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SUMMARY. 

Investigations have confirmed the existence of a linear 

relationship between the resultant of the two power components 

of cutting force and each of the three variables of (1) Depth of 

cut (2) Feed-rate and (3) Cutting speed in the double logarithmic 

scale during oblique machining of a plain carbon steel on a centre 

lathe. 

A linear multiple regression model was therefore postulated 

between these three variables and the cutting ferce response, in 

their logarithmic transformed state, for prediction purposes of the 

latter. 

An experimental design involving two replicates of fifteen 

‘different' cutting conditions and nine 'repeats' was employed 

to formulate a first order three-variable prediction equation using 

the technique of "Response Surface Methodology". (1) This was 

then extended to include the quadratic effects of the three 

variables and also their first order interactions, The three 

variable first order equation was chosen for prediction purposes 

on statistical significance basis. A control test series of 

30 cuts was then carried out to check the adequacy of predicted 

forces. The largest variation was only 7%. 

Some results on the pattern of variation of forces with 

tool wear and that of surface texture with tool wear were also 

presented. 

---000000000--~
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CHAPTER 1. 

1. INTRODUCTION AND SCOPE OF THE PRESENT INVESTIGATION. 

1.1 INTRODUCTION. 

Cutting forces were, originally, attempted to be studied 

systematically by F.W. Taylor Q) in the U.S.A. Apart from the 

various easily identified factors, there were other influencing 

variables like the condition of the cutting edge, tool wear, non- 

uniformity of the tool and workpiece material properties, inhomogeneties 

in the workpiece structure, and machine conditions which affected the 

cutting forces significantly. Even if these factors were identified, 

they were difficult to be measured quantitatively. This aspect 

made the repeatability of results during investigations so difficult 

that early investigators like Taylor thought it not worthwhile to 

spend any efforts in this direction. @). 

The chief factors affecting cutting forces, in the case of 

cutting by single point tools, are: 

(i) Depth of cut. 

(ii) Feed rate, 

(iii) Cutting speed. 

(iv) Radius of tool tip, 

(v) Hardness, Strength, Ductility and work-hardening 

properties of the workpiece material, 

(vi) Conditions at the tool tip - workpiece interface. 

(a) Sharpness of cutting edge, 

(b) Tool wear at flank, clearance and rake faces, 

(c) Extent and nature of built-up edge, if any 

present, 

(d) Friction between tool faces and workpiece. 

(e) Temperature at the cutting zone, 

(vii) Tool Geometry. 

(viii)Properties of coolants used, if any. 

(ix) Hardness and Strength of Tool material. 

Under production environments, a knowledge about the 

cutting forces is important for the following reasons: 

(i) Influences the capacity and conditions of the lathe, 

its tools and attachments, 

(ii) Affects the power consumption,
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(iii) Helps to decide the machinability of any 

particular workpiece material. 

(iv) Affects the quality of surface finish and 

precision of the machined parts in an indirect 

manner, 

However, the most important use of a knowledge about the extent 

and direction of cutting forces and the variables affecting them is 

while designing the machine tool itself. A reliable estimate of the 

cutting forces that a machine tool would be subjected to, under the 

worst combination of circumstances that the machine is intended for, 

is necessary for the effective and efficient design of the structures 

that constitute it so as to possess sufficient strength and rigidity. 

Only then the machine could be considered as of good technical 

design and would be economical in its performance, While writing 

up the operation manuals for the various machines, this knowledge 

is vital for safety and effectiveness during use. Thus, lighter, 

faster and safer machine tools have resulted from a knowledge of 

cutting forces, This knowledge would also enable parts intended 

for machining to be designed to withstand cutting forces thereby 

reducing deflections and consequently leading to higher accuracies 

and productivity, 

A great majority of the workers, in the past, have confined 

themselves to treating the forces during orthogonal cutting only, 

Even in these cases, the equations are complex, difficult to comprehend 

and calculations very much involved to be of easy, day-to-day use, 

Thus there is a need for a simple, easily comprehensible equation for 

calculating cutting forces reliably, Also, in these days of advanced 

technology, the number of materials used is great many, Itis, 

therefore, equally important to be able to formulate a reliable 

equation with a minimum expenditure of resources for different 

materials. With regard to both these requirements, the investigations 

presented filled in the needs adequately, 

1.2 SCOPE OF THE PRESENT INVESTIGATIONS. 

In the present investigation, it was decided to include the 

following important factors affecting cutting forces:- 

(a) Depth of cut. 

(b) Feed rate, 

(c) Cutting speed.
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The resultant of the two power components of cutting forces 

(i.e. those of the 'Tangential' force and the 'Feed' force (Fig.1)) 

was observed to be plotting linearly in double logarithmic scale 

to each of the above three factors, individually, in certain practical 

ranges of values and therefore offered scope for fitting a plane in 

a four dimensional space using multiple regression analysis. 

The interactions between pairs of the above three variables 

and their quadratic effects were then assumed to exist and the 

regression analysis was developed to include them as well. 

In each of the above cases the equation to the mean square 

plane was formulated employing "Response Surface Methodology". (Sect.5.1) 

The significance of the contribution made by each variable and 

their combinations was tested statistically and the final form of 

the prediction equation was chosen, 

A further series ot cutting tests was run measuring the actual 

cutting forces. The forces were also calculated using the accepted 

prediction equation and these were compared with the observed ones. 

All tests were intended to exclude any large effects of built-up 

edge formation and therefore the lowest value of cutting speed chosen 

was 150 £.p.m. 

The range of cutting speeds varied from 150 f.p.m. to 1050 

f.p.m., that of feeds from 0.0022 i.p.r. to 0.0200 i.p.r. and that 

of depth of cuts from 0.015 inch to 0.105 inch. 

All cuts were carried out 'dry' without the use of coolants. 

Before the commencement of the test series, the pattern of 

variation of cutting forces with tool wear was studied and the 

appropriate portion of tool life was chosen to minimize this effect. 

The workpiece material in all tests was EN 8 steel of 220 - 235 

Brinell Hardness in the forms of hot rolled bars of diameter 2% to 

3% inches. 

The tool material employed was of the sintered carbide variety 

manufactured by Messrs. Wickman Wimet Ltd., with the following 

specifications:- 

Manufacturer's grade:- XL3 

Chemical Composition: 9% Cobalt. 

9% Titanium Carbide. 

12% Tantalum Carbide, 

70% Tungsten Carbide,
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Hardness: 1450 V.P.N. 

Rupture Strength: 280,000 1bf if tase: 

Modulus of Elasticity: 74 x 10° lbf /in’. 

The measured surface finish on the rake face of the tips 

varied between 10 - 15 micro-inches C.L.A. value. 

The dimensions of the square tips were: 

Sides: 0.5 in. 

Thickness: 3/16 in. 

The geometry of the tool when mounted on the tool-post mass of 

the dynamometer was constant at values of: 

Back Rake Angle - 5° (Negative). 

Side Rake Angle - 5° (Negative). 

Front Clearance Angle - 5°, 

Side Clearance Angle - 5° 

Side Cutting Edge Angle - 16° 

Tool-nose radius - 0.040 inch. 

-00000-



CHAPTER 2. 

ie SUMMARY SURVEY OF SOME IMPORTANT PREVIOUS WORKS. 
* 

2.1 GENERAL SURVEY (3) 

The earliest recorded attempts to measure cutting forces were 

those of R.H. Smith using a dead weight balance in 1882. In 1892 

A.Haussner built a planing dynamometer using a stiff spring and in 

1893 K.A. Zvorykin published his results on extensive theoretical 

and experimental work using a hydraulic dynamometer in planing 

operations, Other early workers were Nicolson (1903), F.W. Taylor 

(1907), G. Linder (1904) etc.. 

Among the more recent workers are the names of G,.Schlesinger, 

V. Piispanen, H.Ernst, M.E.Merchant, M. Kronenberg, N.N. Zorey, and 

M.C. Shaw. All of them and many more have contributed much to the 

theory and development of metal cutting mechanics in general and 

specially to the development and/or applications of dynamometry in 

metal cutting operations, 

One of the earliest people to formulate prediction equation 

for cutting forces were 0.W. Boston and C.E, Kraus (4). In addition 

to developing a number of empirical equations for varying rake angles 

in the case of orthogonal cutting, they have given the following 

two equations for oblique cutting. 

  

T 
Tool Specifications .Tangential Feed Force. Radial Force. 

  

Force. . 

8-14-6-6 - 45-3/64] 88,000 ¢ °°/4 oe 31,400 £.°°° a-*l40, 700d” 

8-14-6-6 ~ 30-3/64|120,000 £°°° t+? | 36,500 £°°® at+25] 14, 500 £°°88q9-84         
£ - feed rate, 

d - depth of cut, 

TABLE 1. 

The limitations of these two equations were that they involved 

only two variables viz: feed and depth of cut and the experimental 

design was such that the effect of each of these was determined 

separately and combined to give the equations. The tools employed 

were of the high speed steel material 3/8 inch square section, and
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during the determination a constant cutting speed of 80 f.p.m. was 

employed. The work material was a 0.21 % carbon plain carbon steel 

in the form of annealed bars of 4 - 6 inch diameter. Boston and 

Kraus had found that the speed effect in the range of 26 - 320 f.p.m. 

on forces was negligible. 

Some German workers have also formulated predictive equations 

for cutting forces. 

However, the most outstanding among the well known works in 

the field of metal cutting force investigations are those due to 

* 
(a) M. Kronenberg (5) 

(b) N.N. Zorew. (6) 

It would be, therefore, appropriate to briefly review the 

ideas of these two authorities. 

Eee SUMMARY OF WORK BY M. KRONENBERG IN RELATION TO CUTTING FORCES. 
  

As a first approximation for the 'Tangential' and 'Feed!' 

cutting forces, Kronenberg developed the following formulae: 

Tangential Force, P| = Ss x fxd x dA Cos (T~ &) 
Cos (F- x + G) 

Feed Force, P, = Ss xf xdx \sin (T_- &) 
Cos (FT - ce +O) 

Where: 

Ss = Shear strength of the workpiece material. 

£ = feed/rev. 

d = depth of cut. 

A= Chip compression factor. 

T= Friction Angle. 

® = True Rake Angle. 

@ = Shear plane Angle. 

The chip compression factor, in addition to being the ratio 

of the chip thicknesses before and after cutting, is also equal to the 

ratio of the cutting velocity to the velocity of chip flow. Thus, the 

expression for forces has taken into account: 

(a) The dimensions of the cut, 

(b) The kinetics of the cutting action. 

(c) Friction effects. 

(d) Some aspects of tool geometry.
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By analyzing the data of G, Altmeyer and H. Krapf of the Soviet 
* 

Union (5) Kronenberg has shown that this formula yielded values which were 

in closer agreement to observed ones than those obtained by using 

others developed by Piipsanen, Hucks and Krystoff. 

Kronenberg has emphasized that (a) Unit cutting force and 

(b) Metal removal rate per minute per h.p., both referred to the 

same fundamental quantity but bearing an inverse proportionality 

relationship between them. 

As further refinements Kronenberg proceeded to develop the 

following two laws: 

Ua ELEMENTARY CUTTING FORCE LAW. 

According to this law, the Tangential Force PF is given by - 

Bie Gna (1000)! ~4p 
i ee 1bf ---- (i) 

1000 

where: 

A = Area of cut (i.e. £ x d) expressed in units of 

0.001 Be 

oF = Cutting force registered met removing a chip 

of cross-sectional area 0.001 in.” for a particular 

work-piece material. 

he = Slope of the double logarithmic plot of unit 

cutting force against chip cross-sectional area 

(0.001 in.?) for a particular work-piece material. 

Kronenberg has high-lighted the fact that the actual cross- 

sectional area of the chip is smaller than the nominal area (i.e. f x d) 
* 

and has included some typical correction graphs (5) to compensate 

the effects of plastic deformation during cutting. 

* 
He has also furnished a table (Table 52 of (5) ) giving the 

comparative values of ice! and oe calculated from the data of 

several investigators and commented on disagreement in relevant 

instances. 

2. EXTENDED CUTTING FORCE LAW. 

(i) The basic formula for the Tangential force Py according to this 

law is: 

P= c (G/5)%» (1000a)! ~ z 
1 Bape ee C410) 

1000
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Where: 

A is the chip cross-sectional area in 0.001 in.? units, 

ey is the cutting force in the case of a cut of 0.001 in.? 

cross-sectional area for a particular material. 

z is half the sum of the exponents 'u' and 'v' of feed and 

depth of cut respectively in the equation for Unit Cutting 

force, 

K, = ¢ : Cj 
s ie where Cc) is a constant for a feed of 1 i.p.r. 

ed 

and depth of cut of 1 inch obtained by extrapolation, 

g, is half the difference of the exponents of 'u' and 'v' 

referred in the case of 'Z' 

G is the Slenderness Ratio (Ratio of depth of cut to feed/rev). 

In this formula the effect of the "Slenderness Ratio" (i.e. 

Ratio of 'depth of cut' to 'feed-rate') of the cut is, additionally, 

taken into consideration. However, it was pointed out that the 

effect due to variations in the Slenderness Ratio is, by far, 

smaller than that due to the area of cut. 

By analyzing the cutting force data of Taylor, Boston and 

Krauss, Holmes, R. Cave, A.S.M.E., A.W.F - 158 and Dawhil - Dinglinger, 

Kronenberg has shown fair agreement between the values of on tet 
+ P 

and ‘2, in the case of a few materials. (5) 

He has also indicated that it should be possible to prepare 

systematic tables for practical cutting force data by the application 

of the above formula after providing for the inclusion of "Hardness 

of Workpiece" and "True Rake Angle of Tool" factors. 

In the case of Steels and Cast Irons, Kronenberg has, further, 

given a Table of values (Tables 8a, b, and c, and 9a, b and c, of the 
* 

Appendix in (5) for calculation of cutting forces using the "Extended 

Cutting Force Law". 

(it), The inclusion of the effect of hardness of different grades of 

the same basic material (e.g. Plain carbon steels, Straight Gast Irons 

etc.) has been next done by further splitting of the iene values 

applied in the basic formula above. 

The 1S values for different grades of the same material were 

plotted against their respective Brinell Hardness numbers (B.H.N) in
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a double logarithmic graph. These points were found to lie on a 

straight line. The slope of this line was determined (Say 'n') and 

the line extrapolated to form an intercept (Say scar ) on the 

'c,' axis. (Fig. 169 of (3) ). 

Then: 

Cc =G.. (B.HN.): - - - = (iii) 
P pl 

The value of io thus calculated could be substituted in 

Equation (ii) to include this effect. 

(iii) The inclusion of the effect of True Rake Angle 

For identical tools with varying Rake angles, it has been 

shown by Kronenberg from Stanton and Heyde data (Fig. 182 of Gy, 

that the Tangential force plots linearly with True Rake Angle in a 

double logarithmic graph for Ni-Steel. Similar to the case of 

'Hardness' inclusion, by extrapolating the line, in the case of 

a cut with a cross sectional area of 0.001 tne it would be possible 

to express the constant ey as 
x 

Coy= c, (B/s0)™ - - - - = (iy) 

Where: 

Cy is the intercept of the plot. 

m is the slope of the plot 

SB is the lip angle (90° - (Rake Angle + Clearance Angle)) 

50° is the smallest practical lip angle. 

(iv) Procedure showing the inclusion of all the effects for 

calculation of Tangential Force. 

In the case of a tool with a specific clearance angle, say 

10° (i.e. Lip Angle + Rake Angle = 80°), Kronenberg has indicated 

the following method of arriving at the final value of c (to be 

applied in Equation (i) ) taking into consideration the Lip Angle 

and Hardness factors: 

(i) To find out the proportion (say x) of the ich cutting 

force constant for tools with a Lip Angle (say fh Vs 

which is due to the Lip Angle, write 

cr =x (f/50)"l for any particular material. 

* 
(ii) From Table 52 of (5), find out the quoted value of co 

for the same material (Say ¢,). Then: 
x
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LG 
sary 

C A pst 
* 

Now m, can be determined from Fig. 194 of (5) for the same 

material. Therefore x can be calculated and C_ can be 

determined, 

(iii) As oF value is also influenced by the Hardness factor, 

the 'x' value calculated should contain this effect also. 

From Fig. 169 of @), for the same material one can express 

cane (B.H.N.)"! . (Equation (iv) ). Since B.H.N., , 
Pp 

and ny,are known, in order to resolve the 'x' we could write 

ye 

  

a and 'y' can be calculated, 
> 

The factor 'x' could, thus, be expressed as 

x=yxC (B.H.N,)" Bey 
(iv) Replace x in Step (i) to yield: 

c, =yx oc (B.H.N.)"L x ( 4 /50)™L 
1 

* 

(v) Obtain z, from Table 52 of (5) for the same material. 

By substituting the values of ee on and A in Equation (i) 

the Tangential force PD can be calculated, 

CRITICISM AND COMMENTS. 

The chief limitation of Kronenberg's analysis is that the laws 

apply to only orthogonal cutting, The various investigators whose 

data have been analyzed by Kronenberg observed independence between 

cutting forces and cutting velocity, In the case of oblique cutting 

with negative rake carbide tools, it has been observed during the 

current work that there is significant double logarithmic inverse 

linear relationship between the resultant of the two power components 

of the cutting forces ('Tangential' and 'Feed') and cutting speed, 

Therefore, the validity of neglecting this effect in the above laws 

could be open to criticism, 

Another difficulty is that there is no unequivocal agreement 

between the nee and a values obtained by using the data from 

various investigators, Thus, the value of the calculated forces 

could vary significantly depending upon whose data has been used. 

Unless a separate series of cutting tests was specifically carried 

out to evaluate these parameters reliably, the calculated values
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could be in error. Even in this case, generality of results could 

not be hoped for because of the lack of complete agreement between 

materials specifications under various mtional standards. 

However, Kronenberg's formulae have opened up the vista in 

the right direction and it could be anticipated that future investigators 

would bring in further refinements and extensions to enhance its useful- 

ness. 

253 SUMMARY OF N.N.ZOREV'S WORK ON "CALCULATION OF CUTTING FORCE 
* 

COMPONENTS". (6) 

Zorey has suggested calculation of cutting forces components 

under two separate methods:- 

(a) Cutting force components for a constant tool life. 

(b) Cutting force components from the 'Cutting Ratio.' 

(a) Force components at constant tool life could be calculated 

as below: 

(i) From a knowledge of the following: 

1). Tensile Strength of the material cut. 

2). Depth of cut, 

3). Rake angle on tool. 

and 4). Type of tool material used, refer to the Nomogram 

(Fig.328 of (6) ), to determine the 'Specific 

work of Chip formation’ (Q.)- 

(ii) From a knowledge of (2), (3) and (4) above, refer to 

the Nomogram (Fig. 329 of (6) ) to determine the mean 

coefficient of friction (1) between the tool and workpiece 

material. 

(iii) The angle of flow of chip ) could then be determined 

from the formula: 

es N- yo-8 arc tan (tan \. Cos ) + tan Y sin nN) 

where 

v is the cutting velocity (m/min). 

\ is the angle of inclination of the main cutting edge. 

Y¥ is the rake angle in the main normal plane. 

Lis the angle of deflection of the chip from the main 

normal plane which is found from the Nomogram (Fig.330 

of (6) YErom a knowledge of the depth of cut, feed, 

length of transition cutting edge, radius of curvature



a 

of transition cutting edge and main plan angle . 

(iv) Calculate 

[cu cos ¥ cos 9 -sin¥ ) sind-{ (cos ¥ +p Cos 9 

1) K,= Sin ¥_) +p sin Vcos Xb cos al 
[cos ¥ +p Cos9 sin ¥ ) cosy - p Sin Vsin\] 
[un Cos¥ Cos% - sind ) cos d+ ( Cost +p Cos sin ¥ ) 

  

and 

2) K = Sind + a Sin ¥ Cos al Sin 4] 

[cos ¥+ (cos 4 sin ¥ ) cos» - p sin sin) | 

(v) The projections of the Chip formation forces BUS Be & By 

(Tangential force, feed force, and radial force) are then 

determined from the application of following formulae 

(a) BUS Qa Set. 

(b) a = oe Sox Cs 

(c) pu=Q xk. Sxt. 

Where S = Feed/rev. in m. 

t = depth of cut - m. 

" "opr i and ee ' pe aS are in Kgmf. 

(vi) The projections of the forces on the Clearance Face 

Pl P' and Pe (clearance face forces in the directions of 

cutting, feed and radial forces respectively) are then determined 

as follows:- 

ay b § ¢ t + ¥tan 6/, + Ss) 
Sin 

Bt 
Zz 

Pie ay § (t.cot 6 + tan 9/, +8) 

a Sse 
Where ¥ » t, s, ¢ are known values from above, § is the clearance 

surface wearland width in m.m., 

ae is the specific normal pressure on the clearance face of the 

tNol obtained from the Nomogram (Fig. 322 of (6) with a knowledge 

of the Hardness of work material and depth of cut. Cepia) 

(vii) The total components of the cutting forces (Chip formation 

forces and Clearance face forces) are then obtained from 

ny pt 
Zz Zz 

  

P =p" + Pi 
Ni y y



and P 
x 

(b) 

Gi) 

(ii) 

= 14 & 

a 1 

=P +P 
x x 

FORCE COMPONENTS FROM CUTTING RATIO. 

Calculation proceeds by the following steps:- 

The specific work of chip formation Q) is given by the 

formula 
ore (e = Sin¥)+ tan | 

c 2.5 Cos ¥ 
Where Ay 5 is an estimate of shear strength of the workpiece 

material given by 

0.6 © ( 6 is the tensile strength & 
l- 1.7% € is the reduction in cross sectional area) 

e is the Cutting Ratio, 

C is the constant sum of the shear plane angle and angle 

of action (Angle between the resultant force and the 

cutting speed vector) for any particular material 

(values of 'C' are quoted in a table by Zorev). 

Compute the mean coefficient of friction (~) from the equation 

pee tan(o - ¥ - are tan(Cos v | 
e - Siny 

Steps (iii) to (vii) are identical as in the case of calculations 

for constant tool life, 

The advantages quoted by Zorev in the case of calculations 

of force from the Cutting Ratio are as follows:- 

(a). No special apparatus is necessary to determine the Cutting 

ratio, 

(b) The Cutting Ratio can be measured on any machine tool 

without any preliminary set up. 

(c) The Cutting Ratio can be measured when using any type of tool. 

(d) Measurement of Cutting Ratio is a simple operation which 

does not require any high skill. 

(e) Reproducibility of results can be easily checked on the 

spot during measurement of Cutting Ratio. 

(£) After having determined the Cutting Ratio under one set of 

cutting conditions corresponding to a given tool life, it 

could be used to calculate cutting forces for other sets 

of cutting conditions corresponding to the same tool life. 

Zorev has further given a comparative table of actual experimental
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values of cutting forces and the calculated values for a series 

of 44 tests. Taking into consideration the possible experimental 

errors, the agreement between the theoretical and experimental 

values appeared to be fairly good. 

CRITICISM AND COMMENTS. 

The chief merit of Zorey's formulae are that they are the 

most theoretical ones which have been developed whereas most of the 

others are purely empirical ones. However, the calculations could 

sometimes be involved and time consuming especially in the case of 

oblique cutting. But this has been partially overcome by the 

author by giving ready reference Nomograms for computing the 

components of forces. The limitation of these Nomograms is that 

they pertain to materials and tools according to Soviet Standards 

and unless one is quite sure of the equivalence of materials the 

force values obtained would be erroneous. Another deficiency might 

be that the feed rate which affects the size of the cut has not been 

catered for in the formulae in any direct manner except that it 

entered in the calculation of the direction of chip flow in some 

indirect manner. 

---000000000-~-
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CHAPTER 3. 

Bu EXPERIMENTAL APPARATUS AND THEIR CHARACTERISTICS. 

SG 
* 

DYNAMOMETER - GENERAL REQUIREMENTS: (7) 

The principle on which all dynamometers are based is one 

of measuring the strains produced in relevant structures constituting 

it consequent to the action of applied cutting forces. 

q) 

(2) 

(3) 

(4) 

(5) 

(6) 

7) 

The chief requirements in a dynamometer are:- 

Sensitivity. 

It is desirable for the dynamometer to have a high 

sensitivity to applied forces. 

Rigidity. 

The dynamometer should be rigid enough such that 

(a) The applied forces do not deform its elements 

plastically. 

(b) The elastic deflections in elements should be such 

that they do not substantially alter their size, shape 

or geometry. 

Natural Frequency. 

In order that the force indications are not influenced by 

the cyclic motions involved in cutting operations, the 

natural frequency of the tool-post mass of the dynamometer 

must be considerably higher than the frequency of exciting 

vibrations. 

The 'flat frequency response' of the sensing elements, if 
  

any used, should be adequate for the dynamic ranges 

required, 

Cross Sensitivity. 

In general, as a dynamometer should measure more than one 

component of the cutting forces, the cross sensitivity 

between these components should be as small as possible. 

Linear Calibration. 

It is desirable for the dynamometer to have a linear 

calibration for all the components of forces in the 

required ranges. 

Repeatability of Readings. 

A dynamometer should be stable with respect to time, 

temperature and humidity. 

The dynamometer: employed during the investigations was found to 

satisfy the above requirements quite well.
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3.2. P.E.R.A. DYNAMOMETER. 

The dynamometer used in the present investigations was designed 

and built by the Production Engineering Research Association of Great 

Britain. It was designed to measure up to a maximum of 2000 1bf, 

with the lowest gain setting, of each of the three components of 

'Tangential', 'Feed', and 'Radial' cutting forces. The output 

sensitivity could be increased by using increased gain settings. of 

the output amplifier, with a consequent reduction in range of loading. 

With the maximum gain setting, the measuring range was 200 lbf and this 

setting was employed for most of the readings during the investigations 

(with the exception of larger forces in which case the next lower gain 

setting was employed). 

The mechanical details of the dynamometer tool-post mass were 

shown in Fig. (i) of the Appendix. The force sensing elements were 

a set of 24 strain gauges wired up in three Wheatstor bridge configurations, 

each bridge measuring one component of the forces (Fig.(ii) of Appendix). 

Temperature compensation was also achieved by the use of compensating 

gauges in the bridge configuration, 

The chief difference of this dynamometer from others using 

similar principles is that all the three components of forces were 

measured by the strains of a single set of ligaments (4 ligaments 

forming sectors of a circular annalus). In other dynamometers, usually, 

rings located at different orientations are used for individual 

components of forces. While all the strain gauges for measuring the 

'Tangential' and 'Feed' forces were bonded radially (with longer axis 

of the gauge parallel to the circumference of annalus), those for 

measuring the 'Radial' force were bonded parallel to the longitudinal 

axis, along the ligaments. Also, the temperature compensating gauges 

for the 'Radial' bridge were located on 4 dummy ligaments. 

The output from each of these three, bridges was fed on to a 

stable variable gain amplifier (Manufactured by Fylde Electronics, Ltd.) 

After amplification, the output was indicated on a voltmeter with a 

full scale deflection of + 5 volts whose dial was marked into a 100 

divisions equivalent to the full scale deflection, To the front of 

the ligament arm was attached a recessed plate for taking in the tool 

holder, The strain gauge and ligament assembly were housed in a water 

proof casing with provision for terminals at its rear end for the 

three output signals from the individual bridges. The tool holder
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could be clamped into the recess at the front of the mass by means 

of three cap-head screws. The tool holder, in turn, incorporated 

clamping arrangements for 'throw away' type of square carbide insert 

tool tips. (Fig. (iii) of Appendix). The square tip was seated inside 

a square slot and clamped by means of a single cap-head screw. The 

tool-post mass, tool holder, three calibration tools and the console 

containing amplifiers and dials were displayed in Plate I, 

Bede CALIBRATION OF P.E.R.A. DYNAMOMETER. 

In addition to the tool holder, three specially designed 

calibration tools were also provided. These were, principally, 

of the same external dimensions as the tool holder and fitted exactly 

in the recess provided in the front plate of the tool-post mass. 

Individually, these three could also be fixed into the slot, by 

means of the three cap-head screws provided, during calibration, 

The 'Tangential' calibration tool was fixed for 'Tangential' force 

calibration and one of the other two tools respectively for the 

calibration of the other two forces. 

The calibration of the dynamometer was achieved in a "Denison" 

Tensile Testing machine by the application of known compressile 

loadings vertically, but with the dynamometer in three different 

orientations. Plate 2 showed the set up on the Denison machine 

during calibration, The critical aspect of the three calibration 

tools was that they contained three small conical cavities at 

relevant locations such that when forces were applied at these 

locations, through a small diameter hardened steel ball placed on 

these cavities, the points of application of the three forces were 

exactly identical to the points of application of the three forces 

on the tool tip during cutting operations. This aspect ensured 

complete static similarity of conditions during calibration and 

cutting operations. This was an essential condition to be satisfied 

for accurate calibration, 

With the calibration tool in position, the tool post mass was 

straddled down rigidly to the base of the Denison machine by means 

of a liberally proportioned straddling plate and two bolts. As the 

range in which calibration required in the present investigations 

did not exceed 500 lbf., this method of clamping down was found to be 

adequate. To the bottom of the movable platform (sliding along 

vertical columns of the machine to apply known loads) was fixed a
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short vertical % inch diameter high Tensile steel rod. One end of 

this rod was shaped to a 60 degree truncated cone. (Plate 3). A 

0.125 mm diameter hardened steel ball was placed on the conical 

cavity provided on the calibration tool. Plate 3 showed a 'close-up' 

view of the clamping arrangement and the method of application of 

known loads to the dynamometer during calibration of 'Tangential' 

forces. The tool-post mass was laid on its one side and clamped 

for 'Feed' force calibration. It was stood vertically on two thick 

parallels of sufficient height (because the terminals for the bridge 

output were protruding from the plate at the rear of the tool-post mass) 

for the calibration of 'Radial' forces. 

Calibration of the dynamometer for the three forces with the 

highest gain setting of X 500 and the next lower X 200 was carried 

out and the results were shown in Graphs (i) - (iii). For all 

the three forces and with both gain settings, the graphs were found 

to be linear. The points showed no 'hysterisis' effects while 

'loading'and 'unloading! and the calibration was checked once during 

the investigations after a lapse of about 90 days and did not show 

any significant variations. 

During the calibration tests, it was also established that 

the cross sensitivity between the three forces was less than one 

per cent. 

3.4 DETERMINATION OF NATURAL FREQUENCY OF THE TOOL-POST MASS 

OF THE P.E.R.A. DYNAMOMETER, 

It was primarily important to ensure that the natural frequency 

of the tool-post mass was well above the exciting frequency likely to 

be encountered during cutting. Therefore, the determination of this 

aspect. was carried out. The Block Diagram (Fig.2) showed the 

instrumentation and set up for this test, 

The scheme of testing involved application of vibrations of 

known frequencies, at constant input (the input was controlled by 

means of a feed back circuit), on to the tool-post mass which was 

mounted on a vibrating pad actuated by a Power Amplified Oscillator 

and monitoring the response of these vibrations from an Accelerometer 

bonded on top of the mass. The output from the accelerometer could 

be amplified and impedence matched by means of a Charge Amplifier 

and fed to an R.M.S. Voltmeter. The frequency of the applied 

vibrations could be varied continuously from 1 c.p.s. upwards by 

changing the oscillator frequency. While scanning the applied range
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of frequency in this manner, the R.M.S. Voltmeter output could be 

monitored until the peak reading occurred. This effect could also 

be counter-checked by means of a Cathode Ray Oscilloscope display. 

According to this scheme, it was essential to initially 

determine the frequency of resonance condition of the vibrating 

pad itself before testing the dynamometer mass. Therefore, this 

was first investigated by placing the accelerometer straight on to 

the pad and scanning the frequency spectrum continuously monitoring 

the Voltmeter and Oscilloscope outputs. In this manner the 

resonance frequency of the plain vibrating pad was determined to be 

in the region of 3200 c.p.s. 

In addition to this information, it was also known that the 

‘flat frequency responses' of the individual instruments used were as 

follows: 

Oscillator - 0 to 150 K Hz. 

Power Amplifier - 50 Hz. to 5 K Hz. 

Accelerometer ~- 0 to 20 K Hz. 

Charge Amplifier - 2 Hz. to 20 K Hz. 

Oscilloscope - 1 Hz. upwards. 

It was thus ensured that all spurious effects due to resonance 

conditions developed in the test equipment and its instrumentation 

system were eliminated, 

Having established these facts, varying known frequencies 

were then applied to the tool-post mass through the vibrating pad. 

The experimental set up employed could be viewed in Plate 4. The 

fundamental resonance peak of the dynamometer mass was determined 

to be in the range of 335 to 355 c.p.s. It was observed that 

resonance peak value of the vibrations varied slightly (within the 

range of 335 - 355 c.p.s.) depending upon the location of the 

accelerometer along the top face of the mass. After the test series, 

a mean value of about 345 c.p.s. was accepted as the natural frequency 

of the tool post mass. 

During cutting operations, the largest possible rotational speeds 

that could be attained on the lathe was only of the order of 30 

revolutions per second. It was therefore concluded that dynamic 

effects due to exciting vibrations during cutting could be ignored,
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3.5 The Lathe on which the investigations were carried out was 

manufactured by George Swift and Sons, Ltd., Halifax, It was a 

model 12 V 6 centre lathe with a maximum length between centres 

of five feet nine inches, and swing over bed of 22% inches @). 

Even though the feed rates available in the required range was 

limited to five, the main advantage was the continuously variable 

speed drive, The variable speed drive motor was made by 

Metropolitan Vickers of Manchester and had a range of speeds from 

20 -1100 r.p.m. with standard pulleys. With the fitting of special 

pulleys the rotational speeds of the spindle could be increased 

up to 2000 r.p.m. The horsepower developed by the main motor 

at 1440 r.p.m. was 30 and at 483 r.p.m. 10. The standard tool-post 

of this lathe along with its base was removed and an auxiliary base 

with a flat top was fitted in its place, Along the flat top of this 

base was drilled and tapped four holes of +" diameter B.S.W. 

at appropriate positions to take in 4 dynamometer clamping bolts. 

Two strips of 4" x 1" sections were also bolted across it at the 

correct distance apart for proper location of the dynamometer 

tool-post mass. After adjusting the height of the tool-post mass 

with 'ground' strips such that the tool tip was at the centre line 

of the work piece, and properly aligning it such that the tool motion, 

while transversely fed, was truly perpendicular to the axis of the 

workpiece, the tool-post mass was clamped down to the base by means 

of two thick mild steel plates. The whole clamping arrangements 

in relation to the workpiece, a portion of the lathe and the console 

cabinet could be viewed in Plate 5. 

Workpieces, in all cases, were hot rolled bars of EN - 8 

steel within a hardness range 220 - 235 B.H.N., of 2%" - 3%" 

diameter and mounted between a three jaw chuck and a 'live' centre, 

As the workpiece got warmed up after some cutting, the adjustable 

live centre clamp was frequently released and reclamped to relieve 

excessive clamping pressures. The Chemical Analysis of typical 

EN - 8 steel used in the investigations was as follows:- 

Carbon - 0.44 % 

Sulphur - 0.053% 

Silicon - 0.25 % 

Phosphorous - 0,031 % 

Manganese - 0.81 % 

--0000000-~
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CHAPTER 4. 

4. PRELIMINARY INVESTIGATIONS AND PROVING OF FUNCTIONAL RELATIONSHIP. 

4.1 ORIGINS OF THE WORK. 

During machining of plain carbon (medium carbon) steels, it was 

observed that the logarithms of the resultant of the two power 

components ("Tangential" and "Feed") of cutting forces were plotting 

linearly with the logarithms of each of the following cutting variables 

(i) Cutting speed. 

(ii) Feed rate, 

(iii) Depth of cut. 

It was also observed that the radial force variation showed a 

tendency to increase with higher 'feeds' and 'depths of cuts' and 

decrease with increases of ‘cutting speed'. But the pattern of 

variation was not systematic enough to be included for the calculation 

of resultant force (probably because the radial forces were very much 

sensitive to minor variations in the tool tip conditions like the 

sharpness of the cutting edge). Also, the radial force would not 

affect the power consumption as there is no velocity associated with 

Te. It was therefore decided to omit the radial force from the 

calculation of resultant force. However, the values of this force 

was recorded in all cases for the sake of completeness. 

Having a reasonable idea about the relationship of the response 

(resultant cutting force) to the individual variables, two sets of 

experiments were planned. The first was to vary ‘Speed' and 'Feed!' 

and record the resultant cutting force. The second was to vary the 

'Speed' and 'Depth of cut' and to record the response. The results 

of these two experiments were plotted in two "three dimensional" 

logarithmic graphs (Graphs (iv) and (v) ). 

From Graph (iv) it could be observed that the responses lie 

reasonably well in a plane in a three dimensional logarithmic co-ordinate 

system with the exception of very low values of 'Feed' and 'Speed', 

From Graph (v) it could be seen that all the responses lie reasonably 

well on a plane (in the entire range investigated) in the case of 'speed' 

and ‘depth of cut' variables. 

The discrepancy in the low range values of 'Feed' and 'Speed' 

(Graph (iv) ) could be attributed to the formation of built-up edge
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at the cutting edge of the tool. On a new tip, the forces were 

observed to be substantially higher, but this was only a short lived 

transient condition and as the built-up edge stabilized (which took 

only a few seconds), the cutting forces dropped to a much lower value. 

However, there was no such noticeable effect with low values of 

'Speed' and 'Depth of cut'. Therefore, it could be concluded that 

built-up edge formation was more favoured by the combination of low 

"Speeds' and low 'Feeds', The ranges chosen for the three variables 

of 'Speed', 'Feed' and ‘Depth of cut' included the commonly used ones, 

In order to extend the range in certain cases, and also to 

confirm the observed relationship between the three variables and the 

response a "Latin Square" type of experiment (3) was carried out next, 

It was also decided, at this stage, to choose EN - 8 as the work 

material. 

The choice was purely arbitrary except that it is a typical 

medium carbon steel which is widely used in industry for general 

production purposes. 

* 
4.2 "LATIN SQUARE" SEARCH FOR FUNCTIONAL RELATIONSHIP. (9) 

From the preliminary set of graphs, it was seen that the 

relationship between the Resultant of the two cutting force components 

and the Speed, Feed and Depth of cut parameters were very nearly linear 

in the double logarithmic scale within the ranges investigated. i.e, 

The relationship could be expressed as: 

where 

F is the Resultant cutting force in lbf. 

v is the velocity of cutting in fpm. 

f£ is the feed in inches per rev. 

d is the depth of cut in inches. 

a, b and c are the logarithmic slopes. 

k is the antilog of the intercept of the Response Surface 

with the force axis in a 4 dimensional logarithmic co-ordinate 

system. 

Through a balanced experiment such as the "Latin Square" and 

with the assumption of the functional relationship as in equation (i), 

it should be possible to evaluate the constant 'k'. Consistency or
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otherwise of the 'k' values obtained from different combinations of 

cutting conditions employed in such an experiment would also indicate 

within reasonable limits whether the functional relationship assumed 

was valid or not. 

Consider a Latin Square experiment involving variations of speed, 

feed and depth of cut at 3 levels and the resultant cutting force as the 

response, below: 

  

Speed 

Feed 1 2 3 

  

fy F) (4)) F, (d,) FA(d eee 3) * 'd's indicate 
£ the 3 levels of 

2 | Bp Sto Es ce, | BS ta)) depth of cut. 

f, Fy (45) F, (d,) Fy(d,)           a 

The general form of equation (i) can be written as:- 

Pet). 6, (v) . @ 
1 2 

where 

o> 4), 6, indicates functions. 

Taking logs of both sides of equation (ii) 

log F = log 6, (£) + log 9, (v) + log 6, (d) 

Applying this relationship to the top row of the Latin Square matrix: 

log FY = log 6, (£)) + log 4, wv) + log $,(4)) 

log Eee log 6, (£)) + log 6, (vy) + log 6, (45) 

log F, = log 6, (£)) + log 6, (v3) + log (45) 

Adding :- 

Zilog Fe) = 3 log b) (£,) + log [9 (v1) + G5 (vg) + 4,5) 

2 + log [0 (4,) +4, (d,) +4, (45)] 

i.e. log 6, (£,) = = log tao Qe eee ees (iii) 

3 
where: 

log [4 (vy) +H, (vp) +H, (vg)] + los[¥,(4,) + 65 (4,) + 9, (45)] 

ve 3 
 



= 39 = 

Similar treatment for the other two rows would yield: 

  

log 6, (£,) = ¥ log Fe) ese 2 Sale RAL ee. aa (ix) 

3 

and log @; (£,) = y log Fg) 7 Qerrn nnn nnn nena nn nnn nnn en (v) 
8 

3 
From the above, it is evident that when the logarithms of the 

response are numberically averaged over a single 'feed' (f), 'speed' (v) 

or 'depth of cut' (d) level, the effects of these factors that are 
changing ('speed' and 'depth of cut' in the case examined) would remain 

the same from one feed level to the other. Thus, all changes in the 

log-average of the responses are wholly due to the effect of 'feed' alone. 

The above proof could be extended to show that when a similar 

averaging occurs over the three 'speed' levels and also over the three 

‘depth of cut' levels, the responses are wholly due to the respective 

effects alone. It is evident that the proof could be extended to the 

case of more than three levels as long as the experiment is balanced. 

From equations (iii), (iv), and (v), it follows that: 

Fog) =, 6, (£) 

Son 0 ee) cies Wale iY Nae itedienne Siero gusd Gay 

Lh 
where: 

Fee) is the antilog of 5 log Fee) 
  

n 

(n being the number of levels considered). 

Ky] is the antilog of Q in equations (iii), (iv), and (v). 

Similar considerations of 'speed' and 'depth of cut! effects yield 

the equations: 

F(v) = k, 6, (v) 

  

i.e. 6, (v) = FW) -------------------------------------- (vii) 
k. 

Z 

and F an 
(d) =k, 6, (4) 

i.e. 6, (d) = F(d) 

ky 
From equation (ii) 

= 4, Ge 4, (v) x 9,(4) 

Therefore, combining equation (ii) with equations (vi), (vii) and (viii): 

EO MECE) eRe (V ba BCd) mon onac sean een (ix)
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=Kx F (f) x FW) x9 (4) 

where 

~ oan K.= (ky x ky x k3) 

If the response is measured under known conditions F(£), F(v) 

and F(d) could be calculated by the log averaging’ process and 'K! 

can be evaluated as below:- 

LATIN SQUARE ANALYSIS ON LOG-TRANSFORMED DATA. 

  

  

        
    
  

  

  

Serial No. of Test FRCibE) Frape) | FRape) Pape 

i 108.4. 138.8 122.9 176.1 
2 95.2 159.5 135.7 185.8 
3 58.7 138.6 133.1 150.5 
4 28.4 107 122.9 110.7 
5 228.2 552 373.8 597.3 
6 71.9 97.4 87.0 12d 
7 48.6 87.7 92.2 100.3 
8 2553 79.2 87.0 83.1 
9 266.2 406.1 291.8 485.6 

10 177.5 401 307.2 438.5 
11 38.5 56.7 58.9 68.5 
12 22.8 50.3 56.3 55.2 
13 158 251.9 189.5 297.4 
14 168.1 303.3 307.2 346.8 
15 89.1 226.2 220.2 243.1 
16 10.1 23.5 15.4 25.6. 

LATIN SQUARE OF 'RESPONSE' AND ‘CUTTING CONDITIONS! 

Poen speed 150 300 600 900 

0.0033 (16) 25.6-d, |(11)68.5-d, (6)121.1-d,} (1)176.1-d, 
0.0067 (13)297.4-d, }(12)55.2-d, | (7)100.3-d,| (2)185.8-d, 
0.0133 (14346 .8-d, |(9)485.6-d, | (8)83.1-d, | (3)150.5-d, 
0.0200 (15)243,1-d, |(10)438.5-d./ (5)597.3-d, (4)110.7-4,              
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0.015 in. depth of cut. 

0.030 in, depth of cut, 

0.060 in. depth of cut. 

0.090 in. depth of cut. 

Taking logs of Responses:- 

  

  

  

                    

  

  

  

      
  

| Total Average.| Antilog. 

1.408 1.836 2,083.) 24246 eat 1.893 1862. 

2.473 1.742 2,001 27d 8.487 2.122 132.4 

2.540 oe 1-920 ZAIS 9.324 25331 214.3 

2.38 P2642 2.776 -l 2.044 9.848 2.462 289.7 

8.807 8.906 8.780 8.739 7.114 Le719: 60.1 

2.202 Deed 25195 2.185 8.401 2,100 125.9 

15952 169.0 156.7 153.1 9.536 2,384 242.1 

10.181 2.545 350.8 

Sion nee = 176.1 = 4.1929 x 107> 
153.1 x 78.2 x 350.8 4199924.9 

k= 185.8 = 185.8 = 3.7861 x 107° 

153.1 x 132.4 x 242.1 4907473.5 

Rig = 25.6 = 25.6 = 3.4215 x 10> 
7852"x 159.2 x 60.10 748211.3 

The various K values are:- 

3.4215 4.1169 4.1510 4.1929 

4.0221 4.1048 3.8399 3.7861 

4.1987 3.8222 4.0529 3.6435 

4.1867 3.6995 3.7507 4.1529 

Range of K values = 4.1987 - 3.4215 = 0.7772 x Lou 

Max. Variation from 

RK = 63.1423 = 3.9464 x 107 
16 

K = 1079(3.9464 - 3.4215) = 0.5249 x 10> 

3.9464 
0.5249 xl00 = 13.3% of the mean value.
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As judged from the variations in 'K' values, the assumption 

regarding the functional relationship did not seem to be an unreasonable 

one. 

A part of the deviations could be attributed to the uncertainty 

in taking the Dynamometer readings as a certain amount of flicker in 

the needle, especially at low speeds and light cuts, could not be 

eliminated. 

A second reason could be due to the difficulty of keeping the cutting 

velocity at the exact values necessary as there occurred a slight but 

varying (depending upon the area of cut) fall in the r.ep.m. of the 

spindle when a cut is actually applied even though compensation has been 

allowed. 

A third reason could be due to the differences in the clamping 

pressure of the bar (between the chuck and a live-centre) due to 

expansion of the workpiece by heating. This effect was observed 

to exist and was watched for during the investigation, 

Finally, it could be noted that the lowest value of 'K' (3.4215) 

was obtained at a cutting speed of 150 f.p.m., a feed of 0.0033 a Dots 

and a depth of cut of 0.015 inch. This combination of conditions, 

among all the ones used, was obviously the worst one for promoting a 

strong tendency for the formation of built-up edge and consequent 

decrease of forces, Ignoring this one value, it could be seen the 

'K' values were in much closer agreement and the maximum variation 

was only 5.5%, 

From the foregoing, it was concluded that the linear relationship 

of the variables and the response (in their logarithmic transformed 

state) existed. A linear multiple regression model was therefore 

postulated. 

4.3 CHOOSING THE RANGE OF TOOL LIFE FOR THE CUTTING TESTS. 

It was evident from the investigations so far that the cutting 

forces were time dependent on tool wear. In order to minimize this 

effect, it was necessary to find out the range under which this effect 

was less, The variation of cutting forces with cutting time (tool 

wear) under typical cutting conditions were presented in graphical 

form in Graph (vi). 

It was observed that the forces varied with tool wear considerably 

more with higher values of area of cut and also with higher cutting speeds.
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It was decided to choose the portion of tool life period between five 

to ten minutes for speeds above 600 f.p.m. and five to fifteen minutes 

for lower cutting speeds, both for the experimental tests and also the 

proving tests. However, at values of 'feeds' 0.0133 i.p.r. and 

‘depths of cut' 0.050 in. and greater the tool life portion was again 

chosen to lie between five to ten minutes. These choices were made 

in order to reduce the wear dependent variations in forces to a minimum. 

Employing the cutting force-tool wear data, it was further 

attempted to discover the pattern of rupture conditions of the workpiece 

material at the tool tip. 

Graph (vii) showed a plot of the resultant cutting force against 

the product of three wear land widths (i.e. product of Crater Wear, 

Point Wear and Flank Wear land widths taken as a parameter representing 

volumetric wear of tool.) The wear-land widths were measured using an 

O.M.T. '385' tool-makers' microscope with a discrimination of 0.01 

mom. The approximate parallellism between sectors of the three curves, 

for three different cutting conditions was an interesting phenomena 

observed. 

In Graph (viii), the individual components of the cutting forces 

were plotted against the respective squares of the wear land (e.g. 

Square of the Crater wear land against 'Tangential' force, etc..) 

Most of these curves displayed an approximately parallel sector. This 

was indicative of the fact that the rupture of the workpiece occurred 

at approximately equal values of stresses at Flank, Point and Top 

Rake faces of the tool during cutting. 

In all the three tool wear force tests, the cutting was carried 

on till the failure of the tool tip occurred, In all the three 

instances, apart from the width of the wear-land, the actual breakdown 

of the tool tip occurred at the blending of the radii with the straight 

portion of the front and side cutting edges. Plates 6 - 8 showed 

the crater view of the tool tips at failure. 

However, the information contained in Graphs (vii) and (viii) are in no 

way conclusive or adequate for any decisive inference to be drawn, but 

were presented only by way of highlighting a possible area of search, 

Graph (ix) showed the association observed between the ‘point' 

wear and the C.L.A. value of the surface texture obtained on a 'turned! 

workpiece for one set of cutting conditions. Here again, it was merely
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MICROPHOTOGRAPH OF T00L-TIP Ai! FAILURE. 
(x 50) 

  

        

£8.56. 

v = 650 f.p.m. y= me. 
f = 0.0133 i.p.r. f = 0.0133 i.p.r. 
d = 0.040 inch. d = 0.050 inch. 
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MICROPHOTOGRAPH OF TOOL-TIP AT FAILURE. 

(x50) 

  

PLATE. 8. 

= 750 f.p.m. 
= 0.01353 i.p.r. 
= 0.030 inch. a

h
h
,
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indicative that the surface texture might be correlated to the 'point! 

wear and not to either of 'crater' or 'flank' wear in a direct manner. 

The C.L.A. values of the surface texture were measured by a Model 3 

Talysurf. 

--0000000--
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CHAPTER 5. 

EXPERIMENTAL DESIGN AND RESULTS. 

5.1 DETAILS OF EXPERIMENTAL DESIGN. 

* 

According to Bartee ( !0 ), the general methodology to be 

adopted in an experimental search should follow the outline below: 

I. Analysis Phase. 

aa Formulating the experimental problem. 

2. Analysis of the experiment. 

Il. Synthesis Phase. 

3. Design of the experimental model. 

4. Design of analytical model. 

III. Evaluation Phase. 

5. Conducting the experiment. 

6. Deriving a solution from the model. 

Having gone through Stages 1, 2 and 4, it was then necessary 

to revert to Stage 3, namely the "Design of the experimental model", 

The experimental design should aim at optimizing the yield 

from it. In a poorly planned experiment the addition of a vast 

amount of data rarely lead to improve the effectiveness of the 

investigation. The classical approach of studying the effect of 

one variable at a time has two main disadvantages - 

(a) Excessively 'time and resources - consuming’. 

(b) Assumption of absence of 'interaction' between 

independent variables. 

With a view of overcoming these two limitations, the technique 

of "Response Surface Methodology" was adopted for devising the 

experimental plan, This could simply be defined as fitting a 

"least-square! surface along which the 'responses' lay in a multi- 

dimensional space constituted by the number of concomitant variables, 

by means of an optimum experimental design. In this case, each 

combination of levels of the concomitant variables (factors) 

corresponded to a point in the factor space and the pattern of such 

points employed to elucidate the response surface is called the 

experimental design ( tt ). Experimental designs are, in other 

words, chosen patterns of experimental points in a multi-factor 

space. If the experimental design is inadequate, it would result
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not only in loss of accuracy while estimating the constants, but 

might not even allow certain constants to be estimated at all. 

By detailed considerations G.E.P. Box ( tt ) has indicated 

that a 'central' composite design (Fig.3.) has been used in many 

practical situations and found to be reasonably efficient. S$.M. Wu 

and R.N. Meyer also have utilized the same experimental design in 

their investigations on "Cutting-tool Temperature Prediction 
* 

Equation" ( 12 ). 

According to Box ( 5 ), composite designs to determine 

effects up to second order could be built up from a complete two- 

level factorial one. Thus, in the case of 3 factors, the first 

order and second order inter-action effects could be estimated 

by a basic two level design consisting of 2 experimental points, 

One effective way of estimating, additionally, the quadratic effects 

was by adding seven further experimental points one at the centre 

and remaining six in pairs along the co-ordinate axes at chosen 

intervals. The fundamental experimental design, therefore, 

consisted of the first eight points corresponding to the 2? factorial, 

the next six corresponding to the axial points and finally, the 

point at the centre, altogether thus comprising of 15 distinct 

combinations of cutting conditions. 

The range of each of the cutting conditions was governed by 

practical considerations. In the first instance the range had to 

be commensurate with the general requirements in practice. The 

second factor was the availability of these ranges in the centre- 

lathe used during the experiment. It was observed that the variations 

of the cutting conditions possible on the lathe embraced substantially 

the ranges used in practice. The different levels of each independant 

variable (namely, each of the cutting conditions of 'speed', 'feed- 

rate' and 'depth of cut) was spaced at approximately -4/3, - 1, 0, 

1, 4/3 ratios in a coded scale. (e.g. For cutting speed, 400 

f.p.m. level was taken as zero and the five levels were 150, 200, 

400, 800 and 1050 f.p.m. respectively. The arrangement of levels 

in this manner enabled orthogonality between the variables in the 

"cutting conditions' matrix (Appendix). 

As stated earlier fifteen experimental points were sufficient 

to predict both (a) First order and (b) second order 'prediction' 

equations. But in order to test the 'goodness of fit' of the least-
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EXPERIMENTAL DESIGN AND TRIAL NUMBERS 
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square response plane (Appendix), it was necessary to obtain an 

unbiased estimate of the experimental error. To obtain this, 9 

repetitions,3 at the centre point and 6 at the augment points were 

also included into the basic experimental design. The whole 

experimental design, thus was composed of 24 cutting tests, and 

the designated trial numbers of the design are as in Fig. 3. In 

order to increase the accuracy of estimation of constants, the 

24 tests were replicated once. Hence the initial tests consisted 

of an 'Original' set of 24 cuts and a 'Replicate' set of the same 

number. The tests were carried out in a random order as indicated 

by test sequence numbers in Table,2. 

The randomization of the test sequence numbers was done by 
* 

reference to ( 14 ) which yielded random sequencing of 1 - - - - 

24 numbers, 

5.2 EXPERIMENTAL RESULTS. 

The individual cutting conditions employed together with 

the test results were presented in Table. 2. overleaf.
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CHAPTER 6. 

ANALYSIS OF RESULTS AND SELECTION OF FINAL PREDICTION EQUATION. 

6.1 FIRST AND SECOND ORDER PREDICTION EQUATIONS. 

The observed results of the replicated experiment were analyzed 

using an I.C.L. 1900 Electronic computer, The theory of multiple 

regression analysis was given in the Appendix. The experimental 

results and the cutting conditions (five levels of each of the Variables 

of Speed, Feed rate and Depth of cut) were initially transformed by 

the computer to their natural logarithms. Using the available standard 

procedure for multiple regression analysis (I.C.L. 1900 Stats. Package), 

each of the two separate sets of data was processed. 

The experimental design employed being an orthogonal one, it was 

perfectly valid to average out the results obtained from the two sets 

to yield a mean prediction equation, This was done to increase the 

precision and generality of the prediction within the experimental 

premises laid down earlier. 

Analysis of the 'Original' set of data yielded the following 

first order prediction equation: 

0.0486 0.648 0.912 
Xo 3 - - - = = (i) 

y = 87,622 x 

where: 

y is the resultant power component of the cutting forces 

in 1bf. 

x, is the cutting speed in f.p.m. 

x) is the feed rate in i.p.r. 

X3 is the depth of cut in inches. 

Analysis of the 'Replicate' set of data yielded: 

= -0.039 0.652 0.920 
71505000 a X5 X3 ---- (ii) 

These two expressions defined the equations to the least square 

"Response Surface" in a four dimensional space. 

The constant and the exponents were then averaged to yield the 

mean equation of the response surface as: 
  

-0.044 _ 0.650 _ 0.916 
3 = See ee Zou hied) 

  

y = 86,811 x, 
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The analysis was then further extended to include the quadratic 

effects of the three variables and their first order interaction in 

pairs. The respective equations obtained from the two sets of data 

were: 

Equation from 'Original' Data: 

y = 3,063,900 707655 4 1-153, 1.213 (,2)-0.009 (2) 0.024 
£ 2 3 1 2 

2-0.011 50.052 50.074 0.014 ; 
(x3) (x, .xy) (x) -x3) (x5 .x) - -(iv) 

Equation from 'Replicate' Data: 

y = 1,687,400 pe = x00 Ce (x5) 0.017 

- 0.006 50.040 50.064 0.013 -- (v) 
Psd (x, .X) (x, -x3) (x5 -%3) 

These two expressions referred to the least square response 

surface in a ten-dimensional space. 

The constant and the exponents were then averaged to yield 

the mean equation of the response surface as:- 

a -0.543 1128 1e273. 2,-0.005 0,021 
y = 2,375,600 x X5 X3 (x7) (x ) 

-0.008 
2 530.046 30.069 0.014 : 

(x3) (x, -X5) (x, x3) (x5 +%3) --(vi) 

6,2 TESTS FOR ADEQUACY AND 'FIT' OF THE FIRST ORDER EQUATION. 

The relevant information contained in computer print-outs, in 

the case of both sets of log-transformed data, were as below: 

ORIGINAL DATA. 

Number of degrees of freedom - 20 

  

Variable Name | Regression Coefficient.}] Standard Error | T-Statistics, 
  

x 0.0486387 0.0141735 3.43 

Xy 0.6484681 0.0132948 48.78 

x. 0.9119176 0.0141735 64.34            



pee 

Error Sum of Squares - 0.0306569 

Residual Error - 0.0391516 

Multiple Correlation Coefficient - 0.998 

Intercept Term - 11.3808098. 

TABLE. 3 

REPLICATE DATA 

Number of degrees of Freedom - 20 

  

  

Variable Name Regression Coefficient. Standard Error}. T-Statistics 

x 0.0386603 0.0137236 2.82 

2 06517568 0.0128095 50.88 
X3 0.9196497 0.0137236 67.01           

Error Sum of Squares - 0.0287418 

Residual Error = 0.0379090 

Multiple Correlation Coefficient - 0.999 

Intercept Term - 11.3620125 

TABLE . 4 

The T - Statistics in the first case indicated that the cutting 

speed was a significant factor at 1% level - and in the second case at 

2% level. 

Thus, in all cases the contribution made by each of the variables 

to the regression equation was determined to be significant, The 

coefficient of multiple correlation in both cases were assertive that 

the three parameters considered explained the variations in cutting 

forces adequately. It was, therefore, decided to subsequently use 

the information from the 9 repeat points during the test to check 

whether any 'lack of fit' existed between the first order regression 

equation and the data points (Ref. Appendix for theory). 

The scheme of checking this was best laid down by Draper and 
he 

Smith ( 15 ) in diagramatic form in Fig. 4.
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The specimen’ calculation in log,- transformed responses from the 

'Original' data was as follows: 

Pure Error Sum of Squares 

from 4 repeats 9, 10, 11 & 12: 

(0.488583" GP 0.491486" + 0.489784" - 0.489110") 

- 4x |0.488583 + 0.491486 + 0.489784 + 0.489116] 7 
ut = 0.000, 380,644, 1 

Pure error Sum of Squares ) 

13 & 19 from 2 repeats 

From repeats 14 & 20 

From repeats 15 & 21 

From repeats 16 & 22 

& 

} = (0.4935917 + 0.496634") si 

2 {0.493591 - 0.496634] z 
2 

% (0.496634 - 0.493591) 

oO 

1 
1 

-000,462,992,5 
Similarly, the respective quantities were: 

0.000,428,073,8 

0.000,429,045,0 

0.000, 540,547,2 
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ry 0.000, 863,616,8 

0.000, 680,067, 2 

From repeats 17 & 23 

From repeats 18 & 24 

Therefore, total Pure error Sum of Squares was 0.005, 784,986,6 

with 9 degrees of freedom. 

Thus, the Analysis of Variance Table showing 'lack of fit! 

was constructed: 

  

  

Source df. Sum of Squares. Mean Square. F. ratio. 

Residual 20 0.030,656,9 

Lack of Fit.}11 0.024, 871,9 0.002,261,1 ) 
Pure Error. | 9 0.005, 785,0 0.000, 642, 8 ; oe         
    

TABLER =a 5.5 

Table 2 gives the Analysis of Variance showing 'lack of fit! 

for the'Replicate' data, 

  

  

          
  

Source dt. Sum of Squares. Mean Square. F. ratio 

Residual 20 0.028, 741,8 

Lack of fit.}11 0.023, 225,0 0.002,111,4 ) 

Pure error. 9 0.005,516,8 0.000, 613,0 ce 

TABLE. 6. 
In both the above cases reference to F - tables indicated that 

for the respective degrees of freedom the 'lack of fit' observed was 

not significant at 2.5% level (F (0.025,11,9) = 3.92). Thus it could 

be concluded that the first order equation involving three variables 

only was a sufficiently reasonable predictor. 

This fact was again confirmed during the proving test series 

when only one out of thirty points was found to be outside the 95% 

confidence limits of the response predicted by this equation. 

The values obtained from the computer print-outs for both sets 

of first order results revealed that the Residual Error expressed 

as a percentage of the Mean Response was also quite small (less than 

0.8 % in both cases), and furnished further support for the adequacy 

of the three-variable prediction equation.
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6.4 LIMITATIONS OF THE SECOND ORDER EQUATION REVEALED DURING THE 

ANALYSTS. 

Considering the exponents of the second order equation, it could 

be observed that the relative size of the second order effects (the 

largest of these from the mean equation was 0.069) was quite small 

compared to the first order effects (the least of these from the mean- 

equation was 0.543). Also from the computer print-outs for regression 

equations involving 9 variables, it was observed that the T- statistics 

did not show any marked significance of the second order effects in 

most cases, It was further observed that the improvement in the 

coefficient of multiple correlation (this was 0.999 for both sets of 

data) with the addition of 6 more effects was insignificant (to the 

extent of 0.001 in the case of 'Original' data only). It could not, 

therefore, be considered worthwhile to include the second order 

effects for the formulation of prediction equation. 

  

co ANALYSIS OF RESIDUALS FROM THE FIRST ORDER PREDICTION EQUATION. 

The computer print-outs also contained an analysis of residuals 

(Le. ¥, bese Yee oe While postulating a multiple linear regression 

model, the assumption made was that the errors were independent, have 

zero mean, a constant variance and a normal distribution. The 

assumption of normality of the distribution validates the use of 'T! 

and 'F' ~- ratios for significance testing. Thus, if the postulated 

model was correct, the residuals should not exhibit any contradiction 

to the assumptions. This aspect was ascertained by the following 

checks. 

de For the 'Original' set of results, there were 12 positive 

obes Yest. 
set there were 10 positive and 14 negative residuals. The 

) and 12 negative residuals. For the 'Replicate' 

positive and negative residuals in both sets appeared to have 

occurred randomly (qualitative assessment) and did not reveal 

any time-dependent trends. 

2. The eh (where “i denotes the residual and 'S' is the residual 

error’) i=l, 2 ------- 24 watio was in all cases, except one, 

less than 2. Since 95% of an N (0,1) distribution lay within 

the limits (-2, 2), the assumption of normality of errors was 

not violated as revealed by this test.
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39 The ratio ‘est, was in all cases found to lie between 1.027 

Jobs. 
and 0.982 and was less than or greater than unity in a random 

manner revealing no systematic trends. 

  

* 

Be The computed value gt the Durban-Watson "D' Statistic (1¢) 

2 i = < defined by Doe te, ey D Gas 

as . 2 
toa 

in both cases less than the tabulated value for the respective 

number of variables involved. This 'D' statistic was printed 

out as part of the 'residual analysis' from the computer» and 
* 

only comparison of values tabulated in ( 17) was made, 

All the above checks were satisfactory and validated the 

postulation of a multiple linear regression model about the logarithmic 

transformed data. 

It was, therefore, decided to accept the mean first order 
-0.044 0.650 0.916 

= a 3 
as the prediction equation for the resultant power component ‘of the 

equation for the 'Response Surface', y = 86,811 

cutting forces under the cutting conditions stipulated. 

---000000000-~-
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CHAPTER 7 
EVALUATION OF PREDICTION EQUATION BY PROVING TESTS. 

7.1 ASPECTS FOR EVALUATION. 

  

After having accepted the final form of 'Prediction' Equation 

for forces, it was then necessary to verify the same. It was also 

important to check whether the time-dependent trends in cutting forces 

were predominant. With these two objectives in view, a series of 30 

control tests were planned. The chief limitation in devising the 

test series was the tool-wear. At higher speeds and at larger areas 

of cut, the tool-wear was significant. It was, therefore, decided to 

employ 4 corners of the same square tip, in rotation, serially for each 

test. This procedure would distribute the wear to 4 different cutting 

edges and simultaneously help to discover presence of time-trends, if 

any prevailed, as the tests progressed successively. If the cutting 

forces increased significantly with wear, it should be possible to 

observe the increases systematically while comparing the theoretical 

and experimental values of cutting forces, However, the most unfavour- 

able combinations of high 'speeds' and large ‘areas of cut' (either due 

to large 'feed-rates' or large ‘depth of cuts') were avoided to 

eliminate early failure of tool-tips. 

7.2 VERIFICATION OF PREDICTION EQUATION. 

The cutting conditions employed and the observed cutting forces 

were given in Table. /. 

Further, the resultant cutting force (power components) were 

calculated using the accepted form of prediction equation. These 

values together with the percentage differences between the ‘observed! 

and 'predicted' values were presented in Table.%. . 

It was observed that the largest deviation occurred in Test 

No. 14 and was 7.2 % 

In order to ascertain whether a deviation of this order was 

acceptable or not, confidence limit regions of the regression plane 

for individual observations were then calculated (Appendix - Theory 

of Regression Analysis). 

The 95% Confidence Limits for an individual observation for 

any point x, = p, %, = q and X3 = x were: 

+ vs C5; 05215 )-8 eat aiaieaty 
(X x) "Xx 

=o C= 2 =o
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TABLE . 7 

Cutting Conditions. Observed Resultant 
Test No.| Speed Feed-rate Depth of cut cutting force 

£.p.m. i5p or. inch. 1bf. 

1 1000 0.0033 0.100 184.0 

2 1000 0.0067 0.080 236.8 

3 1000 0.0133 0.060 289.7 

4 1000 0.0200 0.040 276.2 

5 800 0.0033 0.100 185.7 

6 800 0.0067 0.080 237.8 

7 800 0.0133 0.060 282.6 

8 800 0.0200 0.040 274.8 

5 800 0.0022 0.020 34.8 

10 600 0.0033 0.100 1553.5) 

11 600 0.0067 0.080 242.0 

12 600 0.0133 0.060 287.6 

13 600 0.0200 0.040 275.1 

14 600 0.0022 0.020 36.8 

15: 500 0.0033 0.100 188.4 

16 500 0.0067 0.080 243.2 

17 500 0.0133 0.060 29501 

18 500 0.0200 0.040 274.7 

19 400 0.0033 0.100 LS ez 

20 400 0.0067 0.080 247.7 

Zr 400 0.0133 0.060 307.7 

ze 400 0.0200 0.040 275.1 

23 200 0.0033 0.100 200.0 

24 200 0.0067 0.080 268.2 

25 200 0.0133 0.060 316.6 

26 200 0.0200 0.040 292.0 

2 1000 0.0033 0.080 155.8 

28 1000 0.0022 0.060 94.8 

29 1000 0.0067 0.040 124.2 

30 1000 0.0133 0.020 107.7         
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TABLE g 

Test No. Observed Force Predicted Force, Difference] % Difference 
1bf lbf. 

i 184.0 190.7 Zr Ord) + 3.5 

2 236.8 264.0 titee + 3.0 

3 289.7 293.4 2m) ts 

4 276.2 264.1 -12.1 - 4.6 

5 185.7 192.6 + 6.9. + 3.6 

6 237.8 246.4 + 8.6 Psi. 

7 282.6 2971: +14.5 + 4.9 

8 274.8 266.7 - 8.1 - 3.0 

9 34.8 33.9 = 0.9 = 2.7 

10 EBS: 19561 +95 +> 9.0) 

11 242.0 249.5 eS + 3.0 

12 287.6 300.8 L352 + 4.4 

13 2755) 270.1 - 5.0 = 1,9 

14 36.8 34.3 = 2.5 = 162 

15 188.4 196.7 + 853 + 4,2 

16 243.2 25152 + 8.0 heSe2 

17 295.1 303.3 + 8.2 aioe 

18 274.7 2723 - 2.4 - 0.9 

9} 193.2 198.6 + 4.4 eee 

20 247.7 254.0 +76.3 +4205. 

21 30747 306.0 - 1.7 - 0.5 

22 275,1 274.9 - 0.2 

23 200.0 204.7 + 4.7 223, 

24 268.2 261.9 - 6.3 = 2.4 

25 316.6 31557 - 0,9 =10.3 

26 292.0 283.5 - 8.5 - 3.0 

27 155.8 155.5 = 0.3 

28 94,8 91.8 = 3.0 = 363 

29 124.2 129.3 + Sel $mSc9 

30 107.7 107.5 = 0.2              
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TABLE. 9. 

  

  

feee Predicted Force] Observed Force, Upper Confidence.} Lower Confidence 
x (1bf.) (1bf£). Limit. Limit. 

1 190.7 184.0 205.5 177.0 

2 244.0 236.8 262.7 227.0 
3 293.4 289.7 31652) 273.4 
4 264.1 216.2 284.5 255.1 
5 192.6 £8507 207.3 179.0 
6 246.4 237.8 264.8 22951 
7 297.1 282.6 31675 276.3 
8 266.7 274.8 287.1 247.7 

9 33.9 34.8 36.8 ate 
10 £9561 185.5 209.8 181.3 
Ty 249.5 242.0 268.0 23063 
12 300.8 287.6 333.1 27959 
13 270.1 275 ak 290.6 251.0 

14 34.3 36.8* 36.7 89 

15 196.7 188.4 21176 182.8 

16 Potee 243.2 270.1 233.1 

17 303.3 eo 5: 325.8 282.2 

18 21253) 274.7 292.9 253.0 

19 198.6 193.2 213.8 184.5 

20 254.0 247.7 272.9 236.4 

21 306.0 307.7 329.2 284.9 

22 274.9 275.1 295.9 255.5 

23 204.7 200.0 221.3 189.4 

24 261.9 268.2 282.8 243.0 

25 S15 <7) 316.6 340.6 CAVA) 

26 283.5 292.0 306.1 262.5 

oF 155.5 155.8 167.3 144.4 

28 91.8 94.8 101.1 85.2 

29 £2353 124.2 139.1 120.2 

30 107.5 L077 116.1 990)             
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where: 

y is the predicted value. 

t is the relevant 'T' statistic from Tables. 

s if the best available estimate of the standard error. 

(This was calculated using the Residual Sum of Squares 

between the theoretical and observed responses). 

' 
x ofS (1, In p, In q, In r) matrix. 

' 
X is the (4 x 30) log, transformed 'cutting conditions! 

matrix, 

The calculation of x (x'x)71 a involved multiplication 

inversion of large matrices to yield a row-vector of 30 numbers, 

To achieve this step, a computer programme was developed using 

available matrix 'multiplication' and 'inversion' procedures 

(Appendix). The upper and lower confidence limits for the 30 

individual observations were as in Table. 9 . 

From Table. 9 , it was observed that for the entire series 

of tests, the actual cutting forces were within the confidence limits 

with the exception of Test No. 14 (*), Thus, the validity of the 

prediction equation was verified by the test series. 

Ted ESTABLISHING THE ABSENCE OF 'TIME-TRENDS'. 

* 
Draper and Smith ( 15 ) have quoted Swed and Eisenhart 

* 
(48 ) and indicated a method by which the significance of any time- 

trends in a set of data could be tested, 

This involved counting the number of positive and negative 

residuals and also counting the number of groups of 'like' residuals 

in the time sequence of tests. De ‘nhs were the number of positive 

residuals, ‘n'y the number of negative residuals and 'u' the number 

of groups of 'like' residuals they have quoted that the 'mean' (p) 

and 'variance' (67) of the discrete distribution of 'u' were given 

    

by: 

pe 2 ie MeoL 

Sie? 

Sate 2 nyeny C2n,.n,- 7) - 

2 (ny +n)” (ny + ay - 1) 

Then, the test unit normal deviate 

u-pt4 
Zz =   

o
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could be formed and compared against the tabulated 'Area under normal 

curve' values, 

The time sequence signs of residuals in the Proving Test 

numbers (1) to (30) were as follows: 

CH) (=) G+) (=) GH) (--) GH) (=) GH) (--) (4) (----- >@ (©) 

Here, n, = 16 

Ry = 14 

a = 14 

Mean of the distribution of 'u' = p = 239 

15 

and Variance of the distribution of 'u' = ae = 187,264 
261,00 

= 7.17487 

ay S = V7.17487 = 2.6786 

+’. The test normal variate Z =- 43) _ 
BOS6k 0.5351. 

This small value of the unit normal deviate indicated that 

the idea of randomness in the arrangement of signs was not to be 

rejected. This test furnished negative evidence against the 

presence of any time-trends,. 

It was therefore concluded that the results from 'Proving 

tests' satisfied both aspects for evaluation of the accepted 

prediction equation. 

---000000000--~
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CHAPTER 8. 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK. 

8.1 CONCLUSIONS . 

Le It was found that the resultant of the power components of the 

cutting forces, when plotted against 'speed' and 'feed-rate' on a 

three-dimensional logarithmic scale,lay in approximate plane within 

the ranges considered (Section 1.1). Exceptions to the above did, 

however occur at combinations of very low values of 'speed' and 'feed- 

rate’, The departure from planar response for low values of ‘speed! 

and 'feed' was due to the effect of built-up edge formation at the 

tool tip (Graph iv). 

2s Similarly, when plotting the resultant force against 'speed' 

and 'depth of cut', the values lay in an approximate plane for the 

entire range considered. (Graph v). 

3. Within the range of this investigation the resultant of cutting 

forces considered (y) was a power function of (i) cutting speed (x), 

(ii) feed-rate (x5) and (iii) depth of cut (x5) in accord with the 

general equation a ey oe me (where k, a, b, c are constants 

for a particular material), the influence of the depth of cut being 

the most and that of cutting speed the least. 

4 Previous workers (5) have contended that the effect of ‘cutting 

speed' on forces was negligible. But, this programme of research has 

revealed that it was not so for the conditions laid down (Section 1.2). 

The investigation has proved that the 'cutting speed' influenced the 

resultant cutting force in a significant manner with an inverse linear 

double logarithmic relationship. 

ay The mean first order prediction equation for cutting forces, 

in the case of EN-8 steel was formulated as: 

-0.044 0.650 0,916 
y = 86,811 xy ° % 1 

where: 

y = Resultant power component of cutting forces in lbf. 

5 Cutting speed in f.p.m. 

Xy = Feed-rate in i.p.r. 

x, = Depth of cut in inches.
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This equation was determined to be a sufficient predictor 

for forces by suitable statistical tests and compared favourably 
* 

with the two variable equations given by Boston and Kraus (4). 

The equation was also verified by means of a proving test series. 

6. When a second order regression model was postulated to 

include the quadratic and interaction terms of the three variables, 

with the same experimental plan, the mean equation was determined as: 

-0.543 1.128 15273 70-005 (0.021 
y = 2,375,600 x »X, - X F (x) é (x) 

2,-0.008 50.046 0.069 0.014 
(x5) + (XX) "2 (XE-KS) + (X,.X,) 

The exponents of the quadratic and interaction terms revealed 

that these effects were small compared to the first order effects. 

However, it was observed from the computer analysis that there was 

a very high degree of correlation between the cross-product term 

(X,-X3) taken singly, and the response. 

de The power of "Response Surface Methodology" approach was 

highlighted by the results of current investigations. With a small 

number of 24 cutting tests, it was proved to be possible to fully 

formulate both the first and second order prediction equations and 

also assess their relative importance and precision for any material, 

reliably. The method could be used, with advantage, in situations 

such as prediction of "Surface Texture" or "Machinability" with 

considerable economy in comparison to the classical approach of 

studying the effect of one variable at a time. In addition, the 

method enabled one to do without the assumption of absence of inter- 

action between different parameters. 

8. The effectiveness and reliability of the statistical checks 

used for testing the adequacy of the first order model were established 

by the results of the proving test series during which only one (out 

of 30) lay outside the 95% Confidence Limits for individual observations. 

S The effect of built-up edge phenomenon was more predominant 

with combinations of low 'speeds' and low 'feed-rates' than with 

combinations of low 'speeds' and low ‘depths of cut'. 

1o. The radial component of the cutting forces was found to have 

a tendency to increase with larger areas of cut, but was very much 

sensitive to conditions at the cutting edge and did not show high
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possibilities of repeatability. 

it. The P.E.R.A. design of the three dimensional Strain-Gauge 

type of dynamometer adequately satisfied the general requirements 

for a 'turning' dynamometer in the range of O - 500 lbf, for all 

three components of cutting forces (Section 3.1). 

8.2 SUGGESTIONS FOR FURTHER WORK. 

Ni During the investigations, evidence was found to suggest 

that the hardness of the work-material (in the case of plain 

carbon steels) also had a logarithmic linear relationship with the 

resultant cutting force. Other variables like Tool Geometry (specially 

the Rake Angle and Tool-nose Radius) also could be attempted for 

inclusion into the regression model after suitable transformations, 

Further investigations with the addition of these new variables could 

lead to formulation of a more generalized prediction equation for 

cutting forces. 

2. The variations of cutting forces tended to be a minimum 

within a tool-life range of 5 - 15 minutes for low speeds and small 

area of cuts and 5 - 10 minutes for higher speeds and larger area» 

of cuts (Graph (vi) ). However, the definitive pattern and the 

significance of these variations has yet to be determined. Further, 

the rupture stresses of the work-material at three faces of the tool 

(Top rake, Front cutting edge and Side cutting edge) showed a tendency 

to be approximately equal (Graph (viii) ). Additional investigations 

are needed in these areas, 

3. The high correlation between the cross-product term XqeXy 

('feed-rate' x 'depth of cut') and the cutting forces could be 

further investigated to ascertain whether this term alone would yield 

a sufficient predictor equation and compare the results thus obtained 

with those from the currently accepted equation, 

4. There was some evidence to suggest that the surface texture 

(C.L.A. value) on the work-piece tended to be correlated to 'point' 

wear more than 'flank' or 'crater' wear. Investigations up until 

now did not seem to have taken this aspect quantitatively into 

consideration for evaluating surface finish. Future work could be 

done in this direction, 

De "Response Surface Methodology" approach could be effectively
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used for prediction of 'Surface Texture', 'Machinability' and such 

other excessively 'time and other resources' consuming studies with 

remarkable success and economy. It is felt that a particular area 

in which this technique could be applied quite successfully is in 

investigations concerning surface wear patterns during the operative 

or functional stage of components oncethe parameters affecting 

it have been sufficiently identified to be measured and their 

individual relationships to the 'wear pattern' established. The 

smallness of the number of tests required is of tremendous advantage 

in such a time-consuming study. 

---000000000---
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APPENDIX.1 

Oe ee 
ibe THEORY OF MULTIPLE REGRESSION ANALYSIS. (15,19,20,21 ) 

  

One of the most frequently used types of statistical analysis 

is the one which is provided by the theory of regression and correlation. 

In situations where data is available on one or more variables affecting 

a dependent variable, whether the existing relationships are linear or 

otherwise, an analysis of regression would help to reveal and formulate 

the relationships. Theavailability of suitably programmed electronic 

computers have accelerated the use of this technique in a variety of 

applications, In cases where the relationship between the dependent 

variable and the independent variables are linear, the analysis is 

straightforward, In a vast majority of cases where the relationship 

is not linear, it is possible to linearize by means of suitable 

transformations, One of the most common transformations employed is the 

logarithmic one. 

In the present investigations, it has been established by 

preliminary trials that the relationships between the resultant power 

component of the cutting forces and each of the three independent 

variables could be linearized by double logarithmic transformations, 

The analysis, in this case, is also straightforward except that instead 

of the values of the variables, their logarithms are considered and 

the final results are expressed in their original form. As the 

independent variables were more than one, this was a case of multiple 

regression analysis. The matrix algebra method of regression analysis 

was easily amenable to computer calculations and was employed for the 

analysis, The theory underlying this method could be summarized as 

below. 

The object, in the case of a multiple regression model, is 

to find the equation to the least square plane between the response 

and the concomitant variables. 

A matrix is a rectangular array of symbols or numbers and is 

denoted by underlinedcapital letters in this Thesis, The size of a 

matrix is denoted by 'm x n' matrix indicating that there are 'm! 

rows and 'n' columns, A row vector is 'l x n' matrix and a column 

vector is 'm x 1' matrix, The transpose of a matrix A is denoted 

by A' and its inverse Aa
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The theory would be explained, for the sake of simplicity, 

for the case of two independent variables and a response though 

the method could be extended to any number of independent variables. 

Let the vector of the responses observed in a series of 'm! 

tests be denoted by Y ('m x 1! matrix) and the corresponding 

matrix of independent variables x and Xo be denoted by X ('m x 2! 

matrix), 

In the case of linear relationship between one response and 

one independent variable, the relationship could be expressed as 

y = c + px where 'p' is the slope of the line and 'c' its intercept, 

Thus, in the case of two parameters, there would be two constants or 

coefficients to be evaluated. In the present case, there would be 

three constants to be evaluated. These could be denoted by a 

‘1 x 3' matrix (B), The equation to be formulated would be that of 

a plane from which the sum of the squares of deviations to the 

individual observation points in the simple space is the least. 

Thus, the relationship formulated would not be exact for all the 

individual cases and would contain an error term denoted by & 

('m x 1' matrix). The regression model could thus be expressed by 

the matrix equation: 

y= 

Io
 

Ib
s 

Te 

METHOD OF CALCULATION OF COEFFICIENTS. 

In the case of a two variable problem (y = c + px), we have 

referred to the calculation of two constants 'c' and 'p', The 

constant 'c' could be considered as the coefficient of unity. Thus, 

the introduction of a column of ones as x in the observation matrix 

of independent variables would make things simpler by treating them 

all as coefficients of variables, The regression model would, 

therefore, be: 

x B x © 
ve 

f om = 
¥2 pq 1) 1 29 £) 

A 
¥3 © | 139 ©) %31 32 . 

a = & " Es =: es +
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' 
If the transpose of the matrix X (i.e. X) -a'3 xm! 

matrix - is post multiplied by the matrix X, it would yield a 3 x 3 

matrix with the following terms: 

2 
ae 28 2% Sy -%s9) 

Tq Vly xy) Tey 
Similarly: 

ee ad ae 

2% 
Applying matrix algebra the matrix B could be evaluated as: 

-1 
x'Y 

  

where 'B' is the vector of coefficients 

and kx] 7 is the inverse of X'X 

The coefficients thus evaluated are the estimates of the 

population coefficients Bo > iy > & B 2 and could be, therefore, 

denoted by bos b, and by. 
i 

The solution for B can be obtained only if X'X is 

nonsingular’ so that its inverse exists. 

PRECISION OF ESTIMATED REGRESSION. 

In order to assess the extent of utility of the relationship 

expressed by the regression equation, it would be necessary to find 

out its associated precision. If the estimated value of the response 

(under a certain set of conditions) given by the regression equation 

is denoted by Yi and its true value by Yue then: 

a 
=n y 

& A i 
NS Gee Oa i = Ye) 

By squaring both sides and summing from i = 1 to m and 

simplifying 

=)? ie Ave A =) 
EG eo) eae ee ee Cr yoy 

i.e. (Sum of the Squares (denoted by) (§.S. of deviations of ) 

fs.s.) of deviations of (oveervattens from its 

fobsetuactons from its overall 3 = (orcdicted values 

¢ tata fnean j Co of deviations of 

(predicted values from 
(the overall mean. R

A
S
 
U
S
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The above statement could be given the following notation: 

S.S. about mean = §.S. due to regression + §.S. about regression 

(Total Corrected $.S.) (Residual) (Regression). 

Any sum of squares is associated with its 'degrees of 

freedom' which in the above case would be (m-1), k and (m-k-1) 

respectively for the three quantities, 

The square root of the ratio 

(S.S. dueto regression) . 
(S.S. about mean pyre cated th 
Regression" (R) and the nearer it is to unity, the better would be 

e "coefficient of Multiple 

the agreement between the predicted and experimental values. 

The ratio (§.S. due to regression/k Tadicates 
(S.S. about regression/(m-k-1) ) 

an estimate of the precision of the prediction and is to be compared 

against the relevant 'F' - Statistics for determining the 

statistical significance of the regression equation. 
2 

The term }(¥, - ¥) is called the Corrected S.S. and 

is equal to ry,” - (ay) . Therefore > eo could be 

m 2 
logically called the Uncorrected $.S. and ( © Y,) the correction 

factor. m 

Now, if the centre of the co-ordinate system in which the 

values of 'x's and 'Y's are plotted is made to coincide with Y, 

the constant term (intercept) by would be zero and therefore 

(zy,)? would be zero. Thus, the correction term (Sas is 

m m 

‘due to bo” and could therefore be denoted as S.S. (by) and it 

has only a single degree of freedom. 

Similarly, the product of a particular coefficient (e.g. b,) 

and the co-variance of the variable associated with the coefficient 

Gx in this case) to the response variable (Y) gives the sum of 

squares for by after allowance has been made for bo. This is 

indicated by the notation S.S. (b,/b,) and has again got a single 

degree of freedom. Each of the above quantities S.S. (b)) and S.S. 

(b, /b,) could be tested for statistical significance by comparison 

against Residual $.S. and reference to 'F' tables (or the square 

root of the ratio as has been done in the computer print-out, to 

'T! -tables).
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This would enable one to decide about the usefulness or otherwise of 

adding each variable into the regression equation. 

Thus, for a Regression Analysis, the Analysis of Variance 

Table would be: 

  

  

  

        
  

  

SOURCE S25. D.F. M.S. 

2 
Regression (b,) 8.S.(b,) =) F. XY, 1 

m 

Regression (b,/b,) $.8.(b,/b,) = b, [Ex,¥, - Sed) 1 

m 

Residual S.S.(R) by Subtraction. m-2 =8.S.(R) 
m- 2 

Total Uncorrected 2 

for mean > Yy = 

TABLE NO. Alciy 

Also, we have: 

2 & 
(2) Ss) (Gee ee ae 

° me 

m 

: = - see: Gi) 8.8.(0,/b) =>, [Ex,%,- =x, ] 
m 

=b =xY, - maxX .¥ 
iL ie 

. ss 32 
++ 8.8.(b,) + $.8.(b,/b,) = b, Ex, ¥, - bl.m.X.Y +m¥ 

by ZxY, +myY (Y¥ - b,x) 

1 by = xiYy te b= Y, 

(b, >) jes | 
zk, Y;. 

-BRY 

Therefore, using matrix notation, the Analysis of Variance Table 

could be written as: (Table No.A1 ())
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SOURCE 
  

Regression (b,) 

Regression (b,/b,) 

Residual.    
  

Total yy m             

TABLE NO, At (ii) 

ANALYSIS OF 'RESIDUALS' TO TEST WHETHER 'LACK OF FIT' IS SIGNIFICANT. 

The regression plane is 'fitted' on the assumption that the 

postulated model is correct. This can be tested by further analysis. 
A “A 

gf oa Y; = Yi (where Y; and Yy are the observed and predicted values 

respectively) is the residual at x this residual should contain the i? 

information on the ways in which the fitted model fails to explain 

properly the variations in the response. 

Let ey =: (y,) denote the value of Y, given by the true model 

aC: x * x, « 

A aA A 
Then, We vs) > Yo) > -%) +8 =X.) 

zs = L at tas, a 

-f, 90 - Fry - edo) + Puy - 2a] 
4g TPP 

where q, = [c, - u) - ns -—E ao 

r, - #@)] 

The quantity "p;' is the bias error at x = Xie If the model 

and Py 

A 
is correct, E WY) = ee and Py would be zero or conversely if 

incorrect Lge would have a value. The quantity ‘a,' is a random 

variable irrespective of the validity of the postulate and can be 
2 

shown to be correlated with an expected mean value of (n - 2) 0 

where v(y,) S Vite) isc, 2 It can also be further shown that 
A 

the residual mean square value of ie os WY - Te has 

an expected value of o* (Error bapa it i model is correct 

and o 2 ban ey py /n - 2 otherwise. If the model is correct, 

i.e. Pa 0, then the residuals are correlated random deviations ' 

q; and the residual mean square can be used as an estimate of G.
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However, if the model is not correct, then Pye O and the 

residuals would contain both random (q,) and systematic (p,) components 

and would tend to be comparatively larger. If a prior estimate of 

o @ is available from previous observations, this can be compared 

against the residuals obtained and the ratio checked by means of an 

F - test for significance. If by the F - test it is found that the 

residuals obtained is great, it could be concluded that there is 

significant 'lack of fit' and the postulated model has to be re- 

considered. However, if no prior estimate of Co 2 is available, 

repeat measurements of Y can be made at specified levels of 'x's 

and from the information obtained from these repeats so can be 

estimated. Such an estimate is denoted S.S. "pure error" because 

it contains only the random variations affecting the response from 

identical conditions. For this reason nine repeat points , at 

various levels, have been included in the experimental design 

devised. 

Tf,Yj4> Yio --- Yy 2, are ny repeats at X> 

You? Yoo? a Yo ny are ny repeats at Xo ) 

Yup Yio? — = YX, 6 are ny repeats at x 

k 
then the Mean Square for pure error is: 

  

Once the S.S. pure error has been evaluated, the 'lack of fit! 

$.S. can be found by subtraction from 'Residual'S.S. and the 'F' 

ratio can be formulated for significance testing after dividing 

both by their respective ‘degrees of freedom.' 

Therefore, the residual error S.S. evaluated in Table 

can further be split into Pure 'errér' and ‘lack of fit' S.S. 

and the ratio ( Mean Square 'Lack of fit' ) formulated to decide 

( Mean Square 'Pure Error' ) 

whether there is any evidence to indicate any inadequacy of the 

postulated model. 

VARIANCES AND CO-VARIANCE OF b and by BY MATRIX CALCULATION. 

  

For a function, F = Y, ta, Y,+--- avy the variance 
2 enue 

  

is given by:
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Vv (F) = a2 v(y,) + a2 V(Y,)+--<<----- en avn) 
1 iL 2 ie m m 

If all the 'Y's are uncorrelated, the 'a's are constants and 

Vv (,) = 6 oF then, 

a? 2 2 V (F) = (a; fase oe een) or 

2 2 
mee Oy anne eee ern =<= =~) 

In the case of 'centered' data, i.e, the origin of the co- 

ordinate system is transferred to (x, Y ), it is easy to see that b 

is zero and 

Dye ea Oe ae) (Yon 1) 

ZG, - x) 

= a(x, =e) Ye 

2 x)? 

(Since > Cx, -x)= 0) 

Applying Equation (i) into (ii) and after reduction: 
2 

V (b)) = wo 
=e 

Dx, - x) 

Vd = bez) 
az 2 

Oe ngs Co 

m Et, a x2 

  

Similarly, V (b,) 

2 P53 
6 = 

a SACe Se ae ean Gt a ue wage ey) 

Covariance (b); b) = Cov. IK Y - by x), >] 

= =x V (b,) 

-x 6 
ee 

DG) ie i (v) 

Thus, the variance - covariance of the vector B could be 

written as; 
wi (be) 

WAR) TS Viney Ge. 3| vb.) Cov (b,b,) 

(b,) Cov (b,b,) Vv (b,)
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2 2 
Sa SON eee 6 

m © (x, - x)? EG, -D 

5 2 
ae ee o 
EG, <2) Gl exp: 

2 -_ 

Sees a = 
a2 

ee mU(x, Le 2 (x; ~ =) 

ue x 

Loe, - x)? Ex, - ¥) 7 
-1 

The matrix in the above case is the same as {z' x] matrix 

in the case of a two variable (one dependent and one independent ) 

set. al 

Tee CB) S91 CUx) 2:6: (vi) 

Therefore, the variance of each individual coefficient is 

obtained by multiplying the variance of the response with the 

corresponding diagonal term of the cxtxy matrix, 

A 
VARIANCE OF Y USING MATRIX METHOD. 

Yob +b, x 

In a particular case, let the vector xref 
x 

1 

i.e. x} =, x,) 

Using matrix notation, we can denote 

Ysabart Bie cyee Xt C1, x) EB 

-xi op -3'x L 
= = 

A 
Since Y is a linear combination of random variables bo» 

b,> it could be stated that 

Z 

1 

It could be verified by working out the indicated matrix 

vq@)ev (b,) ee x, Cov. (bo b,) + x. Vv (b,) 

and the vector products, the above expression would be: 

vm ox] |” (a) Cov (b)5 by) 1 
Cox (bo» b) v (b,) x
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The above expression could be generalized for any variable 

as = aT! 

Sra) ct (ta 6 eee (vit) ko Sk DSA OF 

It is also known that an estimate of Pe is, in all cases, 

provided by the Residual S.S. which could, therefore be given the 

notation s? (Tables Atw) and A1 ci), 

It could be verified that the variance of YX is a minimum 

at x, =X and increases as , values move away from x in both 

directions. This indicates that one might make the best prediction 

in the neighbourhood of the 'middle' range of the sample space, 

CONFIDENCE LIMITS FOR THE VALUE OF Y GIVEN A SPECIFIC SET OF 'x's. 

(i) For the mean Value of Y 

The (1 - ©) Confidence limits of the true mean value of Y 

at x, are given by: 

Ye 
- “(m-k-1, 1 - &/2) s./ x (X'X x 

Where 't! is the tabulated values obtained from the T - 

tables. 

It is obvious that the confidence region of Y tends to get 

larger when one moves away from ¥. The confidence limits form 

part of hyperboloid surfaces on either side of the least square 

plane in a multiple regression problem, 

(ii) For an Individual Observation Given a Specific Set of 'x's. 

The (1 - &) confidence limits of a mean of 'n' observations 

of Y is given by: 

Seatrack yD sJifa + & kX) X, 
Therefore, for an individual observation of Y, the 

confidence limits are:- 

Me Oca eee teraroy Syl 4x, WR” Ux, 

EFFECTS OF HAVING ORTHOGONAL COLUMNS IN THE X MATRIX. 
  

In a regression problem having parameters Po By and B 2? 

it is possible to calculate the sum of squares due to any one
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variable such as S.S.(b,) from model Y =f, KX, +e 

$.8.(b,/b,) from model Y = § Spe Bix, +e 

8.8.(b,/b,,by) from model Y= fi. + $x, +X, + 

These quantities would all have, generally, different values 

except in the case when "Bi! column of the X matrix is orthogonal 

to both eet and ' fy colums. In the latter case, all three 

values of the sums of squares would be identical. 

i.e. S<8. (b,) = 5.8. (b, /any set of "b,'s i 2) 

It can also be proved that when replicate sets of responses 

due to an orthogonally spaced levels of influencing variables are 

available the regression coefficients can be averaged to obtain 

better estimates. 

It is therefore, of definite advantage to orthogonalize 

the data matrix by choosing equal logarithmic increments 

symmetrically on either side of a coded zero mean value with each 

independent variable. This has been done in the present investigations 

with specific advantages. 

FIRST AND SECOND ORDER REGRESSION MODELS. 
  

When the terms of a regression model are all linear, it is 

caled a 'first order' model. 

When the regression equation contains quadratic and interaction 

effects also, it is called a second order model. A complete second 

order model involving 'k' influencing variables would involve 

evaluating % Ce +3 k) + 1 coefficients. 

With the aid of modern high speed electronic computers, the 

analysis of a second order model is identical to a first order one 

by simply treating each second order effect as a separate variable. 

ADAPTATION OF MATRIX METHOD FOR HIGHER ACCURACY DURING COMPUTER 

ANALYSIS. 

When data is treated in the normal manner, the X'X matrix 

may contain numbers of widely varying orders. While Ey, such 

a matrix, large 'rounding-off' errors would occur. ( 25) 

An effective way of overcoming this difficulty is by 

"centering' of the data and scaling down. In this case, all terms 

of the X'X matrix would lie between -1 and +l. The procedure
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involved is as follows. 

If 21s Zo ---- Za are some functions of the independent 

variables Siptkoe see x, influencing the response Y, the 

regression model can be written as 

ee Pe 2p oor hy ay 
Let Z, Z, -- Z be the means of the various 'Z' 

columns in the data matrix. 

Then the model can be rewritten as: 

  

Booed Ut fy te fate 

J 2s fy @y -%, + -- - fi@q - %) 6 

If we write Zp 4, = i=1,2---nand f) = 

fy ta paz a + Bo Zy +e -- - Bn Za the model can be 

expressed as 
' 

B+ Az, + fo %t+--- Bee eta) 

Now, if we make the same transformation on the data as made 

on the variables above, i.e. Yi = re Z, jzl, 2--n andi 

= 1, =, ---- m (assuming there are m rows ae the data matrix), it 

follows that z, = 0 for j = 1, = ---- m, By differentiating the 

residual sum of squares with respect to es the first 'normal 

equation! could be obtained which would yield: 

' _7 

Poh? Pity ae foe 

But Zs 25 Ter Te are all zero. 

t - 

Therefore, f Ys 

Thus the model indicated by Equation (viii) can be written 

fa, - 7) + B, @, - 
Taking the simple example of a two variable and response 

as: 

   J+--- +e 

  

Z 

case, with 'n' rows of data matrix, the model, after 'centering' 

can be presented as: 

y-¥ = £,@,-%)+ £,@,-%)+ 
nw = a 

If we denote = 5, - “i (215 - 21), 3, L= 1, 2; 

as Si1° the X'X matrix could be seen to consist of Ss) 

s, 

These numbers could be of widely varying orders.
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If we transform the 'centered' data by: 

2 pumecn ieee) ass and 

Sg 
Ae) 

‘4 = n 2 

Yi" % > wheres = oe (x, - Y) 
oa ae a ae 
oy 

and make similar transformations on the variables 21> Zo and Y 

by dropping the 'i' suffix throughout, this would yield a new 

form of the centered model as below: 

ue : 
YS" = $151) % + foa-Sp° +e 

% 
: Ss 3 
ON i ae +f2. P27) x +e 

YY: 

= O&O .x + 5 +X +6 —- = = ae 8 ee A Re He ee (ix) 

where s % 

Oe = 1p .. us and 
1 ace han e Pea! 

a yy 3 ‘ 

2 S2 a 
5% 

vy 

These new coefficients oC, and OX, are scaled forms of 

the original coefficients f 1 and bee respectively, the ratios 

11 and 8 J being the scaling factors. 

s Ss 
y Al 

As a consequence of the transformations effected, the X'X 

matrix for the problem would now become: 

1 85 
(Syyesny)* 

$51 
% ay (847-859) 1 (Also, (8,5 = 851) 

Therefore, in the general case of more than two variables, 

the X'X matrix would consist of a symmetric matrix with diagonal 

terms unity and the other terms as below:



  

    

t S12 Sige ek ee Sin 
% % % (81-859) (811-833) (Sr ena? 

s 
21 l Sos iPass a ile Sele Son 
(855-8,,)% (855-8,,)° (8,5.8_)° 22°511 227933 22°°an 

Sat S32 i tara epee agra ete ey Seer 
% 4 

(S34-8),) ($5-S55) 

ent en ee ie ee eee i 
(snp 

“Where: ‘e 
n 

3 = Z., °2 - ga a ee) 

jl, 2----+-- m 

By definition of the coefficient of correlation between 

any two variables x and x 

eee IY = VS) 
Fae 2 i 

T xy Sane 

    

= (x, - ®) . = 7 ¥)"] : 
Pad is 

From this definition, it follows that each of the terms of 

the above X'X matrix denotes a coefficient of correlation between a 

pair of variables and therefore the matrix can be re-written as: 

  

z 12 aS ee | ‘In 

To 534) gees er a On 

31 X30 Pegg eps ori 

Dee aeclkemae Sn Sees eS 2S Se see 1 

Since ae = ip this is a symmetric matrix and is termed 

the"correlation matrix", 

The correlation matrix in the case of a two variable problem 

would be:
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The normal equations for the scaled model could now be 

expressed in matrix form as: 

1 Tio a, 5 iy 

21 1 "9 Tay 

Where a) and ay are the least square estimates of or 

and & 2 in Equation (ix). 

The least square solution of the transformed coefficients 

a, and @5-are thus given by: 1 

[2] i hy [ uk a 

7) roy, =2ii 1 

By inspection of the above matrices, it is evident that each 

1 

of the terms of the right hand side product-matrix would be between 

- land+1. Thus, the order of all numbers being the same, rounding- 

off errors would be a minimum, 

The solution of the coefficients bo; b, and bos in the 
1 

original form is obtained from a, and ay by applying the inverse 

  

fi 
relationships: 

and b, = Y- db, 2) - by Z, 

where: 

a> Zo and Y are some functions of the investigated variables. 

In the presented analysis, the digital computer not only 

reconverted the 'a's to 'b's, but also reversed the scaling process 

and printed out the coefficients in terms of logarithms of the 

original variables. 

The computer calculated the correlation matrix and initially 

chose the independent variable (say, xX, ) which was most correlated 

with the response (¥) and calculated the coefficients b,, b, and 

also the coefficient of correlation between x, and Y. Further, 

it regressed the residuals against each of the remaining concomitant
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variables and next selected the one with the greatest coefficient 

of partial correlation (say oh) and included it in the regression 

model giving bos bes BS and the coefficient of multiple correlation 

and certain other statistics. The process was repeated until 

all the variables had been similarly considered in terms of 

decreasing order of contribution to explain the variation between 

the observed and calculated values of the response. With the 

addition of each variable, the computer print-outs also included 

the variances and the T - Statistics for determining the significance 

of each variable and also the partial correlation coefficients of 

the variables yet to be included. 

The programme also yielded a full-scale analysis of the 

residuals at each stage giving first and second differences between 

observed and calculated values of the response and certain other 

ratios of importance in discovering concealed trends, if any, in the 

residuals, 

0000000
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DETAILS OF P.E.R.A. DYNAMOMETER.
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COMPUTER PROGRAMME FOR CALCULATING CONFIDENCE 

LIMITS FOR PROVING TEST SERIES. 
 



STATEMENT 

oO 
@
O
M
m
m
A
a
n
N
I
 

D
A
U
 

PF 
w
W
B
N
H
H
H
 
O
O
 

- 
; 

tt 
RS
 
G
e
 

ts
 

to)
 
e
e
 
t
n
 

N
N
 

ih 
fe 

fe 
e
e
 

ee 
P
r
P
O
W
 

O
N
 
A
U
N
U
W
H
H
O
A
A
U
B
D
H
E
O
A
A
U
B
H
O
 

A3 -1 

"LIBRARY' (ED. SUB GROUP MATX) 
"TRACE! 2 

"BEGIN! 

'INTEGER' 1.M1.N1; 

"INTEGER! NUMBER ; 

START: 

SELECT OUTPUT (0) : 

SELECT INPUT (0) : 

NUMBER: = READ: 

Nl = READ: 

Ml: = READ: 

'BEGIN' 

"ARRAY' XO(1:N1,1:M1).XT(1:M1.1:N1).XP(1:M1.1:M1): 

'PROCEDURE' MX READ(A.ML.MU.NL.NU): 

'VALUE' ML.MU.NL.NU: 

NINTEGER' ML.MULNL.NU: 'ARRAY' A: 'ALGOL': 
"PROCEDURE' MXPRINT (A.ML.MU.NL.NU.P.Q): 

'VALUE' ML.MU.NL.NU.P.Q: 
NINTEGER' ML.MU.NL.NU.P.Q: 'ARRAY' A: 'ALGOL' 
"PROCEDURE' MXINV1 (A.NL.NU): 

'VALUE' NL.NU: 

"INTEGER' NL.NU: 'ARRAY' A: 'ALGOL': 

'PROCEDURE' MXTRAN(A.B.ML.MU.NL.NU): 

'VALUE' ML.MU.NL.NU: 

NINTEGER' ML.MU.NL.NU: 'ARRAY' A.B: 'ALGOL'. 
'PROCEDURE' MXPROD (A.B.C.ML.MU.NL.NU.LL.LU): 
'VALUE' ML.MU.NL.NU.LL.LU: 

'INTEGER' ML,MU.NL.NU.LL.LU: 'ARRAY' A.B.C.: 'ALGOL'. 
MXREAD(XO.1.N1.1.M1): 

MXTRAN(XT.XO.1.N1.1.M1): 

MXPROD(XP.XT.XO.1.M1.1.N1,1.M1): 

MXINVL(XP.1.M1) : 

WRITETEXT('(''('C')'(X'X)-1')'): 

NEW LINE (1): 

MXPRINT(XP.1.ML.1.M1.5.5): 

'BEGIN' 

'INTEGER' N.M: 

N: = READ:
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M: = READ: 

'FOR' 1: = 1 ' STEP' 1 ' UNTIL' NUMBER 'DO! 

"BEGIN' 

"ARRAY' X(1:N.1:M).XTT(1:M.1:N).XW(1:M.1:N) 

XA(1:M.1:M) 

MXREAD(X.L.N.L.M): 

WRITETEXT('(''('C') "MATRIX X'('2C)'')"): 

MXPRINT(X.1.N.1.M.5.5): 

'IF' N'NE'M1L 'THEN' 'GOTO' ERROR: 

MXTRAN (XTT.X.1.N.1.M): 

MXPROD(XW.XTT.XP.1.M.1.N.1.N): 

MXPROD(XA.XW.X.1.M.1.N.1.M): 

MXPRINT(XA.1.M.1.M.5.5): 

'GOTO' FIN: 

ERROR :WRITETEXT('(''('C')'MATRICES “%WRONGLYZDIMENSIONED' )'): 

FIN :NEWLINE (5): 

'END' OF 1 LOOP: 

"END!: 

'2ND OF INNER BLOCK:


