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SUMMARY 

This thesis deals mainly with a comparison of certain 

computational techniques used for the solution of non-linear con= 

strained mathematical programming problems, The three 

techniques being considered here are: 

(a) Sequential Unconstrained Minimisation Technique, 
(S.U.M.T.), by Fiacco and McCormick; 

(b) Kowalik, Osborne and Ryan's method; 

(c) Powell's method for constrained problems. 

They all convert the problem into a sequence of unconstrained 

problems, that is to say the objective function and the constraints of 

the original problem are transformed to define a new objective 

function called an auxiliary or penalty function. 

By gradually changing the effects of the constraints in the penalty 

function, a sequence of unconstrained problems is generated, 

As the penalty function is being minimised at each step of the 

sequence, an efficient unconstrained minimisation algorithm had to 

be found, 

Three unconstrained algorithms have been compared: 

A direct search method (Simplex); 

Two conjugate direction methods: 

(a) Powell (64)'s method not requiring the calculation of 
derivatives; 

(b) Fletcher and Powell's method requiring the calculation 
of derivatives, 
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All the methods have been written in the same language, ICL 

Algol 60, and have been tested with the same set of well-known 

standard test problems and some larger ones. 

All the methods have been described followed by their respective 

results, 

For overall comparison, the best results from each algorithm 

are considered and tabulated in function of the total number of 

function evaluations and in function of computer time. 

We can, then, draw two conclusions: 

(a) if, as some people suggest, the total number of function 
evaluations is more important, the Powell's method could 
be the more efficient of the methods considered; 

(b) if computer time is more important, then S.U.M.T. could 
be the more efficient method. 
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INTRODUCTION



This thesis deals mainly with a comparison of certain comput~ 

ational techniques used for the solution of non-linear constrained 

problems. 

Recently, methods for solving constrained minimization problems 

by considering sequences of unconstrained problems have attracted 

considerable attention, the three methods considered here are of 

that type. They are: 

(a) Sequential Unconstrained Minimization Technique, 
(S.U.M.T.), by Fiacco and McCormick; 

(b) Kowalik, Osborne and Ryan's method; 

(c) Powell's method for constrained problems. 

The objective function and the constraints of the original problem 

are transformed to define a new objective function called auxiliary or 

penalty function, 

By gradually removing the effect of the constraints in the penalty 

function, a sequence of unconstrained problems is generated that has 

solutions converging to a solution of the original problem. 

As the penalty function is being minimized at each step of the 

sequence, an efficient unconstrained minimization algorithm had to be 

found, Therefore the first part of this thesis begins with a comparison 

of unconstrained algorithms. 

(a) A direct search method (Simplex). 

(b) Aconjugate direction method not requiring the calculation 
of derivatives (Powell 64). 

(c) A conjugate direction method requiring the calculation of 
derivatives (Fletcher and Powell), 

Work has been considerably delayéd at that point for the 

folloving reason,



Powell (64)'s methed was proved to be a relatively efficient and 

quick method, attractive too as it did not require the calculation of 

derivatives so the constrained minimization algorithms had been 

implemented using it as a sub-routine. 

Everything went fine as long as the standard test-problems were 

considered, 

These problems are known to have an awkward behaviour but 

  

they are small in 

Where larger problems were considered (eight variables and 

more) Powell (64)'s method failed and the programs had to be re- 

written using the Fletcher and. Poweil'’s method. 

The largest problem solved was 20 x 17 and this was proved to 

be satisfactory.
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2,1 MATHEMATICAL DESCRIPTION 

   
2.1.1 Simplex Method 

The Simpiex method was iniroduced by Himsworth Spendley and 
9) ; 

Hest\2 in 1962 avd developed by Nelder and Mead, 15) 

It is a direct search method that is to say it compares the values 

of the objective function at a set of (+1) vertices of a simplex. 

A simplex is a geometric figure defined as follows: a set of 

(+1) points in n-dimensional space forms a simplex, When the 

points are equidistant the simplex is said to be regular. 

In the case n= 2 the corresponding figure is an equilateral 

triangle while n=3 is a tetrahedron. The principal idea of the 

method is that we can easily form a new .simplex from the current 

one by reflecting one point in the hyperplane spanned by the 

remaining points, 

If we reflect the point which gives the highest value to the 

objective function by another one we can expect that at the reflected 

vertex the function value will be lower, and we go on until the 

minimum or a sufficiently good approximation to the minimum is 

found. The problem is to minimize: 

y = {G@) where x is 1 x n vector 

Let us introduce the following notation: h is the suffix such that 

xX, is the vertex corresponding to £Gq) = max Fx) 11, e005 DELS 

lis the suffix such that x, is the vertex corresponding to 

£Gq) = min £Gc,)5 x, is the centroid of the points x, with if¢h, 

At each stage in the process Xx, is replaced by a new point. 

Three basic operations are used in the method: 

(a) reflection; 

(b) expansion; 

(c) contraction, 
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A. The Reflection Operation 

We generate the new point x e as follows: 

aos (1 + ax, - omy, 

where a, the reflection coefficient, is greater than unity. (or equak 

Thus, x. is on the line joining x, and Xo? on the far side of 

Xs from %, and q@ is the ratio of the distance re to PR | . 

If fx) lies between Fx) and £Gq) then x, is replaced by x,, 

and we start again with the new simplex (see footnote). 

if £G.) < fq) then fC.) is the new minimum; therefore we 

expand X, tO X» 

B., The Expansion Operation 

X, is obtained by using the following relation: 

x= Vox Cie) 35 

The expansion coefficient Y which is greater than unity is the ratio 

of the distance (%e%o] to [ XX | A 

if £Gx,) < ie) we replace x, by Xe but if fo) > £Gq) then the 

expansion has failed, therefore we replace x, by x,, and in either 

case we restart the process, If, after reflection, we find that 

fG,) > £Gx,) Hen we define a new Xp, to be either Xp, OF X, whichever 

has the lowest:k)value and we make a contracting move. 

C,  Thg¢ Contraction Operation. 

We generate x, as follows: 

x, = 8%, + - 8) x, 

  

It is necessary to say that the ultimate convergence criterion is 
tested each time before restarting the whole process, 
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The contraction coefficient 3 lies between 9 and 1 and is the 

ratio cf the distance ol to ye. of the di oe o| 1% 

if fg) f(x.) 4, is replaced by x, but if the contracted point is 

worse, that is to 

4x, + %) and ip cither case we Mestate the whole process. 

Nea Je i 2) then we replace all x, by 

  

The whole algorithm can easily be schematised in the following 

flow diagram, 
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Ultimate Convergence Criterion 

The stopping criterion suggesied by Nelder and Mead is 

concerned with the variations in the function values over the simplex 

  

rather than with changes in the x's. 

  

It takes the standard error form: 

AS exp - tape t 

where © is a small preset positive value. 

Comm    nts on the Program 

Various parameters are used in the program, The main ones 

are a, B and ¥. 

Nelder and Mead have carried out many experiments with 

different combinations. They find best results are achieved when 

asl, B=%, Y=2. 

Four other parameters are also used, 

8 
Criter: stands for€ and is set at 10°". 

Conver: value of the standard error of the £Gx,) 

fa 
fA 2. Gy) - £6) 

n joi 

whenever conver < criter the program stops. 

Colimit: preset value for the maximum number of function 
evaluations, 

Count: number equal to the number of function evaluations, 
Whenever count > colimit then the program stops. 

Orp(i:n): Array of feasible starting point.



2.1.2 Powell (64)'s Method (1964)°19 

The key advantage: of this method is that it does not require 

explicit evaluation of derivatives, 

It is a quadratically convergent process which generates 

conjugate directions of search and will thus find the minimum of 

a quadratic form in a finite number of steps. 

It is based on the following theorem: if x; is the minimum 

in a space containing the direction v, and xX is also the minimum 

in such a space, then the direction x4 -X9) is conjugate to v. 

Let fG0 be a general quadratic function: 

f@) = xAx + bx te 

By definition 3 f(x, +Av)' = OatA =O, Therefore: Br Uo j ‘ ‘ 

2\vAv + v2Ax, +b)=0, A=0 

Also: 

2a\v Av + VUZAXy + b) = O AH=O 

whence subtracting: 

vAGy, - X_) = 0 

The directions v and Oy - x) are corjugate (Fig. 1). 

  

  

Fig.1



This means that in the presented space, the minimum M of the 

quadratic function must be found along the vector Cig -X4)0 Hence 

it is only necessary to search for the minimum along the two 

v directions and finally along the vector (x5 -x4)- 

For more general functions which are not quadratic the 

procedure is iterative and can be described as follows, We first 

assume that n independent directions Vy9 Vor onoey Vy are given 

(for example the co-ordinate directions.) 

1. 

3. 

4. 

For p=1, 2, .+-., n, calculate %» so that fO.4 + NOY? isa 

minimum and define x_=x TONEY @ 
p p-l “PP 

For p=1, 2, ...., n-1 replace ‘> by Vorie 

Replace v,, by Gx) 

Find ) so that fO, + AG, - x.) is a minimum and replace x, by 

xX, + OQ, - x.) where x, is an arbitrary feasible starting 

point. 

Repeat the procedure, 

This procedure is illustrated in Fig, 2 in the case where n=2,



  

8 
N
e
e
 

4
 “~
 

  

  
an ae eee an nm panne — oe = >X. 

Fig.2 

4 starting point and xt minimum moving along the xy co’sordinate, 

2 minimum from xt along the Xo co-ordinate, 

x5 minimum point along the direction vig - x) and repeat, 

The final point x5 must be the minimum of the quadratic 

function since v4 and vy = od - xp) are conjugate. 

Theoretically this procedure converges to the minimum of a 

quadratic function in n iterations, Practical applications have 

shown, however, that there is a need to modify the basic procedure 

9



in order to achieve a satisfactory rate of convergence. The basic 

procedure may occasionally select directions which are nearly 

dependent and do not span full parameter space. Powell has 

introduced a modification which ensures that the efficiency of the 
a 

  

tions Vax Vox oeees Vy is never less than that of the original 

independent co-ordinate system. 

for this purpose he v 

  

direction generated at the current stage if the criterion fails and he 

computes another cycle of descent steps using the current directions 

otherwise he accepts this new direction. 

The procedure described above is then modified as follows: 

4) for p=1, 2, ...., n calculate Ap so that £0521 + Ae isa 

minimum and define x = Sod + AB’ ; 

2. find the integer m, 1<m-<n_,so that VIG _p - fx) isa 

maximum and define A = CED) - £003 

3s Calculate f3 = fax, - x) and define fy = fo) and fy = £OQ)5 

ee oe . = oP 2... 2 
4. if either f, >f, and/or Cy - 2f5 +£).C, « fy - A> Gy - f.) 

use the old dix 

and use x_ for 
0 

     ions Vq2 Vo2 coos Vy for the next iteration 

ene next x, otherwise; 

De defining v = Gy, - x,) calculate \ so that Fx, + ACY, - x) isa 

minimum use Vq9 Vor e¢%os Vinge Viney? Yaa? *eer2 Ve Vr as 

the directions and x, + Av as the starting point for the next 

iteration, 

if this modification is used, a conjugate direction is thrown 

away and more than n iterations are required to find the exact 

minimum. Nevertheless, it was necessary whenever large problems 

are solved. 
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To justify this criterion, Powell uses the following theorem: 

Let vectors py) eros Py be scaled so that ppA pj=l 

i=1, 2, ....,n. Let ¥be the matrix whose columns are the vectors 

Pie Then the determinant of Xis maximum if and only if the directions 

are trutually conjugate. 

The consequence of this is that V2 Vox cores Vy should be 

chosen to make the determinant as large as possible. 

The criterion is applied by using the new direction v, defined 

by an iteration, if it causes the determinant to increase, or by 

rejecting the direction, the replacement of which causes the new 

determinant to be largest. 

It will now be proved that the direction which should be dis- 

carded, if any, is Moa 1<m<n where mis such that 

{ GP - £1 is a maximum. 

As fx) is a minimum in the direction v;, if v, is scaled so that 

the displacement froia X41 to x; iss 

  

V Oy.) —fe)] yay 

The direction defined by the iteration is: 

xX - xX. * Vv. ¢ F sicicie) Vv. 

7% 2 %2 on 

Soifx, - x, = bY, where D Av_=1, the effect of replacing the 

Sevan peeise vi by the vector Vp is to multiply the determinant of 

directions by a,/ De 

11.



Consequently the direction to be discarded, if any, is that for 

which a is largest and this is the direction ve 

This replacement should be made only if a, 2 p and y is 

calculated by the means of fie fo and fy (values defined in the des- 

cripticn of the procedure). The predicted stationary value of the 

function along the aew direction is? 

2 
1) - fy) 

ar er ~ 26 pfs) 

f. is a minimum ifs 

~ 2fo +f >0 a a 

the If the above second difference term is negative, a new direction should 

certainly be defined, otherwise: 

Mio ota eae ame 
py G, = t2VG - fy) 

+ or - sign depending on whether f, is greater or less than fy. In 

the former case it is :>.vious that the old directions should be used 

again, in the latter «se new directions should be defined only if: 

FEO 2 ; : — | = 
Va; 3VG@ =f, @y - fy 

The above results have been condensed in the criterion that 

a XS should not be used for the next Herguen if and only i ify 

either a fh and/or ey - 2f - Forty = 45 ~ aye > EME, - 15° a 

Because the modified procedure cannot cause the determinant of 

directions to decrease the efficiency of the direction of search 

Vyr Vor sree Vy is never less than that of the original co-ordinate 

directions, If these are poor, improved directions will be found 

easily. 

The whole procedure can easily be schematised in the following 

diagram. 

12.



starting points x, and v,,V9,++++V, 

co-ordinate directions are given   

  

    
  

oe ( “x Find m such that (Gq, D-FOg 

i<msnis max. 

Aroq, d=, 
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2 
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Ultimate Convergence Criterion 

Powell's convergence criterion is more concerned with the 

changes over the variables. 

1. 

2. 

3. 

6. 

Comments on the PF 

The procedure is applied until the change on each variable is 

one tenth of the required accuracy. This point is called a. 

Each variable is then increased by ten times the required 

accuracy. 

The procedure is applied again until the change on each 

variable is one tenth of the required accuracy, This point 

is called b, 

The minimum on the line through a and b is then found, it is 

called c. 

If (a-c) and (b-c) are less than one tenth of the required 

accuracy in the corresponding variables then ultimate 

convergence has been reached, else, 

include the direction (a-c) in place of vy and start again. 

  

The procedure Powell 64 has eight parameters, defined as 

follows: 

3 

4. 

X: array composed of the initial feasible starting points. 

E: array composed of the required accuracy value for each 

variable in this case it is set at 10". 

N: number of variables. 

F: value of function. 

Escale: an integer number which defines the step for each 

linear search so X will not be changed by more than 

Escale x E. 

Difficulties arose when choosing Escale. Not knowing the 

behaviour of the function it was difficult to determine the step 

and therefore a method of trial and error was used, 

14.



It was found that Escale should be at least equal one fourth 

of the inverse of the accuracy. 

6. Iprint: controls the printing. 

(a) Iprint = O no printing 

(>) ‘Iprint = 1 the variables and the function will be 
printed after every search along a line 

(c) Iprint = 2 the variables and the function will be 
printed after every iteration (n+1) searches 
along a line. 

7. Icon: provides an alternative convergence criterion. 

Usually it is satisfactory if Icon=1. However, if alow 

accuracy is required, Icon is set equal to two but the 

execution time might be increased by as much as 30%. 

8. Maxit: maximum number of iterations required. The routine 

will be left regardless after Maxit iterations have been 

completed. 

Zangwill Modification of the Powell (64)'s Method 

In 1967 Zangwin 2D published a paper suggesting a modific- 

ation to the Powell procedure. A counter example was found which 

   

  

reveals that Powell's method does not converge to the minimum 

  of a quadratic in a finite number of iterations but will not converge 

in any number of iteretions. 

This new procedure, based upon Powell's theorems can be 

written as follows: 

Let Vy? Vor sre Vy be the co-ordinate directions and assume 

wey, are normalised to nae length. ane starting pois Xo cece 

x? n? and the normalised directions ty cu te eey a are given. 

Ciena ae to minimise fe + nO os 1 and let 
x ° ocd 
%+1 7 *n tn Sn° 
Set t=1 and go to iteration k with k=1, Iteration k: x Ep . 

r=1, ...., nandt are given, 

15.



Step (i) Find « to minimise r0c71 + av,) 

Update t by: 

(reaiietcn 
te 

a ift=n 

k- 
Law, Ifa # O let xs = x3} 2 

If « = O repeat step (i). Should step (i) be repeated n times in 

succession, then stop; the point oe is optimal. 

Step (ii) for r=1, ...0, : calculate x to minimise fq 17th 5) 
ie k 5 n- 

and define x, = x74 * - oo 

€ k Jy 
Lote nel =O spl Es xa 

Determine fa to minimise fx + ake 7 and set 

xk xk k 
*a4 = %n * Atl Snel 

5 k+ ck 
Define ee oer Vis: 15 25: wo ys 

Go to iteration k where k becomes k+1 

No results are «vailable yet to enable an assessment to be made 

of the rate of convery«i.ce of this procedure relative to the 

  

Powell (64)'s procedure. 

16,



2.1.3 Fletcher and Powell's Method, 1965 

This method is also sometimes called the method of Davidon, 

Fletcher and Powellecs as the idea is based upon a procedure 

described by Davidon (1959). @) 

Like the previous method described, it uses conjugate 

directions and has quadratic convergence, therefore gets to the 

optimum at a finite number of steps (for quadratic functica), 

ge to be defined It also requires the gradient vector g = 
1 

analytically at cach point. 

We know that two directions vi and “ are said to be 

conjugate with respect to A if vA A v; =6 for i#j. 

A being a positive definite matrix, Is it possible to define oe 

as a function of these conjugate directions? 

Consider the matrix: 

We have for s=1, 2, cose, PD 

  

provided a, = 

This gives for p=n: 

2 Vv. V. mi Soy ede 
  

ea ye) Ay. 
i=1 i i 

This suggests an iterative scheme in which the best approximation to 

the inverse A = H is used to define the next direction of search by: 

17.



i itl 
Ving = ~ HYVFQ) 

and the results of this search are then used to improve the approx- 

imation to the inverse, but in the mean time the successive directions 

generated must stay conjugate. 

ye 
Knowing the matrix AG = Bx, the displacement between the 

‘ : -1 p 
point x, and x,_j isv, = - Ally 8 then Xie = qt MY; and updating 

we have? 

ic 
ViVi 
———. +B, 
T A 1 

vi Avy 
H,=Hy4+ 

where B, is a correcting term and H, an approximation of al, 

If v,, «e+, V, are conjugate: 
1 ook 

it VEAH, Vg 881, 2, cooey tel 

we also know that if’ ., .... v, are conjugate: 

2 bie Site 
ig ve ee veers 

therefore we must hosose B, to satisfy ve A Hy, = ve 

Seino 5 pet 

Tor i=s we have: 

tT 
Viv; 

a 
L 

  vi AG, | # +B)=v 
i i-1 i 

VG A vi 

whence: 

T 
(gin. > 8) Gy) + BY 0 

Writing Yi = Sin 7 SF



To update Hy iy in a general function we need to modify the term 

ve A Vie We know that: 

i G1 
vo Av, = ——— Av. 
ca i ee i 

x 

It is also equal to: 

(g.44 - 8D +17 8 ie eee Be ea 
1 L 

ce 

  

Setting: 

  we = ov A, = T where Yi = Sin. 7 8 

WH 

the updated H matri> now takes the form: 

Hos H+ ALY B: 
ic i-]d i i 

We can now state ©.< procedure as follows: 

oh ee 
iVEr an = Given x, d 8 ax) 

i. Compute ve Hey 8: 

25 Compute Ai to minimise £ Gx, + a v)) 

3. Set Xin 7% AVG 

4. Compute H; = Hi.) + A, +B, 

In the first step cf the iteration it is customary to set HS al 

lis known, this can be used provided However, if an estimate of A™ 

it is positive definite, If Hy is positive definite initially it has been 

proved that all subsequent Hy are also positive definite, As 

Hy = hee by construction it must be positive definite so that if Hy 

does not satisfy this condition there is the possibility of a breakdown 

in the calculation, 

19.



This algorithm is easily schematised in the following flow chart. 

  

<2 feasible starting points 

  

. - 
H, =I or approx. toH ; g, = ax,) 

    

    
  

    seat 

~~ is ultimate convergence = ees seers 
—~____ eriterion satisfied? 

ao 

   

  

  

——YES— EXIT 
    

    
      

* H, is usually set up equal to an identity matrix at the beginning, 

unless en approximaticn to the Hessian matrix is known. 
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Convergence Criterion 

The process is terminated whenever two successive values of 

f are equal or if a new value of f is larger than the previous one 

(due to rounding errors) or when the first derivative of f nearly 

vanishes, 

Comments on the Program 

(20) 
The procedure Flepomin is a nine parameter procedure, 

N = number of variables 

X = array of feasible starting points 

F = function value 

EPS = tolerance used in terminating the procedure when the first 

derivative of f nearly vanishes, Therefore jt is set in a very 

small quantity. In this case it is set to 10°”. 

FUNCT = procedure calculating the value of the function and the 
derivatives. 

CONV = Boolean variable equal to true if convergence exists or 

false otherwise. 

LIMIT = Integer variable defining the number of iterations required, 

CONV will be equal to false whenever the number of iterations 

has exceeded LIMIT and the process will be terminated 
regardless. 

H = arvay 2 

LOADH = Boolean variable indicating whether or not an approximation 

to the inverse of the matrix of second derivatives is available. 

Recent Variations of the Fletcher and Powell's Algorith$? 

One of the main features of the algorithm described earlier 

is that an approximation to H is kept and updated using the formula: 

vive Hv.v! H, 
  

+e £3 2 1 

He Ey aay i ee 
YW, YAY 

where v, = - aH, : 

Yi S41 7 8 

  

21.



The correction v, is taken as a multiple A of a direction of search 

s= Hyg; . 

Though this algorithm proved a very powerful one so far, it 

has some inconvenient features that Fletcher, in his recent article, 

tried to overcome. The main one is the need to solve the sub- 

problem of finding the optimum ) at each iteration, ie. the linear 

search, As it requires the evaluation of the function and the gradient 

for a number of different value of A and interpolates according to 

some strategy, until a sufficiently accurate minimum is obtained, 

considerable computer time is needed. 

The linear search also has another disadvantage because of the 

special circumstances which can arise, eg. a minimum may not exist. 

So it would be convenient to find A other than by finding \ which 

minimises £Gx, + As), bearing in mind that the main importance of the 

optimum linear search is that it generates conjugate directions 

leading to the property that for a quadratic function convergence 

occurs within less than n iterations. 

So Fletcher tried to find out if that property could be kept for 

variable metric algorithms not requiring optimum linear searches but 

based upon a revised formula for updating H. 

The only solution, however, was to abandon the property of 

quadratic convergence and to veplace the linear search by another 

process ensuring an efficient decrease of the value of the function 

at each iteration and this could be produced by the retention of the 

positive definiteness in H. 

So Fletcher suggested a new updating formula for H which 

guarantees positive definiteness: 

i oe ic 
vy Ho Hoy y Hy fe 

=H, -———- = ee 
T 

vio My: ve ir 

  

22.



This formula can only be used under certain conditions, ee 

Tye Ti 
Ae yA ly sy Hy 

then H is smaller than ie and the new formula for updating H is used. 

If, however, yay, y Hy then H is larger than Av! and the 

original updating formula is used. 

The new formula used whether or not the inequality (A) holds 

has been inserted into the Flepomin procedure. 

Another modification has also be implemented. We usually 

start with H set equal to I (the unit matrix) and sometimes this 

proved to be quite inefficient as H can be much greater than the 

local a then any direction which reduces F would be considerably 

less than -Hg and a considerable number of extra function evaluations 

would be required at each iteration. 

This only occurs at up to and including the nt iteration after 

which a step of -Hg is almost always successful. In practice, a 

step length A has been kept, derived from the previous iteration and 

used to generate an initial v = -\Hg. 

However, the program reverts to the basic algorithm after the 

a step. 

We shall see from the tables that the results obtained, once 

these modifications have been included, are far better than those 

obtained with the original Fletcher and Powell algorithm. 

2,2 Computational Results 

Each algorithm has been tested with the following test problems: 

Function 1 

Rosenbrock (banana shape) function 

minimise f = 100 (x, - ay +1 - ~o 

starting points x = (- 1.2, 1) 
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Function 2 

Fletcher and Powell's function with quartic singular Hessian 
sae te wy 2 2 4, 

minimise f = Cy + 10x)" + Sy - 4) + SC - 1 + Gy - 2x.) 

+ 10x, - x) 

starting points x=(3, -1, 0, 1) 

Fletcher and Powell's (hellical valley) function _ A 

minimise f =[100 Xa" 100Cx, x) 7 + Cf@2+ xf) = 1? + x“ 

where 270 (x1, X5) = Arctan Gg /x)s ifx,;> Oorn + Arctan(xy/x,) 

if x, <0. Starting points x = (-1,0,0). 

Function 4 

Four dimensional banana shaped function (Colville) 
Sevier: ell 2 2 2 2 2 2 

miniinise f = 100Gcq 3% +O xe 2. - 7 +0 - X) 

i 2 2 # 10.1 |G - D7 + Gy - D°| + 19.8Gq - DEY - D 

starting points x = (-3, -1, -3, -D 

Function 5 

Box!s function = 

Gree i - - - -10x, | 2 
Minimise flay, ay, ay) =) Tag(e a4% Le Bagh fe Re oi 

where summation is over ile values x = 0,100.11. Nine sets of 

starting points were used, 

Function 6 

Watson's function 

. pet m 

minimise f = yy G2) xys? a O xyJ7 2 -1} 2 x x2 

: LS yi = 0» t 1 
i=l jel jri % 

where y; = G - 2/29. 

m has been chosen equal to 6. Starting points x = (0, 0, 0, 0, 0, 0). 
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This function results from an attempt to approximate to the solution of 

the differential equation: 

Sez = 1 20) =0 
dx 

in 0 <x <1 by a polynomial of degree m, by minimising the sum of 

squares of the residuals at selected points. 

When running a program, the total mill time is given, This 

includes the compilation time, the consolidation time, the program 

run and the operating system administration, As the operating 

system administration may vary quite substantially - for reasons 

difficult to explain - the total mill time is quite unreliable if a 

comparison is to be made in function of time, Therefore, here the 

comparison is made as function of the run time of the program 

excluding compilation and consolidation. Though, again, this might 

be quite unreliable for programs taking very little run time (up to 

20 seconds). The first tables show the number of function evaluations 

necessary to obtain the required accuracy. This is shown for the 

four different methods we considered. The other tables show the 

vun time and the number of function evaluations for each problem 

and for each algorithm compared. 

N.B. The same accuracy 10°8 has been used in the three different 

algorithms, 
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SIMPLEX METHOD 

eal, §= 0.5, ¥=2 

  

  

  

                
  

Function 1 | Function 2 | Function 3 {Function 4. \Function 5 |Function 6 

EV f f £ if f £ 

1 A 215 2500 19192 | 2.087 30 
20) 3.81 7.36 637 79.9 0.034 1556 

40; 1.61 8.16 70.6 10.01 0.026 151 
60} 1.04 3.34 16,77 7.98 0.025 0.0875 

j 80} * 0.47 0.62 10.73 | 7.73 | 0,014 )) 0.027 
100} 0.694 0. 108 7.41 +33 19.09 x 10"c} 0. OLS 
120; 0.001 g 0.005 3.08 7.23 58x 10/6 0.013 -3 

140} 58 x 10 0.005 zo 1.31 7.02 |2.54x 103 8.4 x 10°3 

160 8. 99x10" 5 0.10 3 6.44 |6.08 x 10 165% 1073 

180 5.35x103| 3. 86 x107¢ 5.46 6.9 x 1073, 

200 47x10 27x107 4.41 6, 81x 1073 

300 2507 6.72« 10 3 

400 0.81 3 Sooak 1073 

500 4.56 x 1073 2. 31x 1073 

600 6.3 x10" | 2. 28810 

2000 | *2, 28 1073 

8 
* To achieve an accuracy of 107 

The Simplex method has been successful with any set of starting points for the 

Box function. However, for clarity the results for the set (O, 20, 1) only 

are shown in this table. The number of function evaluations is approximate 

to the nearest twenty, or hundred if it is more than 200. 
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POWELL (64)'s METHOD 

  

  

  

          

I Function 1 | Function 2 | Function 3 |Function 4 \Function 5 | Function 6 | : 
EV f f eee f { f 2 

| T 

1 24.2 215 | 2500 19192, || 2,087_, | 30 
20 | Bur, Gaal | 129 9120 19. 14x107% 203 
40 2.4 4.13). |) 10.9 62 3. 35x1057 0.53 
60 | 1.07 0.75 | 0.3 25 9x10" 0.19 
80 | 0551 0.029, 4.63 12 9x10 0. 12 
100 0.10.4 | 5.3x10°%, 1.42 7.88 0, 037 

| 120 | 5.8x1075 | 3. 58x10; | 0. 32 7.87 | 0.027 
| 140 9x103g | 2.1 x102 0.022 7.87 0.014 
1 160 | 20x10 1.53x107 | 9x10% 7.87 | 0.014 
180 2. 40x10" | 10°76 7:84 | 0.011 
200 1,95x103, | 6. 66x10" 7:80 0.011 
300 1,14 x10 7.08 | 2. 35x10" 3, 
400 4.58 2. 28x1075 
500 2.27 2. 28x10 

c | 0. 82 oo 
700 | 0.01_, 
800 | 5.1.10" 

  

Here again the number of function evaluations is approximate to the nearest 
twenty or hundred if it is more than 200. The set (0, 20, 1) of starting points 
has been considered for ‘ive function 5, 
with the same function are given now. 
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It was mentioned earlier on in the description of function 5 

that nine sets of starting points were used. They are as follows: 

  

  

          

| Set ay ay | a3 f 

elo mele zoned 2.087 
2| 2.5 | 10| 10 | 275,881 
Bulno o| 10 | 306.401 
Zaloe Hatoy eet 1.885 
Bob oom ldo eto aias673 
6} 0 | 10} 20 | 1031. 154 
7 le Ol 200 lanO 9.706 
8 | o | 20 | 10 | 209.280 
9 | 0 | 20 | 20 | 1021.655 

The optimum a= 10, ag = 1, a3 = -1 has never been obtained with any 

combination of methods and starting points tried to date. 

There is, however, the continuum of optima f = 0, corresponding 

to ag =. O, a, = a on which various of the methods found solutions 

with some starting points. This was rarely the case with the nine 

starting points quoted above and in the majority of these cases the 

desired optimum was found by making an alternative selection of 

initial step-lengths, 

Powell (64)'s method was not successful with every set of 

starting points as we can see from the following table. 

  

  

| Set} 2 Se ye es 6 8 9 
f f f f f f 

| 275.881 | 306.401 | 213.673 |1031.154 | 209.280 | 1021. 655 
F F F F F F           
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Set Z 4 7 

Ev weet Waar (8g Meds ce | er 

20 | 9.14x10%4 28 x10 | ts 10° 

    
40 | 3.35x107> 655 x 1000. ||) 1.2 405" 

60 Ge torte ac i07t4 | tec ace 
80 | 9 x10728 | 1,19x10722! 1.08 x 107% 

100 1.52x 107) 

T 
| 

1 2.087 1.885 9.706 

|   
For the sets (2, 3, 5, 6, 8, 9) this method has failed. We can 

notice that these sets give the highest starting values for f, They 

produced the following solution: 

a,~ 0.61 ay -; ee ag 1.32 £0,076 

ie. regarding the problem as one of curve fitting, this method has 

effectively eliminated a 2 from the problem and then endeavoured to 

fit one exponential and a multiplicative factor to the data, This 

failure stems frem the fact that the method set out to locate the 

minimum along a line too precisely. 

Any method which does not find the minimum along a line, for 

instance the Simplex Method, could not fail in this way. 

For the sets 1 and 4 the same minimum values were obtained 

for the objective function and the variables, that is to say, respectively: 

0, 1, 1, 1. For the set 7 there is the continuum of optima f = 0 

corre sponding to a, = a9, a3 = oO. 
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- upper corner; Actual run time of the program 

- lower corner: Number of function evaluations 

  

  

  

  

  

  

  

  

single | Pegs [ripoain | Ropers 

3 1 1 6 

Function + 

147 163 80 87 

13 WZ 8 7 O13 

Function 2 em es 

202 a 314 109 va 64 

13 2 6 Ha h we . 

Function 3 

6 3 

Function 4 Ra 

103 74 

byt 
Funciion 5 

161 84, 69 46 

1613 145 182 25 

Function 6 

2000 va 527 278 34           
 



Run time in seconds 

1613 145 182 

2 i      

          

     

      

  

    

fmee) function 1 

(224 function 2 

(== function 3 

{7229 function 4 

{SSM0 function 5 
(S55 function 6 

      1 

Flepomin modified 
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2.3 Conclusions 

The main purpose of this study of algorithms for unconstrained 

non-linear optimisation problems was to find the most efficient 

method which could be used as a sub-routine when writing programs 

for solving non-linear constrained optimisation problems, 

At a glance, from the last tables, we can see that the Simplex 

method is a rather lengthy process considering the number of function 

evaluations and the run time, both are higher than those of the two 

other methods, However, we must say that the method will converge 

in some cases where the others failed as they try to locate the 

minimum along a line too precisely, eg, function 5. 

The results obtained by the Fletcher and Powell's method and 

  

the Powell (64)'s method, both performed remarkably similar 

both possess quadratic convergence, ie, the property that they will 

converge to the minimum of a quadratic function in a finite number 

of steps and although such functions rarely occur in practice, it is 

nevertheless found that methods with this feature converge more” 

rapidly, particularly, of course, in the vicinity of the optimum. 

However, one advantage of the Powell (64)'s method over the 

Fletcher and Powell's method is that it does not require the calcu- 

lation of the derivatives and this is why, at first, the Powell (64)!s 

method was chosen to be the common sub-routine for the programs 

solving the coustrained non-linear optimisation problems.   

Unfortunately, it will be shown in the next chapter, that the 

Powell (64)'s method failed when trying to solve larger constrained 

non-linear optimisation problems (eight variables and more), 

The modified version of the Fletcher and Powell's method would 

have then been the obvious choice for an alternative sub-routine, but 

the modification suggested by Fletcher for the Fletcher and Powell's 

method) had not been published then, Therefore the only choice 

left was to rewrite the programs using the Fletcher and Powell's 

method, 
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CONSTRAINED OPTIMIZATION TECHNIQUES



3.1 MATHEMATICAL DESCRIPTION 

3.1.1 Kowalik, Osborne and Ryan's Techniquet® 

This recent method due to Kowalik, Osborne and Ryan is in fact 

a method combining a modification of a method due to Morzison and 

a method due to Schmit and Fox 8) 

function, 

to bracket the optimal value of the 

First of all let us consider Morrison's method, Consider the 

problem: 

Minimise fQ) 

where f is a scalar function and x a vector Xq2 Xgr coco, My subject 

to gC) = 0; 1-1, 2, ..405 Di DX De 

A solution to this problem is assumed to exist and is denoted by 

x, that is gG = O and if g(x) = O then f(x) = f@. The problem is then 

transformed into a sequence of unconstrained minimisation problems 

using a parameter x and takes the following form: 

a is @,60" 

or 

Let Xi denote the solution to the problem. Morrison has proved: 

(A) minimise FG, XO = [8G - XI 
x i u 

1. if 4,.< fC) then FO) <f@ 

as fuego is a monotonic non-decreasing function of Xy 

Gs if xs is defined equal to X 1c Yl FGGD 

' M and if X,. < fG) then X 1415 f@ 

4. the sequence , <i ‘for j= k+1, k#2, ..e.> +fG as 
{ 4 

j-»eoand the sequence pet \ approaches the optimal 

solution from below. 

M 
Xx z is called the Morrison's parameter, 
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The second method, used by Kowalik (et al.),is the tangent 

parameter sequence suggested by P. Wolfe in relation to Morrison's 

article, 

T 
If we denote Xigy as being the tangent parameter, then we 

define: 

tia =X, + FO; X0/ LFGy 1x = 2 
ST 

The sequence ; a \ also approaches the optimum from below under 

x    
certain conditions but in general at a faster rate, The justification 

of its use is as follows: 

justification 

Consider the (f, g) space (Fig, 1). P is found by minimising 

F(x, X) then from geo metas considerations: X, +\ IEG, Xs 

the point on the f axis (0, X 1), clearly this is closer to the 

optimum than X,. 

Wolfe noticed that the tangent at P gives even a better point 

(,X). 

The formula is derived from the fact that the circle has for 

equation 3 

2 4 EF OKO SB ¢g f+ 7 ke BOY, 

Writing the equation of the tangent and putting g=0 to get the inter- 

section of the tangent with the f axis, we have: 

FGqy XO = 0 + Oy) = X2EGd - XO 

for f we have: 

F&,, X,) 
Pie he eee 

k FOq) - X. 

which is the required result, 
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feasible region 

    

tangent 

   optimum value satisfying the 
constraints 

2 Cp = g7 + G0 - x,



Now. having justified the use of 

T f = y 

Xia * Xe + F Og %O/ FO. Ae 6275? C - 

provided WX}, 41S fG) then we can use the parameter sequence 
¢ Lee a A {x,} = {x5 \ je kt, kt2, ...., o2 in (A) and X}.,, being 
greater or equalto X ket it should converge to the optimum more 

rapidly. 

We saw earlier on, in Morrison's method, that we require an 

xX, subject to XS fG) therefore we need to find a lower bound for 

X, to initiate the process. 

The third method, used by Kowalik (et al.) is Schmit and Fox's 

method which enables us to bracket the minimum, This method 

proceeds as follows: 

LetPog p § x:g() = 0 and let Y = max, _p f(x); then if 

f{Q< X<Y, then X offers an upperbound for f[G@. fGd<X<Y will 

hold if minimum F(x, X) = 0. However, if minimum F(x, X) # 0 then 

X<f@ consequently X offers a lower bound for fG@). Therefore we 

examine the value of F(x, X) for the sequence of values 

Xe 1% k=i1, 2, .... When we reach an Xx, sub ject to FOX, OF 0 

then X, is a lower bound for fG) and Xp since minimum F(x, X,_,)=0 

must be an upper bound, 

yl is used in this Another modification developed by Kelle 

method to deal with all types of constraints. This approach converts 

the inequality constraints into equality constraints by using the 

Heaviside function H(t) defined as: 

HQ) = 1lift>o 

H(t) = 0 if t<O 

Example 

Using the Heaviside function, h(x) is transformed into: 
hve 

£G) = hd H |= hGd] = 0 
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Theorem for Convergence 

For x4.P @ closed bounded region) we assume: 

1. f(x), gGd are continuous 

Ze there exists a solution to the problem 

3. FOq) = min Fa, XO) can be found by any methods of 

unconstrained minimisation and FOq) 20+ #Qg) <f@ 

then we can say there is convergence and the limit 

point of the set x, for k=0, 1, .... is a solution to 

the problem. 

Proof 

From assumption 3 we conclude that there exists an upper 

bound and lower bound for fG) and they can be found easily. 

There is an increasing sequence of X, for j = kt+1, k+2, .... 

bounded by f{G). As the sequence x, converges, therefore X ji 

converges so that: 

FO) 0 asj 

giving: =e 

5 a,(x,)-90 asj +4 @ 

isi 

8G) - X10 as j +-eGD 

Let xbe a limit point of Xe There is a sequence of points Xj 

converging to x; « From assumption 2 and equation (I) we have 

g(x, )=0; therefore Ge) f@). We know too that fag ps £GO and 

this gives f(x, )< £60. 

Remarks 

The problem might not terminate in a finite nu mber of steps. 

Keeping an upper bound for f@ we ensure that i cannot be 

accepted if X >Y. This could also give minimum F(x, X)> 0. 

4l.



This is unacceptable as X would tend towards+s— In such circumsi- 

ances we have a stationary point 

-ViGd) + X)VECx, 0) = 0 

so there are two possibilities: 

(a) x tends to an unconstrained local minimum of f 

(b) f(x) tends to +-as X tends to +, 

The whole algorithm an be divided into two phases: 

te Phase I sets the bounds; 

2. Phase Il is the actual minimisation process. We can 

now give a step by step description of the whole 

  

algorithm. 

Phase 1 

I Set XE T @ closed bounded region); 

Senx = £Ox,)5 

Setk= 1; 

Il Minimise F(x, x,) tofind x,; 

X = Xe - step; 

i ie “EPS then set 1) step = 2 x step, 
’ 2)k= k+l 

goto Il else BU = Xe (BU is an upper bound for fG)) 

goto IV; 

Phase Il 

I¥ Set BL = X, (BL is a lower bound for f@); 
T 

V Compute Xy 445 Xia 

VI Sctk=k+1 

Set BL = xM 
c . c M 

TEX, < BU then Xe = Xy else xX =X ke 

VIL Minimise F(x, Xe find x,; 
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Vill 1f\/FGq) > EPS then goto V else BU = X,; 
If BU - BL <EPS then goto FINISH else Xx, = BL and goto VII. 

FINISH: END OF PROGRAM 
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Ultimate Convergence Criterion 

In this case the values of the lower bound and the upper bound 

of f(x) are considered, 

If the difference between the two is less than EPS (a small 

preset positive value) then the program stops. 

Comments on the Program 

The program has been written in such a way that it could be run 

with any minimisation sub-routine. 

It has been tested using the Powell (64)'s method and the Fletcher 

and Powell's method, 

By using the Fletcher and Powell's method, two external 

procedures are required: 

De, Procedure TEMPCAL (Temp, x) 

where temp is an arry (O0:m) 

Temp(0) being the objective function and Temp (1), 

Temp (2).... Temp (m) are the constraints. This 

procedure calculates the value of the constraints and 

also the sum of square of the constraints set equal to a 

real number t, and where x is an array (1:n); 

2. Procedure TEMPDCAL (Tempd, x) 

where tempd is a matrix (l:m, 1:n). 

This is the matrix of partial derivatives, and where x 

is an array (1:n). 

It is obvious that the procedure TEMPDCAL is not necessary 

when using the Powell (64)'s method as it does not require the 

derivatives, 
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The procedure OPTKOV is a seven-parameter procedure. 

They are as follows: 

x 

XK 

XKT 

XKM 

STEP 

EPS 

array (1:n) containing the feasible starting point; 

real number calculated inside the program but originally 

equal to the value of the objective function of the 

constrained problem; 

real number calculated inside the program representing 

the value of the tangent parameter; 

real number calculated inside the program representing 

the value of the Morrison parameter; 

real number by which XK is decreased each time}; 

real number representing the value of the penalty 

function minimised in the sub-routine; 

representing the stopping criterion, usually EPS is a 

very small positive value. 

The main problem in preparing data for the program is to determine 

the step by which XK is decreased. 

This is difficult to determine not knowing the behaviour of the 

problem. 

A method of trial and error has been used to solve the different 

problems and it showed that the step could vary between 0,125 and 

2. and a wrong choice of the step could give a wrong optimum 

answer, 

If the lower and upper bounds to the problem are known then 

this program could easily be used feeding in BU and BL and starting 

the process at Phase II, 
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3.1.2 Powell's Method for Constrained Problems “!7? 

This method deals with a general non-linear programming 

problem of the form: Minimise f(x) where f is a scalar function and 

X a vector X14, Xp) overs XY subject to g{CO=05 im lye 2s, os oe tte 

First of all we assume the problem has a solution and that the 

given functions have continuous second derivatives. 

The problem is then converted into a sequence of unconstrained 

problems having the property that the successive solutions of the 

unconstrained problems converge to the optimal answer. 

The method depends on two sets of parameters @, sees Os 

©] ese 0,,), for which we calculate the vector of variables x, to 

minimise ¢ 

n 

GG, 0, 0)-FO+S 0,[e,60+ a, 2 
i= 

Computation experience has shown that the required solution can be 

obtained for moderate values of the parameters - consequently 

avoiding difficulties experienced by Fiacco and McCormick 

method (See. 3. 1.3). 

The method is based on the following simple theorem. 

Theorem 1 If the values of the variables x which minimise 

Q(x, J, @) are EC, 9) then © (0, 0) is a solution to the constrained 

problem: 

minimise f(x) 

subject to g; = g; (E@, ©)) i=l, ...-,m 

Froof If the theorem does not hold and the variable E*O, 0) 

minimises f(x), then O(E* < OC €) which is a contradiction. This 

means we just have to obtain the values of the parameters (0,0) 

such that: 

a,(EG, &))=0 ied, cee ean q@) 

so the process is based on an iterative adjustment of the parameters, 
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For instance if m=1 and OZ is fixed, then by adjusting oy we 

provide a line of points <Q, e) in the space of the variables and if 

this line intersects the surface 84G0=0 we just have to calculate the 

value of ,- 

So we try to satisfy (1) by adjusting 0, 0 being fixed. 

As the equations are non-linear the adjustment of Q could involve 

a lot of computations. However, it is found that the following 

adjustment works well: 

Q; + gG)-0;  i=1, Bye een Ot 

Computation experience has verified this works well as long as 0; is 

large and Powenl!7) has given a theoretical justification br 

adjustment in this manner. 

So in fact this method consists of adjusting the parameters by 

applying the correction unless it happens that max; \g,(c)| fails to 

converge or converges too slowly to zero when 0 is increased, 

It is now very easy to write a flow chart for the program, 

k being the number of iterations, c. least value of max, |e,Ce)| . 

At the beginning of the process c, as where A is very Vee positive 

number exceeding the magnitude of | g,Go | all i. If switch is 'down', 

it means we har just chosen anew vatue for Obut if switch is ‘up! 

it means the correction has been applied in the previous iteration. 

We go on applying the correction as long as we get a 

convergence: for instance c, = i CK otherwise we increase 0, 

If O, is increased, we adjust @; so that the product 0,0; is 

unchanged, 

Let us call &*, O*, 0* the optimal values of <, 0, @ then from 

the condition: 
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we derive that: 

r 

Ox. i 

m 
BEX 3 NO” of ac ro 

Z. i “i Bx 
j iT 

  

7 * jo dxst 

Therefore the final gradient vector of FQO is a linear combination of 

the final gradient vectors of the functions gd and the appropriate 

% % 
linear factors are -20 5 O° i-1,2.... m. From there we derive 

another theorem. 

Theorem Il If our problem has a unique solution, and at this solution 

the gradient vectors of the functions 8,Go are linearly indepen dent, 

then for i=1,2, .... m, the final value of oO; Q; is independent of the 

parameters. 

The algorithm is described step by step and schematised in the 

following flow diagram. 
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Flow Chart 

I 

TL 

Iv 

vi 

VIL 

Vill 

\XK 

XI 

XI 

XII 

Set k = 0; 

Set 0; =1; 

Set 9; = 0; 

Set ce as 

Switch down, 

k= k+1; 

Calculate € to minimise 6G); 

o.= as 1e,)| ‘ 

IF c, is small enough then goto EXIT else goto IV. 

TE OF G4 then goto V else goto VI. 

Set Cy. = CR ye 

If switch is up goto VII else goto VIII. 

If switch is up then goto IX else goto X. 

Set Op= 6; goto XIII. 

Goto XIII, 

Golo ML 
if o.< a Sed then goto Xl else goto XIII. 

Goto XII. 

= 2 eas Ot g,&) and set switch up. Goto II. 

if |g, bag. hen 0, = 10 0, and 0, = 0.10;. Set switch 

down goto II, 

EXIT: END OF PROGRAM,



  

  

    

  
  

  

k=0 [o,-100,) | 2 
G,=1 0, 0. 10; ot 
Cee © nol rk ‘| 

1 fg = A \ 

| switch down ecco, 
eee T ot 

k= k+l | 0, = 0, 
Calculate ¢ to min 6G) 0, = 0, + ACS) 

cy, = Max PAG) \ switch up     

  

    

  NO 

a NO is switch up? > See SS 
a    

  

7 No 

ace d Meee Sead 0,6 0, ere 
    
   



Ultimate Convergence Criterion 

From the flow diagram we notice that a variable cis used. To 

start with this variable is assigned a value A, where A is a large 

positive number exceeding the magnitude of 0,C0 for i=1,2,. sees, Ms 

At each step, c decreases as it is assigned the value of max; 9,€) 

and whenever the value of c reaches a certain value © (a preset 

small positive value) the process is terminated, 

Comments on the Program 

Similar to Kowalik's method, Powell's method has been written 

for problems with equality constraints, If problems with inequality 

constraints have to be dealt with, the Heaviside function H(t) is used 

(see Kowalik's method). 

The program has been written in such a way that it could be run 

with any minimisation sub-routine, 

It has been tested using the Powell (64)'s method and the 

Fletcher and Powell's method, 

By using the Fletcher and Powell's method, two external 

procedures are required: 

i Procedure PSICAL (psi, x) 

where psi is an array (1:m) 

psi (1), psi (2), .-.., psi (m) are the constraints; and 

where x is an array (1:n), This procedure calculates 

the value of the constraints, 

2. Procedure PSIDCAL (psid, x) 

where psid is a matrix (1:m, 1:n). This is the matrix 

of partial derivatives, and where x is an array (1:n). 

It is obvious that the procedure PSIDCAL is not necessary 

when using the Powell (64)'s method as it does not require the 

derivatives,



The use of the Powcon. procedure does not give any problem. 

It is a four-parameter procedure? 

x array of starting point; 

EPS small preset positive value determining the stopping 

criterion; 

RATIO integer number (the value suggested by Powell is 4 and 

used for testing the convergence: the correction is 

applied as long as cy Sate CK ps 

M integer number equal to the number of constraints; 

One point needs to be clarified however: a scaling problem arises 

when choosing the initial values for 0; and 0;. Oj=1 and O;-0 is a 

good initial choice. 

3.1.3 S.U.M.T. 

Sequential Unconstrained Minimisation Technique (SUMT) 

developed by Caroll, Fiacco and McCormick. (3,4,5,6,7,21) 

Originally the problem is as follows: consider a general 

non-linear problem: 

minimise f(x) 

subject io gG070 isl, ...., m x=O4 Xp, seeey X) 

On applying SUMT this ordinary constrained problem is reduced to a 

sequence of unconstrained problems o the oe form. 

Le Minimise P(x, vr) = fd + *D 4° where r,.7 0 and 

1 Gd) defined only if 8,G) > 0. TE Tey  TyePO as k-». .> In order 

tb prove the convergence of the system, ie. that x(q) % and 

POG, 1T)> »fwe med to set up a certain number of conditions 

usually attached to non-linear programming, 
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1 P,f are convex; 

Il 2,00 a are concave}; 

I R°= a ,8,09>0, Hed, 2, ences m} is non empty; 

IV___ the tune f; Byr eeees By are twice continuously 

differentiable ; 

Vv for every finite k, j \ xl £0 sk; i er} is a bounded set, where 

Re \x |e,G07 0, aie Seles mi 

VI the function P(x,r) = fQ) +r pe. 1/g,60 is for each r>0, 

strictly convex for x R°, x 

Proof of the Convergence 

If the conditions 1-6 are satisfied, then: 

@ each function P(x, r, e is minimised over R° at a 

unique xy dé R° vine VxP [xon}- 

Gi) Lim, nF | xe, ) " = Min, op £QO = v° 

Proof for Gi) 

Let us call x, the starting value vector My = POs rs We 

now form two sets: 

(a) S,= § x |fG).<M,, xé Rj 

Se ee Co (b) S, )x\r,./g.G0 <M } - Yoh imLieceey a 
° 

Om 

©. 7 S\i0 

From this it follows that: 

inf,.g P(x, mr) = inf, po Py NIZVQ7 = = 

But S is non-empty, contains no boundary of R so from condition 1V 

and the construction of Sj, ++++, Sa P(x, r},) is continuous in Ss 

« denotes optimal value.



Since the greatest lower bound of a continuous function, 

bounded on a compact set is taken on by a point in that set, then at 

least one x(r,) exists. 

As P(x, ri is strictly convex in Ro there exists only one 

x) and also there exists only one local minima to P in Ro: 

Proof for Gi) 

Let £70 be any positive number, Then select an x* such as 

x= R° and £Cx*) avr €/2. Select k*¥< nin, 3,6) £]2m, Then 

for m= m*: 

Vos inf, po PG; xr, 

C 4 %, oe * 
vo = Pixs rx| <P [per ; *% |< P |x» ry 

fe  *) c c 
Vos P Ix 5 TIS C2 c/2=v, 4& 

This technique can deal only with inequality constraints. 

In 1965 the technique was extended to deal simultaneously 

with inequality and equality constraints, 

The ordinary non-linear problem is then: 

minimise £G0d 

subject to g,Go BO git Ly cceeng eit 

h,G0 = 0 “jad; eases D 

and the sequence of unconstrained problems becomes: 

m 

minimise PG, 1) =fG0+n, S  1/¢,G0 + ~ 2? -od/*r, 
er $r 
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Primal Problem with Inequality Constraints 

Using SUMT, the primal of a problem becomes: 

m 

Minimise P(x, 74-1604", 5 1/¢,60 
fr 

In order to be able to solve such a problem we need to formulate the 

dual of this problem. 

Dual Problem with Inequality Constraints 

The dual may be written as follows: 

m | \ 

(1) ~=—- Maximise {6 u) = £G) ars g,00! VxG(x, u) = 0 ior 
: y 
i= 

Mr Sh eee eee” 
Maximise 4fG)- 5 u, gd) ——=0 oh extn ees Gd) one aie crag a a wy 

  

Any (x, u) which satisfies VxG(x, u) = 0 with u 70 is a feasible 

solution. Expanding VxG(x, u) we have: 

| 

VIG =) 4, Vx, 8, C= 0 
i=l 

¥,f09 ic / wy Vy 8 oO 

1s 
4 

A sufficient condition that x be a solution to the penalty problem 

is that: 

  

m 
Vy8{00 

ee ae 
i a 

BR vig. 
ao te oe uy 0 

g, G9 e 
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Hence: 

m GO gy0o-Sayyygeare ES 
JT E130 

  and u, = E which satisfies u z70as r>O and > 0. 
i 2, i 

gO 

Thus if x(n) is the solution vector to P(x, r,) then xO; 

ur) will be a feasible solution of the dual problem (1). 

The corresponding value of the dual objective function would be: 

  

  

m 

GOCS_), UCB) = (r,)- 7 a 
aR oie a gy) 

An important property of dual programming is: 

£00 > £GO > > Gx, u) 

but: 

m i 
Px, r)>fOd as P(x, rv) =f) + a 

fr 800 
a 

where r a. goo” 

Therefore: 

P(x, 1) >fGO XG, w 

Using the fact that the P-value and G-value constitute respectively the 
A 

upper and lower bound to the optimal value f, and that they would 

converge to it from opposite directions, we can set a stopping criterion 

for the termination of the process. 
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This could be that the difference between P(x, r) and Gtx, u) 

must be smaller or equal to & ( £ being any small value we care to 

choose). 

Primal Problem Including Equality and Inequality Constraints 

The problem is then as follows: 

Minimise f(x) 

subject to gx) 20 for i=1, «...+, m 

h,Go = Oforj«1, «eee, P 

and the penalty function becomes: 

m 

P(x, r= fQ+r Ue 1/g,C0 + > sao! 

= 
isl 

In order to avoid difficulties we can have when we have local minima, 

we require that the points satisfying the constraints of the problem 

should form a convex set. Similarly as for the first problem, there 

are conditions to be attached to this one. 

in The function f(x) is convex; 

5 27560 is convex in R; 

551 

IL The functions g), «+++, g,, are concave; 

UL WF Q= {x{h,Gd=0, je, «+6, P| and 
Roe {x}8,60 0, i=, «+22, mt > R°NQ non-empty; 

IV The functions f, Sys veces Sap hy, seces be are continuous; 

Vv For every finite k, and every r>0, 

( — 2. $ : 
\x| fGO+ > hb jQO/r7¢k, x€ RS is a bounded set where 

‘eI 
R is the closure of R°. 
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If the equality constraints are linear then condition V is reduced to 

{x \fGO0<k; x€R4Q From conditions 3, 4 and 5 we derive that 

there exists a finite number v, where v, = inf x ROQ= min xERNQ 

From conditions 1 and 2 we derive that P is convex in R° 

m 

V1‘ The function P(x, r) = f{Q) +r PH 1/2,G0 + 2 12460/r? is, 

is = 

for each r>0, strictly convex for x € Roe 

Proof of Primal Convergence 

If all these conditions are satisfied then: 

(a) each function P(x, r,) is minimised at a unique 

x(n) € R°; 

(b) Lim ees er [ads "| = ming q gf = 

(c) The unique limit point x" of the uniformly bounded 

sequence { xq) ( is a solution to the primal problem. 

Proof for (a) 

° oO 
XE Rand M” = PQS» ry. 

a 
Form the set S, = $x 1#G0 + S RIG [rE <M xé€R 

‘ j 2 HT — 
‘y= ffs | #69 +S hy G9/r;| | Vic < My a8 T 5 1/g,%.) >9| 

Now form the set : 

( ¢ { 
51> eee etn) ieljgeneg 

Sane 
iO “i 

From this we derive: 

inf P(x, 1) = info POG xr, >- eo 
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Since P(x, ry is continuous in S, it takes in eeaniest lower 

bound in S. As P(x, rn) is strictly convex in R° we can say 

that the minimising point xr) is prdie in S and also that no 

other local minimum exists to P in R°, 

Proof for (b) and (c) 

Let £ be any Dee number Bnd select x guse that 

xé R° ae Me Q fx *\< vot c/o) andes suchas ns min g,Cx “SE /2m|| 

Then for k > ke 3 

At infpo Px, n= P P@Q, | < PO’, rs PO’, no< 

co ¢ 
Veit €/2+ E/2-vi+€ 

Now suppose we have an integer k greater than k” and we define 

ahs 

T= Sx (£60 +) nPoo/et eve +2; x€R { 
< 

= § x {£60 +51 ?00/ef < ve ne 7 exe R 

where L>k. By condition 5, Ty and Ty are overs sets. Also, 

since ry < Ths T,CT,. Te is a empty since x|F | is contained 

in it. So; 

f fxr) | > met fd zmin,, T% fQO> - c= 

and pe § i is uniformly bounded. It has a unique limit point since 

2 Ix, Th, is strictly convex, Then we can rewrite equation A, 
* * 

For art _>0, there is ak () such that for L>k @s 

Bivjrt ot |x| try i” 1/g; Prory)| e \ 33 free] [xt 

Because the three terms of the right hand side of the inequality is 

bounded below it is possible to show:



1, each term is bounded above; 

25 Lim, , 5; [ep O for j=l, - a Dp ane consequently 

the limit point x of the sequence ev ) is primal 

feasible (x« R“Q). 

If either ry Ve 1/ & pcrp| or \ x5 fry)! i rt has a limiting value 

greater than then f(x) = limy Pa aes {xGr,) must have values less than 

Mey (from B), This contradicts the fact that Ve is the smallest value 

that any primal feasible point can take on. Therefore: 

rc + 
f 

35 Lim, , oi) 1/g, pe p| = Or 

. 25 a 
Lim) 8) pory)| /rj = 0 

Lim, | = f (xe) | =Vo 

i 
4. Lim; ,P jx)» “| =o: 

From this point we assume that the problem functions are different- 

jable and the condition IV becomes 

The functions f, g1) +e++» Sy? hy seers he are twice 

continuously differentiable. “ 

Since a necessary condition that a point be a local minimum of 

an unconstrained function is that the first partial derivatives vanish 

there, we can say from condition IV and from the proof of convergence: 

Cc: VP ix, *| =0 

Dual of the Problem 

The dual is formulated in different ways depending upon the 

nature of the equality constraints, if they are linear or not. If 

they are non-linear then we rewrite the primal problem in the 

following form: 
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minimise f(x) 

subject to 8,0 Ol i=l, Seep, Mm 

- h(x) %0 jel, o0e05 D 

Then the dual is: 

max G(x,u,w) = fGd) - gC a vy G0 

m me 
S 

, 

subject to Vx Gix,u,w) = 0 

u,z0 isl, «-.-,m 

wiz0 ded) seis sD 

If h.'s are non-linear, we do not know if the solution of that dual 

coincides with ve the minimum value of the corresponding primal. 

However, it can be proved that the method generates points 

which are dual feasible and whose G values bound v5 from below. 

Let ud = ies [xe] for i=1, ...., mand let 

wim = 1r,° for all j. Then from equation C it follows that 

. 
V,G| xO, ur, wee, | =0 

Let oe be a point in RMQ where kG) 20 and let Ax = a - x - 

Then: 

Vee ie) + neo nf @) zy 

4 ‘a 3 
f ben | + rh a nf perp} 

| 

- ae ‘| } ib 
| Mad [x] +! Zh, feo [v0 femal) 4, 

by convexity of f and ny condition I 
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=f [xen] + ed oe ne xem] + 

2 1 7 r 4 ; 

Ty x & [xe | Vi & x0 A, from relation (C) 

7 ron + ng? oa ny xed] 

nL si? hemp] iF 8, pera] + 46°] 
by concavity of 8 condition IL 

3f fro2 | ar bf [x@pl- 5, D Ve, hte, 

(since go) >Oas ne RAQ) =G x5 ur), wr) 

From now on it will be assumed that the h,'s are linear therefore 

condition I Gn primal problem) is being replaced by the following 

condition; The function f(x) is convex and the functions h.Go) 

jel, ...., pare linear. If this is the case then we can write the 

primal problem: 

Minimise fG) 

subject to 8, G0 yO i=l, ..0.,m 

h,G07 0 fim ig e pee 

“hO 0 fadsteasc') DP 

Wolfe's theorem proves that if the primal has an optimal solution at 
* 

a point x then the dual problem: 

Max G(x, u,v,w) = fx) + > u,8,Cd + wjhjGo - 2 VR, 

subject to Vx G&x,u,v,w) = 0 

uzO 

v>O0 

w>,0 

; * * *  * * * *  ®, 
has a solution at some (x , u, v , W ) where G(x ,u ,v ,w )=V, 
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Initial Value of R 

Two alternative methods of calculating r are suggested by 

Fiacco and McCormick in, @ 

As they stand they are applicable either when there are no 

equality constraints or when x°(initial starting point) satisfies the 

equality constraints. 

(a) r= Vi) Vi pi /\Vv px >| 

(x) = /g.G0 t 1/g. where pGc > gc 

This comes from the condition that P is minimised when the first 

partial derivatives vanishe so ry should be chosen in such a way 

that it minimises the magnitude of the square gradient of P at x, . 

Note that as ry must be > O then: 

viG)! vp<o 

(b) Let us call Hy the Hessian matrix of f(x) and Hy the Hessian 

matrix of p(x), both calculated at x°, Then the magnitude of 

the gradient gives an estimate of the amount by which PG; r) 

exceeds its minimum value which is: 

De Vp, mo [Hyp] ao VPQX°, 1/2 

if Xe is near several constraint boundaries, Hy can be elminated 

then the value of r for which (D) is minimised is: 

4 

= H51 viGe) 
eet 
TeGo)> H3! Vp@°) J



Approximation and Extrapolation 

Experiments showed that the trajectory of x(r) is approximately 

linear in r* as r approaches 0, That is to say, for a small r: 

x(r) = X + ert ‘ 

and x(r/c) = X + a(r/c)* 

X being a feasible point considered as an estimate of the solution, 

a being some constant, c being the constant by which r is divided at 

each iteration. 

The first order estimate of the solution is given by 

eliminating a from the two previous equations: 

oo 4 4 
X= (ce? x(r/c) ~ x))/(c?-D 

Then the first order estimate of pointsfor which P(x, fe) isa 

minimum is obtained by assuming: 

pe a 
x(r/0?) =X + a(r/ <2)? 

and we get: 

x(e/c2) = x(r/¢) + 1/ o [ x¢e/ ©) - x@)| 

In practice the function P(x, r/ ) is minimised along the vector 

connecting the last two minima. This has substantially reduced the 

effort required to minimise the P function, 

Updating the Value of r 

Two observations are made with respect to the manner of 

reducing r after each P minimisation: 

as It is highly advantageous to change r by a constant 

effort; 
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2. The overall effort required to obtain a solution is 

relatively insensitive to the choice of factor, over 

a wide range of values of this factor. 

The value of r, suggested by Fiacco and McCormick, for the 

Geb minimisation is given by r.,, = r,/c where c>1, & YT i47 2 

The whole algorithm, step by step, can be described as 

follows: 

I 

TL 

IV 

VI 

Select a feasible starting point x°; 

Calculate a suitable initial value of r; 

Form the function 

m Re De 
PCY, 1) = £60 + 1, a 1/c,Gd + 17 ay 13 

i= = 

Find the unconstrained minimum of P(x, r) in: 

G . 2 
We S px/e,00 mOtor I=L 2. jeavie 5 PS 

The starting point x° has to be quasi-feasible ie, xPE Wis 

Starting from the minimum of the unconstrained function 

PG, ry) which is called x@) minimise P(x, Yo) where 

ry> Py > 03 

Continue to minimise P(x, nr) for a monotonically decreasing 

sequence of values r, where: 

lim r, = O when k + os 

This algorithm can be schematised in the following flow 

diagram. 
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k=0 
  
  

  
Find x° 

  
initial feasible starting point 

  
  
  

Set initial r 
    
  

  

  

m epeDeeeg 
Form P(x, rT) =f) + They 1/¢,Gd + ry = hj 

  

  

  Ie   
2. 2 2 

Form D(x, r,) = £GO - ry, 1/¢,G0 - re} LS) 
ea = es 

  
  

Eee a ee 
    
  

  

min PC, ry) 

    
  

  

  
Calculate ABS(P-D) 

  
    

  

r=r/¢c 
    
  

  

  

EXIT 
    
  

The flow diagram might look very simple but in fact difficulties arise 

when minimising P(x, r) as the constraints have to be satisfied at 

each step. 

Full comments will be given in a following paragraph called 

‘Comments on the Program’, 
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Ultimate Convergence Criterion 

In the description of the algorithm we proved that the primal 

and the dual of the auxiliary function converge towards the 

optimal value from opposite directions therefore the most sensible 

stopping criterion is to evaluate the difference between the Primal 

and the Dual. Whenever the difference is smaller than £ 

¢ e being any small positive value we care to choose) the program 

stops. 

Comments on the Program 

The procedure SUMT has three parameters: X | tone | is the 

array of feasible starting point; EPS is a small positive value 

Gf the difference between the primal and the dual of the function is 

less than EPS the program stops); RATIO is an integer number 

defining the value by which r is reduced after each iteration. 

The use of the program is simple once the following 

modification has been included. 

After each minimisation of P(x, ry) we need to check whether 

or not the constraints are still satisfied. If they are not, this 

means the step by which x has been decreased in the minimisation 

procedure is too large, therefore we divide the step by a certain 

quantity until all the constraints are satisfied. This is applicable in 

the case of inequality constraints only. 

SUMT has been tested with the Fletcher and Powell's method 

only, and the modification introduced in this method for the 

constraints to be satisfied at each iteration is shown in Appendix II, 

Also within the procedure FUNET in Flepomin we calculate not only 

the penalty function but also its dualD=f(x) = r a 1/g. 
is 

By looking at the structure of P(x, nr one could think that 

difficulties Ge. overflow) might arise after a few iterations when 

vr becomes very small, But this never happened in practical 

experiences, 
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3.2 Computational Results 

The three programs, OPTKOV, POWCON and SUMT have been 

tested with the same functions and same convergence criterion so 

the comparison of the results could be fair. 

The functions used are: 

Function 1 suggested by Fiacco and McCormick 

Minimise f(x) = Cy + 3/3 + Xo 

subject to Xy- 1>0 

XQ> 0 

This function has a minimum at f = g and x = (i, 0). The starting 

point used is x° = (1.125, 0,125). 

Function 2 Rosen-Suzuki 's problem 

Minimise f = 3 + cs + 2x, + fe - DXy - 5Xq - 21x4 + 7x, 

subject to - fo xB = xg = XZ Hy xy XQ tH, +870 

x ~ xf = 2x ~ xf + xy +x, +1070 

2 
iL 

- 2x7 - x5 - x 

N
N
O
N
N
 

W
h
w
h
d
 

+ 2x, +X +x, +520 

This function has a minimum at f = -44 and x = ©, 1, 2, -1). The 

starting point used is x° = (0, 0, 0, 0). 

Function 3 Beales problem 

Minimise f = 9 - 8x, - 6x, - 4x. 4 Ox? + 2x2 4 x2 4 2x Xp + 2x,x. 
1 2 3 1 2° °3 v2 1° 3 

subject to x4” 0 

XQ % 0 

Xq 7 O 
3 

- X1 - Xp - 2x3 +370 
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~
 4 

This function has a minimum at f = Lana x= & 9° 9) The starting 

point used is x=(0.5,0.5,0. 5). 

Function 4 is a problem with equality constraints suggested by 

Power? 

Minimise f(Qxd) = Xq Xp X3 %% X5 

subject to x7 + xg + xg + x4 + XE - 10=0 

Xq - X3- Xj %X5 = 0 

Siac a x7 # xD + 1=0 

This function has a minimum at f = 2.9197 and 

x = (-1,1712, 1.5957, 1.8272, -0.7636, -0.7636). The starting 

point used is x = (-2, 1.5, 2, -1, -1). 

Function 5 This problem and the two following problems have been 

suggested by Dr. K.P. Wong?) 

Minimise £6) = Gx, - 10)? + 5(xy - 12)? + x4 + 36x, - 1)? 

+ 10x8 + 7x8 + me - 4x6x7 - 10x¢ = 8x, 

subject to “2x0 - ag - Xt Ax, - 5X5 + 127>,0 

“7x1, 3xq - 1x3 - x; + Xe + 28270 

-23x, - x5 - Oxg + 8x, + 19670 

4x0 - xB + 3x,Xp - 2x3 4 SX 11x, 0 

This function has a minimum at f = 680.97 and 

x = (2.30, 195, -0.47, 4.37, 0.51, 1.03, 1.58). The starting 

point used is x = (1, 2, 0, 4, 0, 1, D. 
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Function 6 

Minimise £00 = oo be + xx, 14x, - 16x, + (xq - 10)? + 
ea 1 2 ae ak ie 3 

Ax, - 5)? + Gig - 3)? + xg - DP + XG + 

Toxg - 10" + 2g - 10)* + Gy - 2? +45 

x2 
3 

xe - 8x5 - (xq - 07 + 2x, +420 
1 Zeca 4 

subject to -3(x, - Be 4Gry - By - 2x + 7x, + 12020 

~HGxy - 8)? ~ 26 - 4) - 3x2 + xg + 303.0 

XZ - 2Ky, - 2)? + 2x 4x5 - Ldxg + 6xg7 0 

4x4 - SXp + 3x, - 9xg + 10530 

-10x, + Bxy + 17x, ~ 2xg> 0 

3x1 - Oxy - 120%g - 8) + 7x49? 0 

8x, > 2X5 - SX + 2x19 + 1240 

This function has a minimum at f = 24,31 and 

x @.17, 2.36, 8.77, 5.09, 0.99, 1.43, 1,32, 9.82, 8.27, 8.37). 

The starting point used is x = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10). 

Function 7 

Minimise f(x) = x2 + x2 + X4X_ - 14x, - 16x, + Gx, - 10)? + Teg ao 1 2s 

AG, - DS? + Gg - 3)? + xg - DP + SF + 

7 &xg ~ 11? + Gq - 10)? #649 - 7? + Oy, - 9? 

+1064 - 0? + 503 - TH? + bGu, = 14)? + 

21x45 = 0? + x46 + Geyy - D? + 136g - 2° 

+Go9- ae x55 +95 
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subject to 30 - 2° - AQ - 3? - 2g + TX, + 12070 

5x? - 8x9 - (xg - ©? + 2x, +4020 

Hox, = 8) - 2x - 4)? ~ 3x2 + xg + 3020 

wd ~ 2x, - 2? + xy xp - Leg + Gxg7 0 

~Axy - 5xXq + 3x7 = 9Xg + 105 +0 

-10x, + 8x5 + 7x, - 2xg x0 

-3xy 4 6x5 es 120% - 8)" + 7x19 20 

8x, ~ 2x5 - 5xg + 2x19 + 12%0 

ok, Ge buy + 21xy,> 0 

~x2 - 15x, 1 + Bxqp + 28 70 

14x, - 9% 5x5 + 9x1, + 872,0 

$3x, - 4xq - 3643 - 6)? + 1dx,, + 1070 

-UbxG - 35xq5 + 79x16 + 9220 

-15x3 - xy + 1x6 +5420 

5x2 - 2x, + 9x4 + xg + 68>0 

od + Xp - 19x49 + 20xyq - 193-0 

2 Dee 
“7X4 - 5x9 - X19 + 30X49 0 

This function has a minimum at f = 130.60 and x = (2.04, 2.20, 

8.74, 5.06, 0.95, 1.43, 1.33, 9.97, 8.17, 8.46, 2.31, 1.35, 

6.10, 14.16, 0.99, 0.49, 1.49, 2.00, 2.64, 2.02). The starting 
point used is x = 2, 3, 5, 5, 1, 2, 7, 3, 6, 10, 2, 2, 6, 15, 1, 

Din 2, 1 3), 
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As mentioned earlier on, the procedures OPTKOV and 

POWCON have been tested using the Powell (64)'s method and the 

Fletcher and Powell's method as a sub-routine, Results are now 

given only for the first four functions as Powell (64)'s method 

failed for the larger problems, 

Function 1 

Function 2 

Function 3 

Function 4 

Function 1 

Function 2 

Function 3 

Function 4 

Looking at these two tables we can now say that the Fletcher 

and Powell method is more efficient than the Powell (G4)'s method. 

The difference did not show so much for unconstrained problems, 

but now the minimisation sub-routines being called several times 

the difference shows more. 

From now on all the results tabulated have been obtained using 

Flepomin as a sub-routine. 

  

  

  

        
  

  

  

  

    

CPTKOV 

with 

POWELL 64 i FLEPOMIN 

Function Run Function Run 
Evaluation Time Evaluation Time 

125 2 191 8 

776 25 264 ea 

497 17 324 18 

1236 42 278 17 

POWCON 

with 

POWELL 64 FLEPOMIN 

Function Run Function Run 
Evaluation Time Evaluation Time 

329 2 86 1 

1287 43 65 3 

303 8 4 1 

540 a7 \ 90 6     
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As mentioned earlier on, OPTKOV is divided into two phases; 

phase I finds the bounds and phase II is the iteration phase. 

For clarity the phase I will be considered as being the first 

loop no matter how often the minimisation sub-routine has been 

called, 

The number of loops is equal to the number of times that sub- 

routine has been called in the whole process, 

Function 1, 2, 3, 4 have been tested with EPS = 10°76 and 

functions 5, 6, 7 with EPS = 1074, 

The
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and 
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we 

can 
see 
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optimal 
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is 
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after 
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3.3 Comparison and Conclusion 

It is difficult to say which of run time and function evaluations 

is the best criterion for judging efficiency. 

If we consider the first three previous tables, that is to say 

problems with less than five variables, the comparison is rather 

difficult to make as both function evaluations and run time vary a lot, 

With larger problems we can notice straight away that OPTKOV 

becomes relatively inefficient considering both number of function 

evaluations and run time, even if we look at them from the second 

loop onwards once the bounds have been found. 

If we now look at the results obtained by S.U.M.T. and 

POWCON we see that the former is relatively good considering the 

run time on the computer, better than POWCON, though requiring 

more function evaluations. 

Therefore we can draw two conclusions, depending upon which 

criterion is considered for judging efficiency: 

(a) if for some reason the number of function evaluations is 

more important, then POWCON could be the best method 

considered here; 

(b) otherwise, if the computer run time is the most important 

criterion, then S.U.M.T. is the best method. 
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IV 

FURTHER RESEARCH WORK



An interesting point discovered during various experiments is 

worth mentioning. 

We have seen that all three methods convert the constrained 

problem into a series of unconstrained ones, At each iteration, the 

minimization procedure is called, 

Considering Flepomin, we can notice that at the beginning of the 

program the Hessian matrix is set equal to the unit matrix and an 

experiment has been made to see what would be the effect of using, 

from the second iteration onwards, the Hessian matrix obtained at the 

previous iteration instead of resetting it equal to I. 

This experiment proved to be very successful, particularly for 

S.U.M.T. For instance the results obtained with this modification 

for function 7 are as follows: 

S.U.M.T. (originally) 1120 function evaluations 
195 seconds run time; 

S.U.M.T. CGincluding the modification) 601 function evaluations 
152 seconds run time, 

The results obtained with POWCON including the same modi- 

fication have not improved the results; this can easily be explained 

as, in this procedure, two parameters O and Q change at each 

iteration and this makes the Hessian matrix vary a lot from one 

iteration to another, 

With OPTKOV, when results were obtained, the modification 

improved the results too, For example, with function 5: 

OPTKOV (originally) 386 function evaluations 
38 seconds run time 

OPTKOV with modification 215 function evaluations 
29 seconds run time. 
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Therefore, here again the modification brought seme improvement. 

Nevertheless, with function 6 and function 7, no convergence was 

obtained, the Hessian matrix tending to go singular. 

Complete results are given in the following table. 

  

  

  

  

  
  

  

      
          

Function 5 Function 6 | Function 7 

| Run Run | Run 

Ev Time Ey Time ae Time 

Original 1231.25 272 61 270 | 216 
FOW CON 

Modified 130 | 20 250 60 289 | 259 

Original | 386 | 38 654 | 137 583, 356 
OPTKOV - - 

Modified 215 | 29 NO RESULTS 

Original {160 | 11 656 | 78 1120 | 231 
SUMT t 

Modified | 2031 97, | 317 (| 38 601 152   
    
  

Therefore we can say that a method using the Hessian matrix 

can be very much improved by using a good approximation to the 

Hessian instead of the unit matrix from major iteration to major 

iteration and further work should be done on how to evaluate this 

approximation, 

We have seen, too, that S.U.M.T. only has two different 

penalty functions depending upon whether the problem we are dealing 

with has equality constraints or inequality constraints. 

POWCON and OPTKOV have only one penalty function for 

equality constraints, therefore problems with inequality constraints 

have to be converted using the Heaviside function (procedure H(t)). 

Calling this procedure H(t) each time the procedure FUNCT is 

called might lengthen the run time of the program, Therefore if we 

could find, for these two methods, a penalty function dealing with both 

equality and inequality constraints, this could make the methods more 

competitive. 
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APPENDIX 1 

LISTING OF PROGRAMS FOR UNCONSTRAINED 

OPTIMIZATION PROBLEMS



SIMPLEX PROGRAM 

"BEGIN! 
TINTEGER' COUNT, 1+U,NeHsLsCOLIMET 
"REAL! ArBrC CONVER, CRITER+Y1+¥2,Y3,SUMY,STOREsBARY VAR) X4 9X27 NrSREAD? 
ArSREAD} 
BrSRFAD} 
Cs=READ; 
CRITERL=READ: 
COLIMIT:=READ? 
COUNT:=03 
"BEGIN! 

"REAL' "ARRAY! PLO:Ns4:NJ,ORP,STL,CENT,SUM,P1,P2,P3,PH[42N3 
YCOrN): 

Weteteatews INSERT PROCEDURE £1(N,X02) HERE 
Waeekentewe INSERT PROCEDURE F2(pP+F) HERE 
"PROCEDURE' MAXCA.N»M,ROW) } 
"VALUE' N,MVA? 
‘INTEGER! NyM, ROW? 
"ARRAY! Ay 
"REGING 

‘INTEGER! Ty 
"REAL' Q: 
QrEAtM); 
ROW:=07 
'FOR' TyeM+4 "STEP! 4 "UNTIL! N tpor 
"BEGIN! 

‘TF! ACII>0 'THENT 
"BEGIN' 

Q:Sacly; 
ROW a1; 

‘END! 'ELSet 
QrnQ; 

   

TENDS 
"END'? 
PROCEDURE’ MINCA,NM,ROW)? 
"VALUEN N,MsAs 
"INTEGER" NoM, ROW; 
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"ARRAY! Ay 
"REGING 

"INTEGER! fy 
"REAL! oy 
rSaCM)y 

ROW. =03 

'FOR' TyeM+4 "STEP! 4 "UNTIL' N tDOF 
"BEGIN! 

"rE! ACII<Q "THEN! 
"BEGIN! 

Qr=ACl)y 
ROW:=T} 

"END! 'ELse! 
Qy=Q} 

TEND? 
"END'; 
"PROCEDURE! REFLECTCA,CEN,NOIN, Pe P4)P 
"VALUE! A,CEN,NOWN3 
"REAL! A; 
"INTEGER! NOWN} 
"ARRAY! P,P1sCEN? 
"BEGIN® 

‘INTEGER! Ty 
"FOR' T:e1 'STEP' 1 'UNTYLI N 'pot 
PUCLILSC1FAD*CENLCI J @A*PENOr TY? 

"END"? 
"PROCEDURE! EXPAND(C+CEN,P1/P2,N)1 
"VALUE! C,P1+CEN INE 
"REAL! C3 
"INTEGER! NG 
"ARRAY! CEN, P4,P2y 
"BEGIN! : 

"INTEGER! Ty 
"FOR' Ts=4 'STEP' 1 "UNTIL! N IDO? 
P2CLI:2CHPIL1I+(1-C)¥CENCII]) 

"END'; 
"PROCEDURE! CONTRACT(B,CEN,P+NOsN,P3)9 
"VALUE' CEN+B,NOWN? 
"REAL! By 
"INTEGER" NeNO? 
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"ARRAY! CEN/P,p3} 
"BEGINt 

"INTEGER! Ty 
'FOR' Iys4 'STED' 1 'UNTTL! N 'por 
PSCr):=BwPCNO,T]#(1=B)*CENCIJS 

"END'; 
FOR’ Jre4 "STEP? 4 'UNTIL' N 'por 
ORPLEJ):SREADS 

"COMMENT' ORIGINAL POINTS: 
"POR? J:=4 "Step! 4 "UNTIL! N Epos 
STLEV]:5R EADS 

"COMMENT' STEP LENGTH? 
"FOR' yr=0 "STEP! 4 "UNTIL! N tpor 
"BEGING 

"FOR' Jeal 'STEPt 1 "UNTIL! N IDO! 
"IF! T3J 'THEN' PCI,J):sORPCUI+STL ty) 
"ELSE! 

PEI, J) :s0RPLJI3 
‘END’? 
FICNSP,Y)s 
COUNT: =COUNT#13 

AGAIN; VAR:89999; 
MAXCY NSO, HD? 
FOR’ res4 "STEP! 4 "UNTEL' N 'DOF 
PHEYJ:=PCH,1)} 
MINCYsN/O,L)2 
‘FOR' J:34 'STEP' 4 "UNTIL! N 1pOr 

  

'REGIN! 

sUM(J]:=0,0) 
"FORT 0 'STEP' 1 'UNTIL' N ‘pO! 
sUMrJ) UMC JJ+PCIJ0F 

    

CSUMEJI=PCH,J])/NB 
"END'? 
REFLECTCA,CENT,H Ns Pe P4)? 
F2CP1,¥1)3 
COUNT: =COUNT#43 
VAR?30; 

"IF? Y4<¥CL) "SHEN! 
"BEGIN 

EXPAND(C,CENT+P4,P2,N)? 
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U4: 

F2Cp2-Y2)3 
COUNT: =COUNT#13 
VAR: 213 

"END' 'ELSE' "GOTO! Lag 
"TE" V2<YCL] "THEN? 
"REGIN! 

"FOR' Tent. *STEp! 41 "UNTIL! N ‘po! 
'REGIN' 

PeHeT3:=P2riiy 
PHCTIJ:=PlH,1); 

TEND: 

VOHI:"V2: 
'GOTO' CHECK? 

"END' 'ELse! 
"BEGIN! 

"FOR' Ieet-'STEP! 1 "UNTYL! N ‘pO! 
'BEGIN' 

PEHe Td :=P4Cl) 
PHOT] :=PCH,1) 

TEND TG: 

YCHO:=Y1: 
"GOTO' CHECK: 

"END; 
"TF" Veti>¥CO} "THEN! 
"BEGIN' 

Mireveis9 
X2reVCOIs 

"END' 'ELse! 
"BEGIN! 

xisevl03; 
x2revV (132 

"END'; 
"POR' rrs4 'STEP' 4 "UNTIL! N #D08 
"BEGIN! 

"TF YCTI>X4 "THEN! 
"BEGIN! 

X2:2X43 
XV BVE1V7 

TEND ': 
"TEt ¥CrI>X2 "AND! YELI<x1 ' THEN! 
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Le: 

L3; 

"END'? 
'IE' Y4>X2 'THEN' "GOTO! L2 
‘ELSE! 
"BEGIN! 

"FOR' Tre4 'STEPY 41 "UNTIL! N 'poF 
'BEGIN' 

PCHeT):ePiet) 
PHED] s=pCy,0) 

TEND'? 
VORDS2Y43 
'GOTO' CHECK? 

: 

YEND'} 
"TE" Y4>¥CH) 'THEN' "GoTo! L3 
"ELSE! 
"BEGIN' 

"FOR' Is2f 'STED' 1 "UNTILI N "pot 
"BEGIN! 

PCH T5s=P4 
PHOT] :=pPCn 

"END'? 

"END'? 
CONTRACTCR/CENT+P,HiN,P3)3 
F2(P3,v3): 
COUNT: =COUNT#43 
VARSE413 
"IR! Y3>¥CH) "THEN? 
"BEGIN! 

"FOR' Iys0 'STEP' 1 VUNTILE WN 'pOt 
"FOR' Jsat 'STEp' 1 8UNTIL' ON ' DOF 
PCI, J) r=cPlted]epll dd) sar 
FICN PrY)E 
"GOTO' CHECK? 

"END' ELSE! 

"BEGIN! 
"FOR'Ii=4 "STEP! 7 TUNTIL! N 'DO! 
"BEGIN! 

PEHe TD :SP 301); 
PHOT) :=PCH,1); 

"END YG? 
VCH 3233 
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CHECK: 
“TEND'? 

FINISH: 

"END! : 
"END'? 

SUMY:=STORE:50.0; 
"FOR' ts=0 "STEP! 4 "UNTIL! N tDO8 
"BEGIN« 

SUMY:=SUMY#YEI]3 
"END'; 
BARY:=SUMY/N? 
"FOR' 1:50 'STEP' 4 "UNTIL' N 'DO8 

STORE: 2STORE* (VET 3=BARY) *(YLIJ=2BARY) 
CONVER:s =SQRTCSTORE/N)? 
"IF' COUNT>COLIMTT 'THEN' "GoTo! FINISH? 

‘TF! GONVERSCRITER 'THEN' 'GoTO! FINISH 
"ELSE! 
"GOTO" AGAIN: 
‘FOR' 224 "STEP! 4 "UNTIL® N tpOF 
"BEGIN! 

PRINTCPEH613,0+61093 
‘END’? 
"IF! VAR=O ' THEN! PRINTCY4,0/10)9 
"TF" VARSR4 'THEN' PRINTC¥2-0,10)3 
"TF" VAR=4 'THEN' PRINTCY3,0040)7 
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POWELL 64 

"PROCEDURE! POW6S(XT EN ESCALE,IPRINT, SCON,MAXIT OED E 
"REAL! ESCALE} 
"INTEGER" Ne ITPRINT, ICONSMAXITS 
"ARRAY' X,Fa Fs 
"BEGIN' , 

"ARRAY" ULTIN® (NES) D3 
"REAL! DDMAG, FKEEP,SCER,SUM,FPsDMAX, DACC, DDMX, 

DrDlL,+ FPREV-FA,DA,DD-FReDB,FHOLDs OMAG, FC 
DCrA,Br Die FY, AAAS 

"INTEGER! JU sdJdsKeNECC, IND, INN, Ted, 1TERCeISGRAD, 
ITONE,IXPeTOIRN,ILINE, TS eJILE 

"SWITCHY SWTELGOr LIT LI 2,LiSrLi br LO6rLSsL7oLOr LSB, 
CAB LIS er L2G Lote L23eL Ay, b25sb26rb28, 
L2ADCL71eL30L34r LAr LAG LESH LGPrL oie 
USO LS1 LOG LOZ LB7+ L641 L370 L3B eb 72, 
LS3rL76+L78, LAB L350 L108+L101,L105 
041561193.61107.L106,1203 

eked eM INSERT PROCEDURE FUNCT HERE 
DDMAG:2=0,1*ESCALE; 
SCER:=0.,05/ESCALE? 
JJPENeNeN? 
JIdred deny 
KiENe1} 
NFCCSSINDQSINNeSITERCIE413 
‘FOR' T3824 "STEp' 1 VUNTIL' N ‘DO! 
"BEGIN' 

"FOR' Jre4 "STEP' 4 "UNTIL! N 1D08 
"BEGIN! 

"IF Tay UPHEN! 
"BEGIN' 

WEKIrSABSCELIJ)? 
WELJ:SESCALE? 

"END! ‘ELSE! 
WCK3 150; 
KESKel? 

"END! 
"END'G 
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LS: 

L7: 

L&, 

L58: 

Lia: 

ISGRAD: 523 
FUNCTCA +X F)3 
FKEEP:22¥ABSCFL4))3 
ITONE S347 
FprseChdy 
SUM:=03 
IXPraJdJd¢ 
"FOR' Y:81 'STEp’ 1 "UNTIL' N ‘DO! 
"BEGIN! 

IXPr1XP 443 
WOIXP):3XC1e4) 

"END': 
IDIRNIENS47 
ILINE: ; 

  

DMAXrSWEILINED; 
DACC:=DMAX*SCER? 
DMAG+S'IE' DOMAG<O.1#DMAX 'THEN' DDMAG TELSE! 0,4 %DMAX? 
DMAGss'IF' DMAG>20"DACC 'THEN' DMAG tELSE' 20*DACC; 
DODMX2=10eDMAG? 
"IF! ITONE=3 "THEN' "GOTO! L713 
DLs=0? 
DISDMAG? 
FPREVSSFC4]7 
IS:=S7 
FAr=EC1)3 
DAr=DL? 
OD:=n-DL} 
OLren? 
Kr=roURN} 
"FORt Ty=24 'STEP' 1 "UNTIL! N 'DO! 
"BEGIN! 

XCD) sXCle VI +DDeW EK): 
Kreke4y: 

"ENDS? 
FUNCT (A,X F D3 

NFCCLENFCC#43 
'GOTo' Swilisi: 
"IF! ECVI<FA 'THEN' 'GOTO' L453 
"IEt FLQYDFA 'THEN' #GOTO! L247 
"IF! ABS(D)>DMAX 'THEN' "GOTO! L483 
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Lat: 
Les: 

L83: 

L2s: 

L26: 

L433 
L2a: 

L2o: 

Lia: 

O44: 

Dre2eD? 

"GOTo' L8? 
WRITETEXTC' CIMAXIMUMYCHANGEXDOESYNOTYALTERKFUNCTION?)$)y 
"GOTO! L20; 
FBrerl[4)7 
DB:=bD3 
"GOro' L247 
FBreFA} 
DB:=pA} 
FArsel4)} 
DAr=D? 
'IFt ISGRAD=4 'THEN' 'GoTO' L183; 
D:=24DBeDA; 
1Sie4; 
'GOro' L8: 

-S*CDA*DB@ CEA™FB)/ (DA@DB))? 

'IFICDA=D)*(D=DB) 'GE' O 'THEN' 'GOTO! LBz 
18924; 
"IF! ARS(D=DR) 'LE' DDMX 'THEN' 'GOTO! LB? 
DISDR+CIIF!' 98 'GE' DA I THEN! ABSCDDMX) 

TELSE! (mABS(DDMX)))3 

  

TS:243 
DDMX:=2eDDMXs 
DDMAG!=2«DDMAG? 
'IF' DDMX 'LE' DMAX 'THEN' "GOTO! La: 
DDMXs=DMAX} 
'GOTO' L&: 
'IF' FC41) 'Ge' FA 'THEN' 'GoTO! L233 
FCrSeR; 
DCr=pAR? 
FRr=F(4)3 
OBren? 
'GOTO' L30; 
‘TF’ FE] "Le" eR "THEN! "GoTo! L128; 
FAs=F C40} 
DAt=DE 
'GOro' L307 
‘IF! F(4) 'Ge' FB 'THEN! 'GoTO' L410; 
FA:=FB} 
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C742 

Lio: 

L3o0: 

L3a: 

hoa: 

L86: 

L4s: 

Lar: 

Lai: 

  

DAr=n8; 
"GOTO! L29¢ 
DL: ? 

  

Ar=(DB=DC)*CFAmEC)? 

Bre (DC=DA)*(FBeEC)? 
"IF! CA+B)*CDAmNC)>0O 'THEN' "GOTO! L343 
FALE EB? 
DAr=nB? 
FBRr=FC; 

OB =DC; 
'GOro' L263 

~5*CA*CDBFDCD+Be(DASDC))/CASB)E 
0B; 

Flr2pB; 
"IF! FR 'LE' PC 'THEN® *G0TO! bag: 
DIsenc; 
FlrspC; 
'IF! ITONE 'NE' 3 "THEN! "GOTO! L186; 
ITONF:=23 
"GOTO' L465; 
"TF! ABSCDRDI)'LE' DACC 'THEN' "GOTO! Laie 
'TF' ABSCDROID "LE" O.03*ABS(D) 'THEN® "GOTO! Lat? 
"IF! (CDA=DC)*(De=D) <0 'THEN' 'GOTO' L474 
FALSFB; 
DAr=pG; 

FBr=FrC; 
DBr2nc; 
'GOTO' L253 

1Sts2? 
"IF! (DB=D)*¢D=pC) 'GE' O 'THEN' ‘Goro! L8? 
ISss3? 
"GOTO' L8: 

FCVVSFIe 

 



L50: 

L541 

L9a: 

9a: 

L96; 

DrSDI“DL} 
DDS=SQRTCCDCHDBY*(DCHDA) #(DA“DB)/ CAs) ) 3 
'FOR' Tr=4 ‘STEP! 1 TUNTIL' WN Ipot 
"BEGIN! 

XCDe VI] s2X£0,1)¢DeulIDIRNI: 
WEIDIRN] :=DDeWEIDIRNG: 
IDIRN:=IDIRN+4 

"ENDIG 
WOILINEDS=UCTLINEI/ no? 
ILINESST LINES? 
"IF! IPRINT 'NE' 1 'THEN® "GOTO! L543 
PRINTCITERC,0,10)7 
PRINTCNFCC10,10)3 
PRINTCF(43,0,1092 
‘IF! IPRINT=2 'THEN' "@OTO! L53; 
‘IF! LTONE=2 '"THEN' "GOTO! 138; 
‘IF! FPREV<(ECT4SUM) 'THEN! ‘GoTo! LOb; 
SUMreFPREV@FE4): 
JILesILINE? 
‘IF! IDIRN "LE" Jd 'THEN' "GOTO! L?; 
'IFt INDS2 'tTHEN' *GOTO! L723 
FHOLDSSFE4)3 

1S:26; 
IXPradd; 
'FOR' 1354 "STEP! 1 TUNTIL' WN 'DOt 
"BEGIN! 

IXPs=1XP 443 
WEIXP)s*XCIe1jeWClIXP) 

"END!; 

DOre4 
"GOTo' L583 
'TFIINDE2 "THEN! "GOTO! L187; 
‘IF! FP<FC1) 'THEN' 'GOTO! L377 
TIF! ABSCFPmEC1}) "LE! 2945 1 THEN! 
"BEGIN! 

PRINTCEL19,0010)3 
"GOTO' L20; 

"END'G 
Di=2wCFPHFL1 Jm2eFHOLD)/CRPHEL1I) 423 
'IF' D*(FPRFHOLD=SUM) 42 'GE! SUM 'THEN' "GOTO! L37}



L87; 

L64q: 

L373 

L38: 

L72: 
L5x: 

JISITLANad? 
"TF! JoJd "THEN? 
'FOR' Jys) "Step! 4 
"BEGIN! 

Kirsten: 
WIKI sswllie 

"ENDI? 
"FOR! Tessie 
WOieq)sewely; 
IDIRNS=Kr20DTRNeNG 
ITONE? 23; 

IXPraJdd; 
AAA: 203 
"FOR' IT 324 

"BEGIN! 

IXPrE1XPaqy 
WEKJrsulixp); 
"TF" AAASABSCWEKI/ECIN) 'THENE 
Krekedy 

"END!; 

DDMAG:243 
WENT =ESCALE/AAAT 
ILINE:=N; 

"GOTO'L?: 
IXPreJdd 
AAA: =0; 

FCV]:=FHOLD; 
‘FOR! Tse] 'gtEpt 4 
"BEGIN! 

IXPrIxPeq; 
XCVe VI) :2XtreTyeWCIXP); 
'TF' ARA*ABSCELII)<ABSCWEIXP)) 
ARASEABSCULIXP/ELII)? 

'"GOTO' Lé6t; 
TUNTIL' JJ tpor 

"STEP' 4. "UNTIL! N DOF 

  

"STEP! 1 TUNTIL' Wf DOF 

'UNTIL' N 'DOF 

"END! 
GOTO! Sues 
AAAs =AAAw(14DT) 
'IF' IND 22 'THEN' tGoror L106; 
"IF! IPRINT 'GE! 2 'THEN' "GOTO! L5oy 
'TF' IND=2 'THEN' "GOTO! L883 "IF! AAA>O,1 "THEN' 'GOTO! L76; 
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L76: 
L78: 

Lea: 
L353: 

L108: 

L401: 

‘TR! FCONEY 'THEN' "GOTO! L20% 

IND: 2} 
trp! INNS2 'THEN' ‘GOTO! L1045 

INN: 22} 
Kresdde 

teORt Yee4 'sTEp! 1 'UNTIL' N 'pOr 

"BEGIN 
Krakeds 

WEKISEXCL, 172 

MCD VD eeXele Vel OwEl yy 

‘END! 
FKEEPISF 0113 
FUNCT C1 ,X0F DE 
NECCrSNFCC#413 
DDMAG!20; 
"GOTO! L108; 

‘TE! FOVI<FP ' THEN! 'GOTO' L35+ 

WRITETEXTC' CHACCURACYMLIMITEDSBYXERRORMINGE'
) IDE 

'GOTO'L207 
IND:e4; 
DDMAG?S 
ISGRA ; 
ITER ITERC#Is 

tre! NFCG ‘Le! MAXIT 'THEN' #GOTO!' LS} 

URITETEXTC'C!FUNCTIONZEVALUATIONSXCOMPLETE
D') ')3 

'TRtfE1) "LE! FKEEP 'THEN' "GOTO! L203 

FLV] :SF KEEP; 

TEOR! Jyei 'sTEp' 1 'UNTIL' N ‘DO! 

"BEGIN' 
JIT red sdede 
XCQ,V):8Wtdddd: 

TENDS 

"GOTO' L203 
JILss7 
FRr=FKEEP? 

TIE! FLA]<FKEEP 'THEN' 'GOTO! LA05 -TELSE 

trp! FCVJSFKEEP 'THEN' 'GOTO' L78; 

dtben23 
FPrsel1)} 
FL1):=FKEEP? 

  

   4¥SORTCRPRELVID? 
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Lios: 

L445: 

bigs: 

Li07: 

L106: 
L2o: 

"EnD! 

UXPreJdJd7 
"FOR' 2:54 'sTEp! 1 

KrSIXP4yN; 
"BEGIN! 

IXPr2TXPeq? 
EVE. it kae 
WEIXP):2UrK)} 
"GOTO! 

"THEN? 

L1433 

"UNTIL' NT DO! 

"GOTO' L415; 

WEIXPJS2Xrted ye 
XCreV)ysWeK)? 

"END'S 
JIbss2; 
"GOTO! 
INNe243 
'GOTO' L353 
"IF! AAA>O.4 
OUTPUTCNFCC): 
"FOR' Y:=4 'sTEp! 4 
PRINTCX£E141),0,40)7 
PRINTCEL1I,0,1053 
POWELL64G; 

L92? 

"THEN! 'GOTO' L407; 

"UNTIL" N 'DO! 
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FLEPOMIN 

"PROCEDURE! FLEPOMINCN,X+F,EPS+FUNCT + CONV, LIMIT +H, LOADH) # 'VALUE' N,EPS,LOADHeLIMITS 
‘INTEGER’ NeLIMIT? 
"REAL! F,EpS; 
"BOOLEAN' CONV,LOADH? 
"ARRAY" XwWE 
"PROCEDURE! FUNCT? 
"BEGIN! 

"REAL! OLDFsSG+GHGr STEP, ITA, FAs FB+GA,GB,WrZ,LAMBDAS "INTEGER! I,JeK,COUNT; 
"ARRAY! GiSsGAMMA+SIGMALIING : 
wkkaneneeee INSERT PROCEDURE FUNCT HERE 
'REAL' "PROCEDURE! DOTCA,B)} 
"ARRAY! A,B? F 
"BEGIN! 

"INTEGER! T3 
"REAL! S7 

$120} 
"FOR' yr34 'Srept 4 "UNTIL! N 'por 
SrBS+ACl)eBCI): 
DOTIES: 

"END!; 
"REAL' 'PROCEDURE' UPDOT(ArB,1)} 
"VALUE! T3 
TARRAY' A,B; 
"INTEGER! [3 
"BEGIN! 

‘INTEGER' Jaks 
"REAL! S? 
Krt3 
S:20; 
"FOR' J:84 "STEP! 4 "UNTIL! Taq tpo? 
"REGIN® 

StEse#ALK}*BCU); 
KiSkeNags 

"END'; 
"FOR' Jr®y 'STEP' 4 "UNTIL! N tpor 
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Sr"S*ACKeJml]eglJyy 
UPDOT: 2S; 

"ENDID 
SEr INITIAL Hy 

'IF' LOADH ' THEN! 

  

"BEGIN! 
KIe4? 

‘FOR’ Iye4 'syepr 4 "UNTIL! ON 'pot 
'BEGIN' 

HEKS1543 
"FOR' Jr24 'STEP' 4 TUNTEILY Ney 
HCKaJd):=0; 

KtekeNeloty 
"END'3 

"END"? 
START OF MINIMIZATION: 

CONVr="TRUETS 

STEP s=4; 
FUNCYON, Xs FG) 3 
'FOR' COUNT:21,COUNT#1 "WHILE! OLDF>F ‘po! "BEGIN! 

'FOR' t224 'Srep' 4 tunTILE N ‘por "REGIN! 
SIGMACI3:=X¢1); 
GAMMALT3:=G01); 
SUIJ:="UPDOTCHLG, 1D} 

‘por 

'END' PRESERVATION OF xX+G,AND FORMATION OF S$? FRy=F3 
GBreDOT(G,S)3 
'IF' GB 'GE' 0 'THEN' 'GOTO! EXIT, 
OLDFr=Ry ITAL=STEP; 

EXTRAPOLATE? 

FASSFBy GAr=Gay 
"FOR' $234 "Step! 4 UNTIL' N tpOr 
MOVVSExXCTyeITAwS Crys 
FUNCTONGX,FrG)? 
FRr=F; GrrB0oT(G,$)3 
"IF" GB<O 'AND' FB<FA ‘THEN! 
"BEGIN® 

ITAS=4GWIYA; STEPr=GeSTEpy 
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"GorTo' EXTRAPOLATE 
"END'; 

INTERPOLATE: 
'TF' ITA<O,00005 'THEN' "GOTO! SKyP; 
Zr=3"(PAEB)/ITASGASGB? 
WreZ' ee 2nGANGB? 
Wes'Te! Wed 'THEN' O TELSE' Sart (w) 
LAMBPDAL®ITAw(4mC'TEY GAez IGE! 0 TTHENT 

(GAtZ5U)/ CGA+GR4207) 
"ELSE! GA/(GAtz—W)))3 

"FOR' t2=4 'STEP' 4 "UNTIL! N ODO 
XEV]r=xXE1.-LAMBDA#SEI); 
FUNCTOCNGX,FrG)y 
"IF" FOFA 'OR' F>ee 'THENS 
"BEGIN! 

STEPSSSTEP/4} 
"TE! FBSA ' THEN! 
"BEGIN! 

"FOR' Ts=1 "STEP! 4 "UNTIL! N tpor 
XEL]:SXC1)+LAMBDASE19; 
FUNCTON,X,F 4G) 

‘END’ ‘ELSE! 
"BEGIN! 

GB:=DOT(G,S)? 
'TE' GB<O 'AND' COUNTDN "AND! STEP<ané 
"THEN! 'GorO' EXIT? 
FRr=Fy ITA:SITA@LAMBDAS 
"GOTO! INTERPOLATE 

"END'? 
SKIP: ‘'END' OF SEARCH ALONG s? 

TFOR' Ys=4 "STEP! 4 TUNTIL' N tpor 
"BEGIN! 

SIGMACTU:3XC1]=SIGMACI}; 
GAMMACI}s=GL1J=GAMMACI): 

"END'3 

SGr=DOT(SYGMA, GAMMA)? 
‘IF! COUNT 'Get N 'THEN? 
"BEGIN! 

'IFH SQRT(DOT(S,S)) <EPS "AND! 
SQRTCDOTESIGMA,SIGMA)) <EPS 'THEN' "GOTO! FINISH; 
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TEST: 
"END! 
"GOro! 

"ENDS 
"FOR' yr84 'STEP' 4 TUNTIL' N 'DO! 
SCLJs=UPDOTCH,GAMMA,I)? 
GHG:=DOT(S, GAMMA) } 
Kiet? 

'IF' SG=0 'OR' GHG=0 'THEN' ‘GoTo! 
"POR' yi=4 'SteP' 4 "UNTIL' N DOF 
"FOR' Jrey 'STEP' 4 "UNTIL! N 'DOF 
"BEGIN! 

TESTE 

HOKTSSHEKI*SIGMALCIJ*SIGMALUI/SGaSCII*SCUI/GHGE 
KreKel 

"END' UPDATING OF H? 
'TF' COUNT>LIMIT 'THEN' "GOTO! EXrT? 
OF LOOP CONTROLLED BY COUNT; 
FINISH? 

  

EX1T: CONV:='FALSE'] 

FINISH: 
"END' OF FLEPOMINS 
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FLEPOMIN MODIFIED 

"PROCEDURE! FLEPOMIN(N;X+ Fs, EPSe FUNCT» CONT, LIME T¢H, LOADH) F 
"VALUE' N,EPS,LOADH LIMIT? 
"INTEGER" NeLIMIT? 
"REAL! F,EpS} 
"BOOLFAN' CONV; LOADH? 
"ARRAY' X,K? 
"PROCEDURE! FUNCT; 
"BEGIN! 

"REAL' OLDF,SG,/GHGrSTEP, ITA, FAr FBrGA,GB,WeZ,LAMBDA? 
"INTEGER! I,d¢K,COUNT? 
TARRAY' GeSsGAMMAsSIGMALI IND: 
wkkewweewee INSERT PROCEDURE FUNCT HERE 
TREAL' "PROCEDURE! DOT(AsB)} 
"ARRAY! A,B; 
"BEGIN! 

‘INTEGER’ YF 
"REAL! S; 

8:20; 
"FOR' y234 'SrePp' 4 "UNTIL" N tpg? 
SresvACl] BCI}; 
DOT:=S} 

"END'Y 
"REAL' '"PROCEDURE' UpPDOTCA-B,!1)? 
"VALUE' I3 
"ARRAY! A,B} 
"INTEGER! Ly 
"BEGIN! 

"INTEGER! JeKy 
"REAL' S} 
Krei3 
$:=03 
"RORY Jreq "STEP" 4 TUNTIL® Ted "pO! 
"REGIN? 

Sras+ACky*BCl)? 
KrsKeNeagy? 

TEND'? 
"POR! goer 'STeEP' 4 "UNTIL' N tpOF



SreS+ACK+JjmT)agliy; 
UPDOT:=S7 

"END'G 
SET INITIAL H3 

'TF' LOADH 'THEN! 
"REGINE 

Kreq? 
'FOR' Iye4 'STEP' 41 "UNTIL! N tpg? 
"BEGIN! 

HOKI3543 
"FOR' Js=1 "STEP! 4 ‘UNTIL? Ned 'pot 
HOKeJd) 2207 
KiekeNeled? 

"END 'S 
"END'? 

START OF MINIMIZATION: 
CONVI='TRUETS 
STEP» =1; 
FUNCTON, Xs F,G)3 
"FOR! 1:54 'STED' 1 TUNTIL' WN tpot 
SIGMALIJ:=XC113 
"FOR' COUNT: 2141,COUNT#4 "WHILE! SQRTCDOTCGAMMAr GAMMA) )>EPS ‘por 

"BEGIN! 
"FOR' rie4 'STeP' 4 "UNTIL! N tpor 
"REGIN! 

SIGMALI}:=xXE1};7 
GAMMACI}:=601); 
SEI}:2=UpDOTCH, 

"END'; 
‘TR! COUNT=1 'THEN® "GOTO! MIN 
OLDFreee 
"FOR' ps4 'STEP' 4 TUNTIL' N #pOE 
XCVVrSxClyedeseryy 
FUNCTONGX, FG) 3 
"IF! ABSCCEMOLDE)/(DOTCS+GANMA)) 'GE'0, 00004 "THEN' 'GoTO' FORHH? 

Gilde 

MINs 
FR Fy; 
GB:=DOT(G,S)3 
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"TF' Ga ‘ce’ 0 "YHEN' "GOTO' EXIT: 
OLDFS=Fe ITA:=STEP? 

EXTRAPOLATE: 
FArSFB: GA:5GB) 
"FOR' y:34 'STeP' 4 "UNTIL' N 'pOr 
XCVISxCLi+lTAwSl1d7 
FUNCTOCNGX,F 2G)? 
For=F? Garedor(G,S)? 
"re' Ga<O ‘AND! FR<FA 'THEN' 
"BEGIN! 

ITArS44TTA; STEP: =4wSTEpy 
'GOTO' EXTRAPOLATE 

"END's 
INTERPOLATE? 

"TE" TTA<0.00005 "THEN! ‘GOTO! SKIP? 
Zra3e (PAM FBI /TTA+GASGB? 
WrtZ' wa! 2aGA*GBE 
Wree'Tet Wed 'THEN' O tELSE' SorT(w)? 
LAMBDAs®ITA®(1—C'TF! GAtZ 'GE' O 'THEN! 

CGASZ4U)/ CGAFGBR+2%2) 
YELSE! GA/(GAsz=W)))3 

"EOR' yrs4 'SteP' 4 "UNTIL! N 'DOF 
XCEL rexCLy-LAmMBoAeSLI3: 
FUNCTONGX,F eG)? 
‘TP! F>FA 'OR' F>RB "THEN! 
"BEGIN! 

STEPLSSTEP/AT 
IF! FR<RA ' THEN! 
"BEGIN! 

"eOR' 1:54 'STEP' 4 "UNTIL! N 'DOF 
XCEL] :=XCTJ+LAMBDAwSE15; 
FUNCTOCNeX, FG) 

"END' ‘else! 
"BEGIN' 

GBr=DOT(G,S)3 
"re' GB<O 'AND' COUNTDN ‘AND! STEP<&=6 
"YREN! 'GoTO!' EXIT: 
FBRs=F3) ITALSITA@LAMBDA? 
"GOTO! INTERPOLATE 

"END'S 
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SKIP: 

FORMH: 

TEST: 
"END! 
"GoTo! 

EX1T: CONV:= 
FINISH: 

"END' OF SEARCH ALONG S? 

"FOR' rr=4 'SreP' 1 'UNTIL' N tpor 
"BEGIN! 

SIGMALI}:=XC1}=Si1GMACII; 
GAMMALID:=GE1)“GAMMACII; 

"END'S 
SGreEDOTCSIGMA, GAMMA); 
'TeE' COUNT 'Ge't N 'THEN' 
"BEGIN! 

tIFt SQRTCDOTC(S,S))<EPS "AND! 
; é SQRT(DOTCSIGMA,+SIGMA))<EPS I THEN! "GOTO! FINISH? 
END'? 

"poR' yreq 'SteP' 1 "UNTEL' N 'DO! 
SUCID=URDOTCH,GAMMA,I)? 
GHG:2D0T(S, GAMMA)? 
Kred3 

"TE" SG=0 'OR' GHG=0 'THEN' ‘GOTO! TEST? 
"IF! SG<GHG ‘THEN! 
"BEGIN! 

YFOR' Iye4 'STEP! 4 UNTIL! N FDO 
"ROR' Jgel "STEP! 41 "UNTIL! N ‘pO! 
"BEGIN! 

HOK]SSHCEK)4+SIGMALTI*SIGMACJI/ 
SGeSCL]*SCJI/GHG; 

Krak? 
"END'? 

   

"END! 
"ELSE! 
‘FOR’ 1224 "STEP! 4 "UNTIL! N #D0F 
"FOR' Jrer "Step! 41 "UNTIL® N #DO! 
"REGIN! 

HEKISFHEK]@CSIGMALTJ*SCUI+SIGMALII#SEIY) 
/SG* C1 4+GHG/SG)HSIGMACIJ*SIGMALJI/SG; 

KEsKe? 

"END? 
"TE! COUNTD>LIMIT 'THEN' "GOTO! EXIT? 
OF LOOP CONTROLLED BY COUNT; 
FINISH; 

"FALSE" 

‘END' OF FLEPOMIN; 
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POWCON 

"PROCEDURE! POWCON( Xs EPS + RATIO, M) 3 
"ARRAY! X; 
‘REAL! EPS,RATIO? 
"INTEGER! MG 
"BeGINt 

"INTEGER! 13 
"REAL" MAXPSyeMAXL? 
"BOOLEAN! SuluPy 
"ARRAY' THETABARCIIM]3 
MAXPST:=8103 
SWUDs=FALSE? 

AGAIN: MAXI © =MAXPST? 
MAXPSIy="hm8y 
eek eke eeeCALL MINIMIZATION PROCEDURE HERE 
PSICALCPSIsX)3 
SECOND:='TRUE'S 
"FOR! I:=4 'STEp' 1 tUNTIL’ Mm "pot 
"IF! MAXPSI<ABS(PSIC1}) "THEN! MAXPST?I2ABSCPSILIND: 'IF' MAXPSI<EPS 'THEN' IGOTO! ExT: TIF' MAXPSE 1GE! MAXL 'THEN' MAXPS]:=MAXL ‘ELSE! "GOTO' THINGS: 
"IF' SWUD '7HENE 
"FORt 'STED' 1 tUNTIL® Mm 'pgt 
THETALY) HETARAR[IG3 

SIGINC:"For' fr51 "STEP! 4 SUNTILIM 'pot 
"IF! ABS(PSICI)) 'Ger MAXL/RATIO "THEN? 
"BEGIN! 

  

   

  

T]r=10*S1GMaryy 
THETACT I] :20.1*THETALI 

TENDS? 
SWUDy="FALSEF 
"GOTO' AGAIN: 

THINC4: 

'TF' 'NOT' SWUP 'THEN' "GOTO! THINC2: 
TTF! MAXPSI<MAXL/RATIO 'THEN' "GOTO! SIGINC; 

THINC2: 

13 

i 
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EXIT: 

"FOR' T:=4 "STEP! 4 FUNTIL' M tDOt "BEGIN! 
THETABARCIJ:=THETALIO; THETACY) s=THETALCID+PSIC1); 

TENDY: 
SWUPs=' TRUE! 
"GOTO' AGAIN: 
"END" POWCONS



OPTKOV 

"PROCEDURE! OPTKOV(XsXKeXKTeXKMsSTEP Fe EPS) 
"REAL' XKeXKT+XKM+ STEP EPS, FE 
"ARRAY! X; 
"BEGIN! 
COMMENT PHASE 4% 

'REAL' BL, BU; 
XKrr *#eeOBJECTIVE FUNCTION; 

Rip: XKrexkeSTEPs 
kia eee CALL THE MINIMIZATION PROCEDURE HERE 
"IF" SQRTCF)<EPS ‘THEN! 
"BEGIN! 

STEPS=2*STEP; 
"GOTO! RIp 

"END! "ELSE! 
BUrSXK#STEP; 
BLr=XxKk? 

COMMENT PHASE 23 
PARAMETER? 

XKMreXK#SORTCR) ? 
XKTsaXK+F/SQRTCRHT) 3 
BLreXKM? 
"TF" XKT<BU 'THEN! 
XKtexkT "ELSE! 
XKESXKM 

MINE «tt eae eH HCALL THE MINIMIZATION PROCEDURE HERE 
‘IF' SQRTCF) 'GE' EpS 'THEN''GOTO' PARAMETER 
"ELSE' BULFXK? 
"IF! ABS(BU=8L) <EPS 'THEN' "GOTO! EXIT 
"ELse' XKreal; 
"GOTO' MIN? 
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SUMT 

"PROCEDURE! SUMT(X,EPS,RATIO), 
"ARRAY'X? 
"REAL! EPS? 
"INTEGER RATIO; 
"BEGIN! 
START: - 

weet ieReHCALL MINIMIZATION PROCEDURE HERE "IF! ABSCF@=D)>EPS 'THENE 
"BEGIN! 

Rr=ZR/RATIO? 
"GOTO! START: 

"END': 
"END' SUMT: 

AS IT HAS BEEN MENTYONED EARLIER ON IN THE DESCRIPTION OF THE ALGORITHM, THE PTOCEDURE FLEPOMIN HAD TO Be MODIFIED, THIS MODIFICATION 1S as FOLLOWS: 
EXTRAPOLATE: 

FArsER; 
GA:=GB; 

REPEAT; 
"FOR' Tr24 'STEp' 4 TUNTIL' NW IDO! 
XCVV©SXCT + rAescld: 
FUNCY(N;X, FG) 3 
"FOR! Tr54 'sTeEp' 4 TUNTIL! Mm "po" 
'TE' COr) "tr! 0.0 trHEN! 
‘BEGIN! 

"FOR' 1224 "STEP' 4 TUNTILY N tpOr 
XCVU:exilyetTawStr): 
ITAr=ITA/ NDF 
"GOTO' REPEAT; 

"END'? 
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