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It is shown theoretically that an optical bottle resonator with a nanoscale radius variation 

can perform a multi-nanosecond long dispersionless delay of light in a nanometer-order 

bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm 

deep semi-parabolic radius variation is fabricated from a 19 micron radius silica fiber 

with a sub-angstrom precision. In excellent agreement with theory, the resonator exhibits 

the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44 dB/ns intrinsic 

loss. This is a miniature slow light delay line with the record large delay time, record 

small transmission loss, dispersion, and effective speed of light.  
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The speed of photons is always equal to the speed of light c. However, a light pulse propagating through 

an optical structure does not get from point ra to point rb in time | |/a b c−r r  since it can be absorbed and 

reemitted, reflected, trapped by a resonant state, travel through a curved waveguide, etc. Regardless of the 

propagation details the effective speed of light can be determined as /v L τ= , where τ  is the actual time 

of travel from ra to rb and | |a bL≥ −r r  is the size of the propagation region.  

The intriguing problem is to identify the photonic structure with the smallest size L  that can perform 

the required delay τ  of a pulse of width τ∆  without distortion. The quest for such structures is central in 

the slow light research [1-6]. Beside general interest, these structures are of great importance for their 

potential key role as delay lines in optical computing and transformation of data on a chip. For this 

reason, the research efforts were targeted at the demonstration of a slow light delay line (SLDL) with the 

smallest dimensions for a given delay time and bandwidth and smallest possible attenuation and 

dispersion of pulses. Solving this problem is complicated by the fundamental delay-bandwidth product 

limitation which establishes the smallest possible dimensions of a photonic structure enabling the time 

delay τ  of a pulse with the spectral width λ∆  [7, 8]. In addition, the major impediments for experimental 

solution of the problem are the yet insufficient fabrication precision of the modern photonic technologies 

and the attenuation of light in lithographically fabricated photonic structures [3-6, 9].   

To arrive at the smallest dimensions, the SLDLs are usually engineered from chains of coupled 

microresonators fabricated lithographically. The microresonators can be created of microrings [3, 6] and 

can also be introduced in photonic crystals as microscopic perturbations of the periodic lattice [4, 5]. Due 

to bouncing of light in each microresonator, the propagation time increases and can be sufficiently large 

for long chains. In practice, the performance of these devices is limited by material and scattering losses, 

while the delay time strongly depends on the inter-resonator and resonator-waveguide coupling. For 

weaker coupling, light propagation along the delay line is slower and the delay time is larger, however, 

the transmission bandwidth proportionally decreases following the delay-bandwidth product dilemma [7, 

8]. 

The state of the art fabrication precision of microscopic photonic elements is as small as a few nm [3]. 

However, this high precision is still not sufficient for the creation of the smallest possible SLDLs. 

Consider, e.g., a delay line consisting of coupled ring resonators with radius ~10r µm. At 

telecommunication wavelength ~1.5λ µm, the fluctuation ~1rδ nm of the resonator radius results in the 

spectral fluctuations ~ / ~0.15r rδλ λδ nm. These fluctuations corrupt the SLDL performance because 

they are comparable to the characteristic spectral bandwidth of telecommunication pulses. Similar 

fabrication problem persists for other types of SLDL. In addition, in spite of the remarkable progress in 

fabrication of engineered miniature photonic SLDLs [5, 6], their characteristics suffer from significant 



attenuation caused by material and scattering losses. As the result of fabrication inaccuracy and material 

and scattering losses, the attenuation of miniature SLDL demonstrated to date, is very large and is 

measured in the range of 10-100 dB/ns [10].  Thus, the insufficient precision of the lithographically 

fabricated miniature photonic SLDL and attenuation of light in these structures call for alternative 

solutions.  

This Letter proposes and demonstrates a different type of SLDL, which, in contrast to the miniature 

delay lines considered previously [1-6, 10, 11], is not based on the periodic and quasi-periodic photonic 

structures. It has the shape of an extremely elongated bottle resonator [12] with semi-parabolic radius 

variation (Fig. 1) [13]. It is found that, to arrive at the minimum possible axial speed of light within the 

bandwidth of several tenths of a nanometer at telecommunication wavelengths, the depth of the parabolic 

radius variation has to be as small as a few nm. The developed theory shows that a bottle resonator SLDL 

with nanoscale radius variation can be impedance-matched to the input/output waveguide and perform a 

multi-nanosecond delay of light at telecommunication wavelengths within a nanometer-order bandwidth 

having minimal losses and dispersion. 

The key experimental result presented below is the actual demonstration of the bottle resonator SLDL 

with a breakthrough performance. To fabricate this resonator, the recently developed SNAP (Surface 

Nanoscale Axial Photonics) technology is employed. It enables the predetermined nanoscale modification 

of the optical fiber radius with the record sub-angstrom precision by annealing with a focused CO2 laser 

beam [14, 15]. As a result, a 3 mm long resonator with a 2.7 nm deep semi-parabolic radius variation is 

fabricated from a 19 micron radius silica fiber with a sub-angstrom precision. In excellent agreement with 

theory, the resonator exhibits the impedance-matched and dispersionless 2.58 ns (3 bytes) delay of 100 ps 

pulses with 0.44 dB/ns intrinsic and 1.2 dB/ns full losses, which surpass the losses demonstrated to date 

for the miniature SLDL [3-6,10] by more than an order of magnitude.   

To arrive at the smallest possible axial speed of light within the nanometer-order transmission 

bandwidth, we consider a bottle resonator with dramatically small effective radius variation 

0( ) ( )r z r z r∆ = −  of several nanometers only [16]. This small variation can completely confine the 

whispering gallery modes (WGMs) propagating along the fiber between turning points 1( )tz λ  and 2 ( )tz λ  

[17]. In the cylindrical frame of reference ( , , )z ρ ϕ , the coordinate dependence of the WGM field is 

separable and expressed as exp( ) ( ) ( )nim zϕ ρΛ Ψ  with orbital and radial quantum numbers m and n. The 

z-dependence of the WGM propagating along the fiber is described by the one-dimensional Schrödinger 

equation [17] 

 

 ( ( ) ( )) 0zz E V zλΨ + − Ψ=       (1) 



 

with propagation constant ( , ) ( ) ( )z E V zβ λ λ= − . In Eq. (1) the energy ( )E λ  and potential ( )V z  are 

determined as 
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where res iλ λ λ γ∆ = − −  is the wavelength variation near a resonance resλ , rn  is the refractive index of the 

fiber, and γ  determines the attenuation of light in the fiber. The transmission amplitude ( , )S zλ  and 

group delay of the resonator coupled to the input/output microfiber at contact point cz z=  are [14]: 
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where 0S  is the out-of-resonance amplitude,  C and D are the bottle resonator/microfiber coupling 

constants, and 1 2( , , )G z zλ is the Green’s function of the wave equation. In the semiclassical 

approximation,  
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where iχ  are the phase increments near the turning points tiz , while the turning points are found from 

equation ( , ) 0tizβ λ = . Eqs. (3) and (4) fully describe the bottle resonator SLDL. Averaging the group 

delay ( , )zτ λ found from Eqs. (2)-(4) over the local period of these oscillations yields the average group 

delay, which, for relatively small coupling loss [11], coincides with the classical time of the roundtrip 

propagation along the bottle resonator  
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A light pulse launched from the input microfiber into the bottle resonator at contact point cz  slowly 

propagates along the resonator axis in both directions and returns back after reflecting from turning points 

1tz and 2tz . Generally, after completing the roundtrip between one of the turning points and the contact 

point, the pulse does not fully return back into the microfiber output and is partly reflected back into the 

resonator. The reflection at cz  determines the impedance mismatch between the input/output microfiber 

and resonator and causes bouncing of the pulse between turning points with decreasing amplitude. In the 

stationary formulation described by Eq. (3) and (4), oscillations of the pulse correspond to oscillations of 

the transmission amplitude and group delay as a function of wavelength. Suppression of these oscillations 

leads to the condition of impedance matching. Under this condition, the pulse is fully transmitted from the 

microfiber input into the bottle resonator and, after completing the roundtrip along the resonator axis z , it 

is fully transmitted back into the microfiber output.  

It is shown here that, for practical applications, it is possible and sufficient to solve the impedance 

matching problem for the bottle resonator SLDL locally. It is found that the oscillations of transmission 

amplitude vanish in the vicinity of wavelength iλ  at a microfiber position iz  close to the turning point 1tz  

under the conditions (see Supplemental Material [18]): 

 

0Im( ) 0S = , 2
0| | 2 Im( )C S D= ,                     (6) 

 ( , ) Im( )i iz Dβ λ = ,       (7)    

1 1Im( )/Re( ) tan( ( , , ) )i t iD D z zϕ λ χ= + .    (8) 

 

Eqs. (6) are similar to the condition of lossless resonator/microfiber coupling [14], while Eqs. (7) and (8) 

determine the relationship between the contact point iz , wavelength iλ , and coupling parameter D.  

Generally, propagation of an optical pulse though the bottle resonator SLDL is dispersive. To avoid 

dispersion, the eigenfrequencies of the bottle resonator should be locally equidistant, which is typical for 

large and smooth quantum wells ( )V z  away from their bottom. However, the slowest axial speed of light 

corresponds to the bottom of quantum well. To arrive at the dispersionless propagation with the smallest 

possible speed, the shape of the bottle resonator in this region should have the equidistance frequency 

spectrum. Ignoring the slow λ-dependence of 1χ  and 2χ , this condition is satisfied for the bottle resonator 

with semi-parabolic radius variation (Fig. 1(b)): 
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where R is the axial curvature of the bottle resonator and L  is its length. The classical wavelength-

independent time delay in this structure found from Eq. (5) is  
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An illustration of a semi-parabolic bottle SLDL is given in Fig. 1. The resonator parameters in this 

figure are chosen to model the experiment below (fiber radius 0 19 m,r µ=  semi-parabola height 

0 2.8r∆ = nm, resonator length 3L= mm, speed of light 83 10c= ⋅ m/s, and fiber refractive index 1.46rn = ). 

For these parameters, Eq. (10) yields the delay time 2.67τ = ns and effective speed of light / / 267L cτ = . 

Inside the bottle resonator near its edge 1tz z=  the propagation constant is independent of the axial 

coordinate z. In this region, to arrive at the impedance matching condition at wavelength 1λ we determine 

the imaginary part of the coupling parameter D  from Eq. (7) and then the coordinate 1z  for arbitrary 

Re( )D  from Eq. (8). Next, we determine 2| |C  from Eq. (6). Fig. 2(a) and (b) are the surface plots of the 

resonance amplitude and group delay distributions as a function of wavelength and distance along the 

bottle resonator in the vicinity of 1tz  for the determined coupling parameters. The spectral profiles 

crossing the impedance matched point 1 1( , )zλ are shown in Fig. 2 (c) and (d). The amplitude and group 

delay ripples vanish at 1 1( , )zλ  and are relatively small in the neighborhood of this point. Fig. 2(e) shows 

the time domain propagation of a 100 ps pulse through the constructed SLDL (the amplitude spectrum of 

the pulse is depicted in Fig. 2(c)). It is seen that the spurious temporal ripples at the output are remarkably 

small (less than 8.5% in magnitude (Fig. 3(b)) and thus less than 0.7% in intensity) and the FWHM pulse 

broadening in Fig. 3(b) is negligible. The average delay time found from the spectrum in Fig. 2(d) and 

from the time domain calculation in Fig. 2(e) is in excellent agreement with the value 2.67 ns found from 

Eq. (10). 

Once a semi-parabolic bottle SLDL with delay time τ ,  pulse width τ∆ , and spurious temporal 

ripples magnitude ε is determined, an SLDL enabling the dispersionless delay of a pulse with a different 

temporal width  s sτ τ∆ = ∆  and similar performance can be simply constructed by rescaling the height of 

the parabola 0r∆  and its length L  to 



 

 1
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From Eq. (10), these transformations do not change the delay time τ . The magnitude of spurious 

ripples of the new delay line remains the same as well (see Supplemental Material [18]). Thus, once the 

set of Eqs. (6)-(8) is satisfied, the semi-parabolic bottle resonator can be impedance-matched to an 

input/output waveguide and perform a multi-nanosecond delay at telecommunication wavelengths within 

a nanometer bandwidth having negligible losses and dispersion. 

Experimentally, the bottle resonator was created at the 19 µm radius optical fiber by annealing with a 

focused CO2 laser beam. The speed of the beam was varied to ensure the required semi-parabolic profile 

of  ( )r z∆ , which was characterized as follows. First, the surface plot of transmission amplitude as a 

function of wavelength λ and microfiber position z was measured by scanning the microfiber waist along 

the resonator [19, 20]. Then, the introduced radius variation ( )r z∆  was calculated from the measured 

spectrum following theory [14] (Fig. 3(b)). The resonator had the length of 3 mm and depth of ( )r z∆  of 8 

nm. The parabolic part of ( )r z∆  with the depth 2.8 nm and equidistant eigenfrequencies was introduced 

to ensure the dispersionless propagation of 100 ps pulses with the slowest-possible speed near the bottom 

of quantum well ( )V z . The deviation of the parabolic part of ( )r z∆  from the exact semi-parabola was 

less than 0.9 angstrom.  

As compared to the theoretical model presented above, the experimentally realized bottle resonator 

SLDL is designed to have two sets of wavelengths and contact points, which determine regions with 

suppressed oscillations of the group delay and transmission amplitude. These sets,  1 1( , )zλ , and 2 2( , )zλ  

(Fig. 4(a), (b)) correspond to the same microfiber/resonator coupling parameters C and D, which gives us 

the opportunity to realize a miniature SLDL with a breakthrough performance as well as to determine the 

intrinsic loss of this device. At contact point z1, the vicinity of wavelength λ1 (Fig. 4(a),(b) and (c),(d)) 

corresponds to the propagation of light near the top of quantum well V(z). This case is used below as a 

reference. At contact point 2z , the vicinity of wavelength 2λ  (Fig. 4(a),(b) and (e),(f)) corresponds to the 

slowest propagation in the parabolic part of quantum well V(z), the case of our main interest.  

Figures 4(g) and (h) illustrate the time-dependent propagation of a 100 ps Gaussian pulse calculated 

from the measured spectra shown in Fig. 4(c), (d) and (e), (f), respectively. The average group delays in 

Fig. 4(d) and (f) are in excellent agreement with the delay times 1.17 ns and 2.58 ns in Fig. 4(g) and (h) 

showing that the delay at the parabolic part of the bottle near wavelength 1λ  is more than two times 

greater than near 2λ . Comparison of the average transmission amplitudes in Fig. 4(c) and (e) and the 



corresponding delay times determines the intrinsic loss of the demonstrated device equal to 0.44 dB/ns. It 

is suggested that this loss is primarily caused by contamination of the resonator surface and can be 

significantly decreased in the clean room environment. 

Since the performed optimization included only the taper translation and omitted tuning of the 

resonator and microfiber profile near the contact point, the optimal coupling was achieved only 

approximately. For this reason, the out-of-resonance coupling losses ~ 2 dB (irrelevant to intrinsic losses 

and, thus, independent of the delay time) were introduced. However, even in this case, the total insertion 

loss of the 2.58 ns (3 bytes) delay line has the impressive record value of 3 dB, i.e., 1.12 dB/ns, as 

compared to 10-100 dB/ns losses previously demonstrated for miniature delay lines [3-6,10].  The 

spurious temporal ripples in Fig. 4(h) are remarkably small (less than 11% in magnitude and thus less 

than 1.2% in intensity) and the FWHM pulse broadening is negligible (less than 3%, four times smaller 

than the pulse broadening for significantly smaller delay in Fig. 4(g)). In addition, the effective speed of 

light in this SLDL is / 258c , the record small for the engineered slow light photonic structures [3-6]. 

This demonstration presents a solution to the central problem of the slow light research – creation of a 

miniature delay line with a breakthrough performance. In addition, it emphasizes the flexibility of the 

SNAP platform as a fruitful source for exciting fundamental and applied studies. Similar approach will 

allow creating a variety of photonic structures that precisely imitate one-dimensional quantum mechanical 

structures described by the potential ( )V z  under interest. This includes potential structures that can be 

used for investigation of tunneling and time delay [21, 22, 23], Anderson localization [24, 25], localized 

states in continuum [26, 27], etc. This also includes intriguing opportunities for creating photonic 

microdevices for filtering, switching, lasing, delay of light, and sensing with the unprecedented high 

precision and low loss.  

The author is grateful to Y. Dulashko for assisting in the experiments and to D. J. DiGiovanni and V. 

Mikhailov for helpful discussions.  
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Figure captions 

 

Figure 1 

(a) – Illustration of an optical bottle resonator delay line. Light is coupled into the resonator from a 

transverse waveguide (microfiber) and experiences whispering gallery mode propagation along the 

resonator surface. (b) – Semi-parabolic variation of a bottle resonator radius used in the numerical 

simulations.      

 

Figure 2.  

(a) and (b) – Surface plots of the transmission amplitude and group delay near the edge 1tz z=  of the 

bottle resonator calculated with the coupling parameters defined in the text. (c) and (d)  – the transmission 

amplitude and group delay spectra at the coupling point 1cz z=  shown in (a) and (b), respectively. (e) – 

The output signal amplitude (solid line) calculated for the input 100 ps pulse (dashed line). The pulse 

spectrum is determined by the bold line in (c). 

 

Figure 3. 

(a) – Illustration of an optical bottle resonator delay line. (b) – Experimentally measured surface plot the 

transmission amplitude, which was used to determine the bottle resonator radius variation (bold line).  

 

Figure 4.   

(a) and (b) –  Surface plots of the transmission amplitude and group delay near the edge 1tz z=  of the 

fabricated bottle resonator measured after the optimization of coupling parameters by translation of the 

microfiber with respect to the resonator. (c) and (d)  – the transmission amplitude and group delay spectra 

at the coupling point 1cz z=  corresponding to minimum spectral oscillations in (a) and (b), respectively. 

(e) and (f)  – the same as (c) and (d) but at the coupling point 2cz z= , which corresponds to the semi-

parabolic part of the potential ( )V z . (g) and (h) – the output  signal amplitudes (solid line) calculated for 

the input 100 ps pulse (dashed line) from the spectra measured at points 1z  and 2z with the pulse spectrum 

determined by the bold line in (c) and (e), respectively. 
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Derivation of the impedance-matching conditions 

The semiclassical Green’s function is given by Eq. (4). The transmission amplitude of a bottle 

resonator is defined by Eqs. (3) and (4) and exhibits strong oscillations as a function of wavelength. To 

find the condition of vanishing oscillations we write  
22
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where K is a constant. Taking into account that ( , , )c cG z zλ  is real, Eq. (S1) is transformed to 
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Since Eq. (S2) should be valid for all values of ( , , )c cG z zλ , three terms in curly brackets in this equation 

should be equal to zero. Simplifying the obtained equations yields Eq. (6) of the main text.  

To determine the conditions when the oscillations of the group delay vanish, we represent the group 

delay from Eq. (3) as 
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For briefness, we omit the dependencies on λ  and z  and define: 

12 1 2 1 2 1 1 1( , , ) , ( , , )t t t t cz z z zϕ ϕ λ χ χ ϕ ϕ λ χ= + + = + .    (S4) 

It is assumed that the contact point cz  is situated close to the turning point 1tz  (Fig. 1). Then 

1 12| | tϕ ϕ<< and 1ϕ  is a much slower function of wavelength than 12tϕ . Taking this into account, Eq. (S3) is 

transformed to 
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Fast oscillations of the denominator in Eq. (S4) are eliminated if  

1 1a ib=±  and   2 2a ib= .    (S6) 

Substitution of Eq. (S5) into Eq. (S6) yields Eqs. (6), (7), and (8). 
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Fig. S1. Comparison of the semi-parabolic SLDL considered in the main text, (a1)-(a4), with the semi-parabolic 

SLDL designed to propagate 5 times narrower pulses, (b1)-(b4), and with the rectangular SLDL having the same 

radius variation depth, (c1)-(c4). (a1),(b1), (c1) – Radius variations of the semi-parabolic, rescaled semi-parabolic, 

and rectangular bottle resonators. (a2), (b2), (c2) – surface plots of the group delay spectra near the edge of these 

resonators. (a3), (b3), (c3) – The group delay spectra of these resonators at the point of contact with the input/output 

microfiber. (a4), (b4), (c4) – The input and output signal amplitudes as a function of time for these resonators.   

 

Rescaling of parabolic bottle resonator SLDL. Parabolic vs. rectangular bottle resonator SLDL. 

Transformation of the shape of semi-parabolic bottle resonator with Eq. (11) allows us to construct a 

SLDL which delays pulses of different widths with the same performance (i.e., the same small spurious 

ripples and negligible pulse dispersion).  As an example, Fig. S1(a1)-(a4) and (b1)-(b4) compare the 

SLDL designed in the main text to delay 100 ps pulses with that designed to propagate 5 time narrower 

(20 ps) pulses with the delay time and same quality (i.e., for 1/5s=  in Eq. (11) of the main text). The 



period of rapid oscillations of the group delay as a function of wavelength is determined by the delay time 

and, for this reason, is the same in Fig. S1(a2), (a3) and (b2), (b3). The envelope of oscillations in Fig. 

S1(b3) is obtained from the envelope of oscillations in Fig. S1(a3) by the linear expansion along the 

wavelength axis with the expansion coefficient of the pulse spectral width, 1/ 5s= . For this reason, the 

magnitude of the spurious ripples in the output signal temporal dependence shown in Fig. S1(a4) and (b4) 

does not change and the pulse dispersion is negligible.  

It is also instructive to compare the parabolic SLDL with the rectangular one with the same depth of 

radius variation shown in Fig. S1(c1). It is seen that the non-uniformity of the period of fast spectral 

oscillations, which can be detected from Fig. S1(c3), leads to strong dispersion of the output pulse in Fig. 

S1(c4).     
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