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Thesis Summary 

 

Individuals within the aged population show an increased susceptibility to infection, implying 
a decline in immune function, a phenomenon known as immunosenescence. Paradoxically, 
an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with 
ageing, therefore some aspects of the immune system appear to be inappropriately active in 
the elderly. The above evidence suggests inappropriate control of the immune system as we 
age. 

Macrophages, and their precursors monocytes, play a key role in control of the immune 
system. They play an important role in host defence in the form of phagocytosis, and also 
link the innate and adaptive immune system via antigen presentation. Macrophages also 
have a reparative role, as professional phagocytes of dead and dying cells.  Clearance of 
apoptotic cells by macrophages has also been shown to directly influence immune 
responses in an anti-inflammatory manner. Inappropriate control of macrophage function with 
regards to dead cell clearance may contribute to pathology as we age. 

The aims of this study were to assess the impact of lipid treatment, as a model of the aged 
environment, on the ability of macrophages to interact with, and respond to, apoptotic cells. 
Using a series of in vitro cell models, responses of macrophages (normal and lipid-loaded) to 
apoptotic macrophages (normal and lipid-loaded) were investigated. Monocyte recruitment to 
apoptotic cells, a key process in resolving inflammation, was assessed in addition to cytokine 
responses. Data here shows, for the first time, that apoptotic macrophages (normal and lipid-
loaded) induce inflammation in human monocyte-derived macrophages, a response that 
could drive inflammation in age-associated pathology e.g. atherosclerosis. Monoclonal 
antibody inhibition studies suggest the classical chemokine CX3CL1 may be involved in 
monocyte recruitment to apoptotic macrophages, but not apoptotic foam cells, therefore 
differential clearance strategies may be employed following lipid-loading. CD14, an important 
apoptotic cell tethering receptor, was not found to have a prominent role in this process, 
whilst the role for ICAM-3 remains unclear.  

Additionally, a small pilot study using macrophages from young (<25) and mid-life (>40) 
donors was undertaken. Preliminary data was gathered to assess the ability of primary 
human monocyte-derived macrophages, from young and mid-life donors, to interact with, and 
respond to, apoptotic cells. MØ from mid-life individuals showed no significant differences in 
their ability to respond to immune modulation by apoptotic cells compared to MØ from young 
donors. Larger cohorts would be required to investigate whether immune modulation of MØ 
by apoptotic cells contribute to inflammatory pathology throughout ageing.   
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Introduction 

 

1.1 What is ageing? 

Although the concept of ageing is familiar, it is a complex term to define. In a 1952 lecture on 

ageing entitled „An Unresolved Problem of Biology‟, ageing was described as a collection of 

changes that render human beings progressively more likely to die1. This unresolved 

problem of biology refers to the inextricable link of ill health with ageing, however current 

research aims to dissociate the two and ensure that healthy ageing and a greater quality of 

life come hand in hand with increased lifespan. It could be argued that science is much 

closer to solving the problem2, or at least gaining a better understanding of the underlying 

mechanisms that result in decline of health with advancing age, and therefore can look at 

ways to counteract the origins of ill health in the elderly. 

Improving the quality of life of the elderly is an area of increasing focus as both the relative 

and absolute number of elderly individuals in the population has not only increased over the 

last century but is set to increase further, due to improved social and economic conditions3. 

This leads to a huge economic burden, with a reduced working population, and increasing 

social and economic burden with regards to age-related disease3.    

Theories on the mechanisms behind ageing vary widely, from psychological and sociological 

theories based on reduced social engagement and inactivity, down to the cellular and 

molecular level such as shortening of telomeres, the protective sequences of DNA at the end 

of genes which protect DNA from damage during replication4. 

Biological theories cover evolutionary, molecular, cellular and systemic concepts4. Popular 

biological theories of ageing include wear and tear, accumulative waste, somatic mutation, 

error accumulation, telomere shortening, oxidative stress, mitochondrial damage, free-

radical, cross-linkage, autoimmune, reproductive cell cycle, DNA damage, and mTOR 

theories4. In reality many of these are backed by scientific evidence and also have 

considerable crossover with each other. No single theory can explain all phenomena 

associated with ageing, with the likely conclusion that ageing is a complex process with 

contributing factors from across the range of ageing theories5.  

1.2. Immunosenescence and inflammaging 

Immunosenescence, the ageing of the immune system, results in an increased susceptibility 

to infection in the aged population, implying a decline in immune function6-8. Paradoxically, an 

increase in autoimmune disease is also associated with ageing, a result of inappropriately 

active components of the immune system9,10. Ageing is an established risk factor in 
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autoimmune diseases such as rheumatoid arthritis, and is also associated with increased 

autoantibody titre11,12. The above evidence suggests not just a decline in overall immune 

function, but inappropriate control of the immune system with advanced age, with the net 

effect of chronic low-grade inflammation. This chronic low-grade inflammation has been 

associated with cardiovascular disease, diabetes, frailty and cognitive decline/dementia13.  

Inflammaging is a recently coined term to describe the low-grade chronic inflammatory status 

associated with many elderly individuals14,15. Franceschi et al. argue that many phenotypes 

of ageing can be explained by an imbalance of pro- and anti-inflammatory networks, which 

drive frailty and other common age-related pathologies15.  

Ageing of the immune system is associated with phenotypes that include thymic involution5, 

reduced population of naïve T lymphocytes, increased population of memory T and B cells 

with reduced antigen recognition16. Higher circulating levels of inflammatory mediators are 

also a feature of inflammaging, with consistently higher levels of Tumor Necrosis Factor-

alpha (TNF-α), interleukin-6 (IL-6) and C-reactive Protein (CRP) across studies13. Evidence 

also suggests reduced levels of circulating anti-inflammatory mediator IL-10 in the elderly, 

which could exacerbate the inflammatory environment17. The increase in inflammatory 

mediators such as IL-6 and TNF-α has been attributed to accumulated oxidative damage, 

increased adiposity and declining levels of sex hormones as we age13. 

Ageing of the innate immune system is multifaceted and still poorly understood. Research 

into age-related changes in innate immunity is less advanced than that of adaptive immunity, 

and methodology varies widely, often resulting in conflicting results7. In order to establish the 

cause of immunosenescence and inflammaging, studies must be undertaken at the cellular 

level to understand which components of the immune system are under or over active as we 

age. 

1.2.1. Senescence of monocytes and macrophages 

The innate immune system is not only the first line of defence following a breach of physical 

barriers, but is also vital in maintaining homeostasis in the body, clearing dead and dying 

cells or cells flagged as harmful or unwanted. Cells within the innate immune system are also 

link the innate and adaptive immune system, priming this second line of defence and working 

synergistically. When dysregulation of the innate immune system occurs consequences can 

be wide-reaching. 

1.2.1.1. Monocyte and macrophage function 

Macrophages, and their precursors monocytes, play an important role in host defence in the 

form of phagocytosis, and also link the innate and adaptive immune system via antigen 

presentation18. Classically-activated „M1‟ macrophages are pro-inflammatory, which can be 
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induced by encountering pathogenic material or pro-inflammatory mediators. Classically 

activated macrophages have been attributed to play a pathological role in inflammatory 

diseases including rheumatoid arthritis, inflammatory bowel disease asthma and 

atherosclerosis19. Alternatively activated „M2‟ macrophages have a largely reparative role, 

including clearance of apoptotic bodies and debris from tissues 20. 

1.2.1.2. Monocyte and macrophage senescence 

It is important to understand the root causes of monocyte and macrophage senescence in 

order to improve innate immunity in ageing. This could include whether changes in innate 

immune function are a result of changes in the overall populations of innate immune cells 

such as monocytes or macrophages, as seen in the adaptive immune system with naïve T 

cells and thymic involution16, or the reduced ability of an aged cell to function. The effects of 

an aged environment may also be driving the effects of immunosenescence, rather than the 

cells.  

A decrease in CD68-positive macrophage-lineage cells has been observed in human bone 

marrow in aged subjects21 which may account for the impact ageing has on innate immunity 

as monocytes/macrophages are one of the first cell types to respond to invading 

microorganisms. However this was not replicated in a murine model, important to note due to 

the frequent use of mice in ageing research22.  

In murine studies to address immune cell function in ageing, peritoneal macrophage function 

was impaired in aged mice with regard to adherence, opsonization, phagocytosis, superoxide 

production and antibody-dependent cell cytotoxicity23-25. Also, a decrease in phagocytic 

ability of kupffer cells, specialised tissue macrophages of the liver, was found in aged mice 

by Videla et al. 25. This would ultimately reduce the ability of macrophages to interact with 

and destroy pathogens and unwanted self, e.g. tumour cells, seemingly impaired functions in 

the elderly population with regard to increased risk of infection and cancer24. 

Another mechanism for infection control elicited by macrophages is pro-inflammatory 

cytokine production via toll-like receptor (TLR) stimulation to elicit an immune response. 

Interestingly, some impairment in TLR function has been observed with ageing26, which 

could be predicted with increased incidence of infection16, however this does not explain the 

systemic increase in inflammatory cytokines in the elderly population14.  

Renshaw et al. observed impaired TLR expression, including reduction in TLR4 expression, 

and impaired TLR function in peritoneal and splenic macrophages from aged female 

C57BL/6 mice26. In their study, function of TLRs was measured as secretion of cytokines IL-6 

and TNF-α following stimulation of TLRs with known ligands, further possible explanations for 

the increased incidence of infection in the elderly 26. Conversely, Boehmer et al. found no 
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change in TLR4 expression in peritoneal macrophages between young and aged female 

BALB/c mice, but results supported a decrease in TNF-α and IL-6 secretion following LPS 

stimulation 27. This was attributed to a decrease in basal levels of p38 and c-jun NH2-

terminal kinase (JNK) MAPK and resulting reduction in MAPK activation, also found by Ding 

et al. 24,27. Despite an apparent inability of aged macrophages to release this cytokine, TNF-α 

has been found in elevated levels in the circulation of elderly subjects, a characteristic of 

inflammaging28,29.  

CD14 expression, another key pattern recognition receptor (PRR) important in LPS 

response, was reduced in aged C57BL/6 (B6) mice30, however expression in monocytes and 

macrophages with ageing has not been extensively studied. CD14 expression and function 

would also be of interest with regards to AC clearance6,31. 

Research on human primary cells is one way of comparing young and aged individuals and 

has been carried out using peripheral blood mononuclear cells (PBMC), PBMC-derived 

macrophages (HMDM) and bone marrow-derived macrophages (BMDM). As found in the 

murine models, monocytes isolated from aged individuals display a decrease in IL-6 and 

TNF production following LPS activation, which was attributed to deficient PKC and MAPK 

activation32. Whether PBMC derived macrophages are comparable to tissue macrophages is 

a question which is yet to be answered, a simpler conundrum in murine models, where tissue 

macrophages can be harvested.  

1.2.1.3. Apoptotic cell clearance in ageing 

Very few studies have addressed the role of apoptotic cell clearance in ageing, and the 

association of systemic inflammatory markers in ageing. Whether there are defects in AC 

clearance through ageing, or subsequent immune-modulation following interaction with AC, 

could be a result of an aged cell failing to function, the effect on an aged environment on cell 

function, or likely a combination of both. The levels of redundancy shown in AC clearance 

may imply that even if cells become less efficient as we age, there may be other factors 

present that subsidise these effects e.g. presence of AC:phagocyte bridging molecules. 

A study in mice found reduced apoptotic keratinocyte clearance in vivo in aged animals, and 

a reduction in AC interaction with thioglycollate-elicited peritoneal MØ from old mice in vitro33. 

Aged mice also displayed an increased anti-nuclear antibody titre, as associated with ageing 

in humans, and seen in autoimmune disease12,33,34. AC interaction was also reduced in MØ 

from young mice in the presence of donor serum from aged mice in the same study, showing 

interesting effects of both cell ageing and an aged environment on MØ ability to clear AC33. 

This is an accessible method of assessing the influence of an aged environment on MØ 

function, which to date has not been replicated in human studies. 
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1.3. The macrophage – the professional scavenger of AC 

1.3.1. Apoptotic cell clearance 

Apoptosis, or programmed cell death, allows removal of aged, damaged, infected or 

unwanted cells in a controlled manner, an essential process for maintenance of homeostasis 

in multicellular organisms. Apoptosis is an immunologically silent method of cell death, and 

would be functionally ineffective without subsequent clearance of apoptotic cells (AC), or 

efferocytosis (fig. 1). Failed AC clearance can result in secondary necrotic bodies and 

potential inflammation35, and has been implicated in a number of pathologies.  Defects in 

genes associated with AC clearance are well established mechanisms behind autoimmune 

disease, such as deficient C1q expression, which has been show to drive systemic lupus 

erythmatomous (SLE)36. Other examples include age-associated pathologies, including the 

dubbed „inflammaging‟37, and a number of age-related conditions, including arthritis, 

neuropathy  and atherosclerosis (reviewed in35).  

 

 

Figure 1. Macrophage phagocytosis of apoptotic cells Differentiated THP-1 macrophage 

interacting with apoptotic Jurkat cell.  

In contrast, in vivo murine studies have found persistent apoptotic cells, without the 

associated inflammatory effects38,39. Necrotic cell clearance has also been found to be non-

inflammatory in some models40, highlighting gaps in the current understanding of clearance 

mechanisms and subsequent immune modulation. 

ACs are rarely observed in vivo due to clearance efficiency, which is the result of a complex, 

multi-stage process41. Neighbouring cells, termed „amateur phagocytes‟ are thought to assist 

in the removal of apoptotic cells before classical morphological features associated with 
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apoptosis are displayed42,43, resulting in the need for in vitro AC clearance models to gain a 

full understanding of the process. The recruitment of „professional phagocytes‟, such as 

macrophages (MØ) occurs at sites, often pathological, with high apoptosis levels, e.g. the 

atherosclerotic plaque35,44-46. 

1.3.2. Macrophages; janitors of cell death 

Macrophages are inherently plastic; they have the ability to respond to varying 

microenvironments and alter their phenotype accordingly, in a reversible manner47. The 

activation state, or phenotype, of macrophages depends greatly on the balance of 

extracellular stimuli encountered48. There are several classification systems of macrophage 

phenotypes, e.g. M1 v. M2, or classical v. alternative, however the polar classifications used 

to define macrophage phenotype is likely to be a simplistic view, and therefore MØ 

phenotypes are difficult to truly classify. Researchers have tried breaking down MØ 

phenotypes into further subgroups and allocate reliable markers for identification, however a 

spectrum of varying characteristics depending on local stimuli is likely to be a more 

physiologically relevant model49. 

Monocytes and MØ both have designated subpopulations, though the link between 

monocyte subpopulations, and subsequent MØ subpopulations remain ill-defined. Murine 

monocyte subpopulations are well characterised according to surface receptor expression, 

and are designated as CD62L+CCR2+CX3CR1loLy6hi (inflammatory monocytes), or CD62L-

CCR2-CX3CR1hiLy6lo (resident monocytes)50,51 . Murine monocyte subpopulations do not 

appear to directly correlate functionally with human monocyte subpopulations52, which is 

important to consider in investigations into monocyte recruitment from the blood, e.g. in 

atherosclerosis, where murine models are prominent. Human monocyte subpopulations 

consist of a majority of classical CD14hiCD16- monocytes, and a second CD14loCD16+ 

(CX3CR1hiCCR2-) non-classical subpopulation50,53.   

Classification of MØ activation was initially based on a linear M1-M2 scale, with classically-

activated MØ at one end of the spectrum (M1), and alternatively-activated MØ at the other 

extreme (M2), with different degrees of activation in between (fig. 2; left). This was largely 

based on whether cells were exposed to Th1 or Th2 cytokines. Mosser and Edwards (2008) 

have since proposed a more physiologically relevant  model, based on a colour wheel49 (fig. 

2; right), whereby prominent groups may preside (colour blocks), but MØ could have any 

combination of characteristics according to the surrounding milieu, therefore activation status 

is less easily categorised49. This would explain why, unlike monocyte subgroups, specific 

„M1‟ and „M2‟ markers have been difficult to define. 
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Figure 2. Schematic depicting models of macrophage activation based on Mosser and 

Edwards (2008)49. A MØ activation spectrum based on a colour wheel (right) has been 

proposed to replace the linear M1-M2 scale of activation (left). Rather than distinct M1 and 

M2 phenotypes on either end of a linear scale of MØ activation (left), prominent groups may 

preside (right), but MØ could still have any combination of characteristics according to the 

surrounding milieu. 

 

Some phenotypes of MØ activation are well defined, such as the response to the classical 

pro-inflammatory Gram-negative bacterial wall component lipopolysaccharide (LPS). This 

classical subpopulation is associated with a cell-mediated immune response to invading 

pathogenic material, and is inflammation is maintained by Th1 cells49. Classical/M1-like 

activation is induced by tumour necrosis factor (TNF), or toll-like receptor (TLR) ligands such 

as lipopolysaccharide (LPS), and interferon-γ (IFN-γ)49. This results in a pro-inflammatory 

phenotype. Markers include TNF-α, interleukin-1 (IL-1), IL-6 and IL-10 release, and 

increased microbicidal activity via superoxide and free radical production49. 

Alternatively-activated macrophages have reparative roles, and encompass a broader 

spectrum of MØ activation, such as wound-healing and regulatory MØ49. Wound healing 

phenotypes occur at sites of tissue damage, following granulocyte release of IL-4, stimulating 

arginase activity in mice49. Arginase converts arginine to ornithine, a precursor required for 

extracellular matrix production. In vitro, MØ treated with Th2-associated cytokines IL-4 and/or 

IL-13 are less efficient at dealing with pathogens, as determined by significantly reduced pro-

inflammatory cytokine release and reduced intracellular microbicidal activity49. Paracrine 

mediators released by these MØ also seem to control inflammation in the surrounding 

microenvironment. Regulatory macrophages, which are often grouped in with alternatively-

activated MØ, are less well defined. They can be observed in response to AC clearance, and 

have also been shown to dampen an inflammatory response, e.g. by increased IL-10 

release49. Other inducers of regulatory MØ phenotype include glucocorticoids, prostaglandins 

and IL-1049. 

In the case of interaction with ACs, it is thought a reparative role predominates in the 

surrounding MØs, promoting clearing up of debris and dampening/resolving inflammation via 

M1 M2 
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anti-inflammatory cytokine secretion and subsequent suppression of pro-inflammatory 

mediator release54-56. The alternative/M2 phenotype is associated with more efficient AC 

interaction than their M1 counterparts57. This phenotype may be less well defined in the 

plaque environment, where a large quantity of ACs are located, due to the large variety of 

pro-inflammatory and anti-inflammatory stimuli in the immediate microenvironment of the 

MØ46,58.  

1.3.3. Phagocyte recruitment – a balance of ‘find-me’ versus ‘keep-out’ signals 

In the case of professional phagocyte recruitment, e.g. MØ, ACs release „find-me‟ signals, 

which attract phagocytes from the surrounding areas. Phagocytes detect these „find-me‟ 

mediators, which could be soluble or microparticle-associated59,60, and move along a 

concentration gradient towards the cell requiring clearance. This area of research has been 

largely neglected by current in vitro methods of assessing AC removal, therefore there is 

large potential for discovery of further „find-me‟ mediators. 

A wide variety of mediator classes have been identified as „find-me‟ signals, including 

chemokines, lipids and nucleotides61-63. CX3CL1, also known as CX3CL1 or neurotactin, was 

the first and, until recently, the only chemokine to be discovered with a role in phagocyte 

recruitment to apoptotic cells61. CX3CL1 release has been shown in Burkitt‟s lymphoma (BL) 

cells in association with microparticles (MPs), which are released following zeiosis, or 

blebbing, of the AC membrane61. CX3CL1 ligates to the phagocyte surface receptor 

CX3CR1, stimulating phagocyte migration61,64. The release of CX3CL1 from apoptotic cells 

within the plaque may also play a direct role in monocyte recruitment, or be conferred to 

endothelial cells via MPs. CX3CL1 can also be cleaved from the surface of cells as a soluble 

mediator, which has previously been implicated in pathologies associated with failed AC 

clearance and inflammation65-67. A subset of CX3CR1+ monocytes have been identified50, 

and CX3CL1 has previously been shown to have a role in recruitment of monocytes to the 

atherosclerotic plaque via interaction of monocytic CX3CR1 ligation to membrane bound 

CX3CL1 on the endothelial cell surface64,68. CX3CL1 also increases the expression of 

phagocyte:AC bridging molecule MFG-E8 (milk fat globule-endothelial growth factor 8), thus 

contributing to successful clearance69. A recent study has implicated a wider range of 

chemokines as „find-me‟ signals released by cells induced to apoptosis via Fas/CD95 

ligation59. Monocyte chemotactic protein-1 (MCP-1/CCL2) and IL-8 (CXCL8) were shown to 

attract THP-1 monocytes and primary human neutrophils respectively59, which could have 

inflammatory consequences70. 

Intercellular adhesion molecule-3 (ICAM-3/CD50) has recently been identified as a mediator 

of phagocyte recruitment to apoptotic B cells, in association with MPs71. Whether ICAM-3, or 



23 
 

CX3CL1, is released in association with MPs by apoptotic MØ, which occur in atheroma, is 

currently unknown, and may have implications in atherosclerosis progression, a pathology 

with a high proportion of localised ACs, including apoptotic MØ46. 

Nucleotide chemoattractants adenosine triphosphate (ATP) and uridine-5‟-triphosphate 

(UTP) were shown to be released in early apoptosis, and interact with purinoreceptor-2 

(P2Y2) on the phagocyte surface63, and have been suggested to act as short-range effectors 

in phagocyte recruitment. This highlights potential differences in roles between „find-me‟ 

signals that have yet to be fully investigated. 

Lysophosphatidylcholine (LPC) and sphingosine-1-phosphate (S1P) are lipid mediators 

shown to have a role in phagocyte attraction to dead cells 62,72,73, which also have additional 

autocrine functions. LPC interacts with G-protein-coupled receptor (GPCR) G2A72, and has 

been shown to induce expression of monocyte, neutrophil and lymphocyte chemoattractants, 

MCP-1, IL-8 and RANTES (Regulated on Activation, Normal T cell Expressed and 

Secreted/CCL5) respectively74. S1P also has autocrine functions, inducing phagocytic IL-8 

and IL-10 secretion, and inhibiting TNF-α and IL-12p70 release75-77. 

In order to maintain immunologically silent removal of ACs, recruitment of phagocytes must 

be controlled in terms of phagocyte lineage. „Find-me‟ mediators have to compete with „keep-

out‟ signals such as lactoferrin, which has been shown to selectively inhibit migration of 

granulocytes, but not mononuclear phagocytes78,79. This is important given the evidence of 

AC-induced IL-8 release, a neutrophil chemoattractant59, and the possible detrimental effects 

of such recruitment with regards to inflammation70. As this is a relatively new area of 

research, more „keep-out‟ signals are likely to be discovered. 

1.3.4. Recognition and tethering – a balance of ‘eat-me’ versus ‘don’t eat-me’ signals 

Following phagocyte recruitment, ACs must be identified as phagocytic targets. This occurs 

via upregulation of „eat-me‟ flags, balanced with the downregulation of „don‟t eat-me‟ 

markers, usually associated with viable cells80. Identified „eat-me‟ markers are gained from a 

variety of mechanisms, including exposure of intracellular molecules (e.g. 

phosphatidylserine81,82 and annexin I83), modification, redistribution and removal of cellular 

proteins, lipids and glycoproteins (e.g. modification of ICAM-384, phosphatidylserine (PS) 

oxidation85, removal of sialic acid86) and binding of opsonins (e.g. mannan-binding lectin 

(MBL), complement component C1q87,88).   

Loss of PS asymmetry, resulting in extracellular exposure, is a well-established „eat-me‟ 

signal expressed during apoptosis81,82,89. PS is normally restricted to the inner leaflet of the 

cell membrane89, and redistribution is thought to be required for AC clearance81,82. PS 

exposure alone, however, is not enough for successful execution of AC clearance, 
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demonstrated by a lack of clearance of viable cells induced to express PS constitutively90. It 

may be that further „eat-me‟ markers are required, and also downregulation of „don‟t eat-me‟ 

markers is likely to be essential for engulfment80. Identified „don‟t-eat-me‟ flags CD300a91, 

CD3192 and CD4793 inhibit phagocytosis of viable cells, and have been manipulated by 

cancer cells to evade the immune system94. Mechanisms of action vary; CD300a 

competitively binds AC surface phospholipids, including PS91,95; CD31 on viable cells binds 

homophilically to phagocytic CD31, preventing ingestion, but becomes functionally altered 

following induction of apoptosis, enabling phagocyte tethering92; CD47 inhibits engulfment 

via phagocytic receptor SIRPα (SIgnal Regulatory Protein α), with successful engulfment 

only achieved following CD47 disruption93. 

The phagocytic receptor for PS proved elusive for a significant period of time, however 

several receptors have recently been identified, T cell immunoglobulin mucins 1 and 4 (TIM-

1, TIM-4)96, brain-specific angiogenesis inhibitor-1 (BAI1)97, stabilin-298 and the Receptor for 

Advanced Glycation Endproducts (RAGE)99. Numerous bridging molecules have also been 

identified as facilitators of phagocyte binding via AC expressed PS, including growth arrest-

specific 6 (Gas6), protein S and MFG-E8. Gas6 and protein S bridge to Mer on the 

phagocyte membrane, whereas MFG-E8 bridges to αv integrins100. The phagocyte receptor 

LRP1 (low-density lipoprotein [LDL] receptor-related protein 1 or CD91) has been shown to 

bind PS when colocalized with redistributed calreticulin, which is upregulated during 

apoptosis93. Calreticulin can also associate with bridging molecules C1q and MBL for 

recognition by LRP188. Oxidative modification of PS results in recognition by phagocytic 

scavenger receptors such as CD36101. Scavenger receptors (SRs) CD68, SRA-1, SRB-1 and 

lectin-like oxidised LDL receptor-1 (LOX-1) also have roles in apoptotic cell recognition102-105. 

The importance of the role of PS in AC removal becomes clear with genetic alteration of PS 

recognition mechanisms, resulting in pathology, including atherosclerosis and Alzheimer‟s 

disease106-110. 

ICAM-3 is a cell surface receptor that is expressed on human, but not murine, leukocytes, 

resulting in it being overlooked in a lot of cell clearance models80. Functional modification of 

ICAM-3 during apoptosis allows phagocyte recognition71,84  

Alongside Gas6, protein S and MFG-E8, collectins (MBL, surfactant protein-A (SP-A), SP-D), 

complement components (C1q, C3b), thrombospondins (TSP-1) and pentraxins (C-reactive 

protein (CRP), serum amyloid P (SAP), pentraxin 3 (PTX3)) have all been shown to facilitate 

phagocyte:AC bridging111-119. Immunoglobulin M (IgM) and IgG antibodies also have a role in 

opsonising ACs120-122. Soluble CD14 has also been observed to bind PS and AC, but a role in 

AC clearance has not yet been established38. 
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Phagocyte interaction with AC clearance is largely associated with a dominant non- or anti-

inflammatory response55,56. Interestingly, many receptors implicated in clearance of AC are 

also involved in an inflammatory innate immune response. This has resulted in the 

hypothesis that certain „eat-me‟ flags on the AC surface are the equivalent to pathogen-

associated molecular patterns (PAMPs) on invading pathogens, and have been termed 

ACAMPs (apoptotic cell-associated molecular patterns)123. In support of this, Tennant et al. 

observed that monoclonal antibodies targeting LPS also bind apoptotic cells, indicating 

structural similarities between PAMPs and ACAMPs124. 

1.3.5. Tickling/Signalling and engulfment 

Phagocytic downstream signalling pathways, activated following AC interaction, vary 

according to the ligand:receptor combinations activated within the phagocytic synapse. This 

is likely to vary between different phagocyte and AC cell types/lineages, however these cell-

specific interactions are yet to be characterised. 

Two downstream signalling pathways have been characterised, with further pathways so far 

restricted to research in Caenorhabditis elegans125. One pathway ensues following 

interaction of TAM family receptor Mer126, BAI197, or αv integrins127, with PS or PS bridging 

molecules. This activates the CrkII-Dock180-ELMO complex, initiating Rac activation via 

GDP-GTP exchange128. This initiates Scar/WAVE mediated cytoskeletal rearrangement, and 

subsequent AC engulfment129,130. 

A second pathway is initiated via phagocytic LRP-1 or stabilin-2 ligation via adaptor protein 

GULP (enGULfment adaPter protein), activating ABCA1 (ATP-binding cassette transporter 1) 

and/or ABCA7131-133. The full signalling pathway is yet to be established, however evidence 

indicates that the two pathways converge at the equivalent of Rac activation134. Following 

cytoskeletal rearrangement and AC phagocytosis, phagosomes acidify, fuse with 

lysosomes135, and ACs are digested. This process can regulate future events, including 

further engulfment potential136, cytokine release55,56 and self-antigen presentation. This is 

important in relation to atherosclerosis research, where ingestion of lipid-laden apoptotic cells 

may impact engulfment potential and cytokine release, given persistent ACs and 

inflammation within the atherosclerotic plaque46,58.   

1.3.6. What next for the phagocyte? Immune modulation following apoptotic cell 

clearance 

Cytokines are secreted proteins vital for intercellular communication, with an important role in 

regulating numerous physiological processes, including growth, adiposity and 

haematopoiesis137. The term encompasses interleukins (IL), tumour necrosis factors (TNF), 

interferons (IFN), colony stimulating factors (CSF), transforming growth factors (TGF) and 
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chemokines137. Cytokines play a key role in regulation of innate and adaptive immune 

responses137,138.  

AC ingestion has been shown to induce TGF-β1, IL-10, prostaglandin E2 (PGE2), platelet-

activating factor (PAF), and suppress mediators associated with inflammation, including 

TNF-α, IL-1, IL-12 and IL-855,56. Results also showed apoptotic cells were able to dampen a 

pro-inflammatory response to LPS56. TGF-β production could have particular significance, as 

it has been shown to regulate eicosanoid and nitric oxide synthesis in the favour of an anti-

inflammatory phenotype in murine MØ139. 

Resolution of inflammation is an active process in which regulatory MØ release of anti-

inflammatory mediators, and autocrine and paracrine suppression of pro-inflammatory 

mediator release, plays an important part. Following resolution of inflammation, aided by 

lipoxins, resolvins and protectins140,141, immune cells migrate into the lymphatic system, and 

accumulate in local lymph nodes142.  

 

Figure 3. Summary of key stages and mediators of apoptotic cell clearance Apoptotic 

cell clearance is initiated by ‘find-me’ mediator release (if professional phagocytes are 

recruited), followed by recognition and tethering given the correct balance of ‘eat-me’ and 

‘don’t eat-me’ flags on the apoptotic cell surface. ‘Tickling’ or signalling results in engulfment 
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of the apoptotic cell, and subsequent immune-modulation. Figure taken from Hawkins & 

Devitt80. 

 

1.4. Atherosclerosis as an example of defective AC clearance in ageing 

Cardiovascular disease (CVD) has been described as the largest single contributor to global 

mortality, and is predicted to continue to dominate in the future143. Risk factors include high 

blood pressure, high circulating levels of LDL, low circulating levels of HDL, physical 

inactivity, smoking and a genetic predisposition to hypercholesterolemia144. Low 

socioeconomic status, psychological factors e.g. stress and depression and inflammation, 

amongst other factors, are also thought to predispose individuals to CVD144.  

Age, obesity and diabetes are also risk factors, and with an ageing population, and 

increasing incidence of obesity and obesity-induced diabetes, the incidence of CVD is set to 

rise145. CVD is more prevalent in men, with death rates higher in areas of greatest 

deprivation146. With such high death rates, and a cost of £19 billion to the UK economy146, 

greater understanding of the drivers of this disease is required. 

CVD is one of the leading causes of death in the UK, with the common underlying cause of 

atherosclerosis. In 2010, 180,000 people died of CVD in the UK, including 46,000 premature 

deaths146. Atherosclerosis is caused by the gradual build-up of lipid deposits, live and 

apoptotic immune cells and fibrous material in the sub-endothelial space of arteries147,148. 

This occurs in major arteries at branching points, where the endothelial barrier is under 

stress and becomes breached or activated. The result of plaque formation is narrowing of the 

artery lumen, and should the plaque progress, necrotic core formation149. The necrotic core 

forms as cells trapped within the plaque die by apoptosis, however the usual mechanisms 

that result in the clearance of dead cells fail, resulting in the accumulation of secondary 

necrotic cells150. This is despite the continual infiltration of macrophages, professional 

scavengers of apoptotic cells150. Formation of a necrotic core occurs in advanced plaques 

and is associated with plaque instability and rupture, leading to blockage of the artery lumen 

and subsequent cardiovascular events e.g. heart attack or stroke149.  

The failed clearance of apoptotic cells is viewed as a key driver of atherosclerosis151, and the 

mechanisms behind this could give insights into failed clearance in other pathologies, or 

indeed ageing.  

1.4.1. The inflammatory background of Atherosclerosis 

It is now widely accepted that atherosclerosis has a largely inflammatory background, with 

involvement of immune cells and inflammatory mediators from the initial stages of plaque 

formation, through progression of the plaque, destabilisation and rupture46,58.  
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Cellularity of advanced plaques is a crowded milieu of endothelial cells (ECs), smooth 

muscle cells (SMCs), monocytes, MØ, foam cells (MØ- and SMC- derived), mast cells, T 

lymphocytes, including live, apoptotic and necrotic cells147,148. Subsequently the extracellular 

milieu within the plaque is multifarious, containing oxidised lipoproteins, Th1 and Th2 

cytokines, matrix metalloproteinases (MMPs), fibrin, collagen, proteoglycans and cellular 

debris58,147. 

Atherosclerotic plaque formation is initiated by sub-endothelial lipoprotein retention, 

inflammation, LDL modification including EC-mediated oxidation, and EC dysfunction152-155. 

This causes EC adhesion receptor upregulation, recruiting monocytes from the blood 

stream156-160. Monocytes differentiate to macrophages and accumulate in the arterial intima, 

gorging on oxidised lipoproteins, inducing foam cell (FC) formation and death by 

apoptosis45,46,153,161. Apoptotic cell accumulation attracts further monocytes into the arterial 

intima, exacerbating plaque formation, and the process continues in a cycle162, accumulating 

further immune cells and inflammatory mediators, as listed above. This process can 

eventually lead to weakening of the artery wall, due to factors such as MMP accumulation, 

plaque rupture and thrombus formation46,58,150,163.  

Studies have found inflammatory effects of oxLDL on endothelial cells and MØs, which can 

account for the origins of monocyte recruitment to the subendothelial space and 

atherogenesis164-166. Why inflammation remains unresolved is unknown, and despite the 

prominence of MØ-derived foam cells in the plaque, the inflammatory status of these cells, 

either live or apoptotic, is unclear. 
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Figure 4. The role of monocytes and macrophages in key stages of atherosclerotic 

plaque formation 1. Lipoprotein retention and resulting sub-endothelial inflammation cause 

upregulation of adhesion molecules on the endothelial cell surface 2. Following firm 

adhesion, monocytes are recruited to the subendothelial space via diapedesis, differentiating 

into MØ and gorging on lipoproteins 3. Lipid laden MØ-derived foam cells accumulate in the 

plaque, die by apoptosis and recruit further monocytes from the circulation, exacerbating 

plaque progression and inflammation 4. Non-resolving inflammatory milieu can cause plaque 

progression to arterial wall weakening, plaque rupture and thrombus formation 

 

1.4.2. Interplay between LDL and monocytes/macrophages in atherogenesis 

Low-density lipoprotein (LDL) modification, monocyte recruitment and foam cell formation are 

well characterised as the initiating events of atherosclerotic plaque formation. LDL is the 

main carrier of serum cholesterol in humans, and although cholesterol has vital physiological 

roles, including maintenance of cell membrane fluidity and signal transduction, high levels of 

LDL in the blood is associated with increased risk of atherosclerosis147,167. The single 

initiating event that leads to the formation of fatty streaks, leading on to plaque formation is 

still debated, however strong evidence supports the Response-to-Retention theory152,168-170. 

Williams and Tabas argue that although many pathological processes contribute to early 

atherogenesis, they are generally normal physiological responses that would occur in healthy 

tissue as a result of retained subendothelial lipoproteins. Without this retention, the other 

defining features of atherogenesis and plaque progression, such as EC dysfunction and FC 

formation, would not ensue. This theory is strongly supported in study by Nakashima et al. 

Media           Intima                         Lumen 



30 
 

(2007)45, which found that diffuse intimal thickening (DIT) and lipoprotein accumulation 

preceded macrophage infiltration in autopsy samples of human coronary arteries. 

Lipoproteins retained within the sub-endothelium may then become modified, including 

oxidative modification154,155. Research has shown that ECs themselves may be primarily 

responsible for LDL oxidation153.  

1.4.2.1. LDL oxidation and the effect on recognition by macrophages   

LDL particles can be described as heterogeneous in nature due to variances in size, 

composition and structure171, and because of this, and factors such as diet, LDL samples 

from different individuals can vary greatly in the state of and susceptibility to oxidation172. 

The LDL particle consists of an outer layer of phospholipid and unesterified cholesterol, with 

a single apolipoprotein B-100 (apoB100) molecule at the surface171. The core of the LDL 

particle contains more unesterified cholesterol, and also triglycerides and cholesteryl ester171. 

Hevonoja et al. (2000)171 suggested a three-layer model for LDL particle structure, consisting 

of an outer surface layer, an interfacial layer and the core. Native LDL (nLDL) is bound by the 

LDL receptor, however modification of the LDL particle will result in recognition by alternative 

receptors, including scavenger receptors CD36, SRA-1 and LOX-1. Although scavenger 

receptors recognise various modified LDL particles, e.g. acetylated LDL, it is oxidised LDL 

particles that are thought to be the most physiologically relevant173. 

Sufficient oxidation of LDL particles must occur for recognition by scavenger receptors, as 

opposed to the LDL-R; for example, at least 60 lysine residues on the apo-B100 moiety must 

be substituted with aldehydes for recognition by SRA-1174. Despite a common affinity toward 

anionic phospholipids, scavenger receptors vary in the binding site recognised on the oxLDL 

molecule175-177. CD36 binds to the lipid moiety of oxLDL, whereas SRA-1 binds the oxidised 

apo-B100 molecule178,179. Much attention has been given to the role of scavenger receptor in 

atherogenesis, so as to determine whether specific receptors can be targeted to prevent 

oxLDL uptake by MØ and subsequent plaque formation.  

1.4.2.2. LDL-R 

Many MØ cell surface receptors have been implicated in modified LDL uptake. The LDL 

receptor (LDL-R) is responsible for uptake of native LDL particles and is regulated 

homeostatically by levels of intracellular cholesterol, preventing excess intracellular lipid 

accumulation180. Following oxidation of LDL, the LDL-R is no longer able to bind the LDL 

particle, which is now a recognisable ligand for receptors including scavenger receptors type 

A and B SRA/SRB), CD68, MARCO (MAcrophage Receptor with COllagenous structure) and 

LOX-1, many of which have also been shown to have a role in apoptotic cell clearance (see 

fig. 1)181. 
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1.4.2.3. SRA-1 

Scavenger receptor A-1 (SRA-1) has been described as a principal receptor in modified LDL 

uptake182. Initially identified as an acetylated LDL receptor, known ligands include oxidised 

LDL (oxLDL), LPS, PS and apoptotic cells103,177,179,183,184. It is a trimeric transmembrane 

glycoprotein with 6 domains, including the collagen-like domain; positive residues in this 

domain form a site for modified lipoprotein interaction177,185. SRA-1 expression is confined 

mainly to MØ, and has roles in adhesion, cell-cell interaction and innate immunity, therefore 

could have multiple roles in the development of an atherosclerotic lesion177,186. A role for SRA 

in clearance of apoptotic thymocytes has also been shown103. Foam cell formation has in part 

been attributed to SRA-1 mediated uptake of oxLDL, with a 30% reduction in macrophage 

oxLDL uptake in SRAI/II knockout mice187. 

1.4.2.4. CD36 

CD36 is another oxLDL receptor with a central role in foam cell formation. Mice lacking both 

CD36 and SRA were found to have a reduction in oxLDL degradation of 70-90%, with no 

apparent foam cell formation182. Studies with CD36 blocking antibodies show that 

approximately 50% oxLDL binding is mediated by CD36178. CD36 is a class B scavenger 

receptor expressed by monocytes, MØ, platelets, ECs and adipose tissue175. CD36 has been 

shown to bind oxLDL and LDL modified by monocyte-generated reactive nitrogen 

species188,189. Apoptotic cells and native lipoproteins have also been shown as CD36 

ligands190,191. 

1.4.2.5. LOX-1 

LOX-1 is a novel oxLDL receptor which is primarily found on ECs192. Like SRA-1 and CD36, 

LOX-1 has been shown to have multiple ligands, including PS, bacteria and apoptotic 

cells176. The type II transmembrane protein receptor is shown to be expressed by MØ, and 

expression is thought to be upregulated in pro-atherogenic conditions176,193. The primary role 

for LOX-1 in atherogenesis is thought to be endothelial dysfunction and apoptosis following 

oxLDL uptake194. 

These key receptors play an important role in oxLDL uptake, foam cell formation and 

subsequent atherogenesis. 

1.4.3. Apoptotic cell clearance in a lipid-rich environment 

The atherosclerotic plaque is lipid-rich and contains persistent apoptotic cells. The 

established plaque is a complex, dynamic microenvironment consisting of numerous different 

cell types and inflammatory mediators, including ECs, SMCs, monocytes, MØ, FCs, mast 

cells, T lymphocytes, oxidised lipoproteins, Th1 and Th2 cytokines, MMPs, fibrin, collagen, 
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proteoglycans and cellular debris58,147,148. This results in high rates of apoptosis and 

secondary necrosis within the plaque195. Although all cell types play a role in plaque 

progression, monocytes, MØ and MØ-derived FCs play a central role in formation and 

progression of the plaque, including plaque rupture, making these cells a desirable target in 

controlling inflammation in this disease. 

Failed AC clearance in atherosclerosis has become widely accepted150, largely due to the 

presence of ACs in the plaque46, despite a poor understanding of the mechanisms behind 

this. ACs largely go unseen in vivo, due to efficient clearance by neighbouring non-

professional and recruited professional phagocytes41,195. At sites of high apoptosis, e.g. the 

thymus, some free ACs can be detected, and free AC numbers are increased when AC 

clearance mechanisms are interfered with, e.g. as seen in CD14-/- mice38. In the 

atherosclerotic plaque, ACs persist to the point of secondary necrosis, resulting in a necrotic 

core in advanced atheromas, leading to the hypothesis of defective AC clearance196. Whilst 

mechanisms of MØ cell death in the plaque are largely studied, clearance mechanisms post 

apoptosis are less well understood, and a small number of studies into foam cell clearance, 

and the presence of ACs in the plaque, has led to the conclusion that clearance is 

defective46,195,197.  

Previous studies looked into the causes of such a high number of AC in a localised area, and 

have shown oxLDL as an inducer of apoptosis in foam cells; this was attributed to lysosomal 

damage, with lysosomal membrane disruption causing leaking of contents into the 

cytosol161,198,199. Excess intracellular cholesterol, via acetylated LDL (acLDL) loading, has 

also been demonstrated to induce apoptosis after trafficking to the endoplasmic reticulum 

(ER), where calcium stores are depleted, resulting in death effector expression200. However 

other studies, have not found prominent oxLDL induced toxicity of MØ, demonstrating a need 

for further study197,201. 

Competition between oxLDL or oxidised red blood cells was observed to affect AC binding 

using murine peritoneal MØ, at oxLDL concentrations of 250µg/ml195. Studies have also 

found that oxLDL competes with apoptotic thymocytes for the same receptors202. It is well 

established that scavenger receptors, such as those present in this model, CD36, SRA-1 and 

LOX-1, recognise both AC and oxLDL175-177. The oxLDL receptor CD36 is thought to play an 

essential role in AC clearance in vivo via recognition of oxidised phosphatidylserine 

molecules on the AC surface, a molecule that may not be recognised if oxLDL remains 

bound to the receptor101,203. 

Varying approaches exist to investigate AC clearance within the plaque, and clarity is vital 

when defining models, to enable comparison of results across studies. The use of human 
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endartectomy samples gives a real example of the plaque environment, however the 

observation of live cellular processes is not possible, only the outcomes of such processes 

can be investigated. Sample numbers are often low depending on availability and results can 

vary greatly due to differences in genetic backgrounds and lifestyle. Murine endartectomy 

samples are popular as genetic backgrounds can be controlled and also the environment 

and diet of the mice can be controlled. The significant drawback using this method, along 

with the inability to observe live cell processes, is the comparison of results across species. 

The same drawback occurs with the use of ex vivo murine macrophages (e.g. peritoneal), 

though live cell processes can be observed, and ex vivo human macrophages are not 

available. The absence of true human macrophage cell lines also makes the use of murine 

macrophage cell lines a popular method to study macrophage behaviour. For those wanting 

maintain a human focus to research, monocyte-like cell lines can be induced to macrophage-

like cells, though the method of induction and similarity of the cells to macrophages does 

raise questions of their own. Human monocyte-derived macrophages (HM-DMØ) from 

peripheral blood monocytes are arguably the closest fit to a true human 

monocyte/macrophage model, however even within this model, methods of monocyte 

isolation vary greatly, and the chosen method of differentiation is also inconsistent between 

research groups. 

It is important to understand the basis of AC accumulation in the plaque195, especially as an 

accretion of cells undergoing secondary necrosis exacerbate the pro-inflammatory 

environment of the plaque, contributing to plaque instability149,195. The nature of mechanisms 

behind inefficient AC clearance in the plaque is unknown, and could be a result of reduced 

function, competition in response to the local microenvironment, or a physiological change in 

phagocyte function in aged or damaged cells. The ability of foam cells to eat apoptotic foam 

cells is also uncharacterised, including the specific ligand-receptor partnering, and whether 

this compares to „normal‟ cell clearance mechanisms. The persistence of inflammation within 

the plaque, despite immuno-modulatory mechanisms that usually follow AC clearance, has 

also not been addressed in human cells. Mechanisms of monocyte recruitment into the 

plaque have been partially characterised, but the impact of plaque-derived AC mediators 

have not been addressed with regards to possible over-recruitment of monocytes, and lack 

of macrophage egress in the plaque.  Full characterisation of FCs and apoptotic FCs (aFC) 

in clearance could indicate where a failure in communication or function may arise. Many 

different AC receptors have been identified on phagocytes, including many of the oxLDL 

receptors already discussed, and bridging molecules such as thrombospondin and C1q 

should also be considered (see fig. 1)204. 
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1.4.3.1. The role of necrotic cells as inducers of inflammation within the plaque 

It is the accepted phenomenon that apoptotic and necrotic (primary and secondary) cell 

death have opposing immunological outcomes. Apoptosis is associated with immunologically 

silent cell death and corpse removal, with increasing evidence of a role in dampening 

inflammation55,56. Necrosis is associated with damage or trauma-induced cell death, loss of 

membrane integrity, and release of inflammatory intracellular contents, such as the much 

referred to HMGB1205. These „danger signals‟ have been proposed to contain DAMPs 

(damage-associated molecular patterns), that like ACAMPs, mimic PAMPs for PRR 

recognition, and potential inflammation consequences206. Secondary necrosis occurs when 

apoptotic cells remain undisposed and develop features including, most importantly in the 

case of inciting inflammation, loss of membrane integrity, causing intracellular contents to 

leak from the dying cell207.  

Evidence now suggests that immune responses induced by these events are not as clear-cut 

as previously suggested. For example some ACs have been shown to induce an 

inflammatory response208-210. Persistent apoptotic (which can develop into secondary 

necrotic) or primary necrotic cells have also been shown to be non-inflammatory38,40,211 

Immunogenicity of cell death is not only predicted by the cell death pathway, other 

parameters must also be taken into account, including the intrinsic antigenicity of the dying 

cell, previous stress of activation, the cell death inducer and the availability of responding 

immune cells212.  

Anti-inflammatory cytokine release is an important stage in resolution of inflammation and 

occurs in response to AC interaction54-56. It may be that a foam cell, or an aged cell, is no 

longer capable of eliciting an anti-inflammatory response in response to AC interaction, 

contributing to the dominant pro-inflammatory environment within the plaque, and potentially 

contributing to the systemic inflammatory status of aged individuals and those with 

atherosclerosis14,58,213. 

Evidence of the inflammatory consequences of secondary necrosis is lacking. Fadok et al. 

observed anti-inflammatory signals could be induced via early apoptotic, late apoptotic or 

lysed neutrophils, however these signals were overridden by inflammatory proteases 

released by secondary necrotic cells207. Anti-inflammatory effects were overridden, however 

protease inhibitors abrogated any inflammatory response207. In support of the inflammatory 

consequences of secondary necrotic cells, Shibata et al. found that early apoptotic, but not 

secondary necrotic, neutrophils down-regulate LPS-induced pro-inflammatory cytokine 

production of murine macrophages via induction of NO production214. The study also found 

that secondary necrotic neutrophils induced TNF-α release, but both apoptotic and 



35 
 

secondary necrotic cells suppressed inflammatory IL-12p40 and IL-6 release214. This 

supports the notion that perceived immune modulation following certain mechanisms of cell 

death is not as clear-cut as often stated. 

Immunogenic factors of primary necrosis, such as HMGB1, have been shown to be released 

during primary but not secondary necrosis of primary murine cells205. In contrast to this, 

HMGB1 release by apoptotic cell lines Jurkat, HeLa and U937 has been shown, 

demonstrating the crossover between markers for different cell death mechanisms215. The 

most compelling evidence for inflammatory consequences of uncleared ACs remains to be 

the presence of persisting AC and inflammation in autoimmune disease34, but even in these 

cases, causality is not established. Examples in murine models have also been shown of 

failed AC clearance, without the expected associated inflammation or autoimmune 

disease38,39. Primary necrosis may also drive inflammatory cytokine expression in the plaque 

via release of inflammatory intracellular components, and evidence of primary necrosis in 

atherosclerosis in mice has been found216. However not all studies into necrotic cells have 

observed resulting inflammation described40.  

1.4.4. Cytokines in the atherosclerotic plaque 

The cytokine profile in the atherosclerotic plaque is extremely complex given the quantity and 

variety of immune cells present, and the combination of pro-inflammatory mediators, e.g. 

oxLDL217, and anti-inflammatory mediators, e.g. AC55,56, and the resulting autocrine and 

paracrine effects on subsequent cytokine release. Sources of cytokine production can be 

categorised as primary, e.g. cytokine response to retained subendothelial lipoproteins, and 

secondary, e.g. cytokine response following established subendothelial inflammation and 

plaque formation, sources. 

One of the key features of AC clearance is the non-inflammatory manner in which unwanted 

„self‟ cells are disposed. This is not due to a lack of reaction by the phagocyte, but rather the 

release of a balance of cytokines, which have autocrine and paracrine effects, resulting in an 

immunologically silent or, even anti-inflammatory, response to self54-56.  The interesting 

phenomenon in the atherosclerotic plaque is that despite an excess of ACs and phagocytic 

MØ, a pro-inflammatory environment persists46,58. 

Just as persistence of ACs is poorly understood, the failure of occurring phagocyte:AC 

interactions to regulate the inflammatory environment of the atherosclerotic plaque, as seen 

with other inflammatory responses56, is also unknown. Cytokines found to be expressed in 

human atherosclerotic plaques include TNF-α, interleukins 1-3, 6, 8, 10, 12, 15,18, IFN-γ, 

TGF-β1-3, macrophage colony-stimulating factor (M-CSF) and a variety of chemokines137.  
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A selection of cytokines associated with immune modulation following AC clearance, and 

also found in human atherosclerotic plaques, will be investigated as part of this study. This is 

based on the hypothesis that inapt FC responses to AC, or inappropriate tickling of MØ or FC 

by apoptotic FC, may contribute to the inflammatory environment of the plaque.  

1.4.4.1. TNF-α in atherosclerosis 

TNF-α is a classic pro-inflammatory cytokine of the TNF superfamily, which has 2 identified 

receptors, TNF-R1 and TNF-R2137,218. TNF-α is released by a broad variety of cells, but is 

primarily produced in monocytes and MØ218, and is a suggested marker of classical 

activation. Cleavage of pro-TNF-α by TNF-α converting enzyme (TACE) ADAM17, an MMP, 

results in an active form of TNF-α; ADAM17 has also been implicated in soluble CX3CL1 

shedding219. Basal levels of TNF-α production, and the ability of aFCs to suppress TNF-α 

release, may provide insight into MØ subtype following lipid-loading of a MØ model, giving 

clues as to the drivers of inflammation in the plaque. 

TNF-α has been identified in human atherosclerotic plaques, and has been classed as a pro-

atherogenic cytokine137,220-222. TNF-α has the ability to drive inflammation in the plaque, but 

was not shown to be essential for inflammation. TNF-α deficient apoe-/- mice have reduced 

levels of inflammation in the plaque and reduced lesion size, but inflammation was still 

present223. Other studies have found no effect of TNF-α on lesion size in mice. TNF-α has 

also been shown to reduce scavenger receptor expression in HM-DMØ, which could have 

athero-protective effects224. Increased plasma concentrations of TNF-α have been implicated 

as a biomarker for risk of recurrent coronary events in stable post-MI patients225. A Finnish 

study also found TNF-α was a predictor of coronary heart disease, cardiovascular disease 

events and total mortality in men226. 

AC ingestion has been shown to suppress LPS-induced TNF-α release in vitro56. It is 

unknown whether aFC have the ability to suppress inflammation in a similar manner to other 

AC models, e.g. apoptotic neutrophils. 

1.4.4.2. IL-10 and IL-12 in atherosclerosis 

IL-12 is a cytokine that is also associated with inflammation, and drives a Th1/inflammatory 

response227. IL-12 consists of 2 subunits, p35 and p40, to produce an active heterodimer, 

and is produced by phagocytes and antigen presenting cells218. The IL-12R is also made up 

of 2 subunits, IL-12Rβ1 and IL-12Rβ2. The ratio of IL-10:IL-12 release has been proposed as 

a marker for MØ activation, with high IL-10 and low IL-12 release associated with alternative 

MØ activation, and the opposite profile representing classical MØ activation49,228. In vivo the 

plaque milieu may prime or maintain monocytes, MØ and foam cells in a classically activated 
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state, which is supported by the data that pro-inflammatory Th1 cytokines are prominent 

within plaques58. 

IL-12 has been identified in human atherosclerotic plaques, and was found to be produced 

by monocytes in vitro in response to oxLDL228. It has also been found to drive anti-oxLDL 

antibody production in murine models of atherosclerosis, driving inflammation229. It has a 

cross-regulatory role with IL-10, and has been shown to be suppressed by AC ingestion55,228. 

The contribution of FC and aFC induced IL-12 production in response to pro- and non- 

inflammatory stimuli will be investigated in this study to aid understanding of the failed 

resolution of inflammation in atherosclerosis. 

IL-10 is a regulatory, or anti-inflammatory, cytokine, associated with regulatory MØ 

activation, or Th2 responses137. As discussed in the previous section, IL-10:IL-12 ratios can 

be a marker of classical or regulatory MØ activation49, and they have cross-regulatory 

roles228. 

IL-10 has been found in human atherosclerotic plaques, which in murine models was found 

to correlate with reduced iNOS expression and cell death, showing some degree of immune 

modulation within the plaque228,230, and has been designated an anti-atherogenic cytokine137. 

It has been shown to be produced following AC ingestion in some studies55, however Fadok 

et al. (1998) found suppression of IL-10 in response to AC56. Whether aFCs can regulate the 

IL-10:IL-12 balance in unknown. 

Some evidence suggests that a reparative „M2‟ phenotype may be favoured by processes 

within the plaque, such as oxLDL mediated induction of PPARγ expression231,232, however 

the overall pro-inflammatory environment and lack of AC clearance indicates an „M1-like‟ 

phenotype may predominate58,195,217,233. This has implications in further cell clearance, as 

TNF-α has been shown to inhibit clearance mechanisms57,234. Further research has 

manipulated MØ activation to an alternative phenotype to see if pathology is improved. In a 

rat model of myocardial infarction, a pathological event following atherosclerotic plaque 

rupture, repair was improved via administration of PS-liposomes, promoting a reparative 

macrophage phenotype in cardiac MØ235. 

1.5. Role of chemotaxis in clearance and plaque formation 

The continual recruitment of monocytes to the atherosclerotic plaque is a key factor in 

disease progression, and inhibition of recruitment may prove to be athero-protective. MØ 

apoptosis is thought to be athero-protective in early lesions, with successful AC clearance by 

infiltrating monocytes dampening inflammation236. MØ apoptosis, and the subsequent 

recruitment of further monocytes from the blood stream, is thought to be a key event in 
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driving pathology of late atherosclerotic lesions, with persistent ACs and inflammation 

contributing to necrotic core formation and plaque instability149. 

A lack of MØ egress out of the atherosclerotic plaque via chemotaxis is also a contributing 

factor to atherosclerosis, which likely doesn‟t occur due to the failure of resolved 

inflammation, contributing to leukocyte trapping in the plaque80,237,238. 

Much research into apoptotic cell removal focuses on the interaction and phagocytosis 

phases of clearance, with increasing interest in subsequent immune-modulation. Research 

into the „find-me‟ stages of AC clearance is lagging, however recent research has identified 

roles for CX3CL161 and ICAM-371 in attraction of monocytes to sites of cell death. Interest in 

these earlier stages of AC clearance is becoming more prominent as the potential for 

therapeutic targets at sites of inappropriate cell recruitment increases, e.g. in atherosclerosis. 

To this end, a strong model for investigating the precise mechanisms of cell recruitment 

employed in different pathological scenarios would be valuable when considering prevention 

of inappropriate or excessive cell recruitment, as seen in atherosclerosis156,239. 

1.5.1. Recruitment of monocytes to the plaque 

Chemotaxis is the directional movement of cells along a concentration gradient of an 

attractive agent, an active process which is distinct from chemokinesis, the general, non-

directional movement of cells240. Chemo-attractive agents induce cell movement via 

promotion of cell motility and upregulation of adhesion molecule expression. Chemotaxis of 

immune cells to sites of infection or damage is a vital starting point to a robust immune 

response. Circulating leukocytes continually but transiently interact with the endothelium 

during immune surveillance, rolling along the endothelium as a result of shear force and low-

affinity interaction, which is mediated by adhesion molecules known as selectins on the 

leukocyte and endothelial cell surfaces241,242. 

1.5.1.1. Selectins and selectin ligands 

Selectins are type I transmembrane glycoproteins, a subclass from the lectin family 

(reviewed in 243). Selectin expression is restricted to leukocytes, platelets and the vascular 

system, thus have a specific role in leukocyte-endothelial cell adhesion and leukocyte 

recruitment to sites infection and inflammation244. L-selectin is found on the leukocyte cell 

surface and is thought to be crucial for leukocyte rolling in vivo245. L-selectin is able to 

mediate leukocyte rolling independent of E- and P-selectin, and is important in endothelial 

cell tethering246. Secondary capture via L-selectin can also occur between circulating and 

adherent leukocytes on the endothelial cell surface, which has been shown to have particular 

importance in leukocyte tethering in arterial venules and subsequently, atherogenesis247. E-

selectin, expressed on endothelial cells, is upregulated by inflammatory cytokines including 
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TNF-α160,248, which is found in human atherosclerotic plaques222. P-selectin is expressed by 

platelets, megakaryocytes and endothelial cells249. It is expressed constitutively in endothelial 

cells, packaged intracellularly in Weibel-Palade bodies and is trafficked rapidly to the 

endothelial cell surface following activation by effector molecules including histamine249. 

P-selectin expression is increased in endothelial cells overlying active atherosclerotic 

plaques, and co-expressed with upregulated ICAM-1, which has low expression levels in 

healthy arteries157. E-selectin and ICAM-1 expression is also increased in human plaque 

endothelial cells250. ICAM-1and E-selectin were constitutively expressed on intimal 

endothelium of both normal coronary arteries and those overlying fatty streaks, but ICAM-1 is 

increased only on and around plaque macrophages251. 

Following oxLDL exposure, it was found that ECs bind an increased number of monocytes 

with a stronger binding force than non-exposed ECs, via mechanisms including increased 

expression of ICAM-1 and P-selectin158,252. Vascular cell adhesion molecule-1 (VCAM-1) was 

also found to be upregulated indirectly via oxLDL induced cytokine-activated gene 

expression159, specifically TNF-α. OxLDL has also been shown to stimulate the release of 

monocyte chemotactic protein-1 (MCP-1) from endothelial and smooth muscle cells, 

recruiting circulating monocytes253. 

All selectins recognise sialylated carbohydrates, and other modified carbohydrates and 

glycoproteins with varying avidities, including fucosylation, sulphation and glycation.243 On 

leukocytes, PGSL-1 is the dominant ligand for P- and L-selectin243,254,255. E-selectin receptors 

have been difficult to identify, but include endothelial selectin ligand-1(ESL-1)243,256,257. 

1.5.1.2. Integrins and integrin ligands 

Stable interaction is established by activation of integrins. β2 (e.g. LFA-1) and α4 integrins 

(VLA-4) are the integrins that regulate leukocyte trafficking258. LFA-1 is expressed 

constitutively on leukocytes, and interacts with ICAM-1 and 2258. VLA-4 is expressed on 

monocytes and lymphocytes with homing potential, and interacts with a number of receptors, 

including VCAM-1258. PECAM-1 was also found to promote atherogenesis, attributed to its 

mechanosensitive properties, and the role of shear stress in atherogenesis258. 

Subendothelial lipoprotein retention has been shown to induce VCAM-1 expression259. 

VCAM-1 and ICAM-1 have been found on human coronary arteries260. TNF-α also induces 

VCAM-1 and ICAM-1 expression in human umbilical vein endothelial cells (HUVECs)261.  

ICAM-1 expression was also increased by native LDL in HUVECs, enhancing monocyte 

recruitment to the endothelium262.  
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1.5.1.3. Integrin-independent leukocyte adhesion 

CX3CL1 has also been shown to mediate leukocyte adhesion in an integrin-independent 

manner68. CX3CL1 is expressed by endothelial cells in response to inflammatory mediators 

and acts as an adhesion molecule. CX3CL1 also has a role in NK-mediated endothelium 

damage263. 

1.5.1.4. Transendothelial monocyte migration 

Transendothelial migration of monocytes has been shown to promote monocyte 

differentiation to macrophages and formation of foam cells in the plaque153. Monocytes in the 

sub-endothelium can be induced to differentiate into macrophages directly via oxLDL and 

also by oxLDL stimulated release of M-CSF264,265. Macrophages then gorge on modified 

lipoproteins via receptor mediated endocytosis in an unregulated manner, becoming lipid-

laden foam cells177,266. These events further demonstrate a key role for oxLDL and 

monocytes/macrophages in plaque progression. 

1.5.1.5. Apoptotic cell-derived microparticles 

Microparticles have been widely studied in atherosclerosis, but in the context of biomarkers 

of disease and thrombus formation267. The role of MPs in inflammation and immune cell 

chemotaxis is now becoming of greater focus268, with the majority of plaque microparticles 

thought to be macrophage-derived269. 

Microparticles (MPs) are phospholipid and protein rich submicron particles, derived from cell 

membranes of activated or dying cells270. MPs range in size from 0.1-2µm, with particles less 

than 100nm termed exosomes, and those greater than 1.5µm in diameter referred to as 

apoptotic bodies270 MPs are generated following zeiosis, or blebbing, and requires 

uncoupling of the cell membrane with the underlying cytoskeleton271 271,272. This results in 

shedding of microparticles (MPs), or released blebs, which have been shown to be attractive 

to monocytes60. UV-B has been shown to induce apoptosis via intrinsic and extrinsic 

pathways, a non-specific inducer of apoptosis, with mechanisms including DNA damage, 

oxidative stress and death receptor upregulation273. These pathways culminate in caspase 

cascade activation and resultant apoptosis274. Loss of cytoskeletal integrity is a key stage of 

apoptosis that leads to the generation of blebs/MPs, and eventually larger apoptotic 

bodies275. 

Lauber et al.62, through the use of caspase-3 deficient MCF-7 cells, showed AC-mediated 

chemotaxis induction is caspase-3 dependent. Caspase-3, a cysteine-aspartic acid protease, 

is an effector caspase which is present in cell lines used in studies here. It plays a central 

role in apoptosis, and can activate ROCK-1 or PAK2 to induce membrane blebbing276,277. 
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This generates phospholipid rich MPs, which also contain a rich source of cell specific 

antigens, including proteins and lipids, which could provide a huge source of unrecognised 

„find-me‟ signals for phagocyte recruitment to dying cells278.  

MPs in human atherosclerosis have been studied to the degree of proteomic, metabolomic, 

and immunomic characterisation278, but this has been focused largely on thrombotic potential 

and as biomarkers of underlying disease269. Immunogenicity of leukocyte-derived 

microparticles on endothelial cells has been shown279,280. MPs have also been shown to 

promote monocyte recruitment to the plaque via the transfer of ICAM-1 to endothelial cells281. 

The administration of THP-1-derived MPs was also shown to contribute to atherogenesis in a 

murine model of atherosclerosis282. So overall, the ability of MPs to modulate mechanisms in 

atherosclerosis has been addressed in many areas, however the influence of MPs on 

recruitment of monocytes to apoptotic cells in the plaque has not been addressed. 

A role for MPs as a „find-me‟ mediator in AC clearance is emerging, and is of particular 

interest in a plaque-like environment as MPs are extremely heterogeneous in nature, and 

reflect the status of the parent cell. If the parent cell, e.g. a lipid loaded MØ (known as foam 

cells) has properties that enhance disease progression, MPs can confer this message to 

surrounding cells, as they bear antigens of the parent cell. MP-derived antigens may confer 

signals via ligands on the surface of surrounding cells, or MPs may behave as a vector, 

transferring antigens directly to be incorporated into surrounding cells281.  

Chemoattractants CX3CL1 and ICAM-3, have recently been associated with apoptotic B cell-

derived MPs, and blocking action of these attractants was shown to reduce monocyte 

migration to MP61,71, however this has not been studied in the context of apoptotic MØ or 

atherosclerosis, despite the known role of CX3CL1 and its cognate receptor (CX3CL1) in 

atherogenesis239,283.   As MPs are a result of membrane blebbing, they contain a high 

proportion of phospholipids, including PS, and membrane proteins284. The receptors for MP-

induced chemotaxis are not well defined, and as CD14 has been previously shown to 

mediate AC recognition in this model, it is a prime candidate for AC-derived MP recognition.  

1.5.1.6. Soluble factors 

Chemokines are a cytokine subfamily, of mediators that can induce directed migration of 

cells to points of cell stress, death or disease. They are categorised into 4 families according 

to the spacing of the cysteine residues (C,CC,CXC and CX3C) , and CX3CL1 (CX3CL1) is 

the only identified member of the CX3C chemokine subclass238,285. The unusual 

transmembrane structure of CX3CL1 consists of an extracellular N-terminal chemokine 

domain presented on a mucin-like stalk, a transmembrane α helix and a short cytoplasmic 

tail285,286 (fig. 4). Endothelial cells express CX3CL1 in response to activation or initiation of 
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apoptosis, where it acts as an adhesion molecule, initiating firm adhesion of CX3CL1 

receptor CX3CR1 positive monocytes68. CX3CR1 is a 7 transmembrane domain GPCR 

expressed predominantly on leukocytes, NK cells and T cells64,242. 

To function as a classic chemokine, CX3CL1 is cleaved via metalloproteinases tumour 

necrosis factor-alpha converting enzyme (TACE/ADAM17) or ADAM10219,287 (fig. 4). 

Following cleavage, from the cell membrane, CX3CL1 is shed from the cell surface and 

functions as a chemokine to recruit CX3CR1 positive cells288. G-protein signalling is required 

for chemotaxis of CX3CR1 positive cells64.  

 

Figure 5. Schematic of membrane bound and soluble CX3CL1 Membrane bound 

CX3CL1 acts as an adhesion molecule in monocyte recruitment to the endothelium during 

atherogenesis. Apoptotic cells have been shown to release soluble and microparticle-

associated CX3CL1 to attract phagocytes for clearance. Adapted from Liu et al.289. 

CX3CL1 was identified by Truman et al. on microparticles released by apoptotic B cells, and 

is recognised by CX3CR1 on the phagocyte surface64. CX3CL1 was also found to increase 

expression of milk fat globule-endothelial growth factor 8 (MFG-E8), an identified bridging 

molecule between apoptotic cells and phagocytes, thus enhancing clearance69. With such a 

prominent role in recruitment to dead cells, it is only logical that CX3CR1 has a role to play in 

atherogenesis, especially considering the influence this chemokine has on other processes 

involved in plaque progression. 

CX3CL1 is also a survival signal against apoptosis. This has implications when considering 

the accumulation of potentially „sick‟ lipid-laden cells within the plaque, and may be athero-

protective, or atherogenic, according to whether plaques are in the early or late stages149. 
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Soluble CX3CL1 also influences monocyte integrin function, enhancing avidity to ICAM-1 

and VCAM-1290,291. 

Other soluble factors involved in phagocyte recruitment to AC in the plaque are likely to 

include other „find-me‟ signals discussed previously (see 1.1.2.), including chemokines IL-8 

and MCP-159, nucleotide chemoattractants ATP and UTP63 and lipid mediators LPC and 

S1P62,72,73. „Keep-out‟ signals such as lactoferrin may also be present within the plaque78,79. 

1.5.2. Modelling chemotaxis to apoptotic cells  

As interest in chemotaxis to apoptotic cells develops, modelling mechanisms must equally 

develop. Previous research into monocyte recruitment to apoptotic cells has focused on 

vertical systems including transwells and vertical chambers61-63,71, e.g. modified Boyden 

chamber,which has become the most widely used method to study mammalian cell 

chemotaxis in vitro292-294, but whilst the system has advantages, it also has many 

limitations292. 

In vertical assay systems, the concentration gradient of the attractive agent is at 100% in the 

lower wells of the vertical chamber, and 0% in the upper wells, above the microporous 

membrane, which is the starting point of the migrating cells. The exact nature of the gradient 

around the membrane is unknown and is likely affected by the migrating cells themselves292, 

which will settle onto the top of the membrane before moving through, and blocking, the 

pores. Also the nature of cell movement cannot be distinguished during migration, so 

conclusions must be made based on the final distribution of migrated cells at the end of the 

assay292. 

More recently, increasingly precise methods are being sought to enable the mechanisms of 

chemotaxis to be investigated more thoroughly, with particular emphasis on stable 

concentration gradients of attractants, greater optical features and greater sensitivity and 

reproducibility292,295,296, which traditional methods such as the vertical chambers and under-

agarose assays do not provide292,294,297. 

1.5.2.1. Advantages of a horizontal assay system 

The Dunn chamber is a horizontal assay system using modified glass slides. The optics 

using the Dunn chamber are excellent and precise movement of individual cells can be 

observed. The Dunn chamber also provides the ability to observe in detail the kinetics of cell 

movement, including velocity and distance, and the precise time frame over which individual 

cells move, rather than the time frame of the assay. It can also be deduced whether cells 

within a population are moving uniformly or within subpopulations, a key focus of study of 

monocyte migration, given the observation of monocytic subpopulations with preferential 
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migratory properties according to differential surface receptor expression50,298. The Dunn 

chamber also provides a linear concentration gradient of attractant, which is established 

quickly between inner and outer chambers following assay set up (approx. 10-30 minutes), 

with a half-life of up to 30 hours depending on the molecular weight of the attractant292.  

There are advantages of using the vertical chamber, particularly the widespread use of the 

technique in the field, resulting in a well-characterised assay61,71,293. The assay also provides 

a high throughput of assays compared to a many other methods, including the Dunn method, 

allowing statistical significance to be established in fewer assays. Clear trends can be seen 

on qualitative plots generated using the Dunn chamber in these studies, but many lack the 

power of statistical significance, indicating a need for further repeats of assays. Multiple wells 

in the vertical chamber (48) make it more efficient in this respect, though multiple fields of 

view can be used in the Dunn assay to improve statistical data. 

Dunn chambers have not been used to date to investigate migration of monocytes to 

apoptotic cells. Whether apoptotic MØ- and apoptotic FC-derived MPs play a role in 

monocyte recruitment to the atherosclerotic plaque is not known. 

 

1.6. Aims and objectives 

The current study aims to better understand the clearance of apoptotic cells by MØ in ageing 

and age-related conditions, with a particular emphasis on apoptotic cell clearance in 

atherosclerosis. It aims to address the current gaps in knowledge relating to the mechanisms 

that underpin apoptotic cell clearance and how these are affected by ageing and by the 

aged-environment (as may occur within the atheromatous plaque). 

The primary hypothesis under consideration is that AC clearance becomes defective in 

ageing.  In addressing this hypothesis, the influence of an aged environment or altered cell 

function will be assessed.  

 

The specific aims of this project are: 

 

1.  To assess the ability of MØ and foam cells to interact with apoptotic cells: 

Initial studies will assess the use of human myeloid leukaemia THP-1 cells as a model of 

monocyte and MØ function, with regards to mechanisms involved in apoptotic cell clearance. 

This will include relevant processes to the atherosclerotic plaque, with the use of lipid-loaded 
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(oxLDL) THP-1-derived MØ to create foam cells, a cell phenotype specific to the 

atherosclerotic plaque. 

The ability of MØ and foam cells (FC) to interact with apoptotic cells, including apoptotic MØ 

and apoptotic FC, will be assessed. This is a process that has not been studied using human 

MØ-derived apoptotic cells55,203. 

Human monocyte-derived MØ will also be used as a phagocyte model, to compare 

responses in immortal human cell lines versus human primary cells. The ability of HM-DMØ 

to interact with THP-1 models of apoptotic MØ and apoptotic FC will be assessed. HM-DMØ 

interaction with apoptotic MØ or FC has not previously been investigated. 

 

2.  To assess the nature of cytokine responses of MØ and foam cells to apoptotic cells: 

To further understand the drivers of inflammation in the plaque, TNF-α, IL-10 and IL-12 

profiles of THP-1 derived- and HM-DMØ following exposure to a variety of stimuli will be 

assessed. This includes cytokine release at rest, following long-term lipid loading, to deduce 

whether foam cells are hyper-inflammatory. The response to LPS will be assessed, to allow 

comparison of inflammatory responses between lipid- (FC) and non-lipid-loaded (MØ) 

phagocytes. Cytokine responses to apoptotic MØ and apoptotic foam cells will be 

investigated, as this has not been studied in human cells, so it is unknown whether a non-

inflammatory phenotype, as observed in other apoptotic cell models, is relevant to the plaque 

environment54. The subsequent immune modulation in response to apoptotic cells, will also 

be assessed. This includes the ability of apoptotic MØ and apoptotic FC to „switch-off‟ an 

inflammatory response, as seen with other apoptotic cell models55. 

Human monocyte-derived MØ will also be used as a phagocyte model, to compare 

responses in immortal human cell lines versus human primary cells. The ability of HM-DMØ 

to modulate immune responses following interaction with THP-1 models of apoptotic MØ and 

apoptotic FC will be assessed. HM-DMØ interaction with apoptotic MØ or FC has not 

previously been investigated. 

 

3.  To assess monocyte recruitment to apoptotic MØ and foam cells: 

The chemoattractive properties of apoptotic cells and apoptotic cell-derived supernatant to 

THP-1 monocytes will also be assessed in a novel manner, with the use of a horizontal 

chemotaxis chamber. This will include monocyte migration to apoptotic MØ and apoptotic 

FC-conditioned medium, as „find-me‟ signals released by apoptotic cells in the plaque have 

not previously been studied. Mechanisms of apoptotic-cell induced chemoattraction will be 
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investigated, as these have not been studied previously using MØ as an apoptotic cell 

model, by targeting candidate mediators with blocking antibodies. 

 

4.  To assess the ability of MØ from aged individuals to interact with and respond to AC: 

Finally, a small scale pilot study using young (<25) and mid-life (>40) donors will be carried 

out to assess the ability of HM-DMØ from each age group to interact with, and modulate 

inflammation in response to, apoptotic cells. 

Donor plasma will also be used to condition THP-1-derived MØ in a „young‟ or „aged‟ 

environment, and assess the effect on THP-1-derived MØ clearance of apoptotic cells. This 

will be carried out in the absence of presence of donor serum from young or mid-life donors, 

to assess the role of immediate effects, versus the long term effects, of MØ interaction with 

apoptotic cells, in the presence of a „young‟ or „aged‟ environment. Similar studies have been 

done in rodents33, but this has not previously been assessed in humans. This may also 

indicate links between failure of control of immune responses in ageing and in 

atherosclerosis. 

Results from this study will advance current knowledge of phagocyte clearance of apoptotic 

cells in ageing and in an age-related environment. This would then provide future direction 

on the improvement of control of inflammatory responses in conditions such as 

atherosclerosis and ageing. 
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Materials and Methods 

2.1. Cell culture 

2.1.1. Cell lines 

THP-1: A human monocytic leukaemia cell line which grow in suspension. THP-1 cells can 

be differentiated into macrophage-like cells using various compounds299,300.  

Jurkat: A human T cell leukaemia cell line which grow in suspension301.  

Mutu: EBV-positive Burkitt lymphoma cell line which grow in suspension302. 

HUVEC: Human umbilical vein endothelial cell line, grown according to manufacturer‟s 

instruction (ATCC, Virginia, USA) and maintained at P<6. 

2.1.2. Cell culture and differentiation  

THP-1, Jurkat and Mutu cell lines were cultured in RPMI supplemented with 10% (v/v) foetal 

call serum (FCS), 2mM L-Glutamine, 100RU/ml Penicillin, and 100µg/ml Streptomycin 

(cRPMI), all purchased from PAA (Yeovil, UK). Cells were incubated at 37C in a 5% CO2 

humidified incubator and passaged when high levels of confluence were reached, 

approximately every 2-4 days. This maintained cell densities between 2 x105 -1 x 106 

cells/ml.  

HUVECs were cultured in Endothelial Cell Growth Medium (PromoCell, Heidelberg, 

Germany). Cells were incubated at 37C in a 5% CO2 humidified incubator and passaged 

when high levels of confluence were reached, approximately every 4-5 days. Cells were 

maintained at a maximum of 80% confluence and used at a passage number of <6. 

THP-1 cells were treated with 100nm VD3 (Enzo Life Sciences, Exeter, UK), 250nm PMA 

(Sigma-Aldrich, Dorset, UK) or both (double stimulated, DS) and incubated for 72 hours to 

induce differentiation into macrophage-like cells. Phase contrast images (20x) were taken to 

observe morphology using a fully motorised Zeiss Axiovert 200 M fluorescence microscope 

(Carl Zeiss Ltd, Welwyn Garden City, Fradley, Staffordshire, UK) and Hamamatsu Orca 

camera driven by Velocity (Perkin-Elmer, Cambridge, UK). 

2.1.3. Primary cell isolation and culture 

Solutions 

Dextran solution:    6% w/v Dextran in PBS 

Isotonic Percoll stock solution: 10% v/v PBS (10X) in Percoll 

Percoll working solution:  64% v/v Isotonic Percoll stock solution in 1X PBS 
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Up to 50ml of blood was taken from healthy volunteers using 9ml K3EDTA Vacuettes 

(Greiner Bio-One, Stonehouse, Great Britain), in accordance with ethical guidelines (Aston 

University Ethics Committee). Anti-coagulated (EDTA) blood samples were centrifuged to 

separate cells from platelet-rich plasma (350g; 20mins/brake off). The plasma layer was 

removed and frozen for future use. 6% dextran in Dulbecco‟s PBS (w/v) (Pharmacosmos, 

Holbaek, Denmark; PAA), was added to the cell fraction (2:1 total cell volume:dextran 

solution) to sediment red blood cells (2h; RT), leaving a leukocyte-rich fraction resting on top 

of the red blood cell fraction. The leukocyte-rich upper layer was harvested and dextran was 

removed by washing in sfRPMI + 1% (w/v) BSA (PAA) (350g; 4mins), and the leukocyte 

pellet resuspended in approximately 1ml sfRPMI + 1% BSA. Resuspended leukocytes were 

layered onto a band of 64% Percoll working solution, and centrifuged (700g; 20mins; brake 

off), leaving a peripheral blood mononuclear cell (PBMC) band on top of a Percoll layer, and 

an uppermost layer of RPMI. The PBMC band was extracted with a 1ml Pasteur pipette and 

washed in sfRPMI + 1% BSA (w/v) (350g; 6mins). PBMCs were resuspended in specialist 

chemically-defined MØ medium (Life Technologies, Paisley, UK) (serum-free, 2mM L-

Glutamine, 100RU/ml Penicillin, and 100µg/ml Streptomycin) and seeded directly into 24 or 

96 well plates, or onto glass coverslips, for future assays. Non-adherent cells (lymphocytes) 

were removed 20-24 hours post-seeding by extensive washing. Adherent cells (monocytes) 

were allowed to differentiate to MØ for 7-14 days prior to use. Medium was replaced every 3-

5 days prior to assay use. 

2.2. Foam cell formation 

2.2.1. LDL isolation and oxidation  

Solutions 

Light solution:     15.1046g KBr in 100ml dH2O 

Heavy solution:    33.4218g KBr in 100ml dH2O 

BCA/copper sulphate working solution: 200µl copper (II) sulphate solution (4% w/v) 

      19.8mls BCA solution 

Human plasma was obtained from healthy volunteers. Native LDL (nLDL) was isolated from 

the plasma by ultracentrifugation at 32000xg (20h;16C), using light and heavy potassium 

bromide (KBr) solutions (Sigma-Aldrich) to provide a density gradient. In brief, 50mg sucrose 

(Sigma-Aldrich) and 770mg Kbr were dissolved in 2mls of plasma. 200µl ethylene glycol 

(Sigma-Aldrich) was added and 2mls of heavy solution was layered on top of the plasma. 

4mls of KBr heavy solution was then layered on top, followed by dH2O, which was added 

until 2-3mm space remained at the top of the centrifuge tube. The nLDL band was removed 
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and desalted by size exclusion chromatography using PD10 columns (GE Healthcare, 

Buckinghamshire, UK). The nLDL was then filtered through a 0.45µm filter to sterilise. Liquid 

nitrogen was used to snap freeze samples in 1 ml aliquots, aliquots were then stored at -20C 

until required. 

The BCA assay was used to measure concentration of LDL samples, which was chosen on 

the principle that there is one protein molecule per LDL particle (apo-B100). Standards of 

protein from 0-2.5mg/ml were generated using BSA diluted in PBS (PAA). Samples were 

incubated with BCA/copper sulphate (Sigma-Aldrich) working solution for 30 minutes at 37C 

before the optical density was read at 570nm using a Biotek EL800 Microplate Reader. A 

standard curve was generated, based on known concentrations of standard solutions, to 

estimate the concentration of LDL in the sample. 

Oxidised LDL samples (oxLDL) were produced by incubating nLDL with 10µM copper 

sulphate (1h; 37C). After 1 hour, 10µl (0.5M) of the chelating agent EDTA (Sigma-Aldrich) 

was added to prevent further oxidation. The oxLDL was then desalted by size exclusion 

chromatography using PD10 columns and sterile filtered at 0.45µm. Samples were snap 

frozen using liquid nitrogen and stored in 1ml aliquots at -20C until required. 

2.2.2. Carbonyl ELISA to measure protein oxidation  

Solutions:  

Coating buffer:  1 x carbonate-bicarbinate buffer capsules in 100ml dH2O 

Wash buffer:   0.9% (w/v) saline supplemented with 0.05% (v/v) Tween 20 

Block buffer:  1% (v/v) Tween 20 (Sigma-Aldrich) in PBS 

LDL samples and BSA standards (provided by Chris Dunston, Aston University, UK) were 

diluted to 20µg/ml protein and made up to 200µl in coating buffer. 50µl of each sample was 

added to wells in triplicate and incubated (1h; 37C). Wells were washed 3 times with wash 

buffer and 50µl 2,4-dinitrophenylhydrazine (DNPH), (1mM in 2M HCl), (Sigma-Aldrich), was 

added for 1 hour at room temperature to derivatise carbonyl groups. Wells were washed 3 

times with wash buffer and 50µl secondary antibody (goat anti-mouse IgE, diluted 1:5000 in 

blocking buffer) (Sigma-Aldrich) was added and the plate incubated (1h; 37C). Wells were 

washed 3 times with wash buffer and samples developed with o-Phenylenediamine 

dihydrochloride (OPD) (100µl/well) (Sigma Aldrich). The reaction was stopped with 50µl of 

1M HCl (Sigma-Aldrich) per well and the plate read at 490nm using a Biotek EL800 

Microplate Reader. A standard curve was generated, based on known concentrations of 

standard solutions, to estimate the carbonyl content in each sample. 



50 
 

2.2.3. Foam cell generation 

THP-1 cells were seeded in 24 well tissue culture plates and differentiated into macrophage-

like cells as above (see 2.1.2.). Unstimulated, VD3 stimulated, PMA stimulated and double 

stimulated (DS) THP-1 cells were then incubated for a further 72 hours at 37C with desired 

concentrations of nLDL and oxLDL (diluted in cRPMI). Phase contrast images (20x) were 

taken to observe morphology using a fully motorised Zeiss Axiovert 200 M fluorescence 

microscope (Carl Zeiss Ltd) and Hamamatsu Orca camera driven by Velocity (Perkin-Elmer). 

2.2.4. Visualising lipid droplets with light microscopy – Oil Red O staining 

THP-1, VD3 stimulated, PMA stimulated and double stimulated cells were treated with nLDL 

and oxLDL as above (2.2.3.), fixed with 1% w/v formaldehyde (Sigma-Aldrich) solution 

(diluted in PBS) and stored at 4C until staining. Immediately prior to staining, Oil Red O 

working solution (Cayman Chemical, Michigan, USA) was prepared by adding 6 parts stock 

solution to 4 parts dH2O and filtered through a 0.4µm filter to remove precipitate prior to 

staining. Fixative was removed and each well washed with dH2O. 60% isopropanol (Sigma-

Aldrich) was then added to each well for 5 minutes. The isopropanol was removed and Oil 

Red O working solution was added to each well for 30 minutes at room temperature. Wells 

were then washed with dH2O, lipid accumulation observed in cells and phase contrast 

images (10x, 20x) were taken to observe morphology using a fully motorised Zeiss Axiovert 

200 M fluorescence microscope (Carl Zeiss Ltd) and Hamamatsu Orca camera driven by 

Velocity (Perkin-Elmer). 

2.2.5. Visualising lipid droplets with fluorescence microscopy – Nile Red staining 

In order to observe lipid accumulation in cells, double stimulated cells (following LDL 

treatment) were fixed with 1% (w/v) formaldehyde solution (diluted in PBS) and stored at 4C 

until staining. Oleic acid treatment was used as a positive control for staining (1:5000 dilution 

in cRPMI). Staining was carried out as per manufacturer‟s instructions (Lipid Droplets 

Fluorescence Assay Kit, Cayman Chemical). In brief, cells were washed with provided assay 

buffer before Nile Red staining solution was added (1:1000 dilution in assay buffer) for 15 

minutes at room temperature. Cells were then washed with assay buffer and lipid droplet 

staining observed via fluorescence microscopy (excitation/emission = 485/535) (40x). Lipid 

droplets appear as green round spots. Images (20x) were taken to observe morphology 

using a fully motorised Zeiss Axiovert 200 M fluorescence microscope (Carl Zeiss Ltd) and 

Hamamatsu Orca camera driven by Velocity (Perkin-Elmer). 

2.2.6. Quantifying lipid droplet accumulation – assay optimisation 

A black opaque 96 well plate (Cat. No. DPS-134-070R, Fisher Scientific, Loughborough, UK) 

and a clear 96 well tissue culture plate (Cat. No. CC015, Appleton Woods, Birmingham, UK) 
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were loaded with varying concentrations of goat anti-mouse-FITC (Sigma-Aldrich) to 

compare overspill of emitted light between wells. Additionally, cells were cultured in a clear 

96 well tissue culture plate, then lysed with 2% SDS (Sigma-Aldrich). Whole cell lysate was 

then transferred to corresponding wells in a black 96 well plate for Nile Red staining (see 

2.2.5.). 

2.2.7. Quantifying lipid droplet accumulation – fluorescence plate reader assay 

Double stimulated cells were treated with oxLDL as above (2.2.5.), at a density of 5 x 103 

cells per well, in a black, clear bottomed 96 well tissue culture plate (Cat. No. DPS-130-

010N, Fisher Scientific, Loughborough, UK). Oleic acid treatment was used as a positive 

control for staining (1:5000 dilution in full culture medium). Staining was carried out as per 

manufacturer‟s instructions. In brief, cells were washed with provided assay buffer and fixed 

with fixative solution (diluted 1:10 in assay buffer) for 10 minutes. The plate was centrifuged 

and washed with assay buffer before Nile Red staining solution was added (1:1000 dilution in 

assay buffer) for 15 minutes at room temperature. Cells were then washed with assay buffer 

and lipid droplet staining observed with a Spectramax Gemini EM fluorescence plate reader 

(Molecular Devices) (excitation/emission = 485/535). Results showed that this protocol was 

not efficient at predicting foam cell formation (data not shown). 

2.3. Assessment of cell viability 

Levels of apoptosis were continually monitored across all cell lines using light microscopy to 

assess the presence of morphological features of apoptosis, such as cell shrinkage, nuclear 

condensation and blebbing. Cells were also routinely analysed via flow cytometry to assess 

proportions of the population that were displaying live or dead morphology. 

2.3.1. Annexin V/Propidium iodide staining  

Solutions 

Binding buffer:  150mM NaCl, 10mM HEPES (pH7-7.5), 2.5mM CaCl2 in dH2O 

To assess cell viability, cells were washed in binding buffer and stained with 2µl (1:50 in 

binding buffer) Annexin V-FITC (AxV-FITC) (Bender MedSystems, Vienna, Austria) for 15 

minutes on ice and washed once with, and resuspended in, 1ml binding buffer. Immediately 

prior to flow cytometric analysis of each sample, 5µl of stock propidium iodide (PI) from the 

AxV-FITC Apoptosis Detection Kit was added to reveal the proportion of cells with a leaky 

cell membrane, a marker of cell necrosis. Cells were analysed using a Beckman Coulter 

Quanta SC flow cytometer. Unstained cells were used as a negative control.  
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2.3.2. Assessing toxicity induced by native and oxidised LDL 

To assess toxicity of LDL treatment on monocyte-like cells, THP-1 were seeded in 6 well 

tissue culture plates in a total volume of 5mls. Cells were treated with nLDL and oxLDL 

diluted in cRPMI. Following LDL treatment, 500µl samples were taken from each well daily 

for up to 7 days to assess levels of apoptosis and necrosis induced by LDL treatment, as in 

2.3.1. 

To assess toxicity of LDL treatment on macrophage-like cells, THP-1 cells were seeded in 6 

well tissue culture plates. Cells were treated with nLDL and oxLDL diluted in cRPMI and one 

tissue culture plate was sampled each day. Immediately prior to staining, cells in all wells of 

one plate were incubated in 5mM EDTA in PBS for 1 hour at 37C to bring adherent cells into 

suspension. Cells were then washed twice in binding buffer before AxV/PI staining as above, 

as on 2.3.1. Unstained cells were used as a negative control.  

2.3.3. Apoptosis induction 

To induce apoptosis with minimal secondary necrosis, Jurkat, Mutu, THP-1 macrophages 

and THP-1 foam cells were treated with 100mJ/cm2 UV radiation (typically 2-4 minutes 

treatment), using a UVP UXV Chromato-Vue C-71 light box, and incubated for 18-24 hours 

at 37C. To confirm induction of apoptosis, cells were stained for flow cytometry according to 

the protocol in section 2.3.1. UV dose was monitored using a UXP UVX Radiometer. 

Induction of apoptosis was also confirmed using light microscopy, as discussed above. 

To confirm levels of apoptosis in cells for individual assays, a sample of the apoptotic cells 

were fixed with 1% (w/v) formaldehyde in PBS for flow cytometry and side scatter and 

forward scatter evaluated. The smaller, granular population appear in the „dead‟ zone, 

whereas the larger, healthy cell population appear in a distinct „live‟ zone303. 

All apoptotic cells used in these studies were human cell-line derived. 

2.3.4. Isolation of cell-free supernatant 

Viable cells were seeded at 2x106 cells/ml in chemically-defined macrophage medium + 

2mM ʟ-glutamine + 100IU/ml penicillin. Medium was also replaced prior to UV treatment. 

Apoptosis was induced by UVB irradiation (see 2.3.3.) and supernatants harvested following 

18-24 hours incubation at 37C. Large cell debris was removed by centrifugation at 350xg for 

6 minutes to generate cell-free supernatant (CFS), which contains microparticles and soluble 

factors (e.g. cytokines and chemokines). 
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2.4. Immunofluorescence staining of cell surface proteins 

Cells were washed with 0.1% w/v BSA in PBS and 2 x 105 cells were added to each tube for 

staining. Cells were stained for 45 minutes on ice with the relevant primary antibodies, to a 

final volume of 100µl, using 20% v/v normal human serum (NHS) (PAA) in PBS as a diluent. 

All primary antibodies were titrated and concentrations chosen according to saturation of 

receptor staining. Control antibody concentrations were chosen to match maximum antibody 

concentrations of the same isotype. Following primary antibody staining, cells were washed 

twice with 5% v/v NHS (in PBS) and tubes were stained with secondary antibody goat anti-

mouse-FITC (GAM-FITC) for 30 minutes on ice, including cells with no primary antibody 

staining (secondary/FITC control). GAM-FITC was diluted 1/2000 in 20% v/v normal goat 

serum (NGS) (PAA) and 100µl was added per well. Following staining, cells were washed 

twice with 5% v/v NGS and fixed with 1% w/v formaldehyde. Cells with no primary or 

secondary antibody staining were also analysed (unstained control). Cells were stored at 4C 

until analysis via flow cytometry. 

2.4.1. Surface receptor expression of THP-1 models 

Unstimulated and VD3, PMA and double stimulated THP-1 cells were stained with mouse 

anti-human monoclonal antibodies targeting CD36 (Abcam, Cambridge, UK), LOX-1 [clone 

331212] (R&D Systems, Abingdon, UK), SRA-1 (R&D Systems), CD14 (clones 61D3/63D3, 

made in house) and ICAM-3 (clone MA4, made in house). THP-1 cells were seeded in 6 well 

plates and differentiated for 72 hours as above. Following differentiation, PMA and DS cells 

were treated with 5mM EDTA in PBS (1h; 37C) to bring adherent cells into suspension. Cells 

were stained with primary antibody as above (2.4.). The following final concentrations were 

used for each antibody: CD36 (20µg/ml), LOX-1 (50µg/ml), SRA-1 (50µg/ml), CD14 (neat 

supernatant), ICAM-3 (1/100 dilution), IgG1 control [clone MOPC21] (20 µg/ml) (Sigma-

Aldrich), IgG2b control (50µg/ml) (Abcam). All primary antibodies were titrated and 

concentrations chosen according to saturation of receptor staining. Receptor saturation could 

not be reached with LOX-1 and SRA-1 antibodies, so concentrations were chosen with 

positive receptor staining and low background staining. The staining of these antigens would 

not be useful for quantifying cell surface protein expression, but can be used for semi-

quantitative/qualitative staining. Control antibody concentrations were chosen to match 

maximum antibody concentrations of the same isotype. Cells were then stained with 

secondary antibody as above (2.4.) Cells were fixed with 1% w/v formaldehyde and stored at 

4C until ELISA analysis. 

In order to assess cell surface receptor expression in cells following oxLDL treatment, 

indirect immunostaining of cells of interest was carried out with monoclonal antibodies 
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targeting CD36, LOX-1, SRA-1, CD14 and ICAM-3, according to the protocol above. Cells 

were fixed with 1% w/v formaldehyde and stored at 4C until analysis via flow cytometry. 

To support chemotaxis studies, the anti-CX3CL1 [clone 51637] (R&D Systems) and anti-

ICAM-3 antibodies were used for indirect immunostaining of cell surface CX3CL1 and ICAM-

3 in live and apoptotic MØ and foam cells, to gather evidence for loss of expression via 

membrane shedding, as in section 2.4. Cells were fixed with 1% w/v formaldehyde and 

stored at 4C until analysis via flow cytometry. 

2.4.2. Endothelial cell phenotyping following treatment with live and apoptotic MØ/FC-

conditioned medium 

Human umbilical vein endothelial cells (HUVECs) were cultured in 6 well plates and 

incubated in the presence of live MØ/FC CFS and apoptotic MØ/FC CFS, set up as in 2.3.4., 

or medium control (24h; 37C). Following incubation, conditioned medium was removed and 

cells washed with PBS and incubated in trypsin/EDTA (PAA) to lift adherent cells into 

suspension (20min; 37C). Direct immunostaining was carried out with FITC-labelled anti-

CD62E, or FITC-labelled control, and results analysed by flow cytometry (see 2.4.). 

2.5. Phagocyte interaction with, and responses, to apoptotic cells and other mediators 

2.5.1. Interaction of phagocytes with apoptotic cells 

THP-1 cells were seeded at 2x104 cells per well in 24 well tissue culture plates in cRPMI with 

250nm PMA or 100nm VD3 + 250nm PMA (DS) (72h; 37C). Following differentiation, cells 

were treated with (FC) or without (MØ) oxLDL (indicated concentrations) (72h; 37C). Culture 

medium was removed and 2 x 105 apoptotic jurkat, THP-1 macrophage or THP-1 foam cells 

were added per well, in 500µl serum free RPMI + 1% P/S + 0.2% BSA. A 10:1 ratio of 

apoptotic cells: macrophages was chosen to provide excess ACs for interactions. Plates 

were incubated (1h; 37C) and wells were then washed with 1ml cold PBS to prevent further 

interactions and remove unbound apoptotic cells. Cells were fixed with 1% formaldehyde 

(w/v in PBS) and stored at 4C until staining. To stain, 2-3 drops of Diff-Quik (made in house) 

were added to each well to visualise cells. Macrophages (THP-1 derived) appear as large 

adherent light-blue cells, and apoptotic cells appear as small dark blue spots. Interactions 

were counted as number of macrophages interacting with apoptotic cells per 200 cells 

counted in each well. 

Primary human monocytes were seeded as above and allowed to adhere overnight in 

chemically-defined macrophage medium (CD-MØ medium). The culture medium was 

replaced, removing non-adherent cells (lymphocytes) and adherent monocytes left to 
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differentiate for 7-14 days in CD-MØ medium, which was replaced every 3-5 days until the 

time of the assay. Interaction assays were then carried out as above in chemically defined 

macrophage medium with apoptotic THP-1 derived macrophages/foam cells. 

2.5.2. Interaction of oxLDL treated cells with E.coli  

THP-1 cells were seeded in 6 well tissue culture plates. Following differentiation and oxLDL 

treatment, the culture medium was removed and cells washed in complete or serum-free 

medium. In dark conditions, dilutions of fluorescein conjugated E. coli (Life Technologies) in 

either complete or serum-free medium were added to relevant wells and plates incubated 

(40min; 37C).  Wells were then washed with 1ml cold PBS to prevent further interactions and 

remove unbound E. coli. Differentiated THP-1 cells were then treated with 5mM EDTA in 

PBS (30min; RT) to bring adherent cells into suspension. Cells were washed in 0.1% BSA in 

PBS then fixed with1% w/v formaldehyde and stored at 4C until analysis via flow cytometry. 

Following optimisation, a 1/1000 dilution of fluorescein conjugated E. coli in SF RPMI was 

chosen. After samples were analysed by flow cytometry, trypan blue (Sigma-Aldrich) was 

used to quench fluorescence of E. coli particles bound to the THP-1 macrophage/foam cell 

surface, and samples re-analysed by flow-cytometry. This enables differentiation between 

bound and internalised E.coli, highlighting any physiological differences between function of 

THP-1 macrophages and THP-1 foam cells. This may highlight whether any decreases in 

apoptotic cell binding is a result of altered function, or whether a general decrease in activity 

may be associated with foam cells as they were „sick‟. 

2.5.3. AC inhibition of inflammatory response 

THP-1 cells were seeded at 5x105 cells per well in 24 well tissue culture plates in cRPMI with 

250nm PMA or 100nm VD3 + 250nm PMA (DS) (72h; 37C). Following differentiation, cells 

were treated with (FC) or without (MØ) oxLDL at a concentration appropriate to the 

experiment (72h; 37C). Culture medium was removed and 1.5x106 apoptotic jurkat (see 

2.3.3.), THP-1 macrophage, THP-1 foam cells (6h post UV) or medium control were added 

per well, in 500µl sfRPMI containing 1% P/S + 0.2% BSA, and plates incubated (20h; 37C). 

0.5ng/ml LPS (from E. coli O111:B4, Sigma-Aldrich), diluted in sfRPMI, or sfRPMI alone was 

then added to wells with or without the presence of ACs, with normal human serum (10% 

final conc.) and incubated (4h; 37C). Supernatants were harvested and stored at -20C until 

ELISA analysis. 

Primary human monocytes were seeded at 8.3x104 in 96 well tissue culture plates and 

allowed to adhere overnight in chemically-defined macrophage medium (CD-MØ medium). 

The culture medium was replaced, removing non-adherent cells (lymphocytes) and adherent 
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monocytes left to differentiate for 7-14 days in CD-MØ medium, which was replaced every 3-

5 days until the time of the assay. Interaction assays were then carried out as above in 

chemically defined macrophage medium with apoptotic THP-1 derived macrophages/foam 

cells. 

2.5.4. Measurement of cytokine release via indirect Enzyme-Linked Immuno-Sorbent 

Assay (ELISA) 

Solutions 

ELISA diluent:  0.05% (v/v) Tween 20 (Sigma-Aldrich), 0.1% (w/v) BSA in PBS 

ELISA wash buffer: 0.9% (w/v) sodium chloride (Sigma-Aldrich), 0.05% (v/v) Tween 20 

ELISA block buffer: 1% (w/v) BSA, 5% (w/v) sucrose in PBS  

To detect cytokine release by THP-1-derived MØ (PMA) and HMDM at basal levels, and in 

response to ACs and LPS, stored supernatants from section 2.5.3. were analysed via indirect 

ELISA. 

TNF-α, IL-10, IL-12 (Peprotech, New Jersey, USA) and CX3CL1 (R&D Systems) ELISAs 

were carried out according to manufacturer‟s instructions (PeproTech). Briefly, ELISA plates 

were coated in 1µg/ml (or otherwise recommended) relevant capture antibodies in PBS 

(100µl/well) and stored at room temperature overnight. ELISA plates were washed (wash 

buffer; three times) and 200µl block buffer added per well (1h; RT). ELISA plates were 

washed and serial dilutions (in ELISA diluent) of recombinant TNF-α, IL-10, IL-12 or CX3CL1 

added, or harvested supernatants (100µl/well)                                                                                                                            

(neat or diluted in sfRPMI according to the individual experiment) (2h; RT). ELISA plates 

were washed and 0.5µg/ml (or otherwise recommended) TNF-α, IL-10, IL-12 and CX3CL1 

detection antibody (in ELISA diluent) added (100µl/well) (2h; RT). ELISA plates were washed 

and streptavidin-HRP added at 1:2000 dilution in ELISA diluent (100µl/well) (30m; RT). 

ELISA plates were washed and 100µl OPD added per well. Following a colour change, the 

reaction was stopped with 1M HCl (50µl/well) and ELISA plates read at 490nm. A standard 

curve was generated for each plate, based on known concentrations of recombinant 

proteins, to estimate the cytokine concentration in each sample. 

2.5.5. Effect of PMA on inflammatory response of human monocyte-derived 

macrophages 

Primary human monocyte-derived macrophages were seeded in 24 well tissue culture plates 

and allowed to adhere overnight in chemically defined macrophage medium (CD-MØ 

medium). The culture medium was replaced, removing non-adherent cells (lymphocytes) and 
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adherent monocytes left to differentiate for 7-14 days in CD-MØ medium, which was 

replaced every 3-5 days until the time of the assay. HMDM were co-cultured with apoptotic 

Jurkat (10:1 AC:MØ), (see 2.3.3.), (24h; 37C), in the presence or absence of indicated PMA 

concentrations.  

2.6. Models of phagocyte chemotaxis  

2.6.1. Vertical monocyte chemotaxis model - the Boyden Chamber 

Initial experiments were carried out using the modified Boyden Chamber method, utilising a 

NeuroProbe 48 well vertical chemotaxis chamber (Fig. 9). This was to ascertain chemotactic 

properties of apoptotic cell-derived microparticles and soluble factors. 

 

Figure 6. Assembly of NeuroProbe 48-well vertical migration chamber Image of an 

assembled vertical migration chamber (top left). Chamber design (top right) consists of lower 

wells for chemoattractant loading (d), sealing gasket (a) which supports a polycarbonate 

membrane, upper wells for monocyte loading (b) and metal fittings to ensure minimal spaces 

between components (c). Bottom figure depicts direction of monocyte migration from upper 

wells (b) to chemoattractant in lower wells (d), through a polycarbonate membrane which is 

supported by a gasket (a). Images adapted from supplier website (NeuroProbe.com). 

A 48 well vertical chemotaxis chamber was used according to manufacturer‟s instructions 

(NeuroProbe Inc., Gaithersburg, Madison, WI, USA). In brief, 25µl control or chemoattractant 

was loaded into the lower chambers (Fig. 9; d.), followed by a PVP-free polycarbonate 

membrane (pore size: 5µm; pore density: 4 x 103 pores/mm2) and assembly of the upper 

chamber. VD3 stimulated THP-1 cells were suspended in assay medium (RPMI + 0.2% BSA 

+ 2mM ʟ-glutamine + 100IU/ml penicillin) at 2x106 cells/ml. 50µl per well of THP-1 

suspension was added to the upper chambers (1x105 cells/well) (Fig. 9; b.). Chambers were 

incubated for 4 hours at 37C before cell migration was assessed. Membranes were washed 



58 
 

and stained with Diff Quik solution; migrated monocytes remained stuck to the underside of 

the membrane or embedded in the microporous membrane, whilst monocytes that had 

settled on top of the membrane were removed by washing and scraping on a proprietary 

blade. Total migrated cells (5 fields of view per well) were counted using light microscopy 

(40X). 

2.6.2. Horizontal monocyte chemotaxis model optimisation - Dunn Chamber 

A true chemoattractant gradient is not established in the vertical models of chemotaxis, 

rather a step gradient of chemoattractant is located immediately below a microporous 

membrane. In order to establish a true chemotactic gradient, without having to factor in 

the effects of gravity on chemotactic activity, a horizontal assay system was established 

using the Dunn chemotaxis chamber. 

 

Figure 7. Schematic of the Dunn chemotaxis chamber Image (left) depicts 

chemoattractant loading area (a), viewing bridge (gradient) (b), inner well (medium) (c), 

outer well (chemoattractant) (d), and placement of coverslip with adherent monocytes 

(underside) (e). Right image shows direction of monocyte migration towards 

chemoattractant (arrow), across the viewing bridge (b), following establishment of a 

chemoattractive gradient from the outer well (d) to the inner well (c). 

MCP-1, first isolated from THP-1-conditioned medium, is an established 

chemoattractant for monocytes304-306. MCP-1 was used as an attractant to establish a 

horizontal chemotaxis assay for this model, using the Dunn chemotaxis chamber, 

adapted from methods outlined by Zicha et al.292. This group deduced that proteins with 

a molecular weight of 350-750Da will produce a stable linear gradient within 10 minutes 

and that decay to half will take 10 hours292. Large proteins (10-20kDa) form a linear 

gradient within 30 minutes, with decay to half in 30 hours292. At 8-9kDa, an MCP-1 
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gradient should be established at an early time point in the assay, and be stable 

throughout the time course of the assay. 

THP-1, VD3, PMA and DS cells were cultured on glass coverslips (24mmx24mm) in 

cRPMI, with or without differentiating agents, in 6 well plates. Human PBMCs, human 

peripheral blood monocytes and human monocyte-derived MØ were also cultured on 

glass and plastic coverslips to assess migration. sfRPMI or CD-MØ medium was added 

to both wells of the Dunn chemotaxis chamber. Using sterile forceps, coverslips with 

cultured cells were placed face down (cell-side down) on top of the wells, leaving a gap 

for addition of chemoattractant in the outer well (Fig. 10). Edges and the top of the 

coverslip were dried using filter paper, and 3 edges were sealed with hot paraffin wax 

using a small paintbrush. The gap left on the fourth edge for chemoattractant loading 

was used to drain the outer well of medium using filter paper, with care taken not to 

make contact with the underside of the coverslip, where cells should be present. 

100ng/ml MCP-1 in either sfRPMI or CD-MØ medium was promptly added to the outer 

well and the edge sealed with hot wax using a small paintbrush. Cells were observed 

over the bridge area of the chamber, where the gradient between wells will be 

established. 

Assays had to be optimised to provide an area with optimal cell density, which needed 

to be chosen as too many cells made tracking difficult, and too few gave less powerful 

statistics. Tutorials by Ibidi on use of bespoke chemotaxis tracking software Chemotaxis 

and Migration Tool v.2.0 recommended 40 cells per assay should be tracked for 

powerful statistical data. Seeding densities had to be adjusted per cell differentiation 

method due to varying adherence levels. Initial assays were observed for 48 hours, 

however following observation they were cut down to 2 hours, which was the time at 

which monocyte migration had ceased. It was interesting to note that apoptotic cell-

derived CFS proved a more robust chemoattractant than the positive control MCP-1. 

Quantitative assessment was carried out using Image J and the Ibidi Chemotaxis and 

Migration Tool (version 2.0, standalone software), which provided measures of 

directness (Euclidean/accumulated distance), distance, velocity, forward migration index 

(FMI) and the Rayleigh test. A further assessment was utilised using the provided 

measurement of angle of the end points, and quantifying the average standard deviation 

of angle endpoints (SDoA). This should indicate a level of uniformity of migration of the 

monocyte population. 



60 
 

2.6.3. Monocyte chemotaxis to apoptotic cells - modelling in the Dunn chamber 

To assess the chemoattractive properties of apoptotic cells and apoptotic cell-derived 

mediators, whole cell cultures, and cell free supernatants, were harvested from live and 

UV-induced apoptotic cells. Apoptotic cells were generated as in 2.3.3. Live cell cultures 

were prepared under the same conditions, with the exception of UV exposure. Assays 

were carried out as above (2.6.2.), with CD-MØ medium in the inner well, and apoptotic 

whole cell culture (WC) (2.3.3.) or cell-free supernatant (2.3.4.) (CFS) in the outer well. 

The addition of blocking antibodies targeting CX3CL1 (5ng/ml), ICAM-3 (1/10 dilution of 

tissue culture supernatant) and CD14 (1/10 dilution of tissue culture supernatant) were 

added to WC or CFS preparations immediately prior to loading. 

2.7. Function of aged macrophages; a pilot study 

Up to 50ml of blood was harvested from an age range of healthy donors in accordance 

with Aston University Ethics Committee, and age and gender recorded alongside 

anonymised sample reference numbers. PBMCs were isolated (as in section 2.1.3.) and 

seeded in 24 well plates (AC interactions assays; see 2.5.1.) or 96 well plates (cytokine 

responses to AC; see 2.5.3.) in CD-MØ medium. Non-adherent cells (lymphocytes) were 

removed after 24 hours culture, and adherent cells (monocytes) allowed to differentiate 

to MØ over a period of 7-14 days. AC interaction assays with UV-induced apoptotic 

Jurkat cells (see 2.3.3.) were carried out as previously (see 2.5.1.), with the use of CD-

MØ medium instead of RPMI. Cytokine responses following co-culture with UV-induced 

apoptotic Jurkat cells were carried out as previously (see 2.5.3.), with the use of CD-MØ 

medium instead of RPMI. TNF-α ELISA was carried out as per manufacturer‟s 

instructions (PeproTech) (2.5.4.). 

For plasma-conditioning assays, THP-1 cells were seeded at 2x104 cells per well in 24 

well tissue culture plates in cRPMI with 250nm PMA + 100nm VD3 (DS) (72h; 37C). 

Following differentiation, cells were treated with plasma derived from young or mid-life 

donors (10%v/v in sfRPMI) (72h; 37C). Culture medium was removed and 2 x 105 

apoptotic jurkat added per well, in the presence or absence of serum from the same 

donor. This assay was designed to show functional differences in the effects of long 

term exposure of cell line MØ to an „aged‟ environment, and the impact of the „aged‟ 

environment on functions occurring in the immediate local microenvironment, i.e. AC 

clearance. 
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Modelling apoptotic foam cell clearance in vitro 

3.1. Introduction 

The atherosclerotic plaque continues to provide a unique and interesting area of 

investigation in the field of apoptotic cell (AC) clearance. Research has shown that a 

highly inflammatory environment persists within advanced atherosclerotic lesions58. At 

these sites, monocytes are recruited to the arterial sub-endothelium, where they 

differentiate into macrophages (MØ) and gorge on modified lipoproteins, resulting in the 

formation of lipid-laden „foam cells‟162. These foam cells undergo apoptosis, recruiting 

further monocytes and the process repeats46. Given the high number of localised ACs 

being cleared by macrophages, the plaque microenvironment contradicts evidence that 

AC clearance dampens inflammatory responses55,56. 

In this chapter, a THP-1 MØ-derived foam cell model is developed and characterised. 

Data is presented that addresses phenotype and function of macrophages within an 

environment with plaque-like features. Viability is assessed, and expression of receptors 

relevant to modified lipid uptake and apoptotic cell clearance is shown. The ability of 

foam cells to recognise and interact with apoptotic cells is investigated, as is the ability 

of apoptotic foam cells to be recognised by „normal‟ non-foam cell phagocytes. 

Current research suggests defective AC clearance, or efferocytosis, may be a leading 

cause of plaque progression, leading to plaque instability and pathological 

outcomes149,150,195,197. This has been attributed to loss of function of lipid-laden MØ, 

known as foam cells195,197, however the contribution of apoptotic foam cells to defective 

clearance has had very little focus. Indeed, the clearance of apoptotic MØ has attracted 

little attention. 

The hypothesis for the work in this chapter is that MØ from a lipid-laden environment 

may be defective in their capacity to interact with apoptotic cells, and thus promote 

resolution of inflammation. In order to address this, the THP-1 model established in this 

chapter will be used to answer the research questions listed in the following table. 
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Phagocyte 

 

Apoptotic cell 

 

 

Macrophage 

(MØ) 

Foam cell 

(FC) 

Apoptotic MØ 

(aMØ) 

How well do non-lipid-laden 

MØ and non-lipid-laden aMØ 

interact? 

Do FC have the ability to 

recognise, interact with and 

phagocytose aMØ? 

Apoptotic FC 

(aFC) 

Do aFC upregulate „eat-me‟ 

and downregulate „don‟t-eat-

me‟ signals to MØ, enabling 

recognition, interaction and 

phagocytosis? 

Does the combination of 

FC/aFC result in defective 

clearance in this model? 

 

Table 1. Summary of key research questions addressed in Chapter 3 

3.2. Results 

3.2.1. Morphology of monocyte and macrophage models 

In order to assess macrophage (MØ) function, it was necessary to establish a MØ model for 

analysis. A number of models are available ranging from primary human and mouse MØ, 

through to cell lines and their stimulated derivatives. THP-1 cells have been used extensively 

as multiple monocyte-MØ models can be obtained from the same originating cell line 307-311. 

These cells and their stimulated derivatives are functional for apoptotic cell clearance, 

inflammatory responses, and show representative changes in lipid metabolism-gene 

expression throughout differentiation, important for a representative foam cell model300,307,312. 

THP-1 cells can be differentiated into more MØ-like cells using various differentiation 

strategies; no treatment (THP-1), vitamin D3 (VD3) treatment, PMA treatment or double 

stimulation (DS) with both agents310,311. In order to establish successful differentiation 

strategies for use in the foam cell model, morphology was examined following 72 hours 

differentiation.  

In order to follow the differentiating effects of VD3 and PMA, THP-1 cells were stimulated to 

differentiate with VD3, PMA or both agents. Using light microscopy and flow cytometry, 
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morphological changes were assessed relative to unstimulated THP-1 cells (Fig. 8). 

Morphologically, VD3 cells remain similar to THP-1 cells in their monocytic appearance. Both 

cell types show weak adherence to tissue culture plastic (i.e. they are easily removed with 

washing) and spreading is not apparent. They remain homogeneous in nature, with a defined 

population observed on flow cytometry histograms, with equivalent cell size (forward scatter) 

and granularity (side scatter) to unstimulated THP-1 cells, indicating a monocytic phenotype. 

PMA and DS cells differ greatly in morphology in comparison to THP-1 and VD3 cells, with 

visible spreading and strong adherence to tissue culture plastic (i.e. few cells are removed by 

washing). PMA and DS cells are also larger in appearance and more granular than THP-1 

and VD3 cells, as observed when comparing forward scatter (FS) and side scatter (SS) by 

flow cytometry (Fig. 8). Of the adherent cells, two phenotypes became apparent, MØ that 

spread in an elongated manner (fig. 5, circled cell a), and rounder MØ (fig. 5, circled cell b). 

THP-1 and VD3 cells were both observed to proliferate, which was apparent when counting 

cells for antibody staining, as supported by Thomas et al. (2013)312. PMA and DS cells 

decreased in number, suggesting terminal differentiation and some cell death or cell fusion. 

Results suggest unstimulated THP-1 and VD3 stimulated cells may be a suitable monocyte 

model, whereas PMA and DS stimulated cells could better represent a MØ model. 

 

 

THP-1 VD3 

PMA DS a 

b 
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Figure 8. Alternative differentiation methods produce varying phenotypes in THP-1 

cells THP-1 cells were either undifferentiated or differentiated with VD3, PMA or both VD3 

and PMA (DS) as indicated (72h; 37C), and examined by light microscopy and flow 

cytometry to compare morphology. Scale bars represent 100µm in THP-1 and VD3, 200µm 

in PMA and DS. 

3.2.2. Surface receptor expression of monocyte and macrophage models 
The surface receptor expression profiles for oxLDL receptors CD36, SRA-1 and LOX-1, for 

the multifunctional receptor CD14 and the adhesion molecule ICAM-3 (a leukocyte-restricted 

IgSF member) were investigated using indirect immune-fluorescence staining and flow 

cytometry (Fig. 9) CD36, SRA-1 and LOX-1 are key receptors in oxLDL uptake and foam cell 

formation and are also known to bind apoptotic cells103,176,182,190,192. By immunophenotyping 

each model for expression of these receptors, the likelihood of each THP-1 model to produce 

foam cells may be predicted. CD14 expression is also investigated in order to predict the 

ability of each model to tether apoptotic cells, a function which is potentially defective in foam 

cells as part of defective AC clearance31,46. ICAM-3 has also been implicated in AC 

clearance71,84. 

In THP-1 cells, CD36 expression was high, and CD14 and ICAM-3 expression present but 

low (Fig. 9). This would indicate the ability to uptake oxLDL, and theoretically some ability to 

bind AC. SRA-1 and LOX-1 expression appears undetectable on frequency histogram plots, 

however a small increase in mean fluorescence intensity was detected with LOX-1 staining, 

compared to isotype control, should be noted. What levels of oxLDL receptor expression, 

and the required combination of various oxLDL receptors, are necessary for function should 

also be considered, as very low levels may still be relevant and functional. In VD3 

differentiated cells, CD36 and ICAM-3 expression was high, with very high expression of 

CD14 also present, suggesting comparable likelihood of THP-1 and VD3 cells to form foam 

cells in the presence of oxLDL, but perhaps an increased ability in AC binding following VD3 

differentiation (Fig. 9). SRA-1 and LOX-1 expression was undetectable, with a small increase 

in MFI with LOX-1 staining, as in THP-1 cells.  

Forward Scatter 

Side  

Scatter 

THP-1 VD3 PMA DS 
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PMA and DS cells show expression of all receptors, indicating oxLDL uptake and 

subsequent susceptibility to foam cell formation, and also improved AC interaction efficiency 

(Fig. 9). PMA and DS cells show increased SRA-1 and LOX-1 expression compared to THP-

1 and VD3 cells, however VD3 cells show the highest expression levels of CD14. Staining of 

LOX-1, and to some extent SRA-1, in PMA and DS cells, revealed dual populations within 

these models. This suggests upregulation of receptors only in a subpopulation of cells as 2 

distinct peaks were observed on frequency histogram plots, whereas CD36 was expressed 

across the whole cell population. ICAM-3 expression is also upregulated in PMA and DS 

cells compared to THP-1, however VD3 cells showed the highest levels of ICAM-3 

expression. Results point towards PMA and DS differentiated THP-1 cells as strong 

candidates for foam cell modelling.  

 

 

 

 

 

 

 

 

Cell 

No. 

Cell 

No. 

THP-1             CD36     SRA-1      LOX-1   CD14     ICAM-3 
MFI            7.58/32.62    5.07/4.98      5.07/10.94  1.93/7.26    9.22/8.96 

%Gated         2.89/67.97   3.06/2.81      3.06/4.23  1.72/9.52    12.04/19.9 

VD3              CD36     SRA-1        LOX-1    CD14     ICAM-3 
MFI            7.42/58.11    6.61/7.79      6.61/11.39  3.74/185.5    7.42/32.52 

%Gated         2.76/78.82   2.63/2.61      2.63/3.11  3.12/78.98     2.76/67.19 

PMA              CD36     SRA-1        LOX-1    CD14     ICAM-3 
MFI            6.00/59.06    6.06/35.1        6.06/28.4  6.00/16.7    6.00/8.14 

%Gated         9.71/61.65  14.37/43.79      14.37/25.48  9.71/25.61     9.71/25.19 
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Figure 9. Phenotyping THP-1 models for key oxidised LDL and apoptotic cell receptors 

Undifferentiated or VD3, PMA or DS (VD3+PMA) differentiated THP-1 cells were stained with 

primary monoclonal antibodies targeting CD36, SRA-1, LOX-1, CD14 and ICAM-3 (black) or 

isotype matched control antibodies (grey), and displayed as log fluorescence intensity. 

Expression levels were compared using flow cytometry. Results are also shown as mean 

fluorescence intensity and % gated (solid black line represents positive gating). A 

representative example of at least 3 experiments is shown. 

3.2.3. Oxidation of LDL 
Subendothelial retention of modified LDL, including oxidised LDL (oxLDL), is the origin of 

vascular cell damage and foam cell formation, therefore plays a key role in 

atherogenesis45,169,170. In order to create foam cells for the model, LDL must first be isolated 

from donors and oxidised. It is important to be aware of the variance in levels of oxidation in 

native LDL (nLDL), as this can be influenced by LDL particle size and diet171. LDL from 

different donors is also susceptible to oxidation at different levels, so it is also important to 

establish differences in oxidation levels between samples following the same oxidation 

method172. Various methods can be employed to oxidise and measure oxidation levels of 

LDL. Carbonyl ELISA measurement is popular as carbonylated proteins remain stable and 

the ELISA method provides sensitivity313. 

Carbonyl ELISA results (tab. 3) demonstrate an increase in carbonyl content, and therefore 

protein oxidation, following exposure to copper sulphate (tab. 3). Also to note, is that the fold 

increase in carbonyl content is much greater in LDL#1, which had lower basal carbonyl 

Cell 

No. 

Cell 

No. 

Log Fluorescence Intensity 

DS              CD36     SRA-1        LOX-1   CD14      ICAM-3 
MFI           10.18/72.34   7.69/32.76       7.69/42.48            10.18/21.49    10.18/8.25 

%Gated        10.63/68.85 17.59/29.96      17.59/33.08            10.63/28.96     10.63/29.4 
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content, and therefore oxidation. Results also show how basal levels of LDL oxidation can 

vary between donors, as seen in previous research314. Also to note, the fold increase in 

carbonyl content is much greater in the LDL#1, which had lower levels of basal oxidation 

(tab. 3). It is therefore important that steps should be taken to minimise variation of LDL 

oxidation levels between assays.  

 Carbonyl content (nmol/mg protein) 

 

 Native Oxidised 

LDL #1 0.31 4.65 

LDL #2 2.69 6.91 

 

Table 2. Copper sulphate treatment results in LDL oxidation Native LDL (nLDL) samples 

from 2 donors (#1 and #2) were oxidised with 10µM copper sulphate (1hr; 37C). The reaction 

was stopped with 10mM EDTA and samples desalted. Carbonyl content before and after 

copper sulphate treatment was estimated using an ELISA to indicate basal levels of protein 

oxidation (native) and oxidation levels following exposure to oxidant copper sulphate 

(oxidised). n=2. 

3.2.4. Generation of foam cells 

3.2.4.1. Oil Red O staining of foam cells 
In order to establish the best differentiation method for foam cell formation, THP-1, VD3, 

PMA and DS cells were all treated with oxLDL and observed after 24, 48 and 72 hours 

treatment to assess intracellular lipid accumulation, a key morphological marker of foam cell 

generation. It can then be investigated whether there is any correlation between receptor 

expression on each cell type and subsequent lipid uptake and accumulation. 

Droplet formation within PMA and DS cells, but not THP-1 or VD3 cells, was observed 

following 72 hours of native LDL (nLDL) or oxidised LDL (oxLDL) treatment (0-50µg/ml), 

however droplet formation was much more robust, and seen at lower concentrations, with the 

use of oxLDL. Following 24 hours of oxLDL exposure, droplet formation was observed from 

concentrations as low as 5µg/ml oxLDL, and increased numbers of droplets were observed 

after 48 hours. After 72 hours, droplet formation seemed to have stabilised. Various 

qualitative methods can be used to assess foam cell formation, however Oil Red O, a neutral 

lipid dye, is commonly chosen as a cheap qualitative method, and results can be seen easily 

using light microscopy195,315-317. Nile Red staining can be used to assess the amount of 
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intracellular neutral lipid qualitatively and quantitatively, however it is a more expensive 

method. 

Following 72 hours treatment of cells with oxLDL, foam cell formation was confirmed by 

staining for intracellular neutral lipid with Oil Red O (Fig. 10). Lipid accumulation is not 

detectable in monocytic THP-1 and VD3 cells, although red areas can be seen due to 

extracellular precipitation of the dye. Intracellular staining of lipid droplets is much more 

defined in the PMA and DS models, showing intracellular lipid has been accumulated in 

these macrophage-like cell types, as shown by arrows.  
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Figure 10. Oil Red O staining shows intracellular lipid accumulation in macrophages 

Undifferentiated or VD3, PMA or VD3+PMA (DS) differentiated THP-1 cells were treated with 

0, 10 or 50µg/ml oxLDL (72h; 37C). Cells were stained with Oil Red O for intracellular lipid 

accumulation (seen as red/darkly stained regions) and observed via light microscopy. Phase 

contrast images (20x) are shown. Images are representative of 3 independent experiments. 
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3.2.4.2. Nile Red staining of foam cells for fluorescence microscopy 

Foam cell formation was confirmed using a second assay of lipid accumulation, staining for 

intracellular neutral lipid with the fluorescent stain Nile Red (Fig. 11). This method confirms 

previous results that lipid has not accumulated in monocytic THP-1 cells when compared to 

basal levels of fluorescence. Fluorescence appears slightly increased following oxLDL 

treatment in VD3 cells, representing possible neutral lipid accumulation, though it is much 

less apparent than in PMA and DS cells, where formed droplets can be distinguished. 

Intracellular staining of lipid droplets can again be seen in the PMA and DS models, showing 

intracellular lipid has been accumulated in these more MØ-like cell types, as seen with Oil 

Red O staining. Basal levels of fluorescence are also higher in the PMA and DS models, 

which may be improved if lipid levels in growth medium can be reduced, however increased 

levels of autofluorescence have been shown previously in macrophages compared to 

monocytes311. 
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Figure 11. Nile Red staining shows intracellular lipid accumulation in MØ 

Undifferentiated or VD3, PMA or VD3+PMA (DS) differentiated THP-1 cells were treated with 

0 or 10µg/ml oxLDL (72h; 37C). Cells were stained with Nile Red for intracellular lipid 

accumulation (bright green vesicles) and observed via fluorescence microscopy (40x). Scale 

bars (white) represent 100µm. Images are representative of 2 independent experiments. 

3.2.5. Assessing toxicity of nLDL and oxLDL 
It is important to establish a balance between sufficient LDL concentrations to induce foam 

cell formation, whilst having minimal effect on viability of the cells, for successful investigation 

of foam cell function. Cell death would be the final phase of LDL induced toxicity, so it is 

logical to use this end point to determine any overall toxic effects of LDL treatment. This will 

also provide a useful indicator of whether it is possible to induce apoptosis throughout the 

monocyte or MØ population using nLDL or oxLDL alone, as this would provide a source of 

apoptotic foam cells for future experiments, in a physiologically relevant manner. 

THP-1 cells and DS cells were used to represent monocytes and macrophages MØ 

respectively. Following oxLDL exposure, levels of apoptosis and necrosis were low in the 

monocyte model, with fluctuations at 4 days likely to be due to experimental design (Fig. 12). 

Higher apoptosis and necrosis levels were found in MØ after 5 days, however this was not 

higher than control cells. 

Control over cell death is required to maintain experimental feasibility, therefore for further 

experiments, cell death was induced by UV following foam cell generation, so more 

synchronous cell death is achieved when comparing foam cell and non-lipid loaded cell 

models. 
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Figure 12. Oxidised LDL does not induce significant apoptosis or necrosis in 

monocyte and macrophage models THP-1 cells (monocytes) were treated with or without 

(C) 150µg/ml oxLDL, and sampled over 7 days to monitor levels of apoptosis (AxV positive 
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cells) and necrosis (PI positive cells) using flow cytometry. This was repeated with DS cells 

(MØ) which were treated with or without 50µg/ml oxLDL following differentiation. Results are 

representative of 3 independent experiments. 

3.2.6. Effect of oxidised LDL treatment on surface receptor expression 
Changes in surface receptor expression for CD36, SRA-1, LOX-1, CD14 and ICAM-3 were 

investigated using flow cytometry following 0, 10 and 50µg/ml oxLDL exposure (Fig. 13). 

CD36, SRA-1 and LOX-1 are key receptors in oxLDL uptake and foam cell formation, and 

are also known to bind apoptotic cells103,176,182,190,192. By phenotyping each model for 

expression of these receptors following oxLDL exposure, the implications of changes in 

receptor expression in apoptotic cell removal and therefore plaque progression may be 

assessed. CD14 expression is also investigated in order to predict changes in the ability of 

each model to tether apoptotic cells within the plaque environment, a function which is 

potentially defective31,46.  

An increase in CD36 expression was found in THP-1, VD3 and PMA cells, but not DS cells 

(Fig. 13). CD14 expression was increased in VD3 cells following oxLDL treatment. No overall 

increase in LOX-1 and SRA-1 expression is observed following oxLDL treatment, and ICAM-

3 levels remain consistent apart from a potential increase in expression in DS cells. CD14 

expression is upregulated following 50µg/ml oxLDL treatment in VD3 cells. Results in THP-1, 

VD3 and PMA models indicate the presence of a positive feedback loop of CD36 expression 

following oxLDL exposure, supporting previous research318,319. This was not found with SRA-

1 and LOX-1 following exposure to oxLDL over 72 hours, therefore increased SRA-1 and 

LOX-1 expression following exposure to oxLDL may not have a prominent role in foam cell 

formation in these models, as found previously with LOX-1318. 
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Figure 13. Modest changes in surface receptor expression of some 

monocyte/macrophage models following oxidised LDL treatment THP-1, VD3, PMA and 

DS cells were treated with 0, 10 or 50µg/ml oxLDL (72h; 37C) and were stained with primary 

antibodies targeting CD36, SRA-1, LOX-1, CD14 and ICAM-3. Expression levels were 

compared with indirect immunostaining, followed by flow cytometry. Results are shown as 

mean fluorescence of FITC secondary antibody. Results are representative of 3 independent 

experiments. 

3.2.7. Foam cell interaction with apoptotic cells 
Despite a high proportion of localised monocytes and macrophages, the atherosclerotic 

plaque contains a high proportion of apoptotic and necrotic cells, including apoptotic 

macrophages and T cells, suggesting impaired clearance mechanisms46,195. To investigate 

whether oxLDL treatment affects the ability of macrophages to interact with apoptotic cells 

(ACs), PMA and DS cells were treated with indicated concentrations of oxLDL for 72 hours 

prior to co-culture with AC to permit lipid-loading, and foam cell formation (Fig. 14). UV-

induced apoptotic Jurkat (aJK) were used as they are a well-established AC model, often 

used in such studies54,210. In the DS MØ model oxLDL did not significantly reduce MØ ability 

to interact with aJK compared to untreated control. The PMA model shows a significant 

reduction in AC interaction following oxLDL treatment when compared to untreated control, 

with reductions in interaction with aJK apparent from as low as 5µg/ml oxLDL treatment 

(P<0.01), and becoming more significant at concentrations of 10µg/ml oxLDL and above 

THP-1 VD3 

PMA DS 
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(P<0.001). Results suggest that PMA differentiated THP-1 cells may be a useful tool in 

modelling defective clearance within the atherosclerotic plaque. 

 

0 1 5
1
0

2
5

5
0

0

1 0

2 0

3 0

4 0

5 0

o x L D L  p re -tre a tm e n t  (µ g /m l)

%
 P

h
a

g
o

c
y

te
s

 i
n

te
r
a

c
ti

n
g

 w
it

h
 A

C

**

***

   

0 1 5
1
0

2
5

5
0

0

5

1 0

1 5

2 0

2 5

o x L D L  p re -tre a tm e n t  (µ g /m l)

%
 P

h
a

g
o

c
y

te
s

 i
n

te
r
a

c
ti

n
g

 w
it

h
 A

C

A C

n o  A C

 

Figure 14. Oxidised LDL treatment reduces macrophage interaction with apoptotic 

Jurkat cells PMA or DS differentiated THP-1 were treated with oxLDL (72h; 37C) to promote 

lipid loading of MØ and to drive foam cell formation. aJK were added to each well (10:1 

aJK:MØ ratio) and unbound aJK removed after co-culture (1h; 37C). The number of MØ 

interacting with aJK was counted out of 200 cells per well. Data shown are mean % 

interaction ± S.E of 4 independent experiments. ** P<0.01, *** P<0.001 2way ANOVA with 

Tukey’s post-hoc test. 

One simple explanation of reduced AC (aJK) binding by lipid-loaded PMA cells is that MØ 

pre-treatment with oxLDL results in persistent blocking of receptors, by oxLDL, that are 

required in AC tethering or engulfment, post oxLDL removal. If oxLDL-receptor binding 

persisted following removal of unbound oxLDL, and addition of ACs for co-culture, receptors 

required for AC interaction would be blocked, e.g. SRA-1, LOX-1 and CD36. Also, if residual 

unbound oxLDL remained in the assay system, competition for the same receptors may 

occur, reducing binding in those models with higher concentrations of oxLDL pre-treatment. 

To investigate whether straight forward competition between oxLDL and ACs for shared 

phagocytic receptors contributes to reduced aJK binding in the PMA model, PMA MØ were 

treated with indicated concentrations of oxLDL for 1 hour, to allow interactions to take place. 

After 1 hour, supernatants were replaced with medium with or without aJK. This was either in 

the presence or absence of oxLDL at indicated concentrations, to account for any impact of 

unbound oxLDL competing for receptors during co-culture of phagocytes with aJK (Fig. 15). 

No significant decrease in percent of MØ interacting with aJK was found following 1hr oxLDL 

treatment of PMA MØ cells compared to untreated control, either in the presence or absence 

of oxLDL during co-culture. This supports the hypothesis that physiological changes following 

PMA DS 
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lipid-loading, not just receptor competition, are at play in defective interaction of lipid-laden 

MØ and aJK. 
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Figure 15. Reduction in apoptotic Jurkat cell interaction is not due to receptor 

competition with oxidised LDL PMA differentiated THP-1 were pre-treated with oxLDL (1h; 

37C), medium was removed and aJK were added to each well, in the presence or absence 

of indicated oxLDL concentrations. Cells were co-cultured (1h; 37C) and unbound aJK 

removed by washing. The number of MØ interacting with aJK was counted out of 200 cells 

per well. Data shown are mean % interaction ± S.E of 3 independent experiments. 2way 

ANOVA with Tukey’s post-hoc test showed no statistical significance between oxLDL 

treatment groups. 

To investigate whether reduced interaction of PMA-derived MØ with aJK is a result of 

general reduced binding/phagocytic ability of the phagocyte following lipid-loading, an 

alternative phagocytic target was utilised. Following differentiation with PMA, MØ were 

treated with (FC) or without (MØ) 50µg/ml oxLDL (72h; 37C) for MØ/FC generation. The 

ability of MØ and FC to bind and phagocytose dead fluorescently labelled Escherichia coli 

(K-12 strain) was compared (Fig. 16). MØ and FC were exposed to fluorescent E. coli (or 

medium control) for 40 minutes at room temperature, unbound E. coli removed by washing, 

and cells analysed via flow cytometry. Mean fluorescence intensity was compared before 

(black bars) and after (grey bars) quenching of fluorescence of surface bound E. coli to 

determine whether differences in binding or uptake of E. coli could be observed between 

lipid-loaded and non-lipid-loaded cells. Results show no significant differences between MØ 

and FC ability to bind and phagocytose fluorescently labelled E. coli. Following quenching 

with trypan blue, a similar, but not significant, decrease in overall fluorescence of cells 

exposed to fluorescently labelled E. coli was observed. This supports the hypothesis that 

there may be a change in physiological function following lipid-loading when comparing 

ability to clear some apoptotic cells, and not solely an overall decline in health of cells, or 

overall binding/phagocytic ability. 
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Figure 16. Reduction in apoptotic Jurkat cell interaction is not due to reduced 

phagocytic ability MØ and FC were incubated with fluorescently labelled E. coli, or cRPMI 

control (40min;37C) and MØ/FC washed to remove unbound E. coli. MØ/FC were detached, 

fixed and samples stored at 4C until flow cytometry (black bars). Following analysis via flow 

cytometry, trypan blue was added to quench fluorescence of surface bound E. coli, MØ/FC 

washed and samples re-analysed (grey bars). Data shown are mean % interaction ± S.E of 3 

independent experiments. 2way ANOVA with Tukey’s post-hoc test showed no statistical 

significance between oxLDL treatment groups. 

3.2.8. Interaction with apoptotic foam cells 
It is not fully understood whether perceived defects in AC clearance within the atherosclerotic 

plaque150,195,197 originate from failed functionality of phagocytic cells to interact with AC, or 

whether apoptotic foam cells fail to attract/elicit the correct response from phagocytes 

entering the plaque. It was investigated whether oxLDL treatment affects the ability of 

phagocytes to interact with lipid-loaded apoptotic cells (aFC) in this model. Also shown was 

the effect of lipid-loading on the ability of MØ to interact with aMØ and aFC. PMA MØ were 

treated with (FC) or without (MØ) oxLDL for MØ/FC generation, and subsequently co-

cultured with MØ/FC induced to apoptosis by UV exposure (aMØ/aFC) (Fig. 17a). HMDM 

were also used as a phagocytic cell (no oxLDL exposure) (Fig. 17a). Data show no 

significant differences in the ability of all phagocyte types to interact with aMØ compared to 

aFC. Interestingly, lipid-loaded MØ (i.e. foam cells) show no reduction in ability to interact 

with aMØ or aFC when compared to non-lipid-loaded MØ, differing from results found using 

aJK as an apoptotic cell model. This may be a result of cell type variations in phagocyte:AC 

interaction, with regards to mediating ligands/receptors. Both AC models represent cell types 

found in the plaque46, so are relevant to atherosclerotic plaque research. 

When comparing phagocyte interaction levels with aJK (Fig. 14), versus aMØ and aFC (Fig. 

17a), combined data show a significant reduction in MØ interaction with aMØ and aFC when 

compared to aJK (Fig. 17b). A significant reduction in FC interaction with aFC compared to 



77 
 

aJK was also observed, but the reduction was not significant when comparing FC interaction 

with aMØ. A general reduction in clearance rates of apoptotic foam cells compared to other 

AC types could have implications in plaque progression and further investigation into the 

mechanisms of AC clearance between differing phagocyte and AC types would be of benefit. 
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Figure 17. Recognition of apoptotic macrophages and apoptotic foam cells is not 

affected by lipid loading in THP-1 or primary cell model MØ and FC were induced to 

apoptosis (100mJ/cm2) to generate apoptotic MØ and FC (aMØ/aFC). MØ, FC and HMDM 

were co-cultured with a 10:1 ratio of AC:phagocyte. Unbound aMØ/aFC were removed by 

washing and samples fixed. The number of phagocytes interacting with AC was counted out 

of 200 cells per well. Data shown are mean % interaction ± S.E of 3 independent 

experiments. * P<0.05 2way ANOVA with Tukey’s post-hoc test. 

3.3. Discussion 

The ageing population, especially in the „oldest old‟, will cause an increase in the incidence 

of age-related disease320. As the average age of the population increases, the range of 

„healthy ageing‟ lags behind. Research into age-related disease is becoming ever prominent 

as researchers endeavours to broaden the healthy age-range and therefore improve quality 

of life for the oldest old. 

Atherosclerosis becomes more prominent as we age321, so improving understanding of the 

disease is a key research target given the ageing population322. Atherosclerosis also 

provides a paradoxical environment of great interest to the field of AC clearance, given the 

inflammatory environment despite the presence of localised monocytes and MØ and dead 

cells46, a combination largely thought to dampen inflammation55,56. 

Results in this chapter show that oxLDL treatment of MØ, but not monocytes, induces 

intracellular lipid droplet accumulation and foam cell formation. This does not lead to 

constitutive upregulation of scavenger receptor expression in this foam cell model. 

a b 
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Comparison of non-lipid-loaded MØ and foam cell function showed equal ability to interact 

with bacteria, aMØ and aFC. Interestingly, foam cells showed a reduced capacity to interact 

with apoptotic Jurkat cells compared to MØ. Optimal rates of interaction with aJK by MØ 

were not reached with MØ or FC interaction with aMØ or aFC. This result could mean that 

even under optimal conditions, aMØ/aFC are cleared at sub-optimal rates when compared to 

maximum possible rates of AC clearance. The consequence of this at sites with large 

numbers of aMØ/aFC could go some way to explain the persistence of AC within the plaque. 

  

Phagocyte 

 

Apoptotic cell 

 

 

Macrophage 

(MØ) 

Foam cell 

(FC) 

Apoptotic MØ 

(aMØ) 

Non-lipid-laden MØ and non-

lipid-laden aMØ were found 

to interact but rates of 

interaction were 1/3 lower 

than rates of MØ interaction 

with aJK 

FC have the ability to 

recognise, interact with and 

phagocytose aMØ and rates 

of interaction were 

comparable to the rates of 

MØ interaction with aMØ 

Apoptotic FC 

(aFC) 

aFC were recognised by MØ 

to the same degree as aMØ 

therefore it is likely that aFC 

upregulate „eat-me‟ and 

downregulate „don‟t-eat-me‟ 

signals to MØ, enabling 

recognition, interaction and 

phagocytosis 

The combination of FC/aFC 

does not result in defective 

clearance in this model 

compared to the MØ/aMØ 

interaction, however 

interaction is more 

successful with aJK 

interaction 

Table 3. Summary of results from key research questions addressed in Chapter 3 

 

3.3.1. Oxidised LDL in the foam cell model 

It is important to be aware of how differences in oxidation levels of LDL particles can affect 

the method of oxLDL binding and internalisation to ensure experimental consistency when 

setting up a foam cell model. The use of varying methods of LDL modification, e.g. 

acetylated or aggregated LDL, or varying methods of LDL oxidation, are likely to add difficulty 

to interpretation and comparison of results across studies and research groups195,199,200.  
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Sufficient oxidation of LDL particles must occur for recognition by scavenger receptors, as 

opposed to the LDL-R; Mild oxidation produces minimally modified LDL (mmLDL) which may 

still be recognised by the LDL-R, but is not sufficiently modified to be recognised by 

scavenger receptors201. Further characterisation of modified LDL used in this study would be 

required to define whether it is minimally or extensively oxidised. A more recent study (2010) 

used LDL oxidised in the same manner, and for the same length of time, as the present 

study, and defined it as mmLDL323, however other studies have cultured native LDL with 15-

lipoxygenase expressing fibroblast cell lines201,324. mmLDL induced MØ spreading, via CD14, 

was found to inhibit phagocytosis of ACs201 . In this model, despite presence of CD14 (figs. 

5/6/7), spreading is not observed in THP-1 and VD3 models. Spreading is already induced 

by PMA and DS differentiation (Fig. 8), and phagocytic ability is present (Fig. 14/12/14). 

Whilst it is important to be aware of the implications of different oxidation states of LDL and 

the biological effects they can elicit, it must also be noted that terms such as mmLDL are 

subjective. In order to allow for comparison of results with oxLDL across studies, it is 

important to be explicit regarding oxidation methods used and to clearly define terms such as 

mmLDL. 

Various methods can be employed to oxidise and measure oxidation levels of LDL. 

Physiologically relevant methods can be used to mildly oxidise LDL, however oxidation by 

metal ions is a common method employed to oxidise LDL and produces similar results in in 

vivo oxidation201,325,326, and was the method of choice in this study. Carbonyl formation as a 

result of protein oxidation was used to confirm LDL oxidation via the chosen method of metal 

ion oxidation. Carbonyls are a popular choice of marker for oxidation measurement due to 

the stability of carbonylated proteins313. The ELISA method employed is also highly sensitive 

and minimal protein is required to complete the assay313. Results demonstrate the 

aforementioned donor variability in oxidation levels of basal and modified LDL samples (tab. 

3). It is therefore important to minimise variability of protein oxidation levels to ensure 

differences in LDL oxidation status between experiments does not skew results and impact 

conclusions formed. One method that can be used to combat variation in oxidation levels 

between samples collected on different days or from different donors is to pool LDL samples 

from a number of donors and use the pooled LDL across experiments, a method adopted for 

the rest of these studies.  

3.3.2. Morphology, surface receptor expression and foam cell formation of THP-1 

models 

Human cell lines are an important tool in atherosclerotic plaque research, due to the limited 

availability of human plaque samples, and the species variability of the often used murine 

and lapine models.  
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The advantages of using the monocytic THP-1 cell line is that various methods can be 

employed to differentiate cells into a MØ-like phenotype, resulting in cells that appear to be 

at different stages of differentiation310,311; VD3 cells appear more monocytic than PMA and 

DS cells, which show MØ-like characteristics. This can be used as a tool to determine at 

which point during monocyte-MØ differentiation do cells become susceptible to oxLDL 

induced changes to phenotype and function. It also allows modelling of the plaque in vitro, 

from infiltrating monocytes through to lipid-loaded foam cells. This provides a 

comprehensive, straightforward model, without the need to cross over between species, e.g. 

as in Schrijvers et al., an important paper in the field, which drew conclusions based on 

human endarterectomy samples, rabbit endarterectomy samples, murine thioglycollate 

elicited peritoneal MØ (phagocyte model in AC clearance assays), murine MØ cell line J774 

(foam cell model), human monocyte cell line U937 (AC model), and human platelets and 

RBC from fresh blood195. Also to note is the use of apoe-/- murine models, knocking out  

Apolipoprotein E (ApoE), resulting in alterations in lipid trafficking, and resulting 

atherosclerosis, which is not readily found in mice327. However care should be taken to draw 

conclusions on AC clearance in the plaque of these experimental models as ApoE has been 

identified as having a role in AC clearance, and knockout of this molecule results in a 

persistence of ACs and an inflammatory state in vivo328.  

Monocyte-like THP-1 cells show some adherence but do not spread and are easily removed 

from tissue culture plastic by washing (Fig. 8). Presence of CD36 on THP-1 cells has been 

shown in previous studies329, however despite high levels of CD36 in this model (Fig. 9), 

evidence of oxLDL uptake in the form of intracellular accumulation of lipid droplets, and 

therefore foam cell formation, is not observed via Oil Red O or Nile Red staining (figs. 7/8). 

An explanation for this could be the comparatively low expression levels of oxLDL scavenger 

receptors SRA-1 and LOX-1 compared to PMA and DS models (Fig. 9), however CD36 is 

thought to account for at least 50% of oxLDL binding178. Previous research has found low 

levels of SRA mRNA expression in isolated human monocytes, which was upregulated 

during differentiation177. Undetectable levels of LOX-1 mRNA expression was observed 

previously in THP-1 MØ and human PBMCs, and LOX-1 mRNA expression was upregulated 

with differentiation330, as seen in the THP-1 model (Fig. 9). Priming or activation of 

monocytes may be required before active endocytosis of oxLDL266. Monocyte-like THP-1 

phenotypes (unstimulated/VD3) may also have more efficient mechanisms of cholesterol 

efflux compared to MØ-like models, PMA/DS THP-1 cells, so although oxLDL uptake could 

be occurring, it is not being accumulated in the form of neutral lipid droplets. This could be 

achieved by measuring MØ uptake of DiI (1,1'-dioctadecyl-3,3,3'3'-tetra-methylindocyanide 

percholorate) labelled oxLDL, or measuring labelled oxLDL concentration in media before 
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and after exposure to cells317. Despite a lack of foam cell formation, the presence of 

monocytes in the atherosclerotic plaque may make unstimulated THP-1 cells a relevant part 

of the model being established331. 

Vitamin D3 (VD3) has been described as having a functional role in the hemopoietic 

system332, and induces differentiation of cells via the vitamin D receptor (VDR)333. 

Morphological changes following VD3 induced differentiation are minimal; cells continue to 

proliferate, show some adherence but little spreading and are easily removed from tissue 

culture plastic by washing (Fig. 8). Previous studies have shown that VD3 treated cells are a 

more representative monocyte model than unstimulated THP-1 cells, with upregulation of 

CD14 expression, as confirmed in the present study, enhanced phagocytic activity and 

superoxide production310,312,332,334. Terminal differentiation is not reached following VD3 

stimulation and upon removal of the stimulant, cells may revert to the THP-1 phenotype310,334. 

Calcium priming by VD3 may explain why functionally, VD3 stimulated cells appear further 

along the differentiation pathway than THP-1 cells, despite still phenotypically appearing 

THP-1 like334, as shown by FS and SS on flow cytometry histograms (Fig. 8). Expression of 

CD36 is comparable to THP-1 cells (summarised in table 4). LOX-1 and SRA-1 expression 

levels are also low, and given that CD36 and SRA-1 are thought to account for up to 80% of 

total oxLDL binding, it could be predicted that VD3 stimulated cells would not be the most 

efficient model for active oxLDL uptake335. This was confirmed by Oil Red O and Nile Red 

staining in figures 7 and 8 respectively. Expression of CD14 is at its highest in this model, 

which may predict enhanced phagocytic ability in response to ACs compared to both 

unstimulated and PMA stimulated cells, however the monocytic nature of VD3 cells makes 

this difficult to test in our system. It may also suggest that any reduction in oxLDL uptake is 

not due to insufficient oxidation of LDL as mmLDL would bind CD14201. Miller et al. (2003) 

found reduced apoptotic thymocyte uptake by murine J774 MØ following mmLDL induced 

MØ spreading201. 

Treatment with the phorbol ester PMA results in a more prominent MØ-like phenotype; cells 

become much more adherent and spreading can be observed (Fig. 8). PMA is a potent 

activator of protein kinase C (PKC) and is thought to mimic the second messenger signalling 

lipid diacyl-glycerol (DAG)310. Basal expression of SRA-1 and LOX-1 was higher than the 

THP-1 and VD3 models (Fig. 9; summarised in table 4). Histograms revealed two 

populations of cells following PMA differentiation in terms of LOX-1, and to some extent 

SRA-1, expression, with 2 peaks observed on the histograms, unlike CD36 expression, 

which is upregulated in all cells when comparing MFI to that in the THP-1 model (Fig. 9). This 

supports previous findings in PBMCs that PMA treatment upregulates CD36 mRNA 
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expression, and that PMA also stimulates upregulation of LOX-1 mRNA in THP-1 cells330,336. 

As CD36 and SRA-1 receptors account for up to 80% of total oxLDL binding and 

degradation, it is reasonable to anticipate that use of this model will result in foam cell 

formation178,335. Cell surface CD36 protein expression was high in all models, however the 

combined receptor profile following PMA stimulation correlated with high uptake of oxLDL, as 

detected by Oil Red O and Nile Red staining of accumulated neutral lipid (figs. 7/8). CD14 

levels were also increased in this model compared to unstimulated THP-1, though did not 

reach levels of VD3 stimulated cells (summarised in table 4). This supports previous 

studies312, and would indicate good potential ability to uptake ACs, especially considering the 

ability of scavenger receptors in AC interaction102-105. 

DS cells have a similar level of CD14 to that of cells treated with PMA alone, despite also 

being treated with VD3, therefore the pathway activated by PMA stimulated differentiation 

may override that of VD3 (fig 6; summarised in table 4). Like cells treated with PMA alone, 

DS cells have a typically MØ-like phenotype, with strong adherence and spreading (Fig. 8). 

Thomas et al. reported differences in LPS response in these THP-1 models that were not 

directly linked to CD14 expression, with high TNF-α release in response to LPS in DS cells, 

and to a lesser extent, PMA cells. LPS stimulation resulted in a very small amount of TNF-α 

release by comparison, and unstimulated THP-1 response was negligible312. DS cells also 

had similar levels of oxLDL receptor expression when compared to the PMA model, with high 

levels of CD36 and lower levels of SRA-1 and LOX-1, however SRA-1 and LOX-1 expression 

was higher than expression observed in the THP-1 model. CD14 expression was also 

detected (Fig. 9; summarised in table 4). Uptake of both oxLDL and apoptotic cells should be 

apparent in this model, and foam cell formation as indicated by lipid accumulation was shown 

by Oil Red O and Nile Red staining (figs. 7/8).  

In summary, despite the prominent role of CD36 in oxLDL uptake178, expression of this 

receptor alone is not predictive of foam cell formation. It may be that SRA-1 and LOX-1 

presence is also essential, or upregulation of signalling molecules is required alongside 

differentiation to MØ. 
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THP-1 

models 

Surface Receptors Foam cell 

formation 

CD36 SRA-1 LOX-1 CD14 ICAM-3 

THP-1 ++ +/- +/- + + N 

VD3 +++ +/- +/- ++++ +++ N 

PMA +++ ++ ++ ++ ++ Y 

DS +++ ++ ++ ++ ++ Y 

Table 4. Summary of expression of key surface receptors and foam cell formation in 

THP-1 models Summary of surface receptor expression of each THP-1 model as analysed 

by flow cytometry – Mean fluorescence intensity was examined and expression scored as 

follows: +/- little or no detectable expression, + low expression, ++ medium expression, +++ 

high expression, ++++ very high expression. Foam cell formation was also analysed by Oil 

Red O staining and scored as either presence (Y) or absence (N) of foam cells after 72hr 

oxLDL exposure at 50µg/ml. 

3.3.3. Effects of oxidised LDL treatment on THP-1 models 

3.4.3.1. Toxicity 

The upregulation of scavenger receptors in PMA and DS models, and the accumulation of 

lipids in these models, implies that PMA and DS cells may be more susceptible to toxic 

effects of oxLDL, however once cells are of a foam cell phenotype, induction of apoptosis 

may be altered. For example, expression of SRA-1 was found to reduce oxLDL induced 

apoptosis, a mechanism which may contribute to prolonged life of MØ in the plaque and the 

production of foam cells337. 

Previous studies have found oxLDL induces apoptosis in foam cells, however other studies, 

including the present work (Fig. 12), have not found prominent oxLDL induced toxicity of 

MØ197,201. Miller et al. (2003)201 found no difference in murine peritoneal or cell-line MØ 

function between 10-50µg/ml oxLDL treatment when investigating actin response. Khan et al. 

also found that oxLDL at 100µg/ml did not induce MØ cell death in rat MØ197. Conversely, 

significant levels of apoptosis in PBMC-derived MØ (PBMC-DMØ) were found from 50µg/ml 

oxLDL treatment198, however LDL samples were extensively oxidised (24 hours copper 

sulphate oxidation, versus 1 hour in this study). Contradictory results are likely due to the 
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varying extent of LDL oxidation across studies, with results by Bjorkerud & Bjorkerud (1996) 

showing oxLDL can induce cell growth or apoptosis depending on oxidation levels and cell 

types studied199. 

Minimal toxicity of oxLDL was found in both monocyte-like THP-1 cells and MØ-like DS cells 

(Fig. 12). As monocytes seem less susceptible to the effects of oxLDL, higher concentrations 

were tested than in MØ models. The lack of observed toxicity allows use of a broad range of 

oxLDL concentrations without the concern of toxicity, however further investigation will need 

to be carried out to make sure cells are still fully functional following oxLDL treatment (e.g. 

standard cell viability assays such as the MTT assay, or functional assays such as E.coli 

phagocytosis, e.g. Fig. 16, and cytokine responses to basic stimuli such as 

lipopolysaccharide, e.g. Fig. 21; Chapter 4). 

As oxLDL induced apoptosis is not readily detected in this model using annexin V versus PI 

staining, an alternative way of apoptosis induction was chosen in order to further investigate 

the full spectrum of AC clearance within the plaque. UV induction was chosen as a well-

established method of apoptosis induction, with a comparable outcome to other apoptosis 

induction methods62. This also allows a good level of control over apoptosis induction across 

assays. 

3.4.3.2. Receptor expression in THP-1 models following oxLDL exposure 

Expression of the LDL receptor (LDL-R) is regulated homeostatically by the presence of free 

intracellular cholesterol266. Unlike the LDL-R, scavenger receptor expression is independent 

of the level of free intracellular cholesterol, accounting for the failure of cellular homeostasis 

mechanisms within the atherosclerotic plaque, and the subsequent production of foam 

cells177. The LDL-R becomes downregulated when free intracellular cholesterol levels are 

high as a result of high quantities of available ligand266. Conversely, expression of the 

scavenger receptor CD36, in response to the ligand oxLDL, is increased in the THP-1, VD3 

and PMA models (Fig. 13), as found in previous studies with murine J774 and RAW 264.7 

MØ319,338. CD36 upregulation has been shown to occur via oxLDL induced PPAR-γ 

expression232,339. In contrast to the effect on CD36, PPAR-γ activation has been found to 

suppress SRA-1 expression340. This may explain why an upregulation of SRA-1 following 

oxLDL treatment was not found in any of the models used in this study (Fig. 13). 

OxLDL also upregulates CD14 expression in VD3 cells (Fig. 13), which in vivo may 

exacerbate the pro-inflammatory environment found within the plaque. Pasini et al., (2007)341 

found that enhanced levels of oxLDL upregulated CD14 and toll-like receptor 4 (TLR4) 

expression in circulating monocytes. This was then suggested to cause cytokine 
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overproduction due to the resulting priming of monocytes341. The upregulation of CD14 and 

TLR4 is comparable to that of pro-inflammatory ligands such as LPS342. It is possible that 

oxLDL treatment primes monocytes to skew towards the pro-inflammatory M1, rather than 

reparative M2, phenotype. A study by Nagornev and Maltseva (1996)233 found a proportion of 

MØ within human atherosclerotic plaques had not transformed into foam cells. These MØ 

were associated with pro-inflammatory cytokine interleukin-1 (IL-1) and TNF-α production, 

which is unusual due to the close proximity of ACs233. Priming of MØ into an M1-like 

phenotype may also cause inefficient AC clearance within the plaque, or a lack of anti-

inflammatory cytokine release in response to ACs56. 

Human monocyte and macrophage interaction with mmLDL via CD14, TLR4 and TLR2 was 

also found to exacerbate an inflammatory response via increased IL-1β, IL-6 and IL-10 

release. A combination of CD14 upregulation and mmLDL could therefore exacerbate the 

inflammatory environment in the plaque323. Cytokine profiling of MØ pre-treated with (FC) or 

without (MØ) oxLDL will be investigated in the next chapter.  

3.4.3.3. Interaction with apoptotic cells 

It is generally perceived based on a small number of studies, and the presence of uncleared 

ACs in the plaque, that AC clearance is defective within the plaque via unknown 

mechanisms46,195,197. This has been demonstrated in this differentiated THP-1 model with 

regards to foam cell interaction with apoptotic T lymphocytes (Fig. 14), which are a major 

component of plaque ACs46. However foam cell interaction with apoptotic macrophages 

(aMØ) or apoptotic foam cells (aFC), the prominent AC type in the plaque46, was not 

impaired when compared to interaction rates of the same AC types with MØ (Fig. 17a).  

A straightforward explanation for decreased aJK binding in the THP-1 model could be that 

oxLDL treatment is toxic to PMA and DS MØ, however, toxicity testing (see section 3.4.3.1.) 

revealed little apoptosis or necrosis. Schrijvers et al. (2006)195 and Khan at al. (2003)197 also 

ruled out toxicity as a mechanism behind reduced AC phagocytosis. This does not mean that 

the cells are healthy, as this is a very late marker of toxicity. However further research into 

cytokine responses in this model (see Chapter 4) seems to show comparable ability to 

produce cytokines between MØ and FC. This implies that rather than all functions of foam 

cells being affected due to oxLDL induced toxicity, only some functions are affected due to 

an alteration in MØ phenotype following foam cell formation. 

Another reported mechanism of defective AC clearance is direct receptor competition 

between ACs and oxLDL. Looking at PMA and DS cells, the ability to bind aJK, although still 

functional, appears to be impaired following oxLDL treatment (Fig. 14). This occurs despite 
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an upregulation of receptors which have been shown to recognise ACs, such as CD36 (Fig. 

13). Conversely, in the current study, using a short time period of oxLDL exposure, direct 

competition between oxLDL and aJK was not found to affect aJK binding by a human cell 

line (Fig. 12). The method employed in the THP-1 system involves replacing medium 

containing oxLDL with fresh medium before adding ACs, decreasing the likelihood that 

oxLDL is competing directly with ACs for particular receptors in this model. Additionally, Khan 

et al. (2003)197 found no effect on AC interaction in the presence of oxLDL in a Balb/c mouse 

(thioglycollate elicited) peritoneal MØ model. The system used in Khan‟s study used LDL that 

was oxidised by the same method as in the THP-1 model, but LDL was exposed to the 

oxidising agent for 24 hours, compared to 1 hour in the THP-1 model, which will significantly 

alter oxidation levels, and potentially dictate whether ACs and oxLDL are competing for the 

same binding site on MØ surface receptors. Miller et al. (2003)201 found reduced 

phagocytosis of ACs by resident peritoneal MØ following exposure to mmLDL, supporting 

results found using aJK in the THP-1 model. It is unclear whether oxLDL was removed from 

the medium before addition of ACs, therefore direct competition for CD14 between mmLDL 

and ACs may be the cause of reduced phagocytosis31,201. Alternatively, relevant to defective 

clearance in the plaque, but not the THP-1 model, monoclonal antibodies targeting oxLDL 

have been found to bind to ACs, inhibiting phagocytosis343. However, the same antibodies 

have been found to facilitate clearance of ACs in another study344. 

Following binding, ACs are engulfed by phagocytes. In the presence of oxLDL, it was 

previously found that rather than reduced binding, engulfment of ACs was delayed, which 

may exacerbate the pro-inflammatory environment found within the plaque197. The assay 

used here did not distinguish between binding and engulfment of ACs as it was carried out at 

37C, and both bound cells, and cells being engulfed, are observed. However, methods in 

Khan‟s study did not involve pre-incubation of macrophages with oxLDL and subsequent 

foam cell formation. OxLDL was present in the model system and introduced at the same 

time as the ACs, and interactions observed over 72 hours. Thus, it is unclear whether 

delayed engulfment was due to the altered phenotype of the MØs over time or the influence 

of the environment on MØ or AC behaviour, e.g. competition for binding sites. In contrast, Li 

et al. (2006)210 found no change in ability of peritoneal MØ from female C57BL6/J mice to 

engulf ACs when monitored over 60 minutes. 

If physiological changes in phagocyte or AC function following lipid loading are the cause of 

defective clearance, rather than an inflammatory or competitive local microenvironment as 

found in the plaque, then any of the multiple stages of AC clearance could be affected43. 

Effective clearance of dying cells requires the orchestration of a complex multi-stage 
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process, and it is important to note that any defects could occur on the side of the phagocyte, 

the target AC, or a combination of both. This could include changes at the level of phagocyte 

recruitment to AC, AC recognition, tethering (binding), tickling (signalling) and AC 

engulfment43. Immune modulation following clearance is also a key research focus due to the 

paradoxical inflammatory environment found in the plaque58. The model of AC interaction 

used in these studies focuses on the recognition, interaction and phagocytosis of apoptotic 

cells, as with many models of clearance.  

 

Figure 18. Foam cell phagocytosis of apoptotic cells Differentiated THP-1-derived foam 

cell interacting with apoptotic Jurkat cell. Macrophages were treated with 10 x ACs and 

incubated for 1 hour at 37C. Unbound ACs were removed by washing with PBS and the cells 

stained with Diff Quik. ACs appear as small, dark, round cells. 

If phagocyte cell death or direct receptor competition do not account for reductions in aJK 

binding following lipid loading of MØ, as with aJK binding (Fig. 14) a physiological change in 

phagocyte function may be the cause. Schrijvers et al. (2005)195 reported defective clearance 

in the plaque following observation of a 19-fold increase in the ratio of free versus 

phagocytosed ACs in human endarterectomy samples, compared with human tonsils. This 

could initially be attributed to overwhelming AC numbers in the plaque compared to the 

tonsil, or insufficient phagocyte numbers, however comparable rates of apoptosis in both 

environments were reported, and a greater number of MØ in plaques versus tonsils. This 

method gives a snapshot of clearance in both environments, and a physiological change in 

MØ function was investigated. Further investigations into mechanisms and kinetics of 

defective clearance are done in an alternative murine model, using platelets or aggregated 

LDL to produce foam cells. Using separate in vitro studies, lipid loading with platelets or 

aggregated LDL did not affect uptake of apoptotic monocytes (U937 human monocytic cell 

line), only preloading of inert beads or induction of oxidative stress reduced AC uptake. This 

did not affect uptake of further beads or E.coli. This supports data in this study that function 
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between MØ and FC to clear cells of a myeloid lineage, and to phagocytose E.coli, was 

comparable (figs. 13/14a). 

Also to consider is whether aMØ and aFC are a favourable substrate for ingestion compared 

to popular AC models such as aJK. This study found that interaction with aMØ and aFC was 

functional, but levels of interaction by MØ were reduced compared to aJK interaction (Fig. 

17b). When observing MØ interaction rates, a healthy phagocyte, with aJK, a standard AC 

model, and comparing with aMØ or aFC interaction, interaction could be deemed less 

efficient with the latter AC types (Fig. 17b). It may therefore not just be lipid loading 

phagocytes, or clearing lipid-loaded ACs, that is the fundamental issue, but a less effective 

clearance process when MØ have to clear up after themselves. Li et al. found similar results, 

with the percentage of mouse-peritoneal MØ ingesting mouse peritoneal-derived aFCs at 

20–30%, compared with 40–50% for UV irradiated Jurkat cells210. In the Schrijvers et al. 

model of AC clearance, MØ clearing apoptotic B cells in tonsil specimens contained more 

ACs than MØ clearing dead cells (prominently aMØ) within the plaque195. Given that high 

densities of aMØ requiring clearance is not common, and it is not a straightforward cell type 

to study due to adherence, research into aMØ clearance is limited. 

As clearance mechanisms become better elucidated, they are being linked with defective 

clearance mechanisms in the plaque. For example the role of the TAM receptor Mer, which 

recognises PS on the AC surface, both directly and indirectly, is gradually being elucidated, 

with roles found in both AC clearance and atherosclerosis108,109,126. In a murine model of 

atherosclerosis, Thorp et al. (2008) found Mer receptor mutation reduces efficiency of AC 

clearance, promoting AC accumulation and plaque necrosis108. Defects in Mer are also 

associated with reduced AC clearance and development of autoimmunity in mice109,110. 

Soluble Mer, cleaved from the cell surface under inflammatory conditions, has also been 

shown to inhibit AC clearance by competition with ACs for bridging molecule Gas6, an 

interesting result if you consider the inflammatory environment of the plaque345. A role for 

Mer has also been found in immune modulation following „tickling‟ by apoptotic foam cell 

membranes210. Further research into Mer in human cell lines and primary human cells would 

be beneficial to elucidating failed clearance mechanisms in human atherosclerotic lesions. 

Cell stress may also alter phagocytic efficiency. For example, autophagy, induced in stressed 

cells, in macrophages undergoing apoptosis was found to enhance their recognition by 

phagocytes346. Oxidative stress was also found to inhibit phagocytosis of apoptotic cells, 

including apoptotic Jurkat347. All AC models in the current study were induced to apoptosis 

using the same method, so if oxidative stress levels are enhanced at this point, it is likely that 

they are equally exacerbated in all AC models.  
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Subsequent immune-modulation following AC interaction may also have knock-on effects on 

further AC uptake in the plaque as differing signals may enhance or reduce further uptake 

ability. Defective immune-modulation could originate from the phagocyte, if lipid loading 

alters the ability of MØ to switch between M1 and M2 phenotypes. Also to consider is the role 

of the apoptotic cell, and whether it has the ability to confer the correct signal to the 

phagocyte. This will be investigated further in Chapter 4. 

Another consideration is whether in vivo chemotactic factors are still released by apoptotic 

foam cells, and whether phagocytic foam cells have the ability to recognise and migrate 

towards apoptotic cells within the plaque. This may not be relevant in this model of AC 

interaction (figs. 11/12/14) due to the direct and excess placement of ACs on phagocytes. It 

also may not be relevant within the plaque itself if there is such a concentration of ACs in the 

plaque that movement would not be required to contact the AC, however when considering 

the continuous recruitment of monocytes into the plaque, exacerbating the pathological 

features atherosclerosis, chemotactic factors may play a key role in plaque progression and 

are an important area of study. Mechanisms of monocyte chemotaxis to apoptotic cells will 

be further studies in Chapter 5.  

Mediators in the local environment may also play a pivotal role in clearance in the plaque, at 

which point the effects of an aged environment may come into play. For example, 

established phagocyte:AC bridging molecules MFG-E8348, C1q349 and Gas6107  knockout 

models have recently been shown to impact atherosclerosis progression in mice. Similar 

trends are found in autoimmune disease and ageing, where links have been found between 

reduced function of bridging molecules, and persistent apoptotic cells or inflammation34,350. 

Interestingly murine models of SLE, an autoimmune disease driven by defective AC 

clearance, show accelerated atherosclerosis351. This also demonstrates a pivotal role for 

bridging molecules, including Gas-6, levels of which could alter in ageing and pathology. 

Local inflammation is also likely to exacerbate is also likely to drive pathology. TNF-α, a 

classic inflammatory cytokine, has been shown to inhibits AC clearance by MØ, via cytosolic 

phospholipase A2 and oxidant-dependent mechanisms57. The effects of ageing on AC 

clearance will be further explored in a Pilot Study, detailed in Chapter 6. 

Understanding the underlying molecular mechanisms behind defective clearance of, or 

response to, ACs would be an important development for research into atherosclerosis due 

to the consequences of secondary necrosis of uncleared cells and subsequent plaque 

instability150. 
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3.4. Conclusions and future work 

Results demonstrate THP-1, a well-established human monocytic cell line, is a useful tool for 

investigating all stages of apoptotic cell clearance, which can be applied to research into 

potentially defective mechanisms of apoptotic cell clearance in the atherosclerotic plaque. 

VD3 differentiated THP-1 will be used in further studies into chemotaxis, as a monocyte 

model with adherent properties. PMA differentiated THP-1 cells have proved robust in 

macrophage and foam cell formation, and will be taken forward to investigate further aspects 

of AC clearance relevant to the plaque environment.  

Further characterisation of oxLDL utilised in these studies would help define levels of 

oxidation, and whether these are comparable to minimally modified LDL, as this has 

implications on receptor interaction, phagocytic activity and immunological outcome201,323. As 

mmLDL has been reported to be inflammatory, studies detailed in Chapter 4 may provide 

evidence to support minimal or extensive oxidation levels. Although different physiological 

outcomes have been reported following treatment of MØ with mmLDL and oxLDL, set 

parameters for oxidation levels have never been established. 

Results in this study support previous research that foam cells are in some cases defective in 

clearance of some AC lineages195,197. Further study into the mechanisms of overall reduction 

in phagocyte interaction with aMØ and aFC, compared to aJK, could be of importance, given 

the composition of ACs within the plaque. 

The involvement of Mer in AC clearance in a plaque environment in human cells would also 

bolster current research in the area, and could be done using the THP-1 model, which has 

been shown to express Mer352. 

Research into other phases of AC clearance relevant to the plaque environment will be 

investigated in the following chapters. 
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Cytokine profiling of foam cell model 

4.1. Introduction 
It is the accepted theory that efficient AC clearance is necessary, before secondary necrosis 

and subsequent inflammation ensues35, though contradictory evidence illustrates that 

mechanisms are poorly understood38,40. Clearance of apoptotic cells has also been shown to 

directly influence immune modulation in an anti-inflammatory manner55,56. 

Macrophage plasticity is well recognised, with phenotype altering between pro-inflammatory 

„M1-like‟ MØ, and „M2-like‟ MØ which have more of a reparative/janitorial role353. MØ 

phenotypes vary according to the local microenvironment, and inflammatory responses, 

associated with „M1‟-like MØ, have been shown to be dampened in the presence of ACs56. 

AC interaction is associated with an „M2‟-like phenotype, and has been shown to induce anti-

inflammatory mediators release, including TGF-β1, IL10, PGE2, PAF55,56. The release of pro-

inflammatory mediators has also been shown to be supressed following AC interaction, 

including TNF-α, IL-1, IL-12 and IL-855,56 

Following phagocyte recruitment, AC clearance has been proposed to comprise of 4 stages; 

recognition of the AC by the phagocyte, tethering of the AC (binding), tickling of the 

phagocyte by the AC (signalling) and phagocytosis. Subsequent modulation of immune 

responses in the phagocyte follows on from this. The previous chapter investigated 

recognition, tethering and phagocytosis of apoptotic foam cells by non-lipid laden and lipid 

laden MØ. Whilst defective clearance of AC has been proposed to promote plaque 

progression150,195, the immunological responses of lipid-laden phagocytes to human lipid-

laden ACs is unknown and altered phagocyte responses to apoptotic cells within the plaque 

environment may also help drive disease. This chapter will focus on the tickling/signalling 

phase, and post phagocytosis responses, by investigating the immunological outcome of 

lipid-loading MØ, and the ability of these MØ to respond to ACs in a non- or anti-

inflammatory manner. The ability of foam cells to switch between an „M1‟ and „M2‟ output will 

be investigated, and also the ability of apoptotic foam cells to tickle lipid- and non-lipid laden 

MØ into a non- or anti-inflammatory phenotype.  

There remain a number of unanswered questions addressing issues fundamental to the 

inflammatory environment within the plaque, including those relating to the immunological 

response post AC ingestion within a plaque environment. 

The hypothesis underlying this chapter is that control of regulating appropriate immune 

responses is lost by MØ in an aged (e.g. lipid-laden) environment, resulting in failure to 
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resolve inflammation. Some of the research questions used to address this are listed in the 

table below.  

  

Phagocyte 

 

Apoptotic cell 

 

Macrophage 

(MØ) 

Foam cell 

(FC) 

 

Apoptotic MØ 

(aMØ) 

What is the immunological 

outcome of interaction 

between non-lipid laden MØ 

and non-lipid laden aMØ? 

Can FC respond to aMØ in a 

non- or anti-inflammatory 

manner? 

Apoptotic FC 

(aFC) 

Can aFC tickle MØ into a 

non- or anti-inflammatory 

phenotype? 

Does the combination of 

FC/aFC cause/exacerbate 

defective immune response? 

 

Table 5. Summary of key research questions addressed in Chapter 4 

4.2. Results 

4.2.1. THP-1-derived macrophage and foam cell cytokine responses to apoptotic T 
cells 
To establish whether foam cells (lipid-laden MØ) respond to apoptotic cells in a comparable 

manner to non-lipid-laden MØ, we used an established apoptotic cell model, UV-induced 

apoptotic Jurkat (aJK). 

TNF-α is a key driver of inflammation and had been found in human atherosclerotic 

plaques221,222. TNF-α release by phagocytes has also been shown to be dampened following 

AC interaction55,56. TNF-α release was measured at basal levels (i.e. without treatment of 

macrophages) to examine whether lipid-loading of MØ induces an inflammatory cytokine 

output. Cytokine production in response to aJK was examined to establish whether MØ and 

FC both respond to aJK in a non- or anti-inflammatory manner. The addition of LPS allowed 

observation of a classical activation, and aJK-mediated switch off of an immune response, 

indicating a switch of a classical to a regulatory phenotype in MØ. 
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Figure 19. Apoptotic Jurkat reduce LPS-induced TNF-α production from both 

macrophages and foam cells MØ and FC were co-cultured with aJK (harvested 6h post 

UV) or sfRPMI control (20h; 37C). 0.5ng/ml LPS or sfRPMI control was added to relevant 

wells with normal human serum (10% v/v final conc.) and incubated (4h; 37C). TNF-α ELISA 

was carried out according to manufacturer’s instructions (PeproTech Ltd). Data shown is 

mean ± SEM of 3 independent experiments. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, 

two-way ANOVA with Tukey’s post-hoc analysis. 

Figure 19 shows MØ (no oxLDL treatment) and FC (50µg/ml oxLDL, 72h) released low and 

comparable basal levels of TNF-α, and similarly low levels following co-culture with aJK. 

Cytokine production in response to LPS, an established pro-inflammatory mediator, was also 

measured to compare the ability of MØ and FC to produce an inflammatory/‟M1-like‟ 

response, and whether this can be inhibited by co-culture with aJK. TNF-α secretion was 

significantly increased in MØ following LPS treatment (P<0.01), and was increased, but not 

significantly so, in FC, compared to basal levels. FC appeared to show reduced TNF-α 

release compared to MØ in response to LPS, but this difference was not significant. TNF-α 

release in response to LPS was significantly increased in MØ and FC compared to aJK alone 

(P<0.001 and P<0.05 respectively). TNF-α release in response to LPS was inhibited 

significantly in MØ following co-culture with aJK (P<0.05), and in FC levels were reduced but 

not significantly so. Results show FC are perhaps less inflammatory than their non-lipid-

laden counterparts, and that increased basal levels of TNF-α release may not be responsible 

for the inflammatory environment within the plaque. 

IL-12 can also drive inflammation, and had been found in human atherosclerotic plaques228. 

IL-12 and anti-inflammatory cytokine IL-10, have been found to cross-regulate, and the 

secreted IL-10: IL-12 ratio has been proposed as a marker for classical versus regulatory MØ 
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activation49,228. IL-12 release by phagocytes has also been shown to be dampened following 

AC interaction, however IL-10 release in response to ACs is less clear, with some studies 

finding upregulation, and others downregulation, of this cytokine55,56. IL-10 and IL-12 release 

was measured at basal levels (i.e. without treatment of macrophages) to examine  the effect 

of lipid-loading MØ on cytokine output. IL-10 and IL-12 production in response to aJK was 

examined to establish whether MØ and FC both respond to aJK in a non- or anti-

inflammatory manner. The addition of LPS allowed observation of a classical activation, and 

aJK-mediated switch off of an immune response, indicating a switch of a classical to a 

regulatory phenotype in MØ. 
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Figure 20. IL-10 and IL-12 response to apoptotic Jurkat by live macrophages and live 

foam cells MØ and FC were co-cultured with aJK, LPS or sfRPMI as in Fig. 19. Samples 

were diluted 1/5 in sfRPMI prior to ELISA analysis. IL-10 and IL-12 ELISAs were carried out 

according to manufacturer’s instructions (PeproTech Ltd). Data shown is mean ± SEM of 3 

independent experiments. Data analysed using two-way ANOVA with Tukey’s post-hoc 

analysis. 

Results show that despite the same methods being employed as in investigation of TNF-α 

responses, IL-10 and IL-12 responses are much more variable, and the trends associated 

with LPS response and AC clearance are not apparent (Fig. 20).  

4.2.2. THP-1-derived macrophage and foam cell cytokine responses to apoptotic 
macrophages and apoptotic foam cells 
MØ and FC models were used to investigate the ability of foam cells, compared to MØ, to 

respond to non-lipid-laden apoptotic macrophages (aMØ) and apoptotic foam cells (aFC). 

This also would address whether aMØ and aFC have the ability to „tickle‟ MØ and FC into the 

appropriate regulatory phenotype. Figure 21 shows that both MØ and FC release low basal 

levels TNF-α, consistent with data in Figure 19. Figure 21 also shows low TNF-α release by 

MØ and FC when co-cultured with aMØ or aFC, at comparable levels to basal TNF-α 

release. This would suggest that foam cells are not hyper-inflammatory, and that neither 
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aMØ nor aFC elicit an inflammatory response. This is despite co-culture up to 24 hours post 

UV treatment, by which time cells induced to apoptosis may be secondarily necrotic. The 

TNF-α response to LPS is identical in MØ and FC, and significantly higher than both basal 

and aMØ/aFC co-cultured treatment groups (P<0.0001). This indicates comparable 

functionality, or „health‟ of FC compared to MØ, given similar levels of cell death shown in the 

previous chapter (Chapter 3; Fig. 12). 

MØ co-culture with aMØ significantly inhibited LPS-induced TNF-α release (P<0.05). MØ co-

culture with aFC also significantly reduced LPS-induced TNF-α release (P<0.01), indicating 

aFC are equally capable of switching off an inflammatory response by THP-1 MØ, compared 

to aMØ (Fig. 21). 

Similar trends were observed when measuring FC TNF-α responses to LPS in combination 

with aMØ and aFC co-culture (Fig. 21). FC co-culture with aMØ significantly inhibited LPS-

induced TNF-α release (P<0.01). LPS-induced TNF-α release by FC was inhibited even 

more significantly by aFC (P<0.0001), indicating, as above, that aFC are equally, if not more, 

capable of switching off an inflammatory response by FC, compared to aMØ. Interestingly, 

the FC inflammatory response appears to be switched off more effectively by aMØ and aFC 

than the MØ inflammatory response, although these differences are not significant (ns; Fig. 

21). 
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Figure 21. Apoptotic macrophages and apoptotic foam cells reduce LPS-induced TNF-

α production from both MØ and FC MØ and FC were co-cultured with aMØ/aFC 

(harvested 6h post UV) or sfRPMI control (20h; 37C). 0.5ng/ml LPS or sfRPMI control was 
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added to relevant wells with normal human serum (10% v/v final conc.) and incubated (4h; 

37C). Supernatants were diluted 1/5 in sfRPMI prior to ELISA analysis. TNF-α ELISA was 

carried out according to manufacturer’s instructions (PeproTech Ltd). Data shown is mean ± 

SEM of 4 independent experiments. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, two-way 

ANOVA with Tukey’s post-hoc analysis. 

MØ and FC IL-10 and IL-12 responses were again variable, therefore any trends in response 

to AC and LPS were not exposed (Fig. 22).  
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Figure 22. IL-10 and IL-12 response to apoptotic macrophages and apoptotic foam 

cells by live macrophages and live foam cells MØ and FC were co-cultured with 

aMØ/aFC, LPS or sfRPMI as in Fig. 21. Supernatants were diluted 1/5 in sfRPMI prior to 

ELISA analysis. IL-10 and IL-12 ELISAs was carried out according to manufacturer’s 

instructions (PeproTech Ltd). Data shown is mean ± SEM of 3 independent experiments. 

Data analysed using two-way ANOVA with Tukey’s post-hoc analysis. 

4.2.3. Human monocyte-derived macrophage cytokine response to apoptotic cells 
THP-1 cells have proved to be a valuable model MØ system for assaying MØ function with 

regards to AC clearance312. In order to establish the relevance of cytokine responses noted 

above in THP-1-derived MØ and FC models, human monocyte-derived macrophages 

(HMDM) were employed as a primary human cell system and TNF-α responses to the same 

stimuli as in THP-1-derived MØ and FC were measured. 

Results in HMDM show low TNF-α release at basal levels, and comparably low TNF-α 

release when with aJK co-culture. This is in direct agreement with the results obtained with 

THP-1-derived MØ/FC models. However, in contrast to results in THP-1-derived MØ/FC 

models, HMDM showed significantly higher levels of TNF-α release in response to co-culture 

with THP-1 derived aMØ and aFC when compared to basal levels and aJK co-culture 

(P<0.01). TNF-α release was higher in response to aMØ/aFC than in response to LPS, but 

not significantly so. TNF-α response to LPS appeared to be inhibited a small amount with 

aJK co-culture, but not to a significant degree. TNF-α release in response to LPS was not 
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inhibited by co-culture with aMØ/aFC, in contrast to the THP-1 MØ/FC model. The TNF-α 

response to LPS in the presence of aMØ/aFC was significantly higher than basal levels 

(P<0.0001) and levels in LPS alone treatment group (P<0.01). Levels of TNF-α release by 

HMDM (Fig. 23) are lower than in the THP-1 model (Fig. 21), which is likely due to 

differences in live cell numbers following culture. 
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Figure 23. Primary human monocyte-derived macrophages produce TNF-α in 

response to apoptotic macrophages and apoptotic foam cells HMDM were co-cultured 

with aJK/aMØ/aFC (6h post UV) or CDMØ-medium control (20h; 37C). 5ng/ml LPS or 

CDMØ-medium control was added to relevant wells and incubated (4h; 37C). Samples were 

diluted 1/5 in sfRPMI prior to ELISA analysis. TNF-α ELISA was carried out as per 

manufacturer’s instructions (PeproTech). Data shown is mean ± SEM of multiple 

independent experiments. Basal n=20, LPS n=20, aJK (+/-LPS) n=17, aMØ (+/-LPS) n=17, 

aFC (+/-LPS) n=14. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 one way ANOVA with 

Tukey’s post-hoc analysis. 

One possible trivial explanation of these divergent results in HMDM could be the presence 

TNF-α in AC preparations. This could be derived from intracellular cytokine release induced 

passively via membrane disruption, e.g. secondary necrosis, or actively via contamination 

prior to apoptosis induction, e.g. bacterial contamination, which is not considered to be likely. 

All other assay components are present in basal wells, including NHS, apart from LPS, which 

is expected to be inflammatory. It is unlikely to be oxidised LDL contamination as aMØ elicit 

a TNF-α response as well as aFC. To ensure detected TNF-α was not already present in 

assay preparations, aMØ, or NHS and LPS, preparations alone were assayed for TNF-α 

following full incubation times, in the absence of phagocytes (Fig. 24). Wells did not contain 

HMDM, but contained the same working solutions of NHS, LPS and aMØ in CD-MØ medium 



98 
 

as used in the HMD-MØ assays. Results showed very low/negligible levels of TNF-α in 

control assays. 
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Figure 24. Measured TNF-α is not NHS, LPS or AC-derived aMØ (6h post UV) were 

resuspended in CDMØ-medium, and either CDMØ-medium or AC added to relevant wells 

and incubated (20h; 37C). 10% NHS (v/v, final conc.), 5ng/ml LPS or CDMØ-medium was 

added to relevant wells and incubated (4hours; 37C). Samples were diluted 1/5 in sfRPMI 

prior to ELISA analysis. TNF-α ELISA was carried out as per manufacturer’s instructions 

(PeproTech Ltd). Data shown is mean ± SEM of 3 independent experiments. 

One of the variables between the generation of apoptotic Jurkat cultures and apoptotic 

MØ/FC cultures is the use of PMA to differentiate monocyte-like THP-1 to MØ-like cells prior 

to inducing apoptosis. Although PMA containing medium is replaced at 96 hours pre-UV 

exposure, it possible that residual PMA in preparations of THP-1 derived apoptotic cells 

(aMØ/aFC) may be the cause of increased TNF-α release following HMDM exposure to aMØ 

or aFC. HMDM were cultured in the presence of PMA at 250nm (concentration used to 

generate MØ), 25nm and 2.5nm. In case PMA in the presence of AC induces TNF-α release, 

HMDM were cultured in the presence of PMA at 250nm, 25nm and 2.5nm and non-

inflammatory aJK. Preliminary results (Fig. 25) suggest that assay relevant concentrations of 

PMA do not cause TNF-α release in HMDM in the presence or absence of aJK, and thus 

suggest that the pro-inflammatory responses of HMDM to aMØ or aFC are the result of 

HMDM:AC interaction. 



99 
 

B
a
s
a
l

a
J
K

0

1

2

3

4

T
N

F
-a

lp
h

a
 [

n
g

/m
l]

2 5 0 nm

2 5nm

2 .5 n m

 

Figure 25. Preliminary data: TNF-α response to apoptotic macrophages and foam cells 

is not due to residual PMA exposure HMDM generation were co-cultured with CDMØ-

medium + PMA (indicated concs.) or aJK (6h post UV) + PMA (indicated concs.) (20h; 37C). 

10% v/v NHS (final conc.) was added to relevant wells and incubated (4h; 37C). Samples 

were diluted 1/5 in sfRPMI prior to ELISA analysis. TNF-α ELISA was carried out as per 

manufacturer’s instructions (PeproTech Ltd). Data shown is mean ± SD of 2 independent 

experiments. 

To dissect the source of increased HMDM TNF-α release in response to aMØ/aFC, 

preliminary work investigated whether apoptotic cells, or released microparticles/soluble 

factors induced TNF-α release. Culture medium was replaced at the point of UV exposure 

and HMDM were treated with either AC-derived cell-free supernatants (CFS) or ACs 16-20 

hours post UV. Preliminary data show that both AC and EVs or soluble factors in AC 

supernatants are capable of inducing TNF-α release by HMDM (Fig. 26). Further study is 

required to confirm initial findings.    
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Figure 26. Preliminary data: HMD-MØ TNF-α response to apoptotic cell-derived CFS 

HMDM were co-cultured with CDMØ-medium, aMØ and aFC whole culture or aMØ and FC 

cell-free supernatant (CFS) (centrifugation 350g; 6m) (16-20h; 37C). 10% v/v NHS (final 

conc.) was added to relevant wells and incubated (4h; 37C). Samples were diluted 1/5 in 

sfRPMI prior to ELISA analysis. TNF-α ELISA was carried out as per manufacturer’s 

instructions (PeproTech Ltd). Data shown represents 1 experiment. 

4.3. Discussion 
Trying to establish the main drivers of inflammation in atherosclerosis is a key target when 

considering future therapy and disease management. Inflammation within the plaque is now 

an established component of atherosclerosis, and evidence also points towards systemic 

inflammatory markers as indicators of disease58,354,355. Persistence of apoptotic cells could be 

exacerbating inflammation, as uncleared cells can become secondary necrotic110,356, causing 

autolysis and outflow of inflammatory intracellular components207. 

The results in this chapter show that in the THP-1 model, basal levels of pro-inflammatory 

cytokine production (TNF-α) are the same in MØ and FC, indicating that FC are not 

constitutively pro-inflammatory. Responses to pro-inflammatory stimulus LPS were also the 

same in MØ and FC, indicating that FC have functional cytokine responses. Neither aMØ nor 

aFC initiated an inflammatory response when interacting with THP-1 MØ or FC, and both AC 

types had the ability to switch of an inflammatory response. MØ and FC retained the ability to 

switch from an LPS-induced pro-inflammatory phenotype, to an anti-inflammatory phenotype 

following AC interaction.  

Conversely, HMDM responded in an inflammatory manner to aMØ and aFC, but not to aJK. 

aMØ and aFC also exacerbated LPS-induced TNF-α release in HMDM, whereas this 

response was dampened with aJK interaction. Preliminary studies suggest that both 

interaction with aMØ/aFC and aMØ/aFC-derived MPs and soluble material can induce 

inflammatory responses in MØ/FC. This could be an important inducer and driver of 

inflammation in the atherosclerotic plaque, where aFC and aMØ are abundant.      

  

Phagocyte 

 

Apoptotic cell 

 

THP-1 macrophage 

(MØ) 

THP-1 foam cell 

(FC) 

 

HMDM 
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Apoptotic MØ 

(aMØ) 

aMØ do not induce an 

inflammatory response 

in MØ and aMØ can 

switch off a TNF-α 

response in the THP-1 

model 

aMØ do not induce an 

inflammatory 

response in FC and 

aMØ can switch off a 

TNF-α response in the 

THP-1 model 

aMØ strongly 

induce TNF-α 

release in HMDM, 

and exacerbate 

LPS-induced TNF-α 

release 

Apoptotic FC 

(aFC) 

aFC do not induce an 

inflammatory response 

in MØ and aFC can 

switch off a TNF-α 

response in the THP-1 

model 

aFC do not induce an 

inflammatory 

response in FC and 

aFC can switch off a 

TNF-α response in the 

THP-1 model 

aFC strongly induce 

TNF-α release in 

HMDM, and 

exacerbate LPS-

induced TNF-α 

release 

Table 6. Summary of results from key research questions addressed in Chapter 4 

4.3.1. Inflammatory status of foam cells 

Few studies have addressed mechanisms behind the persistence of inflammation from the 

point of the macrophage/foam cell, either live or apoptotic, despite the heavy presence of 

apoptotic cells and phagocytes, a combination shown to dampen inflammation in a non-

plaque environment54-56.  

Secretion of pro-inflammatory cytokines TNF-α and IL-12, markers of classical MØ activation, 

and IL-10, a regulatory cytokine and proposed marker for alternative MØ activation, was 

investigated at basal levels in the THP-1 model, with and without oxLDL pre-treatment49. This 

was to determine whether lipid-loading MØ induces an inflammatory phenotype in the THP-

1-derived MØ model. Inflammatory cytokines drive macrophages to an „M1-like‟ phenotype, 

which can increase pro-inflammatory cytokine output and reduce the rate of apoptotic cell 

uptake, or efferocytosis234,357. TNF-α has the ability to drive inflammation, and has been 

found in human atherosclerotic lesions137,220-222. Results shown here (figs. 16/18) indicate that 

macrophages and foam cells secrete comparable basal levels of cytokine TNF-α, suggesting 

similar basal levels of inflammation when comparing macrophages before and after lipid 

loading. 

IL-12 is another inflammatory cytokine and is a suggested marker for classical MØ activation 

in conjunction with IL-10, which is a regulatory cytokine and suggested marker of alternative 

MØ activation49. Trends in IL-10 and IL-12 release could not be determined due to variability 

in results (figs. 17/19). IL-12: IL-10 dysregulation in foam cells could be a point of further 

study. Studies in primary human monocytes found oxLDL could induce IL-10 and IL-12 

release, and that these cytokines were cross-regulatory228. Studies with murine bone 

marrow-derived MØ showed apoptotic neutrophils could inhibit LPS-induced IL-10 and IL-12 
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release, however secretion was not detected after 4 hours LPS exposure, which is the time 

period used in these studies358.   

A further hypothesis is that foam cells are hyper-inflammatory in the presence of an inducer 

of inflammation (i.e. a pro-inflammatory stimulus, e.g. LPS), when compared to non-lipid-

laden MØ, as previous studies have implicated infection as a contributor of inflammation in 

atherosclerosis359. LPS and minimally modified LDL (mmLDL) have also been shown to 

cooperatively activate MØ to produce pro-inflammatory cytokines in murine models360. 

Experiments undertaken here to address this hypothesis reveal TNF-α secretion in response 

to LPS was comparable (Fig. 21) or lower (not significant; Fig. 19) in FC compared to MØ, 

suggesting FC are not hyper-inflammatory in the presence of immunogenic stimuli. IL-10 and 

IL-12 secretion was very low in comparison, and variability of results was high (figs. 17/19). A 

larger sample size or more sensitive detection method may be required. In conclusion, the 

mechanism driving the inflammatory status within the atherosclerotic plaque is either not the 

result of inappropriate phagocyte stimulation or it cannot be modelled in this THP-1-derived 

phagocyte model. 

Interestingly, minimally modified LDL (mmLDL), often referring to mild oxidation methods 

including short-term copper sulphate oxidation, or fibroblast co-culture, is a potent inducer of 

inflammation via TLR2/4 activation, resulting in IL-1β, IL-6 and IL-10323,324,360. mmLDL is an 

subjective term that has not been given a solid definition, however it would be interesting to 

question whether mmLDL is a more or less physiologically relevant model of subendothelial 

LDL accumulation, or whether is a likely to be a combination of various LDL modifications 

present. oxLDL in this model could be better defined, however a lack of modified LDL-

induced inflammation would suggest the oxLDL in this model is truly oxidised, and not 

„minimally modified‟, LDL. 

At a technical level, it is possible that differences in live cell numbers between macrophages 

and foam cells could mask true differences in cytokine output, but taken together with oxLDL 

toxicity results (Chapter 3; Fig. 12) and microscopic observation this is not thought the be the 

case in this model. 

4.3.2. Cytokine responses by THP-1-derived macrophage and foam cell models to 

apoptotic cells 

An unanswered question is whether foam cells and non-lipid-laden MØ respond to apoptotic 

cells in the same manner. Experiments in this chapter aim to address whether lipid-loading of 

phagocytes affects the resulting immune modulation seen in response to apoptotic cells. 
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In this model, results have shown that MØ-derived THP-1, a human immortal cell line, 

respond in a non-inflammatory nature to UV-induced apoptotic Jurkat, a well-established 

model for apoptotic cell clearance54, with regards to TNF-α release (Fig. 19). aJK also had 

the ability to dampen an LPS induced TNF-α release (Fig. 19). This supports data by Voll et 

al.55, which demonstrated  reduced TNF-α, IL-12 and IL-1β secretion by peripheral blood 

monocytes in response to LPS in the presence of apoptotic peripheral blood lymphocytes, 

and an increase in IL-10 secretion, a regulatory chemokine. Fadok et al.56 also found 

reduced inflammatory mediator release in response to apoptotic neutrophils, including IL-1β, 

IL-8, GM-CSF, leukotriene C4, thromboxane B2 and TNF-α, but conversely found a reduction 

in IL-10 secretion by human monocyte-derived macrophages. Upregulated secretion of TGF-

β, PGE2 and PAF were also found56.  

Foam cells also responded in a non-inflammatory manner to apoptotic Jurkat cells, as seen 

with MØ, when observing TNF-α release, indicating a „normal‟ phagocyte response to 

apoptotic Jurkat (Fig. 19). Interestingly, FC-mediated TNF-α release in response to LPS 

appeared to be switched off less effectively than in MØ when co-cultured with apoptotic 

Jurkat (Fig. 19), however only non-lipid-laden macrophages showed a significant reduction in 

TNF-α secretion in response to LPS with AC pre-treatment. This could be to the apparent 

reduction in TNF-α secretion in response to LPS by FC, a difference which was not 

significant. Increased sample size may clarify these results. FCs appear to be switched off 

more easily than MØ by aMØ and aFC with regards to LPS-induced TNF-α response. 

Little research has focused on the role of the apoptotic cell in studies on defective AC 

clearance, and a variety of AC models have been utilised. It is unclear whether aMØ and 

aFC are both able to induce an anti-inflammatory response in phagocytes, or if lipid-loading 

prior to apoptosis affects subsequent modulation of immune responses. The THP-1 cell line 

provides a good human MØ model, which can be lipid-loaded and induced to apoptosis to 

investigate cytokine responses as may occur within the plaque environment. 

Using the THP-1 model, MØ and FC TNF-α release is low, and comparable to responses 

with aJK co-culture, following co-culture with apoptotic MØ (aMØ) and apoptotic FC (aFC) 

(Fig. 21). aMØ and aFC were both able to suppress LPS-mediated TNF-α release on MØ 

and FC. This suggests that FC are able to switch between classical and alternative 

activation, and equally that aFC are capable of switching off an inflammatory response, as 

observed with aJK interaction (Fig. 19). Li et al. 210 observed TNF-α and IL-1β production, but 

not IL-10 or TGF-β, by murine peritoneal MØ following interaction with free cholesterol-

induced apoptotic macrophages (acetylated LDL + ACAT inhibitor), rather than the anti-

inflammatory response associated with AC clearance. The same study investigated 
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interaction and immune modulation following ox-LDL induced aMØ and non-lipid-loaded UV-

induced aMØ; comparable interaction was reported with all 3 AC types, however anti-

inflammatory responses were observed with oxLDL and UV-induced aMØ, but data was not 

shown210. 

Results in the current study were variable with regards to MØ and FC IL-10 and IL-12 

release, so clear trends could not be distinguished (figs 17/19).  

4.3.3. Cytokine responses by primary human macrophages to apoptotic cells 

Previous studies have used primary human monocytes to investigate the effects of oxLDL on 

inflammatory cytokine output228, however studies of human cytokine responses to apoptotic 

cells, particularly apoptotic foam cells, are lacking. To investigate whether results are 

applicable to a primary human cell model, monocytes were isolated from peripheral blood 

from healthy volunteers and allowed to differentiate to human monocyte-derived MØ 

(HMDM) over a period of 7-14 days. HMDM were co-cultured with or without AC models 

used in the THP-1 model, and stimulated with LPS to look at AC-induced knockdown of an 

inflammatory response. 

Results showed the same non-inflammatory response observed in primary MØ as in the 

THP-1 model with aJK co-culture (Fig. 23), and a reduction in LPS-induced TNF-α release 

following co-culture with aJK. However, primary MØ interaction with aMØ and aFC resulted 

in TNF-α release much greater than LPS-induced responses (Fig. 23). This also meant a 

lack of knockdown, only exacerbation, of an LPS-induced TNF-α response. This supports 

aspects of the study by Li et al., discussed briefly above, which observed TNF-α and IL-1β 

release from murine peritoneal MØ following interaction with cholesterol-induced apoptotic 

macrophages, rather than the anti-inflammatory response associated with AC clearance210. A 

murine study also found that apoptotic T cells release TGF-β, which may account for 

modulation of immune responses here361. In contrast, anti-inflammatory effects were reported 

with oxLDL-induced and UV-induced murine peritoneal MØ (data was not shown)210. This 

further demonstrates a potential role for the AC-induced inflammation within plaque, and also 

the role of persistent ACs in driving inflammation should plaque ACs prove to be 

inflammatory. Khan et al.197 also found pro-inflammatory cytokine release by murine 

peritoneal MØ following exposure to UV-induced apoptotic vascular smooth muscle cells 

(VSMCs) in the presence of oxLDL, so a combination of oxLDL and ACs may trigger a pro-

inflammatory response in MØ, however the mechanisms are yet to be elucidated. Studies in 

this chapter only involve oxLDL pre-incubation, without oxLDL presence during 

phagocyte:AC co-culture. Studies on primary murine cells and human coronary artery 

endothelial cells (HCAECs) found that ACs with oxidation-specific epitopes were 
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inflammatory209. Thus the results presented here are consistent with previous work that lipid-

laden apoptotic cells may represent a pro-inflammatory stimulus to primary macrophages 

and that this may contribute to the inflammatory nature of the plaque.   

Further studies were undertaken to try and dissect the true physiological response of HMDM 

to aMØ and aFC, and to attempt to rule out other influencing factors. The obvious variable in 

Jurkat culture and THP-1-derived aMØ generation is the use of PMA. To ensure PMA is not 

the driver of inflammatory responses observed with HMDM: aMØ/aFC co-culture, HMDM 

were co-cultured in the presence or absence of non-inflammatory aJK, with relevant dilutions 

of PMA (Fig. 25). Preliminary data shows PMA does not induce TNF-α release in HMDM in 

the presence or absence of non-inflammatory ACs. Another possible explanation of these 

divergent results, compared to the THP-1 model, in HMDM could be the presence TNF-α in 

AC preparations. This could be derived from intracellular cytokine release induced passively 

via membrane disruption, e.g. secondary necrosis, or actively via contamination prior to 

apoptosis induction, e.g. bacterial or PAMP contamination. It is unlikely to be oxidised LDL 

contamination as aMØ elicit a TNF-α in HMDM to the same extent as aFC, and limulus assay 

testing was negative on a random selected oxLDL sample (data not shown). Contamination 

is also less likely if you consider non-inflammatory results in THP-1 MØ in response to the 

same preparations (Fig. 21). To ensure detected TNF-α was not already present in assay 

preparations, aMØ, or NHS and LPS, preparations were assayed for TNF-α following full 

incubation times, in the absence of HMDM, and presence of TNF-α was not at significant 

levels (Fig. 24). 

The presence of secondary necrosis has not been ruled out in this model of aMØ and aFC, 

however an inflammatory reaction was not seen in co-culture with THP-1-derived MØ. 

Simple studies on membrane integrity would provide supporting evidence on the presence or 

absence of secondary necrosis in this model.  

The opposing results found when comparing THP-1 MØ and HMDM TNF-α response to 

THP-1 derived aMØ and aFC models shows the care that needs to be taken when defining 

models and comparing results not only across species, but between immortal cell lines and 

primary cells of the same species. Models of atherosclerosis vary widely, without much 

consensus on the best way to observe processes within the plaque. It could be argued that 

the use of human primary cells may be the closest model we can use when trying to 

understand failures in this disease.  

It is of interest to note that as such an effect is not seen with THP-1-derived MØ/FC, 

suggesting that comparison of THP-1-derived and primary macrophages may identify key 

mediators that underlie the undesirable pro-inflammatory responses.  Such mediators may 
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represent attractive targets for potential therapeutic intervention in atherosclerosis. A 

drawback of the primary cell research in this chapter, is that cell line-derived ACs were used 

due to the large numbers of ACs required for assays compared to phagocytes (10X). 

However it is a key starting point in human cell-orientated research into aFC modulation of 

immune responses in the atherosclerotic plaque, as current research has only been shown in 

murine models. 

4.3.4. Further considerations  

To further dissect the source of increased HMDM TNF-α release in response to aMØ/aFC, 

preliminary work investigated whether apoptotic cells, or released microparticles/soluble 

factors, induced TNF-α release. HMDM were co-cultured with whole aMØ/aFC cultures, or 

cell free supernatants from the same cultures (CFS), over the same time course as previous 

assays. Preliminary results (Fig. 26) suggest that aMØ/aFC cell free supernatant (CFS) 

induces more TNF-α release than aMØ/aFC whole cell culture in HMDM. This could suggest 

than aMØ/aFC could still have some anti-inflammatory properties, as the presence of AC in 

the culture reduces TNF-α release, but mediators in cell-free supernatant cause an 

inflammatory response (Fig. 26). Further research is required to confirm these observations, 

and to dissect which mediators are causing an inflammatory response. The effects of AC-

derived microparticles (MPs), or blebs, on immune-modulation in the plaque would be an 

interesting angle, as MPs they are individual to the originating cell, and can confer 

messages, e.g. inflammatory/anti-inflammatory mediators, to surrounding cells268. MPs have 

been found in human atherosclerotic plaques, and are thought to be primarily derived from 

leukocytes269. MPs also have a role in monocyte chemoattraction, another pathological 

feature in plaque progression60,61,71. It is unknown whether aFCs for example, confer „find-me‟ 

signals, for phagocytic clearance. This may not be relevant in the models of interaction used 

in this chapter as a large excess of ACs are loaded onto phagocytes, however 

consequences in the plaque environment should be considered. If aFCs are inflammatory, 

persistence in the plaque would exacerbate inflammation. 

It is important to note that although the plaque contains many MØ and MØ-derived foam 

cells, as is the definition of foam cells in this model, the complex plaque environment 

includes a variety of cell types including  endothelial cells (ECs), smooth muscle cells 

(SMCs), monocytes, mast cells, T lymphocytes and SMC-derived foam cells, including live, 

apoptotic and necrotic cells56,57.  It is also important to consider if apoptotic foam cells elicit 

the same response in phagocytes as do non-lipid-loaded ACs. Do foam cells release 

comparable find-me signals? This may not be relevant in the model of interaction used in this 

chapter as a large excess of ACs are loaded onto phagocytes.  
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4.4. Conclusions and future work 
In conclusion, evidence in this chapter shows that lipid-loading does not induce TNF-α 

release in THP-1-derived MØ, but this needs to be confirmed by generation of foam cells 

using HMDM, especially given the opposing results observed following AC interaction. Foam 

cells may be hyper-inflammatory with regards to IL-10 and IL-12 release, however this 

requires further study with an increased sample size or more sensitive detection method, e.g. 

via multiplex assays. This would allow a full spectrum of cytokine release to be established in 

cell line and primary cell models of foam cells. Broader cytokine profiling may also provide 

further evidence as to whether alternative or classical MØ activation is favoured in these 

conditions, including TGF-β, which was the aim with the range of cytokines chosen in these 

studies.  

That aMØ can induce inflammation in HMDM is a key observation that, with further 

investigation, could advance understanding of the persistent inflammatory environment in 

human atheroma. As clearance of a high density apoptotic MØ is not a common occurrence, 

and MØ are not an easy AC type to model due to adherence, they are an understudied AC 

type. It would be interesting to further dissect the differences in THP-1-derived MØ and 

HMDM responses to apoptotic MØ and apoptotic FC. Generation of human monocyte-

derived FC, aMØ and aFC would further complete the model. It could then be established 

whether immortal cell line-derived AC models are physiologically relevant, or whether it is 

just a quirk of the assay in question. 

Profiling of aMØ/aFC supernatants could also advance knowledge in the area, to further 

dissect the roles of human cytokine and MP release by apoptotic foam cells. THP-1 derived 

microparticles were recently shown to promote inflammation and atherogenesis in a murine 

model of atherosclerosis282. 
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Mechanisms of chemotaxis to apoptotic cells 

5.1. Introduction 

Chemotaxis is the directional movement of cells up a concentration gradient of an attractive 

agent240. Chemotaxis is important in recruitment of immune cells to points of damage, 

inflammation and, of particular interest to this project, pathological sites such as the 

atherosclerotic plaque362,363. Here, circulating monocytes are recruited from the blood stream 

by upregulated expression of adhesion molecules, such as selectins, on endothelial cells 

overlying the plaque157,250. The plaque is a highly inflammatory environment58 with a lot of cell 

death46, both factors which are known to result in monocyte recruitment43,362. Torr et al. 

showed a role for find-me signal ICAM-3 in recruitment of THP-1-derived monocytes to 

apoptotic cells, with evidence strongly suggesting ICAM-3 release via shedding of AC-

derived MPs71. Another find-me signal, CX3CL1, has been demonstrated to recruit HMDM to 

apoptotic cells, with MP association also shown61. 

The role of apoptotic cell-derived ICAM-3 in recruitment of phagocytes to apoptotic cells has 

only recently been shown71, and was initially identified as a mediator in intercellular adhesion 

between viable cells364. In AC clearance, ICAM-3 is thought to be modified, in as yet an 

undefined manner, to act as an „eat-me‟ flag on the surface of apoptotic cells84. As a murine 

homologue has never been identified, studies of ICAM-3 are restricted to human cells, 

hampering the understanding of the functions of this molecule80. This chapter aims to further 

dissect the role of ICAM-3, which has currently been shown in monocyte recruitment to 

apoptotic lymphocytes (i.e. B and T cells)71, in the recruitment stages of apoptotic cell 

clearance. It is not currently known whether ICAM-3 plays a role in recruitment to other 

leukocytes undergoing cell death, or in other pathological situations. 

Since identification of the role of CX3CL1 in monocyte capture, adhesion to endothelium and 

activation under flow conditions68, and discovery of expression in the plaque365, this 

chemokine has been implicated heavily in development and progression of atherosclerosis. 

CX3CL1 expression has been found in atherosclerotic plaques365,366 and has been implicated 

in CX3CR1-positive monocyte recruitment to the plaque239. Recruitment of monocytes is one 

of the key pathological events in plaque progression, with blockade of recruitment shown to 

improve disease state156. This chapter will further investigate the role apoptotic cell-derived 

CX3CL1 in monocyte recruitment to dying cells, with emphasis on CX3CL1 derived from 

„plaque relevant‟ cells, apoptotic macrophages (aMØ) and apoptotic foam cells (aFC). 

CD14 is a tethering receptor shown to mediate AC clearance31, however its role in „find-me‟ 

signal detection and subsequent monocyte migration towards apoptotic cells has not been 

assessed. CD14, the prototypic LPS receptor367, has also been implicated in AC clearance31, 
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suggesting it has the ability to produce opposing ligand-dependent immunological outcomes. 

Alongside signalling partner TLR4368, CD14 interaction with LPS results in a pro-inflammatory 

immune response, whereas interaction of CD14 with ACs results in a non- or anti-

inflammatory outcome312. MPs are important in monocyte/MØ recruitment to dying cells, but 

whether effects are exerted via binding to known tethering receptor CD14 is not known. 

Tethering of MPs via CD14 may result in MØ activation and migration toward dying cells, 

therefore the role of CD14 in plaque-associated monocyte recruitment will be investigated in 

this chapter. 

This chapter will address the establishment of a horizontal chemotaxis model to be used to 

observe chemotaxis towards agents including AC-derived MPs and soluble factors. Blocking 

antibodies against target molecules with known roles in AC clearance will be utilised to 

establish some of the key molecular players in aMØ and aFC clearance. In previous studies, 

vertical chamber models have been used61,71, but this project seeks to establish a model that 

is not influenced by gravity, and that measures chemotaxis along a true gradient rather than 

migration down a step gradient to a pool of attractant. Horizontal models of chemotaxis could 

therefore be more physiologically relevant. 

In order to develop the model further from a physiological perspective, a vertical transwell 

system was used but with the additional barrier of endothelial cells. HUVECs were used as 

the model endothelial cells of choice. The downstream effects AC-derived MPs exert on 

endothelial cells in the form of selectin expression was also investigated. 

The hypothesis covering this chapter is that in an aged environment (e.g. lipid-laden), 

monocytes are inappropriately recruited to sites of cell death. Research questions posed in 

the table below will be addressed in order to investigate this hypothesis. 

  

Phagocyte 

 

Apoptotic cell 

 

 

Monocyte 

Apoptotic MØ 

(aMØ) 

How well do non-lipid laden MØ attract monocytes via „find-

me‟ signals? 

Are these mechanisms, CD14, ICAM-3 or CX3CL1 
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mediated? 

Apoptotic FC 

(aFC) 

Does lipid-loading enhance or reduce attractiveness of „find-

me‟ signals to monocytes? 

Are these mechanisms, CD14, ICAM-3 or CX3CL1 

mediated? Does lipid-loading alter effector molecules? 

Table 7. Summary of key research questions addressed in Chapter 5 

5.2. Results 

5.2.1. Modelling chemotaxis using a vertical chamber system 
To establish whether microparticles (MPs) from plaque-relevant apoptotic cells (AC) induced 

monocyte migration, a vertical 48 well chemotaxis chamber (Neuroprobe Inc., Gaithersburg, 

Madison, WI, USA) was used in preliminary experiments (Fig. 27). In this assay, monocytic 

VD3 stimulated THP-1 migration was measured from an upper chamber, towards a pool of 

sfRPMI (Control), apoptotic macrophage (aMØ)-derived cell-free supernatant (CFS), or 

apoptotic foam cell (aFC)-derived cell-free supernatant (CFS). CFS is generated by 

centrifugation of whole cell supernatants for 6 minutes at 350xg, pelleting any cell bodies or 

large cell debris. 

Figure 27 shows minimal migration towards medium alone (control), and comparatively 

increased migration towards aMØ-derived CFS, however this was not significant when 

compared to control wells (P>0.05). THP-1 cells migrated toward aFC-derived CFS in a 

significant manner when compared to migration toward control and aMØ-derived CFS 

(P<0.05). 
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Figure 27. Apoptotic foam cell-derived cell-free supernatants induce 

monocyte migration VD3 stimulated THP-1 in sfRPMI were allowed to migrate 
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to aMØ and aFC cell-free supernatants (CFS) or sfRPMI control (4h; 37C). 

Following migration, the polycarbonate membrane was stained and migrated 

cells per high power field (HPF)(40X) on the underside of the membrane 

quantif ied by light microscopy. Four replicate wells and five HPFs of view per 

well were assessed. Data shown are mean migrated cell number per HPF ± S.E. 

of 3 independent experiments. *P<0.05 one way ANOVA with Tukey’s post-hoc 

test. 

5.2.2. Dunn chamber optimisation 
aFC-derived CFS was shown to induce significant monocyte migration in a vertical assay 

system. Next, a horizontal system was established to observe monocyte migration along a 

true chemotactic gradient, based on methods outlined by Zicha et al.292.  

THP-1, VD3, PMA and DS cells were cultured on glass coverslips at a range of cell densities 

and mounted onto Dunn chambers containing sfRPMI or chemically defined (CD)-MØ 

medium in the inner well, and 100ng/ml MCP-1 diluted in sfRPMI or CD-MØ medium 

subsequently added to the outer well. This concentration was chosen as VD3 stimulated 

monocyte chemotaxis to 100ng/ml MCP-1 was observed in preliminary studies using the 

vertical assay system. Dunn chambers were sealed and placed in a humidified chamber at 

37C, and cell migration visualised using time-lapse video microscopy. Images were taken 

every 10 minutes over a 48 hour time period.  

Results showed that although THP-1 adhered to coverslips, adherence was weak and few, if 

any, THP-1 cells remained on coverslips following mounting onto Dunn chambers, despite 

increasing seeding density. More VD3 cells remained on coverslips following transfer onto 

Dunn chambers and some migration was observed in the presence of protein-free CD-MØ 

medium, though cell numbers were very low. Chemotaxis was not observed when sfRPMI 

was used in the assay and as a diluent for MCP-1. PMA and DS differentiated THP-1, and 

human peripheral blood monocytes, are strongly adherent and remained on coverslips 

following transfer onto Dunn chambers, however migration was not observed in either cell 

type. Interestingly, PMA and DS cells appeared to show signs of attempted migration 

towards MCP-1, but appeared to be anchored too firmly to enable migration (Fig. 28). PMA 

and DS cells were cultured on plastic coverslips to investigate whether this would result in 

weaker adherence but the same results were observed. Peripheral blood monocytes were 

mounted on coverslips and used in the Dunn chambers between 20 minutes and 24 hours 

post isolation but were also too strongly adherent for migration.  
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Figure 28. Migration of PMA cells towards MCP-1 THP-1 monocytes were cultured with 

PMA on glass coverslips (72h; 37C). Chemically-defined (CD)-MØ medium was placed in the 

inner well of the Dunn chamber and 100ng/ml MCP-1 in CDMØ-medium was placed in the 

outer well, providing an MCP-1 gradient between the wells. Coverslips were mounted over 

the wells and monocyte migration monitored using time-lapse video microscopy. Arrows 

represent predictive direction of movement based on MCP-1 gradient (low to high). Individual 

cells are circled for comparison at 1h and 24h. 

Taking these results forward, the VD3 model was chosen for future migration studies due to 

their monocytic phenotype and ability to adhere and migrate, and adherent cell numbers 

were increased by raising the seeding density of cells and coating the coverslips in poly-D-

lysine (PDL) prior to seeding of cells. Preliminary studies were carried out to investigate a 

range of concentrations of MCP-1 to promote maximal migration by VD3 stimulated THP-1 

cells and 100ng/ml was found to induce robust monocyte migration (data not shown). 

5.2.3. Modelling horizontal THP-1 chemotaxis to MCP-1 
VD3 stimulated monocytes cultured on PDL-coated glass coverslips were visualised moving 

across a bridge between the inner well (no attractant) and outer well (attractant) of a Dunn 

chemotaxis chamber. Migration was recorded using the manual tracking plugin in Image J. 

This plugin records coordinates from each cell and data can be imported into the Ibidi 

Chemotaxis and Migration Tool (V2.0) to obtain normalised plots. This tool normalises cells 

to the same starting point (centre of plot), and allows mapping of cell migration from this 

point. All axis on qualitative migration plots in this chapter are set to the same units 

(470x470µm). The Chemotaxis and Migration Tool generates plots and also extracts 

statistical data, which include directness, distance, velocity, angle, and a bespoke measure 

of migration termed forward migration index (FMI)369.  

The Chemotaxis and Migration Tool also incorporates the Rayleigh Test as a statistical test, 

which measures uniformity of a circular distribution of points, in this case the cell endpoints, 

0h 24h 
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and takes into account distance from the origin369. The null hypothesis, that cells move in a 

uniform manner, is rejected when P>0.05. 

Figure 29 shows non-directional movement to medium alone (C), also referred to as 

chemokinesis, whereas assays with MCP-1 (indicated plots) show directional migration 

towards MCP-1. Rayleigh test results (P values on plots) show cells move in a uniform 

manner toward MCP-1 in all assays. One control assay shows uniform movement, but in this 

case distance of cell migration was low. P values (on plots) using the Rayleigh test were 

extremely low in MCP-1 assays compared to control. 

 

Figure 29. Monocytes migrate towards MCP-1 in the Dunn chamber chemotaxis model 

VD3 stimulated THP-1 in chemically-defined (CD)-MØ medium were allowed to migrate to 

100ng/ml MCP-1 or CD-MØ medium control (2h; 37C), with plots labelled MCP-1 and C 

respectively. Monocyte migration was monitored using time-lapse video microscopy. 

Migration of 40 cells per assay was measured using Image J and analysed using the Ibidi 

Chemotaxis and Migration Tool (V2.0). Data shown are representative of multiple 

independent experiments. Control n=3, MCP-1 n=4. P values for individual assays were 

obtained using the Rayleigh test, with a null hypothesis of non-uniform movement rejected at 

P<0.05.  

In order to assess statistical significance of movement across multiple assays, rather than 

individually, basic statistical data of assays (i.e. Euclidian distance, total/accumulated 

P=0.162 P=0.155 P=0.002 

P=3.91x10
-10

 P=5.65x10
-6

 P=1.49x10
-4
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distance, velocity and directness) shown in Figure 29 was extracted using the Chemotaxis 

and Migration Tool (Fig. 30). This data failed to show significant quantitative differences 

between control and MCP-1 directed migration, despite clear differences seen qualitatively 

(Fig. 29). This is because some monocytes moved in a kinetically similar manner in MCP-1 

and control studies, however the direction the cells were travelling in was markedly different.  
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Figure 30. Quantitative measurement of monocyte migration Extraction of quantitative 

data relating to monocyte directness, velocity, accumulated distance and Euclidean distance 

of assays shown in Fig. 29. Migration of 40 cells per assay was measured using Image J and 

analysed using the Ibidi Chemotaxis and Migration Tool (V2.0). Data shown mean ± SEM 

and are representative of multiple independent experiments. Control n=3, MCP-1 n=4. Data 

analysed using unpaired t test. P>0.05 in all parameters. 

5.2.4. Defining directionality 
The measure of directness above (Fig. 30) shows how directly cells move between two 

points, i.e. from A to B, regardless of the location of „B‟ in relation to the attractant. To show 

directionality towards an attractant, forward migration index (FMI) can be utilised. 

FMI, an index provided in the Chemotaxis and Migration Tool, represents the efficiency of the 

forward migration of cells parallel (in this case the y axis; yFMI) and perpendicular (x axis; 
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xFMI) to the direction of the attractive gradient, according to variables including the distance 

travelled from the starting point and the location of the endpoint in relation to each axis (Fig. 

31). Data is always set up so the chemoattractive gradient runs along the y axis. A high yFMI 

value (movement parallel to the attractive gradient), and a low xFMI value (perpendicular to 

the attractive gradient) indicates a powerful chemotactic effect369. This measurement takes 

into account positive and negative migration. 

Figure 31. Schematic of monocyte 

migration plots showing cell 

endpoints in relation to forward 

migration index (FMI) Cell endpoints 

are allocated an xFMI and a yFMI 

value according to variables including 

distance from starting point and 

location in relation to each axis. The 

left plot represents a high xFMI value and a low yFMI value (poor chemotaxis). The right plot 

represents a low xFMI value and a high yFMI value, indicating strong chemotaxis movement, 

parallel to the concentration gradient. 

An alternative method has also been utilised to extrapolate how well cells move toward an 

attractant. This method measures uniformity of movement of the monocyte population based 

on the location of the endpoint. This was calculated by extracting the statistical data from the 

Chemotaxis and Migration Tool based on the angle measurement. The angle measurement 

gives the location of each end point of each tracked migrating cell, where the attractant is 

placed at 0 degrees (top), and cells are normalised as migrating from the centre of the circle 

(Fig. 32). The standard deviation of the angle was used to show variability in each assay of 

the final destination of each migrating cell (SDoA). The more the end point of individual cells 

deviate from the other end points, the higher the SD value (Fig. 32a. and 29c.). This was 

used as a measure of uniform migration, as the more closely the monocytes move toward an 

attractant as a population, the lower the standard deviation will be of the angle of the end 

points. This was a means of showing quantitatively that cells move toward MCP-1 in a 

significant (P<0.05) uniform and directional manner (Fig. 33), corresponding with qualitative 

data (Fig. 29). Data show mean SD of angle measurements across at least 3 assays (± 

SEM), where a high value indicates more variability, and therefore less uniformity. 
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Figure 32. Schematic of monocyte migration plots showing cell endpoints in relation 

to angle values Plots a) and b) show small and similar distances travelled, however based 

on angle measurements, plot a) will have high SD of angle (SDoA) measurement, and plot b) 

a low SDoA, as cell end points are less variable. Plot c) will have a comparable SDoA to plot 

a), and plot d) will have a comparable SDoA value to plot b). Plot e) will have the same SDoA 

value as plot d), as variability of endpoint values, rather than endpoint values themselves, 

are measured. This measure is a powerful tool to extrapolate uniformity of movement via 

variability of cell end points, but it does not take into account distance moved or whether 

direction is positive or negative, so measurements must be observed in conjunction with 

qualitative plots. 

Figure 33 shows extrapolated statistical data from plots shown in Figure 29. Using the 

forward migration index (FMI) (left hand graph), xFMI shows that the amount of directional 

cell migration perpendicular to the attractive gradient is comparable between control (no 

attractive gradient) and MCP-1 assays. yFMI values, the amount of directional migration 

parallel to the attractive gradient, are higher in MCP-1 assays, however this was not shown 

to be significant compared to control (P>0.05, 2 way ANOVA with Tukey‟s post hoc test for 

multiple comparisons).  

When investigating variability of movement using SDoA of end points of cells (Fig. 33; right 

hand graph), results show statistically significant differences in variability between control 

and MCP-1 assays. SDoA is more variable in control assays, showing less uniform, or more 

direct, migration of cells. In assays with MCP-1, variability according to SD of angle is 

significantly lower (P<0.05), indicating more uniform migration (unpaired student‟s t test).  
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Figure 33. Monocytes migrate directionally towards MCP-1 Extrapolating 

data from plots in Fig. 29, the left hand graph shows FMI values perpendicular 

(xFMI) and parallel (yFMI) to the attractive gradient, where present. FMI values 

were analysed using 2 way ANOVA with Tukey’s post hoc test. The angle of 

each end point of migrating cells was assessed using an unpaired student’s t 

test, P<0.05. Data shown are mean ± SEM of the deviation of migrations of 

multiple independent experiments. Control n=3, MCP-1 n=4. 

5.2.5. Characterising chemotaxis to apoptotic cell models 

5.2.5.1. Chemotaxis to apoptotic Jurkat cells 

The Dunn Chamber was used to assess horizontal migration of monocytes (VD3 stimulated 

THP-1) along a concentration gradient toward plaque-relevant (MØ and FC) conditioned 

medium. Initially, assays were carried out using an established model of cell death, UV-

induced apoptotic Jurkat cells. Apoptotic Jurkat cells are an established inducer of monocyte 

attraction54,63, therefore were used to set-up, and ensure robustness of, the assay. 

Figure 34 shows representative plots of monocyte migration toward medium conditioned (16-

20h) with live jurkat (whole culture; JK WC), live JK conditioned medium with cell bodies 

removed, leaving MPs and soluble factors (jurkat cell-free supernatant; JK CFS), UV-induced 

apoptotic jurkat conditioned medium (aJK WC), and UV-induced apoptotic jurkat conditioned 

medium with cell bodies removed (aJK CFS). All four plots show directional movement 

towards an attractive factor. 
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Figure 34. Monocytes migrate towards medium conditioned with live or apoptotic 

Jurkat cells VD3 stimulated THP-1 in chemically-defined (CD)-MØ medium were allowed to 

migrate to live JK or aJK whole cell (WC) or cell-free supernatant (CFS) (2h; 37C). Monocyte 

migration was monitored using time-lapse video microscopy. Migration of 40 cells per assay 

was measured using Image J and analysed using the Ibidi Chemotaxis and Migration Tool 

(V2.0). Qualitative plots and FMI and SD of angle measurements are also shown. 

Quantitative data shows mean values ± SEM of 3 independent experiments. *P<0.05, 

**P<0.01 one way (SD of angle) or two way (FMI) ANOVA with Tukey’s post hoc test. 

To look at directional migration quantitatively, forward migration index (FMI) and SD of angle 

measurements are compared using the Chemotaxis and Migration Tool (Fig. 34). When 

comparing migration perpendicular to the gradient of conditioned medium (xFMI), no 

significant differences in forward migration were found between conditions or compared to 

medium control (two way ANOVA with Tukey‟s post hoc test, P<0.05). Forward migration 

parallel to the conditioned medium gradient (yFMI) is significantly increased (P<0.01) toward 

both live and dead CFS compared to control. Forward migration to JK CFS and aJK CFS 

was also significantly increased compared to aJK whole culture (P<0.01).  

When looking at SD of angle (Fig. 34), significant directional migration was only observed 

toward aJK CFS compared to control (P<0.05), and no significant differences were found 

between conditioned medium groups (one way ANOVA with Tukey‟s post hoc test). Overall, 
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the two approaches to assess directionality, FMI and SD of angle, broadly agree in their 

analysis of data. 

5.2.5.2. Chemotaxis to apoptotic THP-1-derived macrophages 

The Dunn Chamber was then used to assess horizontal migration of monocytes to MØ-

conditioned medium. Monocyte infiltration into the arterial intima and differentiation to MØ is 

one of the initiating events in plaque formation45, and further understanding of how and when 

MØ recruit further inflammatory cells to the plaque would be beneficial in understanding 

disease progression. 

Figure 35 shows representative plots of monocyte migration toward medium conditioned with 

live MØ (MØ whole culture/ MØ WC), live MØ conditioned medium with cell bodies removed, 

leaving MPs and soluble factors (MØ cell-free supernatant/ MØ CFS), UV-induced apoptotic 

MØ conditioned medium (aMØ WC), and UV-induced apoptotic MØ conditioned medium with 

cell bodies removed (aMØ CFS). All four plots show directional movement towards an 

attractive factor. 

Figure 35. Monocytes migrate towards medium conditioned with live or apoptotic THP-

1-derived macrophage cells VD3 stimulated THP-1 in chemically-defined (CD)-MØ medium 

were allowed to migrate to live MØ or aMØ whole cell (WC) or cell-free supernatant (CFS) 
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(2h; 37C). Monocyte migration was monitored using time-lapse video microscopy. Migration 

of 40 cells per assay was measured using Image J and analysed using the Ibidi Chemotaxis 

and Migration Tool (V2.0). Qualitative plots and FMI and SD of angle measurements are also 

shown. Quantitative data shows mean values ± SEM of 3 independent experiments. *P<0.05, 

**P<0.01, ***P<0.001 one way (SD of angle) or two way (FMI) ANOVA with Tukey’s post hoc 

test. 

To look at directional migration quantitatively, forward migration index (FMI) and SD of angle 

measurements are compared using the Chemotaxis and Migration Tool. When comparing 

migration perpendicular to the gradient of conditioned medium (xFMI), no significant 

differences in forward migration were found between conditions or compared to medium 

alone control (P>0.05, two way ANOVA with Tukey‟s post hoc test). All MØ conditioned 

medium groups showed significant increases in forward migration parallel to the conditioned 

medium gradient (yFMI), compared to medium alone control, with aMØ WC at P<0.01, and 

MØ WC, MØ CFS and aMØ CFS at P<0.001 (two way ANOVA with Tukey‟s post hoc test). 

There were no significant differences in forward migration between conditioned medium 

groups.  

When looking at SD of angle (Fig. 35), significantly decreased variation is seen when 

migration is toward MØ WC and aMØ WC compared to control (P<0.05), however variation 

when migration is toward MØ CFS and aMØ CFS show even greater significance when 

compared to control (P<0.01) (one way ANOVA with Tukey‟s post hoc test). Significant 

differences were not seen when comparing directional migration toward each different 

conditioned medium (P<0.05). Overall, the two approaches to assess directionality, FMI and 

SD of angle, broadly agree in their analysis of data.  

Trends in yFMI and SDoA data indicate that soluble factors or MPs within CFS, from both 

live and dead MØ, are chemoattractive, and that the presence of cells dampens monocyte 

attraction by comparison. 

5.2.5.3. Chemotaxis to apoptotic THP-1-derived foam cells 

Next, the Dunn Chamber was used to show horizontal migration of monocytes to FC 

conditioned medium. MØ infiltration to the plaque is followed by lipid uptake and foam cell 

formation, leaving questions on the effects of lipid-loading on MØ function162, many of which 

remain unanswered, including effects on further monocyte recruitment to the plaque and 

phagocyte recruitment to apoptotic foam cells. 

Figure 36 shows representative plots of monocyte migration toward medium conditioned with 

live FC (FC whole culture/ FC WC), live FC conditioned medium with cell bodies removed, 

leaving MPs and soluble factors (FC cell-free supernatant/ FC CFS), UV-induced apoptotic 
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FC conditioned medium (aFC WC), and UV-induced apoptotic FC conditioned medium with 

cell bodies removed (aFC CFS). All four plots show directional movement towards an 

attractive factor. 

Figure 36. Monocytes migrate towards medium conditioned with live or apoptotic THP-

1 foam cells VD3 stimulated THP-1 in chemically-defined (CD)-MØ medium were allowed to 

migrate to live FC or aFC whole cell (WC) or cell-free supernatant (CFS) (2h; 37C). 

Monocyte migration was monitored using time-lapse video microscopy. Migration of 40 cells 

per assay was measured using Image J and analysed using the Ibidi Chemotaxis and 

Migration Tool (V2.0). Qualitative plots and FMI and SD of angle measurements are also 

shown. Quantitative data shows mean values ± SEM of 3 independent experiments. *P<0.05, 

**P<0.01, one way (SD of angle) or two way (FMI) ANOVA with Tukey’s post hoc test. 

To look at directional migration quantitatively, forward migration index (FMI) and SD of angle 

measurements are compared using the Chemotaxis and Migration Tool (Fig. 36). When 

comparing migration perpendicular to the gradient of conditioned medium (xFMI), no 

significant differences in forward migration were found between conditions or compared to 

medium alone control (two way ANOVA with Tukey‟s post hoc test, P<0.05). Surprisingly, 

only migration toward FC WC and FC CFS showed significant increases in forward migration 

parallel to the conditioned medium gradient (yFMI), (P<0.05). There were no significant 

differences in forward migration between live or dead FC conditioned medium groups.  
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When looking at SD of angle (Fig. 36), significant directness was observed toward FC WC 

and FC CFS (P<0.01), and aFC WC (P<0.05), compared to control (one way ANOVA with 

Tukey‟s post hoc test). Significant differences were not seen when comparing directional 

migration toward each different conditioned medium (P>0.05). Overall, the two approaches to 

assess directionality, FMI and SD of angle, broadly agree in their analysis of data. 

Trends in SDoA values, and yFMI results, indicate that soluble factors or MPs within CFS 

from live FC are chemoattractive, however unlike live MØ WC, the presence of FC in the 

supernatant does not appear to inhibit monocyte recruitment. Monocyte chemoattraction to 

aFC WC/CFS (SDoA) is also less uniform, indicating a potential reduction in functional „find-

me‟ mediator release in aFC, or upregulated mechanisms of monocyte chemoattraction in 

live FC, which could both have pathological implications. 

5.2.5.4. Combined data 

Comparison of SDoA values towards live and apoptotic cell-conditioned medium showed 

largely comparable uniformity of monocyte migration between cell types apart from 2 

noticeable differences. Firstly, whole live MØ and FC cultures induced significant uniform 

monocyte migration compared to control (P<0.05), whereas live JK WC did not induce 

significant migration (Fig. 37). Secondly, aFC CFS induced significantly less uniform 

migration of monocytes compared to aMØ CFS, which could have implications in defective 

cell clearance (Fig. 37). 
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Figure 37. Chemoattractive properties of medium conditioned with Jurkat cells and 

THP-1-derived macrophages and foam cells Combined SDoA values from figures 31-33 to 

compare chemoattraction properties across cell types. Data shows mean values ± SEM of 3 

independent experiments. *P<0.05, **P<0.01 one way ANOVA with Tukey’s post hoc test. 

Distance measures were not sensitive enough to establish significant differences in 

monocyte migration in these chemotaxis assays (Fig. 38). 

 

Figure 38. Distance of monocyte migration 

toward apoptotic cell conditioned cell-free 

supernatant Data shows mean values ± SEM of 

at least 3 independent experiments. Control © 

n=3, MCP-1 n=4, aJK CFS n=3, aMØ CFS n=6, 

aFC CFS n=6. 
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5.2.6. Mechanisms of monocyte chemotaxis toward apoptotic cell-derived MPs and 
soluble factors 
In order to establish the molecular mechanisms that could be enlisted in monocyte attraction 

to apoptotic cells, in particular plaque-relevant ACs, roles of attractants ICAM-3 and 

CX3CL1, previously found in AC-derived MPs61,71, were investigated. The role of CD14, an 

LPS receptor also implicated in tethering of apoptotic cells31, was also investigated. 

Whilst it has been shown that CD14 acts minimally as a tethering receptor for AC, it may also 

have the ability to be stimulated by AC and AC-derived material, such as MPs, as is true 

when it is ligated by LPS368. It is unknown whether CD14 recognition of ACAMPs on MPs 

may activate monocytes and trigger migration123,124,370.  

Initially, cell surface expression of CD14 in VD3 stimulated THP-1 cells was confirmed using 

indirect immunofluorescence staining, followed by flow cytometric analysis (Fig. 39). Results 

showed positive CD14 staining in VD3 stimulated THP-1 monocytes, with a mean 7 fold 

increase in mean fluorescence intensity (MFI) following CD14 staining, compared to isotype 

matched control staining, in agreement with Thomas et al.312.  

 

 

Figure 39. Presence of CD14 on monocyte model VD3 differentiated THP-1 cells were 

stained with 61D3, a primary monoclonal antibody targeting CD14 (black plot on frequency 

histogram diagram) or isotype matched control antibody MOPC21 (grey plot on frequency 

histogram), followed by secondary antibody FITC, and fixed with 1% w/v formaldehyde in 

PBS. Expression levels were compared using flow cytometry and plots displayed as log 

fluorescence. Frequency histogram (left) is a representative example of 2 independent 

experiments. Data shown is mean fluorescence intensity (MFI) of the cell population ± SD. 

Following confirmation of CD14 expression on the monocyte cell surface, migration toward 

aMØ- and aFC-conditioned medium was assessed in the absence and presence of the 

CD14-blocking antibody, 61D3 (Fig. 40). Cell-free supernatant (CFS) was used as an 

attractant in antibody-blocking studies as previous results have shown some reduction in 
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variability of monocyte migration toward CFS compared to whole-cell culture (figs. 31-33), 

and MPs, which are of particular interest to these studies, would remain in CFS71. As we are 

investigating the effects of blocking migration, Euclidean distances travelled by monocytes 

will be compared. 

Plots shown in Fig. 40 do not show any significant reduction in migration in the presence of a 

CD14-blocking antibody, either toward aMØ CFS or aFC CFS. When comparing mean 

Euclidean distance of migrated monocytes toward aMØ CFS and aFC CFS, no significant 

differences in distance migrated were found in the presence of CD14-blocking antibody 61D3 

(unpaired t test). A small reduction in distance migrated toward aFC CFS in the presence of 

61D3 is shown, but this is not significant.  

 

Figure 40. CD14 does not mediate monocyte migration toward apoptotic MØ and 

apoptotic FC-derived MPs and soluble factors VD3 stimulated THP-1 in chemically-

defined (CD)-MØ medium were allowed to migrate to aMØ or aFC CFS (2h; 37C) in the 

presence or absence of excess 61D3, a CD14 blocking antibody. Monocyte migration was 

monitored using time-lapse video microscopy. Migration of 40 cells per assay was measured 

using Image J and analysed using the Ibidi Chemotaxis and Migration Tool (V2.0). Graphs 

show mean distance of cell migration ± SEM of multiple independent experiments. CFS n=6, 

CFS + anti-CD14 n=3. Results show no significant differences (unpaired t test). 
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Previous studies using a vertical migration chamber have found a role for ICAM-3 in the 

clearance of apoptotic cells, in both the phagocytic recruitment and tethering stages71. It is 

suggested that surface-bound ICAM-3 is lost during the apoptosis programme via shedding 

of ICAM-3 on microparticles (MPs), during a process known as zeiosis, or blebbing71. In 

these studies, monocyte migration toward aMØ- and aFC-CFS was assessed in the 

presence of the monoclonal ICAM-3-blocking antibody, MA4 (Fig. 41). 

Comparing plots in Figure 41, migration to aMØ CFS in the presence and absence of an 

ICAM-3 blocking antibody are comparable, which is supported by mean Euclidean distance 

values of migrated cells. Distances are comparable when looking at migration toward aMØ 

CFS in both the presence and absence of an ICAM-3 blocking antibody. Comparison of plots 

toward aFC CFS appears to show a visible reduction in monocyte migration in the presence 

of the ICAM-3 blocking antibody MA4. Mean Euclidean distances were compared, but 

although distance of monocyte migration was reduced in the presence of MA4, this was not 

found to be statistically significant. (P=0.12, unpaired t test). 

Figure 41. ICAM-3 mediated monocyte migration toward apoptotic foam cell-derived 

MPs and soluble factors Dunn chemotaxis assays were set up as in Figure 40, with the 

exception of the antibody used, which in this figure was an ICAM-3-blocking antibody.  Plots 
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shown are representative of 3 independent experiments. Graphs show mean distance of cell 

migration ± SEM of multiple independent experiments. CFS n=6, CFS + anti-ICAM-3 n=3. 

Results show no significant differences (unpaired t test). 

To investigate expression levels of ICAM-3, before and after induction of apoptosis, MØ and 

FC were stained with MA4, a primary monoclonal antibody targeting ICAM-3. If expression 

levels reduce following induction of apoptosis, it could be an indication that ICAM-3 is shed 

on MPs via blebbing. 

Histograms show very low levels of ICAM-3 surface expression (Fig. 42), however further 

analysis of mean fluorescence intensity shows a small decrease in ICAM-3 staining in 

apoptotic FC, and to a small extent apoptotic MØ, though differences were not significant. 

 
Figure 42. Macrophage and foam cell surface ICAM-3 expression before and after 

apoptosis induction Live and apoptotic MØ/FC were stained with an anti-ICAM-3 antibody 

(black plot on frequency histogram) or isotype matched control antibody MOPC21 (grey plot 

on frequency histogram), followed by secondary antibody FITC. Expression levels were 

compared using flow cytometry and plots displayed as log fluorescence. Data shown are 

mean fluorescence intensity (MFI) of cell population ± SEM from 3 independent experiments. 

Data analysed by two way ANOVA with Tukey’s post hoc test. 

Through the use of a vertical migration assay system, previous studies have shown CX3CL1 

to act as an attractant to apoptotic cells, including CX3CL1 derived from UV-induced 

apoptotic BL cells61. Using UV-induced apoptotic Mutu, a BL cell line, chemotaxis to AC-

derived supernatant in a horizontal assay system was observed (Fig. 43). Plots showing 

monocyte migration to aMutu CFS appeared to show more migration than control plots, 

aMØ ICAM-3 MØ ICAM-3 

FC ICAM-3 aFC ICAM-3 

M
Ø

 I
C

A
M

-3

F
C

 I
C

A
M

-3

0 .0

0 .1

0 .2

0 .3

M
e

a
n

 F
lu

o
r
e

s
c

e
n

c
e

 I
n

te
n

s
it

y

L ive

A p o p to tic

Log Fluorescence 



128 
 

however whether this was direct migration towards aMutu CFS is unclear. When comparing 

SD of angle, results shows less variable, therefore more direct, movement towards aMutu 

CFS compared to control (P<0.01, unpaired t test) (Fig. 43, bottom left). When comparing 

mean Euclidean distance of migrating monocytes (Fig. 43, bottom right), distance migrated 

was not significantly different toward aMutu CFS in the presence or absence of CX3CL1-

blocking antibody (P>0.05, unpaired t test). This is in contrast to previous studies, which 

observed robust blocking to apoptotic B cell supernatant with a CX3CL1-blocking antibody, 

however there were differences in experimental conditions61. 

            

Figure 43. CX3CL1 mediated monocyte migration to apoptotic mutu-derived MPs and 

soluble factors VD3 stimulated THP-1 were allowed to migrate to aMutu CFS in the 

presence or absence of 5ng/ml anti-CX3CL1. Monocyte migration was monitored using time-

lapse video microscopy. Migration of 40 cells per assay was measured using Image J and 

analysed using the Ibidi Chemotaxis and Migration Tool (V2.0). Graphs show SD of angle 

(left) and mean Euclidean distance of cell migration (right) ± SEM of 3 independent 

experiments.  

CX3CL1 has been heavily implicated in the development and progression of 

atherosclerosis289. The role of endothelial cell-derived CX3CL1 in the recruitment of 

monocytes to the arterial intima has previously been studied68,290,298. CX3CL1 has also been 

detected within human plaque MØ using reverse transcription-polymerase chain reaction 

(RT-PCR)371, and was found to be associated with MØ-derived FCs in the plaque366. The role 
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of aMØ- and aFC-derived CX3CL1 in monocyte recruitment to ACs in the plaque, and 

retention within the plaque, has not been characterised.  

Figure 44 shows monocyte migration to aMØ and aFC CFS in the presence or absence of a 

CX3CL1 blocking antibody. Plots showing migration toward aMØ CFS appear to show a 

significant reduction in migration in the presence of an anti-CX3CL1 antibody. This was 

shown to be a significant reduction (P<0.05, unpaired t test) when comparing mean 

Euclidean distance of monocyte migration. Interestingly monocyte migration toward aFC CFS 

does not appear reduced in the presence of anti-CX3CL1, which is confirmed by data 

showing mean Euclidean distances migrated. Distance migrated is not significantly different 

toward aFC CFS in the presence or absence of anti-CX3CL1 (P<0.05 unpaired t test).  

 

Figure 44. CX3CL1 mediated monocyte migration toward apoptotic macrophage-

derived MPs and soluble factors Dunn chemotaxis assays were set up as in Figure 40, 

with the exception of the antibody used, which in this figure was a CX3CL1 blocking 

antibody. Graphs show mean distance of cell migration ± SEM of at least 3 independent 

experiments, P<0.05, unpaired t test. 
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To investigate expression levels of CX3CL1, before and after induction of apoptosis, MØ and 

FC were stained with a primary monoclonal antibody targeting CX3CL1. If expression levels 

reduce following induction of apoptosis, it would support evidence that CX3CL1 is shed in the 

supernatant, as soluble CX3CL1 or bound to the surface of MPs via blebbing, as indicated by 

Truman et al.61. 

Histogram plots in Figure 45 show positive CX3CL1 surface staining of MØ (black plots on 

frequency histograms) compared to isotype control (grey plots). Staining of aMØ is also 

positive but to a lesser extent, supporting a loss of membrane bound CX3CL1 (mCX3CL1) 

following induction of apoptosis (16-20h post UV). This is also shown by the mean 

fluorescence intensity (MFI) of the stained cell population, with a clear reduction in MFI 

values shown in aMØ, when compared to live MØ, however this reduction was not shown to 

be statistically significant (two way ANOVA with Tukey‟s post hoc test). 

Expression of mCX3CL1 on FC can also be seen on histogram plots (black plots on 

frequency histograms), with a reduction of CX3CL1 expression following induction of 

apoptosis (aFC). This was also reflected in the MFI values, however the reduction was not 

shown to be statistically significant (two way ANOVA with Tukey‟s post hoc test). 

 
Figure 45. Macrophage and foam cell surface CX3CL1 expression before and after 

apoptosis induction Live and apoptotic MØ/FC were stained with an anti-CX3CL1 antibody 

(black plot on frequency histogram) or isotype matched control antibody MOPC21 (grey plot 

on frequency histogram), followed by secondary antibody FITC. Expression levels were 

compared using flow cytometry and plots displayed as log fluorescence. Data shown are 
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mean fluorescence intensity (MFI) of cell population ± SEM from 3 independent experiments. 

Data analysed by two way ANOVA with Tukey’s post hoc test. 

Reduction in detected membrane bound CX3CL1 expression could be occurring for a 

number or reasons, including internalisation or epitope-masking. In order to further support 

the hypothesis that CX3CL1 is shed from the surface of dying cells, either by blebbing or 

cleavage, an aMØ CFS sample was analysed for CX3CL1 (preliminary data). Presence of 

CX3CL1 in CFS would support the hypothesis that apoptosis induction results in CX3CL1 

shedding from the cell surface, where it may exert its effects as an attractant. Preliminary 

studies showed CX3CL1 presence in aMØ CFS, but levels were not detectable (nd) in 

medium control (C). This supports the proposed hypothesis, however more work needs to be 

done, with the appropriate controls, to determine CX3CL1 presence in CFS, and to elucidate 

whether it is MP-associated or soluble. 
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Figure 46. Preliminary data. Presence of CX3CL1 in apoptotic macrophage-

conditioned medium CX3CL1 concentrations in harvested aMØ CFS, or CD-MØ medium 

control (C), were assessed with a CX3CL1 antibody DuoSet according to manufacturers’ 

instructions (R&D Systems, Abingdon, UK). n=1. 

5.2.7. Effects of apoptotic macrophage and apoptotic foam cell-derived cell-free 
supernatant on endothelial cells 
To add an additional level of understanding to this model as may be observed in a 

physiological setting, the effects of intra-plaque mediator release by aMØ and aFC on 

endothelial cells (ECs) will be modelled. ECs are the natural barrier between the blood 

stream and the atherosclerotic plaque, mediating monocyte recruitment to the plaque. 

Inflammatory mediators or MPs released by phagocytes or ACs within the plaque may effect 

EC activation and exacerbate monocyte recruitment, a pro-atherogenic effect. The effects of 

live and apoptotic MØ/FC mediators on ECs will be modelled by culturing human umbilical 

vein endothelial cells (HUVECs) in CFS from each AC type (16-20h), and measuring 

changes in cell surface expression of E-selectin (CD62E), which mediates monocyte 

adhesion to the artery wall, promoting diapedesis372. Results in Figure 47 show very low 
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levels of E-selectin expression following culture with medium alone (control), however the 

percent of the cell population staining positive for E-selectin was significantly increased by 

aFC CFS (P<0.05), and even more so by MØ, aMØ and aFC CFS (P<0.01).   

 

Figure 47. Apoptotic MØ and apoptotic FC cell-free supernatant upregulate E-selectin 

expression in HUVECs Live and apoptotic MØ/FC CFS or medium control (C) were placed 

neat onto cultured human umbilical vein endothelial cells (HUVECs) (16-20h; 37C). HUVECs 

were harvested and stained with FITC labelled anti-CD62E (black plot on frequency 

histogram) or control antibody (grey plot on frequency histogram diagram) and expression 

levels were compared using flow cytometry. Data shown are mean ± SEM from 3 

independent experiments. *P<0.05, **P<0.01, two way ANOVA with Tukey’s post hoc test. 

5.3. Discussion 

The aims of these studies were to establish a horizontal assay system to investigate 

phagocyte chemotaxis to apoptotic cells. This could then be used to investigate chemotaxis 

to models of apoptotic cell types found in the atherosclerotic plaque, and elucidate possible 

mechanisms in the „find-me‟ stage of apoptotic cell clearance, in particular, the roles of 

CD14, ICAM-3 and CX3CL1. 

Defective AC clearance and consequent failure to resolve inflammation, have been 

implicated in atherosclerotic plaque progression58,195,197, however research into the CX3CL1 

receptor (CX3CR1) has shown that knocking down key mechanisms of monocyte recruitment 
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to the arterial intima greatly reduces formation of atherosclerotic plaques239. As excessive 

monocyte recruitment is not beneficial to established plaque resolution, reduction in 

monocyte recruitment to the plaque could be a key aim for future therapies. To develop 

these, full understanding of the mechanisms and kinetics of monocyte recruitment to the 

plaque, and to apoptotic cells once within the plaque, is required. 

Results in this chapter show that aMØ and aFC are both strong inducers of chemotaxis in 

monocytes, however chemotaxis mechanisms vary which could alter the monocyte subtype 

attracted to the atherosclerotic plaque. Results also show that both aMØ- and aFC-derived 

MPs/soluble factors have the ability to upregulate monocyte capture molecule E-selectin on 

the surface of endothelial cells. 

  

Phagocyte 

 

Apoptotic cell 

 

 

Monocyte 

Apoptotic MØ 

(aMØ) 

non-lipid laden MØ and aMØ attract monocytes, which was 

not significantly inhibited via blocking antibodies targeting 

CX3CL1, but not targeting CD14 and ICAM-3 

 

Apoptotic FC 

(aFC) 

FC and aFC attract monocytes, in a stronger but more 

disordered manner than aMØ, which was not significantly 

inhibited via blocking antibodies targeting CD14, ICAM-3 and 

CX3CL1 

Table 8. Summary of results from key research questions addressed in Chapter 5 

5.3.1. Use of the horizontal system 
The vertical chamber showed significantly increased (P<0.05) mean number of monocytes 

per HPF migrating towards apoptotic foam cell-derived cell-free supernatant (aFC CFS), 

compared to aMØ CFS or medium control (Fig. 27). The methods of analysis used for the 

Dunn assay does not account for total number of monocytes migrated, as a set number of 

cells are sampled within each assay, so differences in total number of migrated cells would 

not be teased out using the Dunn method.  The different methods of measuring monocyte 

migration can therefore show discrete data, and give different insights into mechanisms of 

chemotaxis. This was highlighted by Wilkinson (1998), who suggested multiple assays be 
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used to understand full locomotive properties of cells373. Dunn chemotaxis assays allow 

visualisation of each stage of chemotaxis, including cell morphology, whereas vertical assays 

use excess monocytes. This allows total counts of monocyte migration to be established, 

giving another dimension to understanding of chemoattractive properties of the mediator 

being tested. However, if you consider overall in vivo relevance, vertical chambers are not 

the strongest assay. Meyvantsson et al. developed an assay that combines good optics and 

high throughput, which was successful in the investigation of neutrophil chemotaxis, however 

the method is lengthier and more complex than more established assays, and requires the 

use of an automated liquid handling system (96-tip CyBiWell, CyBio, Jena, Germany)293. 

The effects of gravity in a vertical assay system, must not be ignored. Migrating cells, e.g. 

monocytes, settle onto the porous polycarbonate membrane. The effect of this on the 

activation state of monocytes and subsequent migration, following contact with the 

membrane or other monocytes, is unknown. Using a horizontal assay, such as the Dunn 

chamber, negates the effects of gravity on monocyte migration. Growth on glass coverslips, 

in the presence of PDL, may affect migration characteristics, however all tracked monocytes 

are in contact with coverslips, providing a homogenous state of activation. Migrating cells are 

also packed into upper chambers in excess in the vertical chamber, which will also have 

untold effects on activation state of monocytes, an issue not present using the Dunn method.  

5.3.2. Optimisation of the Dunn chamber assay and defining ‘directness’ 

5.3.2.1. Selection of migrating cell model 

Initially a phagocyte model proficient in chemotaxis that worked in the Dunn chamber had to 

be identified. Unstimulated THP-1 cells did not have the necessary characteristics to be used 

in the Dunn chamber as adherence to glass coverslips is required. Differentiation with PMA, 

or PMA and VD3 (DS), resulted in a phenotype that appeared overly adherent for migration 

assays. Despite small amounts of visible movement by these cells in the presence of MCP-1 

in the Dunn chamber assay, cells appeared to be anchored too strongly to migrate (Fig. 28). 

This was found using both glass and plastic coverslips. Human peripheral blood monocytes 

were also too adherent for short-term migration assays using plastic or glass coverslips. 

Differentiation of THP-1 cells with VD3 results in a monocyte like phenotype that appeared to 

be further down the differentiation pathway than unstimulated THP-1 cells, but still with 

monocyte-like characteristics, rather than MØ-like characteristics, e.g. as seen with PMA/DS 

stimulated THP-1. This conclusion is based on features including maintenance of small, 

round morphology (fig. 5: Chapter 3) with a lot of homogeneity, a weakly adherent 

phenotype, maintenance of a low cytoplasmic: nuclear ratio, high expression of monocyte 

marker CD14 (Fig. 9: Chapter 3), and continued proliferation. This agreed with observations 
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made by Schwende et al.310, Daigneault et al.311, and Thomas et al.312. Daigneault et al. 

found VD3 stimulated THP-1 were most similar to human primary monocytes in terms of 

CD14 expression, compared to undifferentiated or PMA differentiated THP-1 cells311. 

Schwende et al., and Thomas et al. found high CD14 expression, low nuclear:cytoplasmic 

ratio, low LPS response and continued proliferation in VD3 stimulated THP-1 cells, all 

indications of a monocytic phenotype310,312. VD3 stimulated THP-1 could be a better 

representation of monocytes than unstimulated THP-1, which have been likened to 

monoblast/immature monocyte-like cells374. Studies in murine embryonic stem cell-derived 

macrophages (ESDM) found increased migration of immature macrophages toward apoptotic 

BL cell supernatant, compared to migration of mature ESDMs, whereas mature ESDMs were 

more proficient at phagocytosis of ACs compared to their immature counterparts, seen in 

these studies when comparing monocytic VD3 and macrophage-like PMA/DS cells375. VD3 

stimulated THP-1 were also found to be a successful model of monocyte migration in vertical 

assays by Torr et al.71, as seen in these studies (Fig. 27). 

5.3.2.2. Optimisation of control assays 

Monocyte chemotactic protein -1 (MCP-1), or CCL2, was originally identified as a novel 

monocyte chemotactic and activating factor produced following THP-1 culture at high cell 

density304. It is a CC chemokine family member, and is a recognised inducer of monocyte 

migration376, and was the chemokine of choice to optimise and characterise VD3 stimulated 

THP-1 monocyte migration in the Dunn chamber. MCP-1 has a molecular weight of 

approximately 13kDa376, which will form a linear concentration gradient between the inner 

and outer wells of the Dunn chamber approximately 30 minutes following assay set up, with 

a half-life of around 30 hours292. This is well within the parameters of methods used here, in 

which monocyte migration is assessed over a 2 hour time period. Assaying monocyte 

migration to MCP-1 as a positive control, a known attractive agent to monocytes304,306,377, 

also allowed for the evaluation of a variety of qualitative and quantitative analysis tools to 

assess the various ways in which the data could be interpreted, depending on analysis 

methods employed. 

5.3.2.3. Qualitative analysis methods for the Dunn assay 

Cells are tracked using Image J and qualitative plots are created using the Ibidi Chemotaxis 

and Migration Tool. As chemotaxis chambers are circular, and monocytes are monitored 

from any chosen fixed position of the microscope over the circumference of the circle, the 

positive direction of movement towards MCP-1 could be at any angle over 360 degrees. To 

make comparison of qualitative data easier, all plots are rotated so direct positive migration 

would show at 0/360 degrees. Results show clear directional monocyte migration towards 

MCP-1 (Fig. 29), which is also reflected in P values obtained using the integrated Rayleigh 
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Test for unimodal clustering. This test measures uniformity of a circular distribution of points, 

in this case the cell endpoints on a plot, and takes into account distance from the origin 

based on X and Y axis coordinates, and is often employed in conjunction with qualitative 

plots, as part of Dunn chamber assay analysis369,377-379. The null hypothesis of uniformity is 

rejected when P>0.05. This gives a good indication of direct migration on an individual assay 

basis. Rayleigh test results show much higher levels of significance of migration towards 

MCP-1 than medium control (see P values in Fig. 29), with all MCP-1 assays showing 

significance levels of at least P<0.001. The most significant P value toward medium control 

was P=0.002, with the other assays both at P>0.05, rejecting the null hypothesis of non-

uniform migration. Studies using murine bone marrow-derived macrophages have 

successfully modelled chemotaxis to MCP-1 using the Dunn chamber over 24 hours377. Many 

studies use rose diagrams to display data377-379, however raw data plots were chosen in this 

instance for a clear representation of results.  

5.3.2.4. Quantitative analysis methods for the Dunn assay 

5.3.2.4.1. Distance, velocity and directness 

The chemotaxis and migration tool also provides quantitative outputs including Euclidean 

distance, accumulated distance, velocity and directness. Interestingly, despite clear 

qualitative differences between migration toward MCP-1 compared to CD-MØ medium 

control, differences in directness, velocity, Euclidean distance and accumulated distance 

were not significantly different, even with the recommended number of cells tracked to allow 

for statistical significance. Although cells in control experiments do not migrate in a 

directional manner, they do show varying levels of chemokinesis, non-directional 

movement240. This means that unless quantitative measures take into account the direction 

of migration, differences may not be highlighted. The provided measure of directness in this 

software measures how efficiently cells move from the starting point (A) to the endpoint (B), 

rather than taking into account the location of B according to the gradient of the attractive 

agent, and whether cell migration is along the established gradient of attractant369 . 

5.3.2.4.2. Forward Migration Index (FMI) 

To combat this, another measure is provided, the forward migration index (FMI). FMI values 

take into account positive and negative migration, distance migrated, and provides values for 

endpoints of cells both parallel (yFMI) and perpendicular (xFMI) to the attractive gradient. If 

both yFMI and xFMI values are close to zero, this corresponds to no chemotactic effect. A 

yFMI value nearer to 1, and an xFMI value close to zero, indicates a strong chemoattractive 

effect369. 
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5.3.2.4.2. Standard Deviation of Angle (SDoA) 

Looking at the variability of the cell end points is a useful method to distinguish whether the 

cell population has moved in a uniform manner, and this can be done by taking the angle (A) 

measurement of each cell, and calculating the mean standard deviation (SD) of these end 

points (SDoA). Using the SDoA of cell endpoints also shows statistically significant 

differences between data sets that show qualitative differences in cell migration of the overall 

population. Trends of SDoA reflect trends shown by FMI (figs. 31-33). A drawback of this 

method of analysis is that perfect negative migration would give the same value as perfect 

positive migration, however negative migration of the cell population was not seen in any of 

these studies. With attractants present, e.g. Fig. 29, overall migration of the cell population 

toward the attractant was observed, whereas directional migration of the cell population was 

not seen in control assays, giving higher SD values when looking at angle measurements. 

Also, this method fails to take into account distance migrated, unlike the Rayleigh test, which 

takes into account both distribution of endpoints and distance migrated. 

Each method provides useful information on the migration of monocytes. If complex 

measures of migration are not reflecting the apparent qualitative differences observed in 

monocyte migration to different attractants, comparing more basic methods such as distance 

migrated and SDoA may tease out differences, as less variables come into play. 

5.3.3. Modelling monocyte chemotaxis towards apoptotic cell models 

Whole cell supernatants and cell-free supernatants (supernatants centrifuged at 350xg, 6 

mins) were compared to establish differences in attractive properties of live or apoptotic cell 

bodies and large cell detritus, versus the attractive properties of cell-free supernatant, which 

would contain microparticles and soluble factors71. As crude supernatants were used in these 

studies, a plethora of „find-me‟ signals will be present that have been released by apoptotic 

cells to attract phagocytes for clearance.  

5.3.3.1. Monocyte migration to live cell-conditioned medium 

Live cell supernatants were investigated as a control for apoptotic cell supernatants, and 

were not expected to have strong attractive properties, however monocyte chemotaxis to live 

Jurkat, MØ and FC whole cell culture (WC) and CFS was observed qualitatively on raw data 

plots (figs. 31-33). Plots show directional migration of monocytes towards all Jurkat-

conditioned medium (Fig. 34), however SDoA data shows only migration toward aJK CFS 

was significantly less variable than assays towards medium control. yFMI values show 

comparable forward migration toward live and dead Jurkat CFS, which was significantly more 

directional than medium control (P<0.01). Forward migration to JK CFS and aJK CFS was 

also significantly increased compared to aJK whole culture (P<0.01). Results failed to identify 



138 
 

differences in migration toward whole cell cultures compared to CFS, which could explain 

differences in the presence or absence of „keep-out‟ signals. To date, only granulocyte „keep-

out‟ signals have been characterised78,79, but it is likely that more will be discovered in the 

pursuit of therapies for conditions where cell-specific dampening of immune responses would 

be of benefit, e.g. atherosclerosis or asthma70,79.  

Monocyte migration towards MØ-conditioned medium (Fig. 35) was directional under all 

conditions, with significant migration according to SDoA and yFMI values to both live and 

dead, whole cell culture or cell-free supernatant, compared to control. Although there were 

no significant differences in migration between conditioned medium groups, CFS from both 

live and dead MØ showed greater significant differences compared to control than whole cell 

supernatants (Fig. 35). Interestingly, trends in migration to FC-conditioned medium were 

slightly different, with migration to all conditioned medium observed in plots as with JK and 

MØ, but qualitative plots appear to show increased migration to aFC whole cell culture and 

cell-free supernatants compared, to FC counterparts (Fig. 36). Quantitative data however 

indicates the opposite trend, as SDoA showed significantly less variability (i.e. more direct 

migration) in live FC supernatants, compared control (P<0.01), and migration to aFC whole-

cell supernatant was not as significantly different compared to control (P<0.05), and no 

significant differences were observed between monocyte migration to medium control and 

aFC CFS. This is in contrast to results shown with Jurkat supernatants, in which significant 

directness in monocyte migration was observed only between aJK CFS and medium control, 

when comparing SDoA. yFMI data shows significant forward migration in live FC supernatant 

groups only, compared to medium control (P<0.05). Data indicates that apoptotic foam cells 

strongly induce migration (Fig. 27), but in a variable or disordered manner (Fig. 36), which 

could be a result of mixed messages dispatched by the aFC, e.g. similar to lactoferrin, a 

„keep-out‟ signal which keeps granulocytes away from sites of cell death78,79. 

Live cells would not be expected to be attractive to monocytes, indicative of an early stage of 

an immunological response, whether that be silent or inflammatory. Chemotaxis to live cell-

conditioned medium was observed in this study to the same extent as apoptotic cell-

conditioned medium, and, in the case of FC-conditioning, was even more attractive to 

monocytes than aFC-conditioning. This was particularly true in the case of live cell CFS. This 

was attributed to high cell density culture conditions, which could result in cells becoming 

stressed or activated, and in the case of immune cells as studied here (T lymphocytes, MØ 

and MØ-derived FCs), could result in mediator release that would result in activation or 

attraction of monocytes, e.g. MCP-1304. Recent work has also found that oxidative stress, 

even without cell death, mediates selective recruitment of monocytes380. Further investigation 

also showed high basal levels of apoptosis in live cell cultures, which was most likely due to 
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the culture conditions used to sequester high MP concentrations. PMA differentiation also 

results in terminal differentiation, and can alter THP-1 susceptibility to apoptosis309,311. 

Lauber et al.62 investigated THP-1, Mono Mac 6 (human leukaemia cell line), and HMDM 

migration to a variety of cell-free supernatants (CFS) derived from tumour cell lines, either 

from live cells or following induction to apoptosis via UV irradiation, using a vertical transwell 

system. Results saw that whilst almost all apoptotic cell CFS attracted all monocyte models, 

some monocyte models, but not others, migrated to live cell CFS. For example, THP-1 

migration toward live L929 CFS (murine fibroblast cell line) was observed to at least the 

same extent as other apoptotic cell CFS tested, but not to as great an extent as migration 

toward apoptotic L929 CFS. This supports data presented here where live cell cultures 

induce monocyte chemotaxis (figs. 31-33). Mono Mac 6 and HMDM both migrated to live 

MCF7 CFS (human breast carcinoma cell line) to the same extent as apoptotic MCF7 cells, 

but THP-1 migration was induced to a greater extent by apoptotic MCF7 CFS. This could be 

explained by low levels of migration toward both live and dead MCF7 CFS (<5% 

transmigration). Comparatively high levels of migration toward live Cos7 CFS (African green 

monkey kidney cell line) by HMDM was also observed (approx. 12% transmigration), but 

migration to apoptotic Cos7 CFS was greater (approx. 22%). Some HMDM transmigration 

was also seen toward live HT29 CFS (human colorectal carcinoma cell line). This study 

highlights that differences in phagocyte and target call type, live or apoptotic, can vary 

outcome with regards to chemotaxis induction. In contrast to data shown here (Fig. 34), 

Elliott et al.63 found live Jurkat CFS, harvested from Jurkat cells cultured at the same cell 

density as cultures used here, were not chemoattractive to undifferentiated THP-1 cells, in a 

vertical transwell assay. 

Every stage of apoptotic cell clearance requires a balance of „pro-clearance‟ and „anti-

clearance‟ mediators, e.g. “find-me” versus “keep-out” molecules in the chemotaxis phase, or 

“eat-me” versus “don‟t-eat-me” ligands in the recognition phase80. It is likely that the correct 

balance of pro- and anti-clearance signals is key to successful clearance90,94. Given the 

plethora of effector molecules recognised as having a role in AC clearance, and the levels of 

redundancy observed381, it is quite possible that different combinations are required for 

successful clearance of varying cell types, and in different physiological and 

pathophysiological scenarios. Work by Lauber et al. covered a variety of human 

monocyte/MØ cell models often used in studies of monocyte and MØ function62. In 

combination with the variety of cell lines used to generate CFS as attractants, it provides a 

useful insight to the different migration patterns observed when comparing cell models 

derived from the same species, i.e. cell line versus primary cell62. Results become more 

difficult to interpret and compare when considering cell lines to model ACs are derived from 
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human, murine and simian origin, however the presence of caspase-3 in all cell lines apart 

from MCF-7 gave some clues into mechanistic data62. Care was taken in the current 

chemotaxis studies to select a cell model to represent MØ and FCs, and appropriate 

phagocytes to complete the model. THP-1 cells are a useful tool in this respect as they can 

be induced to varying degrees of differentiation, so were used to model the migrating 

monocyte (+VD3), the MØ (+ PMA) and the FC (+ PMA + oxLDL). 

5.3.3.2. Monocyte migration to apoptotic cell-conditioned medium 

Qualitative plots (figs. 31/32) show robust monocyte migration (VD3 stimulated THP-1) to 

apoptotic JK and apoptotic MØ-conditioned medium. Monocyte migration to apoptotic FC-

conditioned medium was less robust (Fig. 37), with quantitative data suggesting more 

directional migration was seen toward live FC culture and CFS (Fig. 35). This could be due to 

increased expression of „find-me‟ signals and decreased „keep-out‟ mediator release in live 

FC in response to lipid-loading, or a failure of FC to upregulate „find-me‟ mediators, or 

downregulate „keep-out‟ mediators, following lipid-loading.  

Previous studies into monocyte chemotaxis towards apoptotic B cells found a role for AC-

derived MPs in monocyte migration to sites of cell death60,61,71. AC-derived MPs were 

identified by Segundo et al. via centrifugation, filtration, fluorescence microscopy, electron 

microscopy, and flow cytometry60. Recent research suggests that chemoattractants, such as 

CX3CL1 and ICAM-3, are associated with apoptotic B cell-derived MPs, and blocking action 

of these attractants reduces monocyte migration to MP61,71 (discussed further in 5.3.4.). In 

direct support of this, monocyte migration to apoptotic B cell CFS is observed in this model 

(Fig. 43).  

In contrast, Lauber et al. found no loss of chemotaxis induction following removal of 

microparticles (ultracentrifugation or 0.2µm filtration) from MCF-7 caspase-3 replete cells62. 

The authors concluded that chemotactic ability is not mediated by membrane-derived MPs in 

this instance as chemotaxis induction was not lost, and was subsequently found to be lipid 

mediated, however the chemotactic nature of removed MPs were not tested. These results 

may demonstrate a level of redundancy in „find-me‟ mediator function, either in this model or 

as a universal feature of „find-me‟ mechanisms, as seen with „eat-me‟ stages of AC 

clearance381. Further clarification of MP versus soluble factor-mediated monocyte recruitment 

in MØ and FC models would be gained by employing similar methods to Lauber et al., such 

as ultracentrifugation of CFS, followed by pellet resuspension in fresh medium, to investigate 

whether chemotactic activity maintained. 

Alongside the MPs in cell-free supernatants, there will be a wide range of soluble factors, 

including cytokines and chemokines, especially as the apoptotic cells in question have high 
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cytokine outputs upon activation. These may include identified „find-me‟ signals such as 

CX3CL161,LPC62, LPC induced  MCP-1, IL-8 and RANTES74, S1P75, S1P induced IL-8 and 

IL-1076, ICAM-371, ATP/UTP62. CX3CL1 was, until very recently, the only chemokine to be 

implicated in phagocyte recruitment to dying cells61, however a new study has shown release 

of an array of cytokines and chemokines, including MCP-1 and IL-8, following induction to 

apoptosis via Fas/CD95 ligation59. It is important to understand mechanisms of recruitment, 

and perhaps over-recruitment, of monocytes to the atherosclerotic plaque, especially as 

research in murine models suggests reducing recruitment, rather than promoting egress, is 

beneficial in limiting plaque progression156. 

5.3.4. Mechanisms of monocyte chemotaxis towards apoptotic macrophages and foam 

cells 

CX3CL1 release from apoptotic human B cells has been demonstrated61, both as a soluble 

mediator and in association with MPs, and was, until recently, the only classical chemokine 

implicated in the recruitment of phagocytes to dying cells. This was supported by results in 

Figure 43, which showed significant (P<0.01) uniform monocyte migration to UV-induced 

apoptotic B cell-derived CFS. CX3CL1 ligates the receptor CX3CR1 on the phagocyte 

surface to promote directional migration61,64. CX3CL1 also enhances clearance via MFG-E8 

upregulation, a bridging molecule between apoptotic cells and phagocytes69. Further 

chemokines have recently been implicated in leukocyte attraction following induction to 

apoptosis through Fas/CD95 ligation. Release of numerous cytokines and chemokines were 

shown, including MCP-1 and IL-8, which were demonstrated to attract THP-1 monocytes and 

primary human neutrophils respectively59.  

Truman et al. demonstrated that apoptotic human B cell-CFS induced HMDM and murine 

bone marrow-derived MØ (BMDM) chemotaxis using a vertical transwell system61. Migration 

was then inhibited by addition of an anti-CX3CL1 blocking antibody (50µg/ml) in lower wells 

containing CFS, or by the addition of recombinant CX3CL1 (100ng/ml) to upper wells, where 

monocytes are loaded. Results here did not show a significant reduction in VD3 monocyte 

migration to apoptotic B cell-derived CFS in the presence of CX3CL1 neutralising antibody, 

also loaded in the CFS chamber (Fig. 43). However, antibody concentration used by Truman 

et al. was ten times the concentration used in this study61, therefore reduced migration could 

be replicated in this system with further optimisation. MP generation is also unspecified with 

regard to cell culture densities61, and a vertical transwell assay is employed, both of which 

will impact optimal neutralising antibody concentrations across studies. The use of CX3CL1-

neutralising antibodies in aMØ-derived CFS and significantly reduced monocyte migration 

(P<0.05), an effect which was not observed using aFC CFS (Fig. 44). This shows interesting 

differences in „find-me‟ mediator release following lipid-loading, however further investigation 
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is required. The basis of these results could be an increased (non-saturating) presence of 

CX3CL1 in CFS or redundancy in CX3CL1 driven monocyte recruitment by aFC following 

upregulation of other recruitment mechanisms. 

In contrast, Elliot et al.63 found purified CX3CL1 did not induce THP-1 chemotaxis, nor did an 

anti-CX3CL1 depleting antibody inhibit migration, however data was not shown so exact 

assays, concentrations of antibodies and purified CX3CL1 concentration are not known. LPC 

was also shown not to mediate THP-1 chemotaxis in transwell assays, in contrast with data 

shown by Lauber et al., potentially showing differences in AC models62. A possible 

explanation is a lack of expressed CX3CR1 on human THP-1 cells, however expression has 

been shown in other studies382, and CX3CL1 mediated-monocyte migration was shown here. 

Following apoptosis induction in studies here, significant reduction in cell surface CX3CL1 

protein expression was not observed (aMØ/aFC; Fig. 45). In contrast, studies by Truman et 

al.61 (apoptotic B cell) observed significantly reduced levels of cell surface expression, 

supporting the notion that CX3CL1 may be lost from the surface via MP shedding, though 

mechanisms such as epitope masking or internalisation could be at play. To explore this 

notion further, preliminary assays were undertaken to assess the presence of CX3CL1 in 

harvested CFS. Initial data suggests CX3CL1 is present in aMØ-derived CFS (Fig. 46). This 

assay could be used further to compare quantities of released CX3CL1 in both live and 

apoptotic MØ and FC CFS. This would shed light on whether reduction in CX3CL1-mediated 

monocyte recruitment by aMØ CFS, and not aFC CFS, was a mechanistic/functional shift, or 

due to differences in quantities of shed CX3CL1 (Fig. 44). Presence of CX3CL1 in live cell-

derived CFS would also explain observed monocyte migration where it wasn‟t necessarily 

expected (figs. 31-33), as CX3CL1 has been shown to be constitutively shed in live B cells61. 

Studies here do not differentiate between soluble CX3CL1 (TACE/ADAM17 cleaved219) and 

MP-associated CX3CL1, which could be elucidated initially using ultracentrifugation to 

separate MPs and soluble factors. Subsequent immunoblotting could then be carried out to 

assess protein levels, or resuspension in fresh medium could text for function in further 

chemotaxis assays. Truman et al. found soluble and MP-associated CX3CL1 was shed by B 

cells61. 

CX3CL1-CX3CR1 interaction also provides a survival signal against apoptosis383. This has 

implications when considering the accumulation of potentially „sick‟ lipid-laden cells within the 

plaque. Inefficient clearance of dead cells in the plaque is the main pathological event in 

atherosclerosis, resulting in a core of cells undergoing secondary necrosis and contributing 

to plaque instability and rupture162. It could be argued that survival signals from CX3CL1 are 

beneficial to the plaque, keeping macrophages and foam cells alive to engulf cells already 
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undergoing apoptosis. On the other hand it may also be considered that macrophages are 

being kept alive for too long, enabling foam cell production and further recruitment of 

monocytes to the plaque. Macrophage apoptosis is considered to be anti-atherogenic in early 

lesions, but as lesions progress apoptosis is suggested to be pro-atherogenic149,236. 

Considering further „find-me‟ mediators, ICAM-3 is of interest as it has only very recently 

been shown to act as an inducer of monocyte migration to apoptotic cells71, and has had little 

study as it is absent in rodents384. Torr et al. showed ICAM-3 was MP-associated via the use 

of GFP-tagged ICAM-3 and fluorescence microscopy, observing locality of ICAM-3 following 

induction to apoptosis71. ICAM-3 shedding via MPs was further evidenced by the reduction in 

ICAM-3 surface staining following apoptosis induction (flow cytometry), and the presence of 

ICAM-3 (western blot) in association with supernatant harvested MPs71. 

Cell surface expression of ICAM-3 was assessed here using flow cytometry (Fig. 42), and 

MFI values were extremely low. Despite this, a very modest reduction in ICAM-3 surface 

expression was observed following induction to apoptosis, as seen by Torr et al.71. When 

adding ICAM-3-blocking antibody MA4 to CFS in chemotaxis assays, monocyte migration 

toward aMØ CFS was not affected (Fig. 41). There appeared to be decreased migration 

toward aFC CFS in the presence of an ICAM-3-blocking antibody, which may be proved 

significant with further repeats, however it was not shown to be significant here. It could 

indicate an interesting switch in aMØ and aFC phagocyte recruitment mechanisms upon 

induction of apoptosis. The mechanism behind ICAM-3 induced monocyte migration remains 

to be elucidated. 

Also investigated was the role of CD14 in monocyte migration to AC-derived mediators. 

CD14 has been shown to have contributing roles in atherogenesis, including pro-atherogenic 

responses to mmLDL201,323,324, and polymorphisms in the promoter of CD14 gene were found 

to be associated with an altered risk of atherosclerosis385. CD14 also interacts with ACs, from 

which MPs may contain some comparable structures, such as PS or ACAMPs31,284. Figure 

39 shows high expression of CD14 in the VD3 stimulated THP-1 monocyte model, however 

addition of a CD14-blocking antibody had no effect on monocyte migration toward aMØ or 

aFC CFS. This supports earlier work by Truman et al. (2004), which showed migration 

toward apoptotic B cells was not impaired in BMDM from CD14-/- mice386.  

5.3.5. Effects of apoptotic cell mediators on endothelial cell adhesion molecule 

expression  

The majority of plaque microparticles are thought to be macrophage-derived269, however the 

role of these AC-derived MPs on endothelial cell (EC) function has not been fully established. 
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A murine LDLR-/- model combined with P- and E-selectin double deficiency (P/E-/-) were 

found to develop 40% smaller and less calcified lesions, confirming the role for E-selectin in 

plaque development, and re-affirming the importance of inflammation in atherosclerosis, 

which mediates E-selectin expression372. Figure 47 shows the ability of MØ and FCs to 

induce E-selectin expression in HUVECs, an accepted endothelial cell model. This could 

indicate an un-modulated mechanism of monocyte recruitment, beyond the point of which 

recruitment is athero-protective. Further aspects of apoptotic MØ and apoptotic FC-derived 

MP-modulation on monocyte recruitment and inflammation in the plaque would be of interest. 

Human atherosclerotic plaque-derived MPs were shown to promote endothelial ICAM-1-

dependent adhesion and transendothelial migration by monocytes, by increased ICAM-1 

expression on ECs in a concentration-dependent manner281. This was attributed to transfer of 

ICAM-1 from plaque MPs to ECs, as an increase in ICAM-1 mRNA expression was not 

observed281. Whether AC-derived MPs can confer CX3CL1 in the same manner, contributing 

to circulating monocyte trapping in the arterial lumen, would be an interesting point of 

investigation. 

Mesri et al. found that primary human polymorphonuclear leukocyte (PMN)-derived MPs 

induced IL-6 production in HUVECs. Human T cell-derived MPs were also shown to induce 

pro-inflammatory cytokine production and apoptosis in bronchial epithelial cells, in which 

phagocytosis of MPs was suggested to be required387. Cytokines such as TNF-α do not 

regulate P-selectin expression in humans, but can induce P-selectin expression in mice, 

which has been attributed to species-specific transcriptional regulation388. This highlights the 

care that needs to be taken in experimental design. 

In summary, MPs could have a variety of roles in atherogenesis and plaque progression, 

many of which are yet to be investigated. 

5.4. Conclusions and Future work 

In conclusion, this is very early, but much needed work on mechanisms of monocyte 

attraction to sites of cell death, including those that may be encountered in the human 

atherosclerotic plaque. 

Dissecting out the roles of MPs versus soluble factors would be a logical next step to see if 

CX3CL1 and ICAM-3 are soluble or MP-associated in this model. Ultracentrifugation of cell-

free supernatants, and reconstitution of pellets in fresh medium, should be able to remove 

and then replace chemoattractive properties to monocytes respectively. Western blotting of 

pellets for CX3CL1 and ICAM-3 would further support MP-association, as seen in work with 
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apoptotic B cells61,71. Further profiling of MPs could also be carried out with immuno-staining 

and flow cytometry analysis.   

Fluorescently labelled MP could be used to assess binding of MP to MØ in the presence of 

the CX3CL1, ICAM-3 and CD14 blocking antibodies. This would allow analysis of binding 

mechanisms and mechanisms of immune modulation to be compared.   

The use of an endothelial cell barrier between monocytes and AC-conditioned medium would 

add an additional level of understanding. This could be carried out using a transwell-based 

assay, and could be used to assess whether microparticles with chemoattractive properties 

could attract cells from the other side of an endothelial cell barrier. A further development 

could then seek to use such a system under conditions of flow, so as to more closely model 

the interaction of blood monocytes with inflamed endothelium at sites of cell death. 

Transwell assays could also be used to assess preferential recruitment of primary human 

monocyte subtypes to apoptotic MØ and apoptotic FC MPs, as migrated cells can be 

collected and stained from lower chambers, for analysis by microscopy or flow cytometry. 

This would be interesting as CX3CR1 monocytes have been hypothesised to be 

preferentially recruited to the atherosclerotic plaque389. 

Utilising the Dunn chamber method to assess potential mechanisms, or failed mechanisms, 

from a plaque-like environment may also advance understanding of failed resolution of 

inflammation.  
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Macrophage function throughout ageing : A Pilot Study  

6.1. Introduction 

Individuals within the aged population show an increased susceptibility to infection, implying 

a decline in immune function, a phenomenon known as immunosenescence8. Paradoxically, 

an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with 

ageing, therefore some aspects of the immune system appear to be inappropriately active in 

the elderly9-11. The above evidence suggests inappropriate control of the immune system as 

we age. 

Macrophages, and their precursors monocytes, play an important role in host defence in the 

form of phagocytosis, and also link the innate and adaptive immune system via antigen 

presentation 18. Inappropriate control of macrophage function has been a continuing theme 

throughout this thesis. The following small-scale pilot study aimed to address whether 

changes in primary monocyte-derived macrophage function could be observed between 

young and mid-life adults. 

Despite immunosenescence now being a widely accepted consequence of ageing, it has 

proven difficult to reproduce at the cellular level, and the approach to research in this area 

varies widely 390. Research into age-related changes in innate immunity is less advanced 

than that of adaptive immunity, and research into function of mononuclear phagocytes as we 

age demonstrates the variability in research methodology towards one aspect of innate 

immunity, and consequently the conflicting results 7. It could be argued that the use of human 

cells ex vivo, from an age-range of donors, would provide the closest insight into functional 

changes in cells in human ageing.   

The following studies used macrophages derived from human peripheral blood mononuclear 

cell isolations from an age-range of healthy donors (BMDM). The ability of BMDM to interact 

with, and respond to, apoptotic cells was investigated. This was to assess the hypothesis 

that reduced capacity for MØ from aged individuals to be turned off effectively by dying cells 

may contribute to inappropriate control of the immune system as we age. To investigate the 

influence of age-related environments on apoptotic cell clearance was also studied, by co-

culture of THP-1-derived MØ with apoptotic cells following pre-treatment with plasma 

samples from individuals of different ages. Investigation into apoptotic cell clearance 

mechanisms as a result of an aged cell, or an aged environment, may provide clues as to at 

what point control is lost in the atherosclerotic plaque. 

Given the inflammatory environment in the atherosclerotic plaque, despite high levels of cell 

death, it is hypothesised that the inflammatory environment may result from apoptotic 
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MØ and apoptotic foam cells exerting an inflammatory effect by aged MØ. Research 

questions covered in this chapter are shown in the following table. 

   

Phagocyte 

 

Function 

 

 

Aged HMDM THP-1 derived MØ 

+ aged plasma 

 

Interaction with AC 

Do MØ from mid-life donors 

interact with AC as efficiently 

as MØ from young donors? 

Is CD14-dependent 

interaction the same in MØ 

from young and mid-life MØ?  

Does an aged environment 

impair MØ ability to interact 

with AC? 

 

Immune modulation 

Do MØ from mid-life donors 

respond to stimuli in the 

same manner as MØ from 

young donors? Can an 

inflammatory response be 

switched off effectively in MØ 

from mid-life donors? 

 

 

Table 9. Summary of key research questions addressed in Chapter 6 

6.2. Results 

6.2.1. Participant statistics; age and gender groups  
Recruitment of local healthy donors was carried out for preliminary experiments under 

existing ethical approvals.  Preliminary data gathered in this pilot study would then be used 

for study design for larger cohorts recruited through the Aston Research Centre for Healthy 

Ageing (ARCHA) following ethical approval for a larger scale study, where individuals could 

be recruited externally from a broader age-range. 

Data in Figure 48 show that 44 participants were recruited, from an age range of 18-58 

years. This data is the total number of participants recruited, and encompasses successful 

blood donations, and also donations or monocyte isolations that were not successful. The 

number of monocytes isolated per participant also varied greatly, so some participants were 
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used in individual studies only, and some were used across all studies. Interesting to note is 

the skew of gender groups. Males are the more prominent gender in younger age groups 

(18-26yrs), whereas females are the more frequent gender in the older age groups (46-

57yrs), which should be noted when interpreting some of the following data. As participants 

from older age groups were not readily available, young (age <25 years) and mid-life age 

(age >40 years) age groups were compared, excluding results from some participants. This 

is a limiting factor of this cohort, as access to the „healthy aged‟ population was lacking.  
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Figure 48. Summary of participants; age and gender Results show the cohort of 

participants in this pilot study, revealing an age range of 18-57 years, and a skew towards 

males in younger age groups (age<25 years) and women in older age groups (age>40 

years). n=44. 

6.2.2. Comparison of function in young versus mid-life primary human monocyte-
derived macrophages 
Both persistence of ACs, and increased autoimmune disease in the elderly has been 

observed11,33. These processes may also contribute to increased systemic inflammation in 

aged individuals, as they have been shown to have roles in immune modulation14,391. This is 

supported by data on C1q deficiency, where persistence of AC has been shown to drive 

autoimmunity392. CD14 is the prototypic pattern recognition receptor, with roles in 

inflammatory responses and AC clearance31. Whether CD14 contributes to reduced 

clearance by MØ in aged individuals is unknown, however reduction of CD14 in aged murine 

splenic MØ has been reported393,394. 
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The ability of HMDM to interact with UV-induced apoptotic Jurkat cells was assessed in the 

presence or absence of the monoclonal CD14 blocking antibody (mAb) 61D3, and compared 

to the non-blocking mAb 63D331 (Fig. 49). Results show no significant differences between 

AC interaction between age groups, either in the presence or absence of a CD14 blocking 

antibody, however both groups displayed a trend in reduced AC interaction in the presence 

of 61D3. 
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Figure 49. CD14 dependent and independent apoptotic cell interaction by young and 

mid-life primary human monocyte-derived macrophages Human monocyte-derived MØ 

(HMDM) were co-cultured with aJK, in the presence or absence of CD14 blocking antibody 

61D3, or non-blocking CD14 binding antibody control (63D3) (1h; 37C). Unbound AC were 

removed by washing, cells stained with Diff-Quik and the number of MØ interacting with AC 

was counted out of 200 cells per well. Data shown are mean % interaction ± SEM of 3 

(age<25) or 4 (age>40) independent experiments. Data analysed using two way ANOVA with 

Tukey’s post hoc test. 

As the ability of MØ to interact with AC did not appear to be impaired between young and 

mid-life age groups, it was then investigated whether immune-modulation was comparable 

between age groups following stimulation with pro- or non-inflammatory mediators, given the 

link between inflammation and ageing, and the hypothesis that a lack of appropriate MØ 

control is the source14. 

The levels of TNF-α release was assessed without MØ stimulation to investigate whether 

basal levels of inflammatory cytokine release were associated with either age group (Fig. 

50). Results showed no significant differences in TNF-α release between age groups in 

unstimulated MØ. TNF-α response to apoptotic Jurkat is the same by MØ from young and 

mid-life age groups. Trends showed increased TNF-α release in response to LPS, compared 

to basal and AC co-culture, by MØ from both young and mid-life age groups, as seen with 

THP-1-derived MØ (Fig. 19; Chapter 4). These results were not found to be significantly 
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different, however an increased sample size would boost statistical power of these assays. 

Trends suggest an increased TNF-α response by MØ from mid-life donors, compared to 

young donors, in response to LPS. 

To investigate the ability of apoptotic Jurkat to „switch-off‟ an inflammatory response by MØ, 

as seen in THP-1-derived and primary MØ previously (figs. 16/20; Chapter 4), MØ were co-

cultured with apoptotic Jurkat prior to addition of LPS (Fig. 50). Interestingly, whilst trends 

showed AC-induced reduction in LPS-induced TNF-α release in young MØ (as seen in Fig. 

23), ACs did not appear to switch off the TNF-α release in mid-life MØ, potentially implicating 

inappropriate control of immune responses by MØ as we age. 
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Figure 50. Immune modulation of young and mid-life primary human monocyte-

derived macrophages by apoptotic cells HMDM were co-cultured with aJK or CDMØ-

medium control (20h; 37C). 5ng/ml LPS or CDMØ-medium control was added to relevant 

wells with normal human serum (10% v/v final conc.) and incubated (4h; 37C). Samples were 

diluted 1/5 in sfRPMI prior to ELISA analysis. TNF-α ELISA was carried out according to 

manufacturer’s instructions (PeproTech Ltd). Data shown is mean ± SEM of 5 independent 

experiments per age group. Data analysed using two-way ANOVA with Tukey’s post-hoc 

analysis. 

6.2.3. Effect of young versus mid-life plasma on THP-1 macrophage ability to interact 

with apoptotic cells 

As human ageing studies are based largely on observation of end-points, such as cytokine 

profile in the blood, or presence of apoptotic cells in situ, it is unknown whether apparent 

defects in immune modulation are a result of altered functional ability of ageing cells, or the 

effect of an aged environment on what would be otherwise fully functional cells. Results 

above (Fig. 49) suggest no change in cell function, with regards to AC clearance, however 

failed clearance may be impaired in vivo if cells are affected by an age-related environment. 

This could have particular relevance with regards to AC clearance due to the necessity for 
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bridging molecules in efficient clearance. This area is currently understudied in humans, 

though some data suggests an increase in anti-C1q autoantibodies in aged individuals350. An 

inflammatory environment can also reduce AC clearance, an environment associated with 

ageing, as demonstrated by Aprahamian et al. in mice6,14,57. 

To this end, the effect of plasma on the ability of THP-1-derived MØ to interact with apoptotic 

Jurkat cells was investigated. THP-1 MØ provide a consistent model system with a baseline 

ability for AC interaction. Differentiated THP-1 MØ were cultured in sfRPMI with 10% (v/v) 

plasma (72h; 37C) to investigate any long-term effects of young or mid-life plasma on 

function. AC (UV-induced Jurkat) interaction assays were then carried out with pre-treated 

THP-1 MØ, in the presence of plasma from the same donor as pre-treatment (10% v/v), or in 

the absence of plasma. This will differentiate between the effects of young versus mid-life 

plasma conditioning on THP-1 MØ function, and the immediate effects of donor plasma 

presence on assisting phagocyte:AC interaction, e.g. via bridging molecules or complement 

components. 

Results showed that THP-1 MØ conditioning with young versus mid-life plasma did not 

significantly alter THP-1 MØ ability to interact with apoptotic Jurkat cells (Fig. 51), though a 

very small decrease in AC interaction following mid-life plasma conditioning could prove 

interesting given a larger cohort or older participants (grey bars). This effect was abrogated 

in the presence of plasma, which appeared to restore full capacity for AC interaction (black 

bars). These results are not significant, but given a larger cohort, it would be interesting to 

pursue the hypothesis that an age-related environment may decrease macrophage function. 
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Figure 51. Effects of young versus mid-life plasma samples on THP-1-derived MØ 

function DS differentiated THP-1, seeded at 2x104 cells/well in 24 well plates, were treated 

with young or mid-life donor plasma (72h; 37C). 16-20 hours post UV-induction, apoptotic 

Jurkat were resuspended in fresh sfRPMI, medium in all wells also replaced, and phagocytes 
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co-cultured with a 10:1 ratio of AC:MØ , in the presence or absence of the same donor 

plasma (1h; 37C). Unbound AC were removed by washing and samples fixed. To count, cells 

were stained with Diff-Quik and the number of MØ interacting with AC was counted out of 

200 cells per well No significant differences were found (two way ANOVA with Tukey’s post 

hoc test). Data shown are mean % interaction ± S.E of 3 (age<25) or 4 (age>40) 

independent experiments. 

6.3. Discussion 

Increased susceptibility to infection implying loss of immune function and, conversely, an 

increase in immune cell activation, leading to autoimmune disease, have been linked with 

ageing1,7,14,9,10. Autoimmune diseases, e.g. rheumatoid arthritis, and increased autoantibody 

titre have been associated with ageing as a risk factor 11,12, suggesting inappropriate control 

of the immune system as we age. 

Results from this chapter show no significant differences between the ability of MØ from 

young and mid-life donors to interact with or respond to apoptotic cells. The use of plasma 

from mid-life donors does not affect the ability of MØ to interact with AC and vice versa. It is 

likely that much bigger sample sizes would be required to establish significant differences.  

  

Phagocyte 

 

Function 

 

 

Aged HMDM THP-1 derived MØ 

+ aged plasma 

 

Interaction with AC 

MØ from mid-life donors 

interact with AC as efficiently 

as MØ from young donors. 

 

CD14-dependent interaction 

is the same in MØ from 

young and mid-life MØ.  

An aged environment does 

not significantly impair MØ 

ability to interact with AC. 

 

Immune modulation 

MØ from mid-life donors 

respond to stimuli in the 

same manner as MØ from 

young donors.  
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Inflammatory responses can 

be switched off effectively in 

MØ from mid-life donors. 

Table 10. Summary of results from key research questions addressed in Chapter 6 

Adaptive immune responses are more widely studied than innate immunity in ageing 

research, and even within monocyte and macrophage research on ageing, responses to 

pathogenic challenge have held the focus395. Of the MØ roles that have been studied, 

primarily in murine models, defective MØ function is implied. Impaired peritoneal 

macrophage function was found with ageing in BALB/c mice with regard to adherence, 

opsonisation, phagocytosis and antibody-dependent cell cytotoxicity23.  

PBMC-derived monocytes can be differentiated into human monocyte-derived MØ (HMDM), 

as was used in this pilot study. Previous studies from monocytes isolated from aged 

individuals display a decrease in IL-6 and TNF production following LPS activation, as 

observed in murine models, which was attributed to deficient PKC and MAPK activation32. A 

drawback of using PBMC-derived macrophages is the comparability with tissue 

macrophages, another advantage of murine models, where tissue macrophages can be 

used. Because of this, human monocytic cell lines are often used instead of PBMCs due to 

accessibility and ease of use and comparable disadvantages. 

Some evidence suggests reduction in apoptotic cell (AC) clearance with ageing in mice6. 

Aprahamian et al. found more apoptotic keratinocytes in skin samples harvested 24 hours 

post UV-irradiation in skin from aged mice, in comparison to young mice33. This could also be 

explained by increased susceptibility to UV-induced cell death by aged mice, as it is only a 

correlative result. Further study by the same authors found that aged (thioglycollate) elicited 

peritoneal MØ were less efficient at clearing injected apoptotic (human) Jurkat cells than their 

young counterparts33. This study found no significant differences in the ability of aged murine 

MØ to clear AC in vitro, however addition of aged murine serum, on young murine MØ, 

resulted in a reduction in AC clearance33. This was supported by trends in data shown here, 

where no significant differences were observed, between MØ from young and mid-life 

donors, to interact with apoptotic Jurkat cells (Fig. 49). A very modest trend in the ability 

aged plasma to reduce THP-1 derived-MØ interaction with AC was observed, and may show 

significant differences with the use of a larger cohort (Fig. 51).  

Research into this area in human cells is sparse, and the relationship between failed AC 

clearance and inflammation in ageing tends to be correlative rather than causative in 

nature6,36. For example the presence of autoantibodies in ageing is linked to failed AC 
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clearance6,12. Studies on macrophage phagocytosis have largely focused on that of microbial 

material or beads, whereas studies into AC uptake in aged cells are absent. 

The initial aims of this pilot study were to identify mechanisms behind suggested defective 

clearance of ACs, and subsequent immune modulation, with ageing and age-related 

disease33,195. Given time constraints and challenges in recruiting aged individuals, these 

studies could not be undertaken as originally planned, however future work could focus on 

several areas of AC clearance. The release of „find-me signals by AC to attract phagocytes 

precedes AC-phagocyte contact, e.g. ICAM-3 or CX3CL161,71. Whether these „find-me‟ 

signals are recognised by phagocytes, or released by ACs, in ageing and age-related 

disease is unknown. Work presented here indicates a role CX3CL1 in THP-monocyte 

chemotaxis to apoptotic MØ (Fig. 44; Chapter 5), a mechanism that could contribute to 

progression of atherosclerosis, a prominent condition in older adults321. The ability of 

phagocytes to migrate towards ACs throughout ageing and age-related disease is yet to be 

fully established, and could be investigated using chemotaxis assay methods outlined in 

Chapter 5. Immune cells from young and aged donors could be used as the phagocyte 

and/or the apoptotic cell, to establish at which point defects in phagocyte recruitment may, if 

relevant, come about. 

Expression of receptors responsible for AC recognition may also be downregulated, or 

impaired, in phagocytes as age progresses. For example, CD14 expression was found to be 

reduced in peritoneal and splenic MØ from aged C57BL/6 (B6) mice393,394, and splenic MØ 

from BALB/c mice393, however expression in human monocytes and MØ with ageing has not 

been extensively studied. As CD14 has often been used as a marker for monocytes, it is 

likely that the data already exists, but requires analysis in conjunction with ages of 

participants. Data presented here (Fig. 49) does not show any reduction in MØ interaction 

with AC from young or mid-life adults, nor any increased or decreased dependence on CD14 

mediated recognition of AC. This does not mean the same can be said for older age groups, 

and the sample size is small, but data of this nature is lacking and could be studied with 

larger cohorts. 

ACs must present „eat-me‟ signals, in conjunction with downregulation of „don‟t-eat-me‟ 

signals found on viable cells204. Effective upregulation of „eat-me‟ signals, such as 

phosphatidylserine (PS), or downregulation of „don‟t-eat-me‟ signals, such as CD31 and 

CD47, may not be occurring in the aged or diseased environment, or recognition may be 

impaired by phagocytes under the same conditions. Alteration of existing antigens, such as 

intercellular adhesion molecule-3 (ICAM-3) has also been shown to have a role in AC 

clearance84. It is unclear whether surface expression in aged PBMCs is altered, but any 
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changes in expression could affect ability of phagocytes to clear apoptotic cells391. 

Investigation into surface expression of these antigens could provide further insight into 

defective apoptotic cell clearance in the elderly. Figure 49 did not find any defects in young 

versus mid-life adult MØ ability to recognise AC, however the ability of primary ACs from 

young and older age ranges were not studied, a cell line, apoptotic Jurkat cells, was favoured 

instead. The use of primary neutrophils, which undergo spontaneous apoptosis, are often 

used as models in AC clearance studies, and could also be utilised in the application of 

clearance of old versus young donor-derived ACs. This leads to the discussion however of 

the definition of an „old‟ cell. The short half-life of neutrophils makes them popular AC models 

in clearance studies, however is a cell with a short life-span perpetually „old‟, e.g. close to 

death, or „young‟, e.g. new born? Will this effect apoptotic cell clearance mechanisms, and 

therefore skew in vitro studies? 

If engulfment is inefficient this would also delay AC clearance; this is supported by previous 

research into defective clearance in the plaque197,201. Delayed clearance has also been linked 

with autoimmune disease, e.g. SLE396. As atherosclerosis is prominent in the aged 

population, it can be questioned whether increased lipid uptake in MØ and impairment of AC 

clearance in the plaque is due to impaired function of aged MØ, or a direct result of the high-

lipid local microenvironment195. For example, would a lipid-laden foam cell show impaired 

clearance in a non-lipid environment? And would a MØ function fully in a high lipid 

environment? Do lipid-laden apoptotic cells elicit a different response in MØ than untreated 

apoptotic MØ? It may also be questioned whether, within the aged population, the incidence 

of atherosclerosis is increasing, with increases in disorders where CVD is exacerbated, such 

as obesity and diabetes320,322. These are also relevant questions to other MØ functions 

throughout ageing, including AC clearance. If clearance is defective in ageing, as studies by 

Aprahamian et al. suggest33, is this a primary effect of reduced cell function through ageing, 

or the secondary effect of an aged environment, e.g. an inflammatory or high lipid 

environment.  

Some preliminary work in this chapter has aimed to address this with the use of plasma from 

donors of different age groups (Fig. 51). Mediators found in aged environments could have 

primary effects on cell function, e.g. a loss of necessary bridging molecules in phagocyte:AC 

bridging molecules, or competition for AC receptors in a high lipid environment, as seen with 

oxLDL in the plaque195. Long term exposure to aged environments could also affect cell 

activity, especially if the inflammatory status associated with ageing, and the potential knock-

on effects on MØ activation, are considered29,37. In this study, THP-1 MØ were conditioned 

with plasma isolated from young and mid-life donors, for 3 days (grey bars) (Fig. 51). 

Interaction with apoptotic Jurkat cells was then assessed, and although significant 
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differences were not found, a modest trend in reduced AC interaction was observed in THP-1 

MØ following culture with mid-life plasma. Interaction rates were restored in the presence of 

plasma from the same donors, which may imply that chronic exposure to an aged 

environment, rather than the gain or loss of mediators required for AC interaction, may affect 

clearance in older adults. Gomez et al. carried out a study in rats, which showed pre-

incubation with serum from aged rats impaired the ability of young rat MØ to release TNF-α, 

in response to LPS397. Aprahamian observed similar results trends with young mouse MØ, 

which showed reduced AC uptake following incubation with serum from old mice6. 

Following successful interaction with apoptotic cells, immune modulation occurs. This work, 

and work by others, has shown that apoptotic cells have the capacity to reduce inflammation 

following interaction with MØ54-56 (fig .16; Chapter 4; Fig. 50). Results also shown here using 

HMDM, have shown that under certain conditions, immune-modulation by ACs may favour 

inflammation (Fig. 23; Chapter 4; Fig. 50). Figure 23 shows HMDM released TNF-α in 

response to THP-1-derived apoptotic MØ and apoptotic foam cells, a cell type induced by a 

high-lipid environment. Results in this chapter (Fig. 50) also implied that HMDM from mid-life 

donors released TNF-α in response to apoptotic Jurkat cells, a cell line not usually found to 

induce inflammation, though statistical significance was not reached (Fig. 23). These results 

have interesting implications on the roles of lipid-rich/aged environments (Fig. 23) or aged 

cells, in a failure to modulate immune responses appropriately.   

The differences in recruitment of each gender group and the association with age groups 

should also be considered (Fig. 48), as disparities are present in inflammatory markers in 

man and women through ageing. For example Gale et al. found links between incident frailty 

risk and inflammatory markers in the blood, namely fibrinogen and CRP, were different 

between man and women398.  

It is important to note that reduced innate immune function could also be a result of a 

decrease in the population of innate immune cells. A decrease in CD68-positive 

macrophage-lineage cells has been observed in human bone marrow in aged subjects 21 

which may account for the impact ageing has on innate immunity as macrophages are one of 

the first cells to respond to invading microorganisms. Wang et al. found an increase in Mac-1 

positive cells, a murine macrophage antigen, in aged mice, representing the differences 

between species 22. This is important to note as murine models are popular in ageing 

research due to the short lifespan and viable source of tissue macrophages, allowing direct 

comparison of young and aged organisms from the same genetic background which have 

been kept under the same environmental conditions. 
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Overall, these studies provide some interesting clues as to where macrophage control may 

fail in ageing, however a much larger cohort, or alternative study design is required to 

achieve significant results, especially if additional markers such as cell surface expression 

want to be investigated (requiring more cells). Using whole blood or PBMC preparations 

rather than isolated monocytes may provide the cell numbers required for more powerful 

data, however this is that expense of investigating the effects of ageing on specific cell types.  

6.4. Conclusions and future work 

In conclusion, these studies imply some functions may be impaired as we age, starting as 

early as mid-life (>40 years). Significant differences were not observed due to small sample 

sizes, however trends suggest immune-modulation following AC clearance may not promote 

resolution of inflammation in macrophages from mid-life donors. This would be interesting 

research to take forward to a larger cohort, given the hypothesis that ageing results in loss of 

control in macrophages. Bigger differences in young and aged MØ function may be observed 

with inclusion of younger and older participants, or of those with pathology such as 

atherosclerosis.  

Further research into the effects of an aged environment, as used here with plasma 

conditioning, would provide interesting insights into which aspects of „inflammaging‟ are a 

result of loss of cell function, rather than a direct influence of an aged environment.  

As such little research in this area has been done in human cells, there is much scope for 

expansion of this study.   
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Discussion 
 

As discussed throughout this thesis, the atherosclerotic plaque is a highly inflammatory 

site58, despite the presence of large numbers of MØ and ACs46, which, when interacting, 

should dampen inflammation54-56. To resolve inflammation, recruitment of inflammatory cells 

must cease, apoptotic cells must be cleared and egress of live inflammatory cells must take 

place151. It is apparent that control of one or all of these mechanisms must be functionally 

defective in the atherosclerotic plaque if resolution of inflammation is not achieved, however 

whether that is a result of the local microenvironment or a loss in cell function, or both, is not 

known. 

A similar loss of immunological control has been observed with ageing. A reduced response 

to pathogenic challenge (e.g. cytokine), a systemic increase in inflammatory markers and an 

increase in autoantibodies in the presence or absence of overt pathology, all evidence that 

as we age, control of immune responses is becoming less tightly regulated3,12.  

Monocyte recruitment to the plaque is a very early stage of plaque formation45 Research on 

recruitment of monocytes to the plaque, a process that also drives plaque progression, has 

centred around the role of inflammatory mediators on monocyte recruitment to the artery 

wall, via modulation of endothelial cell (EC) responses, and chemoattractant and adhesion 

molecule expression by ECs. Recruitment to apoptotic cells following diapedesis through the 

EC layer has not been investigated, and is largely overlooked by popular methods of 

assaying AC clearance, where ACs are loaded directly onto adherent phagocytes. An 

emerging role of MPs in the attraction of monocytes to sites of cell death is also of interest, 

as although MPs have been studied in atherosclerosis, it is in the context of biomarkers to 

deduce pathology and risk of acute events399, and as mediators of inflammation, particularly 

in endothelial cells268. The role of MPs in phagocyte recruitment to apoptotic cells in the 

plaque has not been assessed. 

Despite much research into the immunological background of atherosclerosis over the last 

two decades, research around apoptotic cells in the plaque has focused on dissecting out the 

inflammatory potential of individual components of modified LDL, the mechanisms of 

apoptosis induction in MØ, and whether MØ apoptosis is beneficial or detrimental to plaque 

pathology. Clearance of apoptotic cells is likely to have a multifactorial impact on 

atherogenesis and plaque progression, and only a handful of papers have investigated this in 

detail. Across one key paper on defective apoptotic cell clearance in atherosclerosis, 

observations, and investigated subsequent mechanisms behind these, were spread across a 

variety of models. These included human endarterectomy samples, rabbit endarterectomy 
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samples, murine thioglycollate-elicited peritoneal MØ (phagocyte), murine J774 macrophage 

cell line (phagocyte) and human U937 monocyte cell line (AC)195.  Persistence of AC and 

inflammation are contributing factors to unstable plaque formation and subsequent rupture. If 

mechanisms of AC clearance in an environment that mimics features of the atherosclerotic 

plaque can be better understood, means of clearing persistent AC and dampening 

inflammation may be elucidated. 

Data is virtually non-existent on modulation of inflammatory responses following corpse 

clearance in the plaque, and data on human cells is completely absent. The effect on 

apoptotic cell-elicited immune-responses, and the impact on this following lipid-loading is 

unknown in humans, and only partially explored in mice, as is the immuno-modulatory effects 

of apoptotic cells on aged MØ. A more complete understanding of apoptotic cell clearance 

mechanisms, including phagocyte recruitment and immune responses, in both ageing and 

atherosclerosis, would contribute to, and likely link further, both research areas. 

7.1. Modelling clearance mechanisms in human atherosclerosis 

From an immunological perspective, the atherosclerotic plaque is extremely complex. The 

full interplay between live and dead resident cells, live and dead recruited inflammatory cells, 

lipid-loaded cells, modified lipids and inflammatory mediators may be impossible to fully 

characterise in vitro, making assays on excised endarterectomy samples attractive58,195. 

However, taking into account individual variation on genetic background and metabolic age, 

and the fact that data is correlative, full insights into the mechanisms driving inflammation 

and atherosclerosis would remain ill-defined without broader methods of investigation. With 

evidence gained from endarterectomy samples, a comprehensive collective of cell types, cell 

status (i.e. live, stressed or dead), and inflammatory mediators have been reported137,147, 

which can allow more accessible ex vivo and in vitro methods to be utilised whilst still being 

relevant to mechanisms within the plaque. 

In a bid to model potential clearance mechanisms akin to those observed in the 

atherosclerotic plaque, with a consistent model of phagocytes and AC, the monocytic cell line 

THP-1 was chosen, and model systems developed to utilise in the investigation of multiple 

stages of apoptotic cell clearance. Much research into AC clearance uses accessible cell 

types that are easy to manipulate, rather than use the most physiologically relevant model 

which, in this case, is apoptotic MØ46. Often research uses a multitude of cell lines that span 

across cell lineages and species195. Some additional human AC models (e.g. Mutu and 

Jurkat) were brought in as controls and to enable comparison of results across studies, the 

key aim of these studies was to use a representative human cell line to investigate the roles 
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of monocytes and macrophages in mechanisms that may be of key importance to 

atherogenesis and subsequent pathology. 

The THP-1 model approach used here was then broadened to include human monocyte-

derived MØ for comparison between human cell lines and primary human cells. This yielded 

some interesting results, and highlighted strengths and limitations of THP-1 as a 

monocyte/MØ model, which could have been overlooked in other functional monocyte/MØ 

research.  

Overall, models used here show that the ability of FC, compared to MØ, to interact with 

apoptotic cells is decreased in some, but not all cases, and that results were comparable 

across cell line and primary cell studies. 

 
Figure 

 
Function 

 
MØ 

 
FC 

 
HMDM 

 

13 Receptor 
expression 

 No significant changes  

14 Interaction with 
aJK 

30% interaction 20% interaction  
(P<0.005)  

 

15 oxLDL blocking of 
AJK binding  

Not found Not found  

16 Interaction with 
 E. coli  

Functional Functional  

16 Phagocytosis of 
 E. coli 

Functional Functional  

17 Interaction with 
aMØ 

20% 20% 20% 

17 Interaction with 
aFC 

20% 20% 20% 

19/23 Basal TNF-α 
release 

Lo Lo Lo 

19/23 TNF-α response to 
LPS 

Hi Hi Med 

19/23 TNF-α response to 
aJK 

Lo Lo Lo 

19/23 TNF-α response to 
LPS + aJK 

Knocked down  
(P<0.05) 

 

Knocked down  
(ns) 

 

Knocked 
down  
(ns) 

21/23 TNF-α response to 
aMØ 

Lo Lo Hi 

21/23 TNF-α response to 
LPS + aMØ 

50% Knock Down 
(P<0.05) 

60% Knock Down 
(P<0.01) 

Hi 

21/23 TNF-α response to 
aFC 

Lo Lo Hi 

21/23 TNF-α response to 
LPS + aFC 

50% Knock Down 
(P<0.01) 

60% Knock Down 
(P<0.0001) 

Hi  
 

26 Inducer of TNF-α 
response 

Cause of TNF-α 
response cell-derived 

and soluble/MP derived 

Cause of TNF-α 
response cell-derived 

and soluble/MP derived 
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27 Apoptotic CFS as 
an inducer of 

vertical chemotaxis 

No significant induction 
of monocyte chemotaxis 

Significant induction of 
monocyte chemotaxis 

P<0.05 

 

35/36 Monocyte 
migration to live 

WC 

Directional + Directional ++  

35/36 Monocyte 
migration to live 

CFS 

Directional ++ Directional ++  

35/36 Monocyte 
migration to 

apoptotic WC 

Directional + Directional +   

35/36 Monocyte 
migration to 

apoptotic CFS 

Directional ++ ns  

37 Summary of 
monocyte 
migration 

Directional 
 

Directional/disordered  

40 Monocyte 
migration to aCFS 
w/ CD14 blocking 

Migration not inhibited Migration not inhibited  

41 Monocyte 
migration to aCFS 

w/ ICAM-3 blocking 

Migration not inhibited Reduced migration 
(ns) 

 

44 Monocyte 
migration to aCFS 

w/ CX3CL1 
blocking 

Reduced migration  
P<0.05 

Reduced migration 
(ns) 

 

47 HUVEC E-selectin 
expression 
following 

live CFS treatment 

Upregulation of E-
selectin expression 

(P<0.01) 

Upregulation of E-
selectin expression 

(P<0.05) 

 

47 HUVEC E-selectin 
expression 
following 

apoptotic CFS 
treatment 

Upregulation of E-
selectin expression 

(P<0.01) 

Upregulation of E-
selectin expression 

(P<0.01) 

 

  Young Old  

49 CD14 dependence 
for interaction 

Comparable Comparable  

50 TNF-α responses 
to AC and LPS 

Comparable Comparable  

51 THP-1 MØ rates of 
interaction 

following serum 
conditioning 

Comparable Comparable  

Table 11. Summary of macrophage versus foam cell function and young vs. mid-life 

function 
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7.2. Role of monocyte recruitment, apoptotic cell clearance, modulation of immune 

response, inflammation and ageing in atherosclerotic plaque progression 

Previous research indicates a reduced phagocytic efficiency of MØ in atherosclerosis195,197. 

Data presented here reveal that THP-1-derived MØ, following lipid-loading, have a 

decreased ability to clear apoptotic Jurkat cells (Figure 14), but interaction with apoptotic 

MØ/FC was unchanged (figs. 14/15), indicating a case for clear definitions of AC models. 

Despite efficient interaction of THP-1-derived MØ with apoptotic MØ/FC, and non-

inflammatory immune responses to these cells by interactions, primary human monocyte-

derived MØ (HMDM) behaved differently. Data presented here show, for the first time in 

human cells, primary HMDM release TNF-α in response to THP-1-derived apoptotic MØ and 

apoptotic FC, but not apoptotic Jurkat (Fig. 23). This supports research by Li et al. in murine 

peritoneal MØ, which demonstrated an inflammatory response to free-cholesterol loaded 

apoptotic MØ210, however these comparisons have not been done before in human cells.  

Apoptotic Jurkat dampened LPS-induced TNF-α release by HMDM (Fig. 23), indicating a 

possible classical to alternative phenotype switch, however inflammation was not dampened, 

but enhanced, by apoptotic MØ and apoptotic FC. Studies by Lucas et al. found that 

apoptotic neutrophils can boost an early LPS-induced TNF-α response (0-2h post LPS 

exposure), and that this is dampened in the presence of ACs after 8 hours co-culture, so 

timings may be crucial358. However, apoptotic neutrophils in the absence of LPS were non-

inflammatory358. Whilst data here indicate apoptotic MØ and apoptotic FC are strongly pro-

inflammatory, future work is now required to assess the inflammatory effect of apoptotic 

primary HMDM and their apoptotic foam cell counterparts.  

Lucas et al. also showed that apoptotic neutrophils do not switch off a TNF-α response in the 

presence of IFN-γ, suggesting that IFN-γ overrides AC-mediated resolution of 

inflammation358. IFN-γ stimulates a pro-inflammatory, or classical, phenotype of MØ 

activation, and has been found in human atherosclerotic plaques49,58,400. Classically activated 

MØ have also been associated with less efficient clearance of apoptotic cells, which is 

perpetuated in an autologous manner by TNF-α357. Studies in specialised MØ (microglia) in 

mice have also found reduced responsiveness to alternative activating inducer IL-4 in aged 

cells401. Aged peritoneal MØ were also found to produce increased oxygen free radicals, 

compared to their young counterparts, following treatment with latex and zymosan402, which 

could have implications when considering oxidative modification of retained lipoprotein in the 

sub-endothelium, and the overall pro-inflammatory milieu.  

Taken together these data suggest that monocyte entry into early plaques is likely to be 

athero-protective, but following entry into an inflammatory environment, with possible 
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contribution from TNF-α-inducing apoptotic MØ and apoptotic FC, a classically-activated MØ 

phenotype may be induced. Classical activation of MØ in the plaque is not a new theory, but 

the contribution of apoptotic MØ and apoptotic FC to inflammation has not been shown 

previously in vitro in HMDM. Adopting an inflammatory phenotype reduces clearance 

efficiency by MØ57. The contribution of failed phenotype switching to an alternative 

phenotype by aged MØ may also contribute to plaque formation in the aged population401, 

however this needs further study (Fig. 50). Reduction in monocyte recruitment, inflammation 

or promotion of reparative MØ phenotypes could be key areas for targeted research into 

atherosclerosis therapies.  

Monocyte recruitment is an established initiating factor of plaque formation, following 

subendothelial lipid retention45. It could be debated whether monocyte recruitment following 

plaque formation is pro- or anti-atherogenic. It has been suggested that apoptosis of plaque 

MØ, and therefore recruitment of phagocytes for clearance, is beneficial to early 

atherosclerotic lesions, due to immuno-modulatory effects of engulfment and the clearance 

of corpses prior to secondary necrosis149. As phagocytic efficiency appears to be lost in more 

developed lesions, apoptotic cells persist and continual recruitment of monocytes is not likely 

to be of benefit149. The role of apoptotic MØ/FC „find-me‟ mediator release has not been 

investigated, either in monocyte recruitment from the blood stream, or in directed monocyte 

recruitment to apoptotic MØ/FC following diapedesis. Results here suggest roles for ICAM-3 

and CX3CL1 in monocyte recruitment to aMØ/aFC (figs. 38/40).  

Results in these studies show that apoptotic MØ and apoptotic FC may use alternative 

mechanisms to recruit phagocytes for clearance. Monocyte migration to apoptotic MØ is 

significantly reduced by blocking CX3CL1, but significant reduction is not seen in apoptotic 

FC-induced monocyte migration (fig.41). This could result from an upregulation of alternative 

mechanisms, e.g. release other „find-me‟ mediators, by apoptotic FC, or non-saturated 

blocking of CX3CL1 in FC, due to excess secretion or shedding via MPs. This could be 

further investigated by assessing concentrations of „find-me‟ mediator release in conditioned 

medium, as shown in preliminary data (Fig. 46). In contrast, ICAM-3 blocking showed a trend 

in reduction of monocyte recruitment to apoptotic FC, but not in recruitment to apoptotic MØ. 

Whether these finding are a result of upregulation use of some „find-me‟ mediators one AC 

type, or downregulation of „find-me‟ mediators in other cell types, remains to be elucidated. 

The interesting part of this research is that phagocyte recruitment mechanisms by AC vary 

following culture in an aged environment. This could imply a loss of control of monocyte 

recruitment by cells in an aged-environment, especially if you consider that data together 

suggest that apoptotic FCs are potent but less direct inducers of monocyte migration. Trends 

suggest that more monocytes migrate (Fig. 27), and they may migrate further in distance 
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(Fig. 38), towards apoptotic FC-derived CFS, but that this is less ordered than recruitment of 

other AC types (Fig. 37). Investigating a wider spectrum of chemokine release by these cells, 

including „keep-out‟ signals,  and expanding the model to primary human cells, would provide 

further insight on disordered monocyte recruitment to the plaque, and whether mediators 

such as ICAM-3 and CX3CL1 could be targets for future intervention. CD14 was not shown 

to play a role in AC-induced chemotaxis in either model, so future work should encompass 

alternative receptors for „find-me‟ mediator interaction, as this is poorly defined if you 

consider the role of microparticles in chemotaxis induction. 

 

Figure 52. The role of monocytes/macrophages in plaque progression - schematic of 
results  

 

Pilot study data did not show any differences in the capacity of HMDM from young and mid-

life donors to interact with AC. However, it would be interesting to investigate the ability of AC 

to „switch-off‟ inflammation in MØ from mid-life donors, versus those from young donors, 

further, and with a bigger sample size (Fig. 50). This could mean that as we age, resolving 

inflammation may become less controlled. Also, if you combine this with foam cell data from 

the THP-1 model, ACs in the plaque may induce inflammation and, in conjunction with this 

effect, aged monocyte-derived MØ may not respond to mediators that resolve inflammation. 
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The modest trend in reduced THP-1 MØ:AC interaction following culture in an „aged‟ 

environment, using plasma samples from mid-life donors, may also contribute to 

understanding of pathology in ageing and atherosclerosis (Fig. 51). The use of serum from 

young and old donors is an accessible method of studying MØ function in an aged 

environment, and whether ageing at the cellular level, or in the local microenvironment, has a 

greater effect on modulation of immune responses, and the potential loss of control as we 

age. 

Overall, work here has established a flexible and robust in vitro model for the derivation of 

apoptotic MØ/FC, and assays of MØ attraction to, and clearance of, AC.  Coupled to this, the 

responses of phagocytes, in terms of migration and inflammatory mediator release, have 

been assessed. This shows data that suggest apoptotic MØ and apoptotic FC are strongly 

pro-inflammatory to HMDM.  A potential role for AC-derived CX3CL1 in recruitment of 

monocytes to apoptotic MØ and apoptotic FC has also been shown for the first time. CD14 

was not found to have a prominent role in recruitment of monocytes to apoptotic MØ or 

apoptotic FC, but there is a trend that implicates AC-derived ICAM-3 in the recruitment of 

monocytes to apoptotic FC, but possibly not to apoptotic MØ (fig 38). This raises the 

possibility that ICAM-3 may be a potential target for therapy in atherosclerosis.  Whilst no 

single therapy may be effective, combined therapies as used in cancer can often provide 

excellent results. 

MØ from mid-life individuals have also be shown to be less responsive to resolution of 

inflammation by apoptotic cells so, if trends are reproduced in larger studies, these factors 

would come together to drive the inflammatory pathology.  Taken together, data also 

suggests that CX3CL1 might be an ideal target to help modulate this complex pathology, by 

modulating monocyte recruitment to the atherosclerotic plaque. 
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