed back signals.



2. The variation of the feed-back set point by the 

feed forward unit. 

There appears to be little difference between these two 

methods. 

&
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5.4 Optimal Trajectories. 

Apart from the use of optimal theory to find the optimal 

steady state of a plant, there is the further consideration of 

optimal start-up and shut-down. Start-up and shut-down is 

important in plants where catalyst deterioration takes place, and 

frequent changes of catalyst are necessary. The model required 

for an analysis of this kind must be: 

1. Dynamic 

2. Accurate over the start-up range. 

For this purpose the linearised model is not sufficient 

because of its limited range of accuracy. A- model obtained by 

frequency response analysis, where the amplitude of the test signal 

covered the start-up range, would be better. In the case of the 

example model reactor there is one possible point which could 

cause an error. A simplifying assumption of constant density with 

respect to temperature was made. If this model were to be used 

for the purpose of obtaining optimal trajectories across large 

ranges of temperature it may be necessary to relax this assumption. 

The classical method of finding these trajectories, using the 

Calculus of Variation, from which is derived the Euler-Lagrange 

equation, gives the answer for very simple processes. Unfortunately, 

this method involves the well known two-point boundary value problem. 

The following three methods of overcoming the two-point boundary 

value problem have been highlighted in recent years:
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1. The gradient methods introduced almost simultaneously 

by Kelly and Bryson. 

2. Pontryagin's Maximum Principle. 

3. Bellman's Dynamic Programming. 

The gradient methods use the well known Method of Steepest 

Descent, and as usual no account is taken of the possible 

differences between two stationary points on the hypersurface of a 

performance index. This inability can lead to spurious results. 

Pontryagin's Maximum Principle is the most powerful of the 

techniques. It will handle both linear and non-linear systems. 

Also the method enables some knowledge of the optimum to be found 

without solving all the mathematics involved. Perhaps however, 

most of its advantages are lost in its complexity. 

Dynamic Programming can be shown to be related to the 

Maximum Principle using Calculus of Variation. It has been the 

subject of mounting interest, having been used successfully a 

number of times. It suffers one disadvantage, it can only handle 

linear systems.
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CHAPTER SIX 

Conclusions. 

Only one conclusion can be drawn from the results:- 

A systematic approach to the generation of a 

simplified model has been developed. The 

available techniques of each stage in the 

system have been discussed. By use of a single 

example, the systematic approach has been used 

successfully to generate a simplified model of 

an item of process plant. 

The Systematic Approach To Model Simplification. 

  

  
MODEL BUILDING 
    

  

    

  

  
USE 

Each of the first three stages of the systematic approach has 

within it a series of techniques. Each will have its own merits 

in a given situation. 

It is not suggested that every process plant item, if handled 

in the same way as the example given, would give the best results. 

What is intended is that the systematic approach should be 

followed using the most applicable technique at each stage. By
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this method all plant items could be studied and simplified 

models obtained. With models simplified to the level of the 

example given it would be possible to simulate simultaneously 

more than one process plant item even with the apparatus limitations 

discussed. 

It may now be noted that we are at the second stage in the 

systematic approach. The fourth box (i.e. USE) in fact, has 

become another complete cycle of the systematic approach. The 

power of the technique of continuously cycling through the 

systematic approach is that it can lead to unlimited simplification. 

Whereas the initial model of the example reactor was impossible to 

simulate on the available equipment a single cycle of the 

systematic approach rendered it a reasonable proposition. 

Extrapolating to a complete chemical plant, a few such cycles 

would turn this very large and complex model into one of reasonable 

size, and one which could be simulated with the limited equipment 

available.
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BIBLIOGRAPHY. 

This thesis is basically the application of other fields of 

technology to Chemical Engineering problems. It will be noticeable 

therefore, that the literature cited is mainly from standard texts 

in these other fields of technology. These texts not only cover 

individual points relevant to the argument presented here, but also 

the more general principles of the applicable theory. Because of 

this pointed references are not made within the text but will be 

discussed here.
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CHAPTER TWO. 

This chapter is the application of mathematics to Chemical 

Engineering. Applications of this sort are well known to the Chemical 

Engineer. The following two references are to general texts which 

lay out the general mathematical principles as well as the philosophics 

behind the theory. 

1. "Mathematical Modelling in Chemical Engineering." 

R.G.E.FRANKS WILEY 1966. 

2. “Mathematics for Chemical Engineers." 

V.G.JENSON and G.V.JEFFREYS. Interscience.
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CHAPTER THREE. 

In the description of the apparatus (Section 3.2) it was stated 

that the best description could be obtained from the Manufacturers 

handbooks. 

The oscilloscope was supplied with its handbook published by 

the manufacturer namely Solartron Ltd. The Hybrid computer together 

with its peripterals was supplied by Electronic Associates Ltd., who 

also supplied the following handbooks: 

"TR - 48 Hybrid Computer Handbook." 

"4100 Series Variplotter Handbook." 

"R33 Teleprinter Handbook." 

In section 3.4 reference is made to Davies paper: 

"Simulation of a simple tubular heat Exchanger" 

W.eD.T. Davies PR. Cont. and Auto. Vol. 13 No.8. Aug. 1966. 

and also the use of 'pseudo-laplace' transforms: 

"Dynamic Response of a Heat Exchanger to flow rate changes." 

F.Jd.Stermole and M.A.Larson. I. & E.C. Vol.2. p.62. 1963. 

For a more general set of papers showing how simulation can 

and has been used a collection has been published: 

"Simulation", edited by J.Mcleod. 

McGraw Hill. 1966.
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CHAPTER FOUR. 

The control theory presented here can be found in most control 

texts. One familiar to Chemical Engineers is: 

P. Harriot 

"Process Control". McGraw Hill. 

Another important work is by the originator of the Root locus 

technique Walter G. Evens: 

Walter G. Evens 

"Control - Systems Dynamics". MeGraw Hill. 

The methods discussed in section 4.4 can be found in: 

Cowley P.E.A. ASME Trans. 79 4 pp 823-832.
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Three papers on feed forward control show its usefulness. 

Firstly on an industrial scale: 

McMullein E.C. and Shinsky F.G. 

Control Eng. 11 3 p69 

And for a theoretical background: 

Tierney J.W, et al. 

Control Eng. 4 pp 166-75 Sept. 1967. 

Harris J.T., Schechter R.S. 18FC Process D9D 

2 3 245 July 1963. 

Finally the major works in the field of Optimisation 

1. Kelly H.J. AM Rocket Society Journal 

30 10 Oct. 1960. 

2. Bryson A.E. et al Journal of Aerospace Sciences. 

29 April 1962. 

3. Pontryagin L.S. et al Interscience 

"Mathematical Theory of Optimal Processes" 

4, Bellman R.F,. Princeton University Press. 

"Dynamic Programming." 

theory.
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NOMENCLATURE. 

A,A 
A 

@ 
= 

we 
¢e 

ey
 
a
 

o
O
 

(rate) 

R
R
 

O
S
S
 
I
e
 

es 
Arbitrary constant. 

Area. Unsuffixed cross sectional areas of reactor 

Suffixed other surface areas. 

Surface area /unit length 

Arbitrary Constant 

Mass flow rate (molar) 

Arbitrary constant 

Specific Heat (molar) 

Voidage 

Internal Energy. 

Function 

Enthalpy of reaction. 

Reaction rate constants 

Arbitrary number of moles 

Quantity of heat per unit time 

Rate of reaction 

Gas constant 

Time 

Absolute temperature 

Heat transfer coefficient 

Volume 

Arbitrary variable 

Frequency 

Arbitrary variable 

Concentration (mole fraction) 
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p 

Suffixes 

IN 

our 

1, 2, etc. 

Prefix 

Arbitmry Variable 

Temperature ed 

Density (molar) 

Input 

Output 

Reactant (usually Isopropanol) 

Product (usually Acetone) 

Product (usually Hydrogen) 

Datum value and for t=0 

Catalyst 

Tube wall 

Forward 

Reverse 

Stage number. 

Incremental part. 
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APPENDIX 1 

The Theoretical Model of the 

Tubular Reactor. 

Consider mass balances over a time ot on an increment 68L 

of reactor length (FIG 18) for: 

1. Total mass. 

2. Individual components. 

and for the reaction 

A = Bo+C AL. 

Total moles in = bst 

Total moles out = (b+ Sb) SE 

Accumulation = AE §p él 

Reaction = p SL AE (rate) dt 

The mass balance is: 

In - Out = Accumulation — Reaction Al .2 

Hence 

bSt - (b+5b)St = AE So dl - AE p SLEE (rate) Al .3 

or 

ipbrog AE do as AE p (ret) Al. & 

bl Be 

In the limit 

ob 
dl 

>
 

~
 

—
—
 

—e
 ae
 3 2 SS
 

t a Al. 5



5h 
  

  

    
  

5 B+ 8b 
x, Tat ols: A 

Xp Xy+ bX, 

ee XK. +8X, 

FIGURE 18 The Tubular Reactor



b x, dt 

(b+ Sb)xq + Say)SE 

AE SL Shox) 
~ Abo SLst (rate) 

Moles of A in u 

Moles of A out 

Accumulation n 

Reacted " 

Hence, as above: 

bx, bE = «(bb + Bb) xp + Fc,)5t 

= AE &l 8 (0 x4) ue AEp SL dt (rate) Al .6 

or 
aa Brag = Sb be ~ AbSieos) = A we Al. ab . Xa fox Ep(rate) fs 7 

In the limit 

OXp eeu = ~ (rate) ~ Xo(sL— 2b $ | Al.8 

Ut ky eb, (1 + 2) (rate) Ay 

Similar equations have been obtained for components B and C by 

reversing the sign of the 'reacted' term indicating that the



component is formed by the reaction and not destroyed. 

Hence 

a a meee = (1- %g)(rate) Al lo 

a ox ab ox. = (I - x,)(rate an an a hep i x.) (ra ) Al.t 

Also, for an inent the 'reacted' term is not present and hence: 

OX pb Oe Se fate, ALA2 
de” Ae OL py. 

Summation of these expressions gives: 

Diy ge Oe FO = al ALAS 

which must be true by the definition of mole fraction, and serves 

as a check on the above working. 

Consider also a heat balance over the increment on the reaction 

stream: 

Heat in = bcQ 

Heat out = (b+ 8bY(c + Sc)(6 +50) 

Accumulation = 9 (SLEApc 8) 
ob 

Due to Reaction = EAp §L (tate) AH 

In from Wall = Us (oy (8 - @)sL 

Out to catalyst = ie, (6 - O,)5L



Hence 

-be$0 -— cOSb - bOSc 

+ L(Weas (Q-9) + Leas (6 -4,)) 

= SUAE 666) 4 SLAEp AH (rete Ally 

ot 

Let 

qed = Usan (0-9) ALS 

Ys as ul, as (6 a 8.) Al.16 

Then in the limit: 

Ye hey + Ys ts a b ac) + 2c 

Abo AEp ov at 

Pp 

Since AH = AH, t+ (cq + ~ c,(0-6,) ALIe 

Then 

¢ ee 3 FE) + AM(tat) ALIT 

(Georg +X, +O.%)( 08 , b e) = 4 Ys ds 6% ) JE *aa3t SORE & 

+ (rate) (Ate + (6q+Ce- Ca)(26-8)) Al.19 

100
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Also considering a heat balance on the catalyst: 

Heat from gas to catalyst = Uy as (6 = .) SL &t 

Heat increase within catalyst = p,o, (j-E)ASLSt 

Hence 

26 . Ua (9 -@,) A.20 
ot pali-tyA
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APPENDIX II 
The Stirred Tank Reactor Model. 

To obtain the Mathematical model both heat and mass balances 

must be considered. In deriving these balances, an approximating 

assumption that there is no accumulation due to expansion of gas is 

made. This is in fact the equivalent of stating constant molar 

density. 

For the overall mass balance: 

Moles in = by 6 

Moles out = dour FE 

Change due to reaction = Vo (rate) St 

Therefore Dent Big ee Vp (rate) Aad 

For the individual component balances: 

Moles in s: «| Diay San Ob 

Moles out = bape, 0b 

Change due to reaction = Vp (rate) St 

Accumulation = Vo bac, 

Therefore for a component destroyed by the reaction: 

byXnn ~ burXe = Ye(rate) + Vo dx, A2.2 
dt 

o = -(1+ Xm\tae) + bw (oXmw - Xa) fAa.3 
t



and for a component made in the reaction: 

ican 
dt 

(i= sc.) (ral) 4 bu (Xpiy — Xs) 
Yo 

For a heat balance on the reaction stream: 

Heat in 

Heat out 

Accumulation 

Due to the reaction 

In from heated surface 

Out to catalyst 

Hence 
Soap Oe W 

Using the identities: 

Diy Cin Onn 

byt o 

d(Vp< 8) 

dt 

Vo (rate) AH 

qohe 

qs As 

Done e — titsAn tGs Ac 

16s + (rate) Vo AH 

cLE 

iG 2 Gide + Gol + Cole. 

AH = AH, + (C+ —€,)( 0-6.) 

AQ. 

AQ.S 

Aa.c 

AQ7 

103 

and substituting individual component and overall mass balances gives:
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od oA age xh (6, - ©) 

oe Yp 

— (rate) (AH, + (Cy + Ce —ta)(26-8,)) A125 
c 

For a heat balance on the catalyst 
u Us A; (0 - @&) St 

ps ce, (1-€) V 5, 

Heat from gas to catalyst 

Heat increase within catalyst " 

Hence 

dO) URAL (6 - 6.) AQ4 
dt pees (I1-E)V



The following table is the collection of the results obtained 

from the analysis described in Section 2.6. 

PPENDIX III 

Results for a Single Stirred Tank Reactor. 

Length of 

Tubular reactor 

of equivalent 

Volume Al, cms 

4o 

60 

80 

100 

120 

140 

160 

ee 

mole 

fraction 

+7080 

6412 

25926 

+5506 

25094 

+4780 

+4490 

Xp 

mole 

fraction 

-0880 

21276 

©1560 

+1826 

+2046 

+2230 

22394 

500 

26186 

6242 

6280 

-6320 

-6350 

+6380 

«6410 

b 

moles/sec 

~1088 

21130 

-1167 

-1200 

21229 

o1255 

-1280 

105



Results for Two Stirred Tank Reactors in Series. 

Length Length 

Equivalent Equivalent Xp 

of First of Second 

stage Al, Stage Al, 

160 4o +3816 

60 =~ 3526 

80 3306 

100 23102 

120 22924 

140 22788 

160 +2646 

140 4o A404 

60 +3736 

80 3562 

100 » 3282 

120 ~ 3082 

140 22928 

160 -2780 

22858 

©3032 

©3155 

3182 

+3378 

«3462 

23542 

2634 

2822 

22964 

~ 3086 

+3202 

3298 

+3380 

36486 

36516 

- 6540 

«6564 

6586 

~ 6608 

6628 

+6462 

6496 

+6520 

6544 

-6566 

-6588 

~6610 

106 

+ 1hkg. 

214635 

1416



AL 

120 

100 

80 

Al, 

40 

60 

80 

100 

140 

160 

60 

80 

100 

120 

140 

160 

60 

80 

100 

120 

140 

160 

Xp 

AZ 14 

23988 

+3740 

«3488 

«3286 

23112 

~4632 

4276 

4001 

+3750 

23518 

+3330 

#3132 

4960 

~4550 

4266 

+3990 

+3740 

+3538 

©3328 

22476 

-2676 

2822 

+2966 

«3084 

23184 

22304 

+2522 

+2682 

+2830 

22964 

3078 

+3190 

22094 

+2340 

02512 

+2676 

~2820 

-2940 

~ 3062 

500 

= 64 

6482 

+6506 

6530 

-6554 

-6572 

6414 

6452 

~ 6480 

+6506 

+6530 

©6548 

+6570 

- 6382 

-6422 

6452 

6482 

~ 6506 

6528 

+6550 

21349 

+1368 

21328 

+1352 

-1269 

+1327 
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Al, 

60 

40 

Al 

40 

60 

80 

100 

120 

140 

160 

4o 

60 

80 

100 

120 

140 

160 

Xa 

+5338 

4894 

«4560 

~4260 

+4000 

+3770 

+3550 

5870 

-5360 

~4990 

4652 

«4358 

4120 

- 3870 

~1872 

02142 

+2338 

22518 

22672 

«2800 

+2934 

©1558 

21864 

+2080 

+2286 

2460 

~2602 

+2736 

bs 
36354 

6394 

36426 

36456 

6484 

«6506 

+6530 

6316 

6356 

-6390 

6422 

«6452 

6478 

6504 

+1209 

21144
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Results for Three Stirred Tank Reactors in Series. 

Al, = -l60.0ms , Al, = [bovems 

Al, Ly Xe so 

60 «2182 ©3782 6678 

80 2084 +3840 6696 

100 -1990 3896 -6710 

120 +1910 «3936 ~6712 

140 +1832 23984 26738 

160 +1762 4020 +6750 

Al, = [60 oms. 4 Cy, = |ho ums. 

60 22296 -3730 - 6680 

80 22186 «3790 ~6698 

100 ~2080 3852 .6716 

120 21978 3910 «6732 

140 21974 = 3950 6742 

160 21836 - 4000 ~6758



Al, 

60 

80 

100 

120 

140 

160 

60 

100 

120 

140 

160 

Al, = 

~2804 

+2650 

+2510 

«2386 

22280 

22170 

120 oms. 4 

7 AY, 

Xp 

+3520 

» 3596 

«3666 

+3730 

«3780 

= 3834 

{Lo ums 

500 

3 6644 

6666 

6684 

«6702 

36714 

»6730. 

AL, = 100 ems. 

23348 

3440 

©3522 

23592 

©3656 

~3716 

~6612 

6634 

6652 

~6672 

-6688 

-6704



AG 

60 

70 

80 

100 

120 

140 

160 

60 

100 

120 

140 

160 

70 

AL, = S20 ms 

La 

+2974 

+2906 

-2818 

+2670 

22548 

22438 

22324 

Al, = 100 ems. 

+3180 

22994 

-2820 

+2670 

22550 

22426 

«3070 

ee 

+3140 

+3250 

©3354 

«3440 

©3516 

03584 

23180 

30 ums. 

36564 

+6586 

~6606 

-6626 

6644 

-6666 

26574 

Cb 

(4 

( + 

= 1430) 

=.1431) 

=.1417)



Aly 

60 

80 

100 

120 

140 

160 

AL = Bo ems 

Xa 

+3170 

+2990 

+2824 

+2690 

+2560 

22452 

> 

+6552 

6572 

6594 

36614 

6634 

6658 

( b 

112 

=. 1406)
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Results for Four Stirred Tank Reactors in Series. 

A= [20 ums. , AL, = 80 oms. 5 Al, = 80 oms 2 

4o ~2818 +3330 +6590 

60 «2320 3616 - 6680 

80 +2210 »3668 6692 

100 22098 ©3738 -6706 

120 22000 23792 ~6736 

140 21938 ~ 3846 6742 

160 +1838 ~3892 26758 

Altes 0 "ams, AUS = 80 ems 4), AL, = 7o ems. 

60 22374 23548 36644 

80 22256 = 3604 ~6662 

100 22142 «3686 ~6678 

120 «2042 33746 6692 

140 +1960 3798 -6700 

160 -1880 33854 ~6720



Ali 

AL, 

60 

80 

100 

120 

140 

160 

AL, = 

60 

80 

4100 

120 

140 

160 

100 ums 

So ems 

-2480 

02358 

22238 

02152 

22070 

21984 

+2560 

22428 

22300 

-2200 

22110 

«2020 

Aijie 

80 coms 

Xe 

= 3490 

23562 

2 364 

- 3706 

33774 

3824 

oo ems 

3 S446 

©3542 

«3612 

3690 

+3730 

©3798 

q fc 

i 
6624 

~ 6640 

-6662 

~6672 

~6698 

«6706 

~6608 

-6630 

~6652 

26678 

~6680 

6694 

Yo oms 

, Al, = 60 oms 

414



415: 

Results for the Two Special Cases. 

AL, = 4o ems 

Xn Xe Se + 
-7080 -0880 26186 21088 

Al, = Aocms , Al, = 60 ums 

25360 21864 6356 21144 

AL, ~ Loom , Al, = booms , AL, = loooms 

3658 22852 +6532 21281 

Al,= booms , Ala = booms , Al,= Jooems , AL,= 200 ems 

22092 ©3776 +6720 

Al, = looems , Al,= loo ems , Al, = looms 

2700 ©3430 ~6620 21458 

AL,= looms , Al, = looms , Al,= loo ems , Al, = 100 oms 

2030 23814 26716



The following table shows the results of a run on the 

digital program given in Appendix 4. 

case for the study in Section 2.6 

Reactor 

lengths 

AL. oms 

20 

60 

80 

100 

120 

140 

160 

180 

200 

X, 

mole 

fraction 

8667 

+7788 

6988 

6287 

5678 

25145 

4678 

+4265 

3899 

+3572 

+3279 

Xe 

mole 

fraction 

-0000 

+0470 

0899 

01274 

+1601 

1886 

22136 

+2357 

22553 

22728 

+2885 

The run was made as the base 

ec 

300.0 

307.6 

311.8 

314.7 

817.1 

319.1 

320.0 

322.7 

324.3 

325.7 

327-1 
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AL 

220 

240 

260 

280 

300 

320 

340 

360 

380 

420 

460 

480 

500 

23016 

22778 

+2562 

+2367 

22188 

©2026 

1877 

©1744 

21616 

21501 

©1395 

©1298 

©1208 

01125 

©1048 

+3026 

3154 

+3269 

©3374 

+3470 

23557 

= 3637 

+3710 

23777 

«3838 

23895 

©3947 

23995 

©4039 

~4080 

Oe 

328.5 

Deter, 

3350.9 

331-9 

333-0 

334.0 

334.9 

335-8 

336.6 

23754 

338.1 

338.8 

339-5 

340.1 

340.7 

417
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APPENDIX IV 

Comparison of Steady State Theory with 

Practical Results. 

The computer program given here was written to simulate 

steady state conditions for the reactor at different flow rates 

and temperature conditions. This was done to compare the accuracy 

of the model with results obtained by The Science Research Council's 

Warren Springs Laboratories. FIG.5 shows the comparison of the 

computer results with those obtained by The Science Research Council.
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The following sequence of instructions is the program written 

for the department's P.D.S. 1020 computer. 

INP 

6003 - 

1031 + 

L002 = 

A017 - 

co28 - 

1017 - 

po28 = 

po1g - 

coos - 

M019 - 

Moo1 = 

MOO1 = 

co29 - 

1021 - 

Do22 - 

po28 - 

coz0 - 

1020 - 

DO30 - 

MooO = 

$029 - 

coo9 -



L003 

po12 

DOos 

co10 

1009 

D010 

co11 

1016 

$000 

Mo11 

Mo14 

4000 

coo4 

1015 

$001 

Mo11 

mo14 

4001 

co05 

1027 

moo2 

A026 

vo11 

po24 

$029 

Mo14 

120
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A002 - 

co06 = 

L012 - 

Moos - 

MOO9 - 

A003 = 

co07 = 

Loo4 - 

co00 - 

L005 = 

coo1 - 

L006 - 

co02 - 

C003 - 

1000 + 

¢/R 000 

Looo - 

TYPE 

too1 = 

TYPE 

Loo2 - 

TYPE 

1003 - 

TYPE 

IMP 003 

RET



The following sequence is used to load the initial values of 

variable 

INP 

co00 = 

INP 

¢001 = 

INP 

coo2 - 

INP 

co12 - 

INP 

cok = 

co15 - 

co16 = 

INP 

6017 = 

INP 

co18 - 

INP 

co19 = 

INP 

co20 - 

INP 

co21 = 

INP 

into the P.D.S. 1020. 

8333 

+0000 

300 

18.6 

-1.0 

273 

22400 

2460 

82500 

13300 

1.987 
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The following table gives the results obtained from the runs 

on the computer for different temperatures. 

Reactor Temperature = -300 "o 

gm of catalyst - hr 
moles of iso-propanol feed 

7.15 

14.3 

21.45 

28.6 

35.8 

43 

50.1 

57-3 

64.5 

71.5 

78.6 

85.7 

93 

x 

25277 

3742 

«2807 

22188 

21757 

2 ThE 

1215 

21044 

+0909 

~0807 

+0728 

+0606 

+0618 

- 1666 

+2504 

23014 

+3350 

+3587 

©3756 

- 3882 

23977 

24049 

4105 

4148 

4184 

~4208 

fractional 
conversion. 

72k 

40 

+52 

-60 

367 

272 

+76 

#74 

81 

83 

285 

86 

«87 

124
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Reactor Temperature = 350 C 

a ee fea %e phd 

7215 4408 22140 255 

14.3 22779 ~3029 “52 

21.45 «1879 +3520 265 

28.6 +1326 3821 “74 

35.8 20965 4018 84 

4S 20721 4152 285 

Reactor Temperature = 400 °c 

7315 22813 ~3010 ~52 

14.3 ©1327 ©3821 74 

21.45 ~0688 »4169 °83 

28.6 +0379 +4338 92 

35.8 0222 | toh 295 

43 20140 AL69 297 

50.1 20096 AhgQ2 98 

573 0073 «4505 298


