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Sie 

SYNOPSIS. 

This thesis describes an investigation to determine the imped—- 

ance of a powered flying control system by analogue simulation, 

The first stage of this study is concerned with the impedance of a 

hydraulic servomechanism excited at its outputend by a sinusoidal force 

whilst the input valve was locked in a neutral position. The first 

part of the analogue simulation investigated the impedance in the pres— 

ence of the coulomb friction force, The effect on impedance of changes 

in the bulk modulus of the hydraulic fluid, the leakage across the jack 

piston and out of the jack, the magnitude of the coulomb friction, 

the supply pressure and the static valve opening has been determined, 

The results from this simulation are compared with the results 

obtained from laboratory tests on the hydraulic servomechanism and 

a good agreement is shown to exist between the two results. 

The second part of the analogue simulation investigated the 

impedance of the hydraulic servo in the absence of the coulomb friction 

force, The results from this simulation are compared with the theor— 

etical results obtained by linearising the valve flow characteristics 

using the small perturbations technique. A qualitative agreement 

between these results has been shown to exist. 

The second stage of this study investigated a technique for 

obtaining the impedance of the control system, consisting of the 

hydraulic servomechanism and the aircraft control surface, from measure— 

ments made seperately on the hydraulic servomechanism and the air— 

eraft control surface. It is shown that measurements of the direct 

response or mobility of the servomechanism can be combined with the 

direct and cross responses or mobilities of the control surface to 

give the control system response, mobility or impedance by using the 

sub-system technique.
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CHAPTER 1 

INTRODUCTION. 

1.1. The Hydraulic Servomechanism. 

The hydraulic servomechanism of the jack type is frequently 

made use of as a power amplifier in aircraft control systems. This 

is due to its large power to weight ratio, simplicity of design and 

the fact that it can be directly coupled to the aircraft control 

surface without the need for reduction gears as would be the case 

with rotary servomotors, 

The servomechanism investigated in this study is a small 

hydraulic jack of the type used in a light fighter aircraft with 

a maximum stalling load of 1,870 lbf at a supply pressure 3,000 

lbf/sq.in. It is diagrammatically shown in Fig.1.1. The jack 

piston is rigidly anchored to the aircraft structure and the jack 

body is connected to the control surface, To change the control 

surface position the pilot controls the movement of a fourway spool 

valve which connects one side of the jack to the pressure supply 

and the other side to the drain, The valve body being integral 

to the jack body moves along with it im such a manner as to close 

the ports and hence the jack body always follows the movement of 

the spool valve. 

Conversely, if the jack body is forced to move by external 

forces while the position of the spool valve is fixed by the pilot's 

input, the ports will open connecting the two sides of the jack 

piston to the nressure supply and the drain respectively. This 

situation can set up oscillations of the control system and is 

encountered during flight due to flutter of the control surface. 

1.2. Control Problem Caused by Flutter. 

Flutter is the aerodynamic excitation of an elastic surface 

moving through the air. It is caused by turbulence in the boundary



layer which produces fluctuating forces resulting in the oscillations 

of the surface, This excitation is of a broadband nature where both 

the low frequency and the high frequency modes of the surface are 

excited, The control surface structure having a large inertia is 

insensitive to high frequencies but responds to low frequencies 

extremely well. In the low frequency range the total sum of the 

fluctuating forces is tentamount to the application of a large force 

generator at the output end of the servomechanism and displaces the 

jack body relative to the piston, The movement of the jack body 

displaces the valve from its nuelitral position and hydraulic forces 

are brought into play to oppose this external force, The action of 

the hydraulic forces in opposing the external forces gives rise to 

the concept of impedance, 

1.3. Determination of the Impedance of the Control System. 

In order to predict the response of a powered flying control 

system to aerodynamic forces the impedance of the control system 

must be known. The ideal approach would be to excite the control 

surface of an aircraft on ground in the frequency range of interest 

and measure the resulting system impedance, This method is not 

practicable for several reasons, The servomechanism is a very stiff 

non-linear element and as such would require large force levels at the 

output end to produce any appreciable response. The control surface 

is comparatively less stiff and cannot tolerate large force levels 

unless the forces can be evenly distributed over the entire surface 

area as is the case during flight. Short of testing the control 

system in a high speed wind tunnel the only available approach is 

to carry out impedance measurements on the servomechanism and the 

control surface separately and to combine these measurements to 

obtain the overall control system impedance, 

The servomechanism may be taken out of the aircraft and tested 

in a laboratory using commercially available vibrators having large 

force levels in the desired frequency range. In the absence of the 

servomechanism the control surface does not require large force 

levels and can be tested on the aircraft.



Experimental measurements of the impedance of the hydraulic 

servomechanism were performed in the laboratory by Penny (1). The 

general arrangement of the test rig for impedance measurement by 

excitation of the output end is shown in Fig.,1.2. The load cell 

placed between the servo and vibrator was used to measure the force 

levels and also to provide the force feed back when the vibrator 

was force controlled, A linear differential transformer was used 

to measure the servo displacement and provided a feed back when the 

vibrator was displacement controlled, The effects on impedance of 

changes in such parameters as pressure supply, static valve opening 

and excitation amplitude were determined and compared with theor- 

etical calculations of impedance obtained by linearising the flow 

characteristics through the valve ports. The present investigation 

is an extension of the experimental work the object of which are described 

below, 

1.4. Objectives of the Present Investigation, 

The main objects of the present study were to extend the range 

of experimental results obtained by Penny by an analogue simulation 

of the servomechanism, to check the validity of small perturbations 

technique for analysing non-linear systems, and to establish a technique 

for obtaining the impedance of the complete control system from 

separate measurements made on the control surface and the servomech— 

anism, 

The first stage of this study has been the analogue simulation 

of the hydraulic servomechanism for impedance measurements. Par= 

ticular attention is given to the effects on impedance of changes 

in bulk modulus of hydraulic fluid, leakage across the jack piston 

and magnitude of the coulomb friction force since these parameters 

remain at a fixed value in the physical system, Effects on 

impedance of changes in static valve opening, excitation amplitude 

and supply pressure have also been examined,



The first part of the simulation forms the study of the 

non-linear system where coulomb friction represents the principal 

non-linearity. The results obtained from this simulation are 

compared with the experimental results obtained on the test rig 

by Penny, and an estimation is made of such parameters as leakage 

across the jack piston and the bulk modulus of the hydraulic 

fluid for the physical system. The second part of the simulation 

is the study of the servomechanism impedance without the presence 

of the coulomb friction force, In this case the non-linearity 

is due to non-linear flow characteristics through the valve ports. 

Impedance measurements from this study check the validity of 

results of a digital computation which were obtained by linearising 

the flow characteristics using the small perturbations technique. 

The second stage of this study is concerned with determining the 

overall control system impedance, A practical method has been 

devised to obtain the control system impedance by combining the 

impedances of the servomechanism and the control surface using 

the sub-system technique. Two simple elastic systems representing 

the hydraulic servo and the control surface were simulated on the 

analogue computer and their impedances were recorded on a magnetic 

tape. These impedances were then combined to obtain the overall 

control system impedance, 

The concepts of impedance and mobility of mechanical systems 

are introduced and defined as used in vibration analysis in 

chapter 2,
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SCHEMATIC OF A HYDRAULIC SERVOMECHANISM   
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CHAPTER 2, 

2.1. Notation, 

The following notation is used in this chapter. 

A Ve, the ratio of the frequency of applied force 

to the natural frequency of the first mode, 

whiny, the ratio of the frequency of applied force A 

, to the natural frequency of the second mode, 

¢ Damping constant (1b.sec/ft). 

F Harmonic force (1bf) Fi» Fy, ete, denote forces in 

elements a and b of a system, 

j qa. 

kK Spring gradient (1b/in). 

K, Effective spring gradient for a multi-degree of freedom 

system for mode i. 

M Mobility. 

My Displacement mobility of a system, 

My Velocity mobility of a system. 

My Acceleration mobility of a system, 

A second subscript refers to mobility of an element in 

the system i.e. Me? Mpa and Mn represent displacement mobilities of 

a spring, a damper and a mass respectively,



We 

Mel la 

Me11p 

Me2la 

Ve2lb 

<1 

i21 

WwW. 
na 

Characteristic velocity mobility. 

Characteristic velocity mobility of my for the first 

mode. 

Characteristic velocity mobility of my for the second 

mode, 

Characteristic velocity mobility of My for the first 

mode, 

Characteristic velocity mobility of My for the second 

mode, 

Mass (1b. seo”/tt. ) 

Effective mass for a multi-degree of freedom system 

for mode i. 

Effective mass for the driving point mobility for 

mode i. 

Effective mass for the transfer mobility for mode i. 

Response (displacement, velocity or acceleration). 

Time. 

Foreing frequency (radians/secona),. 

Natural frequency for mode i. 

Natural frequency of a system. 

Natural frequency of the first mode,



nb 

N 

2 

Ly 
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= Natural frequency of the second mode, 

= Harmonic displacement, 

= Displacement of mass my for the first mode, 

= Displacement of mass my for the second mode, 

= Displacement of mass My for the first mode. 

= Displacement of mass mM, for the second mode, 

= & 
dt 

= Impedance of a system, 

= Displacement impedance of a system, 

= Velocity impedance of a system, 

= Acceleration impedance of a system. 

A second subscript refers to impedance of an element 

in the system, i.e. Zo Zao and 2 represent displacement 

impedances of a spring, a damper and a mass respectively, 

ais Driving point impedance for a multi-degree of freedom 

system for a forced excitation at mass nm 

Transfer impedance or the impedance at mass Mp for a forced 

excitation at mass m 

Driving point impedance at mass My for a forced excitation 

at Moe 

Transfer impedance at mass m for a forced excitation at 

m . ass My



2.2. Introduction, 

The classical method of vibration analysis of a mechanical 

system is to apply Newton's laws of motion and solve the resulting 

differential equations to yield the systemresponse. With an 

increasing number of degrees of freedom the differential equations 

become difficult to manipulate and do not easily lend themselves 

to.an interpretation of the system behavior in response to changes 

in the system parameters, Such systems are experimentally analysed 

by analogue techniques (2) and (3). A basic study of electrical 

networks shows the mathematical similarity between these networks 

and the dynamics systems (4) and (5). Hence extensive use is made 

of electrical analogies for solution of problems in vibrations and 

control systems. 

Dynamic systems may be simulated either by the mass—-capacitance 

or the mass—inductance analogy. The former is the force-current analogy 

in which stiffness, damping and inertia are represented by inductance, 

resistance ane capacitance respectively. The latter is the force— 

voltage analogy in which stiffness, damping and inertia are repres— 

ented by capacitance, resistance and inductance respectively, The 

force-current analogy is more direct of the two analogies and forms 

the basis of impedance and mobility methods, 

In the course of analysing linear electric circuits carrying 

alternating currents, electrical engineers observed that the 

voltage-current relationship was independent of the amplitude of the 

applied sinusoidal voltage and a function of frequency only. This 

ratio was termed the network impedance and lead to the development 

of impedance techniques whereby the response characteristics of 

complex networks could be obtained by considering the impedance 

of the individual elements of a network and the manner in which they 

were connected together. This approach was finally adopted for the 

analysis of mechanical systems and meant that these systems could



be analysed without recourse to their electrical analogues (6), 

(7) ana (8). 

2.3. Impedance and Mobility. 

2.3.1. Impedance, 

Impedance in a mechanical system is the ability of a point 

to resist motion and as such is defined as the ratio of an applied 

force to the resulting response. In general the forces are consider— 

ed to be sinusoidal and the elastic system as being linear, The 

response to be used can be either displacement, velocity or accel— 

eration depending upon the frequency of the applied force and the 

nature of the problem. At the lowest frequencies displacement 

response can be used as the stresses are proportional to displacement, 

Where impact loading occurs and at higher frequencies when the 

stresses are more accurately proportional to velocity the velocity 

response is used, Acceleration response is used when inertia 

loading is the principal cause of vibration and at higher frequen- 

cies when acceleration is more easily measured, The impedance Z 

is defined as:- 

Z = F/R (2.1) 

where F F exp jwt, 

R = R expjwt. 

and exp jwt = cos wt + j sin wt, 

Hence impedance is a complex quantity. 

2.3.2 Mobility. 

Mobility in a mechanical system is the ability of a point to 

respond to an applied force and is defined as the ratio of the response
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to the applied force. It is, therefore, the inverse of impedance 

and is also known as receptance or mechanical admittance (9). 

The mobility M is defined as 

M = RFP (222) 

where R is the complex displacement, velocity or acceleration 

response, 

For the analysis of a problem either the mobility or the 

impedance equations can be used depending on the problem as one 

will require less algebraic manipulation than the other, 

2.4. Analysis of Mechanical Elements. 

Mechanical systems have active and passive elements, The 

active elements are the force and displacement generators and the 

passive elements are springs, dampers and inertias, In mechanical 

networks springs and dampers are connected between two other elements 

or with one end fixed to a rigid support. The mass is a single 

ended element and when placed between two other elements it is 

considered to be inparallel with one element and the parallel 

combination is considered to be placed in series with the other 

element, The impedances and mobilities of the passive mechanical 

elements for any type of response can be derived by considering 

the equations of motion for each element, 

2.4.1 Displacement Response, 

The ratio of maximum force to maximum displacement is termed 

the displacement impedance and is represented by Ze 

Spring. The equation of motion for a spring is:- 

Fe Kk 

and Zee 

"2 Za = K (2.3) 

MI
S ax 

x



iT 

Damper. For viscous damping:— 

Fe Cx 

= Cjwx 

F i, 
and Zo= 5 = Cjw (224) 

Mass. The equation of motion for a mass is:— 

Fem = = ex 

~ awe (2.5) . 2m = 

I
d
 

a 

The displacement mobility, the ratio of maximum displacement to 

maximum force, is simply the inverse of displacement impedance, 

The mobility form of equations (2.3) to (2.5) is:- 

M. me m = z (2.6) 

a = m -i (2.7) 

M2 fe 27d (2.8) 
oe me 

When displacement response is used the real part of the 

complex impedance represents the energy stored in the system and is 

termed the stiffness or resistance of the system, The imaginary part 

of the complex impedance represents the energy dissipated in the 

system and is termed the damping or reactance of the system.
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2.4.2 Velocity Response. 

The velocity impedance 2 is the ratio of maximum force to 

maximum velocity. 

  

Spring. Foe kx 

alsox = = 

a Kx elt a Gy 

F K 
and Zy= 5 = -— (2.9) 

Damper. F = Cx 

F and 274 = =: © (2,10) 

Mass. F =m = mjwx 

F and Z) = = jmw (2511) 

With velocity response the stiffness and the damping are represented 

by imaginary and real parts of the complex impedance respectively. 

2.4.3 Acceleration Response. 

The ratio of maximum force to maximum acceleration is termed 

the acceleration impedance Zaye
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Spring. Foe Kk 

x 
also x = — = 

Ww 

otk nl oe 
Ww 

F 
Behe ee 8 (2.12) 

Damper. F = Cz 

also x = ae 

. cx oe ae 

F Gi and Za= 3 = - > (2.13) 

Mass. Fo = mx 

F Ze z0 (2.14) 

2.5. Analysis of Mechanical Networks. 

Mechanical networks may be formed by connecting together 

any number of mechanical elements in series, parallel, and a 

series—parallel combination, The networks impedance is obtained 

by combining the impedances of individual elements according to 

series or parallel laws of impedance addition,
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2.5.1. Elements Connected in Series. 

In a series arrangement of a mechanical network the same 

force acts through all the elements and the system response is the 

sum of the responses of the individual elements, Referring to 

Fig.2.la and considering displacement response 

Fe Fl = F = F, (2.15) 

X= X + XH + Xy (2.16) 

F 
now Zs F 

(x, ee x;) 

ee ee 
& F 

cee PY ¥ 1 eg. x, + ze + z, (2.17) 

also z is the mobility M 

“. Mos mo + M+ HM, (2,18) 

In a series arrangement the system mobility is the direct sum of the 

element mobilities. 

2.5.2. Elements Connected in Parallel. 

In a parallel arrangement of a mechanical network the response 

is the same for all the elements but the force acting on the system 

is the sum of the forces acting on individual elements.
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Referring to Fig.2.1b 

Bom Wt ty (2.19) 

See xem (2.20) 

(oeae Fo GPS) 
and Die ee 2 3 

Ge Z = % + Z + 2, (2.21) 

1 but Z= % 

a 1 1 1 om 2 bia ee 2 (2.22) m ¥, i, M, 

In a parallel arrangement the system impedance is the direct sum 

of the element impedances and the reciprocal mobility is the sum 

of the element reciprocal mobilities, 

Mechanical networks are not always in a pure series or a pure 

parallel arrangement. They are generally a combination of both 

the arrangements, There are two methods available for impedance 

and mobility analysis of mechanical networks; these are the component 

mobility method and the normal mode mobility method (8) and are 

described in sections 2.6 and 2.9 respectively. 

2.6, The Component Mobility Method. 

The component mobility method consists essentially of cal- 

culating the mobilities of the elements of a system and combining 

these according to parallel or series laws of addition to obtain
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the system mobility or impedance. This technique is very useful for 

the analysis of simple mechanical systems, 

Consider the single degree of freedom system consisting 

of a mass supported by a spring and a damper, Fig.2.2a, The 

diagram in Fig.2.2b is a schematic representation of the mechanical 

system and shows the manner in which the elements are connected. The 

force F exp jwt is applied to the mass M and causes it to oscillate 

at a frequency w(rad/sec.) of the applied force. The ends of the 

spring and the damper attached to the rigid support have zero 

deflections and are shown grounded in the schematic diagram. The other 

two ends connected to the mass have the same deflection as that 

of the mass and hece the three elements are connected in a parallel 

arrangement as explained in 2.5.3. Since the motion of the mass 

and the applied force must be measured with reference to an inertial 

frame they are also shown grounded, 

The point of application of the force changes the mode of 

connection between the elements, This can be demonstrated by 

applying the force to the support of the mechanical system of 

Fig.2.2a as shown in Fig.2.3a, The mobility schematic, Fig.2.3b, 

shows how the elements are connected. The ends of the spring and 

the damper connected to the support share the displacement exper— 

ienced by the support and as such are connected in parallel, The 

other two ends connected to the mass have a displacement in common 

with the mass but different to that of the support, Alternately, 

the points attached to the mass share the force experienced by the 

mass and, hence, are connected in series, Therefore the parallel 

spring-damper combination acts in series with the mass, 

The combined velocity mobility, Ms of the system of Fig,2.2a 

can be determined by considering the mobility schematic diagram, 

Since the elements are in parallel the system impedance is the 

direct sum of the element impedances:—



Ae Za + 2g + Zam from (2,21) 

a 1 
and = = 

x * 204 f 25 ce 20m 

  (2.23) 

Substituting the values of elementsin impedances from equations 

(2.9) to (2,11) into(2.23), 

  m= 1 
K 

Cc + jw + jw 

2 2 
jw (K - mw’ ) + Cw ( or = 2.24) 

v (kK = me)” + ewe 

Equations (2.24) represents the complex velocity mobility which may 

be separated into its real and imaginary parts. 

  Rl = (2.25) 
* (K = mw)? 2 On 

fee Come tee) ee (2.26) 
“y zs (K - me . + eae : 

Equations (2.25) and (2.26) can be vectorially represented on an 

Argand diagram as shown in Fig.2.4, The modulus of the velocity 

mobility is obtained in the following manner 

7 [ a, Ri)? + (My, Imag.) | 3 

ale [ors aa TE (2.27)



  

and the argument 9 = yan ow. imag. 
My Rl. 

1| K-m . 
@ = tan™ Cw = (2.28) 

One of the advantages of velocity mobility is that it can be plotted 

on a special log-log graph paper as shown in Fig.2.5. The straight 

lines represent the element mobilities. The combined velocity 

mobility (solid line) is asymptotic to the spring mobility line 

at frequencies below the system natural frequency. This means that 

the system is spring controlled at these frequencies and the effect 

of inertia is negligible, At frequencies above the natural: frequency 

the system is controlled entirely by the inertia and the combined 

mobility line is now asymptotic to the mass mobility line. At 

resonance the magnitude of the combined mobility is limited by the 

damping force, which in the absence of damping tends to infinity as 

shown by the broken line, and the curve is tangential to the damper 

mobility line or the system is damper controlled. This condition 

is obtained when the angle © is zero, that is, the imaginary part 

of the combined mobility is zero, The point of intersection of the 

mass and the spring mobilities is located at the undamped natural 

frequency of the system and is known as the characteristic mobility 

MWe: At this point the spring and the mass mobilities are equal 

in magnitude but of opposite signs, thus, 

Ne - Mme = 9 (2.29) 
Substituting the values of spring and mass mobilities in equation 

(2.29) gives:- 

wigie  <—e (2.30) 
K nw 

Solution of (2,30) for w yields the well known expression for the 

natural frequency, w = (K/m)*.
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2.7. Driving Point and Transfer Response, 

In a multi-degree of freedom system there exists a response for 

each degree of freedom or for each mass. To help simplify the analy- 

sis of such systems it is necessary to define and label these 

responses. The two degree of freedom system, Fig.2.6a, will have 

a response for each of the masses nm and My if displaced from its 

equilibrium position, If a harmonic forcing function F cos wt is applied 

at mass Md» the displacement response of this mass is called the 

‘direct response' or the ‘driving point' response and is labled as 

41, The response of the mass M, due to excitation at mass my is 

called the ‘cross response' or the transfer response and is labled 

as Xp- This convention is also applied to mobilities and im- 

pedances. Thus the driving point impedance 2. is the impedance 

at mass my for excitation at my and the transfer impedance Zo is 

the impedance at mass My for excitation at m- In general, the 

first subscript refers to the point where the response is measured 

and the second subscript refers to the point where the exciting 

force is applied, In the system of Fig,2,6a if the harmonic force 

is now applied at mass Moy the driving point impedance will be 

defined as‘A,, and the transfer impedance as Zo- 

The driving point and transfer impedances for systems having 

more than one degree of freedom may be calculated by the component 

method, For the two degree of freedom system of Fig.2.6a the 

displacement impedances for the elements are?- 

4a oo 

ea 
2 

oe =a 
2 

Zio =-m)w 

For the exciting force applied at mass mm» Fig.2.6b represents the 

schematic diagram. In branch C the mass my and the spring Ky
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act in parallel and the impedance at C is given by 

Boca el 

a a (2.31) 

In branch b the spring KH and the mass ms, act in series and, hence, 

the impedance at b is given by:- 

Be Lee 
a, 2x0 202 

eo geri 

Zo + ne 

oo Se oe (2.32) 

The impedance at point a, which is the driving point impedance 

Zi49 is the sum of the impedances of the branches b and c. Since 

the two branches act in parallel. 

  (2.33) 

  

For the transfer impedance, Zo» consider the force acting on 

branch b in the schematic diagram, Let this force be denoted by 

FR, then, F 
i) 

R= FF
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dividing top and bottom of the R.H.S. of this expression by 

X19 the displacement of m, which is common to both the branches 

Za, 

Roos =? 2.34) 
b Z4y ( 

a 

Now Xoo the displacement of the mass My is:- 

% 
Gah aa (2.35) 

Substituting equation (2.34) in (2.35):- 

is it (2.36) 
2 41 * Ane 

Baas ae 
BF a1 m2 for 2 (2.37) 

Substituting the values of Z,,, and Z,, and 4 in equation (2.37) and 

simplifying gives:— 

2 
Ses mee Km , %& @t+m) 4 4% 
21 G 
  (2.38) 

Comparing the equations for the driving point and the transfer 

impedances, equations (2.33) and (2,38), it is seen that the 

numerator in both the cases is the same. This is a property of the 

impedance and mobility equations. If the numerator is equated to 

zero, it gives the frequency equation of the system which may be 

solved to obtain the values of the natural frequencies,
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2,8, Reciprocal Property of Linear Systems. 

Consider the two degree of freedom system with a harmonic 

force applied to mass M, as shown in Fig.2.7a. The schematic 

diagram showing the mode of connection of the components (Fig.2.7b) 

is different to the schematic of Fig.2.6b which represents the 

case for the harmonic force applied at mass m- Using the laws 

of impedance addition the driving point impedance Z50 is given by:- 

  and Z = 
Pree as 

2 
(K, - mw 

Gn oR eens (2.39) 

Substituting the values of Z, and Z in equation (2.39) 

z _mitow - [x= +k, +m) |? pee (2.40) 22 mK # K - mw 

For the transfer impedance, Zio» consider the force acting on 

branch c and let it be denoted by Fo Since K and the sub-branch 

d act in series, the same force acts at points c and d, that is:- 

F 
Ce att = ae (2.41) 

Multiplying top and bottom of R.H.S. of equation (2,41) by x5, the 

displacement of mass Mp which is common to both the branches b and c



23 

Z 
; io. (2.42) 

gives be ae 
a 250 

also R= Fy + Fa = (kK, - myx") x 

F F 
a a oe Re oe eee (2.43) 

Ky - mw ad 

Z 
Cc 

= F 

“i Z, Sk 
22 a 

wate. 

but fe tee, oe (2.44) 
x) a 

inserting in equation (2.44) the values of 252 Zo and Z, from 

equations (2.39), (2.40) and (2.43) and simplifying gives 

Zp = magn! = [ xm ae (m, + my) |x" 2s: (2/15) 

% 

Comparing equations (2.45) and (2.38), it is seen that the transfer 

impedance with the harmonic force applied at mass My is equal to the 

transfer impedance with the harmonic force applied at mass my, or 

Z. = Z, 12 ‘1 (2.46) 

Equation (2.46) defines an importants property of linear systems 

which is known as the reciprocal property or simply as the 

reciprocity of linear systems. The existence of this property
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has long been appreciated and has been dealt with in terms of 

mobilities in (10); where as Raliegh (11) has provided a proof of 

reciprocity in terms of lagrange equations. The impedance and 

mobility techniques can be used to show that the transfer impedance 

or mobility between any pair of co-ordinates in a system are equal, 

In general, if a system has multi-degrees of freedom, the recip— 

rocity can be expressed as:— 

Zy, = Bay (2.47) 

Equation (2.47) means that the impedance at station i due to an 

excitation at station j equals the impedance at station j due to an 

excitation at station i. This statement holds for a system with 

any number of degrees of freedom as long.r as the condition of 

linearity is fulfilled. 

2.9. The normal Mode Mobility Method. 

For systems having more than one degree of freedom the normal 

mode mobility is used for simplified analysis, It is based on 

the concept of modes of vibration of a system, A system having n 

degrees of freedom has associated with it n natural frequencies 

or resonances, At each natural frequency there exists a unique 

amplitude ratio between the displacements of the masses, x,/x, etc., 

and is termed the normal mode of vibration. If a multi-degree of 

freedom system is excited by a harmonic force then the response of 

each mass in the system is the algebraic sum of the responses 

produced due to each mode, The system of Fig.2.6a will have two 

natural frequencies and, hence, two normal modes of vibration. 

The two natural frequencies may be found by equating to zero the 

numerator of equation (2.33):- 

m,myut - [xm + Ky(m, +m) ] 7 + KK = 0



  

or 

e.3t2, & ,[G2%, 8) oe]? ee) 
n 2m, 2m - 2m) 2my* m,My 

The lower value of “ may be designated to the first mode and the 

higher value of %, to the second mode. Denoting the first mode 

by subscript a and the second mode by the subscript b the dis— 

placements and velocities of the masses m) and My due to éxcitation 

of the mass my will be 

Siok ee clas ip (2.49) 

Dey ott ane eon 

ene % = %, + (2.50) 

ee eee 1 

The driving point and the transfer velocity mobilities can be 

obtained by dividing equations (2.50) by maximum value of the 

applied force, thus 

‘
H
e
 

‘nie 

1 OP ir Vi i avila oe Sy (2.51) 

see eee ERD: 
Mo * ¥ F F 

7 M1 = Mie + Mei (2.52) 

The modulus of the driving point and transfer mobilities can be 

written in terms of the characteristic mobilities and the ratio 

25
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of the frequency of the applied force to the natural frequency 

relating to each mode (8) 

XM. = + (2.53) 
ee A esky 

Myon , Wo21p (2.54) 

  

where Wo is the characteristic mobility 

ao = w/w a) the ratio of the forcing frequency to 

the natural frequency of the first mode, 

A, = w/t the ratio of the forcing frequency to the 

natural frequency of the second mode, 

The characteristic velocity mobility was defined with reference 

to Fig.2.5 as the point of intersection of the spring and the mass 

mobility lines. Hence the value of characteristic mobility equals 

that of either the mass mobility or the spring mobility at the natural 

frequency, thus 

evens 2 7 = (2.55) 

replacing w by w, = (K/m)® in the above equation and noting that 

j merely indicates direction, 

My = (nye (2.56)
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For a multi-degree of freedom system equation (2.56) may be 

written in terms of effective mass ny and effective spring gradient 

Ky for mode i, where i is any integer, as:— 

Me 

Mo * ( e (2.57) 
Kjm, 

The effective mass ny for any normal mode of a system is a 

single mass that has the same kinetic energy as the system itself at 

the natural frequency pertaining to the normal mode under consider— 

ation, and is referred to the point where the response is measured, 

It may be obtained by equating kinetic energies at a natural 

frequency. The expression for the effective mass, M4 for the 

driving point velocity mobility, equation (2.53), will be:- 

tay Y 2 in * an, 

4 ~ 
  

N
y
 

+ 

iv; 

b 

replacing V by wx, where x are the amplitudes of the masses at the 

natural frequency of the mode under consideration:- 

2 2 
Rime ete 

mei = 2 (2.58) 
1 x. 

and hence, the effective masses for the driving point characteristic 

mobilities, Molla and Myo11p? are respectively:— 

  

2 2 
Mm. + mx, 

1a 2 2a 

Mila 2 (2.59) 
Xe 

Mm. = + m, x 1b ae 
™ 11 (2.60)
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The effective mass, Mioy for the transfer mobility is referred 

to the transfer point and may be obtained as follows 

A2y 7) 

%, 
+ (mp, 4) w = tn, ve + ta, Ve 

putting V= wx, we get 

m2. x om x2 
a 22 eS (2.61) 

and the effective masses for the transfer mobilities Moola and 

Woe? 87° 
2 2 

Pia 7 Sete 
46 = (2.62) 

*1a°"2a 

™Xp + Mote 
Ti2lp * Sa a aa (2-63) *1p*2b 

The effective spring gradient Ky can be calculated from the 

frequency equation 

2 
wy = K&/y 

or a! mya (2.64) 
i a7 : 

Substituting equation (2.64) in equation (2.57) the characteristic 

velocity mobility can be expressed in terms of the natural frequency 

and the effective mass as 

oun a 
  (2.65)



Chapter 3 contains the theoretical analysis of a hydraulic 

servomechanism, Response and impedance equations are derived 

from the basic considerations and evaluation of flow parameters 

is discussed, 
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CHAPTER 3. 

3.1. Notation, 

gl 

52 

‘ol 

G2 

Cross Sectional area of jack piston. 

Valve flow coefficientaQ@/E. 

Valve flow coefficient 20Q/ Pe 

Leakage coefficient around jack piston 4Q,/aP ;. 

Leakage coefficient out of jack 4Q,/aP,, aQ,/aP;. 

= c + eo + coo 

Viscious damping coefficient. 

Boundary value of E, 

Coulomb friction force, 

(at, 
= Aw. 

= Ww/2N, 

Leakage constant around jack piston, 

Leakage constant out of jack. 

valve flow coefficient. 

Equivalent mass of the control surface referred to 

the servomechanism, 

Bulk modulus of fluid, 

Leakage around piston out of No.1 chamber, 

Leakage around piston into No.2 chamber. 

Leakage from No.1 chamber (out of jack). 

Leakage from No.2 chamber (out of jack). 

30
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Supply pressure, 

Time. 

Swept volume of jack, 

Energy dissipated/oycle. 

Initial or boundary value of X,- 
‘ob 

Impedance, 

e
S
 
e
e
 
S
e
 

Impedance of a particular system, 

Z Impedance of servomechanism unit, 

w Excitation frequency. 

In the following notation the upper case letters refer 

to the steady state condition, and the lower case letters refer 

to the small perturbations about the steady state condition, 

Ee Valve error or opening, 

Pee Applied force in the direction of Xo. 

a a Flow into one side of jack (No.1 chamber), 

Q I Flow out of other side of jack (No.2 chamber), 

PL Py Pressure in No.1 chamber. 

Py Pp Pressure in No.2 chamber, 

P; P; Pressure drop across jack piston, (Py - P,). 

P Py Total pressure drop across valves, (fy - P.). 

x, xy Input displacement. 

alee Output displacement, 

31



32 

3.2. Introduction. 

The hydraulic jack servomechanism is essentially a non-linear 

element. The most basic of the non-linearities is due to dep- 

endence of flow through valve ports on the square root of the 

pressure drop, Other factors contributing +o the non-linearity 

of this type of servomechanism are the coulomb friction force, 

valve port area if it is not a linear function of the valve dis— 

placement, and discharge coefficient which may vary with the 

orifice area and the pressure drop across it, 

The equations of motion for the servomechanism may be solved 

by graphical methods (12), by analysis of the response to various 

input functions (13), or by the small perturbations technique. 

The one most frequently used is the small perturbations technique 

in which the non-linear equations are linearised by considering 

small oscillations about a steailystate condition, This method 

is based on development of work by McRuer (14) and was used by 

Conway and Collinson (15) and Harpur (16), Harpur developed the 

usual response equations as well as the impedance equation for the 

servomechanism by considering the excitation of the output end, 

and took into account the effects of oil compressibility. This 

analysis was extended by Sung and Waternabe (17) who included the 

effects of internal friction and oil leakages in the response 

equations. The effects of oil momentum forces on the valve were 

included in the equations of motion by Williams (18) who solved 

these equations using the same technique as that emplyed by Harpur. 

Lambert and Davies (19) and Glaze (20) have solved the response 

equations, which included the effects of coulomb friction and 

leakages, using an analogue computer. 

Penny (1) has developed the impedance equations for the 

hydraulic servomechanism using Harpur's method but ha® included the 

effects of coulomb friction and oil leakages, He has also invest— 

igated the effects on impedance of flexibilities in the anchorage,
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the valve input and the output stages. The theoretical analysis 

of the hydraulic servomechanism in this chapter is based on the 

work of Harpur and Penny, 

3.3. Equations of Motion of a Hydraulic Servomechanism, 

This analysis assumes that the servomechanism is of symmetrical 

design and there is no leakage from the valve ports due to an 

underlap. Account is taken of leakages across the piston and out 

of the jack, The supply pressure is assumed to remain constant and 

the return pressure zero. 

The servo error E is defined as:— 

B=X, -X (321) 

where x; and x, are measured in such a way that E = O when the valve 

is in a neutral position, The flow through the valve ports, with 

reference to Fig.3.1 may be defined as:— 

@ = f(2,P)) (3.2) 

and the flow out of jack:— 

@ = £(8,P)) (3.3) 

The bulk modulus of a fluid is defined as:- 

ve (3.4) 

Now consider the effect of compressing the fluid confined to one 

side of the jack piston, differentiating w.r.t. time:- 

av | ¥ a 
at N dt
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The total volume flow into one side of the jack piston is:— 

V. ak 
tte 8 

Sees Rise tdi poi it ocel (3.5) 

Vi ap 
where iit flow to compress fluid confined to one side of 

jack piston, 

5 
A aia flow corresponding to jack velocity, 

Qo = leakage flow across jack, out of chamber 1, 

a = leakage flow out of jack, chamber 1, 

with Qi = fy (Py - Po) = yy (P5). 

and Qo = fo (P,). 

Similarly flow out of jack may be written as:— 

Vv, a@P, aK, 
Q - 2 

Pol gia Nae Pe els Se (3.6) 

where Q50 = fo (P, - Po) = P50 (P5) 

and a5 = fh_ (Pa). 

Equations (3.10 to (3.6) define the motion of the servo— 

mechanism and their solution is obtained by considering small 

perturbations about a steady state condition, Replacing Xi» Kos 

q etc., by X, +x) 2X, + Xyy and QQ +4) etc., the aed
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+ @ ee X,- xX, mec ot (3.7) 

3 re) 
@ + 4 = £8, P) + ot + 1 Py (3.8) 

B aP, 

OST eg O8e + a= 2(B Po) + —° + —?2 (3.9) 
% : Se ees 2p, 

v, aP. 
= iL ° 

+q,=5 — — +a + Vv, dp. 
Ae aes at Been eee 

N at 
dx aQ dQ 

Uk eg ey ely (3.10) 
at ap, ap, 

V, aP. ak V, ap, a OPy ° 1 §P9 +a =———— + A— + QQ. + Q -—-—— 
% eee Nea’ at at oh wat 

dx aQ,. aQ, 
+a—2 , BP; _ 2, (3.12) 

na, aP, 

Equations (3,8) and (3.9) are obtained by using Taylor 

series expansion for two variables and neglecting all powers in 

the expansion above the first. 

equations (3.7) to (3.11) gives 

terms only:— 

e = bs a 

a) = om Om Py 

5 aP, 

a = + 283 Po 

OE OP. 

Eliminating the steady state from 

the equations in perturbation 

(3.12) 

(3.13) 

(3.14)



  

dp. v. 1 4Q, aQ 1 1 1 y= = a eee. rp, + =p, (3.15) 
Nat at ap, ? aP. 5 a 

Vz dp, dx aq aq 2 "Pe ap = ee ee pee eee, - —@», (3.16) 
N at at ; aP, 

Since the valve ports are assumed to be symmetrical 

  

Let 3 a 
oer = = c. (3.17) 

OE dE 

oon egw OE es (3.18) 
oP, ar, 

a BRC en 
ip (3.19) 

ap. P 
J J 

aQ aQ 
See. ee (3.20) 

a ot 

If the piston is in mid-stroke position, then:- 

Wiss Yo a¥/5 

Equating equations (3.13) & (3.15) and (3.14) & (3.16) and substitut- 

ing from equations (3.17)to (3.20), 

dx 
Ww ap ° ‘ 

Gi Bee er, tecee —l1+A + ¢ oe Dy. gO. B. (3222) 
: 2N at at dp J “2 

36
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@, 0 a Gea, Bin ee ee tes ere (3.22) 
a ae : ON at at or 

Adding equations(3.21) and (3.22) 

va . dx “ay, (Pp, - Pp) + 2c = oF G (mR, - Po) +24 To + 20 55P5 

at 

+ C,, (Pp) - Pp) 

Va 
2 - C+ 2 Cc = = ax, or Coe p;( D C5 st a ae — + 2A = 

Putting c° c+ 2c c 2 ‘. + 
aor aed P ip op 

dp dx 
edie ip. 6) aa es 01 (3.23) 

3 Ca Qn at at 

This is the performance equation for the servomechanism for the 

steady state condition at which the values of Cs and o. have been 

calculated, The frequency response and the impedance equations 

are developed from equation (3.23) in sections 3.4 and 3.5 respectively. 

3.4. Frequency Response Equation for the Servomechanism. 

Considering the load produced on the servomechanism by the 

inertia of the control surface 

ax. 
Pe 

° at 
  

where M is the equivalent mass of the control surface referred 

to the servomechanism. The external forces on the servomechanism 

will be balanced by the pressure drop across the jack. Considering 

small perturbations of RO i-
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or Pp = z “ (3.24)   

Substituting equations (3.12) & (3.24) into (3,23):- 

  

  

  

» 2 3 
Cm dx ad-x 

5 eee Ya = ae. 
Nay i eaar Wes Sede ence 

1 

Vn : ° Com az, S 
om, as Ct + 2QA=— + 20x = 20x (3.25) 
2NA as? A at? dt eo ei 

If the perturbations are sinusoidal, then by putting x, =X, 

exp jwt and X, = X, exp jwt the transfer function of the 

servomechanism in terms of the forcing frequency is obtained as:— 

Ber. 20 
x <3 ' 

5 etYae 3 ete ne ae 
DNA jw oe cea + jw + a 

From which the amplitude ratio is:- 

2c = 
° e 

ae o'm 2 24 on BiG ere pes Bote Yang? lee, — are ar(Bk ona 

and the phase lag is:— 

2 2 
oie ey (3.27) 

2AC - 1-2 © e Pl
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The above equations are the frequency response equations from which 

can be calculated the values of system parameters to give a response 

characteristics of the system for a fast or slow response to 

suit the function for which the aircraft has been designed, 

3.4.1. Condition for Stability. 

The Routh-Hyrwitz criterion for stability, when applied to 

equation (3-25); requires that for the servomechanism to be stable 

(2) a - eB) 20, >0 

' v or that, of. > ar (3.28) 

The servomechanism will be stable over the operating range for which 

equation (3.28) is satisfied, The effect of leakage, included in 
' 

oo? is to improved stability, 

3.5. Impedance Equation for the Servomechanism, 

The impedance of the servomechanism is defined as the ratio 

of force to displacement. This force is that applied to the output 

end while the displacement is measured with the valve input locked, 

that is x, = © and hence the servo error e = -Xy° The force fy 

causing the jack to move in the direction of x, is balanced by 

the jack pressure differential:— 

f, = 24 

or FS 

Tat nines 

Substituting for e and P; in the performance equation (3.23) we 

obtain:—
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eels mee ax, 
Re GR re ee ie (3.29) 

Since the above equation is in small perturbation terms only it 

will be linear over the perturbated range, and, if the exciting 

force is sinusoidal the resulting response will be sinusoidal also, 

Putting f, = f exp jwt, X= X, xP jwt. 

af, dx, 
and =z. S jw fy exp jwt, z= jw X, exp jwt. 

equation (3.29) becomes:— 

or 

  

2 Vw 
° 2A ( fitvae _e 

=— = = oe C—O Ss + Gy ) + j(Aw o' ) 
=o oe + KS pa 

2a ' ' , 
or Zo = ota? eee, + KK) + d(c, x= 0,%,)} (3.30) 

where Za, = Impedance of the servomechanism:—
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Equation (3.30) is the impedance equation for the servomechanism, 

The real term represents stiffness and the imaginary term represents 

damping. 

3.5.1 Static Stiffness. 

The static stiffness of the servomechanism is defined as the 

stiffness when the frequency tends to zero, that is, when K, = - = 0, 

From equation (3.30). 

Zz, (static) = PAC, (3.31) 

C 
Pp 

The damping will be zero and the effect of leakage is to reduce 
' 

the stati tiff i GC = + 2¢. +C . e static stiffness (since 5 . bs on) 

3.5.2 Infinite Frequency Stiffness. 

As the frequency of excitation increases from zero the stiffness 

of the servomechanism increases from its static value (equation 3.31). 

At higher frequencies oe and c become insignificant compared with 

K, and = and hence from equation (3.30), 

2k K 2. 
Vv 

Zz (inf.freq.) = ag = a (3.32)   

The damping is once again zero and oil in the jack acts as a plain 

spring of stiffness 4a°v/N. That is, the valve motion is insignif— 

icant and the piston is bouncing on the oi] in the jack. 

3.5.3 Maximum damping. 

It can be seen from equations (3.31) & (3.32) that the damping 

is zero both at zero frequency and at infinite frequency, It
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increases as the frequency is increased from zero and reaches 

its maximum value at some higher frequency and then falls back 

to zero at infinite frequency, The maximum value of damping and 

the frequency at which it occurs can be determined by differentiating 

the imaginary term of the impedance equation w.r.t.w. 

  

  

2Aw : is 2, (imag.) = foes (ac, - a) (3.33) 
Ww c, + oy) 

ve 
aZ : e x! 

a (imag) = assy - mello; + Gp? - ah? a 
‘ Vy 2 ] - [oo + @& 

For maximum condition:- 

o a Hy 0 is - 

and wos uc /Ww (3.34) 

This is the value of frequency at which the maximum damping 

occurs, The value of this damping can be obtained by substituting 

equations (3.34) in (3.33). 

2, (imag.) max = A ae - ) (3.35) 

  

If the bulk modulus N is assumed constant then the maximum damping 

depends on the ratio o/c. The damping and, hence, stability can 

be increased by decreasing this ratio but this would reduce the static 

stiffness of the servo mit (ean. 3.31). Therefore the choice lies 

between a highly damped system with a low static stiffness or a 

lightly damped system with a high static stiffness, For flutter
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prevention a high stiffness is desirable but the actual values of 

stiffness and damping can best be determined when the flutter 

characteristics of a control surface are known, 

3.6. Evaluation of the Servo Valve Flow Coefficients. 

The response characteristics of the servomechanism and the 

servo impedance can be determined from equations (3.26) and (3.30) 

respectively for the steady state condition for which the values 

of c, and Os are known, These parameters can best be determined 

experimentally for a particular unit. But in the absence of 

experimental data, as would be the case at pre-design stages, 

approximate values of oS and Ls may be evaluated. 

3.6.1 Approximate Evaluation of C: andc , 

The flow through an orifice is a function of the square root 

of the pressure drop across it, the orifice area and the losses 

due to friction, As a first approximation the flow through one 

side of jack piston may be defined as?— 

ie 
Qs % 2 -*) 

where kK, is a constant for the valve which includes the discharge 

coefficient and the effect of non-linear relationship between the 

flow area and the valve error E, 

2a * sz = KX (P, - P,) since P, - P= P/2 

ay 
BE - x (Rae (3.36) 

Similarly, 

% = KB (IF 
KE (r,/2)* since P, = P//2 

and o 

ao K, (2/2) (3.37)
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From equations (3.36) and (3.37):- 

a 3 
o. * — Z = = K, (P,/2)t (3.38) 

Now - ~ = K, BAP, - PL) 

og KE pa v (3.39) 
a3 2(P,/2) z 

and bo] = Ke 

oa 
oP, = ee (3.40) 

2(P,/2) 

From equation (3.39) and (3.40):- 

a% 2% 
y a “OP, ~ 3P, 

K 
POG . eee (3.41) 

P ace faye 

3.6.2, Experimental Evaluation of ce and %. 

The experimental values of C. and c for a hydraulic jack 

may be evaluated from the data supplied by the manufacturer, This 

data consists of the flow characteristics against valve opening 

for lines of constant pressure drop across the valve as shown in
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Fig.3.3. The slope of these lines at any instant represents 

2Q/2E, or Gos for a constant pressure drop. To obtain values of 

o the data in Fig.3.3 is cross plotted to give flow characteristic 

against pressure drop across the valve for lines of constant valve 

opening as shown in Fig.3.4. The slope of these lines represents 

2Q/aP,, or c,/2. The dependence of a and A on valve opening for 

constant pressure drop and on pressure drop for constant valve 

opening is shown in Figures 3.5 and 3.6. 

Figure 3.4 shows a plot of g against G. for constant valve 

pressure drop and valve opening. The diagonal lines represent 

the ratio ¢./c, which help indicate the high stability and static 

stiffness regions on the diagram. The criterion for stability 

(eqn. 3.28) was found to be:- 

Vv 

0/0, > ar 

Therefore a high degree of stability is obtained for low values of 

c,/c,, and a low stability for high values of this ratio, It was 

stated earlier that stiffness and stability are related in such a 

Manner that an increase in one parameter is accompanied by a decrease 

in the other, From equation 3,31 

a (static) = 2A cs an 

Pp 

or that the static stiffness is proportional to the ratio c./c, 

that is, a high static stiffness is obtained for a high value of 

o/c, Hence the region of high static stiffness is also the region 

of low stability and vice versa,
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3.7. Effect of Coulomb Friction on Impedance, 

Coulomb friction in a servomechanism forms a principal 

non-linearity and has to be linearised for its effect to be included 

in an analysis. The linearised coulomb damping force is then equated 

with a viscous damping force of equal magnitude to give an equiv— 

alent viscous damping coefficient in which the damping force is 

a linear function of velocity, 

The equivalent damping coefficient can be determined either 

by a Fourier analysis or by energy dissipation considerations as 

follows. 

3.7.1 “Fourier Analysis. 

The response of a system with coulomb friction to a sinusoidal 

excitation will be a square wave the Fourier expansion of which is 

given by, 

4 F, (sin wt + sin 3wt + ZL i 
3 5S sin 5 wt + 1.0.) 

where KB is the magnitude of the coulomb friction force opposing 

the motion, Neglecting all terms except the first in the above 

expression gives the amplitude of the fundamental component which 

varies sinusoidally and gives approximately the linearised coulomb 

damping force, 

«’. Approximate coulomb damping force 

amie T Rr sin wt.



4T 

The viscous damping force 

dx = C¢ ae 

= Cwx sin wt. 

Equating the viscous and coulomb damping forces 

4 R sin wt = Cwx sin wt, 

. ar 
ee aC) (3.42) 

where C is the equivalent viscous’ damping coefficient. 

3.7.2 Energy Dissipation. 

In this analysis the equivalent viscous damping coefficient is 

determined by equating the energy dissipated by viscous damping 

force to the energy dissipated by the coulomb damping force, 

The viscous damping force = Cx 

and the energy dissipated per cycle by this force, 

We $c x) dx 

ee 

= . : = dx 
is (@ x) x dt since dx = 7 dt 

= Cw? sen (cos~wt) a (wt) 
° 

2 2m 
= on? [ $ (1 +4 cos 2wt) ad (wt) 

eT 
2 (wt + ein 2vt) = & Cw 

W = WCwx? (3.43)



Coulomb damping force = F, (sgn x) 

and energy dissipated per cycle, 

Ws $r, (sgn x) dx 

an/w 
h Le (sgn x) x dt 

° 

2 ( ) (wt) = x F_ (sgn x) cos wt d (wt / ° 

2255 ie cos wt. d(wt) + je cos wt aw | 

31/2 11/2 

W= 4F,x (3.44) 

equating equations (3.43) and (3.44) the equivalent viscous damping 

coefficient is given as:- 

Tow" = 4F, x 

aeO eee 
Trwx 

The effect of coulomb damping may be included in the analysis by 

considering a damper placed in parallel with the servomechanism as 

shown in Fig.3.2. 

Let 4, be the impedance of the servomechanism and let Za be the 

impedance of the damper. 

Using the laws of impedance addition for elements in parallel, 

the total system impedance Zs is,



Oe ee aa 

<a 3 ie ee, 
wwwx 

(3.45) 

where Za is represented by eqn. 3.30. 

Chapter 4 introduces the fundamental concepts of analogue 

computing together with the networks that form a general purpose 

analogue computer, 
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CHAPTER 4. 

THE ANALOGUE COMPUTER. 

4.1. Notation, 

Operational amplifier gain. 

Capacitance (Farads). 

Differential operator G,) 

Instanteous current. 

Problem variable, 

Resistance (ohms), 

Time (sec). 

Time constant of a network (RC). 

Voltage. 

Frequency of the input signal (radians/sec). 

Problem variables, 

Impedance element, reistance or capacitance, 

The subscripts i, o and f denote input, output and 

feedback respectively, 

50
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4.2. Introduction. 

The analogue computer is a useful aid for the solution of 

problems governed by ordinary differential equations, I+ is 

particularly useful for the analysis and synthesis of non-linear 

control systems which are otherwise treated by the phase plane 

and the describing function techniques, These analytical methods 

though useful are laborious and can be used only for input signals 

which are not of a statistical nature, The great advantage of 

an analogue computer is that once a problem is simulated a comp— 

rehensive analysis can be performed with great speed for any type 

of input signal and for any combination of system parameters, This 

makes the process of optimising the values of system parameters a 

relatively easy exercise, The results are presented in a graphical 

fwom and hence easily interpreted, 

This chapter introduces the fundamental concepts of analogue 

computing and describes briefly operations of the basic elements 

that form an analogue computer, Only the operations and computing 

units used in this research are discussed. Detailed information 

on simulation and design of computing elements is well presented in 

the published text (21) (22) and (23). 

4.3. Basic Elements of an Analogue Computer, 

The analogue computer is a voltage operated device in which the 

variables of a physical problem are represented by voltages in the 

computer, It is built around the concept of blocks or ‘elements 

which are connected together to perform various mathematical 

operations required for the solution of a problem, Only a few basic 

elements are needed in order to solve a wide range of problems, 

These elements consist mostly of passive electrical networks used 

in conjunction with the high gain operational amplifiers and provide
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the following mathematical operations 

1. Algebraic summation of two or more variables, 

2. Multiplication of a variable by a constant. 

3. Integration of a variable with respect to time. 

4. Differentiation of a variable with respect to time. 

5. Multiplication of two variables, 

6. Generating functions of a variable, 

The first four operations can be obtained simply by a combinationn 

of resistors and capacitors. The last two operations are achieved 

by means of special units known as 'Multipliers' and 'Function 

generators' respectively. 

4.3.1 _Algebraic Summation. 

The resistance network of Fig.4.1 can be used as a summing 

device. The resistances Ry and Ry are termed the input resistances 

while Re is termed the feedback resistance. Applying Kirchhoff's a 

current law to point N the nodal equation for the network is:- 

a, eto) i, 518 (4.1.) 

or pastbnige aba wee. 
Py ere R F 1 2 £ 

R R 
. ft = x Ay 

as Vo. = oa Y, +E M)/ Rl i, #7") -1 (4.2)
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If the ratio of feedback resistance to input resistances is 

chosen to be unity then Ve is obtained as a sum of the input 

voltages. 

4.3.2. Multiplication by a Constant. 

Consider the network shown in Fig.4.2, the nodal equation for which 

is given by:- 

ij +i,=0 

or Woo VG 
Fr <= 0 

2 if. 

R: 

“. = — yy (4.3) 
R, +R, 

L £ 

Thus by varying the values of input and feedback resistances the 

input voltage can be multiplied by a constant less than unity. 

4.3.3. Integrating Network. 

Integration in an electrical network is made possible due to 

the property of a capacitor that the current through it is propor— 

tional to the time derivative of the applied voltage:-— 

ieee (4.4) 

Using the operator notation 

i= cDV 

eo View 4 iS 1 f i at (4.5)
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Referring to Fig.4.3 the input voltage wy causes a current to 

flow through the resistance R and charges the capacitor in a 

manner which approximates integration. But the output voltage 

Ve which builds up across the capacitor makes the charging current 

proportional to (Wy - eo) rather than to input voltage alone. It 

is this proportionality of the charging current to (V, - va) which 

prevents true integration. The transfer function of the network is 

  

given by:- 

= 0 (4.6) 

° 1 + RCD i 

Putting RC = TT, the time constant, 

z 
Yo 7 Tes ea} 

For the value of T much greater than unity eqn. (4.7) can be 

written asi- 

My 

4/y, Vv. dt (4.8) 

4.3.4. Differentiating Network. 

a
l
e
 

-
 

or ¥ 

  

A differentiator is rarely used in analogue computing due 

to its inherent ability to amplify the noise content of a signal. 

This introduces errors in the solution of a problem and makes
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analysis more difficult. There are occasions when differentiating 

Gircuits can be beneficially used, They are often used to improve 

the response of control systems by way of phase advance networks 

and as elements for velocity and acceleration feedback and for error 

rate damping. 

A basic differentiating network is shown in Fig.4.4 consisting 

of a capacitor C and a resistor R. If i is the current in the 

network the following relationships are obtained:- 

i = oD (v, =o) 

Vi = Ri 
° 

= RCD (V; - V,) 

oie vo" oe vy putting RC = T, 
1 + RCD 

TD ae (4.9) ° 1+ TD 

If the value of T is much smaller than unity, the equation (4.9) 

reduces tot— 

v= ™YV, (4.10) 

Thus for a small value of time constant, T, the output voltage 

will be proportional to the time derivative of the input voltage 

and the network will act as a differentiating element. 

4.4. The Use of a High Gain Operational Amplifier. 

4.4.1. Limitations of Electrical Networks. 

The electrical networks discussed above work well providing
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there is no load connected across the output terminals. This is 

a serious limitation since during simulation of a problem several 

such networks may have to be connected together. This causes 

elements of one network to act in series or in parallel with the 

elements of other networks thus changing the nodal equations which 

were derived assuming no current flow across the output terminals, 

This condition is known as loading and can be overcome if the 

networks being connected together have a very high input impedance and 

a very low output impedance, It is also necessary for the source 

supplying the input voltage vs to have a low impedance, that is 

the drawing of a current from the source must not have any sig- 

nificant effect on the value of vy across the input terminals, Let 

the L — network of Fig.4.5 represent the network pnder discussion 

and let Z, and Z, 
aL 2 

acitance elements. If we now consider the current flow, then for 

be the impedances of the resistance and cap— 

current i:- 

Vi-= 1% +12 (4.11) 

Consider now, the circuit of Fig.4.6 in which the source supplying 

ey has a high internal resistance R, and a current is drawn from 

Zo by the resistance R connected across the terminals. The equation 

for vi now becomes :— 

Wier west Get os 
x ne —— 

Zo +R, (4.12) 

Comparing ean. (4.11) and (4.12) it is clear that to prevent 

loading of networks some device is required to isolate the stages 

by offering a high input impedance to the output terminals of 

the first stage and a low output impedance to the input terminals of 

the second stage.
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The high gain operational amplifier is such a device and is 

briefly described in the following section. 

4.4.2. The High Gain Operational Amplifier. 

A block representation of an operational amplifier is shown 

in Fig.4.7. All voltages are measured with respect to a ground 

reference known as the signal ground. The quantity -A represents 

the gain of the amplifier which is very high, being of the order of 

10° to 108 for amplifiers used in analogue computers, The symbolic 

representation of the operational amplifier is shown in Fig.4.8. 

The ground connections are usually omitted for the sake of clarity. 

These amplifiers are normally used in a closed loop configuration 

(Fig.4.9), that is, with a feedback from the output to the input 

and this accounts for the negative gain of the amplifier. A positive 

feedback would result in an unstable system. 

The input and feedback impedances are represented by a and 

Ze respectively. The point SJ is the summing junction where all 

inputs to the amplifier are summed before going to the grid of the 

amplifier. This point is also known as the ‘virtual earth' because 

the voltage V at the summing junction is given by:- 

Vv 
Vie -- (4.13) 

The maximum value of Ms being the full swing computer voltage 

which in a valve machine is of the order of 100 volts. If the 

gain of the amplifier is 10°, then:— 

100 6 
Vek i ee CS 10 ~ volts. 

10 

and hence the summing junction is virtually at the ground potential. 

Equation (4.13) assumes the output voltage V, to be independent 

of the amplifier output current. This demands that the amplifier be



58 

regarded as a voltage source with zero output impedance, In 

practice operational amplifiers are designed to have an output 

impedance of few ohms and input impedances of the order of mega— 

ohms thus satisfying the above condition, 

The role played by the large gain (-A) of an amplifier can 

be demonstrated in the following manner. Assuming no current flow 

from SJ (Fig.4.9) to the amplifier input, the nodal equation at 

SJ becomes:— 

    

VvVe-V. v-vV 
a ° 

- = 0 (4.14) 
ai 29 

Vv V. 
os i ° z or ($+ e)vV-—7 2 = 
2, Ze Ze 2, 

ee ee eee a 
BD eee Ze zy 

% %, if Toe 
or <7 y [2+ te a (4.15) 

but A is very large and the equation (4.15) reduces to:- 

ws
 

i YW - oh (4.16) 
: i 

It can be seen that the very large gain of an amplifier makes the 

various operations dependent solely on the ratio of feedback and 

input impedances,
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4.5. Mathematical Operations Performed with the Operational 

Amplifier. 

4.5.1. Sign Change. 

The negative gain of an operational amplifier makes it 

possible to invert the sign of an input voltage by choosing the 

values of a, and Ze such that their ratio is unity. This is shown 

in Fig.4.10a where both a and Ze are replaced by resistances R 

of equal value, giving:- 

The symbolic representation of a sign changer is shown in Fig.4.10b, 

4.5.2. Multiplication by a Constant, 

Multiplication of a variable by a constant can simply be 

obtained by adjusting the ratio 2/2; to the required value, 

Since in most analogue computers these ratios are available only 

in steps of 10 it is necessary to use coefficient potentiometers. 

Figure: 4,11 shows multiplication by a constant less than unity 

and Figure 4,12 shows multiplication by a constant greater than 

unity. 

4.543. Algebraic Summation. 

An operational amplifier permits the summation of any 

number of voltages or variables without loading effects. The 

circuit diagram of Fig.4.13 illustrates the principal of addition, 

The polarity of variables to be summed can be either negative or 

positive, Assuming no current flow from SJ to the amplifier input 

the nodal equation becomes
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Vv Vv ° 1 4¢c2 at ayee A eyo ee 
Wet oP tar le fOr tae. See ae 

V. Vv, Vv. é ae oe wi! 1 
one ae mie Beier eee ete ao) (4.17) 

1 2 3 

where A is the amplifier gain 

R R Ree) 
and a ae FHL Has = + =) 

et 2 3 

since the amplifier gain is very large, Aa is much greater than 

unity and may be neglected, Thus equation (4.17) reduces to:- 

V. v, v 
1 2 3 Vos -R (= + = ==) (4.18) 

° f Ry Ro R, 

Each of the variables Yi Vo and Vv; can be multiplied by a constant 

smaller or greater than unity by adjusting the ratio of input 

resistors to the feedback resistor: Rp thus combining the two operat— 

ions. 

4.6. Integration. 

In the integration circuit shown in Fig.4.14 the voltage 

V opposing the capacitor charging current is very small (V = -v,/A) 

and hence the rate of charge on the capacitor is very nearly 

proportional to the input voltage Vi- This makes the output 

voltage directly proportional to the time integral of the input 

voltage resulting in accurate integration, 

The nodal equation at SJ is:- 

Foi Mt erate) ge ct gO) (ov) = 0 (4.19)
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since A is very large, and assuming no leakage across the capacitor , 

equation (4.19) can be written ast- 

v, 
2 zt DY, = © 

fl 
or + = = Rep “a 

T 
; L J ae Vos = 5 Vi, + at (4.20) 

4.7. Differentiation, 

The network of Fig.4.4 when used with an operational amplifier 

represents the ideal or true differentiator. Consider Fig¢,4.15 

the nodal equation for this circuit simplifies to give the trans— 

fer function:—- 

v 
a = = RD (4.21) 

ay 

and the modulus of this transfer function will be simply?- 

— = = Row (4.22) 

where w is the radian frequency of the input signal. It can be 

seen from eqn. (4.22) that the gain of the differentiator increases 
directly with the frequency of the input signal. Therefore the
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noise content of the signal is also amplified, For this reason 

a true differentiator is often referred to as a 'noise amplifier', 

In analogue computers approximate differentiating circuits are 

used to overcome the disadvantage of a true differentiator. A 

few approximate differentiating ciruits are hown in Fig.4.16. 

The choice of the differentiator is governed by the quality and the 

frequency of the input signal and the requirements of accuracy. 

4.8. Multiplication of Two Variables. 

Multiplication of one variable by another requires the use 

of special units known as multipliers, Many types of multipliers 

are available each making use of a different technique (25) (26) 

(27) (28) and (29). Since an electronic quarter-square multiplier 

was used during the course of this study, it is briefly described 

below, 

The Electronic Quarter—Square Multiplier. 

The quarter-square multipliers use electronic function 

generators in conjunction with operational amplifiers to perform 

multiplication. The function generators consist of biased diode 

networks or ‘squaring cards' that produce a current proportional 

to the sum of the input voltages and generate a segmented straight 

line approximation to a square law, Thus the operation of multi- 

plication is reduced to summing and squaring and is based on the 

identity 

zy = t(z+y)? - t(x-y)? (4.23) 

For a four quadrant multiplication four squaring cards are used 

to form the product xy from inputs of +x, -x, +y and -y, The
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positive squaring cards conduct when the sum of the input voltages 

has a positive polarity and produce the relationship:— 

$ (x+y)? 

The negative squaring cards conduct only when the sum of the input 

voltages has a negative polarity and generate the function:—- 

+ (x -y)? 

The outputs of the positive and the negative squaring cards are 

summed in an amplifier to give the relationship of eqn. (4.27). 

The schematic arrangement of a quarter-square multiplier, as 

used in a E.A.L, TR-20R analogue computer, is shown in Fig.4.17. 

The output is Shown as -xy/V, where V represents the maximum 

computer voltage. 

4.9. Generating Functions Of a Variable. 

Function generation is performed by special units called the 

diode function generators (DFG), A DFG is an electrical network 

consisting of diodes and resistors, It is based on the concept of 

straight line segmented approximation of arbitrary functions, The 

diodes are simply used as voltage sensitive switches which, when 

properly biased, switch a number of resistances at predetermined 

values of an input voltage. This switching action generates straight 

line segments which are added together to form the desired function, 

Consider the diode circuit of Fig.4.18, the input voltage 

vs sees an infinite resistance until its value equals Vy the bias 

voltage. When Ny becomes greater than v, the diode conducts and the
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voltage drop due to the diode current appears across R as the 

output voltage Voe The relationship between the input and the 

output voltages is of the form:- 

  

Vets ee (4.24) 

A combination of such circuits can be used to generate 

monotonic functions giving any desirable relationship between 

the input and the output voltages, Two basic diode function 

generator ciruits (30) together with their voltage-current chara- 

cteristics are shown in Fig.4.19a and b. The former circuit gives 

a non-linear resistance which decreases with increasing value of 

Vis and the later circuit gives a non-linear resistance which 

increases for increasing value of V;- Practical D.F.G. circuits 

are connected to a load resistance which is usually the input 

resistance of an operational amplifier (Fig.4,20) and, hence, 

account must be taken of the load resistance when calculating the 

slopes after successive breakpoints, Non-monotonic functions are 

generated by subtracting two monotonic functions in an operational 

amplifier, 

4.10. Control Modes of the Computer, 

Once a problem has been simulated on the computer it is 

necessary to adjust coefficient values and initial conditions of 

the problem before a computation can be started. This is done by 

setting the computer in one of its control modes. The control 

modes allow an operator to adjust, compute and hold a problem 

at any instant in time for checking and recording purposes. There 

are three basic control modes in the general purpose computer and 

these may be described as follows,
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4.10.1, Reset Control Mode. 

It is in this control mode that the coefficient values are 

adjusted on the potentiometers and the initial condition voltages 

are applied to the integrators, 

Coefficient Setting. 

The transfer function of a potentiometer was shown to be in 

Fig.4.lla as:— 

ai
s Ns 

= (4.25) <j pw
 

This relationship holds only if the output of the potentiometer 

is not connected to a load resistance. In practice the potentiometer 

will be loaded by the input resistance of an operational amplifier 

(Fig.4.21),. The transfer function of a loaded potentiometer is 

given by:— 

  

v 

Neds fel (4.35) 
LR, = RAR, 

To avoid loading errors coefficient potentiometers are set 

under load conditions by comparison to a precision reference 

potentiometer having an accuracy of °Ol per cent or better. The 

reference potentiometer is adjusted to the value to be set on 

the coefficient potentiometer, The computer reference voltages 

are applied to both the potentiometers and the coefficient poten- 

tiometer is adjusted with its slider arm connected to the load 

resistance. The outputs of the two potentiometers are compared on 

a null indicating meter,
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When the reading on the null meter is zero the coefficient 

potentiometer is accurately set (Fig.4.22). 

Initial Conditions. 

The initial conditions of a problem require that the integ— 

rators used in the simulation be charged to voltages representing 

the values of the dependent variables at a time t = 0. This 

operation is performed with the computer in the reset mode, Figure 

4.23 shows a typical integrator circuit which includes two relays 

ty and Ly labled reset relay and hold relay respectively. In 

reset mode the relay tL, is energised and connects the initial cond- 

ition voltage to the capacitor through the resistance R, The relay 

Ug 
that the only voltage on the capacitor is that representing the 

connects the inputs Za and Zo of the integrator to earth ensuring 

initial conditions, 

4.10.2. Computer Mode. 

When the initial conditions have been set the solution of 

a problem can be started at the instant of zero time. This is done 

py changing the state of the computer from reset to compute mode. 

In the basic analogue computer the only elements that change state 

when the computemode is operated are the integrators. Referring 

to Fig.4.23, both the reset and hold relays are de-energised in the 

compute mode The relay Ly grounds the initial condition voltages 

and the relay Ly connects the inputs 2 and Zp to the integrator, 

4.10.3. Hold Mode, 

The hold mode affords the facility for holding or "freezing" the 

solution at any instant of time. Once the hold mode is operated 

the integrators are disabled and the voltages across the computing
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elements are held at a constant value. This facility is useful when 

checks are required at a particular time or for recording the output 

of the computing elements.through analogue to digital converters, 

The hold mode is also made use of asran analogue memory element in 

+rack-hold circuits for iterative computing. In the hold mode 

the relay ty remains open and the relay Ly is energised grounding 

inputs to the integrator which causes the capacitor to hold its 

voltage at a constant level (Fig.4.23). The solution in time can 

be recommenced by simply placing the computer in the compute mode, 

Chapter 5 contains a déscription of the analogue computer 

and the instrumentation used for impedance analysis.
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CHAPTER 5. 

INSTRUMENTATION. 

5.1. The Analogue Computer. 

The Analogue Computer used for the present study was an HAL 

‘PACE! model TR-20r. It was a transistorised machine with a full 

swing computer voltage of 2 10 volts and an overload voltage of 

z 13°5 volts. It had the following complément of plug-in computing 

elements. 

Operational amplifiers (24 off) 

The high gain operational amplifiers had an open loop gain of 

better than 5 x 10’, Each amplifier having five input resistors, 

three at 100 kiloo-ohms and two at 10 kiloo-ohms, Either the 100 

kiloc-ohm or the 10 kildo-ohm resistor could be used as the feed 

back element to the amplifier thus providing gains of 10 and 1 or 

1 and O°1, All resistors had an accuracy of ‘Ol percent, The out- 

put impedances of the operational amplifiers were each less than 

0°5 ohms. The amplifier output current was rated at 20 ma which 

was more than adequate to drive an x-y plotter or a U-V recorder, 

Coefficient potentiometers. (28 off) 

Four of the 28 potentiometers were precision attenuators with 

calibrated dials and a resolution of °001, The remaining 24 potent— 

iometers had to be set with reference to a precision potentiometer 

and a null indicating meter. Twelve of these potentiometers were 

grounded and the other twelve were left open ended with an earth 

terminal located near each,
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Integrators (8 off) 

Each integrator unit had two built in circuits. One circuit 

had a 10 micro-farad capacitor and was used with the manual operation 

of the computer to provide integrator gains of the 1 and 10 depending 

on the value of the input resistor, The other circuit was normally 

used with the automatic repetition unit and had a ‘02 micro-farad 

capacitor to provide gains of 500 and 5,000 for the fast repetitive 

operation, Any integrator unit could be used as a feed-back element 

to any of the 24 operational amplifiers. The relays for the reset hold 

and compute modes were incorporated in each of the units. 

Multipliers (2 off) 

These were electronic quarter-square multipliers and were used 

as feed forward elements to an operational amplifier to perform 

multiplication of two variables or to square a single variable. For 

accurate multiplication the output of the multiplier was required to 

be one volt and above, This was found to be a serious limitation. 

These units were also found to be unstable when used as feedback 

elements to an operational amplifier for division or root extraction 

of periodic or complex signals, 

Variable diode function generators (2 off) 

One unit was a + V.D.F.G. and the other a - V.D.F.G. Each 

unit had 10 segments for generating functions of a single variable, 

by straight line approximation, in conjunction with an operational 

amplifier. 

Relay comparators (2 off) 

These were electro - mechanical devices that changed state by 

comparing two input signals and could be made to switch on or off 

at a predetermined voltage level, 

These units were, however, found to malfunction above a freq- 

uency of 20 c/s and caused a great deal of trouble in the initial
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stages of the simulation. It was finally decided not to use these 

units. 

Function switches (2 off) 

These were manual switches that could select one of the two 

applied signals to them, 

Log x units (2 off) 

When used as feed forward elements to an operational amplifier 

these units provided the logarithm to the base of 10 of a constant 

or a variable, 

5.2. The Automatic Mechanical Impedance Analyser, 

The force and displacement signals from the analogue computer 

were fed to the "spectral Dynamics" automatic-mechanical impedance 

analyser which operated upon these signals and produced at its out- 

put d.c. voltages representing the logarithm of the impedance, the 

phase difference between the force and displacement signals, and 

the logarithm of the frequency (Fig.5.1). The operation of the 

impedance analyser, in terms of its modules, is described below, 

Dynamic analyser. 

The dynamic analyser is a frequency tuned tracking filter of 

a constant narrow band width the frequency of which is automatically 

tuned to the frequency of the signal being analysed, A functional 

diagram of the dynamic analyser elements is shown in block form in 

Fig.5.2 and the concept of operation in Fig.5.3. Plug-in filters 

having bandwidth of 2,5, 10 and 20 C/S were available but the filters 

used for this study had a bandwidth of 5 c/s and a shape factor of 

4 as shown in Fig.5.4. This gave a rejection of 22 dB for the first 

harmonic at a filter centre frequency of 5 c/s. At a centre freq— 

uency of 10 c/s and above the harmonic rejection was better than 

60 4B (Fig.5.5).
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Log converter. 

The log .opnverters operate upon the output of the dynamic 

analysers and generate a d.c, proportional to the logarithm of the 

input signals thus providing the ability to plot a wide range of 

impedances or mobilities. The meters on the log converters 

display the r.m.s. value of the input signal on a logarithmic scale, 

Phase meter, 

The phase meter compares the constant 100 xc/s amplitude and 

phase coherent signals, generated by the dynamic analysers, and 

gives a d.c, output proportional to the phase difference between the 

two signals, It operates very accurately at this particular frequency. 

Sweep oscillator, 

The sweep oscillator provides a constant amplitude sinusoidal 

signal for system excitation the frequency of which can be contin- 

uously varied at a predetermined rate, It also provides reference 

signals for tuning the frequency of the dynamic analysers and linear 

and logarithmic d.c. signals proportional to frequency. The frequency 

sweep rate can be either linear or logarithmic, The oscillator can 

be remotely controlled by an external d.c. input proportional to the 

frequency, 

Amplitude servo monitor, 

The amplitude servo monitor (compressor) keeps the force or 

displacement signal to the system under test at a constant level 

by comparing a feedback from the system with the oscillator output. 

The system feedback is first filtered by a dynamic analyser in the 

servo loop so that the servo monitor operates on a clean sinusoidal 

signal and compares only the fundamental component with the oscillator 

output.
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Master control unit. 

The master control unit operates upon the force and response 

signals from the log converters and give a d.c. proportional to the 

difference of two logarithms which is the impedance or mobility 

depending upon the settings of the controls on this unit, It is 

also capable of integrating and differentiating the input sifinals 

and, hence, given an acceleration response can provide a velocity 

or a displacement response and vice versa,
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CHAPTER 6. 

ANALOGUE SIMULATION OF A HYDRAULIC 

SERVOMECHANISM WITH OUTPUT END EXCITATION, 

6.1. Equations of Motion in a Form Suitable for Simulation, 
  

The equations of motion for a hydraulic servomechanism 

were developed in chapter 3 and are here modified into a form 

suitable for analogue simulation. The flow into one side of 

jack piston was defined as:—- 

(Flow to compress fluid confined to one side of 

jack piston). 

+ (Flow corresponding to jack velocity). 

+ (Leakage flow across the jack, out of chamber 1). 

+ (Leakage flow out of jack). 

4 ap ax as: ae aL oO 

Sie igatay 8 apes ol 

where Q5 = K,(P, - Py) and Q = K,(?,) 

Putting V, = Vp = v/2 and dxo/dt as x etc., 

vo i Se ty + 4x, + K,(P,-P,) + K,(?)) (6.1) 

Similarly the flow out of the other side of jack will be:- 

® = - Fy P, + Ax + K,(P, - Pp) - K,(F) (6.2)
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Also from equations (3.40) and (3.41) 

@ = & = KB (fee (6.3) 

Substituting for Q, and Q, into equations (6.1) and (6.2) and 

adding for total flow through the valve, 

. 
2KE (r,/2)* = Fe, - 9) + 2hx + 2K,(P, - Pp) +K,(P, - Py) 

But (?, - P,) = Ps the pressure drop across the jack, and 

Vhs = re a3? where zy is the supply pressure. 

ee KE (2(?,-?,)]* a Ir? + 2x + 2K,P, + KP; (6.4) 

Both the valve error E and the valve constant x, are functions: 

of the valve displacement from the neutral position, With 

the valve input locked for impedance testing KE can be expressed 

as a function of Xo the displacement of the output end of the jack. 

<a SE = £CR) 

and P; = F/A 

where F is the external force on the jack and A is the effective 

area of jack piston. Substituting for KE and P; equation (6.4) 

£(x,) [27a]? ~ prt + tax + 2K + 7 (6.5)
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Furthermore, the leakage terms can be combined to give 

one leakage coefficient 

2k 
K 

F F ‘0, F 

cere hen iat J 

= 2K: 
co Pl

s 

K 
where K, = x, + = is the combined leakage coefficient 

As £(X,) [2(P,- r/a)]® = at + 2x, + 2K F (6.6) 

ora F = £(X,) [2, - r/a)]* - eax, - 2K F (6.2) 

and 2h = 2(X,) (20, - r/a) ]* cs ot a x, E (6.7) 

Equations (6.7a) and (6.7b) are now in a form suitable for sim- 

ulation on an analogue computer and will yield force or dis— 

placement depending upon whether the system is excited by a 

sinusoidal displacement or by a sinusoidal force. 

The value of £(X,) may be evaluated by considering the total 

volume flow Q through the valve 

a= #K,) (2) 

Strat (es) aie oF (6.8) 

The values of £(X,) were calculated for valve pressure drop 

of 3,000, 2,000 and 1,000 1pt/in® respectively using values of 

Q and Py against valve opening as supplied by the valve manuf- 

acture (Fig.3.3). The three values of £(X,) thus obtained
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for each of the valve opening (Table 6.1) were averaged and are 

shown plotted against x in Fig 6.1. 

6.2. Coefficient Values. 

The mathematical analysis of a practical hydraulic serve 

is usually performed by assigning constant values to parameters such 

as jack piston area, swept volume, bulk modulus of the hydraulic fluid, 

leakage coefficient, and the system supply pressure, These param— 

eters appear as coefficients in equations (6.7) and any change in 

their value may effect the system impedance in the following 

manner, 

Area and Swept Volume. 

The small changes in area, and hence the volume, which may 

occur due to dilation of the jack body under pressure or due to 

wear will effect the bulk modulus of the fluid (By definition, 

N= = V.aP/av), 

Bulk Modulus (N). 

The bulk modulus of a fluid is independent of fluid pressure 

if there is no air present in the fluid, But any air in the fluid 

will reduce the bulk modulus, particularly at low pressures, 

Different values of N have been used in the analysis of hydraulic 

servos by different investigators, Lambert and Davies (19) used 

a value of N = 50,000 1bf/in?, where as Penny (1) has used a value 

of N = 120,000 lvt/in®. Since the bulk modulus constitutes an 

important parameter in the performance of the system, equation 

(6.6), a range of values of N were used in the analogue simulation 

to study the effects on impedance of changes in bulk modulus,
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Leakage Coefficient z ) 

The leakage across the jack piston and out of the jack will tend 

to increase as the number of reversals the jack piston undergoes 

increase. once again there is no agreement among investigators as 

to the value of K, to be used in the analysis. Therefore a range 

of values for K have been used during this study, 

  

Supply Pressure CG ) 

The supply pressure in a system normally remains constant, But 

there «may be occasions when due to defective or worn out seals the 

system pressure may drop to a lower value. A study is made of the 

effects of changes in supply presssure for constant values of N 

and Kye 

The following parameter values have been used in this study, 

pel, 623, 

+5 5 

K_ = 0-20x10 in’/lbf.sec. 

N = 20,000 — 200,000 lf /in®. 

2 
P = 500 ~ 3,000 1bf/in™. 

3 v = 1°63 in’. 

Furthermore, let N= = = where n is the maximum ae of bulk 

modulus used in the Aeaiatton (200, 000 lpt/in® Ne 

Then for N =n, asl 

<4, a>il 
(6.8)



78 

Also, let K, = bk, and let k, = 16x 107? in?/lbf.sec. 

K, = 16x 1077 in? /lbf. sec, bel 

Eo Swale = 10” in?/ivf.sec, es (6.9) 

K, < 16x10 im /ivf.sec, b<1 

Then for 

The coefficient values for equation (6.7) may now be defined 

as follows:— 

(om) aus = (6.55 x 107) ain3/1pf.for WN = 200,000 1bt/in.? 

(7%) = (5x10%)> in*/ivf.tor Sox 16 x 107 in?/1bf. sec. 
A max 

(2k) max = = 1,246 in? 

Substituting the coefficient values in equation (6.7a) gives:— 

—6 6.55 x 10° in’) “fiat. 414f(X,) (P B/A)? - 1.246 (in? ) xs 

= 
5 x 1074 pF ss =o.) OF (6.10) 

6.3. Problem Variables and Scale Factor Equations, 

The maximum values of the problem variables (time dependent 

parameters in the equation of motion) must now be defined and 

scale factor equations worked out to transform the problem variables 

into voltages in order to mechanise the equation of motion of the 

servo on the analogue computer,



Frequency range of tests. 

During the laboratory tests on the hydraulic jack servo Penny 

(1) had found that at a frequency of 70 c/s the valve motion was 

no longer significant and the piston was bouncing on the oil 

in the jack. Hence this frequency may be taken as an upper limit 

for the servomechanism, A lower limit of 5 c/s was dictated by the 

automatic impedance analysis equipment being the lower limit of the 

dynamic analysers. Therefore the frequency range for the servo 

simulation was chosen to be 5-70 C/S, 

Maximum values of problem variables. 

Maximum displacement, 

Maximum steady state displacement, Xo = °045 in, 

Maximum sinusoidal displacement, x, = + °005 in, 

Total maximum displacement, x = (X + x,)= °05 in. 
os 

Maximum velocity. 

Velocity = a (x, + x,) 

= dx 
mee) 
at 

= ke, 
° 

Also X,= WE, 

A 500 x *005 in/sec. 

1%. x = 2°5 in/seo, 

The value w =500 radian/sec. has been chosen for ease of scaling. 

This would give an upper frequency of 78°5 C/S.



Maximum force. 

Maximum steady state force RF = Pe oe. 

= 1869 lbf. 

Maximum sinusoidal force F = + 1,000 lbf. 

Total maximum force (F, +F) = (1869 + 1,000) lbf, 

say 3,000 lbf, 

Maximum F 

a 3 
it +F) = F 

but Fo = wr 

= 500 x 1,000 1bf/sec. 

.'. F = 500,000 1bf./sec. 

Maximum value of & - F/A e 

(P, SR )tnex = (3,000) for F=0 

ote (Bae P/a)? = 54°77 if" /in, 

= 55 ef /in, 

Maximum value of f(X 

The maximum value of £(X,) occurs at a valve opening of 

°05 in.and from table 6,1 it is 0°211. But to avoid multiplication 

by a large constant in the computer the values of this function 

were multiplied by a factor of 40 and 40 f(X) was simulated. 

.'. 40 £(K,) = 8°44 say = 10 int/int® sec. 

80
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Scale factor equations. 

A scale factor equation may be defined as:— 

x) max = x = & ee (6.11) 

where x represents the problem variable, 

(x) max represents the maximum of the absolute 

value of x. 

(c) max represents the maximum voltage output of 

the computing elements (10 volts for the 

analogue computer used). 

MI
 

is the voltage representing x in the computer. 

Using equation (6.11)) the problem variable may be transformed into 

voltages as follows:— 

x, = Bt) x, (6.12) 

x, 7 a Geoart) z, (6.13) 

a. fae 3,000 ae) F (6.14) 

re oe (ee (6.15) 

+ id SL Sue 
(Goa a/) alse (Gaar cs = F/4) (6.16) 

e(x,) = 2 oe es ) £(X,) 
of | 10 ‘ine geo.volt ° (6.17)
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Subsituting the scale factor equations (6.12) to (6.17) in 

equation (6,10) and simplifying gives:— 

af = 23°866 £(X,)(P, - F/A)* - "9526 £,- °2356 bF (6.18) 

$ 4 S 
) = 1°05a F - ‘2356 vF (6.18b) 

P
i
t
 

ape) eee enes or £(X,) (?, - 

The problem variables are now voltages that will be operated 

upon by the computing elements in a manner governed by equation 

(6.18). 

Inclusion of coulomb friction, 

Let Las be the coulomb friction force of a constant amplitude, 

Since this force always opposes motion it may be represented as 

2: (sign x). With coulomb friction present the force F at the output 

end of the hydraulic jack will be:— 

F os ys + FO (sign x) 

F 35 ; * 
of P= -)  (aten =) (6.19) 

Subsitituting the above expression for P; in equation (6.6) yields:- 

£(X,) [? (,-F + ene x) )| a marie aaz, + Ke 

-[F- F, (sien 3,)] (6.20) 

The values of scale factor equations and coefficients remain 

unaltered by addition of the coulomb friction force:—
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F = ah = 
* = (sign z,)| = 9526 £, - °2356b 

[F = F,(sign £,)| (6,21a) 

P
l
a
t
 

o's aF = 23°866 #,)[?, 

F - 4 - 
+ Ta (sign z,)| -1'05aF - *2356b 

Pi
d k= 23°866f (X,) [?, = 

[F - , (sign z,} (6.21b) 

6.4. The Analogue Computer Circuit. 

6.4.1 Simulation of hydraulic servo without coulomb friction, 

The analogue computer simulation was arranged to allow comput— 

ation of either the output force for a displacement excitation or 

the output displacement for a for a force excitation of the out— 

put end of the hydraulic jack, Initially the hydraulic servo 

without the coulomb friction force was simulated in order to check the 

simulation and correct functioning of the computing elements, The 

basic computer circuit diagram is shown in Fig.6.2. 

The differentiation of a waveform other than a pure sinusoid 

generates noise by amplifying the harmonic contents of the wave— 

form. For this reason the exciting signal, derived from an external 

signal generator, is taken either as = or as # in order to avoid 

differentiation of the sum of variables which will not be pure 

sinusoids. The signal from the generator is taken through a 

compressor circuit and after integration is fedback to the compressor 

through the switch S3 in order to maintain E or F at a constant 

level when the signal frequency is changed, When the system is 

displacement excited the switches Sl and S2 are in ‘up! position and 

the switch $3 is in 'down' position. For a force excitation the 

positions of these switches are reversed. The switch S4 comects 

either potentiometer P3 or integrator 7 to amplifier 2 for dynamic 

or steady state solution.
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The functions performed by the computing elements in the circuit 

diagram of Fig.6.2 may be defined as follows, 

V.D.F.G. 

The variable diode function generator takes an input 

x, = ea +X, and generates 40 #(K,) in conjunction with amplifiers 

3 and 4 which are used here as high gain amplifiers, 

Multiplier -S.M. 

The quarter-square multiplier performs a four-quadrant multi- 

plication for bipolar inputs of two variables. It takes as input 

variables + 40f(X,) ana * (,, - Be and produces at its ouput the 

quantity 4 (X,) (2 - FS) « A scale of to is incorporated in Q.S.M. 

circuitry to avoid overloading of the high gain amplifier. 

Square rooter. 

The square root is obtained by using a Q.S.M. as a feedback 

element to high gain amplifier 10. Due to_built—in scaling in the 

circuitry the Q.5.M. generates (10)2 (- F)Pfor the input -(P,- Hs 

to 

Integrator 1 -x,/5 = - 10 i x, at (6.22) 

Amplifier 2 X,= (-1) [ 10(-0°1 X,) = X,,| (6.23) 

Amplifier 5 -40 2(E,) = (-1) [ soz(x,)] (6.24)



Integrator 

Integrator 8 

Amplifier 9 

Amplifier 11 

Amplifier 12 

Amplifier 13 

Amplifier 14 

Amplifier 15 

t 
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x, = -f vi. at (6.25) 

=F = = 500 ‘8 °333 Fat (6.26) 

-@,-B - (a) 6,-D (6.27) 

- @, -Fajt- «ay G, - BF (6.28) 

(@,-F/Aye = (2) [- @, -*] (6.29) 

#dDF = (-1) (> F) (6.30) 

+ = = (-10) [ “622(~4) £(X,) @, Bs Fa)? 

+ (-1) [ *2473 (PF) | + (-10) [ +205 (ai)] (6.31) 

+ ab = (-1) [+953 (+ z,)] wey [ "2356 (+ oF] 

+ (-10) [592 (-4) 2) @, - 3/497] (6.32) 

Values of integrator gains. 

The relationship between the input and the output of an 

integrator is defined as:-— 

+ 
a £ dt (6.33) 
° 

Lal a 

I
R
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where T = RC is the time constant of an integrator with R and C 

being the input resistant and the feedback capacitance respectively. 

The inverse of time constant T is the gain of an integrator and has 

units of (sec)~. The values of gains for integrators 1 and 8 

may be determined by substitution of appropriate scale factor 

equations in equation (6.33). 

Integrator 1 

Substituting the scale factor equations (6,12 and (6,13) in 

equation (6.33) 

4 
= as z 

“To re Gis Xx, an is Geena =f * os 
° 

bey 50 ie 
or Io mae L x, at (6.34) 

From equation (6.34) the gain for integrator 1 is found to be 

50/sec. In the analogue computer used integrator gains of 1, 10, 

500 and 5,000 were available, To obtain a gain of 50 the variable 

would have to be divided by 10 with an integrator gain of 500/sec. 

Since this integrator does not form a closed loop, in the displace— 

ment excitation mode, with the rest of the computing elements any 

drift voltages in the integrator would be multiplied by 500/sec. and 

would overload the amplifiers in a matter of seconds, For this 

reason an integrator gain of 10/sec. was chosen (equation 6.22) and 

the output was multiplied by 5 in amplifier 2. 

Integrator 8 

From equation (6.19) and (6.20) 

3,000 , 1bf) = _ 500,000 lot vi a 
10 (eit = 10 (Generelt ) nee 
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Sve 

or F a J Fat (6.35) 
° 

The integrator gain is found to be 166°7/sec. (eqn.6.35). This 

value of gain is obtained by multiplying F by °333 in potentiometer 

Pll and setting the integrator gain at 500/sec. as defined by equation 

(6.26). When the system is force excited this integrator operates 

in an open loop mode and a gain of 500/sec would be unacceptable 

for overload reasons, In this mode an integrator gain of 10/sec. 

is used and the output of the integrator is multiplied by 16°67 in 

amplifier 17 and inverted in amplifier 18 as shown in Fig.6.3. 

6.4.2. Trial Runs On The Computer. 

To check the ability of the computing elements to perform 

required mathematical operations trial runs were made on the computer, 

The trial runs were made both for the steady state operation of 

hydraulic servo and for the sinusoidal excitation. 

Steady state operation, 

For the steady state condition the equation (6.6) reduces to:- 

f£ (X,) [2 - F/a)] 2 22 KE 

K 
or a Ceo es ere eee 6 (6.36) x (ea)? x 8 

Equation (6,36) gives a quadratic in F which was solved for 

values of x, using the information contained in Fig.6.1, and the 

results are plotted in Fig.6.4. 

For steady state solution on the analogue computer the switches 

Sl and $3 were put in nuetral position. Switch S2 connected the
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output of amplifier 15 to potentiometer 10 while Sl applied a slow 

ramp (output of integrator] )to amplifier 2, The computed graph of 

F against ay is plotted in Fig.6.5. The irregularities in the 

computed graph gave errors of up to 30% in the value of F, A check 

of the output of each of the computing elements revealed the multi- 

plier as the source of error, This unit was found to be incapable 

of accurate computation if its output was less than 1 volt. The 

inputs to the multiplier 408 (X,) and(P, - P/a)® are so related that 

an increase in one function is accompanied by a decrease in the other 

as shown by Fig.6.6, and hence their product in the steady state 

is always less than 1 volt. 

This problem was overcome by multiplying first the quantity 

40 £(X,,)by a factor of 5 wmtil it reached a value of 2°2 volts 

and then multiplying (FE - P/A) by 5 whose value had by now decreased 

to 2°2 volts, This represents the intersection point of the two 

functions in Fig.6.6. The multiplication of the functions by a con- 

stant was performed by means of two relay comparators Ly and Ly as 

shown in Fig.6.7. A relay comparator is a voltage sensitive switch 

which changes state at a predetermined voltage level. With this 

modification the steady state solution was accurately computed, 

Dynamic operation, 

For the dynamic solution the switch Sl connected the signal 

generator through the compressor circuit to integrator 1 whose 

output was fedback to the compressor through S3, The switch S2 

connected the output of amplifier to integrator 8 and S4 connected 

the steady state displacement from potentiometer P3 to amplifier 

2. On selecting the compute mode all amplifiers showed an overload 

and a solution was not possible for the following reasons, 

1, The relay comparators failed to operate correctly above 20 HZ, 

2. The quarter-square multiplier when used as a feed back element
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for square rooting was found to be unstable and generated parasitic 

oscillations from 5 KHZ to 100 KHZ depending on the magnitude of the 

input signal. 

3. The signal generator had a small d.c. voltage at its output 

which was multiplied by a factor of 10 every second in integrator 1 

and soon overloaded the amplifier, 

It was found that the relay comparators were not required 

during dynamic solution py the voltage representing the product of 

the functions (P, - B/a)e and 40 £(K, ) had sufficiently high value 

to allow for accurate computation oy the multiplying unit. Hence the 

relay comparators were not needed, The difficulty presented by the 

square rooter was overcome by using a variable diode function generator 

as a square rooter, The d.c. voltage from the signal generator was 

eliminated by using a differentiating circuit as described below, 

A unity gain - zero phase shift differentiator. 

The differentiating circuit shown in Fig.6.8 was used to eliminate 

the d.c. voltage from the signal generator, This circuit was placed 

between the compressor output and the potentiometer Pl, 

The transfer function of the differentiator with reference to 

Figure 6,8 is defined as:- 

Vv 
22 eS DCR, where D is the differential 

Vy 1+DCR) operator. 

Let R, = Rg = Rand RC = T, the time constant 
pa 

Then Ne. et TD 
vy 1 + TD 

Now if R= 10° ohms and C = 10 micro-Farad



Then ® = RC = 10°x10x10° = 1 seo, 

Vv ‘ 
Cee A og een! 2 eae hae (6.37) 

Srey AV 1+D 1+ jw 
i 

and Gain = “ but w 2 1 

a + 2) 

and phase shift is given by:- 

b= - Gant ater w) =0 

Hence the difference has a unity gain and a zero phase shift 

at all frequencies of interest. 

6.4.3 Simulation of Coulomb Friction Force. 

The coulomb friction was simply simulated by using two high 

quality diodes as feedback elements to a high gain amplifier. The 

diodes were biased by two potentiometers connected at their top ends 

to the computer positive and negative reference supplies respectively, 

and their bottom ends connected to the amplifier output. Due to 

the high gain of the amplifier a rise time of less than 1 micro-second 

was obtained for the output waveform, The output of the high friction 

force the same as that of x The ciruit diagram is shown in Fig.6.9. 

The final circuit diagram simulating the servomechanism includ- 

ing the coulomb friction and modifications metnioned above is shown 

in Fig.6.10. The value of potentiometer settings are given in Fig.6.11.
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CHAPTER 7. 

CORRELATION OF ANALOGUE 

TEST RIG AND THEORETICAL RESULTS, 

7.1. Introduction, 

The measurements of impedance from the analogue computer sim— 

ulation of the hydraulic servo (Chapter 6) are presented in this 

chapter. The simulation with coulomb friction represents the physical 

system and hence the results from this simulation are compared with 

those obtained from the test rig (Fig.1.2) by Penny (1), The effects 

on impedance of variations in the bulk modulus, the leakage across 

the jack piston and the coulomb friction force, all of which cannot 

be varied or controlled on a test rig, are presented, 

The impedance of the servo with the coulomb friction removed 

is presented for changes in various parameters and a comparison is 

made with theoretical results obtained by Penny by linearising the flow 

characteristics based on the small perturbation technique as discussed 

in chapter 3. 

The phase meter in the analysis equipment (chapter 5) was found 

to malfunction at times, During this malfunction it was not possible 

to obtain the same phase relationship if a test was repeated. Also 

the phase meter tended to reverse the polarity of the phase for small 

angles, It was, however, consistent for relative phase changes with 

changes in the value of a parameter, Therefore the shapes of the 

damping curves or the amount by which the damping varies in response 

to changes in a parameter remain unaltered, Whenever a malfunction 

of the phase meter is suspected this fact has been stated in the text 

or a comparison between two results is made on a basis of impedance, 

7-2. Impedance of The Hydraulic Servo With Coulomb Friction. 
  

The simulation of the hydraulic servo with coulomb friction is 

represented by the analogue computer diagram Fig.6.10, The force,
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and displacement signals were fed to the analysis equipment described 

in chapter 5 which gave plots of the logarithm of impedance and the 

linear phase difference between the two signals against the logarithm 

of the frequency, The parameter values were varied by the settings of 

the potentiometers as shown in Fig.6.1l, 

7.2.1 The Effect of Coulomb Friction On Impedance, 

Coulomb friction forms the principal non-linearity in the 

hydraulic servo and helps to stablise the servo particularly at small 

values of the valve opening when it is theoretically predicted to be 

unstable. Values of the coulomb friction force, Py from 0-180 1bf. 

in steps: of 60 lbf. were tested to evaluate its effects on impedance. 

Figures 7.1 to 7.5 show the effect of coulomb friction on stiffness. 

Figure 7.1 shows the variation in stiffness against frequency for con- 

stant lines of Bo. The effect of coulomb friction is to increase the 

stiffness, This increase is constant for the frequency range of the 

test for any particular static valve opening, The variation in stiff- 

ness with and without coulomb friction at 5 C/S and 70 C/S for changes 

in the static valve opening is compared in Figure 7.2. It is seen 

that at small valve opening the contribution of 7 to stiffness is 

very little. This contribution increases with increasing values of 

the valve opening. Also the increase in stiffness due to Fs is greater 

at 70 C/S than it is at 5 C/S for the same valve opening. The figures 

73) 7.4 and 7.5 compare the variation in stiffness for 20, 40 and 

60 C/S respectively. 

The effect of coulomb friction on dampim against frequency is 

shown in Fig.7.6. The negative damping at aS = 0 changes to positive 

damping as the value of fr. is increased, The maximum increase in 

damping occurs at 5 c/s and gradually decreases to zero at a freq- 

uency of about 35 c/s when the value of damping is not influenced by 

coulomb friction, It is this large increase in damping that accounts 

for substantial increases in impedance at low frequencies, The var- 

iation in damping with and without F, at 5 C/S and 70.¢/S for changes
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in the static valve opening is shown in Fig.7.7. At a frequency of 

5 c/s the increase in damping due to F is a maximum for small valve 

openings. But at a frequency of 70 c/s there is no increase in damp- 

ing until the valve opening is .015 in. and the maximum increase is 

obtained at .035 in. At other frequencies, Figures 7.8 to 7.10, there 

is a range of valve openings for which coulomb friction does not 

increase the damping, 

7.2.2 The Effect of Bulk Modulus on Impedance, 

The bulk modulus, N, of a hydraulic fluid is an important 

parameter in determining the impedance of the servomechanism, Par— 

ticularly at the higher frequencies of excitation a change in bulk 

modulus has more effect on impedance than a change in any other par— 

ameter. It was found that at higher frequencies and small valve 

openings the impedances tended to reach a value close to the value 

of the bulk modulus and that a change in impedance could be linearly 

related to a change in bulk modulus, The values of bulk modulus in 

the range 40,000 — 200,000 1bf/sq.in. were tested during this study, 

The éffects on impedance for changes in N are shown in Figures 7.11 

to 7.14. Figure 7,11 shows a plot of stiffness against bulk modulus 

for constant lines of frequency. The values of N from 40,000 - 70,000 

lbf/sq.in. makes very little difference to stiffness on a frequency 

basis. In fact, the stiffness is constant for all frequencies at N = 

64,000 lbf/sq.in. As the value of N increases beyond 100,000 lbf/sq.in, 

the change in stiffness with frequency becomes greater until at N = 

200,000 1bf/sq.in. the stiffness at 60 C/S is twice the value of the 

stiffness at 5 0/S. 

The effect of bulk modulus on stiffness with changes in the valve 

opening is shown in Fig.7.12 for 5 c/s and 70 c/s. At 5 c/s the stiff- 

ness is very high for small valve opening but decreases rapidly as the 

valveopening is increased. Doubling the value of N increases the stiff-— 

ness by about one hundred percent at a valve opening of .005 in. but
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this rapidly reduces to zero at a valve opening of just over .010 in. 

At 70 e/s the picture is somewhat encouraging, The stiffness initially 

increases with the valve opening and reaches a maximum at .015 in, when 

it gradually decreases to about three times the value of stiffness 

at 5 c/s for a valve opening of .035. Doubling the value of N at 

70 c/s causes large increase: in stiffness which is maintained for 

larger valve openings than is the case for 5 c/s; 

Figure 7.13 shows the variation of damping with frequency for 

changes in the bulk modulus N, The damping remains constant for all 

frequencies at N = 60,000 lbf/sq.in. as was the case for stiffness, 

Below this value of N the negative damping decreases for higher freq— 

uencies and above this value of N the negative damping increases for 

higher frequencies. The maximum increase taking place from 20 — 60 c/s. 

‘The effect of changing the value of the bulk modulus on a displacement 

basis is shown in Fig.7.14. At 5 c/s the doubling of the value of 

N has virtually no effect on damping until the valve opening is just 

over .020 in, when the increase in N reduces the damping slightly, 

At 70 c/s the increase in N causes a large increase in the negative 

damping at a valve opening of ,005 in. which rapidly decreases and 

changes into a positive increase at about .013 in, 

7.2.3 The Effect of Leakage on Impedance. 

Leakage across the jack piston or tothe atmosphere out of the 

jack is undesirable from the static stiffness point of view, and also 

the fact that it makes heavier demands of the hydraulic pump depending 

on the amount of leakage. But it does increase the dynamic impedance 

in the manner of a viscous damper and hence leakage is often introd— 

uced in hydraulic servos to improve stability particularly at very 

small valve openings and at low frequencies, Values of the leakage 

coefficient K, in the range 0-20 x 107? in?/1bf.8ec. have been tested 

and the effect on stiffness and damping is shown in Figures 7.15 and 

7.16 respectively. The stiffness at low frequencies increases as the
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value of K is increased, For higher frequencies,however, the effect 

of leakage Seen smaller until at 70 c/s an increase in x, from 

0 to 20 x 10 5 in?/lbf.sec. causes an increase in ieee of the order 

of only 6 percent. 

The effect of leakage on damping, however, is more pronounced 

throughout the frequency range (Fig.7.16) and the increase in negative 

damping at 5 c/s is of the same order of magnitude as that at 70 c/s. 

The combined effect of increases in stiffness and damping with leakage 

is to give a large increase in impedance at the low frequencies which 

gradually decreases for the higher frequencies of excitation (Fig.7.17). 

7.2.4 Effect of Supply Pressure on Impedance. 

The supply pressure remains at a constant value in a hydraulic 

system unless there is a malfunction in one of the pressure regulating 

devices when the system pressure can be either less than or in excess of 

the normal operating pressure. Generally a decrease in the supply 

pressure is followed by a decrease in the servo impedance but the effect 

on stiffness and damping are somewhat different. Supply pressure, Po 

in the range 500 lof/sq.in. to 3000 lbf/sq.in. was tested at one value 

of the static valve opening. The results are presented in Figures 

7.18 and 7.19. When examined on the basis of frequency a decrease in 

P, causes an increase in the stiffness (Fig.7.18), Maximum stiffness 

in the frequency range 5-30 C/S is obtained for F = 2400 lbf/sq.in. 

For the frequency range 30-70 ¢/S P, = 1500 lbf/sq.in. gives the max- 

imum stiffness, Change in the value of PS changes the frequency at 

which the maximum stiffness occurs. 

Figure 7.19 shows the effect of supply pressure on damping. An 

increase in FP, causes the damping to go negative while increasing its 

absolute value. Hence, the maximum negative damping occurs at Po 

3000 lpf/sa.in. The increase in negative damping is also frequency 

dependant and the maximum increase occurs at the highest frequency.
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7.2.5 The Effect of Static Valve Opening On Impedance, 

The effect of static valve opening is to decrease the impedance 

of the hydraulic servo particularly at the low frequencies. Figure 

7.20 shows the effect of valve opening on stiffness for various freq—- 

uencies. Except for 5 0/S, the stiffness initially rises to a max— 

imum value before it rapidly decreases. Each frequency has its max— 

imum stiffness at a difference value of the valve opening and also the 

decrease in stiffness is larger at the lower frequencies, The damping 

behaves in a different manner to changes in the valve opening. It is 

seen that as the valve opening increases the value of the negative 

damping decreases and finally becomes positive at a certain valve 

opening depending upon the frequency. (Fig.7.21). The graph also shows 

that higher the frequencysthe larger the valve opening at which the 

damping becomes positive, This is probably due to the malfunction of 

the phase meter as explained earlier, In fact, the higher frequencies 

are expected to reach positive damping for smaller valve openings than 

is the case for the lower frequencies, but the general shape of the 

curves remains valid, 

7.2.6 The Effect of Perturbation Amplitude. 

The effect of increasing the perturbation amplitude is to decrease 

the impedance of the servo, Unlike a change in other parameters, an 

increase in the perturbation amplitude reduces both the stiffness and 

the damping in the entire frequency range. Figures 7,22 and 7,23 show 

plots of stiffness and damping, respectively, against the frequency 

for static valve openings of .015in. and .025in. at perturbation 

amplitude of = ,002in. and + ,005in, It will be seen that both the 
stiffness and the damping vary in the same manner to changes in the 

perturbation amplitude, For the smaller valve opening the decrease 

in the stiffness and the damping due to an increase in the perturbation 

amplitude is not very large and is very nearly constant in the frequency 

range except at the higher frequencies when it tends to be smaller, For 

the larger valve opening the decrease in the stiffness and the damping
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is considerably more and increases for the higher frequencies, 

7.3. Correlation of Analogue and Rig Results, 

The impedance of the hydraulic servo measured by analogue sin- 

ulation is compared with that obtained by Penny(1) on the test rig. 

Figure 7.24 shows the variation of impedance with frequency for static 

valve openings of .005in. and .015in. The broken line represents the 

analogue result and the solid line represents the rig result, At the 

valve opening of .005in. the analogue result shows a very high imped— 

ance at 5 C/S which rapidly decreases and at 10 C/S is about 10 percent 

higher than the impedance obtained from the test rig. Above 50 o/s the 

analogue results again gives higher values of impedance but the diff- 

erence is only of the order of about 6 percent at a frequency of 70 c/s, 

The value of the bulk modulus for this test point was 120,000 lbf/sq.in. 

which corresponds to the value estimated for the test rig at small valve 

openings and high frequencies. The lower set of curves on Fig.7.24 

compares the impedance at a valve opening of .015in. An excellent cor— 

relation is obtained between the analogue and the rig results, The 

value of the bulk modulus for the analogue was, however, only 40,000 

lbf/sq.in. for this test point, Higher value of N for analogue sim— 

ulation gave much higher values of impedance when compared to the test 

rig. This would suggest that the value of N in the pysical system does 

not remain constant as the valve opening increases, 

The variation of stiffness with frequency for changes in the valve 

opening for the test rig and the analogue simulation is presented in 

Figures 7.25 and 7.26 respectively, The general shapes of the curves 

for the two cases are similar, The stiffness decreases as the valve 

opening is increased, For any particular setting of the valve open— 

ing the stiffness increases with the frequency. Once again the analogue 

results give a higher value for stiffness compared to rig results except 

at a valve opening of .005in.
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The variation in stiffness with the valve opening for selected 

frequencies from the test rig is shown in Fig.7.27. Comparing it with 

the analogue result (Fig.7.20) is it seen that the two results are 

similar except for rapid decrease in stiffness with the valve opening 

predicted by rig results. Comparing Figures 7.28 and 7.21, which 

show the variation of damping with the valve opening for the test rig 

and analogue simulation respectively, it is seen that the damping in- 

ereases from a negative to a positive value as the valve opening in- 

creases. The analogue result differs from the rig result that it shows 

the damping at higher frequencies to have a greater negative value than 

that at the low frequencies. This difference is believed to be due to 

the inaccuracy of the phase meter, The general trends in the two 

results are nevertheless very similar. Figures 7.29 and 7.30 compare 

the stiffness from the test rig and the analogue simulation for a 

perturbation amplitude of = .005in, and again good correlation is 

seen to exist, 

74. Impedance of The Hydraulic Servo without Coulomb Friction, 

In the absence of coulomb friction the non-linearity in the servo 

is due to the flow characteristics through the valve ports, It is this 

non-linear flow characteristic that is linearised when theoretical 

calculations of the servo response are made. To study the impedance 

of the servo without coulomb friction on the analogue computer the 

circuit diagram of Fig.6.10 was used. To remove FS the input to ampli- 

fiers 3 and 8 from amplifier 18 were removed, ~The values of the par- 

ameters were changed by potentiometer settings as shown in Fig.6.11. 

7.4.1 The Effect of Bulk Modulus on Impedance. 

The effect of bulk modulus on stiffness and damping is shown in 

Figures 7.31 to 7.34. A change in the value of N from 40,000 lbf/sq.in. 

makes very little difference to stiffness on a basis of frequency 

(Fig.7.31). Further increase in N causes larger increases in stiff- 

ness as the frequency goes up. Comparing Fig.7.31 with Fig.7.11 shows



99 

that in the absence of coulomb friction higher values of stiffness are 

obtained, but the increase in stiffness with frequency is not so pro— 

nounced, The absence of coulomb friction also increases the value 

of N at which all frequencies have the same stiffness, The effect 

of bulk modulus on stiffness for changes in static valve opening is 

shown in Fig.7.32. Ata frequency of 5 c/s doubling the value of N 

causes a very large increase in stiffness at a valve opening of .005 in. 

At a valve opening of just over .010 in the effect of increased value 

of N becomes almost insignificant. At 70 C/S, however, the effect 

of the increased value of N on stiffness remains significant for much 

larger valve openings. Comparing Fig.7.32 with Fig.7.12 shows that 

while the absence of coulomb friction substantially reduces the stiffness 

for large valve opening, it allows for larger increase in stiffness for 

an increase in the value of N, The basic shape of the curves in the 

two figures being compared remains unchanged, 

Figure 7.33 shows the effect on damping for increases in the value 

of N for selected frequencies, Initially, at N = 40,000 lvf./sq.in. 

The damping is more negative for the low frequency than it is for the 

high frequency. Increasing the value of N reduces the negative damp— 

ing for low frequencies but causes large increase in negative damping 

for the high frequencies. At N = 110,000 lbf/sq.in. the value of 

damping remains constant at all frequencies, Below this value of N 

the high frequency damping is more positive and above this value of N 

the low frequency damping is more positive, Comparing this figure with 

Fig.7.13 shows that the absence of coulomb friction makes the damping 

more negative at all frequencies, and gives a higher value of N at 

which the damping remains constant for all frequencies, The effect of 

N on damping with valve opening is shown in Fig.7.34. Doubling the 

value of N decreases the negative damping at 5 c/s but as the valve 

opening gets larger this difference gets progressively smaller wtil 

it is insignificant at and above a valve opening of .020 in. Ata 

frequency of 70 c/s the picture is somewhat different. Doubling the 

value of N increases the amount of negative damping for small values of 

the valve opening, At a valve opening of .005in. the amount of neg—
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ative damping is almost doubled, This large increase in the negative 

damping rapidly reduces with the valve opening until at .0135 in the 

damping is the same for the two values of N, Above this value of the 

valve opening the damping is less negative for the higher value of 

WN and changes into a large positive increase at .0175in. As the valve 

opening increases further the effect of bulk modulus reduces wtil 

at .030in, this effect is insignificant. The effect of removing the 

goulomb friction (Compare Fig.7.34 with 7.14) is to decrease the posit- 

ive damping through out the frequency range. 

724.2. The Effect of Leakage on Impedance, 

The effect of leakage on impedance in the absence of coulomb 

friction is shown in Figures 7.35 to 7.37. An increase in the leakage 

causes an increase in the stiffness at all frequencies (Fig.7.35). 

The largest increase is obtained at 5 c/S which gradually decreases 

as the frequency is increased until at 70 e/s the stiffness increases 

by 7 percent for a leakage coefficient, K ACx 107? in?/lbf.se0. 

compared with no leakage. Further increase in leakage does not change 

the value of stiffness at 70 ¢/s. Comparison of Fig.7.35 with 7.15 

shows that the absence of coulomb friction reduces the stiffness, 

particularly at the higher frequencies, 

The variation of damping with leakage against frequency is shown 

in Fig.7.36. An increase in leakage increases the negative damping 

throughout the frequency range, Comparison of this figure with 

Fig.7.16 shows that coulomb friction substantially reduces the neg— 

ative damping. The leakage increases the impedance of the servo 

(Fig.7.37) by a considerable amount, the increase being larger for 

the lower frequencies, 

7.4.3 The Effect of Supply Pressure on Impedance, 

A decrease in supply pressure decreases the impedance of the 

servomechanism, This decrease is linearly proportional to the supply
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pressure at very low frequencies but this is not the case at the 

higher frequencies where the effect of supply pressure is much reduced, 

Referring to Fig.7.38 it can be seen that at 5 c/a reducing the supply 

pressure by a factor of 6 reduces the impedance by the same factor. 

At a frequency of 70 o/s reducing the supply pressure by a factor 6 

reduces the impedance only by 15.5 percent, The variation in stiff-— 

ness with frequency for changes in the supply pressure is shown in 

Fig.7.39. At low frequencies a substantial reduction in stiffness 

follows a reduction in the supply pressure but the high frequency 

stiffness is much less effected. Comparing this figure with Fig.7.18 

shows that the presence of coulomb friction generally increases the 

stiffness for increased supply pressure except at se = 3000 lot/s ai tie 

when the presence of coulomb friction drastically lowers the stiffness 

particularly at the higher frequencies, Also in the presence of 

coulomb friction the maximum stiffness in the frequency range 5-35 c/s 

is obtained at P, = 2400 lbf/sq.in, and the maximum stiffness for 

frequencies above 35 C/S is obtained at P,, = 1500 1bf/sq.in, 

The effect on damping of changes in Ps can be seen in Fig.7.40, 

An increase in the supply pressure causes an increase in the negative 

damping, This increase is more pronounced at the higher frequencies, 

Comparing this figure with Fig.7.19 it is seen that the presence of 

coulomb friction makes the damping positive for low frequencies at 

Ps = 1500 lbf/sq.in. But at higher values of the supply pressure coul— 

omb friction causes large increases in the negative damping particularly 

at the higher frequencies, 

74.4 The Effect of Static Valve Opening on Impedance. 

The Effect of increasing the valve opening is to decrease the 

impedance of the servo, Fig.7.41 shows the variation of stiffness with 

the valve opening, It is seen that the low frequency stiffness 

suffers larger decreases than the high frequency stiffness as the valve 

opening increases, At a valve opening of .008 in. the stiffness remains 

constant for all frequencies except at 5 o/s which tends to reach the
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value of static stiffness for the hydraulic servo, The variation of 

damping with the valve opening is shown in Fig.7.42, At small valve 

openings the higher frequencies have 2 larger negative damping than 

the lower frequencies, For all frequencies the negative damping 

decreases for larger valve opening. At a valve opening of .020 in, 

and above the higher frequencies have a larger positive damping than 

the lower frequencies. Comparing Figures 7.41 and 7.42 with Figures 

7.20 and 7.21 it is seen that coulomb friction increases both the 

stiffness and the positive damping, Except for the higher values of 

the stiffness and damping the shapes of the curves with and without 

coulomb friction are similar, 

7.5. Correlation of Analogue and Theoretical Results. 

The results of the analogue simulation of the hydraulic servo 

without the coulomb friction are compared with theoretical results 

obtained by linearising the valve flow characteristics using the small 

perturbations technique. 

The effect of static valve opening on impedance for 5,40 and 70 o/s 

is compared in Fig.7.43. The solid line and the broken line represent 

the analogue and the theoretical results respectively. There is a 

qualitative agreement between the results insomuch as they both show 

a decrease in impedance for larger valve openings and an increase in 

impedance for the higher frequencies. The magnitude of the theoretical 

impedance is considerably less compared to the analogue result except for 

the higher frequencies at very small valve openings. Figure 7.44 compares 

the variation of impedance with frequency for valve openings of .005 in. 

and .030 in, for N = 200,0001bf/sq. in. For the smaller valve opening 

a good qualitative and quantitative correlation exists between the 

analogue and the theoretical impedance, For the larger valve opening 

there is good agreement between the two results for the lower frequencies, 

At the higher end of the frequency range the analogue result gives a much ; 

higher value of impedance than the theoretical result, Figure 7.45 

presents information similar to Fig.7.44 but for a value of Nel20,000 

lbf/sa.in. Here the picture has changed in that the theoretical imped—
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ance has a higher value at the smaller valve opening, but for the 

larger valve opening the analogue result still shows large increase 

in impedance for the higher frequencies, 

The effect of valve opening on the theoretical stiffness for 

selected frequencies is shown in Fig.7.46. Comparing this figure with 

Fig.7.41, which is the analogue result, it is seen that there is a 

qualitative agreement between the two results but the theoretical 

stiffness decreases very rapidly and falls to a value of about 350 

lbf/in at a valve opening of .035in. for the highest frequency, Com— 

paring the variation of the theoretical damping against the valve 

opening with the damping obtained from the analogue simulation, Figures 

7.47 and 7.42 respectively, shows that the two results differ consid- 

erably. The analogue results predict a large negative damping for all 

frequencies up to a valve opening of .016in. when the damping becomes 

positive, The theoretical result, on the other hand, show a small 

amount of negative damping which becomes positive at a velve opening 

of .006in. when there is a large increase in the positive damping. 

The two results agree well for the values of the valve opening above 

-020in, 

Figures 7.48 and 7.49 show the effect of bulk modulus on theor— 

etical stiffness and damping, respectively, for changes in the static 

valve opening. At a frequency of 5 c/s an increase in the value of 

the bulk modulus from 80, 0001bf/sq. in. to 200,000 1bf/sq.in, makes a 

slight difference in stiffness only for the values of the valve openings 

below .010in, At 70 c/s the increased value of N causes a very large 

increase in stiffness for valve openings of up to .010in. when the 

value of stiffness for N = 80,000 lbf/sq.in. At a valve opening of 

-020 the stiffness is not effected by changes in the bulk modulus. Comp- 

aring Figures 7.48 and 7.32 shows that the effect on stiffness for 

changes in the bulk modulus is more pronounced in the analogue result 

which not only shows larger increases in the stiffness for increase 

in the value of N but also covers a wide range of the valve openings 

for which a change in N effects the stiffness. 

The effect of bulk modulus on theoretical damping is shown in 

Fig.7.49. It iscseen that at 5 ¢/s an increase in the value of N
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changes the large negative damping to a positive value for a valve 

opening of .005in, Beyond a valve opening of about .012, a change 

in the value of N does not effect the damping at this frequency. 

At 70 c/s the increased value of N causes a very large increase in 

positive damping which peaks at a valve opening of .010 in. and 

rapidly decreases. At a valve opening of .020in, the effect of N 

on damping is negligible. Comparing Figs.7.49 and 7.34 shows that 

the analogue result gives a large negative damping at small valve 

openings and that the increased value of N initially increases the 

negative damping at 70 G/s, Also the range of valve openings for 

negative damping is much greater in the analogue result than it is for 

the theoretical result, 

The effect of leakage on impedance against frequency is shown 

in Fig.7.50. The solid line and the broken line represent the anal— 

ogue and the theoretical results respectively, The two results shows 

that the impedance increases as the leakage increases, The theoretical 

result gives small increases in impedance at low frequencies and large 

increases at high frequencies. But the analogue result shows large 

increases in impedance at the low frequencies and small increases 

at the high frequencies, The same pattern is shown when the effect 

of leakage on theoretical stiffness is compared with the analogue 

result, Figures7.51 and 7.35 respectively. The theoretical damping 

(Fig.7.52) is positive for all values of the leakage coefficient Ky 

and an increase in K, increases the amount of positive damping part— 

icularly at the higher frequencies, The analogue result, however, 

shows a negative damping (Fig.7.36) which increase in magnitude as the 

leakage is increased, This contrast in the two results may partly 

be due to the malfunction of the phase meter used for analysis of sig- 

nals from the analogue computer. 

The variation of theoretical stiffness and damping for changes in 

the supply pressure is shown in Figures 7.53 and 7.54. respectively. 

As the supply pressure increases the stiffness of the servo also in- 

creases, Comparison of Fig.7.53 with 7.39 shows the agreement between 

the analogue and the theoretical results, The damping, however,
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becomes less positive for higher values of the supply pressure, Figures 

7-54 and 7.40, The negative damping for the theoretical results occurs 

only at very small valve openings but the positive phase angle at the 

higher valve openings decreases for an increase in the supply pressure. 

Therefore a qualitative agreement between the analogue and the theor— 

etical results exists.
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CHAPTER 8 

8.1 Notation. 

The following notation has been used in this chapter, 

c Damping coefficient (1b-sec/in). 

F. Force applied to the complex system at the mass m and 

to the sub-system'C'at station 1. 

Fro Force applied to the sub-system 'B', 

Foo Force applied to the sub-system'C'at station 2, 

K Spring gradient (1bf/in). 

My Driving point displacement mobility of the control system, 

Moo Driving point displacement mobility of the sub-system 'B', 

Mo Driving point displacement mobility of the sub-system'C! 

for excitation at station 1, 

Moo1 Cross displacement mobility of the sub-system'C'for 

excitation at station 1, 

Moe Cross displacement mobility of sub-system 'C' for 

excitation at station 2, 

Moo0 Driving point displacement mobility of the sub-system 'C!' 

for excitation at station 2, 

nm Mass (1pf.se0/in). 

x, Displacement of mass my of the complex system for 

excitation at Mm). 

Xy00 Displacement of station 1 of the sub-system 'B!' 

31 Displacement of station 1 of the sub-system'C'for 

excitation at station 1. 

X01 Displacement of station 2 of the sub-system'C'for 

excitation,



107 

Ca 
612 Displacement of station 1 of the sub-system C for excitation 

at station 2, 

022 Displacement of station 2 of the sub-system 'C' for 

excitation at station 2, 

nD Driving point impedance of the control system for excitation 

at mass Me
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8.2, The Sub-System Technique. 

It was mentioned earlier that it is not possible to determine 

the impedance of an aircraft control system consisting of the hyd— 

raulic servomechanism and the control surface by ground tests on 

the aircraft, The control system impedance can however, be deter— 

mined by the sub-system technique, This method of vibration analysis 

is extensively made use of in determining the natural frequencies and 

response of aircraft structures (31), (32), (33) and (34). It essen- 

tially consists of dividing a complex system into a number of smaller 

systems or elements which readily lend themselves to analysis, The 

responses of the individual elements or sub-systems are then combined to 

yield the complex system response, 

Consider the aircraft control system as shown in Fig.8.1, This 

is represented in block form by the complex system A which can be 

divided into two sub-systems B and C (Fig.8.2) representing the 

hydraulic servomechanism and the control surface respectively, It 

a1 at x, of the 

complex system A, If the sub-systems B and C are to be coupled the 

is required to determine the driving point impedance Z. 

two conditions of equilibrium and compatibility must be satisfied, 

The equilibrium condition requires that the forces Fro and Coe remain 

in equilibrium with the exciting force F, at X, (Fig.8.2b), or in 

the absence of FL these forces must balance each other, that is:-— 

F, be aren 1. (8.1) 

or Foo + Foo = 0 (8.2) 

For the sub-systems to remain coupled the compatibility condition 

requires that 

Poo tee = a (8.3)
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For the sub-system C with the forces and displacements as shown 

in Fig.8.2b and using displacement mobilities:— 

xX, = uM FL, +M dae Molt 1 cis 68 (8.4) 

XxX, = M r+ 5 Maat 1 7 Meee 752 (8.5) 

The sub-systems have been assumed to be linear and hence the 

principle of superposition of the motions due to forces Fy cos wt 

and Foe cos wt is applied. 

For the sub-system B:— 

Xo = Myoo * Foe (8.6) 

but from equation (8.2) Fyo = Foo and from equation (8,3) Xo = Xs 

therefore:— 

15 == Mop « Fo2 (8.7) 

Substituting for X, in equation (8.5)2= 

ey Pears ecel “1, 12" 022 02 

2 1 or Pgs - ht (8.8) 

Substituting equation (8.8) in equation (8.4) gives:— 

M M aaa ol? pom 
Tiere ate cee 

p22 (022 

Due to the reciprocal property of the system Moo1 = Moe and:— 

x w2 
al M - 12 

41° Rt ell i —_ (8.9) 

Myoo + Mooo
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Equation (8.9) represents the driving point displacement mobility 

of the complex system 'A' or the aircraft control system as shown 

in Fig.8.1. The driving point impedance on a displacement basis 

will simply be the inverse of mobility. In the following sections the 

aircraft control system is represented by an elastic system (Fig.8.3) 

which is divided into two sub-systems representing the hydraulic servo— 

mechanism and the control surface respectively as shown in Fig.8.4. 

The two sub-systems have been simulated on the analogue computer and 

their responses recorded on a magnetic tape. These responses have 

been combined using another analogue circuit to yield the control 

system impedance, 

8,3, Impedance of the Sub-Systems. 

8.3.1 Impedance of the Control Surface. 

The control surface is represented by the elastic system of 

Fig.8.4b. Due to the difficulty encountered in simulating a system 

free in space this system was attached to a support by means of a very 

light spring and a damper combination. The modified system is shown in 

Fig.8.5. With the forcing function applied to the lower mass the 

equations of motion are:— 

Meroe Mr erelite 1 ott ay ce ofle | otis Ol ort 
=0 (8,10) 

Xr + Xorr + rXor1 — G%o01 ~ Sikear = FP (8.11) 

Writing F = F exp jwt, X = X exp jwt, Ky = Ky = K, K, = .O4K, 

€, =e, ¢ = .5C, m, = 1 and m, = 2, 
° 

The equations of motion can be expressed as:—
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(1.04K + 1.5 jew - ev) Xooy = (K + jew) Xu = 9 (8.12) 

- (K+ jow) X,5, + (K + jew) Xo 2 F (8.13) 

The denominator D for expressions for Xa and Xoo can be obtained from 

equations (8.12) and (8.13):- 

D= (1.04K + 1.5jow = an) (K+ jow - u) = (K+ Be (8,14) 

¢ 2 
and DX, = (1.04K + 1.5 jow — 2w°)F 

2 
ie (1.04K + 1.5jow — 2w’)F 

eee (8.15) 
(se4K + 1,54ew - an’) (Kk 4 gow wr) - (KE # jow)” 

similarly DX,,, = (K + jow)F 

and Xeo1 = (K + jow)F (8.16) 

(1.04K + 1.5jew - ee) (K + jow - a) - (K+ A 

With the forcing function applied to the upper mass (my) the dis— 

placements: are as follows:— 

(K + jow - w)F 
X oo" (8.17) 
22 2 2 2 

(1.04K + 1.5jew - 2w) (K + jow -w) - (K + jow) 

  

2 
and Ene = (K + jew) a (8.18) 
  

(1.04K + 1.5jew - Qu) (K + jow - *) - (K+ nen)
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Note that the expressions for X01 and X09 equations (8.16) and 

(8.18) are the same. This is due to the reciprocity of the system. 

The natural undamped frequencies of this system are found to be 

15 o/s and 70 e/se The frequencies are obtained by equating to zero 

the equation (8.14) with a zero damping coefficient (C = 0) which 

gives a quadratic in ae 

Substituting the two frequencies in equations (8.15) to (8.18) the 

maximum value of displacement is found to be (7 x 10 5 epyin Hence the 

maximum values of the variable are:— 

Fmax = 100 1b, 

Kmax = 7x 1073 in 

X max = 3°1 in/sec. 

X max 1364 in/ 00s 

Scale factor equations, 

To convert the system variables into voltages for the analogue 

computer the following scale factor equations are used:— 

F < 567 Ger (8.19) 

X mx = Lei0° 4 X max, (8.20) 

kimox = $4 (AB) i mee. (8.21) 

X max = £384_> _) X max. (8.22) 
86¢ volt.



223; 

Substituting the scale factor equations together with the values 

of the masses, spring gradients and the damping coefficients in 

the equation of motion (8.10) and (8.11) gives:- 

272°8 Ko, + 87°36K 5, - 84%,,) + 32°55X5) - 21° 7%.) = 0 (8.23) 

13°64% 04, + 8°4K 1, — 8°45) + 2:17K,,, - 2°17K) = F (8.24) 

The analogue computer diagram simulating the above equations 

is shown in Fig.8.6, The voltages representing the force F and 

the displacements Xo and X01 were recorded on a magnetic tape 

using the 14 track 'Ampex' tape recorder. To obtain the value of 

the displacement X.00 it is necessary to apply the force F at the mass 

m,(Fig.8.5) and the equations (8.23) and (8.24) are modified as 

follows:— 

27°28K 55 + 8°736X 05 - 8°4K yo + 32°55%K 559 — 21° TK 9 = F (8.25) 

136°4K 15 # 84K eyo = OM qa9 + 217K a9 = 217% o99 = 0 (8.26) 

On the analogue computer the above equations were established 

by removing the force F from amplifier 2 and applying it to amplifier 

9 (Fig.8.6). In order to ensure no phase lag existed between Xo00 

and the previously recorded signals, the later were played through 

operational amplifiers and recorded again together with X00 on 

other available tracks of the recorder. The force F for amplifier 

9 was also derived using the recorded force'signal. Each of the 

displacements was fed to the analysis equipment together with F to 

obtain the impedances Za 2501 and Zo00° These impedances are 

plotted against frequency in Fig.8.7.
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8.3.2 Impedance of the hydraulic servo. 

The hydraulic servo is represented by the elastic system of 

Fig.8.4a which has two degrees of freedom resulting in co-ordinates 

Xu and Xyo° With the forcing function applied at the co-ordinate 

Xy0 the equations of motion for this system are:— 

myhiro + KsXyro + KXpra — KKnon + Cskyro + Cok ro - Cohan = 0 (8.27) 

Ko%yoo — Xohyro + Cokie - Cokyin = F (8.28) 

Solving these equations for the natural undamped frequency 

and displacements in the manner previously shown, the following 

values are obtained:- 

Natural frequency = 48 0/S 
X19 (max) = 4°82 10°. Fin 

Xyo2 (max) 50x 107 . Fin 

The maximum displacement for this system is the same order 

of magnitude as the displacement for the system representing the 

control surface. Hence the scale factors defined by equations 

(8.19) to (8.22) can be used, Substituting the scale factors and 

the values of coefficient in equations (8.27)and (8.28) gives:— 

545° OXy19 + 336% .9 ~ B4Kyop + 43°41 — 21° Thon = 0 (8.29) 

8 Roa ~ BAR > + 2 Roel 217M o = F (8.30) 

The analogue computer diagram simulating the above equations 

is shown in Fig.8.8. This system was simulated at the same time



as the system representing the control surface and hence the dis— 

placements Xyo09 Xo and X01 were simulaneously recorded. A plot 

of the impedance Z,, is shown in Fig.8.9. 

8,4 The Control System Impedance. 

The control system impedance has been determined by combining 

the measurements made on the sub-systems B and C and by direct measure— 

ment on the complex system 'A', 

8.4.1 Combination of the Sub-System Responses. 

The control system mobility, M,,, is defined by equation (8.9) 

ast— 

2 
a Moi2 

a Mago + Moo 

If the magnitude of the forces Fl, Fue and Foo are equal then the 

control system mobility can be written in terms of displacements of 

the sub—systemss— 

2 
(19) 

‘=? x = 
et cll ez 

Xy20 022 

1 +X %* X22 022 (Gail 
  2 
Xoi1 y22 + Zee) - ore) 

and the control system impedance which is the ratio of force to 

displacement can be expressed as:— 

115
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a (X00 + Xoa0) Fa aie ea otal a (8.32) 
X11 yee + X22) - (era) 

The control system impedance was computed in two stages using 

the previously recorded signals of force and sub-system displacements, 

The analogue computer diagram of Fig.8.10a combined the displacements 

as defined by the equation (8,31), The signals representing the 

numerator and the denominator of this equation were recorded on the 

tape. The force F was re-recorded to synchronise it with the com- 

bined displacements, The computer diagram of Fig.8.10b was used to 

multiply the numerator of equation (8,31) by the force F to give the 

numerator of the equation (8.32) Division of the numerator by the 

denominator was performed in the analysis equipment. The analysis 

equipment was driven by the frequency of the recorded Force signal 

which was fed to the sweep oscillator as a d.c. voltage proportional 

to frequency, This ensured that the dynamic filters in the analysis 

equipment were tuned to the frequency of the analogue computer signals, 

The control system impedance thus obtained is plotted against frequency 

in Fig.8.11. 

8.4.2 Impedance Measurements on the Complex System, 

The equations of motion for the control system as represented 

by the complex system 'A' (Fig.8.3), with the forcing function applied 

to the mass mM), aret— 

maX, + KX, + Kj(K,- Xp) + 0,k, + Co(X,-X,) = 0 (8.33) 

it X, - K(Ky- X) + K(X - X) - Cp (X5-K, ) + C{X-K,) = 0 (8,34) 

mX, - (hy) - (HG) Lp (8.35)



The maximum values of the undamped natural frequency and the 

displacement are found to be 72 Hz and 4F x 107? in. This gives the 

maximum values for the variables as follows:- 

EF = 100 lof. 

ite fA 10 in. 

KX = 1°81 in/sec. 

X = 817 in/sec. 

and the seale factor equations become:— 

Wie 100 lbf 
10 volt 

=o 
x « 4x10 in 

10 volt 

Kos 161 in 
10 sec. volt, 

X =) B17. in 
10 Z 

sec, volt, 

Substituting the scale factors and the coefficient values in the 

equations of motion gives:— 

326°8 x, + 25° 34K, i 12° 67k, + 192%, - 48%, = 0 (8.36) 

163° 4K, - 12°6TK, + 25°34K, — 12°67K, - 48K, + 96Xq = 48K, = 0 (8.37) 

817k, - 12°67, + 12°67, - 48K, + 48%, = 10F (8.38) 

The analogue computer diagram simulating the above equations 

is shown in Fig.8,12. The displacement x, and the force were fed 

117
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to the analysis equipment to obtain the control system impedance 

2, (Fig 8.13). Figure 8.14 compares the control system impedance 

obtained by the sub-system technique and the direct excitation of 

the control system. The differences in the two methods are essen— 

tially due to the fact that elastic system representing the control 

surface was lightly attached to a support for the purpose of simul= 

ation.
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CHAPTER 9 

The results obtained from the analogue simulation of the 

hydraulic servomechanism and their comparison with the test rig and 

the theoretical results leads to the following conclusions, 

9.1, Impedance Of The Servo For Small Valve Openings, 

The low frequency impedance is mainly governed by the valve flow 

characteristics or the force-displacement relationship (Fig.6.4) which 

gives a large increase in the force for a small increase in the valve 

opening. Other parameters influencing the impedance are the coulomb 

friction which increases the damping, leakages which effect both the 

stiffness and the damping, and the value of the bulk modulus which 

contributes only to the stiffness. 

The high frequency impedance tends to reach the value of the 

bulk modulus and is almost entirely governed by it. Coulomb friction 

increases the stiffness slightly at high frequencies, 

9.2. Impedance Of The Servo For Large Valve Openings. 

The low frequency impedance is influenced by all parameters 

except the bulk modulus, Both the leakage and the coulomb friction 

increase the stiffness and the damping, An increase in perturbation 

amplitude decreases both the stiffness and the damping. 

The high frequency impedance is mainly influenced by the coulomb 

friction force which substantially increases both the stiffness and 

the damping. The leakage make a large contribution to the damping and 

the bulk modulus gives small increases in both stiffness and damping. 

9.3. The Effect Of Supply Pressure On Impedance. 

An increase in the supply pressure generally increases the 

impedance of the servo, It is, however, possible to increase the 

stiffness or the damping by changes in this parameter, By a careful
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choice of the supply pressure a system can be made to have a fast 

response of better damping characteristics. 

9.4. Comparison Of the Analogue And The Rig Results. 

A comparison between the analogue and the rig results shows a 

qualitative agreement for stiffness and damping in response to 

changes in the static valve opening and the perturbation amplitude. 

A quantitative agreement is shown to exist for the small valve open— 

ings. At large valve openings the analogue results generally give a 

higher value of impedance except at small valve openings, if the 

values of the bulk modulus, leakages and the coulomb friction force 

are constant. But by varying the values of these parameters in the 

simulation a quantitative agreement with the rig results can be obtained 

for any particular test conditions. This would suggest that the 

value of the coulomb friction force estimated for the hydraulic servo 

at 801lbf. is too high. Also the values of the bulk modulus and the 

leakage coefficient do not remaim constant as the vale opening increases, 

The leakages are a function of the flow and the pressure drop in the 

system &) which change with the valve opening. The bulk modulus is 

likely to change due to dilation of the jack body with the temperature 

and at low pressure the effects of air in the fluid can drastically 

reduce the bulk modulus. Values of N from 40,0001bf/sq.in. upwards have 

been used by different experimenters to allow for the effect of air 

in the fluid, From analogue simulation the following values for the 

various parameters are estimated for the physical system, 

Coulomb friction force:— 30 — 40 lbf. 

Bulk modulus N:=— variable but having a value of about 

120,000 1bf/sq.in. at very small openings, 

Leakage coefficient:- variable 4-16 x 107 in?/1bf.se0,
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9.5. Comparison Of The Analogue And The Theoretical Results. 

A qualitative agreement between the analogue and the theor- 

etical results is seen to exist but the theoretical results give a 

very low value of the impedance at large valve openings which cannot 

be related to the physical system. The inclusion of coulomb friction 

may improve the theoretical results but makes the analysis more 

complicated. 

9.6. The Impedance Of The Control System. 

The sub-system technique presents a means of obtaining the control 

system impedance by seperate measurements on the servo and the control 

surface structure, During this study it was possible to apply the 

same force levels to the elastic systems, representing the hydraulic 

servo and the control system, and hence displacement responses were 

manipulated to give the control system impedance. In practice, 

however, it will be necessary to apply different force levels to the 

sub-system in which case mobilities or impedances will have to be 

measured, These can then be combined either manually or on a digital 

computer.
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CCRRIGENDA 

Eguation (2,38) should read:- 

4 
Zs my mw kn, + Kk (a) 

1 
K. 2 

Eguation (3,5) should read:- 

aon v 
+ @& i ene 

Ot yds tee oot 

Equation (3.7) should read:- 

B Ge 2) xe -°k + XK, = x 
° ° i 

Equation (3.19) should read:- 

aQ f 
Lk aia me 5 

ome chy F 

| 

; 2 
+n,)] w + KK 

= 9o1 

Line 18, “fron and ...... interpreted” should readte... 

“form and hence easily interpeted® 

Equation (4.2) should read:- 

R. Re R A Me oe, af, ee a zB 2) Re ( 8 a pee) Ry Ro R.



  

90 The fifth line from the bottom “The output .... that of x," 

should read, “The sign of the coulomb friction force is the same as 

that of X_¢ 
° 

98 Fourth line from the bottom “A change in the value of N fromes«es 

sees Of frequency”, should read:- a 

A change in the value of N from 40,000 lbf/sq.in to 120,000 lbf /sq.in,. 

makes very little difference to stiffness on a basis of frequency. 

103 9th line from the bottom “value of stiffness for N = 80,000 lbf/sq.in*, 

should read:- 

Value of stiffness for N = 80,000 lbf/sq.in becomes larger. 

Fig.7.11 The title should read:- 

Effect of bulk modulus on stiffness for changes in frequency, valve 

opening = .010 in. Perturbation amplitude = t Loo5in. 

108 Line 19 “The equilibrium condition requires that the forces 

2 and Coe remains. By ae” should read:~   

The equilibrium condition requires that the forces Bo and Poo 

Temainssceee



111 Equation (8.18) The numerator should xead:- 

(kK + jow)?. F 

 


