```
The INFLUENCE of COMPOSITION, TEMPERATURE
and STRAIN RATE on the DEFORMATION of
F.C.C. METALS and ALLOYS
```

A thesis submitted in
application for the degree of
Doctor of Philosophy
by

JOHN FRANCIS HILL, M.Sc., A.C.T.(Birme), A.I.M.
AWARDED THE DEGREE OF
\backslash master of science

October, 1970.

193:7137590

SYNOPSTS

Various methods of assessing deformation behaviour are considered and compared, and torsion is selected as a convenient means of obtaining data to high strains, over a range of temperatures and strain rates. Paraneters which describe the nost relevant features of torsion test results are suggested.

The way in which the descriptive parametors are affected by changes in corposition, grain size and conditions of testing are investigated by multiple regression analysis for a number of pure metals and singlo phase f.c.c. alloys. A sories of equations are produced which are applicable over the whole range of compositions considered. Based on the equations derived it is suggested the nost important factors relating to composition are shear modulus, Burger's vector and stacking fault onergy. Structure may be described by the reciprocal square root of grain size, and of the process variables temperature is shown to be much more influential than strain rate within the range of values used.

Comparison of the regression equations shows that the process termed restoration, by which the strains inducod by work-hardening are relieved, is predominently recovery by dislocation climb rather than recrystallisation involving grain boundary migration.
IIST OF CONTENTS
Page No.

1. INTRODUCTION 1
1.2. The Strategy of the Investigation. 4
2. LITERATURE SURVEY AND RBVIEW 6
2.1. Conventional Methods for Prediction. 6
2.1.1. Simulative Tests. 6
2.1.2. Laboratnry Tests. 6
2.1.3. Other Techniques. 7
2.2. The Stress/Strain Relationship. 9
2.2.1. Single Crystals. 9
2.2.2. Doformation Twinning. 10
2.2.3. Polycrystalline Aggregates. 11
2.2.4. Mathenatical Models. 12
2.2.5. Stress/Strain Maxima. 14
2.2.6. Deformation at $\mathrm{C}_{\text {onstant }}$ Stross. 16
2.3. Measurenent of Stress/Strain Relationships. 17
2.3.1. The Tension Test. 17
2.3.2. The Compression Test. 17
2.3.3. The Bend Test. 18
2.3.4. The Torsion Test. 19
2.3.5. Equivalence of Test Results. 20
2.4. Variables Influencing the Stress/Strein Relationship 21.
2.4.1. The material 21
2.4.2. Structure. 24
2.4.3. Temperature。 25
2.4.4. Strain Rate. 27
2.4.5. Summery and Conclusions. 30
2.5. Regression Anelysis. 33
2.5.1. The Regression Model. 33
2.5.2. Paraneters of the Model. 34
2.6. Assessing the Model. 37
2.6.1. The Whole Model. 38
2.6.2. The Individual Variables. 40
2.6.3. Sunmary and Conclusions. 45
3. EXPERIMENTAL METHOD 47
3.1. Introduction. 47
3.2. Materials. 48
3.2.1. Introduction. 48
3.2.2. Matorial Preparation. 49
3.2.3. Modulus of Shear. 52
3.2.4. Stacking Fault Energy. 52
3.3. The Torsinn Test. 53
3.3.1. Introduction. 53
3.3.2. The Torsion Machine. 53
3.4. Grain Size 55
3.5. Elevated Temperature Tests. 57
3.5.1. Introduction. 57
3.5.2. Temperature Measurement. 57
3.5.3. Temperature $\mathrm{C}_{\text {ontrol. }}$ 58
3.6. Inw Temperature Tests. 60
3.7. Strain Rate. 61
3.8. Exporimental Progranne. 62.
3.8.1. Introduction. 62.
3.9. Experimental Method. 73.
3.9.1. Setting-up. 73
3.9.2. Testing. 74
3.9.3. Translation. 74
3.9.4. Computation. 75
3.10. Method of Analysis. 79
3.10.1. The STATPAC Subroutines. 79
3.10.2. The Selection Process. 80
4. RESULTS. 84
5. DISCUSSION 94.
5.1. Experimental Technique. 94
5.2. Regression Analysis. 96
5.2.1. The Stress Parameters. 96
5.2.2. Accuracy and Reliability. 106
5.2.3. The Work-Hardening $\mathrm{C}_{\text {oefficient. }}$ 111
5.3. Work Herdening and Restoration. 114
5.3.1. The Stress Parameters. 114
5.3.2. The Work-Hrardening $\mathrm{C}_{\text {oefficient }}$ 119
5.4. Sunnery 120
6. CONCLUSIONS 122

Appendix A Modulus of Shear.
Appendix B Data Analysis Progran.
Appendix C The STATPAC Subroutines.
Acknowledgemonts.

Fold-out Glossary of Terms.

1. INTRODUCTION

By far the greater proportion of all the metal which is processed and marketed by the world's industries is subjected to some form of mechanical defornation, either during its preparation for, or when put into sorvice. With the inevitable evolution of modern industry, and the increasing competition for market space amongst the rapidly extending range of new materials, metallic and non-metallic, attention is being focussed more and more sharply on the means of carrying out mechenical deformation. In particular the use of computer control, already becoming established in the production of steel semi-finished products ${ }^{1,2}$, will demand a nower and more quantitative appreciation of the behaviour of metals during deformation. The automatic control of industrial scale mechanical working processes is based upon predicting the response of the netal being worked under a given set of conditions, or alternatively the desired response might be predetermined and the optimum conditions for achieving the response are then sought. In those cases where the range of materials being processed is small or the choice between different methods of processing is limited the information necessary for effective control may be determined empirically. Circumstances frequently arise, however, when the empirical determination of performance, by laboratory tests for example, is restricted by time or because the material being considered has not been produced in sufficient quantities or in suitable form, or, indeed, for many other reasons. Then the prediction of the response of a given metal or alloy to a process or range of processes, under different conditions of temperature and strain rate is a most difficult task, and might well be possible only in a qualitative sense.

The problem of prodiction can be resolved into three components ${ }^{3,4}$, each of which is basically independent. It is necessary to
consider the influence of:

1. the material to be processed, in terms of its composition and structure,
2. the process variables, which can usually be reduced to two, namely tor:curere and strain rate,
and 3. the process itself, wich is a means of applying the stresses, appropriate in magnitude and direction, to bring about the desired change of shape in the work material.

Analyses have been made of a very wide range of mechanical working processes ${ }^{5}$ and have been shown to provide an effective basis for process control ${ }^{6,7}$. It is not intended to pursue this aspeot further, therefore, although newer, improved mathematical models of mechanical working processes are not only possible but are, in fact, being develnped 3,8.

In this project it is intended to provide a study of 1. - the material, and 2. - the process variables, and their effect on the overall system. Since virtually all descriptions of mechanical working processes rely upon some form of stressstrain curve, the project has been based upon an investigation of this relationship. A means of describing the relationship has been sought, and the effects of different chemical compositions and structures have been examined over a range of temperatures and strain rates. By the use of regression analysis an attempt has been made to provide a model to facilitate the prediction of the parameters of the stress-strain relationship. It is suggested that such a model, used in conjunction with an appropriate model of a mechanical working process could make possible preliminary investigations (for example, by computer simulation) of the effects of modif: cations in prooess praotice
or the introduction of new material compositions, and would identify those parameters which are of greatest importance in establishing automatic control procedures.

It seems reasonable to assume that the parameters of the model and the factors influencing the form of the stress-strain curve will depend upon the mechanisms of defor ation involved, and this in turn depends, amongst other factors, upon the crystal structure. In order to avoid the complication of partitioning deformation between different crystal structures within one aggregate, or of attempting to devise a model which would cope with a number of different mechanisms of deformation, the invest:gation has been confined to single phase materials of one crystal group, viz. face centred cubic. This group was selected because of its commercial importance, including as it does, not only copper, nickel and aluminium and many of their alloys, but also many types of steel, particularly at elevated temperatures. Additionally, the considerable amount of research which has been carried out on this group ${ }^{9}$ provides a comprehensive summary of the variables which ero most liroly to provide an effective basis for the model.

1.2. The Strategy of the Investigation

In the following sections the objectives outlined above are approached systematically.
1.2.1. As a first step alternative methods of predicting performace are considered in section 2.1. and reasons presented for selecting techniques based on the stress/strain relationship. In subsequent sections (2.2. and 2.3.) the mechanisms giving rise to the particular shape of stress/strain curve are described, and methods available for the experimental measurement of the relationship, and the determination of the appropriate parameters, are considered.

Consideration is then given to the factors likely to exert an influenee on the selentien parametiers in sention 2.4. Of those relating to the material the largest group comprises those factor: which are associated with chemical composition. The effects of structure, having been minimised by restricting the investigation to single phase materials of one crystal type are reduced to grain-size and subgrain-iize dependence.

Changes in process conditions are confined to geometry, temperature and strain rate. The first of these has an influence only on the magnitude and direction of stresses and so is related to the specific process being used and falls outside the terms of this investigation. Temperature and strain rate are usually variable within any process and the influence of each of them is considered in sections 2.4.3. and 2.4.4.

In the final section of the review the reasons for using regression analysis are given and the techniques available with their relative advantages and disadvantages are considered.

The techniques adopted in the selection and preparation of the materials being investigated, together with the experimental
programme and methods of testing and analysis are presented in section 3.

Following the results, section 4, the discussion is contained in section 5. This takes the form of
(i) an assessment of the model produced by the investigation in terms of its reliability and its usefulness as a basis for the prediction of the performance of single phase f.c.c. metals in mechanical working processes,
(ii) the insight gained into the processes of work hardening and restoration from consideration of the variables found to make a significant contribution to the proposed model, is then discussed, with particular regard to the role of stacking fault energy.
2. LITTERATURE SURVEY AND REVIEW

2.1. Conventional Methods for Prediction

The measures currently available for predicting the performance of metals during mechanical working are conveniently divided ints
(i) mechanical testing and
(ii) other techniques.

Of these division (i) may be sub-divided ${ }^{10}$ into
(a) Simulative or scaled down working tesis and
(b) Laboratory tests.

2.1.1. Simulative Tests

Scaled down working tests have the advantage of more or less exactly reproducing the stress system of the appropriate full scale process. Apart from minor disadvantages such as the uncertainty of thermal conditions, particularly with regard to the influence of strain rate, the use of scaled down tests is limited mainly by cost and convenience. The test equipment involved in scaled down simulation of rolling or tube making, for example, is difficult to obtain and expensive both to install and operate. In addition test-pieces are likely to be relatively large and expensive to prepare. The usefulness of the information derived is limited to a specific process, and in order to assess performance under a number of different working conditions it is necessary to carry out a series of tests. In order to assess likely performance in a number of different processes it is necessary to carry out a series of tests for each one.

2.1.2. Laboratory Tests

In contrast the use of laboratory tests is not specific to any one working process and is usually much more convenient and inexpensive. The information obtained, however, is less likely to be of
direct use in the way that the results of simulative tests are. Reviews of laboratory testing techniques ${ }^{10,11}$ indicate that useful correlations may sometimes be obtainable between performance in specific tests and processes, but that the discrimination offered by this approach is rarely as critical as is desired. It is considered that the main function of tests carried out for this purpose is to oheck the consistency of successive batches of material. Success or failure in the laboratory test by no means guarantees a similar performance in the working process.

The main use of laboratory tests, and the purpose to which they are best suited, is to determine the relationship between stress and strain for any selected material. This may then form the basis of mathematical predictions of performance, since all mechanical working operations are concerned with inducing strain in the work-material. A further advantage of this approach is that the information may be more widely applied, e.g. to other forms of mechanical deformation such as high temperature creep ${ }^{12}$, or to the calculation of residual stresses ${ }^{13}$.

2.1.3. Other Techniques

The use of techniques other than mechanical testing to provide information is principally to supplement results already available. The information provided is frequently qualitative or semi-quantitative. Micro-examination in order to determine the amount of nonmetallic or inter-metallic inclusions, for example, may divide batches of metals into 'clean' or 'dirty' but will not provide any information on which quantitative predictions of performance may be based.

The influence of grain size on strength has also boon investigatod(refer to section 2.4.2.). It has been found that the relationship between flow stress and grain size may be expressed
by an equation of the form:

$$
\begin{equation*}
\sigma=\sigma_{0}+K D^{-\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

No attempt has been made to express this relationship in a form which is both quantitative and general to a wide range of metals and alloys. Similarly the effect of increasing the proportion of solute in a particular system has been investigated on many occasions, but no generalised form of relationship has been found between the amount of alloying additions and flow stress.

It seems, therefore, that although such factors as chemical composition and microscopic structure are readily determinable and are known to influence behaviour during mechanical working there is no simple or convenient method of anticipating their influence upon a particular process. Since there are no generalised quantita tive data on the influence of these variables it is not easily possible to determine the relative importance of each or any of them with regard to mechanical working.

In summary it emerges that the behaviour of a metal or alloy when subjected to mechanical working is a function of (a) the material and (b) the process. The most important deficiences in existing knowledge would appear to be:
(i) what characteristics of the material are most important in determining its behaviour.
(ii) in what manner these characteristics affect the behaviour.
(iii) how the material and process interact.

2.2. Tho Stross/Strain Relationship

2.2.1. Single crystals

During the plastic deformation of single crystals of f.c.c. metals three discreet stages occur, distinguishable on the stressstrain diagram as shown in figure 2.1.

Stage I, the region of easy glide ${ }^{1_{4}}$ is characterised by a low rate of work hardening and it is generally considered that dislocations produced by the deformation leave the crystal at the surface.

Stage II, the region of linear or rapid hardening shows a higher work hardening rate, the slope of which is observed 15 to be approximately independent of applied stress, temperature, crystallographic orientation or impurity content.
The ratio:

where μ is the shear modulus, is of the same order of magnitude for all f.c.c. metals, viz. 5×10^{-3}. Smallman suggests that the characterisetic feature of stage II deformation is that slip occurs on both the primary and secondary slip systems, giving rise to lattice imperfections such as forest dislocations, Lomer-Cottrell barriers and jogs at the points where dislocations intersect.

During stage III, the region of dynamic recovery, the stressstrain relationship is approximately parabolic with a decreasing rate of work hardening, until some limiting stress is reached at which some mechanism such as fracture or 'restoration' interferes. Within this stage it appears that dislocations held up in stage II are able to move by some process which had previously been suppressed. The mechanism involved appears to be that of

Figure 2.1. Showing three stages of single crystal stress/strain curve.
cross-slip ${ }^{15}$ by means of which a screw dislocation glides into another slip plane having a slip direction in common with the original slip plane.

2.2.2. Deformation Twinning

Although deformation in f.c.c. metals and alloys is principally by slip, involving atomic movements which are (approximately) increments of whole lattice vectors, it is possible for deformation to occur by twinning ${ }^{15}$. In this case the atomic movements are much less than those involved in slip, although the atoms in each plane are moved by an amount equal to that of the atoms in adjacent planes.

The contribution to the overall deformation, which is made by twinning is usually very small and in the case of aluminium it appears ${ }^{16,17}$ that twinning does not occur even under the most favourable conditions.

In the metals which are the subject of this investigation twinning only occurs at high stresses ${ }^{18}$ and consequently it is not normally a deformation mode at room temperature or above. The onset of twinning is readily determined in most metals because the tost load drops suddenly when the twin stress is reached ${ }^{1819}$, as shown in figure 2.2. Load drops are not observed in all cases, however, and in copper alloys containing more than 20% zinc or 8 atomic \% aluminium none has been observed under any conditions of testing, although Venables ${ }^{18}$ has demonstrated the presence of deformation twins by selected area diffraction on the electron microscope. It is suggested ${ }^{18}$ that the lack of load drops indicate that twins, once nucleated are unable to propagate through the the crystal.

Figure 2.2. Load drops due to deformation twinning - ref. 18.

One further consequence of twinning which is possible is the brittle, cleavage type of fracture ${ }^{15}$. It appears that a twin, like a grain boundary, may present a strong barrier to slip and a crack can be initiated by the pile-up of slip dislocations at the twin interface.

2.2.3. Polycrystalline Aggregates

In that the mechanisms by which plastic deformation can occur within a crystal remain the same, the deformation of individual crystals within a pnlycrystalline aggregate is subject to the same laws as the deformation of an isolated single crystal. However, the requirement that physical continuity must be maintained between adjacent crystals or grains imposes further restrictions which increase the resistance to deformation of the aggregate as a whole. Since the presence of a grain boundary automatically implies a iifference in crystallographic orientation it follows that any grain which is ideally orientated for deformation to occur, relative to the direction of applied stress, must bc bounded by other grains which are less favourably oriontated, and therefore inhibit the deformation process.

Taylor ${ }^{20}$ related the stress-strain curves for f.c.c. single crystals and polycrystalline specimens by mathematical synthesis. The synthesis involved the division of a crystallographic unit triangle into forty-four equal areas and from these the slip systems involving the lowest values of work done were selected. Although certain assumptions made by Taylor were not justified, for example it was assumed that strain throughout the aggregate was homogeneous and this is almost never attained, experimental evidence ${ }^{21,22}$ has confirmed the accuracy of the work. It would
seem desirable that any mathematical expression relating stress and strain for a given metal should recognise the mechanisms by which deformation is occurring. This is likely to improve the possibility of discovering the influence of metallurgical variables on the form of the expression.

2.2.4. Mathematical Models

The best known and most widely used equation relating stress and strain is that due to Iudwik ${ }^{23}$:

$$
\sigma=\sigma_{c}-k \epsilon^{n}
$$

although the first term on the right hand side is usually dropped and the equation expressed as:

$$
\sigma={ }_{\mathrm{K}} \epsilon^{\mathrm{n}}
$$

where K and n are constants.
Support for the use of this equation has come from a number of workers in this field including Holloman ${ }^{24}$, Feltham ${ }^{25}$, Nadai ${ }^{26}$ and Hodierne ${ }^{27}$. This support is based upon the fact that when the logarithm of the true stress is plotted against the logarithm of true strain the values lie close to a straight line, ie.

$$
\log \sigma=\mathrm{n} \log \epsilon+\log \mathrm{K}
$$

where K is the stress at unit strain,
and this relationship is equivalent to (2.3.) above. Although the equation is adequate for many purposes it has certain distinct disadvantages. Part of the general applicability of the expression is derived from the wide range of shapes which curves satisfying the equation can take. Where $\mathrm{n}=1$ the σ / ϵ relations ip is linear, while for very small values of n the curve virtually conforms to a right angle bend. In order to fit the expression to experimentally
derived date, therefore, both of the constants in equation (2.3.) may vary and it is most difficult to rolate the variations in each to variations in specific material properties or test conditions.

The use of a single term to describe the interdependance of stress and strain implies a single mechanism throughout and this is clearly inappropriate. The result might sometimes be a disproportionate contribution by the elastic portion of the relationship to the plastic curve.

One further, minor disadventage lies in the fact that in the 'popularised' version of Ludwik's equation it is implied nathematically, that the material may be strained to an indefinite extent, giving rise to an infinite value of stress ${ }^{28}$.

The empiricial nature of the relationship led Voce ${ }^{28}$ to propose a new relationship based on the \log / \log plot of stress versus strain. It was noted thet distribution of experimentel points could be more accurately described by a series of three straight lines rather than one. (Holloman ${ }^{29}$ had previously published similar results but had not paid any great attention to this facet of the work.) The smoothed version of this series, described by Voce 30 as 'an italicised integration sign' was expressed by an equation of the form:

$$
\begin{equation*}
\sigma=\sigma_{\infty}-\left(\sigma_{\infty}-\sigma_{0}\right) \exp -\left(\epsilon / \epsilon_{c}\right) \tag{2.5.}
\end{equation*}
$$

where σ_{0} is the threshold stress for plastic deformation σ_{∞} is the maximum stress and ϵ_{c} is the 'characteristic' strain.

The improvement offered by this equation over that of (2.3.) clearly goes some way to satisfying the objections to Ludwik's
expression. Equation (2.5.) suffers from the disadvantage that may be difficult to determine, particulerly if the material under test has restricted ductility. Furthermore the division into three straight lines is frequently as arbitrary as Ludwik's method of using only one, since the relationship, even on a double logarithmic plot may include at least one curved region. An alternative approach is the attempt to improve upon Ludwik's work was adopted by Bell ${ }^{22}$. Analysing more than three hundred stress-strein curves of f.c.c. metals produced by other workers he chose to fix the value of n in the power equation at 0.5 , giving the expression:

$$
\sigma=K \epsilon^{\frac{1}{2}}
$$

While this device still fails to remove many of the objections to equation (2.3.) it does reduce the onnstents which may reflect variations in materials or conditions to one, and this is a most useful improvement.

An examination of Bell's results reveals that the calculated valaes based on equetion (2.6.) most adequetely fit the experimental values at higher values of strain. In view of the remarks previously made regarding the contribution due to the elastic portion of the curve this is rather to be expected.

2.2.5. Stross/Strain Maxima

In all of the mathematical models considered it was implicitly assumed that the maximum stress would be attained at maximum strain, i.e. at fracturc. This is by no means always the case 9,31 , however. At elevated temperatures, i.e. those in excess of approximately 0.5 Tm , the stress/strain curve usually shows a
maximum stress at some strain before the maximum. It is generally considered that the stage at which maximum stress occurs is followed by a process which Hardwick ${ }^{32}$ described as 'restoration'. The term 'restoration' was used to avoid describing the process as either recovery or recrystallisation, since it was not certain to what extent each of these mechanisms of softening was involved. Hardwick presented metallographic evidence which he suggested, indicated that materinls of high stacking fault energy, e.g. Al, tend to soften by a process of recovery, i.e. dislocation orossslip and climb, while the low stacking fault energy metals, e.g. Cu , tend to soften by recrystallisation, a diffusion-controlled process. Metals of intermediate stacking fault energy e.g. Ni, soften by a combination of these twn mechanisms, he suggested. However, more recent estimates of the stacking fault energy of Ni^{33} indicate that it is in fact higher than that for Al, and this must invalidate some of Hardwick's suggestions.

From measurements made at Sheffield ${ }^{34}$ on the time required for a highly strained metal specimen to begin recrystallisation it appears that metallographic evidence for recovery or recrystallisation must be very carefully interpreted, since important structural changes can occur between the cessation of deformation and the lowering of the specimen temperature to ambient or thereabouts.

Stuwe ${ }^{35}$ has suggested that except at low strain-rates recovery mechanisms are adequate to describe the softening observed. He postulated ${ }^{36}$ that the vast increase in the number of point defects produced during deformation assists the movement of edge dislocations away from their slip planes and enables a steady-state
condition of constant dislocation density to be set up.

Sellars and Tegart ${ }^{38}$, supporting the view that recrystallisation oan occur during deformation point out the cyclical form of stress-strain curve sometimes observed at low strain rates (Rossard and Blain observed a similar form of curve) and suggest that the cycle is similar to that occurring in creep ${ }^{37}$. The form would be explained by a repeated cycle of work-hardening and recrystallisation.

Whatever the form of restoration occurring it seems clear that the stress maximum must be rogarded as a limiting value for the equations previously considered. Where the strain to failure is less then the projected strain to restoration the stress at failure will then limit the relationship.

2.2.6. Deformation at Constant Stress

A feature of deformation carried out at high temperature is the protracted region of strain at virtually constant stress ${ }^{9,31}$. There is general agreement ${ }^{9}$ that the processes of work hardening and restoration achieve an equilibrium condition during this stage. In many cases the steady state stress is approximately equal to the maximum stress, and this is logically to be expected from the explanations in the foregoing section.

Generally, however, the steady state stress is less than the maximum stress and the difference appears to be due to some form of activation energy which is required to initiate the process of restoration.

Where the stress/strain equation is to be applied to processes involving high values of strain, therefore, the value
of steady state stress is clearly an important part of the expression.

2.3. Measurement of Stress/Strain Relationships

There are a number of methods available for determining stress/ strain relationships ${ }^{11}$ or those parmeters of the relationships required, in metals. The principal advantages and disadvantages of the best established methods are presented below:

2.3.1. The Tension Test

This is almost certainly the most widely used and best known mechanical test for metals and it is not considered necessary to describe the test here.

The chief advantages of the test are its relative simplicity and the ready availability of suitable test equipment.

The major disadvantages stem from the relatively low strain rates which are commonly used, and from development of plastic instability at quite an early stage in the test. Although corrections may be made to the measured stress 39,40 to allow for the triaxial stresses arising in the necked region of the specimen, these require measurements to be made of the changing geometry of the specimen and this is clearly not compatible with high rates of strain. Additionally, the volume of metal in the neck is likely to become very small with the consequent likelihood of increased experimental errors.

2.3.2. The Compression Test

A range of tests is available under this heading, from simple upsetting, to those due to Polakowski ${ }^{41}$ or Alder and Phillips ${ }^{42}$
were intended to overcome the complications in the stress system, and the increased tendency to failure caused by barrelling of the specimen. The uso of indented specinens as suggested by the former still leads to a more complex stress system, however, while his technique of remachining the specimen to remove the barrel, at intervals, does not lend itself particularly well to either high temperatures or high strain rates.

The can plastometer used by Alder and Phillips overcame some of the difficulties due to the changing specimen geometry during the test, but did not prevent barrelling.

Plane strain compression ${ }^{43}$ is not susceptible to barrelling in the manner that compression of a plano cylindrical specimen is, but the large surface to volume ratio of the specimen causes the frictional restrains to exerciso a disproportionate influence on the test. It is of interest to note that Bailey and Singer ${ }^{31}$ used a cam plastometer in conjunction with the plane strain compression test, and achieved reductions in thickness up to 90%. No reference is made in their work to the effect of the widely differing width/ thickness ratins achieved by this method, although Watts and Ford ${ }^{44}$ suggest that this has an important influence on the results.

2.3.3. The Bend Test

This form of test is extremely limite in its usefulness due to the geonetric limitation of strain imposed by being unable to bend the specimen continunusly more than 180°. Edge effects may be reduced by the use of a suitably large width/thickness ratio, but the stress system is a complox and variable combination of compression and tension.

The use of this technique is limited in practice to brittle materials ${ }^{11}$ 。

2.3.4. The Torsion Test

In the torsion test a specimen, similer in form to that used in the tension test, is strained by being twisted about its longitudinal axis. The stresses developed are virtually pure shear.

Much interest has recently been shown in the torsion test ${ }^{45}$ mainly because the test-piece, provided that its length is constrained, retains its original shape throughout the test. This characteristic obviates the need for additional measurements during the test and so allows high strain rates to be used, the constant geometry of the test-piece alsn gives a constant strain rate during each test, without the need for special techniques such as are used in the cam plastomoter, for example.

In the absence of such phenomena as barrelling or necking the entire gauge length is deformed more or less uniformly. Where local variations in deformation occur it is on a micro-scele and is unlikely to exert any influence on the stress-strain relationship ${ }^{45}$. The volume of metal deformed is, therefore, not restricted as in other tests and this improves the experimental accuracy by minimising the influence of inclusions or other defects.

One disadvantage encountered in torsion testing is due to the influence of a stress developed in the axial direction if the specimen is constrained (if the constraint is removed the specimen length and shape tend to change).

The causes of this axial effect are not understood at all
clearly. Earlier explenations based on analogy with the shortening of a towel when twisted, or on thermal expansion or contraction have been thoroughly investigeted ${ }^{46}$ and discarded. Dragan ${ }^{46}$ suggested that competing mechanisms of intra-crystalline slip and grain-boundary slip might be involved, but offered no exporimental evidence in support of his suggestion. More recent investigations ${ }^{48}$ appear to indicate an association between the axial stress and crystallographic preferred orientation, but this work is incomplete.

Although there is evidence that axial stresses developed during torsion testing influence the strain which the material is capable of sustaining without failure, it seems unlikely they have any significant effect upon the shear stress/shear strain curve ${ }^{47}$.

Since the torsion test was solected for the work presented here a more detailed analysis is presented in the section on Experimental Method.

2.3.5. Equivalence of Test Results

The stress-strain curves of various metals determined by different testing methods have been compared by several workers. Holloman ${ }^{24}$, Hodierne ${ }^{47}$, Bailey and Singer ${ }^{31}$, Jonas et al ${ }^{9}$ and Watts and Ford ${ }^{44}$ have all shown that date obtained variously from plane strain conpression, axisymmetric compression, tension and torsion produce stress-strain curves that are equivalent within reasonable limits of confidence, when established methods of conversion are employed.

The most widely accepted method ${ }^{47}$ of conversion between tensile and shear systems are those based upon the von Mises yield criterion and the concept of ideal work, due to Hill ${ }^{49}$:

$\sigma=\sqrt{3} \tau$	(2.7).
$\epsilon=\gamma / \sqrt{ } 3$	(2.8).
$\dot{\epsilon}=\dot{\gamma} / \sqrt{3}$	$\quad(2.9)$.

2.4. Variablos Influencing the Stress/Strain Relationship

The selection of variables to be considered for inclusion in the model of the stress/strain relationship can most conveniently be based on the various theoretical equations and proposed mechanisms of deformation developed from previous research programmes.

2.4.1. The material

Even between single-phase materials belonging to the same crystal-structure group differences in the stress/strain relationship arise due to different chemical compositions and microstructures. It is desirable that the inclusion of variables relating to and defining these properties should be based upon functional relationships between themselves and the dependent variable.

(a) Atomic proportion

The simplest description of chomical composition is one based on the atomic percentage of solute present. This is extremely easy to determine, but it is a naive method, the chief weakness of which is that it fails to distinguish between pure metals, representing aluminium, copper and nickel, for example, in exactly the same way.

(b) Shear strength (Gb)

Early studies of deformation in metals, due to Taylor ${ }^{20}$, suggested both the parebolic relationship between stress and strain, and the influence of compositional variables on the form of the curve. The equation was:

$$
\tau=a G(\mathrm{~b} Y / \mathcal{Z})^{0.5}
$$

in which $G=$ modulus of shear
$\mathrm{b}=$ Burger's vector
Z $=$ nean free path between obstacles and $C=a$ constant

The importance of the modulus of shear and Burger's vector has been confirmed on the basis the stress required for the intersection of dislocations ${ }^{52}$, and a dimensionality argument due to Nabarro et. al. ${ }^{53}$, while Kovac ${ }^{51}$ developed an argument based on the production of lattice defects which confirmed Nabarro's findings for stage II deformation, viz.:

$$
\begin{equation*}
\tau=a^{\prime} G b N^{\frac{1}{2}} \tag{2.11}
\end{equation*}
$$

where N is dislocation density

$$
\text { and } 1 / 7<a^{\prime}<\frac{1}{2}
$$

but suggested a rather different relationship in stage III of the form:

$$
\tau=\beta G b^{2} / 3^{N^{\frac{1}{3}}} \quad \text { (2.12.) }
$$

although contemporary studies by Brydges ${ }^{54}$ were in agreement with equation (2.11.).

(c) Stacking fault energy

The critical stress at which stage III deformation occurs is difficult to identify in polycrystelline materials and most of the work relating to this subject has been carried out on single
crystals. Electron microscope studies on f.c.c. metals led Diehl et. $21 .{ }^{55}$ to conclude that the transition to stage IIItype doformation was the result of thermally activated cross-slip, a view which is now generally accepted ${ }^{15}$. Several models of the cross-slip process have been proposed ${ }^{56,57,58}$ but in all cases it is a pre-requisite that partial or extended dislocations of the type described by Heidenreich and Shockley ${ }^{59}$ should first combine to form undissociated dislocations. This necessitates overcoming the repulsive force-F of the two partial dislocations, which Cottrell ${ }^{60}$ calculated as :

$$
F \sim G a^{2} / 24 \pi r-Y_{S F} \quad \text { (2.13.) }
$$

where $Y_{S F}$ is the stacking fault energy of the faulted region, and. a ' is the lattic partmoter.

More recently Copley and Kear ${ }^{6 l}$ claimed that the of Shockley partials with the lnttice could be regarded as a frictional drag which is alsn associated with the force due to the creation or a nihilation of the stacking fault region.

(d) Other variables

In a review of factors affecting the high temperature strength of polycrystalline solids Sherby ${ }^{62}$ suggested that partial dislocations were not a significant fector, and that mechanisms for dislocation climb based on thermally activated diffusion controlled the deformation. He suggested that the flow stress $-\sigma$ at a constant strain rate and grain size could be written as:

$$
\sigma=\text { constant. } G \cdot D_{d}^{-1 / 5}
$$

where D_{d} is the self diffusion rate according t_{0} the equation ${ }^{64}$:
(24)

$$
\begin{equation*}
D_{\mathrm{d}}=D_{0} \exp -\frac{\left(K_{0}+V\right) T_{m}}{T} \tag{2.15.}
\end{equation*}
$$

where $D_{0}=1, T \mathrm{~m}=$ absolute melting temperature, $T=$ temperature of test, $V=$ valence and K_{o} is a constant $=17$ for f.c.c. metals.

On the other hand, Sherby ${ }^{65}$ also lists a fine stable grain sizo as contributing to strongth at high temperatures, a property which was subsequently shown ${ }^{66}$ to depend upon stacking fault energy in work with which he as associated.

Other variables which Sherby considered to be of importancy apart from elastic modulus, were valence and a high melíing temperature.

2.4.2. Structure

(a) Grain size

Probably the most widely researched relationship in metallurgy is that between flow stress and grain size. Since the work of Hall ${ }^{67}$ and Petch ${ }^{68}$ giving rise to the empirically determined equation:

$$
\begin{equation*}
\sigma_{f}=\sigma_{0}+K D^{-\frac{1}{2}} \tag{2.16.}
\end{equation*}
$$

a number of other workers in this subject have proposed 69,70 mechanisms explaining the relationship.

Work in confirmation of the equation has been based on a wide range of materials and Floreen and Wastbrook ${ }^{71}$, for example, list eighteen references to such studies.

(b) Other structure factors

Other factors to be considered include sub-grain size, misorientation between grains or sub-grains and dislocation
density. Values of dislocation density wore not established in the work reported here and there are obvious and serious difficulties in remedying this. The same is true of intergranular misorientation, and it seems unlikely that the contribution of this factor is an important one ${ }^{9}$. Sub-grain size on the other hand, has been shown ${ }^{72}$ to have a considerable influence although it seems ${ }^{9}$ that a stable sub-grain size is not developed until strains of up to 0.3 at strain rates of 0.05 to $1.0 \mathrm{sec} .^{-1}$. Since the strain at which maximum stress occurs is about 0.3 in the metals tested and the sub-grain size is unstable up to this point, the determination of an appropriate size is therefore, rather difficult. Furthermore, the sub-grain size is clearly influenced by stroking fault energy 73,66 , a parameter already considered.

2.4.3. Temperature

Studies on the influence of temperature on deformation behaviour heve followed several different lines of approach which have, in most cases, also involved the effect of strain rate ${ }^{9}$.

Attempts to produce an empirical relationship between temperature and stress/strain parameters have met with mixed success. In some cases 31, 74 no meaningful relationship could be established at all, while other workers ${ }^{42}$ simply conmented that 'The stress varied with temperature in \& complex manner'.

Some studies, however, particularly those directed towards creep mechanisms, have established clear relationships between
metal behaviour and temperature. Sellars and Tegart ${ }^{75}$ developed an equetion, applicable over a wide range of stresses and strain rates, of the form:

$$
\dot{\epsilon}=A(\sinh G \sigma)^{\mathrm{n}} \exp (-Q / R T)
$$

where A, Q and n are temperatureindependent constents, and Q is an activation energy.

Feltham and Copley ${ }^{25}$ identified a critical stress $-\sigma_{c}$ above which Cottrell-Lomer locking becomes less effective in inhibiting slip. They demonstrated that this stress was linearly dependent upon temperature (see figure 2.3.). The absolute values of σ_{c} were clearly affected by composition although the slope of the line $\sigma_{c} /{ }^{\circ} \mathrm{C}$ appeared, from the published results, to be composition insensitive. From the report ${ }^{25}$ that slip bends were observed in creep at stresses above the critical value, but not below, it seems likely that the high stress deformation is enalogous to stege III deformation in the stress/strain curve.

In subsequent investigations 76,77 of the cross-slip process Feltharn suggested a mechenisn whereby the mutual annihilation of jogged screw dislocations leads to the observed decrease in work hardening rate during stage III deformation. The transition stress at which stage III deformation is initiated was shown in the earlier paper ${ }^{76}$ to depend upon the logarithm of temperature. Later, however, it was shown ${ }^{77}$ that the relationship betweon the transition stress and temperaturo could bo oxpressed. as:

$$
\tau_{\text {III/G }}=\text { const. } \mathrm{T}
$$

Temperature dependence of the critical tensile stress $\sigma_{c}{ }^{\prime}$.
(a) Cu and $\mathrm{Cu} / \mathrm{Zn}$ alloys - ref 76 .

The temperature dependence of the ratio τ_{3} / G in copper and cadmium crystals,
(b) Cu and Cd - ref. 77.

Figure 2.3. Influence of temperature on critical stress for 'cress-slip'

This rolationship being the one which tho proposed dynamic recovory model requiros. Bearing in mind the exponential form of the dependence of G the shear modulus on tomperature (sce Appendix A) the logarithmic relationship determined in the earlier paper would also be expected from this model.

In their review of strength under hot working conditions Jonas et. al. ${ }^{9}$ point out the similarity of the activation energies for hot working, creep and self-diffusion. This suggests that rate-controlling mechenism involves the formation and migration of vacancies in the manner proposed by Fa 1than ${ }^{77}$. It is pointed sut, however, that at strain rates in excess of those normally associated with creep bchaviour, experiments to confirm alternative models of deformation mechanisms, such as the climb theory of Weertman ${ }^{78}$ and Dorn ${ }^{79}$ or the network model of McLean ${ }^{80}$, are extremely difficult.

The possibility of dynamic recrystallisation as the means of rostoration during hot working has also been proposed but no formal theory of an appropriate mechanism has been suggested ${ }^{9}$. Clearly such a process would also depend upon diffusion and would be expected to be sensitive to strain rate.

2.4.4. Strain Rate

It was stated in section 2.4.3. that the influence of temperature and strain rate have, in most investigations, been considered concurrently. The principal reasons for this are:
(a) most thermally activated processes occurring in metals are diffusional, and therefore dependent upon time as well as temperature: The timo available
for diffusion to occur is limited by the speed with which other processes, usually stress-activated, take place, and these are directly dependent upon the strain rate;
(b) the thermal energy available may be increased by the heat of deformation produced, particularly at the higher rates of strain when the time available for heat to be lost to the surroundings is limited.

The association between time and temperature has led a number of workers 75,81 to produce paraneters composed of both temperature and strain rate. MacGregor and Fisher ${ }^{81}$ suggested a velocity-modified temperature, T^{1}, such that:

$$
\begin{aligned}
& T^{1}=T\left(1-k \ln \dot{\boldsymbol{\epsilon}} / \dot{\epsilon}_{0}\right) \quad(2.19 .) \\
& \text { where } T=\text { absolute testing temperature, } \\
& \dot{\epsilon}=\text { true strain rate and } \\
& \dot{\epsilon}_{0}\left.=\text { unit strain rate (taken as } 10^{-3} \mathrm{sec}^{-1}\right)
\end{aligned}
$$

Although qualitatively correct the results of later investigators ${ }^{42,31}$ were not able to confirn this equation. The temperaturecomponsated strain-rate parameter Z, proposed by Sellors and Tegart ${ }^{75}$ has been confirmed ${ }^{9}$, over a wide range of strain rates, as:

$$
z=\dot{\epsilon}^{\prime} \exp (\Omega / R T) \quad \text { (2.20.) }
$$

As with many of the studies of temperature-dependence, however, this relationship has only been demonstrated for steadystate deformation and its value in conditions of transient deformation are in some doubt ${ }^{9}$.

A much earlier study ${ }^{23}$ suggested that the stress to a given
strain could be represented by the semi-logarithmic relationship:

$$
\sigma=A \ln \dot{\epsilon}+\sigma_{0}
$$

Alder and Philips ${ }^{42}$ were able to confirm the equation, but found that a power relationship of the form:

$$
\sigma=\sigma_{0} \dot{\epsilon}^{n}
$$

(2.22.)
was equally suitable. In addition to their own results they quoted the work of many other researchers whose evidence also seemed divided between the alternatives offered by equations 2.21 and 2.22. In this and later work ${ }^{31}$ it was shown that both σ σ_{0} and n in equation 2.22 varied with strain and temperature as well as chenical composition.

Feltham's model of cross-slip ${ }^{76,77}$ predicts an equation of the form:

$$
\begin{aligned}
\tau_{\text {III }} & =\ln \dot{Y} \text { (const. }(\mathrm{KI} / \mathrm{Q})) \\
& \text { (sce figure 2.4.) }
\end{aligned}
$$

where $\mathcal{T}_{\text {III }}$ is the stress for transition to stage III deformation, $\dot{\gamma}_{\text {is shear strain rate, }} T$ is temperature and Q is an activetion energy.

The magnitude of the strain rate effect is such that, from Bailey and Singer ${ }^{31}$, an increase in the flow stress of aluminium at $600^{\circ} \mathrm{C}$. and a strain of 2.3 , from approximately $1000 \mathrm{p} . \mathrm{s} . i$. to 1800 p.s.i. would occur over the range of strain rates being considered in the current investigation. At roon temperature strain rate has no measurable influence on the flow stress. The results of Alder and Philips confirm this value for aluminium, and suggest an increase of groater than 2,000 p.s.i. for copper at the same strain and $750^{\circ} \mathrm{C}$.

Effect of Strain Rate on the Stress Required to Compress Aluminium to 40% Reduction at Various Temperatures.
(a) $\sigma v . \log _{10} \dot{\epsilon}$; (b) $\log _{10} \sigma v . \log _{10} \dot{\epsilon}$.
(a) Aluminium - ref. 42 .

The dependence of the shear stress τ_{3} on the shear rate in copper crystals of the same orientation deformed at three temperatures. The points represent values measured by Berner (1960).

(b) Copper - ref. 77.

2.4.5. Summary and Conclusions

There is considerable theoretical and practical evidence in support of the view that the relationship between stress and strain is parabolic within stage III, the region embracing most of the deformation in polycrystalline aggregates of f.c.c. netals. If this rolationship is adnpted (i, e_{0} the strain exponent is fixed at $\frac{1}{2}$) then, referring to equetion (2.6.), the rate of work hardening cen be measured in terms of the coefficient K. In order to define stage III of the curve it is then only necessary to determine the upper and lower limits.

The upper limit of the relationship is conveniently measured since the stress at which restoration begins marks the end of the conventional stage III behaviour and the maximun strength of the metal.

The lower limit is ideally measured by $\boldsymbol{\tau}_{\text {III }}$ - but this is very difficult to define in a polycrystalline sample, and if the stacking fault energy, or the temperature, or both are high the material may cross-slip at a very early stage (e.g. aluminium). The difficulties of identifying and measuring $\tau_{\text {III }}$, when its value is approxinately equal to the stress at which plastic deformation first occurs, may be avoided by extrapolating the curve of stage III back to its intersection with the stress axis, at the print indicated by $\boldsymbol{\tau}_{0}$ in figure 2.5. Even in the worst conditions the strain over which extrapolation is necessary is much smaller then the strain in stage III. τ_{0} should, therefore, be approximately equivalont to $\boldsymbol{\tau}_{\text {III }}$, although it will always tend to underestimate

Figure 2.5.(a)Showing parameters of shear stress- shear strain
relationship

Figure 2.5.(b)Showing Log/log plot of shear stress versus shear strain.
rather than over-estimate the true value, and the error variance is inherently greater then that for τ_{n} or τ_{s} because of the extrapoletion.

The one other parametor which is essential to the completion of the nodel at high tomporatures in the steady-state stress τ_{s}.

Of the material variables which are likely to influence $\tau_{0}, \tau_{\mathrm{n}}, \tau_{\mathrm{S}}$ and K the product term $G . b$ is directly related to the stross required to move a dislocetion and so is likely to be of considerable importance. Similerly, the stacking fult energy, which controls the degroo of soparation of partial dislocations, is likely to affect both the flow stress and the rate of work-hardening.

Anong the variables, Atomic \% of solute is worth considering because of the eese with which it may be determined. The electron/ atom ratin may ffer a guide to the influence of chemical interactions, and the diffusion coofficient $-D_{d}$ will be important where thermally activated diffusion contributes to the relief of lattice strain by reducing the number of lattice defects.

The influence of temperature may be expected to be quite largo, even after its effect on the modulus of shear is taken into account, and it seens likely, from section 2.4 .3 ., that the parameters of the stross/strain model could depend upon T / T_{n} or G. $T / T_{\text {ni }}$.

The strain ratc, empared with the model paraneters on the basis of a semi-Ingarithmic or of a powor relationship seems
likely to have a small but significant effect. Aluminium at $600^{\circ} \mathrm{C}$, for example almost doublos in strength over the range of strain rates which are availablc in this investigation. There appears to be a slight preforence for the semi-logarithmic function (the data of Alder and Phillips ${ }^{42}$ supports this view on the basis of comparing the corrolation coefficients produced by the two expressions, for example, despite the conclusions which those workers reached) although eithor appears to fit most of the available evidence.

2.5. Regression Analysis

The application of regression analysis is based upon a postulated mathematical model of the physical situation. In particular the hypothesis proposed is that the observed values of a dependent or response variable - Y may be expressed as linear functions of one or more independent or control variables $x_{1}, x_{2}, \ldots \ldots, x_{p}$, with residual errors which are normally and independently distributed with constant variance and mean equal to zero

The technique of regression analysis involving formulation of the model, calculating its parameters and assessing its accuracy and reliability, have been presented in a number of texts ${ }^{82}$. In particular, the treatinent by Draper and Smith ${ }^{83}$ provides a thorough and auth ritative approach to the subject and has been adopted here as the major reference.

2.5.1. The Regression Model

The regression model may be expressed in the form:

$$
y_{\alpha}=\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \ldots+\beta_{p} x_{p}+\epsilon_{x}-Z^{(2.24+)}
$$

where $X_{1}, x_{2}, \ldots \ldots x_{p}$ have particular known values for each ${ }^{Y} \boldsymbol{\alpha}$, say, $X_{1 \boldsymbol{\alpha}}, X_{2 \boldsymbol{\alpha}} \ldots \ldots \ldots, X_{p \boldsymbol{\alpha}}$. Usually X_{1} is equal to unity for all values of Y_{α} unless there is reason to believe that Y_{α} equals zero when all of the control variables equal zero.

Implicit in this fora of model is the assumption that the regression of Y on any X_{i} is linear with constant slope when the other variables $X_{j},(j \neq i)$ are constant, whatever the value of all the other variables. Deviations from linearity, either inherent or due to interaction between the effects of
independent variables can sometimes be taken into account by the inclusion of second order terms, e.g. $X_{i}{ }^{2}, X_{i} X_{j}$.

2.5.2. Parameters of the Model

In order to complete the model it is necessary to estimate the β-parameters, or regression coefficients, in equation (2.24.)

The techniques for carrying out the estimation are based upon a theorem due to Markoff which states that the best linear unbiased estimates of the constants $\beta_{1}, \beta_{2} \ldots, \beta_{p}$ are those that minimise the sum of squares

$$
\begin{equation*}
\Sigma_{\alpha}\left(y_{\alpha}-\beta_{1} x_{1 \alpha}-\beta_{2} x_{2 \alpha}-\ldots \ldots-\beta_{p} x_{p \alpha}\right)^{2} \tag{2.25.}
\end{equation*}
$$

If (2.25) is differentiated with respect to β_{1} and equated to zero it becomes:

$$
\beta_{1} \sum x_{1 \alpha}^{2}+\beta_{2} \sum x_{1 \alpha}+\cdots+\beta_{p} \sum x_{p \alpha \alpha}=\sum y_{\alpha} x_{1 \alpha} \text { (2.26.) }
$$

If this is repeated for each β_{i} in turn a series of equations are produced, equal in number to the number of regression coefficients to be estimated, of the form:

$$
\begin{align*}
& \beta_{1} \sum x^{2}{ }_{1 \alpha}+\beta_{2} \sum x_{2 \alpha}+\cdots+\beta_{p} \sum x_{1 \alpha} x_{p \alpha}=\sum y_{\alpha} x_{1 \alpha} \\
& \beta_{1} \sum x_{1 \alpha}{ }_{2 \alpha \alpha}+\beta_{2} \sum x^{2}{ }_{2 \alpha}+\ldots+\beta_{p} \sum x_{2 \alpha}{ }_{x_{p \alpha}}=\sum y_{\alpha} x_{2 \alpha} \tag{2.27.}\\
& \text {... } \\
& \beta \sum_{1} x_{1 \alpha} x_{p \alpha}+\beta \sum_{2} x_{2 \alpha} x_{p \alpha}+\ldots+\beta_{p} \sum x_{p \alpha}^{2}=\sum y_{\alpha} x_{p \alpha}
\end{align*}
$$

These equations are usually referred to as the 'normal equations'.

Provided that the X - values are not such that one or more linear function of them is equal to zero, a unique solution
exists to the set of simultaneous equations given in (2.27.). The solution provides a set of estimates $-b_{i}$, of the p values of $\boldsymbol{\beta}_{i}$, specific to the sample of observations on which they are based. Maintaining the assumption that variations of the observations about the line are normal, that is, that the errors e_{i} are all from the same normal distribution, it can be shown 8 z that $100(1-\alpha) \%$ confidence limits can be assigned to β_{i} by

$$
b_{i} \pm t^{t}\left(n-m-1,1-\frac{1}{2} \alpha\right) . \text { So. }\left(b_{i}\right) \quad \text { (2.28.) }
$$

where $t_{\left(n-m-1, I-\frac{1}{2} \alpha\right)}$ is the (1- $\left.\frac{1}{2} \boldsymbol{\alpha}\right)$ percentage point of a t - distribution with ($n-m-1$) degrees of freedom, m is the number of independent variables in the regression model and So. $\left(b_{i}\right)$ is the standard error of b_{i}.

It is now almost universally accepted that the methods of matrix algebra provide the most convenient means of solving the normal equations. This is not only because of the ease with which general purpose algorithms can be developed for regression work, but also because of additional information which becomes readily available when matrix methods are employed.

Reverting to matrix notation, therefore, the mathematical model under consideration can be written as:

$$
\underline{Y}=\underline{x} \beta+\underline{e}
$$

where \underline{Y} is an ($n \times 1$) vector of observations
\underline{X} is an ($n \times p$) matrix of known form
β is a $(p \times I)$ vector of parameters e is an ($n \times 1$) vector of errors.

It can be shown (see, for example, Placket ${ }^{84}$) that the
normal equations (2.27.) can be rewritten:

$$
\left(X^{\prime} \underline{X}\right) \underline{b}=X^{\prime} Y
$$

where \underline{X}^{\prime} is the transpose of \underline{X} and
\underline{b} is the least squares ostimate of _.

The matrix ($\underline{X}^{\prime} \underline{X}$) is inherently symetrical. Provided, therefore, thet it is alsn non-singular, i.e. that none of the normal equations are inter-dependent, it is possible to produce the inverse $\left(X^{\prime} X\right)^{-1}$ of $\left(X^{\prime} X\right)$. The solution of the normal equations can then be written:

$$
\begin{equation*}
\underline{b}=\left(\underline{X}^{\prime} X\right)^{-1} \underline{X^{\prime} Y} \tag{2.31.}
\end{equation*}
$$

Draper and Smith point out that the solution \underline{b} has the following properties:

1. It is an estimate of β which mininises the error sum of squares $e^{\prime} e$ irrespective of any distribution properties of the errors.
2. The estimates of \underline{b} are linear functions of the observations $Y_{1}, Y_{2}, \ldots, Y_{n}$, and provide unbiased estimates of the elements of _ which have the minimun variances (of any linear functions of the Y^{\prime} 's which provide unbiased estimates), irrespective of distribution properties of the rrors.

A number of well-established methods are available for inverting matrices ${ }^{86}$. The method due to Woolf ${ }^{85}$ offers certain advantages, however. In particular, the ease with which individual variables mey be added to or removed from the reciprocal matrix is of benefit in carrying out the tosts of significance described in 2.6. One shortcoming of this method (which could apply equally
to any other method) is the risk of ill-conditinning. This is particularly likely in iterative processes for matrix inversion, and arises mainly due to rounding-off of values during intermediate stages. If different variables have widely different values (e.g. temperature and grain size) the likclihood of ill-conditioning is increased, even when the calculations are carried out on a computer. These problems cen be countered, however, by replacing the matrix of cross-products and squares by a matrix of correlation coefficients, since these values must all lie between -1 and +1 , by definition. The replacement is easily carried out since, if the j th element in the i th column of the matrix of cross-products and squares is $a_{i j}$ its counterpart $r_{i j}$ in the matrix of correlation coefficients is obtained by:

$$
r_{i j}=\frac{\varepsilon_{i j}}{\left(a_{i i} \cdot a_{j j}\right)^{-\frac{1}{2}}}
$$

Then, if the standerd deviation of Y is S_{y} and that of X_{i} is S_{i}, and the element of the reciprocal matrix corrosponding to $r_{i j}$ in the natrix of correlation coefficionts is $r^{i j}$ the following values may be derived:

$$
\begin{equation*}
b_{i}=\frac{r^{y^{i}}}{r^{y y}} \cdot \frac{s_{i}}{s_{y}} \tag{2.33}
\end{equation*}
$$

The standerd error $f \mathrm{~b}_{\mathrm{i}}$, denoted by S.E. $\left(\mathrm{b}_{\mathrm{i}}\right)$:

$$
\begin{equation*}
\text { S.E. }\left(b_{i}\right)=\left(\left(r^{y y} r^{i i}-r^{y i 2}\right) /(n-m-1)\right)^{0.5} \cdot \frac{r^{y i}}{b_{i}} \tag{2.34}
\end{equation*}
$$

2.6. Assessing the Model

Assessment of the model involves two requirements:

1. assessment of the model as on entity
2. assessment $\cap f$ the contribution of each individual variable to the model.

2.6.1. The Whole Model

It is convenient to consider first the value $\hat{Y}_{i}-Y_{i}$, since this indicates the extent of the disagreement between the observed value Y_{i} and the value \hat{Y}_{i} predicted by the model. This value cen be divided:

$$
\hat{Y}_{i}-Y_{i}=\left(Y_{i}-\bar{Y}\right)-\left(\hat{Y}_{i}-\bar{Y}\right)
$$

If both sides are squared and summed from $i=1$ to n
this becomes

$$
\sum\left(\hat{Y}_{i}-Y_{i}\right)^{2}=\sum\left(Y_{i}-\bar{Y}\right)^{2}-\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

which con be rewritten

$$
\begin{equation*}
\sum\left(y_{i}-\bar{Y}\right)^{2}=\sum\left(\hat{y}_{i}-Y_{i}\right)^{2}+\sum\left(\hat{y}_{i}-\bar{Y}\right)^{2} \tag{2.37.}
\end{equation*}
$$

This is the mathematical expression of the statement: the total sum of squares $=$ sum of squares about + sum of squares due about the mean the regression to the regression

The usefulness f the regression equation as a predictor may then be assessed by considering the ratio (S.S. due to regressinn/Sos.about the mean). The more nearly that this ratio, designated R^{2}, approaches unity the better is the predictive capability of the regression equetion. The parameter R is termed the Multiple Correlation Coefficient. Using the Woolf method and inverting the matrix of correlation coefficients the value of R^{2} is very conveniently obtained:

$$
\begin{equation*}
R^{2}=1-1 / r^{11} \tag{2.38.}
\end{equation*}
$$

It is not sufficient, however, to consider R^{2} in isolation since any variable added to the equation will increase the regression $S . S$. until R^{2} equals unity when the number of
independent variables is equal to one less than the number of observations. Any sum of squares has associated with it a number of degrees of freedom indicating the number of independent observations from which it has been compiled. Using the various sums of squares and their associnted degrees of freedom it is possible to construct a table of the analysis of variance in the following form:

Source	Sum of Squares	Degrees of	Mean Sreedon
Regression	$R^{2} \cdot \sum_{i=1}^{n}\left(Y_{i}-Y\right)^{2}$	m	M_{R}
About regres- sion(residual)	By subtraction	$n-m-1$	S^{2}
About mean	$\sum Y_{i}{ }^{2}-\frac{\left(\sum Y_{i}\right)^{2}}{n}$	$n-1$	

One further quantity required to assess the overall model is the 'pure error' mean square. This quantity, which is, again, computod from the sum of squares of deviations from the mean, divided by the number of degrees of freedon, is best estimated from repeat observations of the dependent variable at each set of independent variables. Where this estimate is not available for any reason (for example, if the number of experiments required is probibitive) other methods of obtaining en estimato might be possible . The only difference between certain experiments might be due to some variable which has been shown to have no significant offect on the regression model, for instance.

Having been estimated the 'pure error' sum of squares

 may be introduced into the anelysis of variance table as shown in figure 2.6... fron Draper and Smith ${ }^{83}$. If the residual meansquare is significantly greater than the pure error mean square, as determined by an F-test, there is said to be a lack of fit and the nodel is considored incomplete in its existing form.

If the residual mean square is not significently greater than the pure error mean square, however, this indicates that there are no grounds for doubting the adequacy of the model, and both pure error and lack of fit meen squares can be used as estimates of σ^{2}.

Finally, the residual values $\hat{Y}_{i}-Y_{i}$ should be examined. The residuals are the set of values e_{i} in (2.24。) and certain essumptions have been made concerning them. In particular, the assumption that the errors are normally distributed is necessary for making F-tests. Since the criteria for assessing the model are based on F-tests it is necessary to confirm that the data do not contradict the assunptions. There are a number of methods for examining the residuals including
(a) graphical methods where the residuals are plotted against the fitted values and against any other variables (including those in the adopted model) which might introduco bias;
(b) comparison with the normal distribution to discover extremes of skewness or curtosis.

2.6.2. The Individual Variebles

The assessment of each of the independent variables is aimed at only including in the model those variables which make a significant contribution. The final objective of finding a compromise between a large number of independent variables,

Figure 2.6. Schematic presentation of analysis of variance ref. 83.
with the resulting high value of R^{2}, and the efficiency and convenience of a smell number of predictor variables is usually reforred to as selecting the 'best' regrossion equation. In their paper introducing the technique of element analysis Newton and Spurrell 87 suggest that an alternativo nbjective of regression analysis to learn about the 'operation' of the process being studied. In this case it is desired to identify those variables which are important in controlling the process and which indopendently have as large effects upon the residual sum of squares as possible. They suggest that this approach is conveniently described as 'operational'.

Various methods of selecting the 'best' sub-set heve been suggested with a number of difforent criteria of 'bestness'.

In the 'all regressions' method it is necessary to compute all $2^{P}-1$ possible combinations of the p variables. If the residual mean square is plotted against the number of variables in the equation, it will usually be found that the value attains an approximately constent level at some number of variables less then p. The number of variables at which this levelling-off occurs is a guide to the slzo of the eventuelly adopted oquation. It is worth mentioning here that the valuo of residual mean squere at which the above nentionod pint levols off may provide an estimate of the error mean square $-\sigma$, if n better estimate (such as duplicate test results) is available. The highest value of R^{2}, i.e. the highest regression sun of squeres, attained at the appropriate numbor of variables is one criterion for indicating the best sub-set.

One major disadvantage of this approach is that it is extromely laborious once 'p' becomes large. Even adopting the approach suggested by Garside ${ }^{88}$ whereby all possible sub-sets may be compared 'in a more efficient way than performing the calculation 'ab initio'', a running time of greater than four minutes was required on an Atlas computer (a very powerful machine) to deal with thirteen variables. Indeed, even on Atlas the maximum number of variables which can be dealt with, irrespective of tine, is 48 if the program developed by Garside is used.

Other methods of assessing tho individual veriables merf bo based on the concept of 'the additional sum of squares'. This quantity is the amount by which the regression sum of squares is increased as a result of adding the particuler variable last to the regression. If the independent variables in tho equation are truly independent of each other, i.e. the non-diagonal elements of the matrix of correlation coefficients (except those including the dependent variable) are all zero, the matrix is said to be orthogonal. In this case the additional sum of squares is an accurate and unambiguns indication of the relative importance of each of tho variables. Moreover, a comparison of this value with the error variance $-\sigma^{2}$, by means of an F-test, provides an indication of the statistical significance of the contribution that the variable concerned makes to the regression sum of squares. Where the matrix of corrclation coefficients is non-orthogonal, however, the additional sum of squares due to any variable depends upon the other variables which are included in the regression equetion and is sensitive to the order of inclusion or exclusion of variables.

There are, basically, two alternative approaches to the process of selection. The first is to add into the regrossion equation, at each stage, the variable which makes the greatest addition to the rogression sum of squeros. The alternative is to begin with all possible variables included in the equation and to remove them, one by one in order of the contribution to the regression sum of squares, beginning with the smallest. In each case the equation is considored to be complete when no variable which could be added to the equation makes a statistically significant controbution and no variable in the equation can be romoved without roducing the regression sum of squares by an amount which is significant when compared with σ^{2}. Neither of these methods cen be presented as being indisputedly better than the other, but both have the disadvantage, mentioned earlier, that the significanoef some variables may be grontly influenood by the other variables present in the equation. In order to counter this disadvantage techniques have been suggested the best known probably being that due to Efroymson ${ }^{89}$, in which the variables already included (in the case of forward selection) or excluded (in the case of backward elimination) are re-considered in order to see if their status has changed, at each stage of sclection.

A refinoment of the approach wheroby the additional sum of squeros is the only criterion of selection has been proposed and developed by Newton and Spurrell $87,90,91,92$. They advocate a technique based upon 'element analysis'. The additional sum of squares is doscribed by Newton and Spurrell as the primary element, and additionally they defined quantities termed 'secondary elenents' which cannot be attributed directly to any
individual variable but are a measure of the correlation between variables. The secnndary elements, which may be positive or negative, are added to the regression sum of squares in the presence of cither of the variables with which they are associated. The secondary elements, therefore, provide supplementary criteria in selecting variables. The optimum equation will contain those variables having the largest primary elements, all of which should be statistically significant at the choson level of probability, and the least positive secondary elements consistent with this criterion. Where a choice appears necessary between variables having equal or nearly equal effocts, that which has the highest secondary elements in assnciation with the other variables will produce the higher value of R^{2}, while that with the lowest scoondary elements will be the 'more orthogonal'.

2.6.3. Sunmary and Conclusions

Regrossion analysis may sorve two purposos; (a) it provides a model, on tho basis of which predictions concorning the bchaviour of a 'responso' variable may be made from a knowledge of tho valuos of appropriate 'prodictor' variablos,
(b) it providos information rolating to the importance of tho predictor or independent variables in their influonce upon some process, of which the rosponso variablo may be some form of measure.

The use of regrossion analysis would soem to bo appropriate whon the orrors (which arise in any programe of experiments) can reasonably bo expected to be approximatcly normally distributed, whon the response variable deponds upon a series of influences which may be independently idontified and when those influences may be represented by a lineer response of the dependent veriable. From the survey of the mechanisns which influence the form of the stress-strain curve in metals all of the above conditions appear to apply in the present investigation. The influonces which might bo expectod t affoct the parametors outlined in section 2.4.5. include the stress required for dislocation movement, the stress required to 'close' an extended dislocation, the 'misorientation' stress due to using a polycrystalline specimen, etc. All of these influences are independent although clearly they are each governed, in turn, by a limitod number of factors, such as composition, temperaturo, otc.

Since the main purpose of this investigation is to suggest a form of model of the behaviour of a particular group of metals
during deformation, the menner in which the various control variablos oxort thoir influence is of limited importance. It is sufficient, therofore, to study the offoct of oach of the possible prodictors and to classify their offocts as 'significant' or 'not significant'. Clearly, the predictors which are shown to have a 'significant' effect provide some guide to the mechanisms taking place.

Selection of the significant predictor variables is most frequontly based upon the 'additional sum of squares', i.c. the amount by which the regression sun of squares is increased when the variable to bo considered is added to the regrossion equation. In circunstences where the matrix of correlation coefficionts is not orthogonal the choicc of variables may bo strongly affected by the ordor of addition or deletion of variablos in the equation, and some supplomentary criterion, i.e. extra to the 'additional sum $\circ f$ squaros ${ }^{2}$, such as the cloment analysis methods proposed by Newton and Spurroll, can be of benefit.

The officacy of the adopted model may bo assossed either in terms of R^{2} - a measure of tho extent to which the total variation in the dependent varieble may be oxplained by the regression equation, or by an F-test which would indicate the sub-set of variables having, on avorage, the greatest predictive capability.

3.
 EXPERTMENTAL METHOD
 3.1. Introduction

In order to fulfill the main objective of the investigation, namely the construction of an appropriate predictive model of the stress-strain relationship, a study was made of a wide range of materials undor a wide range of oxperimental conditions. The materials chosen varied from commercially pure metals to alloys containing up to 25% of solute, while the test temperatures ranged from that of liquid nitrogen up to values close to the melting points of the materials under study.

The test programe required the production of suitable metals and alloys, from their particular constituents, in a form suitable for machining into test-pieces. Each of the individual tests which numbered woll in oxcess of one hundred, was carried out the torsion machine described in section 3.3.2. and the output, in the form of a load vs. time trace, measured manually, approximately thirty to forty readings being taken. The equipment was calibrated at froquont intervals in order to ensure the highest possible degrec of accuracy.

The computer programnos in Appondices B and C were developed specifically for use in the analysis of the results of this invostigation.

(48)

3.2. Materials

3.2.1. Introduction

The materials used in this investigation were selected in order to satisfy two main criteria:
(i) They should belong to the same crystal-structure group.
(ii) They should provide as wide as possible a range of values of each of the experimental parameters

The crystal group chosen to satisfy (i) above was the face centred cubic. This choice was due to the commercial and industrial importance of the group and the availability of reference data of relevance to studies of deformation.

With reference to (ii) the metals Ni, Cu and Al provide a satisfactory range of elastic properties, melting temperatures and electron/atom ratios. In order to include metals of low, as well as high, stacking fault energy, without resorting to preoious metals, it was necessary to include some alloys. The most convenient, for their range of solubility, availability of stacking fault energy data and the ease with which they could be obtained in suitable form, are those based on Cu. To avoid having alloys from one system only, $\mathrm{Cu} / \mathrm{Zn}$ and $\mathrm{Cu} / \mathrm{Al}$ alloys were used.

The nominal copositions and identification codes for the materials used are as follows:-

Code

Nickel	commercially pure	-	N	
Aluminium -	$"$	$"$	-	A
Copper	$"$	$"$	-	C
Copper $/ 10 \%$ Zinc			-	CZ1
Copper $/ 20 \%$ Zinc			-	CZ2
Copper/ 25% Zinc			-	CZ3
Copper $/ 5 \%$ AIuminium			-	CAI

3.2.2. Material Preparation

The Nickel was very kindly supplied by Messrs. International Nickel in the form of nominally $\frac{5}{8}$ inch diameter hot swaged bar, ready to be machined into test-pieces.

The other materials were supplied in ingot form as high purity basis metal (Aluminium and Copper) and $50 / 50 \mathrm{Cu} / \mathrm{Zn}$ and $80 / 20 \mathrm{Cu} / \mathrm{Al}$. The metals, with appropriate alloying additions, were melted in a town's gas-fired reverberatory furnace and chill cast into 2 inch diameter steel moulds.

Hot forging to a nominal $\frac{3}{4}$ inch diameter was carried out by Messrs. High Duty Alloys Ltd., according to the schedule in Table 3.1.

The bars were then cold rolled to $\frac{1}{2}$ inch. diameter in grooved rolls and annealed.

Samples were taken from the bars for chemical analysis. The copper-contents of the copper-based alloys were determined by electrolysis and all other determinations were made by Messrs. I.M.I. Ltd., using atomic-absorption spectrophotometry. The full analyses are given in Table 3.2.

Material Code

CZ2, CZ3 As above but forging temp. $850^{\circ} \mathrm{C}$.

A

C, CZI, CAI Heated $900^{\circ} \mathrm{C}$. - Forged to $I^{\prime \prime}$ sq. - Reheat $900^{\circ} \mathrm{C}$. - Forged to $\frac{3}{4}{ }^{\prime \prime} \mathrm{sq}$. - remove comers

- finish in half-round tools to $\frac{3}{4}$ " dia.

Method of Preparation

As above but forging temp. $430^{\circ} \mathrm{C}$.

Table 3.1. Preparation of materials for machining.
(51)

3.2.3. Modulus of Shear $-G$

Values of the modulus of shear for the alloys used in the investigation were calculated using the equations derived in Appendix A. In all cases where it was possible confirmation was obtained from tabulated data ${ }^{65}$.

3.2.4. Stacking Fault Enorgy $-Y_{\text {sF }}$

The determination of stacking fault energies is subject to some uncertainty since most methods of measurement are based upon assumptions the validity of which may be difficult to establish. Attempts to circumvent the difficulties have led to a number of techniques of measurement based on observations of dislocation modes ${ }^{93}$, the stress/strain curves of single crystals ${ }^{94}$, the surface energy of twins ${ }^{95}$, the evaporation of stacking fault loops ${ }^{96}$ and tetrahedra ${ }^{97}$, or the assessment of preferred orientation in cold rollod sheet ${ }^{98}$.

The values of stacking fault energy adopted for this investigation are as follows:

In each case it was considered that sufficient confirmatory evidence is availablo, both in the references quoted and the previnus work to which they, in turn, refer to accept them as authoritative estimates.

Figure 3.1. Showing dimensions of Torsion Test Piece.

3.3. The Torsion Test

3.3.1. Introduction

In selecting the test conditions two forms of specimen geometry are possible, i.e. hollow or solid specimens.

The strain applied to a test-piece deformed in torsion varies with the radius of the specimen. The use of a thin-walled tubular specimen, as suggested by Hodierne ${ }^{36}$, simplifies the calculations involved in producing a stress-strain curve from torque-twist measurements as the strain can be assumed to be uniform across the wall thickness. This ease of calculation is obtained at the cost of some practical restrictions, however. The tubular form of specimen is susceptible to buckling, particularly during high temperature tests when the elastic modulus is lowered, and must be kept to a low length to diameter ratio. Some of the advantages of torsion testing are thus lost, since the volume of metal tested is greatly reduced and the influence of blending radii at the ends of the gauge length may be quite significant.

It was decided, therefore, to use a solid specimen in these tests. The gauge length to diameter ratio was fixed at $4: 1$, rather arbitrarily, to coincide with that being used elsewhere 12° in anticipation of the possibility of comparison of the results.

The gauge length was then fixed at one-inch since this appeared, after a number of trials, to be the greatest length over which uniformity of heating could be guaranteed with the available heating equipment. The specimen dimensions are given in figure 3.1.

3.3.2. The Torsion Machine

The torsion machine used is shown in plates 3.1. and 3.2. It was basically that described by Dragan, but the facilities available for the application of axial stresses and measurement

of axial strains involved in Dragan's investigations, were not used. Effectively, therefore, the apparatus comprised a rotating shaft driven by an electric motor through a clutch/brake and gear-box mounted at one end of a lathe bed. A movable table, attached to the lathe bed, carried a similar shaft, aligned with the first, and leading to two cantilever beams, one opposing the torsional and the other opposing the axial movement of the shaft. The beams were attached to the shaft by split collars so that the whole assembly could be locked when the specimen was in place, screwed into and connecting the two shafts, avoiding the imposition of stresses prior to testing.

The loads developed during the test were measured by means of strain gauges attached to the cantilever beams. The signals from a constant voltage source, via the strain gauges, were recorded using a Souther Electronics Ltd. S.E. 2005 Ultra-Violet recorder with rotating-mirror c-40 type galvanometers.

As the nominal speeds provided by the lathe gear-box were not accurately listed and depended to some extent upon local voltage fluctuations, the revolutions per minute of the drive shaft were recorded during each test, by means of a sliding electrical contact acting on a split copper disc which was attached to the shaft. Contact was broken at the split in the disc once in each revolution, causing a break in an otherwise continuous line produced on the output from the $U_{0} V$. recorder.

The U.V. - sensitive photographic paper providing the record could be output from the recorder at any of fifteen discrete speeds between 1.25 and $2 \times 10^{3} \mathrm{~mm} . \mathrm{sec}^{-1}$ In addition a timing device providing a line across the chart at intervals of 1.0 , 0.1 or 0.01 second. A schematic representation of a typical trace is shown in Fugure 3.2.

3.4. Grain Size

Grain sizes were measured using a Cambridge Instrument Co. Quantimet Image Analysing Computer. The instrument scans a metal specimen which has been prepared for metallographic examination in conventional manner, and projects an image onto a television screen. A threshold control enables an optical intensity to be selected below which the Quantimet will defect features. The online analogue computer registers the vertical height of intersection occurring between the television scanning lines and features of less than the selected threshold intensity. As the horizontal scans are equi-spaced the number of intersections is proportional to the total vertical longth projoctod in the horizenel direction.

The mean linear distance between intersections - D, may then be calculated using the method of Hilliard ${ }^{62}$:

$$
\begin{equation*}
D=\frac{L}{P \times M} \tag{3.1.}
\end{equation*}
$$

where $L=$ the length of a single scan.
$P=$ the meter reading of intersections.
$\mathrm{M}=$ the magnification.

If required the mean linear intercept - D may be converted to A.S.T.M. grain size by the equation 6° :

$$
\text { A.S.T.M. No. }=\left(6.64 \log D^{-1}\right)-10
$$

\square (3.2)

This technique makes it necessary to prepare the specimens very carefully for examination as the Quantimet is virtually unable to distinguish between grain boundaries and scratches or similar defects.

In this investigation specimens were mounted in a cold-setting moulding compound and ground by hand on successively finer grades of emery papor, prior to final polishing and etching as in table, 3.3.

Grain sizes, expressed as mean linear intercepts, were determined on specimens cut from the bar stock before machining. Further determinations were carried out on the un-deformed shoulders of testpieces which had been torsion tested at high temperatures. The latter measurements were compared with those made on the original stock using Students' 't' tost, to assess whether or not grain growth was likely to have occurred during the test or heating to test temperature. In no case was there any evidence of a significant increase in grain size.

Material

Nickel

Aluminium

Copper and
copper alloys
Electropolish
70% Methyl Alcohol
20% Perchloric Acid
10% Glycerine
$\frac{1}{4}$ diamond

Electropolish
70% Methyl Alcohol
20\% Perchloric Acid
10\% Glycerine

Electropolish
30\% Phosphoric Acid

Etch

Fry's reagent

Anodise
$2 \% \mathrm{HF}$. 49\% Methyl Alcohol 49% water 30 v for 10 mins.

Polish

 alcoholic ferricchloride

Table 3.3. Preparation of Metallographic Specimens

3.5. Elevated Temperature Tests

3.5.1. Introduction

Tests at greater than room temperature were facilitated by heating the torsion test-piece in situ, using a $3 \mathrm{KW}, 4 \mathrm{KHz}$ high frequency induction heating unit. The induction coil, which surrounded the test-piece, was of $\frac{1}{8}$ - inch diameter O.F.H.C. tube, and after a series of trials to obtain the best heating rate and temperature distribution the number of turns in the coil was fixed at five, each of $\frac{5}{8}$ - inch internal diameter. This gave an inductive couple of $\frac{1}{8}$ - inch at the test-piece shoulders, compensating the heat loss into the grips. Heating times varied depending upon the temperature of testing and the material being heated, but were never in excess of ten minutes and rarely exceeded five minutes. The greatest difficulty encountered was in heating the pure $C u$ test-pieces, and for these the induction coil was silver plated to reduce the electrical resistance in the surface and improve the inductive couple.

High frequency induction heating was chosen mainly because the high heating rates avoid grain growth, as shown previously (section 3.4.). In addition the specimen is visible during deformation, it is exposed so that rapid quenching is possible without the need to extricate it from a furnace, and the amount of incidental heat in test-piece holders etc. is minimised.

3.5.2 Temperature Measurement

Difficulties arise in the measurement of temperature when the test-piece is not contained in a furnace, as there is a constant heat loss from the specimen surface. A conventional thermocouple can give rise to considerable variation in the indicated temperature depending upon the degree of contact with the specimen surface

Figure 3.3. Circuit diagram for discharge welder.
the size of thermocouple bead, the temperature gradient across the bead and the position of the true hot junction. In setting-up the equipment for a test, a thermocouple with a flattened bead approximately one-tenth of an inch across and one-hundredth of an inch thick, was held in contact with the specimen surface using a low conductivity ceramic rod. The separations of the turns in the induction coil were then altered until the temperature variation along the testpiece gauge length was less then $5^{\circ} \mathrm{C}$.

This type of thermocouple was not suitzble for temperature measurement and control during testing because of the difficulty of maintaining a firm and constant pressure as the test-piece was twisted, and the deflection caused by attempting to do so. The problem was overcome by using an open-ended thermocouple, the arms of a $\mathrm{Pt} / \mathrm{Pt} 13 \% \mathrm{Rh}$ couple being attached separately to the testpiece surface approximately 0.2 inch apart. This had the added advantage of minimising errors due to the conduction of heat away from the hot junction down the thermocouple arms. The separate arms were attached using a discharge welder, the circuit diagram of which is shown in figure 3.3, in which a condensor was charged and then rapidly discharged through the thermocouple/test-piece interface. The rapid local heating allowed the leads to fuse to the surface of the test-piece. Damage to the test-piece was very slight and failure did not occur in the immediate vicinity of the discharge marks in any of the tests recorded.

3.5.3. Temperature Contrn

The temperature was controlled by a saturable reactor in series with the high-frequency unit. The circuitry is shown schematically in figure 3.4.

The output current from the test-piece thermocouple was led to a moving coil galvanometer which gave temperature indications on a
conventional curved scale. Attached to the galvanometer, behind the scale, was a small metal flag. A movable pointer enabled the desired temperature to be selected and a photo-electric cadmium cell was attached to the pointer, together with a light source. The output from the photo-electric cell was amplified and fed to the reactor core. By saturating the core this amplified d.c. current allowed the full mains output to be led into the high-frequency unit.

As the thermocouple approached the selected temperature the flag on the galvanometer was interposed between the cadmium cell and the light source reducing the output to the magnetic applifier and thence to the core. The drop in inductive saturation of the core then reduced the flow of current to the high-frequency unit.

As the cadmium cell sutput was progressively reduced, rather than simply being switched on and off, the high-frequency output was under fine control and temperature fluctuations were generally not greater than ${ }^{+} 1^{\circ} \mathrm{C}$ 。

Figure 3.4. Scehmatic diagram of saturable reactor circuit.

3.6. Low Temperature Tests

In order to cover as wide a range of temperature as possible some tests were carried out at less than room temperature. This was facilitated by immersing the test-piece, and a length of the grips, in an appropriate coslant. A diagram of the apparatus is shown in figure 3.5.

The low temperature bath was filled with coolant and the assembly allowed to stand until the fluid was completely quiescent with no indication of boiling in the vicinity of the test-piece. The test was then carried out with the bath still full of coolant. Two conlants only were used giving the following test temperatures:

Liquid Nitrogen	$77^{\circ} \mathrm{K}$
Solid CO_{2} in Methyl Alcohol	$198^{\circ} \mathrm{K}$

Figure 3.5. Scehmatic drawing of low temperature test bath.

3.7. Strain Rate

The range of strain rates available on the torsion machine used in this investigation was from $17 \mathrm{~min} .^{-1}$ to $390 \mathrm{~min} .^{-1}$ (i.e. $0.28 \mathrm{sec} .^{-1}$ to $6.5 \mathrm{sec} .^{-1}$). While this range is narrow compared with those of various other investigations $9,31,42$ it ombraces the lowor end of the strain rates oncountered in mechanical working processes and, as oxplained in section 2.4.4०, a similar range of strain rates has beon associated with significant variations of flow stress reported in previous work.

3.8. Experimental Progranme

3.8.1. Introduction

The programme of tho invostigation was basically of partial factorial design, but whereas the ideal onfiguration calls for a.ll of the independent variables to be orthogonal to one another, practical limitations mado some compromise necessary. The most important are detailed in section 3.8.2. below.

In order to study the influence of the material, structure and process variables on the steady state stress $-\mathcal{T}_{\mathrm{s}}$ it was necessary to select those tests in which a clearly discernible steady state region nocurred in the stress-strain curve. In tables 3.3. through 3.10. in which the full progranme of tests is listed, those which resulted in a clear steady state region are indicated by a letter C, and henceforth are referred to as C-type tests.

Similarly, only those test results which displeyed a clear mexinum in the stress-strein curve, i.c. those in which the strain to failure $-Y_{\mathrm{F}}$ was greater than the strain to maximun stross $-Y_{\mathrm{m}}$ were suitable for studies involving maximum stress τ_{m}. These tests are indianted in the tables 3.3. through 3.10. by the letter B. The B-type tests include all of the C-type tests.

In some tests failuro occurred before any clear sign of restoration could be distinguished. A nunber of these failures occurred in circumstances undor which it seemed likely thet deformation twinning had takon place viz. low temperatures and high strain rates, with brittle cleavage-type fracture
surfaces. These tests, together with those in which load-drops were observed epparently similar to those referred to in section 2.2.2., wore designated \AA.

The A-type tests are shown in the following tables, although they were not analysed further since the oxact mechenisus involved in the deformation had not beon detormined at all rigornusly.

3.8.2. Limitations Irmposed on Programme

The selection of alloys with stacking fault energy greater than approximately 40 ergs. cm^{-2} is difficult as small chonges in chemical comrosition can lead to considerable changes in stacking fault enorgy when the solute ontent is low. Clearly the number of suitable pure metals is limited and ennsoquently the intervals between values greater then about $40 \mathrm{orgs} / \mathrm{cn}^{2}$ are large and irregular.

Both the intervals and the minimun and maxinum limits of the homologous temporature $-\theta$ varied from material to matorial. The limits were imposed by the capacity of the available heating equipmont and types of refrigerant used. Intervals between test temperatures wore chosen to give en approxinately uniform distribution between the limits, but greator accuracy of temperature measurement was possible when the controller on the saturable reactor was set to the nearest unit of ton degrees Centigrade.

In some cases there was a slight tondoncy for the tests a.t high temperature to be associated with high strain rate $-\dot{\gamma}$. This arnse bocause the high number of revolutions to failure under these conditions frequently caused the thermocouple to
break, and at low strein rates the temperature was uncontrolled for an unaccoptably long period. There is similarly, a slight imbalance due to tho tendency of some materials to low ductility at low temperatures and strain rates. Examination of tables 3.14 and 3.15 reveals that the coefficients of correlation between temporature and strain rate were still very small, however.

Orthogonality was sometimes unobtainable because variables were not truly independent. For example, having choson a material for the required value of stacking fault energy and selected the test temperature the valuc of clastic modulus is fixcd. Similarly the electron/atom ratio could not be selected irdependently of stacking fault enorgy and olastic modulus, although the very low correlation with the former is perhaps surprising.

Matorial	-	Ni.
Melting temperature	-	$1728{ }^{\circ} \mathrm{K}$
Stacking fault enorgy	-	$240 \mathrm{orgs.om}^{-2}$
Electron/atom ratio	-	0.60.
Burgers vector	-	2.49 A
Grain sizo	-	0.078 cm.

Shear Strain Rate (Min ${ }^{-1}$)

| θ | $G^{x} 10^{-2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(t . s . i_{0}\right)$ | |$\quad 17 \quad 110 \quad 150 \quad 245$

0.172	53.64	A A	A	A
0.274	50.53		B	
0.395	46.36	C	C	B
0.621	37.12	B		C
0.708	32.98			C

Table 3.4. Experimental design for nickel tests.

Material	-	Al
Melting temperature	-	$933{ }^{\circ} \mathrm{K}$
Stacking fault energy	-	135 ergs. cm^{-2}
Electron/atom ratio	-	3.00
Burgers vector	-	2.87 A
Grain size	-	0.073 cm

$$
\text { Shear strain rate }\left(\min ^{-1}\right)
$$

	$G \times 10^{-2}$				
θ	$($ t.s.i.)	17	110	150	245
0.083	18.08	A	A		A
0.212	17.29	A	B		B
0.314	16.59				B
0.319	16.55	B		B	B
0.561	14.57		C	C	
0.721	12.97		C	C	B
0.829	11.74		C		
0.936	10.38			C	

Table 3.5. Experimental dosign for aluminium tests.
(67)

		Shear Strain Rate (min. ${ }^{-1}$			
θ	$\begin{aligned} & G \times 10^{-2} \\ & \text { (t.s.i.) } \end{aligned}$	17	110	150	245
0.057	34.96	A		A	A
0.219	32.42	B		B	B
0.386	29.34	C		c	C
0.496	27.00	C		c	C
0.533	26.16	c			
0.570	25.28	c		C	C
0.644	23.44				C
0.718	21.45				C
0.791	19.32				C
0.865	17.02				C
0.902	15.80				C

Table 3.6. Exporimental design for copper tests - (a)
(68)

Table 3.7. Experimental design for copper tests - (b)

(69)

Material	-	$\mathrm{Cu} / 11 \% \mathrm{Zn}$.
Melting tomperature	-	1293
Stacking fault energy	-	42 orgs. on.
Electron/atom ratio	-	1.11
Burgers vector	-	2.48 A
Grain size	-	0.025 cn.

θ	Gx.10-2 $($ t.s.i. $)$	17	60	110	150	245	390
0.060	31.96	A			A		
0.227	29.62	A			B	A	
0.230	29.57	B					
0.366	27.34			B		B	
0.520	24.41		AA	A		B	
0.598	22.76	B		B			
0.737	19.47					C	
0.753	19.07	B		C			
0.799	17.85	B					C

Tablo 38. Experimentel design for copper/ 10% zinc tests.
(70)

Matorial	-	$\mathrm{Cu} / 20 \% \mathrm{Zn}$
Melting temperature	-	$1240^{\circ} \mathrm{K}$
Stacking fault onergy	-	$26 \mathrm{ergs} . \mathrm{cn}^{-2}$
Electron/atom ratio	-	1.20
Burgers vector	-	2.42 A
Grain size	-	0.022 cm.

θ	$G \times 10^{-2}$					
	$\left(t . s_{0}.\right)$	17	40	60	245	390
0.239	27.33		B			
0.381	25.19				A	
0.543	22.38	B			B	
0.623	20.79	C		C		
0.704	19.07	C				
0.785	11.21					
0.849	15.61	C				C

Tablo 3.9. Experimental design for copper/20\% zinc tests.
(71)

Material	-	$\mathrm{Cu} / 25 \% \mathrm{Kn}$
Melting tomperature	-	$1208 \mathrm{~K}_{\mathrm{K}}$
Stacking fault energy	-	$19 \mathrm{crgs} . \mathrm{cn}^{-2}$
Electron/atom ratio	-	1.26
Burgers vector	-	2.37 A
Grain size	-	0.045 cm.

Table 3.10. Experimental design for copper $/ 25 \%$ zinc tests
(72)

Material	-	$\mathrm{Cu} / 4 \% \mathrm{Al}$.	
Melting tomperature	-	$1330{ }^{\circ} \mathrm{K}$	-2
Stacking fault energy	-	10 ergs. cn.	
Electron/aton ratio	-	1.18	
Burgers vector	-	2.56 A	
Grain size	-	0.017 cn.	

$$
\text { Shear Strain Ratc }(\min -1)
$$

θ	$G \times 10^{-2}$				
0.223	$($ t.s.i.)	17	110	150	245
0.356	31.23	A	A	A	
0.506	25.92	B	B	B	
0.656	22.41	C	C		B
0.957	13.61	C	C		C

Table 3.11. Experinental design for copper/4\% aluniniun tests.

3.9. Experimental Method

The procedure for torsion testing a specimen and analysing the results as detailed in the following sections is for tests carried out at greater than room temperature. Apart from the steps directly concerned with heating the test-piece, however, all of the tests were carried out by the same technique.

3.9.1. Setting-up

One of the threaded ends of the test-piece was screwod into the holder at the end of the load-measuring assembly, by gripping the half-inch diameter collar adjacent to the thread. The testpiece was tightened until the screw-in load was sufficient to cause a full-scale deflection of the galvanometer trace. The split collars were then released and the table carrying the load measuring assembly slid along, until the test-piece passed through the induction coil before being screwed into tho holder attached to the lathe spindle. The force necessary to screw the testpiece in at this end, sufficiently to avoid further movement during the test, could only be estimated from that needed at the end already attached.

The $\mathrm{Pt} / \mathrm{Pt}-\mathrm{Rh}$ thermocouple was threaded into the induction coil, parallcl with its longitudinal axis, and wolded in place by charging the welder and then pressing the ends of the leads against the test-piece surface using a porcelain rod between the turns of the coil. The leads of the thermocouple wore then attached to the saturable reactor, which was set to the appropriate test temperature.

Finally the appropriate test speed was selocted on the lathe
gear box, and the paper output speed and timing intorval on the ultra-violet rocordor were sot to givo timing marks separated by between two and five millimetres.

3.9.2. Testing

The induction heating unit was switched on and the test-piece raised to tost tomperature. Between one and two minutes were allowed for the temperature to stabilise and the locking collars on the load measuring assombly were tightened. The paper output on the ultra-violet rocordor was switched on and the motor was engaged by the clutch, driving the lathe spindle and twisting the test-piece.

Failure of the test-piece was indicated by the galvanometer trace on the recorder dropping rapidly to its datum linc. Whon this occurred the induction heating unit was immediately switched off and the test-piece quenched with water between the turns of the induction coil.

3.9.3. Translation

Fron the ultra-violet recorder chart the height of the torque trace shown in figure 3.2. was measured alng solected timing trace lines. The lines were arbitrarily selocted, close together where the curve sloped steeply and further apart elsewhere.

The deviations of the axial load trace corresponding with each torque trace measurement were also notod.

The point at which the torque trace first deviated from its datun was takon as the datum point for the strein measurements. Tho chart length was measured between this datum and each timing
trace at which a torque reading was taken. The length along the chart to the point of failure was also recorded.

When the measurements from a test record had been assombled a hoading was added giving details of the material, chart speed, torque calibration constant, axial load calibration constant and test conditions. The total number of observations and the number of the first reading clearly identifiable as being within the parabolic region of the curve woro also added.

The complete set of data was then punched on to five-hole paper tape in proparation for processing by computer. A typical example of one set of data is given in table 3.16.

3.9.4. Computation

The purposes of computation were to convert the tost data to shear stress - shear strain data, and to derive the parameters which define the stress-strain curve.

Values of shear stress - were calculated using the method of Sellars and Tegart ${ }^{12}$, i.e.

$$
\begin{equation*}
=\frac{3 T}{2 \pi r^{3}} \tag{3.3.}
\end{equation*}
$$

where $T=$ torque
and $r=$ specimen radius.
The value of T was determined from the height of the torque trace -h and the calibration factor - K .

$$
\begin{equation*}
T=h \cdot K \tag{3.4.}
\end{equation*}
$$

Equation (3.3.) then becomes:

$$
\begin{equation*}
=\frac{3 h K}{2 \pi r^{3}} \tag{3.5.}
\end{equation*}
$$

Since all of the values except h are constants this may be rewritten in two stages, thus:
$\frac{3 \mathrm{~K}}{2 \pi r^{3}} \quad=\quad$ inst.
$\mathrm{h} x$ con st. $=\tau$
or, in AIGOL computer language
COST: $=(3 * K) /(2 * 3.14159 * R * * 3)$
TORR: $=\mathrm{H} *$ COST (3.9.)

Shear strain - was calculated ${ }^{27}$ using the equation

$$
\begin{equation*}
y=\frac{r \theta}{l} \tag{ـ}
\end{equation*}
$$

where $\theta=$ specimen rotation in radians.
$l=$ gauge length.
was determined from readings of chart length - d , thus: since 2π radians $=360^{\circ}$

$$
\begin{align*}
& \theta=2 \pi \times \frac{\left(\text { machine speed in } r_{0} p_{0} m_{0}\right)}{(\text { time in minutes }}-(3.11 .) \\
& \left.\theta=2 \pi(r . p . m) / \mathrm{d} \cdot \frac{1}{\text { chart speed }}\right)-(3.12 .) \\
& \theta=2 \pi \times\left(r_{0}, p_{0}\right) \times \text { chart speod/d (3.13.) } \tag{3.13.}
\end{align*}
$$

As in the calculations of shear stress, all of the values except one are constant and equation (3.13.) may be rewritten:

$$
\begin{aligned}
& \frac{2 \pi \times\left(r_{0} \text { p. m. }\right) \times \text { chart speed } \times r}{2}=\text { const. } \\
& \frac{\text { const. }}{\mathrm{d}} \quad=\gamma
\end{aligned}
$$

or, in ALGOL:
COST $2:=2 * 3.14159 * R P M * C S * R / L$ \qquad
GAMMA $:=\operatorname{CONST} 2 / D$ (3.17.)

From the values of stress and strain computed as shown above, using the program in Appendix B, the parancters chosen to define the stress-strain relationship were extracted. The values of maximun stress $-\boldsymbol{T}_{\boldsymbol{M}}$ strain at maximun stress $-\boldsymbol{Y}_{\mathbf{M}}$ and the steady state stress $-\tau_{s}$ were roed directly from the computer output.

Using the method of least squares the coefficients of the equation:

$$
\begin{equation*}
\tau=b_{0}+b_{2} \sqrt{Y} \tag{3.18.}
\end{equation*}
$$

were found. The value of b_{0} was recorded as τ_{0} - the intercept of the extrapolated parabolic curve with the stress axis, and the value of b_{1} was recorded e.s K - the slope of the curve.

When all of the parameters were available for all of the tests those were punched onto five-hole paper tape, together with the appropriate identification and data from the independent variablos, for analysis.
(78)

N	T	R	r	1	K	S	KAX	CODE	
32	+196	22.2	0.25	1.0	31.8	200.0	0.0318	$\&$	AL

Table 3.16. Typicel data from torsion test
3.10. Method of Analysis

In order to carry out the regression analysis a system of computer subroutinos were developed. They omploy the I.C.L. Egdon version of FORTRAN (known as EGIRAN) and make use of standard routines in the Egdon library for such facilities as input, output, function generation etc. The package of subroutines, naned STATPAC, are presented in Appondix C, the purpose of each subroutinc is outlined in 3.10.1.

3.10.1. The STATPAC Subroutinos

The following subrnutines, included in the STATPAC packege, wore devoloped using the equations presonted in section 2.5 .

TNPUT 1 roads in the nunber of obscrvations and the number of variables, followed by the (square) matrix of correlation coofficionts.

INREG reads in the subscript of the depondent variable, the number of independent variables and the subscripts of each of thom.

START begins the process of natrix inversion by making r^{11} equel to 1.0 (i.e. the reciprocal of $r_{\text {yy }}$.)

ADDVAR increases the order of the reciprocal, natrix by one, using the 'add-a-variate' method of Woolf ${ }^{85}$.

COEFFS calculates the regression coefficients as in equation 2.31, the standard errors of the onefficionts, using equation 2.34 and the constent term - b_{o} 。

ANOVA carrics out the analysis of variance, partitioning
the total sum of squares into those duc to the rogression and the residual. The variance ratio - F is computed using the residual mean square as an estimate of the 'pure orror' variance.

ELANAL performs an element analysis using the Newton and Spurrell mothod 91,92 , and calls upon the following four subroutines in order to do so.

PRINEL celculates the primary elemont, i.e. the additional sum of squaros, from: $b_{i}{ }^{2} /$ dii after the values in the reciprocal matrix have been corrected for the presence of the dependent variable.

REMVAR renoves any nominated variable from the rociprocal matrix.

PRIMT prints out the primary elements and the ratio of the additional mean square $($ d.f. $=1)$ to the residual meen squere.

PREST calculates the secondary elenents as in references 91 and 92 and prints them out.

COVAR computes the matrix of covariances from the reciprocal matrix.

3.10.2. The Selection Process

The first stage adopted in the selection process was to specify the dependent variables and all of those indepondent variables which might bo used as predictors.

The dependent variables were designated:

1. The intorcept stress $-\tau_{0}$
2. The naximum stress $-\boldsymbol{\tau}_{\text {m }}$
3. The steady-state stress $-\tau_{\text {s }}$
4. The work-hardening coofficiont - K
5. The strain at maximum stress - Y_{m}.

The independent variables were all based upon nine initial parametors and wore functions of from one up to five of these. The initial parameters were:
(a) atomic proportion of solute - At
(b) melting temperature - Tm
(c) Burger's vector - b
(d) stacking fault energy

- γ_{SF}
(e) modulus of shear - G
(f) electron/atom ratio - ea
(g) grain size - D
(h) test temperature (absolute) - T
(j) strain rate - \dot{y}

A number of the functions were based on the parameters discussed in section 2, while others were simply product terms which might be expected to make a contribution by 'correcting' non-linear relationships or where interactions between independent variables occur.

The completo list of variables is givon in table 3.17, the numbers by which they aro designated have no significance and arise entirely from a convenient series of computations.

No attempts wore made to classify the variables in terms of the likolihood of being effoctive predictors. It was considered,
on the basis of the evidence presented in the literature review, that the modulus of shear - G and the Burger's vector - b were more likely to provide a suitable description of the chemical composition. Stacking fault energy has a special role in the deformation of f.c.c. metals, and it was considered that some function of this property was extremely likely to make a significant contribution to the model.

It was not considered that sufficient evidence exists for clear distinctions to be made betwoen many of the other variables listed in table 3.17.

The matrix of correlation coofficients required by the STATPAC routines was computed from the raw data using library programs on the I.C.I. KDF9 coraputer at the University of Birmingham, and output on punched cards. The punched cards were then used as input media for the selection stage.

The correlation matrices for the B-type and C-type tests, respectively, are presented, together with the means and standard deviations of the variables, in tables 3.12 and 3.15.

The first variable entered into the rogression equation was that having the highest correlation coefficient in association with the dependent variable. The equation relating the dependent to the independent variable was computed followed by the analysis of variance. Bach of the variables not included in the equation was then considered in turn and the additional sum of squares which would result from adding that variable to the equation was calculated, together with the secondary element. The variable making the greatest contribution was added to the equation and the
full equation, analysis of variance and element analysis wore computed and printed. If any independent variable had coased to make a significant onntribution, following the addition of the newest variable to the oquation, it was deleted. Otherwise the cycle was ropeated until no variable was omitted which could make a significant contribution to the regression sum of squares.

Up to ten variables might be expected to make a contribution and it was decided to include only those whose primary element was significent at the 0.05 level of probability. This would require a ratio between the primnry element (or additionel sum of squeres) and the residual mean square of at least 4.0. That is to say thet the 'Pertial F ' velue would need to equal or exceed 4.0 .

1. τ_{0}		
2. τ_{m}		
3. $\tau_{\text {s }}$		
4. K		
5. γ_{m}		
6. At	19. b. $\mathrm{D}^{-\frac{1}{2}}$	32. At. $\ln \dot{Y}$
7. T	20. $\mathrm{D}^{-\frac{1}{2}} /{ }_{\mathrm{sf}}$	33. T. $\ln \dot{Y}$
8. b	21. G. $D^{-\frac{1}{2}}$	34. b. $\ln \dot{Y}$
9. $1 / 1 / \mathrm{sf}$	22.e.$^{-\frac{1}{2}}$	35. $\ln \dot{\gamma} / \gamma_{\text {sf }}$
10. G	23. $\theta \cdot D^{-\frac{1}{2}}$	36. G. $\ln \dot{Y}$
11. ©	24. $\ln \dot{Y} \cdot D^{-\frac{1}{2}}$	37. $-\ln \dot{Y}$
12. $D^{-\frac{1}{2}}$	25. at θ	38. $G \cdot D_{\mathrm{d}}^{-1 / 5}$
13. θ	26. T. θ	39. Gob/ $\nu_{\text {sf }}$.
14. $\ln \dot{Y}$	27.b. θ	40. Gob
15. $\mathrm{G} / \gamma_{\text {Sf }}$	28. $\theta / \gamma_{\text {sf }}$	$\text { 41. G.b. } D^{-\frac{1}{2}} / y_{\mathrm{sf}}$
16. $G^{2} / \gamma_{\text {Sf }}$	29. G. θ	$\text { 42. G.b. } D^{-\frac{1}{2}}$
17. At. $D^{-\frac{1}{2}}$	30. -. θ	43. $G \cdot B^{2} \cdot D^{-\frac{1}{2}}$
18. T. . $^{-\frac{1}{2}}$	31. $\ln \dot{\bar{Y}}, \theta$	44. G.b ${ }^{2} / \gamma_{\text {Sf }}$

Table 3. 7 Variables to be considered in regression analysis. Noto: The values indicated by G aro in fact $G \times 10^{-2}$.

MEANS		STANDARD DEVIATIUNS	
1	4.1153	1	2.8120
2	7.9439	2	4.6153
3	2.7620	3	3.1015
4	3.6321	4	2.5225
5	2.8874	5	2.8952
6	7.5746	6	9.3293
7	681.4118	7	263.8678
8	2.5484	8	0.1443
9	0.3300	9	0.298
10	24.2685	10	7.8798
11	1.3353	11	0.6544
12	5.4175	12	1.3227
13	0.5309	13	0.1985
14	4.4976	14	1.1388
15	0.6945	15	0.7375
16	16.9296	16	19.4994
17	45.2452	17	52.1914
18	3762.9841	18	1839.7829
19	13.7308	19	3.1803
20	0.1895	20	0.2278
21	130.4300	21	44.9250
22	6.8755	22	2.4611
23	2.9191	23	1.3882
24	24.1726	24	8.1901
25	4.4867	25	6.643
26	410.1920	26	276.5439
27	1.3485	27	0.5045
28	0.0167	28	. 0182
29	12. 165	29	3.8848
30	0.7046	30	0.4668
31	2.4206	31	1.2204
32	34.0634	32	45.7191
33	3094.0449	33	1586.4706
34	11.4784	34	3. 174
35	0.1337	35	0.1391
36	107.6511	36	42.9327
37	6.1262	37	3.8638
38	7572.9052	38	27994.7384
39	1.7414	39	1.8765
40	61.4829	40	19.2767
41	11.1356	41	14.7025
42	329.4981	42	111.3896
43	74.3082	43	115.1737
44	0.7440	44	1.5888

Table 3.12 Means and Standard Deviations - B-type tests.

MEAN		STAI	NDARD DEVIATIONS
1	2.8975	1	1.8097
2	5.6842	2	3. 1565
3	4.5202	3	2.7862
4	2.9725	4	2. 333
5	136.7837	5	961.1163
6	6.6275	6	9.4720
7	803.5769	7	199.6864
8	2.5525	8	0.1404
9	0.0286	9	0.0294
10	22.6879	10	7.6463
11	1.3144	11	0.6840
12	5.3604	12	1.2881
13	0.6302	13	0.1588
14	4.5703	14	1.1305
15	0.6047	15	0.6483
16	13.4743	16	15.2555
17	39.3394	17	53.1123
18	4378.5515	18	1706.5639
19	13.6141	19	3.1081
20	0.1797	20	0.2243
21	120.3534	21	40.6473
22	6.7150	22	2.4537
23	3.4079	23	1.2757
24	24.3386	24	8.1184
25	4.7338	25	6.9168
26	532.4564	26	250.4250
27	1.6095	27	0.4229
28	0.190	28	D. 2205
29	13.3812	29	2.8592
30	0.8618	30	0.5728
31	2.9659	31	1.2260
32	32.1742	32	49.7986
33	3766.8556	33	1566.1437
34	11.6661	34	2.9234
35	0.1313	35	0.1392
36	100.7534	36	36.7283
37	6.1311	37	3.7817
38	6.1236	38	11.7223
39	1.5172	39	1.0458
40	57.5744	40	18.8445
41	9.6063	41	12.9163
42	304.7089	42	101.5063
43	63.6521	43	101.2923
44	0.6308	44	1.3667

Table 3.13 Means and Standard Deviations - C-type tests.

(84)

4. RESULTS

Since very fow 'true' replicate tosts were carried out ostimates of the 'true' error variance were made using noar replicates. The effect of strain rate has been shown to be very sma.ll and the enntribution made by the untransformed valuos of this parameter proved to be insignificant. Estimates of the error variance, therefore, based on tests which vary only in torms of strain rate are presented in table 4.1.

The results of the regression analyses are contained in the sets of tables numbered 4.2. through 4.8. The values are presonted as a decimal quentity multiplied by a stated power of 10 (E - format in FORTRAN computer language).

In table 4.2 the regression equation for the maxinum stress \mathcal{T}_{m} is shown for the B-type tests, at each stage of development. Accompanying the equation, at each stage, is the overall analysis of variance and, on the facing page, the rosults of element analysis. In the interests of clarity the alternative variables with their associated primary and secondary elements have not been shown. The variable added to the equation at each stage was usunlly that with the highest primary element. In a vory small number of cases each of two alternative variables was addod separately, but invariably one of the two was cloarly established as the more significant at a later stage of the analysis.

In table 4.3 the results are presented in similar manner for the analysis concerning the intercept stress $-\mathcal{T}_{0}$, and in table 4.4 those for the steady-state stress $-\tau_{\mathrm{s}}$ for the C-type tests.

Tables 4.5 and 4.6 contain the analyses for the maxinum and intercept strosses, respectively, for the C-type tests. The results of element analysis are not presented in totel for those tests because of their similarity to their counterparts for the B-type tests.

The work-hardening coefficient - K is onsidered for the C-type tests in table 4.7 and for the B-type tests in 4.8 . In each of these tables alternative solutions are presented, those in table 4.7 arising as a normal consequence of the analytic technique, but those in table 4.8 being a check for onfirmation over the widor tomperature range covered by the B-type tests.

The numbors of the variables are as in table 3.11, but for clarity the variables appearing in the following tables are listed here with their identifying numbors:

1. τ_{0}	27. b. θ
2. $\boldsymbol{\tau}_{\mathrm{m}}$	29. G. θ
3. $\tau_{\text {s }}$	36. G. $\ln \dot{\boldsymbol{Y}}$
4. K	38. $G \cdot D_{\mathrm{d}}^{-1 / 5}$
8. b	39. Gob/ $\mathrm{Y}_{\text {Sf }}$
13. θ	$\text { 47. G.b. } D^{-\frac{1}{2}} / y_{\text {sf }}$
16. $G^{2} / \gamma_{\text {Sf }}$	42. G.b. ${ }^{-\frac{1}{2}}$

Source	Sum of Squares	d.I.	Mean $\mathrm{S}_{\text {quare }}$
τ_{0} (total)	664.22	84	7.91
τ_{\circ} (orror)	180.63	35	2.15
\mathcal{T}_{n} (total)	1789.28	84	21.30
$\boldsymbol{\tau}_{\mathrm{n}}$ (error)	57.31	35	0.68
K (total)	534.49	84	6.36
K (error)	97.24	35	2.78
τ_{0} (total)	167.06	51	3.28
$\boldsymbol{\tau}_{0}$ (error)	81.67	23	1.60
$\boldsymbol{\tau}_{\mathrm{n}}$ (total)	508.14	51	9.96
$\boldsymbol{\tau}_{\mathrm{L}}$ (error)	29.84	23	0.59
$\tau_{\text {s }}$ (total $)$	359.91	51	7.76
$\tau_{\text {s }}$ (error)	38.99	23	0.76
K (total)	210.85	51	4.13
K (orror)	29.15	14	2.08

Table 4.1 Estimates of total and 'error' mean squaro values.

TABLE 4.2 .

Regression equations for mexinum stress - B-type tosts

On alternate pages are presented (a) the primary and secondary elements and (b) the regression equation and analysis of variance.

The regression coefficients are presented in the column headed 'B' and the standard error in the column headed 'S.E.(B)'.

All of the non-integer values are presented in the FORTRAN E-format that is to say as a decimal value raised to the indicated power of ten.

The variables are identified by their index numbers as in table 3.17, the relevant values being repeated on page 85.

REGRESSION EQUATION

VARIABLE	B		S.E. (B)
	-		
2	DEPENDENT		
27	-0,71183n+		$0.6307510+00$
CONSTANT	$0.17543 n+02$		
	ANALYSIS OF VARIANCE		
SQURCE	SUM OF SQUARES	D.F.	MEAN SQUARE
REGRESSION	$0.108330 n+04$	1	$0.108330 n+04$
RESIDUAL	$0.7059800+03$	83	$0.850579 \mathrm{w}+01$
TOTAL	$0.178928 n+04$	84	$0.213010 x+02$
F VALUE	127.36		
MULTIPLER	0.7781		
R SQUARED	0,6054		

$215 \cdot 60$
0
0
i
i

ELEMENT ANALYSIS
$0.1089910+04$
$0.2914610+03$
$\begin{array}{lcc}\text { PRIMARY ELEMENT } & 27 \\ \text { SECONDARY ELEMENTS } \\ 27 & 8 \\ 0 . & 0.660280+01 \\ \text { PRIMARY ELEMENT } & 8 \\ \text { SECQNDARY ELEMENTS } \\ 27 & 8 & \\ \mathbf{2 7} 0.60280+01 & 0 .\end{array}$

VARIABLE	B	S.E. (B)
2	DEPENDENT	
27	$-0.71400 n+01$	$0.48627 n+00$
8	$-0.12909 n+02$	$0.17001 n+01$
CONSTANT	$0.50469 n+02$	

```
ANALYSIS OF VARIANCE
```

SOURCE
REGRESSION
RESIDUAL
TOTAL
F value
MULTIPLE R
SUM OF SQUARES
D. F.
MEAN SQUARE
SOURCE
$\begin{array}{lrl}0.137476 n+04 & 2 & 0.687381 n+03 \\ 0.414522 x+03 & 82 & 0.505514 n+01\end{array}$
$\begin{array}{lrl}0.137476 n+04 & 2 & 0.687381 n+03 \\ 0.414522 x+03 & 82 & 0.505514 n+01\end{array}$
$0.178928 n+04 \quad 84$
$0.2130100+02$
R SQUARED
0.8765
0.768^{3}

[^0]\[

$$
\begin{aligned}
& 0.88243 n+03 \\
& 16 \\
& 0.20748 i n+03 \\
& 0.18521 x+03 \\
& \begin{array}{l}
16 \\
0.10625 n+03
\end{array} \\
& 0.17456 x+03 \\
& \begin{array}{l}
16 \\
0 .
\end{array}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \begin{array}{l}
\text { PRIMARY ELEMENT } \\
\text { SECONDARY ELEMENTS } \\
27 \\
0,207480+03 \\
0,1606250+03
\end{array}
\end{aligned}
$$

VARIABLE	B	BE
2	DEPENDENT	
27	$-0.65570 n+01$	$0.37992 n+00$
8	$-0.10569 n+02$	$0.13367 n+01$
16	$0.77393 n-01$	$0.10082 n=01$
CONSTANT	$0.42410 n+02$	

SQURCE
REGRESSION RESIDUAL TOTAL
F Value MULTIPLE R R SQUARED
$\begin{array}{crr}0.154932 n+04 & 3 & 0.516440 n+03 \\ 0.239965 n+03 & 81 & 0.296253 n+01 \\ 0.178928 n+04 & 84 & 0.213010 n+02 \\ 174.32 & & \end{array}$
0.9305

0,8659

$00 \cdot 08$
$\frac{8}{4}$
$\frac{1}{a}$
$\frac{1}{4}$

ELEMENT ANALYSIS

VARIABLE	B	S.E. (B)
2	DEPENDENT	
27	$0.310650+02$	$0.42150_{n}+01$
8	$-0.30863 n+02$	$0.24603 n+01$
16	$0.69530 n-01$	$0.72274 n=02$
13	$-0.97147 n+02$	$0.10861 \infty+02$
CONSTANT	$0.95103 n+02$	

ANALYSIS OF VARIANCE
SOURCE SUM OF SQUARES D,F, MEAN SQUARE

REGRESSION

$$
0.417325 n+03
$$ RESIDUAL

TOTAL
F VAluE
MULTIPLE R
R SQUARED

$$
\begin{array}{rr}
0.166930 n+04 & 4 \\
0.119983 n+03 & 80 \\
0.178928 \ldots+04 & 84 \\
278.26 & \\
0.96 & \\
0.935_{9} &
\end{array}
$$

$0.417325 n+03$

$\begin{array}{lr}\text { SIS } 14 \forall N \forall & \text { LN3W373 }\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
29 \\
-0.464800+01 \\
29 \\
-0.105380+02
\end{array} \\
& -0.75428 n+02 \\
& 0.2465610+03 \\
& \begin{array}{l}
16 \\
0.94684 m+0_{2}
\end{array} \\
& 0.134730+03 \\
& \begin{array}{l}
29 \\
0.407450+01
\end{array} \\
& \begin{array}{l}
0.407450+01 \\
29 \\
-0.309070+01
\end{array} \\
& \text { a } \\
& 0.86115 m+02 \\
& \text { PRIMARY ELEMENT } 13 \\
& \text { SECONDARY ELEMENTS } \\
& \begin{array}{l}
27 \\
0 .
\end{array} \\
& \begin{array}{l}
\text { PRIMARY ELEMENT } \\
\begin{array}{l}
\text { SECONDARY ELEMENTS } \\
27 \\
27 \\
-0.464800+01-0,1053810+02
\end{array}
\end{array}
\end{aligned}
$$

PRIMARY ELEMENT 27	$0.777820+02$			PAR ${ }_{\text {T }}$ IAL	F	59.84
SECONDARY ELEMENTS						
27 \% 6	16	13	29	36		
0. $\quad 0.55582 n+02$	$0.293^{87 \%}+02$	$0.157400+0_{3}$	$0.476970=01$	$0.8333^{4 n}+01$		
PRIMARY ELEMENT 8	0.22831×03			PARTIAL	F	175.66
SECONDARY ELEMENTS 36						
27 8	$16.08514 n+02$	- $13.49919 n+02$	$\xrightarrow[-0.140840+02]{ }$	36		
$0.55582^{*}+0200$	$0.985140+02$	$-0.49919 n+02$	$-0.14084 n+02$	0.182^{450+02}		
PRIMARY ELEMENT 16	$0.139320+03$			PARTIAL	F	107.19
SECONDARY ELEMENTS ${ }^{\text {a }}$						
27	16	$130298 n+02$	${ }_{-0,}^{29}+0042 n+00$	-0, ${ }^{36}$		
$0.29387 n+02 \quad 0.9851_{4 n+02}$	0.	$0.392980+02$	$-0,700420+00$	$-0.458740+01$		
PRIMARY ELEMENT 13	$0.10693 x+03$			FARTIAL	F	82.28
SECONDARY ELEMENTS 36						
$0.157400+03-0.49919 n+02$	$0.392980+02$	0.	$0.6449910+01$	$0.161370+02$		
PRIMARY ELEMENT 29	$0.183290+02$			PARTIAL	F	14.10
SECONDARY ELEMENTS 36						
$\begin{array}{lc} 27 \\ 0.47697 n-01 & 8 \\ 0.0 .14084 n+02 \end{array}$	16 $-0.70042 p+00$	${ }_{0.6}^{13} 4499 n+01$	$\begin{aligned} & 29 \\ & 0 . \end{aligned}$	36 $-0.69523 x$${ }^{\text {a }}$ (01		
0.47697n-01-0.14084n+02	-0.700 $42 n+00$	$0.64499 n+01$		-0.69523x+01		
PRIMARY ELEMENT 36	$0.722810+01$			PARTIAL	F	5,56
SECONDARY ELEMENTS 16						
$0.83334^{p}+01 \quad 0,1824^{5} x+02$	-0.45874m+01	$0.16137 n+02$	$-0.69523 n+01$	0.		

	REGRESSION EQUATION	
VARIABLE	B	
2	DEPENDENT	
27	$0.30759 n+02$	$0.39761 n+01$
8	$-0.31906 n+02$	$0.24073 n+01$
16	$0.70026 n=01$	$0.67637 n=02$
13	$-0.93663 n+02$	$0.10326 n+02$
29	$-0.19087 n+00$	$0.50827 n=01$
36	$0.93010 n=02$	$0.394410=02$
CONSTANT	$0.976080+02$	

ANALYSIS OF VARIANCE

REGRESSION RESIDUAL TOTAL
F value
MULTIPLE R
$0,168790 n+04$
6
$0.281317 n+03$
$0.1013780+03$
78
$0.1299730+01$
$0.17892810+04$ 216.44

84
$0.2130100+02$
0.9713
0.9433

TABLE 4.3.

Regression equations for intercept stress - B-type tests
L
PARTIAL

```

ELEMENT ANALYSIS

VARIABLE

1
27
CONSTAN \({ }^{T}\)

ANALYSIS OF VARIANCE
SUM OF SQUARES D,F: MEAN SQUARE
\(0.2853140+03\)
1
\(0.285314 x+03\)
\(0.378903 n+0\)
\(0.664217 n+03\)
62.50
0.6554
0.4295
\begin{tabular}{ll} 
PARTIAL F \(_{\text {PAR }}\) & 83.66 \\
PARTIAL F & 28.34
\end{tabular}
\(0.28727 n+03\)
\(0.9731810+02\)

\begin{tabular}{ccc} 
VARIABLE & \(B\) & S.E, \((B)\) \\
1 & DEPENDENT & \\
27 & \(-0.36657 n+01\) & \(0.40078 n+00\) \\
8 & \(-0.74593 n+01\) & \(0.14012 n+01\) \\
CONSTANT & \(0.28068 n+02\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{ANALYSIS OF VARIANCE} & \\
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0,3826320+03\) & 2 & \(0.1913160+03\) \\
\hline RESIDUAL & \(0.2815850+03\) & 82 & \(0.3433960+01\) \\
\hline TOTAL & \(0,664217 m+03\) & 84 & \(0,790734 n+01\) \\
\hline F VAlue & 55.71 & & \\
\hline MULTIPLE R & 0.7590 & & \\
\hline R SQUARED & 0.5761 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
PARTIAL F & 77.84 \\
PARTIAL F & 22.42 \\
PARTIAL F & 10.68
\end{tabular}


PRIMARY ELEMENT
SECONDARY ELEMENTS
27
0.
O.
PRIMARY ELEMENT
SECONDARY ELEMENTS
27
\(20.123710+02\)
\(=0.123710+02\)
PRIMARY ELEMENT
SECONDARY ELEMENTS
8
\(0.482040+02\)

VARIABLE

1
27
8
16
CONSTANT

B
\(-\)
S. E. (B) -------

\section*{DEPENDENT}
\[
\begin{array}{rl}
-0.34129 n+01 & 0.38684 n+00 \\
-0.64450 n+01 & 0.13610 n+01 \\
0.33548 n-01 & 0.10266 n-01
\end{array}
\]

ANALYSIS OF VARIANCE
\begin{tabular}{|c|c|c|c|}
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline ------ & & & - \\
\hline REGRESSION & \(0.415432 x+03\) & 3 & \(0.138477 n+03\) \\
\hline RESIDUAL & \(0.2487850+03\) & 81 & 0.3071420001 \\
\hline TOTAL & \(0.664217 x+03\) & 84 & \(0.7907340+01\) \\
\hline F VALUE & 45.09 & & \\
\hline MULTIPLER & 0.7909 & & \\
\hline R SQUARED & 0.6254 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
PARTIAL F & 11.79 \\
PARTIAL F & 32.97 \\
PARTIAL F & 9.28 \\
PARTIAL F & \\
& \\
& \\
& \\
& \\
&
\end{tabular}

ELEMENT ANALYSIS

\begin{tabular}{ccc} 
VARIABLE & \(B\) & S.E. \((B)\) \\
1 & DEPENDENT & \\
27 & \(0.18977 n+02\) & \(0.552680+01\) \\
8 & \(-0.18523 n+02\) & \(0.32260 n+01\) \\
16 & \(0.28869 n-01\) & \(0.94769 n-02\) \\
13 & \(-0.57815 n+02\) & \(0.14242 n+02\) \\
CONSTANT & \(0.55933 n+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
\begin{tabular}{|c|c|c|c|}
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.4579270 * 03\) & 4 & \(0.114481 n+03\) \\
\hline RESIDUAL & \(0.206290 n+03\) & 80 & \(0.257863 n+01\) \\
\hline TOTAL & \(0,6642170+03\) & 84 & \(0.7907340+01\) \\
\hline F VALUE & 44.40 & & \\
\hline MULTIPLE R & 0,8303 & & \\
\hline R SQUARED & 0,6894 & & \\
\hline
\end{tabular}
13.11
0
0
\(\stackrel{\circ}{9}\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\begin{array}{ll}\hat{n} & \vec{N} \\ \stackrel{\rightharpoonup}{*} & \stackrel{\rightharpoonup}{n}\end{array}\)
\(\stackrel{L}{a}\)
\(E L E M E N T \quad\) ANALYSIS
29
\(-0.248710+01\)
29
\(-0.79958_{10+01}\)
29
\(0.13580_{10}+01\)
\[
\begin{aligned}
& 29 \\
& -0.158730+01
\end{aligned}
\]
\[
\begin{aligned}
& 60 \\
& 62
\end{aligned}
\]
\begin{tabular}{ccc} 
VARIABLE & B & S.E. \((B)\) \\
1 & DEPENDENT & \\
27 & \(0.19809 n+02\) & \(0.54718_{n}+01\) \\
8 & \(-0.20127 n+02\) & \(0.33060_{n}+01\) \\
16 & \(0.28070 n-01\) & \(0.93594 n=02\) \\
13 & \(-0.58944 n+02\) & \(0.14063 n+02\) \\
29 & \(-0.10778 n+00\) & \(0.60174 n=01\) \\
CONSTANT & \(0.60807 n+02\) &
\end{tabular}
\begin{tabular}{lccr} 
SQURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
REGRESSION & \(0.465977 n+03\) & 5 & \(0.9319530+02\) \\
RESIDUAL & \(0.1982400+03\) & 79 & \(0.250937 n+01\) \\
TQTAL & \(0.664217 n+03\) & 84 & \(0.7907340+01\) \\
FUALUE & 37.14 & & \\
MULTIPLE R & 0.8376 & & \\
RSQUARED & 0.7015 & &
\end{tabular}
11.25

N
in
m

L．

SIS
\[
\begin{array}{rr}
10^{+\infty} 08588^{\circ} 0 & 10=\alpha \varepsilon t Z \varepsilon \varepsilon \circ \\
9 E & 6 Z
\end{array}
\]
\[
\begin{aligned}
& \text { T TS } 27 \\
& 8 \\
& 8.2513410+02
\end{aligned}
\]
\[
\begin{aligned}
& 0.24030 n+02 \\
& 16 \\
& 0.72218 n+01=0.61189 n+00
\end{aligned}
\]

29
\(-0.117860+02\)
\[
=0.111000+02
\]

PARTIAL
PARTIAL
PARTIAL

36
\(0.177540+02\)
\(0.752520+02\)
16
\(0.25555 n+0_{2}\)
\(0.25555 n+02 \quad 0.21875 n+01\)
＊ \(25555 n+02\)
\(0.2747610+02\)
PARTIAL
PARTIAL
\[
\begin{aligned}
& 36 \\
&-0.49049 v+01
\end{aligned}
\]

27
0.

a． 3
OVMARN EIEMENT I? LNヨルヨフョ \(\quad \lambda\) dywlyd


\[
29
\]

SECONDARY ELEMENTS
8 （ \(8^{\circ}\) LZ
PRIMARY ELEMENT
SECONDARY ELEMENTS
27
\(0.885800+01\)
\(0.177540+02\) \(0.31692 x+02\)
16
\(-0.490_{4} 9 x+01\)
\begin{tabular}{ccc} 
VARIABLE & B & SOE. \((B)\) \\
1 & \(0.17097 n+02\) & \(0.50964 n+01\) \\
27 & \(-0.18318 n+02\) & \(0.30856 n+01\) \\
8 & \(0.31098 n=01\) & \(0.86692 n=02\) \\
16 & \(-0.48839 n+02\) & \(0.13235 n+02\) \\
13 & \(-0.23916 n+00\) & \(0.65146 n=01\) \\
29 & \(0.19476 n=01\) & \(0.50552 n=02\) \\
36 & \(0.53920 n+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
\begin{tabular}{lccc} 
SQURGE & SUM OF SQUARES & D,F. & MEAN SQUARE \\
& & & \\
& \(0.497668 n+03\) & 6 & \(0.829447 n+02\) \\
REGRESSION & \(0.166549 n+03\) & 78 & \(0.213524 n+01\) \\
RESIDUAL & \(0.664217 n+03\) & 84 & \(0.790734 n+01\) \\
TOTAL & 38.85 & & \\
FYALUE & 0.8656 & & \\
MULTIPLER & 0.7493 & & \\
RSQUARED & & &
\end{tabular}

\section*{TABIE 4.4.}

Regression equations for steady-state stress - C-type tests

\begin{tabular}{|c|c|c|c|}
\hline VARIABLE & \multicolumn{2}{|l|}{B} & S.E.(B) \\
\hline 3 & \multicolumn{2}{|l|}{DEPENDENT} & \\
\hline 27 & \(-0.538790+\) & & \(0.53621_{10}+00\) \\
\hline \multirow[t]{2}{*}{CONSTANT} & \multicolumn{2}{|l|}{\(0.1319210+02\)} & \\
\hline & \multicolumn{2}{|l|}{ANALYSIS OF VARIANCE} & \\
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.264782 n+03\) & 1 & \(0.264782 n+03\) \\
\hline RESIDUAL & \(0.1311260+03\) & 50 & 0.262252n+01 \\
\hline TOTAL & \(0.395908_{10}+03\) & 51 & \(0.7762910+01\) \\
\hline F VALUE & 100.96 & & \\
\hline MULTIPLE R & 0.8178 & & \\
\hline \(R\) SQUARED & 0.6688 & & \\
\hline
\end{tabular}

\(87 \cdot 88\)
\(\infty\)
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{2}\)
4
山
\(\stackrel{+}{4}\)
PARTIAL
\(0.22128 x+03\)
\(0.77499 x+01\)
\begin{tabular}{|c|c|c|c|c|}
\hline VARIABLE & \multicolumn{2}{|l|}{B} & \multicolumn{2}{|l|}{S.E. (B)} \\
\hline 3 & \multicolumn{2}{|l|}{DEPENDENT} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(0.5465610+00\)}} \\
\hline 27 & \(-0.5123810+\) & & & \\
\hline 8 & \(-0.288830+0\) & & . 1646 & \(3{ }_{10}+01\) \\
\hline \multirow[t]{2}{*}{CONSTANT} & \multicolumn{2}{|l|}{\(0.2013910+02\)} & & \\
\hline & \multicolumn{2}{|l|}{ANALYSIS OF VARIANCE} & & \\
\hline SOURCE & SUM OF SQUARES & D.F. & \multicolumn{2}{|l|}{MEAN SQUARE} \\
\hline REGRESSION & 0. \(272532_{10}+03\) & 2 & \multicolumn{2}{|l|}{\(0.13626610+03\)} \\
\hline RESIDUAL & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.123376_{n}+03 \\
& 0.395908_{10}+03
\end{aligned}
\]} & 49 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& 0.25178810+01 \\
& 0.776291_{10}+01
\end{aligned}
\]}} \\
\hline TOTAL & & 51 & & \\
\hline F VALUE & \multicolumn{2}{|l|}{\(54 \cdot 12\)} & & \\
\hline MULTIPLE & \multicolumn{2}{|l|}{0.8297} & & \\
\hline R SQUARED & \multicolumn{2}{|l|}{0.6884} & & \\
\hline
\end{tabular}
166.49
\(\begin{array}{ll}\hat{j} & \text { in } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
4.
\(\stackrel{1}{4}\)
\(\stackrel{\square}{\square}\)
\(\frac{a}{4}\)
\(\square\)
PARTIAL F
PARTIAL F
\(0 \cdot 1885410+03\)

\(0.10971_{10+01}\)
\(0.1097110+01\)
16
\(0.6652810+01\)
\(0.69019 n+02\)
\(\stackrel{\circ}{-0}\)

\begin{tabular}{ccc} 
VARIABLE & \(B\) & \(S \cdot E \cdot(B)\) \\
3 & DEPENDENT & \\
27 & \(-0.47663_{10}+01\) & \(0.3693910+00\) \\
8 & \(-0.1109610+01\) & \(0.11273_{10}+01\) \\
CONSTANT & \(0.791860-01\) & \(0.10143_{10}-01\)
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
```

SOURCE

```
```

REGRESSION
RESIDUAL
TOTAL
F VALUE
MULTIPLE R
R SQUARED

```
```

SUM OF SQUARES D.F.

```
MEAN SQUARE
\(0.3415510+03\)
3
\(0.113850 n+03\)
\(0.5435760+02 \quad 48 \quad 0.113245_{10}+01\)
\(0.395908_{10}+03\)
51
\(0.776291_{10}+01\)
    100.53
    0.9288
    0.8627
\(4 \cdot 28\)
\(89^{\circ} L\)
\(16^{\circ} \angle 9\)
2
0
0

1

PARTIAL
d \(7 \forall I \perp \& \forall d\)

1 フヲILもシd
\(\begin{array}{ll}0.43156 n+01 \\ 16 & 13 \\ 0.26601 n+00 & 0.18422 n+03 \\ 0.77456 x+01 & \\ 16 & 13 \\ 0.23492 n+01-0.66485 n+01 \\ 0.68451 n+02 & 0.567910+00 \\ 16 & \\ 0 . & 13 \\ 0.69828 n+01 & \\ 16 & 0 .\end{array}\)
\(\begin{array}{lcc}\text { PRIMARY ELEMENT } & 27 \\ \text { SECONDARY } & \text { ELEMENTS } \\ 27 & 8 & \\ 0 . & 0.1171510+02 \\ \text { PRIMARY ELEMENT } & 8 \\ \text { SECONDARY ELEMENTS } \\ 27 & 8 \\ 0.1171510+02 & 0\end{array}\)
PRIMARY ELEMENT 16
SECONDARY ELEMENTS
27
0.
\(0.2660110+00 \quad 0.2349210+01\)
13
SECONDARY ELEMENTS
\(10+a 58 \downarrow 99^{\circ} 0-E 0+a 乙 Z \downarrow 8 I^{\circ} 0\)
\begin{tabular}{ccc} 
VARIABLE & B & S.E. \((B)\) \\
3 & \(0.17591_{10+02}\) & \(0.85013_{n}+01\) \\
27 & \(-0.17174 n+02\) & \(0.61954_{10}+01\) \\
16 & \(0.78866_{10}-01\) & \(0.95703_{10}-02\) \\
13 & \(-0.5732810+02\) & \(0.21781_{10}+02\) \\
CONSTANT & \(0.55110 n+02\) &
\end{tabular}
\begin{tabular}{lccc} 
& ANALYSIS OF VARIANCE & \\
& SUURCE & & \\
& & & \\
& \(0.348534 n+03\) & 4 & \(0.871334 n+02\) \\
REGRESSION & \(0.473748 n+02\) & 47 & \(0.100797 n+01\) \\
RESIDUAL & \(0.395908 n+03\) & 51 & \(0.776291 n+01\) \\
TOTAL & 86.44 & & \\
F VALUE & 0.9383 & & \\
& 0.8803 & &
\end{tabular}


\(0.66391 v+02\)
\(16.063910+02\)
0
\(0.9159510+01\)
16
\(0.1019210+01\)
\(0.6519510+01\)
16
0.2
29
0
\(10+\pi \angle 9 \angle 12 * 0-10+\pi 26502 \circ 0\)
PRIMARY ELEMENT
SECONDARY ELEMENTS
27
0.
IMA
PRIMARY ELEMENT
SECONDARY ELEMENTS
27
\(0.12888_{10}+02\)
PRIMARY ELEMENT
SECONDARY ELEMENTS
27
0.6
\(0.6233010+00 \quad 0.3386210+01\)
13
\(0.1807510+03-0.7387410+01\)
29
8
PRIMARY ELEMENT
SECONDARY ELEMENTS
\(10+a^{\circ} 60 \varepsilon 力 \varepsilon^{\circ} 0-10+\pi 606 \mathrm{LI}^{\circ} 0^{-}\)
\begin{tabular}{|c|c|c|}
\hline VARIABLE & B & S.E. (B) \\
\hline 3 & DEPENDENT & \\
\hline 27 & \(0.212170+02\) & \(0.809150+01\) \\
\hline 8 & \(-0.21338 n+02\) & \(0.60153 x+01\) \\
\hline 16 & \(0.7775210-01\) & \(0.8992910-02\) \\
\hline 13 & \(-0.66564 w+02\) & \(0.20728_{10}+02\) \\
\hline 29 & \(-0.14748 x+00\) & \(0.54433 n-01\) \\
\hline CONSTANT & \(0.6771210+02\) & \\
\hline
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
```

SOURCE

```

REGRESSION RESIDUAL TOTAL
F VALUE

\section*{SUM OF SQUARES D.F.}

MEAN SQUARE
\begin{tabular}{lrl}
\(0.355053 n+03\) & 5 & \(0.710106 x+02\) \\
\(0.408553_{n}+02\) & 46 & \(0.888159 x+00\) \\
\(0.395908 w+03\) & 51 & \(0.7762910+01\)
\end{tabular}

MULTIPLE R
R SQUARED
0.9470
0.8968
7. 21
d-7ロI1 \(\downarrow \forall d\)
ELEMENT ANALYSIS
\begin{tabular}{|c|c|c|c|c|}
\hline PRIMARY ELEMENT 27 & \(0.607430+01\) & & PARTIAL. & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline 27 8 & 16 13 & 29 & & \\
\hline \(0 . \quad 0.12320 n+02\) & \(0.5642710+00 \quad 0.1547210+03\) & \(-0.374880+00\) & \(0.3226510-01\) & \\
\hline PRIMARY ELEMENT 8 & \(0.11049 n+02\) & & PARTIAL & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline  & \[
\begin{array}{ll}
16 & 13 \\
0.30748 n+01 & -0.82786 n+01
\end{array}
\] & \[
\begin{aligned}
& 29 \\
- & 0.57188 x+00
\end{aligned}
\] & \[
36
\] & \\
\hline \[
0.123200+020
\] & \(0.3074810+01-0.827860+01\) & \[
-0.571880+00
\] & \[
0.12792 n+00
\] & \\
\hline PRIMARY ELEMENT 16 & \(0.6077610+02\) & & PARTIAL & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline \[
\begin{array}{ll}
2^{7} & 8 \\
0.5642710+00 & 0.3074810+01
\end{array}
\] & \begin{tabular}{ll}
16 & 13 \\
0. & \(0.112160+01\)
\end{tabular} & \[
\begin{aligned}
& 29 \\
& -0.521970+00
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 0.5615210+01
\end{aligned}
\] & \\
\hline PRIMARY ELEMENT 13 & \(0.9360110+01\) & & PARTIAL & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline \(2^{7} 8\) & 16 13 & 29 & 36 & \\
\hline \(0.154722+03-0.8278610+01\) & \(0.112160+01 \quad 0\). & \(-0.39842000\) & \(-0.20058 n+00\) & \\
\hline PRIMARY ELEMENT 29 & \(0.58330_{10}+00\) & & PARTIAL & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline 27 - 8 & 16 13 & 29 & 36 & \\
\hline \(-0.37488 n+00-0.5718810+00\) & \(-0.52197 x+00-0.39842 x+00\) & 0. & \(0.593620+01\) & \\
\hline PRIMARY ELEMENT 36 & \(0.2965810+01\) & & PARTIAL & F \\
\hline SECONDARY ELEMENTS & & & & \\
\hline 27 - 8 & 16 13 & 29 & 36 & \\
\hline \(0.3226510-01 \quad 0.1279210+00\) & \(0.5615210+01-0.2005810+00\) & \(0.593620+01\) & 0 。 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline VARIABLE & B & S.E.(B) \\
\hline 3 & DEPENDENT & \\
\hline 27 & \(0.211610+02\) & \(0.7878410+01\) \\
\hline 8 & \(-0.212170+02\) & \(0.58572_{10}+01\) \\
\hline 16 & \(0.752490-01\) & \(0.88570_{10}-02\) \\
\hline 13 & \(-0.67302 n+02\) & \(0.20186_{10}+02\) \\
\hline 29 & -0.5902910-01 & \(0.70921_{10}-01\) \\
\hline 36 & -0.1008410-01 & \(0.53727_{10}-02\) \\
\hline CONSTANT & \(0.6782410+02\) & \\
\hline
\end{tabular}

\section*{ANALYSIS OF VARIANCE}

SOURCE

REGRESSION
RESIDUAL
TOTAL
F VALUE
MULTIPLE R
\(R\) SQUARED

SUM OF SQUARES D.F.
MEAN SQUARE
\begin{tabular}{lrl}
\(0.358019 x+03\) & 6 & \(0.596698_{10}+02\) \\
\(0.378895_{n}+02\) & 45 & \(0.84198910+00\) \\
\(0.395908 n+03\) & 51 & \(0.776291_{10}+01\)
\end{tabular}

4•83

PARTIAL F

ELEMENT ANALYSIS

\title{
29
\(-0.8021710-01\)
}

13
\(0.603110+02\)
\(0.3731910+01\)
\[
\begin{array}{ccc}
\text { PRIMARY ELEMENT } & 27 \\
\text { SECONDARY } & \text { ELEMENTS } \\
27 & 8 \\
0 . & 0.126460+02
\end{array}
\]

38
\(0.2342310+01\)
PARTIAL F
> \(0.36814_{10}+01\)
PARTIAL F

\(\begin{array}{lc}36 & 38 \\ 0.37130_{10}+01 & -0.38826_{10}+01\end{array}\)
PARTIAL F
\(\begin{aligned} & 38 \\ & 0.35617_{10}+01\end{aligned}\)
PARTIAL F
\(\begin{array}{ll}36 & 38 \\ 0.53013_{10}+01 & 0.50070_{10}+00\end{array}\)
\(00+0.0<005^{\circ} 0 \quad 10+\)
PARTIAL F
38
\(-0.13665_{w}+01\)
PARTIAL F
38
0
\begin{tabular}{ccc} 
VARIABLE & B & S.E. \((B)\) \\
\hline 3 & DEPENDENT & \\
27 & \(0.17065 n+02\) & \(0.77657 n+01\) \\
8 & \(-0.17913_{n}+02\) & \(0.58017 n+01\) \\
16 & \(0.80205 n-01\) & \(0.87685 n-02\) \\
13 & \(-0.55046 n+02\) & \(0.20096 n+02\) \\
29 & \(-0.22831 n-01\) & \(0.69836 n-01\) \\
36 & \(-0.12438 n-01\) & \(0.52533_{n}-02\) \\
38 & \(0.36578 n-01\) & \(0.16312_{n}-01\) \\
CONSTANT & \(0.57720 n+02\) &
\end{tabular}
\begin{tabular}{lccc} 
& ANALYSIS OF VARIANCE & \\
SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
& & & \\
& \(0.361905 n+03\) & 7 & \(0.517007 n+02\) \\
REGRESSION & \(0.340036_{n}+02\) & 44 & \(0.772809 n+00\) \\
RESIDUAL & \(0.395908_{n}+03\) & 51 & \(0.776291 n+01\) \\
TOTAL & 66.90 & & \\
F VALUE & 0.9561 & & \\
MULTIPLE R & 0.9141 & & \\
R SQUARED & &
\end{tabular}

TABLE 4.5.

Regrossion equations for maximurn stress - C-type tests
\begin{tabular}{ccc} 
VARIABLE & B & S.E• (B) \\
2 & DEPENDENT & \\
27 & \(-0.63063 n+01\) & \(0.56464 n+00\) \\
CONSTANT & \(0.15834 n+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
\begin{tabular}{|c|c|c|c|}
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.36273710+03\) & 1 & \(0.362737 v+03\) \\
\hline RESIDUAL & \(0.1454010+03\) & 50 & \(0.290801 n+01\) \\
\hline TOTAL & \(0.5081380+03\) & 51 & \(0.9963490+01\) \\
\hline F VALUE & 124.74 & & \\
\hline MULTIPLE R & 0.8449 & & \\
\hline R SQUARED & 0.7139 & & \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
VARIABLE & B & S.E. (B) \\
2 & DEPENDENT & \\
27 & \(-0.5860510+01\) & \(0.5464610+00\) \\
8 & \(-0.4873810+01\) & \(0.16460_{10}+01\) \\
CONSTANT & \(0.27557 n+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}

SOURCE

REGRESSION
RESIDUAL
TOTAL
F VALUE
```

SUM OF SQUARES

```
D.F.

MEAN SQUARE
\[
\begin{array}{lrl}
0.38480510+03 & 2 & 0.192403_{w}+03 \\
0.123333_{10}+03 & 49 & 0.251700_{10}+01 \\
0.508138_{10}+03 & 51 & 0.996349_{w}+01
\end{array}
\]
MULTIPLE R
\(R\) SQUARED
0.8702
0.7573
\begin{tabular}{|c|c|c|c|}
\hline VARIABLE & \multicolumn{2}{|l|}{B} & SoE. (B) \\
\hline 2 & \multicolumn{2}{|l|}{DEPENDENT} & \\
\hline 27 & \multicolumn{2}{|l|}{\(-0.5484610+01\)} & \(0.34350 n+00\) \\
\hline 8 & \multicolumn{2}{|l|}{\(-0.30033 n+01\)} & \(0.10483 \mathrm{n}+01\) \\
\hline 16 & \multicolumn{2}{|l|}{\(0.832750-01\)} & \(0.94321 n-02\) \\
\hline \multirow[t]{2}{*}{CONSTANT} & \multicolumn{2}{|l|}{\(0.21055 n+02\)} & \\
\hline & \multicolumn{2}{|l|}{ANALYSIS OF VARIANCE} & \\
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.461135 x+03\) & 3 & \(0.153712 x+03\) \\
\hline RESIDUAL & \(0.470033 n+02\) & 48 & \(0.979234 n+00\) \\
\hline TOTAL & \(0.5081380+03\) & 51 & \(0.9963490+01\) \\
\hline F VAlue & 156.97 & & \\
\hline MULTIPLE R & 0.9526 & & \\
\hline R SQUARED & 0.9075 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline VARIABLE & \multicolumn{2}{|l|}{} & S.E. (B) \\
\hline 2 & \multicolumn{2}{|l|}{DEPENDENT} & \\
\hline 27 & \multicolumn{2}{|l|}{\(0.260410+02\)} & \(0.710800+01\) \\
\hline 8 & \multicolumn{2}{|l|}{\(-0.256560+02\)} & \(0.5180010+01\) \\
\hline 16 & \multicolumn{2}{|l|}{\(0.82823 m-01\)} & \(0.80018 x-02\) \\
\hline 13 & \multicolumn{2}{|l|}{\(-0.80839 p+02\)} & \(0.1821110+02\) \\
\hline \multirow[t]{2}{*}{CONSTANT} & \multicolumn{2}{|l|}{\(0.79087 n+02\)} & \\
\hline & \multicolumn{2}{|l|}{ANALYSIS OF VARIANCE} & \\
\hline SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.475020 x+03\) & 4 & \(0.118754 n+03\) \\
\hline RESIDUAL & \(0.3311840+02\) & 47 & \(0.704647 \mathrm{p}+00\) \\
\hline TOTAL & \(0.508138 x+03\) & 51 & \(0.9963490+01\) \\
\hline F VALUE & 168.53 & & \\
\hline MULTIPLE R & 0.9669 & & \\
\hline R SQUARED & 0.9348 & & \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
VARIABLE & B & S.E. (B) \\
2 & DEPENDENT & \\
27 & \(0.26876 n+02\) & \(0.724710+01\) \\
8 & \(-0.26615 n+02\) & \(0.53875 n+01\) \\
16 & \(0.82567 n-01\) & \(0.8054410-02\) \\
13 & \(-0.82965 v+02\) & \(0.1856510+02\) \\
29 & \(-0.33943 n-01\) & \(0.48752 n-01\) \\
CONSTANT & \(0.81987 n+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
\begin{tabular}{lccc} 
SOURCE & SUM OF SQUARES & D•F• & MEAN SQUARE \\
\hdashline REGRESSION & \(0.4753650+03\) & 5 & \(0.950730 n+02\) \\
RESIDUAL & \(0.3277310+02\) & 46 & \(0.7124580+00\) \\
TOTAL & \(0.508138 n+03\) & 51 & \(0.9963490+01\) \\
F VALUE & 133.44 & & \\
MULTIPLE R & 0.9672 & & \\
RSQUARED & 0.9355 & &
\end{tabular}
ELEMENT ANALYSIS
\(\pm \quad 7 \forall I \perp \forall \forall d\)
PARTIAL F
PARTIAL F
PARTIAL F
PARTIAL F 36
\(-0.2490810+01\)
PARTIAL F
36
0


\section*{ANALYSIS OF VARIANCE}
\begin{tabular}{lccr} 
SOURCE & SUM OF SQUARES & D.F. & MEAN SQUARE \\
\hline REGRESSION & \(0.478875 n+03\) & 6 & \(0.798125 n+02\) \\
RESIDUAL & \(0.292630 n+02\) & 45 & \(0.650290 n+00\) \\
TOTAL & \(0.508138 w+03\) & 51 & \(0.996349 n+01\) \\
F VALUE & 122.73 & & \\
MULTIPLER R & 0.9708 & & \\
R SQUARED & 0.9424 & &
\end{tabular}
(91)

TABLE 4.6.

Regression equations for intercept stress - C-type tests

VARIABLE

1

27
CONSTANT
CONSTANT

SOURCE

REGRESSION RESIDUAL
TOTAL
F VALUE
MULTIPLE R
\(R\) SQUARED

B
\(S . E \cdot(B)\)
--------

DEPENDENT
\(-0.27609_{10}+01\)
\(0.4624710+00\)

\section*{ANALYSIS OF VARIANCE}

\section*{SUM OF SQUARES D.F.}

MEAN SQUARE
\[
\begin{array}{lrr}
0.695238 x+02 & 1 & 0.695238 x+02 \\
0.975389 x+02 & 50 & 0.195078 x+01 \\
0.167063 x+03 & 51 & 0.327574 x+01
\end{array}
\]
0.6451
0.4162



\begin{tabular}{ccc} 
VARIABLE & B & S.E. \((B)\) \\
\hline 1 & DEPENDENT & \\
27 & \(0.20372 n+02\) & \(0.10159 n+02\) \\
8 & \(-0.21119 n+02\) & \(0.75519 n+01\) \\
16 & \(0.24289 n-01\) & \(0.11290 n-01\) \\
13 & \(-0.57981 n+02\) & \(0.26023 n+02\) \\
29 & \(-0.11186 n+00\) & \(0.68338 n-01\) \\
CONSTANT & \(0.61725 w+02\) &
\end{tabular}

\section*{ANALYSIS OF VARIANCE}
```

SOURCE

```
SUM OF SQUARES D.F.

MEAN SQUARE
\begin{tabular}{crc}
\(0.102667_{n}+03\) & 5 & \(0.205334_{10}+02\) \\
\(0.643956+02\) & 46 & \(0.139990_{10}+01\) \\
\(0.167063_{n}+03\) & 51 & \(0.32757410+01\) \\
14.67 & & \\
0.7839 & & \\
0.6145 & &
\end{tabular}
4. 07
0
0
0
\(i\)
\(n\)
\(n\)
\(n\)
\(n\)
0
0
\(\dot{0}\)
ELEMENT
PARTIAL F
ELEMENT ANALYSIS
PARTIAL
PARTIAL
\(\begin{aligned} & 36 \\ - & 0.9981610-01\end{aligned}\)
\(\pm 7 \forall I \perp d \forall d\)
\(9 \varepsilon\)
\(-0.94480 n+00\)
PARTIAL F
\(\begin{array}{ll}29 & 36 \\ -0,12224 n+01 & 0,14390 n+00\end{array}\)
PARTIAL F
4
PARTIAL
PARTIAL
Mo
\begin{tabular}{ccc} 
VARIABLE & B & S.E. (B) \\
1 & DEPENDENT & \\
27 & \(0.20417_{n}+02\) & \(0.10117_{10}+02\) \\
8 & \(-0.21217_{10}+02\) & \(0.75215_{10}+01\) \\
16 & \(0.26299_{10-01}\) & \(0.11374_{10}-01\) \\
13 & \(-0.57389_{10}+02\) & \(0.25921_{10}+02\) \\
39 & \(-0.18291_{10}+00\) & \(0.91073_{10}-01\) \\
36 ONSTANT & \(0.81002_{10}-02\) & \(0.68994_{10}-02\)
\end{tabular}

\section*{ANALYSIS OF VARIANCE}

REGRESSION
RESIDUAL
TOTAL
F value
\begin{tabular}{lrr}
\(0.104580_{n}+03\) & 6 & \(0.174301_{10}+02\) \\
\(0.624818{ }_{n}+02\) & 45 & \(0.13884810+01\) \\
\(0.167063_{n}+03\) & 51 & \(0.327574_{10}+01\)
\end{tabular}
```

```
SUM OF SQUARES D.F.
```

```
```

SUM OF SQUARES D.F.

```
SUM OF SQUARES
D.F.
---
```

51

MEAN SQUARE 12.55
0.7912
0.6260

TABLE 4.7.

Regression equations for work-hardening coefficient - C-type tests
33.46

PARTIAL

ELEMENT ANALYSIS

$$
\begin{aligned}
& \sim \\
& o \\
& + \\
& 2 \\
& \alpha \\
& \sim \\
& \vdots \\
& \infty \\
& 0 \\
& 0 \\
& \vdots
\end{aligned}
$$

PARTIAL F	9.14
PARTIAL F	20.17

$0.1669810+02$
$0.36838_{10}+02$

| PRIMARY ELEMENT | 16 |
| :--- | :---: | :--- |
| SECONDARY ELEMENTS | |
| 16 | 42 |
| 0. | $0.678410+02$ |
| | |
| PRIMARY ELEMENT | 42 |
| SECONDARY ELEMENTS | |
| 16 | 42 |
| $0.67841 ヵ+02$ | 0 |

PARTIAL F	21.73
PARTIAL F	3.39
PARTIAL F	16.84

16.84

PARTIAL F
$0.29983 n+02$
39
$-0.1328510+02$
$0.467480+01$
$39.3216310+02$
$0.23238 x+02$
$\stackrel{0}{9} 0$
$\begin{array}{r}N \\ 0 \\ + \\ 0 \\ m \\ 0 \\ \hline N \\ N \\ \cdots \\ \hline\end{array}$
$-0.13285 n+02$
16
1N3Wヨ7
ELEMENTS
42
PRIMARY ELEMENT
SECONDARY ELEMENTS
16
$0.5263510+02 \quad 42$
0.0
-
PRIMARY ELEMENT 39
SECONDARY ELEMENTS

PARTIAL F
PARTIAL F
PARTIAL F

$0.27929 \mathrm{p}+02$
$0.89089 n+01$
$0.71567 n-01$
38
0.

16

PRIMARY ELEMENT
$0.27929+02$
38
0.8

8ε

0.75331 n+ 02 .

PRIMARY ELEMENT
SECONDARY ELEMENTS
$0.34779 n+01 \quad 0.890890+01$

VARIABLE	B	S.E. (B)
4	DEPENDENT	
16	0.44367_{10-01}	$0.16653_{10}-01$
42	$0.10478 n-01$	$0.27058_{10}-02$
38	$-0.37844_{10}-02$	$0.19306_{10}-01$
CONSTANT	$-0.7948810+00$	

ANALYSIS OF VARIANCE

```
SOURCE
-------
```

REGRESSION RESIDUAL
TOTAL
F VALUE

```
SUM OF SQUARES D.F.
```

MEAN SQUARE

MULTIPLE R
R SQUARED
$0.121448 n+03$
$0.894016 n+02$
$0.210850 n+03$

3
$0.404827 n+02$
$0.894016 n+02 \quad 48 \quad 0.186253_{n}+01$
51
$0.4134310+01$
24.75
N
0
∞
∞
\dot{a}
$\stackrel{9}{i}$
i
n

∞
-
L.
PARTIAL
PARTIAL F
4
$\frac{1}{4}$
$\frac{1}{4}$
$\frac{2}{4}$
2
4
$\stackrel{1}{4}$
$\stackrel{\square}{\square}$
$\stackrel{4}{4}$
a

ELEMENT ANALYSIS

TABLE 4.8.

Regression equations for work-hardening eoefficiont - B-type tests

$$
29 \cdot 22
$$

u
$\stackrel{\Delta}{a}$

$$
\begin{aligned}
& \text { PRIMARY ELEMENT } 16 \\
& \text { SECONDARY ELEMENTS } \\
& 16 \\
& 0 .
\end{aligned}
$$

REGRESSION EQUATION

VARIABLE	B		S.E. (B)
4	DEPENDENT		
16	$0.6601^{410}-01$		0.12211001
CONSTANT	$0.251450+01$		
	ANALYSIS OF VARIANCE		
SQURCE	SUM OF SQUARES	D.F.	MEAN SQUARE
REGRESSION	$0.139185 m+03$	1	$0.139185 x+03$
RESIDUAL	$0.395307 n+03$	83	$0.4762740+01$
TOTAL	$0.534493 x+03$	84	$0.6363010+01$
F VALUE	29.22		
MULTIPLE R	$\begin{aligned} & 0.5103 \\ & 0.2604 \end{aligned}$		
R SQUARED			

0
0
0
0
n
$\stackrel{n}{*}$
$\stackrel{\circ}{*}$
$\stackrel{\leftrightarrow}{a}$

ELEMENT ANALYSIS
$0.261920+02$
$0.40851 n+02$

PRIMARY ELEMENT	
SECONDARY	16
16	ELEMENTS
0,	42
PRIMARY ELEMENT	
SECONDARY ELEMENTS	
16	42
$0.112990+03$	42
0.129903	

VARIABLE	B		S.E. (B)
4	DEPENDENT		
16	$0.369170-01$		$0.149980=01$
42	$0,8070910=02$		$0.26254 n=02$
CONSTANT	$0.347760+00$		
	ANALYSIS OF VARIANCE		
SOURCE	SUM OF SQUARES	D,F,	MEAN SQUARE
REGRESSION	$0.1800360+03$	2	$0.9001810+02$
RESIDUAL	$0.354456 n+03$	82	$0.43226410+01$
TOTAL	$0.5344930+03$	84	$0.6363010+01$
F VALUE	20,82		
MULTIPLE R	0.5804		
R SQUARED	0,3368		

PARTIAL F F	1.03
PARTIAL F	5.42
PARTIAL F	0.30

VARIABLE

4
16
42
39
CONSTANT

ANALYSIS OF VARIANCE

SUM OF SQUARES D,F,
MEAN SQUARE $\begin{array}{crr}0.181357 n+03 & 3 & 0.604523 n+02 \\ 0.353136 n+03 & 81 & 0.435970 n+01 \\ 0.534493 n+03 & 84 & 0.636301 n+01 \\ 13.87 & & \end{array}$
S.E. (B)

DEPENDENT
$0.79127 \mathrm{~m}=01$
0.78153 m _ 01
$0.30865_{10}=02$
$0.75037 n+00$

SQURCE

REGRESSION RESIDUAL TOTAL
F VAluE

MULTIPLE R
0.5825

R SQUARED
0,3393
6.43
n
0
\vdots
10
0
0
0

ELEMENT ANALYSIS
$0.27829 n+02$
38
$-0.163710+01$
$0,409250+02$
38
$-0.744310=01$

0.
$\begin{array}{lcl}\text { PRIMARY ELEMENT } & 16 \\ \text { SECONDARY } & \text { ELEMENTS } \\ 16 & 42 \\ 0 . & 0,114770+03\end{array}$
PRIMARY ELEMENT
SECONDARY ELEMENTS
16
$0.114770+03$
0.
PRIMARY ELEMENT
SECONDARY ELEMENTS
$-0.16371 \pm+01=0.74431+01$

VARIABLE	B	SOE (B)
4	DEPENDENT	
16	$0.38223 n-01$	$0.15078_{n}=01$
42	$0.80783 n-02$	$0.26278 n=02$
38	$0.75306 n-05$	$0.81730 n=05$
CONSTANT	$0.26619 n+00$	

ANALYSIS OF VARIANCE

SOURCE	SUM OF SQUARES	D.F.	MEAN SQUARE
REGRESSION	$0.183713 n+03$	3	$0.612376 n+02$
RESIDUAL	$0.3507800+03$	81	$0.433061 n+01$
TOTAL	$0.534493 n+03$	84	$0.636301 \pm+01$
FUALUE	14.14		
MULTIPLER	0.5863		
R SQUARED	0.3437		

ELEMENT ANALYSIS

VARIABLE

4

16
42
38

41

CONSTANT

B
$-$

DEPENDENT

$$
0.15718 x+00
$$

$$
0,68033 n=02
$$

$0,6303010=05$
$-0.15579 p+00$
$0.416560+00$

```
S,E.(B)
```

-

$$
0.55645 x=01
$$

$$
0.26302_{n}=02
$$

$$
0.80016 n=05
$$

$$
0.70277 n=01
$$

ANALYSIS OF VARIANCE

SOURCE

REGRESSION RESIDUAL TOTAL
F Value
MULTIPLE R
R SQUARED

SUM OF SQUARES D,F.
MEAN SQUARE

$$
\begin{array}{rr}
0.204013 n+03 & 4 \\
0.330480 n+03 & 80 \\
0.5344930+03 & 84 \\
12.35 & \\
0.61,8 & \\
0.3817 &
\end{array}
$$

$$
0.510032 x+02
$$

$$
0.413100 n+01
$$

The final least-squares regression equations for the parameters used to describe the stress-strain curve are presented below. In general the independent variables included are significant at a level of probability of error less than 0.05 . In the small number of cases where probabilities greater than this have been adopted the reasons for doing so will be explained in Section 5: Discussion.

For the B-type tests the equations are:

$$
\begin{align*}
\tau_{0} & =53.92+17.10 \mathrm{~b}_{.} \theta-18.32 \mathrm{~b}+0.031 \mathrm{G}^{2} / Y_{\mathrm{SF}} \\
& =48.84 \theta-0.239 \mathrm{G} . \theta+0.019 \mathrm{G} . \ln \dot{\gamma} \tag{4.1}
\end{align*}
$$

$$
\begin{align*}
\tau_{\mathrm{M}} & =97.61+30.76 \mathrm{~b}_{.} \theta-31.91 \mathrm{~b}+0.070 \mathrm{G}^{2} / Y_{\mathrm{SF}} \\
& =93.66 \theta-0.191 \mathrm{G} . \theta+0.009 \mathrm{G} .1 n \psi \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
\mathrm{K}= & 0.42+0.16^{\mathrm{G}^{2}} / Y_{\mathrm{SF}}+0.007 \mathrm{G} \cdot \mathrm{~b} \cdot \mathrm{D}^{-\frac{1}{2}} \\
& +0.63 \times 10^{-5} \mathrm{GD}_{\mathrm{a}}^{-3 / 5}-0.16 \mathrm{G} \cdot \mathrm{~b} \cdot \mathrm{D}^{-\frac{1}{2}} / \gamma_{\mathrm{SF}} \tag{4.3}
\end{align*}
$$

and for the C-type tests:

$$
\begin{align*}
& \tau_{0}=61.64+20.42 \mathrm{~b}_{0} \theta-21.22 \mathrm{~b}+0.026^{G^{2}} / \gamma_{S F} \\
& -57.39 \theta-0.183 \mathrm{G}_{0} \theta+0.008 \mathrm{G} .1 \mathrm{n} \dot{y} \\
& \tau_{M}=81.87+26.94 b . \theta-26.75 b+0.085^{G^{2}} / \gamma_{S F} \\
& -82.16 \theta-0.130 \mathrm{G} . \theta+0.011 \mathrm{G} .1 \mathrm{n} \dot{Y} \quad \text { (4.5) } \tag{4.5}\\
& \begin{aligned}
\tau_{S} & =57.72+17.07 \mathrm{~b} . \theta-17.91 \mathrm{~b}+0.080^{\mathrm{G}^{2}} / Y_{\mathrm{SF}} \quad-3 / 5 \\
& =55.05 \theta-0.023 \mathrm{G} . \theta-0.012 \mathrm{G} . \ln \dot{\gamma}+0.037 \mathrm{G.D} \mathrm{~d}^{-3}
\end{aligned} \tag{4.6}\\
& K=-0.91+0.28 G^{2} / S_{S F}+0.010 G \cdot b \cdot D^{-\frac{1}{2}} \\
& -0.035 \mathrm{G.D} \mathrm{~d}^{-1 / 5}=0.287 \mathrm{G.b} \cdot \mathrm{D}^{-\frac{1}{2}} / \gamma_{S F}
\end{align*}
$$

where:

$$
\begin{aligned}
& \tau_{0}=\text { intercept stress - t.s.i. } \\
& \tau_{M}=\text { maximum stress }- \text { t.s.i. } \\
& \tau_{S}=\text { steady state stress - t.s.i. } \\
& \mathrm{K}=\text { work hardening rate. } \\
& \text { b }=\text { Burger's vector - } \AA \\
& \theta=\text { ratio of testing temperature to } \\
& \text { melting temperature. } \\
& \text { G }=\text { shear modulus }- \text { t.s.i. }^{x} 10^{-2} \\
& y_{S F}=\text { stacking fault energy - dynes. on }{ }^{-2} \\
& \dot{\gamma}=\text { strain rate }-\min _{0}{ }^{-1} \\
& \mathrm{D}=\text { mean structure size }-\mathrm{mm} \text {. } \\
& \mathrm{D}_{\mathrm{a}}=\text { diffusion coefficient }-\mathrm{k}_{\mathrm{e}} \text { cal } \cdot \text { mole }{ }^{-1}
\end{aligned}
$$

5. DISCTSSION

5.1. Experimental ${ }^{T}$ echnique

The technique of of conducting the torsion tests proved th be generally satisfactory, bearing out the anticipated advantages of test-piece stability, ease of heating to test temperature, etc. The values of meximum stress and steady state stress are parameters which are clearly identifiable and the experimental error, indicated in table 4.1 by their respective variances (or mean squares) ranged from approximately 3 per.cont。 up to a meximum of 10 per cent. of the total variance.

Ais was expected the error variance for the intercept stress - τ_{0} was much greater than for the other two stress parameters. In fact the variance proved to be approximately three times as great as for the maximum stress, a difference which is statistically significant at the 0.01 levol of probebility. $E_{\text {ven }}$ this level of variability would probably be ensiderod acceptablo under many circunstances where stress detorninations wore required, howevor, the obsorvation value being roproduced to within -3 t.s.i. for 95 por cont. of single determinations carried out (compared with ± 1.6 t.s.i. for the maximum stress).

The variability in K - the work hardening coefficient must be regarded as disappointingly high the error variance reprosenting approximately half of the total veriance in this parameter, for the B-type tests. In view of the levels of reproducibility which may be inferred from the results of other workers in this
fiold (values are rarely stated), it must be considered that the exporimontal technique adoptod was responsible for much of the variability. Since the axial loads which develop during torsion testing can be either tensile or enmpressive it is necessary to provide constraint in both directions. In the current tests this wes achicved by using test-pieces with threaded ends, which made nachining simple and convenient. This method carries the incvitable risk of the specimen being twisted further into the throaded grips, however, giving rise to an indicated value of strain which is higher than the true value. Although care was teken to tighten the specimen into the grips to the point where the errors described were considered to be very unlikely, the high values of error variance cast some doubt on the effoctivoness of this practice. If this kind of fault did arise, in fact, it must affect the validity of the final regression equation for K since the true distribution $\cap f$ experimental errors is likcly to be strongly skewed, the tondency being always to underestimate the value of K.

5.2. Regrossion Analysis

The prinary objective of the investigation reported here has been stated as thet of producing a mathenatical modol of the stress-strain reletionship, in a selected class of notels, such as would allow useful predictions of behaviour to be made. In order to be useful the predictions should be subject to the lowest possible error variance, that is the probability of encountering any particular value of the response variable should decrease as that value deviates to a greator extent from the 'true' value. Since the conventional nethods of producing a regrossion equation are based upon minimising the sum of the squared valuos of the deviations about the regression (i.e. the rosidual variance) these techniques would seen to offer an attractive and convenient means of achieving the criterion of 'usefulness' stated above。

The use of regression techniques is based upon cortain assumptions, the validity of which must be assessed in order to justify the techniques adopted. In making this assessnent it is convenient to consider first the three perameters of stross $\tau_{\text {ili }}, \tau_{0}$ and τ_{s}.

5.2.1. The Stress Parameters

(a) The meximum stress

The first parameter to be considered is the maximun stress for the B-type tests. The order of inclusion of independent veriables

$$
\text { was: } \begin{array}{ll}
& b \cdot T / T_{m} \\
& b \\
& G^{2} / \gamma_{s f}
\end{array}
$$

$$
\mathrm{T} / \mathrm{T}_{\mathrm{m}}
$$

At this stage the proportion of the total sum of squeres which could be attributed to the regression was 0.933 (that is R^{2} equalled 0.933), and the ratio of regression mean square to residual neen square (the 'totel F^{t} ratio) was 278.26 , the highest F-value obtained. On the basis of achioving the highest average response this equation might be onsiderod as the most 'efficient'. The ratio of the residual mean squere to theindopendentlyestimated orror mean square was 2.2 at this stage, however, which indicates a 'lack of fit' contribution to the residual, which is significant at the 0.01 level of probability.

Continuing the selection process, therefore, two more veriablos were added to the equation:

$$
\text { G. } \mathrm{T} / \mathrm{T}_{\mathrm{m}}
$$

and $\quad G_{0} \ln \dot{\gamma} \quad$ This increased R^{2} to 0.943 , an increase of only one per cont., but the residual mean square was reduced to 1.29 which just fails to oxceed the .05 level of significance and may, therofore, be regarded as an estimate of the true error variance. No other variable of those listed had a prinery element which was significant at the 0.05 level of probability at this stage.

One of the basic assumptions of the regression model is that the residual orrors are normally distributed with nean equal to zero. In figure 5.1.(a) the residual errors as shown, in histogram form, ompared with the curve of a true Normal

(b)

Figure 5.1. Comparison of distribution of residual errors with curve for true Normal distribution:
(a) maximum stress
(b) intercept stress
distribution with mean equal to zero and variance equal to 1.19. (The individual differences between the predicted and observed values were calculeted independently and their mean and variance computed at 0.008 and 1.19 respectively. Although those differ from the prodicted values of zero and 1.29 the differences are sufficiently small to be regarded as arithmetic errors, arising out of 'rounding' for exanple, and may be ignorod).

It will be seen that the fit is quite good by visual oxamination. The CHI - SQUARED valuo for this diagram computed from the sum of all the $\frac{(O-E)^{2}}{E}$ terms* for each of the blocks in the histogram is about 14 and this value hes a probability of between 0.5 and 0.4 from the Chi-squared tablos. That is to say, that if obsorvations had been selected at randor from a population with a true Normal distribution, in order to construct the histogran, the likelihood of obtaining a distribution more closely resembling the true curve whuld heve almost the same as the likelihnod of obtaining one loss closely resembling the true curve. It can quite reasonably be assumed, therefore, that the residuel orrors are normally distributed.

A further requirement of the regression model is thet the orrors are not correlated in any wey with any of the variables in the regression. Where the variables may be classified into separate groups the absonce or otherwise of correlations may be examined by calculating the mean and variance for each group. * 0-observed value.

E - expected (from Normel distribution) value.

These statistics should not then differ significantly fron those for all of the groups added together, i.e. from those for the overall residual errors. In table 5.1 the means and veriances of the residual orrors in maximum stress are shown for the B-type tests together with their ' t ' values and ' F ' values.

In no case was the t-value significant at 0.05 level of probability, confirring that the errors for differen compositions aro uniformly distributed about the mean, within the range of variation to be expected due to random sampling variations. Anong the F-values only that for the nickel specimens was greater than the value for significence at the 0.05 level, and this was much less than the value necessary for significence to be established at the 0.01 level of probability.

It seens reasonable to accept, thorefore, that the errors aro independent of omposition.

Where the variable which is being considered cannot be divided into groups, but is continuously variable the technique for assessing the relationship with the residual errors is difforent. The most ennvenient method is to plot the residual value (the difference between the predicted and observed values) against the predictor variable. An example of the residual errors plotted against the homologans temperature T / T_{m} is shown in figure 5.2 , for the B-type tests. It can be scon that there is no prominent trend to the distribution

(100)

SOURCE	MEAN	VARTANCE		d.f.		t-Value

Table 5.1. Comparison of residual errors for chemical composition. Mnximun stress, B-type tests.

Figure 5.2. Distribution of residual errors for B-type tests:
(a) maximum stress versus T / T_{m}
(b) intercept stress versus $G_{0} \ln \dot{Y}$
(101)
and that the residual values are distributed in an apparently randon manner along the range of temperatures used. Comperison of the rosiduals with other predictor variables produced diegrams which were broadly similer to the one shown.
(b) The intercept stress.

The corrolation coefficient between maxinum stress and. intercept stress is 0.839 (which may be compared with a value of 0.357 necessary to establish significance at the 0.001 level of probability). It is ovident, thorofore, that the two paraneters aro closely associated, and thet the relationship might well be nore clear but for the inherently high variability in intercept stross. It is hardly surprising, therofore, that the same variables exert an influence on both. In this case the residual mean square fron the regression equation proved to be equal to the independently determined error nean square.

Figure 5.1 (b) shows the distribution of the residual errors in intercopt stross ompared with the thooretical curve for tho Normal distribution. The value of chi-squared is, again, about 14, establishing that the rosidual values enform olosely with a Normel distribution.

Table 5.2 shows the means, variances, t - and F - values in similar manner to those presented in table 5.1 for the meximun stress. In this case the only t - value of significance was that for the Cu tests whero the nean value differed fron the true mean by an anount which was significant at the 0.05 level of significance. The variance for the rosidual values from the Al tests was shown, by its F-value, to be significantly loss than the ovorall varianco.

SOURCE	MEAN	VARIANCE		d.I.	t-Value	
Fotal	-0.004	1.982	84	-	-	
N	0.455	3.944	6	0.791	1.99	
A	0.252	0.362	11	1.095	5.47	
C	-0.641	1.117	25	-2.112	1.77	
CZ1	0.890	1.716	11	2.005	1.16	
CZ2	-0.385	1.574	7	-0.730	1.26	
CZ3	0.276	3.915	9	0.561	1.98	
CAI	-0.007	2.379	9	-0.004	1.20	

Tablo 5.2. Conparison of residuel effors for chemical composition. - Intercept stress, B-type tests.

This is not wholly unexpected in view of the fact that aluminiun cross-slips alnost innodiately during deformation at room temperature and above. The distance over which the stage 111 curve needs to extrapolated in order to intercept the stross axis is, therefore, much less and the inaccuracy introduced by this manoevre is virtually eliminatod.

The plot of residual errors against the G. In \dot{Y} variable is, similarly, one displaying an apparently randon distribution, as were those for all of the othor variables in the equation.
(c) The C-type tests

A conparison of the equations for maximum stress and for intercopt stress in the B-type and C-type tests respectively shows that there is little discrepancy between the two ranges of temporature. For the meximum stress equation all of the rogression coefficients for the C-type tests differed by less then one standard deviation from the results for the B-type tests.

In the case of the intercept stress equation the regression coefficients for the two variables which were added last differod by greater than one but less than two standard deviations between the B-type and C-type tests. For the other four variables the discrepancy between the two groups of tests was again less than one stendard deviation in each case.

Since the fifty-two C-type tests were drawn from the eightyfive B-type tests, and the rosidual plot against temperature showed no consistent trends of any kind, this general agreement
betweon the two types of test is to be expected. It does tend to confirm the evidence of the residual plot, however.
(d) The Steady-state stress

The C-type tests were selected from the B-type tests on the basis of heving a clearly defincd steady state region of deformntion. It is only within this group of tests that the stoady-state stress may be studied, therefore.

The correlation coefficient between this parameter and the maximum stress is, again, very high at 0.961 . The same variables as for the other two stress paraneters heve been added into the equation, but it was found that when veriable 36 wos added the contribution due to variable 29 became insignificantly small. The normal practice would have been to eliminate 29 from the equation at this stage but it was decided to retain it in order to maintain the similarity with the equations for the other stress peramoters.

One other difforence that was noted between this and the other stress parameters was thet the variable $G_{\circ} D_{d}^{-1 / 5}$ (where D_{d} is the diffusion coefficiont) was found to have a significant effect.

The residual mean square for the steady state stress equation was shown to be almost exactly equal to the independently estimated error variance, and the other assessments of the residual values confirmed that thoy were in accordance with the previously mentioned assumptions of distribution and independance.

5.2.2. Accuracy and Reliability

(a) Accuracy The accuracy of prediction of a value of the dependent variable is subject to the error variance as estimated by s^{2} - the residual mean square. While s^{2} is based on deviations from the mean, which is indapoctent of the estimated regression coefficients, the regression coefficients are not independent of one an the (except in the case of an orthogonal matrix of correlation coefficients). The value of S^{2} must, therefore, be increased to allow for this additional uncertainty.

Davies ${ }^{120}$ gives the equation for the adjusted variance as:

$$
\begin{gather*}
v(Y)=v(\bar{y})+\left(x_{1}-\bar{x}_{1}\right)^{2} v\left(b_{1}\right)+\ldots \ldots+\left(x_{p}-\bar{x}_{p}\right)^{2} v\left(b_{p}\right)+ \\
2\left(x_{1}-\bar{x}_{1}\right)\left(x_{2}-\bar{x}_{2}\right) \operatorname{cov}\left(b_{1} b_{2}\right)+\ldots \ldots \tag{5.1.}
\end{gather*}
$$

where $V(Y)$ is the variance of the value Y, predicted from X_{1}, X_{2}, \ldots, X_{p}, and cove $\left(b_{1} b_{2}\right)$ is the covariance of b_{1} and b_{2}.

Since the covariance is calculated from:

$$
\begin{equation*}
\operatorname{cov}\left(b_{i} b_{j}\right)=s^{2} a^{i j} \tag{5.2}
\end{equation*}
$$

where $a^{i j}$ is the appropriate element from the reciprocal matrix, and since

$$
\begin{equation*}
a^{i j}=r^{i j} /\left(\sum\left(x_{i}-\bar{x}_{i}\right)^{2} \sum\left(x_{j}-\bar{x}_{j}\right)^{2}\right)^{\frac{1}{2}} \tag{5.3}
\end{equation*}
$$

where $r^{i j}$ is the equivalent element in the reciprocal correlation matrix, wo may write:
$n x_{0}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right) \operatorname{cov}\left(b_{i} b_{j}\right)=r^{i j}$

$$
\begin{equation*}
\frac{\sum\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)}{\left(\sum\left(x_{i}-\bar{x}_{i}\right)^{2} \sum\left(x_{j}-\bar{x}_{j}\right)^{2}\right)^{\frac{1}{2}}} \tag{5.4}
\end{equation*}
$$

The term associated with $r^{i j}$ is equivalent to $r_{i j}$ and so substituting in equation 5.1. we have:

$$
\begin{equation*}
\mathrm{V}(\mathrm{Y})=\mathrm{v}(\bar{y})+1 / n\left(r^{11} r_{11}+\ldots \ldots+r^{\left.p p_{r_{p p}}+2 r^{12} r_{12}+\ldots .\right), ~\left({ }^{12}\right)}\right. \tag{5.5.}
\end{equation*}
$$

In fact the additional variance from this source is relatively snall in the present case. For the intercept stress the value is 0.119 giving:

$$
\nabla\left(\tau_{0}\right)=2.254
$$

while for the maximun and steady state strosses the values are 0.288 and 0.339 , respoctively, giving:

$$
\begin{aligned}
& \mathrm{V}\left(\tau_{\mathrm{r}}\right)=1.588 \\
& \mathrm{~V}\left(\tau_{\mathrm{s}}\right)=1.112
\end{aligned}
$$

In repeated tests, therofore, experimental values of the intercept stress would be expected to lie within ± 2.9 t.s.i. of the predicted value in 95 por cent. of cases. For the maxinum and stoady-state stresses the corresponding values are ± 2.5 t.s.i. and ± 2.1 t.s.i. respectivoly.
(b) Reliability. The criteria of 'bestness' in selecting a sub-set of predictor variables for regression equations are sonctimes impreciso and may not be wholly compatible. Some of the more important onos may be worth mentioning here.
(i) If the regression equation is to be used for the purposes of prediction for further values, i.e. additional to those on which the anelysis is based, it is dosirable that the value of R^{2} should bo high. Once the residual mean square has been reduced until it
equals the error variance, however, there is little or no advantage in further increasing R^{2}, since the additional veriance due to covariance between the prodictor variables is unlikely to be significantly reduced by tho addition of nonsignificant terms into the regression.
(ii) It is desirable that all of the terms in the regression should be statistically significant when assessed on the basis of their primary olements.
(iii) It is usually desirable that the number of predictor variables should be as snall as is compatible with (i) above.

Even within the constraints imposed by these criteria there nay be nore than one solution in the search for the 'best' equation and in the absence of 'a priori' evidence no means may be available for distinguishing between the alternatives.

In the present study the available evidence indicates a very close similarity in the equations relating to the three stress paraneters. Differences between the results for B-type and C-type tests, where these are appropriate, appear to be no greater than would be expected fron random sampling variations. Furthormore the exanination of the residual values appears to confirm that there is no undue bias in their distribution and that the error varianco is constant over the range of experimental conditions.

One further surce of difficulty may arise from singulerity, or near-singularity, of the matrix which is inverted to produce the final equation. In extreme cases this is revealed by giving rise to values of the stendard errors of the regression coefficients which are indeterminate, (usually because they require a division by zero). Even circumstences less extrene than this can be problenatic, however, but it is considered that the information derivod from the table of primary and secondary elements give ample werning of this danger.

The technique by which selection was carried out ensures that when highly correlated variables are included in the regression each of then makes a contribution, significantly greater than that which is likoly to arise by chance, and which would not be made in the absence of that veriable. Consider, for example, the table of elements in teble 4.2 (betwoon pages 87 and 88). Two of the variables included in this table are $27\left(\mathrm{~b}, \mathrm{~T} / \mathrm{T}_{\mathrm{m}}\right)$ and 13 $\left(T / T_{m}\right)$ and the simple correlation coefficient between these two is equal to 0.987. This indicates that the contribution th the rogression sun of squares which is due to the presence of variables 27 and 13 is the sum of these quantities, viz. 342.112 and of this total 157.40, approximately half, cannot be unambiguously ascribed to either of the individual variables. If variable 27 is eliminated from the regression, therefore, the apparent contribution due to variable 13 will increase by 157.40 , but the total rogression sum of squares will be reduced by 77.782, a quantity which is almost sixty times as great as the estinated orror variance. On this basis it is clearly justifiable to includo both
variable 27 and variable 13, despite their high correlation. Since this practice has been adopted throughout the analysis it is considored that the variables included in the various equetions aro justified and the equations presonted are valid interpretations of the oxporimental data.

5.2.3. The Work-Hardening Coofficiont - K
 The same technique was applied to this parameter as to the stress parameters and the rosults obteined are presented in tablos 4.7 and 4.8.

For the C-type tests variables Nos. 16 and 42 were added to the regression, in that order, and accounted for 0.076 of the variance in K_{o}. The further addition of variable 39 incrensed R^{2} to 0.686 , with a reduction of the residual noan square to a value less than that of the independently estimated error variance.

If the veriable containing the diffusion coefficient - 38, is forced into the oquation, that is to say that it is included despite not being justified on the basis of making a significant contribution to the rogressinn sum of squeres, variable 39 becomos insignificant. Variable 47 is then found to be significant at the 0.05 level of probability. This solution had a value of R^{2} equal to 0.697 , with a residual mean square of 1.361 compared with the independently estimeted error variance of 2.08). The retention of variable 38 may be justified because of the strong nogative secondary elements betreen this and all of the other variables in the equation. Newton and Spurrell ${ }^{91}$ suggest in their ${ }^{\text {'Rule }} 4(\mathrm{a})^{\prime}$ '.....both variables must be kept in the rogression because they are complementary in their effect on the dependent variable They also make it clear that the interrelationship nay be algebraic rather than operational.

The distribution of residual valuos of work-hardoning coefficient is shown in figure 5.3, compared with Normel curve. Once agein the Chi-squared value (equel to 7.2) lies botween the tabulated valuos for probabilitios of 0.75 and 0.50 and can be regardod as confirmation that the errors are normelly distributed. One outlying value of 4.4 has been discorded for the purpose of this comperison, and a repent observation undor the same experimental conditions had a value of 0.73 .

Figure 5.4 shows a plot of the rosidual valuos against T / T_{m} and in table 5.3 the influence of composition on the residual values is, similarly, shown to insignificent, whon the outlying value roferred to above is excluded. (If this value is not oxcluded the veriance within the CZ3 specimons is significantly greater than the overall error noen squere. The rejection of this single value from the fifty-two experiments is considered to be justifiod, however, particularly sinco the repeat observation lay very much closer to the mean).

The application of the same tochnique of analysis to the B type test data was a great doal less successful, however, and the best value of R^{2} was only 0.382 . If the equation produced for the C-type tests is applied to the B-type data the residual crrors of the predictions not included in the C-type tests bave a mean which still equals zern, but the mean square rises to approximetely 12. This nearly ten-fold increase can be partly explainod in terms of the shortcomings of the experimental technique mentioned in section 5.1, and is clearly more likely to occur at lower temperatures

Figure 5.3. Comparison of distribution of residual errors for the work-hardening coefficient with true Normal curve.

Figure 5.4. Distribution of residual errors for work-hardening coefficient versus $T / T_{m}=C$-type tests.

SOURCE	NEAN	VARTANCE		d.f	t-Value	F-Value
Total	0.001	1.360	51	-	-	
N	0.009	3.744	3	-0.01	2.82	
A	-0.219	1.133	6	0.47	1.17	
C	-0.093	0.587	20	0.34	2.26	
CZ1	0.409	1.368	2	-0.58	1.03	
CZ2	0.165	0.421	4	-0.31	3.15	
CZ3	0.665	3.894	5	-1.20	2.93	
CZ3 *	-0.296	0.974	4	0.55	1.36	
CA1	-0.235	1.718	5	0.47	1.29	

* After rejection of one outlying value.

Table 5.3. Comparison of residual errors for chemical onmposition. - Work-hardening $\mathrm{C}_{\text {oefficient, }}$ C-type tests.
when the stresses developed are genorally higher. The cases where K is overestimated can cleerly not bo explained in this way. Onc possiblo explanation is that the low temperetures and resultent high stresses encourago deformation twinning, to an extont which does not disqualify the result by the standards of acceptence adopted, but because twin propagation is cesior then twin nucleation it may reduce the overall work-herdening rate. This is further supported by the fact that in the cases of the high stacking fault energy metals the tondency is to undorestimato the rate of work-hardening, while the lower stacking fault energy metals, where twinning is easier, have usually lower work-hardening rates than the predicted values.

Using the same method for calculating varianco as in tho previous section the additional variance is 0.30 so that the total variance $V(K)$ is equal to 1.66. The 95 per cent. confidence limits for a prediction of K are ± 2.5 t.s.i. for the C-type tests. No estinates were made for the B-type tests.

5.3. Work Herdening and Restorntion.

The veriables in the regression equations are selected on the besis of statistical criteric rather than mechanistic arguments. It would be unwise, theroforo, to attonpt a full explanation of the variables in the final equations on the basis of likely mechenisms. None-the-less, since the veriables. considered for the regression equetions were selected for onnsideration from suggested mechnnisms, some insight is gained by exerining the predictor variables in the equation.

5.3.1. The Stress Perameters

The parameter of intercept stress has been proposed hore as on approximation of the critical stress for the onset of stage III deformntion. It has the edventage of being calculated from the stage of deformation which predominates in most f.c.c. motals, especinlly at elevated temperatures. Work by Dillamore, Smellman and Roberts ${ }^{98}$ confirmed the dependence of deformation textures in f.c.c. metals on the extent of dislocation cross-slip which is associated with stage IIII deformantion. This information was used to confirm the relationship between intercept stress and cross-slip in a final yoar undergreduate project ${ }^{119}$ supervised by the author of this thesis. In this work it was denonstrated that the intensity of cortain features of the pole figure of crystallographic preferred orientation were strongly correlated with the intercept stress deterrined as in the investigations reported here. The work was carried out on a range of austenitic steels at elevated temperatures.

The high correlations between intorcept stress and tho othor two stress parameters, together with the close similarities betweon the regression equations which were derived for all three parancters
deformation also control the restorntion processes occurring lator in the stress-strain curve.
(a) Stacking fault onergy.

Variable 16. $-G^{2} / \gamma_{\text {sf }}$ is a neasure of the stress required to bring togethor the two 'helves' of a dissociated dislocation, which is a necessary pre-requisite to cross-slip. It should bo noted that dislocation glide not involving cross-slip con nccur without dissociated dislocations re-combining.

Evidently, therefore, whatever additional mechenisms may contribute to the restoration process, that of dislocation crossslip is a mejor contr lling mechanism, contributing a primery olemont which is significant at the 0.001 level of probability. (b) Shear modulus

The importance of shear modulus is also evident from the variables in the regression equations since this property occurs in thrce out of the six terms for the intercopt and maximum stresses and four out of the seven terms in steady state stress equation.

The velues of G used in this study have already been compensated for tomperature, and it seems roasonable to assume thet it simply provides a measure of the stress required to causc atomic movement in the lattice and to enable the unit novement of dislocations.
(c) Burger's voctor

It is, perhaps, a little surprising that none of the terns involving the product torm G.b proved to be significant since the 'unit' distance over which atoms must move in order to establish
plastic deformation is the Burger's vector of the netal. The Burgor's vector does make a significant contribution, however, but in a manner which is rather difficult to explain. In eoch of the equations for the stress parameters the regression coofficients for b and for b . $\mathrm{T} / \mathrm{T}_{\mathrm{m}}$ are effectively equal. Certainly the differences are invariably much less than one stendard devietion. If the regression coofficient is B the effect of Burger's vector con be written as:

$$
\boldsymbol{T}=B\left(\mathrm{~b}-\mathrm{b} \cdot \mathrm{~T} / \mathrm{T}_{\mathrm{m}}\right) \quad-(5.1 .)
$$

Since T / T_{m} is invariably less than unity and B is invariably negative, it follows that the stress peranctor increases with decreasing values of Burger's vector. The contribution of the terms b and $\mathrm{b} . \mathrm{T} / \mathrm{T}_{\mathrm{m}}$ to the rogression sum of squares, calculeted by adding the two primary elements and the secondary element associated with both, is approximately one third of the total. This is clearly a most significant contribution.

One possible explanation of the enomaly whereby the stross decreases as the measure of unit strain increases, is that the Burger's vector provides a guide to some other compositiondependent property. It is not apparent what this property might be, however, and this suggestion does not provide any real insight into the mechanisms occurring.

(d) Tenperature

The influence of temperature is strngly negative, as Was expected from all previous deformation studies. It is not clear why both T / T_{T} and $\mathrm{G}_{0} \mathrm{~T} / \mathrm{T}_{\mathrm{m}}$ exert a significant and soparate
influence, although it may be that they are complementary in correcting for some deviation fron linearity in the temperature dependence of stress. Alternatively the two terns might reflect two different mechanisms.

If the renval of the effects of work hardening depends upon the migration of vacancies as has been suggested in the literature survey, it is to be expected that the tern $G \cdot T / T_{m}$ would be of inportance 77 . The likelihood of this mechanisn being involved is supported by the fact that when $G \cdot D d^{-1 / 5}$ becomes important to the regression, as in the case of the steady-state stress, the contribution from $G . T / T_{m}$ declines to almost nothing.

The T / T_{n} tern remains significant whether or not the diffusion tern is included and probably reflects the eesior movement of dislocations, independantly of elastic stiffness, in the reduced stability of the lattice at higher temperature.

(e) Strain rate

The effect of strain rate, as was suggosted earlier, proved to be small, but significant. The simple semi-logarithmic relationship was not sufficient to describe the stross dependence, but the product of (log strain rate) and shoar nodulus was highly significant in all cases.

In the case of steady-state stress the relationship with strain rate was negative, no doubt reflecting the increased temperature resulting from adiabatic heating at the higher valucs of strain.

It would seem that the similerity between steady-state doformation and doformation under creep conditions postulated by Sellars and Tegart ${ }^{75}$ was justified. Moreover, the influence of the diffusion coefficient suggested by Sherby 63 mainly on the basis of creep studies, was also shown to apply to steady-state deformation.

Sherby's hypothesis that cross-slip is of no importance in studies of high temperature strength was clearly contradicted by the results of the present study, however.
(f) Grain size

It is somewhat surprising that none of the functions of grain size which were considered proved to be signifioant. In this study the annealing treatnents given to the copper alloys wore all similar, and it seens likely that the correletions between $D^{-\frac{1}{2}}$ and the various functions of stacking fault enorgy might have arisen because of the dependence of the stable sub-grain size on the latter property ${ }^{66}$. Since all of the materials were given similar times at similar tomporatures the final grain size would depend upon the size of the nucleus, i.e. the steble subgrain sizo. It might be, therefore, thet in tho present study the effect of grain size has beon masked by its association with stacking fault energy. It must be adnitted, however, that this was not revealed by the size of the secondary elements which eroso.

5.3.2. The Work-Hardening Coefficient

At temperatures greater than about 0.4 Tn , the range covered by the C-type tests in this study, tho work-hardening coofficient appears to confirm the theoroticel calculations for the stress to nove a dislocation. The non-significant contribution of $G \cdot D_{\mathrm{a}}-^{-1 / 5}$ and the negative value of the regression coefficient associated with this variable confirms that the process of diffusion has vory little influence on the rate of work-hardening.

The term $\mathrm{GbD}^{-\frac{1}{2}}$ is associated with the concentration of strosses by the prosence of grain boundaries. The influence of stacking fault onergy is also in agreenent with that suggested by theorotical models.

The absonce of any teraporature depondence is an interesting foature of the rolationship, and it suggests that the influence which is exorted by tomperature is assoc iated with the lowering of the shear modulus (which has been compensated for tomporaturo in this study).

At tomperatures below 0.4 Tn with metals of low stacking fault onergy it appears that deformation twinning can causo a oonsiderable drop in the rate of work-hardoning, even in the absence of such overt signs of twinning as sudden load drops or cleavage fracture. Shortenmings in the experimental technique in this rango of temperature prevent any quantitative ostimate of the extent of the effect of twinning.

5.4. Sumnary

It has boon proposed in this study that the stress-strain relationship in single-phase f.c.c. motals and alloys may be desoribed by an equation of the form:

$$
\begin{gathered}
\tau_{=} \sqrt{\gamma_{+}} \tau_{0}-\text { (5.7) } \\
\text { up to some limiting sknastim } \rightarrow \tau_{\mathrm{m}}
\end{gathered}
$$

At temperatures greater then about $0.4 \mathrm{~T}_{\mathrm{m}}$ a further stage of deformation may occur during which the flow stress renains constent at a value $\boldsymbol{\tau}_{\mathrm{s}}$ while the values of strain encountered are very high.

The value of τ_{0} is suggested as an approximation to the critical stress for the onset of stage III deformetion, with the reservation that inaccuracies can occur if the value of stacking fault onorgy is low.

Regression analysis techniques have beon used to provide a means of predicting the values of the parametors of equation 5.7 on the basis of tho chemical composition and grain size of tho metal, and the experimental conditions of tenperature and strain rate. The standard deviations of the prodictod values of the stress paraneters have been estinated at $1.50,1.26$ 1.06 t.s.i. for $\boldsymbol{\tau}_{\rho}, \boldsymbol{\tau}_{\mathrm{n}}$ and $\boldsymbol{\tau}_{\mathrm{s}}$ respectively, which values should normally be within the level of accuracy of experimental neasurcnent.

The value of the work-hardening coefficient -K may also bo predicted with a standard devie.tion of the obscrveved values about the predicted value of 1.29 t.s.i. for temporatures greater than $0.4 \mathrm{~T}_{\mathrm{m}}$. At inwer tenperatures the influence of deformation twinning ney significantly lower the work-hardening rate of low stacking fault energy metals, but linitations in the experimental technique prevented any assessment of this offect.

From an examination of the influence of stacking fault onorgy, tomperature and diffusion coofficient it appears thet restoration deponds upon similar nechanisms to those causing stage 111 deformation, i.e. principally thermally activated dislocation cross-slip and climb. It also appears that this mechanism plays an important role in steady-stato deformation, which is analogous to high-stress croep deformation.

6. CONCLUSIONS

1. Perametors have boen identified which enable the main features of the shear stress -shear strain relationship to be defined.
2. The dependence of each of the paraneters on factors rolated to enmposition, structure and conditions of deformation heve been investignted by multiple regression analysis.
3. It is suggested that accurate predictions may be made of the likely behaviour of single phase f.c.c. metals fron oquations derived by the anclysis.
4. Evidence suggests that doforantion twinning may reduce work hardoning rates in lower stacking fault energy naterials at temperatures below $0.4 \mathrm{~T}_{\mathrm{n}}$, even in the absence of such indications as lond drops or cleavage fracturc.
5. It appears that the predominant means of reducing the offects of work-hardening, within the range of temperatures and strain rates studied, is recovery by thermally assisted dislocation cross-slip and climb.

7. REFERENCES

1. WISTREICH, J.G., J.I.S.I., 1969, 207, (6), 902
2. RAY, D.J., ibic., 907.
3. WINKIIER, E., Can.Met. Quarterly, 1968, Z, (1), 49.
4. LATHAM, D.J. and COCKCROFT, M.G., N.E.I。Plasticity Report No. 216,1966.
5. ROWE, G.W., 'An Introduction to the Principles of Metal Working' Arnold, Iondon, 1965.
6. BUXTON, S.A.E. and SUTTON, R.W., J.Sci. and Tech., 1969, 36 , (1) 19.
7. ALEXANDER, E., DE MALHERBE, M. and PARK, I。, Ilth M.T.D.R.Conforence, Porganon, LONDON, 1970.
8. TAROKH, Mo, and SEREDYNSKI, T., J.I.S.I., 1970, 208, (7), 695.
9. JONAS, J.J., SELLARS, C.M. and TEGART, W.J.McG., Met.Roviews, 1969, 14, (130), 1.
10. MOORE, P., Special Rep. No. 108, p.103, I.S.I., LONDON, 1968.
11. HUTCFITNGS, J.A.Go, M.Sc.Dissertation, Univ. of Aston, 1966.
12. SELLARS, C.M. and TEGART, W.J.McG., Mem.Sci.Rev.Met., 1966, 63, 731.
13. MEADOWS, B.J., J.I.M., 1965, 23, (10), 353.
14. ANDRADE, E.N.da C. and HENDERSON, C., Phil.Trans.Roy.Soc., 1957, A24O, 304
15. SMALLMAN, R.E., 'Modern Fhysical Metallurgy', Butterworth, LONDON, 1963.
16. VENABLES, J.A., Proc. 5th Int. Congress on Electron Microscopy, I, J8, 1962
17. THORNTON, P.R. and MITCHELL, T.E., Phil. Mag., 1962, I, 361.
18. VENABLES, J.A., 'Deformation 'Twinning', Met.Soc.A.I.M.E., (1964)
19. HAASEN, Po, Phil. Mag., 1958, 2, 384.
20. TAYLOR, G.I., J.I.M., 1934, 62, 307
21. BISHOP, J.F. and HILL, R., Phil. Mag., 1951, 42, 414, 1298.
22. BELL, J.F., Phil. Mag., 1964, 10, 107.
23. LUDWIK, P_{\circ}, 'Elenents der $\mathrm{T}_{\text {echnn }}$ logischer Mechanik', Springer BERLIN, 1909.
24. HOLLOMAN, J.H., Trans. A.S.M., 1948, 32, 123.
25. FELTHAM, Po and COPLEY, GoJ., Phil. Mag., 1960, 5, 649.
26. NADAI, A., 'Theory of Fracture and Flow in Solids', McGraw-Hill, NEW YORK, 1950.
27. HODIERNE, F.A., J.I.M., 1962, $21,267$.
28. VOCE, E., J.I.M., 1955, 74, 537.
29. HOLLOMAN, J.H., Trans. A. I.M.E. , 126, 268.
30. VOCE, E., Metallurgia, May 1955, 219.
31. BAILEY, J.A. and SINGER, A.R.E., J.I.M., 1964, 22, 404
32. HARD:ICK, D., Ph.D. Thesis, Univ. Sheffield, 1960.
33. BEESTON, B.E.P., DILLAMORE, I.L. and SMALLMAN, F.E., Met.Sci.J., 1968, 2, 12.
34. TEGART, W.J.McG., Lecture presented at University of Aston, April, 1967.
35. STUWE, H. P., Special Report No. 108, p.I., I.S.I., LONDON, 1968.
36. SIUNE, H. P., Acta Met., 1965, 13, 1337.
37. HARDWICK, Do, J.I.Mo, 1961, 20, 21.
38. SELLARS, C.M. and TEGART, W.J.McG., Special Report No. 108, p. 43.
39. BRIDGMAN, P.W., Trens. A.S.M., 1948, 32, 553.
40. DAVIDENKOV, N.N. and SPIRIDONOVA, N.I., Proc. A.S.T.M., 1946, 46, 1147
41. POLAKOWSKI, N.H., J.I.S.I., 1949, 163, 250
42. ALDER, J.F. and PHILLIPS, V.A., J.I.M., 1954, 83, 80
43. BLAND, D.R. and FORD, H., Proc. I.M.E., 1948, 159 144.
44. WATTS, A.B. and FORD, H., Proc. I.M.E., 1952, BI, 448.
45. Special Report No. 108, I.S.I., LONDON, 1968, Several Papers.
46. DRAGAN, I., M.Sc.Thesis, Univ. Aston, 1966.
47. HODIERNE, F.A., Special Report No. 108, I.S.I., LONDON, 1968, p. 133.
48. STUWE, H. Po, Discussion at Sheffield Conf. on Deformation Under Hot Wrking Conditions, July, 1966.
49. HILL, R., 'AMathematical $T_{\text {heory of Plasticity', Clarendon, } 1950 . ~}^{\text {P }}$
50. TAYLOR, G.I., Proc. Roy. Soc., 1934, A $145,388$.
51. KOVACS, I., Acta Met., 1967, 15, 1731.
52. BATRD, J.D. and GALE, B., Trans. Roy. Soc., 1964-65, A257, 68.
53. NABARRO, F.R.N., BASINSKI, Z.S. and HOITI, D.B., Adv. Phys., 1964, 13, 193.
54. BRYDGES, W.T., Phil. Mag., 1967, 15, 1079
55. DIEHL, Jo, MADER, S. and SEEGTRR, A., Z. Metallk., 1955, 46, 650.
56. SEEGER, Ao, BERNER, Ro and WOOLF, H., Z. Phys., 1959, 155, 247.
57. FELiPham, Po, Phil. Mag., 1961, 6, 1479.
58. THORNTON, F。R。, MITCHELL, T.E. and HIRSCH, P. B., Phil.Mag., 1962, Z. 1349.
59. HEIDENRREICH, R.D. and SHOCKLEY, W., Report on Conf. on Strength of Solids, Phys. Soc., LONDON, 1948.
60. COXIRELL, A.H., 'Dislocations and Plastic Flow in Crystals' Clerendon, Oxford, 1953.
61. COPLEY, S.M. and KEAR, B.H., Acta Met., 1968, 16, 227.
62. HILLIARD, J.E., Metal Progress, 1962, 86, 99.
63. SHRRBY, O.D., Acta Met., 1962, 10, 135.
64. SHERBY, O.D. and SIMNAD, M.T., Trans. A.S.M., 1961, 54, 227.
65. SMITHELLS, C.J., 'Metals Reference Book', Butterworth, LONDON, 1967.
66. SHERBY, O.D. and BURKE, P.M., Prog. Mat. Sci., 1968, 13, 325.
67. HALL, E. O., Proc. Phys. Soc. (LONDON), 1951, B64, 747.
68. PETCH, N.J., J.I.S.I., 1953, $174,25$.
69. ARMSTRONG, Ro, DOUTHWAITE C., CODD, J., and PETCH, N.J., Phil. Mag., 1962, Z, 45.
70. WILSON, D.V., to be published.
71. FLOREEN, S. and WESTBROOK, J.H., Acta Met., 1969, 17, 1175.
72. GAROFALO, F., 'Fundamentals of Creep and $\mathrm{C}_{\text {reep }}$ Rupture in Metels ', Mecmillan, 1965.
73. FARAG, MoM., Ph.D. Thesis, Univ. Sheffield, 1966.
74. ARNOLD, R.R. and PARKER, R.J., J.I.M., 1960, 88, 255.
75. SELLARS, C.M. and TEGART, W.J.MoG., Men. Sci. Rev.Met., 1966, 63, 731.
76. FElifham, Po, Phil. Mag., 1961, 6, 1479.
77. FELitham, Po, Phil. Mag., 1966, 13, 631.
78. WGERTMAN, Jo, J.App. Phys., 1955, 26, 1213.
79. DORN, J.E., H.W.Gillett Memorial Lecture, 1962, A.S.T.M.
80. McLean, D and HALE, K.F., 'Structural Processes in Creep', Special Report No. 70, I.S.I., LONDON, 1961,p.19,
81. MAC GREGOR, C., AND Fisher J.C., J.App.Moch., 1946, 13, 11.
82. KEMPTHORNE, 0_{0}, 'Design and Analysis of Experiments', Wiley, LONDON, 1952.
83. DRAPER, NoR. and SMITH, Ho, 'Applicd Regression Analysis', Wiley, LONDON, 1966.
84. PLACKETT, R.L., 'Regrossion Analysis', Clarendon, OXFORD, 1960.
85. WOOLF, B., J.R.S.S., 1951, B 13, 100.
86. BICKLEY, W.G. and THOMPSON, R.S.H.G。'Matrices, Their Meaning and Manipulation', English Univ. Press, LONDON, 1964.
87. NEWTON, R。G. and SFURRELL, D.J., App. Statistics, 1967, 16, 51.
88. GARSIDE, M.J., App. Statistics, 1965, ㅆ, 196.
89. EFROYMSON, M.A., 'Mathematical Methods for Digital Computers' Ed. by RALSTON, Ao, and WILF, H.So, WILEY, NEW YORK, 1960.
90. NEWTON, R.Go, and SPURRELI, D.J., App. Statistics, 1967, 16, 165.
91. NEWTON, R.Go, and SPURRELL, D.J., B.G.I.R.A. Report/68/1, 1968.
92. NEWTON, R.Go, and SFURRELL, D.J., B.G.I.R.A. Report/68/4, 1968.
93. WHELAN, M.J., HIRSCH, PoBo, HORNE, R.W. and BOLLMAN, Wo, Proc. Roy. Soc., 1957, A240, 524.

94．MADER，S．，SEEGER，A。 AND LEITZ，C。，J。App．Phys．，1963，34， 3368.

95．FULLMAN，R．，J．App．Phys．，1951，22，448．
96．DOBSON，PoSo，GOODHEW，PoJ．and SMALLMAN，R．E．，Phil．Mag．1968， 16，9．

97．HUMBIE，Po，LORETTO，M．H．and CLAREBROUGH，L．Mo，Phil．Mag．， 1967, 15， 297.

98．DILIAMORE，I．L．，SMALLMAN，R．E．and ROBERTS，W．T．，Phil．Mag．，1964， 2． 517

99．BEESTON，B．E．F．，DILIAMORE，I．I．and SMALLMAN，R．Bo，Met．Sci．J．， $1968,2,12$.

100．HOWIE，A．and SWANN，P．R．，Phil．Mag．，1961，6， 1215.
101．BORN，and GOPPERT；MEYER，HANDBUCH der PHYSIK，xXiv，2， 623.
102．TRESCA，M．，Compt．Rend．，1865， 1868,1870 ，PARIS．
103．KOSTER，W．and FRANZ，Ho，Met．Rev．，1948，6， 1.
104．LOVE，A．E．H．，＇The Mathematical Theory of Elasticity＇， C．U．P．，Cambridge， 1927.

105，HUNTINGTON，H．B．，Solid State Physics，1952，Z， 213.
106．TEGART，W．J．McG．，＇Elenents of Mechenical Metallurgy＇ MacMillen，LONDON， 1966.

107．VOIGT，W．，＇Lehrbuch der Kristallphysik＇，Tebner，BERLIN，I928．
108．REUSS，A．，Z．Agnew，Math．Mech．，2， 55
109．FINE，M．E．，A．S．T．M．Bulletin，1952，181，20．
110．MACK，Jo，Trans．A．I．M．M．E。， $166,68$.
111．PORTEVIN，A。，Compt．Rond．，177， 634.
112．ANDREWS，J．P．，Phil．Mag．，1908， $50,665$.
113．KOSTER，W．and RAUSCHER，Wo，ZoMetallk•，1948，32， 111.
114．SMITH，J．，J．I．M．，1951，80， 477.
115．KOSTER，W．，Z．Metallk．，1948，32， 1.
116．NISHIYAMA，Z．，Sci．Rep．，Tohoku Imp．Univ．，18， 359.
117．HUME－ROTHERY，Wo，＇Atomic Theory for Students of Metallurgy＇ Inst．Mct．，LONDON， 1948.
118．HARRIS，G．T．and WATYINS，M．T．，I。S．I．Special Report Nn．43， 185.
119．BUCKLEY，A॰，FINAL YEAR U．G．Project Report，Univ．of Aston， 1967.
120．DAVIES，O．Le，＇Statistical Methods in Resoarch and Production＇ Oliver and Boyd，LONDON， 1967.

APPENDIX A

Modulus of Shear

Any discussion of the rolativo bohaviour of difforent motals whon subjected to various strossos or strains must take into account the elastic moduli of tho motals concorncd. The elastic moduli give an indication of the basic resistance offered by a matorial to any attompt to displace atoms of that matorial rolative to one anothor. In fact the modulus of olasticity is so closely rolated to the interabomic binding forces that Born ${ }^{101}$ was ablc to prodict moduli for simplc ionic materials from a consideration of their attractive charges. Since bulk deformation is the result of local shearing of atoms relative to one another ${ }^{102}$, the modulus of shear is of prime interest in deformation studies, although this valuo is simply related to the tensile and bulk moduli via Poisson's ratiu, thac:

$$
\begin{align*}
& G=\frac{E}{2(1+V)} \quad \text { (A.1.) } \tag{A.1.}\\
& K=\frac{E}{3(1-2 V)} \quad \text { (A.2.) } \tag{A.2.}
\end{align*}
$$

For most motals is approximately 0.33^{103} so that

$K \sim E$	\quad
$G \sim \frac{3}{8} E$	A.3.)

The lincar interdependance of stross and strain according to Hooke's Law for clastically isotropic solids can be resolved into soparate components to describe the bohaviour of essentially anisotropic solids, such as tho single crystals of metals ${ }^{104}$.
principal strain components can be expressed in terms of the six possible principal stress components (three acting normally and three acting is shear):

$$
\begin{aligned}
& { }^{c_{\mathrm{xx}}}=\mathrm{s}_{11} \sigma_{\mathrm{x}}+\mathrm{s}_{12} \sigma_{\mathrm{y}}+\mathrm{s}_{13} \sigma_{\mathrm{z}}+\mathrm{s}_{14} \tau_{\mathrm{zx}}+\mathrm{s}_{15} \tau_{\mathrm{xy}}+\mathrm{s}_{16} \tau_{\mathrm{yz}} \\
& 0_{y y}=s_{21} \sigma_{\mathrm{x}}+\mathrm{s}_{22} \sigma_{\mathrm{y}}+\mathrm{s}_{23} \sigma_{\mathrm{z}}+\mathrm{s}_{24} \tau_{\mathrm{zx}}+\mathrm{s}_{25} \tau_{\mathrm{xy}}+\mathrm{s}_{26} \tau_{\mathrm{yz}} \\
& c_{z z}=s_{31} \sigma_{x}+s_{32} \sigma_{y}+s_{33} \sigma_{z}+s_{34} \tau_{z \mathrm{zx}}+s_{35} \tau_{\mathrm{xy}}+\mathrm{s}_{36} \tau_{\mathrm{yz}} \\
& c_{\mathrm{xy}}=\mathrm{s}_{41} \sigma_{\mathrm{x}}+\mathrm{s}_{42} \sigma_{\mathrm{y}}+\mathrm{s}_{43} \sigma_{\mathrm{x}}+\mathrm{s}_{44} \tau_{\mathrm{zx}}+\mathrm{s}_{45} \tau_{\mathrm{xy}}+\mathrm{s}_{46} \tau_{\mathrm{yz}} \text { (A.5.) } \\
& { }_{\mathrm{yzz}}=\mathrm{s}_{51} \sigma_{\mathrm{x}}+\mathrm{s}_{52} \sigma_{\mathrm{y}}+\mathrm{s}_{53} \sigma_{\mathrm{x}}+\mathrm{s}_{54} \tau_{\mathrm{zx}}+\mathrm{s}_{55} \tau_{\mathrm{xy}}+\mathrm{s}_{56} \tau_{\mathrm{yz}} \\
& { }_{c x}={ }_{s_{61}} \sigma_{x}+s_{62} \sigma_{y}+s_{63} \sigma_{x}+s_{64} \tau_{z x}+s_{65} \tau_{x y}+s_{66} \tau_{y z}
\end{aligned}
$$

where the constants $s_{11}, s_{12}, \ldots . s_{i j}$ are known as the elastic conpliancos.

It follows, then that the stress components can be expressed as linear functions of the strain components:
$\sigma_{x}=c_{11} c_{x x}+c_{12} e_{y y}+t_{13} c_{z z}+c_{14} \gamma_{y z}+c_{15} \gamma_{z x}+c_{16} \gamma_{x y}$
$\sigma_{y}=c_{21}{ }^{c_{x x}}+c_{22} e_{y y}+c_{23} e_{z z}+c_{24} \gamma_{y z}+c_{25} \gamma_{z x}+c_{26} \gamma_{x y}$ $\sigma_{z}=c_{31}{ }^{o_{x x}}+c_{32} e_{y y}+c_{33{ }^{\circ}{ }_{z z}}+c_{34} y_{y z}+c_{35} y_{z x}+c_{36} \gamma_{x y}$
$\tau_{y z}=c_{47} c_{x x}+c_{42} c_{y y}+c_{43} e_{z z}+c_{44} y_{y z}+c_{45} y_{z x}+c_{46} y_{x y}$
$\tau_{z x}={ }^{c_{51}} c_{x x}+c_{52} c_{y y}+c_{53} e_{z z}+c_{54} y_{y z}+c_{55} y_{z x}+c_{56} y_{x y}$
$\tau_{x y}={ }^{c} 61^{c_{x x}}+c_{62}{ }^{0} y y+c_{63} e_{z z}+c_{64} y_{y z}+c_{65} y_{z x}+c_{66} y$
where the constants $c_{11}, c_{12}, \ldots . c_{i j}$ are known as the elastic stiffness constants.

It will be apparent that for any metal any anis "copy of the single crystal will be transferred to the polycrystalline aggregate to an extent which is mainly dopendent upon the degree of crystallographic preferred orientation of the aggregate. It is partly for
this reason that a number of workers have conducted measurements only on single crystals ${ }^{105}$. The prediction of values of moduli of polycrystalline metals from tho single crystal data is groatly simplifiod by lis symmetry within metal crystals. The thirty-six values of clastic compliances or of. elastic stiffness constants, thorofore, can be reduced first to twenty-one by the symmetry of the matrix on the interchange of the druble indices, i.e. $s_{i j}=s_{j i}$ and $c_{i j}=c_{j i f}$. A further reduction in the numbor of independent constants nay be possible due to the physical symnetry of particular crystal classes, so that thero aro nine indopendant ennatants for ox truburnhic crystals, five for hexagonal and three for cubic systems.

The predictions from single crystal data, however, are complicated by the neod to compromise between the assumptions of uniform local strain and uniforn local stress ${ }^{106}$. The former assumption by Voigt ${ }^{107}$ and the latter by Rouss ${ }^{108}$ giving rise to the following expressions, rospectively:

$$
\begin{gather*}
\text { Voigt's Averages: } K_{V}=\frac{1}{3}(F+2 G) \\
G_{v}=1 / 5(F-G+3 H) \tag{A.7.}\\
E v=\frac{(F-G+3 H)(F+2 G)}{(2 F+3 G+H)} \\
\text { where } F=\frac{1}{3}\left(C_{11}+C_{22}+C_{33}\right) \\
G=\frac{1}{3}\left(C_{12}+C_{33}+C_{13}\right) \\
H=\frac{1}{3}\left(C_{44}+C_{55}+C_{66}\right) \\
\text { Reuss's Averages: } \quad\left(K_{R}\right)^{-1}=3\left(F^{\prime}+2 G^{\prime}\right) \\
\left(G_{R}\right)^{-1}=1 / 5\left(4 F^{\prime}-4 G^{\prime}+3 H^{\prime}\right) \quad(A .8 .) \\
\left(E_{R}\right)=1 / 5\left(3 F^{\prime}+2 G^{\prime}+H^{\prime}\right)
\end{gather*}
$$

(A4)

where $\quad F^{\prime}=\frac{1}{3}\left(S_{11}+S_{22}+S_{32}\right)$

$$
\begin{aligned}
& G^{\prime}=\frac{1}{3}\left(S_{12}+S_{23}+S_{13}\right) \\
& H^{\prime}=\frac{1}{3}\left(S_{44}+S_{55}+S_{66}\right)
\end{aligned}
$$

In table A. 1. fron Tegart ${ }^{106}$ the Voigt and Reuss averages for four cubic metals are conpared with exporinental values from Fine ${ }^{109}$. It will be seen that the experimental values can usually be most closely estimated from the mean of the Voigt and Reuss values, and that in the case of aluminium, which is nearly elastically isotropic, the two theoretical valuos agree very closcly. For most materials, however, the discrepancy between the Voigt and Reuss averages, and the rolationship of these to experimental values suggests that values of modulus determined from polycrystalline specimens are no less reliable than those from single crystal data.

(A5)

Metal	Geuss	GVoigt	$G_{\text {Expt }}$
Al	2.65	2.65	2.72
Cu	4.08	5.51	4.64
Au	2.45	3.16	2.82

Tablo A.1. Comparison of Voigt and Reuss averages with experimental results.

Effects of Temporature and Composition

Since clastic moduli are closely rolated to atomic binding forces it follows that any factor having an influonce on the binding forces will also affect the clastic proporties. In practice the most inportant factors are tonporaturo and composition, although any change in crystal structure, o.g. allotropic chenges, phase changes, order - disordor reactions, leads to a discontinuity in the rate of change due to either of these ${ }^{106}$.

In a review of the literature referring to this subject Mack ${ }^{110}$ found that the most successful ompirical formulac relating moduli to temperature were those of Portevin ${ }^{111}$:

$$
\begin{equation*}
\mathrm{E}=\mathrm{K} T_{\mathrm{E}} a / \mathrm{V}^{\mathrm{b}} \tag{A.9.}
\end{equation*}
$$

where K , a and b are constants and V is the specific volune and Androws ${ }^{112}$:

$$
\begin{equation*}
E=V^{-\alpha} \quad A \exp \quad\left(-\beta T / T_{\mathrm{m}}\right) \tag{A.10.}
\end{equation*}
$$

Andrews suggested that in his formula the constants and had two sets of values to take account of the incroasing influence of grain boundery slip at values of T / T_{m} groeter then 0.5 . In practice it is found thet, for f.c.c. notals at least, this is a refinement of doubtful value since the extont to which the formula describes the experimental results is generally within the limits of exporimental accuracy even when using only one set of constants.

Koster and Rauscher ${ }^{113}$ found that within the limits of snlid solubility for binwry systems Young's modulus at room temperature varied linearly with the atomic solute content. Following on this work Snith ${ }^{11 L_{4}}$ showed that a close relationship exists

(A7)

between the rate of decrease of Young's modulus at roon temperature and the solidus temperature for a number of binary alloy systems based on Cu or Ag .

An examination of the curves of modulus versus temperature, produced by Koster ${ }^{115}$ and Koster and Rauscher ${ }^{113}$ shows that the moduli for f.c.c. metals at $T / T_{\mathrm{n}}=1$ usually occur in the order of their melting temperatures (or solidus temperatures for alloys). This may bo appreciated, at least qualitatively, by assuming that when T / T_{m} is slightly greater than l the compressibility of the liquid metal is almost entirely dependent upon the temperature in ${ }^{\circ} \mathrm{K}$, i.e. it is independent of the melting temperature. For any given metal, therefore, at $T / T_{\mathrm{m}}=1$ tho thormel energy is still of considerable significance in comperison with the dninished influence of the metallic bond. It follows, then, that the modulus at $T / T_{\mathrm{n}}=I$ is closely related to the absolute value of T_{m} 。

In view of the demonstration by Koster ${ }^{115}$ and Smith 114 that the modulus at room tomperature varios approximately as the melting temperature it seens that the slope of the modulus/ temperature curve for any givon notal must also vary with the melting tomporature.

Following on from Andrews' formule therefore, Young's modulus for any f.c.c. metal at any temperature up to the melting temperature might be expected to follow a general formula of the type:

$$
\begin{equation*}
E=f\left(T_{m}\right) \cdot \exp \left(T / T_{m}\right)+f^{I}\left(T_{m}\right) \tag{0}
\end{equation*}
$$

where $f\left(T_{m}\right)$ and $f^{l}\left(T_{m}\right)$ are functions of the melting temperature.

On carrying out a linc-fitting exercise, by the method of least squares, on the results of Koster and Rauscher ${ }^{113}$, Nishiyama ${ }^{116}$ and Smith ${ }^{114}$ it appears that the clastic moduli of a numbor of f.c.c. notals and alloys, ovor a wide range of tomperatures, nay bo described by the formula:

$$
\frac{E}{1000}=\left(A \cdot \exp \left(T_{n} / 10^{3}\right)+c\right) \exp \left(T / T_{m}\right)+\left(B_{0} \exp \left(T_{\mathrm{H}} / 10^{3}\right)\right)+d \quad(A \cdot 12 .)
$$

From the constancy of the relationships exprossed in equations (A.1.) and (A.2.) it is evident that the same general formula applies for the bulk and shear moduli as for the modulus of tension.

In Figure A.1. measured values of shear modulus are compared with those predicted by (A.12.) with the constants eveluated, thus:

$$
\begin{aligned}
& A=-0.625 \\
& C=1.0625 \\
& B=1.912 \\
& d=-2.481
\end{aligned}
$$

Clearly the formula provides an accurate mothod of predicting the noduli of pure metals and alloys over a range of temperatures.

The constents listed above do not enable accurate predictions to be made for the noble metals, and this is in accord with the rosults of both Smith and Koster who found that the moduli of gold and silver were lower then expected. The bulk moduli for these metals are high in relation to their moduli in shear and in tension. An alternative way of expressing this is to say that Poisson's ratio for the noble metals is usually higher than for the more cormon metals. Hume-Rothery ${ }^{117}$ suggested that this was due to the ease with which the noble metals could be polarised, reducing

Figure A.l. Comparison of measured shear modulus and shear modulus predicted from equation A.I2.

(A.9.)

the uniaxial strength. In any cvent, the accuracy of the formula as a means of prodicting moduli for motals with Poisson's ratio nutside the range $0.31-0.35$, may bo improved by multiplying the rosult by a corroction factor equel to:

$$
\begin{equation*}
\frac{2(1+v)}{3(1-2 v)} \quad 0.38 \tag{A.13}
\end{equation*}
$$

Typically, these correction factors are:

$$
\begin{array}{ll}
\operatorname{Au}(v=0.42) & 2.28 \\
\operatorname{Pt}(V=0.39) & 1.68 \\
\operatorname{Ag}(V=0.37) & 1.30
\end{array}
$$

Values of shear modulus for gold and for two platimum/copper alloys have beon calculated for a rango of temperatures and are shown plotted against the measured values in Figure A.2. Clearly, although the agreement is gonerally gond, there is a systematic deviation with temperature, suggesting that Poisson's ratio is not independent of temperature for these materials. There is little publishod information on the temperature dependance of Poisson's ratio, but Harris and Watkins ${ }^{87}$ showed that for steels the only effect of temperature was to increase the solubility of alloying eloments prosent with a consequont increase in .

Figure A.2. Comparison between measured and predicted values of shear modulus for noble metals.

APPENDIX B

DATANAL
BEGIN INTEGER TEMP, MIN, MAX, Q, A,NU,N ${ }^{\prime}$
REAL REV, D, L, K, KAX, RAIE, RADF, TORRF2, XSUM, YSUM, PROD, XSQ, YSQ, XMEAN, YMEAN, RT, M, CS, C, COR, DUMAYI, DIST, H^{\prime} ARRAY $\operatorname{STR}(1: 50), G, T(1: 200)^{\prime}$
SWITCH SW:=ONE'
SAMELINE'
ONE: $\mathrm{PUNCH}(1)$?
READ N, TEMP, REV , D, $L, K, C S, K A X, R E A D E R(2)$, MIN, MAX'
Q:=1'
INSTRING(STR, Q):
RATE: $=3.14159 * \mathrm{REV}^{*} \mathrm{D} / \mathrm{L}^{\prime}$
Q: $=1^{\prime}$
PRINT £\&R2015??
OUTSTRING (STR,Q):
PRINT PREFIX(££S5??),TEMP,RATE'
RADF: $=2 * 3.14159 *(\mathrm{REV} / 60) / \mathrm{CS}^{*}$
TORRF2: $=1 /(2 * 3.14159 *((D / 2) * * 3) * 2240)^{\prime}$
FOR A: =lSTEP 1 UNTIL N DO
BEGIN READ DIST, H, DUMMYI'
IF $A+1$ GREQ MTN AND $A+1$ LESSEQ $(M A X+2)$ THEN
BEGIN $G(A):=D I S T * R A D F '$
$T(A):=K^{*} H$
END
END'
XSUM $:=Y S U M:=P R O D:=X S Q:=Y S Q:=0.0^{1}$
FOR $Q:=$ MIN STEP 1 UNTIL MAX DO
BEGIN RT: $=$ TORRF2* $(3 * T(Q)+(G(Q) *((T(Q+1)-T(Q-1)) /$ $(G(Q+1)-G(Q-1)))))^{\prime}$
XSUM: $=X \operatorname{SUM}+\operatorname{SQRT}(0.125 * G(Q))$ '
YSUM: =YSUM + RT ${ }^{\prime}$
PROD: $=$ FROD $+\operatorname{SQRT}(0.125 * G(Q)) * R T$ *
$\mathrm{XSQ}:=\mathrm{XSQ}+0.125^{*} \mathrm{G}(\mathrm{Q})^{\prime}$
$\mathrm{YSQ}:=\mathrm{YSQ}+\mathrm{RT} T \mathrm{RT}$
END'
NU: =MAX- MIN-I $)^{\prime}$
XMEAN: $=X S U M / N U^{\prime}$
YMEAN: $=$ YSUM/NU'
$M:=($ PROD $-((X S U M " Y S U M) / N U)) /(X S Q-((X S Y M * * 2) / N U))$,
$C:=\left(\left(\right.\right.$ XSUM * PROD $)-($ YSUM $*$ XSQ $\left.) ~\right) ~ /\left((X S U M * * 2)-\left(\text { NU }^{*} * X_{S Q}\right)\right)^{\prime}$
COR: $=(($ PROD- $($ XMEAN*YMEAN $)) /$ NU $) /((S Q R T ~(((X S Q-(X M E A N * * 2)) / N U))) *$ $(\operatorname{SQRT}(((\mathrm{YSQ}-(\mathrm{YMEAN} * * 2)) / \mathrm{NU}))))^{\text {t }}$
PRINT \&\&L2?SLOPESS9?=£S3??, ALIGNED $(3,4)$, M, £\&LL ?TORR (GAMMA 0) $=$, £\&S3??, C, £\&Ll?GAMMA (TORR 0$)=$ \&S3??, $(0-C / M)$, £\&LI??, £CORRELATION\&S3?=£S3??,COR, ££S5?DEG。FRTE. $=$?,DIGITS (3).
NU-I'
READ DIST'
PUNCH (3)'
PRINT \&£LI?FTNISHED ?
Q:=1'
OUTSTRING (SIR,Q)'
PRINT FREEPOINT (6), PREFIX(£ES5??), TEMP,RATE"
GOTO ONE
END OF PROGRAM'

Appendix C

In the following pages aro presented the subroutines used in the regression analysis.

The first section is the 'main' program used to produce the output in the Results section.

The subroutines are in the EGTRAN dialect of FORTRAN and each subroutine is followed by the number of computer words of instructions, and the names of the subroutines which are required from the EGTRAN library.

```
JOB ORGANISER ENTERED 04.24.40 22/10/70
* CHAINI
*FORTRAN
```

```
EGTRAN COMPILER MARK NO. 302 DATE 22/10/70 TIME
    PUBLIC C,NXS,NX,K
    DIMENSION C(50,50),NX(50),PRI(50),SEC(50)
    READ 5,ILIM,JLIM
    5 \text { FORHAT(2I4)}
        DO 100 II=1,ILIM
        CALL INPUT1
        DO 90 JJ=1,JLIM
        CALL INREG
        CALL START
        NNXS=NXS
        NXS=0
        DO 10 M=1,NNXS
        NXS=NXS+1
        CALL ADDVAR(M)
        CALL COEFFS
        CALL ANOVA
        10 CALL ELANAL
        CALL COVAR
        9 0 ~ C O N T I N U E ~
    100 CONT INUE
        CALL EXIT
        END
        ROUTINE COMPILED
        TIME LESS THAN 2 SECS
        NUMBER OF INSTRUCTION WORDS 26
        * * * * * * * * * * * * * * *
```

NUMBER OF INSTRUCTION WORDS 0025

EXTERNAL ROUTINES REQU.
WONT3O WONT31 WONT32 INPUT1 INREG START ADC
ELANAL COVAR EXIT
*FORTRAN

EGTRAN COMPILER MARK NO 302 DATE $22 / 10 / 70$ TIME SUBROUTINE INPUTI
C TO READ IN NUMBER OF VARIABLES, NUMBER OF OBSERVATIONS, MEANS, STANDARD C DEVIATIONS AND CORRELATION MATRIX PUBLIC NV,NO, XBAR, $S X, R$
DIMENSION XBAR $(50), S X(50), R(50,50)$
READ 101, NV,NO
READ 102, (XBAR(I), I=1,NV)
READ 102, (SX(I), $I=1, N V)$
DO $99 \mathrm{I}=1$, NV
READ $103,(R(I, J), J=1, N V)$
99 CONTINUE
101 FORMAT (2I4)

```
    102 FORMAT(7F10.4)
    103 FORHAT(1OF7.4)
        RETURN
    END
```

ROUTINE COMPILED
TIME LESS THAN 2 SECS
NUMBER OF INSTRUCTION WORDS 36
NUMBER OF INSTRUCTION WORDS 0036

EXTERNAL ROUTINES REQU.

```
INPUT1 WONT3O WONT31 WONT32
*FORTRAN
```

EGTRAN COMPILER MARK NO. 302 DATE $22 / 10 / 70$ TIME
SUBROUTINE INREG
C TO READ IN PARAMETERS OF REGRESSION EQUATION
PUBLIC NX, NY,NXS
DIMENSION NX(50)
READ 401, NY, NXS
READ 402, (NX(I), I = 1, NXS)
401 FORMAT(214)
402 FORMAT(18I4)
RETURN
END
ROUTINE COMPILED
TIME LESS THAN 1 SEC
NUMBER OF INSTRUCTION WORDS 15
* * * * * * * * * * * * * * * *
NUMBER OF INSTRUCTION WORDS 0015

EXTERNAL ROUTINES REQU.

$$
\begin{aligned}
& \text { INREG WONT3O WONT31 WONT32 } \\
& \text { *IDENTIFIERSTART } \\
& \text { *PUNCH } \\
& \text { *FORTRAN }
\end{aligned}
$$


```
EXTERNAL ROUTINES REQU.
    START
* IDENTIFIERADDVAR
*PUNCH
*FORTRAN
```

```
EGTRAN COMPILER MARK NO. }30
DATE 22/10/70
TIME
    SUBROUTINE ADDVAR(M)
C TO ADD VARIABLE L. TO RECIPROCAL MATRIX OF ORDER K-1
        PUBLIC K,NX,P,C,R,NY
        DIMENSION C(50,50),R(50,50),NX(50),P(50),A(50)
        PK=M+1
        PL}=NX(M
        PNY=NY
    207PA(1)=R(NY,L)
    209PIF(K.LE.2) GO TO 206
        DO 205 I=2,M
    208PJ=NX(I-1)
    205PA(I)=R(J,L)
    206 CONTINUE
        DO 200 N=1,M
        P(N)=0.0
        DO 201 I=1,M
    201 P(N)=P(N)+A(I)*C(N,I)
    200PP(N)=P(N)*(-1.0)
        G=R(L,L)
        DO 202 I=1,M
    202 G=G+A(I)*P(I)
        PC(K,K)=1.0/G
            D0 204 I=1,M
        PC(I,K)=P(I)*C(K,K)
    204 C(K,I)=C(I,K)
        PDO 203 I=1,M
        PDO 203 J=1,M
    203PC(I,J)=C(I,J)+C(I,K)*P(J)
        RETURN
        END
```

 ROUTINE COMPILED
 TIME LESS THAN 3 SECS
 NUMBER OF INSTRUCTION WORDS 99
 NUMBER OF INSTRUCTION WORDS 0098
 EXTERNAL ROUTINES REQU.
 ADDVAR DONTQ8
 * IDENTIFIERCOEFFS
 *PUNCH
 *FORTRAN
 PUBLIC \(S X, C, X B A R, N O, N X S, N Y, N X\)
 DIMENSION \(C(50,50), S X(50), X B A R(50), N X(50)\)
 PRINT 601
 PRINT 602
 PRINT 603
    ```
    PRINT 604
    BO=XBAR(NY)
    PRINT 607,NY
    DO 690 L=1,NXS
    J=NX(L)
    PSCALEE=SX(NY)/SX(J)
    PI=L+1
    PBI=((-1,0)*C(1,I)/C(1,1))*SCALE
        SEB=SQRT((C(1,1)*C(I,I)-C(1,I)**2)/(NO-NXS-1))*SCALE/C(1,1)
        BO=B0-BI*XBAR(J)
6 9 0 ~ P R I N T ~ 6 0 5 , J , B I , S E B ~
    PRINT 606,B0
    6 0 1 ~ F O R M A T ( 1 H 1 , 5 0 X , 2 O H R E G R E S S I O N ~ E Q U A T I O N ) ~
    602 FORMAT(1H,50X,2OH-----------------------
    6 0 3 ~ F O R M A T ( 1 H 0 , 3 5 X , 8 H V A R I A B L E , 1 6 X , 1 H B , 1 5 X , 7 H S . E . ( B ) ) ~
    604 FORMAT(1H,35X,8H--------, 16X,1H-,15X,7H-------)
    605 FORMAT(1HO,38X,I2,13X,E12.5,7X,E12.5)
    6 0 6 ~ F O R M A T ( 1 H O , 3 5 X , 8 H C O N S T A N T , 1 0 X , E 1 2 . 5 )
    607 FORMAT (1H0,38X,I2,14X,9HDEPENDENT)
    RETURN
    END
```

ROUTINE COMPILED
TIME LESS THAN 3 SECS
NUMBER OF INSTRUCTION WORDS 54

NUMBER OF INSTRUCTION WORDS 0053

EXTERNAL ROUTINES REQU.
COEFFS WONT4O WONT42 WONT41 SQRT DONT83 DONT53

* IDENTIFIERANOVA
*PUNCH
*FORTRAN


```
    PRINT 507
    PRINT 506,SSRES,NRES,RESMS
    PRINT 508
    PRINT 506,SSTOT,NTOT,TOTMS
5 0 1 ~ F O R M A T ( 1 H O , 4 9 X , 2 2 H A N A L Y S I S ~ O F ~ V A R I A N C E ) ~
```



```
5 0 3 ~ F O R M A T ~ ( 1 H O , ~ 3 4 X , 6 H S O U R C E , 9 X , 2 1 H S U M ~ O F ~ S Q U A R E S ~ D , F ~ . , 5 X , 1 1 H M E A N ~ S Q U ~
    (ARE)
504 FORMAT(1H,34X,6H------>,9X,21H
    1---)
5 0 5 ~ F O R M A T ~ ( 1 H O , 3 4 X , 1 6 H R E G R E S S I O N ~ ) ~
506 FORI4AT(1H+,50X,E12,6,5X,I 2,5X,E12,6)
507 FORMAT(1H,34X,16HRESIDUAL )
508 FORMAT(1H, 34X,16HTOTAL )
    PRINT 511,F
    PRINT 509,MULTR
    PRINT 510,RSQ
5 0 9 \text { FORMAT (1H0, 34X, 10HMULTIPLE R,10X,F6, 4)}
510 FORMAT( 1H,34X,9HR SQUARED, 11X,F6.4)
511 FORMAT(1H, 34X,7HF VALUE,13X,F6,2)
    RETURN
    END
```

ROUTINE COMPILED
TIME LESS THAN 4 SECS
NUMBER OF INSTRUCTION WORDS 66
NUMBER OF INSTRUCTION WORDS 0065
EXTERNAL ROUTINES REQU.
ANOVA SQRT DONT83 DONT53 WONT4O WONT42 WONT4I
* IDENTIFIERELANAL
* PUNCH
*FORTRAN

ROUTINE COMPILED
TIME LESS THAN 2 SECS
NUMBER OF INSTRUCTION WORDS 16
* * * * * * * * * * * * * *

NUMBER OF INSTRUCTION WORDS 0016

EXTERNAL ROUTINES REQU.
ELANAL WONT4O WONT42 PRIMEL PRIMT REMVAR PREST
*IDENTIFIERPRIMEL

* PUNCH
*FORTRAN

```
EGTRAN COMPILER
                    MARK NO. 302
                                    DATE
                                    22/10/70
TIME
        SUBROUTINE PRIMEL(RMAT,ELT)
        PUBLIC SX,NY,NO,K
        DIMENSION SX(50),ELT(50),RMAT(50,50)
        SSY=SX(NY)**2*(NO-1)
        PM=K-1
            DO 701 J=1,M
        PI = J+1
        PRMATT=RMAT(I,I)
        IF(RMATT.GT.O.00001) GO TO 700
        ELT(J)=0.0
        GO TO 701
    70OPELT(J)=SSY/(RMAT(I,I)/(RMAT(1,I)/RMAT(1,1))**2-RMAT(1,1))
    7 0 1 ~ C O N T I N U E ~
        RETURN
        END
```

 ROUTINE COMPILED
 TIME LESS THAN 2 SECS
 NUMBER OF INSTRUCTION WORDS 48
 * * * * * * * * * * * * * * *
 NUMBER OF INSTRUCTION WORDS 0048

EXTERNAL ROUTINES REQU.
PRIMEL DONT83 DONT53 DONTQ2

* IDENTIFIERPRIMT
* PUNCH
*FORTRAN

```
EGTRAN COMPILER MARK NO. 302 DATE 22/10/70 TIME SUBROUTINE PRIMT(L,PRI)
        PUBLIC \(C, S X, N Y, N O, N X, N X S\)
        DIMENSION PRI \((50), S X(50), N X(50), C(50,50)\)
        \(\mathrm{I}=\mathrm{L}-1\)
        PPARTF=PRI(I)/((1•O/C(1,1)*SX(NY)**2*(NO-1))/(NO-NXS-1))
        PRINT 900, NX(I), PRI(I), PARTF
    900 FORMAT \((1 H 0,16 H P R I M A R Y\) ELEMENT, \(3 X, 13,3 X, E 15,5,37 X, 10 H P A R T I A L\) F,FI
        11.2)
        RETURN
        END
```

 ROUTINE COMPILED
 TIME LESS THAN 2 SECS
 NUMBER OF INSTRUCTION WORDS 32
    ```
EGTRAN COMPILER MARK NO. }\mp@subsup{3}{2}{O
DATE 22/10/70
    SUBROUTINE REMVAR(L,CC)
C TO REMOVE VARIABLE L FROM RECIPROCAL MATRIX OF ORDER K
    PUBLIC R,C,K
    DIMENSION R(50,50),C(50,50),CC(50,50),P(50)
    DO 300 N=1,K
300PP(N)=C(N,L)/C(L,L)
    DO 301 I= 1,K
    DO 301 J=1,K
301PCC(I,J)=C(I,J)-P(J)*C(I,L)
    RETURN
    END
```

 ROUTINE COMPILED
 TIME LESS THAN 2 SECS
 NUMBER OF INSTRUCTION WORDS 43
 * * * * * * * * * * * * * * *
 NUMBER OF INSTRUCTION WORDS 0042

EXTERNAL ROUTINES REQU.
REMVAR

* IDENTIFIERPREST
*PUNCH
* FORTRAN

```
EGTRAN COMPILER MARK NO. }\mp@subsup{3}{2}{2}\mathrm{ DATE 22/10/70 TIME
    SUBROUTINE PREST(SEC,PRI,L)
    PUBLIC K,NX
    DIMENSION SEC(50),PRI(50),NX(50)
    PRINT 1000
    M=K-1
    I=1
    LIM=10
1005 IF(LIM.LT.M) GO TO 1004
    LIM=M
    1004 PRINT 1001,(NX(N),N=I,LIM)
        J=L-1
        DO 1002 N=I,LIM
    PSEC(N)=SEC(N)-PRI(N)
        IF(N.NE.J) GO TO 1002
        SEC(N)=0.0
    1002 CONTINUE
        PRINT 1003,(SEC(N),N=I,LIM)
        IF(LIM.EQ.M) GO TO 1006
        I= I +10
        LIM=LIM M 10
        GO TO 1005
    1006 CONTINUE
    1000 FORMAT(1H,19HSECONDARY ELEMENTS)
    1001 FORMAT(1H,10(I4,9X))
    1003 FORMAT(1H,1OE13.5)
```

```
ROUTINE COMPILED
TIME LESS THAN 3 SECS
NUMBER OF INSTRUCTION WORDS 62
```

NUMBER OF INSTRUCTION WORDS 0062

EXTERNAL ROUTINES REQU.
PREST WONT4O WONT42 DONTQ6 WONT4I DONTQ5 DONT57 * FORTRAN

EGTRAN COMPILER MARK NO. 302 DATE 22/10/70 TIME
SUBROUTINE COVAR
PUBLIC C,NXS,NO,SX,NY,NX,K
DIMENSION C(50,50), $\operatorname{COV}(50,50), N X(50), S X(50)$
PRINT 902
902 FORMAT (1H1)
DO $900 \mathrm{~L}=2, \mathrm{~K}$
$\mathrm{LI}=\mathrm{N} \times(\mathrm{L}-1)$
$S S Q X_{I}=S \times(L I) * S X(L I) *\left(\mathrm{NO}^{-1}\right)$
D0 $900 \mathrm{LL}=2$, L
$L J=N X(L L-1)$
$S S Q X J=S \times(L J) * S X(L J) *(N O-1)$
$\mathrm{I}=\mathrm{L}$
$J=L L$
$\operatorname{COV}(I, J)=(C(I, J) / S Q R T(S S Q X I * S S Q X J))$
PRINT 901, (COV (I,J), J=1,L)
901 FORMAT (13F10.5)
900 CONTINUE
RETURN
END
ROUTINE COMPILED
TIME LESS THAN 2 SECS
NUMBER OF INSTRUCTION WORDS 42

NUMBER OF INSTRUCTION WORDS 0042

EXTERNAL ROUTINES REQU.

> COVAR WONT4O WONT42 DONT83 SQRT WONT41
> *PREDATA

JOB ORGANISED 04.25.24
$22 / 10 / 70$
COMPOSER VERSION POSEUPDATER4 DATED $17 / 09 / 70$
*PREDATA

```
PUBLIC NV,NO,XBAR,SX,R,NX,NY,NXS,C,K,P
DIMENSION XBAR(50),SX(50),R(50,50),NX(50),C(50,50),P(50)
```


ACKNOWLEDGEMENTS

I wish to record here my sincere thanks to the many people whose help has been so invaluable throughout this project.

In particular I wish to thank the Worshipful Company of Armourers and Braziers for their generous financial support, those nembers of the academic and technical staff of the Department of Metallurgy, the University of Aston in Birminghan, who provided assistance in many different forms, and Professor W.O.Alexander for laboratory and other facilities. I an also grateful to Professor J.C.Wright for his guidance during the preparation of this theses.

Finally, I wish to thank Mrs. Pauline Derbyshire for typing the thesis and my wife for her help and patience throughout its preparation.

$$
\mathrm{J} . \mathrm{F} . \mathrm{H}
$$

GLOSSARY OF TERMS AND SYMBOLS

N

A
C
CZI
CZ2
CZ3
CAI

Nickel
Aluminium
Copper
Copper/70\% Zinc
Copper/20\% Zinc
Copper/25\% Zinc
Copper/4\% Aluminiun

σ	Tensile stress
ϵ	tensile strain
τ	shear stress
y	shear strain
$\tau_{\text {n }}$	naximum shear stress
$y_{\text {n }}$	shear strain at maximum shear stress
τ_{0}	intercept shear stress, i.e. shear stress at shear strain $=0$
$\tau_{\text {s }}$	steady state shear stress
y	shear strain rate
ϵ	tensile strain rate
K	rate of work hardening
E	Young's modulus
G	modulus of shear
T	temperature of test
T_{n}	nelting temperature
θ	homologous temperature, i.e. T / T_{n}
D	grain size (mean linear intercept)
$\gamma_{S F}$	stacking fault energy
e	electron/aton ratio
ϕ	degress of freedor
v	Prisson's ratio

[^0]: ELEMENT ANALYSIS

