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SUMMARY 

The research reported in this thesis is concerned ethane 

control of physical systems. which can be modelled by linear 

constant-coefficient vector differential equations of the form 

x = Ax + Gn, 

where x and m are the n-dimensional state vector and the 

r-dimensional control vector, respectively. A is the n x n system 

matrix and G is the n x r control matrix. Examples of processes 

to which such equations apply are the control systems for small- 

angle-attitude motion of a satellite, the dynamical control of 

pilotless aircraft (see [5]), and the temperature-level control of 

processes. 

The behaviour of such systems depends upon the interaction 

of the matrices A and G, with the control domain 6 which depends, 

in turn, upon the type of controllers used. This interaction is 

investigated in Chapter One to determine the large-scale behaviour 

of the system. “In Chapter Two the problem of open-loop control is 

discussed, while in Chapter Three the time-optimal control of such 

systems in considered. 

The methods used to investigate these processes are geometric 

in nature. They are based upon the geometric properties of convex 

sets and hyperplanes in the n-dimensional state-space of the 

systen. 

While the mathematical methods used to derive the results 

within may seem very abstract to the design engineer, it is hoped 

that the results themselves will provide useful insight into the 

behaviour of the systems as well as design criteria for the 

practising engineer. 
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Introduction and Mathematical Preliminaries. 

The mathematical systems discussed in this paper are set 

in a state-space of n-dimensions and are described by 

‘@ifferential equations of the form x = Ax + Gm with m, the 

control, or manipulated variable, lying in a fixed subset © 

of an r-dimensional space. The behaviour of the system is 

determined by the interaction of the two matrices A and G and 

the set of controls @ . As our discussion and description of 

this interaction will be chiefly in geometric terms, we include 

at this point a brief discussion of the topological and 

geometrical concepts required in the chapters to follow. In 

addition, certain other mathematical concepts are discussed in 

the appendices. The reader who is familiar with the geometry 

of higher-dimensional spaces is advised to proceed to Chapter Te 

The Euclidean space of k dimensions will be denoted vy TR, 

each point x of RX is uniquely determined by its 

co-ordinates X1s Xo» X39 coey XL which may be considered its 

components with respect to the standard basis vectors 

1 2 
e = (27 Oy ooo 0), e = (0, ae Oy, e¢@.09 o), Se: 6:9 

an a (0, «ee, 0, 1,), in which case the point x is identified 
: k 

with the (position) vector x = s Le 8 a Addition of these 
i= 

vectors is accomplished by addition of their components and 

their multiplication by scalars is defined as in two or three 

dimensions (in R@ or R°), 

The subspace spanned by xl, x*, eoes x” in TR* is the set 
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m 

Of all vectors y = Ox" where the aX, are arbitrary real 

j=l 
numbers. If ¢ x" ye x” are linearly independent, that is if 

m 
> Ol.x9 = 0 implies On = Xe =... = O&, = 0, then the subspace 

jer ? 
has dimension m (m<k). 

The distance between the two points x and y is defined by 

lke 

z= yf © (2 yyy) 2) (1.1) 

and the norm (length) of x is k 

[x] -]=- of = ( 4 xf . (1.2) 
i 

: ; 1 2 5 : ; 
A sequence of points x, x, X°, »«e. is said to converge to a 

point x if lim |x - <I = 0, this is often symbolized by X= Xx. 

A subset E of RR is said to be closed if the limit of every 

convergent sequence of points in E is also in E. The set E is said 

to be bounded if there is a constant K with \x}<K for valloxain 2, 

The k-sphere about x with radius r is that subset of . 
  

consisting of all the points y with |x - yl eA DOL Geax. 0s) 

called an interior point of a subset E if E contains a k-sphere 

about x. E is called open if every point of E is an interior 

point. A boundary point of E is a point in E which is not an 

interior point. If the subset E is contained in another subset 

F, a point x of E is called a relative interior point (relative 

to F) if E contains all the points of a k-sphere about x which 

are also contained in F. E is called open relative to F if 

every point of E is a relative interior point. 

Let's consider for the moment these concepts in the familiar 
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two-dimensional (R2) and the three-dimensional (TR?) cases. 

The distance between points is the actual Euclidean distance, 

while the 2 - Bohevee in R? are discs and the 3 - spheres in 

R? are actual spheres. The set of points x of IR? with 

|xl<141 is an open set of R?, any point y with|y| = 1 is: '4, 

boundary point of this set. If F denotes the set of points x 

with Ix{ <1 then F is closed. The subset E of F consisting of 

those points with x, = x, = 0 is a By onad set of IR? but a 

relatively open subset of F. These sets are exhibited in 

Figure 1. 

Let us now develop the geometry of ee This is done 

merely by converting the classical geometrical concepts of two 

or three-dimensions into analytic relations between points 

(vectors) and then interpreting them in the higher dimensional 

spaces (eg. as we did with the sphere above). 

If x and y are in R* the line through x and y is the 

locus of all points Z(t) =x +t (x -y), - o<t<o. The 

line segment between x and y is that portion of the line 
  

corresponding to o<t<i ; or equivalently, the locus of points, 

Z=%x+ fy where O<AX, 0< 8H and + = 1. OUCH a “27.18 

called a convex combination of x and y. This is generalized by 

: ; : : il 2 N =, 
Saying #18 a Convex combination Of Xe, %0, 2. xX a 

  

n 4 n 

ak X 5x where OS Xj, aw ke. 2s eee ce end -—aX;=1 . 

i=l i=l 

z= 

A subset of R* is called convex if it contains along with 

each pair of points the line segment between them or, 

equivalently, contains all the convex combinations of its points. 
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The convex hull of a set E is the smallest convex set which 

contains EH, it consists of all convex combinations of points 

in E. A point x is an extreme point of the convex set C if 

it is not a convex combination of any two distinct points of C. 

A convex set is uniquely determined by its extreme points for 

it is the convex hull of its own extreme points; pa that 

every point x in a convex set can be written as x = 2, e's 
j= 

a convex combination of the extreme points xi, x’, coy x" of 

the set. 

A typical convex subset of 2 is the unit square which 

consists of all points x = (xt, x°) with o<x'<1,0<xX1 . 

The extreme points of the unit square are the points with 

co-ordinates (0,0), (1,0), (0,1), (1,1), i.e. the corners of 

the set. <A sphere is a convex set and every boundary point is 

an extreme point. The convex hull of the points xt = (0,0), 

es tis), £7 es (3,1) is the triangle having these points as 

vertices, (see Figure 2). 

It is clear from the examples immediately above, and easy 

to show in general, that if a convex set has an interior point 

x° anda boundary point oid then every point 2 on the line 

segment between x° and y ca excluding y° itself, is an interior 

point of the set. 

If x and y are vectors in R*, their inner product (scalar 

product) is a 

x+¥ » Ge xi yt = Ixlly]- cos (x,y) (i.5) 
i=l 

Where cos'(x,y) is the angle between x and y defined by 
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considering the ordinary geometric angle between x and y in 

the two-dimensional space spanned by x and y. x and y are 

called (mutually) orthogenal if x.y = 0. 

In three dimensions the set of points x = (x15 Xoo x3) 

which lie on a plane satisfy an equation of the form 

AyX) + AnX_ + azXz =C which may be written asa. x= 

where a = (ays Qos a) is a normal vector to the plane. 

Accordingly, the set of points x in Tr* which satisfy 

ee (194) 

for a fixed vector a in R* and the real scalar & is called a 

hyperplane. The vector a is called a normal vector to the 

hyperplane. A hyperplane has k - 1 degrees of freedom and a 

hyperplane which passes through the origin is the 

(k - 1) - dimensional subspace spanned by the vectors 

orthogonal to a. The hyperplane in R* aefined by (1.4) divides 

the space into two half-spaces; a positive half-space 

consisting of all points x with a. x >& and a negative half- 

space consisting of those points x witha. x<Q. 

There is an important connection between convex sets and 

hyperplanes which we shall use repeatedly in this investigation, 

namely, a closed convex set is the intersection of all the 

closed half-spaces which contain it. This implies that if C 

is a closed convex set and x° is a point not in C then there 

is a closed half-space which contains C but does not contain 

x; analytically this means that there exists a vectora and a 

e6alah CO sudh that @ .« x ea for all x.in-C but oO > a. x°,. 

If no smaller c would suffice, i.e. there is an x in C with 

(ix)



aex =@&, then the hyperplane is called, for obvious reasons, 

a tangent, or supporting, hyperplane of the convex set C. 

In R? the hyperplanes are lines. The supporting 

hyperplanes for the unit square in R? are the lines x? = Oy 

x? =l, x? = Oy x? = 1, and any line passing through a vertex 

and containing no other point of the square. The supporting 

hyperplanes of the unit sphere in R? (all x with |x} =1) 

are those planes tangent to the sphere. If later arguments 

involving convex sets and hyperplanes become confusing to the 

reader, he is urged to consider the unit square in R? as a 

typical convex set with interior points and the equivalent set 

in R? consisting of the points x = (x5 £23 x3) with 
2 

o< x,<1 ae x,<1 » Xz, = 0 as the typical convex set 

without interior points (see Figure 3). 

(x)
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Chapter One. Large scale behaviour. 

The systems with which we are concerned in this 

investigation are those which can be modelled by linear, 

constant-coefficient differential equations of the form 

x = Ax + Gm, (1.1) 

Here x = (x, ive; x) and m= (mj), sees m,) are points of the 

n-dimensional state space ( IR”) and the r-dimensional control 

space (R™), o<r<n, respectively. A is the nxn system matrix 

and G is the nxr gain matrix. We assume here that x and m are 

functions of time (with no time-lag) and that the control 

function m = n(t) takes on only those values which lie in a 

closed convex, bounded subset of Ik* which contains the origin. 

This subset, the control domain will be denoted vy © ° Such 

a (measurable) function taking values in@ will be called an 

admissible control function. If the control system studied is 

of bang-bang type, where the admissible controls take on only 

certain discrete values, G will be taken as the convex hull of 

these points. The gain matrix G is assumed to be one-to-one on 

the 6et.t , 1.8. if m? # m* then Gm? ¥ cm?, 

As stated in the introduction, our investigations will be 

based primarily in geometric considerations. We begin with the 

local behaviour described by equation (1.1). 

A curve in R™ whose parametric equation is given by 

x(4)5 4,<z <7), has a tangent vector at the point x(7z ) 

given by dx(4)=x(4). Thus equation (1.1) has the geometric 
az 

interpretation of prescribing the tangent vector to the system



trajectory at the point x. To each control m ing there 

corresponds a possible tangent vector Ax + Gm depending upon 

the control chosen. Such a tangent vector is an admissible 

tangent for the system at x and the collection of all such 

admissible tangents defines the tangent cone at x. Any 

trajectory leaving the point x must have a right-hand derivative 

at x which is an admissible tangent and thus lies in the tangent 

cone at xX. 

The tangent cone at x is determined by the extreme points 

of the control domain, 6 » as any m in 6 is a convex combination 
k : 

of extreme points of 6 enor 1f m= =, ol ms o7< os 
’ j=1 , 

k 
cx .=1 then the tangent vector, 

7 3 
J 

k 

Ax + Gm = Ax + G ( D1 .m’) = 
jel 

k 

nee (OG. (ax + Gm), 

tt 

and is seen to be a convex combination of the points 

Ax + cm, j=l, cole'y Kes Figure 4 shows the tangent cone (not 

to scale) for a representative system at a selection of points. 

In general the designer seeks to control the system at a 

desired reference point which may vary with time. Success in 

this implies certain relationships between the reference point, 

the gain matrix and the control domain. It is these 

relationships to which we now turn our attention. 

For the purpose of these large-scale investigations we 

shall consider only a reference point which does not vary in time.
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This point will be denoted by x. We shall see that the 

behaviour of the system depends upon the relative position of 

the point - Ax and the set G(@) which consists of all the 

points Gm with m ing . G(@) is a closed, bounded and convex 

subset of IKR™, The set consisting of those x in RR” with 

- Ax in G(G )will be denoted by S. Of course, if A is an 

invertible matrix (det A #0), S=- a-4e(G) and consists 

precisely of those x = OF xcs: Gm for some m ing , S will then also 

be closed, bounded and convex. If A is not invertible S will be 

closed and convex but not bounded for, if x is in S and As = o, 

with s # 0, then x+#2 is also in S for - oo<t<oo. 

Examples of the set S are given in Figures 5, 6, 7. 

The equation 

. Ax + Gm = 0 (3,2) 

will have a solution m in@ , if and only if, -Ax = Gm, i.e. 

x is in S. We now consider 

Case I - Ax not in G(@) (x not in S$). 

Since G(@) is closed and convex there is a supporting 

hyperplane a.x = separating it from - Ax. If we choose a as 

the inner unit normal we have 

aGm>a>a&-E€ >a. (-Ax) 

or 

ae(Ax + Gm) >E (1.3) 

for all m in@ and some E70. 

From (1.1) and (1.3) we find 

ax = a.(Ax + Gm) + a.(Ax - Ax) = 

= a. A(x-%) + a.(Ax + Gm)> 

>a. A(x-k&) +E (1.4) 
z



for all m inG@. 

If x is sufficiently near x say }.x - x}{<& then 

‘fa. a(x-x)|< &/2 and (1.4) becomes 

ax >*/5 : Ix - x}<S. Ling 

If the system is in this neighbourhood at time t, and 

remains inside until t. we can integrate (1.5) to find 

ae(x(t,) - x(t,) 1 Sis, - t,). (1.6) 

Equation (1.6) clearly shows that the system cannot be 

maintained arbitrarily close to the desired reference point x, 

for if it could we should find |x(t) - zKSt or arbitrarily long 

time periods. Thus the inequality (1.6) would hold with 

arbitrarily large right-hand side. This implies that the 

component of x(t.) - x(t, ) in the direction of a (and thus the 

length of x(t.) - x(t, ) ) becomes arbitrarily large which is 

impossible if the oink remains within distance § of x. 

This analysis shows that if the gain matrix and the 

reference point are not correctly matched so as to include 

-Ax in G(%) the designer must be prepared to accept certain 

minimal errors, or oscillations, in the system. The system must 

move a certain distance from x before it can possibly be brought 

back to the reference condition. 

In certain cases much stronger conclusions can be drawn. 

If the unit vector a of the separating hyperplane can be chosen 

an eigenvector of Ne (eg. if A is diagonal the basis vectors 

are eigenvectors) with a real eigenvalue A then 

aeAx = A ax and (1.4) becomes



eX >Aae(x-x) +E. (1.7) 

If PL denotes the positive half-space of points x with 

ae (x-x) 7 io [nl geil Be. oF or..a4(xnE re 2f72. if 

A= 0, then any trajectory through a point of P_ satisfies 

(from 1.7) 

asx > E/o, 

If the system remains in 4 throughout the time interval 

to< t< t) we integrate as before to find 

ae(x(ty) - x(t.) )>%_ (t, - to). 

We therefore conclude that either the trajectory remains in . 

and becomes unbounded or it leaves ro Once having left P, it 

can never re-enter as, at a boundary point, all admissible 

tangents have a positive component in the direction of a and 

hence a trajectory can cross it in at most one direction. The 

point x is in £ (a.(x-x) = 0) so that a bounded trajectory 

(which must leave e.) cannot be brought nearer x than the 

point x - E/oin| 8 (or x - &/9a if A= 0) which is the point on 

the boundary of e nearest Xe Thus, in this instance, a 

trajectory either becomes unbounded or, if bounded, is at least 

a distance &/9 | ( E/o 4f vA» o) from the reference point 

for some €E>0o. 

This analysis shows that each eigenvector of Ar 

corresponding to a real eigenvalue can determine a region of 

no-return in the state space of the system. This behaviour was 

observed in the one-dimensional case considered in [1], where 

in Figure 1 the regions of no-return are called the on-zone and 

the off-zone.



Equation (1.4) has a geometric interpretation. If we 

recall that the angle between any vectors x,y of R”™ is 

XeyY 

cos Ixl-Ly}) (ie. cos (x,y) = Txthyb ) then (1.4) 
-1 Xe¥/ 

( 

furnishes a limitation on the angle between a and any 

admissible tangent. Indeed, if control m is chosen at x, (1.4) 

becomes 

ae(Ax + Gm) = {Ax + Gah cos (x,a) 

and if d(x) represents the maximum of the numbers [Ax + Gm] 

for m in@ (a(x) is the maximum distance from -Ax to G (@) ) 

we have : 

cos (x, a) El A(z} i 

Therefore the angle between any admissible tangent and 

the vector a is < cos o ( -/atey) < Tf, and is inversely 

proportional to the maximum distance from -Ax to G(@ ). This 

is clearly illustrated in Figure 4 and in the following 

examples. 

-1 ° were : : 
Example I. Avs ( a Ge ‘ee | ; G is the unit 

square in Ke, i.e. the set consisting of all m = (m,, m5) with 

o<m,¢1., o< mo¢{ . The matrices A and G both have rank 2, 

‘(1,0) A is invertible and § = -a~7¢ (@ ). The basis vectors et 

and er = (0,1) are eigenvectors of A (G5 corresponding to 

the eigenvalues -1 and -2,respectively. The pertinent 

geometric properties of this system are shown in Figure 5a. 

Example 2. a 

om E i) ie e ai; 6 as in Example I. 

This example differs from the preceeding in that A is not



invertible and has rank]. The eigenvalues of A are Ay = Oy 

A, = 2 with corresponding eigenvectors a, = ( - Det +93): 

a, = (+A, */2) ie. (=A). The admissible tangent cones are 

drawn (not to scale) at representative points, the set S is 

shown, and the regions of no-return are sketched in Figure 5b. 

Example 3. 

10 ‘2 

dimensional controls o<m<{. A is invertible but has no real 

A= ( y oi; G = cr Gis the set of one- 

eigenvalues while the rank of G = 1 which is less than the 

dimension of the state space. The set S = ear Ge a: This is 

shown in Figure 5c. 

Example 4. <1 %0° 0 6 
a= (0 2 | — [2 (6 is the unit 

OPa,0> 41 -l1 o 

square in R? as in Examples 1 and 2. A is invertible with 

eigenvalues -l, -2, 1 and corresponding eigenvectors et =(1,0,0), 

oo (a,1,0), 671% (0,0,1). The set S is shown in Figure 6 but, 

as in most higher dimensional cases,it may be easier to solve 

the equation Ax + Gm = o to find that 

m- xX, =0 ree 

4m, - 2x5 = 0 o<m<i re 

xX, - mM = 0 

Hence o<x, = xz<1 X5 = 2M5, 80 0S Xo 2, if (xy> Xos Xz) 

isin’ 5S¢ 

The regions of no return are found from the conditions:
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The second pair of these half-spaces is shown in Figure 6. 

Keeping these examples in mind let us return to 

Cade 2. ake to 0(6)° (2 In Sy 

First we suppose that xX is on the boundary of S, which 

implies -Ax is on the boundary of G(G@). Through the boundary 

point -Ax there passes a supporting hyperplane to G(@) with 

inner unit normal a such that 

-a. (-Ax) = minimum a.Gm , mM ing. (3.8) 

This certainly implies 

a. (Ax + Gm) 20 all m in@ | . e169). 

and, because x is in S, -Ax = Gm for some m inG@ , and hence 

equality can hold in (1.9). 

Consider for the moment the problem of maintaining the 

system at xX. Since Ax + Gm = o constant application of the 

control m keeps the system at the desired state (x = 0). However, 

in the case of multiple on-off controllers, the control m may 

not be a realizable control, it may not be one of the extreme 

points of & which represent the actual available controls. If 

this is the case m will still be a convex combination of extreme 

k k 

points, i.e. m= = c.m’, where o< &, and > OO on 
jal J 

J j=l J 

Further, from (1.8),



k 

a. (-Ax) = a.Gm = a.G Cae) = 

j=l 

k k 

= > Xa.6n! > > OX sae (-Ax) = 

jel jel 

= a. (-Ax). 

Now if we have a.(-Ax) <a.Gmd for even one j the inequality 

holds above and we conclude the impossible, a.(-Ax)> a.(-Ax). 

Therefore we must have a.(-Ax) = a.Gm4 ,7 0x 

acti + CO) 7 Fe 1 a kt (1.10) 

Thus we see that the admissible tangents Ax + Gmd are all 

perpendicular to the vector a and thus the tangent cone at x is 

not restricted by an angle less than Tl /9 as occurred in Case i. 

We observe as well that 
k 

6 a Gh a 1k = %,0n! é 

j=l 
k 

= 2%, (ax + Cn’) (1.15) 
jel 

which will, in Chapter 2, provide a discontinuous open loop control 

maintaining the system arbitrarily close to x for finite time 

intervals. This last statement is intuitively clear when the sum 

(1.15) contains only two terms on the right for then 

o= OQ, (ax + Gm!) + O, (Ax + Gm) 

and we see the two admissible tangents Ax + Gm? and AX + Gm are 

@positely directed and therefore a "chatter" control, alternating 

2 
between at and m© over proper time intervals, should maintain the 

system as near ¥ as desired. 

This discussion has shown that for x on the boundary of 5 

9



there exists a possibility of maintaining the system at this 

desired point. We have given no indication of the start-up 

point from which the system can be brought to x.» The examples 

we have shown indicate that there is little which can be said, 

in general. Indeed, Example 2 shows that points arbitrarily 

close to S, but not in it, are always driven to infinity, while 

in Example 1, with the stable matrix A, all points can be brought 

into a neighbourhood of the origin. 

The natural continuation of our investigation would appear 

to be the investigation of system behaviour near a point x in 

the interior of S. ‘However, the results show that the system is 

more complex than this. While the behaviour of the system 

depends upon A and G the dependence is too subtle to be 

distinguished by considering only A and G The relationship 

between G and the powers of A, ti A’, ces an-1 must also be 

considered. Such an investigation will provide considerable 

information even when S has no interior points. 

The concept involved here is known as controllability in 

the literature. The system (1.1) is said to be controllable if 

it is possible to transfer the system between any given pair of 

points by a bounded measurable control function. This is a 

global property and no restraints are imposed upon the controls 

other than those mentioned. The system will be controllable if, 

and only if, the rank of the compound matrix (G, AG, ca coos 

go5tD) is equal to n (see (2),page 81). 

Global properties are not of primary concern in this 

investigation. However, the controllability matrix 

10



CO 7 AG pe iN os iD) does provide considerable information of the 

local nature we do require. 

Our chief interest at this point is in describing those 

start-up points which allow the system to be directed to a 

reference point x in S. It is easier (and sufficient) to study 

the points which are attainable from a given point -: i.e. a 

point y is attainable from x° if the system can be transferred 

from x° to y by an admissible control. The set of attainable 

points of x° will be denoted by K(x°) and those points 

attainable in timet will be denoted by K(x": It is 

sufficient to study this set of attainability of x° because we 
  

have restricted our investigation to constant coefficient 

matrices. 

For such systems the set of attainability of a point x has 

the same general properties (eg. the same dimension, being convex 

being open,or closed) as the set of points which can be 

transferred to x. Indeed, if the system (1.1) can be transferred 

from x° to xt via the admissible control m(t), o<t<¢ t, ,then the 

system 

x = = Ax -~ Gm (4.16) 

can be transferred from x? to x° by the admissible control 

m*(t) = m(t,-t), o<t<t,. The systems (1.1) and (1.16) are 

structurally the same ( (1.16) is (1.1) with time reversed), in 

particular they are either both controllable or both 

uncontrollable, which will be the crucial issue below. 

The set of attainability of x°, K(x°), consists of all 

points (from Appendix A) 
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t 

x(t,m) = efx? + eA(t-s) Gm(s)ds (7,17) 

o 

where o<t< oo and m runs through all admissible controls. In 

particular, K°(x°, t,) consists of all points x(t), m) = 

eAt1y? y(m) where y(m) is a point in the set Y consisting of 

the points a 

y(m) = if eA(ti-s) Gm(s)ds 
Oo 

for all admissible controls nm. 

The set K(x°,t,) = eAtlx° + ¥Y is a translate of Y (see 

Figure 7) and therefore its overall properties are determined 

by those of Y. : 

The general theory ( 2], p.-69) states that Y is convex, 

closed and bounded. Since o is in G » < contains the origin 

in IR™. We want to determine conditions sufficient to guarantee 

that Y has interior points. To do this it is clearly enough to 

ensure Y is ann-dimensional subset of RK”. 

If Y is contained in some n-l dimensional subspace there 

exists a non-zero vector v (a normal to the subspace) such that 
tl 

vey(m) = viet *279) gala )an = 0 

cA 
for all admissible controls. Choosing an arbitrary m in . We 

define the admissible control 

* 
m(s) = m o<%<8<T, < ty 

= 0 otherwise 

and conclude 
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v,e**17°) gatas <0. (1.19) 
1 

Equation (1.19) can only hold for arbitrary %,, Tp and m* if 

veet(t1-S)on*=0 for o<s<t,, andm* inG@ . If 

yeet(tl-s)g vanishes identically for o<s<t, we can 

differentiate n times and set s = ty to obtain 

0 we, Aor 6... «7 AO oO (1.20) 

which shows that the matrix (G, AG, ..., a®™71G¢) has rank less than 

n, i.e. the system (1.1) is not controllable. On the other hand, 

a yeet(t1-s)g does not vanish identically we conclude there 

exists a non-zero vector u in itt (u = y.e,A(t1-sdg, for some So) 

such that u.m"=0 for all m* inG - Thus G must lie in some 

subspace of dimension < r-l in}RT and hence can have no interior 

points. 

We have just shown: 

If (1) the system is controllable (rank (Qc4e sk Oar) 

and 

(2) 6 has interior points (has dimension r in IR"), 

then 

Y has dimension n in iR2 and thus contains interior points. 

If the rank (G, AG, ..., Am 1c)<n, Y will always have 

dimension <n, but if (1) holds there may be various control 

domains of different dimensions <r for which Y still has dimension 

ne. in fact, for most controllable systems, the designer can 

change his control methods by selecting a proper vector g and 

replacing (1.1) with the one-dimensional input system 

13



x = Ax + gy (1.21) 

where po now ranges over a convex subset of R Ga< osp sf - 

The system (1.21) will be controllable provided the vectors 

By AS, oocy oS are linearly independent. The existence of 

such a vector g is discussed in C2]; page 86, and should it exist, 

it may be possible to modify the gain matrix G and/or the control 

domain G of (1.1) in such a way that g = Gm* for some n*inG e 

In this instance the one-dimensional subset pa tst<p ’ 

of IRF is sufficient to insure that Y has dimension n. 

If Y has dimension n it must, as it is convex, contain 

interior points. It is important for both our present 

investigation and the later discussion of optimization to describe 

those points which are interior points of Y. 

A point y° is a boundary point of-the convex set Y if, and 

only if, there is a supporting hyperplane of Y through Poa That 

is, there exists a (non-zero) vector a with 

aey° = maximum aey, y in Y. 

Hence t 

; { 

aey = 

° 

On: : 2 ; 
where m is the control function corresponding to 7? and mis an 

i a t 

ace e” da? (aae > \ a.et(t1-5)em(s)as (1.22) 
) : 

arbitrary admissible control. Suppose that on the interval 

i where mi C<s <T, , the points m°(s) = m is an interior point 

of G « since nt is in the interior of Ce there is a control m”™ 

such that 

aceht*tH8)g at a.eA(tl-s)o.* 

@ / 
on a (perhaps) smaller interval T,< @,< s< @',<2@,5, If 
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we define the admissible control 

m(s) = m" S82 42> 
= m°(s) otherwise 

we find +1 t1 

aey° = a Fea) ones) oe < a.e.A(t1-8)em(s) as 

0 ° 

which is a contradiction of (1.22). Hence y® cannot be a 

boundary point of Y if its corresponding control function takes 

_ on an interior value of 6 over an interval. A more precise 

analysis of this situation using the theory of Lebesgue measure 

yields: 

  

A point y(m) is on the boundary of Y if, and only if, there 

is a vector a in IR® such that 

ase#(t1-8)em(s) = maximum GoM Fire en m inG 

for o< S<tis except possibly on subsets of (0, t,) having 

Lebesgue measure zero. 

This is perhaps the simplest version of the maximum principle 

of Pontryagin. 

This analysis has shown that for a control, which is 

identically equal to the fixed m* in the interior of G » the 

corresponding y(m*) lies in the interior of Y. 

Let us now return to K(x°,t,) the set attainable from x° in 

time ty... x) Ae invE(e®, tec of 1x° 4+ yie..(7 — 083.0 15 in x, ee 

(see Figure 7). This will occur when -Ax° is in G(G). Further 

a x will be an interior point of K(x°,t,) (and thus of K(x°) ) 
when (I-e4t1)x° is an interior point of Y. 
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We have just seen that (Leet x? will be an interior point 

of Y if -Ax° = Gm° for some m° in the interior of BG » (since 

constant m° control leads to (t-e4%1)x° ); thus: (see [2| page 

84): 

If the system x = Ax + Gm is controllable (rank (G, AG, ..., 
  

ee =n) and -Ax° = Gm°, where m° is a fixed interior point of 

G, then x° is an interior point of K(x°), the set of points 

attainable from se 

By considering this last result for the system (1.16) where 

time has been reversed we can conclude: 

If the system * = Ax + Gm is controllable and -Ax° = Gm°, 

° is an interior where m? is:.a fixed. interior point of a bnencx® 

point of the set consisting of all points controllable to x°. 

We have let S denote the set of x with -Ax inG@), let us 

denote by s° those points of S which correspond to the interior 

points of G - We seek to show that the system is completely 

controllable within the set ae. i.e. it can be transferred between 

any given pair of points by an admissible control function. To 

demonstrate this we take an arbitrary point x°-in 8° ang Jet 

6° G2"7 be the set of points in S° which can be reached via an 

admissible control in finite time (we will show S°(x°) = 8°). 

S°(x°) is a relatively open subset of S° (see Introduction) 

1 
Lory ao x? is in s°(x") there is a neighbourhood of x consisting 

of points attainable from xt. If x? is in S° and attainable from . 

x the control sequence x°—> xt —> x* shows that x? is 

attainable from x°, Thus x! has neighbourhood (relative to $°) 

contained in $°(x°) and so S°(x°) is relatively open. 
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Assume now that there is y° in $° which is not attainable 

from x° in finite time. Now, not only is y° not in S°(x°) but 

any % from which y° is attainable is not in this set. If Z 

were in 9: (x°) the control sequence op ae y° would transfer 

the system from x° to y° in finite time which would mean y? was 

in S°(x°), 

By considering the system (1.16) (or reversing time) we can 

show (by those arguments used for $°(x°) ) that the set of points 

which are in S° but are not attainable from x° is also a 

relatively open subset of S°, Hence S° is divided by arts") into 

two relatively open sets having no points in common, x° is in one, 

y° is in the other. 

Since S° is easily seen to be convex it contains the line 

segment between x° and y° which may be parametrized by 

"gosto! .’ Wow. 2(o) = x16 in S°(x°) 2(t) = (1-t)x° + ty 

while z(1) = y° is not. 

Let t) be the largest t with the property that for all 

sty 14 Z(t) is in S°(x°). (a) Any neighbourhood of the point 

2(t,) must contain points Z(t) for + both greater and smaller 

than t,. Since Z(t,) is in S° it is either in $°(x°) or it is 

not. If it is in $°(x°) it has a relative neighbourhood 

contained in aria, This implies that so long as t is near ty : 

z(t) is in S°(x°) which contradicts the definition of +1, for 

some of these t are greater than ti. Similarly if Z(t}) is not 

in S°(x°) it has a neighbourhood containing no points of S°(x°) 

which again contradicts the definition of t, (see Figure 8). 
  

(a) Mathematically t, = inf { ts Z(t) not in 5°(x°) } ‘ 

af
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This logical contradiction shows that our assumption of a 

point y° in S° but not in S°(x°) was incorrect and that S° = 

$°(x°). Hence the system can be transferred via an admissible 

control between any two points of i Further, since the set of 

attainable points from a given x° in Sie closed, a point which 

is a boundary point of S and therefore a limit point of points 

which are attainable from x° is attainable as well,from x°. This 

would also mean it was attainable for the system 63:76) i.e. 

is controllable to x° and hence to any other point of S. There 

is a eunner extension of this result. The general bang-bang 

principle ( (2], page 79) states that if the system can be 

transferred from x to y by an admissible control taking values 

in 6 then it is also transferable from x to y by an admissible 

' gontrol which takes only values which are extreme points of e ; 

i.e. bang-bang controls. 

We can summarize: 

2q, @:.0 3) ¢ atte) = n If (1) wank’ (6, AG, A 

(2) @ has interior points 

(3) S is the set of points with -Ax in G(@) 

then the system may be transferred between any given pair 

of points of S by a bang-bang control, i.e. an 

admissible control whose values are all extreme points 

of C. 

In (ir page 28, Figure 41, the set S is called the cycling 

  

Zone. 

Let us now consider the situation which arises when (1) or 

(2) fail to hold. We can, without loss of generality, assume 
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that (2) holds and (1) fails for if 6 has dimension k<r we can 

choose an orthonormal basis a a coey Pa for 6 and let = 

k : 
be the set of M= (My, vad o My) with m = - Mie in ie . 

i=l 

Ce is a convex and bounded, closed set of st eg with interior. 

Further k k 

Gm = 2 Mice” = 2 ge pi - oH 

isl i=l 

where G+ is the n x k matrix with column vectors gi = Ge-; 

2 k 
gta he 9 eres & = de” oor veet(tl-Sene o for allem in eS we 

= a 1 
have xia Se = oall pM in i. » but binee © has an interior, 

this implies yee (A(ti-s) ee =o and therefore rank 

1 : iat (eo ae", Sieg io ) <n. We have thus transformed the system 

where (2) failed to another system where (2) holds and (1) fails. 

Accordingly we shall now consider a system for which rank 

Cs oS, eee ee or 

For such a system there exist n-k distinct unit vectors 

vi, v, SR y~K which satisfy 

v'.G = wv. AG = 66 en = yi, ante = 0 i = 1,25 ¢e- n-k 

consequently 

Pa a oh enalcs 3b ae 18, ae (1.23) 

° 

for all admissible controls (see Appendix A). 

Consider a trajectory leaving a point x” in: Ss (suppose 

-Ax° = Gm°) given by 

et
 

At,o | oA(t-s) x(t,m) =e Gm(s)ds. 
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Then 

1 < 

t 

v’.x(t,m) A ete? 4s ats { eAlt-S)en(s)as = 

0 

eyes? (1.24) 

because of (1.23). If we differentiate (1.24) we find 

& v.x(t,m) = vivettyy? = 

at 

= viveAtem® =. 0 

since x° is in S and hence, v.x(t,m) is a constant equal to 

v'ex(o,m) = vi xe. 

This analysis shows that any trajectory leaving a point x° 

in S is cormtrained to lie in the hyperplanes 

viex = vt.x° i = 1,2,...,n-k 

therefore if y° is also in S with vi.x° # vray? it is impossible 

to transfer the system from x° to y° by an admissible control. 

(on! theeother. Wands de Vek ee ee me Eee ek Shenee” 

and y° lie in a k-dimensional hyperplane. The set corresponding 

to Y above, i.e. the set of 

t1 

y(m) = ( eA(t1-5 )on(s)as, 

o 

for all admissible controls m, is a k-dimensional set. If we 

restrict ourselves to this k-dimensional hyperplane and consider 

only k-dimensional neighbourhoods we can repeat our previous 

argument to show that the system can be transferred from x° to 

y° by an admissible control. 

We can now generalize our previous result: 

Suppose (1) i has an interior 

(2) rank (G, AG, «s+, Ao-*¢) « k and 
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(3) va, eeey ore are non-zero vectors with 

Gute a0 a a ye to, Ao 1; ss, ek 

(4) S is the set of x with -Ax in G(@). 

Then the system x = Ax + Gm can be transferred between 

points x° and y° in S by admissible controls if, and 

Ondiva at 

viex = viey? i = 1,2,ecc, nok. 

By the general bang-bang principle if an admissible 

control exists transferring the system from x° to y? 

there also exists an admissible control taking on 

only those values which are extreme points of C 

which also transfers the system from x° to vo. 

Summary. 

In this first section we have investigated the large-scale 

behaviour of linear,constant coefficient control systems. The 

investigation has been primarily geometrical and has been based 

upon the set G(6), the image of the control domain & under the 

mapping by the gain matrix G. In general G( 6) is under some 

control of the design engineer. For, in attempting the control 

of the system by a linear model with r-dimensional controls 

m, (+) 

m, (+t) 
m(t) = : 

n,(t) 
(where each m (+) may be of a ditferent type, eg. on-off, quasi- 

continuous, linear with saturation, etc.), the designer has, in 
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fact, chosen the set a. which is the set of all points 

m = m(t), for some t (or the convex huli of this set it bang- 

bang controllers are involved). The general form of the matrix G 

is determined by the couplings between the various components 

of the system but the magnitudes of the entries are determined 

by the gains of the various controls and so are, to a certain 

extent, at the designers command. 

Once the form of the control system (C3 and the gain matrix 

(G) have been chosen the large-scale behaviour of the system near 

a point x depends upon the geometric location of -Ax with respect 

to the set G(G). In two-dimensions c(G) may be easily plotted 

land the relationship between -Ax and the set determined 

geometrically. In higher dimensions these relationships are 

determined by a system of equations and/or inequalities. 

If -Ax lies outside c(G ) the system cannot be maintained at, 

or even arbitrarily near, x and certain errors are inescapable. 

Furthermore, if -Ax is too far away it may not be possible to 

return the system to x once it has passed near it. 

When -Ax is on the boundary of a(@) the system can be 

maintained at x by choice of control m where -Ax = Gm, or 

arbitrarily near to x by a bang-bang controller. However, the 

system may be unstable, points arbitrarily near to x may not be 

transferable to x by any admissible control. 

If -aAx = Gm where m is in the interior of ES there is a 

k-dimensional neighbourhood of x consisting of points 

transferable to x where k=rank (G, AG, ..., an-lq), If k=n the 

system can be transferred between any two points -, ¥7 which 
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lie in S (the set of x with -Ax in G(@) ). Whereas when k<n, 

the set S is partitioned by a collection of k-dimensional 

hyperplanes and the points x° and x in addition to being in S, 

must lie in the same k-dimensional partition if they are to be 

mutually attainable. 

For the practical purposes of the engineer, these results 

suggest: 

#41) 

(2) 

(3) 

(4) 

(5) 

the reference point X should lie in S, with -Ax = Gm 

for some m in the interior of G . 

if possible the system should be controllable, i.e. 

Fank (GAG, +2, aoe) = Ne 

if (2) holds the system, started at any point of Dip Can 

brought to the reference point x in finite time. 

if (2) is not possible, only when the system is started 

at certain points of S can it be brought to the 

reference point in finite time. 

if the system is to operate between various reference 

points a xX“, eee, X%, then these points must be chosen 

to be mutually attainable and hence lie in S if (2) is 

possible, or in the same partition of S if (2) is 

impossible, otherwise smooth operation of the system is 

impossible. 

This analysis has been made without imposing any particular 

property on A (i.e. stability or non-degeneracy); the 

conclusions are valid whether A is stable or not. 
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Chapter Two. Open Loop Control. 

In this section we discuss the problems involved in 

controlling a system of the type (1.1) near a chosen reference 

point x using bang-bang controllers. For this purpose we shall 

require that the system be controllable, that is,rank 

(c, ac, acc, ..., a®-tc) =n and that the control domain @ has 

an interior in R*. The reference point x will be chosen in S 

and will be assumed to correspond to the control m in A (toe, 

-Ax = Gm). 

We have shown in Chapter One that under these conditions 

the system, when started at certain points (at least at another 

-point of S), can be brought to the reference point by an 

admissible control. The problem of optimally choosing this 

control will be discussed in Chapter Three; here we shall assume 

the system is at the point x when t = o and shall endeavour to 

maintain this position via open-loop control of bang-bang 

controllers (controls, m,corresponding to extreme points of B). 

The control m is in eC therefore there are extreme points 

-. m’, eiehers m= of ob and constants KF j = 12,06, k such 

k k 
) i \ s 

that Os =i and n= oe Om. Subtracting 

j=1 j=l 
t 

z= e's + (AC eoaae 

° 

from the solution + 

x(t,m) = ef *x° 5 { oA(+-"Doa(e)ae (2.1) 

° 
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of x = Ax + Gm,we find ‘ 

x(t,m) - x = et *(x°_x + ( ghhtos 6 arg) aac (2:2) 

o 

If the system is at x when t = 0, x(o.m) =x? = X, and 

t k 
A(t-s) ‘ : 

x(tym) - % = ( ee) aca lng (3.3) 
isl 

O 

when m is repaced by the convex combination of extreme points. 

If a time t = ¢ is fixed and if E, denotes the set of points s in 

the interval (0,t) where m(s) = m', (2.3) becomes 
i t: 

x(t,m) - x = ; ’ { ae - xX, [otra Gm? . 

ee Ei 0 (264) 

It is clear from (2.4) that if the control m is chosen so 

that % 
oAlt-s) a, i a, oA(t-s) 5. ’ ak = gas 6 oe 5k (2.5) 

Ei oO 

then x(t,m) = x and the error vanishes at t = =. It is difficult, 

if not impossible, to satisfy all k of the equations (2.5) 

simultaneously. However, as our primary concern is minimizing 

the oscillations of the system around x we can assume ¢ to be 

small (the affects of system time-lag on this assumption will be 

considered below). When t is small we have eo ee O(t) (b) 

which, substituted into (2.5) yields 

Q(z,) T= OL + Otte (2.6) 

where AE, ) is the length of E; (E; is assumed to be a union of 

  

(v) see Appendix E. 
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intervals). Thus it is clear that the control n> should be 

activated a proportion 

Asi) / E= Wy (o57) 

of the total time period, ¢ Let us denote by ff a control which 

is chosen to fulfil these conditions. For this control the 

error at time ¢ is 

x($,f) - = = 0(€7). 

If we recycle the system, again using fi, we have (from (2.2) ) 

hot aye. see oA® x(Echy~ SB) e0(%2). <-0(F). 

Again recycling over a period t we find 

RGst ih) aie. ote'! (24,8) ~ ey + 0(€°) 

and, after n-cycles 

x(NE,8) - = = e(N-1)At(,(E,8) — z) + 0(82). (2.8) 
If A is not unstable (i.e. has no eigenvalues with positive real 

part) the various powers of the matrix eAt remain bounded and the 

error continues to be 0(%°). On the other hand, as the number 

of cycles gets large an unstable matrix A will lead to unbounded 

errors unless a correction is introduced into the system by some 

type of feed-back mechanism. 

This analysis shows that for a system whose matrix is not 

unstable the constants Q;, which occur as the weightings of the 
; Fc ; 

: ibe ~ : 
extreme points m in the sum m = ie Qn » Getermine a 

t=) 

natural oscillation of the system about x with period ~ whose 

error is no more than o(¢*). In the absence of meaningful 
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switching lags, ¢ can be chosen as small as desired and the 

oscillations will be correspondingly small. 

Suppose that A is stable (has all eigenvalues with 

negative real part) and there are no appreciable time-lags, 

then equation (2.2) describes the trajectory from an arbitrary 

start-up point x. If the control is a periodic cycling of at 

with period % the system has, at multiples of t+, an error given 

by <= 

x(Nt,) <2 = © "(x9 ¥).420(F") 

which clearly becomes 0(%°) as the number of cycles becomes large. 

We have shown that if x corresponds to an interior point of e 

there is a neighbourhood of x consisting of points which can be 

driven to x in finite time. Since, in this instance, % can be 

chosen arbitrarily small we are assured that after a sufficient 

number of cycles the system lies within this "controlled 

neighbourhood" of x and thus can be transferred on to x in finite 

time. Thus we have 

If A is stable and no appreciable time-lags exist, the system 

can be controlled from an arbitrary start-up point to a 

reference point xX which corresponds to an interior point of @ = 

i.e. -AX = Gi where m is in the interiorof G. 

In general there are many convex combinations of extreme 

points expressing m, in which case the design engineer is free to 

introduce other criteria in choosing the most beneficial choice 

of control sequence. Certain extreme points may correspond to 

controls which are expensive to actuate, in which case they 

should be excluded if possible, or, at least used in the 
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particular combination in which they are activated over the 

shortest possible time. Further, if there is no reason for the 

designer to have a preference for certain controls, perhaps due 

to symmetries in the system, this symmetry can be preserved by 

adjusting the gain matrix G so that the control m corresponding 

to the reference point x is the "center of mass" of e i.e. 
N 

m = + -— where mi, m°, eens nN are all the extreme points 
k=l] 

of G e This is illustrated by the following example. 

we 1! 20 D2 
ExampleZ1 Let A=\ o -2} andG = \-1 3) while G is again 

the unit square in RF, i A consists of all (m,, My ) with 

os Mj, m <1. Choosing x = (3/2, r/27, the equation 
2 

-~Ax = Gm leads to 

m, + 2m, = 4/2 

-m, +3m, = : 

which has the unique solution (m,, My ) = (3, $). ‘The extreme 

points of Euan 2 (0, 0.4 . (140) 5 7. (0,1) and m? = Oleh). 

For m we have the following obvious convex combinations 

- fo) 
m= $m “ 4m? 

MI 2 ‘ 
= $m + $n 

oO I Air? 
= =m + =m + 4m” + 4m? 

which are all special cases of 

m= §m°+ (8-8) m+ (4-8 )m? +Sm’, og Se Fz 

The trajectories near x corresponding to the first three 

policies (&= 4, 0, +) are shown in Figure 9a’. 

We now turn our attentions to the difficulties occurring 

when the system controllers are subject to Significant time-lags. 
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The most general case can become exceedingly complicated as one 

must expect, in a switch from m to mn, a different time-lag 

v 
L » Y= 1,2,..e,r, corresponding to each component of the i,j 

control vector. The motion of the system during the switching 

period would then be due, at each instant, to various 

combinations of the components of mt and m, As a simplification 

we shall assume that during a switch from m* to md all switching 

components of the control vector are subject to time-lags of the 

same order of magnitude symbolized by the quantity L, j We do 
9 ° 

not assume Bes = Ls wa however. 

Above we have defined a control policy which consists in a 

periodic application of the control sequence m defined by 

k 

ere , Xm in the following manner. 
i=l 

The sequence begins with 

m(t) =m tS t<ty 

2 
= mM tos bs *s 

i 

“ tes tS 4 

“i ek 

L 4 7 =n tie #< ty 

i i+l / 
Thus the switch from m™ to m occurs at ti» t 1 ts etce, 

y e i . ; 
ty - ty = t+, and tea - t5 = 4 (2; ) = X.t, where € is the period 

allotted to each cycle. Here to minimize the number of switches we 

have assumed each set Ei is an interval and hence no controls are 
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repeated within the cycle. Let us now denote by t, the actual 

i-l 
time we command the switch from m tom. Clearly if 

switching is to be completed at time ts we must have 

Ce eee (2.9) 

(see Figure 9(t)). 

The time between commands must be positive, hence 

Cea. Beg Ogg Li itl (t, 2 Lg a4) 

. * Meas) : My 4 ae 

or 

Ls ie 

= > max (ett) ge SE oe a (2.10) 
i 

If % satisfies (2.10) then 4 - @, = % and the cycling 

policy is feasible provided an error of the order 0(%°) is 

acceptable. We should observe that the condition 

C341 - C = &,t - Ly isl + Myo 1 2 does not exclude the 

possibility Ot = Me.) <1, .,, which means that the command to 
dj al Teatl 

switch from at to A must be given before the switch from 

m'~ to m= is complete, see Figure 9(b). In particular instances 

this might not be feasible, in which case the designer must 

determine the minimum cycling period from 

Ost 7 by sa 

which implies 
Le: 

2 > mex ot f= 25 Pap eooeg k (2521) 

el 
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(as usual Ley. = Lye 

It should be observed that in the special case of equal 

time-lags for all switchings (all the L's equal),(2.10) shows 

that the cycling period can be arbitrarily small and the results 

derived for the system with no time-lags are applicable. af & 

is determined from (2.11) instead, the condition ? > kL is 

evident. 

We have, until this point, considered the natural 

oscillations of the system, as derived above, only as a basis 

for an open-loop control system. However, these same natural 

oscillations can appear in systems with certain feed-back control 

devices. The resultant oscillations have been called dynamic 

equilibrium cycling in Lib (3) and (4] where one-dimensional 
  

temperature control is discussed. In these applications the 

switching times are determined by comparison of the output 

variable with its desired value. The switching times and the 

system lag, L, then determine the oscillation with period 

% 22L. The proportion of on-time, + and off-time, tp, to the o? 

total period is determined in accordance with the earlier 

analysis, 

(2.12) ct
 

il 2 ct
 u ct
l 

Pe 
where X, and Q_ are the coefficients of the convex combination 

corresponding to the selected reference temperature. Equation 

(2.12) is valid only when the time-lag of the system is small 

compared to the response time of the system (i.e. major time 

constant) otherwise the linear approximations we have made are 
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not valid through the entire cycle necessitated by the feed-back 

device. 

Summary _ 

In this chapter we have shown that a system such as 1.1 

has a natural oscillation about a chosen reference point 

which may be used as the basis for an open-loop control 

system which allows a precise description of the errors 

involved. The oscillations are influenced by the 

interaction of the control domain and the reference 

point x in the following way. If Ax # en’ 20 and 

m satisfies m = ta m where the m > «+-5m are extreme 

points of » then the control m_ should be activated, 

approximately, a proportion a of the total period of 

oscillation. When no time lags occur this» leads to 

arbitrarilly small oscillations of the system about 

the reference points. The presence of time lags intro- 

duces a lower brand on the resultant errors and can 

create unacceptable performance. 

oe



Chapter Three: Optimal Control. 
  

The final chapter is primarily concerned with the time- 

optimal control of systems such as f.?) although certain of the 

results to be derived may be applied to systems which are to be 

optimized with respect to cost functions other than response time. 

As is well known to all control engineers, the primary 

obstacle in realizing an optimum system is the determination of 

the switching surfaces in the state-space which are crucial to 

development of a feed-back control device. There have been many 

papers written on this problem and many computational techniques 

developed to approximate the optimal control and its switching 

surfaces, although there does not seem to be a "best possible" 

method at the present time. In this section we shall discuss this 

problem and deduce certain properties of the optimal control which 

in low-dimensional systems aid in contructing the switching 

surfaces. The study to be made will be, as in the preceeding, 

from a geometrical point of view, so we begin by outlining that 

portion of the general theory of optimal control which relates to 

the geometric concepts we wish to study. 

We suppose we have a system of the form (1.1) with a bounded 

convex control domain @ which has an interior. The reference 

point x is assumed to satisfy -Ax = Gm for some m in the interior of 

a as we have shown in Chapter One, this condition implies that, 

for controllable systems, there is a neighbourhood of x all of 

whose points can be transferred to x in finite time. If there is 

an admissible control transferring a point x° to x then there 
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exists a time-optimal control also transferring x° to x (4.605% 

control which accomplishes the transfer in as short a time 

interval possible by admissible controls, see Gale p.l27, Theorem 

17.) Let us denote by T(x) the optimal time required to transfer 

x to x with the convention T(x) = oo if there is no admissible 

control transferring x to x» We are interested in the geometric 

properties of the isocronal surfaces, T(x) = constant. If 

= 1 to % is & and T(x =, the minimal time required to transfer x i 

hence x is attainable from x! in time $= We have seen that this 

implies that x is controllable to x? in time & by the control 

system 

x = »-AX = Gm (3.1) 

4.e. (1.1) with time reversed. Let us denote by K(t) the set of 

points which are attainable from x in time t via (3.1) and an 

admissible control. K(t) is a closed convex set whose boundary 

is the isocronal surface T(x) = t. The supporting hyperplanes to 

K(t) are related to the optimal control problem via the Pontragin 

minimum principle. Indeed, if a is the outer normal to a 

supporting hyperplane at a boundary point ip" of WEL). £1.05 

T(x°) = = ), then the optimal control m* defined on o<t<t and 

transferring the system from x° to ¥ satisfies 

(t)em*(t) = Te” 9(t)em (3.2) 

at (alte sh?) every point of the interval o<t< % where 

mt) coo (3.3) 

As this relationship between the optimal control m* and the 

outer normal a will be an important part of our analysis we will 

  

c) "almost every point" refers to the theory of Lebesgue measure. 
y P 
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indicate the reasoning behind (3.2). 

If the control m*(t) transfers the system x = Ax + Gm 

optimally from x° to x in time %, the control A(t) = m*(%-t) 

transfers the reversed time system * = -Ax - Gm from x to — 

optimally in time =. This latter trajectory is given by 
+ . 

x(t) = ens eA(s-t)ga(syas, (3.4) 

o 

Because a is an outer normal to K(%) at x° 

Sik) = ack OY 2 407 for Bll yin KO) (3.5) 

The extreme property of m* enters the discussion when we 

calculate 

aex (%) = ae x: = \ a.c#(8-t)oa(s)as. (3.6) 

° 

Suppose 

a.eA (8+) G(s) = a.ef( 8-5) am*(E-s)> 

> min A(s-t) 
m ines? cn) 

over some subset E of (0,t) having positive Lebesgue measure. 

It can be shown that the control m defined by 

m(s) = ince ootnt ee for sinE 
mmG 

= i(s) otherwise 

is admissible and therefore the response 

t 

y(t) = a" Ate - \ oA(s-t) eas) as 

° 

is in K(t) and satisfies 

et) oe” = foeet\e=*) Gn(s) - a eh (8-t) Gn(s) }) ds>o 

O
C
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which contradicts (3.5). This contradiction shows that, 

a.e§(8-t) on#(E-s) = ia(a, 680 Gui (3.7) 
m ing 

Or, with t= t-is, 

ae A*am*(t) = min a6" "Gn m in(G ; (4) 

thus, if ” is given by (3.3) we have the result (3.2). 

-At The vector function m(t) = ae is the unique solution 

to the adjoint system 

m= “nA ; "(o) = a. 

Thus, the outer normal,a, determines the optimal control 

corresponding to x° by means of equation (3.2) and (3.3). The 

form of the optimal control is evident also from (3.2) for the 

minimum on the right hand side is assumed at extreme points of 6 

and therefore all time-optimal controls are of bang-bang type. 

We gain a geometric meaning from the equation (3.7) if we let 

eA(t-t) | 
Then g(t) = (Et) = 2. 

g(t) = g(t) a » §() =a (3.8) 

and 

(4) (+t) is an outer normal to the sets,K(t), of attainability from 

x; if we had considered the sets of attainability from x° with 

system (1.1) we should be considering Pat\s) which converts (3.2) 

into the usual form of the maximal, rather than minimal, principle. 
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ay (3 (+) -x" (+) ) g(t) «x (+) + §(t).*7(t) = 

§ (t)ax(t) - §(+)ax”(t)- F(t)Gi(t) = 

- §(+)C&(t) = max (5 (+)(-6)m ].°°) (3.9) 

Equations (3.8) and (3.9) may be interpreted geometrically 

to mean that at each point the optimal control, fi, is selected 

so as to maximize the rate of change of the projection of x (t) on 

a prescribed direction g(t) which has been determined by the 

adjoint system and the normal vector a. 

In essence the adjoint system "pulls back" the vector a 

along the trajectory using equation (3.8) in order to determine 

the optimal control by equation (3.9). This "pull-back" is 

ecdoupidnhed in such a manner that § (+) is the outer normal to 

K(t) at x (t) for, from (3.7) 

t 

g eee hz ~ Y .gt(t-B),otlerea(o)as - 
° 

t - 

( oA(s-t)gA(s)as > 

° 

&(t).x7(t) 

E(t) 60s Qe 

t a 

a.et(8-Fen(s)ds = 

Oo 

> €(t).0 A's ~ | 

= § (t).x-(t,m), 

where x (t,m) is the response from x using an arbitrary admissible 

control m. This shows that the hyperplane &(t) x = § (t) x(t) 

is a support hyperplane to K(t) at the point x(t) for each fixed 

t in the interval (0,t)(see Figure 10). 

  

(e) The term "-G" occurs here only because we are considering 

system (3.1). 

=



     
x°= XTC) 

Figure 10 
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Now, as remarked earlier, the boundary of K(t) is the 

isocronal surface T(x) = t which has, at a point away from a 

switching surface, a gradient VT(x)which is normal to the 

isocronal surface. 

Thus, since 

T(x ( <t (3.10) 

F(t) and VT(x7(t) ) are both outer normals to K(t) at x(t) and 

are therefore positive multiples of one another. Indeed, upon 

differentiating (3.10) by t we find 

vt(x7(t) J. ¥°(4) = vE(a7(t) }.(-ax7(t)-cm(t) ) = 1 

whieh shows that the optimal control at any point x away from a 

switching surface must be chosen so that 

- VT(x).(Ax + Gh) = 1. 

Again from (3.9) and using the fact that g(t) = k T(x" (+) ) for 

k >0, we deduce that the optimal control fi at the point x 

satisfies 

- VT(x).Gm = ee ee (330 

which characterizes an optimal controller in terms of the 

isocronal surfaces. 

If the minimization process of (3.2) uniquely determines m* 

the system (1.1) is said to be normal (system (3.1) what be, of 

course, also normal). For normal systems, with reference points 

xX as chosen here, there exists a unique optimal control for each 

point x with T(x) <@. Further, the sets K(t) are strictly convex 

meaning that every support hyperplane of K(t) intersects K(+) at 

a unique point. 
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In particular: 

If the system matrix A is stable every point x of KR” 

can be transferred to x in time T(x) by a unique optimal control. 

In the examples to be discussed here, the control domain 

will be a convex polyhedron, that is a convex set whose boundary 

consists of portions of finitely many hyperplanes and their 

intersections (edges and vertices). For such control domains the 

system will be normal if, and only if, the vectors 

Go. ACs eGo, es.0 A ee (3.12) 

are linearly independent for every unit vector u which is parallel 

to an edge of eo . 

Let us now use the properties of K(t) and T(x) developed above 

in an attempt to determine these sets and, through them, the time- 

optimal control. 

For definiteness let us denote the extreme points of 6 by 

ni, m*, coos nX, As we have seen, an optimal control will take on 

only these extreme values. Further, we assume that to each m? 

there corresponds a unique point xd in S with 

~Ax) = Gm, (3.43) 

The points 39(f) which can be controlled to x in time & by 

constant application of the control md can be found by integrating 

(3.1) with s(o) = x. Thus: 

ae Asé - Gm! = -Asd + Ax! 

which has the solution 

9(%) = gers) + xd, (3.14) 

Continuing, we denote by s-’4(T; %) the point which can be 

controlled to x in time E with a switch from ito j att =7%. 
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s’4(t;%) is found by integrating the equation 

B= - As - Gute Ae 4 Ax? 

from the point 89(= -%) over the interval (0, tv). This yields 

ated(e: §) = ev A*(g5(t-2) - xt) + x! - 

eet fh (S py Pear et dy Fey. i5) 

Likewise, a point girdek (t%> to} t) controllable to x in time ¢ 

by the control m given by 

a(t) = m o<t <t, 

J 

a Cees t 

is given by 

gir srk t es ) = en ATL gd 1, T- Ea; =. Z) re x*| + x 

ox. 2 e7A¥(5-x*) - e871 (4x5) - e74%2(.5_x) , 

(3.16) 

The form now becomes evident. A point which can be controlled 

to x in time % with control 

m(t) = mi dae Ac, 

ps m’t e< t<to 

ieee = n°é TiS 6< Tay 

= m9N Tk t< Ft 

Can be shown to have the form 
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pie??**39N( 50+ 0s0ys ¥) = x84 0 *(a-x4s) — 
N 

i > a At (xdv-1 - xv ) (3,37) 

Ya 2 

To simplify the notation we shall denote by J a multi-index 

J= (igs Jyr eee, jy) where each integer j, satisfies 

1< j,<k | (3.18) 

and define 

\a| = ¥. (3.19) 

In addition to (4.18) we require that no pair of adjacent integers 

Jy? J54 

switch takes place at 2,|,- We also let v= (%, Cos ceed Cal 

1 in J be the same. This will insure that a non-trivial 

denote a vector in a with components 

0<%,<7T,<t; ooo SU ySt (3.20) 

The set of all such points in mr will be denoted by A(N;t). 

With these conventions we have 

eae NC, 8s tare) 
and, if no confusion can result, we shall often suppress the ¢ 

as well and then denote the point (3.17) by se (r), tan. BOWS) 

and the corresponding control by iy « 

Now for fixed t the point s Tiny, as @ varies in A(N,t), runs 

through a hyper-surface of dimension < N which is contained in 

K(t) by construction. The boundary of K(t), the isocronal surface 

T(x) = t, must also consist of portions of these hyper-surfaces 

and if, by some means, the particular boundary surfaces can be 

selected, the optimal control problem will be solved for all 

points on the boundary of K(t). 
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We now turn our attention to means of discriminating 

between the various hyper-surfaces so that those forming the 

boundary of K(t) may be determined. 

Equation (3.2) shows that the switching locus depends upon 

the control domain eC. For this reason we shall restrict our 

analysis to two common types of control domains. The first, which 

corresponds to on-off controls, is the unit r-cube consisting of 

all m = (m,5 sees m_) with o<m,< 1. The second, the symmetric 

r-cube, consists of those .m with -l< m<i and corresponds to 

two-way controllers. Theoretically there is no difference between 

these two types of controllers, they each have 2” extreme points 

with all co-ordinates either O or { for on-off controls or,-1 or 

1 for two-way controls. The origin always corresponds to an 

interior point of iA when two-way controllers are used. The 

concepts to be discussed below may be easily extended to convex 

polyhedra of more general type than the two we are considering 

here. 

If we let p(t) = M(t).G = ga" o, equation (3.2) becomes 

p(t).m*(t) = min p(t).m. (3.21) 
m ing 

It is clear that if m is to be chosen to minimize the inner 
i . 

product p(t).m = > p,(t)m, and to satisfy the constraints (i.e. i i 
isl 

m in@) then each component m,; * of the optimal control m* must be 

ns ; 
m*= 0 if p(t) Po 

on-off controls 

m3. Par p,(t)< ° 

(3.22) 

mx = -{ if 9. (t)> 6 
i 

i two-way controls 

ool Uae p,(t) <0 
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The switching instants are determined by the times the 

components of p(t) change sign. When p, (t) = o the component 

m,* is undetermined. This is of no consequence if the zeros are 

isolated, that is to say p; (+) doesn't vanish on an interval, for 

in this case values of the control at a single point are 

unimportant. The vanishing of p; (+) over an interval obviously 

allows a choice of controls which satisfy (3.21) and so the 

optimal control would not be unique. This condition cannot occur 

when the system is normal, i.e. when (3.11) holds. 

The vector p(t) depends upon the matrix A for its precise 

form, for example, if A is diagonal with distinct diagonal 

elements Ads ros 5 A, then the i-th component p,(t) of p(t) 

is the form . : 

p,(t) = a Siw grt (3525) 
s 3 z 

If the eigen values of A are not distinct, but with A, having 

multiplicity n, then 
m 

P; (+) = pd (+) e- Ayt (3.24) 

Pel 

where $irv*) is a polynomial with degree no larger than ny-l. 

It will be important to know how many possible switch points 

Py introduces, i.e. how many times it changes sign. If some of 

the eigenvalues are complex, it is easy to show that the number of 

zeros of Pp; can be unbounded. However, if all eigenvalues are 

real we can determine a bound on the number of zeros of an 

exponential polynomial such as (3.24). Consider such an 

exponential polynomial 
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w
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k 

a(t) = 7 Z(t)er* 
pel 

with each Ap real and &p a polynomial of degree no larger than 

Mp -j. 

If ks 1, p(t) * 0 only af Galt) = 0, therefore p would have 

no more than m, - { roots. If k = 2 we have 1 

jo honha), (te “1¥ = a(t) +4 
Differentiating m, times we find 

a 

a ( p(t)om Aut) = a(t)e@27 1) 
att 
  

where Q is a polynomial whose degree is no larger than my = 16 

Thus the m,-derivative of p(t)ert can have no more than m, - 1 
e 

zeros and hence p(t)e Ait can have no more than m +m, - 1 zeros. 

Continuing in this way (using mathematical induction) we can show 

that (3.25) has no more than m, + m, + «ee + m -l zeros and hence . 
iL 2 k 

+ 6 ots te Doe 1 sina: 1) Zeros. p, (t) has no more than n, + n, a 
i 

This shows that each component of the optimal control m* will 

switch at most n-l times and hence the total number of switching 

times is no larger than r(n-l). 

If the eigenvalues of A are not all real there will be no 

upper bound on the number of switch points; however, if the 

system is normal so that no component of p can vanish over an 

interval, the zeros of each component will be isolated and thus 

for a fixed time & the number of switches for o<t<t will be 

bounded. Thus, in any practical situation there is an effective 

bound on the number of switches possible. 
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We now seek to determine the switching locus by constructing 

the isocronal surfaces. To facilitate this construction we shall 

summarize below the properties of the isocronal surfaces and 

optimal controls which have been derived. 

Properties of isocronal surface T(x) = ¢. 

P.I. An isocronal surface is the boundary of a convex set. 

P.2. A control m* directs a point x° to x in minimum time 

t if, and only if, there is a vector a° such that 

ae ant ain eee On (3.26) 
m ing 

For: ok t <b 

P.3. If the system is controllable, the surface T(x) = t 

pounds an n-dimensional body. 

P.4. If all eigenvalues of A are real, an optimal control 

will have no more than r(n-1) switching instants. 

P.5. If the system is normal, the optimal controls are 

unique. 

In utilizing these properties of the isocronal surfaces to 

determine the switching surfaces of the process by geometric means 

we are limited to state-spaces of two or three dimensions. For . 

higher dimensional processess the geometry must be replaced by 

analytic methods. Nevertheless, the ease with which two 

dimensional problems can be solved furnishes the design engineer, 

or teacher, with easily constructed examples which can illustrate 

all pathological behaviour of such control systems which are 

analytic in nature. The problems arising through purely 

@imensional considerations must be overcome through other methods, 
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However, if the system can be designed in such a manner that it 

consists of several low-dimensional systems loosely coupled 

(little interference between subsystems) then the methods 

developed below should provide considerable information toward 

the development of the optimal control system. 

We begin by determining when the points 89(), obtained by 

constant m?-control, are on the surface. By P.2. this occurs when 

there is a vector a satisfying (3.26) with m* = m’, This will be 

possible for sufficiently small t provided the columrs of G are 

linearly independent for then p(o) = a.G can be adjusted, by 

proper choice of the vector a, to have positive components in any 

desired combination,in particular, that combination of components 

which requires that the minimum of (3.26) be assumed for m* = mn, 

Having accomplished this for t = 0, i.e. 

p(o).m? = min p(o).m, 
m in 

continuity of p(t) will ensure that 

p(t) «m? = min p(t).m 
m in fp 

over some time interval (0,t). 

Consider now the locus s'’4(2;%) consisting of points 

controllable to x in time t by a single switch, at t =2, from 

J We have m to m 

xi —aas fi x?) e Parl 7” x") 
et? 5( 253) +e 

eR CE = oS) ix te (3.27) 
: ‘ei gs = a : i 2 ae 3 -\ 

since s/(t) = x2 +e Av (x_x4), This shows that s’?(03%) = 5*(t) 

and s**I(£;%) = s"(%); thus as 2 varies between o and (3-27) 

46



traces a curve from s9(=89(t) ) to s (=8 (f) ). If the contro 

2 J sequence m tom is optimal this curve must lie on the isocronal 

surface, otherwise it lies inside the surface. 

The two-switch locus (3.16) can be written (supressing the ¢ 

which is understood) as ic a = eee) + eo?" 95) = 

which satisfies 

(oy Sete oye = 
(ey we Fr" (6,8) 
(c) st#9*K($,z) = ot 

Ce CA Lael 
Gay RN eee 3 (2) 

a2 et) = oO), 
u m 

(3.28) 

" 

The locus described by ene she as C9 vary over the range 

oO KUM <%K ~ is a surface between the three points ‘s a, aX 

which contains the three curves s+? I(2), gJ9*( x) and a **(2), (see 

Figure 11). Similarly the N-switch locus of (3.17) will, when v 

varies in A(N;%), consist of a set of points containing 

gv, et, eu e°N and the (N-1)-switch loci between each 

collection of N of these points. Of course in a state-space of 

dimension n, the N-switch loci can have dimension no larger than 

n. The optimal control, however, will generally consist of at 

least r(n-1) switching instants and hence all such multiple 

switching loci a) for | J{<r(n-1) must be considered even in the 

simplest case when all eigenvalues of A are ral. 

Let us now consider the case, n = r = 2, which means that if 

A has real eigenvalues we need consider only ]J{<2. There ere 

2° = 4 extreme points, m+, mn, m>, m4, in the control domain 
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and so we must select, for each point x,that control sequence 

mi, nd, oi (i,5,k = 1,2,3,4) which transfers x to x in the 

minimum possible time. 

Let us consider a point )(=89(£) ) which we assume lies on 

the boundary T(x) = t%. The single-switch control sequences 

associated with #9 are s1’9 and 9’ for i,k = 1,2,3,4 ifj, jfk. 

The loci corresponding to optimal control sequences must be convex 

curves and bound the largest possible area. The choice between 

gird and girt is to be made on this basis. For normal systems 

these curves must be distinct, otherwise the optimal control would 

not be unique. It is not necessary to even sketch these loci, for 

it is sufficient to plot the tangent vectors to the curve at 39, 

The tangent vector to et? J(%) at 6° e2?45(o) is 

g214(9) 2 A(xt-x4) =ried (3.29) 

which is independent of %. The tangent to gst at 3! = gJ*+(Z) 

is found by describing a!’ in the reverse order, i.e. 

g29d(z) = gI2t ($2), (3.30) 

Then the tangent to (3.30) at e! is 

Bis5(o) = = ad94(E) ade A¥(xt-xd) ented, (3.321) 

Simply plotting the vectors pied, f*9J ato for ifj and selecting 

the two which are extremé will be sufficient to solve many two- 

dimensional problems. We illustrate this by an example. 

Example 3.1. 

-l o 2-1 
Let A = (; 2) and G = i é 

We shall consider the problem of optimally controlling this 

system to the reference point X = o by two-way controllers; 
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therefore, G is the symmetric 2-cube which has the extreme points 

a (-1,-1), oe (1 ed 95 m? = (Toi ia mt a (-1,1). The system 

is normal and controllable. 

The exponential polynomials which determine the switching 

instants are given by 

p(t) = ( p(t), p(t) ) = @p)e“*e 

so that 

p, (+) Zant pe 
(3.32) 

If s1(f) is to lie on the surface T(x) = % the control m* 

must be optimal over that interval which means that there exist & 

end 6 such that 

p,(t) = 2Me - pe" "Zo - 
‘ ‘ o (o¢gt¢ t) 

Pp (t) nee he SO 

It is simple to see that this requires t <log 2. A similar 

result holds for °(f) (= - s*(f) ) 6: or °(%) to lie on the 

boundary, we must be able to find &,f so that 

rege pers ° 

mele + Be*r0 ° 

The first of these requires Betz 2Q while the second gives 

Bet>a so if B is chosen to be greater than the maximum of & 

and 2Q, and positive, the inequalities hold for all ¢. Thus 

e°(Z) and s+ (f) (= - s°(f) lie on the boundary for all t<oo. 

These results indicate that the nature of the isocronal 

surfaces change when f€ passes the point log 2 so we shall consider 

each case separately. 
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For t = log 2 we plot the curves a(t), 64+ 16¢: 2, The 

point a! (log 2) will again be denoted by 3, Calculating the 

tangent vectors T°’? = g+94 (9) and 79d = . 69921 og 2). and 

J plotting them at the points s*, we see that 

at a ges) ang 1*?* are extreme, 

at e G-?*. send W's eke extreme, 

at e, pes and 4s are extreme, 

at a4, gtr4 ona t??* are extreme, 

the other tangent vectors lying between the given vectors (see 

Pigure 12). Of course, if 4st is extreme at al, gis4 must be 

4 
as they are tangents to the same curve. I1f,instead, 

4 

extreme at & 

mis it would indicate that the curve gir4( x) were extreme at 8 

suet 4,1 4 : ; ali : was inside the curve s'’°(%) near s but outside it at s which, 

as we are working in two dimensions, would require that they cross. 

The crossing point would have two different optimum control 

sequences which is impossible. From this, we see it is only 

necessary to plot the tanzeat vectors at two of the four points 

. We will show below that if 5? and 3d lie on the boundary and 

the tangent vector isd is extremal at 59 then the entire curve 

gt? J( 7s o <t< +t, lies on the boundary. Thus the isocronal 

surface T(x) = log 2 is formed by the curves strt(~), gt2( >), 

g? 9( v) ana a°?4( w), 04%.6 log 2. If all possible system 

start-up locations are within this region, the problem is solved 

by the strategy shown in Figure 12. The switching curves are 

given parametrically by the curves (+) = g At yt tw 152.3, 4 

o<t <log 2. 
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To illustrate the switching behaviour when t >log 2 we 

choose % = log 5. We again plot the locus of s(t), o<t<log 5 

for i = 1,2,3,4 and calculate the tangent vectors q-9J and 

gird _ -89°* (log 5) The results found above still apply for a° 

4 3 
and s° but at and s° are no longer on the boundary so they provide 

no information. We will show that in this case only a portion of 

the curves s“?4, and s-?5, from the boundary of T(x) = log 5. To 
(%) oi 

: 

J do this we suppose for the moment that 3" and s* are on the 

boundary and T°?! and F4** (both referring to #*’4(7%) ) are 

J and os respectively. If yivd is an outer normal extremal at 8 

to the curve s-?9 at 6 then N’?9.T799 = o ana N(t) = yird At 

is an outer normal to this same curve at a ?4I(~¢) or 

eres e4%m72I, Now since m was optimal we have 

min Ni%Je7AtGn o yirden~Atend, ee tét. 
mn ing 

and similarly as oe ef? is a normal at = 

min yisd A(t-t) Gm = yird Att) gad o< tet. 
m ing 

These two results show that 

min wi? doAten = yi? d_4¢,,7 edict i 

a oer (3.33) 
aw #2 d,46,5 -t<t<o. 

Thus when we consider the normal N(?) = nr? Je4% s’4(2) we see én 

that 

min n(v)e“*em = min yird AC) on 
mn ing m inG 

is assumed for m = m when t< % and for m = mn! when t > 

J Thus we have shown that the mn’, m°* control policy is optimal for 

each point of a? 9 (x) and thus they lie on the surface. 
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On the other hand, if g(t) lies on the surface only for 

$<+! then the equation (3.33) can hold only for such % and the 

conclusion we have drawn only holds for @t< ti 

Thus,in the example we are concerned with here, 87(f) is not 

on the boundary if % >log 2, thus we can conclude that, when 

t>log 2, the points at? (x) lie on the boundary only for o<%<log 2. 

For: t>log 2 the policy. ttn? into eg atc" ts nob optimal. Lhe 

locus of these points which bound the region of maximum 

application of m= is given by | 

y(t) = 8°*9(10g 25+) = 84(t) + (1-24 21°F ?)(x*-x?) 
where log 2<t<o (see Figure 13). The remainder of the 

isocronal surface must be constructed of points whose optimal 

control policy involves two switching instants. 

Even for this low dimensional problem there are 24 distinct 

switching combinations involving two switching instants; however, 

as the single switch policies are optimal around the points 3° and 

a4, the optimal two-switch locus must lie inside the single-switch 

locus near these points and only emerge when the single-switch 

policy is no longer adequate. The only two-switch policies which 

agree with the single-switch policies near af and at are 

gtyis2 and 72724 as is show in Figure 14. Once having 2,2) (eye) 
determined the isocronal surface the switching surfaces are 

easily determined, as indicated in Figure 13. 

This example illustrates a typical two-dimensional problem. 

If the problem is not normal, two or more of the curves z?5(%) 

will coincide. If the eigenvalues of A are complex the number 

of switches can be large but, practically,one can restrict 
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consideration to a finite t, in which case only a finite number 

of switches occur, the number diminishing as t decreases. We 

will illustrate this with a simple example. 

Example 3.2 

A simple control problem involving the harmonic oscillator 

considers the equation i +u =m. This leads to the vector 

equation (when X, =U, X= u), 

aot |) 
x = (oa o} £4 4 ms 

We shall consider the time-optimal problem of controlling this 

system at the point x =({, 0) by on-off controllers. The control 

domain is the interval o¢m<1. The system is normal and 

controllable. The eigenvalues of A are +i which lead to 

eAt ie (er t Sint 

= Bi t cos. tf” 

The exponential polynomial equation which determines the switching 

instants is 

-At 
(x, B)e 

if-c = = cos .6, pr sin e. The control m° = o will be optimal 

g= -aeos t+ 6 din t = cos(t + e) 

over the interval (0,t) provided e is such that cos (t + e)>Do, 

o<t<t. The choice eo = - M9 makes t =7r the maximum possible. 

Similarly re optimal only over a time interval o<t<T , 

as we see when 6 = T/o6 As we have seen in Example Sch; provided 

a time interval of length Tl is sufficient to bring all necessary 

start-up points to x, we can complete the analysis by constructing 

the single-switch loci 8’ (2) and 2's o<gt<Tr » which define 

the boundary of the isocronal surface T(x) =f. On the otner hand 
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it may be necessary to extend the time interval, in which case 

multiple-switch loci must be determined. For the purposes of 

this example, we taket = 3 Woe 

From the switching equation Moe "em = cos(t + e)m we observe 

that the switching instants on any optimal control occur TT time- 

units apart so that for t= 3 M9 there can be no more than 2 

switches in any optimal control. 

Consider now the single-switch loci gt?) and 3°? (x) 

ment..< > oe In this one-dimensional control a tedd bet both 

curves are required; however, as the points a (31,) = 5°?*(0) 

and 6°(311)5) = 2°60) are not on the boundary, we cannot assert 

that any part of these loci form the boundary. The loci of 

maximal m° application is found from 6°?" (41 3+) ox e7At(z-x+) 

on oO x - x"), W<S+t< 2 which with x° =(0,0), xt = lye}; 

x = ($,0) becomes 

, > *(n;4): 2 

IE
RI
E cos t - 1 a eee Wie Ae 

which is a semi-circle about (-l,o) with radius 4. This curve is 

On ly a switching curve tm? into m". The switching curve "m° into m 

is found as the loci of maximal application of mt which leads to 

the curve 

3 a? (134) a € cos t + 4 Tet< 21 

4 

which is again a circle which is centred at (2,0) with radius 3, 

1,0,1 0,1,0 
The two-switch loci s and 8 form the remainder of the 

boundary of T(x) = 5156 These curves are shown in Figure 15. 

Let us now consider a three dimension problem. We shall 

briefly discuss only the simplest case of a one dimensional 

controller and a matrix A having real eigenvalues. 
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Example 3.3 

We take 

ie" 20 

A= o-l o ’ g 
0 40 °=2 a 

and seek to control the system 

H
P
M
O
r
 

x = Ax + gm 

at the point x = (-4, 1, -¢) by on-off controllers. Accordingly 

6 is the unit interval o< m<1. The extreme points of G are 

es Oy; m= ai, 

Examination of p(t) = moe 8 shows that m° and m are 

optimal for all t and hence the corresponding points 3°() and 

1 () lie on the isocronal surface T(x) = ¢ for all =. As in 

the previous example, the single-switch loci az), grey, 

o<t< +t are both required, because of the one-dimensional 

controller, but here they both lie on the boundary surface as 

s+ (Z) and s°(f) lie on it. The two-switch loci complete the 

surface T(x) = ¢ as, in this case, r.(n-l) = 2 is the maxinal 

number of switches in any optimal control. A sketch of the 

surface T(x) = ¢ is shown in Figure 16. 

Analysis of Figure 16 shows that the state-space is divided . 

into two regions. The control m is o in one and j in the other, 

Further we have a parametric description of the switching 

surfaces. 

A switch from o to 1 is made at a point on the one-dimensional 

curve s(t), o <t <oo or on the two-dimensional surface a °(rs¢), 

0 <-t =t < 004 

A switch from 1 to o is made at a point on the one-dimensional 
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curve s(t), 0<t<oo or on the two-dimensional surface a? (rst), 

OY <0 << 00'6 

The last example is valuable in that it indicates what can 

be expected in higher dimensional problems. There we should 

expect to have a sequence of switching surtaces having increasing 

dimension l, 2, 3, ..., n=l. Adequately describing these loci is 

extremely difficult, however the analysis does provide a 

parametric description of the switching surfaces. The parametric 

description can be used to construct linear or quadratic (or 

higher degree) approximations to the switching surtaces which can 

be easily simulated by computers and thereby provide a feed-back 

control device. Approximations of this type could be used to 

provide sub-optimal controls of an efficient type. 

Summary of Chapter Three. 

In this chapter we have considered the time-optimal control 

of linear constant-coefficient systems. The set of points 

controllable to a fixed reference point in time t has been shown 

to be a closed convex set containing the reference point. This 

convex set is bounded by the isocronal surface T(x) = t. The 

normal vectors to the isocronal surface determine the optimal 

control through the adjoint differential equation and the 

Pontryagin Minimum Principle. We have studied the geometric 

properties of the isocronal surfaces and their relation to the 

loci of points parametrized by various switching policies. It 

has been shown that in two dimensional problems this provides a 

facile method of determining the switching surfaces which are 
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described by parametric equations. In higher dimensional 

problems with a one-dimensional control the methods developed 

here also provide insight into the behaviour of the optimal 

system and, further, a parametric description of the switching 

surfaces which may then be approximated to provide sub-optimal 

control. 

The methods used in the lower-dimensional cases can also be 

used to study complex systems consisting of several lower- 

dimensional problems weakly coupled together. For general 

systems with several degrees of freedom and controllers of more 

than one dimension, the geometric methods are not directly 

applicable but must be translated into analytical form. Due to 

the complexity of such systems, this will require use of a 

computer for, in the simplest case of a three-dimensional system 

and two-dimensional control, the optimal controls will have four 

switching instants, with a choice of four controls, making a total 

of a = 324 possible distinct four-switch loci. It is hoped 

that further study will greatly simplify this problem. 

Even in the higher dimensional systems, the concepts 

developed here are useful. The usual procedure of finding the 

optimal control policy for such systems is to use the two-point 

boundary problem arising from the maximum principle, or a 

modified method of steepest descent, to calculate the optimal 

control for a fixed point. This information is stored in the 

computer and the process repeated. From the analysis here we 

see that the calculation of one optimal control furnishes a point 

J /_ = 

: . : . 

xi=s8 (Poe? on the isocronal surface with switching points 
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given by % = (2% 5% Vues Ty) (o << To< sie < % St) and with 

optimal policy ni¢ 4... <em°N. where J = (45; doy cosy, Sue 

Since the functions have been described (see (3.17) ) and are 

continuous we can vary all the parameters Tye ae ey and t 

slightly to obtain the optimal strategy for points near ek 

This also furnishes the optimal control for all points on the 

trajectories from a) (vt) to the reference point. Thus it is 

seen that a calculation of the optimal control at _ furnishes 

the optimal control policy for all points in a "tube" about the 

calculated optimal trajectory. 

From a design standpoint we have shown under what conditions 

a two-dimensional control system can be optimally controlled by 

a single-switch trajectory. This will occur when the constant 

application of the extreme controls are optimal. If the columns 

of the gain matrix eile linearly independent this will occur for 

at least a positive time period. It will occur for all times 

provided the system matrix A has real roots and the product 

ant is not "too skew". This is seen by considering the extreme 

cases of, first, RG = I, in which case the image of © (the set 

S of Chapter 1) is again % and all controls are treated equally 

and all constant controls are optimal; or secondly, when vo 

maps 6 into a line segment and completely suppresses the effect 

of two of the controls and only two of the constant extreme 

controls are optimal. This behaviour furnishes another factor 

somewhat under the control of the designer as it again depends 

upon the gain matrix. Below we summarize the approach 
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developed in this chapter for optimizing two-dimensional systems. 

I. 

36 

4. 

Te 

Plot the loci of the e*() obtained from the constant 

application of m = os 

Examine the exponential-polynomial switching functions 

obtained from the adjoint system to determine for what 

values of ¢%, 2*() is on the boundary T(x) = &, 

1? 59(%) is on the boundary, plot the tangent vectors, 

et), A(xt-x9) = ¢(m*-m2) 

and 

Fide gu Atyty J 

to the single-switch loci at )(). 

Determine the extreme tangent vectors at each point. 

1f T°’) 4s extreme then ai? I(v) is optimal for all 

, ofv<t, when s*(%) is on the boundary, and for 

O<tK ty a a+ (+) is only on the boundary for o<ts<t,. 

If some s*(%) is not on the surface I(x) = t, determine 

the two-switch policies which agree with the single- 

switch policies found in 4, where they are optimal. 

If the system matrix has real eigenvalues the solution 

is complete, otherwise policies with additional switching : 

must be considered. 

The switching curves are given parametrically by 

(+) i a + e “*(z = x9) (j = 1,2,3,4) for o<t¢ ‘43 

where t, is the largest value with T(99(t,) ) = t, (ie. 
1 

the largest t, with a(t, ) on the isocronal surface 
Re 

T(x) = t,) and are then given by 

: 5 rs ee k -Aty | J. 
pd9K(+, 5+) o x? -- Ab (5 x ) ea” Pix x 
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for t, <t<oo, where a rit) is the optimal control 

loci for t = t, selected by the methods of 4. 
iH 

We have not considered the effects of time lags in the 

control operations here. This adds another complication which 

will be studied in further work. In this respect the above 

analysis represents the behaviour of systems without inertia and with 

ideal relays. Any actual control system will be sub-optimal but 

can be compared with the ideal situation as found by the methods 

developed here. 

There is also much further work to be done in modifying 

the approach used here so as apply to systems with other cost 

functions, to systems with time varying coefficients and to non- 

linear systems linearized about some optimal trajectory. 
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APPENDIX A. 

Linear constant-coefficient differential equations and matrix 

exponentials. 

Given two n x n matrices A = (a, ;) and B = b, 3) it is 
9 sJ 

possible to define not only their sum, A+ B= (i; + by 5)s and 

n 

their product, A.B = (= Bai Pig)? but also a measure of 
k= 

fi 1 

Ja] = JA - O] is called the norm of A. It is easy to show that 

{A.BL< PAL.VBl 

With this notion of distance between matrices, we can talk 

about convergence of sequences, i.e. a sequence of matrices 

Als Ags eee, Aw eee converges to the matrix A if, and only if, 

lim {A-An}= 0. In particular we can define power 2. of 
n © 

matrices as limits of nie ee sums of the form a - oui fs 

n 

The partial sums satisfy I=o, A ae <Z oy) hee: < S10! (qat)* 
k=0 — 

and it can be shown that if = eu (qap)* converges (as nc) 

to a real number, the sequence of partial sums = % aK 
k=o 

oo 
\ : \ 

converge to a unique matrix. Since the series 2 zi la® 
k=o 

converges for all JA|, we find that the matrix series 

@ 

> Jas also converges for each matrix A. This defines the 

KS0.2.. 

matrix exponential 
oo 

wm Seti. 
k=0 
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If the matrices A and B commute (i.e. AB = BA) then 

9 (AtB) ghee 

since A and -A always commute we find 

eae Soe ‘est 

so that e4 = let): Further, since each matrix satisfies 

its own characteristic equation, we have 

for some C5 %Xq » soos Xn iy and, as the powers of s* are 

therefore seen to be dependent, we can write 

n-1 

ete ie 
k=o 

for some choice of the Bows K=05. 1, 2y 0663 -l. 

If A is replaced by tA where t is real we find 

e = AeA = etAy, 

Thus, in seeking to solve the vector differential equation 

xk = Ax + F(t), 

where F is an n-dimensional vector function, we multiply by 

tA 
e and observe, as in the scalar case, 

oon oes Ble7*4x) = e7*4R(+) 

and t 

eo" 4, x(o) + ( e7*4P(s)ds 

or 
t 

x(t) = e°@x(0) + {o(t-5)4r(s)as 

which is the solution to the differential equation with initial 

value x(o). 
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For the control systems considered here the function 

F(t) = Gm(t) where G is a constant n x r matrix and m(t) is 

the r-dimensional control vector. In this case the solution 

becomes ‘ 

x(t) = eAtx(0) + 5 g\ta8 7 Rete) de. 

Controllability. 

In Chapter One the concept of controllability is discussed. 

Within this discussion it is found necessary to characterize 

those matrices A and G for which a vector v can be found which 

satisfies 

v.0°°¢ =0 

As we have stated, functions O,(t), O%(t), ue oj (+) can be 

found so that e°4 = Sacoat, Using this we see that 

nel Reo 

vie 4g > Pk) v.AXG =o. Since the functions OL,, ©) y.06,%,_7 

are independent this means v.G = v.AG = ... = veatntg = QO, 

which implies rank (c, AG, “cess s?=4e lens A system is called 

controllable when this can't happen, hence, for controllable 

2 systems, rank te, AGS BS od &, Persad =n, 
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APPENDIX B. 

Orders of Magnitude. 

The comparison of the growth behaviour of functions is 

facilitated by defining orders of magnitude which represent a 
  

comparison of the functions with certain standard functions. 

For example, a function f(t) is said to be O(t) near zero if 

\e(t)\< K ltl 

for some constant K and sufficient small t, e.g. sin t = O(t) 

for t near zero. 

Similarly, f(t) is said to be 0(t™) near o if a constant 

K exists so that 

Pty cet” 

for t sufficiently small. 

If F(t) is a vector function, we say F(t) is 0(t”) near 

zero if its length, |F(t)|, is 0(t”) near zero. 
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