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Abstract 

Phosphatidylserine (PS) is preferentially located in the inner leaflet of the cell membrane, 

and translocation of PS oxidized in fatty acyl chains to the outside of membrane has been 

reported as signaling to macrophage receptors to clear apoptotic cells. It was recently shown 

that PS can be oxidized in serine moiety of polar head-group. In the present work, a targeted 

lipidomic approach was applied to detecting OxPS modified at the polar head-group in 

keratinocytes that were exposed to the radical generator AAPH. Glycerophosphoacetic acid 

derivatives (GPAA) were found to be the major oxidation products of OxPS modified at the polar 

head-group during oxidation induced by AAPH-generated radicals, similarly to previous 

observations for the oxidation induced by OH• radical. The neutral loss scan of 58 Da and a 

novel precursor ion scan of m/z 137.1 (HOPO3CH2COOH) allowed the recognition of GPAA 

derivatives in the total lipid extracts obtained from HaCaT cells treated with AAPH. The positive 

identification of serine head group oxidation products in cells under controlled oxidative 

conditions opens new perspectives and justifies further studies in other cellular environments in 

order to understand fully the role of PS polar head-group oxidation in cell homeostasis and 

disease. 
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Introduction 

Phosphatidylserine (PS) is a phospholipid that has been identified to be a preferential target 

of in vivo oxidation. PS is located preferentially in the inner leaflet of cell membranes, but PS 

oxidation products are translocated to the outside of membrane. These products are considered 

to be markers of the early stages of apoptosis. It is known that one of the first steps of cellular 

apoptosis involves PS oxidization in the fatty acyl chains that are recognized by macrophages 

receptors for the clearance of apoptotic cells [1-3]. Several studies showed that oxidized PS is 

preferentially recognized by macrophage scavenger receptors over non-oxidized PS [4-7]. The 

oxidation products of PS identified in vivo consisted of oxidative modifications in the fatty acyl 

chains, such as PS hydroxide and hydroperoxide derivatives and truncated sn-2 fatty acyl 

species [4, 8, 9]. These types of oxidation products retained an intact PS head-group and are 

usually identified by the typical fragmentation pathways under MS/MS conditions, which 

involved the loss of the serine group [8, 10, 11]. However, in a recent study of oxidation of PS 

standards using the Fenton reagent, it was observed that the PS head-group can also undergo 

oxidative modifications leading to the formation of modified polar head-groups [10, 12]. Among 

these oxidation products, the derivatives with a polar head-group containing an acetic acid 

linked to the phosphate group, called glycerophosphoacetic acid (GPAA), were found to be the 

most abundant [10]. These products showed a distinct fragmentation and neutral loss under 

MS/MS conditions and the typical loss of the serine group is absent. This behavior explains why 

this type of PS oxidation product has been overlooked. As yet, PS modified in the serine polar 

head-group has only been found in mitochondria from brain of rats treated with tacrine, which is 

associated with neurotoxicity and oxidative stress conditions [13]. Evaluation of pro-

inflammatory activities of PS oxidation products with modifications in serine polar head-group 

was tested through cytokine production, and it was found that GPAA had no pro-inflammatory 

activity [12]. Until now, no other efforts have been made to detect these species with oxidative 

modifications on the polar head-group of PS. Nevertheless, it is likely that they can occur in 

vivo, in cells exposed to oxidative conditions.  

To give new insight into this subject, the present work aimed to evaluate the formation of 

GPAA species in keratinocytes (HaCaT cells) after exposure to a radical generator. 

Keratinocytes were selected as a cell model since externalized PS and oxidation of fatty acyl 
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chains in PS were identified in human keratinocytes during oxidative stress [14, 15]. These cells 

are frequently used in oxidation studies, because they are susceptible to modifications under 

oxidative stress conditions, such as UV, organic peroxides, or radical generators such as AAPH 

[16-19]. The immortal human keratinocyte line HaCaT is frequently employed for studies of skin 

keratinocytes in vitro, since they retain their differentiation capacity [20]. Keratinocytes were 

incubated with the water-soluble azo-initiator (AAPH), which is frequently used in vitro for 

oxidation studies. The GPAA derivatives were detected in total lipid extracts using a targetted 

lipidomic approach involving neutral loss and precursor ion scanning modes, following 

optimization of this strategy with commercial 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) as 

a model system. 

 

Materials and Methods 

Materials 

 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) was from Sigma Aldrich. Trypsin 

and Dulbecco's Modified Eagle Medium (DMEM) were obtained from Sigma Chemical Co. (St. 

Louis, MO, USA). Foetal calf serum, streptomycin and penicillin were purchased from Invitrogen 

(Paisley, UK). 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) was purchased from Avanti Polar 

Lipids, Inc. (Alabaster, AI, USA). Chloroform (Analytical reagent grade), and methanol (HPLC 

grade) were from Fisher (UK). 

Oxidation of Phosphatidylserine with AAPH 

Vesicles of POPS were prepared in ammonium bicarbonate buffer 5mM (pH 7.4). In a typical 

experiment, 250 µg of phospholipid dissolved in chloroform was evaporated to dryness, the 

buffer was added and the mixture was vortexed for 2 min and then sonicated for 1 minute in a 

sonicating water bath. The oxidation was performed by addition of 15 µL of AAPH to a final 

concentration of 30 mM and 50 mM in a volume of 250 µL. The mixture was incubated at 37°C 

in the dark for 24 hours. The phospholipid oxidation products were extracted using a 

modification of the Folch method [21] with chloroform-methanol (2:1, v/v).  
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Cell Culture 

The human keratinocyte cell line HaCaT was obtained from DKFZ (Heidelberg, Germany). 

HaCaT is a spontaneously transformed immortalized human epithelial cell line from adult skin 

that maintains full epidermal differentiation capacity [22]. The cells were used after reaching 70–

80% confluence, which occurs approximately every 3 days after initial plating. Cells beyond 

passage 45 were discarded. The cells were cultured in Dulbecco’s Modified Eagle Medium 

(high glucose) supplemented with 4 mM glutamine, 10% heat inactivated foetal bovine serum, 

100 U/mL penicillin, and 100 μg/mL streptomycin at 37ºC in a humidified atmosphere of 95% air 

and 5% CO2. 

Chemical treatment 

HaCaT cells (15×106) were cultured in 150- cm2 flasks and subjected to AAPH exposure for 

24 h, at 37 °C. The AAPH was dissolved in culture medium to obtain a final concentration of 30 

mM and 50 mM. Control experiments consisted of untreated cells. 

Cell viability/metabolic activity assay 

The effects of AAPH exposure on cell viability/metabolic activity were evaluated by the 

resazurin assay [23]. Briefly, cells were plated in triplicate in a 96 well plate at a density of 

0.4x106 cells/mL, in a final volume of 0.2 mL/well and exposed to 30 mM or 50mM AAPH. After 

20 h, the cells were washed with PBS and fresh culture medium containing 50 µM of resazurin 

was added to each well. After 4 h (in a total of 24 h AAPH treatment) absorbance was read at 

570 and 600 nm with a standard spectrophotometer (Multiskan GO, Thermo Scientific). Viable 

and therefore metabolic active cells are able to reduce resazurin (a blue dye) into resorufin (pink 

coloured) and, hence, their number correlates with the magnitude of dye reduction.  

Assessment of cell PS externalization/Apoptosis 

PS externalization following AAPH-cell treatment was analysed by fluorescent microscopy using 

the FITC-Annexin V apoptosis detection kit with 7-AAD from Biolegend (San Diego, CA, USA). 

Briefly, 0.4x106 cells were plated in each well of a µ-Slide 8 well plate (IBIDI GmbH, Germany), 

in a final culture medium volume of 0.2 mL. The cells were then treated with 30 mM or 50mM 

AAPH for 24 h, or with 1µM Staurosporine for 4h (as a positive control for induction of 

apoptosis). Cells were washed twice with sterile PBS and incubated for 20 minutes in fresh 
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culture medium containing 2 µg/ml Hoescht 33258 (Molecular Probes, Invitrogen, Paisley, UK). 

After this, medium was removed and the wells washed twice with PBS, following by 15 minutes 

incubation in the dark with FITC-Annexin V / 7-AAD staining solution. After three washing steps, 

slides were analyzed with a fluorescent microscope (Nikon Corporation, Japan) at 630X 

magnification. Images were captured with a DS-Fi2 High-definition digital camera and analyzed 

in NIS-Elements Imaging Software (Nikon Corporation, Japan). 

Lipid extraction 

For lipid extraction, untreated cells and AAPH-treated cells (after 24 h stimulation) were 

washed twice with ice-cold phosphate-buffered saline (PBS), scraped into 5 mL of ice-cold PBS 

and the cells pelleted by centrifugation at 200 g for 4 min. The pellet was resuspended in 1 mL 

of milli-Q ddH2O. Thereafter, total lipids were extracted using the Bligh and Dyer [24]. Lipid 

extracts were evaporated to dryness under nitrogen and resuspended in 500 µL of chloroform.  

ESI-MS conditions  

Oxidation products of phosphatidylserine standards and HaCaT total lipid extracts were diluted 

in methanol (1:10, v/v) and detected using a 5500 QTrap mass spectrometer (ABSciex, 

Warrington, UK) operating in negative ion detection mode with direct infusion at a flow rate of 5 

µL.min-1 . Mass spectra were acquired over a mass range of 400-1000 Da. Turbo spray source 

temperature was set at 150°C, spray voltage was set at -4.5 kV , declustering potential was set 

at -50 eV and nominal curtain gas flow was set at 20. Enhanced mass spectra were acquired at 

10,000 Da/s in dynamic fill. Targeted detection of GPAA was performed by neutral loss scans 

(NLS) for 58 Da at a scan speed of 10,000 Da/s, with collision energy set at -45 eV, Q1 set to 

low resolution and Q3 set to unit resolution. Targeted detection of GPAA by precursor ion 

scanning (PIS) at m/z 137.1 were collected at 1000 Da/s scan speed with step size of 0.5 Da, 

collision energy at -45 eV and with Q1 and Q3 set to unit resolution. Enhanced product ion (EPI) 

spectra were acquired for the ion of interest with collision energy varying between 40-50 eV. 

Dynamic fill time was used with a maximum fill time of 250 ms and all other parameters 

optimized to give maximum signal. There was a small error in the calibration of the instrument, 

resulting in masses slightly higher than the theoretical mass of the lipids by 0.1-0.2 Da, 

especially in targetted scan modes. 
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Results and discussion 

To observe whether PS polar head-group oxidation occurred in HaCaT cells after AAPH 

incubation, as observed after radical oxidation of PS by hydroxyl radical [10, 25], cells were 

subjected to oxidation with AAPH (30 and 50 mM). The oxidative stimuli used were the same as 

reported in a previous study that mimicked oxidative stress injury in keratinocytes as a model of 

inflammation [18]. AAPH was chosen as it is a water-soluble azo-initiator frequently used for 

oxidation studies, using in  in vitro, model systems. AAPH after activation lead to  alkylperoxyl 

radicals and akylperoxides that are capable of initiating radical lipid peroxidation in liposomes 

and cells [18].  

As can be observed in figures 1 A and B, the concentrations of AAPH used effectively induce 

apoptosis in keratinocytes, as demonstrated by PS externalization and a marked decrease in 

cell metabolic activity. Moreover, apoptosis induction was clearly dependent on AAPH 

concentration, as keratinocytes treated with 50 mM were uniformly in the late stage of 

apoptosis, characterized by massive externalization of cell membrane PS (in green) and nuclear 

binding of the 7-AAD probe (in red). These findings support the AAPH-treated HaCaT cell 

model as a suitable one to investigate the oxidation of PS in apoptosis. 

The analysis of the lipid extracts obtained from keratinocytes was first undertaken using ESI-

MS in negative mode (Figure S1). PS species were observed as [M-H]- in low abundance since 

they are minor PL in total extracts, and thus oxidation products were not detectable. In order to 

achieve the sensitivity required to identify PS oxidation species, either in the fatty acyl chain or 

the polar head-group, a targeted shotgun lipidomic approach involving neutral loss scanning of 

87 Da was performed on control and oxidized cell extracts (Figure 2). Loss of 87 Da is a well 

known and typical fragmentation of phosphatidylserine under MS/MS conditions.  The most 

abundant phosphatidylserine species observed were at m/z 788.7, identified as PS-(18:0/18:1)), 

and at m/z 760.7, identified as PS-(16:0/18:1). It should be noted that the observed masses of 

the phospholipids were slightly above their theoretical masses (e.g. 788.54 for PS-(18:0/18:1), 

owing to small deviations in the calibration of the instrument. The composition of non-modified 

PS species was confirmed by MS/MS. The full list of PS species observed are summarized in 

Table 1; many of these species have been identified previously in keratinocytes and cell 

cultures [26].  
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Comparing the spectra obtained by NLS of 87 Da from the total lipid extract of HaCaT cells 

treated with AAPH (30 mM and 50 mM) with control HaCat cells, no differences between 

spectra were observed, suggesting that PS modified exclusively in fatty acyl chains are not 

formed or were formed at very low abundance and not detected under the experimental 

conditions used. However, we used direct infusion of a total lipid extract and it is possible that 

ion suppression of oxidized PS with oxygenated acyl chains occurred. For complete confidence 

in the absence of these oxidation products, an LC-MS analysis would be required. In contrast, 

using NLS of 58 Da, which is selective for GPAA as a polar head-group, clear evidence for the 

oxidation of the PS head-group in cells treated with 50mM AAPH was obtained (Figure 3). The 

neutral loss of 58 Da is a characteristic fragmentation of GPAA, which contains an acetic acid 

functional group as a polar head-group (Scheme 1), as described previously [10, 25, 27]. In 

GPAA fragmentation the neutral loss of 87 Da does not occur. In Figure 3, ions at m/z 731.6, 

757.5, 759.5 and 807.7 were observed and identified as GPAA derivatives, and their identity 

was confirmed by further MS/MS studies. The MS/MS spectrum of the most abundant ion at m/z 

759.5 is shown as an example in Figure 4. This precursor ion is 29 Da smaller than an un-

modified PS  at m/z 788.6, and fragments to yield product ions at m/z 281.3 and 283.3, 

corresponding to the deprotonated oleic acid and stearic acid, respectively, and an ion at m/z 

419.3 corresponding to lyso-phosphatidic acid, LPA-(18:0). The ion at m/z 253.3 also indicates 

the presence of a GPAA-(16:1/20:0) species. This enabled the identification of m/z 759.5 as the 

product of PS-(18:0/18:1) oxidation in the serine polar head-group.  

Interestingly, in all the MS/MS spectra of GPAA derivatives (Figure 4) it was possible to 

observe a product ion at m/z 137.1, which was assigned as HOPO3CH2COO- following 

fragmentation studies. This product ion is absent in the MS/MS spectra of un-modified PS and it 

was not observed in our previous work that identified GPAA derivatives for the first time, 

because those experiments were conducted in a linear ion trap mass spectrometer; these 

instruments have a cut off of 30% of the m/z value of the precursor ion, so the ion at m/z 137 

could not be detected. This demonstrates the advantages of a Q-trap for the identification of 

novel diagnostic ions for lipid oxidation products. To test the value of this diagnostic marker, PIS 

at m/z 137.1 was used to confirm the occurrence of GPAA modifications in cells exposed to 

AAPH (Figure 5), and lipids containing GPAA were clearly observed in samples treated with 30 
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and 50 mM AAPH. These novel results show that PIS for this diagnostic ion is more sensitive 

than NLS for 58 Da, which only allows detection of GPAA under the higher stress conditions, 

but its selectivity is not as good, as several ions that did not correspond to the GPAA derivatives 

were also observed, such as ions at m/z 746.9 and 818.8/818.9. The combined information from 

NLS of 58 Da and precursor ion scan (PIS) 137.1 allowed confirmation of the presence of 

species that correspond to the GPAA derivatives in HACT cells. Table 2 summarizes the ions 

corresponding to GPAA that were observed in the NLS of 58 and PIS m/z 137 spectra obtained 

from total lipid extract of HaCaT cells incubated with 30 mM and 50 mM of AAPH. 

To confirm and corroborate our results from HaCaT cells, further  characterization of  

oxidation and fragmentation pathways following AAPH-induced oxidation of a PS standard, 1-

palmitoyl-2-oleoylphosphatidylserine (POPS (16:0/18:1), was performed. The reaction was 

monitored by ESI-MS and MS/MS in negative ion. POPS was selected since PS (18:0/18:1) and 

PS-(16:0/18:1) are known to be the most abundant species of PS in HaCaT cells [26]. Analysis 

of the ESI-MS spectrum obtained for POPS after treatment with AAPH (Figure 6A) allows 

several deprotonated molecular ions ([M-H]-) to be identified, corresponding to the PS oxidation 

products. The ions at higher m/z than the native POPS (m/z 760.6) were found to be oxidation 

products of the unsaturated fatty acyl chain (m/z 776.6, PS+16 Da (hydroxy), 792.6, PS+32 Da 

(hydroperoxy), m/z 774.6, PS+14 Da (keto /epoxy derivatives). These are typical oxidation 

products of PS observed previously both in vitro and in vivo [8, 10, 28-30]. Other ions at m/z 

values smaller than the non-modified PS were also detected and were identified as oxidation 

products with modifications in the serine polar head-group. These products were identified as 

PS with a glycerophosphoacetic acid linked to the phosphate group (GPAA), (m/z 731.6), 

confirming that the PS modified at the polar head-group can be formed during AAPH-induced 

radical attack, as previously reported during the oxidation of PS induced by hydroxyl radical 

[10]. Oxidation products at the serine polar head-group and the fatty acyl chain (m/z 745.6 

(GPAA+14 Da), 747.6 (GPAA+16 Da) and 763.6 (GPAA+32 Da) were also identified (Figure 6). 

Tandem mass spectrometry (MS/MS) was used to confirm the previous assignments. In the 

ESI-MS/MS spectra of GPAA in negative ion mode a neutral loss of 58 Da was observed, 

corresponding to the loss of CH3COOH (acetic acid). These PS oxidation products are easily 

differentiated from the native PS and PS oxidized at the fatty acyl chains, as the latter show a 
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typical neutral loss of 87 Da (loss of aziridine-2-carboxylic acid). Also, comparing the ESI-

MS/MS spectra of non-modified POPS and GPAA, it can be seen that the product ion at m/z 

137.1 (assigned as HOPO3CH2COO-) is only present in the GPAA MS/MS spectrum. Figures 5 

B and 5C show that by using neutral loss scanning (NL of 87Da and NL of 58Da) precursor ion 

scan (PIS) at m/z 137.1 based on these distinct fragmentation profiles of PS oxidation products, 

it was possible to identify GPAA derivatives in the total lipid extracted obtained from HaCaT 

cells incubated with AAPH. 

AAPH is a water-soluble azo-initiator which generates peroxyl radicals (Scheme 2, equation 

1) at a constant rate and at a given temperature by thermal decomposition [31] and is 

independent of the cellular metabolism. The AAPH peroxyl radical intermediate is the reactive 

oxygen species responsible for the oxidation of biomolecules such as lipids and peptides and 

proteins. The formation of the GPAA derivatives occurs due to the AAPH-induced oxidation at 

the serine polar head-group, similar to the mechanism that occurs in amino acids and peptides 

[32]. This reaction is proposed to be initiated by the AAPH peroxyl radical, which causes the 

abstraction of the hydrogen linked to the α-carbon, generating a tertiary radical that is stabilized 

by the amine nitrogen and carbonyl group [31]. This carbon-centered radical reacts with an 

oxygen molecule and decomposes further leading to other oxidation products. Oxidative 

decarboxylation with formation of an additional keto group is usually observed during amino 

acid oxidation [33]. This occurs due to the loss of CO2 from C terminal via β-scission of an 

alkoxyl radical at the C terminal α-carbon (scheme 2 equations 2 and 3) [34]. 

In spite of the important role of PS oxidation, there is limited knowledge of the modifications 

that can be generated in this phospholipid under oxidative stress, particularly in the serine polar 

head-group. The possibility of formation of several oxidation products makes it important to 

define exactly which are being formed during stress, so that biological effects can be correctly 

linked to the precise products. PS is normally maintained in the inner leaflet membrane by the 

action of aminophospholipid translocase; it seems probable that GPAA derivatives in 

membranes, like PS oxidized at the fatty acyl chains, would not be recognized by this enzyme, 

thus promoting the presence of PS modified in polar head-group in outer leaflet membrane and 

contributing to the recognition of apoptotic cells. Interestingly, a recent study evaluated the 

capacity of GPAA to stimulate monocytes and dendritic cells to produce pro-inflammatory 
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cytokines and the results showed that GPAA has no pro-inflammatory activity [12]. 

Nevertheless, the specific role of these species in remains to be elucidated and more studies 

are needed. PS oxidized at the polar head-group may also have a significant role in these 

processes and should be explored further in the future. 

 

Conclusions 

This study highlights that oxidation of the serine polar head group, as well as fatty acyl 

chains, in phosphatidylserines in keratinocytes can occur after radical attack by the azo-initiator 

AAPH, and is likely to be missed by conventional techniques for identifying PS oxidation that 

depend on detection of the PS head-group. The GPAA derivatives formed due to serine head-

group modification can be identified using an improved targetted lipidomic approach, based on 

the observation that GPAA oxidative products have a specific fragmentation pathway producing 

a product ion at m/z 137 (HOPO3CH2COOH) and a neutral loss of 58 Da. Further studies are 

needed to investigate the possible formation of these species in other cell and tissues. 
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Caption tables 

Table 1: Identification of major PS species identified by NLS of 87 Da in the HaCaT cells lipid 

extract, with the indication of the m/z values of the [M-H]- ions observed 

 

 

 

 

 

 

 

 

 

Table 2: The major GPAA species observed in HaCaT cells incubated with 30 mM and 50 mM 

AAPH and the m/z values of the [M-H]- ions observed in the 58 Da of HaCaT cells incubated 

with 50mM AAPH, and in the PIS at m/z 137.1 for HaCaT cells incubated with 30mM and 50mM 

AAPH. 
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Captions Figures 

Figure 1: Effect of AAPH on cell metabolic activity and PS externalization. A) Cells were 

treated with 30 mM or 50 mM AAPH during 24h and the viability was assessed by resazurin 

assay. In this assay metabolic conversion of resazurin into resorufin will be proportional to cell 

viability. B) Keratinocytes were treated with 30 mM or 50 mM AAPH during 24h, and the 

apoptosis stage was analyzed by fluorescent microscopy using Annexin V, 7-AAD and Hoescht 

33258 probes. Intact cells appear with just blue nuclei, early apoptotic cells present blue nuclei 

and green membranes (PS externalization) and finally late apoptotic cells show marked green 

fluorescence and red nuclei. Images representative of different fields were acquired with a DS-

Fi2 High-definition digital camera coupled to a Nikon fluorescent microscope (magnification 

630x) and analyzed in NIS-Elements Imaging Software (Nikon Corporation, Japan). Bar scale: 

10 µm. 

 

Figure 2: The lipid profile of control and cells exposed to AAPH. Spectra of neutral loss of 

87 Da scanning of lipid extracts of HaCaT cells. A) Control lipid extracts. B) Lipid extracts 

obtained from HaCaT cells incubated with 30 mM AAPH. C) Lipid extracts obtained from HaCaT 

cells incubated with 50 mM AAPH. 

 

Figure 3: PS oxidized in the serine headgroup was observed in HaCaT cells after 

oxidative stress. Spectrum of neutral loss scan of 58 Da obtained from HaCaT cells incubated 

with 50 mM AAPH. 

 

Figure 4: Tandem mass spectrometric analysis of GPAA species. MS/MS spectrum of the 

ion [M-H]
-
 at m/z 759.5 corresponding to the GPAA species formed by PS headgroup oxidation. 

 

Figure 5: Use of the diagnostic marker at m/z 137.1 to detect oxidized PS in cells exposed 

to AAPH. A) Spectrum of precursor ion scanning of the ion at m/z 137.1 obtained from control 

HaCaT cells. B) Spectrum of precursor ion scanning of the ion at m/z 137.1 obtained from 
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HaCaT cells incubated with 30 mM AAPH during 24h. C) Spectrum of precursor ion scanning of 

the ion at m/z 137.1 obtained from HaCaT cells after incubation with 50mM AAPH during 24h. 

 

Figure 6: Mass spectrometric analysis of oxidized POPS by different scanning routines. 

A) MS spectrum obtained in negative ion mode of an oxidized mixture of POPS showing the [M-

H]
-
 ions. Oxidation of POPS was induced after incubation with 30 mM AAPH. (B) Spectrum of 

neutral loss scanning of 87 Da obtained from an oxidized mixture of POPS. C) Spectrum of 

neutral loss scanning of 58 Da obtained from an oxidized mixture of POPS. D) Spectrum of 

precursor ion scanning of the ion at m/z 137.1 obtained from an oxidized mixture of POPS. 

Mass spectra were acquired using a 5500 QTrap mass spectrometer. 

 

Captions Schemes 

Scheme 1: Phosphatidylserine and glycerophosphoacetic acid (GPAA) structures. 

Specific neutral loss of 87 Da from non-modified PS and neutral loss of 58 Da from GPAA. 

Formation of an ion at m/z 137 observed during GPAA fragmentation.  

 

Scheme 2: Reaction pathways that occurred during PS polar head oxidation by AAPH 

radical generator: Decomposition of AAPH produces molecular nitrogen and two carbon 

centered radicals. The carbon radicals may react with molecular oxygen to give peroxyl radicals 

(1). There are two possible pathways for the formation of GPAA derivatives from PS oxidation. 

PS polar head group may be deaminated and carboxylated to yield an aldehyde one carbon 

shorter than the original and the aldehyde may be oxidized to a carboxylic acid (2). Alternatively 

PS polar head group may be transaminated, resulting in the formation of an α-keto acid which 

can be oxidatively decarboxylated to yield a carboxylic acid one carbon shorter than the original 

PS polar head (3).  

 

 



Figure 1: Effect of AAPH on cell metabolic activity and PS externalization. A) Cells were 
treated with 30 mM or 50 mM AAPH during 24h and the viability was assessed by resazurin 
assay. In this assay metabolic conversion of resazurin into resorufin will be proportional to 
cell viability. B) Keratinocytes were treated with 30 mM or 50 mM AAPH during 24h, and the 
apoptosis stage was analyzed by fluorescent microscopy using Annexin V, 7-AAD and 
Hoescht 33258 probes. Intact cells appear with just blue nuclei, early apoptotic cells present 
blue nuclei and green membranes (PS externalization) and finally late apoptotic cells show 
marked green fluorescence and red nuclei. Images representative of different fields were 
acquired with a DS-Fi2 High-definition digital camera coupled to a Nikon fluorescent 
microscope (magnification 630x) and analyzed in NIS-Elements Imaging Software (Nikon 
Corporation, Japan). Bar scale: 10 µm. 
 



Figure 2: The lipid profile of control and cells exposed to AAPH. Spectra of 
neutral loss of 87 Da scanning of lipid extracts of HaCaT cells. A) Control lipid 
extracts. B) Lipid extracts obtained from HaCaT cells incubated with 30 mM AAPH. 
C) Lipid extracts obtained from HaCaT cells incubated with 50 mM AAPH. 
 



Figure 3: PS oxidized in the serine headgroup was observed in HaCaT cells after 
oxidative stress. Spectrum of neutral loss scan of 58 Da obtained from HaCaT cells 
incubated with 50 mM AAPH. 
 

Figure 4: Tandem mass spectrometric analysis of GPAA species. MS/MS spectrum 
of the ion [M-H]- at m/z 759.5 corresponding to the GPAA species formed by PS 
headgroup oxidation. 
 



Figure 5: Use of the diagnostic marker at m/z 137.1 to detect oxidized PS in cells 
exposed to AAPH. A) Spectrum of precursor ion scanning of the ion at m/z 137.1 
obtained from control HaCaT cells. B) Spectrum of precursor ion scanning of the 
ion at m/z 137.1 obtained from HaCaT cells incubated with 30 mM AAPH during 
24h. C) Spectrum of precursor ion scanning of the ion at m/z 137.1 obtained from 
HaCaT cells after incubation with 50mM AAPH during 24h. 



Figure 6: Mass spectrometric analysis of oxidized POPS by different scanning 
routines. A) MS spectrum obtained in negative ion mode of an oxidized mixture of 
POPS showing the [M-H]- ions. Oxidation of POPS was induced after incubation with 
30 mM AAPH. (B) Spectrum of neutral loss scanning of 87 Da obtained from an 
oxidized mixture of POPS. C) Spectrum of neutral loss scanning of 58 Da obtained from 
an oxidized mixture of POPS. D) Spectrum of precursor ion scanning of the ion at m/z 
137.1 obtained from an oxidized mixture of POPS. Mass spectra were acquired using a 
5500 QTrap mass spectrometer. 
 



Scheme 1: Phosphatidylserine and glycerophosphoacetic acid (GPAA) structures. 
Specific neutral loss of 87 Da from non-modified PS and neutral loss of 58 Da from 
GPAA. Formation of an ion at m/z 137 observed during GPAA fragmentation. 

Scheme 2: Reaction pathways that occurred during PS polar head oxidation by AAPH 
radical generator: Decomposition of AAPH produces molecular nitrogen and two 
carbon centered radicals. The carbon radicals may react with molecular oxygen to give 
peroxyl radicals (1). There are two possible pathways for the formation of GPAA 
derivatives from PS oxidation. PS polar head group may be deaminated and 
carboxylated to yield an aldehyde one carbon shorter than the original and the 
aldehyde may be oxidized to a carboxylic acid (2). Alternatively PS polar head group 
may be transaminated, resulting in the formation of an α-keto acid which can be 
oxidatively decarboxylated to yield a carboxylic acid one carbon shorter than the 
original PS polar head (3). 
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