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SUMMARY .

A systematic approach to the generation of a simplified
model is presented. The individual sections of the systematic

approach :

1« Model Building.
2. Simulation.

L, TUse

are discussed in detail.

A dynamic model of the catalytic tubular reactor for the
dehydrogenation of iso-propanal to acetone is developed. This model
was successfully simulated on an analogue computer. The results
obtained from the analogue computer simulation were successfully
analysed to produce a considerably simplified dynamic model of the
reactor.

At each stage in the systematic approach the theory, and

practice as applied to the reactor model, is presented.
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Chapter One.

Introduction.

The rapidly increasing use of automatic control and
optimisation in the process industries has led to an increased
demand for accurate but simple mathematical models of the
dynamics of the processes involved. The emphasis here is on the
word 'simple', since while there is no difficulty in the
formulation of a mathematical model, the model is often
prohibitively complex.

Unfortunately there is no completely satisfactory means yet
known, of simplifying a complex model. Linearisation is the only
universal method. This of course suffers from the limitation
that theoretically its accuracy is only within infinitesimal
limits. Although often practically satisfactory, proof of this
fact, which is difficult to obtain, is usually required.

The introduction of the analogue computer has added a means
of handling both simple and complex models. Methods such as
frequency response, enable comparison for compatability of the
different models. Furthermore, these methods which are described
later, can be used to obtain simplified mathematical representations
of a system in a form amenable to analysis for optimal
performance of control systems.

The object of the work was to simulate an integrated net-
work of process plant items, using a limited amount of analogue

computer equipment.



Chapter Two.

Model Building.

2.1 Introduction.

There are two ways of building a model. These are firstly
the collection of data from an existing plant and its analysis,
and secondly the quantitative method based on reasonable
assumptions. The importance of the latter becomes prime when
considering design, as at that time there may well be means of
obtaining actual operating data.

The means of the quantitative method is well published and
the applicable rules proved successfully. Basically the
requirement to formulate a model is a mathematicaldescription
- based upon reasonable assumptions of ideaiity, plug flow or
complete mixing in reactors, and the application of the laws of
conservation, mass, energy and momentum, to a differential
increment. .

The object of this chapter is to show how the quantitative
method was used to obtain the mathematical model and also how
the model must be simplified prior to solution by analogue

computer.



2.2 Choice of the Tubular Reactor.

For the purpose of the study undertaken it was necessary
to take, as an example, an existing system. It was accordingly
decided to study the production of Acetone from Isopropanol by
dehydration in a catalytic tubular reactor. The reaction involved
is gas phase and reversible, being first order in the forward

direction and second order in the reverse.

Isopropanol = Acetone + Hydrogen 2.1
—
(CHB)ZCHOH(gaa) e (cnj)aco(gaa) + Ha(gaa) 2.2

The reason for the decision was that help and information
of the type required for the study was made available by the
Ministry of Technology Warren Spring Laboratories, where a plant
of the type mentioned was being studied as an experiment in direct
digital control. The system of non=-linear partial differential
equations of the mathematical model also contains most of the

difficulties typical of chemical engineering systems.



2«3 Tubular Reactor Model.

The assumption upon which the mathematical derivation of
the tubular reactor model is based, is that of plug flow. Plug
flow means that the fluid in its passage along the tube under-
goes no longitudinal mixing. Hence the fluid moves as if it
were a solid bar or plug along the tube. This assumption alone
would leave the model with the complexity of concentration and
temperature gradients in a radial direction. The temperature
gradients occur because of the heat transfer at the tube surface
and the finite non-zero resistance to heat flow of the fluid.

The concentration gradients are dependent on the temperature
gradients because of the different reaction rates at different
temperatures. If there were no heat transfer between the fluid
and the tube wall no gradients would exist. This is because the
heat generated by the chemical reaction taking place within the
fluid would be constant across a radial cross-section.

It is necessary to overcome this complexity by assuming
either infinite thermal conductivity within the fluid, or
complete lateral mixing. The former while arranging for no
radial temperature gradients, will infer no longitudinal
temperature gradients, which is more than is required. The latter
allows for both temperature and concentration gradients along
the length of the reactor, while negating any radial gradients.
Hence complete lateral mixing will be assumed.

The velocity profiles across the diameter of the tube of



the true and assumed cases show (FIG 2.1), that if the flow is
turbulent, the assumption of plug flow is very good indeed.
The accuracy of the assumption of complete lateral mixing is
more difficult to compare with the true case. It is however, a
method of averaging which is usually an acceptable simplification.
Applying these assumptions to an increment of reactor length
for an increment of time yields the transient mass and heat balances

as derived in Appendix 1. These represent the mathematical model.
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The chemical reaction (equations 2.1 and 2.2) has the following

form of kinetics:

R 2y - Ry X 2.6

rate

where the values of the rate constants are given by the Arrhenius

relationship:

Ry = P exp(-E/RT) 3.7
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In the case under consideration heat transfer takes place from a
heating medium in a jacket surrounding the tube, and also to the
catalyst packed in® < the tube. For both heat transfer cases it will
be assumed that the heat transfer coefficient is constant with
respect to the fluid properties and actual measured values will be
used. The equations for the heat transferred, as derived in Appendix

1, are as follows:

between the heat transfer medium and the fluid in the reactor,

Gody = W, a, (69- 9=\ 2.9

between the fluid in the reactor and the catalyst

4 . ¢ (6, -6) 29
oLt

The importance of the fact that coefficient 'C'! in equation 2.9

is constant, will be seen later.



2.4 The Continuous Stirred Tank Reactor Model.

The model is derived in Appendix 2. The conditions in the
reactor make the contents an intimate mixture of the gaseous
reactants and products, and the solid catalyst. For the real
reactor it is assumed that the catalyst is packed to a voidage
below the level required for free movement. Hence the practical
significance of the model is not immediately apparent. It is
shown later, however, that the tubular reactor can be approximated
to a series of stirred tank reactors. The comparative ease of
analogue computer simulation of the model of this series of
reactors gives this model its importance.

The basic assumption for the theory of a continuous sfirred
tank reactor is that the contents of the reactor are completely
mixed so that the mixture has no concentration or temperature
gradients in any direction. The outlet stream must, therefore,
have properties identical to the properties of the contents of
the tank.

The second assumption is a simplification. It is assumed
that there is no variation, due to temperature variation, of the
total mass contained in the tank. This is, of course not true,
but if only small variations in temperature occur, then the effect
of the assumption is minimal. This assumption is equivalent to
assuming constant molar density. It is shown later, how the vast
heat capacity of the catalyst present allows only minor

fluctuations in temperature and therefore, density.



The derivation of the heat and mass balances are shown in

Appendix 2 and yield the following mathematical model:-

bhn- = Em 1 (Twu) \40 20
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Since the reaction is the same, the kinetics are identical
to those for the tubular reactor. The heat transfer equations

are as follows:~

O\/w Aw = Uw Aw (ﬂc _&WT) 2.13,

jijgh = Cg (6% ﬁ'é%uT)
dt

2 .0k.



2.5 The Difference Approximation.

Before a comparison of the two models (sections 2.3 and 2.4)
can be made, the method of sSolution of the partial differential
equation of the tubular reactor model must be considered. The
method used was by analogue computer and since the analogue
computer cannot integrate in two dimensions simultaneously a
technique had to be found for reducing the tubular reactor model
to a form which could be handled.

The difference approximation for derivatives with respect to
one dimension, based upon Taylor's Series expansions, yields
satisfactory results. By expansions a number of different
difference approximations can be found. Whichever one is used
however, the result will always be in the form of a simplified
model of the tubular reactor as a series of differential
difference equations,.

The first Taylor's series expansion used is:=

- 2
9 x AX g x
Yoo = Yo ~BX )/ o Yo 215
2"' gx -r we
The first and simplest difference equation is derived from
2
equation 2.15 by neglecting terms of the order of [&){ 5

giving:~-

8 AP o .%(-Ax = 54
/ 74
3§ AX 2.16.




The next step is to take another expansion as follows:=

. Yoot A 9P
>/°‘*“") P Bt o he T
217

Subtracting equation 2.17 from 2.15 gives the second difference
approximation:-
3 Z,E o %—ux = yx-AX

0 T o it

expanstons
By further additions of Taylor's series expanions for the general

term >{< :I:Nﬁx a series of difference approximations is
formed. By careful choice they can be arranged in order of
apparent accuracy, in that the first term neglected is of
increasingly higher order in Zﬁ)(. as AX is small, the higher
the power to which it is raised, the smaller the term in which it
occurs will be. Considering the first two approximations

(equations 2.16 and 2.18) it can be seen that the first term

2
neglected in 2.18 is 2 (A PV while that for 2.16
3l oX3
2
is _AZ%_ g_%l . The expected errors involved should

mean that equation 2.18 represents the more accurate approximation.

There is however, the consideration of the application of
these approximations, and the effect they have on the solution

of equations to which they are applied. Consider, therefore, as

10
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an example the solution of the following equation:-

(L 7T R A 2.19
0 X IW

Using the two difference approximations on the 'X' dimension

yields:-

b o5 = el
sl AX -

using equation 2.16, and

d% - - Jee 221
d w 2AX '

using equation 2.18.

Equation 2.20 shows that the simplest approximation leads
to negative feedback in the individual equations, whereas
equation 2.21 shows that the second approximation does not. It
is possible therefore, that in equation 2.21 there may be
oscillation introduced by the approximation which is not in the
original system. Because of negative feedback in eguation 2.20,
oscillation will not occur unless it is a property of the original
system.

Another important consideration is that of the boundary
conditions. Equation 2.20 has only one imaginary boundary,
denoted by YQ-nx at the initial stage, and represents

the input. Equation 2.21, on the other hand, has two imaginary
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2.6 The Difference Step.
2.6.1 Introduction.

One facet of the difference approximation which does not
appear in the literature is the use of varying step lengths along
the differenced dimension. The reason is perhaps that the me%hod
is used mainly in conjuction with digital computation, in which
case thé waste of storage space in using a number of different
difference step lengths would be prohibitive and unduly complex.
For analogue computer solution however, each step length is part
of a coefficient to be set on a coefficient potentiometer, and
therefore, no further difficulty ié encountered in using
different step lengths.

The following short study (section 2.6) was made, to determine
the theoretical errors in the final output stage for a simple
linear model, and the empirical errors for a non-linear system.
The aim of the study was to determine whether or not an advantage
could be gained by varying the difference step length.

To analyse the empirical results obtained, a graphical
technigue is proposed, which shows how the minimum final stage

error can be obtained.



2.6.2 Theory For a Simple Case.
For a theoretical analysis of the errors involved in a
linear system, consider the solution of the following equation

both analytically and by differencing:-

o bl TS = B § VAL e
o X

For a constant value of input signal to y%?) the analytical

solution is:-

Y = Yo exp(-AX) 2.23

If the differencing relationship given in equation 2.16 is used,

i.e. i-;f B L the following

equation is obtained:-

| e
Y. g 2.0k

Reduction of the series of equations 2.24% to relate the output

X. to the system input Y{O) gives:=

. Yo
>/N ﬁ(ﬁ i F?AX;,) 2. 25

L=
Hence, given a limiting value of the 'X' dimension equal to X,

say, where

14



X = Zax; 2.26

there is an error on the output Y in the difference approximation,

given by:-

err = Yoof V. _ exp(-AX) ) 2127
( (1 + AAX) |

L=

Analytical minimisation of this error is achieved by setting the
partial derivatives of the error, with respect to the N
individual values of AX; s equal to zero, then solving
the N simulaneous equations obtained. Generally the partial

derivatives are given by:-

Aarror) HXo)(m,b(—Fix)__ ! )

N
d 4X; I+ A8%) 17 (1 + AAYX,)

L=/
2.28
Setting olerer) - O and taking the ratio of any

0 4X;
two equations in the set 2.28 gives:-

ok HAX, W 2,49

EoH AN
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2.6.3 Graphical Representation.

For the system previously discussed (section 2.6.2) a plot
may be made of the error on the output of an N stage
approximation, versus the fractional length of the individual
stages of the total length. For a one stage process this yields
a single curve Fig.2. The equation of this line is equation 2.27

for L=l

L.L. ( oror) = )’(01( | - EJCP(—HAX)).. 2.3(
I + HaX

For a two stage process the series of curves shown in Fig.3 is
obtained. The general equation of this set is again given by

equation 2.27, this time for ( =2

Le.  (errot)= Yo J = exp(-A(AX, +AX,))
(1+ AAX X1+ AAX,)

2.3d

Interpolation between these curves shows that there exists a
curve tangential to all the second stage curves. This represents
the minimum error obtainable using two stages. This minimum error

curve (marked 'B', Fig.3) has the equation:-

(error) = oun )fo}[ I ~ (X p[-R(Ax+Ax))IL 2.33
X,y DX, h+HAKﬂ+HAXJ
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As shown in section 2.6.2 the minimum is known to be AX, = AX,

and eguation 2.3%3 becomes:-

(e+tor) = Yo [ ~ixp(-RAAX) 2.54
(+ + AOX)*

For stages beyond the second stage similar curves to 'B'
(Fig.3) exist. These represent minimum error segmentation of all
the steps in the differenced dimension. They are obtained
empirically for the Nﬂ'l stage by taking values lying on the
similar curve for the (N‘i)* stage. Points above the
minimum error curve for the (N -i)th stage cannot give
minimum error values for the th stage.

To find the minimum final error of aa N stage process
requires that all N minimum error curves be plotted. Taking
the minimum final error shown by the plot and back-tracking gives
the optimum lengths for all the stages. This is in fact, a
specialised statement of the Principle of Optimality. The technique
is, therefore, a graphical Dynamic Programming approach to the

problem.



2.6.4 Application of the Analysis.

An analysis of the type described in section 2.6.3 was
undertaken on the simulation described in section 3.6. Since
there was no readily obtainable analytical solution to the
mathematical model involved, a steady state solution by digital
computer was used to make a comparison. The program and results
of the digital calculation, together with the results of the
analysis are given in Appendix IEL

It was possible to divide the length dimension into a
greater number of segments for the digital calculation than for
the analogue simulation. The results of the digital calculation
were therefore, accepted as being more accurate. In fact, it
was found that beyond one hundred divisions no perceptible

increase in accuracy was obtained. Therefore, the division of

the length dimension into a hundred was said to give the accurate

solutione.

19



2.6.5 Summary of Results.

The optimal fractional lengths for the simulation (section
3.6) were obtained. They were found to be approximately 3/10,
2/10, 2/10 and 3/10, for the 1st, 2nd, 3rd and 4th segments
respectively.

By way of comparison, the diagram Fig.4 shows the errors
obtained for two other methods of dividing the length dimension.
Firstly the length was divided into four equal stages. The use
of this cloée approximation to optimal conditions increases the
error by only 4%. The second method was division into segments
of equal fractional conversion. Using the digital solution as a
guide the length fractions are: 2/20, 3/20. 5/20 and 10/20.
Under these conditions the final error is increased by 20% over
that for optimal conditions. In fact, a more accurate result

could be obtained by using an optimal three stage process.

20
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2.7 Comparison of Models.

The model of the tubular reactor is to be simplified by
differencing using equation 2.16. Equal differencing steps are
to be used as suggested in section 2.6.6. The result is the

following model.

+ (m,tc)AE,/o al 2.35

bou-r N

& L a o Rl xn.wr)(?a'tf-) + -bm (X " Xpor) 2.36

dt AEpAL
_d;Qowr = Ay * + _bu (6w - Eow)

dt AEocOl AEpAL
~ (rate) (AHo* coce-c)20-6))  2.37

C

q(w Aw = uu Aw{ge —Bov‘r) s

i_@s = C] ( 95 5 9091-) 2.39
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Since the term AEAL is the volume of the reactants and

products, it equals V. Likewise the term A -€)AaL

is the volume of the catalyst. These equations are therefore,

identical to the set for the stirred tank reactor section 2.4
Hence the method of differencing reduces the tubular

reactor to a series of stirred tank reactors.
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2.8 Comparison with the Real System.

Information on steady state operation was given by Science
Research Council's Warren Springs Laboratories and was compared
with that obtained from the digital simulation (AppendixIV).
Comparison was made Fig.5. It shows the good agreement between
the model and the pilot plant at steady state conditions, and
over a wide range of working temperatures. Unfortunately data

on transient behaviour was not available.

24



Chapter Three

Simulation
3«1 Introduction.

The word simulation has a very wide meaning. Here it refers
to systems undergoing change. A simulation is therefore, a system
whose behaviour is analogous to another, with respect to the
variation of the properties of the original system, along the
dimensions of space, hence also the word analogue.

The greater majority of analogues are for special purposes.
These include physical models and pilot plants. Most of these
suffer the major difficulty of scale factors, due to the need to
use in the model values of the dimensionless groups describing the
system identical to those of the plant. An example is the model of
a large liner where the characteristic length in the Reynold's
Number may be smaller by a factor of 1000. To find the conditions
required, that is a Reynold's Number equal to that for the liner,
may require a fluid of extreme properties.

Two types of general purpose analogue computer exist, a
mechanical one, invented by Bush in 1927, which was slow in
operation and difficult to program, and the electronic analogue
computer, which superseded the mechanical one just after the Second
World War. The most important advantage of the electronic analogue
computer is that the varying properties are scaled into voltages,
and scaling problems of the type described above do not occur.

The purpose of this chapter is to discuss the relative merits
of the different means of simulating a system, with special

reference to the partial differenfiial equations of the model of the

tubular reactor derived in chapter two.

25
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3.2 Description of Apparatus.

The apparatus used was a parallel hybrid computer made by
Electronic Associates Limited, and called the TR-48 Hybrid
Computer. It is a solid state machine and hence the TR, an
abbreviation of transistor, in the name. It consists of the
following two major sections. Firstly, the most important section
is the analogue, built for a basic complement of 48 amplifiers, but
using certain refinements is capable of expansion up to 54 amplifiers.
Secondly the logic and electronic mode control section, to enable
control of the analogue section.

The total complement of analopgue equipment on the machine
used is given in Table 1. As is shown, there are 44 amplifiers
available. Of these, ten are track/store amplifiers, eight are
contained in two blocks of gquad amplifiers which may be used as
inverters or as high gain amplifiers, but not as summers. The
remaining 26 are general purpose amplifiers. In addition to these
there are ten inverters contained in the variable diode function
generation units.

The 16 integrator networks all have variable time constant
facilities, achieved by using four condensers in each network.
These have the values 9 uF, 1 MF, <09 )4F and .01 puF.
Appropriate selection of different combinations of these condensers
yield four time constants of 1 sec., 100 ms., 10 ms. and 1 ms..

The usefulness of this aspect of the TR-48 is seen later when
dealing with freguency response analysis.

A recent addition to the control system of the TR-48 has

enabled the addition of 30 servo-setting potentiometers which,
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together with 30 hand setting potentiometers, make up the complement
of 60 potentiometers. The new control system enables the read-out
to print or papertape of the values of potentiometer coefficients,
amplifier outputs and the summing junction potentials of integrator
networks. The addition also enables the setting of the servo-
setiing potentiometers from the keyboard of the teleprinter used or
via paper~tape through the tape reader.

Another recent addition is a specialised TR-20 console, by the
same maker, contéining two four-cup servo multipliers and eight
inverters. This unit can be slaved to the main computer.

Patching connections between the two are via trunk connections
which terminate in the face of both patching areas.

The logic and electronic mode control complements are given in
Table 2. A complete descrip¥ion of the function, and some of the
simple uses of the individual components are given in the makers
handbook.

Only one type of unit sends signals from the analogue section
to the logic. These are the comparitors which compare two analogue
voltages and give as an output,logic signals relative to the values
of the two voltages.

Three types of unit are controlled by the electronic mode
control. They are:-

1. Integrators

2. Track/store amplifiers

3. The digital/analogue switches and relays.
The integrators are controlled by switching them from operate to

reset mode and vice versa. This type of operation is most useful



for high speed repetative calculation and iteration. The track/
store amplifiers are used as a form of analogue storage and are
controlled so as to follow the sum of the voltages on their
summing junctions. When switched into the store mode they hold on
their output the instantaneous value at the time of switching,
until returned to the track mode. The switches including the relays
are either open or closed depending upon their logical inputs.,
Full use was made in the work of all the above facilities of

the machine, and were used in conjunction with the following three
input - output devices:-

1. Oscilloscope

2. Teleprinter.

3. Variplotter.

All are adequately described by the makers handbooks.

28



TABLE q

TR-46 Analogue Components.

Component

Amplifiers: General Purpose
Track/store
Quad. inverters
Integrator Networks
Trunks
Readout panel
Function switches
Quarter Square Multipliers
Variable diode function Generators
Square Root function Generator
Potentiometers: Servo-Setting
Hand=-Setting
Comparitors
Digital/Analogue switches

Relays

Number.

16
10

8
16

w o+ F

o~ 8 3

29






3.3 Breaking-in the TR-48.

The analogue computer used in the work was delivered
approximately one year after the work was begun. After it had
been checked=-out by the engineers, work with it could start.
Because of its newness, a system of testing each piece of apparatus
was found necessary. In the first few months a considerable number
of units bec%me unstable or blew-out. These were repaired at
frequent intervals by visiting engineers.

It is significant perhaps, that during the first three months
no really reliable results could be obtained.

At a later period when the work was proceeding satisfactorily
the computer was sent back to the manufacturers for certain
modifications. These were the inclusion of the servo-setting
potentiometers and the connections to the read-in and read-out
facility. These modificationswere in fact, prototypes, and the
result was to cause a further breaking-in period.

On a number of occasions it became necessary to completely
rewire the program in order to by-pass units which became unstable.
The amplifiers were particularly prone to instability and the
final program used a number borrowed from a similar machine to
cover periodswhen unstable amplifiers had to be sent back to the
makers for repair.

During this period it was found that in most cases unstable
amplifiers could be rendered stable by moving them to another
location in the computer. This in fact, was a short term measure

recommended by the manufacturers. Its effect was however found to
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be long term and the next stage of the breaking-in process was
to find the most suitable locations in the computer for the
amplifier units. This juggling process was time consuming but
led to much greater amplifier stability.

A further recommendation by the engineers was to exchange
the transistors in pairs of amplifier units so as to gain stability
by matching components. This also, was found very useful in

rendering unstable amplifiers stable again.
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3.4 Methods of Simulating Partial Differential Equations.

The mathematical model obtained for the tubular reactor
contains the difficulty of being based on a set of partial
differential equationgs. A number of techniques have been developed
for the simulation of models of this form.

One important group of techniques is based on the reduction
of two-dimensional partial differntial eguations by 'pseudo -
Laplace transforms's The mathematical treatment of a simple
tubular heat exchanger uses the pseudo - Laplace transform to
enable replacement of the partial derivative of the length
dimension. The reason that this method is applicable is that only
the output properties are of real interest and values of properties
at intermediate points along the length dimension are unimportant.

Resulting from this analysis the model contains a time delay.
This is in fact, as difficult to simulate as the original set
of partial differential equations. There are however, a number of
specially built units to enable simulation of the time delay.

There are also a number of simple approximations which can be used.
The means of solution fall into two groups, electronic and
mechanical. The electronic are generally based upon algebraic
approximations for the time delay and include for example, the well
known Padé approximation. The mechanical means are special units
designed to delay for a period of time the passage of an electric
current. They include a rotating drum surrounded by condensers
which charge and discharge as the drum rotates with the delay

time being determined by the time taken for the condenser to rotate
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from input to the output points. Also used is a double headed
tape recorder, where the delay.time is the time taken for the tape
to traverse the gap between the two heads.

An extension of this pseudo Laplace analysis by Davies
transforms the equations into an infinite series of simultaneous
equations. By this method the accuracy of the results obtained is
dependant upon the number of equations taken before truncation.
Davies showed that reasonable accuracy could be obtained by
truncation after five equations. The method however, introduces
non-linearities even where the original system is linear. Also it
is difficult if not impossible to use on non-linear systems.

The simplest method of simulating partial differential
equations is the method known as 'By Parallel'. This method
entails setting up the complete set of simultaneous ordinary
differential equations obtained by application of ome of the
difference approximation techniques. It is called by parallel
because of the ability of the analogue computer to simultaneously
solve the complete set of equations. One great disadvantage of
this method is the need for a large quantity of analogue equipment.
For example, if the original partial differential equation has a
single non-linearity such as a multiplication of two varying
properties, the differential difference approximation consisting
of N stages, has N non-linearities, and will require N multipliers
for the simulation. Real systems in fact, have many non-linearities
often of considerable complexity and hence a very large amount of

non-linear analogue equipment would be required for their
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simulation. For the system under consideration (chapter 2),

using four difference steps, some 32 multipliers and 250 amplifiers
would be needed. This is unfortunately far beyond the range of

the available equipment.

An extension to the 'Parallel' method can be made when dealing
with a hybrid computer. This is the technigue known as 'time
sharing by multiplexing'. This extremely useful technique enables
the solution of the N differential difference equations with little
more equipment than is required to solve just one of them.

The method is more consistent with the ideas of digital
computation, in that it is a continuous system of updating values.
It encémpasaea the use of some of the extra analogue equipment
complement of the parallel hybrid computer as well as parts of the
logic section. Most important is the need in multiplexing to
use the hybrid machine's ability to store analogue information.

As the neame states, a number of analogue components are to
be shared in time between the individual difference equations,

The programming required to achieve this is best described in two
parts, the multiplexer, derived from the logic section, and the
analogue equipment which uses the signals generated by the
multiplexer to achieve the time sharing.

The multiplexer consists simply of a binary shift register
into which a single '1' is placed at the most significant end
on the first clock pulse of the calculation. On each successive
¢lock pulse the '1' is shifted to the next less significant place.

At the last stage the '1' is fed back to the beginning of the
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register. The shift sequence is shown in Fig.6. The number of
bits required is N + 1, where N is the number of difference
increments used.

The output of each stage is used directly as the control
signal for the electronic mode control of the controlled analogue
equipment.

For the analogue stage consider the solution of the single

differential difference eguation:-

d Y = R
- Fs Vo) 3.0

The method uses the same set of analogue equipment to compute all

of the individual values of the derivatives d Y, . This is
dt

achieved by a process of switching successive values of the

components X_ and 'Y

2y into the single equipment block

which then computes é;x‘ . [BEach value of a derivative is
dt
stored on the subsequent clock pulse by a track/store amplifier.

On the completion of this series of computations the 'N'

values of derivatives have been computed and stored. For a single

increment of time all the integrators are allowed to integrate
on the appropriate derivative values. This is achieved by using
the N + Tth bit of the shift register to control the electronic
hold of the machine. On completion of this time period a new set

of derivative values is calculated and stored. It can easily be
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seen that the solution thus derived is a series of straight lines.
If however, the time increment, during which integration takes
place, is sufficiently small the solution will approximate
adequately to the true solution, in that the output device would
not be able to detect the difference.

The only restriction on the function ! f' is that it may not
itself contain any derivatives. The circuit for this type of
calculation is shown in Fig.7.

The simulation of a stirred tank reactor was investigated.
This, as shown in chapter 2, is identical to the simulation of a
single increment of the differenced approximation. Hence it is not
representative of the whole reactor, but only of a part of it.

The proposed ultimate aim was to simulate the total number
of units which make up the complete chemical plant. This
simulation was to be carrieé_out using a very limited quantity of
analogue equipment. Therefore, the initial aim was to reduce
the complex model to a dynamically simpler equivalent form.

Considering simplification to be of prime importance, partial
simulation offers a means of obtaining suitable information from

which the simplified model can be built.



3.5 Comparison of the Advantages and Disadvantages of the Methods.

Comparison of the methods is in terms of three important
properties:-

a) Applicability.
b) Time taken.
¢) Equipment requirement.

As discussed in section 3.4 the method using pseudo-Laplace
transforms may not be applicable to non-linear systems,and the
tubular reactor is of course, non-linear, but all the other methods
are applicable.

In considering time two aspects are important. The first
is'  the time required for programming and debugging. Obviously
the smailer and simpler the program the shorter will be the time
required for this part. Secondly is the operating time. Of the
methods discussed only the last shows a divergence in this respect.
In this case, for N difference steps, a study requires N times as
many runs and takes N times as long to complete.

For a study involving limited equipment availability methods
using less equipment are to be preferred. The parallel method is
extremely demanding in this respect and excessive simplification
would be needed to allow its use. The method of time sharing by
multiplexing requires a considerable quantity of such devices as
logically controlled switches. This is particularly true in the
case of multiple order systems. 1In the case of the tubular reactor
the individual segment is third order and individual derivatives

are a function of up to five property values. It was found that
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3.6 Simulation of an Individual Increment.

The implementation of the simulation presents no difficulty.
The circuit diagram is shown in FIG.8, and Tables 3 and 4 show the
individual amplifier outputs and the potentiometer settings
respectively. Included in FIG.8 is the sinusoidal circuit used for
frequency response analysis.

Before implementation can be started, the means of simulating
each individual non-linearity must be known. Alsc the model must
be scaled so that the ranges of the variables of the problem can
be set within the range of the machine.

Most of the non-linearities in the tubular reactor problem are
simple multiplications and do not require special analysis. One
however, is more difficult. This is the wvalue of the forward
reaction rate coefficient given by the Arrhenius relationship
equation 2.7. Although it is possible to obtain an absolute circuit
(FIG.9) for this relationship the equipment requirement of the
circuit is too great to allow its use.

The absolute circuit is obtained by implementing the

differentiated rate equation. The rate equation is:

h = P exp(-E/rT) 31

Differentiating with respect to 'T'' gives

k

.

+ 3.3

|

RT?

o
—

The analogue computer will however only integrate with respect to
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time, as the remainder of the problem is to be run with time as

the independant variable. Hence using the identity:

the resulting relationship for the differential of the rate constant

is:

dRas SEER A 3.5

Since the values of O ana 4B are available on the machine,

the values of T and dT can be computed from:

dt

@+ 2173 3.6

—
]

I

d(g +213) . cle 3

and -d._T_—
dt dt c t

The absolute circuit is thus obtained by implementing the following
o ¥ o

equation:

dk . EkR 40 3.3

——

d t R(9+173)2 Lt
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A simpler and less equipment demanding method would be to use
a variable diode function generator to generate the function of the
rate congtant. The shape of the curve however, does not allow a
very accurate duplication to be made. A better method, suggested
by Korn and Korn, uses the variable diode function generator to
give an output equal to the error between the real function and a
straigh%;;iawn between two selected points on the curve. For best
results the two points should be selected at opposite ends of the
temperature scale to be used. Table 6 shows the function values
and the errors between the function and the straight line., The
curve generated by the variable diode function generator is shown in
FIG.10.

The scaling of this problem is the scaling of the two
dependant variables concentration and temperature. The scaling of
concentration was achieved in the basic theory by using only mele
fractions, hence further scaling is unnecessary. The scaling of
temperature presents the difficulty of requiring prior knowledge
of the maximum temperature to be achieved by the system. In this
case an approximate maximum temperature is known, as it will
probably be equal to the temperature of the heating fluid. Allowing
for a variation in the value of the temperature of the heating
fluid, a maximum of 500°C is assumed. Setting this maximum as
equivalent to one machine unit gives the- range O - 1 machine unit
equivalent to 0 - 500°cC.

One further property which was considered as requiring scaling

was the rate constant. It was found however, that the rate constant
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£ the reactor temperature weare to exceed
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SIMPLIFICATION. ‘
4.1 Introduction.
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2 Tinearisation,

Linearisation of the model of the tubular reactor about its
steady state operating conditions, using Taylor's series expansion
should yield equations which are a reasonable approximation for

small perturbations. The original model expressed in general form

for a single incremental difference step is:

.ééEa = f.( Xny Xawag Xgs 9! k’) k)

dé&a = }1( Xg 9y Xang Xay 6, b) b2
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Althouéh this model is fourth order it can be reduced to third
order by a simple but realistic assumption.

The assumption is that the reactor feed concentration is of
constant composition. This will, in fact, be very nearly true since

the feed is to be an azeotropic mixture of isopropanel and water.



Under such conditions there will be a simple algebraic relationship

between the concentrations, in mole fractions, of reactants and

products.

The reaction under consideration is of the type:
R ek BU 45 0O
If one mole of A enters and m moles react we have:

1 = m moles of A
m moles of B

m moles of C

If throughout there were M; moles of an inert present, then the

total maeles present at the finish is | + m + m; .
Hence the mole fraction of A (3,.) is:
Xy = j = m

and of B8 (xs) is:

From equation 4.5:

m = b= g TR OES
I + X,

Substituting into 4.6:

e g o
mg & + my

4.5

k-6

L.7

4.8

46



A A
xB = AI +A2x—a
A A "
(where A, d &, are co s)
Using this relationship reduc { ) Ll to a dynamic third order

system of the form:

2y "< },(xa,th,e,b) 4.9

j:(xnagagmsgsagcsb) .10

48 - _fz(B,BS) 44

Application of a first order approximation of a Taylor's series

expansion to equations 4.9 and 4.10 yields:
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4,3 Methods ‘of Bymie Analysis.
4.3.1 Introduction.
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L,3.,2. The Step Change.

The outputs of systems which have undergone a step change on
their input are known as process reaction curves. The shapes of
these curves are well known for a multitude of systems. They are
amenable to a number of simple forms of analysis.

The simplest is the fitting of the unknown process reaction
curve to an equivalent for a series of N equally sized stirred tank
reactors. For this analysis the unknown process reaction curve
must be compared with a previously prepared plot of a number of
process reaction curves of different known values of N. The
simplicity of this as an overall method is in the next stage of the
analysis. The reason for the simplicity is that the inverse of the
transfer function obtained for the equivalent N stage process is a
known power series of time, and hence the solution is easily found.

Another graphical method, using constructional techniques
enables an approximation to the model to be made in the form of
either a first or second order dynamic delay together with a time

delay.



True First Order Systenm

Approximate First Order System

FIGURE 11 Response to a Ramp




4,3.,3 The Ramp

The unrestricted nature of a continuous ramp change does not
allow its use on all types of system. It would be of little use
in dealing with the variation of any property having limits (e.g.
concentration). It can be useful in determining certain parameters
of systems of known dynamic characteristics. It is especially
useful in showing the difference between the following two first

order dynamic systems:

(1) H
(Ts + 1)

(11) H(Ts + |)
(Ls #°PA T ]}

The output curve (FIG 11) has three characteristics.

1 Initial Slope

2 Final Slope

3 The intersection of the asymtote to infinity and the

time axis.

System (1) above has only two variable constants, whereas system
(11) has four. Hence one of the characteristics in system (1) is
dependant ﬁfon the other two. In system (11) all three can vary
independently. Hence system (1) is a special case of systems of

type (11) and can be readily identified.
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L.3.4 White Noise.

The use of white noise as an input for analytical purposes
arises from the fact that many systems in their natural environment
will be subjected to an input signal upon which is superinposed
some form of random disturbance. Dis;turbances of this type are
called noise, and completely random disturbances having zero
correlation and covering a complete specirum are called white noise.

The analysis must correlate the probability functions of
input and output signals. BSuch a problem is extremely complex
and may be used only in the simplest cases. The development of
spectral density analysis has enabled such correlation to be
achieved by comparison. Using this method a system which has
white noise as itéjnatural input may be continuously analysed in
its natural -enviroﬁm'gn}t-. Thus the method is of specific interest

in control proﬁi-ema-- where random input signals exist.
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4,3.,5 The Sinusoid.
Frequency response analysis is based upon the use of a
sinusoidal input signal, The bounded nature of a sinusoid allows
a system to sustain this type of continuously changing input for
an unlimited period of time. The unlimited duration of the signal
means that a system can reach a pseudo-steady state of continuous
variation. The implication of reaching the steady state is that the
analysis need not deal with transients.
Three methods of analysing sinusoidal signals are:
1. Root Locus.
2. Nyquist Diagrams.
3. Bode Diagrams.
The Root locus method is a purely theoretical method used for
studying control stability of systems. The Nyquist diagram is
used for a similar purpose but is of greater experimental impértanbe.
The Bode diagram, also of experimental importance, is used primerily
for comparing the properties of different types of dynamic systems.
It is through the use of the Bode diagram that frequency response
analysis can be used to determine a mathematical model of the

dynamics of a system.
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4,%3,6 The Bode Diagram.

The Bode diagram is a double plot of both phase lag and
amplitude attenuation ratio versus the frequency of the input sine
wave., The phase angle scale is linear while both amplitude ratio
and frequency are logarithmic. DBoth plots are of interest,
although the informztion obtained from one is duplicated in the
other.

The main attribute of the phase angle versus freguency plot
is in the asymptotic values of phase angle as the freguency tends
to both zero and infinity. The angular difference between the
two values is representative of the order of the system. For a
first order system this difference eguals 900, and generally for
an nth order system the difference is 90n°. Hence a system's
order could be obtained from a plot of experimental results.

This information is duplicated in the amplitude ratio versus
frequency plot but by a different parameter. It is obtained
exclusively from the gradient of the asymptote as frequency tends
to infinity. The asymptote as frequency tends to zero gives the
value of the gain of the system. This alone makes this plot more
useful.

For an nth order system the gradient passes from zero to n,
and hence it will pass through all integer values between zero
and n. The tangents to the curve and having integer values of
gradient have two special properties. Firstly the verticals
drawn from the intersection of two adjacent tangents to the curve

are all the same length and equal to = log 2. Secondly the values



of frequency at the intersections of all of these tangents with
that of gradient zero yield sufficient information to give all of
the time constants.

The former of the above points represents a simple means of
drawing the tangents, and a useful guide to systems having transfer

functions which do not follow the form:

2l
T (s + )

L=l

but may indicate the more general form:

K ﬁ(a + b-t_)
(s « %)

¢l




L.L Trequency Response Practice.
Apart from the system to be analysed two other pieces of
apparatus are required for frequency response analysis. They are:
1. A means of generating an input sinusoid.
2. A means of observing and mesuring the output
sinusoid.
There would appear to be little difficulty in generating a sinusoid
on an analogue computer since it is the solution of the simple

differential eguation:

d,_i g 2 (where at t=0,4=0 and ¢ gl
e 4 T

However, this equation is ‘critically stable and a minor inaccuracy
in components will cause the computer solution to be unstable.

To overcome this effect a number of limiting circuits have been
devised to maintain a constant amplitude. This type of circuit
often gives a sinusoid with slightly squared peaks. A far better
means of correcting any amplitude variation is to use the natural

corrective circuit contained in the equation:

stn®t + cos’t

]

L ANl

where an error may be obtained from:

Al Lo Ty S T S sen®t - cost I35
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It was found that using this equation to give a feed back error
signal, a sinusoid with no measurable inaccuracy could be maintained
for more than 100 cycles. It was considered that the advantage in
increased accuracy achieved outweighed the increase in reguired
equipment.

The simplest measurement of the output signal is to record,
from any voltage measurement equipment, the voltage difference
between peaks.

There are however, two methods of obtaining the measurement
more easily.

1. The Quadrature component method.

2. The null phase method.
These methods are most useful where noise is a problem, and one
rather wasteful on apparatus where it does not occur, as on an
analogue-computer.

Finally the range of frequency to be used is determined by
the flexibility of the computer. With the TR - 48's multiple time
constant integration networks, a total of six logarithic cycles
range may be obtained, Since the time constants of the problem
have a range of only one to a hundred the available range is more

than ample.



4.5 The Network Analogy.

A preliminary investigation was carried out on the simulation.
This revealed two properties of the system which could be used to
further simplify the model.

1. The dynamics relating the reactor inlet temperature and
the heating medium temperature to the reactor outlet variables
were essentially the same. This is to be expected since physical
properties are assumed constant.

2. The reactor flow rate was very nearly independant of the
other inlet variables. This, too, is expected since any changes
will be caused by changes of mass in the reactor.

The preliminary investigation also enabled the order of the
transfer functions relating inlet and outlet variables to be
obtained. The results suggested that:

1. Outlet temperature and Qutlet concentration
Inlet temperature Inlet concentration

were first order.

2. Outlet temperature and Qutlet concentration
Inlet concentration Inlet temperature

were second order.
However, a closer investigation of these results revealed

that the first order systems were not truly first order. In FIG.

12, the Bode diagram of a first order system is shown. The distance

marked X  should be % log 2. In the experimental plots it was
found that the equivalent lengths were not % log 2. This suggests

that although the systems were basically first order, other
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components existed which should be accounted for.
To attempt to accommodate the discrepancies the following

form of transfer function was used:

gy R Rs ) h.26
Je e+

The difficulty of obtaining the individual values of the time

constants now arises, and a statistical method was tried.

For a transfer function as given in equation 4.26 the

amplitude ratio (A.R) is given by:

(AR) = K / 1+ (wT)? AT
(1 + W+ WT))

From frequency response values of (A.R), &) and K were obtained.

Rearranging equation 4.27:

(LH_,‘.{RL)Q_} 2 Tt s 2 2
| - T - (B)(TNT) - ofed

GJQ

This may be likened to the linear equation:

y'== A. + ;LXi 57 A5X; L-QY
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where

Ao T2 ATl 5 B = LT b 30, 31 5432

Values of A, A,and A,obtained from the method of least squares can
be substituted in equations 4.30, 4.31 and 4.32 to give values of
T1, T2 and T3° However, the accuracy of the values obtained is
suspect because of the vast ranges of the variables ¥, X,and X2.
The method was tried with the result that the values of the time
constants were found to be too sensitive to the value of 'K' to be

of any practical use.

It was noted that the value of the term _ I, was constant
T, Ta
with respect to 'K' even though the individual values of T1, T2

and T3 varied. The value of this term is the value of '¢)' at the
point 'A' in FIG 12 and may be found graphically.

The failure of the statistical method led to the need to look
at the system to enable identification. The symmetry showed that

there was a simple network equivalent of the system, FIG 13.

Analysis of the network and comparison with the simulation showed a

further inadequacy. In all cases at the steady state there was a
tendency to drift which could not be explained by computer drift.
Closer analysis of the original mathematics showed the drift to be
caused by the influence of the large heat capacity of the catalyst
upon the system. Modification of the network to include this
catalyst effect gave the network (FIG 14) which was to be used as

the working simplified model.
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For the network FIG 14
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Hence the four gains

AL KW R 2 8 Y ol B
R & iy R e e
where X - K
. THTN e

5

- KWHK, K et

and the four intercept$ of the tangents to infinity and zero will be

A , R , A
T (1- KKs)  TR(1-KK,) T T (1K K,)

For practical purposes these exXpressions do not yield sufficient
information to obtain a solution.

Considering the original model it is obvious that for the
added loop in FIG 14 to be the catalyst effect then the value of
K3 must be unity, and the value of 'I'3 must be given by the constant
'C' in equation 2.9.

Using this information together with the four gain equations
leaves only two further equations for a solution. These are
obtained from the intercepts values of the first order systems.

The advantage of neglecting the values of the other two
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intercepts is that of accuracy. These intercepts would be obtained
from dynamic records of second order systems with very low gains.

The measurement of the very small amplitude of the output sinusoids

would cause a great loss in accuracy.
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L.6 Results.

In the preliminary investigation it was noted that there was
occasionally a small degree of non-repeatability. This was found
to be caused by:

1. Reading error

2. Potentiometer drift.
To obviate this in the final set of results the following sequence
was used for obtaining values of amplitude ratio for different
values of frequency.

1« The potentiometers were set up.

2. The computer started and a reading taken.

3. The computer reset.

4, 2 and 3 repeated a further nine times.

5. The potentiometers checked.

If at any time an odd reading was taken, or if at the end the
potentiometers did not check, then the results were discarded and
the sequence repeated.

In order to take the readings the ascilloscope scale was
calibrated against the machine scale.

The final values obtained by frequency response are given in
Tables & and 9 and are also shown in FIG 15. The calculated
values of the constants in the model section 4.5 are given in

Tables 10 and 11.



TABLE 3

Potentiometer Settings.

Potentiometer Number
00
03
05
16
17
20
22
23
30
31
32
33
35
38
ko
41
k2
43

Value Typical Values.
Lo « 8666
Lo «5506
L « 1400
Lgo « 1826
Lo 0000
Uwaw/Vpc .7750
Us as//os ¢, (1-€)A  +0050
as/\Vec 3800
= . 5506
556 «5560
303 «3030
«333 «3332
b/ Vp .2540
G, .6320
G, . 8000
O .6000
AH/c .6500
2Ac/c «3200
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Amplifier Number
02
03
ok
05
10
12
13
14
15
16
17
21
23
26
27
28
29
30
31
32
33
34

TABLE 4

Amplifier Outputs.

Output
I’H

%y = Xnru

=4+ Xxa} /2
—-cL.’J(,:./oLt
-1.4: 0 - £(0)

s ST

Xg — Xgwy

| - g

Xg

-cl.'xB/dt
+dx/ dt

—d @/ dt

=g

- (K, +7,6)
(rate)

) (rate)(1 + %a)/2
1 (rale)(1+%a)/2

85

95 -6
G =P
g, =@
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TABLE 5

Physical and Chemical Properties.

Total cross-sectional area of reactor = 46.5 cm2

Surface area of catalyst = 200 cma/bm

Surface area of wall = 87.2 cmz/cm
Voidage = 0.4

Density of catalyst = 2 gm/cm5

Specific heat of catalyst = 2 cal/gm °C
Specific heat of isopropanol = 41 cal/gm mole °C
Specific heat of acetone = 40 cal/gm mole oC
Specific heat of hydrogen = 8 cal/gm mole °C
Heat transfer coefficient at catalyst surface = 003 cal/cm2 sec °C
Heat transfer coefficient at wall = 0014 cal/cm2 sec °C
Forward reaction rate constant term = 4,950,000 530-1

Forward reaction activation energy 13,300 cal/gm mole

n

Reverse reaction rate constant term 148,000 cmj/sec gm mole

Reverse reaction activation energy = zero
of ™& a.cﬂg‘m
Enthalpy,at 20°C = 13,000 cal/gm mole

Length of reactor = 400 cms



TABLE 6
Value of the setting points on the

diode function generator.

Input Voltage Output Voltage
0 0

2.8
5.5k
6.77
7+70
7.94
7.94

«5 7.74
7.28

O o RO @ O AR = m
L]
\un

4,75

-3
o
o

The straight line used is:
Output = 1.4 (Input)

The difference between this straight line and the curve obtained
from the above setting is used to generate the term exp (- E/RT)

as used in the reaction kinetics.



TABLE 7

Oscilloscope Calibration

Computer Voltmeter Oscilloscope Scale
Reading Reading
.0000 » 0000
«1000 « 1000
«2000 .2000
« 3000 « 3000
- 4000 4000
« 5000 « 5000
6000 «6000
«7000 «7010
« 8000 +8010
«9000 «9020
1.0000 1.0010

Since the magnitude of the errors is so small they may be neglected.



Segment

Number.

£ W

TABLE 8

Steady State Gains.

8 % 17 ap

(L Ly X O
172 . 604 .029 .346
.216 .661 .037 261
.25k .665 .050 . 196

271 665 .057 « 146

e



TABLE 9

Frequency Response Results.

Segment 1

Frequency of Input
Cycles /5o cond
. 0001

.000316
.001
.00178
.00316
. 00564
.01
.l
1.0
1.78
3.16
5.64
10.0
17.8
31.6
S56.4

100.0

Amplitude Ratio
8/ 6.

172
172
. 150
«120
.082
+060
«052
.050

. 047

046

+Olh
042
. 040
«029

.018

p s S
604

« 604

« 604
« 600
«600

o545

<3438

«.250

«025

73



Segment 2.

Frequency of Input

.0001
.001
.01
.1
1.0
1.78
3.16
5.64
10.0
17.8
31.6
5644

100.0

Amplitude Ratio

8/9'.“

216
+180
«055
.055
+055

052

048
'038

<024

S

« 661
«661
.660
«660

«610

« 500
« 400
.280
«165

.028
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Segment 3

Frequency of Input

.0001
.001
.01
o)
1.0
3.16
5.64
10.0
12,8
31.6
5644

100.0

Amplitude Ratio
g0,
254
205
«075
.070

.060

.060

«055
.040

.025

xﬂ/xmw
«665
. 665
«660
660
600
550
425
<316
<175

.030
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Segment 4

Frequency of Input

0001
<001
.01
a3
1.0
3.16
5e64
10.0
31.6
56.4

100.0

<271
«230
.090
.070

. 060

.060
«055
.048

.025

Amplitude Ratio

9/8,,

x¢/xm,
+665
665
«665
.660
.605
.600
475

+320

.030
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TABLE 10
Constants Obtained for the

segments of the Model.

Segment K K K K4 K

1 2 3 5
Number
1 . 545 .132 1.0 4,33 «363
2 .615 . 168 1.0 2.34 «331
3 .625 +193 1.0 1.52 .389
b .630 «204 1.0 1.08 420
TABLE 11

Time Constants Obtained for

the segments of the Model.

Segment T‘1 T2 T3
Number
1 <204 .112 186
2 .205 . 140 186
3 .206 . 184 186

206 216 186
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CHAPTER FIVE

USE OF THE MODEL.
51 Introduction.

' The use of the model obtained for the reactor would be for
simulation together with similar models of other process plant
items in an integrated system. It has been found however, that
the time involved in developing a number of similar models for
other process plant units would be too great.

This section therefore, will deal with the uses of the whole
or integrated model. The major use of the model would be in the
control field, either for studying and comparing different control
configurations, or for determining such optimal characteristics
of start-up and shut-down trajectories as may exist.

Because of recent interest in feed-forward control it was
felt that this aspect should be studied from the point of view of
the applicability and use of simulation to the design of feed=-
forward controllers. One particular facet presented difficulty in
the simulation domain. It was found that it was necessary to
formulate a simulation of differentiation. Therefore, a study of
differentiators was made.

The final section of this chapter discusses the methods of

determining optimal start-up and shut-down trajectories.
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5.2 Simulation of a Differentiator.

There has not been found a natural phenomenon which has the
property of being a differentiator. Hence, it would seem that
there was no need to consider this when dealing with simulations.
There is however, the fact that the control of certain processes
may be greatly improved if control based on the derivative of a
property ' is included.

To test this hypothesis requires the use of an electronic
circuit which differentiates a signal. Such a circuit has been
found to exist. It is however, of little practical use since it
is a perfect differentiator and will give an output which is the
real derivative of the input. In using an analogue computer the
signals are not pure, they have a certain amount of noise associated
with them. The true differentiator differentiates the noise as
well as the signal and the result is erroneous. Furthermore, one
special class of signals, the step change, has an infinite value
for its derivatives. Thus this important class of signals could
not be used with the true differentiator.

Two circuits which approximate to differentiators have been
used and are shown FIG 16. The first of these, FIG 16A, has been
studied both theoretically and using the analogue computer to
demonstrate the order of magnitude of the errors involved.

For the demonstration the sine wave was found to be a useful
function.

1. It is a continuous finite bounded function.
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2. The gain of the differentiator appeared to be unity.

3. The approximation had a small phase lag compared with
the real derivative.

4, The final steady error was a sinusoid of small amplitude.

The transfer function of the approximation circuit is:

QSI{S 5 |

Xy = Ao s

The transform of the sine wave is:

I sint)y - 49— 52

Therefore, the output of the approximation is:

¥ - o 53
i (@ +sXs%+ )

-at 5
@ s et (_ws(ut -tan{8)) - 57" b

(- @)

Comparing this with the true derivative of

= Wcos wt 5.5
Xt) e



shows :
= e
1. The initial exponential in the term £
2\
2. The gain of |/('*‘&a Jx which is close to 1
it (9 is small.
" 4(&&) -
3. The phase lag in the term tan (& which is
small if (£) is small.

L. The final steady state sinusoid produced by the

difference between the two signals.

The experimental results were obtained for W= and @-=I10
thus:.
GQ) _ 5.6
a

Under these conditions the maximum value in the final steady
sinusoid was of the order of 0.1 per cent of the original signal
and therefore, of the same order as the errors inherent in the

apparatus.

81



5.3 Feed Forward Control.

One of the possible uses of a dynamic model is for the
construction of a feed forward controller. The advantage of the
feed forward control is that in theory it is possible to control
a system using it, so that the output did not vary from its set-
point whatever happened to the input. This is of course, absolute
control.

There are two conditions necessary for the construction of a
working absolute controller.

1. A model which is completely accurate.

2. All input variablesmust be identified and measured

continuously.

In practice neither can be obtained. Also, in the practical
use of feed forward control, the system would contain dynamic
delays. The feed forward controller needed to nullify the effect
of these delayswould have to contain a differentiator. The
difficulties in this area have been discussed in section 5.2.
Attempts to construct feed forward controllers have still been
successful.

Feed forward control on its own is of little use except when
the above conditions are met. Where approximations have to be made,
whether in the model or in the controller's circuits, it must be
in addition to feed-back control. The implimentation can be made
in two ways:

1. The addition of the feed forward and feed back signals.



2. The variation of the feed-back set point by the
feed forward unit.
There appears to be little difference between these two

methods.

83



84

5.4 Optimal Trajectories.

Apart from the use of optimal theory to find the optimal
steady state of a plant, there is the further consideration of
optimal start-up and shut-down. Start-up and shut-down is
important in plants where catalyst deterioration takes place, and
frequent changes of catalyst are necessary. The model required
for an analysis of this kind must be:

1. Dynamic
2. MAccurate over the start-up range.

For this purpose the linearised model is not sufficient
because of its limited range of accuracy. A model obtained by
frequency response analysis, where the amplitude of the test signal
covered the start-up range, would be better. In the case of the
example model reactor there is one possible point which could
cause an error. A simplifying assumption of constant density with
respect to temperature was made. If this model were to be used
for the purpose of obtaining optimal trajectories across large
ranges of temperature it may be necessary to relax this assumption.

The classical method of finding these trajectories, using the
Calculus of Variation, from which is derived the Euler-Lagrange
equation, gives the answer for very simple processes. Unfortunately,
this method involves the well known two-point boundary value problem.
The following three methods of overcoming the two-point boundary

value problem have been highlighted in recent years:
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1. The gradient methods introduced almost simultaneously

by Kelly and Bryson.

2. Pontryagin's Maximum Principle.

3. Bellman's Dynamic Programming.

The gradient methods use the well known Method of Steepest
Descent, and as usual no account is taken of the possible
differences between two stationary points on the hypersurface of a
performance index. This inability can lead to spurious results.

Pontryagin's Maximum Principle is the most powerful of the
techniques. It will handle both linear and non-linear systems.
Also the method enables some knowledge of the optimum to be found
without solving all the mathematics involved. FPerhaps however,
most of its advantages are lost in its complexity.

Dynamic Programming can be shown to be related to the
Maximum Principle using Calculus of Variation. It has been the
subject of mounting interest, having been used successfully a
number of times. It suffers one disadvantage, it can only handle

linear systems.



86

CHAPTER SIX

Conclusions.

Only one conclusion can be drawn from the results:-
A systematic approach to the generation of a
simplified model has been developed. The
available techniques of each stage in the
system have been discussed. By use of a single
example, the systematic approach has been used
successfully to generate a simplified model of

an item of process plant.

The Systematic Approach To Model Simplification.

MODEL BUILDING

|STMULATION |

| SIMPLIFICATION |

USE

Each of the first three stages of the systematic approach has
within it a series of techniques. Each will have its own merits
in a given situation,

It is not suggested that every process plant item, if handled
in the same way as the example given, would give the best results.
What is intended is that the systematic approach should be

followed using the most applicable technique at each stage. By
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this method all plant items could be studied and simplified
models obtained. With models simplified to the level of the
example given it would be possible to simulate simultaneously
more than one process plant item even with the apparatus limitations
discussed.

It may now be noted that we are at the second stage in the
systematic approach. The fourth box (i.e. USE) in fact, has
become another complete cycle of the systematic approach. The
power of the technique of continuously cycling through the
systematic approach is that it can lead to unlimited simplification.
Whereas the initial model of the example reactor was impossible to
simulate on the available equipment a single cycle of the
systematic approach rendered it a reasonable proposition.
Extrapolating to a complete chemical plant, a few such cycles
would turn this very large and complex model into one of reasonable
size, and one which could be simulated with the limited equipment

available.
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This thesis is basically the application of other fields of
technology to Chemical Engineering problems. It will be noticeable
therefore, that the literature cited is mainly from standard texts
in these other fields of technology. These texts not only cover
individual points relevant to the argument presented here, but also
the more general principles of the applicable theory. Because of
this pointed references are not made within the text but will be

discussed here.
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CHAPTER TWO,

This chapter is the application of mathematics to Chemical
Engineering. Applications of this sort are well known to the Chemical
Engineer. The following two references are to general texts which
lay out the general mathematical principles as well as the philosophics
behind the theory.

1. '"Mathematical Modelling in Chemical Engineering."
R.G.E.FRANKS WILEY 1966.
2. "Mathematics for Chemical Engineers."

V.G.JENSON and G.V.JEFFREYS. Interscience.
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CHAPTER THREE.

In the description of the apparatus (Section 3.2) it was stated
that the best description could be obtained from the Manufacturers
handbooks.

The oscilloscope was supplied with its handbook published by
the manufacturer namely Solartron Ltd. The Hybrid computer together
with its perigterals was supplied by Electronic Associates Ltd., who
also supplied the following handbooks:

"TR - 48 Hybrid Computer Handbook."
"1100 Series Variplotter Handbook."
"R33 Teleprinter Handbook."

In section 3.4 reference is made to Davies paper:

"Simulation of a simple tubular heat Exchanger"

W.D.T. Davies PR. Cont. and Auto. Vol. 13 No.8. Aug. 1966.

and also the use of 'pseudo-laplace' transforms:
"Dynamic Response of a Heat Exchanger to flow rate changes."

F.J.Stermole and M.A.Larson. I. & E.C. Vol.2. p.62. 1963.

For a more general set of papers showing how simulation can
and has been used a collection has been published:
"Simulation", edited by J.Mcleod.

McGraw Hill. 1966.
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CHAPTER FOUR.

The control theory presented here can be found in most control
texts. One familiar to Chemical Engineers is:
P. Harriot
"Process Control'. McGraw Hill,
Another important work is by the originator of the Root locus
technique Walter G. Evens:
Walter G. Evens
"Control - Systems Dynamics". McGraw Hill.
The methods discussed in section 4.4 can be found in:

Cowley P.E.A. ASME Trans. 79 4 pp 823-832.



CHAPTER FIVE.

Three papers on feed forward control show its usefulness.
Firstly on an industrial scale:.
McMullein E.C. and Shinsky F.G.
Control Eng. 11 3 p.69
And for a theoretical background:
Tierney J.W, et al.

Control Eng. 4 pp 166 - 75 Sept. 1967.

Harris J.T., Schechter R.S. 18FC Process D9D

2 3 245 July 1963.

Finally the major works in the field of Optimisation theory.
1. Kelly H.J. AM Rocket Society Journal

30 10 Oct. 1960.

2. Bryson A.E. et al Journal of Aerospace Sciences.

29 April 1962.

3, Pontryagin L.S5S. et al Interscience

"Mathematical Theory of Optimal Processes"

4, Bellman R.F. Princeton University Press.

"Dynamic Programming."
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NOMENCLATURE.
a,A
A

o O 2

T P S

(rate)

g X € & SUE i

Arbitrary constant.

Area. Unsuffixed cross sectional areas of reactor
Suffixed other surface areas.

Surface area /unit length

Arbitrary Constant

Mass flow rate (molar)

Arbitrary constant

Specific Heat (molar)

Voidage

Internal Energy.

Function

Enthalpy of reaction.

Reaction rate constants

Arbitrary number of moles

Quantity of heat per unik time

Rate of reaction

Gas constant

Time

Absolute temperature

Heat transfer coefficient

Volume

Arbitrary variable

Frequency

Arbitrary variable

Concentration (mole fraction)
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Ve

Suffixes
IN

ouT

R
1, 24 ete.
Prefix

A

Arbitmry Variable
Temperature %

Density (molar)

Input

Output

Reactant (usually Isopropanol)
Product (usually Acetone)
Product (usually Hydrogen)
Datum value aad for £=0
Catalyst

Tube wall

Forward

Reverse

Stage number.

Incremental part.
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APPENDIX 1

The Theoretical Model of the

Tubular Reactor.

Consider mass balances over a time St on an increment sl
of reactor length (FIG 18) for:
1. Total mass.
2. Individual components.

and for the reaction

A = B + C Al
Total moles in = bét
Total moles out - (b-+55)5t
Accumulation = A E 5/0 sl
Reaction =

P L AE (rate) 8t

The mass balance is:

In - Qut = Accumulation — Reaction Rl .2

Hence
bst - (b +8§b)§t = ne,S/OSL - Ae/;SLSt(mt.,) Al .3

or
_& = AEETQ_ i Aa/o (l‘a/&,) Al. 4

Jl St

In the limit

b
oL

(1]
—
™
T
.
-7
F
=
]

.Qa) Al .5
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FIGURE

18 The Tubular Reactor




Moles of A in =  bix, Sk

Moles of A out =  (b+db)x,+dx,)8t
Accumulation = AESL S(ox,)
Reacted = T AL (rule)

Hence, as above:
ba, 88 - (b + 8b)(x,+ §x,)8t

= AESLS(,ox,,) # Af/chSt(T&tb) Al . b

or

X, 8b _ béxs _ &bdx, _ AES + AE o Al .Y
e el

In the limit

L L SRR R ok A LR g e B Al .3
TN T T 3 (At,o S AR
Le. c o Rl T AR (1 %, ) (rake) AL

Similar equations have been obtained for components B and C by

reversing the sign of the 'reacted' term indicating that the
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component is formed by the reaction and not destroyed.

Hence
ox LT AL r2 A
. bs + Ats 5L (1 = xcg)(rate) /.10
d Q...... —h—"hc = (l s c t" .
an e + Af,/o S x)(m ) Al. 1l

Also, for an inent the 'reacted' term is not present and hence:

e e _Lb%f = - Xg(rate) Al12

Summation of these expressions gives:

Ky 4 Ko XK, + Xy = | Al.13

which must be true by the definition of mole fraction, and serves

as a check on the above working.

Consider also a heat balance over the increment on the reaction

stream:
Heat in = bcB
Heat out = (b+8b)c+8c)(6+6806)
Accumulation = 2_(8LE A/o c6)
ot
Due to Reaction = € A/o §L (rate) AH
In from Wall = U,a. (g -6)8L

Out to catalyst = (L, g (0 - 65)8L



Hence
bSO — c068b - bBS
¢ 5[ Loao (6 -6) + Usas (0 -93))
. oL AL 3o B) ’ SLAE,/J AH (rat Al L
ot
Let
':l,ma-u = u’u“'u (9‘_—9) 2 98 1Y
9s Qs i LLs Ay (9 = 93) Al .16

Then in the limit:

9, Ly + 9s U = b Bj&:! o b(Qc
A%ﬁ) Aﬁf’ oL ot
¢ Oaf L 2 oL_9b) . AH{mE) Al.l7
/agf Abp Ol
Since AH = AOH, + (¢ +c -Q,)(S-Q,,) A1.18
Then

(Cnxn * Caxa"'ccxc){ A S

9 = k. s
ot Aes ) v

Aﬁ’p

Qf&'

+ (o) (AH, + (+c-ca)(28-6) Al.19

100
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Also considering a heat balance on the catalyst:

Heat from gas to catalyst = L[S @, (9 - GS)SL Sk
Heat increase within catalyst = Ps S (| = {',) ASL St
Hence
08, . Uoa (o-8,) Al.20



APPENDIX IT

The Stirred Tank Reactor Model.

To obtain the Mathematical model both heat and mass balances
must be considered. In deriving these balances, an approximating
assumption that there is no accumulation due to expansion of gas is
made. This is in fact the equivalent of stating constant molar
density.

For the overall mass balance:

Moles in : = b, 6t
Moles out = bous St
Change due to reaction = %g(TaLL)St

Therefore Lou-r g bm % VP (_Tu.ﬁ,) Ad.l

For the individual component balances:

Moles in = b mam ok

Moles out & " B OE

Change due to reaction = VP(’ﬂﬁ)gb
Accumulation = Vo 6xp

Therefore for a component destroyed by the reaction:

bmxmu = howxn % g"("m) =i v/’ d'.__xn Al.2
dt
or i;)_(-n = "'(1 -+ ')CH)('}-Q,&,) =+ _éls—(x’.ﬂu: —-xﬂ) HQ»S
[
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and for a component made in the reaction:

d_;&(! =

dt

(s-xa){rcdl) + _‘Izm.(xsm —3(.5)

Yo

For a heat balance on the reaction stream:

Heat in
Heat out

Accumulation

Due to the reaction
In from heated surface

Out to catalyst

Hence

~ bm Ciu gm
= b B

= dicfgczez
t

= \éo ('rcutu.)ﬁH
= qvbAvu
= q,‘-‘ As

'blﬂ C’I" 9!!! LOUTCQ + CLUAU + Cb& As
- Vo d€d 4 (ram) Vol
oLt
Using the identities:
C. = Ca Mg + Cgdg + Cc X

1

AH

AH,

+ (cy ¥ G =)0 = EL)

A2.1

R2.5

A6

A7

103

and substituting individual component and overall mass balances gives:
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_QL_Q = C!owAu * qﬁAS ire -b‘u__(gwpe)
VOC' VF

_ (rab) (AH, + (e + Cc—c)(26-6))  A2.8

c

For a heat balance on the catalyst

uSAg (9 "Qs)gt
P s (r-¢e)V 595

I

Heat from gas to catalyst

L}

Heat increase within catalyst

Hence

dd, . A (6 -6) A2.9
dt pres(1-€)V



PPENDIX III

The following table is the collection of the results obtained

from the analysis described in Section 2.6.

Results for a Single Stirred Tank Reactor.

Length of %% p o b
500

Tubular reactor mole mole moles/sec
%

of equivalent fraction fraction

Volume Al ems

40 . 7080 .0880 .6186 +1088
60 L6412 . 1276 o242 +1130
80 +5926 . 1560 .6280 <1167
100 « 5506 .1826 .6320 . 1200
120 « 5094 .2046 .6350 .1229
140 4780 «2230 .6380 « 1255

160 4490 2394 <6410 .1280
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Results for Two Stirred Tank Reactors in Series.

b are calaudatzd ok

Length Length

Equivalent Equivalent X,

of First of Second

stage AL, stage AL,

160 4o +3816
60 3526
80 «3306
100 3102
120 2924
140 .2788
160 2646

140 4o chobl
60 <3736
80 3562
100 .3282
120 .3082
140 .2928
160 .2780

) Valuer  of

Xg

.2858
3032
«3155
.3182
3378
. 3462
3542

2634
.2822
«2964
. 3086
3202
+3298
.3380

S00

6486
«6516
.6540
« 6564
.6586
.6608
.6628

6462
6496
+6520
. 6544
.6566
.6588
.6610

PWLG}

3}

_gau;ucpu;%} Burd  cand jwth stage
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)

« 1463

1416



AL

120

100

80

AL,

40
60
80
100
140

160

60
80
100
120
140

160

60
80
100
120
140

160

4314
.3988
« 3740
. 3488
. 3286

<3112

4632
<4276
. 4001
3750
.3518
«3330
«3132

4960
4550
4266
+3990
« 3740
3538
.3328

2476
«2676
.2822
«2966
. 3084
. 3184

<2304
.2522
.2682
.2830
.2964
.3078
3190

.2094
.2340
.2512
.2676
.2820
.2940
. 3062

500

. Bhlh
. 6482
. 6506
«6530
6554
.6572

. 6414
6452
. 6480
.6506
«6530
.6548
.6570

.6382
6422
. 6452
6482
.6506
.6528
. 6550

. 1349
.1368

.1328
«1352

+ 1269

. 1327
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AL,

60

40

AL,

10
60
80

100

120

140

160

40
60
80
100
120
140

160

Xa

+5338
489k

4560
4260
. 4000
3770
3550

5870
+ 5360
. 4990
L4652
4358
4120

.3870

»2872
2142
.2338
.2518
«2672
+2800

«2934

1558
. 1864
.2080
.2286
.2460
+2602
2736

o

6354

« 6394
6426
« 6456
. 6484
+6506
6530

.6316
.6356
.6390
6422
6452
6478
. 6504

« 1209

<1144
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Results for Three Stirred Tank Reactors in Series.

AL, = 6o cms , Al, = lboems
Al, Xy Ag ??5—
60 .2182 . 3782 .6678
80 2084 . 3840 6696
100 .1990 . 3896 .6710
120 «1910 | +3936 6712
140 .1832 « 398k «6738
160 . 1762 . 4020 +6750

Al = lboems. 4 AL, = Iho oms.

60 .2296 +3730 .6680
8o .2186 «3790 +6698
100 .2080 «3852 6716
120 1978 «3910 6732
140 <1914 «3950 <6742

160 .1836 . 4000 .6758
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AL, = lhoems. 5 AL, = Ilo oms

AL'& La g 500
60 «2508 « 3520 « 6644
80 2384 «3596 6666
100 2266 « 3666 6684
120 +2156 « 3730 6702
140 2068 «3780 6714
160 .1976 3834 «6730

AL = 120 ems. 5 AL, = 100 ems.

60 2804 «3348 +6612
80 .2650 « 3440 6634
100 .2510 «3522 6652
120 .2386 «3592 6672
140 .2280 + 3656 .6688

160 2170 «3716 .6704



AL,

60
70
80
100
120
140
160

60

100
120
140
160

70

AL,

<2974
+2906
.2818
«2670
«2548
2438
232k

AL. = loo ems .

+3180
«2994
.2820
.2670
2550
2426
3070

{20 oms.

,» AL

3236
3276
+3330
« 3420
. 3482
«3538
+3596

3 AL; =

.3140
3250
«3354
« 3440
<3516
«3584
«3180

W

T

.6568
6576
+6590
6614
.6634
6654
+6660

80 eoms .

6564
«6586
«6606
.6626
6644
.6666
6574

(

b

111

= .1430)
=.1431)

=.1417)



Al,

60
8o
100
120
140

160

3170
+2990
2824
.2690
«2560

2452

6552
6572
«6594
6614
6634
«6658

( b

112

=.1406)
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Results for Four Stirred Tank Reactors in Series.

AL,= 120 ums. AL, = 8o oms. 5 Al, = 80 oms

3

al, x, % =
4o .2818 «3330 .6590
60 «2320 «3616 .6680
80 «2210 . 3668 . 6692
100 «2098 .3738 6706
120 2000 «3792 6736
140 «1938 . 3846 6742
160 .1838 +3892 6758

AL, = 120 oms. , Al,= 80 ems. , Al =70 oms.

60 2374 « 3545 . 6644
80 .2256 « 3604 6662
100 2142 « 3686 «6678
120 2042 <3746 6692
140 . 1960 «3798 .6700

160 .1880 . 3854 .6720
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Al 100! ewsio g - ik, = 86, dwms y Bly = Yo o

AL, X Xg 2
60 .2480 « 3490 6624
80 «2358 <3562 . 6640
100 .2238 « 3644 6662
120 «2152 .3706 6672
140 2070 3774 .6698
160 . 1984 3824 .6706
AL, = 80 oms , Al = loo ems , Al, = 6o oms
60 +2560 » 3446 .6608
80 2428 e 3542 . 6630
100 2300 «3612 6652
120 +2200 «3690 6678
140 «2110 «3730 6680

160 .2020 .3798 6694
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Results for the Two Special Cases.

= Lo ems
x, % & b
.7080 .0880 6186 . 1088

= hoems o, Al,= 6o ums

« 5360 . 1864 .6356 <144
= Lbooms , Al, = booms , AL, = 100 oms

. 3658 .2852 6532 « 1281

= kaooms , Aly = booms , Al,= looewms | AL, = 200 oms

.2092 <3776 .6720

= loo ums , Bl,= 100 ems o Al, = l00 ems

.2700 « 3430 6620 . 1458

= looems , Al, = looems , Al,= 100 ems , Al, = 100 oms

«2030 « 3814 6716
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The following table shows the results of a +un on the
digital program given in Appendix 4. The run was made as the base

case for the study in Section 2.6

Reactor o o Xx g C
lengths mole mole
AL oms fraction fraction
0 « 8667 0000 300.0
20 .7788 .0470 307.6
4o .6988 .0899 311.8
60 6287 1274 314.7
8o +5678 1601 817.1
100 «5145 . 1886 319.1
120 4678 «2136 320.0
140 4265 2357 322.7
160 3899 2553 32k.3
180 «3572 .2728 325.7

200 « 3279 .2885 327.1



Al

220
240
260
280
300
320
340
360
380

420

460

480

500

«3016
2778
«2562
2367
.2188
.2026
1877
<1741
+1616
«1501
+1395
.1298
+1208
«1125
. 1048

. 3026
3154
3269
<3374
3470
« 3557
<3637
<3710
« 3777
.3838
+3895
«3947
«3995
4039
4080

8°C

32845
329.7
330.9
3319
333.0
334.0
334.9
335.8
33646
3374
338.1
338.8
3395
34041
340.7
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APPENDIX IV

Comparison of Steady State Theory with

Practical Results.

The computer program given here was written to simulate
steady state conditions for the reactor at different flow rates
and temperature conditions. This was done to compare the accuracy
of the model with results obtained by The Science Research Council's
Warren Springy Laboratories. FIG.5 shows the comparison of the

computer results with those obtained by The Science Research Council.
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The following sequence of instructions is the program written

for the department’s P.D.S. 1020 computer.

INP
C003 =
1031 +
L002 -
2017 =
€028 -
1017 -
D028 -
D018 -
co08 -
MO19 =
MOO1 -
MOO1 -
€029 -
1021 -
Do22 -

D028 =

CO30 =
L020 -
D030 =
MOOO =
5029 -

Co09 -



L003
D012
D008
€010
L009
D010
€011
1016
S000
4011
MO14
A000
COO4
L015
S001
MO011
MO14
A001
Co05
L027
MO02
4026
MO11
DO24
5029

MO14
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A002
€006
L0712
M008
MOO09
A003
co07
LOOL
€000
LO05
€001
LO06
€002
LO07

€003

1000 +

C/R 000

1000
TYPE
L001
TYPE
1002
TYPE
1003

TYPE

JMP 003

RET
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The following sequence is used to load the initial values of

variable

INP
C000 =-
INP
c001 =
INp
cooz -
INP
co12 -
INP
coty -

€015 -

c016 -
Inp
c017 -
INP
c018 -
INp
c019 -
INp
€020 -
INP
co21 -

INp

into the P.D.S. 1020.

+8333

» 0000

300

18.6

1.0

273

22400

2460

82500

13300

1.987
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The following table gives the results obtained from the runs

on the computer for different temperatures.

Reactor Temperature = 300 %e

gm of catalyst - hr
moles of iso-propanol feed

7+15
14.3
21.45
28.6
35.8
43
5041
57.3
6445
71.5
78.6
8547
93

X

A

« 5277
3742
.2807
.2188
« 1757
« 1445
J1215
« 1041
+0909
.0807
.0728
0606
.0618

« 1666
<2504
<3014
«3350
3587
«3756
.3882
#3977
<4049
+4105
4148
4181
4208

fractional
conversion.

o2k
.40
52
+60
67
.72
.76
o7k
«81
.83
+85
.86
.87
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Reactor Temperature = 350 C
e g2 SErseaton
4% L4408 +2140 «33
14.3 «2779 3029 52
21.45 . 1879 «3520 «65
28.6 . 1326 .3821 7k
35.8 .0965 . 4018 .81
43 .0721 4152 «85
Reactor Temperature = 400 °C
7.15 .2813 +3010 s2
1%4.3 . 1327 . 3821 o7k
21.45 .0688 <4169 .83
28.6 .0379 4338 | .92
3548 .0222 . JAh2k «95
43 0140 469 .97
5041 .0096 JAh92 .98

5?'3 '0073 04505 198



