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SUMMARY

This thesis deals mainly with a comparison of certain
computational techniques used for the solution of non-linear con=
strained mathematical programming problems. The three
techniques being considered here are:

(a) Sequential Unconstrained Minimisation Technique,
(S.U.M,T.), by Fiacco and McCormick;
(b) Kowalik, Osborne and Ryan's method;

(¢) Powell's method for constrained problems.

They all convert the problem into a sequence of unconstrained
problems, that is to say the objective function and the constraints of
the original problem are transformed to define a new objective
function called an auxiliary or penalty function.

By gradually changing the effects of the constraints in the penalty
function, a sequence of unconstrained problems is generated.

As the penalty function is being minimised at each step of the
sequence, an efficient unconstrained minimisation algorithm had to
be found.

Three unconstrained algorithms have been compared:

A direct search method (Simplex);
Two conjugate direction methods:

(a) Powell (64)'s method not requiring the calculation of
derivatives;

(b) Fletcher and Powell's method requiring the calculation
of derivatives.
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All the methods have been written in the same language, 1CL
Algol 60, and have been tested with the same set of well-known
standard test problems and some larger ones.

All the methods have been described followed by their respective

results,

For overall comparison, the best results from each algorithm
are considered and tabulated in function of the total number of

function evaluations and in function of computer time.
We can, then, draw two conclusions:

(a) if, as some people suggest, the total number of function -
evaluations is more important, the Powell's method could
be the more efficient of the methods considered;

(b) if computer time is more important, then S.U.M.T. could
be the more efficient method.

(i)
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INTRODUCTION




This thesis deals mainly with a comparison of certain comput-
ational techniques used for the solution of non-linear constrained

problems.

Recently, methods for solving constrained minimization problems
by considering sequences of unconstrained problems have attracted
considerable attention, the three methods considered here are of

that type. They are:

(a) Sequential Unconstrained Minimization Technique,
(5.U.M,T.), by Fiacco and McCormick;

(b) Kowalik, Osborne and Ryan's method;

(c) Powell's method for constrained problems.

The objective function and the constraints of the original problem
are transformed to define a new objective function called auxiliary or

penalty function,

By gradually removing the effect of the constraints in the penalty
function, a sequence of unconstrained problems is generated that has

solutions converging to a solution of the original problem.

As the penalty function is being minimized at each step of the
sequence, an efficient unconstrained minimization algorithm had to be
found. Therefore the first part of this thesis begins with a comparison

of unconstrained algorithms,

(a) A direct search method (Simplex).

(b) A conjugate direction method not requiring the calculation
of derivatives (Powell 64).

(¢) A conjugate direction method requiring the calculation of
derivatives (Fletcher and Powell),

Work has been considerably delayéd at that point for the

following reason,



Powell (64)'s methed was proved to be a relatively efficient and
quick method, attractive too as it did not require the calculation of
davivatives so the consctrainad minimization algorithms had been

implemented using it as a sub-routine,

Everything went fine as long as the standard test-problems were

considered,

These problems are known to have an awkward behaviour but

they are small in size,
Where larger problems were considered (eight variables and
more) Powell (64)'s method failed and the programs had to be re-

written using the Fletcher and Powell's method.

The largest problem colved was 20 x 17 &nd this was proved to
be satisfactory.

2.
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2.1 MATHEMATICAL DESCRIPTION

2.1.1 Simplex Mathod

The Limpiex method was iniroduced by Himsworth Spendley and
) :
Hest(l‘” in 1962 and developed by Nelder and Mead, (15

It is a direct search method that is to say it compares the values

of the objective function at a set of (n+1) vertices of a simplex,

A simplex is a geometric figure defined as follows: a set of
(n+1) points in n-dimensional space forms a simplex. When the

points are equidistant the simplex is said to be regular.

In the case n=2 the corresponding figure is an equilateral
triangle while n=3 is a tetrahedron. The principal idea of the
method is that we can easily form a new .simplex from the current
one by reflecting one point in the hyperplane spanned by the

remaining points.,

If we reflect the point which gives the highest value to the
objective function by another one we can expect that at the reflected
vertex the function value will be lower, and we go on until the
minimum or a sufficiently good approximation to the minimum is

found, The problem is to minimize:
y = f(x) where x is 1 x n vector

Let us introduce the following notation: h is the suffix such that
X is the vertex corresponding to f(xh) = max f(xi) i=1, veee, n+l;
1 is the suffix such that X, is the vertex corresponding to

f(x}) = min f(x); X, is the centroid of the points x, with ifh,

At each stage in the process x, is replaced by a new point.

Three basic operations are used in the method:

(a) reflection;
(b) expansion;
() contraction.



A, The Reflection Operation

We generate the new point x <25 follows:

K™ (1 +a)x0 - Xy

where a, the reflection coefficient, is greater than unity. (‘m equat Youwily

Thus, x_ is on the line joining x; and Xy OB the far side of
X, from Xy and ¢ is the ratio of the distance ‘_xrxol to i_xhxo i .

If i(x ) lies between f(x,) and f(x;) then x, is replaced by x,
and we start again with the new simplex (see footnote).

if f(xr) < f(XI) then f(xr) is the new minimum; therefore we
expand X, tox.

B, The Expansion Operation

x, is obtained by using the following relation:
X, = rYx, +(1-Nx

The expansion coefficient ¥ which is greater than uniy is the ratio

of the distance | x x " to rx % ke
= | T 0!

If f(xé) < f(xl) we replace x, by x, but if fx) > f(xl) then the
expansion has failed, therefore we replace x; by x and in either
case we restart the process, If, after reflection, we find that
f(xr) > f(xi) thehr:. we define a new Xy, to be either Xy, OF X, whichever
has the lowestix)value and we make a contracting move.

C. The¢ Contraction Operation

We generate x_ as follows:

xc=8xh+(1-[3)xo

It is necessary to say that the ultimate convergence criterion is
tested each time before restarting the whole process.

4.



The contraction coefficient 2

2 , 2
ratio of the distance rxcxui /i

lizs between O and 1 and is the

! ::rxo‘{.

ifr x,q)7 I(.f ) I is replaced by X, but if the contracted point is

worse, that is to say r(*,l) < f(x

) then we replace all % by

Ly, + %,y and in ~ither case we restart the whole process,

The whole algorithm can easily be schematised in the foliowing

flow diagram,
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Ultimate Convergence Criterion

The stopping critericn suggesied by Nelder and Mead is
concerned with the variations in the function values over the simplex

rather than with chanpgss in the x's.

1t takes the standard error form:

\ /— n+l ‘

: 1. ? 0fr. "\ ‘21
\'._,f/ =g L MO e ) s ¢

1= 1

where £ is a small preset positive value.

Comments on the Program

Various parameters are used in the program, The main ones

are o, B and Y.

Nelder and Mead have carried out many experiments with
different combinations, They find best results are achieved when
a=1, B=%, Y=2.

Four other parameters are also used.

-8

Criter: stands for & and is set at 10

Conver: value of the standard error of the f(xi)

1 nitl
Z (FCx)) - £(x »?

n j=1
whenever conver < criter the program stops.

Colimit: preset value for the maximum number of function
evaluations.

Count: number equal to the number of function evaluations.
Whenever count » colimit then the program stops.

Orp(I:n): Array of feasible starting point.



2.1.2 Powell (64)'s Method (1964)¢1©

The key advantage: of this method is that it does not require

explicit evaluation of derivatives.,

It is a quadratically convergent process which generates
conjugate directions of search and will thus find the minimum of

a quadratic form in a finite number of steps.

It is based on the following theorem: if X4 is the minimum
in a space containing the direction v, and Xy is also the minimum
in such a space, then the direction (xl-xz) is conjugate to v.

Let f(x) be a general quadratic function:
f(x) = xAx + bx + ¢
By definition E?T ;f(xo + }\v)i = Qat A = O, Therefore:
2AVAV + v(2Ax1 +b)=0, A=0

Also:
2w Av + v(2Ax2+b)= 0 A=0

whence subtracting:
vA(xl - X5) =0

The directions v and (x2 - X;) are corjugate (Fig. 1).

NN



This means that in the presented space, the minimum M of the
quadratic function must be found along the vector (xz-xl),, Hence
it is only necessary to search for the minimum along the twe

v directions and finally along the vector (x2 -xl),

For more general functions which are not quadratic the
procedure is iterative and can be described as follows, We first
assume that n independent directions Vis Voy ense, vV, are given

(for example the co-ordinate directions.)

1, Forp=1l, 2, «see, n, calculate }\P so that f(xp_l + ?\Pvp) is a

minimum and define x =x o NN
P op~l PP

24 For p=1, 2, ...s, n-1 replace vp by VP+1.

3.  Replace v by (xn-x o)'

4.,  Find A so that f(xn + h(xn - xo)) is a minimum and replace x_ by
X, * }\(xn - xo) where X, is an arbitrary feasible starting
point,

5.  Repeat the procedure,

This procedure is illustrated in Fig, 2 in the case where n=2.



v
5 ks e
?,,_(‘:({:_-—... et o . e e ah] L“
Fig,2

x? starting point and xi‘ minimum moving along the Xq co'sordinate,
x% minimum from xi‘ along the X9 co-ordinate,

xg minimum point along the direction Vf(x‘z' - x?) and repeat,

The final point xg must be the minimum of the quadratic

function since vy and Vi = (x% - xg) are conjugate.
Theoretically this procedure converges to the minimum of a

quadratic function in n iterations., Practical applications have

shown, however, that there is a need to modify the basic procedure

9,



in order to achieve a satisfactory rate of convergence. The basic
procedure may occasionally select directions which are nearly
d2pendent and do not span full parameter space. Powell has
introduced a modification which ensures that the efficiency of the
directions Vqs Vgs eees, V1S never less than that of the original

independent co-ordinate system.

£ or this purpose he uses ¢ cerviain criterion, He rejects the
direction generated at the current stage if the criterion fails and he
computes another cycle of descent steps using the current directions

otherwisz he accepts thic new direction.
The procedure described above is then modified as follows:

1. for p=1, 2, .0.., 0 calculate Ap so that f(xp_1 + )\i)-vp) is a
minin and define = X + .
nimum efine xp o-1 ?\.pvp :

2. find the integei m, 1 <m<n so that {f(xm_l) 2 f(xm)i is a

maximum and define A = f(xm__l) - f(xm);
36 Calculaie f 3= i'(2xn - xo) and define f T f(xo) and f2 = f(xn);

0 g < . o B 7 2
b if either fs "’fl and /ox (1'1 - 2f2 + f3).(f1 “ f2 - A)> (fl - f3)
use the old div=ctions Vis Vo seeey Vo for the next iteration

and use X, {0y tne next 2 otherwise;

5 defining v = (xp - xo) calculate \ so that f(xn + ?\(xn - xo)) is a
MiNiMum USe Vqy Vou aveoy Voo 15 Vioi1s Viioy seesy V., V, a8
the directions and x, tAv as the starting point for the next

iteration.

If this modification is used, a conjugate direction is thrown
away and more than n iterations are required to find the exact

minimum. Nevertheless, it was necessary whenever large problems
are solved,

10,



To justify this criterion, Powell uses the fcllowing theorem:

Let vectors pys vee-s Py be scaled so that piTA P; = 1
i=1, 2, «essy n. Let ¥ be the matrix whose columns are the vectors
P; Then the determinant of Xis maximum if and only if the directions

are mutually conjugate,

The consequence of this is that Vs Voy sevey Vp should be

chosen to make the determinant as large as possible.

The criterion is applied by using the new direction v, defined
by an iteration, if it causes the determinant to increase, or by
rejecting the direction, the replacement of which causes the new

determinant to be largest.

It will now be proved that the direction which should be dis-

carded, if any, isv_, lemgn where m is such that
( S :
{_f(xm-l) - f(xm) ¢ is a maximum.

As f(xi) is a minimum in the direction v, if v; is scaled so that
vy A, =1
i i

the displacement froia x; 1o X is:

i i_; o5 1 =
\, !_l(xi_tl) - f(xi)_l . V= Qv
The direction defined by the iteration is:
>
n n

X - X =(I1V1+(I2V2+....+a

n
column vector v, by the vector Y5 is to multiply the determinant of

Sofx, -x ™ Wy where vg A vp = 1, the effect of replacing the

directions by oy / P

11,



Consequently the direction to be discarded, if any, is that for

which Cy is largest and this is the direction v .

This replacement should be made only if o z P and p is
czlculzted by the means of fl’ fz and f3 (values defined in the des-
cripticn of the procedure). The predicted stationary value of the

functicn along the new direction is:

2
4 1 & -y
S 8(f o8 €)Y
2 3
f is a sninimum if:z
f1—2f2+f3>0

if the above second difference term is negative, a new direction should

certainly be defined, ctherwise:

{ f— § ol =
H =\r'f (‘fl - fs) i\/(f?. i fs)

+ or - sign depending <n whether f:3 is greater or less than fl. In
the former case it is - 5vious that the old directions should be used

again, in the latter - sz new directions should be defined only if:
= 3 y

\ e ( \/(f - f )

The above results have been condensed in the criterion that
2 R should not be used for the next 1terat10n if and only if,
cither £33 f; and/or (f, - 2f, - £Xf, - £, - 822 CE, 3)2.

Because the modified procedure cannot cause the determinant of
directions to decrease the efficiency of the direction of search
Vs Vs eeee V is never less than that of the original co-ordinate
directions, If these are poor, improved directions will be found

easily.

The whole procedure can easily be schematised in the following
diagram,

185
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Ultimate Convergence Criterion

Powell's convergence criterion is more concerned with the

changes over the variables,

3» The procedure is applied until the change on each variable is
one tenth of the required accuracy. This point is called a,

e Each variable is then increased by ten times the required
accuracy.

3 The procedure is applied again until the change on each
variable is one tenth of the required accuracy, This point
is called b.

4. The minimum on the line through a and b is then found, it is
called c.

5. If (a-c) and (b-c) are less than one tenth of the required
accuracy in the corresponding variables then ultimate
convergence has been reached, else,

6. include the direction (a-c) in place of v, and start again,

Comments on the P grem
The procedvre Powell 64 has eight parameters, defined as

followss

1. X: array composed of the initial feasible starting points.

2, E: array composed of the required accuracy value for each
variable in this case it is set at 10™ .

3e N: number of variables.

L. F: wvalue of function.

o Escale: an integer number which defines the step for each

linear search so X will not be changed by more than

Escale x E.

Difficulties arose when choosing Escale. Not knowing the
behaviour of the function it was difficult to determine the step

and therefore a method of trial and error was used.

14.



1t was found that Escale should be at least equal © one fourth

of the inverse of the accuracy.
6. Iprint: conirols the printing,

(a) Iprint = O no printing

(b) “Iprint = 1 the variables and the function will be
printed after every search along a line

(o) Iprint = 2 the variables and the function will be
printed after every iteration (n+1) searches
along a line.

7. Icon: provides an alternative convergence criterion.
Usually it is satisfactory if Icon=1. However, if a low
accuracy is required, Icon is set equal to two but the

execution time might be increased by as much as 30%.

8. Maxit: maximum number of iterations required. The routine
will be left regardless after Maxit iterations have been

completed.

Zangwill Modifization of the Powell (64)'s Method

In 1967 Zang\vﬁl@?') published a paper suggesting a modific-
ation to the Powell procedure. A counter example was found which
reveals that Powell ‘= method does not converge to the minimum
of a quadratic in a iinite number of iterations but will not converge

in any number of itevations,

This new procedure, based upon Powell's theorems can be

written as followss

Let Vir Voo sase Vp be the co-ordinate directions and assume

they are normalised to unit length. The starting pomts 1ccl), cose
erL, and the normalised directions :1, h%, oseey % are given.
Calculate A° to minimise f (x_{1 + 7\ 1) and let

LI Bo rl 1
%31 ™ *n & )“ -n*
Set t=1 and go to iteration k with k=1, Iteration k: y ik l’ g

r=1, .+.., n and t are given.

15.



Step (i) Find a to minimise f(x};i’ + av,)

Update t by:
(t+1iflgten

e
Ll ift=n

k-1

IfaaéOletxk=x + v

n+1 i

If « = O repeat step (i). Should step (i) be repeated n times in

succession, then stop; the point xlli_:i is optimal,

Step (ii) for r=1; +e.s, n calculate Kr to minimise f(x 1 * ?s.l:, ﬂ;)

i T k
and define x| = x4 ?\ é

¢l k _kely;i
Let % “n+l = (x n = *n+1 tl S n+1|]
Determine hk to minimise f(xk + J\k ) and set
- n+1 n n+l ° n+1

k k k
el i ?\‘n +1 t-’n-i—l
D("f'ine €;1;+1 Lo EE‘I‘}_ rs }., 2, e00y n

Go to iteration k where k becomes k+1
No results ar- ~vailable yet to enable an assessment to be made

of the rate of conver.«ice of this procedure relative to the

Powell {(64)'s procedure.

16.



2.1.3 Fletcher and Powell's Method, 1965

This method is also sometimes called the method of Davidon,
tT'letcher and Powell(s) as the idea is based upon a procedure
described by Davidon (1959). @

Like the previous method described, it uses conjugate
directions and has quadratic convergence, therefore gets to the

optimum at a finite number of steps (for quadratic functica),

It also requires the gradient vector g = %{ to be defined
analyticaily at each point, -

We know that two divections Vi and v. are said to be

conjugate with respect to A if vg A vj = C for i#j.

A being a positive definite matrix. Is it possible to define A'l

as a function of these conjugate directions?

Consider the mairix:

5 ok
Me have for s=1, 2. .use, P
- T, T
Y . V. Ve ) AV, = VoL A =
("T;-l——» , ol | ‘“1) a = BgVgVy B Vg s

provided a = lfvg Av,

This gives for p=n:

't.'—‘—'n V. V
Anl = —-];. i
L et

This suggests an iterative scheme in which the best approximation to

the inverse A—l = H is used to define the next direction of search by:

17.



V.

w i+l
§41 7 T HVF( )

and the results of this search are then used to improve the approx-
imation to the inverse, but in the mean time the successive directions
generated must stay conjugate,
%
Knowing the matrix Aij = b_xlg)-c- the displacemeit between the
point % and X isv, = - Ai-—l g th]en Xigq = ¥ ¥ ?xivi aud updating

we have:

4 . R : ; -1
where Bi is a correcting term and Hi an approximation of A ~,

If Vqis seeey V; are conjugate:

v AH, eyt sk, 2, weeey ii

5 s

we also know that if ., .... v, are conjugate:

e

N SR e
g "Vi"vsAHi-lgi"Vs gi—-O

: T
therefore we must -hoose B, to satisfy v A Hm VEE

Sﬁi, 23 Q..., i—‘!

Tor i=s we have:

T viv;r T
vy A(Hi_l + T + Bi) E
1 A 7

whence:
oL
(g4q - 8)" (H; ; +B)=0

Writing ¥ = 841 ~ 8

y 5
oo S ¥y My
- i T
Yi M1 Y



To update H, . in a general function we need to modify the term

T i-1
vy A Vi We know that:
¥
..« = %)
vi Ky m it X gy
i i A i
1
It is also equal to:
(g; )
i o AP g1 > S
. L RUTEE
1 1
& Lty T
Snan ;T g H
Setting:
2 )
A
Ai= T \:~r"11ere:y'i=gﬂ_l-gi
i Y

the updated H matri» now takes the form:

H.=H. , +A. + B,
] i i

L 2RI

We can now state .« nrocedure as follows:

f-" N, .,'
iven x_ and = X
bl ) & = & 2

1. Compute v, = - H, , g;
2,  Compute A, to minimise f(xi + A V)

S Set X1 =% o+ ?\1 vy

In the first step cf the iteration it is customary to set H | = L.

“1is known, this can be used provided

However, if an estimate of A
it is positive definite. If H  is positive definite initially it has been
proved that all subsequent Hi are also positive definite, As

H. = A"l by construction it must be positive definite so that if Ho
does not satisfy this condition there is the possibility of a breakdown

in the calculation.

19,



This algorithm is easily schematised in the following flow chart.

i=20
X=X feasible starting points
*
H_ =1 or approx. toH ; g = g(xo)

s

L‘i"i“"Higi

l m}tn f(xi + 7\1 vi)

e
~YES-NEXIT

=" is ultimate convergence
<-\\ . - . . n
~.__ criterion satisfied?
b,
T80

L -
* Ho is usually set up equal to an identity matrix at the beginning,

unless 2n approximation to the Hessian matrix is known.

20,



Convergence Criterion

The process is terminated whenever two successive values of
f are equal or if a new value of f is larger than the previous one
(due to rounding errors) or when the first derivative of f nearly

vanishes,

Comments on the Program

(20)

The procedure Flepomin is a nine parameter procedure,

N = number of variables
X = array of feasible starting points
F = function value

EPS = tolerance used in terminating the procedure when the first
derivative of f nearly vanishes, Therefore g.t is set in a very
small quantity. In this case it is set to 107",

FUNCT = procedure calculating the value of the function and the
derivatives,

CONV = Boolean variable equal to true iff convergence exists or
false otherwise,

LIMIT = Integer variable defining the number of iterations required.
CONV will be equal to false whenever the number of iterations
has exceeded LIMIT and the process will be terminated
regardless,

H = arvay _T_n(n+1)

LOADH = Boolean variable indicating whether or not an approximation
to the inverse of the matrix of second derivatives is available.

Recent Variations of the Fletcher and Powell's Algorithgr?)

One of the main features of the algorithm described earlier
is that an approximation to H is kept and updated using the formula:
T T

V.V, Hv.v. H.

i | y iy e | 1
Higg=Hj ¢ ===

viyy ¥Ry

where i M—ligi

Yi= 841~ 8

21,



The correction v, is taken as a multiple A of a direction of search
s; = H;g;.

Though this algorithm proved a very powerful one so far, it
has some inconvenient features that Fletcher, in his recent article,
tried to overcome. The main one is the need to solve the sub-
problem of finding the optimum A at each iteration, ie. the linear
search., As it requires the evaluation of the function and the gradient
for a number o different value of A and interpolates according to
some strategy, until a sufficiently accurate minimum is obtained,

considerable computer time is needed.

The linear search also has another disadvantage because of the

special circumstances which can arise, eg. a minimum may not exist.

So it would be convenient to find A other than by finding A which
minimises f(xi + ?xsi), bearing in mind that the main importance of the
optimum linear search is that it generates conjugate directions
leading to the property that for a quadratic function convergence

occurs within less than n iterations.

So Fletcher tried to find out if that property could be kept for
variable metric algorithms not requiring optimum linear searches but

based upon a revised formula for updating H.

The only solution, however, was to abandon the property of
quadratic convergence and to replace the linear search by another
process ensuring an efficient decrease of the value of the function
at each iteration and this could be produced by the retention of the

positive definiteness in H.

So Fletcher suggested a new updating formula for H which
guarantees positive definiteness:
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This formula can only be used under certain conditions, If:

T,- T
A vy A ly;,;y Hy

then H is smaller than A"l and the new formula for updating H is used.
1f, however, yTA'1y4_ yTHy then H is larger than A~1 and the

original updating formula is used.

The new formula used whether or not the inequality (A) holds

has been inserted into the Flepomin procedure.

Another modification has also be implemented, We usually
start with H set equal to I (the unit matrix) and sometimes this
proved to be quite inefficient as H can be much greater than the
local A"l then any direction which reduces F would be considerably
less than -Hg and a considerable number of extra function evaluations

would be required at each iteration.

This only occurs at up to and including the nth iteration after
which a step of -Hg is almost always successful. In practice, a
step length A has been kept, derived from the previous iteration and
used to generate an initial v = -AHg.

However, the program reverts to the basic algorithm after the
nth step.

We shall see from the tables that the results ¢btained, once
these modifications have been included, are far better than those

obtained with the original Fletcher and Powell algorithm,

2.2 Computational Results

Each algorithm has been tested with the following test problems:

Function 1

Rosenbrock (banana shape) function

minimise f = 100 (xz - x?)z + (1 - x1)2

starting points x = (- 1.2, 1)
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Function 2

Fletcher and Powell's func:tlon with quartlc smgdar Hessian
minimise f = (xl + 103(r + 5(}( - 4) + 5(x - X ) + (*( - 2x )4

starting points x=(3, #3, Oy 1)

Function 3

Fletcher and Powell's (hellical valley) function

il s 9
minimise f = rlOO Xq 106(x4 , x2)| + (' /(x2+ xé’b - 1) + X3

where ZTEO(xl, x,) = Arctan (x2/X1)’ if x; > O orm + Arctan(xzfxl)
if x; <0. Starting points ¥ = (~1,0,0).

Function 4

Four dimensional banana shaped function (Colville)

witmiee £ 100(:8% - 3,_2)2 £T1 % xl)z + 95)@% . 4)2 £C = x3)2
+10.1 Gy - D+ G, - D + 19.8(x, - Dlx, - D

starting points x = (-3, -1, -3, -1)

Function 5

Box's function(B) -
Minimise f(al, ay, a3) L Lﬁ(e - e~ 3% -ﬂ.ge"x n e-le)—l 2

where summation is over Lf(e values x = 0, 1(0.1)1. Nine sets of

starting points were used,

Function 6

Watson's function

m m
minimise f = Z G- D xy =i E ' xjyij-l)z "li 2 p xﬁ
= '

=1
vhere y, = (R 1)/29.

m has been chosen equal to 6. Starting points x = (0, 0, 0, 0, 0, O).
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This function results from an attempt to approximate to the solution of
the differential equation:

dz 2.1 20 =0
dx

in 0 < x ¢1 by a polvnomial of degree m, by minimising the sum of
squares of the residuals at selected points.,

When running a program, the total mill time is given. This
includes the compilation time, the consolidation time, the program
run and the operating system administration. As the operating
system administration may vary quite substantially - for reasons
difficult to explain - the total mill time is quite unreliable if a
comparison is tc be made in function of time. Therefore, here the
comparison is made as function of the run time of the program
excluding compilation and consolidation. Though, again, this might
be quite unreliable for programs taking very little run time (up to
20 seconds), The first tables show the number of function evaluations
necessary to obtain the required accuracy., This is shown for the
four difierent methods we considered. The other tables show the
run timee and the number of function evaluations for each problem

and for each algorithm compared.

N.B. The same accuracy 10"8 has been used in the three different
algorithms,
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SIMPLEX METHOD

a=1, B=0.5 Y=2

Function 1 |Function 2 |Function 3 Function 4 !Function 5 [Function 6
EV f f f f f ¥
1t 24.2 215 2500 19192 2.087 30
200 3.81 1+ 36 637 79.9 0.034 1.56
40 1.61 8. 16 70.6 10.01 0.026 1.51
80} * 0.47 0.62. | 10,73 7.73 | 0,014 . 0.027
100{ 0. 594 0.1356 | 7.41 7.33 1 {9.09 x 107¢}  0.015
120! 0.001 .8 0. 005 3.08 Tt 58 x 10_6 0.013 -3
140} 58 x 10 0.005 % 1. 31 7.02 |2:.546% 10 8.4 x 10_3
160 8.99x10_¢ 0.10 4 6.44 16,08 x 10 7.5x 10_3
180 5.35x10_3| 3. 86x10" 5.46 6.9 x 10 3
200 47x10 27x107 4.41 6.81x 10'_:3
300 2.5 6.72x 10 3
400 0.81 3 Be D2X 10:3
500 4o 56 X 10-8| 2. 31X 10_3
600 6.3 x10" 2.288410
2000 | *2.28 1073

8

* To achieve an accuracy of 10~

The Simplex method has been successful with any set of starting points for the
Box function. However, for clarity the results for the set (0, 20, 1) only

are shown in this table, The number of function evaluations is approximate

to the nearest twenty, or hundred if it is more than 200.
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POWELL (64)'s METHOD

i Function 1 | Function 2 | Function 3 |Function 4 EFunction 5 | Function 6
|

EV f f | f f ¢ f
1 24.2 215 2500 19192 2'087-4 30
20 3.7 6.1 129 9120 9.14x10_ 2.3
40 2.4 4.13 10.9 62 3. 35x10 0.53
60 2107 .75 03 25 9x10:18 0.19
80 0.51 0. 0293 4.63 12 9x10 0.12
100 0. 1C 3 5. 3x10 3 1.42 7.88 0,037

| 120 | 5.8x107% | 3.58x10% 0.32 7.87 0.027

{ 140 9x10,, 2ol xlO_'6 0.02¢ 7.87 0.014

| 160 | 20ix10° 1.53x107 | 9x103] 7.8 ] 0.014
180 2.400107, | Baocll 7.4 | 0.011
200 1, 95x10_' | 6.66x10 7.80 0.011 -3
300 1.161 x10 7.08 2.35x10_3
400 4.58 Zs 28)(10_3
500 b 2.28x10
& 0.82 SRR
00 0.01 12
300 Bel%.10°

Here again the number of function evaluations is approximate to the nearest
twenty or hundred if it is more than 200. The set (0, 20, 1) of starting points
has been considered for *he function 5. More details of the results obtained
with the same function are given now.
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It was mentioned earlier on in the description of function 5

that nine sets of starting points were used. They are as follows:

Set aq ay | aj f
1 0 20 1 2.087
2 2¢5 10 | 10 275. 881
3 0 0| 10 306. 401
4 0 10 1 1. 885
5 0 10 | 10 213.673
<) 0 10 | 20 | 1031.154
7 0 20 0 9.706
8 0] 20 10 209. 280
9 o) 20 1 20 | 1021,655

The optimum a, = 10, a, = 1, aq = -1 has never been obtained with any

combination of methods and starting points tried to date,

There is, however, the continuum of optima f = 0, corresponding
to &g = O, a; = a, on which various of the methods found solutions
with some starting points. This was rarely the case with the nine
starting points quoted above and in the majority of these cases the
desired ontimum was found by making an alternative selection of

initial step-lengths,

Powell (64)'s method was not successful with every set of

starting points as we can see from the following table.

Set 2 3 Lt 6 8 9
f f f f % f

275.881 [306.401 | 213.673 |1031.154 |209.280 |1021, 655
F F F F F F

23,



Set 1 4 )
Ev i)

1 2,087 1.885 9,706
20 9. 14 %1004 428 10 | 1., %107
40 3.35 x 1072 6.5 %1078 | 1.3 x10°®
60 9 xi1o0°H 1 x93 dip % i078
80 9 x10°1 | 1.19x107%2| 1.08x 1078
100 | 1,52 x 10”712

For the sets (2, 3, 5, 6, 8, 9) this method has failed. We can
notice that these sets give the highest starting values for f. They
produced the following solution:

al 5 s 61 3-2 —s oD &3 i 32 s 2o gl 076

ie. regarding the problem as one of curve fitting, this method has
effectively eliminated a, from the problem and then endeavoured to
fit one exponential and a multiplicative factor to the data, This
failure stems frcm the fact that the method set out to locate the

minimum along a line too precisely,

Any method which does not find the minimum along a line, for
instance the Simplex Method, could not fail in this way.

For the sets 1 and 4‘the same minimum values were obtained
for the objective function and the variables, that is to say, respectively:
0, 1, 1, 1. For the set 7 there is the continuum of optima f = O
corresponding to a, = a,, az = 0.
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FLETCHER AND POWELL's METHOD (FLEPOMIN)

finction 1 function 2 Hﬁ function 3 function 4 function 5 function 6

av £ f £ f : f

1 24,2 215 2500 10192 | e 0,087 30

20 3. 50 0.037 15.4 5, 69 | 0.0226 1,76

40 | 0.122 | 3.50x 1074 2,46 0. 846 2.8 x103 | 9.88x10°3
so0 | 0.0522 | 5.33x 107 4.56 x 10°° 0. 364 5.2 x107° | 7.84x1073
30 0 1.8 x10°13 5.05% 10735 | 0.075 L 9,79 x10722 | 6.81x 1073
100 3. 68 xa67> | 1.16 <1070 6.45 x 1072
120 | 5,95 x 1073
140 5,17 % 1079
160 | 4.56 x 1079
18¢ m 3.63x 1079
20( __ 3.01 x 1073
30C 2,57 x 10”3

The number of function evaluations is approximate to the nearest twenty or hundred if it is more than two

hurdred and for clarity concerning function 5, the results for the set {0, 20, 1) only are shown in this table.
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FLETCHER

AND POWELL's METHOD MODIFIED BY FLETCHER (Flepomin Modified)

tunction 3

|

H function 1 function 2 function 4 function 5 function 6
X ¢ # £ £ £ £
1 | 24.2 215 2500 19192 2.087 30
1¢ | 3.88 154. 36 9.986 22. 50 0.026 0.053
20| 3.07 3.24x 1073 | 2.89 14,02 . 0,0132 9.67 x 1073
30| 2.84 2.55x 10°4 | 0.0936 C.750 7.06 x10°3 | 287 x1073
401 1.307 2929102 {222 x107%* | 0,72 26 x 107
50 | 1.12 2.80 x 10710 0.702 2.1 x107°
60| 0.109 5,20 x 1014 1.19 x 107
70| 0,020 2,11 x 10720
80! 1.129 x 10°11
gs| 2,11 x 10722
Here again the number of functions evaluations is approximate to the neaiest 10,
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- Upper corner :

- lower corner :

Function %

Function 2

Function 3

Funcrion 4

Funciicon 5

Function 6

Actual run time of the program

Number of function evaluations

Simplex Powell : Flepomin
Mecthod 64 Flepomin | 1 odified
3 11 1 |6

147 163 80 87
13 8 / 7 / 3 /
/ 202 14 109 / 4

2000

/ 3 ..
/ B S
e m_w? 5 67 /%)
/ 3 // :
" / 103 |/ 74
i il 8 7
/61 8 |/ 6 46
1618 / 145 182 25
/ 527 278 3%
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Run time in seconds

16138 145 182
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2.3 Conclusions

The main purpose of this study of algorithms for unconstrained
non-linear optimisation problems was to find the most efficient
method which could be used as a sub-routine when writing programs

for solving non-linear constrained optimisation problems,

At a glance, from the last tables, we can see that the Simplex
method is a rather lengthy process considering the number of function
evaluations and the run time, both are higher than those of the two
other methods, However, we must say that the method will converge
in some cases where the others failed as they try to locate the

minimum along a line too precisely, eg, function 5.

The resulis obtained by the Fletcher aud Powell’s method and
the Powell (Gé)is method, both performed remarkably similarly and
both possess quadratiic convergence, ie. the property that they -will
converge to the minimum of a quadratic function in a finite number
of steps and although such functions rarely occur in practice, it is
nevertheless found that methods with this feature converge more'-

rapidly, particularly, of course, in the vicinity of the optimum,

However, one adventage of the Powell (64)'s method over the
Fletcher and Powell's method is that it does not require the calcu-
lation of the derivatives and this is why, at first, the Powell (64)'s
method was chosen to be the common sub-routine for the programs

soiwving the coustrained nen-linear cpiimisation problems,

Unfortunately, it will be shown in the next chapter, that the
Powell (64)'s method failed when trying to solve larger constrained

non-linear optimisation problems (eight variables and more),

The modified version of the Fletcher and Powell's method would
have then been the obvious choice for an alternative sub-routine, but
the modification suggested by Fletcher for the Fletcher and Powell's
methocl(g) had not been published then, Therefore the only choice
left was to rewrite the programs using the Fletcher and Powell's
method,
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CONSTRAINED OPTIMIZATION TECHNIQUES



3.1 MATHEMATICAL DESCRIPTION

3.1.1 Kowalik, Osborne and Ryan's Technique(n)

This recent method due to Kowalik, Osborne and Ryan is in fact
a method combining a modification of a method due to Morrison(l'?’) and
a method due to Schmit and Fox(18)

function.

to bracket the optimal value of the

First of all let us consider Morrison's method, Consider the
problem:

Minimise f(x)

where f is a scalar function and x a vector X1s X9y ecsey X Subject

togi('}{)=0; i=1, 2, ssawy p,p(n.

A solution to this problem is assumed to exist and is denoted by
x, that is g(x) = 0 and if g(x) = O then f(x) 3 f(x). The problem is then
transformed into a sequence of unconstrained minimisation problems
using a parameter )ﬁ( and takes the following form:

(A) minimise F(x, k)_ ’E(‘{) Xk 2 T
1_1-

X -
Let X denote the solution to the problem. Morrison has proved:

13 if 2. ¢ f(x) then f(x-y) < G
P f\;{k) is a monotonic non-decreasing function of Xk
3. if Xl;j_ﬂ is defined equal to Xy +/ _Fq&i{_)-

; . M
and if Xk‘l‘ f(%) then Xk+l < O

4 the sequence 3 XI\;I; for j = k+1, k42, ..emn =f(x) as
j-»e»oand the sequence \XI\]A; approaches the optimal

solution from below.

}{I\ﬁ is called the Morrison's parameter,
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The second method, used by Kowalik (et al. ), is the tangent

parameter sequence suggested by P, Wolfe in relation to Morrison's

article,

1
If we denote X 4 as being the tangent parameter, then we
define:
¢ —.

L { e 2] 4
X‘k-l-l =X, + F(x, , Xk)/ .LF(x - Xk) “ gi(xk)"j

: i=
The sequence l X}E _(3 also approaches the optimum from below under
certain conditions but in general at a faster rate, The justification

of its use is as follows:

Justification

Consider the (f, g space (Fig,1). P is found by minimising
F(x, X;) then from geo metr 1c considerations: X, +\ fF(_ X_) is
the point on the f axis (o, X k)’ clearly this is closer to the
optimum than Xk.

Wolfe noticed that the tangent at P gives even a better point

©, X,

The formula is derived from the fact that the circle has for

equation:

Writing the equation of the tangent and putting g=0 to get the inter-

section of the tangent with the f axis, we have:
F('X.k, Xk) =0 + (f(xk) - X-k)(f(x) - X-k)
for f we have:

which is the required result,
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feasible region

tangent

optimum value satisfying the
constraints

)2

Cp?% = g% 4 0 X



Now. having justified the use of

> ! \ 204
X1 = X+ FOp X0/ [FOq %0 = > g050”

1=
prow.d.ed X € f@f,ﬂ( k1S < f(X) then we can use the parameter sequence
( T { T
v(XJ; = S}\ ; yi=ktl, k42, ..., e in (A) and X 4 being
greater or equalto X ka1 1t should converge to the optimum more

rapidly.

We saw earlier on, in Morrison's method, that we require an
Xk subject to st f(x) therefore we need to find a lower bound for
Xk to initiate the process.

The third method, used by Kowalik (et al.) is Schmit and Fox's
method which enables us to bracket the minimum, This method
proceeds as follows:

Let < s 1g(x)=0 andlet Y = max, f(x), then if
< X< Y then X offers an upperbound for ch) XY will
hold if mm%cmum F(x, X) = 0. However, if mlnl}lcnum F(x, X) # O then
X < f(X) consequently X offers a lower bound for f(X). Therefore we
examine the value of F(x, X) for the sequence of values
X = I{Xk'i_. k=1, 2, ... When we reach an Xk sub ject to F(x,Xk)% 0
then Xk is a lower bound for f(x) and Xk-l’ since minimum F(x,){k_l)=0
must be an upper bound.

(10)

method to deal with all types of constraints., This approach converts

Another modification developed by Kelley is used in this

the inequality constraints into equality constraints by using the

Heaviside function H(t) defined as:

H) =1ift>0
H® =0if t<0

Examgle

Using the Heaviside function, h(x) is transformed into:
7o

) =hGd H |- hG| =0
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Theorem for Convergence

For x4 (I’ closed bounded region) we assume:

i 42 f(x), g(x) are continuous
2. there exists a solution to the problem
3. F(Xk) = min F(x, X;) can be found by any methods of

unconstrained minimisation and F(xk) > Of--rf(xk) <f(x)
then we can say there is convergence and the limit
point of the set x, for k=0,1, .... is a solution to

the problem.

Proof

T'rom assumption 3 we conclude that there exists an upper

bound and lower bound for f(x) and they can be found easily.

There is an increasing sequence of X for j = k+1, k+2, ....
bounded by f(x). As the sequence X]. converges, therefore XB;I
converges so that:

FCXJ) -0 asj --y e

giving: _P f
i=1

:if(xj) - Xj“ -0 as j — =D

Let xbe a limit point of Xje There is a sequence of points x i
converging to xy . From assumption 2 and equation (I) we have
g(xL)=0; therefore f(xL) 2 f(X). We know too that f(xoj)s, f(x) and

this gives f(xL)s 0.

Remarks

The problem might not terminate in a finite nu mber of steps.
Keeping an upper bound for f(x) we ensure that X’{; +1 cannot be
accepted if X »Y., This could also give min}icmum F(x, X)> 0.
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This is unacceptable as X would tend towards4es In such circumsi-

ances we have a stationary point
-VEG) + GX)Vi(x,0) = 0
so there are two possibilities:

(a) x tends to an unconstrained local minimum of £
(b) f(x%) tends to + = as X tends to +-,

The whole algorithm can be divided into two phases:

iy Phase 1 sets the bounds;
2. Phasec Il is the actual minimisation process. We can
now give a step by step description of the whole

algorithm.

Phase 1

I Setx T (" closed bounded region);
SetX = f(xo);
Setk = 1;

II Minimise F(x, qu) to find X, 3
Xk = Xk-—l - step;

N1 IF Fy > <EPS then set 1) step = 2 k step,

& = 2k=kel
goto 1l else BU = X, . (BU is an upper bound for £GO)
goto 1V
Phase I1

I¥ Set BL = X, (BL is a lower bound for f(x));
45
V  Compute Xk+1’ Xk-i-l’
VI Setk=k+l
Set BL » XM
T k T M
Exk < BU then Xk = Xk clse Xk =X I

VII Minimise F(x, X;)© find x; ;
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vil 1f |/ FGq) > EPS then goto V else BU = X; 5
If BU - BL <EPS then goto FINISH else Xk = BL and goto VIL,

FINISH: END OF PROGRAM
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choose x
initial fe asible

starting points
set X o=f(xo)

~
k=k+1

V
Xy Xk 1-step
Min F(x, X'k) to find x

(Vg

step=stepx2 T

\
T____,. YES —— @

i
i
NO
v
BU is the upper bound

for f(x)
BU=Xk_1

y

BL lower bound for
GO
BL=Xk
™
~

Compute

M
X ier1 Xl

l

b

k=k+1

I}
BL=X}

YES « i xf;: BUT > NO

T
k —mmm—— M)ian(x,Xk)to find X) k

Y

“ : |

-

<15 F(x,X)»EPST_>——NO— BU=X,| |X,=BL

YES \
@IA EPS NO

blie FINISH




Ultimate Convergence Criterion

In this case the values of the lower bound and the upper bound

of f(x) are considered.

If the difference between the two is less than EPS (a small

preset positive value) then the program stops.

Comments on the Program

The program has been written in such a way that it could be run

with any minimisation sub-routine.

It has been tested using the Powell (64)'s method and the Fletcher
and Powell's method.,

By using the Fletcher and Powell's method, two external

procedures are required:

i Procedure TEMPCAL (Temp, x)
where temp is an arry (O:m)
Temp(0) being the objective function and Temp (1),
Temp (2) .... Temp (m) are the constraints. This
procedure calculates the value of the constraints and
also the sum of square of the constraints set equal to a

real number t, and where x is an array (1:n);

2 Procedure TEMPDCAL (Tempd, x)
where tempd is a matrix (1:m, 1:n).
This is the matrix of partial derivatives, and where x

is an array (1:n).
It is obvious that the procedure TEMPDCAL is not necessary

when using the Powell (64)'s method as it does not require the

derivatives,
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The procedure OPTKOV is a seven-parameter procedure.

They are as follows:

X
XK

XKT

XKM

STEP

EPS

array (1:n) containing the feasible starting point;

real number calculated inside the program but originally
equal to the value of the objective function of the

constrained problem;

real number calculated inside the program representing

the value of the tangent parameter;

real number calculated inside the program representing

the value of the Morrison parameter;
real number by which XK is decreased each time;

real number representing the value of the penalty

function minimised in the sub-routine;

representing the stopping criterion, usually EPS is a

very small positive value,

The main problem in preparing data for the program is to determine
the step by which XX is decreased.,

This is difficult to determine not knowing the behaviour of the

problem.

A method of trial and error has been used to solve the different

problems and it showed that the step could vary between 0. 125 and

2. and a wrong choice of the step could give a wrong optimum

answer,

If the lower and upper bounds to the problem are known then

this program could easily be used feeding in BU and BL and starting

the process at Phase Il
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2 1.2 Powell's Method for Constrained li’_t:oblems,(”)

This method deals with a general non-linear programming
problem of the form: Minimise f(x) where f is a scalar function and

X @ VeCtor Xq, Xgy eseey X subject to gi(x)=0; i=1, 25 esesy M

First of all we assume the problem has a solution and that the

given functions have continuous second derivatives.

The problem is then converted into a sequence of unconstrained
problems having the property that the successive solutions of the

unconstrained problems converge to the optimal answer.

The method depends on two sets of parameters (91 PR Qm),
(O «ee. O, for which we calculate the vector of variables x, to
minimise:
n
d(x, 0, ©) = FGO + Z_ 0, (g0 + gi} 2
i=
Computation experience has shown that the required solution can be
obtained for moderate values of the parameters - consequently
avoiding difficulties experienced by Fiacco and McCormick
method (See. 3. 1. 3.

The method is based on the following simple theorem.

Theorem 1  If the values of the variables x which minimise
¢(x, 0, ©) are &(0, ©) then £(0, ©) is a solution to the constrained
problem:

minimise f(x)

subject to g, = g; (540, 0)) i=1, susey M

Froof If the theorem does not hold and the variable £*(0,©)
minimises f(x), then @(£*) < @( £) which is a contradiction, This

means we just have to obtain the values of the parameters (0,0)

such that:

gi((c_(O', 0)z0i=1, «v., m (@)

so the process is based on an iterative adjustment of the parameters.
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For instance if m=1 and 0'1 is fixed, then by adjusting 91 we
provide a line of points ":'-(q',Ol) in the space of the variables and if
this line intersects the surface gl(x)=0 we just have to calcullte the

value of 01.

So we try to satisfy (1) by adjusting @, 0 being fixed.

As the equations are non-linear the adjustment of @ could involve

a lot of computations. However, it is found that the following

adjustment works well:

i=l, 2, sees M

0, + g;()->0;
Computation experience has verified this works well as long as ©, is
large and Powe11(17) has given a theoretical justificationbr
adjustment in this manner.

So in fact this method consists of adjusting the parameters by

applying the correction unless it happens that max; | gi( )i fails to
converge or converges too slowly to zero when 0 is increased

It is now very easy to write a flow chart for the program,

k being the number of iterations, C} least value of max; | gl( )1
At the bejzinning of the process Co"‘A where A is very 1arge pos 1t1ve

number exceeding the magnitude of ; ql(x) \ all i, If switch is 'down’',
it means we hav juct chosen a new value for O but if switch is 'up
it means the correction has been applied in the previous iteration.

We go on applying the correction as long as we get a

. 1
convergence: for instance ¢ = 7 k-1° otherwise we increase O,

If O, is increased, we adjust ©, so that the product 0.0, is

unchanged.

Let us call &%, 0%, ©* the optimal values of z, 0, © then from

the condition:
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j=1,2,-...n

we derive that:

ng +2T_ 0'* *1“___3__1(3{)\ <=0
x — dx et

Therefore the final gradient vector of F(x¥) is a linear combination of
the final gradient vectors of the functions gi(x) and the appropriate
linear factors are -20' @ i=1,2 +4ss m, From there we derive

another theorem.

Theorem I1 If our problem has a unique solution, and at this solution
the gradient vectors of the functions gl(x) are linearly indepen dent,
then for i=1,2, .... m, the final value of C; O, is independent of the

parameters.

The algorithm is described step by step and schematised in the

following flow diagram.
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Flow Chart

I Set k = 0;
SetO'i=- 1;
Set Qi= 0;
Set e Aj;

Switch down.,

11 k = k+1;
Calculate & to minimise §(x);
o= miax !gl(t)i g

{41 S 4 21 SN is small enough then goto EXIT else goto IV.

w iE €k ? kot then goto V else goto V1.

\' Set Cp = Cxo1°
If switch is up goto VII else goto VIIL,

V1  If switch is up then goto IX else goto X.

VIL Set @, = 6; goto XIIL

VIII Goto XIII.
\Xx Goto XL
If

f e < %; %1 then goto X1 else goto XTIl

X1 Goto XII.

XII ©e:=0. ©;= 9;"4- gi(E) and set switch up. Goto 11,

XIIT If ]gi("c) \),%c!'(_fhen 01 = 10 0'i and 6, = 0.1 €,. Set switch
down goto 1L,

EXIT: END OF PROGRAM.,



k=0
0; - 1
0.=0
1

A

i switch down

|3

o =
o

f

gijéoloc;igif
i =)

switch down

4 &

k = k+l

Calculate  to

¢) = M@x ?gi(?.

min @(x)
)|

is ¢ small enough ¥

-—>@t

§
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Ultimate Convergence Criterion

From the flow diagram we notice that a variable ¢ is used. To
start with this variable is assigned a value A, where A is a large
positive number exceeding the magnitude of (Bi(x) Torin) . 2. viséy M
At each step, c decreases as it is assigned the value of max; .(£)
and whenever the value of ¢ reaches a certain value < (a preset

small positive value) the process is terminated,

Comments on the Program

Similar to Kowalik's method, Powell's method has been written
for problems with equality constraints, If problems with inequality
constraints have to be dealt with, the Heaviside function H(t) is used
(see Kowalik's method).

The program has been written in such a way that it could be run

with any minimisation sub-routine,

It has been tested using the Powell (64)'s method and the
Fletcher and Powell's method,

By using the Fletcher and Powell's method, two external

procedures are required:

i Procedure PSICAL (psi, %)
where psi is an array (1:m)
p3i (1), psi (2), oes., psi (m) are the constraints; and
where x is an array (1:n), This procedure calculates

the value of the constraints,

24 Procedure PSIDCAL (psid, x)
where psid is a matrix (1:m, 1:n), This is the matrix

of partial derivatives, and where x is an array (1:n).

It is obvious that the procedure PSIDCAL is not necessary
when using the Powell (64)'s method as it does not require the

derivatives.,



The use of the Powcon . procedure does not give any problem.

It is a four-parameter procedure;

X array of starting point;

EPS  small preset positive value determining the stopping
criterion;

RATIO integer number (the value suggested by Powell is 4 and
used for testing the convergence: the correction is

applied as long as ¢; < ra}:io k-1%

M integer number equal to the number of constraints;

Cne point needs to be clarified however: a scaling problem arises
when choosing the initial values for O_1 and ©,. 6i=1 and 0;,=0is a
good initial choice,

3.1.3 S.U.M.T,

Sequential Unconstrained Minimisation Technique (SUMT)
developed by Caroll, Fiacco and McCormick. (3,4,5,6,7,21)

Originally the problem is as follows: consider a general
non~-linear problem:

minimise (%)

SUbjeCt Lo g].(x)zo i=1, ssey m x=(x1’x2’ seeay xn)

On applying SUMT this ordinary constrained problem is reduced to a

sequence of unconstrained problems of the following form.
m

1 Minimise P(x, rk) = f(:0) + T gxl (x) where
1=

L_ (0 defined only if 8(9>0. ry>ry,; 1->0ask- .- Inorder

to prove the convergence of the system, ie. that X(I‘k)-? x and

ry 7 0 and

’P(x(rk » 7))~ f we need to set up a certain number of conditions
usually attached to non-linear programming,
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1 T, f are convex;

11 gi(x) are concave;

m R®= j'xfgi(xbo, il 2, aness m} is non empty;

IV the functions f, 8ys seeey Gy ATE twice continuously
differentiable;

\'A for every finite k, ] S x| FG) sk; x Rl is a bounded set, where
R= \tx\gl(x)")o i5 1, e oniy z:ns

VI  the function P(x,r) = f(G) + r /__ T l/gl(x) is for each r > 0,

strictly convex for x¢ 2 o

Proof of the Convergence

If the conditions 1-6 are satisfied, then:

G) each function P(x, r ) is minimised over R® at a
unique x(r )‘ R® wher'e VxP \—x(rk)r

(i) Limk.a b i{._x(rk)’ rk11 =bin_.n 16O = v°

Proof for (i)

Let us call x the starting value vector M = P(xo, rk). We

now form two sets:
) S, = }:x lfGd & M, x€ R.,
) S, = Ex \r, /g M - vt i=l, seee, m
) g &{ T=O

From this it follows that:

nfx*;-.S P(x, r'k) - in.f'xt RO P(x, rk) PV, > = >

But S is non-empty, contains no boundary of R so from condition IV
and the construction of S;, «eusy S, P(x, ry) is continuous in 85

~ denotes optimal value,



Since the greatest lower bound of a continuous function,
bounded on a compact set is taken on by a point in that set, then at
least one x(rk) exists.

As P(x, r ) is strictly convex in R there exists only one
'x(r ) and also there exists only one local minima to P in R°,

Proof for (ii)

Let 70 be any positive number, Then select an x* such as
x*-R° and f(x*) <v, £/2. Select k*« E;nini g,i(}c'“')i]t 5 /2m. Then
for m = m*:

vosinf  po P(x, rk)
£ " * e *
v, =P ‘L:«:(rk v rkl O [x(rk " rk}( P !’x(rk), rk]
I * ¥ - -
¥ X P 1_){ $ rkj(_ v + /24 C[2 = 0 +&

This technique can deal only with inequality constraints.

In 1965 the technique was extended to deal simultaneously
with inequality and equality constraints,

The ordinary non-linear problem is then:
minimise (%)
subject to gi(x) 20 iw]l, cseaym
}l](x)=0 j=1, sesey P

and the sequence of unconstrained problems becomes:

m
minimise P(x, rl) = f(x) + Ty T’ 1/gl(x) + SP— hzj'()O/Jerk
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Primal Problem with Inequality Constraints

Using SUMT, the primal of a problem becomes:

m

Minimise P(x, r) = fGO + rp e 1/g,(d
o

In order to be able to solve such a problem we need to formulate the
dual of this problem.

Dual Problem with Inequality Constraints

The dual may be written as follows:

m

(1) Maximise {G(x, u) = £ rui gi(x)! VxG(x, uw) =0 u> 0}
: J

1=

e s e
U.i g].(x) S-;-'-A_Iuig:O 11}0}
| 1=

Any (x, u) which satisfies VxG(x, w) = O with u 30 is a feasible
solution. Expanding VxG(x, u) we have:

Maximise )[ G0 - ;
1=

m
VI - )V, g (=0
i=1
m
.S
nf0=) wvg®
=T

A sufficient condition that x be a solution to the penalty problem
is that:

m
v gi(x)
v.fG) - r L 0
X - %(X)
m
V,8.(0
fo(x) =7 --3(-:?1—— uy 0
i= g; (0
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Hence:

= s g gl(x)
T =3 7yg00-r ) Ho—
=T 1 g™
and u, = 2 which satisfies w 2 0 as r>>0 and gi > 0.

gl(XJ

Thus if x(ry) is the solution vector to P(x, 1) then x(ry),
u(rk) will be a feasible solution of the dual problem (1).

The corresponding value of the dual objective function would be:

G(x(30), w(®)) = fOlr D - r

An important property of dual programming is:

£() » £ > > G(x, w)

but:
= 1
P(x, r) > f(x) as P(x, r) = f(x) + r T
T 5™
s 1
where r > gi(x) 2 0
1=
Therefore:

P(x, ©)> £ » G(x, w)

Using the fact that the P-value and G-value constltute respectively the
upper and lower bound to the optimal value f and that they would
converge to it from opposite directions, we can set a stopping criterion

for the termination of the process.
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This could be that the difference between P(x, r) and G(x, w)
must be smaller or equal to & ( £ being any small value we care to
choose).

Primal Problem Including Equality and Inequality Constraints

The problem is then as follows:

Minimise f(x)
subject to gi(x) 20 fori=l, seasy M
hJ(X) o=t CfOI"j‘l, se ey p

and the penalty function becomes:

_m_
c i
Plx, 1) = f() + r 3 1/g60+ » h2j6o/r?
i=1 i
In order to avoid difficulties we can have when we have local minima,
we require that the points satisfying the constraints of the problem

should form a convex set, Similarly as for the first problem, there

are conditions to be attached to this one,

1 The function f(x) is convex;

2
> h“j(x) is convex in R;

?;_I.

1I The functions gy, «s.., g, are concave;

m Q= }wh](x) 0, j=1, ....,pi and
R® = 1)('31(7() 0, i=1, ....,m7 = R°NQ non-empty;

IV The functions f, 812 seeey B hl’ cesey hp are continuous;
\' For every finite k, and every r >0,

{ .5 % [

‘}x‘ GO + P h“j(x)/r*¢ k, x€ R& is a bounded set where

=1
R is the closure of RD.
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If the equality constraints are linear then condition V is reduced to
lx |f) < k; x € R1Q From conditions 3, 4 and 5 we derive that
there exists a finite number v where v = inf x& RMNQ=min x€RNQ

From conditions 1 and 2 we derwe that P is convex in R®

Vl The function P(x, r) = f(x) + r Z 1/g,(0 + i hzj(x) / ré' is,
: 1= =

for each r > 0, strictly convex for x € R

Proof of Primal Convergence

1f all these conditions are satisfied then:

(a) each function P(x, r) is minimised at a unique
x(rp )€ R

) Lim, _P ‘:x(r D> rk] - miand(X) Me

(o) The unique limit point x of the uniformly bounded

sequence (Lx(rk) ?\ is a solution to the primal problem.

Proof for (a)

o o
X, € R™ and M =P(x y Tyde

Form the set S = ?xtf(x) 5 s h2(x)/r2 <M xER

= me \f(x) + S lxz(x)/rk\ \ < M as rk l/gl(x ) > O-‘

Now form the set :
( { :
Sl=nix\rk/gi(x)smo~vk‘) i=ly, eese, m

From this we derive:

infg P(x, r) = infpo PO, 1y )5 = »o
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Since P(x, r) is continuous in S, it takes in greatest lower
L.

bound in S. As P(x, rk) is strictly convex in R® we can say

that the minimising point x(r ) is umque in S and also that no

other local minimum exists to P in R®

Proof for (b) and (c)

Let f. be any pos1t1vrn number amd select x such that
x € R® ;X e Q, f(x )-: vyt & /2 and k= such as rk.q mmgl(x )Tffgml
Then for k > k :

Az infpo P(x, rn)=P [x(rk), rk] < P(x*, r) < P(x*, n <
s s
o cf2+C[2= Vot &

*®
Now suppose we have an integer k greater than k and we define
3

k'_" =x|f(x)+3_h2(x)/r &v, c 3 xc‘.Ri
TL=(’Lxlf(x)+Zhj2(x)/ri{{ e +E; x€R

where L > k. By condition 5, Tk and TL are bounded sets. Also,
since ry < Ty, TLCT}.‘(. TL is not empty since xl rL] is contained
in it, Soi 2

f {x(rLﬂl = minx é T ) = minx"Tk f()> - o=
end | x(rL) is uniformly bounded. It has a unique limit point since

P rx, is strictly convex, Then we can rewrite equation A.
* *
For any . >0, there is a k (&) such that for L >k (9.

B: v +T >f :c(rL)l + Ty Z 1/g; !:x(rL)] + thj [X(PL)] / rt

Because the three terms of the right hand side of the inequality is
bounded below it is possible to show:



1. each term is bounded above;

2. LimL_;_mhj le(r'L).l—“- O for j=3, .-.-.., D and consequently
the limit point x of the sequence ')Lx(rL) '-]-J is primal
feasible (x ¢ R(Q).

If either ry v 1/ g; [X(rl.)] or Z h?_[x(rL‘)—l / r% has a limiting value
greater than O then fG) = limy ___f 'X(r)) imust have values less than

v (from B). This contradicts the fact that v is the smallest value
that any primal feasible point can take on. Therefore:

r -
1

3. LimLa} "’rL.S: 1/Q1 'i:c(rL)l\ = 0,

LimL o G’Zh‘? Il:x(rL)l /r‘i =0

: i -
Limg f ;Lx(rL)l v

-5 o

, i 7
40 leL._;»c,-'--P IX(TL), rL—‘l = Voo

From this point we assume that the problem functions are different-

jable and the condition IV becomes

The functions f, gy eeees By hiy eeees hp’ are twice

continuously differentiable.

Since a necessary condition that a point be a local minimum of
an unconstrained function is that the first partial derivatives vanish
there, we can say from condition 1V and from the proof of convergence:

C: V, P {x(ry, rk] =0

Dual of the Problem

The dual is formulated in different ways depending upon the
nature of the equality constraints, if they are linear or not, 1If
they are non-linear then we rewrite the primal problem in the

following form:
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minimise f(x)
subject to gi(x) 2O el o oeyy M

- B2 0 =1, sevey D
Then the dual is:

e
max G(x,u,w) = f() - N u, gi(x) # ) \vj hzj(x)

subject to Vx G(x,u,w) =0

11.?}0 i":l, dooa,m

w-}'/o j=1, O.lu,p

If h.'s are non-linear, we do not know if the solution of that dual

coincides with Vi the minimum value of the corresponding primal.

However, it can be proved that the method generates points

which are dual feasible and whose G values bound Yo from below.

DR A
Let 1:1(1"]() = rk/gi ‘_x(rk)-l for i=1, «vs., m and let
wj(rk) = I‘k2 for all j. Then from equation C it follows that

-
V.G x(ry), u(r'k), w(rk)l =0

*
Let x be a point in RMNQ where f(x*) v and let Ax = x* - x(rk).
Then:

Vo f(x*) + r'l?Z h‘;z (x*) >
LN IO,
e | + et 0 xr)e

,L v £ \j‘(rk)] FEe” 2 2h; Ec(rk)]vxhj [x(rk)J l\ By

by convexity of f and h]? condition I
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= f [x(rk):l + r}';% Z: hjz [X(I‘k)] +
£2 o Fo0e: il 8 1 .
T 2 g [x(rk) l V. & ix(rk) ! Ax from relation (C)
% £ [+ rf 502 (x|
2 l.x no| * Tk 53 51Xy l-n»

-2 [ e )] w1
r. 2 & [x(rk)_! L]_- g l_)c(rk)l + g;(x )JE:

by concavity of 8; condition I1
i -% bl h2 [ ]
58 [x(rk)_] o TP T 3 Lx(rk)J- Xy, Z 1/ 8 ?((rk)]

(since gi(x*) 20 as x € RN Q) =G x(rk), u(rk 5 w(rk)
From now on it will be assumed that the hj's are linear therefore
condition I (in primal problem) is being replaced by the following
condition: The function f(x) is convex and the functions h.()
51, «ves, p are linear. If this is the case then we can write the
primal problem:

Minimise f(x)

subject to gi(x) 0 i=1l, ¢eesy, M
hj(x)‘e.O =1y oesey P
"hj(ﬂo j=1, a-.-,p

‘Wolfe's theorem proves that if the primal has an optimal solution at
*
a point x then the dual problem:

Max G(x,u,v,w) = fG) ~ 3 uigi(x) 5 wjhj(x) -2 vjhj(x)
subject to Vx G(x,u,v,w) =0

ux0
v>0
w >, 0

, * % 0w * % % ®
has a solution at some (x , u , v , w ) where G(x ,u ,v ,w )=v_

63.



Initial Value of R

Two alternative methods of calculating r are suggested by
Fiacco and McCormick in, %

As they stand they are applicable either when there are no
equality constraints or when x (initial starting point) satisfies the

equality constraints,
(@) ry == VEOTY 06O/ 7 6|2
=3 1/g®
where p(x) = 1/g.(x
o i

This comes from the condition that P is minimised when the first

partial derivatives vanishe so r, should be chosen in such a way

1
that it minimises the magnitude of the square gradient of P at x_ .

Note that as rl must be > O then:
Vf(xo)T Vp< O

(b) Let us call Hl the Hessian matrix of f(x) and HZ the Hessian

matrix of p(x), both calculated at x°, Then the magnitude of
the gradient gives an estimate of the amount by which Plx, )
exceeds its minimum value which is:

D Vp(x°, rO)T ‘-H 1+rH2-l ot VP&, /2

]

I x o L8 near several constraint boundaries, Hl can be elminated

then the value of r for which (D) is minimised is:

Vi T 1ol viGS)
; ( X 2 X \
/

\Wb6T 13! vpee®)



Approximation and Extrapolation

Experiments showed that the trajectory of x(r) is approximately
linear in r* as r approaches 0. That is to say, for a small r:

[t

x(r) = X + ar?

and x(r/c) = x + alr/ C)%

X being a feasible point considered as an estimate of the solution,
a being some constant, c being the constant by which r is divided at

each iteration.

The first order estimate of the sclution is given by

eliminating a from the two previous equations:
i i 1
x = (c? x(r/c) - x(r))/(c*-1)

Then the first order estimate of point:for which P(x, r/ cz) is a

minimum is obtained by assuming:
L 3
x(r/ c2) =x + a(r/ CB)2

and we get:

1
x(r/ cz) = x(r/c) + 1/c* [x(r/ Q) - x(r)]
In practice the function P(x, r/ cz) is minimised along the vector
connecting the last two minima, This has substantially reduced the

effort required to minimise the P function.

Updating the Value of r

Two observations are made with respect to the manner of

reducing r after each P minimisation:

: (% It is highly advantageous to change r by a constant
effort;
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2, The overall effort required to obtain a solution is
relatively insensitiveto the choice of factor, over

a wide range of values of this factor.

The value of r, suggested by Fiacco and McCormick, for the

(i.+1)sqt minimisation is given by Fie1 ™ ri/c where c> 1,

The whole algorithm, step by step, can be described as

follows:

11

111

v

Vi1

Select a feasible starting point x°;
Calculate a suitable initial value of r;

Form the function

P&, r,)=f() + r - 1/c(x)+r"%£hzj
"k ki; i k Jgi

Find the unconstrained minimum of P(x, rl) ins:

Y

( /
W, = x/eGd> 0 for i=1, 2, wovn P

The starting point x° has to be quasi-feasible ie, x°€ Wo 3
Starting from the minimum of the unconstrained function
Pix, rl) which is called x(rl) minimise P(x, r2) where

ry> r2>'0;

Continue to minimise P(x, rk) for a monotonically decreasing

sequence of values ry where :
lim £y = 0O when k —» ==

This algorithm can be schematised in the following flow

diagram,
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k=0

| Find x° initial feasible starting point

Set initial r

m E 4
Form P(x, rk) = f(%) + rki; llci(x) + rl';z h2j

N

o

m N
z 2.
Form D(x,r)) = fGO - rki; 1/¢;(0 - rf{]zg h“j

L

k=k+1 ’(
h
m}i{n P(x, rk) E
Calculate ABS(P-D)
r=r/c

e

EXIT

The flow diagram might look very simple but in fact difficulties arise

when minimising P(x, rk) as the constraints have to be satisfied at
each step.

Full comments will be given in a following paragraph called
fComments on the Program',
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Ultimate Convergence Criterion

In the description of the algorithm we proved that the primal
and the dual of the auxiliary function converge towards the
optimal value from opposite directions therefore the most sensible
stopping criterion is to evaluate the difference between the Primal
and the Dual. Whenever the difference is smaller than <
( s being any small positive value we care to choose) the program

stops.

Comments on the Program

The procedure SUMT has three parameters: X [lzn._] is the
array of feasible starting point; EPS is a small positive value
(if the difference between the primal and the dual of the function is
less than EPS the program stops); RATIO is an integer number

defining the value by which r is reduced after each iteration.

The use of the program is simple once the following

modification has been included.

After each minimisation of P(x, r}) we need to check whether
or not the constraints are still satisfied. If they are not, this
means the step by which x has been decreased in the minimisation
procedure is too large, therefore we divide the step by a certain
quantity until all the constraints are satisfied, This is applicable in
the case of inequality constraints only.

SUMT has been tested with the Fletcher and Powell's method
only, and the modification introduced in this method for the
constraints to be satisfied at each iteration is shown in Appendix II,
Also within the procedure FUNET in Flepomin we calculate not only
the penalty function but also its dualD=f(x) = r ; 1/ 8;-

i=

By looking at the structure of P(x, rk) one could think that
difficulties (ie. overflow) might arise after a few iterations when
r becomes very small. But this never happened in practical

experiences,
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3.2 Computational Results

The three programs, OPTKOV, POWCON and SUMT have been
tested with the same functions and same convergence criterion so

the comparison of the results could be fair.
The functions used are:
Function 1 suggested by Fiacco and McCormick

Minimise (0 = (¢, + /3 + x,
subject to Xq - 1=0
il

This function has a minimum at f = g and x = (1, 0) . The starting
point used is x° = (1,125, 0.125).

Function 2 Rosen-Suzuki 's problem
o Loy 2 2 2. g
Minimise f = Xy + X5 + 2)(3 + Xy - 5%y - 5x2 - 217(3 + 7x4

) 2 2 20 L2 .
subject to -x7 - X, - X3 - 4—)c1+x2-}cs-kx‘!.r+8a«0
2
x

: 2 2 2 »
-x1-2\:2- 3-2x4 1+x4+10_z,0
-2x2-x2-1cz-2x +x,+x, +5320

1 2 3 1 2 4 i

This function has a minimum at f = -44 and x = (0, 1, 2, -1). The
starting point used is x° = (0, 0, 0, O).

Function 3 Beale's problem

i 2 2 2
Minimise f = 9 - 8x1 - 6x2 - 4x3 + 2)(1 + 2x2 + X5+ 2x1x2 + lexs

subject to xl -0
2%

X3

3"

- 2%

3+3}0

Sty %
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This function has a minimum at f = 1 and X = C—[’-, 9" The starting
point used is x=(0. 5,0. 5,0, 5).

Function 4 is a problem with equality constraints suggested by
Powell(w)

Minimise f(x) = X3 Xp X3 X, Xg
subjecttox§+x§+x§+x£+x§- 10=0
Xy - Xg - 5x4x5= 0

x‘z' + xg’ +1=0

This function has a minimum at f = 2,9197 and
x=(-1.1712, 1,5957, 1.8272, -0.7636, -0.7636). The starting
point used is x = (-2, 1.5, 2, -1, -1).

Function 5 This problem and the two following problems have been

suggested by Dr. K.P. WongczD

Minimise f(x) = (xl - 10)2 + 5(x2 - 12)2 + xg + 3(}:4 - 11)2
+ 10xg + 7x‘é + xé‘ o 4x6x7 - 10x6 - 8x7
subject to -2)(% - 3){2 - Xg - 4}{2 - 5x5 + 127 7,0
7%y = 3%, - 10:% - x, + x5 + 2820
-23%; = %5 - 6x2 + Bx) + 19630
4l - X2+ 3xyx, - 2x§ - 5xg + 11x,% 0
This function has a minimum at f = 680,97 and

x = (2. 30, 195, ~0.47, 4.37, 0.51, 1.03, 1.58). The starting
point used is x = (1, 2, 0, 4, 0, 1, 1.
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Function 6
Mintmide 80605 = %5 + %2  xox. '« Mises o 16 ¢ 0ty » 10024
g 1 2 172 v 2 3
40, - 2 4 Gig - D+ 2xg - D2 4 55 +
Tlxg - 1102 + 2(xg - 10)% + (g - 2 + 45

subject to ~3(x, - 2)° - 4(x, - 3 - 2)(% + 7x, + 120 %0
-51% - 8x2 - (x3 - 6)2 + 2x4 + 4 >0
-3(x; - 8" - 2(x, - 2 ng +xg + 3030
-x§ - 20y - 2% + 2x)%, - Lhxg + 6xg> 0
~4x; - 5%y + 3%, - 9xg + 10530
-10x1 4 8x2 + 177c.7 - 2xg> 0
3x; - 6%, - 120xg - B + 7% 0

Bxl - sz - ng + 2x10 + 12> 0

This function has a minimum at f = 24, 31 and
xe (2,17, 2,36, 8,77, 5:09, 0.99, 1.43, 1.32, 9.82, 6.27, 6,37),
The starting point used isx=(2, 3, 5, 5, 1, 2, 7, 3, 6, 10).

Function 7
I 2 5 2
Minimise f(x) = X7+ X5 + XX, - 14)(1 - 1(‘3)(2 + (x3 - 1007 +
40, - D+ (xg - D # 2xg - DX+ 55 +
7Gxg - 102 + 20xg - 100% 4Gy = P + (xyy - 9P
+100x; 5 - D2 + 5x; 5 - 72 + 40y 14)? +
27Ge s - DP # Kb + (e = 2% + 130x g - 2

+(19 v 3)2 + x%o i 95
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subject to -3(x; - D& g A 2:% + 7, + 12050
-5}% w 8x2 - (x3 - 6)2 + 2}(4 + 40 >0
-3(xq - 8% - 2(x, - &% - 3x§ + x¢ + 300
8 - 20e, - 2)% + 2xx,, - 14xg + 6xg7 O
-4xy = Sy + 3%; = 9xg + 105 %0
-1Ox1 + sz + 17)(7 - 2):8 >0
-3x, - 6}(2 - 12(x9 . 8)2 +7%19%0
8x1 - 2x, - 5x9 + 2%y + 12 >0
Xy & Ky = dky g + 200053 0
-x2 - 15x,; * Bx 5 + 28 %0
thxy - Fxy 574 + 9%y, + 8750
3%y - hxy - H(xpq = O + Uxy, +1050
“14x2 - 35xx + T9%; + 9250
-15x2 - 1lxyq + 61x; ¢ + 5450
~5xg - 2x, - 9x[1*7 + xg + 68>.0
-x% +xy = 19%;g + 20%, - 1930

2 2 2
-7x1 - 5x2 - X1g + 30‘)(202/ 0

This function has a minimum at f = 130. 60 and x = (2.04, 2.20,
8,74, 5.06, 0,95, 1.43, 1.33, 9.97, 8.17, 8.46, 2.31, 1.35,

6. 10, 14.16, 0.99, 0.49, 1.49, 2.00, 2,64, 2.02). The starting
point usedisx=(2, 3, 5; 5, 1, 2, 7, 3, 6, 10, 2, 2, 6, 15, 1,
22,02, 1 3
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As mentioned earlier on, the procedures OPTKOV and

POWCON have been tested using the Powell (64)'s method and the
Fletcher and Powell's method as a sub-routine, -Results are now

given only for the first four functions as Powell (64)*5 method

failed for the larger problems.

Function 1
Function 2
Function 3

Function 4

TFunction 1
Function 2
Function 3

Function 4

Looking at these two tables we can now say that the Fletcher
and Powell method is more efficient than the Powell (64)'s method.
The difference did not show so much for unconstrained problems,
but now the minimisation sub-routines being called several times
the difference shows more,

From now on all the results tabulated have been obtained using

Flepomin as a sub-routine.

CPTKOV
with
POWELL 64 FLEPOMIN
Function Run Function Run
Ewvaluation Time Evaluation Time
125 2 191 8
776 25 264 21
497 17 324 18
1236 42 278 17
POWCON
with
POWELL 64 FLEPOMIN
Function Run Function Run
Evaluation Time Evaluation Time
329 2 86 1
1287 43 65 3
303 8 4 1
540 17 l 90 6
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As mentioned earlier on, OPTKOV is divided into two phases;
phase 1 finds the bounds and phase II is the iteration phase.

For clarity the phase I will be considered as being the first
loop no matter how often the minimisation sub-routine has been
called.

The number of loops is equal to the number of times that sub-
routine has been called in the whole process.

Function 1, 2, 3, 4 have been tested with EPS = 10"6 and

functions 5, 6, 7 with EPS = 1074,

74.



Function 1

OPTKOV POWCON S, V.M, T,
H = £ Function Run £ Function Run £ Function Run
P Evaluation | Time Evaluation Time Evaluation Time
3.3235 3.3235 3.3235
1 2.6658 26 0. 1295 17
2 2. 666666 49 1.2532 5 i 2.9667 58
3 2., 6660 57 2.2738 45 2. 6966 85
4 2. 6661 62 2. 6000 53 2. 669 110
5 2,.6662 67 2.6535 64 2.6669 135
6 2.6663 72 2.664 71 2.6665 161
7 2. 6664 77 2.665 82 2, 6666 188 7
3 2. 6664 82 2, 6664 93
9 2.6665 37 2. 6665 102
10 2. 6665 93 2. 6665 117
i1 2, 6665 98 2. 66666 134 1
12 2. 66660 103
13 2. 66662 108
14 2.66663 114
15 2.66663 119 7

From this table and the two following ones we can see that the optimal solution is reached after the third loop.

However, the program did not stop there for the required accuracy (BU - BL) & EPS, was not satisfied.
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Function 2

OPTKOV POWCON S, UM, 1,
f Funeétion Run Function Run ¢ Function Run
Evaluation | Time Evaluation Time Evaluation | Time
0 0
1 ~44,45 185 107 -44.,0974 53 -41.4680 38
2 -44..0019 133 -43.9307 68 7 -43.7580 74
3 -44.,000 172 -43.9758 113
4 -44,00 188 -43.9975 143
5 -44.,0000 198 -43.9997 175
6 =44,000 209 -43. 9999 219
7 -44,,000 219 -44.,0000 252 14
8 -44.. 000 232
9 -44.000 249
1C =44, 000 259
11 -44..000 269
12 -44.,.000 278
13 ~-44.000 287 22
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Function 3

CFTKOV POWCON S.U.M. T,
Loop ¢ Mﬁmnﬁ.ov ?”5 £ Fun nﬂoﬂ HﬁE £ m.;ﬂnﬁou.p ?.E
Evaluation Time Evaluation | Time | Evaluation Time
7.29 7.29 7.29 "5 )
1 0, 1106 4§ 0. 1094 23 0.7036 26
2 0.1111 133 0.1110 43 0. 1548 63
3 0.1111 168 0.11111 61 23 0.1158 87
4 0.,1111 175 0.11158 108
) 0.1111 184 10 C.11115 129
G.111111 149 4
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Function 4

OPTKOV POWCON S, 0. M. T,
Loop f Mﬁsnﬁoﬁ,ﬂ Run £ Function Run ¢ Function Run
valuation | Time Evaluation Time Evaluation Time
-6.000 i -6.000 -6.000
1 =4.0063 34 -3.5026 32 -3.5026 32
2 =3.2615 65 -2.8816 53 -2.9731 61
3 -3.0244 85 -2.923 66 =2.9249 82
4 -2,9515 101 -2.9194 78 -2.9022 105
5 -2,9293 116 -2,9197 90 -2.91975 126
6 -2,9226 132 -2.9197 101 13 -2.91970 147 14
7 -2.9205 148
8 =2.9199 167
9 =2.91978 178
1C -2.91972 187
11 -2.91970 196
12 -2.91970 209 16
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Function 5

OPTKOV POWCON S U M. T,
o ¢ Function Run £ | Function Run £ Function Run
p Evaluation Time Evaluation | Time Evaluation Time
714 714 714
3 679 260 679.917 54 682. 305 100
2 680. 630 334 680. 985 101 680.797 141
9 680. 633 366 680, 629 123 15 630. 691 151
4 680. 632 381 680.739 160 11
5 680. 632 386 38
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Function 6

OPTKOV POWCON S.U. M. T,
oo £ Function Run £ Function Run £ Function Run
P Evaluation Time Evaluation Time Evaluation | Time
753 753 753
1 16.90 368 23.03 147 28.725 139
2 24,02 468 24.28 193 24,747 233
3 24. 30 582 24.28 199 24. 350 347
4 24,31 621 24.29 237 24.310 532
5 24, 31 654 137 24.29 248 24.307 605
6 24.30 360 24. 307 656 54
7 24.30 272 61




Function 7

OPTKOV POWCON 9. V.M. ¥,
L £ Function Run 5 Function Run ¢ Function Run
oop Evaluation | Time 3 Evaluation Time Evaluation Time
901 901 901
1 134.97 498 129. 64 178 136.409 244
2 133.98 583 356 130.23 200 131.073 416
3 130.77 215 130. 547 581
4 130.77 226 130.515 614
D 130.70 240 130.513 661
€ 130. 248 248 130. 489 1120 195
7 130. 81 260
8 130. 81 270 207
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3.3 Comparison and Conclusion

It is difficult to say which of run time and function evaluations

is the best criterion for judging efficiency.

If we consider the first three previous tables,that is to say
problems with less than five variables, the comparison is rather

difficult to make as both function evaluations and run time vary a lot,

With larger problems we can notice straight away that QPTKOV
becomes relatively inefficient considering both number of function
evaluations and run time, even if we look at them from the second

loop onwards once the bounds have been found.

If we now look at the results obtained by S.U.M.T. and
POWCON we see that the former is relatively good considering the
run time on the computer, better than POWCON, though requiring
more function evaluations.

Therefore we can draw two conclusions, depending upon which

criterion is considered for judging efficiency:
(a) if for some reason the number of function evaluations is
more important, then POWCON could be the best method

considered here;

(b) otherwise, if the computer run time is the most important
criterion, then S.U.M.T. is the best method.
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An interesting point discovercd during various experiments is

worth mentioning.

We have seen that all three methods convert the constrained
problem into a series of unconstrained ones, At each iteration, the

minimization procedure is called.

Considering Flepomin, we can notice that at the beginning of the
program the Hessian matrix is set equal to the unit matrix and an
experiment has been made to see what would be the effect of using,
from the second iteration onwards, the Hessian matrix obtained at the

previous iteration instead of resetting it equal to 1.

This experiment proved to be very successful, particularly for
S.U.M.T. For instance the results obtained with this modification

for function 7 are as follows:

S.U.M.T, (originally) 1120 function evaluations
195 seconds run time;

S.U.M.T. (including the modification) 601 function evaluations
152 seconds run time,

The results obtained with POWCON including the same modi-
fication have not improved the results; this can easily be explained
as, in this procedure, two parameters 0 and © change at each
iteration and this makes the Hessian matrix vary a lot from one

iteration to another.

With OPTKOV, when results were obtained, the modification

improved the results too, For example, with function 5:

OPTKOV (originally) 386 function evaluations
38 seconds run time

OPTKOV (with modification 215 function evaluations
29 seconds run time,
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Therefore, here again the modification brought seme improvement.
Nevertheless, with function 6 and function 7, no convergence was

obtained, the Hessian matrix tending to go singular.

Complete results are given in the following table.

Function 5 Function 6 | Function 7
! Run Run ' Run
Ev Time Ev Time Ev Time
Original | 123 | 15 272 | 61 270 | 216
FOW CON '
Modified | 130 | 20 250 | 60 289 | 259
Original 386 | 38 654 ‘1.=137 ‘ 583 l 356
OPTKOV | l
Modified | 215 | 29 NO RESULTS
Original {160 | 11 | 656 | 78 1120 | 231
SUMT ; 1 '
Modified 1203 | 7 | 317 | 38 601 | 152

Therefore we can say that a method using the Hessian matrix
can be very much improved by using a good approximation to the
Hessian instead of the unit matrix from major iteration to major
iteration and further work should be done on how to evaluate this

approximation,

We have seen, too, that S.U.,M.T. only has two different
penalty functions depending upon whether the problem we are dealing

with has equality constraints or inequality constraints.

POWCON and OPTKOV have only one penalty function for
equality constraints, therefore problems with inequality constraints

have to be converted using the Heaviside function (procedure H(t)).

Calling this procedure H(t) each time the procedure FUNCT is
called might lengthen the run time of the program. Therefore if we
could find, for these two methods, a penalty function dealing with both
equality and inequality constraints, this could make the methods more

competitive.
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APPENDIX 1

LISTING OF PROGRAMS FOR UNCONSTRAINED
OPTIMIZATION PROBLEMS



SIMPLEX PROGRAM

"BEGIN!
"INTEGER! COUNT.!aJ;N:H.L.COL!MIT:
'"REAL! AaBrC;CONVER.CRITER:Y1cYZ;Y3.SUHY:STORE:BARVaVAR.X1:XZI
'=READ;
A:=READ;
B:=RFAD!
C:=READ:;
CRITFR!=READ:
COLIMIT:=READ!
COUNT:=20}
'"BEGIN!
"REAL' '"ARRAY! P[O:N.1gN],ORP,STL,CENT,SUM,P1,pz,ps,PH{1;uJ
Y[O:N):
Whwkdhpewtwr INSERT PROCEDURE F1(N:Xs2) HERE
Whkdkkenphhew INSERT PROCEDURE F2(pP:+F) MHERE
'"PROCEDURE? MAXCAN/M,ROU)Y ;
"WALUE' N,M,A:
"INTEGER' N,M,nO0W;
"YARRAY!' A:
"REGINY
VINTEGER! I
'REAL' Q:
QI=A(M]:
ROW:=0;
'"FOR' I.:=M+{ 'STEP' 1 "UNTILY N 1DO?
'BEGIN'
'IFY AC11>0 '"THEN?
"BEGIN!
Q:=ALY]:
ROWs=1;
"END' 'ELSE!
Qi=0;
TEND';
YEND':
’PROCEDURF' MIN(AINIH!RO”):
"VALUE' N,M/A;
VINTEGER' N+M,ROW;
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"ARRAY!' Ag
"REGIN?
VINTEGER! I}
"REAL' 03
0:=A[M]g
ROW,=0;
'FOp' l,y=M+1 'STEP' 9 'UNTIL' N 'DO!
'"BEGIN!
Y1F' A[1)<Q 'THEN?
"BEGIN'
Q:=A[I)
ROW:=1
YEND! 'ELSE!
Q=Q;
tEND';
YEND':
"PROCEDURE' REFLECT(A,CEN,NO'N,P:PY)?
'VALUE' AsCENoNOfN=
"REAL!' A3
"INTEGER' NO,N}
YARRAY!' P,P1:CEN?
"BEGIN?
"INTEGER! 1}
YFOR' I:=1 1STEP' 1 'UNTIL! N 'pO!
PIL1):=(1+AY*CENLI)=A*P[NO,1))
YEND'}
"PROCEDURE' EXPAND(C/CEN,P1,P2,N)}
"WALUEY C,P1)CEN,N?}
'REAL! C3
VINTEGER!'! N!
"ARRAY! CEN.,P1,P2}
"REGIN?! :
VINTEGER!' 13
"FOR' T:=1 'STEP' 1 'UNTIL' N 'pO!
P2l1Y:=CwPilIl+(1~C)%CENT1];
TEND';
'"PROCENDURE' CONTPACT(B,CEN,P)NO/N,P3)]
"WALUEY CEN/B,NO,N?
TREALY B
YINTEGER' N.NO:
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"ARRAY!' CEN(P,p3!}
"BEGIN?
"INTYEGER' I
'FOR' l.:=1 'STEP' 1 'YUNTIL!' N 'pO!
P3L1]:=BuP[NO, 11+ (1=B)%CENLT)?
YEND';
"FOR' Jti=9 'STEP' 1 'UNTIL' N DO
ORPLJ]Iy=READ]
'COMMENT' ORIGINAL POINTS:
YFOR' Je:=4 'STEP' 1 '"UNTIL' N 1pO?
STLIJ]=READ!
"COMMENT' STEP LENGTH:
"FOR" 1:=0 "STEP' 1 '"UNTIL' N DO
"REGIN?
"FOR' Je=1 'STEP' 1 'UNTIL' N 'pO!

"IFY I=y "THEN' PlI1,J):=0RP{JI*STLLY)

'ELSE!
PLI,J):=0RPIJ];
IEND?:
F1CN/P,Y):
COUNT :=COUNT®1 3
AGAIN: VAR:=0999,
MAXCY, N, 0,H) 2
"FOR' re=9 '"STEP' 1 '"UNTIL' N 'DO?
PH{!):=PlH,1]);
MINCY,N,Q,L)?
'FOR' Jyt=q 'STEP' 1 YUNTIL' N 1pO¢
PREGIN®
sUMPJ)1=0,0; .
"FORY T4=0 'STEP' 1 'UNTIL' N 'pO?
SUMPJ)i=sUMrJY+pPLl,J):
CENTIJ] s =(SUMIJI=PLlH,JI)/N}
YEND'
REFLECTCA,CENT,H/,N,P,P1)?
F2¢(P1,v1):
COUNT ;=COUNT#1
VAR:=(¢
"TF' Y1<Y([L) 'THEN!
"BEGIN?
EXPANDCC,CENT,P1,P2,N)?
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L1,

F2{p2:Y2)!
COUNT:=COUNT+1:
VAR5='1}
YEND' YELSE' 'GOTO' L4
YIF' v2<YCLL) 'THEN!
"REGIN?
"FOR' ls=1. 'STEpP!' 1
TBEGIN'
PtHeIYs=P211]
PHLI)y=p[H,I)

-n =

YEND';
ylHY:=Y2:
1G0T0' CHECK:
YEND' 'ELSE'
"REGIN?
SFOR' I:21- 'STEp" 1
'BEGIN'
PLHeINe=pPA01])
PH[l]l=P[H;IJ
TEND':
ylHYI =YY
'60T0"' CHECK:

|END'=
YIFY Yr1I>YLO0Y 'THEN!
"BEGIN?
¥1:1=Y01):
X2i1=yY[01:
"END' 'ELSE'
"BEGIN?
X1:=v[0];
x2:=Y(173:
YEND':

tUNTIL!

'UNTIL!

N 'po!

N 'poO!

'FOR' 1:=9 'STEP' 1 'yUNTIL' N DO

"BEGIN?
YIFr YIII>X1 'THEN!
TBEGIN!
X2:12X1}
X1:2¥Y[1):
TEND '}

tIFY YO1I>X2 'AND' YIIle<X?
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'THEN!

X2:=Yl11):



YEND';
"IF' Y1>X2 'THEN' 'GOTO' L2
YELSEY
"BEGINY
YFOR' 1:=1 'STEP' 1 'UNTIL! N 'po!
'BEGIN'
PCHsIY:=P111):
PHEI)=p[N,1);
YENp':
YIHI:=Y1:
'GOTO' CHECK:
YEND'}
Le. "IF' Yi>YrH) 'THEN' 'GOTO' L3
"ELSE?
"BEGIN? .
"FOR' I:=1 'SYEP' 1 'UNTIL' N 'po!
"BEGIN'
PLHeIS:=P111)
H ]-‘- |!]
'END':

-—n ww

YEND':
L3, CONTRACT(R,CENT/P,H,N,P3);
F2¢(P3,v3):
COUNT:=COUNT+1 ¢
VAR:; =11
"IFY Y3I>YrH] 'THEN!
"REGIN?
"FPOR' 1¢=0 'STEpP' 1 'UNTIL' N 'pO!
"FPOR' J:=1 'STEP' 1 'UNTIL' N 'pO!
PLI,JYi=¢PLl2,d)epPlL,u))/21
F1(N,PyY) !
'GOTO0' CHECK:
"END''ELSE!
"BEGIN?
'"FOR'I:t=% '"STEP' 1 'UNTIL' N 'DO!
'BEGIN'
PLH,IY:=P3(1);
PHC!):=P(H,1]);
TENR';
Y(HY:=Y3,
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CHECK,

" YEND';

FINISH:

'END.:

YEND':

SUMY:=8TORE:=0_0:
YFPOR' t:=0 "STEP' 4 SUNTIL' N DO
YREGINt

SUMYy :=SUMY+Y[I]:
VEND!':
BARY:=SUMY/N}
"POR' 1:=0 'STEP' 4 'UNTIL' N DO
STORE:=STORE+(Y[1J=BARY)*(Y[I1=BARY)]}
CONVER::=SQRT(STORE/N):
YIF' COUNT>COLIMIT 'THEN' 'GOTO' FINISH:
"IF' CONVERSCRITER 'THEN' 'GOTO' FINISH
'ELSE!
'6OTO' AGAIN;
"FOR' 1:=1 'SYEP'" 1 'UNTIL' N DOV
'"BEGIN!

PRINT(P(H,11,0,10);
VEND';
YIF' VAR=0 'THEN' PRINT(Y1,0:,10)}
VIF' VAR=w=1 'THEN' PRINT(Y2,0,10);
"IF' VAR=4 'THEN' PRINT(Y3,0.,40)!
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POWELL 64

'"PROCEDURE! POW6L(X/E,N/ESCALE, IPRINT, SCON,MAXIT/E)}
'"REAL' ESCALE!?

"INTEGER' N,)IPRINT,ICON/MAXITS

YARRAY' X,FsF;

'"BEGIN? _

YARRAY' WIT:N*(N+3)):

'REAL' DDMAG,FKFEP/)SRER,SUM,FP,DMAX,DACC,DDMX,
D;DL;Fpr-‘UlFﬁ;DA-DB:FH:DB;FHULDrDMAGuFC
tDC/A,B/DYFY,AAA;

"INTEGER' JJ,JJ),KsNFCC,IND,INN,1,J,1TERC,ISGRAD,

JTONE, IXP.1CIRN,ILINE, 1S J1L!

'SWITCH! SU1|=L10:L11:L12:L13:L1¢aL06.L5;L?.L8rL58.
L18sL15,L26,L21/L23:LR%,L25,0L26,L28,
L?'?ri.?‘!IL30:L36:L4G:LﬂﬁrL&SfL&?rLfo"r
LS0/L51/L04,L02,L87,L69,L37,L38,L72,
LS3/,L76,L78,L88,L35,L108,1.901,1L105,
L1135+ L193,L107.L106,L20}

kkdkwkwkuww  INSERT PROFEDURE FUNCT HERE

DDMAG:=0,1*ESCALE:

SCER:=0,05/FgCALE:}

JJIsN*NEN;

JJdJdr=JJdaN;

K:=N+1]

NFCCs=IND:=INN:=1TERCI=1]

"FOR' I3=1 'STEp' 1 'UNTIL' N 'po!

'"BEGIN'

YPOR' Jt=1 'STEP' 1 'UNTIL' N DO
"REGIN?
1IFr I3y "THEN?
'BEGIN'
WikKls=ABS(E(L1]):
Wr1):=ESCALE;
"ENp' '"ELSE!?
WlKY ;=0
Kizg+1;
TEND';
YEND!;
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L5:

L7:

L8,
L58:

Li4:

1SGRAD:=2;
FUNCT(T1, X, F)}
FKEEP:=2%ABS(F[411);
ITONR:I=1]}
FP:=fr(1):
SUMs =02
prfijt'g :
"POR' Ti=1 'STEp' 1 'UNTIL' N 'DO!
'BEGIN'
IXPe=IXP+1}
WEIXPYe=X1e1)
YEND'?
IDIRN:=N+1]
ILINE:=4}
DMAX 1 =W[ILINE];
DACC:=DMAX%SCER:
DMAG+="'1F' DDMAGLO,.1%«DMAX TTHEN' DDMAG 'ELSEY 0,1%*DMAX)
DMAG:s="IF' DMAG>20%DACC '"THEN' DMAG tELSE' 20%DACC:
DDMY :=10«DMAG?
VIF' ITONE=3 'THEN' 1GOTO?' 71!
PL:=0?
D:=DMAG)
FPREV:I=F[11]:}
1S:=25;
FA:=¢r[11}
DA:=plL!
DD:=n=DL}
DL:=D?
K:=InlIRN}
VFOR' T:=1 'STEp' 1 'UNTIL' N 'DO'
"BEGIN!
X[1o%3:e=X01,734D0D%WLKY?
Ki=K+1:
TEND??
FUNCT(T ,XsF)2
NFCCi=NECC*1
'60T0' Swillsl:
"IF!' FL11<FA '"THEN' 1GOTO' L15:
TIFY FL4)>FA '"THEN' tGOYO' L24;
"IF' ARS(D)>pMAX 'THEN' 'GOTO' L18:
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L18:
L1s:

L24:

L21:
L2x:

L83:

Le2s:
L2é:

L13:
L2g:
L29:

L12:

L19:

D:=2+D}
'G0T0' L8}

uRITETEth'(IMAxIMUMxCHANGExooestOTxALTER%FUNCTIOM')l);
16OTOo' 120

FB:=fr[11:

DB:=D;

160vo!' L24;

FBi=FA}

DB:=nA}

FA:=¢[1);

DA:=p?

'IF' ISGRAD=1 'yHEN' 'GOTO' L83;
:=2«DB=DA}

1S:=9:

'6O0T0' LA

D:=0,5%(DA*DR=(EA~FB)/ (BA=DR));

1S:=4)

"IF1 (DA=D)*(D=DB) 'GE' O 'THEN' 'GOTO' L8]

1St=1;

'IF* ABS(D-DR) 'LE' pDMX 'THEN' 'GOTOH' (8!

D:=DR+*(TIF' DB *1GE' DA 'THEN' ABS(DDMX)

TELSE' (=ABS(DDMYX))):

1S:1=1;

DDMX s =2wDDMX ¢

DDOMAG: =2« DDMAG

"IF' DDMX '"LE' DMAX 'THEN' 'GOTO' L8:

DDMX i =DMAX]

'60T0"' L8

"IF'" FL1) 'GE' FA 'THEN' 'GOTO' L23:

FC:=FBR:

DCi:=ph;

FB:=f[1)

DB:=h;

'GOT0' L30;

'TF' FL1) 'Le' FB '"THEN' 'GOTO' (28;

FA:=2Fr[1])

DA:=p!

v60t0"' L3303

"IF' FI11 'GE' FB 'THEN' 'GOTO' L10;

FA:=FB};
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L79:

L10:
L30:

L34

Lbgs

L84 :

L4s:

Lé7:

Lé1:

DA:=pB}

'6OTO"' L29:

DL:=n:=1;

DDMX =5

FAr=gP;

DA:=ai:

FR:=fgHOLD;

DBr=0;

FCi=p[1);

DCi=n:

A:=(DB=DCY*(FAmwFC)

B:=(DC=DAYW(FBw=FEC):

'IFt (A+BY*(DA=pCI>0 '"THEN' 160TO' L34}
FAi1=FB;

DA:=nB;

FB:=FC;

DB:=pC;

60710 L26:
D:=0.5*(A*(DB+DC)+B*(DA+DC))}(A+B):
DIl:=pB;

FI:=fB;

*IF' FB *LE' FC 'THEN! 'GOTO! Lé4;
bl:=pC;

Fl:=gC;

"IF' ITONE 'NE' 3 'THEN!' 'GOTO' 86}
I1TONE:1=2;

1GOTO' L4E;

'IF' ABS(D=DI)'LE' paCC "THEN! '6OYO' L4
"IF' ABS(D=DI)'LE' 0.03%ABS(D) 'THEN' 1GOTO?
"IF! (DA=DC)#«(Dr=D)<O "THEN' 1GOTO' L47
FA:=FB;

DA:=nC;

FB:=rC;

DB:=nC;

'GOTO0' L25;

185122

"IFY (DR=D)#¢(D=pC) 'GE' 0 'THEN' 'GOTO' LS8!
I1St1=%}

'60TN' L8;

FL1Y1=F1:
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L50;

L59:

L9¢:
L92:

L96:

D:=DI=DL:
DD::SQRT((DC-DB)*<DC~DA)*(DA-DB)/(A+a)):
"FPOR'! Is=1 'gTEpP!' 1 'UNTIL' N 'po'
'"BEGIN'
X[I.1]e=Xr!:1J+DtutIDIRNJ:
WIIDIRN) :=DD*W[IDIRN];
IDIRNs=IDTRN*1
TENDI :
WOILYNE):=WlILINE)/Dp?
TLINE:=TLINFa1;
"1F? IPRINT 'NE' 1 'THEN' 1GOTO! L51:
PRINT(ITERC,0,10);
PRINT(NFCC/,0,10y;
PRINTCFI11+0,10):
"IF' IPRINT=2 'THEN' '@40TO! L53:
'IF' ITONE=2 'THEN' 'GOTO' |38
"IF' FPREVS(F[11+SUMY '"THEN! 'GOTO' L9
SUMy=FPREV=F1]:
JIL:=1LINE!?
"IF' IDIRN 'LE' JJ 'THEN! '6OTO0' L7
LIEY IND=2 'THEN' 160TO' L72;
FHOLD:=F[1]):
1S:=6;
IXPi=dJ;
'FOR' 13=1 'STEp' 1 'UNTIL' N 'pO°
"BEGIN!
IXP:=1xP+1q;
wt!xP]|=Xt!:1]-H[!XP}
lENDt;
pD:!=1
'GOTO' L5883}
"IFYIND=2 'THEN!' 'GOTO' L87:
"IF' FP<F[1) 'THEN' 1GOTO' 373
"IF! ABS(FP=f¢[11) 'LE' 2=15 'THEN!
"BEGIN'
PRINT(Fr[11,0,10);
'GOTO' L20:
IENDI;
D:=2w(FP+FL1)=24FHOLD)/(FP=F[1])42;
"IF'" Dw(FPmFHOLD=SUM)®2 'GE? SUM 'THEN?
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L87:

Léq:

L37:

L3g:

L72:
L5%:

JisJgiLlensy;
"IFY J>JJ 'THEN: 'GOTO' L6
"FOR' I;=) 'STEp!' 1 TUNTILY JgJ vpO!
'BEGIN'
KisjeNs
WIK)::=wlly;
YEND!
"FOR'Y l:=JIL 'STEP! 1-"UNTIL' N 'DO?
UISEL BRI S & T
JDIRN:=Ks=IDYRNaN;
ITONE!=3;
IXP:=2dy:
AAA:a(}
"FOR'I:=1 'STEP' 1 'yNTIL' N 'DoO!
"BEGIN'
IXPi=IXP41y
WIK):=ullxP);
"IF' AAA<ARSCWIKI/ECLIY) 'THEN! AAA:=ABS(WEKI/ELTY);
Keskeqy
YEND!;
DDMAG: =1
WINY+=ESCALE/AAA?
ILINE:=N;
'GOTO'L7:
1XP:zJJ
AAA: =0
FL11:=FHOLD:
"FOR' I:=21 'STEP' 1 tUNTIL' N 'po!
'BEGIN'
IXP:=IXPeq;
X[Ia1]:=xr1-11—U[IXD]:
"IF' AAA¥ABSCErI])<ABS(WIIXPI]) '"THEN!
AAA==ABS(MIIXD/E[II):
YEND!;
1'60T0' L?72;
AARs=AAAR(T#D1) s
"IF' IND =2 'THEN' 16070Q! L106:
"IF' IPRINT 'GE' 2 'YHEN! '6GOTO' LSo;
'"IF' IND=2 'THEN' 'GQTO! L8&:
"IF' AAA>Q0,1 'THEN' 1GOYO! L7763}
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L76:
L78:

L8R
L35

L1108

L101:

"IF' 1CON=Y *THEN' '6OTO' L20}
IND:m2}
YIFY INN=2 'THEN' 'GOTO' L1017
!NN;:Z:
K:=JJJdi
'FORt 1s=1 'STEp' 1 'UNTIL' N 'po!
YBEGIN'
Kiak+1}
WweKysexl1,13:
X[1,1):2X01,11+490«ELTY;
TEND'!
EKEEP:=F[1):
FUNCTC(1, X, F)
NFCC:=NFCC#*1}
PDMAG:=20]
16O0TO' L108;
VIE' FL11<FP 'THEN!' 'GOTO' L35;
URITGTEXT('(lACCURACYXLIHITED%BY%ERROH%INKFl)'):
1GOT0'L207}
INDs2f}
DDMAG:=0,4*SORT(FP=FL11) ¢
1SGraD:=1)
ITERC:=ITERC*1:
'IFY NFCC 'LE' MAXIT 'THEN' 'GOTO' LSi
NRITFTEXT('('FUNCTION%EVALUATIONS%COMPLETED')’)l
'IF'fL1) 'LE' FKEEP 'THEN' 160TO' 20!}
FLY11:=FKEEP)
'FORY J:=1 'STEp' 1 'UNYIL' N 'po’!
'"BEGIN'
JJJiEJyd+s
Xr1,13:sWeJdddd:
TEND':
160T0' L207
JiL:=1;
FP:=¢KEEP]
"IFY F[11<FKEEP 'THEN' 'GOTO! L105 “‘ELSE"
'IF' F[1)=FKEEP 'THeN' 'GOTO' L78:
JILez2?
FP:=¢l(1)?}
FL1):1=FKEEP]
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L105;

L145:
L113:

L107:

L106:
L2o:

'END!

1XPi=dJ;
"FOR' I:=31 'STEp' 1 'UNTIL' N 'DO°
Ki=1XPgN;
"BEGIN!?
IXPtaIXPe1q
'IF' J1L=2 'THEN' 'GOTO' L115;
WEIXP):=Urkl;
'GOTOY L143;
WEIXP)g=Xr1,1Y
XC1,9)s=WeK):
YEND'}
Ji1lL:=2;
'GOTn' LS2!
INNi=1:
*6OTo' 1L35:
"IF' AAA>0.1 'THEN' 1GOTO' L107;
OUTPUT(NFCC) ;
'FOR' Y:=1 'STEp' 1 'UNTIL' N 'pO°
PRINT(X[1,11,0,10);
PRINT(F[1],0,10y;
POWELLGAG;
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FLEPOMIN

'"PROCEDURE FLEPBM!N(N:XcF;EPS;FUNCT:CONV.L!H!T:HcLOADH)F
'VALUE' N,EPS, LOADH,LIMIT
YINTEGER' N, LIMIT:
"REAL! F:EpS:
"BOOLEAN' CONV,LOADH:
'ﬁERAY' XpH:
'"PROCEDURE!Y FUNCT:
"BEGIN?
"REAL' OLDF,SG:GHG:STEP,ITA.FA:FB;GA.GB,U:Z,LAMBDA:
VINYEGER' 1,J.K,COUNT;
"ARRAY' G,S,6GAMMA,STGMALYIINY
whkbkwdwkwww INSERT PROCEDURE FUNCT HERE
'REAL' 'PROCEDURE' pOT(A,B):
VARRAY' A,B; ;
"BEGIN'
"INTEGER' 1}
"REAL' 8
§1=20}
'FOR' 1121 'STep' 1 "UNTIL' N 'DO?
SimS+ArIleBll):
DOTi=8;
YEND!:;
"REAL' 'PROCEDURE' UPDOT(A/B,1);
"VALUE' 1
"ARRAY' A,B:
VINTEGER' ]

"BEGIN?
"INTEGER' J,K;
'"REAL' S;
Kizf}
Sluﬂ:
"FOR' J1=q 'STEP' 1 'UNTIL' Iaq 'po!
"REGINT
St=8+AlKI*B[J);
Ki=k+N=J;
YEND';

'FOR' Ji=y1 '"STEP' 1 'UNTIL' N 1pO?
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S:=S*AlK+y=1duplJd];
UPDOT:=S;
YENDI!}
SEY INITIAL H:
"IF' LOADH 'THEN!
"RBEGINY
Kisq}
"FOR' Ig¢=1 VSYEpP' 1 rUNTIL!' N 'po!
"BEGIN'
HIKy1=1;
"FOR' J1=21 1STEP!' 4 'UNTILY N=1 'po?
RlKk+d)y=0;
Ki=K+Nele1;
YENp!?
"END';
START OF MINIMIZATION,
CONVe='"TRUE !,
STEps=1;
FUNET(N!X!FIG)=
'FOR' COUNT:=1,cO0UNT41 'WHILE' OLDF>F 'po!
TBEGIN!
'FOR' f:=9 'STEp' 1 YUNTIL' N 1pO?
"REGIN?
SIGMALIY:=Xr1);
GAMMALTI Y, =Gr1);
Sl1Y:==UPDOT(H,6,1); .
"END' PRESERVATION OF X1G:AND FORMATION OF S
FBi1=F;
GB1=DOT(G,S):
'IF' GB 'GE' 0 'THEN' 'GOTO’ EXIT;
OLDFi=F} ITAs=STEP;
EXTRAPOLATE:
FA:=FBy GA1=6R}
"FOR' 1139 'STEP' 1 YUNTIL' N 1pO?
XE1):e=x[11+1TAwSLY);
FUNCTU(NX,F:G):
FBt=F; GR:=DOT(G,S);
"IF' GB<O 'AND' FB<FA 'THEN'
YREGIN?Y
ITAs=4%ITA] STEPi1=4+STEp;
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'60T0' EXTRAPOLATE
YEND':
INTERPOLATE:
"IF' I1TA<0.00005 'THEN®' 'GOTO! SKip:
Z1=3%(FA=£B)/1TA+BA+GR:
HWez=Z2'%w'2.GA%GR] -
WiralIFY Wed '"THEN' O 'ELSE' SQRT(W)]
LAMBRA:®SITA®(1«('sF! GA+Z 1GET 0 TTHEN!
(GA+Z4W) /(GA+GR+2%7)
"ELSE! GA/(GA+7=W)))}
YFOR' fe=1 'SYgp' 1 YUNTILY N 'DO?
X[E1):i=X[11=-LAMBDA«SLTY;
FUNCTCN /X,FsG)}
'IF' FS>FA 'OR' F>eB "THEN?
"BEGIN!
STEP:=STEP/4}
"IF' FB<EA V"THEN!
'BEGIN'
"FOR' I3=1 'STEP' 4 'UNYIL®' N 'pO!
X[!]:=XEIJ+LAMBDA*3[I];
FUNCT(N:X,F16G)
VEND! 'ELSE!
'"BEGIN'
GR:=DOT(G,8)
"1F' 6B<O 'AND' COUNTSN 'AND' STEP<&~6b
"THEN' 'GOTO0' EXIT:
FBs=F; ITA:=ITA=_AMBDA;
'GOTO' INTERPOLATE

TEND!'?
SK1P: 'END' OF QEARCH ALONG §:
'POR' 1:=% 'STEP' 1 'UNTIL' N 'pO!?
"BEGIN!

SIGMALI) ¢ =X[1)=STIGMALI]);
GAMMALTI) y=GLI1)~GAMMALIL]:
YEND';
SG1=DOT(SYIGMA,GAMMA) ;
YIF' COUNY 'Gg' N 'THEN!
"BEGIN?
"IFY SQRT(DOT(S,S))<EPS TAND!
SQRT(DOT(SIGMA,SIGMAY)<EPRS 'THEN' 'GOTO! FINISH;
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TEST:
"END!

IGOTol

YEND';

"FPOR' 1:=4 'STEP' 1 'UNTIL' N DO
S[IY:=UPDOT(H,GAMMA, 1)
GHG:=DOT(S,GAMMA) 3

Ki=i}

'IF' S6=0 'OR!' GHG=0 'THEN' 'GOTO!
'FOR' y1=1 'STEP' 1 'UNTIL' N DO
"POR' Ji=y 'STEP' 1 'UNTIL' N 'pO?
'"REGIN?

TESTI

HOKY s=HEKI#SIGMALI )% SIGMALJY/SGuSTII)*SLU)/GHG?

Ki=gel
YEND' UPDATING OF H:

"IF' COUNT>LIMIT 'THEN' 'GOTO' EXIT!

OF LOOp CONTROLLED BY COUNT!
FINISH!

EX1T: CONVe='FALSE!]

FINISH:

'END' OF FLEPOMIN;
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FLEPOMIN MODIFIED

'"PROCEDURE ! FLEPOMINCN XsF,EPS,FUNCT,CONY, LIMIT R, LOADH);
'"VALUE' N,EPS,LOADH,LIMIT;
"INTEGER' N,LIMIT:
"REAL' F,EPS}
"BOOLFAN' CONV,LOADH:
YARRAY"'" X,H!
"PROCEDURE! FUNCT:
'BEGIN?
'REAL' OLDF,8G,GHG/,STEP,ITA,FA,FB/+GA,GB,W,2,LAMBDA;
'INTEGER!' I,40,K,COUNT]}
"ARRAY' G:S,6AMMA,STGMAF1:NY
wkdkpywiswr® INSQERT PROCEDURE FUNCT MHERE
TREAL' 'PROCEDURE' DOT(A,B);
"ARRAY' A,B;
"BEGIN'
"INTEGER' 1}
YREAL' S
§:1=20;
"FOR' 1:=1 'STEP' 9 'UNTIL' N 1DO?
Sr=S+Ar1)#BLIY:
PDOT:=85
'"END'}
"REAL' 'PROCEDURE' UPDOT(A/B,!1)!
'"WALUE' 1!
"ARRAY' A,B;
"INTEGER!' 13

'BEGIN'
"INTEGER' J.Ky
"REAL' §;
Ke=1}
8:=0}
"PORY Ji1=q9 'STEP' 41 'UNTIL' 1= 'pO'
"REGIN?
Si1=5+AlKI*B(J)}
KisKel=
TEND'}

YPOR' Ji=1 'STEP' 1 '"UNTIL' N 1pO?



S1=S+A[K+ ) =1)uplJ);
UPDPOT:=9;
"END'?
SEY INITIAL H;
'"IF' LOADH 'THEN!
"REGIN®
Ki=1}
'FOR' 1421 'STEp' 1 'UNTIL' N 'pO!
'BEGIN'
HLKY:=1;
"FOR' Jg=
HlK+Jd)y=0
KizK¢Nml®
TEND';
"END';
START OF MINIMIZATION,
CONV="TRUE !
STEP =1
FUNCT(N:X!F:G):
'FOR' 1¢=1 'STEB' 1 TUNTIL' N 'DO
SIGMALIY:=X[1]);
'FOR' COUNT:=1,00UNT41 'WHILE! SQRT(DOT(GAMMA, GAMMA) )>EPS

1 'STEP' 1 'UNTIL! Nel 'po
1%

'nO?

"BEGIN'
"FOR' 1124 'SYEP' 1 'yYNTIL' N 1O
"BEGIN'

SIGMALIYy=X11);
GAMMALI):=Gr1];
SEIV:==UPDOTCH,G,1);

'END';

"TF' COUNT=1 'THEN' 'GOTO! MIN;

OLDFi1=¢!

"FOR' 1:=q 'STEP' 1 'UNTIL' N 1pO"

Xt13:=xl11+1e5p1); 4

FUNCT(N/X,Fs6);

'IF' ARSC(F=0LDF)/(DOT(S,GAMMAY)'GE'0.00001

'THEN' 'GoTO' EORMHN}

MIN:
FB:=F;
GB:=DOT(G,S$):
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YIF' GB 'GE' O 'THEN' 'GOTO' EXIT:
OLDF:=f? ITAy=STEP;
EXTRAPOLATE:
FA:=FB: GA:=GBI
"EOR' Yi=q 'STEP' 4 'YUNTIL' N pO?
Xi1d:i=x(I11+ITAwS[1]);
FR:=F! Gr:=DOT(G,S8)’
"IF' GR<O 'AND' FB<FA 'THEN'
"BEGIN?
1TAysbdITA; STEP:=4wSTEpP!
1GOTO' EXTRAPOLATE
YEND'";
INTERPOLATE:
YIF' 1TA0.00005 'THEN' 'GOTO' SKipP}
Zi=3%(FA=FRB)/ITA+GA+GR}
VisZ'ww'2GA%GR)
We=PJE? WeD "THEN' O "eELSE' SoORT(W):
LAMBDAs=ITA®(1=('"IF' GA+2Z 'GE' 0 'THEN'
(GA*Z4U)/ (GA+GR+2w%2)
TELSE! GA/(GAa7=U)))}
"FOR' yi1=1 'STeP' 4 'UNTILY N DO
X[i)eex[Iy=~LAMBDA®S[]]}
FUNCT(N!X,Fe0)
"1F' F>FA 'OR' F>FB 'THEN!
"BEGIN?
STEP1=STEP/ 4]
TIF' FB<CFA 'THEN!
'BEGIN'
"EOR' Y:=q 'STYEP' 4 VUNTILY N 'DO!
X{1l:=XtI1)+LAMBRDA=S([]}Y;
FUNCTC(N:X,FeG)
YENp! 'ELSE!
'BEGIN'
Gp:=DOT(G,8)!
"1F' GB<O 'AND' COUNT>N 'AND' STEP<E&=6
'YHEN' 'GOTO' EXIT:
FBs=F: ITA:=1TA={ AMBDA!
'GOTYO0!' INTERPOLATE
TEND '}
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SK1P:
FORMH »

TEST:
TENDT
'GOTO'

EXIT: CONV:=

FINISH:

"END' OF SEARCH ALONG S?

"POR' 1:=1 '"STEP' 1 TYUNTIL' N 'pO!
YREGIN!
SIGMALITs=X[1)=8IGMATI];
GAMMAL 1) s=GLI)~GAMMALIL];
YEND';
SGieDOT(SIGMA,GAMMA) ;
"IF' COUNTY 'GE' N "THEN'
'BEGIN®
tIFT SQRY(DOT(S,S))<EPS tAND!

SQRT(DOT(SIGMA,SIGMA) ) <epS 'THEN' "GOTO' FINISH:

YEND':
"POR' t1=4 'STYEP' 1 TUNTIL' N pO?
SLIT:=UPDOT(H, GAMMA, 1)}
GHG:=DOT(S,GAMMA) 1
Ki=13
Y1F' S6=0 'OR' GHG=0 *'THEN' 'GOTO! TYESY!
"IF' SGAGHG 'THEN!
"BEGINY
YFOR' 1,=1 I1STEpt 1 'UNTIL' N 'pO!
'TFOR' Jg=) 1STEP' 9 'UNTIL' N 'poO!
'"BEGIN'
HEK):=MHIK)+SIGMALTYI*SIGMA[J]Y/
SG=S[1I*S[JI/GHG;
KizK#1;
YEND':
"END'
'ELSE!
'POR' 1:1=1 'STEP' 9 TUNTIL' N DO
YEOR' Jsi=g 'STEP' 1 'YUNTIL' N DO
'REGIN!?
HEKY s=HEK)=(STIGMALYTI#STJY1+SIGMALIY*SLT))
/SG*(1¢GHG/SG)#SIGMALTI*STIGMALJ)/SG!
Ki=g+1]
'END'}
"IF' COUNT>LIMIT 'THEN' 'GOTO' EXITS
OF LOOP CONTROLLED BY COUNT]
FINISH;
"FALSE'}

YEND' OF FLEPOMIN;
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POWCON

'PROCEDURE'POHCON(X:EPS:RATIO.M)F
"ARRAY' X:
"TREAL? EPS,RAT10?
"INTEGER' M3
"BEGIN?
VINTEGER!' [
"REAL' MAXPST MaXL:
"BOOLEAN' SuUyP;
YARRAY' THETABARCT1M)}
MAXPSI:=410:
SUUDE=FALSE:
AGAIN MAX| ¢ =HMAXPST
MAXPSI 1==f=8 s
wkkwetdhrkwCALL MINIMIZATION PROCEDURE NERE
PSICALC(PST  X)!
SECOND:='TRUR';
"FPOR!Y 1:=1 'qTEP' 1 'UNTIL' M '"po!
"IF' MAXPSICABS(PSI{1]) 'THEN! MAXPST1=ABS(PSI[I)):
'IF' MAXPSICEPS 'THEN' 160OTQ' EXIT:
PIFY MAXPSI 1GE! MAXL "THEN' MAXPSI,=MAXL 'ELSE!?
'6OTO"' THINCY:
YIF!' SWUDP YTHEN?
'FOR' 1:=1 'STEP' 1 tUNTIL' M 'po!
THETA[I):=THETARAR[T Y]
SIGINC:'"FOR' 1:=1 15Tep! 14 "UNTIL'M 'pot
C1FY ABS(PSIITYy ‘'GEd MAXL/RATIO '"THEN!

"BEGIN'
SIGMA[LI):=10%31GMaATTY Y}
THETACI):=0.1%THETALI);

TEND!

SWUpPy="EFALSE"

'GOTO' AGAIN:
THINCA «

YIF!' 'NOT' SwUP 'THEN' 160TO? THINC?

"IF' MAXPSIKMAXL/RATIO 'THEN' 1GQTO" SIGINC:
THINC?2:

H
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EX17:

'FOR' "J:=1 'STEP' 1 TUNTIL' M 'pO"
"BEGIN'
THETABAR[I):=THETA[!):;
TRETACI) :=THETALLI3+PSI[I);
TEND!}
SWUps='TRUE';
'GOTO' AGAIN!
"END' POWCON;



OPTKOV

"PROCEDURE!' OPTKOV(X,XKeXKT+XKM/,STEP,F.EPS)}

'REAL' XKrXKTrXKMrSTEp!EPSiF:

"ARRAY!' X:

"BEGIN'

COMMENT PHASE 9
'"REAL' BL,BU;

XKir *w*%OBJECTIVE FUNCTION;

RIp: XK:=XK=STEP;
kkwwpkkknwr ke CALI. THE MINIMIZATION PROCEDURE HERE
"IF' SQRT(F)<EPS 'THEN!

"BEGIN'
STEP:=2%STEP}
'GOTO' RIp
YEND' 'ELSE!
BU:=XK+STEP;
BL:=XK;

COMMENT PHASE 27

PARAMETER,
XKMy=XKeSQRT(F)»
XKTsaXK+F/SQRT(E=T);
BLi=XKM;

YIF' XKT<BU 'THEN!
XKt=XKT 'ELSE'!
XKisXKM}

MIN:  s*knwwewawsCALL THE MINIMIZATION PROCEDURE WERE
"IF' SQRT(F) 'GE' EPS 'THEN''GOTO' PARAMETER
'"ELSE' RUs=Xk!

'IF' ABS(BU=pBL)<EPS 'THEN' 'GOTO' EX1T
ELSE' XKi=nal?
'GOTN' MIN?

=-m
m>x

= a
<o -

OF OPTKOV])



SUMT

'PROCFDURE' SUMT(X.EPSaRATIOJ.
"ARRAY'X:

‘REAL! EPS:

"INTEGER' RATIO:

"BEGIN!

START.,

'TFY ABSCF=D)DEPS '"THEN!
'*BEGIN'
Rt=R/RATI0:
'GOTO' START:
'YEND!';
'YEND' SUMT;

AS IT HAS REEN MENTIONED EARLYER ON IN THEp
ALGORITHM,THE PTOCEDURE FLEPOMIN HAD TO Bf

TH1S MODIFICATION 18 AS FOLLOWS;:
EXTRAPOLATE:
FA:=2FB:
GA!=68B;
REpEAT:
"FOR' 1:=1 'gTEp' 1 TUNTIL
XEIY:e=XT1)+2TARQ[1]:
FUNCT(N;X;F-G):

"FOR! 13=1 'gTED!' 1 'UNTIL' M 'po!

"IFY CO1] 'LT' 0.0 "THEN!
'BEGIN!
'FOR' 1129 'SYEp' 4
X[1J:=x{ly1=1TAwS[1]):
ITA:=1TA/nD!
'GOTO' REPEAT:
"END':

N ‘DO

YUNTIL!

th

N

wkhdwkhhwe*CALL MINIMIZATION PROCEDURE MERE

DESCRIPTION OF THE
MOpIFIED,

tp0r



