
A COMPARISON OF METHODS FOR THE OPTIMIZATION

OF A NON-LINEAR FUNCTION SUBJECT

TO NON-LINEAR CONSTRAINTS

by

Janine Asaadi

M.Se.

September 1971

Ki pA
\

Y
"anep7 A pcmin 3DECT1 1 4527

ACKNOWLEDGEMENTS

1 would like to express my gratitude to my supervisor,

Mr. G. R. Lindfield, Dr. K, P. Wong, currently lecturer at the

University of Singapore, formerly senior research associate at

the University of Birmingham, and staff of the Computer Centre,

the University of Aston in Birmingham,

SUMMARY

This thesis deals mainly with a comparison of certain

computational techniques used for the solution of non-linear con=

strained mathematical programming problems, The three

techniques being considered here are:

(a) Sequential Unconstrained Minimisation Technique,
(S.U.M.T.), by Fiacco and McCormick;

(b) Kowalik, Osborne and Ryan's method;

(c) Powell's method for constrained problems.

They all convert the problem into a sequence of unconstrained

problems, that is to say the objective function and the constraints of

the original problem are transformed to define a new objective

function called an auxiliary or penalty function.

By gradually changing the effects of the constraints in the penalty

function, a sequence of unconstrained problems is generated,

As the penalty function is being minimised at each step of the

sequence, an efficient unconstrained minimisation algorithm had to

be found,

Three unconstrained algorithms have been compared:

A direct search method (Simplex);

Two conjugate direction methods:

(a) Powell (64)'s method not requiring the calculation of
derivatives;

(b) Fletcher and Powell's method requiring the calculation
of derivatives,

@

All the methods have been written in the same language, ICL

Algol 60, and have been tested with the same set of well-known

standard test problems and some larger ones.

All the methods have been described followed by their respective

results,

For overall comparison, the best results from each algorithm

are considered and tabulated in function of the total number of

function evaluations and in function of computer time.

We can, then, draw two conclusions:

(a) if, as some people suggest, the total number of function
evaluations is more important, the Powell's method could
be the more efficient of the methods considered;

(b) if computer time is more important, then S.U.M.T. could
be the more efficient method.

Gi

CONTENTS

SUMMARY

1. INT RODUCTION

2. UNCONSTRAINED OPTIMIZATION TECHNIQUES

2.1 Mathematical Description

2.2 Computational Results

2.3 Comparison

3. CONSTRAINED OPTIMIZATION TECHNIQUES

3.1 Mathematical Description

3.2 Computational Results

3.3 Comparison and Conclusion

4. FURTHER RESEARCH WORK

REFERENCES

BIBLIOGRAPHY

APPENDICES

Page

23

35

37

69

89

90

92

95

INTRODUCTION

This thesis deals mainly with a comparison of certain comput~

ational techniques used for the solution of non-linear constrained

problems.

Recently, methods for solving constrained minimization problems

by considering sequences of unconstrained problems have attracted

considerable attention, the three methods considered here are of

that type. They are:

(a) Sequential Unconstrained Minimization Technique,
(S.U.M.T.), by Fiacco and McCormick;

(b) Kowalik, Osborne and Ryan's method;

(c) Powell's method for constrained problems.

The objective function and the constraints of the original problem

are transformed to define a new objective function called auxiliary or

penalty function,

By gradually removing the effect of the constraints in the penalty

function, a sequence of unconstrained problems is generated that has

solutions converging to a solution of the original problem.

As the penalty function is being minimized at each step of the

sequence, an efficient unconstrained minimization algorithm had to be

found, Therefore the first part of this thesis begins with a comparison

of unconstrained algorithms.

(a) A direct search method (Simplex).

(b) Aconjugate direction method not requiring the calculation
of derivatives (Powell 64).

(c) A conjugate direction method requiring the calculation of
derivatives (Fletcher and Powell),

Work has been considerably delayéd at that point for the

folloving reason,

Powell (64)'s methed was proved to be a relatively efficient and

quick method, attractive too as it did not require the calculation of

derivatives so the constrained minimization algorithms had been

implemented using it as a sub-routine.

Everything went fine as long as the standard test-problems were

considered,

These problems are known to have an awkward behaviour but

they are small in

Where larger problems were considered (eight variables and

more) Powell (64)'s method failed and the programs had to be re-

written using the Fletcher and. Poweil'’s method.

The largest problem solved was 20 x 17 and this was proved to

be satisfactory.

Th

UNCONSTRAINED OPTIMIZATION | 2 om)

z no UES

2,1 MATHEMATICAL DESCRIPTION

2.1.1 Simplex Method

The Simpiex method was iniroduced by Himsworth Spendley and
9) ;

Hest\2 in 1962 avd developed by Nelder and Mead, 15)

It is a direct search method that is to say it compares the values

of the objective function at a set of (+1) vertices of a simplex.

A simplex is a geometric figure defined as follows: a set of

(+1) points in n-dimensional space forms a simplex, When the

points are equidistant the simplex is said to be regular.

In the case n= 2 the corresponding figure is an equilateral

triangle while n=3 is a tetrahedron. The principal idea of the

method is that we can easily form a new .simplex from the current

one by reflecting one point in the hyperplane spanned by the

remaining points,

If we reflect the point which gives the highest value to the

objective function by another one we can expect that at the reflected

vertex the function value will be lower, and we go on until the

minimum or a sufficiently good approximation to the minimum is

found. The problem is to minimize:

y = {G@) where x is 1 x n vector

Let us introduce the following notation: h is the suffix such that

xX, is the vertex corresponding to £Gq) = max Fx) 11, e005 DELS

lis the suffix such that x, is the vertex corresponding to

£Gq) = min £Gc,)5 x, is the centroid of the points x, with if¢h,

At each stage in the process Xx, is replaced by a new point.

Three basic operations are used in the method:

(a) reflection;

(b) expansion;

(c) contraction,

3.

A. The Reflection Operation

We generate the new point x e as follows:

aos (1 + ax, - omy,

where a, the reflection coefficient, is greater than unity. (or equak

Thus, x. is on the line joining x, and Xo? on the far side of

Xs from %, and q@ is the ratio of the distance re to PR | .

If fx) lies between Fx) and £Gq) then x, is replaced by x,,

and we start again with the new simplex (see footnote).

if £G.) < fq) then fC.) is the new minimum; therefore we

expand X, tO X»

B., The Expansion Operation

X, is obtained by using the following relation:

x= Vox Cie) 35

The expansion coefficient Y which is greater than unity is the ratio

of the distance (%e%o] to [XX | A

if £Gx,) < ie) we replace x, by Xe but if fo) > £Gq) then the

expansion has failed, therefore we replace x, by x,, and in either

case we restart the process, If, after reflection, we find that

fG,) > £Gx,) Hen we define a new Xp, to be either Xp, OF X, whichever

has the lowest:k)value and we make a contracting move.

C, Thg¢ Contraction Operation.

We generate x, as follows:

x, = 8%, + - 8) x,

It is necessary to say that the ultimate convergence criterion is
tested each time before restarting the whole process,

4.

The contraction coefficient 3 lies between 9 and 1 and is the

ratio cf the distance ol to ye. of the di oe o| 1%

if fg) f(x.) 4, is replaced by x, but if the contracted point is

worse, that is to

4x, + %) and ip cither case we Mestate the whole process.

Nea Je i 2) then we replace all x, by

The whole algorithm can easily be schematised in the following

flow diagram,

(x.

pecan Shiscanbinn chine 28
Determine xy and x

Calculate x, and x= Cra) x,, -0r%, |

Calculate iQ)
Wee eres

ae No ee Yes Bete “No
Cis fix,)<fOq)? >—+— is 10x p?> s ne?

’ |. Replace | |

Xp, by x

Yes ‘ No Yes af

Form Ee +(1- Wx, t Form X,=Pxm,H1-B)x,

Calculate i) “ Calculate RD
wo aad

ae es ao seals
~.

Cis x 2 stp? 2 No a Mas fx D2 iby a Yes")

I

} 1

j |

|
Yes |

£ + 4 4 E
eee x, by Xe | Replace Xy by x,,| et % by xo

ee ue ttaw a cane aye No~< oe Yes — EXIT

Je

Ultimate Convergence Criterion

The stopping criterion suggesied by Nelder and Mead is

concerned with the variations in the function values over the simplex

rather than with changes in the x's.

It takes the standard error form:

AS exp - tape t

where © is a small preset positive value.

Comm nts on the Program

Various parameters are used in the program, The main ones

are a, B and ¥.

Nelder and Mead have carried out many experiments with

different combinations. They find best results are achieved when

asl, B=%, Y=2.

Four other parameters are also used,

8
Criter: stands for€ and is set at 10°".

Conver: value of the standard error of the £Gx,)

fa
fA 2. Gy) - £6)

n joi

whenever conver < criter the program stops.

Colimit: preset value for the maximum number of function
evaluations,

Count: number equal to the number of function evaluations,
Whenever count > colimit then the program stops.

Orp(i:n): Array of feasible starting point.

2.1.2 Powell (64)'s Method (1964)°19

The key advantage: of this method is that it does not require

explicit evaluation of derivatives,

It is a quadratically convergent process which generates

conjugate directions of search and will thus find the minimum of

a quadratic form in a finite number of steps.

It is based on the following theorem: if x; is the minimum

in a space containing the direction v, and xX is also the minimum

in such a space, then the direction x4 -X9) is conjugate to v.

Let fG0 be a general quadratic function:

f@) = xAx + bx te

By definition 3 f(x, +Av)' = OatA =O, Therefore: Br Uo j ‘ ‘

2\vAv + v2Ax, +b)=0, A=0

Also:

2a\v Av + VUZAXy + b) = O AH=O

whence subtracting:

vAGy, - X_) = 0

The directions v and Oy - x) are corjugate (Fig. 1).

Fig.1

This means that in the presented space, the minimum M of the

quadratic function must be found along the vector Cig -X4)0 Hence

it is only necessary to search for the minimum along the two

v directions and finally along the vector (x5 -x4)-

For more general functions which are not quadratic the

procedure is iterative and can be described as follows, We first

assume that n independent directions Vy9 Vor onoey Vy are given

(for example the co-ordinate directions.)

1.

3.

4.

For p=1, 2, .+-., n, calculate %» so that fO.4 + NOY? isa

minimum and define x_=x TONEY @
p p-l “PP

For p=1, 2,, n-1 replace ‘> by Vorie

Replace v,, by Gx)

Find) so that fO, + AG, - x.) is a minimum and replace x, by

xX, + OQ, - x.) where x, is an arbitrary feasible starting

point.

Repeat the procedure,

This procedure is illustrated in Fig, 2 in the case where n=2,

8
N
e
e

4
 “~

an ae eee an nm panne — oe = >X.

Fig.2

4 starting point and xt minimum moving along the xy co’sordinate,

2 minimum from xt along the Xo co-ordinate,

x5 minimum point along the direction vig - x) and repeat,

The final point x5 must be the minimum of the quadratic

function since v4 and vy = od - xp) are conjugate.

Theoretically this procedure converges to the minimum of a

quadratic function in n iterations, Practical applications have

shown, however, that there is a need to modify the basic procedure

9

in order to achieve a satisfactory rate of convergence. The basic

procedure may occasionally select directions which are nearly

dependent and do not span full parameter space. Powell has

introduced a modification which ensures that the efficiency of the
a

tions Vax Vox oeees Vy is never less than that of the original

independent co-ordinate system.

for this purpose he v

direction generated at the current stage if the criterion fails and he

computes another cycle of descent steps using the current directions

otherwise he accepts this new direction.

The procedure described above is then modified as follows:

4) for p=1, 2,, n calculate Ap so that £0521 + Ae isa

minimum and define x = Sod + AB’ ;

2. find the integer m, 1<m-<n_,so that VIG _p - fx) isa

maximum and define A = CED) - £003

3s Calculate f3 = fax, - x) and define fy = fo) and fy = £OQ)5

ee oe . = oP 2... 2
4. if either f, >f, and/or Cy - 2f5 +£).C, « fy - A> Gy - f.)

use the old dix

and use x_ for
0

 ions Vq2 Vo2 coos Vy for the next iteration

ene next x, otherwise;

De defining v = Gy, - x,) calculate \ so that Fx, + ACY, - x) isa

minimum use Vq9 Vor e¢%os Vinge Viney? Yaa? *eer2 Ve Vr as

the directions and x, + Av as the starting point for the next

iteration,

if this modification is used, a conjugate direction is thrown

away and more than n iterations are required to find the exact

minimum. Nevertheless, it was necessary whenever large problems

are solved.

10.

To justify this criterion, Powell uses the following theorem:

Let vectors py) eros Py be scaled so that ppA pj=l

i=1, 2,,n. Let ¥be the matrix whose columns are the vectors

Pie Then the determinant of Xis maximum if and only if the directions

are trutually conjugate.

The consequence of this is that V2 Vox cores Vy should be

chosen to make the determinant as large as possible.

The criterion is applied by using the new direction v, defined

by an iteration, if it causes the determinant to increase, or by

rejecting the direction, the replacement of which causes the new

determinant to be largest.

It will now be proved that the direction which should be dis-

carded, if any, is Moa 1<m<n where mis such that

{ GP - £1 is a maximum.

As fx) is a minimum in the direction v;, if v, is scaled so that

the displacement froia X41 to x; iss

V Oy.) —fe)] yay

The direction defined by the iteration is:

xX - xX. * Vv. ¢ F sicicie) Vv.

7% 2 %2 on

Soifx, - x, = bY, where D Av_=1, the effect of replacing the

Sevan peeise vi by the vector Vp is to multiply the determinant of

directions by a,/ De

11.

Consequently the direction to be discarded, if any, is that for

which a is largest and this is the direction ve

This replacement should be made only if a, 2 p and y is

calculated by the means of fie fo and fy (values defined in the des-

cripticn of the procedure). The predicted stationary value of the

function along the aew direction is?

2
1) - fy)

ar er ~ 26 pfs)

f. is a minimum ifs

~ 2fo +f >0 a a

the If the above second difference term is negative, a new direction should

certainly be defined, otherwise:

Mio ota eae ame
py G, = t2VG - fy)

+ or - sign depending on whether f, is greater or less than fy. In

the former case it is :>.vious that the old directions should be used

again, in the latter «se new directions should be defined only if:

FEO 2 ; : — | =
Va; 3VG@ =f, @y - fy

The above results have been condensed in the criterion that

a XS should not be used for the next Herguen if and only i ify

either a fh and/or ey - 2f - Forty = 45 ~ aye > EME, - 15° a

Because the modified procedure cannot cause the determinant of

directions to decrease the efficiency of the direction of search

Vyr Vor sree Vy is never less than that of the original co-ordinate

directions, If these are poor, improved directions will be found

easily.

The whole procedure can easily be schematised in the following

diagram.

12.

starting points x, and v,,V9,++++V,

co-ordinate directions are given

oe (“x Find m such that (Gq, D-FOg

i<msnis max.

Aroq, d=,
Celpiere Fa=f(2x,-x,)

Define Ff, fo=fO,)

2
1 F=f)

 Define f=fo-
ve 1 ~2hj it ~

New set of directions
Vozeces ee

Vy9O? Vin-1? m+]? n?Y
=X # XP Xp’ AV

The old set of

- ? eS 2 directions

ae 2 4 AG, -f,>-—-- YES - VyrVgrere Vy

oe a is used for next

See iteration

NO {

4
ve(x,-%,)

min f(x_+Av)
nh

: | aly “™

is
ultimate YES |EXIT

convergence >——+
criterion
atisfie

\
NO

ai

13.

Ultimate Convergence Criterion

Powell's convergence criterion is more concerned with the

changes over the variables.

1.

2.

3.

6.

Comments on the PF

The procedure is applied until the change on each variable is

one tenth of the required accuracy. This point is called a.

Each variable is then increased by ten times the required

accuracy.

The procedure is applied again until the change on each

variable is one tenth of the required accuracy, This point

is called b,

The minimum on the line through a and b is then found, it is

called c.

If (a-c) and (b-c) are less than one tenth of the required

accuracy in the corresponding variables then ultimate

convergence has been reached, else,

include the direction (a-c) in place of vy and start again.

The procedure Powell 64 has eight parameters, defined as

follows:

3

4.

X: array composed of the initial feasible starting points.

E: array composed of the required accuracy value for each

variable in this case it is set at 10".

N: number of variables.

F: value of function.

Escale: an integer number which defines the step for each

linear search so X will not be changed by more than

Escale x E.

Difficulties arose when choosing Escale. Not knowing the

behaviour of the function it was difficult to determine the step

and therefore a method of trial and error was used,

14.

It was found that Escale should be at least equal one fourth

of the inverse of the accuracy.

6. Iprint: controls the printing.

(a) Iprint = O no printing

(>) ‘Iprint = 1 the variables and the function will be
printed after every search along a line

(c) Iprint = 2 the variables and the function will be
printed after every iteration (n+1) searches
along a line.

7. Icon: provides an alternative convergence criterion.

Usually it is satisfactory if Icon=1. However, if alow

accuracy is required, Icon is set equal to two but the

execution time might be increased by as much as 30%.

8. Maxit: maximum number of iterations required. The routine

will be left regardless after Maxit iterations have been

completed.

Zangwill Modification of the Powell (64)'s Method

In 1967 Zangwin 2D published a paper suggesting a modific-

ation to the Powell procedure. A counter example was found which

reveals that Powell's method does not converge to the minimum

 of a quadratic in a finite number of iterations but will not converge

in any number of iteretions.

This new procedure, based upon Powell's theorems can be

written as follows:

Let Vy? Vor sre Vy be the co-ordinate directions and assume

wey, are normalised to nae length. ane starting pois Xo cece

x? n? and the normalised directions ty cu te eey a are given.

Ciena ae to minimise fe + nO os 1 and let
x ° ocd
%+1 7 *n tn Sn°
Set t=1 and go to iteration k with k=1, Iteration k: x Ep .

r=1,, nandt are given,

15.

Step (i) Find « to minimise r0c71 + av,)

Update t by:

(reaiietcn
te

a ift=n

k-
Law, Ifa # O let xs = x3} 2

If « = O repeat step (i). Should step (i) be repeated n times in

succession, then stop; the point oe is optimal.

Step (ii) for r=1, ...0, : calculate x to minimise fq 17th 5)
ie k 5 n-

and define x, = x74 * - oo

€ k Jy
Lote nel =O spl Es xa

Determine fa to minimise fx + ake 7 and set

xk xk k
*a4 = %n * Atl Snel

5 k+ ck
Define ee oer Vis: 15 25: wo ys

Go to iteration k where k becomes k+1

No results are «vailable yet to enable an assessment to be made

of the rate of convery«i.ce of this procedure relative to the

Powell (64)'s procedure.

16,

2.1.3 Fletcher and Powell's Method, 1965

This method is also sometimes called the method of Davidon,

Fletcher and Powellecs as the idea is based upon a procedure

described by Davidon (1959). @)

Like the previous method described, it uses conjugate

directions and has quadratic convergence, therefore gets to the

optimum at a finite number of steps (for quadratic functica),

ge to be defined It also requires the gradient vector g =
1

analytically at cach point.

We know that two directions vi and “ are said to be

conjugate with respect to A if vA A v; =6 for i#j.

A being a positive definite matrix, Is it possible to define oe

as a function of these conjugate directions?

Consider the matrix:

We have for s=1, 2, cose, PD

provided a, =

This gives for p=n:

2 Vv. V. mi Soy ede

ea ye) Ay.
i=1 i i

This suggests an iterative scheme in which the best approximation to

the inverse A = H is used to define the next direction of search by:

17.

i itl
Ving = ~ HYVFQ)

and the results of this search are then used to improve the approx-

imation to the inverse, but in the mean time the successive directions

generated must stay conjugate.

ye
Knowing the matrix AG = Bx, the displacement between the

‘ : -1 p
point x, and x,_j isv, = - Ally 8 then Xie = qt MY; and updating

we have?

ic
ViVi
———. +B,
T A 1

vi Avy
H,=Hy4+

where B, is a correcting term and H, an approximation of al,

If v,, «e+, V, are conjugate:
1 ook

it VEAH, Vg 881, 2, cooey tel

we also know that if’ ., v, are conjugate:

2 bie Site
ig ve ee veers

therefore we must hosose B, to satisfy ve A Hy, = ve

Seino 5 pet

Tor i=s we have:

tT
Viv;

a
L

 vi AG, | # +B)=v
i i-1 i

VG A vi

whence:

T
(gin. > 8) Gy) + BY 0

Writing Yi = Sin 7 SF

To update Hy iy in a general function we need to modify the term

ve A Vie We know that:

i G1
vo Av, = ——— Av.
ca i ee i

x

It is also equal to:

(g.44 - 8D +17 8 ie eee Be ea
1 L

ce

Setting:

 we = ov A, = T where Yi = Sin. 7 8

WH

the updated H matri> now takes the form:

Hos H+ ALY B:
ic i-]d i i

We can now state ©.< procedure as follows:

oh ee
iVEr an = Given x, d 8 ax)

i. Compute ve Hey 8:

25 Compute Ai to minimise £ Gx, + a v))

3. Set Xin 7% AVG

4. Compute H; = Hi.) + A, +B,

In the first step cf the iteration it is customary to set HS al

lis known, this can be used provided However, if an estimate of A™

it is positive definite, If Hy is positive definite initially it has been

proved that all subsequent Hy are also positive definite, As

Hy = hee by construction it must be positive definite so that if Hy

does not satisfy this condition there is the possibility of a breakdown

in the calculation,

19.

This algorithm is easily schematised in the following flow chart.

<2 feasible starting points

. -
H, =I or approx. toH ; g, = ax,)

 seat

~~ is ultimate convergence = ees seers
—~____ eriterion satisfied?

ao

——YES— EXIT

* H, is usually set up equal to an identity matrix at the beginning,

unless en approximaticn to the Hessian matrix is known.

20.

Convergence Criterion

The process is terminated whenever two successive values of

f are equal or if a new value of f is larger than the previous one

(due to rounding errors) or when the first derivative of f nearly

vanishes,

Comments on the Program

(20)
The procedure Flepomin is a nine parameter procedure,

N = number of variables

X = array of feasible starting points

F = function value

EPS = tolerance used in terminating the procedure when the first

derivative of f nearly vanishes, Therefore jt is set in a very

small quantity. In this case it is set to 10°”.

FUNCT = procedure calculating the value of the function and the
derivatives.

CONV = Boolean variable equal to true if convergence exists or

false otherwise.

LIMIT = Integer variable defining the number of iterations required,

CONV will be equal to false whenever the number of iterations

has exceeded LIMIT and the process will be terminated
regardless.

H = arvay 2

LOADH = Boolean variable indicating whether or not an approximation

to the inverse of the matrix of second derivatives is available.

Recent Variations of the Fletcher and Powell's Algorith$?

One of the main features of the algorithm described earlier

is that an approximation to H is kept and updated using the formula:

vive Hv.v! H,

+e £3 2 1

He Ey aay i ee
YW, YAY

where v, = - aH, :

Yi S41 7 8

21.

The correction v, is taken as a multiple A of a direction of search

s= Hyg; .

Though this algorithm proved a very powerful one so far, it

has some inconvenient features that Fletcher, in his recent article,

tried to overcome. The main one is the need to solve the sub-

problem of finding the optimum) at each iteration, ie. the linear

search, As it requires the evaluation of the function and the gradient

for a number of different value of A and interpolates according to

some strategy, until a sufficiently accurate minimum is obtained,

considerable computer time is needed.

The linear search also has another disadvantage because of the

special circumstances which can arise, eg. a minimum may not exist.

So it would be convenient to find A other than by finding \ which

minimises £Gx, + As), bearing in mind that the main importance of the

optimum linear search is that it generates conjugate directions

leading to the property that for a quadratic function convergence

occurs within less than n iterations.

So Fletcher tried to find out if that property could be kept for

variable metric algorithms not requiring optimum linear searches but

based upon a revised formula for updating H.

The only solution, however, was to abandon the property of

quadratic convergence and to veplace the linear search by another

process ensuring an efficient decrease of the value of the function

at each iteration and this could be produced by the retention of the

positive definiteness in H.

So Fletcher suggested a new updating formula for H which

guarantees positive definiteness:

i oe ic
vy Ho Hoy y Hy fe

=H, -———- = ee
T

vio My: ve ir

22.

This formula can only be used under certain conditions, ee

Tye Ti
Ae yA ly sy Hy

then H is smaller than ie and the new formula for updating H is used.

If, however, yay, y Hy then H is larger than Av! and the

original updating formula is used.

The new formula used whether or not the inequality (A) holds

has been inserted into the Flepomin procedure.

Another modification has also be implemented. We usually

start with H set equal to I (the unit matrix) and sometimes this

proved to be quite inefficient as H can be much greater than the

local a then any direction which reduces F would be considerably

less than -Hg and a considerable number of extra function evaluations

would be required at each iteration.

This only occurs at up to and including the nt iteration after

which a step of -Hg is almost always successful. In practice, a

step length A has been kept, derived from the previous iteration and

used to generate an initial v = -\Hg.

However, the program reverts to the basic algorithm after the

a step.

We shall see from the tables that the results obtained, once

these modifications have been included, are far better than those

obtained with the original Fletcher and Powell algorithm.

2,2 Computational Results

Each algorithm has been tested with the following test problems:

Function 1

Rosenbrock (banana shape) function

minimise f = 100 (x, - ay +1 - ~o

starting points x = (- 1.2, 1)

23.

Function 2

Fletcher and Powell's function with quartic singular Hessian
sae te wy 2 2 4,

minimise f = Cy + 10x)" + Sy - 4) + SC - 1 + Gy - 2x.)

+ 10x, - x)

starting points x=(3, -1, 0, 1)

Fletcher and Powell's (hellical valley) function _ A

minimise f =[100 Xa" 100Cx, x) 7 + Cf@2+ xf) = 1? + x“

where 270 (x1, X5) = Arctan Gg /x)s ifx,;> Oorn + Arctan(xy/x,)

if x, <0. Starting points x = (-1,0,0).

Function 4

Four dimensional banana shaped function (Colville)
Sevier: ell 2 2 2 2 2 2

miniinise f = 100Gcq 3% +O xe 2. - 7 +0 - X)

i 2 2 # 10.1 |G - D7 + Gy - D°| + 19.8Gq - DEY - D

starting points x = (-3, -1, -3, -D

Function 5

Box!s function =

Gree i - - - -10x, | 2
Minimise flay, ay, ay) =) Tag(e a4% Le Bagh fe Re oi

where summation is over ile values x = 0,100.11. Nine sets of

starting points were used,

Function 6

Watson's function

. pet m

minimise f = yy G2) xys? a O xyJ7 2 -1} 2 x x2

: LS yi = 0» t 1
i=l jel jri %

where y; = G - 2/29.

m has been chosen equal to 6. Starting points x = (0, 0, 0, 0, 0, 0).

24.

This function results from an attempt to approximate to the solution of

the differential equation:

Sez = 1 20) =0
dx

in 0 <x <1 by a polynomial of degree m, by minimising the sum of

squares of the residuals at selected points.

When running a program, the total mill time is given, This

includes the compilation time, the consolidation time, the program

run and the operating system administration, As the operating

system administration may vary quite substantially - for reasons

difficult to explain - the total mill time is quite unreliable if a

comparison is to be made in function of time, Therefore, here the

comparison is made as function of the run time of the program

excluding compilation and consolidation. Though, again, this might

be quite unreliable for programs taking very little run time (up to

20 seconds). The first tables show the number of function evaluations

necessary to obtain the required accuracy. This is shown for the

four different methods we considered. The other tables show the

vun time and the number of function evaluations for each problem

and for each algorithm compared.

N.B. The same accuracy 10°8 has been used in the three different

algorithms,

25.

SIMPLEX METHOD

eal, §= 0.5, ¥=2

Function 1 | Function 2 | Function 3 {Function 4. \Function 5 |Function 6

EV f f £ if f £

1 A 215 2500 19192 | 2.087 30
20) 3.81 7.36 637 79.9 0.034 1556

40; 1.61 8.16 70.6 10.01 0.026 151
60} 1.04 3.34 16,77 7.98 0.025 0.0875

j 80} * 0.47 0.62 10.73 | 7.73 | 0,014)) 0.027
100} 0.694 0. 108 7.41 +33 19.09 x 10"c} 0. OLS
120; 0.001 g 0.005 3.08 7.23 58x 10/6 0.013 -3

140} 58 x 10 0.005 zo 1.31 7.02 |2.54x 103 8.4 x 10°3

160 8. 99x10" 5 0.10 3 6.44 |6.08 x 10 165% 1073

180 5.35x103| 3. 86 x107¢ 5.46 6.9 x 1073,

200 47x10 27x107 4.41 6, 81x 1073

300 2507 6.72« 10 3

400 0.81 3 Sooak 1073

500 4.56 x 1073 2. 31x 1073

600 6.3 x10" | 2. 28810

2000 | *2, 28 1073

8
* To achieve an accuracy of 107

The Simplex method has been successful with any set of starting points for the

Box function. However, for clarity the results for the set (O, 20, 1) only

are shown in this table. The number of function evaluations is approximate

to the nearest twenty, or hundred if it is more than 200.

26.

POWELL (64)'s METHOD

I Function 1 | Function 2 | Function 3 |Function 4 \Function 5 | Function 6 | :
EV f f eee f { f 2

| T

1 24.2 215 | 2500 19192, || 2,087_, | 30
20 | Bur, Gaal | 129 9120 19. 14x107% 203
40 2.4 4.13). |) 10.9 62 3. 35x1057 0.53
60 | 1.07 0.75 | 0.3 25 9x10" 0.19
80 | 0551 0.029, 4.63 12 9x10 0. 12
100 0.10.4 | 5.3x10°%, 1.42 7.88 0, 037

| 120 | 5.8x1075 | 3. 58x10; | 0. 32 7.87 | 0.027
| 140 9x103g | 2.1 x102 0.022 7.87 0.014
1 160 | 20x10 1.53x107 | 9x10% 7.87 | 0.014
180 2. 40x10" | 10°76 7:84 | 0.011
200 1,95x103, | 6. 66x10" 7:80 0.011
300 1,14 x10 7.08 | 2. 35x10" 3,
400 4.58 2. 28x1075
500 2.27 2. 28x10

c | 0. 82 oo
700 | 0.01_,
800 | 5.1.10"

Here again the number of function evaluations is approximate to the nearest
twenty or hundred if it is more than 200. The set (0, 20, 1) of starting points
has been considered for ‘ive function 5,
with the same function are given now.

27.

More details of the results obtained

It was mentioned earlier on in the description of function 5

that nine sets of starting points were used. They are as follows:

| Set ay ay | a3 f

elo mele zoned 2.087
2| 2.5 | 10| 10 | 275,881
Bulno o| 10 | 306.401
Zaloe Hatoy eet 1.885
Bob oom ldo eto aias673
6} 0 | 10} 20 | 1031. 154
7 le Ol 200 lanO 9.706
8 | o | 20 | 10 | 209.280
9 | 0 | 20 | 20 | 1021.655

The optimum a= 10, ag = 1, a3 = -1 has never been obtained with any

combination of methods and starting points tried to date.

There is, however, the continuum of optima f = 0, corresponding

to ag =. O, a, = a on which various of the methods found solutions

with some starting points. This was rarely the case with the nine

starting points quoted above and in the majority of these cases the

desired optimum was found by making an alternative selection of

initial step-lengths,

Powell (64)'s method was not successful with every set of

starting points as we can see from the following table.

| Set} 2 Se ye es 6 8 9
f f f f f f

| 275.881 | 306.401 | 213.673 |1031.154 | 209.280 | 1021. 655
F F F F F F

23,

Set Z 4 7

Ev weet Waar (8g Meds ce | er

20 | 9.14x10%4 28 x10 | ts 10°

40 | 3.35x107> 655 x 1000. ||) 1.2 405"

60 Ge torte ac i07t4 | tec ace
80 | 9 x10728 | 1,19x10722! 1.08 x 107%

100 1.52x 107)

T
|

1 2.087 1.885 9.706

|
For the sets (2, 3, 5, 6, 8, 9) this method has failed. We can

notice that these sets give the highest starting values for f, They

produced the following solution:

a,~ 0.61 ay -; ee ag 1.32 £0,076

ie. regarding the problem as one of curve fitting, this method has

effectively eliminated a 2 from the problem and then endeavoured to

fit one exponential and a multiplicative factor to the data, This

failure stems frem the fact that the method set out to locate the

minimum along a line too precisely.

Any method which does not find the minimum along a line, for

instance the Simplex Method, could not fail in this way.

For the sets 1 and 4 the same minimum values were obtained

for the objective function and the variables, that is to say, respectively:

0, 1, 1, 1. For the set 7 there is the continuum of optima f = 0

corre sponding to a, = a9, a3 = oO.

29.

F
L
E
T
C
H
E
R

A
N
D

P
O
W
E
L
L
'
s

M
E
T
H
O
D

(
F
L
E
P
O
M
I
N
)

|
fiction

1
function

2
I

function
3

function
4

function
5

function
6

ev
£

£
f

ag
f

f

1
24.2

215
2500

19192
R
y
,

30
20

3.50
0.037

1564
5.69

|
0.0226

1,76

40
|

0.122
|

3.50x104
2.46

0. 846
2.8

x10°9
|

9,88x
1079

50
|

0.0522 |
5.33

x 1079
4.56

x 10°°
0: 364,

5.2
x
1
0

|

7.8%x10°9
30

|
0

1.8
x 10°43

5.05x
10729

|
0.075

9.79
x10722

|
681x109

100
B.68xI0

>
|

1.16
x 10710

6.45
x 1079

120
5.95

x
1079

140
5.17

x
1079

160
4.56

x
1079

18¢
|

3.63
x

1079
20¢

3.01
x

1079

30C
|

2.57
x

1079

The
n
u
m
b
e
r

of
function

e
v
a
l
u
a
t
i
o
n
s

is
a
p
p
r
o
x
i
m
a
t
e

to
the

n
e
a
r
e
s
t

twenty

hundred
and

for
clarity

concerning
function

5,
the

results
for

the
set

(0,
20,

1)
only

are
shown

in
this

table.

or
h
u
n
d
r
e
d

if
it

is
m
o
r
e

than
two

30.

F
L
E
T
C
H
E
R

A
N
D

P
O
W
E
L
L
'
s

M
E
T
H
O
D

M
O
D
I
F
I
E
D

BY
F
L
E
T
C
H
E
R

(Flepomin
Modified)

i
function

1
function

2
|

function
3

Sranenien
4

|
function

5
function

6

ev
f

i
f

|
f

|
f

f

fee
eo

215
|

19192
|

2.087
30

1C |
3.88

154.
36

9
22,

50
|

0.026
0.053

2¢ |
3.07

3.24x10°9
|

2.89
14.02

;
0.0132

9.67
x

1079

30 |
2.84

2.55
x

1074
|

0.0936
¢.750

|
7.06

x10°9
|

257
x10

40|
1.307

Be2o
ion

|
2,23

0.727
C6

econ

50]
1.12

2
8
0
x
1
9
0
"
 °

9.702
Oe)

ies

60 |
0.109

5.20
x
1074 |

1.19
x

1079

70 |
0.020

|
[

201
x10

°°

80|
1.129

x
10714

8512.11
x

10724

H
e
r
e

again
the

n
u
m
b
e
r

of
functions

e
v
a
l
u
a
t
i
o
n
s

is
a
p
p
r
o
x
i
m
a
t
e

to
the

n
e
a
i
e
s
t

10,

31.

- upper corner; Actual run time of the program

- lower corner: Number of function evaluations

single | Pegs [ripoain | Ropers

3 1 1 6

Function +

147 163 80 87

13 WZ 8 7 O13

Function 2 em es

202 a 314 109 va 64

13 2 6 Ha h we .

Function 3

6 3

Function 4 Ra

103 74

byt
Funciion 5

161 84, 69 46

1613 145 182 25

Function 6

2000 va 527 278 34

Run time in seconds

1613 145 182

2 i

fmee) function 1

(224 function 2

(== function 3

{7229 function 4

{SSM0 function 5
(S55 function 6

 1

Flepomin modified

33.

ber of function evaluations

2000

GEN fundion 1

Wfunction 2
[==jfunction 3

PZZjfunction 4

&SM function 5

{253 function 6

L
i
t
t

Flepomin modified

73

 Lt

Litilt

Flepomin.

 a

S
S
a
e
|

(RT
[|

Powell 64

laa
 LTT

aS
1
S

—

c
a
e

S
o
r
e

 Simplex

34.

2.3 Conclusions

The main purpose of this study of algorithms for unconstrained

non-linear optimisation problems was to find the most efficient

method which could be used as a sub-routine when writing programs

for solving non-linear constrained optimisation problems,

At a glance, from the last tables, we can see that the Simplex

method is a rather lengthy process considering the number of function

evaluations and the run time, both are higher than those of the two

other methods, However, we must say that the method will converge

in some cases where the others failed as they try to locate the

minimum along a line too precisely, eg, function 5.

The results obtained by the Fletcher and Powell's method and

the Powell (64)'s method, both performed remarkably similar

both possess quadratic convergence, ie, the property that they will

converge to the minimum of a quadratic function in a finite number

of steps and although such functions rarely occur in practice, it is

nevertheless found that methods with this feature converge more”

rapidly, particularly, of course, in the vicinity of the optimum.

However, one advantage of the Powell (64)'s method over the

Fletcher and Powell's method is that it does not require the calcu-

lation of the derivatives and this is why, at first, the Powell (64)!s

method was chosen to be the common sub-routine for the programs

solving the coustrained non-linear optimisation problems.

Unfortunately, it will be shown in the next chapter, that the

Powell (64)'s method failed when trying to solve larger constrained

non-linear optimisation problems (eight variables and more),

The modified version of the Fletcher and Powell's method would

have then been the obvious choice for an alternative sub-routine, but

the modification suggested by Fletcher for the Fletcher and Powell's

method) had not been published then, Therefore the only choice

left was to rewrite the programs using the Fletcher and Powell's

method,

35.

iil

CONSTRAINED OPTIMIZATION TECHNIQUES

3.1 MATHEMATICAL DESCRIPTION

3.1.1 Kowalik, Osborne and Ryan's Techniquet®

This recent method due to Kowalik, Osborne and Ryan is in fact

a method combining a modification of a method due to Morzison and

a method due to Schmit and Fox 8)

function,

to bracket the optimal value of the

First of all let us consider Morrison's method, Consider the

problem:

Minimise fQ)

where f is a scalar function and x a vector Xq2 Xgr coco, My subject

to gC) = 0; 1-1, 2, ..405 Di DX De

A solution to this problem is assumed to exist and is denoted by

x, that is gG = O and if g(x) = O then f(x) = f@. The problem is then

transformed into a sequence of unconstrained minimisation problems

using a parameter x and takes the following form:

a is @,60"

or

Let Xi denote the solution to the problem. Morrison has proved:

(A) minimise FG, XO = [8G - XI
x i u

1. if 4,.< fC) then FO) <f@

as fuego is a monotonic non-decreasing function of Xy

Gs if xs is defined equal to X 1c Yl FGGD

' M and if X,. < fG) then X 1415 f@

4. the sequence , <i ‘for j= k+1, k#2, ..e.> +fG as
{ 4

j-»eoand the sequence pet \ approaches the optimal

solution from below.

M
Xx z is called the Morrison's parameter,

37.

The second method, used by Kowalik (et al.),is the tangent

parameter sequence suggested by P. Wolfe in relation to Morrison's

article,

T
If we denote Xigy as being the tangent parameter, then we

define:

tia =X, + FO; X0/ LFGy 1x = 2
ST

The sequence ; a \ also approaches the optimum from below under

x
certain conditions but in general at a faster rate, The justification

of its use is as follows:

justification

Consider the (f, g) space (Fig, 1). P is found by minimising

F(x, X) then from geo metas considerations: X, +\ IEG, Xs

the point on the f axis (0, X 1), clearly this is closer to the

optimum than X,.

Wolfe noticed that the tangent at P gives even a better point

(,X).

The formula is derived from the fact that the circle has for

equation 3

2 4 EF OKO SB ¢g f+ 7 ke BOY,

Writing the equation of the tangent and putting g=0 to get the inter-

section of the tangent with the f axis, we have:

FGqy XO = 0 + Oy) = X2EGd - XO

for f we have:

F&,, X,)
Pie he eee

k FOq) - X.

which is the required result,

38,

feasible region

tangent

 optimum value satisfying the
constraints

2 Cp = g7 + G0 - x,

Now. having justified the use of

T f = y

Xia * Xe + F Og %O/ FO. Ae 6275? C -

provided WX}, 41S fG) then we can use the parameter sequence
¢ Lee a A {x,} = {x5 \ je kt, kt2,, o2 in (A) and X}.,, being
greater or equalto X ket it should converge to the optimum more

rapidly.

We saw earlier on, in Morrison's method, that we require an

xX, subject to XS fG) therefore we need to find a lower bound for

X, to initiate the process.

The third method, used by Kowalik (et al.) is Schmit and Fox's

method which enables us to bracket the minimum, This method

proceeds as follows:

LetPog p § x:g() = 0 and let Y = max, _p f(x); then if

f{Q< X<Y, then X offers an upperbound for f[G@. fGd<X<Y will

hold if minimum F(x, X) = 0. However, if minimum F(x, X) # 0 then

X<f@ consequently X offers a lower bound for fG@). Therefore we

examine the value of F(x, X) for the sequence of values

Xe 1% k=i1, 2, When we reach an Xx, sub ject to FOX, OF 0

then X, is a lower bound for fG) and Xp since minimum F(x, X,_,)=0

must be an upper bound,

yl is used in this Another modification developed by Kelle

method to deal with all types of constraints. This approach converts

the inequality constraints into equality constraints by using the

Heaviside function H(t) defined as:

HQ) = 1lift>o

H(t) = 0 if t<O

Example

Using the Heaviside function, h(x) is transformed into:
hve

£G) = hd H |= hGd] = 0

40,

Theorem for Convergence

For x4.P @ closed bounded region) we assume:

1. f(x), gGd are continuous

Ze there exists a solution to the problem

3. FOq) = min Fa, XO) can be found by any methods of

unconstrained minimisation and FOq) 20+ #Qg) <f@

then we can say there is convergence and the limit

point of the set x, for k=0, 1, is a solution to

the problem.

Proof

From assumption 3 we conclude that there exists an upper

bound and lower bound for fG) and they can be found easily.

There is an increasing sequence of X, for j = kt+1, k+2,

bounded by f{G). As the sequence x, converges, therefore X ji

converges so that:

FO) 0 asj

giving: =e

5 a,(x,)-90 asj +4 @

isi

8G) - X10 as j +-eGD

Let xbe a limit point of Xe There is a sequence of points Xj

converging to x; « From assumption 2 and equation (I) we have

g(x,)=0; therefore Ge) f@). We know too that fag ps £GO and

this gives f(x,)< £60.

Remarks

The problem might not terminate in a finite nu mber of steps.

Keeping an upper bound for f@ we ensure that i cannot be

accepted if X >Y. This could also give minimum F(x, X)> 0.

4l.

This is unacceptable as X would tend towards+s— In such circumsi-

ances we have a stationary point

-ViGd) + X)VECx, 0) = 0

so there are two possibilities:

(a) x tends to an unconstrained local minimum of f

(b) f(x) tends to +-as X tends to +,

The whole algorithm an be divided into two phases:

te Phase I sets the bounds;

2. Phase Il is the actual minimisation process. We can

now give a step by step description of the whole

algorithm.

Phase 1

I Set XE T @ closed bounded region);

Senx = £Ox,)5

Setk= 1;

Il Minimise F(x, x,) tofind x,;

X = Xe - step;

i ie “EPS then set 1) step = 2 x step,
’ 2)k= k+l

goto Il else BU = Xe (BU is an upper bound for fG))

goto IV;

Phase Il

I¥ Set BL = X, (BL is a lower bound for f@);
T

V Compute Xy 445 Xia

VI Sctk=k+1

Set BL = xM
c . c M

TEX, < BU then Xe = Xy else xX =X ke

VIL Minimise F(x, Xe find x,;

42,

Vill 1f\/FGq) > EPS then goto V else BU = X,;
If BU - BL <EPS then goto FINISH else Xx, = BL and goto VII.

FINISH: END OF PROGRAM

43.

| : |

step=stepx2

f YES Ts (FG eee piers fe ee ee

choose x
initial feasible
starting points

set X =f(x,)
'

~

k=k+1

race

wv

Xyek 47step

Min F(x, XO to find X%

Y

a

|
|

NO
L

BU is the upper bound
for fG)

BU=X,_4

L

BL lower bound for
£GO,

 BL=X,

7
v

Compute

ao ——<ig x1 < BUT >——>-n is
TT

ee I Noor reesei

1M it
- wet? *Yed

kek+1

L
BL=x¥

Late Pe

ym
Min F(x, X,)to find x, ie fi k

|
———IN© 7 BU=X, X,=BL

7 j <eiv-ars EPS NO

YES
ae

44. FINISH

Ultimate Convergence Criterion

In this case the values of the lower bound and the upper bound

of f(x) are considered,

If the difference between the two is less than EPS (a small

preset positive value) then the program stops.

Comments on the Program

The program has been written in such a way that it could be run

with any minimisation sub-routine.

It has been tested using the Powell (64)'s method and the Fletcher

and Powell's method,

By using the Fletcher and Powell's method, two external

procedures are required:

De, Procedure TEMPCAL (Temp, x)

where temp is an arry (O0:m)

Temp(0) being the objective function and Temp (1),

Temp (2).... Temp (m) are the constraints. This

procedure calculates the value of the constraints and

also the sum of square of the constraints set equal to a

real number t, and where x is an array (1:n);

2. Procedure TEMPDCAL (Tempd, x)

where tempd is a matrix (l:m, 1:n).

This is the matrix of partial derivatives, and where x

is an array (1:n).

It is obvious that the procedure TEMPDCAL is not necessary

when using the Powell (64)'s method as it does not require the

derivatives,

45.

The procedure OPTKOV is a seven-parameter procedure.

They are as follows:

x

XK

XKT

XKM

STEP

EPS

array (1:n) containing the feasible starting point;

real number calculated inside the program but originally

equal to the value of the objective function of the

constrained problem;

real number calculated inside the program representing

the value of the tangent parameter;

real number calculated inside the program representing

the value of the Morrison parameter;

real number by which XK is decreased each time};

real number representing the value of the penalty

function minimised in the sub-routine;

representing the stopping criterion, usually EPS is a

very small positive value.

The main problem in preparing data for the program is to determine

the step by which XK is decreased.

This is difficult to determine not knowing the behaviour of the

problem.

A method of trial and error has been used to solve the different

problems and it showed that the step could vary between 0,125 and

2. and a wrong choice of the step could give a wrong optimum

answer,

If the lower and upper bounds to the problem are known then

this program could easily be used feeding in BU and BL and starting

the process at Phase II,

46.

3.1.2 Powell's Method for Constrained Problems “!7?

This method deals with a general non-linear programming

problem of the form: Minimise f(x) where f is a scalar function and

X a vector X14, Xp) overs XY subject to g{CO=05 im lye 2s, os oe tte

First of all we assume the problem has a solution and that the

given functions have continuous second derivatives.

The problem is then converted into a sequence of unconstrained

problems having the property that the successive solutions of the

unconstrained problems converge to the optimal answer.

The method depends on two sets of parameters @, sees Os

©] ese 0,,), for which we calculate the vector of variables x, to

minimise ¢

n

GG, 0, 0)-FO+S 0,[e,60+ a, 2
i=

Computation experience has shown that the required solution can be

obtained for moderate values of the parameters - consequently

avoiding difficulties experienced by Fiacco and McCormick

method (See. 3. 1.3).

The method is based on the following simple theorem.

Theorem 1 If the values of the variables x which minimise

Q(x, J, @) are EC, 9) then © (0, 0) is a solution to the constrained

problem:

minimise f(x)

subject to g; = g; (E@, ©)) i=l, ...-,m

Froof If the theorem does not hold and the variable E*O, 0)

minimises f(x), then O(E* < OC €) which is a contradiction. This

means we just have to obtain the values of the parameters (0,0)

such that:

a,(EG, &))=0 ied, cee ean q@)

so the process is based on an iterative adjustment of the parameters,

47.

For instance if m=1 and OZ is fixed, then by adjusting oy we

provide a line of points <Q, e) in the space of the variables and if

this line intersects the surface 84G0=0 we just have to calculate the

value of ,-

So we try to satisfy (1) by adjusting 0, 0 being fixed.

As the equations are non-linear the adjustment of Q could involve

a lot of computations. However, it is found that the following

adjustment works well:

Q; + gG)-0; i=1, Bye een Ot

Computation experience has verified this works well as long as 0; is

large and Powenl!7) has given a theoretical justification br

adjustment in this manner.

So in fact this method consists of adjusting the parameters by

applying the correction unless it happens that max; \g,(c)| fails to

converge or converges too slowly to zero when 0 is increased,

It is now very easy to write a flow chart for the program,

k being the number of iterations, c. least value of max, |e,Ce)| .

At the beginning of the process c, as where A is very Vee positive

number exceeding the magnitude of | g,Go | all i. If switch is 'down',

it means we har just chosen anew vatue for Obut if switch is ‘up!

it means the correction has been applied in the previous iteration.

We go on applying the correction as long as we get a

convergence: for instance c, = i CK otherwise we increase 0,

If O, is increased, we adjust @; so that the product 0,0; is

unchanged,

Let us call &*, O*, 0* the optimal values of <, 0, @ then from

the condition:

48,

we derive that:

r

Ox. i

m
BEX 3 NO” of ac ro

Z. i “i Bx
j iT

7 * jo dxst

Therefore the final gradient vector of FQO is a linear combination of

the final gradient vectors of the functions gd and the appropriate

% %
linear factors are -20 5 O° i-1,2.... m. From there we derive

another theorem.

Theorem Il If our problem has a unique solution, and at this solution

the gradient vectors of the functions 8,Go are linearly indepen dent,

then for i=1,2, m, the final value of oO; Q; is independent of the

parameters.

The algorithm is described step by step and schematised in the

following flow diagram.

49.

Flow Chart

I

TL

Iv

vi

VIL

Vill

\XK

XI

XI

XII

Set k = 0;

Set 0; =1;

Set 9; = 0;

Set ce as

Switch down,

k= k+1;

Calculate € to minimise 6G);

o.= as 1e,)| ‘

IF c, is small enough then goto EXIT else goto IV.

TE OF G4 then goto V else goto VI.

Set Cy. = CR ye

If switch is up goto VII else goto VIII.

If switch is up then goto IX else goto X.

Set Op= 6; goto XIII.

Goto XIII,

Golo ML
if o.< a Sed then goto Xl else goto XIII.

Goto XII.

= 2 eas Ot g,&) and set switch up. Goto II.

if |g, bag. hen 0, = 10 0, and 0, = 0.10;. Set switch

down goto II,

EXIT: END OF PROGRAM,

k=0 [o,-100,) | 2
G,=1 0, 0. 10; ot
Cee © nol rk ‘|

1 fg = A \

| switch down ecco,
eee T ot

k= k+l | 0, = 0,
Calculate ¢ to min 6G) 0, = 0, + ACS)

cy, = Max PAG) \ switch up

 NO

a NO is switch up? > See SS
a

7 No

ace d Meee Sead 0,6 0, ere

Ultimate Convergence Criterion

From the flow diagram we notice that a variable cis used. To

start with this variable is assigned a value A, where A is a large

positive number exceeding the magnitude of 0,C0 for i=1,2,. sees, Ms

At each step, c decreases as it is assigned the value of max; 9,€)

and whenever the value of c reaches a certain value © (a preset

small positive value) the process is terminated,

Comments on the Program

Similar to Kowalik's method, Powell's method has been written

for problems with equality constraints, If problems with inequality

constraints have to be dealt with, the Heaviside function H(t) is used

(see Kowalik's method).

The program has been written in such a way that it could be run

with any minimisation sub-routine,

It has been tested using the Powell (64)'s method and the

Fletcher and Powell's method,

By using the Fletcher and Powell's method, two external

procedures are required:

i Procedure PSICAL (psi, x)

where psi is an array (1:m)

psi (1), psi (2), .-.., psi (m) are the constraints; and

where x is an array (1:n), This procedure calculates

the value of the constraints,

2. Procedure PSIDCAL (psid, x)

where psid is a matrix (1:m, 1:n). This is the matrix

of partial derivatives, and where x is an array (1:n).

It is obvious that the procedure PSIDCAL is not necessary

when using the Powell (64)'s method as it does not require the

derivatives,

The use of the Powcon. procedure does not give any problem.

It is a four-parameter procedure?

x array of starting point;

EPS small preset positive value determining the stopping

criterion;

RATIO integer number (the value suggested by Powell is 4 and

used for testing the convergence: the correction is

applied as long as cy Sate CK ps

M integer number equal to the number of constraints;

One point needs to be clarified however: a scaling problem arises

when choosing the initial values for 0; and 0;. Oj=1 and O;-0 is a

good initial choice.

3.1.3 S.U.M.T.

Sequential Unconstrained Minimisation Technique (SUMT)

developed by Caroll, Fiacco and McCormick. (3,4,5,6,7,21)

Originally the problem is as follows: consider a general

non-linear problem:

minimise f(x)

subject io gG070 isl,, m x=O4 Xp, seeey X)

On applying SUMT this ordinary constrained problem is reduced to a

sequence of unconstrained problems o the oe form.

Le Minimise P(x, vr) = fd + *D 4° where r,.7 0 and

1 Gd) defined only if 8,G) > 0. TE Tey TyePO as k-». .> In order

tb prove the convergence of the system, ie. that x(q) % and

POG, 1T)> »fwe med to set up a certain number of conditions

usually attached to non-linear programming,

53.

1 P,f are convex;

Il 2,00 a are concave};

I R°= a ,8,09>0, Hed, 2, ences m} is non empty;

IV___ the tune f; Byr eeees By are twice continuously

differentiable ;

Vv for every finite k, j \ xl £0 sk; i er} is a bounded set, where

Re \x |e,G07 0, aie Seles mi

VI the function P(x,r) = fQ) +r pe. 1/g,60 is for each r>0,

strictly convex for x R°, x

Proof of the Convergence

If the conditions 1-6 are satisfied, then:

@ each function P(x, r, e is minimised over R° at a

unique xy dé R° vine VxP [xon}-

Gi) Lim, nF | xe,) " = Min, op £QO = v°

Proof for Gi)

Let us call x, the starting value vector My = POs rs We

now form two sets:

(a) S,= § x |fG).<M,, xé Rj

Se ee Co (b) S,)x\r,./g.G0 <M } - Yoh imLieceey a
°

Om

©. 7 S\i0

From this it follows that:

inf,.g P(x, mr) = inf, po Py NIZVQ7 = =

But S is non-empty, contains no boundary of R so from condition 1V

and the construction of Sj, ++++, Sa P(x, r},) is continuous in Ss

« denotes optimal value.

Since the greatest lower bound of a continuous function,

bounded on a compact set is taken on by a point in that set, then at

least one x(r,) exists.

As P(x, ri is strictly convex in Ro there exists only one

x) and also there exists only one local minima to P in Ro:

Proof for Gi)

Let £70 be any positive number, Then select an x* such as

x= R° and £Cx*) avr €/2. Select k*¥< nin, 3,6) £]2m, Then

for m= m*:

Vos inf, po PG; xr,

C 4 %, oe *
vo = Pixs rx| <P [per ; *% |< P |x» ry

fe *) c c
Vos P Ix 5 TIS C2 c/2=v, 4&

This technique can deal only with inequality constraints.

In 1965 the technique was extended to deal simultaneously

with inequality and equality constraints,

The ordinary non-linear problem is then:

minimise £G0d

subject to g,Go BO git Ly cceeng eit

h,G0 = 0 “jad; eases D

and the sequence of unconstrained problems becomes:

m

minimise PG, 1) =fG0+n, S 1/¢,G0 + ~ 2? -od/*r,
er $r

55.

Primal Problem with Inequality Constraints

Using SUMT, the primal of a problem becomes:

m

Minimise P(x, 74-1604", 5 1/¢,60
fr

In order to be able to solve such a problem we need to formulate the

dual of this problem.

Dual Problem with Inequality Constraints

The dual may be written as follows:

m | \

(1) ~=—- Maximise {6 u) = £G) ars g,00! VxG(x, u) = 0 ior
: y
i=

Mr Sh eee eee”
Maximise 4fG)- 5 u, gd) ——=0 oh extn ees Gd) one aie crag a a wy

Any (x, u) which satisfies VxG(x, u) = 0 with u 70 is a feasible

solution. Expanding VxG(x, u) we have:

|

VIG =) 4, Vx, 8, C= 0
i=l

¥,f09 ic / wy Vy 8 oO

1s
4

A sufficient condition that x be a solution to the penalty problem

is that:

m
Vy8{00

ee ae
i a

BR vig.
ao te oe uy 0

g, G9 e

56.

Hence:

m GO gy0o-Sayyygeare ES
JT E130

 and u, = E which satisfies u z70as r>O and > 0.
i 2, i

gO

Thus if x(n) is the solution vector to P(x, r,) then xO;

ur) will be a feasible solution of the dual problem (1).

The corresponding value of the dual objective function would be:

m

GOCS_), UCB) = (r,)- 7 a
aR oie a gy)

An important property of dual programming is:

£00 > £GO > > Gx, u)

but:

m i
Px, r)>fOd as P(x, rv) =f) + a

fr 800
a

where r a. goo”

Therefore:

P(x, 1) >fGO XG, w

Using the fact that the P-value and G-value constitute respectively the
A

upper and lower bound to the optimal value f, and that they would

converge to it from opposite directions, we can set a stopping criterion

for the termination of the process.

57.

This could be that the difference between P(x, r) and Gtx, u)

must be smaller or equal to & (£ being any small value we care to

choose).

Primal Problem Including Equality and Inequality Constraints

The problem is then as follows:

Minimise f(x)

subject to gx) 20 for i=1, «...+, m

h,Go = Oforj«1, «eee, P

and the penalty function becomes:

m

P(x, r= fQ+r Ue 1/g,C0 + > sao!

=
isl

In order to avoid difficulties we can have when we have local minima,

we require that the points satisfying the constraints of the problem

should form a convex set. Similarly as for the first problem, there

are conditions to be attached to this one.

in The function f(x) is convex;

5 27560 is convex in R;

551

IL The functions g), «+++, g,, are concave;

UL WF Q= {x{h,Gd=0, je, «+6, P| and
Roe {x}8,60 0, i=, «+22, mt > R°NQ non-empty;

IV The functions f, Sys veces Sap hy, seces be are continuous;

Vv For every finite k, and every r>0,

(— 2. $:
\x| fGO+ > hb jQO/r7¢k, x€ RS is a bounded set where

‘eI
R is the closure of R°.

58.

If the equality constraints are linear then condition V is reduced to

{x \fGO0<k; x€R4Q From conditions 3, 4 and 5 we derive that

there exists a finite number v, where v, = inf x ROQ= min xERNQ

From conditions 1 and 2 we derive that P is convex in R°

m

V1‘ The function P(x, r) = f{Q) +r PH 1/2,G0 + 2 12460/r? is,

is =

for each r>0, strictly convex for x € Roe

Proof of Primal Convergence

If all these conditions are satisfied then:

(a) each function P(x, r,) is minimised at a unique

x(n) € R°;

(b) Lim ees er [ads "| = ming q gf =

(c) The unique limit point x" of the uniformly bounded

sequence { xq) (is a solution to the primal problem.

Proof for (a)

° oO
XE Rand M” = PQS» ry.

a
Form the set S, = $x 1#G0 + S RIG [rE <M xé€R

‘ j 2 HT —
‘y= ffs | #69 +S hy G9/r;| | Vic < My a8 T 5 1/g,%.) >9|

Now form the set :

(¢ {
51> eee etn) ieljgeneg

Sane
iO “i

From this we derive:

inf P(x, 1) = info POG xr, >- eo

59.

Since P(x, ry is continuous in S, it takes in eeaniest lower

bound in S. As P(x, rn) is strictly convex in R° we can say

that the minimising point xr) is prdie in S and also that no

other local minimum exists to P in R°,

Proof for (b) and (c)

Let £ be any Dee number Bnd select x guse that

xé R° ae Me Q fx *\< vot c/o) andes suchas ns min g,Cx “SE /2m||

Then for k > ke 3

At infpo Px, n= P P@Q, | < PO’, rs PO’, no<

co ¢
Veit €/2+ E/2-vi+€

Now suppose we have an integer k greater than k” and we define

ahs

T= Sx (£60 +) nPoo/et eve +2; x€R {
<

= § x {£60 +51 ?00/ef < ve ne 7 exe R

where L>k. By condition 5, Ty and Ty are overs sets. Also,

since ry < Ths T,CT,. Te is a empty since x|F | is contained

in it. So;

f fxr) | > met fd zmin,, T% fQO> - c=

and pe § i is uniformly bounded. It has a unique limit point since

2 Ix, Th, is strictly convex, Then we can rewrite equation A,
* *

For art _>0, there is ak () such that for L>k @s

Bivjrt ot |x| try i” 1/g; Prory)| e \ 33 free] [xt

Because the three terms of the right hand side of the inequality is

bounded below it is possible to show:

1, each term is bounded above;

25 Lim, , 5; [ep O for j=l, - a Dp ane consequently

the limit point x of the sequence ev) is primal

feasible (x« R“Q).

If either ry Ve 1/ & pcrp| or \ x5 fry)! i rt has a limiting value

greater than then f(x) = limy Pa aes {xGr,) must have values less than

Mey (from B), This contradicts the fact that Ve is the smallest value

that any primal feasible point can take on. Therefore:

rc +
f

35 Lim, , oi) 1/g, pe p| = Or

. 25 a
Lim) 8) pory)| /rj = 0

Lim, | = f (xe) | =Vo

i
4. Lim; ,P jx)» “| =o:

From this point we assume that the problem functions are different-

jable and the condition IV becomes

The functions f, g1) +e++» Sy? hy seers he are twice

continuously differentiable. “

Since a necessary condition that a point be a local minimum of

an unconstrained function is that the first partial derivatives vanish

there, we can say from condition IV and from the proof of convergence:

Cc: VP ix, *| =0

Dual of the Problem

The dual is formulated in different ways depending upon the

nature of the equality constraints, if they are linear or not. If

they are non-linear then we rewrite the primal problem in the

following form:

61.

minimise f(x)

subject to 8,0 Ol i=l, Seep, Mm

- h(x) %0 jel, o0e05 D

Then the dual is:

max G(x,u,w) = fGd) - gC a vy G0

m me
S

,

subject to Vx Gix,u,w) = 0

u,z0 isl, «-.-,m

wiz0 ded) seis sD

If h.'s are non-linear, we do not know if the solution of that dual

coincides with ve the minimum value of the corresponding primal.

However, it can be proved that the method generates points

which are dual feasible and whose G values bound v5 from below.

Let ud = ies [xe] for i=1,, mand let

wim = 1r,° for all j. Then from equation C it follows that

.
V,G| xO, ur, wee, | =0

Let oe be a point in RMQ where kG) 20 and let Ax = a - x -

Then:

Vee ie) + neo nf @) zy

4 ‘a 3
f ben | + rh a nf perp}

|

- ae ‘| } ib
| Mad [x] +! Zh, feo [v0 femal) 4,

by convexity of f and ny condition I

62,

=f [xen] + ed oe ne xem] +

2 1 7 r 4 ;

Ty x & [xe | Vi & x0 A, from relation (C)

7 ron + ng? oa ny xed]

nL si? hemp] iF 8, pera] + 46°]
by concavity of 8 condition IL

3f fro2 | ar bf [x@pl- 5, D Ve, hte,

(since go) >Oas ne RAQ) =G x5 ur), wr)

From now on it will be assumed that the h,'s are linear therefore

condition I Gn primal problem) is being replaced by the following

condition; The function f(x) is convex and the functions h.Go)

jel,, pare linear. If this is the case then we can write the

primal problem:

Minimise fG)

subject to 8, G0 yO i=l, ..0.,m

h,G07 0 fim ig e pee

“hO 0 fadsteasc') DP

Wolfe's theorem proves that if the primal has an optimal solution at
*

a point x then the dual problem:

Max G(x, u,v,w) = fx) + > u,8,Cd + wjhjGo - 2 VR,

subject to Vx G&x,u,v,w) = 0

uzO

v>O0

w>,0

; * * * * * * * ®,
has a solution at some (x , u, v , W) where G(x ,u ,v ,w)=V,

63.

Initial Value of R

Two alternative methods of calculating r are suggested by

Fiacco and McCormick in, @

As they stand they are applicable either when there are no

equality constraints or when x°(initial starting point) satisfies the

equality constraints.

(a) r= Vi) Vi pi /\Vv px >|

(x) = /g.G0 t 1/g. where pGc > gc

This comes from the condition that P is minimised when the first

partial derivatives vanishe so ry should be chosen in such a way

that it minimises the magnitude of the square gradient of P at x, .

Note that as ry must be > O then:

viG)! vp<o

(b) Let us call Hy the Hessian matrix of f(x) and Hy the Hessian

matrix of p(x), both calculated at x°, Then the magnitude of

the gradient gives an estimate of the amount by which PG; r)

exceeds its minimum value which is:

De Vp, mo [Hyp] ao VPQX°, 1/2

if Xe is near several constraint boundaries, Hy can be elminated

then the value of r for which (D) is minimised is:

4

= H51 viGe)
eet
TeGo)> H3! Vp@°) J

Approximation and Extrapolation

Experiments showed that the trajectory of x(r) is approximately

linear in r* as r approaches 0, That is to say, for a small r:

x(r) = X + ert ‘

and x(r/c) = X + a(r/c)*

X being a feasible point considered as an estimate of the solution,

a being some constant, c being the constant by which r is divided at

each iteration.

The first order estimate of the solution is given by

eliminating a from the two previous equations:

oo 4 4
X= (ce? x(r/c) ~ x))/(c?-D

Then the first order estimate of pointsfor which P(x, fe) isa

minimum is obtained by assuming:

pe a
x(r/0?) =X + a(r/ <2)?

and we get:

x(e/c2) = x(r/¢) + 1/ o [x¢e/ ©) - x@)|

In practice the function P(x, r/) is minimised along the vector

connecting the last two minima. This has substantially reduced the

effort required to minimise the P function,

Updating the Value of r

Two observations are made with respect to the manner of

reducing r after each P minimisation:

as It is highly advantageous to change r by a constant

effort;

65.

2. The overall effort required to obtain a solution is

relatively insensitive to the choice of factor, over

a wide range of values of this factor.

The value of r, suggested by Fiacco and McCormick, for the

Geb minimisation is given by r.,, = r,/c where c>1, & YT i47 2

The whole algorithm, step by step, can be described as

follows:

I

TL

IV

VI

Select a feasible starting point x°;

Calculate a suitable initial value of r;

Form the function

m Re De
PCY, 1) = £60 + 1, a 1/c,Gd + 17 ay 13

i= =

Find the unconstrained minimum of P(x, r) in:

G . 2
We S px/e,00 mOtor I=L 2. jeavie 5 PS

The starting point x° has to be quasi-feasible ie, xPE Wis

Starting from the minimum of the unconstrained function

PG, ry) which is called x@) minimise P(x, Yo) where

ry> Py > 03

Continue to minimise P(x, nr) for a monotonically decreasing

sequence of values r, where:

lim r, = O when k + os

This algorithm can be schematised in the following flow

diagram.

66.

k=0

Find x°

initial feasible starting point

Set initial r

m epeDeeeg
Form P(x, rT) =f) + They 1/¢,Gd + ry = hj

 Ie
2. 2 2

Form D(x, r,) = £GO - ry, 1/¢,G0 - re} LS)
ea = es

Eee a ee

min PC, ry)

Calculate ABS(P-D)

r=r/¢c

EXIT

The flow diagram might look very simple but in fact difficulties arise

when minimising P(x, r) as the constraints have to be satisfied at

each step.

Full comments will be given in a following paragraph called

‘Comments on the Program’,

67.

Ultimate Convergence Criterion

In the description of the algorithm we proved that the primal

and the dual of the auxiliary function converge towards the

optimal value from opposite directions therefore the most sensible

stopping criterion is to evaluate the difference between the Primal

and the Dual. Whenever the difference is smaller than £

¢ e being any small positive value we care to choose) the program

stops.

Comments on the Program

The procedure SUMT has three parameters: X | tone | is the

array of feasible starting point; EPS is a small positive value

Gf the difference between the primal and the dual of the function is

less than EPS the program stops); RATIO is an integer number

defining the value by which r is reduced after each iteration.

The use of the program is simple once the following

modification has been included.

After each minimisation of P(x, ry) we need to check whether

or not the constraints are still satisfied. If they are not, this

means the step by which x has been decreased in the minimisation

procedure is too large, therefore we divide the step by a certain

quantity until all the constraints are satisfied. This is applicable in

the case of inequality constraints only.

SUMT has been tested with the Fletcher and Powell's method

only, and the modification introduced in this method for the

constraints to be satisfied at each iteration is shown in Appendix II,

Also within the procedure FUNET in Flepomin we calculate not only

the penalty function but also its dualD=f(x) = r a 1/g.
is

By looking at the structure of P(x, nr one could think that

difficulties Ge. overflow) might arise after a few iterations when

vr becomes very small, But this never happened in practical

experiences,

63,

3.2 Computational Results

The three programs, OPTKOV, POWCON and SUMT have been

tested with the same functions and same convergence criterion so

the comparison of the results could be fair.

The functions used are:

Function 1 suggested by Fiacco and McCormick

Minimise f(x) = Cy + 3/3 + Xo

subject to Xy- 1>0

XQ> 0

This function has a minimum at f = g and x = (i, 0). The starting

point used is x° = (1.125, 0,125).

Function 2 Rosen-Suzuki 's problem

Minimise f = 3 + cs + 2x, + fe - DXy - 5Xq - 21x4 + 7x,

subject to - fo xB = xg = XZ Hy xy XQ tH, +870

x ~ xf = 2x ~ xf + xy +x, +1070

2
iL

- 2x7 - x5 - x

N
N
O
N
N

W
h
w
h
d

+ 2x, +X +x, +520

This function has a minimum at f = -44 and x = ©, 1, 2, -1). The

starting point used is x° = (0, 0, 0, 0).

Function 3 Beales problem

Minimise f = 9 - 8x, - 6x, - 4x. 4 Ox? + 2x2 4 x2 4 2x Xp + 2x,x.
1 2 3 1 2° °3 v2 1° 3

subject to x4” 0

XQ % 0

Xq 7 O
3

- X1 - Xp - 2x3 +370

69.

~
 4

This function has a minimum at f = Lana x= & 9° 9) The starting

point used is x=(0.5,0.5,0. 5).

Function 4 is a problem with equality constraints suggested by

Power?

Minimise f(Qxd) = Xq Xp X3 %% X5

subject to x7 + xg + xg + x4 + XE - 10=0

Xq - X3- Xj %X5 = 0

Siac a x7 # xD + 1=0

This function has a minimum at f = 2.9197 and

x = (-1,1712, 1.5957, 1.8272, -0.7636, -0.7636). The starting

point used is x = (-2, 1.5, 2, -1, -1).

Function 5 This problem and the two following problems have been

suggested by Dr. K.P. Wong?)

Minimise £6) = Gx, - 10)? + 5(xy - 12)? + x4 + 36x, - 1)?

+ 10x8 + 7x8 + me - 4x6x7 - 10x¢ = 8x,

subject to “2x0 - ag - Xt Ax, - 5X5 + 127>,0

“7x1, 3xq - 1x3 - x; + Xe + 28270

-23x, - x5 - Oxg + 8x, + 19670

4x0 - xB + 3x,Xp - 2x3 4 SX 11x, 0

This function has a minimum at f = 680.97 and

x = (2.30, 195, -0.47, 4.37, 0.51, 1.03, 1.58). The starting

point used is x = (1, 2, 0, 4, 0, 1, D.

70.

Function 6

Minimise £00 = oo be + xx, 14x, - 16x, + (xq - 10)? +
ea 1 2 ae ak ie 3

Ax, - 5)? + Gig - 3)? + xg - DP + XG +

Toxg - 10" + 2g - 10)* + Gy - 2? +45

x2
3

xe - 8x5 - (xq - 07 + 2x, +420
1 Zeca 4

subject to -3(x, - Be 4Gry - By - 2x + 7x, + 12020

~HGxy - 8)? ~ 26 - 4) - 3x2 + xg + 303.0

XZ - 2Ky, - 2)? + 2x 4x5 - Ldxg + 6xg7 0

4x4 - SXp + 3x, - 9xg + 10530

-10x, + Bxy + 17x, ~ 2xg> 0

3x1 - Oxy - 120%g - 8) + 7x49? 0

8x, > 2X5 - SX + 2x19 + 1240

This function has a minimum at f = 24,31 and

x @.17, 2.36, 8.77, 5.09, 0.99, 1.43, 1,32, 9.82, 8.27, 8.37).

The starting point used is x = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10).

Function 7

Minimise f(x) = x2 + x2 + X4X_ - 14x, - 16x, + Gx, - 10)? + Teg ao 1 2s

AG, - DS? + Gg - 3)? + xg - DP + SF +

7 &xg ~ 11? + Gq - 10)? #649 - 7? + Oy, - 9?

+1064 - 0? + 503 - TH? + bGu, = 14)? +

21x45 = 0? + x46 + Geyy - D? + 136g - 2°

+Go9- ae x55 +95

71.

subject to 30 - 2° - AQ - 3? - 2g + TX, + 12070

5x? - 8x9 - (xg - ©? + 2x, +4020

Hox, = 8) - 2x - 4)? ~ 3x2 + xg + 3020

wd ~ 2x, - 2? + xy xp - Leg + Gxg7 0

~Axy - 5xXq + 3x7 = 9Xg + 105 +0

-10x, + 8x5 + 7x, - 2xg x0

-3xy 4 6x5 es 120% - 8)" + 7x19 20

8x, ~ 2x5 - 5xg + 2x19 + 12%0

ok, Ge buy + 21xy,> 0

~x2 - 15x, 1 + Bxqp + 28 70

14x, - 9% 5x5 + 9x1, + 872,0

$3x, - 4xq - 3643 - 6)? + 1dx,, + 1070

-UbxG - 35xq5 + 79x16 + 9220

-15x3 - xy + 1x6 +5420

5x2 - 2x, + 9x4 + xg + 68>0

od + Xp - 19x49 + 20xyq - 193-0

2 Dee
“7X4 - 5x9 - X19 + 30X49 0

This function has a minimum at f = 130.60 and x = (2.04, 2.20,

8.74, 5.06, 0.95, 1.43, 1.33, 9.97, 8.17, 8.46, 2.31, 1.35,

6.10, 14.16, 0.99, 0.49, 1.49, 2.00, 2.64, 2.02). The starting
point used is x = 2, 3, 5, 5, 1, 2, 7, 3, 6, 10, 2, 2, 6, 15, 1,

Din 2, 1 3),

72.

As mentioned earlier on, the procedures OPTKOV and

POWCON have been tested using the Powell (64)'s method and the

Fletcher and Powell's method as a sub-routine, Results are now

given only for the first four functions as Powell (64)'s method

failed for the larger problems,

Function 1

Function 2

Function 3

Function 4

Function 1

Function 2

Function 3

Function 4

Looking at these two tables we can now say that the Fletcher

and Powell method is more efficient than the Powell (G4)'s method.

The difference did not show so much for unconstrained problems,

but now the minimisation sub-routines being called several times

the difference shows more.

From now on all the results tabulated have been obtained using

Flepomin as a sub-routine.

CPTKOV

with

POWELL 64 i FLEPOMIN

Function Run Function Run
Evaluation Time Evaluation Time

125 2 191 8

776 25 264 ea

497 17 324 18

1236 42 278 17

POWCON

with

POWELL 64 FLEPOMIN

Function Run Function Run
Evaluation Time Evaluation Time

329 2 86 1

1287 43 65 3

303 8 4 1

540 a7 \ 90 6

73.

As mentioned earlier on, OPTKOV is divided into two phases;

phase I finds the bounds and phase II is the iteration phase.

For clarity the phase I will be considered as being the first

loop no matter how often the minimisation sub-routine has been

called,

The number of loops is equal to the number of times that sub-

routine has been called in the whole process,

Function 1, 2, 3, 4 have been tested with EPS = 10°76 and

functions 5, 6, 7 with EPS = 1074,

The

F
u
n
c
t
i
o
n

1

O
P
T

K
O
V

P
O
W
C
O
N

S,
U
S
M
e
T
.

te
op

f
Function

Run
f

Function
Run

f
Function

;
Run

E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

220235)
3.3235

3.3235

i
2.

6658
26

0.1295
17

2
2.

666666
49

Te2oas
35)

2.9667
58

3
2.6660

57
2.2738

45
2.6966

85
4

2.6661
62

2.6000
53)

2.669
110

5
2.6662

67
2.6535

64
2.6669

135
6

2.6663
te

2.664
WL

2.6665
161

7
2.

6664
7.

2.665
82

2.
6666

188
z

3
2.

6664
82

2.
6664

93
9

2.6665
387

2.6665
102

10
2.6665

93
2.6665

117
oD

2.
6665

98
2.

66666
134

Zi
12

2.
66660

103
13

2.
66662

108
14

2.66663
114

!
15

2
.
6
6
6
6
3

119
7

F
r
o
m

this
table

and
the

two
following

ones
we

can
see

that
the

optimal
solution

is
reached

after
the

third
loop.

H
o
w
e
v
e
r
,

the
p
r
o
g
r
a
m

did
not

stop
there

for
the

required
a
c
c
u
r
a
c
y

(BU

-
BL)

<
E
P
S
,

was
not

satisfied.

73.

Function
2

O
P
T
K
O
V

P
O
W
C
O
N

S
.
U
.
M
.
T
.

L
o
o
p

f
Funé¢tion

Run
f

F
u
n
c
t
i
o
n

Run
f

F
u
n
c
t
i
o
n

5
E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

0
S
G

2
6

1
~44<.185

107
-44.0974

53
-41.

4680
38

2
-44.0019

133
-43.

9307
68

q
-43.

7580
74

3
~44,000

172
-43.

9758
113

4
~44.00

188
-43.9975

143
5

-44.
0000

198
-43.

9997
175

6
-44,000

209
-43.

9999
219

a
-44.000

219
-44,0000

252
8

-44,000
232

9
-44.000

249
ic

-44.000
259

i
-44..000

269
1Z

-
4
4
,
0
0
0

278
13

-44.000
287

22

76.

F
u
n
c
t
i
o
n

3

O
F
T
K
O
V

P
O
W
C
O
N

S
.
U
.
M
.
T
.

L
o
o
p

f
r
a
e

R
u
n

f
F
u
n
c
t
i
o
n

R
u
n

f
F
u
n
c
t
i
o
n

R
u
n

E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

7.29
7229

de2d

A
0,

1106
ae

0.
1094

23
0.7036

26

2
OntET1

dao
0.1110

43
0.

1548
63

S
0.1111

168
Osdkiit

61
23

0.1158
87

4
0.1111

ATS,
0. 11158

108

5
0.1111

184
10

0.11115
129

Goiitii1
149

4

77.

F
u
n
c
t
i
o
n

4

O
P
T
K
O
V

P
O
W
C
O
N

S
.
U
L
M
.

1.

Joop
|

Eatin | Rime |
[Etta | He |

ft
| Eraiiite | ibe

-
6
,
0
0
0

'
-
6
.
0
0
0

-
6
.
0
0
0

i
-
4
.
0
0
6
3

3
4

=3.
5026

32
-3.

5026
32

2
=3.

2615
65

-2.
8816

53
-
2
.
9
7
3
1

61

3
=
3
.
0
2
4
4

85
=
2
.
9
2
3

66
=2..9249

82

4
+=2.9515

101
+2.9194.

78
-
2
.
9
0
2
2

105

S
=2.9293

116
=2.9197

90
-2.91975

126

6
=
2
.
9
2
2
6

132
-
2
.
9
1
9
7

101
13

-
2
.
9
1
9
7
0

147
14

-
=2.9205

148

8
=2.9199

167

5
=
2
.
9
1
9
7
8

178

1¢
=
2
,
9
1
9
7
2

187

11
=
2
.
9
1
9
7
0

196

12
-
2
.
9
1
9
7
0

209
16

78.

Function 5

O
P
T

K
O
V

P
O
W

C
O
N

3
.
U
.
M
.
T
.

ee
f

F
u
n
c
t
i
o
n

Run
f

|
F
u
n
c
t
i
o
n

R
u
n

f
F
u
n
c
t
i
o
n

Run

P
E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

714
714

714

1
679

260
679.917

5
4

682.
305

100

2
680.

630
334

680.
985

101
680.797

141

3
680.

633
366

680.
629

123
15

686,
691

151

4
680.

632
38i

6
8
0
.
7
3
9

160
11

5
680,

632
386

38

79.

Function
6

O
P
T

K
O
V

P
O
W
C
O
N

S
.
U
.
M
.
T
.

Loo
f

F
u
n
c
t
i
o
n

Run
f

F
u
n
c
t
i
o
n

R
u
n

f
F
u
n
c
t
i
o
n

Run

p
E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

153
753

753

i
16.90

368
23.03

147
28.725

139

2
24.02

468
24.

28
193

24.747
233

3
24.

30
582

24.
28

199
24.

350
347

4
24.31

621
24.29

237
24.310

532

5
24.31

654
137

24.29
2
4
8

24.307
6
0
5

6
24.30

360
24.

307
656

54

7
24.30

272
61

F
u
n
c
t
i
o
n

7

O
P
T

K
O
V

P
O
W

C
O
N

S
.
U
L
M
.
T
.

L
t

F
u
n
c
t
i
o
n

Run
7

F
u
n
c
t
i
o
n

R
u
n

f
F
u
n
c
t
i
o
n

Run

oFe,
E
v
a
l
u
a
t
i
o
n

|

T
i
m
e

;
E
v
a
l
u
a
t
i
o
n

T
i
m
e

E
v
a
l
u
a
t
i
o
n

T
i
m
e

901
901

901

1
134.97

498
129.

64
178

136.409
244

2
133.

98
583

356
130.

23
200

131.073
416

3
130.77

215
130.

547
581

4
130,77

226
130.515

614

5
130.70

2
4
0

130.513
661

é
130.

248
248

130. 489
1120

195

7
130.

81
260

8
130.

81
270

207

81.

3.3235
S
t
a
r
t
i
n
g

value
of

f

F
U
N
C
T
I
O
N

1

i
e

o
e

’
s
i
g
e

tS

e
e
e

S
e

ie

a

Ss
miele

ss
a
e

2.666
|

seers
e
S

e
e

e
t

~
~

’
’

/ ‘
1 ‘ /

/
‘ 1 ‘ 1 / i

’ 1 U 4 d
.

,
e

N
!

ise
*

f 1 ! , i 1 ‘

t 1 ‘

i / /
‘

\
/

*
4

.
Z

i

,

,

f
u
n
c
t
i
o
n

~
e
v
a
l
u
a
t
i
o
n
s

$.

119
13h

.
188

FUNCTION
2

S
t
a
r
t
i
n
g

value
of

f

10
:

i
68

P
O
W
C
O
N

S
.
U
.
M
.
T
.

function
e
v
a
l
u
s
t
i
o

0
.
1
1
1
1

F
U
N
C
T
I
O
N

3

O
P
T
K
O
V

—
a
e
e
e
a
s
e
m

1)
P
O
W
C
O
N

me
e
c
e
e
=

§
.
U
L
M
.
T
.

84.

function
evaluation:

1
8
4

2
.
9
1
9

S
t
a
r
t
i
n
g

value
of

f

-6

FUNCTION
4 147

O
P
T
K
O
V

a

P
O
W
C
O
N

—
6
e
5

S
o
S

S
.
U
.
M
.
T
.

f
u
n
c
t
i
o
n

e
v
a
l
u
a
t
i
o
n
s

2
0
9

2

680
4

F
U
N
C
T
I
O
N

5

86.

funetion
evaluation 3

 2h ..30

 FUNCTION

6

—
—
—
—

 OPTKOV
w
-
-
-
-
-
-
-
=

 POWCON

m
e
e
e

ee
S
L
U
L
M
.
.

function
e
v
a
l
u
a
t
i
o

: Le
:

.
F
U
N
C
T
I
O
N

7

eee
O
P
T
K
O
V

e
e

a

e
e

e
e

’
\

Pr

|
:

m
e
e
e

e
e

-
S
.
U
L
M
.
T
.

Waa
V
e
k

%
a

\
xX

ee
1

x
‘

\
\

\

ne
*

\
-

\ :
1

\
NG

‘
\

:

.
2

o

es
112

130
a
c
e

S
e

a
c

e
r
e

0 met
mc
i
e
s

a
e
e
e

n
e
s

e
o
n
s

a
a
w
e

function
evaluations

120
2

A
.

-
200

270
:

583

3.3 Comparison and Conclusion

It is difficult to say which of run time and function evaluations

is the best criterion for judging efficiency.

If we consider the first three previous tables, that is to say

problems with less than five variables, the comparison is rather

difficult to make as both function evaluations and run time vary a lot,

With larger problems we can notice straight away that OPTKOV

becomes relatively inefficient considering both number of function

evaluations and run time, even if we look at them from the second

loop onwards once the bounds have been found.

If we now look at the results obtained by S.U.M.T. and

POWCON we see that the former is relatively good considering the

run time on the computer, better than POWCON, though requiring

more function evaluations.

Therefore we can draw two conclusions, depending upon which

criterion is considered for judging efficiency:

(a) if for some reason the number of function evaluations is

more important, then POWCON could be the best method

considered here;

(b) otherwise, if the computer run time is the most important

criterion, then S.U.M.T. is the best method.

89.

IV

FURTHER RESEARCH WORK

An interesting point discovered during various experiments is

worth mentioning.

We have seen that all three methods convert the constrained

problem into a series of unconstrained ones, At each iteration, the

minimization procedure is called,

Considering Flepomin, we can notice that at the beginning of the

program the Hessian matrix is set equal to the unit matrix and an

experiment has been made to see what would be the effect of using,

from the second iteration onwards, the Hessian matrix obtained at the

previous iteration instead of resetting it equal to I.

This experiment proved to be very successful, particularly for

S.U.M.T. For instance the results obtained with this modification

for function 7 are as follows:

S.U.M.T. (originally) 1120 function evaluations
195 seconds run time;

S.U.M.T. CGincluding the modification) 601 function evaluations
152 seconds run time,

The results obtained with POWCON including the same modi-

fication have not improved the results; this can easily be explained

as, in this procedure, two parameters O and Q change at each

iteration and this makes the Hessian matrix vary a lot from one

iteration to another,

With OPTKOV, when results were obtained, the modification

improved the results too, For example, with function 5:

OPTKOV (originally) 386 function evaluations
38 seconds run time

OPTKOV with modification 215 function evaluations
29 seconds run time.

90,

Therefore, here again the modification brought seme improvement.

Nevertheless, with function 6 and function 7, no convergence was

obtained, the Hessian matrix tending to go singular.

Complete results are given in the following table.

Function 5 Function 6 | Function 7

| Run Run | Run

Ev Time Ey Time ae Time

Original 1231.25 272 61 270 | 216
FOW CON

Modified 130 | 20 250 60 289 | 259

Original | 386 | 38 654 | 137 583, 356
OPTKOV - -

Modified 215 | 29 NO RESULTS

Original {160 | 11 656 | 78 1120 | 231
SUMT t

Modified | 2031 97, | 317 (| 38 601 152

Therefore we can say that a method using the Hessian matrix

can be very much improved by using a good approximation to the

Hessian instead of the unit matrix from major iteration to major

iteration and further work should be done on how to evaluate this

approximation,

We have seen, too, that S.U.M.T. only has two different

penalty functions depending upon whether the problem we are dealing

with has equality constraints or inequality constraints.

POWCON and OPTKOV have only one penalty function for

equality constraints, therefore problems with inequality constraints

have to be converted using the Heaviside function (procedure H(t)).

Calling this procedure H(t) each time the procedure FUNCT is

called might lengthen the run time of the program, Therefore if we

could find, for these two methods, a penalty function dealing with both

equality and inequality constraints, this could make the methods more

competitive.

91.

3

5.

9.

10.

REFERENCES

BOX, M.jJ.

‘A comparison of several current optimization methods and the

use of transformation in constrained problems’

Computer Journal, vol.9, no.1, 1966.

DAVIDON, W.C.

‘Variable metrix methods for minimization’

Argonne National Laboratory, Report ANL 5990 Rev.

Illinois, 1959.

FIACCO and McCORMICK

‘Programming under non-linear constraints by unconstrained

minimization: A Primal Dual method'
Management Science, vol, 10, no.2, January 1964.

FIACCO and M¢eCORMICK

‘Computational Algorithm for S,U.M.T. ‘
Management Science, vol. 10, no.4, July 1964.

FIACCO and McCORMICK

'Slacked Unconstrained Minimization Technique for convex

programming’
S.1.A.M. Journal, no.15, 1967.

FIACCO and McCORMICK

'S,U.M.T. without parameters’

Operations Research, vol. 15, no.5, September/October 1967.

FIACCO and McCORMICK

1S,U.M.T. for convex programming with equality constraints'

RUA,C, 1, P. 155, April 1965.

FLETCHER, R. and POWELL, M.J.D.

'A rapidly convergent method for minimization’

Computer Journal, vol.6, July 1963.

FLETCHER, R.

'A new approach to variable metric algorithms'

Computer Journal, vol. 13, August 1970.

KELLEY, N.J.

{Optimization Techniques with applications to aerospace

systems!
George Leitmann (ed.) Academic Press, New York, 1962.

11.

12,

13.

4.

15.

16.

17.

18,

19.

20.

KOWALIK, 1., OSBORNE, M.R,, and RYAN, D.M.

'A new method for constrained optimization problems!
J.O.R.S.A., vol.17, no.6, 1969.

KOWALIK, J.

‘Non-linear programming procedures and design optimization’
Acta Polytechnica Scandinavica, Mathematics and Computing
Machinery Series N.R.13, Trondheim, 1966.

MORRISON, D.D.
‘Optimization by least squares!
S.1.A.M. Journal, Numerical Analysis, vol.5, no.8, 1968,

MURTAGH, B.A. and SARGENT, R.W.H.

‘Computational experience with quadratically convergent
methods'
Computer Journal, vol. 13, no.2, May, 1970.

NELDER J.H. and MEAD, R.

‘A Simplex Method for function minimization’
Computer Journal, vol.7, 1964.

POWELL, M.j.D.

'An efficient method for finding the minimum of a function of
several variables without calculating derivatives’
Computer Journal, vol,7, no.4, January 1965.

POWELL, M.J.D.
‘A method for non-linear constraints in minimization problems!
Optimization, edited by R, Fletcher, Academic Press,
London and New York, 1969.

SCHMIT, L.A., and FOX, R.L.

‘Advances in the integrated approach to Structural
Synthesis"
A.LA.A. 6th Ann, Struct. and Materials Conference,
Palm Springs, California, 1965.

SPENDLEY, W., HEXT, G.R., and HIMSWORTH, F.R.
‘Sequential application of Simplex Designs in Optimization
and Evolutionary Operation'
Technometrics, vol,4, no.4, November 1962.

(a) WELLS, M.
Electronic Computing Laboratory, University of Leeds,
Collected algorithms from C.A.C.M.,
Algorithm 251,
Function minimization (E4).

21.

22.

(b) FLETCHER, R.
Electronic Computing Laboratory, University of Leeds,
Certification of Algorithm 251 (E4)

WONG, K.P.
Ph.D. thesis: Decentralized planning by vertical

decomposition of an economic system: a non-linear approach

Ph. D. in National Economic Planning, University of
Birmingham.

ZANGWILL, W.1.

‘Minimizing a function without calculating derivatives'
Computer Journal, vol. 10, no, 3, November 1967.

On

BIBLIOGRAPHY

ABADIE, J.

‘Non linear Programming!

North-Holland, Amsterdam, 1967.

FIACCO, A.V. and McCORMICK, G.P.

"Sequential Unconstrained Minimization Techniques for Non-Linear

Programming’

John Wiley and Sons Inc., New York, 1968.

FLETCHER, R.

'Optimization'

Academic Press, London and New York, 1969.

HADLEY, G.

‘Non linear and Dynamic Programming!

Addison-Wesley, Reading, Massachussetts, 1969.

KOWALIK, J. and OSBORNE, M.R.

"Methods for Unconstrained Optimization Problems!

Elsevier, New York-London-Amsterdam, 1968.

KUNZI, H.P., KRELLE, W. and OETTI, W.

‘Non linear programming!

Blaisdell Publishing Company, 1966,

ZANGWILL, W.1.

'Non Linear Programming!

Prentice Hall, Englewood Cliffs, New Jersey, 1969.

APPENDIX 1

LISTING OF PROGRAMS FOR UNCONSTRAINED

OPTIMIZATION PROBLEMS

SIMPLEX PROGRAM

"BEGIN!
TINTEGER' COUNT, 1+U,NeHsLsCOLIMET
"REAL! ArBrC CONVER, CRITER+Y1+¥2,Y3,SUMY,STOREsBARY VAR) X4 9X27 NrSREAD?
ArSREAD}
BrSRFAD}
Cs=READ;
CRITERL=READ:
COLIMIT:=READ?
COUNT:=03
"BEGIN!

"REAL' "ARRAY! PLO:Ns4:NJ,ORP,STL,CENT,SUM,P1,P2,P3,PH[42N3
YCOrN):

Weteteatews INSERT PROCEDURE £1(N,X02) HERE
Waeekentewe INSERT PROCEDURE F2(pP+F) HERE
"PROCEDURE' MAXCA.N»M,ROW) }
"VALUE' N,MVA?
‘INTEGER! NyM, ROW?
"ARRAY! Ay
"REGING

‘INTEGER! Ty
"REAL' Q:
QrEAtM);
ROW:=07
'FOR' TyeM+4 "STEP! 4 "UNTIL! N tpor
"BEGIN!

‘TF! ACII>0 'THENT
"BEGIN'

Q:Sacly;
ROW a1;

‘END! 'ELSet
QrnQ;

TENDS
"END'?
PROCEDURE’ MINCA,NM,ROW)?
"VALUEN N,MsAs
"INTEGER" NoM, ROW;

1.1

"ARRAY! Ay
"REGING

"INTEGER! fy
"REAL! oy
rSaCM)y

ROW. =03

'FOR' TyeM+4 "STEP! 4 "UNTIL' N tDOF
"BEGIN!

"rE! ACII<Q "THEN!
"BEGIN!

Qr=ACl)y
ROW:=T}

"END! 'ELse!
Qy=Q}

TEND?
"END';
"PROCEDURE! REFLECTCA,CEN,NOIN, Pe P4)P
"VALUE! A,CEN,NOWN3
"REAL! A;
"INTEGER! NOWN}
"ARRAY! P,P1sCEN?
"BEGIN®

‘INTEGER! Ty
"FOR' T:e1 'STEP' 1 'UNTYLI N 'pot
PUCLILSC1FAD*CENLCI J @A*PENOr TY?

"END"?
"PROCEDURE! EXPAND(C+CEN,P1/P2,N)1
"VALUE! C,P1+CEN INE
"REAL! C3
"INTEGER! NG
"ARRAY! CEN, P4,P2y
"BEGIN! :

"INTEGER! Ty
"FOR' Ts=4 'STEP' 1 "UNTIL! N IDO?
P2CLI:2CHPIL1I+(1-C)¥CENCII])

"END';
"PROCEDURE! CONTRACT(B,CEN,P+NOsN,P3)9
"VALUE' CEN+B,NOWN?
"REAL! By
"INTEGER" NeNO?

1.2

"ARRAY! CEN/P,p3}
"BEGINt

"INTEGER! Ty
'FOR' Iys4 'STED' 1 'UNTTL! N 'por
PSCr):=BwPCNO,T]#(1=B)*CENCIJS

"END';
FOR’ Jre4 "STEP? 4 'UNTIL' N 'por
ORPLEJ):SREADS

"COMMENT' ORIGINAL POINTS:
"POR? J:=4 "Step! 4 "UNTIL! N Epos
STLEV]:5R EADS

"COMMENT' STEP LENGTH?
"FOR' yr=0 "STEP! 4 "UNTIL! N tpor
"BEGING

"FOR' Jeal 'STEPt 1 "UNTIL! N IDO!
"IF! T3J 'THEN' PCI,J):sORPCUI+STL ty)
"ELSE!

PEI, J) :s0RPLJI3
‘END’?
FICNSP,Y)s
COUNT: =COUNT#13

AGAIN; VAR:89999;
MAXCY NSO, HD?
FOR’ res4 "STEP! 4 "UNTEL' N 'DOF
PHEYJ:=PCH,1)}
MINCYsN/O,L)2
‘FOR' J:34 'STEP' 4 "UNTIL! N 1pOr

'REGIN!

sUM(J]:=0,0)
"FORT 0 'STEP' 1 'UNTIL' N ‘pO!
sUMrJ) UMC JJ+PCIJ0F

CSUMEJI=PCH,J])/NB
"END'?
REFLECTCA,CENT,H Ns Pe P4)?
F2CP1,¥1)3
COUNT: =COUNT#43
VAR?30;

"IF? Y4<¥CL) "SHEN!
"BEGIN

EXPAND(C,CENT+P4,P2,N)?

1.3

U4:

F2Cp2-Y2)3
COUNT: =COUNT#13
VAR: 213

"END' 'ELSE' "GOTO! Lag
"TE" V2<YCL] "THEN?
"REGIN!

"FOR' Tent. *STEp! 41 "UNTIL! N ‘po!
'REGIN'

PeHeT3:=P2riiy
PHCTIJ:=PlH,1);

TEND:

VOHI:"V2:
'GOTO' CHECK?

"END' 'ELse!
"BEGIN!

"FOR' Ieet-'STEP! 1 "UNTYL! N ‘pO!
'BEGIN'

PEHe Td :=P4Cl)
PHOT] :=PCH,1)

TEND TG:

YCHO:=Y1:
"GOTO' CHECK:

"END;
"TF" Veti>¥CO} "THEN!
"BEGIN'

Mireveis9
X2reVCOIs

"END' 'ELse!
"BEGIN!

xisevl03;
x2revV (132

"END';
"POR' rrs4 'STEP' 4 "UNTIL! N #D08
"BEGIN!

"TF YCTI>X4 "THEN!
"BEGIN!

X2:2X43
XV BVE1V7

TEND ':
"TEt ¥CrI>X2 "AND! YELI<x1 ' THEN!

1.4

M2:2YC013

Le:

L3;

"END'?
'IE' Y4>X2 'THEN' "GOTO! L2
‘ELSE!
"BEGIN!

"FOR' Tre4 'STEPY 41 "UNTIL! N 'poF
'BEGIN'

PCHeT):ePiet)
PHED] s=pCy,0)

TEND'?
VORDS2Y43
'GOTO' CHECK?

:

YEND'}
"TE" Y4>¥CH) 'THEN' "GoTo! L3
"ELSE!
"BEGIN'

"FOR' Is2f 'STED' 1 "UNTILI N "pot
"BEGIN!

PCH T5s=P4
PHOT] :=pPCn

"END'?

"END'?
CONTRACTCR/CENT+P,HiN,P3)3
F2(P3,v3):
COUNT: =COUNT#43
VARSE413
"IR! Y3>¥CH) "THEN?
"BEGIN!

"FOR' Iys0 'STEP' 1 VUNTILE WN 'pOt
"FOR' Jsat 'STEp' 1 8UNTIL' ON ' DOF
PCI, J) r=cPlted]epll dd) sar
FICN PrY)E
"GOTO' CHECK?

"END' ELSE!

"BEGIN!
"FOR'Ii=4 "STEP! 7 TUNTIL! N 'DO!
"BEGIN!

PEHe TD :SP 301);
PHOT) :=PCH,1);

"END YG?
VCH 3233

1.5

CHECK:
“TEND'?

FINISH:

"END! :
"END'?

SUMY:=STORE:50.0;
"FOR' ts=0 "STEP! 4 "UNTIL! N tDO8
"BEGIN«

SUMY:=SUMY#YEI]3
"END';
BARY:=SUMY/N?
"FOR' 1:50 'STEP' 4 "UNTIL' N 'DO8

STORE: 2STORE* (VET 3=BARY) *(YLIJ=2BARY)
CONVER:s =SQRTCSTORE/N)?
"IF' COUNT>COLIMTT 'THEN' "GoTo! FINISH?

‘TF! GONVERSCRITER 'THEN' 'GoTO! FINISH
"ELSE!
"GOTO" AGAIN:
‘FOR' 224 "STEP! 4 "UNTIL® N tpOF
"BEGIN!

PRINTCPEH613,0+61093
‘END’?
"IF! VAR=O ' THEN! PRINTCY4,0/10)9
"TF" VARSR4 'THEN' PRINTC¥2-0,10)3
"TF" VAR=4 'THEN' PRINTCY3,0040)7

1.6

POWELL 64

"PROCEDURE! POW6S(XT EN ESCALE,IPRINT, SCON,MAXIT OED E
"REAL! ESCALE}
"INTEGER" Ne ITPRINT, ICONSMAXITS
"ARRAY' X,Fa Fs
"BEGIN' ,

"ARRAY" ULTIN® (NES) D3
"REAL! DDMAG, FKEEP,SCER,SUM,FPsDMAX, DACC, DDMX,

DrDlL,+ FPREV-FA,DA,DD-FReDB,FHOLDs OMAG, FC
DCrA,Br Die FY, AAAS

"INTEGER! JU sdJdsKeNECC, IND, INN, Ted, 1TERCeISGRAD,
ITONE,IXPeTOIRN,ILINE, TS eJILE

"SWITCHY SWTELGOr LIT LI 2,LiSrLi br LO6rLSsL7oLOr LSB,
CAB LIS er L2G Lote L23eL Ay, b25sb26rb28,
L2ADCL71eL30L34r LAr LAG LESH LGPrL oie
USO LS1 LOG LOZ LB7+ L641 L370 L3B eb 72,
LS3rL76+L78, LAB L350 L108+L101,L105
041561193.61107.L106,1203

eked eM INSERT PROCEDURE FUNCT HERE
DDMAG:2=0,1*ESCALE;
SCER:=0.,05/ESCALE?
JJPENeNeN?
JIdred deny
KiENe1}
NFCCSSINDQSINNeSITERCIE413
‘FOR' T3824 "STEp' 1 VUNTIL' N ‘DO!
"BEGIN'

"FOR' Jre4 "STEP' 4 "UNTIL! N 1D08
"BEGIN!

"IF Tay UPHEN!
"BEGIN'

WEKIrSABSCELIJ)?
WELJ:SESCALE?

"END! ‘ELSE!
WCK3 150;
KESKel?

"END!
"END'G

1.7

LS:

L7:

L&,

L58:

Lia:

ISGRAD: 523
FUNCTCA +X F)3
FKEEP:22¥ABSCFL4))3
ITONE S347
FprseChdy
SUM:=03
IXPraJdJd¢
"FOR' Y:81 'STEp’ 1 "UNTIL' N ‘DO!
"BEGIN!

IXPr1XP 443
WOIXP):3XC1e4)

"END':
IDIRNIENS47
ILINE: ;

DMAXrSWEILINED;
DACC:=DMAX*SCER?
DMAG+S'IE' DOMAG<O.1#DMAX 'THEN' DDMAG TELSE! 0,4 %DMAX?
DMAGss'IF' DMAG>20"DACC 'THEN' DMAG tELSE' 20*DACC;
DODMX2=10eDMAG?
"IF! ITONE=3 "THEN' "GOTO! L713
DLs=0?
DISDMAG?
FPREVSSFC4]7
IS:=S7
FAr=EC1)3
DAr=DL?
OD:=n-DL}
OLren?
Kr=roURN}
"FORt Ty=24 'STEP' 1 "UNTIL! N 'DO!
"BEGIN!

XCD) sXCle VI +DDeW EK):
Kreke4y:

"ENDS?
FUNCT (A,X F D3

NFCCLENFCC#43
'GOTo' Swilisi:
"IF! ECVI<FA 'THEN' 'GOTO' L453
"IEt FLQYDFA 'THEN' #GOTO! L247
"IF! ABS(D)>DMAX 'THEN' "GOTO! L483

1.8

Lat:
Les:

L83:

L2s:

L26:

L433
L2a:

L2o:

Lia:

O44:

Dre2eD?

"GOTo' L8?
WRITETEXTC' CIMAXIMUMYCHANGEXDOESYNOTYALTERKFUNCTION?)$)y
"GOTO! L20;
FBrerl[4)7
DB:=bD3
"GOro' L247
FBreFA}
DB:=pA}
FArsel4)}
DAr=D?
'IFt ISGRAD=4 'THEN' 'GoTO' L183;
D:=24DBeDA;
1Sie4;
'GOro' L8:

-S*CDA*DB@ CEA™FB)/ (DA@DB))?

'IFICDA=D)*(D=DB) 'GE' O 'THEN' 'GOTO! LBz
18924;
"IF! ARS(D=DR) 'LE' DDMX 'THEN' 'GOTO! LB?
DISDR+CIIF!' 98 'GE' DA I THEN! ABSCDDMX)

TELSE! (mABS(DDMX)))3

TS:243
DDMX:=2eDDMXs
DDMAG!=2«DDMAG?
'IF' DDMX 'LE' DMAX 'THEN' "GOTO! La:
DDMXs=DMAX}
'GOTO' L&:
'IF' FC41) 'Ge' FA 'THEN' 'GoTO! L233
FCrSeR;
DCr=pAR?
FRr=F(4)3
OBren?
'GOTO' L30;
‘TF’ FE] "Le" eR "THEN! "GoTo! L128;
FAs=F C40}
DAt=DE
'GOro' L307
‘IF! F(4) 'Ge' FB 'THEN! 'GoTO' L410;
FA:=FB}

1.9

C742

Lio:

L3o0:

L3a:

hoa:

L86:

L4s:

Lar:

Lai:

DAr=n8;
"GOTO! L29¢
DL: ?

Ar=(DB=DC)*CFAmEC)?

Bre (DC=DA)*(FBeEC)?
"IF! CA+B)*CDAmNC)>0O 'THEN' "GOTO! L343
FALE EB?
DAr=nB?
FBRr=FC;

OB =DC;
'GOro' L263

~5*CA*CDBFDCD+Be(DASDC))/CASB)E
0B;

Flr2pB;
"IF! FR 'LE' PC 'THEN® *G0TO! bag:
DIsenc;
FlrspC;
'IF! ITONE 'NE' 3 "THEN! "GOTO! L186;
ITONF:=23
"GOTO' L465;
"TF! ABSCDRDI)'LE' DACC 'THEN' "GOTO! Laie
'TF' ABSCDROID "LE" O.03*ABS(D) 'THEN® "GOTO! Lat?
"IF! (CDA=DC)*(De=D) <0 'THEN' 'GOTO' L474
FALSFB;
DAr=pG;

FBr=FrC;
DBr2nc;
'GOTO' L253

1Sts2?
"IF! (DB=D)*¢D=pC) 'GE' O 'THEN' ‘Goro! L8?
ISss3?
"GOTO' L8:

FCVVSFIe

L50:

L541

L9a:

9a:

L96;

DrSDI“DL}
DDS=SQRTCCDCHDBY*(DCHDA) #(DA“DB)/ CAs)) 3
'FOR' Tr=4 ‘STEP! 1 TUNTIL' WN Ipot
"BEGIN!

XCDe VI] s2X£0,1)¢DeulIDIRNI:
WEIDIRN] :=DDeWEIDIRNG:
IDIRN:=IDIRN+4

"ENDIG
WOILINEDS=UCTLINEI/ no?
ILINESST LINES?
"IF! IPRINT 'NE' 1 'THEN® "GOTO! L543
PRINTCITERC,0,10)7
PRINTCNFCC10,10)3
PRINTCF(43,0,1092
‘IF! IPRINT=2 'THEN' "@OTO! L53;
‘IF! LTONE=2 '"THEN' "GOTO! 138;
‘IF! FPREV<(ECT4SUM) 'THEN! ‘GoTo! LOb;
SUMreFPREV@FE4):
JILesILINE?
‘IF! IDIRN "LE" Jd 'THEN' "GOTO! L?;
'IFt INDS2 'tTHEN' *GOTO! L723
FHOLDSSFE4)3

1S:26;
IXPradd;
'FOR' 1354 "STEP! 1 TUNTIL' WN 'DOt
"BEGIN!

IXPs=1XP 443
WEIXP)s*XCIe1jeWClIXP)

"END!;

DOre4
"GOTo' L583
'TFIINDE2 "THEN! "GOTO! L187;
‘IF! FP<FC1) 'THEN' 'GOTO! L377
TIF! ABSCFPmEC1}) "LE! 2945 1 THEN!
"BEGIN!

PRINTCEL19,0010)3
"GOTO' L20;

"END'G
Di=2wCFPHFL1 Jm2eFHOLD)/CRPHEL1I) 423
'IF' D*(FPRFHOLD=SUM) 42 'GE! SUM 'THEN' "GOTO! L37}

L87;

L64q:

L373

L38:

L72:
L5x:

JISITLANad?
"TF! JoJd "THEN?
'FOR' Jys) "Step! 4
"BEGIN!

Kirsten:
WIKI sswllie

"ENDI?
"FOR! Tessie
WOieq)sewely;
IDIRNS=Kr20DTRNeNG
ITONE? 23;

IXPraJdd;
AAA: 203
"FOR' IT 324

"BEGIN!

IXPrE1XPaqy
WEKJrsulixp);
"TF" AAASABSCWEKI/ECIN) 'THENE
Krekedy

"END!;

DDMAG:243
WENT =ESCALE/AAAT
ILINE:=N;

"GOTO'L?:
IXPreJdd
AAA: =0;

FCV]:=FHOLD;
‘FOR! Tse] 'gtEpt 4
"BEGIN!

IXPrIxPeq;
XCVe VI) :2XtreTyeWCIXP);
'TF' ARA*ABSCELII)<ABSCWEIXP))
ARASEABSCULIXP/ELII)?

'"GOTO' Lé6t;
TUNTIL' JJ tpor

"STEP' 4. "UNTIL! N DOF

"STEP! 1 TUNTIL' Wf DOF

'UNTIL' N 'DOF

"END!
GOTO! Sues
AAAs =AAAw(14DT)
'IF' IND 22 'THEN' tGoror L106;
"IF! IPRINT 'GE! 2 'THEN' "GOTO! L5oy
'TF' IND=2 'THEN' "GOTO! L883 "IF! AAA>O,1 "THEN' 'GOTO! L76;

1.12

AAAt=ABSC(WEKI/ECTI):

'THEN'

L76:
L78:

Lea:
L353:

L108:

L401:

‘TR! FCONEY 'THEN' "GOTO! L20%

IND: 2}
trp! INNS2 'THEN' ‘GOTO! L1045

INN: 22}
Kresdde

teORt Yee4 'sTEp! 1 'UNTIL' N 'pOr

"BEGIN
Krakeds

WEKISEXCL, 172

MCD VD eeXele Vel OwEl yy

‘END!
FKEEPISF 0113
FUNCT C1 ,X0F DE
NECCrSNFCC#413
DDMAG!20;
"GOTO! L108;

‘TE! FOVI<FP ' THEN! 'GOTO' L35+

WRITETEXTC' CHACCURACYMLIMITEDSBYXERRORMINGE'
) IDE

'GOTO'L207
IND:e4;
DDMAG?S
ISGRA ;
ITER ITERC#Is

tre! NFCG ‘Le! MAXIT 'THEN' #GOTO!' LS}

URITETEXTC'C!FUNCTIONZEVALUATIONSXCOMPLETE
D') ')3

'TRtfE1) "LE! FKEEP 'THEN' "GOTO! L203

FLV] :SF KEEP;

TEOR! Jyei 'sTEp' 1 'UNTIL' N ‘DO!

"BEGIN'
JIT red sdede
XCQ,V):8Wtdddd:

TENDS

"GOTO' L203
JILss7
FRr=FKEEP?

TIE! FLA]<FKEEP 'THEN' 'GOTO! LA05 -TELSE

trp! FCVJSFKEEP 'THEN' 'GOTO' L78;

dtben23
FPrsel1)}
FL1):=FKEEP?

 4¥SORTCRPRELVID?

1.13

Lios:

L445:

bigs:

Li07:

L106:
L2o:

"EnD!

UXPreJdJd7
"FOR' 2:54 'sTEp! 1

KrSIXP4yN;
"BEGIN!

IXPr2TXPeq?
EVE. it kae
WEIXP):2UrK)}
"GOTO!

"THEN?

L1433

"UNTIL' NT DO!

"GOTO' L415;

WEIXPJS2Xrted ye
XCreV)ysWeK)?

"END'S
JIbss2;
"GOTO!
INNe243
'GOTO' L353
"IF! AAA>O.4
OUTPUTCNFCC):
"FOR' Y:=4 'sTEp! 4
PRINTCX£E141),0,40)7
PRINTCEL1I,0,1053
POWELL64G;

L92?

"THEN! 'GOTO' L407;

"UNTIL" N 'DO!

1.14

FLEPOMIN

"PROCEDURE! FLEPOMINCN,X+F,EPS+FUNCT + CONV, LIMIT +H, LOADH) # 'VALUE' N,EPS,LOADHeLIMITS
‘INTEGER’ NeLIMIT?
"REAL! F,EpS;
"BOOLEAN' CONV,LOADH?
"ARRAY" XwWE
"PROCEDURE! FUNCT?
"BEGIN!

"REAL! OLDFsSG+GHGr STEP, ITA, FAs FB+GA,GB,WrZ,LAMBDAS "INTEGER! I,JeK,COUNT;
"ARRAY! GiSsGAMMA+SIGMALIING :
wkkaneneeee INSERT PROCEDURE FUNCT HERE
'REAL' "PROCEDURE! DOTCA,B)}
"ARRAY! A,B? F
"BEGIN!

"INTEGER! T3
"REAL! S7

$120}
"FOR' yr34 'Srept 4 "UNTIL! N 'por
SrBS+ACl)eBCI):
DOTIES:

"END!;
"REAL' 'PROCEDURE' UPDOT(ArB,1)}
"VALUE! T3
TARRAY' A,B;
"INTEGER! [3
"BEGIN!

‘INTEGER' Jaks
"REAL! S?
Krt3
S:20;
"FOR' J:84 "STEP! 4 "UNTIL! Taq tpo?
"REGIN®

StEse#ALK}*BCU);
KiSkeNags

"END';
"FOR' Jr®y 'STEP' 4 "UNTIL! N tpor

1.15

Sr"S*ACKeJml]eglJyy
UPDOT: 2S;

"ENDID
SEr INITIAL Hy

'IF' LOADH ' THEN!

"BEGIN!
KIe4?

‘FOR’ Iye4 'syepr 4 "UNTIL! ON 'pot
'BEGIN'

HEKS1543
"FOR' Jr24 'STEP' 4 TUNTEILY Ney
HCKaJd):=0;

KtekeNeloty
"END'3

"END"?
START OF MINIMIZATION:

CONVr="TRUETS

STEP s=4;
FUNCYON, Xs FG) 3
'FOR' COUNT:21,COUNT#1 "WHILE! OLDF>F ‘po! "BEGIN!

'FOR' t224 'Srep' 4 tunTILE N ‘por "REGIN!
SIGMACI3:=X¢1);
GAMMALT3:=G01);
SUIJ:="UPDOTCHLG, 1D}

‘por

'END' PRESERVATION OF xX+G,AND FORMATION OF S$? FRy=F3
GBreDOT(G,S)3
'IF' GB 'GE' 0 'THEN' 'GOTO! EXIT,
OLDFr=Ry ITAL=STEP;

EXTRAPOLATE?

FASSFBy GAr=Gay
"FOR' $234 "Step! 4 UNTIL' N tpOr
MOVVSExXCTyeITAwS Crys
FUNCTONGX,FrG)?
FRr=F; GrrB0oT(G,$)3
"IF" GB<O 'AND' FB<FA ‘THEN!
"BEGIN®

ITAS=4GWIYA; STEPr=GeSTEpy

1.16

"GorTo' EXTRAPOLATE
"END';

INTERPOLATE:
'TF' ITA<O,00005 'THEN' "GOTO! SKyP;
Zr=3"(PAEB)/ITASGASGB?
WreZ' ee 2nGANGB?
Wes'Te! Wed 'THEN' O TELSE' Sart (w)
LAMBPDAL®ITAw(4mC'TEY GAez IGE! 0 TTHENT

(GAtZ5U)/ CGA+GR4207)
"ELSE! GA/(GAtz—W)))3

"FOR' t2=4 'STEP' 4 "UNTIL! N ODO
XEV]r=xXE1.-LAMBDA#SEI);
FUNCTOCNGX,FrG)y
"IF" FOFA 'OR' F>ee 'THENS
"BEGIN!

STEPSSSTEP/4}
"TE! FBSA ' THEN!
"BEGIN!

"FOR' Ts=1 "STEP! 4 "UNTIL! N tpor
XEL]:SXC1)+LAMBDASE19;
FUNCTON,X,F 4G)

‘END’ ‘ELSE!
"BEGIN!

GB:=DOT(G,S)?
'TE' GB<O 'AND' COUNTDN "AND! STEP<ané
"THEN! 'GorO' EXIT?
FRr=Fy ITA:SITA@LAMBDAS
"GOTO! INTERPOLATE

"END'?
SKIP: ‘'END' OF SEARCH ALONG s?

TFOR' Ys=4 "STEP! 4 TUNTIL' N tpor
"BEGIN!

SIGMACTU:3XC1]=SIGMACI};
GAMMACI}s=GL1J=GAMMACI):

"END'3

SGr=DOT(SYGMA, GAMMA)?
‘IF! COUNT 'Get N 'THEN?
"BEGIN!

'IFH SQRT(DOT(S,S)) <EPS "AND!
SQRTCDOTESIGMA,SIGMA)) <EPS 'THEN' "GOTO! FINISH;

1.37

TEST:
"END!
"GOro!

"ENDS
"FOR' yr84 'STEP' 4 TUNTIL' N 'DO!
SCLJs=UPDOTCH,GAMMA,I)?
GHG:=DOT(S, GAMMA) }
Kiet?

'IF' SG=0 'OR' GHG=0 'THEN' ‘GoTo!
"POR' yi=4 'SteP' 4 "UNTIL' N DOF
"FOR' Jrey 'STEP' 4 "UNTIL! N 'DOF
"BEGIN!

TESTE

HOKTSSHEKI*SIGMALCIJ*SIGMALUI/SGaSCII*SCUI/GHGE
KreKel

"END' UPDATING OF H?
'TF' COUNT>LIMIT 'THEN' "GOTO! EXrT?
OF LOOP CONTROLLED BY COUNT;
FINISH?

EX1T: CONV:='FALSE']

FINISH:
"END' OF FLEPOMINS

1.18

FLEPOMIN MODIFIED

"PROCEDURE! FLEPOMIN(N;X+ Fs, EPSe FUNCT» CONT, LIME T¢H, LOADH) F
"VALUE' N,EPS,LOADH LIMIT?
"INTEGER" NeLIMIT?
"REAL! F,EpS}
"BOOLFAN' CONV; LOADH?
"ARRAY' X,K?
"PROCEDURE! FUNCT;
"BEGIN!

"REAL' OLDF,SG,/GHGrSTEP, ITA, FAr FBrGA,GB,WeZ,LAMBDA?
"INTEGER! I,d¢K,COUNT?
TARRAY' GeSsGAMMAsSIGMALI IND:
wkkewweewee INSERT PROCEDURE FUNCT HERE
TREAL' "PROCEDURE! DOT(AsB)}
"ARRAY! A,B;
"BEGIN!

‘INTEGER’ YF
"REAL! S;

8:20;
"FOR' y234 'SrePp' 4 "UNTIL" N tpg?
SresvACl] BCI};
DOT:=S}

"END'Y
"REAL' '"PROCEDURE' UpPDOTCA-B,!1)?
"VALUE' I3
"ARRAY! A,B}
"INTEGER! Ly
"BEGIN!

"INTEGER! JeKy
"REAL' S}
Krei3
$:=03
"RORY Jreq "STEP" 4 TUNTIL® Ted "pO!
"REGIN?

Sras+ACky*BCl)?
KrsKeNeagy?

TEND'?
"POR! goer 'STeEP' 4 "UNTIL' N tpOF

SreS+ACK+JjmT)agliy;
UPDOT:=S7

"END'G
SET INITIAL H3

'TF' LOADH 'THEN!
"REGINE

Kreq?
'FOR' Iye4 'STEP' 41 "UNTIL! N tpg?
"BEGIN!

HOKI3543
"FOR' Js=1 "STEP! 4 ‘UNTIL? Ned 'pot
HOKeJd) 2207
KiekeNeled?

"END 'S
"END'?

START OF MINIMIZATION:
CONVI='TRUETS
STEP» =1;
FUNCTON, Xs F,G)3
"FOR! 1:54 'STED' 1 TUNTIL' WN tpot
SIGMALIJ:=XC113
"FOR' COUNT: 2141,COUNT#4 "WHILE! SQRTCDOTCGAMMAr GAMMA))>EPS ‘por

"BEGIN!
"FOR' rie4 'STeP' 4 "UNTIL! N tpor
"REGIN!

SIGMALI}:=xXE1};7
GAMMACI}:=601);
SEI}:2=UpDOTCH,

"END';
‘TR! COUNT=1 'THEN® "GOTO! MIN
OLDFreee
"FOR' ps4 'STEP' 4 TUNTIL' N #pOE
XCVVrSxClyedeseryy
FUNCTONGX, FG) 3
"IF! ABSCCEMOLDE)/(DOTCS+GANMA)) 'GE'0, 00004 "THEN' 'GoTO' FORHH?

Gilde

MINs
FR Fy;
GB:=DOT(G,S)3

1.20

"TF' Ga ‘ce’ 0 "YHEN' "GOTO' EXIT:
OLDFS=Fe ITA:=STEP?

EXTRAPOLATE:
FArSFB: GA:5GB)
"FOR' y:34 'STeP' 4 "UNTIL' N 'pOr
XCVISxCLi+lTAwSl1d7
FUNCTOCNGX,F 2G)?
For=F? Garedor(G,S)?
"re' Ga<O ‘AND! FR<FA 'THEN'
"BEGIN!

ITArS44TTA; STEP: =4wSTEpy
'GOTO' EXTRAPOLATE

"END's
INTERPOLATE?

"TE" TTA<0.00005 "THEN! ‘GOTO! SKIP?
Zra3e (PAM FBI /TTA+GASGB?
WrtZ' wa! 2aGA*GBE
Wree'Tet Wed 'THEN' O tELSE' SorT(w)?
LAMBDAs®ITA®(1—C'TF! GAtZ 'GE' O 'THEN!

CGASZ4U)/ CGAFGBR+2%2)
YELSE! GA/(GAsz=W)))3

"EOR' yrs4 'SteP' 4 "UNTIL! N 'DOF
XCEL rexCLy-LAmMBoAeSLI3:
FUNCTONGX,F eG)?
‘TP! F>FA 'OR' F>RB "THEN!
"BEGIN!

STEPLSSTEP/AT
IF! FR<RA ' THEN!
"BEGIN!

"eOR' 1:54 'STEP' 4 "UNTIL! N 'DOF
XCEL] :=XCTJ+LAMBDAwSE15;
FUNCTOCNeX, FG)

"END' ‘else!
"BEGIN'

GBr=DOT(G,S)3
"re' GB<O 'AND' COUNTDN ‘AND! STEP<&=6
"YREN! 'GoTO!' EXIT:
FBRs=F3) ITALSITA@LAMBDA?
"GOTO! INTERPOLATE

"END'S

1.21

SKIP:

FORMH:

TEST:
"END!
"GoTo!

EX1T: CONV:=
FINISH:

"END' OF SEARCH ALONG S?

"FOR' rr=4 'SreP' 1 'UNTIL' N tpor
"BEGIN!

SIGMALI}:=XC1}=Si1GMACII;
GAMMALID:=GE1)“GAMMACII;

"END'S
SGreEDOTCSIGMA, GAMMA);
'TeE' COUNT 'Ge't N 'THEN'
"BEGIN!

tIFt SQRTCDOTC(S,S))<EPS "AND!
; é SQRT(DOTCSIGMA,+SIGMA))<EPS I THEN! "GOTO! FINISH?
END'?

"poR' yreq 'SteP' 1 "UNTEL' N 'DO!
SUCID=URDOTCH,GAMMA,I)?
GHG:2D0T(S, GAMMA)?
Kred3

"TE" SG=0 'OR' GHG=0 'THEN' ‘GOTO! TEST?
"IF! SG<GHG ‘THEN!
"BEGIN!

YFOR' Iye4 'STEP! 4 UNTIL! N FDO
"ROR' Jgel "STEP! 41 "UNTIL! N ‘pO!
"BEGIN!

HOK]SSHCEK)4+SIGMALTI*SIGMACJI/
SGeSCL]*SCJI/GHG;

Krak?
"END'?

"END!
"ELSE!
‘FOR’ 1224 "STEP! 4 "UNTIL! N #D0F
"FOR' Jrer "Step! 41 "UNTIL® N #DO!
"REGIN!

HEKISFHEK]@CSIGMALTJ*SCUI+SIGMALII#SEIY)
/SG* C1 4+GHG/SG)HSIGMACIJ*SIGMALJI/SG;

KEsKe?

"END?
"TE! COUNTD>LIMIT 'THEN' "GOTO! EXIT?
OF LOOP CONTROLLED BY COUNT;
FINISH;

"FALSE"

‘END' OF FLEPOMIN;

1,22

APPENDIX IL

LISTING OF PROGRAMS FOR CONSTRAINED

OPTIMIZATION PROBLEMS

POWCON

"PROCEDURE! POWCON(Xs EPS + RATIO, M) 3
"ARRAY! X;
‘REAL! EPS,RATIO?
"INTEGER! MG
"BeGINt

"INTEGER! 13
"REAL" MAXPSyeMAXL?
"BOOLEAN! SuluPy
"ARRAY' THETABARCIIM]3
MAXPST:=8103
SWUDs=FALSE?

AGAIN: MAXI © =MAXPST?
MAXPSIy="hm8y
eek eke eeeCALL MINIMIZATION PROCEDURE HERE
PSICALCPSIsX)3
SECOND:='TRUE'S
"FOR! I:=4 'STEp' 1 tUNTIL’ Mm "pot
"IF! MAXPSI<ABS(PSIC1}) "THEN! MAXPST?I2ABSCPSILIND: 'IF' MAXPSI<EPS 'THEN' IGOTO! ExT: TIF' MAXPSE 1GE! MAXL 'THEN' MAXPS]:=MAXL ‘ELSE! "GOTO' THINGS:
"IF' SWUD '7HENE
"FORt 'STED' 1 tUNTIL® Mm 'pgt
THETALY) HETARAR[IG3

SIGINC:"For' fr51 "STEP! 4 SUNTILIM 'pot
"IF! ABS(PSICI)) 'Ger MAXL/RATIO "THEN?
"BEGIN!

T]r=10*S1GMaryy
THETACT I] :20.1*THETALI

TENDS?
SWUDy="FALSEF
"GOTO' AGAIN:

THINC4:

'TF' 'NOT' SWUP 'THEN' "GOTO! THINC2:
TTF! MAXPSI<MAXL/RATIO 'THEN' "GOTO! SIGINC;

THINC2:

13

i

2.1

EXIT:

"FOR' T:=4 "STEP! 4 FUNTIL' M tDOt "BEGIN!
THETABARCIJ:=THETALIO; THETACY) s=THETALCID+PSIC1);

TENDY:
SWUPs=' TRUE!
"GOTO' AGAIN:
"END" POWCONS

OPTKOV

"PROCEDURE! OPTKOV(XsXKeXKTeXKMsSTEP Fe EPS)
"REAL' XKeXKT+XKM+ STEP EPS, FE
"ARRAY! X;
"BEGIN!
COMMENT PHASE 4%

'REAL' BL, BU;
XKrr *#eeOBJECTIVE FUNCTION;

Rip: XKrexkeSTEPs
kia eee CALL THE MINIMIZATION PROCEDURE HERE
"IF" SQRTCF)<EPS ‘THEN!
"BEGIN!

STEPS=2*STEP;
"GOTO! RIp

"END! "ELSE!
BUrSXK#STEP;
BLr=XxKk?

COMMENT PHASE 23
PARAMETER?

XKMreXK#SORTCR) ?
XKTsaXK+F/SQRTCRHT) 3
BLreXKM?
"TF" XKT<BU 'THEN!
XKtexkT "ELSE!
XKESXKM

MINE «tt eae eH HCALL THE MINIMIZATION PROCEDURE HERE
‘IF' SQRTCF) 'GE' EpS 'THEN''GOTO' PARAMETER
"ELSE' BULFXK?
"IF! ABS(BU=8L) <EPS 'THEN' "GOTO! EXIT
"ELse' XKreal;
"GOTO' MIN?

-m

m
>
<

z
u

o-
4

OF OPTKOV]

n w

SUMT

"PROCEDURE! SUMT(X,EPS,RATIO),
"ARRAY'X?
"REAL! EPS?
"INTEGER RATIO;
"BEGIN!
START: -

weet ieReHCALL MINIMIZATION PROCEDURE HERE "IF! ABSCF@=D)>EPS 'THENE
"BEGIN!

Rr=ZR/RATIO?
"GOTO! START:

"END':
"END' SUMT:

AS IT HAS BEEN MENTYONED EARLIER ON IN THE DESCRIPTION OF THE ALGORITHM, THE PTOCEDURE FLEPOMIN HAD TO Be MODIFIED, THIS MODIFICATION 1S as FOLLOWS:
EXTRAPOLATE:

FArsER;
GA:=GB;

REPEAT;
"FOR' Tr24 'STEp' 4 TUNTIL' NW IDO!
XCVV©SXCT + rAescld:
FUNCY(N;X, FG) 3
"FOR! Tr54 'sTeEp' 4 TUNTIL! Mm "po"
'TE' COr) "tr! 0.0 trHEN!
‘BEGIN!

"FOR' 1224 "STEP' 4 TUNTILY N tpOr
XCVU:exilyetTawStr):
ITAr=ITA/ NDF
"GOTO' REPEAT;

"END'?

2.4

