SCHEDULING OF AIRCRAFT CREWS OF A COMMERCIAL AIRLINE

HANEEF IQBAL MALIK B. Sc. (Hons.), M. A.

A thesis submitted to the UNIVERSITY OF ASTON IN BIRMINGHAM DEPARTMENT OF MATHEMATICS
for the degree of
MASTER OF SCIENCE

JUNE 1970

131425

ACKNONLEDGENENT

I wish to acknowledge my thanks to the following persons who assisted me in various ways during my studies regarding this Project.

Dr.A.M.Rajput, my Supervisor, who originally introduced me to this problem which he came across a year earlier when he visited P.I.A. Headquarters in Karachi. I am greatly indebted to him for his keen interest, guidance and help thraghout the period of my studies.

Pakistan International Airline for providing me with all the relevant data for this Project, and the interest they have shown during the last one and a half years. I am especially grateful to the Director of Planning and the Chief Scheduling Officer of P.I.A. for their keen interest in the problem.

The Government of Pakistan, who awarded me a Scholarship for an M.Sc.,Course.

The programming and operating staff of the University of Aston Computer Centre, who have helped me from time to time in computer programming.

Finally, I wish to dedicate this Dissertation to my parents.

CONTENTS

Page No.
Acknowledgement
Summary
SECTION I
CHAPTER I.
1.1) Introduction 1
1.2) Limitation 2
1.2.1) Technique used 3
1.3) Crew Scheduling Problem 3
1.4) Nature of the Problem 6
1.5) Highlights 6
1.6) Computer Program 7
1.7) Advantages of Computer programs 8
CHAPTER II.
General Theory of Time Matrix
2.1) Calculation of Time Matrix 9
2.2) General theory 9
2.3) Two City problem 10
2.4) One City problem 16
2.5) Computer programs 21
CHAPTER III
Selection of Slip Stations and Their Time Matrices.
3.1) Size of the problem 25
3.2) Selection of Slip Stations 25
3.3) China and Moscow Sector 27
3.4) Flight Combinations at Slip Stations 28
3.5) Minimum rest period of all flights 28

3.6) Selection of bases

SECTION II.

CHAPTER IV

Linear Programming

4.1) Introduction 48
4.2) Definition 49
4.3) Mathematical Formulation 50
4.4) Applications of Linear Programming 50
4.5) General Statement of the problem 52

CHAPTER V

The Transportation Model.
5.1) Introduction 53
5.2) Statement of the transportation problem 53
5.3) Structure of the transportation problem 55
5.4) Degenerate Case 56
5.5) General technique of the solution 57
5.6) Determining the fictitious costs 58
5.7) Computer program. 59

CHAPTER VI

The Assignment Model

6.1) Introduction 60
6.2) Assignment problem 60
6.3) Definition 60(a)
6.4) Mathematical Model 61
6.5) Solution to the Assignment problem 62
6.6) Example 65
6.7) Computer program 66

CHAPTER VII

Integer Programming

7.1) Introduction 68
7.2) Geoffrion Method 69
7.3) Example 71
CHAPTTER VIIISolution of Layover time Matrices andSelection of Bases.
8.1) Introduction 77
8.2) Western Sector 77
8.3) Crews Schedules at Istanbul, Beirut and Cairo 79
8.4) Crew Schedule at London 80
8.5) OR Schedule with one home base - Karachi 88
8.6.1) Karachi-Dacca Sector 92
8.6.2) Karachi-Persian Gulf Sector 94
8.6.3) Dacca-Lahore Sector 96
8.6.3) Dacca-Bangkok Sector 96
8.7) Conclusion.
CHAPTER IX
OR Time Table
9.1) Introduction 101
9.2) Optimal flight combination of Karachi-Dacca Sector 110
9.3) Schedule for Eastern Sector 111
CHAPTFR X
Monthly Assignment
10.1) Introduction 113
10.2) Types of duties to be allocated 113
10.3) Essential flying rules 113
10.4) Flying time between terminal Cities 114
10.5) Size of the problem 114
10.6) Monthly Schedule 117
10.7) Mathematical Model 118
10.8) Karachi base 112
10.9) Dacca base 127
CHAPTER XI
Estimation of Reserve Crews.
11.1) Introduction 129
11.2) Factors influencing reserve utilization 129
11.3) Multiple regression analysis 130
11.4) Estimation of multiple regression coefficients 131
11.5) Example 132
11.6) Crout Method 133
11.7) Continuous Check on Calculations 136
11.8) Fisher method 137

APPENDIX

i) List of references
ii) PIA time table
iii) Computer programs.

SUMMARY

This dissertation consists of a theoretical background of scheduling of aircraft crews of a commercial airline. Linear programming technique is applied to complete this dissertation.

This dissertation consists of three sections.

SECTION I.

i) Creating a time matrix (daily and weekly) by the use of an electronic computer considering all possible flight combinations of arrivals and departures of the crews at each slip station.
ii) Then all the time matrices are modified in the light of rules and regulations. These rules are framed by the Airline Authority and the crews' association.

SECTION II.

iii) Solving these matrices by the use of an electronic computer using the Linear Programming techniques, to minimize the layover time of the crews at a place other than the home base.

SECTION III.

In this Section various related topics are
discussed such as
iv) Monthly assignment of the crew by a mathematical technique and number of crews required for a given schedule.
v) $O R$ time table and its schedule.
vi) Estimation of reserve utilization of the crews.

The Appendix is devoted to the programmes which were used in completing this dissertation and which are written in I.C.L. 1900 Algol.and Fortran.

1.1) Introduction.

Most of the commercial airlines of the World are investigating an adequate method of optimizing the utility of their crews. I have approached several airlines and have discussed this problem with them. As far as I know the scheduling of the crews in most of the airlines is done manually using no scientific method. Unfortunately, little has been published on this topic, thus no clue was available to use as to how the problem should be tackled.

Pakistan International Airline (P.I.A) wished that someone should investigate the possibility of improving the utilization of their crews. To understand the problem it is necessary to look into the present system of aircrews' scheduling. At present it is done manually by an experienced scheduler. He frames the schedule based on his past experience considering certain legal requirements, working knowledge of the routes etc., Then this schedule is submitted for approval to a committee consisting of the officials of the company and the representative of the crews' association. Such a schedule is usually expensive to the company in the following ways:-

1) At the slipstation (other than the home base) where the company is responsible for the crew's meals and accommodation until next assignment.
2) Wasteful of the crew's time.

In addition to these points, the human problem
is also involved that the crews may be unhappy in spending
1.1) conta.
and wasting their time away from their families and home.
1.2) Limitations.

For both men and machine there are certain limits beyond which it is unwise to pursue continuing application to a particular task without a break for relaxation or overhaul, because both men and machine have a capacity limited by safety requirements. More specifically in the case of aircrew it is laid down in the regulation that they must not fly more than eight hours in 24 consecutive hours. They must also take an adequate rest before they take up their assignment. Thus the crews are given rest periods at or before the termination of eight scheduled hours of duty aloft, 30 hours in a week, 70 hours in a month and 700 hours in a year. These limitations vary from airline to airline.

In the shorter route where the flight time of the return trip is less than or equal to 8 hours, the same crew can go and come back, but in the case of longer routes, for the sake of safety, the Airline Authority have to replace the crew before exceeding the limit of 8 hours somewhere along the route. At these slipstations, the company is responsible for the crews accommodation and meals until their next assignment. The stay at the slipstation is determined by the flying time from the previous station or base to the slipstation. To reduce this expenditure or layover time of the crews, most of the airlines are investigating a scientific method of utilizing their crews and thereby reducing the layover time at the slip stations. Minimizing this time has the dual advantage of
1.2) contd.
making more crews available at the home base and of reducing the expenditure of the airline for meals and lodgings of the crews away from the home base. Significant reduction in the layover time at slipstations should correspond to some reduction in the number of required crews.
1.2.1) Technique used. I have used a Linear Programming technique to automate the scheduling of aircrews of P.I.A. and a net saving of 570 hours per week is shown in layover time of the crews at slipstations other than the home bases. Consequently, this would mean that the number of crews can be reduced from 54 to 43 (Chapter X).

A system is also developed to eliminate the possibilities of biased allocation of crews to flights. This is presented in Chapter X. In this method OR schedule is circulated among the crews and their preference bids are taken. Then a mathematical technique is applied to allocate duties to the crews, which eliminate the human bias.

In Chapter IX, OR time table is developed by deviating 25 minutes in Karachi-Dacca sector to certain flights. A further reduction of 119-30 hours to the layover time of the crews is shown.

In Chapter XI, regression analysis is used to estimate the reserve crews for regular and emergency flights.
1.3) Crew Scheduling Problem.

The crew scheduling problem is an operational
research classic. It is mathematically identical to"travelling salesman problefl in certain variation. "Definition of Crew Scheduling problem".
1.3) contd.

The scheduled flight path of a commercial aircraft, often referred to as an "aircraft routing", is the single most important element of air transport industry planning and operations. This flight path is determined primarly by marketing considerations and is limited by practical considerations of maintenance, airport facilities etc.,

The aircraft routing is considered as fixed, as a basis of computation of flight crew schedules. At this point an entirely different set of considerations applies. Flight crew schedules are carefully defined (which are not identical with any other airline) and severely limited by the Government, the Company, consideration of safety, operability, overall profit and the necessity of good working conditions at the same time.

In certain circumstances it is possible to express the outcome of the crew scheduling in the form of the sequences $A-a-b-c-B$, where the end terms signify two special events and the inner terms must be carried out in due sequence. The two end events signify departure from and arrival at the crew base, the intermediate events signify successive sectors flown. It is not possible for the same crew to finish the sequence describe, because of the safety requirements. Some rules and regulations have to be obeyed. Every airline of the World has a problem of optimum crew utilization because the crews are highly paid and the Company has to spend a large amount on their accommodation at the slipstations. This gives the impression that the optimum crew utilization means simply,
1.3) contd.
maximum number of hours aloft.
An ideal crew assignment or 'trip pairing' may be defined as follows:-
"The crew arrives at City A at 90° clock in the morning and spends a busy number of hours preparing a flight plan, checking equipment and other formalities. At $10 o^{\prime}$ clock their plane departs for City B arriving on schedule at 13-45. At exactly 14-45 the crew takes a return flight out for City A, arriving on schedule 18-30 o' clock. Debriefing requires half an hour, at 19-00 o'clock, the crew leaves for their home." They have been on duty 10 hours which is maximum duty time for a crew.

Unfortunately, very few actual trip pairing approach this ideal situation. The aircraft schedules are designed under the major influence of marketing consideration, ideal crew pairing are often simply coincidental.

In practice, the aircraft routing is usually broken down to individual flights. These are re-assembled by trial and error methods into a set of crew pairing, governed by many factors which are often conflicting. The 'ideal" trip described above might even disappear.

If a crew could board an aircraft at a point of origin and stay with it until it returns to base, then there is no problem. But this ideal situation is not possible or practical for numerous reasons, and thus the crew scheduling problem arises. The nature of the problem is not always the same for every airline, as the flying rules vary from airline to airline.

1.4) "Nature of the Schedule".

The Government and Crew Association of all the World airlines are in unanimous agreement on one point "safety". Any trip pairing which gives excessive crew fatigue without satisfactory rest is automatically not considered.

Immediately beyond this area which is not easy to define, things become hazy. The first complication is the difference between scheduled and actual flying. Generally speaking, the legality of a scheduled pairing is re-examined at the conclusion of each flight segment. For many reasons the flights are late or irregular. A crew flying perfectly valid trip sequence may find themselves circling the airport for an hour or two and upon landing it is illegal to take out their scheduled flight the next day. Such possibilities must be considered while making the schedule.

In this general era of safety, some factors are hard to define. If a liberal schedule is framed, then a huge amount of foreign exchange is used on their accommodation and meals. If, on the other hand, a tight schedule is framed, then operating difficulties will occur.

I have used Linear Programming techniques for framing an optimum P.I.A. Schedule taking all possible factors into account.

1.5) Highlights.

The crew scheduling problem is essentially the same for all the airlines, by virtue of the fact that they operate similar equipment, over similar routes, by similarly trained
1.5) contd.
pilots, who have similar relationships with their respective airlines. But the technique of assigning the duty is different because the flying rules are different from airline to airline, In some airlines the schedule is released to all crews and their preference bid is taken. Normally the crew members with highest sneiority have first opportunity to select a desired flight schedule. The airline having a big fleet have solved their problem by making more than one base in order to minimize the layover time at slip stations.

1.6) Computer Programs.

The following computer programs have been used:-

1) Daily layover time matrix - rows departure and columns arrival.
2) Daily layover time matrix - columns departure and rows arrival
3) Weekly layover time matrix - rows departure and columnsarrival
4) Weekly time matrix - columnsdeparture and rowsarrival
5) Transportation program
6) Integer linear programming program
7) Assignment program
8) Sum of squares and product program
9) Inverse matrix program
10) Mean program

1.7) Advantages of Computer Programs.

The advantages of using a computer in order
to frame the schedule, are given below:-

1) To avoid the loss of time devoted to the manual
elaboration of the Summer and Winter scheduling of aircrews.
2) To print a good reply to every modification of flight, that is, any addition or cancellation of flight and at the same time optimal solution can be obtained.
3) To modify the schedule in the light of any addition or cancellation of flights, the new schedule can be framed in a few minutes only.
4) Using the same principle, the scheduling of air hostesses and stewards can be prepared.
2.1) Calculation of Time Matrix.

A time matrix consists of rectangular array of time; unlike the determinant it does not have quantitative value. If the number of rows and columns are equal then it is a square matrix. The time matrix is obtained by taking all possible combinations of arrivals and departures of all flights at changeover City keeping in view the legal limitations which are laid down by the Crew Association and Airline Authority.

There is only one variable - time on the ground away from the location at which the crew is based. Minimizing of this time has the dual advantage of making more crews available at the home base and reducing the expenditure of the crews on boarding and lodging at changeover places.

2.2) General Theory.

A simple illustration will serve to demonstrate the fundamental nature of the problem. Consider a flight system that involves only three locations on a line and two flights in each direction as shown in the diagram.

Diagram - 1
2.2) contd.

If the turn around in either direction at L_{2} is excluded, the possible combinations of eight flights is represented in the following table.

Flight Segment	I		II	
	1	2	1	2
A ${ }^{\text {b }}$		x		
a				
b				

Table l - Matrix of possible flight combinations.

Let in this layover time matrix, the cell marked " x " represent the combination of four flights (I, 2, A, a) and this is the time away from the home base on the ground. Similarly all cells are filled by taking different possible combinations.

Consequently, in order to obtain a mathematical model in the light of legal limitations, the problem of flight pairings and allocations is reduced to a series of "Iwo City Problem" and "One City Problem", which are as follows.
2.3) Mathematical Models.
2.3.1) Two City Problem.

If the flight time between the two cities
A and B is less than or equal to eight hours for
2.3) contd.
2.3.1) conta.
both directions i.e.
$\overrightarrow{A B}+\overrightarrow{B A} \leqslant 8$ hours.
Then the above problem is reduced to two city problem and layover time for each city is calculated. Suppose there are n flights from A to B and m flights from B to A (n . odd flights and m even flights).

Diagramatically it can be represented as
follows:-

City A

> Diagram -2 Schedule between
> A and B

where all a^{\prime} s and d's are the arrival and departure times of flights. First the layover time matrix for City A is calculated by taking the City B as home base and similarly time matrix for the City B.
2.3) contd.
2.3.1) conta.

Arrive On

Table 2-A $\left\{\begin{array}{l}\text { Layover time at A } \\ \text { crew based at B }\end{array}\right.$

Leave On

Table 2-B $\left\{\begin{array}{l}\text { Layover time at } B \text { and } \\ \text { crew based at A. }\end{array}\right.$
where $l_{2_{1}}$ is the layover time at City $\mathrm{A}\left(a_{2}-d_{1}\right)$ and ℓ_{12} is the layover time at $B\left(a_{1}-d_{2}\right)$ and similarly for all cells.

The above two matrices are combined into one composite matrix by comparing step by step analysis of the respective corresponding elements of the two matrices in such a manner that the minimum value for both set is selected for the third matrix. Each cell of the third matrix is marked with A or B subject to the selected element, where the crew is based. The third matrix is as follows:-
2.3) contd.
2.3.1) contd.

Flight Nos.

Table - 3 Composite matrix
where L_{12} is the minimum value of ℓ_{12} and ℓ_{21} similarly for all other cells.

It is necessary that the third matrix must be square. It is only when $n=m$, if this is not the case, then other legal flights can be considered at that city having less flights.

2.3.2) Example.

Suppose there are two cities A and B, joined by direct route i.e. A to B and B to A and four planes leave A for B and they are denoted by odd numbers $1,3,5,7$ and the flight from B to A be denoted by even numbers $2,4,6,8$. The arrival and departure time for each flight is known. The flight time between cities (A and B) and (B and A) is uniform and constant. The flying time of the round trip is less than eight hours.
2.3) contd.
2.3.2) contd.

City A
Diagram 3. Schedule between
City B City A and B

There are certain limi ations beyond which the crew cannot fly
i) A crew cannot fly more than 8 consecutive hours in 24 hours, and 10 hoursduty time in 24 hours.
ii) Every crew must have rest periods after each flight. Such rest periods should be equal to double the duty time.
iii) When a flight is delayed en route due to unforeseen circumstances and the delay is more than 3 hours, the Captain of the crew can declare a layover to ensure a minimum rest of eight hours. If any element of the matrix is more than 3 hours and less than 9 hours for domestic flights, then 24 hours are added to that element. In the case of international flights the upper limit is 9-30 hours.

To calculate the layover time matrix for each City, assuming first that all the crews are based at City A
2.3) contd.
2.3.2) contd.
and second assuming that all crews are based at B, the number in each cell represents the time away from their home base. The two layover time matrices are calculated by applying the 'two city method' as described above.

Layover time matrix at City A.

Table 4-A Crew based at City B.

Layover time matrix at City B.

	d_{1}	d_{3}	d_{5}	d_{7}
a_{3}	17.75	17.00	15.00	12.50
a_{4}	19.75	19.00	17.00	14.50
a_{6}	1.75	2.50	22.50	20.00
a_{8}	30.75	31.50	20.00	1.00

Table 4-B Crew based at City A.

Another matrix is derived from the se two matrices
by choosing the smallest element from the respective corresponding cells of the matrics. Then the matrix so obtained is known as composite matrix and presented in Table No.4-C. Each selected element is marked with A or B
2.3) contd.
2.3.2) contd.
showing where the crew is based. The composite matrix is as follows:-

Flight Nos.

24	$\begin{gathered} \mathrm{A} \\ 17.75 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 17.00 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 15.00 \end{gathered}$	$\begin{gathered} \text { B } \\ 11.75 \end{gathered}$
	$\begin{gathered} \text { B } \\ 1.00 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 19.00 \end{gathered}$	$\begin{aligned} & \text { A or B } \\ & 17.00 \end{aligned}$	$\begin{gathered} \text { B } \\ 12.50 \end{gathered}$
6	$\begin{gathered} A \\ 1.75 \end{gathered}$	$\begin{gathered} \text { B } \\ 1.00 \end{gathered}$	$\begin{gathered} \text { B } \\ 19.50 \end{gathered}$	$\begin{gathered} \text { B } \\ 14.50 \end{gathered}$
8	$\begin{gathered} \text { B } \\ 29.50 \end{gathered}$	$\begin{gathered} B \\ 27.50 \end{gathered}$	$\begin{gathered} A \\ 20.00 \end{gathered}$	$\begin{gathered} \text { B } \\ 1.00 \end{gathered}$

Table 4-C Composite layover time matrix.

2.4) One City Problem.

If the flight time between the two cities is greater than eight hours in either direction i.e.

$$
\overrightarrow{A B} \text { OR } \overrightarrow{B A}>8 \text { hours }
$$

then according to the legal limitations, the crew is not allowed to fly more than eight hours. This means the Airline Authority have got to replace the crew somewhere between the two terminal points. Therefore, the two city problem is reduced to "one city problem."

In order to find a mathematical model, let us consider at a city ' x ' arriving n flights from the terminal A bound for city B and m flights from the terminal B bound for city A. Altogether ($n+m$) flights can be represented diagramatically as follows:-

Diagram - 4 - "One City Problem".
where all a's and d's stand for arrivals and departures respectively.

The crew arriving at a_{1} can be assigned for next duty to anyone of departures after taking the due rest. Such rest period will be equal twice the duty time and not less than eight hours in any case. The time matrix will take the form as given below:-
2.4) contd.

$\begin{gathered} \mathrm{L}_{11} \\ \mathrm{~L}_{13} \\ \vdots \\ \mathrm{~L}_{1 \mathrm{n}} \end{gathered}$	$\begin{gathered} \mathrm{I}_{31} \\ \mathrm{I}_{33} \\ \vdots \\ \mathrm{~L}_{3 \mathrm{n}} \end{gathered}$	-•	$\begin{gathered} L_{n 1} \\ L_{n 3} \\ \vdots \\ L_{n n} \end{gathered}$	$\begin{gathered} \mathrm{I}_{21} \\ \mathrm{~L}_{23} \\ \vdots \\ \mathrm{~L}_{2 \mathrm{n}} \end{gathered}$	$\begin{gathered} \mathrm{L}_{41} \\ \mathrm{~L}_{43} \\ \vdots \\ \mathrm{~L}_{4 \mathrm{n}} \end{gathered}$		$L_{m 1}$ $L_{m 3}$ \vdots $L_{m n}$
L_{12}	L_{32}	-•••	$L_{n 3}$	L_{22}		-••	L_{m}
L_{14}	I_{34}	-••••	$\begin{gathered} \mathrm{I}_{\mathrm{n} 4} \\ \vdots \\ \vdots \end{gathered}$	I_{24}		-•	$\begin{aligned} & I_{\mathrm{m} 4} \\ & \vdots \\ & \vdots \end{aligned}$
$L_{\text {1m }}$	$L_{\text {am }}$	-••••	$L_{\text {nm }}$	$\mathrm{L}_{2 \mathrm{~m}}$		-••••	$\mathrm{L}_{\text {mm }}$

Table 5. "Time matrix for One City Problem" where $L_{m n}$ is the layover time of the crew arriving on flight ' m ' and departing on flight ' n '.

2.4.1) Example.

Suppose there are two cities A and B, and the flight time between two cities is greater than eight hours. According to the flying rules a crew cannot fly more than eight hours during any 24 consecutive hours. Such rest period will be equal to twice the number of hours on duty.

This means the airline authority have got to replace the crew at a city somewhere between two cities. Let this city be ' x '. Suppose there are six weekly flights at City X, three flights arriving from City A bound for City B and denoted by 2,4,6 and three flights from City B bound for City A and are denoted by $1,3,5$.

The time table for these flights is given below:-
2.4) contd.
2.4.1) contd.

2.4) contd.
2.4.1) contd.

Here one point to be noted is that the flying time for all flights is not equal because the se flights come through different cities i.e. the route of each flight is not the same.

The flight duty time will commence from a time a crew reports at the airport, from which he will be operating a flight or a series of flights. The duty time starts 45 minutes before scheduled departure for domestic flights, and one hour before scheduled doparture for international flights and ends at the destination airport allowing 15 minutes for domestic flights, and 30 minutes for international flights for completing the formalities.

This example relates to international flight. The duty time for each flight is shown in the following diagram:-

2.4) contd. 2.4.1) contd.

The layover time matrix for the City ' X ' is calculated by applying 'one city method'. The crew arriving on flight No.l can go on any one of departures $1,3,5,2,4$ and 6 . Similarly taking all possible combinations of arrivals and departures, the layover time matrix for City X is calculated and given below:-

	a_{2}	a_{4}	a_{6}	a_{1}	a_{3}	a_{5}
d_{3}	167.25	142.50	120.17	133.67	85.50	41.25
d_{4}	24.50	167.75	145.42	158.92	110.75	66.50
d_{6}	46.33	21.58	167.25	180.75	132.58	88.33
d_{1}	32.91	176.16	153.83	167.33	119.16	74.91
d_{3}	81.08	56.33	34.00	47.50	167.33	123.08
d_{5}	125.33	100.58	78.25	91.75	43.58	167.33

Table-7 - Time Matrix for City X.

2.5) Computer Programs.

The application of computer techniques for the calculation of large layover time matrices is advisable to facilitate and speed up the calculations of the results. The following computer programs are developed to calculate the time matrics and attached in the Appendices (Nos.1,2,3,4).

1) Daily time matrix - row departures and column arrivals
2) Daily time matrix - row arrivals and column departures
3) Weekly time matrix- row departures and column arrivals
4) Weekly time matrix- row arrivals and column departures There are three possible cases for calculating the layover time matrices:-
2.5) contd.
5) If the time table for all flights is the same throughout the week, and return flight time is less than or equal to 8 hours. then the 'two city method' is applied to calculate the layover time trices for each city. The computer programmes Nos. 1 and 2 will be applied to calculate the daily layover time matrices. Then from these two matrices, a composite matrix will be obtained as described in the 'two city method'.
6) In the second case if the time table for all flights is not the same throughout the week, then the last two programmes can be applied to calculate the weekly layover time matrices. After that a composite matrix can be calculated as above.
7) Now in the third case if the flight time between two cities is greater than 8 hours, then according to the flying rules, the crew will have to be replaced somewhere along the route, then the 'one city method' is applicable to calculate the layover time matrix, and computer programmes Nos. 3 or 4 can be applied to calculate the weekly layover time matrix.

All these programmes run successfully on ICL 1900 and data cards are prepared for the examples which are described above after two city and one city method. The ICL 1900 took only 13 seconds for the calculation of the 20×20 matrix.

2.6.1) Data cards for the two city method.

Daily layover time matrix for City A //
2.6.1) contd.

$$
24.50 \quad 0.50
$$

$1 \quad 24$
4
$\begin{array}{llll}1 & 9.00 & 1 & 7.00\end{array}$

1	11.00	1	9.50

$\begin{array}{llll}1 & 16.50 & 1 & 15.50\end{array}$
$\begin{array}{llll}1 & 21.50 & 1 & 27.00\end{array}$

The program No.I is applied to get the layover time matrix for City A - departure row wise and arrival column wise.
2.6.2) Daily layover time matrix for City B//

24.50	0.50				
1		24			
4					
1	6.00		1		

The program No.II is applied to get the layover time matrix for City B - arrival row wise and departure column wise.

In both data cards, the first and third column represent the day of the week such as Sunday $=1$, Monday $=2 \ldots$ Saturday $=7$. Second and fourth represent the arrival and departure time respectively. 4 shows the number of the flights in a day at City A and B. I and 24 show that the calculations are made at day 1 and 24.00 hours. As the return flying time between the cities
2.6.2) contd.
is less than 8 hours, the 0.50 is taken as lower limit of layover time at City \mathbf{A} and B; and, at the most, the crew can go next day on the same flight, the refore 24.50 is the upper limit of layover time at City A and B.

The same results are obtained as in the case of examples described above.
2.6.3) "Data Cards for one city problem"

180.00		12.00	
1			
6			
2	10.42	2	9.67
3	11.17	3	10.92
4	9.50	4	8.75
3	20.00	3	19.33
5	20.17	5	19.50
7	16.42	7	15.75

The computer program No.IV is applied to calculate the layover time matrix for City X. In this case 12.00 is the minimum rest period for the crews which is based on the duty time and 180.00 is the maximum rest period. The duty time for each flight is calculated and if any element of the matrix is less than twice the duty time, then 168 hours are added to that element, because the flying time is not the same for all flights due to the different routes. The same result is obtained as in the example of one city method (Table 7).

CHAPTER III

SELECTION OF SLIP STATIONS AND THEIR TIME MATRICES

3.1) Size of the Problem.

From looking to the time table of P.I.A. attached in the Appendix, all flights can be divided into the following sectors, showing the number of weekly flights in each sector:-

Name of Sector

1) Western
2) Karachi-Dacca 20
3) Lahore-Dacca 5
4) China 2
5) Persian Gulf 4
6) Bangkok $\underline{2}$

Total flights ψ_{4}

3.2) Selection of Slip Stations.

If the flying time between two cities is more than eight hours, then the flight crews have to be changed at the intermediate stops for safety requirements in accordance with the working and rest time regulations. The choice of slip station is made on arrivals and departures in a week. The off going crew is taking a rest at such a stop while waiting for the next flight. The rest time is usually based on the duty time and it should not be less than eight hours in any case. A route can be divided into parts between the terminal points.

Some places along the route cannot be used as slip station due to political reasons or lack of facilities. A few stations with poor hotels or without any facilities could be used as slip stations after large investments. Some stations are now regular slip stations with very good and cheap accommodation because they are airline company-owned hotels. With the introduction of faster aircrafts such as the Concorde or the Jumbo jets, the se
3.2) contd.
stations might be overflown in the near future. Assuming the possible slip stations are known and their number is limited, the choice of these stations as slip stations has to be based on costs.

If station ' A ' is considered as slip station the rest time needed by the crews at the station ' A ' depends on the flight duty time before reaching this point. This means that the number of crews in a hotel at station ' A ' depends on
i) flight duty time from previous slip station or base station to station ' A^{\prime};
ii) number of flight cails at station (frequency) With a given time table, the arrival and departure times of aircraft at station 'A' are known. Crews coming and going from station ' A ' can be given the required rest time according to the regulations.

For the P.I.A. the flight time in the Western Sector is more than eight hours in either direction. P.I.A. Authority have got to replace their crews, somewhere between the two terminal points - Karachi and London. Keeping in view the legal limitations, frequency of flights and other aspects mentioned above, the following cities are being used by P.I.A. as slip stations

1. Beirut
2. Istanbul
3. Cairo
4. London
5. with Karachi as the home base.

The flight time between Karachi and London and
vice-versa in the Western Sector and Karachi - Shanghai Karachi in the China Sector, is greater than eight hours. In all other remaining sectors the return flying time is less than eight hours, so the layover time matrices for the se sectors will be calculated by the"two city method". In the case of Western flights, the airline authority has got to replace the crew somewhere between London and Karachi according to the flying rules. The case of the China Sector is explained below:-

3.3) China and Moscow Flights.

There are two return weekly flights to China and one Moscow flight bound for London in the Western Sector. The flying time in both cases is more than eight hours. The crew arriving at Moscow on flight No. PK. 720 will have to wait for the next assignment - about 6 days. In case of the China Sector the crew arriving on PK. 752 will have to wait for the next assignment - about 5 days. In order to avoid this idle period, the airline authority and crews' association are agreed that a double crew should be used on the se two sectors with the conditions that the crews of flight No. PK. 717 and PK. 720 will get at least three days off from any duty of the Company at London and Karachi respectively. One crew will operate the plane up to Moscow and the second will take the control of the plane from Moscow. This double crew will be used for China flights and will go to Dacca one day before the flight as dead head crew. This means that 12 crews are used for 11 Western flights and 2 crews are used for 2 return China flights.
3.4) Flight combinations at slip stations.

From a look at the time table attached in the Appendix the crews of West bound flights Nos. PK.713, 721 and East bound flights Nos. 706, 718 can be changed ei ther at Beirut or Istanbul. The possible combinations are as follows:-

6. W.B.F. $705,709,715,713,721 \quad 701,703,707$

TABLE - 8:- Possible Combinations for Istanbul and Beirut
where W.B.F. West bound flights Karachi - London
E.B.F. East bound flights London - Karachi
3.5) "Minimum Rest Period of All Flights".

The duty time from the terminals to changeover places are calculated and given below. The duty time for international flights commence one hour before scheduled departure and end half an hour after scheduled arrival.
3.5) contd.

Route and Flight No.	Duty Time in Hours.	Minimum Rest Period (double the duty time)
	hrs. min.	hrs. min.
PK 701	$6-55$	13-50
PK 703	$7-40$	15 - 20
PK 707	6-00	12 - 00
PK 713	7-15	14 - 30
PK 721	7-15	14-30
LOND ON-BEIRUT		
PK 702	7-15	14-30
PK 706	$8-35$	17 - 10
PK 708	7-25	14-50
PK 714	7-25	$14-50$
PK 718	$8-35$	17 - 10
KARACHI-ISTANBUL		
PK 705	$8-10$	16 - 20
PK 709	9-25	18 - 50
PK 715	$8-10$	16 - 20
PK 721	$9-40$	19 - 20
PK 713	9-40	19 - 20
LONDON-ISTANBUL		
PK 722	6-25	12 - 50
PK 712	$6-25$	12 - 50
PK 716	$6-25$	12 - 50
PK 718	$6-20$	12 - 40
PK 706	$6-15$	12 - 30

$\begin{array}{l}\text { 3.5) contd. } \\ \hline \text { Route and Flight No. } \\ \hline \text { KARACHI-CATRO } \\ \\ \hline\end{array}$ PK 711 $\left.\begin{array}{c|c|c}\text { Duty Time } \\ \text { in Hours. }\end{array} \begin{array}{c}\text { Minimum Rest } \\ \text { Period (double } \\ \text { the duty time) }\end{array}\right]$

For all above mentioned slip stations, "one city method" is used. The computer program IV is applied for the calculation of layover time matrices at Istanbul, Beirut, Cairo and London. All the time matrices so obtained are modified in the light of Section (3.5). If any element is less than the
3.5) contd.
minimum rest period, 168 hours are added to that element, because at the latest the crew can go next week on the same flight. All modified time matrices are as follows:-
3.5) contd.
BEIRUT PK 702, 706, 708, 714, 718, 713, 701, 703, 707, 721.

| a_{701} | a_{703} | a_{708} | a_{713} | a_{721} | a_{703} | a_{706} | a_{708} | a_{714} | a_{718} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 167.25 | 142.50 | 120.17 | 70.92 | 22.92 | 133.67 | 108.34 | 85.50 | 41.25 | 184.09 |
| 24.50 | 167.75 | 145.42 | 96.17 | 48.17 | 158.92 | 133.59 | 110.75 | 66.50 | 41.34 |
| 46.33 | 21.58 | 167.25 | 118.00 | 70.00 | 180.75 | 155.42 | 132.58 | 88.33 | 63.17 |
| 95.66 | 70.91 | 48.50 | 167.33 | 119.33 | 62.08 | 36.75 | 181.91 | 137.66 | 112.50 |
| 143.66 | 118.91 | 96.50 | 47.33 | 167.33 | 110.08 | 84.75 | 61.91 | 17.66 | 160.50 |
| 32.91 | 176.16 | 153.83 | 104.58 | 56.58 | 167.33 | 142.00 | 119.16 | 74.91 | 49.75 |
| 58.25 | 33.50 | 179.17 | 129.92 | 81.92 | 24.67 | 167.34 | 144.50 | 100.25 | 75.09 |
| 81.08 | 56.33 | 34.00 | 152.75 | 104.75 | 47.50 | 22.17 | 167.33 | 123.08 | 97.92 |
| 125.33 | 100.58 | 78.25 | 29.00 | 149.00 | 91.75 | 66.42 | 43.58 | 167.33 | 142.17 |
| 150.50 | 125.75 | 103.42 | 54.17 | 174.17 | 116.92 | 91.59 | 68.75 | 24.50 | 167.34 |

Table 9 - Layover Time matrix.
3.5) contd.
(BEIRUT PK 701, 703, 707, 702, 714, 718)

	a_{701}	a_{703}	a_{707}	a_{702}	a_{708}	a_{714}
	d_{701}	167.25	142.50	120.17	133.67	85.50
d_{703}	24.50	167.75	145.42	158.92	110.75	61.25
d_{707}	46.33	21.58	167.25	180.75	132.58	88.33
d_{703}	32.91	176.16	153.83	167.33	119.16	74.91
d_{708}	81.08	56.33	34.00	47.50	167.33	123.08
d_{714}	125.33	100.58	78.25	91.75	43.58	167.33

Table 10. Layover time matrix
(BEIRUT PK 701, 703, 707, 721, 702, 706, 708, 714)

	a_{701}	a_{703}	a_{707}	a_{721}	a_{702}	a_{706}	a_{708}	a_{714}
	167.25	142.50	120.17	22.92	133.67	108.34	85.50	41.25
d_{701}	24.50	167.75	145.42	48.17	158.92	133.59	110.75	66.50
d_{703}	46.33	21.58	167.25	70.00	180.75	155.42	132.58	88.33
d_{707}	46.3							
d_{721}	143.66	118.91	96.50	167.33	110.08	84.75	61.91	17.66
d_{702}	32.91	176.16	153.83	56.58	167.33	142.00	119.16	74.91
d_{706}	58.25	33.50	179.17	81.92	24.67	167.34	144.50	100.25
d_{708}	81.08	56.33	34.00	104.75	47.50	22.17	167.33	123.08
d_{714}	125.33	100.58	78.25	149.00	91.75	66.42	43.58	167.33

Table 1l. Layover time matrix.
3.5) contd.

BEIRUT PK 701, 703, 707, 713, 702, 706, 708, 714

	${ }^{2} 701$	a_{703}	a_{707}	a_{713}	a_{702}	${ }^{7} 706$	${ }^{7} 708$	${ }^{3} 714$
d_{701}	167.25	142.50	120.17	70.92	133.67	108.34	85.50	41.25
d_{703}	24.50	167.75	145.42	96.17	158.92	133.59	110.75	66.50
$\mathrm{d}_{70} 7$	46.33	21.58	167.25	118.00	180.75	155.42	132.58	88.33
d_{713}	95.66	70.91	48.50	167.33	62.08	36.75	181.91	137.66
d_{703}	32.91	176.16	153.83	104.58	167.33	142.00	119.16	74.91
d_{706}	58.25	33.50	179.17	129.92	24.67	167.34	144.50	100.25
d_{708}	81.08	56.33	34.00	152.75	47.50	22.17	167.33	123.08
d_{714}	125.33	100.58	78.25	29.00	91.75	66.42	43.58	167.33

Table 12. Layover time matrix.

BEIRUI PK 701, 703, 707, 713, 702, 708, 714, 718.

	a_{701}	a_{703}	a_{707}	a_{713}	a_{702}	a_{708}	a_{714}	a_{718}
	d_{701}	167.25	142.50	120.17	70.92	133.67	85.50	41.25
d_{703}	24.50	167.75	145.42	96.17	158.92	110.75	66.50	41.34
d_{707}	46.33	21.58	167.25	118.00	180.75	132.58	88.33	63.17
d_{713}	95.66	70.91	48.50	167.33	62.08	181.91	137.66	112.50
d_{702}	32.91	176.16	153.83	104.58	167.33	119.16	74.91	49.75
d_{708}	81.08	56.33	34.00	152.75	47.50	167.33	123.08	97.92
d_{714}	125.33	100.58	58.25	29.00	91.75	43.58	167.33	142.17
d_{718}	150.50	125.75	103.42	54.17	116.92	68.75	24.50	167.34

Table 13. Layover time matrix.
3.5) contd.

BEIRUT PK 701,703,707,721,702,708,714,718

	${ }^{7} 701$	${ }^{2} 703$	${ }^{\text {a }} 707$	a_{731}	a_{702}	a_{708}	a. 714	a_{718}
d^{701}	167.25	142.50	120.17	22.92	133.67	85.50	41.25	184.09
d. 703	24.50	167.75	145.42	48.17	158.92	110.75	66.50	41.34
d. 707	46.33	27.58	167.25	70.00	180.75	132.58	88.33	63.17
d. 721	143.66	118.91	96.50	167.33	110.08	61.91	17.66	160.50
d. 702	32.91	176.16	153.83	56.58	167.33	119.16	74.91	49.75
d. 708	81.08	56.33	34.00	104.75	47.50	167.33	123.08	97.92
d. 714	125.33	100.58	78.25	149.00	91.75	43.58	167.33	142.17
d. 718	150.50	125.75	103.42	174.17	116.92	68.75	24.50	167.34

Table 14 Layover time matrix.
3.5) conta.
ISTANBUL 705,709,713,721,715,722,706,712,716,718

	a_{705}	a_{709}	a_{713}	a_{715}	a_{721}	a_{732}	a_{706}	a_{712}	a_{716}	a_{718}
d_{705}	167.50	135.50	111.25	95.50	63.25	33.25	153.25	105.25	81.25	61.09
d_{709}	31.41	167.41	143.10	127.41	95.16	65.16	17.33	137.16	113.16	93.00
d_{713}	55.66	23.66	167.41	151.66	119.41	89.41	41.58	161.41	137.41	117.25
d_{715}	71.50	39.50	183.25	167.50	135.25	105.25	57.42	177.25	153.25	133.09
d_{721}	103.66	71.66	47.41	31.66	167.41	137.41	89.58	41.41	17.41	156.25
d_{722}	133.66	101.66	77.41	61.66	29.41	167.41	119.58	71.41	47.41	27.25
d_{706}	181.41	149.41	125.16	109.41	77.16	47.16	167.33	119.16	95.16	75.00
d_{712}	61.66	29.66	173.41	157.66	125.41	95.41	47.58	167.41	143.41	123.41
d_{716}	85.66	53.66	29.41	181.66	149.41	119.41	71.58	23.41	167.41	147.25
d_{718}	105.66	73.66	49.41	33.66	169.41	139.41	91.58	43.41	19.41	167.25

Table 15 Layover time matrix
3.5) contd.

ISTANBUL PK 705,709,715,713,722,706,712,716

	${ }^{\text {a }} 705$	a_{709}	a_{713}	a_{715}	a_{722}	${ }^{706}$	a_{713}	${ }^{\text {a }} 716$
d_{705}	167.50	135.50	111.25	95.50	33.25	153.42	105.25	81.25
d_{709}	31.42	167.41	143.41	127.41	65.16	17.33	137.16	113.16
d_{713}	55.66	23.66	167.47	151.66	89.41	41.58	161.41	137.41
d_{715}	71.50	39.50	183.25	167.50	105.25	57.42	177.25	153.25
d_{732}	133.66	101.66	77.41	61.66	167.41	119.58	71.41	47.41
d_{706}	181.47	149.41	125.16	109.41	47.16	167.33	119.16	95.16
d_{712}	61.66	29.66	173.41	157.66	95.41	47.58	167.41	143.41
d_{716}	85.66	53.66	29.41	181.66	119.41	71.58	23.41	167.41

Table 16. Layover time matrix.

ISTANBUL PK 705,709,715,721,722,712,716,718

	a_{705}	a_{709}	a_{715}	a_{721}	a_{722}	a_{712}	a_{716}	a_{718}
	d_{705}	167.50	135.50	95.50	63.25	33.25	105.25	81.25
d_{709}	31.41	167.41	127.41	95.16	65.16	137.16	113.16	93.00
d_{715}	71.50	39.50	167.50	135.25	105.25	177.25	153.25	133.09
d_{721}	103.66	71.66	31.66	167.41	137.41	41.41	17.41	165.25
d_{722}	133.66	101.66	61.66	29.41	167.41	71.41	47.41	27.25
d_{712}	61.66	29.66	157.66	125.41	95.41	167.41	143.41	123.25
d_{716}	85.66	53.66	181.66	149.41	119.41	23.41	167.41	147.25
d_{718}	105.66	73.66	33.66	169.41	139.41	43.41	19.41	167.25

Table 17 Layover time matrix.
3.5) contd.

ISTANBUL PK 705,709,715,721,722,706,712,716.

	a_{705}	a_{709}	a_{715}	a_{721}	a_{722}	a_{706}	a_{712}	d_{716}
	d_{705}	167.50	135.50	95.50	63.25	33.25	153.42	105.25
d_{709}	31.41	167.41	127.41	95.16	65.16	17.33	137.16	113.16
d_{715}	71.50	39.50	167.50	135.25	105.25	57.42	177.25	153.25
d_{721}	103.66	71.66	31.66	167.41	137.41	89.58	41.41	17.41
d_{722}								
d_{706}	133.66	101.66	61.66	29.41	167.41	11953	71.41	47.41
d_{712}	181.91	149.91	109.91	77.66	47.66	167.83	119.66	95.66
d_{716}	61.66	29.66	157.66	125.41	95.41	47.58	167.41	143.41
85.66	53.66	181.66	149.41	119.41	71.58	23.41	167.41	

Table 18. Layover time matrix.

ISTANBUL PK 705,709,715,713,722,712,716,718.

	a_{705}	a_{709}	a_{713}	a_{715}	a_{722}	d_{712}	d_{716}	d_{718}
	d_{705}	167.50	135.50	111.25	95.50	33.25	105.25	81.25
d_{709}	31.41	167.41	134.10	127.41	65.16	137.16	113.16	93.00
d_{713}	55.66	23.66	167.41	151.66	89.41	161.41	137.41	117.25
d_{715}	71.50	39.50	183.25	167.50	105.25	177.25	153.25	133.25
d_{721}	133.66	101.66	77.41	61.66	167.41	71.41	47.41	27.25
d_{712}	61.66	29.66	173.41	157.66	95.41	167.41	143.41	123.25
d_{716}	85.66	53.66	29.41	181.66	119.41	23.41	167.41	147.25
d_{718}	105.66	73.66	49.41	33.66	139.41	43.41	19.41	167.25

Table 12. Layover time matrix.
3.5) contd.

ISTANBUL PK 705,709,715,722,712,716

	a_{705}	a_{709}	a_{715}	a_{722}	a_{712}	a_{716}
d_{705}	167.50	135.50	95.50	33.25	105.25	81.25
d_{709}	31.41	167.41	127.41	65.16	137.16	113.16
d_{715}						
d_{722}						
d_{712}						
$d_{716} .50$	39.50	167.50	105.50	177.25	153.25	
d_{71}	133.66	101.66	61.66	167.41	71.41	47.41
61.66	29.66	157.66	95.41	167.41	143.41	
85.66	53.66	181.66	119.41	23.41	167.41	

Table 20. Layover time matrix.

CATRO PK 711,719,704,710.

	a_{711}	a_{719}	a_{704}	d_{710}
d_{711}	167.16	119.16	33.16	153.16
d_{719}	47.16	167.16	81.16	33.17
d_{704}	133.33	85.33	167.33	119.33
d_{710}	13.34	133.33	47.33	167.33

Table 21. Layover time matrix.
3.5) contd.

	${ }^{\text {a }} 701$	a_{703}	a 705	${ }^{3} 707$	a_{709}	a_{711}	a_{713}	a_{715}	$a_{717 \mathrm{~A}}$	$a_{717 B}$	a_{719}	a. 721
d_{722}	163.42	138.17	121.58	116.25	89.83	73.33	65.67	49.58	43.33	43.33	25.33	17.70
d_{703}	19.42	162.17	145.58	140.25	113.83	97.33	89.67	73.58	67.33	67.33	49.33	42.70
d. 704	39.67	182.42	165.83	160.50	134.08	117.58	109.92	93.83	87.58	87.58	69.58	61.95
d_{706}	43.42	18.17	169.58	164.25	137.83	121.33	113.67	97.58	91.33	91.33	73.33	65.70
d_{708}	67.42	42.17	25.58	20.25	161.83	145.33	137.67	121.58	115.33	115.33	97.33	89.70
d_{710}	87.67	62.42	45.83	40.50	14.08	165.58	157.92	142.83	135.58	135.58	117.58	109.95
d_{713}	91.42	66.17	49.58	44.25	17.83	169.33	161.67	145.58	139.33	139.33	121.33	113.70
d_{714}	111.67	86.42	69.83	64.50	38.08	21.58	181.92	165.83	159.58	159.58	141.58	133.95
d_{716}	115.42	90.17	73.58	68.25	41.83	25.33	185.67	169.58	163.33	163.33	145.33	137.70
d_{718}	135.67	110.42	93.83	88.50	62.08	45.58	37.92	21.83	183.58	183.58	165.58	157.95
$\begin{gathered} \mathrm{d}_{720} \\ \mathrm{~A} \end{gathered}$	139.42	114.17	97.58	92.25	65.83	49.33	41.67	25.58	187.33	187.33	169.33	161.70
d_{730}	139.42	114.17	97.58	92.25	65.83	49.33	42.67	25.58	187.33	187.33	169.33	161.70

Table 22. Time matrix for London.
3.6) Selection of Bases.

The two city method is applied for the selection of the bases in case the return flight time between two cities is less than or equal to eight hours. The following sectors come in this category

1) Karachi/Dacca Sector
2) Dacca/Lahore "
3) Persian Gulf "
4) Bangkok "

The computer programs III and IV are applied for the calculation of layover time matrices for each sector. Dacca/Lahore Sector.

Layover Time Matrix at Lahore

		$\begin{aligned} & \text { MON } \\ & a_{725} \end{aligned}$	$\begin{aligned} & \text { TUE } \\ & a_{725} \end{aligned}$	$\begin{aligned} & \text { WED } \\ & a_{725} \end{aligned}$	$\begin{aligned} & \text { FRI } \\ & \mathrm{a}_{725} \end{aligned}$	SUN a 725
MON	d_{736}	1.08	145.08	121.08	73.08	25.08
TUE	d_{726}	25.08	1.08	145.08	97.08	49.08
WED	d_{726}	49.08	25.08	1.08	121.08	73.08
FRI	d_{726}	97.08	73.08	49.08	1.08	127.08
SUN	d_{726}	145.08	121.08	97.08	49.08	1.08

Table 26-A Crew based at Dacca
3.6) contd.

Layover time matrix at Dacca

	$\begin{aligned} & \text { MON } \\ & \mathrm{d}_{725} \end{aligned}$	$\begin{aligned} & \text { TUE } \\ & \mathrm{d}_{725} \end{aligned}$	$\begin{aligned} & \text { WED } \\ & \mathrm{d}_{725} \end{aligned}$	$\begin{aligned} & \mathrm{FRI} \\ & \mathrm{~d}_{725} \end{aligned}$	$\begin{aligned} & \text { SUN } \\ & \mathrm{d}_{725} \end{aligned}$
MON 2.726	2.25	146.25	122.25	74.25	26.25
TUE a_{726}	26.25	2.25	146.25	98.25	50.25
WED 2.726	50.25	26.25	2.25	122.25	74.25
FRI a_{726}	98.25	74.25	50.25	2.25	122.25
SUN a_{736}	146.25	122.25	98.25	50.25	2.25

Table 26-B Crew based at Lahore.

Composite Layover Time Matrix of Dacca/Lahore Sector

	$\begin{gathered} \text { MON } \\ \text { PK } 725 \\ \hline \end{gathered}$	$\begin{gathered} \text { TUE } \\ \text { PK } 725 \end{gathered}$	$\begin{gathered} \text { WED } \\ \text { PK } 725 \end{gathered}$	$\begin{gathered} \text { FRI } \\ \text { PK } 725 \end{gathered}$	$\begin{gathered} \text { SUN } \\ \text { PK } 725 \end{gathered}$
MON PK 726	$\begin{gathered} D \\ 1.08 \end{gathered}$	$\begin{gathered} D \\ 145.08 \end{gathered}$	$\begin{gathered} D \\ 121.08 \end{gathered}$	$\begin{gathered} D \\ 73.08 \end{gathered}$	$\begin{gathered} D \\ 25.08 \end{gathered}$
TUE PK 726	$\begin{gathered} D \\ 25.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 1.08 \end{gathered}$	$\stackrel{D}{D}$	$\begin{gathered} \text { D } \\ 97.08 \end{gathered}$	$\begin{gathered} D \\ 49.08 \end{gathered}$
WED PK 726	$\begin{gathered} D \\ 49.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 25.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 1.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 121.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 73.08 \end{gathered}$
FRI PK 726	$\begin{gathered} D \\ 97.08 \end{gathered}$	$\begin{gathered} D \\ 73.08 \end{gathered}$	$\begin{gathered} D \\ 49.08 \end{gathered}$	$\begin{gathered} D \\ 1.08 \end{gathered}$	$\begin{gathered} D \\ 121.08 \end{gathered}$
SUN PK 726	$\begin{gathered} D \\ 145.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 121.08 \end{gathered}$	$\begin{gathered} D \\ 97.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 49.08 \end{gathered}$	$\begin{gathered} \text { D } \\ 1.08 \end{gathered}$

Table 26. Composite layover time matrix.
3.6) contd.

Dacca/Bangkok Sector

Composite Time Matrix

Table 27 - Composite Time Matrix

Table 28-A Crew based at Jaddah

Layover time matrix
at Jaddah

Table 28-B Crew based at Karachi

Composite Matrix

Table 28 Compositve layover time matrix.

3.6.2 LAYOVER TIME MATRIX AT KARACHI

	MONDAY				TUESDAY			WEDNESDAY			THURSDAY		FRIDAY			SATURDAY			Sunday		
		${ }^{2} 731$	a_{723}	${ }^{\text {a }} 737$	${ }^{\text {a }} 731$	${ }^{2} 735$	${ }^{2} 723$	${ }^{2} 731$	${ }^{2} 723$	${ }^{2} 737$	${ }^{2} 735 \mathrm{~A}$	3711	${ }^{2} 731$	${ }_{7} 735$	${ }^{2} 723$	${ }^{2} 735$	${ }^{2} 735 \mathrm{~A}$	A ${ }^{2} 719$	* 731	2735	723
M		158.50	153.00	149.08	134.50	131.75	ง29.00	110.50	105.00	101.08	80.08	79.00	62.50	59.75	57.00	35.75	32.08	31.00	14.50	11.75	9.00
0	d_{730}	160.50	155.00	151.08	136.50	133.75	131.00	112.50	107.00	103.09	82.08	81.00	64.50	61.75	59.00	37.75	34.08	33.00	16.50	13.75	11.00
N	d_{738}	2.00	164.50	160.58	146.00	143.25	140.50	122.00	116.50	112.50	91.58	90.50	74.00	71.25	68.25	47.25	43.58	42.50	26.00	23.25	20.50
T	${ }^{\text {d }} 24$	14.50	9.00	173.08	158.50	155.75	153.00	134.50	129.00	125.08	104.08	103.00	86.50	83.75	81.00	59.75	56.08	55.00	38.50	35.75	33.00
U	d_{730}	16.50	11.00	175.08	160.50	157.75	155.00	136.50	131.00	127.08	106.08	105.00	86.50	85.75	83.00	61.75	58.08	57.00	40.50	37.75	35.00
E	${ }^{\text {d }} 736$	19.25	13.25	9.83	163.25	160.50	157.75	139.25	133.75	129.83	108.83	107.75	91.25	88.50	85.75	64.50	60.83	59.75	43.25	40.50	37.75
w	${ }^{1} 24$	38.50	33.00	29.08	14.50	11.75	9.00	158.50	153.00	149.08	128.08	127.00	110.50	107.75	105.00	83.75	80.08	79.00	62.50	59.75	57.00
E	${ }^{\text {d }} 730$	40.50	35.00	31.08	16.50	13.75	11.00	160.50	155.00	151.08	130.08	129.00	112.50	109.75	107.00	85.75	82.08	81.00	64.50	61.75	59.00
D	d_{738}	50.00	44.50	40.58	26.00	23.25	20.25	2.00	164.50	160.58	139.58	138.50	122.00	119.25	116.50	95.25	91.58	90.50	74.00	71.25	68.50
U	d04	59.50	54.00	50.08	35.50	32.75	30.00	11.50	174.00	2.08	149.08	148.00	131.50	128.75	126.00	104.75	101.08	100.00	83.50	80.75	78.00
	${ }^{\text {d }} 706$	64.50	59.00	55.08	40.08	37.75	35.00	16.50	11.00	175.08	154.08	153.00	136.50	133.75	131.00	109.75	106.08	105.00	88.50	85.75	83.00
F	${ }^{\text {d }} 24$	86.50	81.00	77.08	62.50	59.75	57.00	38.50	33.00	29.08	176.08	175.00	158.50	155.75	153.00	131.75	128.08	127.00	110.50	107.75	105.50
R	${ }^{\text {d }} 730$	88.50	83.00	79.08	64.50	61.75	59.00	40.50	35.00	31.08	10.08	9.00	160.50	157.75	155.00	133.75	130.08	129.00	112.50	109.75	107.00
I	${ }^{\text {d }} 736$	91.25	85.75	81.83	67.25	64.50	61.75	43.25	37.75	33.83	12.83	11.75	163.25	160.50	157.75	136.50	132.83	131.75	115.25	112.50	109.75
s	${ }^{4} 10$	107.50	102.00	98.08	83.50	80.75	78.00	59.50	. 00	50.08	29.08	28.00	11.50	176.75	174.00	152.75	149.08	148.00	131.50	128.75	126.00
A	${ }^{\text {d }} 712$	112.50	107.00	103.08	88.50	85.75	83.00	64.50	59.00	55.08	34.08	33.00	19.25	13.75	11.00	157.75	154.08	153.00	136.50	133.75	131.00
T	${ }^{\text {d }} 736$	115.25	109.75	105.83	91.25	88.50	85.75	67.25	61.75	57.83	36.83	35.75	19.25	16.50	13.75	160.50	156.83	155.75	139.25	136.59	133.75
s	${ }^{\text {d }} 224$	134.50	129.00	125.08	110.50	107.75	105.00	86.50	81.00	77.08	56.08	55.00	38.50	35.75	33.00	11.75	176.08	175.00	158.50	155.75	153.00
U	${ }^{\text {d }} 730$	136.50	131.00	127.08	112.50	109.75	107.00	88.75	83.00	79.08	58.08	57.00	40.50	37.75	35.00	35.00	13.75	- 10.08	9.00	157.75	155.00
N	${ }^{\text {d }} 736$	139.25	133.75	129.83	115.25	112.50	109.75	91.25	85.75	81.83	60.83	59.75	43.25	40.50	37.75	16.50	12.83	11.75	163.25	160.50	157.75

4.1) Introduction.

Linear programming is one of the most important optimization techniques developed in the field of operational research. From a theoretical point of view, as well as a practical point of view, it is the most thoroughly explored field of optimization. Much has been written on operational research and especially in the field of linear programming. Only the outlines of linear programming will be explained.

In order to appreciate the full potentialities of linear programming it may be as well to look briefly at operational research. Operational research was actually born during the Second World War when civilian scientists were called in by Military Generals to assist in solving their tactical problems.

The first particular problem in linear programming was formulated in 1941 - transportation problem by Hitchcock ${ }^{(18)}$. In 1947, the general problem of linear programming was formulated in precise mathematical terms by Professor George B. Dantzig in collaboration with Marshall K.Wood in the U.S.Department of the Airforce, who then constituted a group called Project SCOOP (Scientific Computation of Optimal Programmes). In this department the application of linear programming was of a military nature. The systematic procedure, the simplex meth ${ }_{o d}(8)$ was presented during a historic conference in 1941 on linear programming organized by the Cowles Commission for research into economics.

The term linear programming was suggested by Koopman to Professor Dantzig as an alternative to the earliest form "programming in a linear structure"
4.1) contd.

After 1948, paralleling the activity of the Cowles Commission, an increasing number of mathematicians, statisticians and economists had contributed individually or in groups to the development of linear programming, such as Dantzig, Ford and Fulkerson, Kuhn, Tucker, Charness and Cooper etc., In 1958, Gomory ${ }^{(13)}$ presented an algorithm for integer solution to linear programming. Then another mathematician, Harris ${ }^{(16)}$ presented an algorithm for solving mixed integer programmes. One of the important improvements was made in integer solution to linear programming by Healey ${ }^{(17)}$ and Balas ${ }^{(1)}$, who developed an algorithm for solving linear programming problems where the variables are restricted to zero and one value. Although a number of modifications and extensions of the simplex method have been developed, since then the original technique remains the most general approach to the solution of linear programming problen. Furthermore the range of application has been greatly extended by many recent developments in the field of computing equipment, especially with the development of high-speed electronic computers.
4.2) Definition.

The planning of activities such as allocation of men, material or machine is called programming. Programming problems occur in a situation where the available resources may be limited or incapable of being utilized completely. The object of this is to determine the most efficient method of allocating the se resources to activities so that a measure of performance is optimized. Whenever this measure is a linear function of the controlable variables and the restriction on availability of
4.2) contd.
resources are expressible as a system of linear equations or inequalities. Such type of problem is known as linear programming problem.
4.3) Mathematical Formulation.

The general linear programming problem can be expressed as follows:-

Find the values of $x_{1}, x_{2} \ldots x_{n}$ which maximize or minimize the linear form

$$
\begin{equation*}
z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \tag{4.1}
\end{equation*}
$$

subject to the conditions

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & (\leqslant=\geqslant) b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & (\leqslant=\geqslant) b_{2} \tag{4.2}\\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & (\leqslant=\geqslant) b_{m}
\end{array}
$$

and

$$
\begin{equation*}
x_{j} \geqslant 0 \quad(j=1,2, \ldots n) \tag{4.3}
\end{equation*}
$$

where $a_{i j}, b_{i}, c_{j}$ are constants and c_{j} are the cost associated with each variable and z is known as objective function.

The set of equations (4.2) can be converted in equations (if they are inequalities) by the addition of further variables with their proper sign - called slack variables.

4.4) Applications of Linear Programming.

4.5) contd.
velopments have been made for the improvement and advancement in management planning and control. One was the development of digital computers and the other was the application of higher mathematics, statistics and economics to the problem of industrial management. The former made possible rapid and economical manipulation of massive data and later provided the necessary theoretical framework for the organization and alaysis of these data. The result is that the complicated problems can be solved and made a part of the decisions on which the success of business depends.

Linear programming has wide applications in solving such diverse problems as determining the optimum utilization, and establishing its importance almost in every field as an aid to decision making in business, industry, Government etc., The distribution of facility or machine, diet problems, scheduling distribution, distribution of commodities are but a few examples of the type of problems which can be solved by linear programming. Briefly linear programming is a method of determining an optimum programme of interdependent activities in view of available resources.

Linear Programming technique is applied to solve the problem of crews scheduling where the variables are restricted to 0-1 values. This technique can be divided into three main groups

1) Assignment technique
2) Transportation technique
3) Integer programming technique (0-1) Simplex method cannot be used because it may give
4.5) conta.
the value of variables in real number. However, sometime this method may give the values in integers
4.5.1) General. Statement of the Problem.

The problem of crew scheduling of a commerical airline can be stated as follows:-

$$
\begin{aligned}
& x_{11}+x_{12}+\cdots \ldots+x_{1 n}=1 \\
& x_{21}+x_{22}+\cdots \cdots+x_{2 n}=1 \\
& \vdots \\
& \vdots \\
& x_{m 1}+x_{m 2}+\cdots \cdots+x_{m n}=1
\end{aligned}
$$

where each variable is associated with time $\left(t_{i j}\right)$ away from their home base and $t_{i j}$ is the layover time of the crews arriving on $i^{\text {th }}$ flight and departing on $j^{\text {th }}$ flight. Such a layover time is not less than eight hours in any case according to the flying rules.

Here the objective function is to minimise the total layover time at a certain place other than the home base - given by the equation

$$
z=t_{11} x_{11}+t_{12} x_{12}+\ldots \ldots+t_{m n} x_{m n}
$$

is minimum, subject to the condition that $x_{i j} \geqslant 0$ for all i and j. More specifically $x_{i j}$ is equal to one or zero,

5.1) Introduction.

The transportation problem is a special case of linear programming problems in which the objective is to "transport" a single commodity from various "origins" to different "destinations" at a minimum total cost. It was first studied by Hitchcock ${ }^{(18)}$ in 1941, then separately by T.C.Koopmans ${ }^{(28)}$ and finally placed in the framework of linear programming by Professor Dantzig(${ }^{(6)}$ in 1951. Since then, various people have worked in this field, with the result that a lot of improvement has been made. It is now accepted as one of the most important analytical and planning tools in business and industry.

There are two approaches to this problem: the general and specific. In the former the transportation is considered as a special case of linear programming problem the simplex method. In the later approach some independent methods have been developed by various authors, which are much simpler and efficient for solving the transportation problem.

5.2) Statement of the Transportation Problen -

In the classical Hitchcock transportation problem, a homogeneous commodity is available at m origins and needed at n destinations. The cost of transporting a single commodity from the $i^{\text {th }}$ origin to the $j^{\text {th }}$ destination is $c_{i j}$. The quantity a_{i} is available at the $i^{\text {th }}$ origin and b_{j} is required at the $j^{\text {th }}$ destination is fixed and assumed that

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

5.2) contd.
that is the total supply is equal to the total demand.
In case of crew scheduling, the origins
represent the crews and destinations represent the departures of the crews. For safety reasons the airline company have to replace the crews in the longer flights somewhere between the terminal cities. During this layover time the company is responsible for their meals and accommodation until their next assignment. Therefore, this layover time is associated with the cost on the crews, and $t_{i j}$ represents the arrival of the crews on $i^{\text {th }}$ flight and departure on the $j^{\text {th }}$ flight.

Here the objective function is to minimize this layover time of the crews at a place other than the home base,

$$
\begin{aligned}
z & =t_{11} x_{11}+t_{12} x_{12}+\ldots+t_{1 n} x_{1 n}+t_{21 x_{11}}+\ldots \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} t_{i j} x_{i j}=\text { minimum } t_{\operatorname{mn} x_{\operatorname{mn}}} \quad(5 \cdot 2,1)
\end{aligned}
$$

subject to the conditions

$$
\begin{align*}
& \sum_{i=1}^{m} x_{i j}=b_{j} \quad j=1 \ldots n \quad \text { (5.2.2) } \\
& \sum_{j=1}^{n} x_{i j}=a_{i} \quad k=1 \ldots m \quad \text { (5.2.3) } \tag{5.2,3}
\end{align*}
$$

and

$$
\begin{equation*}
x_{i j} \geqslant 0 \quad \text { for all } i, j \tag{5.2.4}
\end{equation*}
$$

where $x_{i j}$ represents the arrival of the crew on the $i^{\text {th }}$ flight and departure on the $j^{\text {th }}$ flight after due test.
5.2) contd.

Al so a_{i}, b_{j}, m, n are all positive integers and $t_{i j}$ is
a real number.
A set of quantities $x_{i j}$ satisfying the last three constraints will be called a feasible solution and will be optimal if also satisfying ($5: 1$). The nature of the problem is such that there exists at least one optimal solution.
5.3) Structure of the Transportation Problem.

The important feature of the transportation problem is that it can be shown in the rectangular arrays, which show the value of $x_{i j}$ and $t_{i j}$ in row i and column j. The total of each row and column is presented by a_{i} and b_{j} respectively.

The following table shows the structure of the transportation problem.

Arrival	Destinations Departures				Crews available total
		D_{1}	D_{2} D_{n}	
	A_{1}	x_{11}	x_{12}		a_{1}
	A_{3}	x_{21}	$\begin{array}{r} t_{22} \\ x_{22} \\ \hline \end{array}$		a_{2}
		\vdots			\vdots
	A_{n}	$\mathrm{x}_{\mathrm{m} 1}$	$\begin{array}{\|ll} \hline & t_{n 2} \\ x_{\text {ma }} & \\ \hline \end{array}$	\qquad	a_{m}
Crews re quired total		b_{1}	ba b_{n}	

5.3) contd.

The square (i, j) contains $t_{i j}$ in its upper left hand corner and $x_{i j}$ in its lower right hand corner. Down along the right and across the bottom squares there are some other values a_{i} and b_{j} showing the total of each row and column respectively.

Now the problem is to place $m+n-1$ variables into these cells. If any box has no number then it means that this cell has zero values. All such types of cells are known as non-basic cells and occupied cells are known as basic cells. During the procedure if the occupied cells are not equal to $m+n-1$, then zero valued basic variables are indicated by a zero entry in order to distinguish from nonbasic variables. During the algorithm, the rows total and columns total must be maintained in order to satisfy the equations

$$
\begin{equation*}
\text { Row equations } \sum_{j=1}^{n} x_{i j}=a_{i} \quad i=1 \ldots m m \tag{5.3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Column equations } \sum_{i=1}^{m} x_{i j}=b_{j} \quad j=1 \ldots n \tag{5.3.2}
\end{equation*}
$$

and

$$
\sum_{i} a_{i}=\sum_{j} b_{j}=\sum x_{i j}
$$

5.4) Degenerate Case.

The degeneracy occurs in the transportation problem
if a partial sum of a_{i} is equal to a partial sum of b_{j}, then at least one of the basic variables is equel to zero. This degeneracy can be avoided by the addition of a very sma.ll quantity ϵ to any row subject to the following rules:-
5.4) conta.

1) ϵ
2) $\epsilon+0=\epsilon$
3) $x_{i j} \pm \epsilon=x_{i j}$
for all $x_{i, j}>0$
$x_{i j}>0$
5.5) General Technique of Solution.

As stated earlier that the transportation model
is a special case of general linear programming model. The basic problem can be formulated and solved by the simplex technique, but some other independent methods have been developed in this field which are much simpler and faster in computation. Some of the important methods are

1) North-Western Corner rule ${ }^{(6)}$
2) Vogel's approximation method ${ }^{(2)}$
3) Stepping-Stone method ${ }^{(4)}$
4) Modified-distribution method (MODI) ${ }^{(6)}$
5) Least cost method (7)
6) Ford-Fulkerson method ${ }^{(11)}$ etc.,

Now the initial basic feasible solution for a given transport problem can be obtained by any one of the methods described above. The least cost method is advisable to find a good starting feasible solution and number of iterations for obtaining the optimal solution is less than compared to other methods.

The outline of this method is that allocation is made to that cell whose cost per unit is lowest. This lowest cost is loaded as much as possible in view of the origin capacity of its row and the destination requirements of its column. Then move to next lowest cell and make an allocation
5.5) contd.
as large as consistent with row and column total.
Continue this process until $\mathrm{m}+\mathrm{n}-1$ entries are
made subject to the satisfaction of rows and columrs total.

5.6) Determining the fictitious costs.

The first feasible solution can be set up by any one of the methods described above. Now the problem is how to find out whether a basic feasible solution is optimal and if it is not, how to improve the feasible solution.

The fictitious costs are calculated to test the feasible solution. It is convenient to denote the $i^{\text {th }}$ row equations and $j^{\text {th }}$ column equations by u_{i} and v_{j} respectively. Since one equation is redundant, any row or column having a greater number of basic variables sets its corresp onding cost at zero. The remaining u_{i} and v_{j} are calculated by the relation

$$
c_{i j}=u_{i}+v_{j} \quad \text { if } x_{i j} \text { is a basic }
$$

Then every unit cost $c_{i j}$ is compared wi th the sum of the fictitious costs of its row and column. If their differences are all non-negative i.e.

$$
\bar{c}_{i j}=c_{i j}-u_{i}-v_{j}
$$

for every cell, then the solution is optimal and the problem is finished.

If some values of $\bar{c}_{i j}$ are negative, then a nonbasic variable is replaced by one of $m+n-1$ basic variables, which is dropped from the basic set and becomes another nonbasic variable.

The new basic variable is selected by this
relation
5.6) conta.

$$
c_{s t}-u_{s}-v_{t}=\operatorname{Min}_{i, j}\left[\left(c_{i j}-u_{i}-v_{j}\right)<0\right]
$$

The symbol θ is entered in cell (s, t) to indicate that a value θ will be given to non-basic variable $\mathrm{x}_{\text {st }}$ and some entries are adjusted by additions and subtractions of θ in order to balance the rows and columns total and leave others unchanged. The smallest entry with minus θ will determine the value of θ so that the number of basic variables remain the same i.e., $m+n-1$. The new improved feasible solution so obtained is checked and the same process is repeated if it is not optimal.
5.7) Computer Progran.

A computer program is developed from the procedure ${ }^{(15)}$ to speed up the calculations and attached in the Appendix (Program No.5). This program is run successfully on ICL 1900 and it took only 30 seconds to solve the problea of table 25 (20×20 matrix).

In order to show the method for the preparation of data cards, Table 7 is considered. In this example all the rows and columns totals are equal to unity. (City X) 800000

6

6					
167.25	142.50	120.17	133.67	85.50	41.25
24.50	167.75	145.42	158.92	110.75	66.50
46.33	21.58	167.25	180.75	132.58	88.33
32.91	176.16	153.83	167.33	119.16	74.91
81.08	56.33	34.00	47.50	167.33	123.08
125.33	100.58	78.25	91.75	43.58	167.33
1	1	1	1	1	1

Table 22. Data cards for City X.

6.1) Introduction.

The assignment model deals with a special case of linear programming problems in which the objective is to assign a number of origins to the same number of destinations at the minimum total cost. The assignment is to be made on a one-to-one basis. That is, each origin can associate with one and only one destination. This fact shows two characteristics in a linear programming problem which give rise to an assignment problem. First, the number of columns is equal to the number of rows in a matrix - nxn matrix. Secondly, the optimal solution for the problem is such that there can be one and only one assignment in a given row or column of the matrix.

All the elements of the matrix are assumed to be known and independent of each other. Now the problem is to choose the elements of the matrix in such a way as to optimize the objective function. In other words, the assignment problem is a problem of proper matching between the origins and the destinations. A value I is assigned to those cells for which a match has been made; a value zero is assigned to the remaining cells. This means that there are only two values 'one and zero' which are to be assigned.
6.2) The Assignment Problem - As a Special Case of Transportation Problem.

As mentioned above, the assignment problem is a special case of the general linear programming problem. As a matter of fact the assignment problem is a special case of the transportation problem, which in turn is itself a special case of the general linear programming problem.
6.2) contd.

In the transportation problem, degeneracy occurs whenever one or more basic variables are zero. The transportation problem is equivalent to the assignment problem, in case, exactly n basic variables must receive unit value and the remaining $n-1$ basic variable should all be zero. Therefore, the assignment problem can be considered a complete degenerate form of the transportation problem.

6.3) Definition.

In the assignment problem, there is a group of men and a number of jobs, each man is assigned to only one job and each job requires only one man. The arrangement should be done in such a way that given measure of effectiveness can be optimized.

In the problem of crew scheduling, each crew can be assigmed to any flights $f_{1} \ldots f_{n}$ and each flight requires any one of the crews $c_{1} \ldots c_{n}$, the permutation may be done in such a way that the layover time

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i j}
$$

is minimum. Evidently there are n ways in which to choose $f_{1},(n-1)$ ways remaining to choose $f_{2} \ldots f_{n}$ or $n!=n(n-1) \ldots 3.2 .1$ different possible arrangements.

It is possible for small n to enumerate all possible arrangements and select the arrangements having minimum value. As the size of the matrix increases, the number of possible arrangements also increases.
6.3) contd.

$$
\text { e.g. } 6!=720, \quad 10!=3,628,800
$$

which is manually impossible to enumerate all arrangements even on present day electronic computers, it is not practicable to enumerate all the permutations. Hence the problem arises to find an efficient algorithm for obtaining an optimal assignment in minimum time.

6.4) Mathematical Model.

The mathematical statement of the assignment problem is to choose a set of n independent elements from a square matrix of order n subject to the condition that no two elements lie in the same line and the sum of these elements is minimum.

Mathenatically it can be stated as follows. Given n^{2} matrix $\mathrm{T}=\left\|t_{i j}\right\|$ as time matrix with $t_{i j} \geqslant 0 \quad i, j=1,2 \ldots n$ It is to find an n^{2} matrix $x=\left\|x_{i j}\right\|$ as assignment or permutation non-negative matrix and the value of each element is zero or l, such that

$$
\begin{align*}
& x_{i j}=x_{i j}^{2} \quad i, j=1 \ldots n \tag{6.4,7}\\
& \sum_{j=1}^{n} x_{i j}=\sum_{i=1}^{n} x_{i j}=1 \text { for all } i, j \tag{6.4,2}\\
& \text { and } n \geqslant 2
\end{align*}
$$

and the object function

$$
\begin{equation*}
z=\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i j} \text { is minimum } \tag{6.43}
\end{equation*}
$$

The equations (6.41) and (6.42) are the basic conditions which jointly specify that
6.4) contd.
(a) $x_{i j}=\left\{\begin{array}{l}1 \text { if } i^{\text {th }} \text { crew is assigned to the } j^{\text {th }} \text { flight } \\ 0 \text { otherwise } \\ \text { (6.44) }\end{array}\right.$
(b) In the permutation or the assignment matrix, each row and column will have only one element unity and all other elements are zero.

If the condition (6.41) is relaxed as $x_{i j} \geqslant 0$ then it will become the transportation problem

6.5) Solution to the Assignment Problem.

Several methods have been suggested by various authors, some of the important methods are presented by Flood ${ }^{(10)}$, Ford and Fulkerson ${ }^{(11)}$, James Munkers ${ }^{(19)}$, $K u h n^{(21)}$ etc.,

Kuhn was the first person who developed a computational algorithm for solving the assignment problem based on the Konig theorem as stated by Ergervary.

Konig theorem: "If the elements of a matrix are partly zero and partly numbers different from zero, then the minimum number of lines that contain all the non-zero elements of the matrix is equal to the maximum number of non-zero elements that can be chosen with no two on the same line."

In this theorem a line means a row or a column of a matrix. This theorem, together with the following two the orems is the basis for Kuhn's algorithm for solving the assignment problem.
6.5) contd.
unchanged if we add or subtract a constant to any one row or column of $t_{i j}$ matrix. It c an be stated more precisely as follows:

Theorem I.

$$
\begin{aligned}
& \text { If } x_{i j}=x_{i j} \\
& \text { minimizes } \\
& \text { such that } \quad x_{i=1}^{n} \geqslant \sum_{j=1}^{n} t_{i j} x_{i j} \text { for all } x_{i j} \\
& \text { and } \\
& \sum_{i=1}^{n} x_{i j}^{n}=\sum_{j=1}^{n} x_{i j}=1, \\
& \text { then } \\
& x_{i j}=x_{i j}
\end{aligned}
$$

also minimizes

$$
z^{\prime}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} t_{i j}^{\prime}
$$

where $t_{i j}^{\prime}=t_{i j}-u_{i}-v_{j} \quad$ for all $i, j=1$

Theorem II.
$\begin{array}{ll}\text { If all } t_{i j} \geqslant 0 \\ \text { then } & Z=\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i j} \geqslant 0\end{array}$

If some $t_{i j}=0$ and find a set of $x^{\prime} s$ that are all zero except perhaps where $t_{i j}=0$, then it is optimal, for the corresponding
6.5) contd.

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i j}=0
$$

Second theorem is obvious to prove the first

$$
\begin{aligned}
z^{*} & =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}\left(t_{i j}-u_{i}-v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i j}-\sum_{i=1}^{n} u_{i} \sum_{j=1}^{n} x_{i j} \\
& -\sum_{j=1}^{n} v_{j} \sum_{i=1}^{n} x_{i j} \\
& =\mathbb{Z}-\sum_{i=1}^{n} u_{i}-\sum_{j=1}^{n} v_{j}
\end{aligned}
$$

M.Flood has outlined this method in such a way that it gives a rapid result as compared to all other available methods for hand computation. The algorithm is as follows:-

Step (i) Calculate the $\sum_{j} \min _{i} a_{i j}$ and $\sum_{i} \min _{j} a_{i j}$. The transformation should be started according to the greater value of sum of row minima or column minima. Subtract the smallest element of the line from each line of A, obtaining a reduced matrix A_{1} with non-negative elements and at least one null element in each line. Here line means row or column.
6.5) contd.

Step (ii) Find the minimal set S_{1} of lines, n_{1} in number, which contain all null elements of A_{1}. If $n_{1}=n$, then there is a set of n independent zero elements and the elements of A in these n positions constitute the required solution.

Step (iii) If $n_{1}<n$, let h_{1} denote the smallest element of A_{1} which is not in any line of S_{1}. Then $h_{1}>0$. For each line in S_{1}, add h_{1} to every element of that line i.e. intersection element of row and column, then subtract h_{1} from every element of A_{1}, not in S_{1}. Call this new reduced matrix A_{2}.

Step (iv) Repeat steps (ii) and (iii), using A_{2} in place of A_{1}, until at stage ' k ' $\mathrm{n}_{\mathrm{k}} \equiv \mathrm{n}$. The process will terminate after a finite number of steps. The sum of elements of the new matrix is decreased by

$$
\begin{equation*}
n\left(n-n_{k}\right) h_{k} \cdots \tag{6.45}
\end{equation*}
$$

By applying this technique it is quite possible to obtain more than one optimal solution, but numerically all have the same value.

6.6) Numerical Example:-

This technique is applied to the layover time matrix Table 7 of City X. Now the problem is to find pairing of flights, so that the time away from the home base may be minimized. Flood's technique gave the following optimal solution.
6.6) contd.

IN	OUT	LAYOVER TIME			
a_{3}	d_{2}	85.50			
a_{2}	d_{4}	24.50			
a_{4}	d_{6}	21.58			
a_{5}	d_{1}	74.91			
a_{1}	d_{3}	47.50			
a_{6}	d_{5}	78.25			
TOTAL TIME $=$				332.24	HRS.

Table 30. Crew's Schedule at City X.
6.7) Computer Program.

The computer program No. 7 is developed in Fortran
and attached in the Appendix. This program is quite useful for large matrices and time saving. The program is run successfully on ICL 1900 and took only I4 seconds to find the optimal solution from 20×20 matrix and in case of the smaller matrix it took only a few seconds, The data cards are prepared as follows:-
(CITY X)
6

167.25	142.50	120.17	133.67	$\underline{85.50}$	41.25
$\underline{24.50}$	167.75	145.42	158.92	110.75	66.50
46.33	$\underline{21.58}$	167.25	180.75	132.58	88.33
32.91	176.16	153.83	167.33	119.16	$\underline{74.91}$
81.08	56.33	34.00	$\underline{47.50}$	167.33	123.08
125.33	100.58	$\underline{78.25}$	91.75	43.58	167.33

Table - 31. Data cards for City X.
The computer will give the result in the column
6.7) contd.
vector form $(5,1,2,6,4,3)$. The sum of these elements is
332.24 hours which is the same as in the above example.

There may be more than one optimal solution having the same numerical value.

7.1) Introduction.

In this Chapter integer programming is applied to the scheduling of aircraft crews of a commercial airline to minimize the layover time of the crews at slip stations other than the home base. In this case the values of the variable are restricted to 0 and one only. If the crew is assigned to any flight, then the value is one and zero if the crew is not assigned to any flight. In mathematical notation it can be written as

$$
x_{i j}= \begin{cases}I & \text { if } i^{\text {th }} \text { crew is assigned to } j^{\text {th }} \text { flight } \\ 0 & \text { otherwise }\end{cases}
$$

Several methods are available for solving the linear programming problem where the variables are restricted to integers. First of all R.EAomory ${ }^{(11,12)}$ presented a systenatic procedure for solving such a problem. Further improvement was made in this field by the following men by presenting a procedure when the variables are restricted to zero and one value only. In 1964, Healey ${ }^{(17)}$ presented a method. Its mephasis is on problems in which the sum of non-negative integer valued variables must add up to one. In fact the integer constrained variables should belong to disjoint sets [X], [Y], [Z] etc. such that $\Sigma X_{i}=1, \Sigma Y_{i}=1$ etc., hence the name Multiple Choice Programming.

He does not give any proof of convergences. Thus the theoretical status of the method is unclear. First, the problem is to be solved by simplex method, if the solution is in integer form ($0-1$), then the process is terminated. Otherwise some modifications have to be made.
7.1) contd.

In 1965, Balas ${ }^{(1)}$ proposed an algorithm of solving the linear programming problem with 0-1 variables. It consisted of a systematic procedure of successively assigning to certain variables the value l. After few iterations one gets either an optimal solution or the evidence that no feasible solution exists. This algorithm requires the additions and subtraction only. Hence the name "Additive Algorithm".

In 1967, Geoffrion ${ }^{(12)}$ presented a paper in which he described the simplified version of Balas additive algorithm. This method will be applied to solve the crews scheduling.

7.2) Geoffrion Method.

$$
\begin{equation*}
\text { Minimise } c_{x} \text { subject to } b+A_{x} \geqslant 0 \tag{7.2.1}
\end{equation*}
$$

and $x_{j}=0$ or I where c is an n-vector, b and 0 are m-vectors, A is an $m \times n$ matrix and x is a binary n-vector to be chosen. A solution that satisfies the constraints $A+b_{x} \geqslant 0$ will be called a feasible solution and a solution that minimizes c_{x} over all feasible solutions will be called an optimal feasible solution.

Before explaining the procedure for solution, it is necessary to explain a few preliminary definitions. A partial solution S is defined as an assignment of binary values to a sub-set of n variables. A variable which is not assigned a value by S is called free variable. Also the symbol j denotes $x_{j}=l$ and symbol $-j$ denotes $x_{j}=0$. For example if $n=5$ and

$$
S=[3,2,-1]
$$

then it means that $x_{3}=1, x_{2}=1, x_{1}=0$ and x_{4} and x_{5} are free. The order of elements of S are written according to the order in which the elements are generated. A completion of a partial
7.2) contd.
solution S is defined as a solution that is determined by S together with a binary value of the free variables. The four possible completions of S are given by
$\left.\begin{array}{lllll}(0 & 1 & 1 & 0 & 0 \\ (0 & 1 & 1 & 1 & 0\end{array}\right)$

The number of different completions are determined by $2^{\mathrm{n}-\mathrm{s}}$. In the above example $2^{5-3}=4$ solutions. When there are no free variables, then there is only one completion of S .

During the algorithm, a sequence of partial solutions are generated and considered all completions. Some feasible solutions are obtained and the best feasible completion of S is stored as an incumbant. If a better feasible solution is obtained as compared to previously stored solution, then the new feasible solution is stored by replacing the previous one. The other possibility is that S has no feasible comple tion better than the incumbant. In either case, S is fathomed.

The problem is started with $S^{0}=\phi$ where ϕ indicates the empty set. If S° is fathomed, the problem is finished - either there is no feasible solution or the best feasible solution can be found. The infinity is taken as the value of Z, unless some better upper bound is found. Geoffrion has simplified Balas algorithm and it is represented in the following flow diagram
7.2) contd.

$$
\begin{aligned}
\text { Diagram-6: } & \text { A simplified version of } \\
& \text { Balas additive algorithm. }
\end{aligned}
$$

7.3) Example.

The above technique is applied to the layover time matrix for Cairo(Table 21) for allocating the crews to flights, so that the layover time of the crews is minimised.
7.3) contd.

Minimise

$$
x_{j}=0 \text { or } 1
$$

Applying the above procedure, put

$$
z=\infty
$$

$$
S^{\circ}=\phi \quad(\text { empty set })
$$

la

$$
y=(-1,-1,-1,-1) \ngtr 0
$$

Ib
1c

$$
\begin{aligned}
& i=1:-1+4 \geqslant 0 \\
& i=2:-1+4 \geqslant 0 \\
& i=3:-1+4 \geqslant 0 \\
& i=3:-1+4 \geqslant 0
\end{aligned}
$$

2

$$
\begin{array}{ll}
j=1 & :-3 \\
\vdots \\
j=16 & :-3
\end{array}
$$

As all x_{j} have the same value, any one can be selected for the next iteration. x_{13} is selected because it has minimum layover time.

$$
\text { Hence } \quad S^{1}=[13]
$$

Substituting the value of $\mathrm{x}_{13}=1$ in a set of equations
7.3) conta.
(7.3.1) it will become

$-1+x_{1}+x_{2}+x_{3}+x_{4}$	$=0$
-1	$+x_{5}+x_{6}+x_{7}+x_{8}$
-1	$+x_{9}+x_{10}+x_{11}+x_{12}$
0	$+x_{14}+x_{15}+x_{16}$
0	$=0$

Therefore

Again any x_{j} can be selected. However, x_{3} is selected due to minimum layover time.

Hence

$$
S^{2}=[13,3]
$$

Substituting the value of x_{13} and $x_{3}=1$ in the set of equations (7.3.1) it will take the form of

$$
-1
$$

$$
-1
$$

$$
\begin{aligned}
x_{1}+x_{2}+x_{4} & =0 \\
+x_{5}+x_{6}+x_{7}+x_{8} & =0 \\
+x_{9}+x_{10}+x_{11}+x_{12} & =0 \\
+x_{14}+x_{15}+x_{16} & =0
\end{aligned}
$$

la $y=(0,-1,-1,0) \neq 0$
lb $T=\left(x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}\right)$
lc $\quad i=2 \quad-1+4 \geqslant 0$
$i=3:-1+4 \geqslant 0$
7.3) contd.
$2 \quad j=5, \ldots \ldots 12=-1$
Hence

$$
S^{3}=[13,3,5]
$$

Substituting the values of $\mathrm{x}_{13}, \mathrm{x}_{3}, \mathrm{x}_{5}=1$ in a set of equations (7.3.1) gives

$$
\text { Substituting the values of } x_{13}=1, x_{3}=1, x_{5}=1
$$

and $x_{10}=0$ in equations (7.1.1) gives

$$
-1
$$

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{4} & =0 \\
+x_{6}+x_{7}+x_{8} & =0 \\
+x_{9}+x_{11}+x_{12} & =0 \\
+x_{14}+x_{15}+x_{16} & =0
\end{array}
$$

7.3) contd.

$$
\begin{array}{ll}
\text { la } & y=(0,0,-1,0) \neq 0 \\
\text { lb } & T=\left(x_{9}, x_{11}, x_{12}\right) \\
\text { lc } & i=3:-1+3 \geqslant 0 \\
2 & j=9:-1+1=0 \\
& j=11:-1+1=0 \\
& j=12:-1+1=0
\end{array}
$$

Here maximum value is selected, but all j 's are
equal. However x_{13} is selected due to less layover time. Hence

$$
\begin{aligned}
S^{6} & =(13,3,5,-10,12) \\
y & =(0,0,0,0)=0 \\
\therefore \quad & S^{6} \text { is fathomed } \\
C X^{5} & =13.4+33.17+33.17+0+119.33 \\
& =212.99>Z^{\prime}
\end{aligned}
$$

This value of the objective function is higher than the previously incumbant value. Terminate the process and the optimum solution is

$$
(0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0)
$$

with 165.00 as the value of the objective function.
7.4) Computer Program.

No. 6
A computer programLis developed from the procedure [3] and attached in the Appendix. This program is quite useful when the number of rows is less than the number of columns. The data cards for this program are prepared while considering the above example.
7.4) contd.

8000000
4
16
$\left.\begin{array}{rrllllllllllllll}167.16 & 119.16 & 33.17 & 153.16 & 47.16 & 167.16 & 81.16 & 33.17 & 133.33 \\ 85.33 & 167.33 & 119.33 & 13.33 & 133.33 & 47.33 & 167.33 & & & \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

Table - 33 Data cards for Cairo

CHAPTER VIII

8.1) Introduction

In Section II it is shown that any method of Linear Prograrming can be used to solve the problem of aircraft crews of a commercial airline. Here the question arises as to which method is efficient and gives the best result in the minimum of time. A problem was taken and solved manually by three methods of Linear Programming. The assignment technique took less time as compared with other methods.

Then three computer programs were applied to Table 25 for comparison. The size of time matrix was 20×20. The computer gave the result as follows:-

Assignment program	$=$	14	seconds
Transportation program	$=$	30	seconds
Integer program	$=38$	seconds	

In addition to this time, the last method required 3 hours to punch the data cards. As it is shown the assignment program took less time compared to others. So this method will be used to solve the problem of crew scheduling and also took less time for punch the data cards.

8.2) Western Sector.

In this Sector first of all, the data cards for layover time matrices Tables Nos. 9-17 - that is all the combinations of Istanbul and Beirut are prepared. The computer program No. 7 is applied to calculate the minimum layover time for each city and each combination and is shown in the following table.

The combinations Nos. 2, 3 and 5 have the same layover time. However, combination No. 3 is selected for OR Schedule.
Combinations at Beirut and Istanbul

BEIRUT		ISTAINBUL		TOTAL LAYOVER TIMESIN HRS.
Flight No. PK.	Min.Layover Time in Hrs.	Flight Number.	Min.Layover	
$\text { 1) } 701,703,707,702 \text {, }$	332.24	$\begin{aligned} & 705,709,713,715,721 \\ & 722,706,712,716,718 \end{aligned}$	497.98	830.22
2) $\begin{aligned} & 701,703,707,713, \\ & 721,702,706,708, \\ & 714,718 \end{aligned}$	329.50	$\begin{gathered} 705,709,715,722,712 \\ 716 \end{gathered}$	332.64	662.14
3) $701,703,707, \frac{713}{702,708,714,718}$	330.83	$\begin{aligned} & 705,709,715,721,722 \\ & 706,712,716 \end{aligned}$	331.30	662.13
4) $701,703,707,721$, $702,706,708,714$	330.83	$\begin{aligned} & 705,709,715,713,722, \\ & 712,716,718 \end{aligned}$	490.24	821.07
5) $701,703,707,713$, $702,708,714,706$	330.83	$\begin{aligned} & 705,709,715,721,722, \\ & 712,716,718 \end{aligned}$	331.30	662.13
6) $701,703,707, \frac{721}{702,708,714,718}$	330.83	$\begin{aligned} & 705,709,715,713,722, \\ & 712,716,706 \end{aligned}$	499.38	830.21

Table No. 34 Combinations of Beirut and Istanbul
8.3.1) Crew Schedule at Istanbul

PK 705,709,715,721,722,706,712,716

	Crew		Layover time in hours.
	In	Out,	
From KarachiFrom London	PK 705	PK 709	31.41
	PK 709	PK 715	39.50
	PK 715	PK 721	31.66
	PK 721	PK 706	77.66
	PK 722	PK 705	33.25
	PK 706	PK 712	47.58
	PK 712	PK 716	23.47
	PK 716	PK 722	47.41
Total layover time			331.30 hrs

Table No. 35 Crew's Schedule at Istanbul
8.3.2) Crew Schedule at Beirut. PK 701,703,707,713,702,708,714,718.

	Crew		Layover time in hours.
	In	Out	
From Karachi	PK 701	PK 703	24.50
	PK 703	PK 707	21.58
	PK 707	PK 713	48.50
	PK 713	PK 718	54.17
From London			
	PK 702	PK 708	47.50
	PK 708	PK 714	43.58
	PK 714	PK 701	41.25
	PK 718	PK 702	49.75
Total layover time			30.83 hours

Table No. 36 Crew's Schedule at Beirut.
8.3.3) Crew Schedule at Cairo.

PK 717, 719, 704, 710

	Cr		Layover time
	In	Out	in hours.
From Karachi			
From London	PK 711	PK 710	13.34
	PK 719	PK 704	85.33
	PK 704	PK 711	33.16
	PK 710	PK 719	33.17
Total layover time			165.00

Table No. 37 Crew Schedule at Cairo
8.4.) London.

In the Western Sector Lond on is a terminal
point. The crew schedules at Istanbul, Beirut and Cairo show that the crews of flights Nos. PK 722/PK 705, PK 710/PK 719, PK 704/PK 711 and PK 714/PK 704 should be based at London. Therefore, the layover time matrix of Table 22 is reduced to the following table and the result of this matrix is presented in Table No. 39.
81.
8.4.1) LONDON SCHEDULE

	a_{703}	a^{707}	a_{709}	a_{713}	a_{715}	${ }_{717}{ }^{2}-\mathrm{A}$	${ }_{717} \mathrm{a}-\mathrm{B}$	a_{721}
d_{702}	162.17	140.25	113.83	89.67	73.58	67.33	67.33	41.70
d_{706}	18.17	164.25	137.83	113.67	97.58	91.33	91.33	65.70
d. 708	42.17	20.25	161.83	137.67	121.58	115.33	115.33	89.70
d_{712}	66.17	44.25	17.83	161.67	145.58	139.33	139.33	113.70
d_{716}	90.17	68.25	41.83	185.67	169.58	163.33	163.33	137.70
d_{718}	110.42	88.50	62.08	37.92	21.83	183.58	183.58	157.95
d-A ${ }_{720}$	114.17	92.25	65.83	41.67	25.58	187.33	187.33	161.70
d-B ${ }_{7}$	114.17	92.25	65.83	41.67	25.58	187.33	187.33	161.70

Table No. 38 Layover time matrix for London.

Crew		Layover time in hours		
In	Out			
PK 703	PK 708	42.17		
PK 707	PK 712	44.25		
PK 709	PK 720-A	65.83		
PK 713	PK 720-B	41.67		
PK 715	PK 718	21.83		
PK 717-A	PK 706	91.33		
PK 717-B	PK 716	163.33		
PK 721	PK 702	41.70		
Total layover time				$512.11 \mathrm{hrs}$.

Table No. 39 Crew's Schedule at London.
8.4.1) contd.

The crew arriving on flight No. PK 717 is
entitled to have at least 72 hours rest according to the agreement between the Crews' Association and Airline Authority. This condition is fulfilled. In the computer result it is shown that the crew arriving on PK 717-B will get a rest of 163.33 hours. During this period, the crew can go to Cairo on flight No.PK 704 and come back on PK 711. This means the only crews on flight Nos. PK 722/PK 705, PK 710/PK 719 and PK 714/PK 701 should be based at London. The minimum layover time at London is reduced to
512.11 hours -50.42 hours $=461.69$ hours

All the above statements are consolidated into two tables only showing crews based in Karachi and London respectively.
8.4.1) contd.

MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	
$\begin{aligned} & 701 \\ & \mathrm{~K}-\mathrm{B} \\ & \hline \end{aligned}$	$\begin{array}{r} 703 \\ \text { B-L } \\ \hline \end{array}$	L	$\begin{array}{r} 708 \\ \mathrm{I}-\mathrm{B} \\ \hline \end{array}$	B	$\begin{aligned} & 714 \\ & \mathrm{~B}-\mathrm{K} \\ & \hline \end{aligned}$										
	$\begin{array}{r} 703 \\ K-B \\ \hline \end{array}$	$\begin{array}{r} 707 \\ \text { B-L } \\ \hline \end{array}$	L	$\begin{array}{r} 712 \\ \mathrm{I}-\mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & 716 \\ & I-K \\ & \hline \end{aligned}$										
		$\begin{array}{r} 705 \\ \mathrm{~K}-\mathrm{I} \\ \hline \end{array}$	$\begin{array}{r} 709 \\ \mathrm{I}-\mathrm{L} \\ \hline \end{array}$	L	L	$\begin{gathered} 720 \\ \mathrm{I}-\mathrm{M}-\mathrm{K} \\ \hline \end{gathered}$									
		$\begin{array}{r} 707 \\ \mathrm{~K}-\mathrm{B} \\ \hline \end{array}$	B	$\begin{array}{r} 713 \\ \text { B-L } \\ \hline \end{array}$	L	$\begin{gathered} 720 \\ \mathrm{I}-\mathrm{M}-\mathrm{K} \end{gathered}$									
			$\begin{array}{r} 709 \\ \mathrm{~K}-\mathrm{I} \\ \hline \end{array}$	I	$\begin{aligned} & 715 \\ & \mathrm{I}-\mathrm{L} \end{aligned}$	$\begin{aligned} & 718 \\ & \mathrm{~L}-\mathrm{B} \\ & \hline \end{aligned}$	B	$\begin{array}{r} 702 \\ B-K \\ \hline \end{array}$							
				$\begin{array}{r} 711 \\ \mathrm{~K}-\mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 710 \\ & \mathrm{C}-\mathrm{K} \\ & \hline \end{aligned}$										
				$\begin{aligned} & 713 \\ & \mathrm{~K}-\mathrm{B} \end{aligned}$	B	$\begin{array}{r} 718 \\ \text { B-K } \\ \hline \end{array}$									
					$\begin{array}{r} 715 \\ \mathrm{~K}-\mathrm{I} \\ \hline \end{array}$	$\begin{array}{r} 721 \\ \mathrm{I}-\mathrm{I} \\ \hline \end{array}$	L	$\begin{aligned} & 702 \\ & \mathrm{I}-\mathrm{B} \\ & \hline \end{aligned}$	B	$\begin{array}{r} 708 \\ \mathrm{~B}-\mathrm{K} \\ \hline \end{array}$					
					$\begin{gathered} 717 \\ \mathrm{~K}-\mathrm{M}-\mathrm{I} \\ \hline \end{gathered}$	L	L	Is	$\begin{array}{r} 706 \\ \mathrm{I}-\mathrm{I} \\ \hline \end{array}$	I	$\begin{array}{r} 712 \\ \mathrm{I}-\mathrm{K} \\ \hline \end{array}$				
					$\begin{gathered} 717 \\ \mathrm{~K}-\mathrm{M}-\mathrm{L} \\ \hline \end{gathered}$	L	L	L	$\begin{array}{r} 704 \\ \mathrm{I}-\mathrm{C} \\ \hline \end{array}$	C	$\begin{array}{r} 711 \\ \mathrm{C}-\mathrm{L} \\ \hline \end{array}$	$\begin{array}{r} 716 \\ \mathrm{~L}-\mathrm{I} \\ \hline \end{array}$	I	$\begin{array}{r} 722 \\ \mathrm{I}-\mathrm{K} \\ \hline \end{array}$	
						$\begin{array}{r} 719 \\ \mathrm{~K}-\mathrm{C} \\ \hline \end{array}$	C	C	$\begin{array}{r} 704 \\ \mathrm{C}-\mathrm{K} \\ \hline \end{array}$						
						$\underset{\mathrm{K}-\mathrm{I}}{727}$	I	I	$\begin{aligned} & 706 \\ & \mathrm{I}-\mathrm{K} \end{aligned}$						

8.4.1) contd.
LONDON BASE

8.4.1) contd.

Conclusion (Western Sector only)
Mathematical technique is applied to frame the schedule which is free from human bias when this OR Schedule is compared with the P.I.A.Schedule (Table 41) a net saving of 351.91 hours per week is shown
$\left.\begin{array}{lll}\begin{array}{l}\text { P.I.A.Schedule }\end{array} & = & 1640.73 \text { hours } \\ \begin{array}{l}\text { OR Schedule }\end{array} & =1288.82 \text { hours } \\ \begin{array}{l}\text { Difference } \\ \text { saved per } \\ \text { week }\end{array}\end{array}\right\}=351.91$ hours
8.4.3) conta.

MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON
$\begin{array}{r} 701 \\ K-B \\ \hline \end{array}$	$\begin{aligned} & 703 \\ & \text { B-L } \end{aligned}$	L	L	L	$\begin{aligned} & 714 \\ & \mathrm{I}-\mathrm{B} \\ & \hline \end{aligned}$	$\begin{aligned} & 718 \\ & B-K \end{aligned}$								
	$\begin{array}{r} 703 \\ K-B \\ \hline \end{array}$	$\begin{aligned} & 707 \\ & \mathrm{~B}-\mathrm{L} \\ & \hline \end{aligned}$	L	$\begin{array}{\|l} \hline 710 \\ \mathrm{~L}-\mathrm{C} \\ \hline \end{array}$	C	$\begin{aligned} & 719 \\ & \mathrm{C}-\mathrm{L} \\ & \hline \end{aligned}$	$\begin{aligned} & 722 \\ & \mathrm{~L}-\mathrm{I} \end{aligned}$	I	$\begin{aligned} & 706 \\ & \text { I-K } \end{aligned}$					
		$\begin{array}{r} 705 \\ \mathrm{~K}-\mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & 709 \\ & \text { I-L } \\ & \hline \end{aligned}$	L	L	$\begin{aligned} & 720 \\ & \mathrm{~L}-\mathrm{K} \\ & \hline \end{aligned}$								
		$\begin{array}{r} 707 \\ K-B \\ \hline \end{array}$	B	$\begin{aligned} & 713 \\ & \text { B-L } \\ & \hline \end{aligned}$	L	$\begin{aligned} & 718 \\ & \mathrm{~L}-\mathrm{B} \\ & \hline \end{aligned}$	B	$\begin{aligned} & 702 \\ & \text { B-K } \\ & \hline \end{aligned}$						
			$\begin{array}{r} 709 \\ \mathrm{~K}-\mathrm{I} \end{array}$	I	$\begin{aligned} & 715 \\ & \mathrm{I}-\mathrm{L} \end{aligned}$	L	L	$\begin{aligned} & 702 \\ & \mathrm{~L}-\mathrm{B} \end{aligned}$	B	$\begin{aligned} & 708 \\ & \text { B-K } \end{aligned}$				
				$\begin{aligned} & 711 \\ & K-C \\ & \hline \end{aligned}$	$\begin{aligned} & 710 \\ & \mathrm{C}-\mathrm{K} \\ & \hline \end{aligned}$									
				$\begin{aligned} & 713 \\ & \mathrm{~K}-\mathrm{B} \end{aligned}$	B	B	$\begin{aligned} & 701 \\ & \mathrm{~B}-\mathrm{L} \end{aligned}$	L	L	L	$\begin{aligned} & 712 \\ & \mathrm{~L}-\mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 716 \\ & I-K \\ & \hline \end{aligned}$		

```
8.4.3) contd.
```

TABLE 41 （contd）

砍		N			
它		H			ㅇ．4
姦	さ	［			${ }^{\wedge}$
诎	๓	त	$\left.\begin{array}{cc} \text { c } & 4 \\ \text { i } & 1 \\ 1 \end{array} \right\rvert\,$		$\stackrel{ }{ }$
毒	¢	0	H		$\stackrel{ }{ }$
会	$\stackrel{ }{ }$	¢	$$	¢̇	辰 $\begin{aligned} & \text { ¢ } \\ & \sim\end{aligned}$
思	$\stackrel{ }{ }$	月	\dagger	0	H
艺	ค	Н	－	\bigcirc	H
号	込	н	\dagger	込	귿
猋	$\begin{array}{ll} \text { n } & -1 \\ & 4 \end{array}$	$$	$\begin{array}{cc} \text { N } & 9 \\ \end{array}$		
H					
薬					
㽡					
止					
兄					

8.5) O.R.Schedule with one home base - KARACHI

When this OR Schedule was shown to the Chief Scheduling Officer of P.I.A. he agreed and said that it fulfilled all the requirements of P.I.A.

Then he suggested that another schedule should be framed which showed that all the crews have been based at Karachi - home base in the Western Sector. As stated above, there may be more than one optimal solution in the given matrix. Therefore, by shifting some optimal values, the following schedules are prepared for each slip station, having the same numerical values.
8.5.1) Crew Assignment at Beirut, Istanbul, Cairo and London. Beirut PK 701,703,707,713,702,708,714,718

Crew No.	Crew		Layover Time in Hours
	In	Out	
From Karachi			24.50
301	PK 701	PK 703	21.58
302	PK 703	PK 707	48.50
304	PK 707	PK 713	70.92
306	PK 713	PK 701	
From London			47.50
307	PK 702	PK 708	43.58
301	PK 708	PK 714	24.50
302	PK 714	PK 718	49.75
304	PK 718	PK 702	

Table 42. Crew's Schedule at Beirut.
8.5.2) Is.tanbul. PK $705,709,715,721,722,706,712,716$

Crew No.	C rew		Layover Time in Hours
	In	Out	
From Karachi			
303	PK 705	PK 709	31.47
305	PK 709	PK 715	39.50
307	PK 715	PK 721	31.66
309	PK 721	PK 705	63.25
From London			
303	PK 722	PK 706	47.16
308	PK 706	PK 712	47.50
309	PK 712	PK 716	23.47
306	PK 716	PK 722	47.41
Total Layover Time $=331.30 \mathrm{hrs}$			

Table 43. Crew's Schedule at Istanbul.
8.5.3) Cairo. PK $717,719,704,710$

Crew No.	Crew		Layover Time in Hours
	In	Out	
From Karachi			
101	PK 711	PK 710	13.34
103	PK 719	PK 704	85.33
From Lond on			
306	PK 704	PK 717	33.16
303	PK 710	PK 719	33.17
Total Layover Time $=\quad 165.00 \mathrm{hrs}$ 。			

Table 44. Crew's Schedule at Cairo
8.5.4) London.

Crew No.	Crew		Layover Time in Hrs.
	In	Out	
301	PK 708	67.42	
309	PK 705	PK 710	62.42
302	PK 707	PK 720	49.58
303	PK 709	PK 714	92.25
308	PK 711	PK 716	38.08
304	PK 713	PK 720	25.33
305	PK 715	PK 718	21.67
308	PK 717	PK 704	87.58
309	PK 717	PK 706	91.33
307	PK 719	PK 722	25.33

Table 45. Crew's Schedule at Lond on.
All the above statements are consolidated in
Table 46.

8．5．4）conta．

$\stackrel{\square}{2}$									N $\begin{array}{ll}\text { N } \\ \text { N } & 1 \\ & H\end{array}$			
狏									H			
芼\|							込		$\left.\begin{array}{ll} 6 & H \\ - & H \\ H \end{array} \right\rvert\,$			6 NH1 H
$\begin{aligned} & \text { H1 } \\ & \text { 年 } \end{aligned}$							๓		烒	$\begin{array}{ll} \infty \\ N_{1} & 4 \\ 1 \end{array}$		NH H，
炰							$\begin{array}{ll}\infty & m \\ \sim \\ \sim & 1 \\ 1\end{array}$	$\begin{array}{ll} \infty & \underset{1}{4} \\ \stackrel{1}{1} & 1 \end{array}$	0	H		\mapsto
国	ㅇ．						田	๓	$\begin{array}{lll}\text { ¢ } & 0 \\ \text { ¢ } & 1 \\ 1\end{array}$	$\begin{array}{cc} 6 & 4 \\ \times & 1 \\ 1 \end{array}$	$\begin{aligned} & \pm \\ & \underset{1}{4} \\ & \hline 1 \end{aligned}$	능
国	H				$\begin{array}{cc} \sim & 4 \\ & 4 \\ \hline \end{array}$		H	cr	${ }^{-}$	\mapsto	0	\mapsto
B	N ${ }_{\text {N }}^{\text {N }}$				ص		－	\dagger	Н	\mapsto	0	H
兌	会	ㅇ．	$\begin{array}{ll} \infty & 4 \\ & 1 \\ \end{array}$	®	$\begin{array}{ll} \infty & 0 \\ & 1 \\ n \end{array}$		๓		${ }^{-1}$	†	$\begin{array}{ll} 0 & 0 \\ \text { H} & 1 \\ \end{array}$	처N
털	0	\mapsto	$$	\mapsto	$$	$\begin{array}{ll} 0 \\ \text { 산 } & 1 \\ \hline \end{array}$	๓	$\begin{array}{ll} n & -1 \\ i & 1 \\ & 1 \end{array}$	$$	$\stackrel{N}{N}$		
$\begin{aligned} & \text { H } \\ & \text { च्玉 } \end{aligned}$		${ }^{-}$	н	M	H	$\begin{array}{cc} \text { H } & 0 \\ \text { H} & 1 \\ \hline 1 \end{array}$	$\begin{array}{cc} M & m \\ H & 1 \\ \hline \end{array}$					
傕	\mapsto	\dagger	$\begin{array}{ll} \text { a } & -1 \\ \text { ค } & 1 \\ \end{array}$	๓	$\begin{array}{ll} \text { o. } & -1 \\ & 1 \\ 4 \end{array}$							
国	Н	$\begin{array}{lll} & 1 \\ & 1 \end{array}$		$$								
気	$\begin{array}{ll}M & \square \\ & \text { a }\end{array}$	$\begin{array}{cc} \mathrm{m} & m \\ \underset{\sim}{c} & 1 \\ 1 \end{array}$										
\％	cr											

8.5.4) contd.

When this OR Schedule is compared with PIA Schedule, a net saving of 169 hours per week is shown as below:-
PIA Schedule $=1640.73$ hours
OR Schedule $=1471.65$ hours

Difference saved
per week

8.6) Karachi-Dacca Sector.

In this Sector the return flying time is less than eight hours. The computer program No. 7 is applied to get the optimal solution and this solution al so shows where the crew should be based.
8.6.1) Karachi-Dacca Sector.

Days	In	Out	Layover time in hours	Based
Monday	PK 723 (Sun) PK 730 PK 738	PK 724 PK 731 PK 737	$\begin{aligned} & 9.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	Dacca Karachi Karachi
Tuesday	PK 723 (Mon) PK 730 PK 736	PK 724 PK 731 $\text { PK } 735$	$\begin{aligned} & 9.00 \\ & 1.08 \\ & 1.08 \\ & \hline \end{aligned}$	Dacca Karachi Karachi
Wednesday	PK 723 (Tue) PK 730 PK 738	PK 724 PK 731 PK 737	$\begin{aligned} & 9.00 \\ & 1.08 \\ & 1.00 \\ & \hline \end{aligned}$	Dacea Karachi Karachi
Thursday	$\begin{aligned} & \text { PK } 704 \\ & \text { PK } 723 \text { (Wed) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PK } 735-\mathrm{A} \\ & \text { PK } 706 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.50 \\ & 11.00 \\ & \hline \end{aligned}$	Karachi Dacca
Friday	PK 724 PK 711 (Thu) PK 736	PK 719(Sat) PK 730 PK 735	$\begin{array}{r} 34.58 \\ 9.00 \\ 1.08 \\ \hline \end{array}$	Karachi Dacca Karachi
Saturday	PK 736 PK 723 (Fri) PK 731 (Fri)	PK 735-A PK 712 PK 736	$\begin{aligned} & 12.50 \\ & 11.00 \\ & 19.25 \\ & \hline \end{aligned}$	Karachi Dacca Dacca
Sund ay	PK 735 (Sa.t) PK 730 PK 736	PK 724 PK 731 PK 735	$\begin{array}{r} 11.75 \\ 1.08 \\ 1.08 \end{array}$	Dacca Karachi Karachi

Total layover time $=158.06$ hours per week
Table 47. Crew's Schedule for Karachi-Dacca Sector.
8.6.2) Karachi - Persian Gulf Sector.

	Out	In	Layover time in hours.	Based
Wednesday	PK 745	PK 744	0.83	Karachi
Sunday	PK 745	PK 744	0.83	do

Table 48. Crew's Schedule for Karachi Persian Gulf Sector
8.6.2) conta.
KARACHI BASE
Schedule for Karachi-Dacca-Persian Gulf-China

MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON
$\begin{array}{r} 730 / \\ 731 \\ \hline \end{array}$	$\begin{array}{r} 730 / \\ 731 \\ \hline \end{array}$		$\begin{array}{r} 207 / \\ 206 \\ \hline \end{array}$											
$\begin{aligned} & 738 / \\ & 737 \\ & \hline \end{aligned}$	$\begin{array}{r} 736 / \\ 735 \\ \hline \end{array}$	$\begin{array}{r} 738 / \\ 737 \\ \hline \end{array}$				$\begin{array}{r} 745 / \\ 744 \\ \hline \end{array}$								
$\begin{array}{r} 209 / \\ 208 \\ \hline \end{array}$			$\begin{array}{r} 704 / \\ 735 \\ \hline \end{array}$			$\begin{array}{r} 730 / \\ 731 \\ \hline \end{array}$								
		$\begin{array}{r} 745 / \\ 744 \\ \hline \end{array}$		724	719									
		$\begin{array}{r} 730 / \\ 731 \\ \hline \end{array}$		$\begin{array}{r} 736 / \\ 735 \\ \hline \end{array}$	$\begin{array}{r} 736 / \\ 735 \\ \hline \end{array}$	$\begin{array}{r} 736 / \\ 735 \\ \hline \end{array}$								
		(730)	$\begin{array}{r} 750 / \\ 751 \\ \hline \end{array}$	D	$\begin{array}{r} 752 / \\ 753 \\ \hline \end{array}$	(723)								
		(730)	$\begin{array}{r} 750 / \\ 751 \\ \hline \end{array}$	D	$\begin{array}{r} 752 / \\ 753 \\ \hline \end{array}$	(723)								

Table No. 49 Crew's Schedule for Karachi-Dacca-Persian Gulf-China
8.6.3) Dacca-Lahore Sector.

	C r w		Layover time	Based.
	Out	In	in hours	
Monday	PK 726	PK 725	1.08	Dacca
Tuesday	PK 726	PK 725	1.08	do
Wednesday	PK 726	PK 725	1.08	do
Friday	PK 726	PK 725	1.08	do
Sunday	PK 726	PK 725	1.08	do

Total layover time $=5.40$ hours per week

Table 50. Crew's Schedule for Dacca-Lahore Sector.
8.6.4) Bangkok Sector.

Table 51. Crew's Schedule for Dacca-Bangkok Sector

All the above statements for Dacca based are consolidated into one table as given below.
8.6.4) contd.

8.7) Conclusion.

When all the above mentioned OR Schedules are compared with the PIA Schedule, a net saving of 570.08 hours per week is shown. The OR technique also eliminates the human bias in framing the Schedule. Any addition or cancellation of flights, the $O R$ Schedules can be prepared in a few minutes on a computer.

Sector	PIA Schedule in hours	OR Schedule in hours	Difference in hours (saved)
1) Karachi-Dacca	219.23	158.06	
Dacca-Lahore		5.40	55.77
2) Persian Gulf	3.33	3.33	-
3) China	187.33	187.33	-
4) Dacca-Bangkok	164.90	2.50	162.40
5) Western Sector	1640.73	1288.82	351.91

Table 53 Net saving table.
8.7) contd.
PIA SCHEDULE

MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON
$\begin{array}{r} 724 / \\ 725 \end{array}$	$\begin{gathered} 726 / \\ 723 \end{gathered}$			$\begin{array}{r} 724 / \\ 725 \end{array}$	LHR	$\begin{array}{r} 726 / \\ 723 \end{array}$								
	$\begin{gathered} 724 \\ 725 \\ \text { LHR } \\ \hline \end{gathered}$	$\begin{aligned} & 726 / \\ & 723 \end{aligned}$				$\begin{aligned} & 724 / \\ & 725 \\ & \text { LHR } \end{aligned}$	$\begin{gathered} 7261 \\ 723 \end{gathered}$							
		$\begin{aligned} & 724 \\ & 725 \\ & \text { LHR } \end{aligned}$	LHR	$\begin{array}{r} 726 / \\ 723 \end{array}$										
$\begin{aligned} & 7301 \\ & 731 \\ & \hline \end{aligned}$	$\begin{array}{r} 7301 \\ 731 \\ \hline \end{array}$	$\begin{array}{r} 7301 \\ 731 \\ \hline \end{array}$		$\begin{array}{r} 7301 \\ 731 \\ \hline \end{array}$		$\begin{gathered} 7301 \\ 731 \end{gathered}$								
	$\begin{array}{r} 736 / \\ 735 \end{array}$			$\begin{array}{r} 736 / \\ 735 \end{array}$	$\begin{array}{r} 736 / \\ 735 \end{array}$	$\begin{array}{r} 736 / \\ 735 \end{array}$								
$\begin{array}{r} 738 / \\ 737 \end{array}$		$\begin{array}{r} 738 / \\ 737 \end{array}$												
			$\begin{gathered} 704 / \\ 711 \end{gathered}$		$\begin{array}{r} 710 / \\ 719 \end{array}$									
$\begin{array}{r} 209 / \\ 208 \end{array}$			207/ 206											
		(730)	$750 /$ 751	D	$\begin{gathered} 752 / \\ 753 \end{gathered}$	(723)								
		(730)	$\begin{array}{r} 750 / \\ 751 \end{array}$	D	$\begin{array}{r} 752 / \\ 753 \end{array}$	(723)								

Table 54. PIA Schedule for Eastern Sector.

8．7）contd．

砍								
白								
暏								
号								
包		$\begin{aligned} & \text { दे } \\ & 1 \\ & H \\ & \text { H } \end{aligned}$						
感		兑						
皇		总						
岩		兑						
号		目						
昳	$$	$\begin{aligned} & \text { N } \\ & \text { त } \\ & \text { त } \end{aligned}$						
毞	兑							
曷	$\begin{aligned} & 4 \\ & \text { לু。 } \\ & \text { co } \end{aligned}$							
界								
思								
号								

9.1) Introduction.

Several limited factors have to be taken into consideration while framing the time table. Among these the important factors are given below:-

1) Legal Constraints:-

The routes are allowed to fly and frequencies of the services are subject to international agreement.
2) Commercial Constraints:-

The passengers - who are the source of revenue have preference for certain times of arrival and departure.
3) Technic al Constraints:-

Certain airports are closed to traffic at night, and other airports have not sufficient technical facilities.

The time table department is faced with requirements which are of ten contradictory and in many cases several time tables are drafted. Now the point arises as to which will provide the best regularity. If the time table is heavily loaded, the revenue may be high but many cancellations and delays will occur, caused by a lack of aircraft at the main base. Then this time table may be termed as "tight schedule" and it may be harmful to the company's reputation. There are also other factors which affect the time table these are:-

1) the duration of flight varies
2) Operational delay at any station due to traffic congestion, late arrival etc.,
9.1) contd.
3) technical hitches at the moment of departure.

The general aim of all the World Airlines is to find the most profitable solution, that is, the expression revenue minus cost, should be maximized. Here the profit means overall profit. It is the duty of the Marketing Research Section to frame a schedule while considering all of the above mentioned constraints.

Now the next important point is to select the route while considering certain parameters:-
a) cost of landing
b) cost of flight
c) expected revenue of the flight
d) maintenance facilities
e) day time and seasonal conditions
f) connection for other flights
g) attraction for the visitors (publicity)

The overall profit depends upon certain parameters. For optimal time table some kind of iterative procedure should be adopted, running through each step again and again while changing the parameters so as to increase the profit at every cycle. The parameters can be framed as follows:-
9.1) contd.

9.1) contd.

Four months ahead a time table is framed by the Market Research Station while considering the above mentioned parameters. In order to get the ideal time table, some relaxation should be provided to deviate the time table, for reducing the layover time of the crews at slip stations and provide a time for maintenance of the aircraft etc., Then this time table should be analysed by the OR Section and Technical Section. In the present case, only the layover time of the crews will be considered.

If the time table is drafted while considering
the layover time of the crews, this might become unattractive from a commercial point of view.

PIA Authority has allowed deviation on the present time table of up to half an hour only.

It is suggested that a change in the departure time of flight Nos. PK 724, 706, 712 in Karachi-Dacca Sector should be made by 25 minutes only. The proposed time table for this Sector is as follows.

$\begin{array}{ll} \text { Prine } \\ \text { from } \end{array}$			menoy			tUESDAY			Wenestoay			turrsoiy		priday			saturany			stwory		
			ex 724	PK 730	Pr 738	${ }_{\text {PK }}^{72^{24}}$	$\int_{P K} 730$	7x 735 7x 724		Px 730 b ${ }^{\text {c }} 738$												
+5	ханиснI	dop		8-30	18-00	6605	8-30	${ }^{11-15}$	6 605			Px 704 PRX 706		Px 724	1px 730	PK 736	PK 7.0	PK 712	Px 736	PK 724	Px 730	px 736
												3-30	Q-05	$6-05$	Q-30	11-15	3-30	8 8-05	11-15	$8-05$	8-30	11-15
+6	dacca	arr	10-15	12-40		15																
									, 5	12	22-10	7-40	12-15	10-15	12-40	15-25	7-40	12-15	15-25	10-15	12-40	15-25

Trs			mevay			tuesday			veonesoay			$\begin{aligned} & \text { Trupsony } \\ & \hline \text { PK } 735 \text { PPx } 711 \end{aligned}$		priday			saturday			SUNDAY		
\%im			P6 731	PK 723	Px 737																	
+6	DגCCA	d	$13-45$	19-15	23-10	${ }^{13} 4{ }^{\text {a }}$	$\stackrel{16}{1630}$	Px 723	:3 731	PK 723	PK 737			PK 731	PK 735	px 723	Px 735	PK 735A	Px 719	PK 731	PK 735	PK 723
							10.30	19-25	13-45	19-15	23-10	20-10	21-15	13-45	16-30	19-15	16-30	${ }^{20-10}$	21-15	13-45	16-30	19-15
+5	$\begin{gathered} \vdots \\ \text { xarichr } \end{gathered}$	arr	16-00		${ }_{\text {T-25 }}^{\text {TVE }}$																	
						-0	1845	-30	15000	21-30	1-25	22-25	23-30	16-00	18-45	21-30	1845	22-25	20-30	16-8	18-45	

TABLE 55 i-PROPOSED TINE TABLE RCR WUREAT - DACCA SECTOR
9.1) contd.

The layover time matrices for Karachi and Dacca are calculated and modified as explained in (3.5). Then a composite matrix is obtained from these two matrices. The computer program No. 7 is applied to get the optimal solution. This optimal solution has dual advantages of giving minimum layover time of the crews and the element selected in the solution shows the base for the crews.

		monday			tUESDAY			WEDNESDAY			thursday		fridday			saturday			SUNDAY		
		${ }^{2} 31$	a_{723}	${ }^{2} 737$	${ }^{2} 31$	${ }_{7} 735$	${ }^{2} 23$	${ }_{7} 71$	${ }_{7} 723$	${ }^{2} 737$	${ }^{2} 735 \mathrm{~A}$	2711	${ }_{7} 731$	${ }^{2} 735$	${ }^{2} 23$	${ }_{7} 71$	${ }_{7} 735 \mathrm{~A}$	2719	${ }^{2} 31$	${ }^{2} 735$	${ }^{4} 23$
M	d724	158.08	153.58	148.58	134.08	131.33	128.58	110.08	104.58	100.66	79.66	78.58	62.08	59.33	56.58	35.33	31.66	30.59	14.08	11.33	176.58
0	${ }^{\text {d }} 330$	160.50	156.00	151.00	136.50	133.75	131.00	112.50	107.00	103.98	82.08	81.00	64.50	61.75	59.00	37.75	34.08	33.00	16.50	13.75	11.00
N	${ }_{4}{ }_{4} 8^{\prime}$	2.00	165.50	160.50	146.00	143.25	140.50	122.00	116.50	112.58	91.58	90.50	74.00	71.25	68.50	47.25	43.58	42.50	26.00	23.25	20.50
		14.08	9.58	172.58	158.08	155.33	152.58	134.08	128.58	124.66	103.66	102.58	86.08	83.33	80.58	59.33	55.66	54.58	38.00	35.33	32.56
	$\alpha^{2} 30$	16.50	12.00	175.00	161.50	157.75	155.00	136.50	131.00	127.08	106.08	105.50	88.00	85.75	83.00	61.75	59.08	57.00	40.50	37.75	35.00
	${ }_{736}$	19.25	14.75	9.75	163.25	160.50	157.75	139.25	133.75	129.83	108.83	107.75	91.25	88.50	85.75	64.50	60.83	59.75	43.25	40.50	37.75
	${ }_{4}{ }_{24}$	38.08	33.58	28.58	14.08	11.33	9.00	158.08	152.58	148.66	127.66	126.58	110.08	107.33	104.58	83.33	79.66	78,58	82.08	59.33	56.58
E	${ }^{\text {d }} 730$	40.50	36.00	31.00	16.50	13.75	11.00	160.50	155.00	151.08	130.08	129.00	112.50	109.75	107.00	85.75	82.08	81.00	64.50	61.75	59.00
	${ }^{\text {d }} 738$	50.00	45.50	40.50	26.00	23.25	20.50	2.00	164.50	164.50	139.58	138.50	122.00	119.25	116.50	95.25	91.58	90.50	74.00	71.25	68.50
		59.50	55.00	50.00	35.35	32.75	. 00	11.50	174.00	2.08	149.08	148.00	131.50	128.75	126.00	104.75	101.08	100.00	83.50	80/75	78.00
H	$\dot{4}_{706}$	64.08	59.58	54.56	40.08	37.33	34.58	16.08	10.58	174.66	153.66	152.58	136.58	133.33	130.58	109.33	105.66	104.58	88.08	85.33	82.58
		86.08	81.58	76.58	62.08	59.33	56.58	38.08	32.58	28.66	175.66	174.58	158.08	155.33	152.58	131.33	127.66	126.58	110.08	107.33	104.58
R	d_{730}	88.50	84.00	79.00	64.50	61.75	59.00	40.50	35.00	31.08	10.08	9.00	160.50	157.75	155.00	133.75	130.08	129.00	112.50	109.75	107.00
I	${ }^{\text {d }} 736$	91.25	86.75	81.75	67.25	64.50	61.75	43.25	37.75	33.83	12.83	11.75	163.25	160.70	157.75	136.50	132.83	131.75	115.25	112.50	109.75
	d_{710}	107.50	103.00	98.00	83.50	80.75	78.00	59.50	74.00	50.08	29.08	28.00	11.50	176.75	174.00	152.75	149.08	148.00	131.50	128.75	126.00
A	${ }_{4} 12$	112.08	107.58	102.58	88.08	85.33	82.58	64.08	58.58	54.66	33.66	32.58	16.08	13.33	10.58	157.33	153.66	152.58	136.08	133.33	130.58
T	${ }^{\text {d }} 730$	115.25	110.75	105.75	91.25	88.50	85.75	67.25	61.75	57.83	36.83	35.75	9.25	16.50	13.75	160.50	156.83	155.75	139.25	136.50	133.75
s	424	134.08	129.58	124.58	110.08	107.33	104.58	86.08	80.58	76.66	55.66	54.58	38.08	35.33	32.58	11.33	175.66	174.58	158.08	155.33	152.58
0	${ }^{\text {d }} 730$	-36.08	132.00	127.00	112.50	109.75	107.00	88.50	83.00	79.08	58.08	57.00	40.50	37.75	35.00	13.75	10.08	9.00	160.50	157.75	155.00
N	${ }_{\text {d }}{ }^{\text {d }}$	\$139.25	134.75	129.75	115.25	112.50	109.75	91.25	85.75	81.83	60.83	59.75	43.25	40.50	37.75	16.50	12.83	11.75	163.25	160.50	171.500

9.3 Layover time matrix at dacca or tive table

	MONDAY			TUESDAY			WEDNESDAY			THURSDAY		FRIDAY			SATURDAY			SUNDAY		
	${ }^{\text {d }} 31$	${ }_{3}{ }_{3}$	${ }^{\text {d }} 737$	${ }^{\text {d }} 731$	${ }^{\text {d }} 735$	${ }^{\text {d }} 723$	d731	${ }_{7} 723$	${ }^{\text {d }} 737$	$\mathrm{d}_{735-\mathrm{A}}$	d_{711}	${ }^{\text {d }} 331$	d_{735}	${ }^{\text {d }} 723$	${ }^{\text {d }} 735$	${ }^{\text {d } 735 A}$	${ }^{\text {d }} 719$	${ }_{7} 71$	${ }^{\text {d }} 735$	72
${ }^{2} 724$	171.50	9.00	12.92	27.50	30.50	33.00	51.50	57.00	60.92	81.92	83.00	99.50	102.25	105.00	126.25	129.92	131.00	147.50	135.25	153.
${ }^{7} 30$	1.08	174.58	10.50	25.08	27.83	30.58	49.08	54.58	58.50	79.50	80.58	97.08	99.83	102.58	123.83	127.50	128.58	145.08	147.83	
- ${ }^{7} 738$	159.58	165.08	1.00	15.58	18.33	21.08	39.58	45.08	49.00	70.33	71.08	87.58	90.33	93.08	114.33	118.00	119.08	135.58	138.33	141
${ }^{\text {a }} 24$	147.50	153.00	156.92	171.50	174.25	9.00	27.50	33.00	36.92	57.92	59.00	75.50	78.25	81.00	102.25	105.92	107.00	123.50	126.25	
	145.08	150.58	154.50	1.08	171.83	174.58	25.08	30.58	34.50	55.50	56.58	73.08	75.83	78.58	99.83	103.50	104.58	121.08	123.83	
a a 736	142.33	147.83	151.75	166.33	1.08	171.83	22.33	27.83	31.75	52.75	53.83	70.33	73.08	75.83	97.08	100.75	101.83	118.33	121.08	123.
${ }^{4}$	123.50	129.00	132.92	147.50	150.25	153.00	171.50	9.00	12.92	33.92	35.00	51.50	54.25	57.00	78.25	81.92	83.00	99.50	102.25	105.0
- 730	121.08	126.58	130.50	145.08	147.83	150.58	1.08	174.58	10.50	31.50	32.50	49.08	51.83	54.58 .	75.83	79.00	80.58	97.08	99.83	
${ }^{1} 738$.	111.58	117.08	121.00	135.58	138.33	141.08	159.58	165.08	1.08	22.00	23.08	39.58	42.33	45.08	66.33	70.00	71.08	87.58	90.33	93.0
a	102.08	107.58	111.50	126.08	184.83	131.58	150.08	155.58	159.50	12.50	13.58	30.08	32.83	35.58	56.83	60.50	51.58	78.08	80.83	
${ }^{\text {a }} 706$	97.50	103.00	106.92	121.50	124.25	127.00	145.50	151.00	154.92	175.92	9.00	25.50	28.25	31.00	52.25	55.92	57.08	73.50	76.25	78.0
${ }^{\text {a }} 24$	75.50	81.00	84.92	99.50	102.25	105.00	123.50	129.00	132.92	153.92	155.00	171.50	174.25	9.00	30.25	33.92	35.00	51.50	54.25	57.0
${ }^{2}$	73.08	78.58	82.50	97.08	99.83	102.58	121.08	126.58	130.50	151.50	152.58	1.08	171.83	174.58	27.83	31.50	32.58	49.08	51.83	54.5
${ }^{\text {a }} 736$	70.33	75.83	79.75	94.33	97.08	99.83	118.33	123.83	127.75	148.75	149.83	166.33	1.08	171.83	25.08	28.75	29.83	46.33	49.08	51.
${ }^{4} 10$	54.08	59.58	63.50	78.08	80.83	83.58	102.08	107.58	111.50	132.50	133.58	150.08	152.83	155.58	9.00	12.50	13.58	30.08	32.83	35.5
${ }^{7} 712$	49.50	55.00	58.92	73.50	76.25	79.00	97.50	103.00	106.92	127.92	129.00	145.50	148.25	151.00	172.25	175.92	9.00	25.50	28.25	,
${ }^{\text {a }} 730$	46.33	51.83	55.75	70.33	73.08	75.83	94.33	99.83	103.75	124.75	125.83	142.33	145.08	147.83	1.08	172.75	173.83	22.33	25.08	27.
${ }^{2} 724$	27.50	33.00	36.92	51.50	54.25	57.00	75.50	81.00	84.92	105.92	107.00	123.50	126.24	129.00	150.25	153.92	155.00	171.50	174.25	
a 730	25.08	30.58	34.50	49.08	51.83	54.58	73.08	78.58	82.50	103.50	104.58	121.08	123.83	126.58	147.83	151.50	152.58	1.08	171.83	74.
- ${ }_{7}{ }^{\text {a }}$	22.33	27.83	31.75	46.33	49.08	51.83	70.33	75.83	79.75	100.75	101.83	118.33	121.08	123.83	145.08	148.75	149.83	166.33	1.08	171.58

管									
管									
管	$\begin{aligned} & \text { N} \\ & \text { K } \end{aligned}$								
筧	$\begin{aligned} & \overline{\mathrm{K}} \\ & \text { K } \\ & \text { K } \\ & \text { K } \end{aligned}$								
									$\begin{aligned} & \stackrel{n}{\circ}= \\ & \text { N } \\ & \stackrel{N}{N}= \\ & \stackrel{N}{2}= \end{aligned}$
皆									
									$\begin{aligned} & \text { ू } \\ & \text { 忘 } \\ & z \end{aligned}$

10.5 Optimal Flight Combination of

Karachi-Dacca Sector

Total layover time $=99.72$ hours

Table 59 Layover time of Karach i/Dacca Sector.
9.3) SCHEDULE FOR EASTERN SECTOR KARACHI/DACCA/CHINA

The layover time for this Schedule is 99.72 hours and PIA Schedule shows 219.23 hours. This means a net saving of 119.51 hours per week shown in Karachi-Dacca Sector only. There is no need to change the time in the remaining sectors because flight time has to be changed from more than half an hour which is not allowed by the Airline Authority.

CHAPTER X.

MONTHLY ASSIGNMENT.
10.1) Introduction.

This Chapter describes the progress made in developing a mathematical technique for allocation of monthly duties to the air crews. This technique will eliminate the human bias or favour in assigning the crews to various flights. Before explanation of mathematical technique it is necessary to explain some important factors. It is the policy of PIA that every crew should go on each route, however, some routes are popular as compared to other routes.
10.2) Type of Duties to be Allocated.

A duty, as the term is used in this Chapter, consists of a day of work or succession of days of work. It may start and finish at any time in 24 hours and may be any number of days in length. It is usual to describe the duty of two or more than 2 days as tour. Another term also used in this Chapter is "flying duty time", this is equal to actual flying time plus one hour before scheduled departure plus half an hour after scheduled arrival at the terminating point. This flying duty time will determine the minimum rest period that must follow before the next duty.
10.3) Essential Flying Rules.

In preparing the monthly roaster, it is necessary to describe the essential rules such as
I) Limitation of maximum flying time
a) 30 hours in one calendar week
b) 70 hours in one calendar month
c) 700 hours in one calendar year
10.3) contd.
2) Minimum of ten days in each calendar month free from all duties at the home base should be provided in the monthly roaster. Ten days should be distributed in such a way that only once every 24 hours are allowed in a month and all other remaining period should be at least 48 hours duration.
3) A crew cannot fly more than eight hours in any 24 consecutive hours, unless he is given an intervening rest period at or before the termination of eight scheduled hours of duty aloft. Such rest period will twice the number of hours on duty since the last rest period, and in no case will the rest period be less than eight hours.
10.4) "Flying time between two terminal cities".

Suppose there are two citues A and B and actuel flying time between them is as follows
i) $\overrightarrow{A B}+\overrightarrow{B A} \leqslant 8$ hours
ii) $\overrightarrow{A B}+\overrightarrow{B A}>8$ hours
iii) $\overrightarrow{A B} O R \overrightarrow{B A} \geqslant 8$ hours
iv) $\overrightarrow{A B}$ OR $\overrightarrow{B A}>8$ hours

10.5) Size of the problem.

To give some idea of the size of the problem that has to be handled, the number of duties covered in one year actual flying time in a year. The actual flying time of the year will determine the number of pilots to operate a schedule which is based on the given time table.
10.5) contd.

It is suggested that there should be two bases Karachi and Dacca. The number of duties and actual flying time in a year are given below:
10.5.1) Karachi base.
i) Western Sector.

Actual flying time during the week	
MONDAY	$=1365 \mathrm{mts}$.
TUESDAY	$=1410 \mathrm{\prime} \mathrm{\prime}$
WEDNESDAY	$=2615 \mathrm{n}$
THURSDAY	$=1450 \mathrm{\prime} \mathrm{\prime}$
FRIDAY	$=2400 \mathrm{\prime} \mathrm{\prime}$
SATURDAY	$=3500 \mathrm{\prime} \mathrm{\prime}$
SUNDAY	$=3380 \mathrm{\prime} \mathrm{\prime}$
Total for one week	$=16120 \mathrm{\prime} \mathrm{\prime}$
Total for one year	$=16120 \times 52=838240 \mathrm{mts}$.
Total number of flying duties in a year	$=2080$

10.5.2) Eastern Sector.

10.5) contd.
10.5.2) contd.

Total flying time for one week $=10190 \mathrm{mts}$. " " " " " year $=10190 \times 52=529880 \mathrm{mts}$

Total no. of flying duty in $=1248$.
a year
10.5.3) Middle East Sector.

Actual flying time during the week.
MONDAY $=510 \mathrm{mts}$.
TUESDAY $=-$
WEDNESDAY $=510 \%$
THURSDAY $=510 \%$
FRIDAY $=310 \%$
SATURDAY $=285 \%$
SUNDAY $=840 \%$

Total flying time in a week $=2965 \mathrm{mts}$. " " " " " year $2965 \times 52=154180 \mathrm{mts}$.

Total no. of flying duties in a year $=416$

Grand total flying time in a year $=1522300 \mathrm{mts}$. " " " duty " " " = 3744 "

3744 duties require 1522300 mts . in a year. There are seven pilots who are assigned ground duties in addition to their flying duty. Due to this extra work their yearly flying time is reduced to 400 hours and they are not entitled to have 10 days free from all the duties of the airline. Therefore, their monthly flying time is reduced to 40 hours at Karachi, i.e. 10% of annual flying time. In order to determine the number of pilots at Karachi base, their yearly
10.5) contd.
10.5.3) contd.
flying time ($7 \times 400 \times 60=168000 \mathrm{mts}$) should be subtracted from the grand total. So the grand total is

$$
\begin{aligned}
1522300-168000 & =1354300 \mathrm{mts} . \\
\therefore \text { No. of pilots } & =\frac{1358200}{42000}=32.24 .52 \\
& =33
\end{aligned}
$$

The total number of pilots who are to be posted at Karachi base $=33+7=40$.
10.5.4) Dacca base.

Actual flying time during the week on
MONDAY $=305 \mathrm{mts}$.
TUESDAY $=305$ "
WEDNESDAY $=305{ }^{\prime \prime}$
THURSDAY $=270$ "
FRIDAY $=305$ "
SATURDAY $=270{ }^{\circ}$
SUNDAY = $305{ }^{\prime \prime}$
Total for week $=2065$ "
\therefore Total flying time for year $=2065 \times 52$

$$
=107380 \mathrm{mts} .
$$

Total no. of duty in a year= 364
No. of pilots who are to be based at Dacca $=\frac{107380}{42000}=2.5566$
$=3$

10.6) Monthly Schedule.

10.6) contd.

Eastern and Middle East Sector respectively. In the Western Sector 12 crews are used to operate 11 flights. The reason is explained in Chapter III. The crews of two flights PK 711 and PK 719 come back to Karachi in flight Nos. PK 710 and PK 704 after taking the due rest at Cairo. Therefore, these two crews can be included in the Middle East Sector raising the tot al number of flights to 6 . Only 40 crews are required to operate the schedule from the Karachi Sector. They are distributed into 4 equal groups and allocation is made as shown in the following pattern.

	I Group	II Group	III Group	IV Group
Ist week	Western	Eastern	Middle East	-
2nd week	-	Western	Eastern	Middle East
3rd week	Middle East	-	Western	Eastern
4th week	Eastern	Middle East	-	Western

The OR Schedules for the Western Sector is not finished in one week. Therefore, the week following to this Sector is left unassigned so that this Sector may be completed in next week.
10.7) Mathematical Moảel.

Sometimes it happens that a pilot does not want to go on certain flights because he may have some important work to do at the home base or some routes are very popular and every one desires to go on that route. For this purpose a bid preference card is prepared, which is to be filled in by every pilot. The card may be as given below:-
10.7) contd.

First of all OR Schedule will be prepared and distributed among all the pilots. According to their discretion, all the information would be transferred on to a separate paper sectorwise and weekwise giving a matrix of OS and IS in which row represents the pilot and column represents the flight number. 'l' occupies a cell when a pilot wants to go and ' 0 ' when he does not want to go on certain flights.

Now the set theory will be applied to the matrix so obtained for allocation of the duties to the pilots, which is entirely based on a mathematical technique. This method will eliminate the personal bias in assigning the duties to the pilots.

Select a row having a maxim number of $I S$ as a set. If there are more than one such row, take the first one. Compare this set row with the remaining rows (known as sub-set), if any sub-set row or a set of sub-set rows have zero element and set rows have non-zero-element in the respective column can
10.7) contd.
be eliminated. A sub-set row or a set of sub-set rows can also be eliminated.

In set theory terminology, consider S_{n} as
set and S_{m} as sub-set, such that
$S_{m} \subset \quad S_{n}$
This means if a row S_{m} have some non-zero elements and at least all the se non-zero elements must be in S_{n}. A column in which S_{n} have non-zero elements and a set of columns in which S_{m} have zero-elements cannot occur in the feasible solution.

The above statement can be written as

$$
\bar{s}_{m} \cap s_{n}
$$

and cannot occur in the feasible solution.
In this way the original matrix would be reduced, and this process is repeated. At a certain stage, if any row has only one non-zero element (x_{ij}) this element must be included in the solution. Therefore the $i^{\text {th }}$ row and $j^{\text {th }}$ column can be eliminated from the reduced matrix, because the total of all rows and columns is unity.

If at a certain stage there is a tie, calculate the flying time of each flight and assign the crew on the basis of previous months total e.g. the greater flying time of the flight to that crew having less previous months total.

This process is repeated until no further sub-matrix is obtained.
10.8) The above technique is explained with an example in which row represents the pilot and column represents the flight number. A matrix of 1 and 0 is framed while considering the bid preference cards. Now set theory technique is applied to get the unbiased allocation of pilot duties.

FLIGHT NO. PK.

Pilot No.	701	703	705	707	709	713	715	$717-A$	$717-B$	721
1	1	0	0	1	0	0	1	1	0	1
2	1	1	1	1	0	0	1	0	1	1
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	0	1	1	1	0	0	0
5	1	0	0	1	1	1	0	0	0	0
6	1	1	0	1	1	0	0	0	1	0
7	1	1	0	1	0	0	0	1	1	0
8	0	0	1	1	0	0	0	1	1	1
9	0	1	1	1	0	1	0	1	1	1
10	0	1	1	1	0	1	0	1	1	1

Table 61. Bid preference
After some iterations, the following result is obtained.

Pilot No.			Flight No.PK
1	should	go on	721
2	"	" "	703
3	0	"	715
4	"	" "	701
5	"	${ }^{\prime \prime}$	707
6	v	" "	$717-\mathrm{B}$
7	v	" 0	$717-\mathrm{A}$
8	"	" "	705
9	v	0 "	713
10	"	"	709

As there are 40 pilots at Karachi base, the bid preference
10.7) contd.
cards are filled weekwise by the pilots for Western, Eastern and Middle East Sector. Then "set theory" technique is applied for the allocation of monthly duties as explained above.

The monthly OR Schedule is given in the following table for the Karachi base.

10.8) Karachi Base

Table 61:- Monthly OR schedule for Karachi base
Table 61 contd.

Table 61 contd．

管等		\％	\％	\％	$\stackrel{\square}{8}$	合	$\stackrel{3}{2}$	\％）	\％	\％	京
\％	9			．							
2	8							．			
\bigcirc	\％				绿						
\％	动								－		
5	苓										－
＊	2						。		筞品		－\％
\approx	？								。	\cdots	－
2	园						－	－		边这	－
21		－				con	$\stackrel{ }{-}$		－	－	－
8		为				．		$\stackrel{ }{-}$	\cdots	$\stackrel{ }{ }$	．
\approx	2．	号品	$\begin{aligned} & 8 \times 0 \\ & x, ~ \\ & x, ~ \\ & x \end{aligned}$		$\begin{aligned} & 8 * \\ & 8_{2}^{*}+0 \\ & x, 0 \end{aligned}$	\％	\because		$\stackrel{ }{+}$	$\stackrel{ }{+}$	为
8	4	－	－		\cdots		m	\％－	${ }_{5}^{5}$		
2	E		\cdots	$\stackrel{ }{ } \stackrel{ }{ }$	\％	－					
2	P	\cdots	\sim		－						
$=$	S	\cdots									
\simeq	$\stackrel{5}{5}$										
$=$	\％										
$=$	\％			5	E\％			$x_{i=1}^{x+2}$	\％	5	
$=$	${ }_{5}$		\％${ }^{\text {\％}}$							\％	
\pm	E							）	。	．	
$=$	E							$x_{i=2}^{E_{2}^{2}}$	xex	$5 \overline{\hat{E}} \mathrm{ix}$	
\bigcirc	8						以気浐		気	E	
－	8	－	E								${ }^{\text {－} x^{2}}$
－	\％	－									，盛
－	E										
－	苓										
n	E					为：					
－	星										
n	\％							5＊			
＊	${ }^{5}$										
－	5				哏哏						
		＊	ぇ	a	9	$\stackrel{\square}{\circ}$	$*$	＊	จ	\times	8
\＆		ะ	«	®	＊	\otimes	\checkmark	＊	\％	8	2

Table 61 contd.

10.9) Dacca Base

Shows that there should be only three pilots to
operate the Schedule at Dacca base. The set theory
technique is not suitable for such a small Schedule.
They can be assigned on the basis of turn by turn. On
this principle the monthly OR Schedule is prepared for Dacca base which is as follows.

NO.	NAME CODE OR,	1	2	3	4	5	6	7	8	9	10
		MON	TUE	WED	THU	PRI	SAT	SUN	MON	TUE	WED
1	1	$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$	$\begin{gathered} P K \\ 725 / 126 \\ 305 \end{gathered}$		$\begin{gathered} \text { PK } \\ 706 / 711 \mathrm{~A} \\ 270 \end{gathered}$, *
2	2			$\begin{gathered} \text { PK } \\ 725 / 726 \\ 305 \end{gathered}$		-	$\begin{gathered} \mathrm{PK} \\ 712 / 719 \mathrm{~A} \\ 270 \end{gathered}$		$\begin{aligned} & \text { PK } \\ & 725 / 726 \\ & 305 \end{aligned}$	$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$	
3	3					$\begin{gathered} \text { PK } \\ 725 / 726 \\ 305 \end{gathered}$		$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$			$\begin{gathered} \text { PK } \\ 725 / 726 \\ 305 \end{gathered}$

23	24	25	26	27	28	29	30	31	total
TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	TIM MTS
$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$	$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$	$\begin{gathered} \text { PK } \\ 706 / 7111 \\ 270 \end{gathered}$							2945
				$\begin{gathered} \mathrm{PK} \\ 712 / 719 \mathrm{~A} \\ 270 \end{gathered}$		$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$	$\begin{gathered} \mathrm{PK} \\ 725 / 726 \\ 305 \end{gathered}$		3250
			$\begin{gathered} \mathrm{PK} \\ 725 / 726 \end{gathered}$		$\underset{725 / 726}{\mathrm{PK}}$			$725 / 726$	2880

TABLE 61:- MONTHLY OR SCHEDULE POR DACCA BASE

CHAPTER XI

ESTIMATION OF RESERVE CREWS
11.1) Introduction.

In this Chapter, a study of reserve crew scheduling is undertaken to determine the possible means of achieving satisfactory reserve coverage at the least cost. Satisfactory coverage may be interpreted as having enough reserve crew available each day to cover the expected demands for emergency flying. Utilization of reserve crew can vary greatiy. However, a large amount is given to reserve crews. Here problems arise to minimise the number of reserve crews by some mathematical method.

Multiple regression analysis can be applied to estimate the reserve crew in a given month on the basis of previous months information.
11.2) Factors Influencing Reserve Utilization.
Reserve crew is related to several factors such
as weather, vacations, regular crew loads, sickness, leaves
of absence, training, meetings etc.
It is better to include the important factors
rather than all to estimate the reserve crews for future
planning. The important factors are
$X_{1}=$ Number of regular flights in a month
$X_{2}=$ Ratio of reserve to regulars in a month
$X_{3}=$ Number of training days in a month
$X_{4}=$ The equation of the model for estimating the number of reserve crew is

No. of Reserve crew (y)

$$
=\text { Const }+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}
$$

11.3) Multiple Regression Analysis.

The linear regression relation or straight line relation between two variables is very simple and is probably familiar to all who have occasion to consider the relation between variables. It requires only elementary technique for its estimation. Sometimes it is required to have a relationship between more than two variables. It is useful to express such a relationship in the form of mathematical equations connecting the variables. Then the value of the dependent variable can be predicted from the knowledge of other independent variables. If there are only two variables, then it is called a simple regression analysis. If there are more than two variables, then it is multiple regression analysis.

In general, with one dependent variable y and p independent variables $x_{1}, x_{2} \ldots x_{p}$. The relationship will take the form

$$
\mathrm{E}_{\mathrm{x}}(\mathrm{y})=\beta_{0}+\beta_{1} \mathrm{x}_{1}+\beta_{2} x_{2}+\ldots+\beta_{\mathrm{p}} \mathrm{x}_{\mathrm{p}}
$$

Before determining a multiple regression equation, it is worth while to give some thought to the selection of independent variables. First of all it is worth while to include only those variables that are likely to make an important contribution to the effectiveness of the relationship. Secondly, independent variables that are readily measurable or obserable should be selected.

It is undesirable to include so many variables in the regression equation. Three or four variables if suitably chosen will give a satisfactory relationship.

11.4) Estimation of Multiple Regression Coefficients.

The same principle of estimating the multiple regression coefficients is the same as in the case of simple regression coefficients. If there are n sets of values of one dependent variable and p independent variables, the sum of square

$$
\Sigma\left(y-\beta_{0}-\beta_{1} x_{1}-\beta_{2} x_{2} \ldots-\beta_{p} x_{p}\right)^{2}
$$

is to be minimized.
This is reduced by using the following notations

$$
\begin{aligned}
u & =\Sigma(y-\bar{y})^{2} \\
p_{i} & =\Sigma y\left(x_{i}-\bar{x}_{i}\right) \\
t_{i i} & =\Sigma\left(x_{i}-\bar{x}_{i}\right)^{2} \\
t_{h i} & =\Sigma\left(x_{n}-\bar{x}_{n}\right)\left(x_{i}-\bar{x}_{i}\right)
\end{aligned}
$$

to

$$
\begin{equation*}
u-\sum \beta_{i} p_{i}+\sum \beta_{i}\left(\beta_{1} t_{i 1}+\beta_{2} t_{i 2}+\ldots \beta_{p} t_{i p}-p_{i}\right) \tag{11.4.1}
\end{equation*}
$$

The normal equations are obtained by differentiating (11.4.1) and setting the equations equal to zero and also replacing the β_{i} by their estimate b_{i}. The above relation becomes

$$
\begin{equation*}
b_{1} t_{i 1}+b_{2} t_{i 2}+\ldots+b_{p} t_{i p}=p_{i} \tag{11.4.2}
\end{equation*}
$$

$$
i=1,2 \ldots p
$$

or $\quad \Sigma b_{h} t_{i h}=p_{i}$
Here the question arises to determine the value of b_{i}. Various methods are available to estimate the regression coefficients. Two methods will be used to calculate the value of b_{i}.

1) Crout method
2) Fisher method.

These methods will be explained by an example. Unfortunately
11.4) contd.
the data for this problem was not supplied by PIA. However, fictitious data is taken to demonstrate the estimation of the crew utilization. Only X_{1} (number of regular flights) is calculated from the time table.
11.5) Example.

The variables are explained in the beginning of				
this Chapter.				
Y	X_{1}	X_{2}	X_{3}	X_{4}
60	351	22.79	47	160
50	316	22.78	70	125
47	352	22.72	60	165
55	337	22.84	65	131
47	352	22.72	71	150
59	338	22.78	77	141
67	347	22.77	57	147
49	355	22.82	63	167
63	346	22.83	79	175
70	339	22.71	80	190
63	342	22.81	57	170
57	346	22.83	63	157

To speed up the calculation a computer program No. 10
is developed calculating the mean of variables and attached
in the Appendix. The computer took only 8 sec onds for calculating
all means.

$$
\begin{array}{ll}
\bar{X}_{1} & =343.42 \\
\bar{X}_{3} & =22.78 \\
\bar{X}_{3} & =65.75 \\
\bar{X}_{4} & =156.500 \\
\bar{Y} & =57.25
\end{array}
$$

Now the problem is to calculate the sum of squares and products of deviations from the mean. These values are calculated for each of the variables and set out in the following
11.5) contd.
table. Another computer program No. 9 is developed and attached in the Appendix. The computer book only 13 seconds to calculate the sum of squares and products.

	x_{1}	x_{3}	x_{3}	x_{4}	y
x_{1}	1208.9168	-0.3868	-405.7500	1124.500	-62.2500
X3	- 0.3868	0.0233	- 0.9600	-2.0900	0.2600
x_{3}	-405.7500	-0.9600	1104.2500	219.5000	89.7500
4	1124.5000	-2.0900	279.5000	3857.0000	679.5000

Table 62. Sum of Squares and Products.

The matrix so obtained is a square symmetric matrix. There are many methods available to calculate the regression coefficients, but here two methods can be used to calculate the regression coefficients which are given by Crout ${ }^{(5)}$ and Fisher ${ }^{(9)}$. In the former, the desk calculator is used and it took a considerable time. At present, the time factor plays an important role, so it is advisable to use the electronic computer to speed up the calculations. In the second method a computer program No. 10 is developed ${ }^{(25)}$ to invert the original matrix to calculate the regression coefficients.
11.6) Crout Method.

The work of solving a system of original matrix is largely concentrated in the determination of an auxiliary matrix. This method is particularly good when the calculations are made on the desk calculator. Each element is determined by one continuous machine operation i.e. the sum of the products
11.6) contd.
with or without final division. If the matrix is symmetrical, then the calculations are cut almost in half.

In this method, the original matrix is transformed into auxiliary matrix. The procedure for obtaining the auxiliary matrix from the given matrix is described below. The auxiliary matrix is:-

Table63-Auxiliary Matrix

x_{1}	x_{2}	x_{3}	x_{4}	y
x_{1}				
x_{3}				
x_{3}				
x_{4}				

-0.3868 \& .0233 \& -46.7725 \& -74.2575

-405.75 \& -1.0898 \& 917.7076 \& 0.5624

1124.500 \& -1.7302 \& 515.9564 \& 2392.3967\end{array}\right] \quad\)| -.0515 |
| :---: |
| 0.8755 |
| 0.2966 |

1) Take the first element of the first column and the remaining elements of the first row, that is, the first column of the auxiliary matrix is idential with the first column of the original matrix. This is only due to the symmetrix matrix.
2) The first row of the auxiliary matrix, apart from the first term, is obtained by dividing the corresponding element in the original matrix by the first element in the uaxiliary matrix.
3) Each element on or below the principal diagonal is equal to the corresponding elements of the original matrix minus
11.6) contd.
4) contd.
the sum of products of elements in its row and corresponding elements in its column in the uaxiliary matrix that involve only previously computed elements.
5) For each to the right of the principal diagonal the value so obtained by step 3 is divided by the diagonal elements, that is, it is divided by the diagonal element in the auxiliary matrix.

Each element to the right of the principal diagonal is seen to be equal to the corresponding element below the principal diagonal, divided by the diagonal element. This fact reduces the computation considerably when the original matrix for the independent variables is symmetric. The operation is carried right through to the final column, that is, the sum of the products with the dependent variable. Now the remaining step is to calculate the one column final matrix from the auxiliary matrix which actually consists of the column of partical regression coefficient. The elements are determined in reverse order to the elenents of the auxiliary matrix, that is, the last element of the last column in the auxiliary matrix will become the last element in the final matrix. Each other element in the final matrix is equal to the corresponding element of the last column of the anxiliary matrix, minus the sum of the products of elements in its row in the auxiliary matrix and the corresponding element in its column in the final matrix that have been previously computed.

From the auxiliary matrix, the regression coefficients are calculated:-
11.6) contd.

b_{1}	$=-0.3453$
b_{2}	$=$
b_{3}	$=$
b_{4}	$=0.161$
	-0.08004
	0.2966

One thing is to be noted in this method, that the elements of the auxiliary matrix are used which lie to the right of the principal diagonal and to the left of the final column.
11.7) Continuous Check on Calculations.

It is often desirable to carry a check column to ensure accuracy at each stage of the calculations. Crout has suggested to apply a check during the calculations. First the check columns are calculated as below:-

Original Matrix		Auxiliary Matrix	
1865.0300		Final Matrix	
$-\quad 3.1634$			0.650
1006.7900	1.647		
5878.4100	1.2966	29.161	
			0.9199
		1.2966	

In the original matrix, all the elements of a row are added to get the corresponding element of the check column.

In the auxiliary matrix every element in the check column is equal to one plus the sum of other elements in its row which lie to the right of the principal diagonal.

In the final matrix, every element in the check
column is equal to one plus the sum of the other element.
Thus the check column is written at the right of the
11.7) contd.
given matrix. This column is now treated exactly in the same manner as the last column of the given matrix, the calculations being carried along with those for other columns.

If the last column of the given matrix is replaced by the check column for transforming the original matrix into auxiliary matrix, then the final column of the auxiliary matrix will be identical to the check column of the auxiliary matrix. The same procedure is applied to check the calculations of transforming the auxiliary matrix into the final matrix.

11.8) Fisher Method.

In the first method only those elements are used which lie on the right of the diagonal elements and to the left of the final columns. Fisher ${ }^{(9)}$ suggested that the final column of the original matrix should be replaced by

$$
\left[\begin{array}{llll}
t^{11} & t^{12} & \ldots . & t^{1 n} \\
t^{21} & t^{22} & \ldots . & t^{2 n} \\
\vdots & & & \\
\vdots & & & \\
t^{m 1} & t^{m 2} & \ldots \ldots & t^{m n}
\end{array}\right]
$$

and set the whole in this form
11.8) contd.

$$
\left[\begin{array}{cccc}
\sum x_{1}{ }^{2} & \sum x_{2} x_{1} & \ldots & \sum x_{1} x_{n} \\
\sum x_{1} x_{2} & \sum x_{2}^{2} & \ldots & \sum x_{2} x_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\sum & \vdots & \vdots & \vdots \\
\sum x_{1} x_{m} & \sum x_{2} x_{m} & \ldots & \sum x_{m} x_{n}
\end{array}\right]\left[\begin{array}{cccc}
t^{11} & t^{12} & \ldots . & t^{1 n} \\
t^{21} & t^{22} & \ldots . & t^{2 n} \\
\vdots & & & \\
t^{11} & t^{m 2} & & t^{m n}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots . & 0 \\
0 & 1 & 0 & & 0 \\
\vdots & \vdots & 1 & & \vdots \\
\vdots & \vdots & 0 & & \vdots \\
\vdots & \vdots & & & 1
\end{array}\right]
$$

This means $(T) \times(\mathbb{T})^{-1}=$ unit matrix
After transforming the original matrix into inverse matrix, the regression coefficients are obtained directly by multiplying the successive sum of the products of the dependent variable with the independent variables by the corresponding elements in a column of the inverse matrix, i.e.

$$
b_{i}=\sum_{h} p_{h} t^{h i}
$$

The original matrix is transformed into the inverse matrix and given in the undermentioned table.

Table No. 64 Inverse matrix.
$\left[\begin{array}{cccc}0.0014784 & 0.0095054 & 0.00064188 & -0.00046135 \\ 0.0095054 & 46.316 & 0.039770 & 0.020063 \\ 0.00064188 & 0.039770 & 0.0012228 & -0.00023517 \\ -0.00046135 & 0.020063 & -0.00023517 & 0.00041803\end{array}\right]$

Here again a computer program No. 10 is developed from the procedure ${ }^{(25)}$ to invert the matrix so that calculations can be made easily and correctly. The computer took only 10 seconds
11.8) contd.
to invert the matrix.
Estimation of regression coefficients.
As stated above the regression coefficients can be estimated from the inverse matrix as follows:-

$$
\begin{aligned}
b_{1}= & (0.0014748)(-62.25)+(0.0095054)(0.25)+(0.00064188)(89.75) \\
& +(-0.00046135)(679.5) \\
= & -0.345
\end{aligned}
$$

$$
b_{2}=(0.0095054)(-62.25)+(46.316)(0.25)+(0.03977)(89.75)
$$

$$
+(0.020063)(679.5)
$$

$$
=28.18
$$

$$
b_{3}=(0.00064188)(-62.25)+(0.03977)(0.25
$$

$+(0.0012228)(89.75)+(-0.00023517)(679.5)$
$=-0.08004$
$b_{4}=(-0.00046135)(-62.25)+(0.020063)(0.25)+(-.00023517)(89.75)$
$+(0.00041803)(679.5)$
$=0.2966$
The same result is obtained as in the first method. Therefore, the estimated regression equation is

$$
\begin{aligned}
Y= & -507.2284-0.3453 X_{1}+28.18 X_{2}-.08004 X_{3} \\
& +.2966 X_{4}
\end{aligned}
$$

If the values of X_{1}, X_{2}, X_{3} and X_{4} are known, then the value of Y (reserved crew) can be estimated for the future.

In this equation two regression coefficients b_{1} and b_{3} are negative. The former is the coefficient of regular number of flights in a month which cannot be increased or decreased because it is a fixed number. The latter is the coefficients of the number of training days in a month which can be increased or decreased. It is obvious if the more number of training days are reserved for training of crews, then the number of reserve crew will have to be decreased in order to meet the requirements of the regular flight.

11.9) Tolerance Limits.

It is advisable to have some limits on the estimation of reserve crew. The tolerance limits of Y can be calculated by this relation

$$
Y \pm t \sqrt{\left[s^{2}+V(Y)\right]}
$$

where s^{2} is the mean of sum of squares and can be estimated by this relation

$$
s^{2}=\frac{u-\sum_{i}^{\sum} b_{i} p_{i}}{n-p-1}
$$

The variance of Y can be estimated by this relation

$$
V(Y)=s^{2}\left[\frac{1}{n}+\sum_{h}^{\sum} \sum_{i}^{\sum}\left(x_{h}-\bar{x}_{h}\right)\left(x_{i}-\bar{x}_{i}\right) t^{h i}\right]
$$

The tabulated value of t will determine the percentage of tolerance limits.

9)	FISHER, R.A.,	"Statistical Methods for Research Worker", Oliver and Boyd, Edinburgh.
10)	FLOOD, M.M.,	"Travelling Salesman Problem".
		Operations Research 4, No.1, 1956, pp.61-75.
11)	FORD, L.P., and	"Solving the Transportation Problem",
	FULKERSON, D.L.,	"Management Science", 1956-1957, pp.24-32.
12)	GEOFFRION, A.,	"Integer Programming by Implicit Enumeration
		and Balas Method". SIAM Review Vol.9, No.2,
		April 1967, pp.178-190.
13)	GOMORY, R.E.,	"Outline of an Algorithm for Integer
		Solution to Linear Programs".
		Bulletin of the American Math.Soc. Vol.64,
		1958, pp.275-278.
14)		"All-Integer Programming Algorithm in
		Industria Scheduling".
		Editors Muth \& Thomp son, Princeton-Hall, 1963
		pp.193-206.
15)	HADLEX, G.,	"Linear Programming".
		Addison Wesley Publishing Co., London,
		and CACM 258.
16)	HARRIS, M.J.,	"An Algorithm for Solving mixed Integer Programs".
		Operational Research Quarterly. Vol.15, 1964,
		pp.117-132.
17)	HEALEY, W.C.,	"Multiple Choice Programming".
		Operations Research, Vol.12, 1964, pp.122-138.
18)	HITCHCOCK, F.L.,	"The Distribution of a product from Several
		Sources to Numerous Locality".
		J.Math.Phys. 20, 1941, pp.224-250.

19) JAMES MUNKERS,
20) KING, W.R.,
21) KUHN, W.R.,
22)
23) LAGEMAN, J.J.,
24) MORTON KLEIN,
25) RUTHISHAUSER, H.
"Algorithm for the Assignment and Transportation Problem". J.Soc.Indus.App.Math.Vol.5, No.1, March 1957 pp.32-38.
"A Stochastic Personnel Assignment Model", Operations Research, Vol.13, pp.67-81
"Hungarian Method for Assignment Problem", Naval Research Logistic Quarterly, 2, Nos.1 and 2, 1955, pp.83-98.
"Variants of the Hungarian Methods for the Assignment Problem".

Naval Research Logistic Quarterly, Vol.3, No.4, 1956, pp. 253-258.
"A. Method for Solving the Transportation Problem", Naval Research Logistic Quarterly, Vol.14, Part I, 1967, pp.81-99.
"A Primal Method for Minimal Cost Flows with Applications to Assignment and Transportation Problem".

Management Science, Vol.14, No.3, 1967, pp.205-220.

Comm.ACM 6, Feb. 1963, pp. 67.

PROGRAM NO. 1

```
BEGIN' 'COMMENT' DAILY LAYOVER TIME MATRIX;
    'INTEGER'' I,J,N,ZERODAY;
    'REAL' ZEROHOURS,T1,T2,TIME;
COMIENT'
    THE DATA CARDS SHOULD BE PREPARED AS FOLLOWS:
    CITY
    (THAT IS, A TITLE TERMINATED BY //)
    DAY OF WEEK AND TIME OF DAY FROM WHICH TIME IS TO START
    (SUNDAY=1, MONDAY=2, ......SATURDAY=7 MIDNIGHT IS 24.00 HOURS)
    NUMBER OF ARRIVALS CONSIDERED (SIZE OF MATRIX)
    FOR EACH AIRCRAFT THE DAY OF WEEK CODE NUNBER OF ARRIVAL, TIME OF
    ARRIVAL IN HOURS PAST MIDNIGHT, CODE OF DEPARTURE DAY, AND
    DEPARTURE TIME IN HOURS PAST MIDNIGHT;
```

L1: NEWLINE (1);
COPYTEXT (1 $(1 / / 1)$ 1);
T1: = READ;
T2: =READ;
ZERODAY:=READ;
ZEROHOURS: =READ;
NEWLINE (4) ;
WRITETEXT (${ }^{(}$(CALCULATIONS\%ARE\%MADE\%FROM\%DAY')');
WRITE (0, FORMAT ($\left.{ }^{1}\left(1^{1}-S^{1}\right)^{1}\right)$, ZERODAY);

WRITE (0, FORMAT (${ }^{(1}(1-D D . D D S ')$ '), ZEROHOURS) ;
WRITETEXT (' ('HOURS' $\left.(14 \mathrm{C} \text { ' })^{\prime \prime}\right)$ ' $)^{\text {; }}$
$\mathrm{N}:=\mathrm{READ}$;
'BEGIN'
'REAL' 'ARRAY' ARRTIME,DEPTIME[1:N];
'INTEGER' 'ARRAY' DAYARRIVAL, DAYDEPARTURE[1:N];
${ }^{\prime}$ FOR' I: $=1$ 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
DAYARRIVAL[I]:=READ;
ARRTIME[I]:=READ;
DAYDEPARTURE[I]:=READ;
DEPTIME[I]:=READ;
${ }^{1}$ END' ${ }^{\prime}$
${ }^{\prime}$ FOR' $I:=1$ 'STEP' 1 'UNTIL' N^{\prime} DO'
'BEGIN'
'FOR' J:=1 'STEP' 1 'UNTIL' $\mathrm{N}^{\prime} \mathrm{DO}^{\prime}$
'BEGIN'
TIME: =(DAYDEPARTURE [I] --DAYARRIVAL[J]) *24+DEPTIME
[I]-ARRTIME[J]+24;
'IF' TIME $>$ T1 'THEN' TIME: $=$ TIME-24;
'IF' TIME ${ }^{\prime 2}$ T2 'THEN' TIME: $=$ TIME +24 ;
WRITE (0, FORMAT (${ }^{\prime}\left({ }^{\prime}=\right.$ NNNNND $\left.^{2} D^{\prime}\right)$ '), TIME) ;
'END';
NEWLINE (2) ;
'END';
'END';
'GOTO' L 1;
'END';

PROGRAM NO. 2

```
BEGIN' 'COMMENT' TRANPOSED DAILY LAYOVER TIME MATRIX;
    'INTEGER' I, J,N, ZERODAY;
    'REAL' ZEROHOURS,T1,T2,TIME;
COMINENT'
    THE DATA CARDS SHOULD BE PREPARED AS FOLLOWS:
    CITY //
    (THAT IS, A TITLE TERMINATED BY //)
    DAY OF WEEK AND TIME OF DAY FROM WHICH TIME IS TO START
    (SUNDAY=1, MONDAY=2,\ldots...SATURDAY=7 MIDNIGHT IS 24.00 HOURS)
    NUMBER OF ARRIVALS CONSIDERED (SIZE OF MATRIX)
    FOR EACH AIRCRAFT THE DAY OF WEEK CODE NUMBER OF ARRIVAL, TIME OF
    ARRIVAL IN HOURS PAST MIDNIGHT, CODE OF DEPARTURE DAY, AND
    DEPARTURE TIME IN HOURS PAST MIDNIGHT;
```

L1: NEWLINE (1);
COPYTEXT ($\left.(1 / / 1)^{\prime}\right)$;
T1: = READ;
T2: =READ;
ZERODAY:=READ;
ZEROHOURS:=READ;
NEWLINE (4)
WRITETEXT (${ }^{(}$(CALCULATIONS\%ARE\%MADE\%FROM\%DAY') ');
WRITE (0, FORMAT ($\left.{ }^{\prime}\left(1^{\prime}-\text { DS }^{1}\right)^{1}\right)$, ZERODAY) ;
WRITETEXT (' ('AT') ') ;
WRITE (0, FORMAT (' (' - DD.DDS') '), ZEROHOURS) ;
WRITETEXT ($\mathbf{1}^{1}$ HOURS' $\left.\left.\left(14 \mathrm{C}^{1}\right)^{1}\right)^{1}\right)^{\text {1 }}$);
$\mathrm{N}:=\mathrm{READ}$;
'BEGIN'
'REAL' 'ARRAY' ARRTIME, DEPTIME[1:N], $\mathrm{C}\left[1: \mathrm{N}_{2} 1: \mathrm{N}\right]$;
'INTEGER' 'ARRAY' DAYARRIVAL, DAYDEPARTURE [1:N];
${ }^{\prime}$ FOR' I:=1 'STEP' 1 'UNTIL' N 'DO'
${ }^{1}$ BEGIN ${ }^{\prime}$
DAYARRIVAL[I]:=READ;
ARRTIME[I]:=READ;
DAYDEPARTURE[I]:=READ;
DEPTIME[I]:=READ;
${ }^{\prime}$ END ${ }^{\prime}$;
${ }^{1}$ FOR' I: = 1^{\prime} 'STEP' 1 'UNTIL' N 'DO'
${ }^{1}$ BEGIN ${ }^{\prime}$
'FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
TIME: = (DAYDEPARTURE[I]-DAYARRIVAL[J]) *24+DEPTIM
[I]-ARRTIME[J]+24;
${ }^{\prime}$ IF' TIME $>$ T1 ${ }^{\prime}$ THEN' TIME: $=$ TIME-24;
'IF' TIME \langle T2 'THEN' TIME:=TIME+24;
C[I, J]:= TIME ;
'END';
NEWLTNE (2);
'END';

${ }^{\prime} F O R^{\prime} I:=1$ 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
${ }^{\prime}$ FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
PRINT (C[J,I], 2, 2) ;
NEWLINE (2);
'END';
'END';

PROGRAM NO. 3

'COMMENT' WEEKLY LAYOVER TIME MATRIX;
'INTEGER' I, J,N, ZERODAY;
'REAL' ZEROHOURS,T1,T2,TIME;
${ }^{1}$ COMIENT'
THE DATA CARDS SHOULD BE PREPARED AS FOLLOWS:
CITY //
(THAT IS, A TITLE TERMINATED BY //)
DAY OF WEEK AND TIME OF DAY FROM WHICH TIME IS TO START
(SUINDAY $=1$, MONDAY $=2, \ldots \ldots$. SATURDAY $=7 \quad$ MIDNIGHT IS 24.00 HOURS
NUISER OF ARRIVALS CONSIDERED (SIZE DF MATRTX)
FOR EACH ATPCPAGN TYE DAY OF WEEK CODE NUMBER OF ARRIVAL, TIME OI
ARRIVAL IN HOURS PAST MIDNIGHT, CODE OF DEPARTURE DAY, AND
DEPARTURE TIME IN HOURS PAST MIDNIGHT;
L1: NEWLINE (1);
COPYTEXT ($1\left(1 /{ }^{\text {i }}\right)$ ') ;
T1: = READ;
T2: =READ;
ZERODAY:=READ;
ZEROHOURS:=READ;
NEWLINE (4);
WRITETEXT (${ }^{(}$('CALCULATIONS\%ARE\%MADE\%FROM\%DAY')');
WRITE ($0, \operatorname{FORMAT}\left(1\left(^{1}-\mathrm{DS}^{1}\right)^{1}\right)$, ZERODAY);
WRITETEXT (${ }^{\prime}\left({ }^{\prime} A T 1\right.$ ') ' $)$);
WRITE (O, FORMAT (${ }^{\prime}\left('^{\prime}-D D . D D S '\right)$ '), ZEROHOURS) ;
WRITETEXT (${ }^{(1}$ HOURS' $\left.\left.\left(14 C^{1}\right)^{\prime} 1\right)^{\prime}\right)$;
$\mathrm{N}:=\mathrm{READ}$;
'BEGIN ${ }^{\prime}$
'REAL' 'ARRAY' ARRTIME,DEPTIME[1:N];
'INTEGER' 'ARRAY' DAYARRIVAL, DAYDEPARTURE[1:N];
${ }^{\prime} \mathrm{FOR}^{\prime} \mathrm{I}:=1$ 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
DAYARRIVAL[I]:=READ; ARRTIME[I]:=READ;
DAYDEPARTURE[I]:=READ; DEPTIME[I]:=READ;
${ }^{1}$ END' ${ }^{\prime}$
${ }^{1}$ FOR' I: = 1^{\prime} 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
${ }^{\prime}$ FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
'BEGIN ${ }^{1}$
TIME: $=($ DAYDEPARTURE[I] -DAYARRIVAL[J] $) * 24+$ DEPTIM [I]-ARRTIME[J]+168;
'IF' TIME>T1 'THEN' TIME:=TIME-168;
'IF' TIME $\langle T 2$ 'THEN' TIME: $=$ TIME +168 ; WRITE (0,FORMAT (' (' - NNNNND.DD' $\left.)^{\prime}\right)$, TIME) ;
'END'; NEWLINE (2) ;
${ }^{1} E N D^{\prime}$;
'END';

```
                        'GOTO' L1;
```


PROGRAM NO. 4

'COMIENT' TRANSPOSED WEEKLY TIMEMATIX;
'INTEGER' I, J, N, ZERODAY;
'REAL' ZEROHOURS,T1,T2,TIME;
'COMIENT'
THE DATA CARDS SHOULD BE PREPARED AS FOLLOWS: CITY
(THAT IS, A TITLE TERMINATED BY //)
DAY OF WEEK AND TIME OF DAY FROM WHICH TIME IS TO START
(SUNDAY $=1$, MONDAY $=2, \ldots \ldots$. SATURDAY $=7 \quad$ MIDNIGHT IS 24.00 HOURS) NUMBER OF ARRIVALS CONSIDERED (SIZE OF MATRIX)
FOR EACH AIRCRAFT THE DAY OF WEEK CODE NUMBER OF ARRIVAL, TIME OF ARRIVAL IN HOURS PAST MIDNIGHT, CODE OF DEPARTURE DAY, AND DEPARTURE TIME IN HOURS PAST MIDNIGHT;

```
L1: NEWLINE (1);
    COPYTEXT(1 (1//1)');
    T1:=READ;
    T2:=READ;
    ZERODAY:=READ;
    ZEROHOURS:=READ;
    NEWLINE (4);
    WRITETEXT(' (' CALCULATIONS%ARE%MADE%FROM%DAY')');
    WRITE (O,FORMAT(' (' 
    WRITETEXT(' ('AT')'');
    WRITE(O,FORMAT('(' -DD.DDS')'), ZEROHOURS);
    WRITETEXT('('HOURS'(14C')'')'};
    N:=READ;
    'BEGIN'
        'REAL' 'ARRAY' ARRTIME,DEPTIME[1:N],C[1:N,1:N];
        'INTEGER' 'ARRAY' DAYARRIVAL,DAYDEPARTURE[1:N];
        'FOR' I:=1 'STEP' 1 'UNTIL' N 'DO'
        'BEGIN'
                                    DAYARRIVAL[I]:=READ;
                ARRTIME[I]:=READ;
                DAYDEPARTURE[I]:=READ;
                        DEPTIME[I]:=READ;
        ' END';
        'FOR' I:=1 'STEP' 1 'UNTIL' N 'DO'
        'BEGIN'
                        'FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
            'BEGIN'
                        TIME:=(DAYDEPARTURE[I]-DAYARRIVAL[J])*24+DEPTIMI
                            [I]-ARRTIME[J]+168;
                        'IF' TIME>T1 'THEN' TIME:=TIME-168;
                        'IF' TIME<T2 'THEN' TIME:=TIME+168;
                        C[I,J]:= TIME ;
            'END';
            'END';
        WRITETEXT('('TRANSPOSE '('2C')'1)');
            'FOR' I:=1 'STEP' 1 'UNTIL' N 'DO'
            'BEGIN'
                'FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
                        PRINT (C[J,I],2,2);
        ' END';
    ' END';
    'GOTO' L1;
```


PROGRAM NO. 5

```
'TRACE' 2
'BEGIN'
    'COMIENT' TRANSPORT PROGRAM;
    'INTEGER' I,J,M,N,INF,COST;
    'PROCEDURE' TRANSPORT (C,X,A,B,M,N,INF,COST) ;
    'VALUE' M,N,INF;
    'INTEGER' M,N,INF,COST;
    'INTEGER' 'ARRAY' C,X,A,B;
    'BEGIN'
        'INTEGER' I, J,P,H,K,Y,T, L;
        'INTEGER' 'ARRAY' V,XSJ,S,R, LISTV[1:N],U,XIS,D,G,LISTU[1:M];
        'BOOLEAN' 'ARRAY' XB[1:M,1:N];
        'INTEGER' 'PROCEDURE' SUM(I,A,B,X);
        'VALUE' A,B;
        'INTEGER' I,A,B,X;
        'BEGIN'
            'INTEGER' S;
            S := O;
            SELECTOUTPUT(0);
            'FOR' I := A 'STEP' 1 'UNTIL' B 'DO'
            S := S+X;
            SUM := S
    'END';
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    XIS[I] :=A[I];
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    XSJ[J] := B[J];
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'BEGIN'
    H := INF;
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    'BEGIN'
        X[I,J] := 0;
        P := C[I,J];
        'IF' P < H 'THEN' H := P
    'END';
    U[I] := H;
    FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    XB[I,J] := 'IF' C[I,J] = H 'THEN' 'TRUE' 'ELSE' 'FALSE'
    'END' U[I];
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    'BEGIN'
    H := INF;
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'BEGIN'
        'IF' XB[I,J] 'THEN'
        'BEGIN'
            V[J] := 0;
            'GOTO' AA
        'END';
        D[I]:=P:=C[I,J] - U[I];
```

P.NO. 5) Contd.
'IF' $\mathrm{P}\langle\mathrm{H}$ 'THEN' H := P
'END';
$\mathrm{V}[\mathrm{J}]:=\mathrm{H}$;
${ }^{1}$ FOR' $I:=1{ }^{\prime}$ STEP' 1 'UNTIL' $M^{\prime} D D^{\prime}$
'BEGIN'
'IF' $D[I]=H$ 'THEN' $X B[I, J]:=$ 'TRUE' 'END'
AA: ' END' V['J];
'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
LISTV[J] := 0;
'FOR' I := 1 'STEP' 1 'UNTIL' $M{ }^{\prime} D D^{\prime}$
LISTU[I] : $=0$;
S2: 'FOR' I := 1^{\prime} 'STEP' 1^{\prime} UNTIL' $\mathrm{M}^{\prime} D \mathrm{DO}^{\prime}$
'BEGIN'
${ }^{\prime}$ FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
'IF' $\mathrm{XB}[\mathrm{I}, \mathrm{J}] \quad{ }^{\prime}$ THEN'
'BEGIN'
$H:=X[I, J]:=' I F ' X S J[J]$ 'LE' XIS[I] 'THEN'
$\mathrm{XSJ}[\mathrm{J}]:=\mathrm{XSJ}\left[\mathrm{XSJ}[\mathrm{J}]{ }^{\prime} E L S E '\right.$ XIS[I];
XIS[I]
$:=X S J[J]-H ; ~$
${ }^{\prime}$ END'
'END'
'END';
S03: 'IF' $\operatorname{SUM}(J, 1, N, X S J[J])=0 ~ ' T H E N ' ~ ' G O T O ' S 6 ;$
${ }^{\prime}$ FOR' $J:=1$ 'STEP' 1 'UNTIL' $N{ }^{\prime} D O^{\prime}$
$\mathrm{S}[\mathrm{J}]:=\mathrm{R}[\mathrm{J}]:=0$;
$\mathrm{H}:=0$;
$\mathrm{K}:=1$;
S3: 'FOR' I := 1^{\prime} STEP' $1{ }^{\prime} U^{\prime} U N T I L^{\prime} M{ }^{\prime} D O^{\prime}$
'BEGIN'
'IF' XIS[I] >0 'THEN'
'BEGIN'
$\mathrm{D}[\mathrm{I}]:=\mathrm{XIS}[I] ;$
$\mathrm{G}[\mathrm{I}]:=2 * \mathrm{~N}$;
${ }^{\prime}$ FOR' J := 1^{\prime} 'STEP' 1 'UNTIL' $\mathrm{N}^{\prime} \mathrm{DO}^{\prime}$
'BEGIN'
'IF' XB[I, J] 'AND' $R[J]=0$ 'THEN' ' BEGIN'

'END'

'END'
'END' ${ }^{\prime} E L S E ' D[I]:=G[I]:=0$
'END';

P.NO. 5) Contd.

S53: 'IF' K=1 'THEN' 'GOTO' S13;
L : = 1 ;
'FOR' K':= 1^{\prime} STEP' 1 'UNTIL' $N^{\prime} D O^{\prime}$
'BEGIN'
J $:=\operatorname{LISTV}[K] ;$
LISTV[K]:=0;
'IF' J=0 'THEN' 'GOTO' S33;
${ }^{\prime}$ FOR' I $:=1$ 'STEP' 1 'UNTIL' M 'DO'
'BEGIN' ${ }^{\prime} I F^{\prime} \mathrm{XB}[I, J]$ 'AND' $\mathrm{X}[I, J]>0{ }^{\prime} \mathrm{AND}^{\prime} \mathrm{G}[I]=0$ 'THEN'
'BEGIN'
$D[I]:=' I F ' X[I, J]$ 'LE' $S[J]$ 'THEN' X[I,J] 'ELSE' S[J]; $\mathrm{G}[\mathrm{I}]:=\mathrm{J} ;$ LISTU[L] := I; $\mathrm{L}:=\mathrm{L}+1$

${ }^{\prime}$ END'

'END'
'END';
S33: 'IF' ${ }^{\prime}$ = $=1$ 'THEN' 'GOTO' S13;
$\mathrm{K}:=1$;
${ }^{1} \mathrm{FOR} \mathrm{R}^{\prime} \mathrm{L}:=1 \mathrm{I}^{\prime}$ STEP' 1 'UNTIL' M 'DO'
'BEGIN'
I : = LISTU[L];
'ITST I=0 'THEN' 'GOTO' S43;
${ }^{\prime}$ FOR' J $:=1$ 'STEP' 1 'UNTIL' N 'DO'
'BEGIN'
${ }^{\prime} \mathrm{IF}^{\prime} \mathrm{XB}[I, J]{ }^{\prime} \mathrm{AND}^{\prime} \mathrm{R}[\mathrm{J}]=0{ }^{\prime}$ THEN'
'BEGIN'
$\mathrm{S}[\mathrm{J}]:=\mathrm{D}[\mathrm{I}] ;$
$\mathrm{R}[\mathrm{J}] ;=\mathrm{I} ;$
LISTV $[\mathrm{K}]:=\mathrm{J} ;$
$\mathrm{K}:=\mathrm{K}+1$;
'IF' XSJ[J] > H 'THEN'
'BEGIN'
H : = XSJ[J];
$P_{D}:=J$
${ }^{\prime}$ END'
${ }^{\prime} E N D^{\prime}$
'END'
'END';
S43: 'GOTO' S53;
S13: 'IF' H>O 'THEN' 'GOTO' S4 'ELSE' 'IF' $\operatorname{SUM}(J, 1, N, X S J[J])=0$ 'THEN' 'GOTO' S6 'ELSE' 'GOTO' S5;
S4: K : = P;
$\mathrm{H}:=\mathrm{I} \mathrm{IF}$ ' $\mathrm{S}[\mathrm{K}]<\mathrm{XSJ}[\mathrm{K}]$ 'THEN' $\mathrm{S}[\mathrm{K}]$ 'ELSE' XSJ[K];
S41: Y : = R[K];
X[Y, K] $:=\mathrm{X}[\mathrm{Y}, \mathrm{K}]+\mathrm{H} ;$
XIS[Y] $:=\mathrm{XIS}[\mathrm{Y}]-\mathrm{H} ;$
$\mathrm{XSJ}[\mathrm{K}] \quad:=\mathrm{XSJ}[\mathrm{K}]-\mathrm{H} ;$
$T:=G[Y] ;$
'IF' $T=2 * N$ 'THEN' ${ }^{\prime} G O T O$ ' SO3;
$\mathrm{X}[\mathrm{Y} 2 \mathrm{~T}]$
$\mathrm{XIS}[\mathrm{Y}]$
$\mathrm{XSJ}[=\mathrm{XIS}[\mathrm{Y}[\mathrm{Y}]-\mathrm{H} ;$
$\mathrm{XS} ; \mathrm{T}]$
$:=\mathrm{XSJ}[\mathrm{T}]+\mathrm{H} ;$

```
P.NO.5) Contd.
        K := T;
    'GOTO' S41;
S5:H := INF;
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    'BEGIN'
        'IF' G[I] 'NE' O 'AND' R[J]=0 'THEN'
            'BEGIN'
                P}:=C[I,J]-U[I] - V[J]
            'IF' P< H 'THEN' H:= P
        'END'
    'END';
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'BEGIN'
        'IF' G[I] 'NE' O 'THEN' U[I]:=U[I] + H
    'END';
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    'BEGIN'
        'IF' R[J] 'NE' O 'THEN' V[J]:=V[J] - H
    'END';
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
        XB[I,J] := C[I,J] = U[I] + V[J];
    'GOTO' S03;
S6:\operatorname{COST := SUM(I, 1,M,A[I]*U[I]) + SUM(J,1,N,B[J]* V[J]);}
'END';
    COPYTEXT('(1)%1)');
    INF : = READ;
    'IF' INF<O.0 'THEN' 'GOTO' L2 'ELSE'
        N := READ;
        M := READ;
    'BEGIN'
        'INTEGER' 'ARRAY' A[1:M],B[1:N],C[1:M,1:N],X[1:M,1:N];
        'FOR' I := 1 'STEP' 1 'UNTIL' M'DO'
        'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
        C[I,J] := READ;
    'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    A[I] := READ;
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    B[J] := READ;
    TRANSPORT (C, X, A, B, M,N,INF, COST);
    NEWLINE(3);
    'TOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
    'BEGIN'
        NEWLINE (1);
            PRINT(C[I,J], 10,2);
            PRINT A[I],10,0);
            PRINT B[J], 10,0);
            PRINT (X[I,J],10,0);
            PRINT(COST,10,2);
        'END';
    'END';
    L2:;
'END';
****
```


PROGRAM NO. 6

```
'BEGIN' 'COMINENT' INTEGER PROGRAMMING;
    'INTEGER' I, J,M,N,COUNT;
        'INTEGER' INF;
    'PROCEDURE' IMPLEN(M,N,A,X,API,NOSOLN,COUNT,INF);
    'VALUE' M,N,INF;
    'INTEGER' M,N,COUNT,INF;
    'BOOLEAN' API, NOSOLN;
    'REAL' 'ARRAY' A;
    ' INTEGER' 'ARRAY' X;
        'BEGIN'
            'INTEGER' I,J,K,IA,E,D,MAX,IC;
            'REAL' Z,R;
            'BOOLEAN' NULL;
            'INTEGER' 'ARRAY' S,V[1:N];
            'INTEGER' 'ARRAY' Q[1:N];
            'IF' API 'THEN'
            'BEGIN'
                        E := O;
                    'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
                    'IF' X[J] = 0 'THEN'
                    V[J] := 0 'ELSE'
                    'BEGIN'
                    E :=E + 1 ;
                    S[E] := J;
                            'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
                    A[I,O]:= A[I,O] + A[I,J];
                    'END';
                    Z := A[0,0]; 'GOTO' LO;
            'END';
            'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
                S[J] := V[J] := 0;
                Z := 0.0;
                E := 0;
    LO: NOSOLN:= 'TRUE';
        COUNT :=0;
        A[O,O] := INF;
    START: COUNT := COUNT + 1;
        'FOR' I:=1 'STEP' 1 'UNTIL' M 'DO'
        'IF' A[I,O] < 0.0 'THEN' 'GOTO' FORMAT;
        'GOTO' INCUMBENT;
        FORMAT: NULL :='TRUE' ;
        'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
            'BEGIN'
            'IF' 'NOT' (V[J] = 0 'AND'A[O,J] + Z<A[0,0])
            'THEN' 'GOTO' L1;
            'FOR' K := I 'STEP' 1 'UNTIL' M 'DO'
            'IF' A[K,O]<0.0 'AND' A[K,J] > 0.0 'THEN'
                        'BEGIN' NULL := 'FALSE';
                    V[J] := 1;
                    'GOTO' L1
                        'END';
L1: 'END';
        'IF' NULL 'THEN' 'GOTO' NEWS;
        'FOR' K:= I 'STEP' 1 'UNTIL''M 'DO'
```

P.NO.6) Contd.

```
            'BEGIN'
            'IF' A[K,0] 'GE' 0.0 'THEN' 'GOTO' L2;
            Q[1] := A[K,O];
            'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
            'IF' V[J] = 1 'AND' A[K,J]>0.0 'THEN'
                Q[1]:=Q[1] + A[K,J];
            'IF' Q[1]< O 'THEN'
            'GOTO' NEWS;
                'END';
                MAX := -INF;
                'FOR' J := 1'STEP' 1 'UNTIL' N 'DO'
            'BEGIN'
            'IF' V[J] 'NE' 1 'THEN'
            'GOTO' L3;
                        Q[J] := 0.0;
            'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
                'BEGIN'
                    R:=A[I,O] + A[I,J];
                'IF' R<0.0 'THEN'
            Q[J] := Q[J] + R;
                'END';
                'IF' MAX 'LE' Q[J] 'THEN'
                'BEGIN'
                        MAX := Q[J];
                        D := J;
                    ' END';
                        LC := INF;
            'FOR' J:= 1 'STEP' 1 'UNTIL' N 'DO'
            'IF' MAX = Q[J] 'THEN'
            'BEGIN'
            'IF' LC > A[O,J] 'THEN';
                    'BEGIN'
                        LC := A[O,J];
            'END';
                END' ;
        E := E + 1;
        S[E] := D;
        IA := 1;
            'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
            'IF' V[J] = 1 'THEN'
            V[J] := 0;
            'FOR' I := 1 'STEP' 1 'UNTIL' M 'DO'
            A[I,O] := A[I,O] + IA * A[I,D];
            Z := Z + IA * A[O,D];
            'GOTO' START;
INCUMBENT: NOSOLN := 'FALSE';
            'IF' Z 'GE' A[0,0]' 'THEN'
            'GOTO' NEWS;
            A[0,0] := Z;
            'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO'
                X[J] := 'IF' V[J] = 3 'THEN' 1 'ELSE' O;
            'IF' E = 0 'THEN'
NEWS:
\[
{ }^{\prime} \text { IF' } \mathrm{E}=0^{\prime} \text { THEN' }
\]
```

P.NO.6) Contd.

'END';
 ${ }^{1}$ BOOLEAN' API, NOSOLN;
 'BEGIN'

```
                COPY TEXT ('(')'1)');
```

 NEW LINE (2);
 INF := READ;
 \(\mathrm{M}:=\) READ;
 \(\mathrm{N}:=\) READ;
 API := 'FALSE';
 'BEGIN '
 'ARRAY' A[\(0: M, 0: N]\);
 'INTEGER' 'ARRAY' X[1:N];
 'FOR' I := \(0^{\prime}\) STEP' 1 'UNTIL' M 'DO'
 'FOR' J := 1 'STEP' 1 'UNTIL' \(N\) 'DO'
 \(\mathrm{A}[\mathrm{I}, \mathrm{J}]:=\mathrm{READ}\);
 \({ }^{\prime} F O R^{\prime}\) I := 1 'STEP' 1 'UNTIL' \(\mathrm{M}^{\prime} \mathrm{DO}^{\prime}\)
 \(\mathrm{A}[\mathrm{I}, \mathrm{O}]:=\mathrm{READ}\);
 IMPLEN (\(\mathrm{M}, \mathrm{N}, \mathrm{A}, \mathrm{X}, \mathrm{API}\), NOSOLN , COUNT, INF) ;
 'IF' NOSOLN 'THEN'
 'BEGIN'
 WRITETEXT (' ('NOLOLN')');
 'END';
 'FOR' J := 1 'STEP' 1 'UNTIL' \(\mathrm{N}^{\prime} \mathrm{DO}{ }^{\prime}\)
 PRINT (X[J] 3,0);
 NEWLINE (5);
 'FOR' \(I \quad:=1^{\prime}\) 'STEP' 1 'UNTIL' M 'DO'
 \(\operatorname{PRINT}(A[I, 0], 3,0)\);
 NEWLINE (5)
 \(\operatorname{PRINT}(A[0,0], 3,2)\);
 NEWLINE (5);
 PRINT (COUNT, 10,0);
 'END';
 \({ }^{1} E N D^{\prime}\);
 \({ }^{\prime} E N D^{\prime}\);

PROGRAM NO. 7

LIST (LP)
PROGRAM (ASSIGNMENT)
INPUT $1=\mathrm{CRO}$
OUTPUT 2=LPO
TRACE 2
END

MASTER SEGMENT
INTEGER X
DIMENSION $D(20,20), X(20)$
COMMON N,D,X
READ (1,102) M
DO 40 II =1, M
$\operatorname{READ}(1,103)$ CHAR
FORMAT (A8)
WRITE $(2,104)$ CHAR
104
1 WRITE $(2,101)$
101
102 FORMAT (IO)
IF (N .IT. 1) STOP
CAIL MAINLOOP
40 CONTINUE
STOP
END

SUBROUTINE MAINLOOP
INTEGER X
DIMENSION $D(20,20), \quad X(20)$
COMMON N,D,X
$\underset{\operatorname{READ}}{\operatorname{WRITE}}\binom{2,102}{1,101} \mathrm{~N}((\mathrm{D}(I, J), \quad J=1, N) \quad I=1, N)$
101 FORMAT (10000FO.0)
CALL ASSIGNMENT
WRITE $(2,102) X$
102 FORMAT ($1 \mathrm{H}, \mathrm{I} 5$)
$\operatorname{WRITE}(2,103)$
103 FORMAT (/)
RETURN
END
P.NO. 7) Contd.

SUBROUTINE ASSIGNMENT
INTEGER C, CB, R, Y, FLAG, CBL, CL, CLO, RL, RS, SW, X
REAL MIN
DIMENSION $D(20,20), \mathrm{X}(20), \mathrm{C}(20), \mathrm{CB}(20), \operatorname{LAMBDA}(20), \mathrm{MU}(20), R(20)$,
$1 \mathrm{Y}(20), \mathrm{A}(20,20)$
COMIMDN N,D,X
DO $5 I=1, N$
MIN $=D(I, 1)$
DO $1 \mathrm{~J}=2, \mathrm{~N} . \mathrm{IT}$ ($\mathrm{D}(\mathrm{I}, \mathrm{J}) . \operatorname{MIN}) \quad \mathrm{MIN}=\mathrm{D}(\mathrm{I}, \mathrm{J})$
1 IF ($D(I, J)$
$\begin{array}{ll} & \mathrm{DO} 2, J=1, N \\ 2 & A(I, J)=D(I, J)-M I N\end{array}$
5 CONTINUE
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$M I N=A(1, J)$
6 DO \quad (AF $I=2, N$. $I, J) . L T, ~ M I N) ~ M I N=A(I, J)$
$7 \quad \begin{aligned} & \mathrm{DO}(I, J)=1, N \\ & \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{I}, \mathrm{J})-\text { MIN }\end{aligned}$
10 CONTINUE
DO $11 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{X}(\mathrm{I})=0$
$\mathrm{Y}(\mathrm{I})=0$
11 CONTINUE
DO $13 \quad I=1$, N
$\left.\begin{array}{ll}\text { DO } \\ \text { IF }(A(I, J)\end{array}\right)$.NE 0.0 .OR $\quad X(I)$.NE O .OR. Y(J) .NE O) GO TO 12 $\mathrm{X}(\mathrm{I})=\mathrm{J}$
$\mathrm{Y}(\mathrm{J})=\mathrm{I}$
CONTINUE
12 CONTINUE
$15 \mathrm{RL}=0$
$\mathrm{CL}=0$
$\mathrm{RS}=1$
FLAG=N
DO $16 \mathrm{I}=1, \mathrm{~N}$
$M U(I)=0$
$\operatorname{LAMBDA}(I)=0$
IF (X(I) .NE. O) GO TO 16
$R L=R I+1$
$R(R L)=I$
$M U(I)=-1$
FLAG=FLAG-1
16 CONTINUE
IF (FLAG •EQ. N) RETURN
$17 \quad \mathrm{I}=\mathrm{R}$ (RS)
RS $=R S+1$
DO $18(\mathrm{~J}=1, \mathrm{~N}, \mathrm{NE}(\mathrm{A}, \mathrm{J}) \cdot N E \cdot 0.0$.OR. LAMBDA(J) .NE O) GO TO 18
$\operatorname{LAMBDA}(J)=I$
$\mathrm{CI}=\mathrm{CL}+1$
$C(C L)=J$
IF (Y (J) .EQ. O) GO TO 30
$R L=R I+1$
$R(R L)=Y(J)$
$\mathrm{MU}(\mathrm{Y}(\mathrm{J}))=\mathrm{I}$
P.NO. 7) Contd.

IF (RS . LE. RL) GO TO 17
SW=1
$\mathrm{CLO}=\mathrm{CL}$
CBI $=0$
DC $19 \mathrm{~J}=1$, N
IF (LAMBDA(J) .NE O) GO TO 19
$\mathrm{CBI}=\mathrm{CBL}+1$
CB (CBL) $=J$
19 CONTINUE
$M I N=A(R(1), C B(1))$
DO $21 \mathrm{~K}=1$, RL
DO $20 \mathrm{~L}=1$, CBL
MIN $=$ MINO $($ MIN,$~ A(R(K), C B(L)))$
20 CONTINUE
21 CONTINUE
DO $27 \mathrm{I}=1$, N
IF (MU (I) .NE. O) GO TO 23
DO 22 I=1, CLO
$22 \mathrm{~A}(\mathrm{I}, \mathrm{C}(\mathrm{I}))=\mathrm{A}(\mathrm{I}, \mathrm{C}(\mathrm{L}))+\mathrm{MIN}$
GO TO 27
23 DO $26 \mathrm{I}=1, \mathrm{CBL}$
GO TO $(24,26,28,30)$ SW
24 IF (A(I, CB (I $)$).NE. O.OR. LAMBDA(CB(L)).NE. O) GO TO 26
$\operatorname{LAMBDA}(C B(I))=I$
IF (Y(CB (L)) .NE O) GO TO 25
$J=C B(L)$
SW=2
GO TO 26
$25 \mathrm{CL}=\mathrm{CL}+1$
$C(C L)=C B(L)$
$\mathrm{RI}=\mathrm{RI}+1$
26 CONTINUE
27 CONTINUE
GO TO $(28,30)$ SW
IF (CLO .EQ. CL) GO TO 17
$\mathrm{L}=\mathrm{CLO}+1$
DO $29 \mathrm{I}=\mathrm{I}, \mathrm{CL}$
$29 \mathrm{MU}(\mathrm{Y}(\mathrm{C}(\mathrm{I})\})=\mathrm{C}(\mathrm{I})$
GO TO 17
$30 \mathrm{I}=\mathrm{LAAMBDA}(\mathrm{J})$
$Y(J)=I$
IF (X(I) .NE. O) GO TO 32
$X(I)=J$
DO $31 \quad I=1$, N
31 IF (X(I) .EQ. O) GO TO 15
RETURN
$32 \mathrm{~K}=\mathrm{J}$
$J=X$ (I)
$X(I)=K$
GO TO 30
RETURN
END
FINISH

PROGRAM NO. 8

```
'BEGIN' 'COMMENT' SUM OF SQUARES AND PRODUCTS
    'REAL' A,B,C,D,E,Y,X1,X2,X3,X4, SIGMAX1X2, SIGMAX1X3, SIGMAX1X4,
                                    SIGMAX2X3, SIGMAX2X4, SIGMAX3X4,
                                    SIGMAYX1,SIGMAYX2,SIGMAYX3,
                                    SIGMAYX4;
'INTEGER' I,N;
    SELECTOUTPUT(0);
    A:=B:=C:=D:=E:=SIGMAX1X2:=SIGMAX1X3:=SIGMAX1X4:=SIGMAX2X3
            :=SIGMAX2X4:=SIGMAX3X4:=SIGMAYX1 :=SIGMAYX2:=SIGMAYX3
                                    :=SIGMAYX4:=0;
    N:=READ;
    'FOR' I:= 1 'STEP' }1\mathrm{ 'UNTIL' N 'DO'
        'BEGIN'
            Y:=READ;
            X1:=READ;
            X2:=READ;
            X3:=READ;
                    X4:=READ;
                    A:= A+Y*Y;
                    B:= B+X1* X1;
                    C:= C+X2*X2;
                    D:= D+X3*X3;
                    E:= E+X4*X4;
                            SIGMA X1X2 := SIGMAX1X2 + X1*X2;
                            SIGMA X1X3 := SIGMAX1X3 + X1*X3;
                            SIGMA X1X4 := SIGMAX1X4 + X1*X4;
                            SIGMA X2X3 := SIGMAX2X3 + X2*X3;
                            SIGMA X2X4 := SIGMAX2X4 + X2*X4;
                            SIGMA X3X4 := SIGMAX3X4 + X3*X4;
                    SIGMAYX1:=SIGMAYX1+Y*X1;
                    SIGMAYX2:=SIGMAYX2+Y*X2;
                    SIGMAYX3:=SIGMAYY3+Y*X3;
                    SIGMAYX4:=SIGMAYX4+Y*X4;
            'END';
                PRINT (A,4,4);
                WRITETEXT(i (1=SIGMAT2')');
                NEWLINE (1);
                PRINT(B,4,4);
                WRITETEXT('(i=SIGMA X12')');
                NEWLINE(1);
                PRINT (C, 4, 4);
                WRITETEXT('(i=SIGMAX2 2')');
                NEWLINE (1);
                PRINT (D,4, 4);
        WRITETEXTN(1 (i=SIGMAX3 2')');
        NEWLINE (1) ;
        PRINT(E,4,4);
        WRITETEXT('(i=SIGMAX4 2')');
```

P.NO. 8) Contd.

```
NEWLINE (1);
PRINT(SIGMAX1X2,4,4);
WRITETEXT ('(1=SIGMAX1X2') ') ;
NEWLINE (1);
PRINT(SIGMAX1X3,4,4);
WRITETEXT('( }1=\operatorname{SIGMAX1X3 ' )}\mp@subsup{}{}{1})\mathrm{ ;
NEWLINE (1);
PRINT(SIGMAX1X4,4,4);
WRITETEXT(' ('=SIGMAX1X4 ' ) ' );
NEWLINE (1);
PRINT(SIGMAX2X3,4,4);
WRITETEXT('( }1=\mathrm{ SIGMAX2X3' )' );
NEWLINE (1);
PRINT(SIGMAX2X4,4,4);
WRITETEXT('( }1=SIGMAX2X4 ' )' )
NEWLINE (1);
PRINT(SIGMAX3X4,4,4);
WRITETEXT('( }1=SIGMAX3X4 ' ) ' ) ;
NEWLINE (1);
PRINT(SIGMAYX1 , 4, 4);
WRITETEXT ( }1(1=SIGMAYX 1 ' ' ) ' ) ;
NEWLINE (1);
PRINT(SIGMAYX2, 4, 4);
WRITETEXT( ( ( }1=\mathrm{ SIGMAYX2') ');
NEWLINE(1);
PRINT(SIGMAYX3, 4,4);
WRITETEXT( ( ( }1=\mathrm{ SIGMAYX3 ') ') ;
NEWLINE (1);
PRINT(SIGMAYX4, 4,4);
WRITETEXT(1 (1=SIGMAYX4 ' }\mp@subsup{)}{}{1})\mathrm{ ;
```

${ }^{\prime}$ END ${ }^{\prime}$;

PROGRAM NO. 9

```
'BEGIN' 'COMMENT' INVERT PROGRAM;
    'INTEGER' N,I,J;
    'PROCEDURE' INVERT(A,N,FAIL) ;
    'VALUE' N;
    'ARRAY'A;
        'INTEGER' N ;
    'LABEL' FAIL;
        \({ }^{\prime}\) BEGIN \({ }^{\prime}\)
        'REAL' BIGAJJ,TRUE;
            'INTEGER' I,J,K;
        'REAL' 'ARRAY' \(P, Q[1: N]\);
        'BOOLEAN ''ARRAY' R[1:N];
            'FOR' I:=1 'STEP' 1 'UNTIL' \(N\) 'DO' R[I]:= 'TRUE';
            GRAND LOOP:
            'FOR' I:=1 'STEP' 1 'UNTIL' \(N\) 'DO'
            'BEGIN'
            SEARCH FOR PIVOT:
                BIGAJJ:=0;
                    'FOR' J:=1'STEP' 1 'UNTIL' \(N\) 'DO'
                        'BEGIN'
                            \({ }^{\prime} \operatorname{IF}{ }^{\prime} R[J]\) 'AND' \(\operatorname{ABS}(A[J, J])>B I G A J J ~ ' T H E N '\)
            'BEGIN'
                        BIGAJJ \(:=\operatorname{ABS}(A[J, J]) ;\)
                        \(\mathrm{K}:=\mathrm{J}\)
                    'END';
            'END';
            'IF' BIGAJJ \(=0\) 'THEN' 'GOTO' FAIL;
        PREPARATION OF ELIMINATION STEP I:
            \(\mathrm{R}[\mathrm{K}]:=1 \mathrm{FALSE}{ }^{\prime} ;\)
\(\mathrm{Q}[\mathrm{K}]:=1 / \mathrm{A}[\mathrm{K}, \mathrm{K}] ;\)
            \(\mathrm{P}[\mathrm{K}]:=1\);
            \(\mathrm{A}[\mathrm{K}, \mathrm{K}]:=0\);
            \({ }^{\prime}\) FOR' J:=1 'STEP' 1 'UNTIL' \(K=1{ }^{\prime} D D^{\prime}\)
            'BEGIN'
                        \(P[J]:=A[J, K] ;\)
\(Q[J]:=\left(I I F^{\prime} R[J]\right.\) 'THEN' \(-A[J, K]\) 'ELSE' \(\left.A[J, K]\right)\) *
                                    Q[K];
            \(\mathrm{A}[\mathrm{J}, \mathrm{K}]:=0\)
            'END';
```



```
            'BEGIN'
                \(P[J]:=' I F ' R[J]\) 'THEN' \(A[K, J]\) 'ELSE' \(-A[K, J]\);
            \(Q[J]:=-A[K, J] * Q[K]\);
            \(\mathrm{A}[\mathrm{K}, \mathrm{J}]:=0\)
            ' END';
            ELIMINATION PROPER:
            \({ }^{\prime} F O R^{\prime} \mathrm{J}:=1\) 'STEP' 1 'UNTIL' N 'DO'
                    \({ }^{\prime} F O R^{\prime} \mathrm{K}:=\mathrm{J}\) 'STEP' 1 'UNTIL' \(N\) 'DO'
                    \(A[J, K]:=A[J, K]+P[J] * Q[K]\)
            'END' GRAND LOOP
            ' END' INVERT(A,N,FAIL) ;
```

P.NO.9) Contd.

```
    N:=READ;
    'BEGIN' 'ARRAY' A[1:N , 1:N];
        'FOR' I:=1 'STEP' % 'UNTIL' N 'DO'
        'FOR' J:=1 'STEP' }1\mathrm{ 'UNTIL' N 'DO'
            A[I,J] := READ;
            INVERT(A,N,FAIL);
            'FOR' I:=1 'STEP' }1\mathrm{ 'UNTIL' N-1 'DO'
            'FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
            NEWLINE (2);
            'FOR' I:=1 'STEP' 1 'UNTIL' N 'DO'
            'FOR' J:=1 'STEP' 1 'UNTIL' N 'DO'
                        'BEGIN'
                        PRINT(A[I,J], 2,4);
                        ' END';
                        NEWLINE(1);
                'GOTO' L1;
            FAIL: WRITETEXT ('('SYSTEM INSOLUBLE')');
L1: 'END';
'END';
```

PROGRAM NO. 10

```
'BEGIN' 'COMMENT' MEAN;
    'INTEGER' I,N;
        SELECT OUTPUT(0);
    NEWLINE(10);
        N:=READ;
        'BEGIN'
            'rEAL' SUM, MEAN;
            ' ARRAY' A[1:N];
L1 :
        'FOR' I:= 1 'STEP' }1\mp@subsup{'}{}{\prime}UNTIL'N 'DO'
                        'BEGIN'
                                    A[I]:= READ;
                                    SUM := SUM + A[I];
                            'END';
                            MEAN := SUM/N;
            PRINT (MEAN,2,3);
            NEWLINE(2);
                'GOTO' L1;
                        'END';
'END';
****
```

P.I.A. TIME TABLE

WESTERN SECTOR

Persion Gulf - Karachi Sector

TIME FROM GMT			WED- SUN	THURSDAY	MONDAY
			PK 744	PK 206	PK 208
+3	KUWAIT	dep			12-00
+4	DOHA	dep		12-05	
+4	BAHRAIN	$\begin{aligned} & \text { arr } \\ & \text { dep } \end{aligned}$		$\begin{aligned} & 12-35 \\ & 13-25 \end{aligned}$	$13-50$ $14-30$
+4	DUBAI	arr dep		$\begin{aligned} & 14-20 \\ & 15-00 \end{aligned}$	
+3	JEDDAH	arr dep	12-05		
+5	KARACHI	arr	17-45	17-45	$17-45$

```
Dacca = Bongkok - China - Sector
```


¢0¢－12	$\left\|\begin{array}{c} 54-81 \\ 0 \varepsilon-91 \end{array}\right\|$		¢ ${ }_{\text {cz－z }}$	$\left\lvert\, \begin{gathered}\text { sz－zz } \\ 01-\infty\end{gathered}\right.$	$\begin{gathered} 5 T-B L \\ 0 \varepsilon-91 \end{gathered}$	$0 ¢-12$ $51-61$	$5+81$ $0 \varepsilon-9 t$	${ }_{54-\varepsilon 1}$	｜cerer	sz－zz	$\substack{\text { sz－1 } \\ \text { nHL } \\ 01-\varepsilon z}$ 0	$\begin{aligned} & 0 \varepsilon-12 \\ & 51-61 \end{aligned}$	$\begin{gathered} \infty-91 \\ 5 \uparrow-\varepsilon 1 \\ \hline \end{gathered}$	$0 \varepsilon-12$ $s_{1}-61$	$\begin{aligned} & 5 \div-81 \\ & 0 \varepsilon-91 \end{aligned}$	$00-31$ $5 n_{1}-E_{1}$		$0 \varepsilon-12$ $s t-61$		$\int_{\text {dep }}^{\text {dev }}$	monery rova	$5+$
$2 \mathrm{c} 2 \times \mathrm{d}$	$5 \varepsilon L \times 1$	$1 \varepsilon L \mathrm{xd}$	$61 / \mathrm{Xd}$	$5 E L \times 8$	$5 \varepsilon L \times d$	$5 \mathrm{EL} \times \mathrm{xd}$	SEL．$\times 2$	$152 \times$	$\times \mathrm{d} 1112 \times 8$	${ }_{4} \sec ^{-1} \times$	xal $2 E L$	Xf $\frac{E c}{}$	1EL	yatel xa	ELL \times		LEL	cel $\times \mathrm{dd}$	Sti El			
		arns		גramar			גvar			CSERHL		avosa	andan		dros	s3nt		aramo				NOMA
sz－st		On－01	se－st	Oサ－21	$0^{\circ}+2$	s2－51		Or－01	Or－21	04－2	$01-22$	Or－21	arol	52－51	\％－21	O4－01	01－2z	O＋21	04－01		v20	94
51－11	OE－8	0¢－9	S1－11	O¢－8	O¢－¢	si－11	OE－8	0¢－9	0¢－8	O¢－乏	00－8t	0¢－8		51－1								
9EL $\times 3$	OEL $\times 2$	＋22 xd	9512	212×0	O12 $\times 2$	$9 E L \mathrm{xd}$	$0 \varepsilon 2 \times 10$	tel xd	902 xa	702 $\times 20$	8 e $2 \times \mathrm{xd}$	OEL xd	ヶ2L Xd	SEL	OEL x ¢		$\frac{\infty-81}{8 E L} \times 8$	O¢－8	$0 ¢-9$	dop	thonax	${ }_{5}^{5+}$
arancs．			avading			2үcrua			גyasemis		avaszaiosk			aycsens			дуanoh			wold		


```
DACCA - LAHORE SECTOR
```

FRIME FROM		MON	TUE	WED	FRI	SUN		
DACCA	dep	$11-50$	$11-50$	$11-50$	$11-50$	$11-50$		
+5			PK 725					

TIME FROM GMTT			MON	TUE	WED	FRI	SUN
	LAHORE	dep	$14-30$	$14-30$	$14-30$	$14-30$	$14-30$

