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Thesis Summary

Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and
metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways
implicated in causing drug resistance in breast cancer is the constitutive activation of NFxB
(Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2
constitutively activates NFkB which in turn confers chemoresistance to breast cancer cells
against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as
TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this
study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2
and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a
specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in
the constitutive activation of NFkB by TG2 leading to drug resistance. Crucial to the activation
of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the
complex of IkBa and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and
polymerization of IkBa. The association of TG2 with the IkBa-NF«xB complex was determined
to be independent of IKKo/f function. The polymerized IkBa is degraded in the cytoplasm by
the p-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the
nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2
targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation
studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by
IKKze took place in the cell nucleus. Importantly, this study also investigated the transcriptional
regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-
NF«B feedback loop in conferring drug resistance to breast cancer cells. This data provides
evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast

cancer.
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and nuclear fractions of breast cancer cell lines using co-immunoprecipitation, in the presence
of BX795

Figure 6.4 Analysis of pSer 536 - Rel A/ p65 dimers in breast cancer cell lines in the presence
of BX795

Figure 6.5 Analysis of the expression of TG2 in the cytoplasmic fractions of breast cancer cell
lines on treatment with BX795
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Figure 6.6 Analysis of whole cell lysate TG2 activity in breast cancer cell lines on being treated
with BX795

Figure 6.7 Western blot analysis of IkBo and p50/p105 NF«B subunit of NF«B in breast cancer
cells on being treated with BX795

Figure 6.8 The effect of BX795 and TG2 cell permeable inhibitor treatment on the cell viability
of breast cancer cell lines in the presence of doxorubicin

Figure 6.9 Analysis of TG2 whole cell lysate activity in the presence of NFkB p65
(Ser529/536) inhibitory peptide

Figure 6.10 Western blot analysis of TG2 expression in breast cancer cell lines in the presence
of NF«B p65 (Ser529/536) inhibitory peptide

Figure 6.11 The effect of NFkB p65 (Ser529/536) inhibitory peptide on the cell viability of
breast cancer cell lines in the increasing concentrations of doxorubicin

Figure 6.12 Analysis of Rel A/p65 dimers binding to -xB site on TGM2 and p21 gene promoter
using Chromatin Immunoprecipitation (ChlP)

Figure 6.13 PCR analysis of the TGM2 and GAPDH gene expression in breast cancer cell lines
in various inhibitor treatments

Figure 7.1 Analysis of expression of TGF-B Type I and II receptors of breast cancer cell lines
using Western blot.

Figure 7.2 Analysis of TGF-B1 levels in breast cancer cell lines in the presence of TG2 activity
inhibitors

Figure 7.3 Analysis of the expression of epithelial and mesenchymal markers in the whole cell
lysate fractions of breast cancer cell lines using western blot

Figure 8.1 Schematic representation of TG2-NF«B regulatory loop
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1. Introduction

Breast cancer still remains as one of the most commonly diagnosed diseases among women and
the social as well as economic impact of this malignancy is still enormous (Youlden, et al.
2012). Preventing breast cancer progression is an idea that dates back through history and there
has been a lot of proof to show that the interaction between the independent and the
environment they live in, can impact on the risk of breast cancer development (Cazzaniga &
Bonanni, 2012). In spite of the development of numerous anticancer drugs, chemoresistance
remains a major obstacle that results in the failure of treatment regimens. Some breast cancer
cells maybe inherently resistant to drugs while others develop the resistance post chemotherapy.
Chemoresistance can be caused by multiple factors: inactivation of the drug by detoxifying
enzymes, changes in tumour suppressor genes, drug efflux by transport mechanisms, altered
expression of anti and pro apoptotic proteins as well as protection from DNA damage
mechanisms (LaPensee & Jonathan, 2010). Overcoming this chemoresistance has become a

major focus of many studies.

Previously it has been shown that breast cancer cells selected out for drug resistance have high
levels of the multifunctional protein cross linking enzyme tissue transglutaminase (TG2),
however, no direct link has been established between TG2 and drug resistance. Studies
undertaken in numerous breast cancer cell lines have shown that higher expression of TG2
makes the cancer cells more invasive and metastatic as well as conferring resistance to various
drugs (Chen, et al. 2002). Many hypotheses have been put forward indicating that this could be
due to the interaction between TG2 and the transcription factor Nuclear Factor-kappa B
(NFxB). Literature has shown that TG2 expression leads to constitutive activation of NF«kB via
a pathway independent of IKK (Inhibitor-kappa Kinase). In numerous cancers such as breast,
ovarian, cervical etc., the expression of TG2 has been correlated with constitutive activation of

NF«xB (Mann, et al. 2006)
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1.1 Transglutaminases: A family portrait

Transglutaminases or TGs are a family of enzymes predominantly found in plants, micro-
organisms, invertebrates and mammals. Multiple distinct forms of TGs have been identified in
mammals. The term Transglutaminases was first coined by Clarke and colleagues in 1957 to
illustrate the transamidating activity observed in guinea-pig liver (Clarke, et al. 1957). Studies
done later showed that TGs cross linked proteins through an acyl-transfer reaction involving the
y-carboxamide group of a peptide-bound glutamine and the e-amino group of a peptide bound
lysine, which results in the formation of &-(y-glutamyl) lysine isopeptide bond (Griffin, et al.

2002) (Figure 1.1).

Aston University

Nlustration removed for copyright restrictions

(Chandrashekar & Mehta, 2000)
Figure 1.1 Cross linking reaction catalysed by Transglutaminases

TGs are known to accelerate the post-translation modification of proteins by transamidation of
the free glutamine residues. The resulting covalent stable isopeptide bond is resistant to
proteolysis, chemical, mechanical and enzymatic disruption (Greenberg, et al. 1991). So far
nine members of the family have been identified all of which have now been characterized at
the protein level. In mammals other than erythrocyte band 4.2 which is inactive, the other TG
family members require Ca** for the transamidating activity. The family members are Factor
X1 A, keratinocyte transglutaminase (TG1), tissue transglutaminase (TG2), epidermal

transglutaminase (TG3), prostate transglutaminase (TG4), Transglutaminases X, Y and Z (TG5,
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TG6 and TG7) and the non-catalytically active erythrocyte band 4.2 (lismaa, et al. 2009) (Table

1.1).
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Aston University

llustration removed for copyright restrictions

(lismaa, et al. 2009)

Table 1.1 Functions of members of Transglutaminase (TG) family
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Some of the common features seen in each of the members include the lack of glycosylation
sites and cysteine bonds in spite of the presence of N-linked glycosylation sites and large
numbers of cysteine residues in such proteins. Also, of the TGs, that are secreted, TG2 and
Factor XIIIA that are associated with the plasma membrane lack the presence of the N-terminal
hydrophobic sequence and are not secreted via the Golgi /ER pathway. The overall primary
structure of the TG enzymes varies among the members; however, they all share the same

amino acid sequence in the active site (Griffin, et al. 2002).

1.1.1 Factor XIII

Factor X111 (FXIII) is a major blood coagulation factor which is a pro-transglutaminase that
circulates in the plasma in a tetrameric form (FXI11-A2-B2) (Muszbek, et al. 2008). FXII1
comprises of two catalytically active A subunits, FXII1A (~83kDa) and two inhibitor or carrier
B subunits, FXIIB (~80kDa). In the plasma, FXIIIB is found in excess and almost half of this
exists in a non-complex free form. Dimers of FXIIIA denoted as FXIIIA2 are present within the
cytoplasm of numerous cells such as macrophages and platelets, which is not characteristic of
FXIIB. FXII1 is a well-known zymogen, which in its active form (FXIIIA) can function as a
transglutaminase that catalyses the formation of g(y-glutamyl) lysyl bonds between polypeptide
chains. FXIIIA plays a very important role in the regulation of fibrinolysis and homeostasis as

well as in a wide range of physiological and pathological processes (Muszbek, et al. 2011).

Factor X111l A forms a dimeric structure (unlike the other transglutaminase members) and
comprises of five major structural domains: an activation peptide at the NH,- terminal, -
sandwich, catalytic core and B-barrel 1 and 2. The monomers of FXIIIA subunit are arranged as
a dimeric structure wherein the central core domains are surrounded by B-sheet domains
(Facchiano & Facchiano, 2009). On the other hand FXIIIB is a glycoprotein that consists of ten
short tandem repeats known as GP1 structures, each containing ~60 amino acids joined together

by two internal disulphide bonds (Ichinose, et al. 1990).

26 |



Chapter 1: Introduction

Pro-FXI11 is activated during the late stages of the coagulation process by either Ca** or
thrombin. Thrombin has been shown to cleave the activated peptide present on the NH2-
terminus of FXIIIA, which results in the formation of the active truncated form of FXIIIA,

FXIlla (Muszbek, et al. 2011).

Contractile and adhesive proteins as well as components of the fibrinolytic clotting system form
protein substrates of FXIlla. One of the main physiological functions of FXIII in the plasma is
the cross linking and incorporation of plasminogen in activator into fibrin, so as to protect it
from plasmin. Plasma FXIII is also involved in tissue repair and wound healing. Cellular FXIII,
when present on the surface of the cells, can support and maintain homeostatic functions

(Torocsik, et al. 2005).

FXIllla has also been demonstrated to limit bacterial infections in the wound and incorporates
macromolecules to support cell survival and migration. The complex formed between a5p3
integrin and VEGF receptor 2 is crucial for formation of granulation tissue and angiogenesis is
mediated by FXIlla. Reduced FXIII levels have been observed in plasma during chronic
inflammatory conditions that involve blood loss and subsequent activation of the coagulation

cascade (Soendergaard, et al. 2013).

1.1.2 Keratinocyte transglutaminase

Keratinocyte Transglutaminase (TG1) is also known as transglutaminase epidermal type 1 and
expressed mainly in the stratified squamous epithelia of coverings, the lower female genital
tract and the upper digestive tract. Three response elements similar to AP-2, approximately 0.5
kb from the transcription initiation site are promoters of TG1. Proteolytic cleavage, TIG-3
protein and Ca?*, activate the catalytic functions of TG1. Phorbol esters are known to induce the
expression of TG1 while RA (Retinoic acid) down regulates the expression of TG1 (Mehta,

2005).
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Studies done on the time course of TG1 expression after incision on the dorsal skin of neonatal
mice has provided great insights into the role of TG1 in cutaneous healing (Inada, et al. 2000).
Using in situ hybridization, TG1 was found to be expressed in the suprabasal keratinocytes next
to the wound edge, two hours post the wound and its expression increased in the subsequent
hour near the edge of the injury. TG1 is also known to be expressed in the wound site much
before the infiltration of leucocytes, which implied that TG1 is essential during very early
stages of wound repair and also in preparation for the remodelling of stratum corneum. TG1 is
found to be highly expressed in the leading edges of migrating keratinocytes, when re-
epithelialisation was completed. Within these migrating keratinocytes, the expression of TG1
was seen to be concurrent to its cross linking substrate, involucrin on the plasma membrane

(Inada, et al. 2000).

The gene encoding TG1 is localized to chromosome 14 q11.2-13, and is reported to comprise of
15 exons and 14 introns. At the tissue level, the localization of TG1 has been identified to the
granular layer at the later stages of differentiation using immunochemical and
immunohistological methods, while specific antibodies against the N-terminal fragments of
TG1 showed that TG1 was also present in the spinous and suprabasal layers (Kim, et al. 1992;
Steinert, et al. 1996). Mutations that include a C-to-T change in the binding site of the
transcription factor Sp1 within the promoter region and the Gly143-to-Glu mutation in exon 3,
Val382-to-Met mutation in exon 7 of the TGM1 gene result in autosomal recessive lamellar
ichthyosis which is a rare keratinisation disorder of the skin. Patients of this disorder exhibit
extremely decreased TG1 activity with an absence of any detectable TG1 polypeptide (Jessen,

et al. 2000)

1.1.3 Epidermal transglutaminase
Epidermal transglutaminase or TG3, was first characterised by Buxman and Wuepper in 1975
and purified in 1976, and still is one of the least understood members of the family of TGs

(Buxman & Wuepper, 1976). The human TG3 gene is localized into chromosome 20q11-12
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(Wang, et al. 1994). The sequences that are between the 128 and 91 base pairs upstream of the
transcription initiation site represent the proximal promoter region of the TGM3 gene. The
binding of the Ets and Sp1 motifs to their respective cognate binding factors is essential for the

transcription of TGM3 (Mehta, 2005).

The TG3 protein is an intact, latent pro-enzyme with low specific activity and of size, 77kDa.
After the cleavage of TG3 into two 30kDa and 47kDa fragments, the enzyme becomes activated
by the non-covalent interaction between the two fragments. A recent study done by Cheng et al.
in 2006, cathepsin L was shown to cleave TG3 in vitro. The binding of Ca®* to TG3 can

increase the specific activity of the enzyme, similar to the other TGs (Cheng, et al. 2006)

The use of polyclonal antibodies indicated that during the later stages of differentiation, TG3
could be detected in the epidermis (Lee, et al. 1996) as well as in the small intestine, testis,
brain and fore stomach (Hitomi, et al. 1999). Using a monoclonal antibody, the cytoplasmic
distribution of TG3 in the cornified and granular layer was enumerated which implied that TG3
played a role in the early phase of cornified cell envelope formation. Activated TG3 can cross
link CE (cornified envelope) proteins such as trichohyalin, SPRs 1, 2 and 3 and loricrin which

occurs during epidermal terminal differentiation (Hitomi, et al. 2003)

TG3 cross links the keratin and trichohyalin intermediate filaments to harden the inner root
sheath, which is very crucial for hair fibre morphogenesis. TG3 is also responsible for cell
envelope formation during the latter stages of differentiation in the hair follicle and epidermis.
The TG3™" mice embryos fail to get implanted which suggested that this gene plays a very
pivotal role in the early developmental stages (John, et al. 2012). Other studies have also
indicated that TG3 " mice developed curled whiskers and fur as well as high protein
extractability showing irregular structures in the cross linking of structural hair proteins
(Thiebach, et al. 2007). TG3 along with TG1 is known to participate in the maturation of the

epithelium by catalysing the specific cross linking of numerous structural proteins present in the
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cell envelope (SRPs, involucrin, filaggrin, desmoplakin, keratins, loricrin and envoplakin)

(Ahvazi, et al. 2002).

1.1.4 Prostate transglutaminase (TG4)

Prostate transglutaminase or TG4 was previously known as dorsal prostate protein 1 (DP1) or
even androgen regulated major secretary protein because the main site of expression of this
protein was in prostatic fluids, seminal plasma and the prostate. The regions between the
positions of -113 and -61 base pairs upstream of the TGM4 gene promoter are very crucial for
the core promoter activity. The transcriptional regulation of TGM4 promoter is the Sp1 binding
motif at positions -96 to -87 base pairs upstream. The positions from -1276 to -563 harbour the

promoter for a cyclophilin pseudo gene (Mehta, 2005).

The rat homologue of TG4 has been shown to be responsible for the cross linking during the
formation of the copulatory plug and also may be involved in sperm cell motility as well as
immunogenicity to a certain degree (Davies, et al. 2007). Initial studies done showed that TG4
expression was only confined to luminal epithelial cells. The function of this enzyme in prostate
cancer cells has been linked to invasiveness and the regulation of the interactions between the
endothelial cells and prostate cancer cells (Ablin, et al. 2011). Recently, variants of TG4 have
also been reported in malignant and benign human prostate tissues (Cho, et al. 2010). This
molecule has a diverse impact on prostate cancer cell growth, invasion, and migration and also
involved in epithelial to mesenchymal transition and tumour-endothelial interaction. TG4 also
interacts with other molecular complexes, thus implicating it as a biomarker of aggressive

cancer as well as a therapeutic target (Jiang & Ablin, 2011).

1.1.5 Transglutaminases 5, 6 and 7:

Transglutaminase 5 (TGX), Transglutaminase 6 (TGY) and Transglutaminase 7 (TGZ) are the

three recently discovered transglutaminases.
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Transglutaminase 5 is encoded on human chromosome 15q15.1 (molecular weight 81kDa) and
requires proteolytic processing for the activation of TG5 cross linking activity (Pietroni, et al.
2008). In cultured keratinocytes, TG5 has been found to be co localized with vimentin during
the formation of filament network, when undergoing EMT (Epithelial to Mesenchymal
transition) (Candi, et al. 2001). Even though TG2 was found to be expressed in numerous adult
and foetal tissues, the exact cells that express the proteins in tissues are unknown (Candi, et al.
2004). However, the loss of function or mutated forms of TG5 has been reported to be the cause
of developing acral peeling of skin syndrome, which implements its role in the formation of

cornified cell envelops of keratinocytes (Cassidy, et al. 2005).

Similar to TG5, TG6 is also activated by proteolytic processing and comprises of two
polypeptide chains which are synthesized as a precursor form consisting of a single polypeptide.
TG6 is mainly responsible for the late phases of formation of cell envelop in the hair follicle
and epidermis. TG7 is expressed ubiquitously in testis and lung. The transcription level of TG7

has been