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ABSTRACT

A recent novel approach to the visualisation and analysis of
datasets, and one which is particularly applicable to those of
a high dimension, is discussed in the context of real applica-
tions. A feed-forward neural network is utilised to effect a
topographic, structure-preserving, dimension-reducing trans-
formation of the data, with an additional facility to incorpo-
rate different degrees of associated subjective information. The
properties of this transformation are illustrated on synthetic
and real datasets, including the 1992 UK Research Assessment
Exercise for funding in higher education.

The method is compared and contrasted to established tech-
niques for feature extraction, and related to topographic map-
pings, the Sammon projection and the statistical field of multi-
dimensional scaling.

1 INTRODUCTION

The visualisation and analysis of high-dimensional data
is a difficult problem and one that may be helpfully
viewed in the context of feature extraction, which pro-
vides a useful common ground for exploring the relation-
ships between neural network and more traditional ap-
proaches. There is a well established repertory of tech-
niques for the derivation of appropriate feature spaces
(usually of reduced dimension), with the nature and util-
ity of these spaces depending significantly on the crite-
ria for their extraction. Amongst such methods, there is
a natural dichotomy between those features whose pur-

pose is representation of the data, and those whose pur-
pose is its classification [4]. There is a clear parallel here
with the division into unsupervised and supervised learn-
ing in the neural network domain.

Feature extraction is perhaps the most generic of the pat-
tern processing capabilities of neural networks, and its
importance at the centre of developments is two-fold.
Firstly, there is a significant advantage to be gained by ac-
companying dimensionality reduction, and secondly it per-
mits the construction of nonlinear representations of the
data which may then be exploited for information analy-
sis.

These two points are exhibited in the following section,
where we present a novel hybrid neural network ap-
proach — one which combines both unsupervised and su-
pervised characteristics — to data visualisation and anal-
ysis.

2 A FEED-FORWARD NEURAL NETWORK
TOPOGRAPHIC TRANSFORMATION

We seek a dimension-reducing, fopographic transforma-
tion of data for the purposes of visualisation and analy-
sis. By ‘topographic’, we imply that the geometric struc-
ture of the data be optimally preserved in the transfor-
mation, and the embodiment of this constraint is that the
inter-point distances in the feature space should corre-
spond as closely as possible to those distances in the data
space. The implementation of this principle by a neural
network is very simple. A Radial Basis Function (RBF)



neural network is utilised to predict the coordinates of
the data point in the transformed feature space. The lo-
cations of the feature points are indirectly determined by
adjusting the weights of the network. The transforma-
tion is determined by optimising the network parameters
in order to minimise a suitable error measure that em-
bodies the topographic principle.

Note that this approach is in contrast to the Kohonen net-
work methodology of producing a topographic transfor-
mation which exploits an explicit lateral network connec-
tivity and an additional neighbourhood function which
is modified heuristically as part of the training process.

The specific details of this alternative approach are as fol-
lows. Given a p-dimensional input space of N data points
x;, a g-dimensional feature space of points y; is generated
such that the relative positions of the feature space points
minimise the stress term:

N
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where the d}; are the inter-point Euclidean distances in
the data space:
di; =/ (xi = x)"(x; — X)), 2)

and the d;; are the corresponding distances in the feature
space:

dij = \/ (yi —y)"(yi = y))- 3)

The points y are generated by the RBF, given the data
points as input. That is, y; = f(x;; W), where £ is the non-
linear transformation effected by the RBF with parame-
ters (weights) W. The distances in the feature space may
thus be given by

dij =|| £(y;) — £(y;) |

and so more explicitly by
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where ¢x() are the basis functions, y, are the centres of
those functions, which are fixed, and wy are the weights
from the basis functions to the output.

The topographic nature of the transformation is imposed
by the stress term which attempts to match the inter-
point Euclidean distances in the feature space with those
in the input space. This mapping is relatively supervised
because there is no specific target for each y;; only a rel-
ative measure of target separation between each y;,y;
pair is provided. In this form it does not take account
of any additional information (for example, class labels)

that might be associated with the data points, but is de-
termined strictly by their spatial distribution. However,
as well as a measure of spatial dissimilarity (the inter-
point distances), there may also be an additional notion
of subjective dissimilarity which may be exploited in the
transformation.

By ‘subjective dissimilarity’, we refer to the additional
prior knowledge of dissimilarity that may be attributed
to each pair of data points. For example, in the extreme
case, this may be a simple binary ascription, such that
data points representing differing classes have a constant
dissimilarity, while those of the same class have zero dis-
similarity. This notion, discussed in [10], has been ex-
ploited in [1, 30] for generating useful feature spaces that
separate classes.

This idea of dissimilarity is only basic, and there may of-
ten be more useful prior knowledge available. As illus-
tration, consider the problem of concentration coding in
the artificial nose, described in [16]. There, the data is de-
rived from a set of chemical vapour sensors for discrete
varying concentrations of ethanol and water vapour. The
distribution of data according to the sensor response im-
plies a certain topology and metric, due to the character-
istics of the sensors. However our subjective notion of
‘concentration coding’ typically has an alternative met-
ric. For example it would be natural to consider that the
metric in concentration space is linear so that the posi-
tion corresponding to 30% concentration should be sub-
jectively twice as far away from that of 10% or 50% than
that of 20% or 40%. Indeed any such dissimilarity scal-
ing might be chosen consistent with the available prior
knowledge. It is then helpful to define for each pair of
points both a spatial dissimilarity, d;;, and a subjective
dissimilarity, s;; — the latter assigned according to the the
prior knowledge available concerning points i and j.

This knowledge implies an alternative topology which
to some extent should influence the topology induced by
the objective spatial data. One convenient way which al-
lows a mixing between the objective and subjective ele-
ments and which permits a smooth transition from one
to the other is to modify the stress measure from equation
(1). The term dj; may be replaced with the alternative 4;
defined by:

51‘]‘ =(1- Oz)d; + a.sjj (5)

The parameter a (where 0 < a < 1) can thus be con-
sidered as an interpolating parameter between unsuper-
vised and supervised transformations, and is a more gen-
eral method of including subjective information than that
utilised in [1]. With a = 0, the the transformation is
purely objective, relying solely upon the measured input
data distribution. With o = 1.0, the transformation is
no longer explicitly dependent on the distribution of the
data, but is determined by the assigned subjective dis-
similarities. Figure 1 depicts the relationships between
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Figure 1: A pictorial representation of the NEU-
ROSCALE model

the various spaces and the role of the neural network
model.

Combining equations (1), (3) and (4) and differentiating
with respect to the weights in the network allows the par-
tial derivatives of the stress OE/Owy to be derived for
each pattern pair. These may be accumulated over the
entire pattern set and the weights adjusted by an itera-
tive procedure to minimise the stress term E. Note that
the objective function for the RBF is no longer quadratic,
and so a standard analytic matrix-inversion method for
fixing the final layer weights cannot be employed. In-
stead, we used a conjugate-gradient routine [21] for the
minimisation, having initialised the weights so as to per-
form a principal co-ordinates transformation (which is
related to the principal components transformation, see
section 5.2.3). This has the property of being an optimal
linear transformation in terms of one specific distance-
preserving criterion ([19], p.406).

We refer to this overall procedure as ‘NEUROSCALE,
with the interpretation that it should be viewed as a tool
for visualisation and exploratory analysis of data. As a
parameterised Sammon mapping, this approach offers
a generalising topographic visualisation of data, but the
exploitation of additional subjective information, via the
subjective metric, permits the extraction of ‘enhanced’,
more informative, feature spaces. This concept will be il-
lustrated and discussed further in Section 6.2. However,
the utility of the procedure is not limited solely to clas-

sification problems alone, and is applicable to other do-
mains such as interpolation or time-series analysis. For
example, in many data sets of the type described in the
concentration coding experiment, there may be no con-
venient, discrete class encodings (e.g. 30%,40%,50% . . .);
instead the concentration variables may be experimen-
tally measured over some continuous range (e.g. 36.9%,
66.2% ... .). With such data, there is an intuitive mea-
sure of dissimilarity between pairs of data points despite
the absence of explicit class groupings. In such instances,
the NEUROSCALE approach to supervised visualisation
is one of the few accessible techniques available.

To illustrate the ideas behind, and effects of, NEU-
ROSCALE, the following section presents a simple and
effective demonstration of the approach for class-based
problems.

3 A SYNTHETIC EXAMPLE — DATA ON 3
CONCENTRIC SPHERES

To illustrate the principle of the NEUROSCALE method,
it was applied to 150 data points in 3-dimensional space,
comprising 3 sets of 50 points, each set lying on one of
three concentric spheres, with added Gaussian noise. All
spheres were centred at the origin with radii 0,1 and 2
units respectively (so that the innermost sphere is effec-
tively a cluster). The data points x; = (xj1, X2, X;3)" were
generated by the formula

cos 6; sin ¢;
sin#; cos ¢; | , (6)
sin (ﬁ,‘

X; = (rx + v;p).

where 7y is the radius (either 0,1 or 2), v; is a Gaussian
random variable with zero mean and variance 0.05, and
0;,¢; are uniform random variables in the range [0, 27)
and [0, 7) respectively.

All points on each sphere were considered to belong to a
single class and two different schemes for subjective dis-
similarities were incorporated. In the first, each sphere
is a distinct class with the subjective dissimilarities sim-
ply characterised by the absolute difference in radii. So,
the matrix of subjective dissimilarities between spheres
is naturally given by

01 2
CG=1|1 01
210

where the columns are ordered from the innermost
sphere to the outermost sphere. In the second case the in-
nermost and outermost spheres are considered to be the
same class, so the matrix becomes

c-iot

[o 1 OJ'
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Figure 2: 12x12 Kohonen feature map of the 3-Spheres
data.

For the purposes of the NEUROSCALE procedure, we re-
quire a value of subjective dissimilarity, s;;, for every pair
of data points — giving a subjective matrix S which is iso-
morphic to the Euclidean distance matrix D*. Values of
sij can therefore be determined for every pair of points,
given the knowledge of which spheres they lie on, by re-
ferring to one of the matrices C; or Cs.

The 3-Spheres data is a problem for which a topographic
projection based on a Kohonen network is unsuitable.
The unsupervised Kohonen feature map of this data is
given in figure 2, and illustrates the difficulty of project-
ing the three distinct surfaces within the data.

The NEUROSCALE transformation was trained for both
class models and for values of & 0of 0,0.5,0.75and 1.0. The
resulting projections are given below.

3.1 PROJECTIONS OF THE 3-SPHERES DATA

Two-dimensional projections of the data are illustrated
in figures 3 and 4, for each subjective dissimilarity ma-
trix respectively. These results were obtained using a net-
work with 50 Gaussian basis functions.

3.2 DISCUSSION

The plot for @ =01in figure 3, displaying the ‘opening out’
of the spheres, is characteristic of such structure preserv-
ing transformations. Although no subjective class infor-
mation has been exploited, there is a natural separation
of the spheres. As a is increased, the spheres are gradu-
ally “folded” until at o =1, the RBF has optimally mapped
all the data points in each sphere to a single point. A sim-
ilar phenomenon is evident in figure 4, where the mid-
dle sphere is extracted and the other spheres eventually
merged. The combination of both topographic and sub-
jective constraints is clear in the a =0.5 plot.

Figure 5: Cross section of the two adjacent planes.

Figure 6: An RBF topographic projection of two adja-
cent planes with o = 0.

4 A SYNTHETIC EXAMPLE — DATA ON
ADJACENT PLANES

For this example, 50 data points were distributed uni-
formly at random over each of two adjacent planes. Both
planes were of height 5 units and width 2 units, and
were offset by 0.5 units. In addition, each plane curved
through an angle of 30°. A cross-sectional illustration of
this arrangement is shown in figure 5. Figure 6 shows the
unsupervised (o = 0) mapping. Naturally both planes
are confused. Figure 7, however, gives the projection for
a = 0.5 where each plane is considered a separate class
in a similar manner to the spheres data. This resulting
feature space exhibits both a good separation between
classes and retention of the local topology in each plane,
as can be seen by the two overlaid outlines.

Figure 7: An RBF topographic projection of two adja-
cent planes with a = 0.5. A grid is superimposed.
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Figure 3: Projections of the 3-Spheres data for subjective matrix C;.
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Figure 4: Projections of the 3-Spheres data for subjective matrix C,.
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Figure 8: Relational diagram showing the links be-
tween several common techniques used for feature ex-
traction.

5 FEATURE EXTRACTION AND
TOPOGRAPHIC MAPPINGS

The NEUROSCALE projection is a topographic feature ex-
traction technique that employs additional preferential
information. Since the method has links to several other
techniques in statistical pattern processing, this section
presents a brief overview of some of the more traditional
approaches to feature extraction and how they relate to
the ‘NEUROSCALE’ model. The section also discusses the
concept of a topographic map, and describes in greater
detail two related methods upon which our work builds
— the Sammon mapping and multidimensional scaling.

Figure 8 shows the domain of influence of these methods
categorised by their linearity and the degree of exploita-
tion of explicit target information. The interpolation
from nonlinear-unsupervised to nonlinear-supervised is
also emphasised for the RBF topographic mapping.

5.1 ESTABLISHED FEATURE EXTRACTION
TECHNIQUES

The classical unsupervised feature extraction technique
is principal components analysis (PCA), which is also
known as the Karhunen-Loéve expansion. This is an or-
thogonal linear projection (usually dimension reducing)
which is optimal in the sense of preserving the vari-
ance in the transformed data. There has been much
exploration of the links between PCA and neural net-
works (e.g. [20]) and this has been extended to nonlin-
ear forms of PCA both within the neural network context
(e.g. [23, 11]) and without (e.g. the method of “principal
curves’ [7]).

PCA and related methods make no use of class informa-
tion that may be available for each given data point. If it

is desired to classify the data from the features, then it is
advantageous to exploit such information in their extrac-
tion. This approach is used in linear discriminant analysis
(related to canonical variate analysis), where a class separa-
tion criterion is maximised under linear transformation.
One common such criterion is |Sp|/|Sw|, the ratio of the
determinants of the between-class and within-class scat-
ter matrices of the transformed data, and is closely re-
lated to Fisher’s linear discriminant function [3]. It has
been shown that this criterion is maximised in the hidden
layer space of a linear feed-forward network trained to
perform a classification task [5]. Again, this can be gener-
alised to a nonlinear neural network, with linear outputs
trained to effect classification. The hidden unit space is
then shown to be constructed so as to optimise the trace
criterion Tr[SBS;“], where Sr is the total scatter matrix of
the hidden data [31].

5.2 TOPOGRAPHIC MAPPINGS

The methods outlined in Section 5.1 are concerned with
the preservation of variance or class separability under
the transformation to the feature space. Topographic maps
represent another class of unsupervised transformations
where the preservation criterion is the structure of the
data. Use of the term ‘structure” implies that the geo-
metric neighbourhood relations between data points are
preserved - that is, points that are nearby in the data
space will be similarly distributed in the feature space,
and equally, points that are more distant should be like-
wise more distant after the transformation.

5.2.1 The Kohonen Map

Although there are several topographic neural network
models (for instance, Willshaw’s Elastic Net model [32]),
the archetypal neural network topographic map is the
Kohonen self-organising feature map [9], where the structure
is imposed on the mapping by means of the neighbour-
hood function. However, the (usually two-dimensional)
topology of the Kohonen net itself imposes a constraint
on the resulting projection, and this can limit its utility
in many applications (See, for example, [15] or the 3-
Spheres data in Section 3).

A non-neural structure-preserving map can be gener-
ated by the Sammon Mapping [22].

5.2.2  The Sammon Mapping

The Sammon mapping is a topographic mapping that
seeks to retain structure by maintaining the correspon-
dence between inter-point distances in the data space
and the feature space. Given a prior choice of feature
space dimension, the Sammon map is generated by min-
imisation of the Sammon Stress error term, similar to that



given earlier in equation(1):
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where dj; is the distance between points x; and x; in the
data space, and d; is the distance between their corre-
sponding images y; and y; in the feature space. The ex-
tra terms, with respect to equation (1), serve to reduce
the sensitivity of the mapping to the scale of the original
data, and also render the stress measure dimensionless.
Since d;; = ||y; — yj||, the mapping can be determined by
adjusting the points y iteratively (by a gradient descent
method, for example).

The Sammon mapping thus attempts to keep points that
are close together in the input space close together in the
feature space, and similarly for distant points, and so
will approximately preserve any clustering. The extent
to which the integrity of this structure from input space
can be retained under the mapping is dependent upon
both the intrinsic dimensionality of the data, and also on
its topology. In the 3-Spheres data from Section 3, neigh-
bourhood relations are distorted by the ‘peeling’ apart of
the spheres and resulting in the artefactual circular struc-
ture evident in figure 3. These effects should be borne in
mind when interpreting such topographic projections.

In Sammon’s original paper [22], several examples are
given to illustrate the efficacy of the mapping, where
PCA techniques confuse multiple clusters of data, whilst
the Sammon map visibly retains their separation in the
feature space.

There are, however, some disadvantages to the tech-
nique:

e The mapping is generated iteratively and is prone to
local minima.

e The computational requirements scale with the
square of the number of data points.

e The map is generated as a ‘look-up table” — that is,
there is no way to project new data since there is no
transformation defined.

e There is no method to determine the dimensionality
of the feature space a priori.

In the sense that the Sammon map is concerned with gen-
erating a configuration of points in order to fit a matrix
of distance measures, it is closely related to the statistical
technique of multidimensional scaling.

5.2.3  Multidimensional Scaling (MDS)
Multidimensional scaling [2] is a statistical method for

generating a configuration of points from a set of dissim-
ilarity measurements. A prototypical illustration of this

concept given in many MDS texts (and applicable also
to the Sammon mapping) is the generation of a map of
cities from a table of the measured road distances be-
tween them (e.g. [19], p.410). This becomes equivalent to
the Sammon mapping if the dissimilarity measurements
are an explicit set of inter-point Euclidean distances.

However, in contrast to the Sammon mapping, MDS has
been much exploited in psychology and the social sci-
ences where the dissimilarity measurements are more ab-
stract and are usually obtained from experimental hu-
man subjective judgements of various stimuli. The as-
sumption is made that these observations can be mean-
ingfully fitted to a set of points in some Euclidean space,
where the distance between the points representing each
pair of stimuli corresponds to their perceived dissimi-
larity. It is then hoped that this configuration will aid
visualisation of the data and/or provide insight to the
processes that generated it. Several good examples of
MDS applied to psychological data can be found for var-
ious datasets in [2]. More recently, MDS has been ap-
plied to analysis of the connectivity of regions within
the primate visual cortex [33]. However, in response to
this, some controversy has arisen surrounding the in-
terpretation of MDS feature spaces as to whether such
maps imply genuine structure in the original data, or al-
ternatively, whether such apparent structure is an arte-
fact of the method [6]. Recall our previous comments
that care should be taken in interpreting any method of
dimension-reducing topographic mapping. It may be the
case that the original data has an intrinsic dimensionality
and topology which is in conflict with the constraining
topographic projection.

There are two main branches to MDS: the original met-
ric method, and the more commonly used non-metric
method.

In metric MDS, the distances in the configuration are in-
tended to directly correspond to the given dissimilarities.
In the original, and largely dominant, metric model, clas-
sical MDS [28], the configuration is obtained by an an-
alytic method (via a spectral decomposition of the cen-
tred inner-product matrix), and, if the dissimilarities cor-
respond to a matrix of Euclidean distances between a set
of points in some space, it can be shown to be equivalent
to a PCA of those original points. (This method is there-
fore also known as principle co-ordinates analysis.) It can
further be shown that classical MDS is an optimal linear
dimension-reducing transformation of those points with
respect to one particular distance-retaining stress mea-
sure ([19], p.406).

In non-metric, or ordinal, MDS [24, 25, 12, 13] the require-
ment that distances in the projected space optimally fit
the dissimilarities is relaxed so that only the ordering of
distances is retained. That is, the two most dissimilar
stimuli should also be the two most distant points in
the configuration and the second most dissimilar pair of



stimuli be the second most distant points etc. It is there-
fore not necessary for all pairs of values to be identical.
Indeed, the ordinal constraint implies that it is only nec-
essary that the dissimilarities be some arbitrary mono-
tonically increasing function of the distances. This con-
cept preserves many intuitive psychological properties
and in many cases permits the generation of more useful,
lower-dimension, lower-stress mappings. In contrast to
the classical method, these ordinal configurations must
be generated iteratively, usually via a gradient descent
procedure, and are computationally expensive due to the
requirement of a monotonic regression step.

The Sammon mapping is effectively a metric scaling
method, but derived by an iterative procedure (and so
implicitly nonlinear) rather than by the classical tech-
nique (which would simply effecta PCA). As such, its ex-
act analogue does not exist in the MDS domain, although
the parallels were pointed out in [14].

5.2.4 Parameterised Maps

One major restrictive disadvantage of Sammon map-
pings and MDS methods is the look-up table nature of the
generated configuration. There is no defined transforma-
tion that permits the mapping of unseen data — the entire
configuration must be re-generated with the new data in-
cluded. There is therefore no notion of generalisation.

With this in mind, several researchers have proposed
utilising a parameterised transformation to effect the
mapping. It can be seen that instead of directly adjust-
ing the configuration points y from equation (7), if those
points are defined as a (nonlinear) function of the original
points x by y = f(x; W), then the parameters W may be
adjusted in the optimisation procedure to indirectly ad-
just the points y and so to minimise the Sammon stress
or similar measure. This has several advantages. It en-
ables the transformation of unseen data by £(-), and also
implies that the complexity (in terms of the number of pa-
rameters) of the transformation can now depend on the
complexity of the data, rather than simply the number of
data points. (Note that the number of parameters in the
Sammon mapping is the number of data points x the di-
mension of the feature space.)

Parameterised Sammon mappings have been outlined in
[8, 18], where the transformation is performed by a mul-
tilayer perceptron neural network (MLP) and in [16, 17],
using a radial basis function (RBF) network. Similar RBF
approaches have been exploited in [29, 30] from a MDS
perspective. Although there is no specific target informa-
tion for the training of the networks, given the Sammon
stress or similar error measure, expressions for updating
weights for each pair of applied patterns may be easily
derived. This procedure is intuitively referred to in [16]
as relative supervision.

As described in Section 2, we adopted a parameterised

RBF Sammon mapping approach for our transformation,
but with the modified stress criterion given in equation
(5) which permits the exploitation of additional subjec-
tive knowledge. Hence the NEUROSCALE method may
be viewed as a technique which is closely related to
Sammon mappings and nonlinear metric MDS, with the
added flexibility of producing a generalising transforma-
tion which also allows the incorporation of varying de-
grees of subjective knowledge.

6 REAL DATASET EXAMPLE: THE 1992 RAE
DATABASE

In 1992, the Universities Funding Council undertook
a Research Assessment Exercise (RAE) of 72 separate
subject areas in all higher education institutions in the
United Kingdom. Institutions supplied numerous quan-
titative indicators of their respective research activity,
such as the number of active researchers, postgraduate
students, the values of grants awarded and various num-
bers of publications. These variables, along with some
qualitative input such as example publications, formed
part of the input into committees which provided a peer-
assessment of the research rating, on a scale of 1 to 5, to
each subject area at each institution. It should be stressed
that the peer review of each submission also incorpo-
rated additional non-quantitative information (such as
the panel’s subjective assessment as to the ‘quality” and
current activity of research in each unit of assessment).
Hence there is not likely to be a simple relationship be-
tween the objective database values and the attributed
research ratings. However we would expect that there
should be some measure of correlation and hence possi-
ble structure in this database that may be elucidated by
feature extraction techniques. Some statistical analyses
have already been published on this database, for exam-
ple [26, 27].

The data presents a challenge due to both its high dimen-
sionality, which is of the order of 150 in its raw form, and
due to the “noise” present in the values of the research
rating class labels due to their subjective assignment in
the peer review process.

Although there are over 4000 records in the database for
all subjects, the distribution of the explanatory variables
and the correlation between them and the research rat-
ing varies widely between subject areas. For this study,
we chose to analyse three related and well correlated sub-
jects — Physics, Chemistry and Biological Sciences. In ad-
dition, generalisation performance of the methods was
checked by retaining data for the Applied Mathematics
subject area.

Initial data preprocessing included: removing redundant
and repeated variables; accumulating some indicators
which were given for a number of years; all variables
were standardised for size by dividing by the number of



research staff at the institution and then pre-whitened.
The eventual training data set consisted of 217 examples
each with 80 explanatory variables, and the following
techniques were applied for the analysis of the data:

1. Principal Components Analysis
Generalised Linear Discriminant Analysis
Sammon Mapping

Kohonen Mapping

Neural Network (MLP) Classifier

SANEU

RBF topographic transformation ("NEUROSCALE’)
for values of a = 0.5 and 1.0.

In the case of the the final, NEUROSCALE, method, we
chose a set of class dissimilarities consistent with a linear
relationship between research ratings, and this choice of
metric is intended to reflect our preference for the struc-
ture of the extracted feature space. For example, we pre-
fer projections of ‘4’-rated departments to cluster closer
to those that are ‘3’-rated than to those which are 2’-
rated, and this linear preference additionally reflects the
resultant funding. (A department with a rating of ‘1" re-
ceives no funding, and a ‘5" receives four times that of
a ‘2, so funding o (rating — 1).) This preferential linear
structure is illustrated in figure 9.

Figure 9: The preferential structure of the feature space
for the five classes of research rating.

This then implies that the dissimilarities between re-
search ratings may be defined by the matrix:

012 3 4
10123
C,=|2 101 2
32101
43210

and in a similar manner to the 3-Spheres data of Section
3, a value of subjective dissimilarity, s;;, for every pair of
departments in the dataset may be determined by refer-
ence to the above matrix C,,. Note that the scaling of this
matrix is arbitrary, as we are only interested in the rela-
tive differences. Thus for example, entries s;4 = 2 and
sp5 = 3 mean that the relative difference between depart-
ments with ratings 2" and ‘4’ is 2, while the relative dif-
ference between departments with ratings ‘2" and ‘5" is 3.
This considered, it is then sensible to scale the values in
the matrix C,, such that the average inter-point subjective
dissimilarity is equal to the average inter-point Euclidean

distance. This then implies that the NEUROSCALE plot
with o = 0.5 represents an approximate balance between
the twin, objective and subjective, metrics.

6.1 PROJECTIONS OF THE RAE DATA

For the purposes of visualisation and comparison, all
projections were into two dimensions, and the feature
spaces thus extracted are illustrated in figures 10 and 11.

6.2 DISCUSSION

The projections in figures 10 and 11 illustrate a range of
features extracted under assumptions of unsupervised to
supervised, and linear to nonlinear. Although a Kohonen
network was also applied to this database, the character-
istics of the data render the Kohonen representation in-
effective and hence the results were not presented. From
figure 10a it is clear that the features extracted by the PCA
are not likely to be of any exploratory use, since no signif-
icant structure could be extracted. However by exploit-
ing explicit class information, the LDA space (10c) man-
ages to separate the patterns approximately into class
clusters. The same is true for the hidden unit space of
the multilayer perceptron (11d), except that the data sep-
aration is more severe (and two of the classes, 4 and 5,
are ‘confused’ by the network as there are only 2 hid-
den nodes). The use of the LDA to provide a transfor-
mation rather than just a mapping is exhibited by 10d
which demonstrates the effect of projecting a test set of
data ("Applied Mathematics’) into the LDA space.

The Sammon mapping (10b) depicts the nonlinear but
unsupervised feature space. Despite not exploiting any
class information, this representation produces a set of
features which allows patterns in similar classes to re-
main in close proximity. Neighbourhood relations in the
data space are approximately preserved in the feature
space. This is a very similar feature space to that the
‘NEUROSCALE’ network would produce with a:=0.

Figure 11a shows a feature space produced by the NEU-
ROSCALE network, with a = 0.5, and so incorporating an
element of subjective ‘class” knowledge into the transfor-
mation. The influence of the subjective metric is clearly
evident by simple comparison with the Sammon Map-
ping. There is now a clear ordering of research ratings
in a similar topography to that of the LDA projection.
In contrast to that linear supervised feature space, care-
ful examination shows that the inter-class boundaries are
more pronounced in the NEUROSCALE plot. This may
be expected, as the subjective metric element attempts to
separate, nonlinearly, points with different research rat-
ings.

The observations in the above paragraph concern the ef-
fect on the projection of the subjective metric. In addition
to this subjective element, because of the choice of an in-
termediate value of a (0.5), some of the geometric struc-



(a) Principal Components Analysis (PCA)

(b) Sammon Mapping
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Figure 10: Extracted 2D feature spaces for the RAE data
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(a) NeuroScale, alpha=0.5

(b) Test projection - NeuroScale, alpha=0.5
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Figure 11: Extracted 2D feature spaces for the RAE data
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ture of the original data is retained in the feature space.
This implies that useful information might be inferred
from the locations of individual points in the feature
space, as the structure therein reflects, to some degree,
the corresponding topology of the input space. For ex-
ample, in this plot of the RAE data, it may illuminate po-
tential anomalies in the awarding of research ratings. In
figure 11a, four particular departments have been high-
lighted (in enlarged bold type) on the projection. Each of
these departments appears to have received a rating in-
compatible with its position on the map, judged by con-
sideration of the ratings awarded to its immediate neigh-
bours in the feature space.

These departments are, from left to right on the plot:

e Physics at Heriot Watt University, Edinburgh, which
has received a ‘5" while lying amongst a cluster of
4’s.

Physics at Queen’s University, Belfast, which has
also received a ‘5" while lying amongst departments
awarded ‘4’s and ‘3’s.

Physics at Stirling University, which received a ‘4’
while lying amongst a cluster of “3’s.

Physics at the University of Westminster which was
awarded a ‘3’, while apparently located on the bor-
der between ratings ‘1’ and ‘2.

In the case of a purely supervised plot, for example the
nonlinear discriminant analysis in figure 11d, the loca-
tion of individual points with respect to their neighbours
in the feature space is largely artefactual. Due to the to-
pographic constraint upon the feature space of figure 11a,
there will be an element of structural information therein.
In the cases of the individual points highlighted above,
further evidence for the structural significance can be elu-
cidated by considering the predictions of a RBF network,
trained to classify each department from the input data.
The table below shows the actual and predicted ratings
of the four departments above.

Actual | Predicted
Physics, Heriot-Watt 5 3
Physics, Queen’s 5 3
Physics, Stirling 4 3
Physics, Westminster 3 1

In general, the classifier predictions support the evidence
from the NEUROSCALE plot. In this example, the relative
location of points in the feature space has proved infor-
mative. With respect the the research exercise itself, al-
though these four particular classifications may appear
anomalous, there may well be good explanations due to
the operation of the peer assessment process. Firstly, it
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is noticeable that all four departments are of the Physics
unit of assessment. The panel which awarded the ratings
for this subject may have had different criteria to those
for Chemistry and Biological Sciences. Equally, the panel
has access to additional information which, in the case of
the four departments in question, may have influenced
its judgement.

As a final example feature space generated by the NEU-
ROSCALE technique, the illustration in figure 11c shows
a plot for a = 1. This feature space is no longer influ-
enced (explicitly) by the spatial distribution of the input
data, but is determined by the subjective metric alone.
Thus the feature space should represent the preferential
knowledge embodied in that metric, and should take the
form of a five point clusters distributed along a straight
line. The smearing out of the points along that line is a re-
sult of the RBF approximation to the Sammon mapping.
As the number of basis functions in the transformation
is considerably fewer than the number of points (recall-
ing that the data labels are likely to be subject to some
considerable noise), there is not sufficient flexibility in the
model to precisely locate the points and satisfy the sub-
jective metric constraints.

The main advantage of the NEUROSCALE approach to
a Sammon mapping is the ability to generalise. Figure
11b shows the projection of the test set of data ("Ap-
plied Mathematics’) into the derived NEUROSCALE fea-
ture space for the case of a = 0.5, exhibiting a ‘sensible’
projection which could be used for subsequent decision
making or inference.

7 CONCLUSION

By comparison, review and example, this paper has at-
tempted to make more accessible a technique for topo-
graphic feature extraction which is not widely known.
The suggested approach has several advantages over the
standard topographic feature map:

There exist close relationships to several traditional
techniques in the statistics and pattern processing
literature.

The technique produces a transformation of the
data, rather than just a simple mapping.

It permits the incorporation of varying degrees of
subjective knowledge which can be allowed to influ-
ence the extracted feature space.

Extracted feature spaces are often more ‘representa-
tive’ of the problem than the space extracted by a Ko-
honen network (e.g. the 3-Spheres problem).

The number of parameters in the non-linear optimi-
sation process scales only with the size of the net-
work, rather than with the number of patterns. This



is of particular benefit when employing memory-
hungry optimisation routines (such as BFGS [21]).
Furthermore, we observed a reduction in training
time of some 40% (compared to a standard Sammon
mapping) for 200 patterns projected to two dimen-
sions using the conjugate gradient optimisation rou-
tine. Such improvements are more exaggerated as
the number of patterns increases.

Limitations include:

e The computational requirement of the technique still
scale with the square of the number of patterns (al-
though the RBF component of the procedure, in
terms of the transformation of patterns and calcu-
lation of derivatives dy/O0wy, only scales linearly).
This limits the number of training patterns that can
be used to produce a transformation. A sequential
processing method may alleviate this problem.

Problems of local minima. Note that in this paper
we initialised the RBF weights to perform a princi-
pal co-ordinates analysis of the data prior to the non-
linear optimisation. In general, from an arbitrary
initialisation the resulting feature space configura-
tion could represent a poor local minimum. In fact,
in our experiments and compared to the standard
Sammon mapping procedure, random initialisation
of the RBF weights was also observed to result in a
dramatic reduction of final configurations that rep-
resented sub-optimal local minima. The most likely
explanation of this phenomenon is that the majority
of poor minima in which the Sammon mapping may
be trapped are highly unsmooth projections that are
unrealisable by the RBF network we employed.

A choice of parameter a is necessary. Appropriate
values can only be ascertained on a trial and error ba-
sis. The effect of a particular value of « is very much
dependent on the order of magnitude of distances in
the input space and of the scaling of the subjective
dissimilarities applied.
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