
Pulse Coupled Neural Networks: An 
Exploration of Parameterisation Methods 

Robert Stewart 

MSc by Research in Pattern Analysis and Neural Networks 

The University of Aston in Birmingham 

September 2000 

This copy of the thesis has been supplied on condition that anyone who consults 
it is understood to recognise that its copyright rests with its author and that no 
quotation from the thesis and no information derived from it may be published 
without proper acknowledgement.



The University of Aston in Birmingham 

Pulse Coupled Neural Networks: An 
Exploration of Parameterisation Methods 

Robert Stewart 

MSc by Research in Pattern Analysis and Neural Networks 

Thesis Summary 

Pulse coupled neural networks (PCNNs) comprise a family of biologically motivated models 
originally developed to replicate the phase-synchronised pulsing behaviour observed amongst 
collections of neurons in the mammalian visual cortex. They have been applied to a number 
of applications within the image processing field: most notably image smoothing and 
segmentation. PCNNs are complex dynamical models with a number of adjustable parameters 
of reciprocal influence. As a result their behaviour is difficult to accurately predict, control or 
analyse. This paper follows the development and analysis of a number of parameterisation 
methods for the PCNN aimed at making it a more powerful and reliable image segmentation 
model. Experimental results are used to examine the strengths of each of these methods 
relative to one another in both qualitative and quantitative terms. An energy function 
formalism for a sub-class of the PCNN family is then proposed and analysed and a Bayesian 
interpretation is offered. 
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1 Introduction 

1.1 The Original Model 

1.1.1 Development 

Pulse Coupled Neural Networks (PCNNs) comprise a family of neural computing models 

used principally in image processing applications. Their development was originally 

motivated by neuroscientific exploration of the workings of mammalian primary visual 

cortex. In particular, studies of the cat visual cortex [1], [2] found that neurons separated by 

surprisingly large distances within the region would sometimes exhibit phase-synchronized 

pulsing behaviour. These results were subsequently replicated in studies using awake 

monkeys [3]. The suggestion was made [1], [4] that this behaviour was part of the mammalian 

brain's solution to the problem of feature binding or feature linking wherein disparate pieces 

of sensory information regarding a given object must be seamlessly linked together into a 

unified percept for that object. When we look at a cat we see not just the edges, textures and 

movement of the animal but also the animal as an indivisible whole. 

In 1990 Eckhorn introduced the linking field model as a phenomenological model designed to 

replicate the observed cortical behaviour [5]. It was soon realised that this model exhibited a 

number of interesting properties in line with the feature-linking hypothesis. Subsequent work 

through the 1990s, led by Johnson [6], [7], Kuntimad and Ranganath [7], [8], Kinser [9], [10] 

and Lindblad [10], led to a number of modifications and simplifications being made to the 

linking field model. These modifications allowed what was a piece of computational 

neuroscience to evolve into an effective image processing tool and produced the family of 

algorithms now commonly referred to as PCNNs. 

1.1.2 Features 

1.1.2.1 Neuron Features 

The model neurons of the original model are generally taken to be identical within a given 

network and feature two functionally different types of synapse. The feeding synapses receive 

input from the main stimulus-driven pathway that directly carries sensory information. The 
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linking synapses receive input from neighbouring neurons and act upon the feeding inputs in a 

multiplicative, modulatory manner. Both types of synapse are dynamic: being modelled as 

leaky capacitors whose outputs are steeply charged by a large incoming signal before 

decaying exponentially over time. 

The linking and feeding synapses, generally denoted Z and F respectively, together form the 

neuron’s internal activation U, which corresponds to the membrane voltage of a biological 

cell. The internal activation passes into a pulse generator called a neuromime that operates via 

the interaction between the excitatory input U, an inhibitory threshold 7 and an excitatory step 

function Y. Like the linking and feeding synapses, the threshold is realised as a leaky 

capacitor that is charged by the output pulses Y and decays exponentially over time. Figure 

1.1 schematically displays the operation of one of these model neurons. 
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Figure 1.1. Schematic representation of one of Eckhorn’s model neurons 

1.1.2.2 Network Features 

Early work with the linking field model focussed on one-dimensional layers of neurons but 

subsequent work has been largely devoted to networks featuring two-dimensional planar 

arrangements, usually configured as a regular, rectangular lattice. In image processing 

applications, a one-to-one pixel to neuron correspondence is generally employed and 

mathematically the operation of this arrangement is expressed via the following set of 

equations.



REPEAT 

Fyn] =e" Fy[n-1] +0 p Dy Mya Yuln-1] +S, (la) 

Lyn] =e" Ly[n—1] +V, Dy WaYuln-1) (1b) 

Us{n] = Fifi{l + BLofn]} (Ie) 

ran=(s Si a 
afr) = e* Ty[n—1] +V,Yy ln] (te) 

UNTIL some stopping condition 

The value Sj; appearing in (1a) is the stimulus input to the neuron Ny. In image processing 

applications, this is generally taken to be the intensity of the corresponding pixel. The feeding 

and linking kernels M and W represent the connectivity pattern within the network and are 

traditionally taken to be local and Gaussian, although this is not a strict requirement. In the 

interests of computational efficiency, M and W are often set equal to oné another so that the 

expensive spatial convolution operation is only performed once at each time step. The linking 

coefficient £ was not present in the original linking field model but was soon developed as a 

control over the strength of the linking modulation [7] and has been universally employed 

ever since. It takes the form of a positive constant generally applied globally to control the 

linking strength over the entire network. 

1.1.3 Properties 

The linking field model is able to robustly replicate the synchronous pulsing activity observed 

in recordings from the visual cortex. The mechanism underpinning this is the spread of 

activation through the network in the form of feeding and linking autowaves. An autowave is 

defined as a normal propagating wave that does not reflect or refract and hence are annihilated 

by contact with another wave. When a neuron pulses, an excitatory autowave spreads from it 

in all directions. Synchronisation then occurs via pulse capture. This is the term used to 

describe the process whereby an autowave increases the internal activation of a receiving 

neuron sufficiently for the neuron to pulse at an earlier time step than it would have in 

isolation.



The pulse capture process can eventually cause large regions of the network to pulse in 

synchrony but what exactly this indicates about the corresponding regions of the distal 

stimulus depends on the specific receptive field properties of the model neurons employed 

and the nature of the local stimulus input to each of the neurons involved. In general we can 

say that neurons with similar receptive fields and similar stimulus inputs will tend to exhibit 

synchronous pulsing. In the image processing case, with local, Gaussian kernels and Si set to 

pixel intensities, this means that pulsing synchronisation depends on two main properties of 

the corresponding image pixels: 

1. Intensity similarity 

2. Spatial proximity 

We can therefore view synchronisation within the network as a way of grouping the pixels 

themselves according to these properties and synchronous pulsing behaviour is found to 

spread across an image region despite small spatial and temporal discontinuities and intensity 

variations. This enables the PCNN to perform a number of useful image processing tasks such 

as smoothing [7], edge detection, and particularly segmentation [8]. In this current work we 

will focus on the smoothing and segmentation properties of the PCNN. 

1.2 Modifications and Simplifications 

The linking field model is a complex dynamical model with a large number of adjustable 

parameters. It is difficult to effectively control or analyse the behaviour of the model in this 

form and consequently a number of modifications and simplifications have been introduced. 

What follows is a partial list of these alterations in what is hoped is a logical rather than 

chronological order. 

1.2.1 The Single Pass Modification 

Johnson and Padgett [10] point out that when applying the PCNN “the segmentation, 

smoothing and grouping action occurs in the first pass through the image.” The single pass 

modification takes advantage of this by introducing a stopping condition such that the 
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algorithm terminates when every neuron in the network has pulsed. Generally, the parameters 

of the model are set in such a way as to ensure that each neuron pulses once and only once. 

1.2.2 The Direct Feeding Modification 

Kuntimad and Ranganath [11] suggest that in the case of a static image, the inclusion of a 

leaky capacitor in the feeding pathway is of no benefit. The direct feeding modification 

accordingly removes the leaky capacitor. Information from other neurons is also removed 

from the feeding pathway since this can be communicated via the linking pathway. The 

feeding input to a neuron therefore simplifies to a constant value equal to the intensity of the 

corresponding image pixel. 

F,[n]=S, Q) 

1.2.3 The Fast Linking Modification 

Allowing linking waves to propagate more rapidly across the network has been noted to 

improve denoising [9] and result in a smoother regional segmentation [10] of the input image. 

The fast linking modification therefore allows linking waves to propagate across the entire 

network in a single time step by iterating (1b), (1c), (1d) within an internal loop until the 

output matrix Y stabilises to a fixed state. 

1.2.4 The Stepped Linking Modification 

The stepped linking modification comprises two changes to the linking field usually applied 

together. First the leaky capacitor is removed from the pathway so that the linking input 

becomes an instantaneous weighted sum of local pulsing activity. With single pass operation 

on static images, the capacitor confers no benefit and adds unnecessary complexity to the 

model. The note is then made [10] that more uniform linking values produce more uniform 

segmentations, which leads to the second change where the linking value is passed through a 

squashing or, more usually, a step function (3). Lindblad and Kinser [9] note that stepped 

linking tends to preserve the edges of the linking autowaves better than the original scheme, 

which may account for the improved performance observed. 

ll
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One common practice is to use a threshold of zero on this stepping function and this is 

actually a rather special case. Since the kernel W does not normally contain negative values 

and Y, takes on values of zero and one, the linking calculation corresponds to a logical OR 

over the linking field. 

1.2.5 Threshold Modifications 

There are two main modifications to the threshold mechanism. The first of these is to replace 

the leaky capacitor with a linear decay system. This has been found to produce results of 

equal quality to the original scheme and is preferred due to simplicity. The next modification 

is to replace the multiplicative recharge of the threshold with a mechanism that resets 

thresholds in the event of pulsing, to a constant value the same for every neuron. This is 

computationally simpler and equally effective. With-both these modifications in place, the 

threshold equation becomes: 

nie if Yu{n]=1 Ty[n] = oi [n-l] -dT otheniive 

1.3 Taking Stock 

Looking closely at the stepped linking modification, we note that the time index of Yy in (3) 

has become ambiguous. We can take its value to be [n-1] as in the original, but when we 

combine stepped linking with fast linking it becomes more natural to use a time index of [7]. 

At each time step, the linking input to every neuron now has a value of zero prior to a pulsing 

event. With direct feeding, we find using (1c) that the internal activation now takes on the 

value of the pixel intensity prior to pulsing so that (1a) to (1d) simplifies to 

Miler PSs Tn 
dS { 0 otherwise (6) 

Simultaneously applying all the modifications, we then arrive at the following set of equations 
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REPEAT 

- fl if Sy>Ten-1] 
Yin|= {5 otherwise (Ge) 

WHILE there is any change in pulsing activity 

Usln| = Sy{ + BLiln}} (6c) 

Ta Oi (a 
END 

PA (Ppt) ar vou. (6s) 

UNTIL all neurons have pulsed 

The central WHILE loop, iterating (6b) to (6d) is referred to as the fast linking loop and has 

become the main component of the model in terms of both computational expense and the 

determination of network behaviour. 

We note that the eventual PCNN form displayed above is very different from the original 

linking field model. Recalling that even the linking coefficient # was not present in the 

original model we can see that every equation of the model has been considerably modified. 

This form of PCNN still performs the same function as its predecessor: grouping pixels 

according to their intensity similarity and spatial proximity, but is designed to do so ina 

single pass through the model and at much more limited computational expense. 

Despite these simplifications however, the control and analysis of PCNN behaviour is still far 

from trivial. Crucial determinants of the performance of this model include the initial 

threshold value, the threshold decay term d7, the linking threshold @,, the nature of the 

linking kernel W and the value of the linking coefficient f. If this collection of values is fixed 

and the threshold reset term is appropriately large, then behaviour of the model is also fixed 

but this still leaves us with a considerable number of degrees of freedom in the operation of 

the network.



Previous papers have frequently suggested appropriate ranges for some of the parameters of 

the PCNN acquired through operating experience. While these suggestions are valuable to a 

point, each application of the PCNN will typically require user-tweaking of parameters and 

even model form in the search for better performance. This type of unprincipled tweaking was 

prevalent in multi-layer perceptron research prior to their statistical treatment and the hope is 

that the situation can also be remedied for the PCNN. 

1.4 Aims 

The aim of this research project was to develop effective parameterisation methods for the 

PCNN family. Qualifying the term effective, the following list of desirable characteristics was 

drawn up. Effective methods should feature most or all of these characteristics. 

1. They should be fully automated. 

2. They should be flexible and yet powerful. 

3. They ought to produce parameter sets that are in some sense optimal for the 

application under consideration. 

4. They should improve the performance and reliability of the PCNN as an image 

processing tool. 

Ideally, we wanted to produce methods founded on probability theory so that they would be 

open to analysis and would hopefully give us a good trade-off between flexibility and power. 

A probability-based approach would also give us a more precise way of defining optimal than 

would a purely empirical approach. 

We decided to restrict our current work to the parameterisation of PCNNs designed to 

perform image segmentation since this is the main area to which these models have so far 

been applied. Initially it was felt crucial to gain a more thorough understanding of the 

properties and behaviour of the PCNN family in its image segmentation role and to achieve 

this we aimed to seek out and explore previous work in this area with particular attention 

being given to any existing parameterisation methods that could be found.



2 Methods And Results 

While exploring the literature for existing parameterisation methods for the PCNN, we came 

across an interesting paper by Kuntimad and Ranganath [12]. Here they presented a method 

for setting certain PCNN model parameters according to prior knowledge of the pixel 

intensity ranges present within different image regions. The claim is made that under certain 

conditions this method can be guaranteed to achieve perfect segmentation of a simple 

figure/ground image even when the intensity ranges of the regions in question overlap to 

some extent. We decided to investigate further. 

2.1 Perfect Segmentation 

At first glance, the perfect segmentation guarantee appears to be an impressive and significant 

result: the authors making the claim that such conditions have yet to be established for any 

other image segmentation method. However, the method also suffers from severe limitations 

relating to the degree of intensity range overlap and the boundary geometry between the 

image regions to be segmented. In the following sections, a summary of the method proposed 

by Kuntimad and Ranganath (K&R) is presented and the performance of the method is 

demonstrated as the intensity range overlap of the image regions is varied in a controlled 

manner. Alterations to the method; made in the hope of countering these limitations, are 

introduced and briefly analysed. 

An alternative method for setting the model parameters is then presented that further 

highlights the weaknesses of the K&R method’s reliance on boundary geometry conditions 

and serves to motivate subsequently developed parameterisation methods of more general 

utility. 

2.1.1 Basic Model Features 

The model employed by K&R differs considerably from Eckhorn’s original linking field 

model. The modifications involved: all variants of those described in the introduction, are 

briefly described below: 

1. Single Pass Operation: The K&R model is reset to its initial conditions after each pass 

and according to the deterministic nature of the PCNN would therefore produce 
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identical results with every pass. It is therefore justified to consider the first pass 

alone. 

2. Direct Feeding: Only static images are considered in the K&R paper and as we noted 

in the introduction, the use of a leaky integrator in the feeding path confers no benefit 

and incurs unnecessary additional computational expense. The direct feeding 

modification is therefore applied. 

3. Threshold Reset: Exponential decay of threshold values is retained but the simpler 

reset scheme is used in preference to multiplicative recharge and the decay is 

calculated relative to the reset value omega rather than the previous threshold value. 

The threshold mechanism is referred to as a threshold signal generator (TSG) and is 

applied identically to all neurons. 

The size of the kernel W, employed in the linking field, is determined by a radius parameter r 

that defines the maximum linking distance: distance between neurons being defined as the 

Euclidean distance between the corresponding pixels in the image. The weighting values 

within this radius are given as 1/d? where d is the distance from the centre of the kernel. For 

the special case of the centre of the kernel, a value of zero may be employed since self-linking 

has no effect on the performance of the model and requires additional computation in 

software implementations. K&R employed only small linking radii of r= 1.0 and r = 1.5. The 

corresponding kernel values are displayed below: 

  

  

  

                  

0 1 0 0.5 1 0.5 

1 0 1 1 0 1 

0 1 0 0.5 1 0.5 

(a) (b) 

Figure 2.1. Linking kernels employed in the K&R model. (a) Linking radius r = 1.0. 
(b) Linking radius r = 1.5.



2.1.2 A Mathematical Summary 

REPEAT 

fl if Sy>To{n-1] 
Yiln] = {b otherwise (7a) 

WHILE there is any change in pulsing activity 

L,{n] = e“L,[n—1] + Ve LuM Yair -1] (7b) 

Uyln|= Sif + BLilny} (Te) 

nen{ Lael men aw 
END 

ata yoo ra.) a (7e) 

UNTIL all neurons have pulsed 

The value n; used in the threshold signal generator is defined as the last time of pulsing of the 

neuron Nj. 

2.1.3 The K&R Method 

Following K&R, we use the example of a figure/ground image having spatially connected 

object pixels forming R and background pixels forming B. We Let (SR min SR max) and (Sp min, 

Sb max) be the intensity ranges of the object and background pixels respectively and apply the 

following assumptions: 

ax’ > Bray (8) 

Sioa > Sai (9) 

Stating this slightly loosely, the object region R is brighter than the background but there is 

some overlap between the intensity ranges so that simple thresholding is incapable of 

producing perfect segmentation. 
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The K&R method begins by setting the threshold values of all neurons to the reset value Q 

and allowing it to decay until the first neurons pulse. According to (8), the first pulsing 

neurons will be the brightest object neurons. We simplify the method here by setting the 

initial threshold value just below the maximum pixel value of the object region, Sp max and this 

allows us to employ an arbitrary, very large threshold reset value rather than needing to 

calculate one just large enough to ensure that each neuron only pulses once. In Matlab 

implementations the system dependent constant REALMAX may be employed for Q. 

Once the first pulsing event has occurred, the algorithm passes into a fast linking loop, 

wherein for perfect segmentation we must ensure that the following conditions are satisfied 

for all object neurons Nand all background neurons N,, respectively. 

Uy >t, (10) 

Up te (11) 

Using the simplified threshold initialisation, we know that Ty = Tq = Tinit and that Tini: is set 

just below Sp max. So equivalently we can put: 

Ue Sm. (12) 

Une S (13) 

Using (7c) we can derive the minimum value of beta required to satisfy (12) by setting S; 

equal to the minimum object pixel value Sp min and Ly[n] equal to the minimum linking input 

from other object neurons which we will call Z min. In similar fashion, we can derive the 

maximum value of beta able to satisfy (13) by setting Sj equal to the maximum background 

pixel value $3 max and Li equal to the maximum linking input from pulsing object neurons 

which we will call Lp max. By rearranging (7c) and using (12) and (13), the following limiting 

values for beta are obtained: 

Brin = (Sp... Spo )-1)/ Ling, 
MD 

Borax = (Spa, /S3,,,)-1)/ Lp... (18) 
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K&R apply a further condition on the minimum value of beta according to the requirement 

for all the background neurons to pulse together at the second time step. Without altering the 

segmenting performance of the model however, we can further simplify the threshold scheme 

by introducing linear rather than exponential decay. In the figure/ground case, this can be 

reduced to decay to zero which forces any neurons not pulsing in the first time step to pulse in 

the second, thus producing the two part segmentation required. Equivalently, threshold decay 

can be abandoned altogether by simply classing pixels whose neurons do not pulse in the first 

time step as background pixels. In a case with more than two regions to segment, this simple 

acceptance condition would be applied to the last region with no detriment to segmentation 

quality. 

2.1.4 Boundary Geometry Conditions 

While the values of Sz max, Sr min aNd Sp max are assumed to be known quantities, the values of 

LR min 20d Lg max depend on the linking radius r and, according to K&R, the object-background 

boundary geometry. As will be shown below, this is not entirely correct but initially we will 

begin by presenting their simple example. 

Ris defined as a rectangular region as displayed in Figure 2.2, and the pixel/neuron positions 

suggested to be receiving Lp min and Lp may for r = 1.0 and r = 1.5 are indicated in Figure 2.2 

(a) and (b) respectively. Given these positions, it can be shown that (a) for r= 1, Le min = 

2.0V; and Lg max = 1.0V;, and (b) for r= 1.5, Le min = 2.5V 1, LB max = 2.0V;, 

  

   
(B) (B)           

(a) (b) 

Figure 2.2. Crucial boundary positions for a rectangular region. (a) r = 1.0. ()r=1.5.



2.1.5 Solutions with Uniform Intensity Distributions 

In order to study the performance of Kuntimad and Ranganath’s perfect segmentation method 

in as controlled a way as possible, we examine the case of an image normalised in the range 

(0,1) with uniform intensity distributions symmetrically overlapping about a value of 0.5. 

Thus the intensity range of the background region is (0, Sz max) and the intensity range of the 

object region is (1-Sz max, 1). The extent of overlap is then controlled by the value of Sz max 

alone allowing for simple analysis. Equations (14) and (15) can here be rewritten in the 

following form: 

Brin = (M-Sp,,.))-1)/Le,,, (16) 

Borax = (01 S0,.,)~1)! Lia a7) 

By setting Anin equal to Bnax and using values for Lg min and Lg max appropriate for the border 

geometry and linking radius, we can calculate the maximum value of $3 max at which perfect 

segmentation can be guaranteed. Remaining with a rectangular object region R, we set the 

linking amplification factor V;, to one and consider the two cases of r = 1.0 andr = 1.5 

Casel: r= 1.0, Lp min = 2.0, LB max = 1.0. Setting Ain equal to Bnax and rearranging, we arrive 

at a quadratic in Sp max: 

Sinn, - 4S, +2=0 (18) 

Solving this gives us a maximum value for Sz max of 0.586 to 3s.f. 

Case 2: r= 1.5, Lr min = 2.5, Lp max = 2.0. Following the same procedure we arrive at the 

following quadratic: 

Si, —10S, +5=0 (19) 

Solving this gives us a maximum value for Sz max of 0.528 to 3s.f. 

Consequently, we ought to prefer the smaller linking radius r = 1.0, since this can succeed in 

producing perfect segmentation in a situation of greater intensity overlap between adjacent 

regions than the larger linking radius. 
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2.1.6 Results for Uniform Distributions 

We test the solutions obtained above by running the algorithm using both kernel sizes and 

with $3 max Set to 0.55. This value lies between the maximum values calculated for the two 

kernels and ought thus to be perfectly segmented by the smaller kernel, 7 = 1.0, but not 

necessarily by the larger one, r = 1.5. Figure 2.3 displays, (a) the input image and (b) a 

corresponding template demonstrating perfect segmentation for this image. Figure 2.4 shows 

the segmentation results obtained where we set beta equal to Anin for (a) r = 1.0 and (b) r= 

1.5. This arrangement should ensure complete capture of the object region but at values of 

Sp max greater than the maximum calculated above it will typically also capture some 

background pixels. As expected according to the solution above, perfect segmentation is 

achieved in the former but not the latter case. 

    
    

(a) (b) 

Figure 2.3. Test image for the K&R method. (a) Input image with Sp max = 0.55. (b) Template 
demonstrating perfect segmentation 

(a) (b) 

Figure 2.4. Segmentation results with the K&R method. Results obtained using B= Bnin with 
(a) r= 1.0 and (b) r= 1.5.



2.1.7 Problems with the method 

The main problems with the perfect segmentation method proposed by K&R are the limited 

intensity range overlap at which it remains effective and its reliance on exceptional border 

geometry conditions. The former problem has been dealt with above when solving for Sg max 

showing that, particularly with larger linking radii, the method is restricted to very small 

intensity range overlap values. In reference to the latter problem, K&R admit that “boundary 

geometry determines the performance of the PCNN” but they fail to define the geometry 

required for the success of the method. Here we make the requirement explicit: 

For guaranteed success of the method, Amin must be less than nax. In order for this to occur, 

LB max Must be less than Lp min and this condition only holds when R is rectangular. As soon as 

there is a concavity of any size in the border of R, the method fails. While it may still achieve 

perfect segmentation, this achievement cannot be guaranteed. 

2.1.7.1 Modifying the Method 

Kuntimad and Ranganath acknowledge some of the weaknesses of their parameterisation 

method and propose two techniques for its improvement. The first of these is external image 

smoothing but while this is effective to some extent, it is not favoured here because of it’s 

external nature. It is felt that a single layer PCNN ought to be able to achieve satisfactory 

smoothing internally by virtue of the linking mechanism and that this method should be 

favoured for its elegance and faster implementation. This approach will be developed in 

subsequent sections. 

The second technique is to modify the neurons of the network to incorporate inhibitory as 

well as excitatory linking fields. The inhibitory receptive fields serve to delay the pulsing of 

neurons that initiate a fast linking loop. This results in an effective compression of the 

intensity range within a region and hence also an effective reduction in the overlap between 

adjacent regions. Improved segmentation results may consequently be achieved. However, the 

addition of the inhibitory field complicates the analysis of the behaviour of the PCNN, It will 

therefore not be included in this work although it may be investigated in subsequent research. 
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2.1.7.2 Falsifying the Proof 

As indicated in 2.1.4 above, the K&R method relies on boundary conditions to fix the values 

of LR min and Lg max but while the method for setting Lg max is unassailable, fault can readily be 

found with the asserted method for setting Lp min. In order for Lp min to occur at the location 

indicated, pulsing activation must first have spread from its initial positions to the corners of 

the region R but this spread of activation is assumed implicitly and no guarantee for its 

occurrence is made. We might therefore reasonably ask under what conditions the required 

spread of activation will occur. 

Unfortunately the spread of pulsing activity in a PCNN is governed by local patterns of pixel 

intensity and in this case the required conditions would rely upon local intensity patterns 

across the entire region R. As R becomes larger, we are faced with very high dimensional 

pattern spaces and an analytical solution for the conditions becomes unfeasible. We can still 

apply the heuristic conditions below but must bear in mind that these are necessarily 

imprecise. 

¢ The intensity distribution within the region R should be fairly smooth 

¢ The spatial distribution of intensity values within R should be fairly even 

Very rough intensity distributions or uneven spatial distributions will cause activation to fail 

to spread to the corners of R. Consequently the K&R method will fail to achieve perfect 

segmentation despite the existence of an apparently tractable intensity range overlap. The 

following example illustrates a situation where these heuristic conditions are violated and the 

K&R method fails. 

Example: Let R be a rectangular region with a uniform intensity of 0.45. Now let some 

random process set pixels within the region to a value of 1.0 with a probability p(change). 

Provided 0 < p(change) < 1, the values of Sp min and Sp max are 0.45 and 1.0 respectively. 

Background intensities are once again drawn from a uniform distribution in the range (0, 

0.55). We note that this size of overlap is within the range that ought to allow perfect 

Segmentation when employing the smallest linking radius r = 1.0. Figure 2.5(a) shows an 

image of this type where p(change) = 0.05. Note that the high value pixels in R are sparsely 

distributed and that intensity distribution is highly non-smooth. Figure 2.5(b) shows the 

segmentation achieved by the K&R method on this image. 
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Oma w (b) 
Figure 2.5.Failure of the K&R method with sparse distribution. (a) Input image with sparsely 
distributed bright pixels. (b) Segmentation achieved by the K&R method with B= Bein and 
7= 1.0, 

Figure 2.6 shows the performance of the method as a percentage of correctly segmented 

pixels as we vary the value of p(change). To display the results in order of increasing bright 

pixel sparseness, we use a value of | - p(change) for the x-axis here and we see that for most 

values of p(change), perfect segmentation is achieved but as this value falls below (0.05), the 

algorithm fails suddenly. There is no hard threshold here however. Using a different random 

seed may result in a slightly different value of p(change) causing failure. The method simply 

becomes brittle in situations of sparse or uneven bright pixel distributions. 
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Figure 2.6. Segmentation performance of K&R method as a percentage of correctly classified 
pixels over 1 —p(change) with r= 1.0 and B= Brin:



2.1.8 An Alternative Method 

The main purposes of presenting an alternative perfect segmentation method are to further 

highlight the weaknesses of the K&R method, and to motivate more general and useful 

parameterisation methods. The method selected relies on the same border geometry 

conditions as the K&R method but takes the reliance to the extreme so that if R is rectangular, 

very large intensity range overlaps may be overcome but if R is not rectangular the algorithm 

will fail utterly. The same sort of heuristic conditions for success as presented in 2.1.7 will 

also apply here. 

The model employed here will be slightly different from that employed by K&R. It features 

stepped linking along with the same simplified thresholding scheme introduced above. 

Whereas perfect segmentation was previously achieved via manipulation of the linking 

coefficient f, here we rely on manipulation of the linking threshold @,, 

As demonstrated in 2.1.4, given a rectangular object region R and suitably spreading 

activation, we arrive at the following border linking values: (a) for r = 1, Le min = 2.0V;, and 

Lp max = 1.0V; and (b) for r= 1.5, Le min = 2.5V 1, LB max = 2.0V1. By thresholding L at Lg may We 

ensure that background pixels will always receive zero linking input from object neurons. To 

encourage pulsing activity to spread to the borders of R, we set # to be large enough to cause 

the object neuron having minimal feeding input Sp min to pulse provided a linking input is 

present. 

Unlike the (slightly modified) K&R method where the initial threshold value Tinie WaS set just 

below the maximum object pixel intensity Sp max, here we set ini: to a value just above the 

maximum background pixel intensity Sg max. This produces the desirable result of increasing 

the number of initially pulsing neurons but is unavailable to the previous method because it 

causes fax to take on a tiny value. 

To demonstrate the effectiveness of the model in overcoming very large intensity range 

overlaps, we return to the example of the uniform distributions introduced in 2.1.5 above. 

Figure 2.7 shows results obtained on an image where $3 max Was Set to 0.9. In (a) we see the 

original image and find that the central square is barely visible to the human eye while in (b) 

we display the perfect segmentation obtained by the new method. 
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“@) (b) 

Figure 2.7. Perfect segmentation with the alternative method. (a) Input image. (b) Segmentation 
obtained with 7 = 1.0. 

Figure 2.8(a) compares the performance of the alternative method with that of the K&R 

method as we vary the value of $3 max on the original symmetrically overlapping, uniform 

distribution example. Performance here is measured as the mean percentage of correctly 

classified pixels per image region. Note the similarity in the performance of the alternative 

method to the results obtained in 2.1.7.2. This is not co-incidental. Failure in both cases stems 

from increasing sparseness of super-threshold object miele: which eventually breaks down 

the spreading activation process hence preventing perfect segmentation. 

Figure 2.8(b) compares the processing time for the two methods as we vary the value of 

Sb max. Times were obtained using a moderately efficient Matlab implementation running ona 

500MHz AMD Athlon processor with 128MB RAM. We note that there is an upwards trend 

in the time required by each method as we increase the overlap between the classes. This is an 

expected result of the requirement for more fast-linking loops with sparser pixel distributions. 

We also note that the alternative method is considerably faster than the K&R method 

particularly at low values of $3 max- 
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Figure 2.8 Model performance as a function of Sy max: (a) Segmentation performance. (b) Processing 
time 

26



2.1.9 Motivating Subsequent Work 

This work on perfect segmentation algorithms has made it clear that while the performance of 

the PCNN is affected by the border geometry between image regions, any reliance on this 

border geometry is a weakness in more general applications. We therefore set out to develop 

algorithms that place no reliance on border geometry and ought by virtue of this to be of more 

general utility. 

Kuntimad and Ranganath conclude their paper on perfect segmentation by presenting a 

number of problems for future consideration. Amongst these were the following. 

e The investigation of the properties of PCNNs with simplified thresholding and linking 

mechanisms. 

e The development of multispectral PCNNs 

e The development of optimal parameterisation methods based on the intensity 

probability density function of the image. 

The first of these was dealt with to some extent in the modifications to the K&R method made 

above but will be pursued in further detail in subsequent sections. The second problem has not 

yet been addressed but will also be the focus of subsequent work presented here. The final 

problem has also yet to be addressed but it is felt that the process will be more tractable and 

any solutions more useful if we proceed within a framework that disregards border geometry 

as suggested above. This will be the principle motivation for the models and parameterisation 

methods developed below. 

To begin this developmental process, we first sought a definition of the PCNN that was 

general enough to apply to the whole model family and simple enough to suggest an 

analytically trivial initial model from which to progress. The definition selected was as 

follows: “A dynamic thresholding model with limited local spatial context” and this led to the 

use of simple dynamic thresholding as the starting point from which increasingly complex 

PCNN model variants were incrementally developed. 
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2.2 The Simple Dynamic Thresholding Method 

Simple dynamic thresholding will be the term used here to describe a primitive image 

segmentation algorithm wherein a global intensity threshold variable is used to segment our 

input image. Like the PCNN, the algorithm works in discrete time and at each time step the 

threshold is set to a new value allowing different groups of pixels to be segmented. Ideally, 

individual image regions or classes of image regions will be segmented at each time step but 

if the intensity ranges of different regions overlap then perfect segmentation will be 

impossible with this method. 

2.2.1 Optimising Performance 

Since no spatial context is available with the simple dynamic thresholding method, 

observations of the image itself will be of no use in optimising the performance of the 

algorithm. Instead, we need to focus solely on the intensity probability distribution of the 

image. Simple statistical procedures can then be applied to optimise model performance 

according to criteria such as error minimisation. 

Consider an image consisting of any number of discrete regions but having only two classes 

of pixel, C; and C2, we wish to separate from one another. Let the pixel intensity values of C, 

and C2 be drawn from a pair of one dimensional Gaussian probability density functions of 

differing mean and let the intensity values of C, be drawn from the Gaussian of greater mean. 

Further, let these p.d.f.s overlap to some significant degree so that perfect segmentation 

cannot be achieved by global thresholding. Figure 2.9 graphically illustrates the situation with 

which we are presented. 

Tworclass p.d.t 
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Figure 2.9 Schematic illustration of the joint probability density 
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According to probability theory, the minimum error decision boundary between the two 

classes is the intensity at which the two Gaussian distributions have equal probability. This 

value is marked with a vertical line in Figure 2.9 and corresponds to the optimal threshold 

value for our simple dynamic thresholding algorithm according to the criterion of minimum 

classification error. 

We can calculate this optimal value analytically by using the equation for a one-dimensional 

Gaussian p.d.f. (20), and setting the value to be equal for the two Gaussians in question. 

Disregarding constant terms, we arrive at (21) and by plugging in mean and variance values 

for the two distributions we arrive at a quadratic in x that we can solve for the minimum error 

decision boundary. Where no confusion exists, this decision boundary intensity will 

henceforth be referred to as Synia- 

  

52 
P(x) = aero ee | (20) 

2 2 

GAY" 5 In(o?) = F—4)" 4 10(63) (21) 
oj Qo 

This method can easily be extended to cases of more than two classes by calculating a series 

of these Sjniq values, referred to here as Synigs, and using each value as the threshold at one time 

step. Obviously we could apply all the threshold values concurrently but the temporal 

segmentation mirrors that of the PCNN and leads more logically into subsequent models. 

Figure 2.10(a) displays the joint p.d.f. of a three-class example with means of 0.25, 0.4 and 

0.6 and variances of 0.0025, 0.01 and 0.0075 respectively. Two decision boundaries are 

marked as before. Figure 2.10(b) displays a 128 by 128 pixel image formed from these classes 

that will serve as a general example to which each method developed here will be applied. 
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Figure 2.10. The three-class case. (a) Probability density function. (b) Corresponding 
three-class image. 
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Figure 2.11 displays the segmentation results obtained for the example image using simple 

dynamic thresholding at the optimal decision boundaries. As with the perfect segmentation 

methods, 2.11(a) shows a template indicating the perfect segmentation while 2.11(b) shows 

an image formed by inverting the time step at which the pixel was found to be super-threshold 

and scaled to the same intensity range as the input image. We note that the intensities 

correspond roughly to those found in the original image but that this correspondence is 

relative rather than absolute: brighter regions in the input image will correspond to brighter 

regions in the output image but the intensity values themselves are not preserved. 

  

@) ee) 
Figure 2.11. Results using Simple Dynamic Thresholding. (a) Template. (b) Segmentation. 

2.3 The Safe Method 

The first PCNN variant motivated by the simple dynamic thresholding method will be 

referred to here as the safe method. It is hoped that by combining the same decision 

boundaries as used in thresholding with minimal spatial information we ought to be able to 

achieve better results with little computational overhead. In the following two subsections we 

first introduce the model form employed and then the parameterisation method designed to 

achieve optimal performance given that model form. 

2.3.1 The Model 

Following the nomenclature introduced in section 1.3, the model form selected here is a single 

pass variant featuring direct feeding, zero-thresholded stepped linking, fast linking, linear 

threshold decay and threshold reset. Mathematically, this corresponds to the algorithm 

introduced in 1.3.6 with the value of @, being set to zero. 
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2.3.2 The Method 

The parameterisation method is applied to the threshold and linking coefficient values. Its 

application is first introduced on the same two-class example as discussed in 2.2 above, 

before the extension to more than two classes is dealt with. 

2.3.2.1 Threshold 

The initial threshold for all neurons is set to the same value Tin; This value is selected as a 

level very unlikely to be generated by the lower intensity Gaussian distribution. This value 

may be calculated graphically by looking at the joint probability density but we prefer to 

apply an analytical solution by employing a value several standard deviations above the mean 

of the distribution. 3.5 standard deviations was found to be quite effective across a range of 

images. Figure 2.12 illustrates the position of the threshold as a vertical line topped with a 

star, which has been added to the two-class p.d.f. of figure 2.9. 

Two-class p.d.t 

Figure 2.12. Two-class p.d.f. with Tini: 

2.3.2.2 Linking Coefficient 

The linking coefficient is set so that the minimum pixel intensity value that can cause its 

neuron to pulse corresponds to Synic. The correct value to achieve this can be found by looking 

at the equation for PCNN internal activity in (6c). Since the linking is thresholded at zero, we 

note that this is the logical OR condition and that the maximum linking input Zmax is one. By 

setting the value of Uy equal to Tin, substituting Sipiq and Lmax into the equation and 

rearranging, we arrive at the desired prescription for /: 

B=(Cnie ! Sia )~1 (22) 
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2.3.3 Extending to more than two Classes 

With more than two classes, we calculate a series of decision boundaries Symigs between our 

classes and also a series of threshold values 7,2); set 3.5 standard deviations above the lower 

intensity mean at each time step. Figure 2.13 displays once again the joint p.d.f of our three- 

class example along with the required threshold values marked as lines topped with stars. 

Three-class p.d.t 
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Figure 2.13. Thee-class p.d.f. showing Tyais as well as Smrias- 

Given these values, we can calculate an appropriate sequence of linking coefficients 

according to: 

BUA =(Tyais lM! Spids (1) —1 (23) 

We note that the linking coefficient is no longer constant but takes on a value at each time 

step dependent upon the characteristics of the neighbouring classes under consideration. 

Similarly, the threshold decay term dT becomes time dependent, being set so that the required 

Tyai is obtained at each time step. This makes more sense than other methods that fix these 

values as constants since the optimal values will depend on the generating distributions for 

each pixel class. This results in the following forms being used for the internal activation and 

threshold equations: 

Uyln| = Si{1 + AlnlLilnl} (24) 

_fa if Yitn]=1 
Tyr] = ee Sia oikernise (25) 
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2.3.4 Results 

The results for all subsequent PCNN variants will be presented in the following manner. A 

pulse matrix P of the same size as our input image is used to store the time of pulsing of each 

neuron in the network. The values within this pulse matrix are then subtracted from a constant 

equal to the number of time steps used plus one and normalised. Finally we display the result 

as an image which corresponds to the output image formed earlier for simple dynamic 

thresholding. As in Figure 2.11, Figure 2.14 displays a template indicating perfect 

segmentation in (a) and the segmentation achieved by this method in (b). W here was a kernel 

of the type suggested by Kuntimad and Ranganath with radius r = 1.5. 

(a) 

  

Figure 2.14. Results using the Safe Method. (a) Template. (b) Segmentation 

2.3.5 Why The Method Works 

As can be seen from the results above, the safe method performs demonstrably better on this 

segmentation task than simple dynamic thresholding. If we look again at the joint probability 

density schematic for two classes we can see exactly how this improvement is achieved. The 

error for the simple dynamic thresholding algorithm can be split into two components. Errors 

derived from pixels generated by the lower intensity distribution but having intensities greater 

than Sjiq will be termed high-tail errors while errors derived from pixels generated by the 

higher intensity distribution but having intensities lower than Sjyiq will be termed low-tail 

errors. 

The safe method allows us to greatly reduce high-tail errors because of the low probability of 

these high-tail pixels lying in proximity to the border of the higher intensity region. Note that 

this assumed pixel arrangement is not reliant on particular border geometry conditions as 
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were the perfect segmentation methods. Instead we rely on the low ratio of border pixels to 

total pixels, which is a general property of solid regions with reasonably smooth edges. In the 

case of Gaussian classes, we also take advantage of the low ratio of high-tail pixels to total 

pixels in the lower intensity region. It is the combination of these two factors that results in 

reduced high-tail errors. 

Low-tail errors however are unaffected by this method since the beta value calculated cannot 

cause pixels below S),ia to pulse. This can clearly be seen when we compare Figures 2.11 and 

2.14. High-tail errors here correspond to higher intensity pixels appearing on a lower intensity 

region of the output image while low-tail errors correspond to lower intensity pixels 

appearing on a higher intensity region. We see that in Figure 2.14, high-tail errors have been 

virtually eliminated but that low-tail errors are still present. 

Obviously we want to improve on the performance of the safe method and the best way to do 

so seemed to be to enable our algorithm to cope with low-tail as well as high-tail errors. This 

was the motivation for the augmented method. - 

2.4 The Augmented Method 

The augmented method is so called because it uses a model designed to produce a larger 

internal activation than the safe model under certain controlled conditions driven by the 

spatial context. By so doing, the model should be capable of causing the pulsing of neurons 

with lower feeding inputs than was previously possible, this being the necessary behaviour for 

overcoming low-tail segmentation errors. 

We now present a modification to the model form designed to enable this augmented 

activation before introducing the alterations to the parameterisation method required by the 

new model form. 

2.4.1 Model Modification 

The augmented method uses a model form very similar to the safe method, the only alteration 

being in the linking field. The linking input to a neuron is still instantaneous but is no longer 

thresholded so that its value simply becomes the two-dimensional convolution of the output 

matrix Y with the kernel W. 
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Lyn = DaM Xl (26) 

This alteration to the linking can be interpreted as the introduction of additional spatial 

context information into the model. The linking input to a neuron in the safe model contained 

only qualitative information regarding whether any of its neighbours were pulsing. By 

removing the thresholding, we introduce quantitative information regarding the number of 

pulsing neighbours and also, if a larger kernel is employed, the distance to these pulsing 

neighbours. 

This quantitative information enables the model to overcome low-tail as well as high-tail 

errors and looking back at the results from the safe method should make it clear exactly how 

it does so. Here we saw that low-tail errors led to lower intensity pixels appearing on a higher 

intensity region of the output image. These lower intensity output pixels result from a neuron 

with low feeding input pulsing later than its neighbours. Thus at the time step that generated 

the higher intensity region in the output, we would typically find these rogue neurons 

surrounded by several pulsing neighbours. 

With thresholded linking, the only information being passed to such a neuron is that pulsing 

activity is occurring within its neighbourhood. Contrastingly, the augmented method allows 

the number of pulsing neighbours to be communicated, causing the linking input to take on a 

high value and forcing the low-feeding neuron to pulse with its neighbours. Thus the 

introduction of additional spatial context information potentially allows for much smoother 

and less error-prone segmentation in this situation. 

2.4.2 Prescription for Beta 

While the additional information introduced here is potentially valuable to our model, there is 

a price to be paid. The determination of appropriate linking coefficient values was obvious for 

the safe model: we simply applied an error-minimisation condition. Here, an optimal value 

becomes less certain and we are forced to employ a heuristic prescription, which we introduce 

below in its two-class form for ease of explanation but with no loss of generality. 

(Cn 1S) <1 oh 
‘max 

Bar 
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We now note the appearance of the safe method’s prescription for beta as the numerator of the 

fraction here. The augmented prescription is a modified form of the original designed to take 

into account the alteration made to the linking field. The denominator of the fraction Lmax is 

defined as the maximum linking input a neuron can receive. This is simply the sum of the 

values present in the linking kernel W. It makes intuitive sense for beta to be inversely 

proportional to this constant since the more linking weight there is, the less amplification 

provided by the linking coefficient we require. 

However, simply dividing by Lax would produce a value for beta too small for effective 

segmentation. This can be demonstrated if we look once again at the internal activation for a 

neuron: Uj[n] = Sy{l + BLiln}}. If we divide beta by Lmax, then only with maximal linking 

input, Ly = Lmax, Would the internal activation take on the same value as it had for the safe 

method. Any linking input value below the maximum would result in lower internal activation 

than previously whereas what we want is higher activation where the linking input is large 

and lower activation where the linking input is low. | 

We therefore introduce the lambda coefficient as a positive constant greater than one to 

increase the value of beta in a controlled manner. Now the internal activation for the safe and 

augmented models becomes the same when the linking input to a neuron takes on the 

following value: 

Dg =Digay 1 2 (28) 

Below this value, internal activity is reduced but above it, activity is increased or augmented, 

forcing pixels with feeding intensities below Sig to pulse with their neighbours. In this 

manner, low-tail errors are greatly reduced. 

We might think that a value of two for lambda would be appropriate so that half the 

maximum linking input would match the internal activation of the safe method and capture 

neurons with feeding intensities as low as Sinia. In practice however a value of three is 

generally found to be more successful in allowing pulsing activity to spread within a region 

while at the same time preventing it from crossing boundaries between regions. A value 

greater than three does more to encourage intra-region spreading but also results in more 

inter-region spreading. This may be more appropriate in certain circumstances and gives the 

method controlled flexibility. 
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as it generally succeeds in allowing activation to spread within a region while at the same 

time preventing it from crossing boundaries between regions. 

The extension of this method to more than two classes works in the same way as for the safe 

method. We have a sequence of decision boundaries Sjnigs, a sequence of threshold values Tyals 

and consequently also dT values, and a sequence of linking coefficients calculated by 

plugging these values into (27). 

2.4.3 Results 

Figure 2.15 follows the format used in 2.11 and 2.14 for our three-class problem. The 

template is again displayed in 2.16(a) for comparison with the segmentation achieved, which 

appears in 2.16(b). The same kernel was used here as for the safe method while the lambda 

coefficient was set to a value of 3.0. 

  

(a) (b) 

Figure 2.15. Results using the Augmented Method. (a) Template. (b) Segmentation. 

2.5 The Intensity-Coded Method 

While the results from the augmented method proved to be a considerable improvement over 

the safe method, it was still felt that we might be able to do better. Once again, we sought to 

incorporate additional spatial context information into the model by further modifying the 

linking field. In both the safe and augmented models each neuron communicates to its 

neighbours whether or not it is pulsing. At the receiving neuron, the safe model applies a 

logical OR to arrive at the linking value while the augmented model takes a weighted sum 

over the linking neighbourhood but the information being transmitted is limited in either case 
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to zeros and ones. In the subsections below we present the change made to the model to 

enable more sephisticated transmission before introducing the requisite alteration to the 

parameterisation method. 

2.5.1 Model Modification 

The intensity-coded method allows pulsing neurons to transmit the intensity of their feeding 

pixel S$, rather than just a value of one. Non-pulsing neurons still transmit a value of zero. 

This modification is implemented by using (29) in place of (26) and we now return to the 

two-class example used above to explain why we might expect an improvement to 

performance by employing intensity coding. 

Lyla] = LW jaa Si (29) 

Our confidence that a given pixel belongs to the higher intensity class varies with pixel 

intensity and while this principle is already used in determining whether a given neuron will 

pulse, previous models have not allowed the communication of this confidence to a neuron’s 

neighbours. Intensity coding effectively enables the communication of this confidence 

measure in an easily implemented manner thus adding sophistication to the decision process 

and potentially improving overall segmentation/classification. 

2.5.2 Prescription for Beta 

This further modification to the linking field demands another alteration to the prescription 

for beta. The new prescription is as follows: 

Finn! Smid) -1) Baa . ( (30) eo mea) 

The new value Syean introduced here is the mean intensity of the higher intensity distribution. 

Now the internal activation becomes the same as for the safe model when the linking input to 

a neuron takes on the following value: 

Ly =(LynaxS mean)! A (31) 
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Thus this reference value is now scaled by the mean of the higher intensity distribution. In a 

perfect segmentation, the only neurons pulsing at time step one will be fed by pixels drawn 

from this distribution so the mean feeding intensity of pulsing neurons will approximate Syrean 

increasingly accurately during the fast linking phase of the algorithm. While perfect 

segmentation will not be achieved in general, model performance can be seen as an 

approximation to this goal and the closer the model gets to perfect segmentation, the closer 

the mean feeding intensity of pulsing neurons gets to Syrean- 

Scaling by Smean therefore effectively balances the introduction of Sj as a multiplicative factor 

in the linking equation since the mean value of S,; for pulsing neurons tends towards Syean aS 

we tend towards perfect segmentation. 

The extension to more than two classes is identical to the previous methods and will not be 

repeated here. 

2.5.3 Results 

Figure 2.16 follows the same format as before in displaying the results for this method on our 

three-class example. The template appears in (a) while the segmentation appears in (b). Again 

W is anr = 1.5 kernel of the K&R type and the lambda coefficient is set to 3.0. 

  

(a) (b) 

Figure 2.16. Results using the Intensity-Coded Method. (a) Template. (b) Segmentation. 
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2.6 Quantitative Comparisons 

We now test the performance of the three parameterisation methods on a slightly different 

problem and using simple dynamic thresholding as a baseline measure for comparison. Again 

we have three Gaussian classes with the same means as before but here we set the variances 

of each Gaussian to be equal to one another. We then gradually increase the variance and 

consequently the degree of overlap between the classes and measure segmentation 

performance for each model as the percentage of correctly classified pixels. We also record 

the processing time for each model at each variance value. Figure 2.17 displays the results of 

this comparison, which was performed using a moderately efficient Matlab routine running on 

a 500MHz computer as in section 2.1.8. We should note here that apparent zero processing 

times for the simple dynamic thresholding method are due to Matlab’s inability to register 

time spans smaller than 0.006 seconds. Lambda coefficients of 3.0 were used for both the 

augmented and intensity-coded methods and a linking radius of 1.5 was maintained 

throughout. 
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Figure 2.17. Quantitative results. (a) Performance. (b) Times. 

2.6.1 Comparisons with Perfect Segmentation Methods 

Having compared the performance characteristics of our newly developed parameterisation 

methods with one another, we felt that it was pertinent now to see how well they measured up 

to the perfect segmentation methods explored earlier. We chose to compare the augmented 

method with the perfect segmentation methods on the same example images as employed in 

section 2.1.8. We recall that these images featured rectangular object regions and 

symmetrically overlapping, uniform distributions. 
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A linking radius of 1.0 was used for the perfect segmentation methods while a radius of 1.5 

was employed for the augmented method here. Because of the border geometry conditions 

present, pulsing activity was less inclined to cross between the image regions than in the 

previous sections. Consequently, a slightly larger lambda coefficient of 4.0 was employed in 

the augmented method to encourage spreading behaviour. Figure 2.18(a) displays segmenting 

performance of the methods while 2.18(b) displays processing time, both over the maximum 

background pixel value. 
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Figure 2.18. Comparison with ‘perfect’ methods. (a) Performance. (b) Times. 

2.7 Multi-Channel Extensions 

The model forms and parameterisation methods so far introduced are designed only to deal 

with single-channel input data: greyscale images. In general image processing applications 

however, we will often be presented with multi-channel data such as RGB colour images. 

While it is possible to convert these to greyscale images before presenting them as model 

inputs, information is necessarily lost during the conversion process. It is therefore desirable 

to modify our methods to deal with multi-channel data in a natural way and the following 

subsections will propose modifications suitable for this purpose. 

2.7.1 An Example 

The example problem used here will be based on the three-class, single-channel example 

introduced in section 2.2.1 and graphically illustrated in figure 2.10. Figure 2.19 displays the 

joint p.d.f. for the three classes across three channels: red, green and blue. Each channel 

features the same three Gaussian distributions but the order of the classes is different in each 
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case as indicated by the different traces used. For example, the class that is brightest in the red 

channel is of medium brightness in the green channel and is the darkest class in the blue 

channel. Since each class occupies a different position in the hierarchy in each channel, the 

mean and variance of the total intensity for each class should be equal. Decision boundaries 

and appropriate threshold values for the PCNN are displayed as in the single-channel case. 

Green Blue 

    
Figure 2.19. Three-channel joint p.d.f. for three classes. 

Figure 2.20 displays an RGB image formed from the classes above. In (a) we see the colour 

image itself and find that they are clearly distinguishable from one another while in (b) we 

form a greyscale image by summing over the channels and see that the three classes become 

identical in this case and as such would be impossible to separate by any of the single-channel 

methods presented above. This RGB image will be used to test each of our methods as we 

extend them into multi-channel form. 

  
(a) 

Figure 2.20. Three-channel test image. (a) RGB image. (b) Greyscale version of the image. 
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2.7.2 Simple Dynamic Thresholding 

To extend the simple dynamic thresholding method to multiple channels we need to have a 

global threshold for each channel. To initialise the model we begin by selecting an order in 

which to segment the classes. In the current case the order is arbitrary but in general we would 

segment in descending order of total mean intensity. By using this form of ordering we avoid 

the potential problem of attempting to segment a class when another class yet to be segmented 

has greater mean intensity in each channel. All the methods currently developed would fail in 

this case. 

After ordering the classes, we run through them in order setting appropriate threshold value 

for each channel according to our error minimisation criterion. Each class now has a set of 

threshold values: three in the example presented above. Addressing the first class, we apply a 

logical AND over the channels, classifying only pixels with channel intensities greater than 

all thresholds as belonging to that class. Thresholds are then moved on to the next set of 

values and the process is repeated until the threshold values are exhausted and all classes have 

been addressed. 

2.7.3 The Safe Method 

The safe model is altered so as to feature the following: 

Multiple direct feeding channels 

Threshold values for each channel 

e Linking coefficients for each channel 

Internal activation values for each channel 

As with the simple dynamic thresholding method, the output at a given time step is calculated 

by applying a logical AND over all channels. This AND is applied here to the comparison of 

intensity values with the thresholds initially and of internal activations with the thresholds 

within the fast linking loop. Mathematically, the three-channel version of the model is 

expressed as follows: 
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The superscripts on a number of variables here assume the presence of red, green and blue 

channels but the method can be applied to arbitrary channels in practice. Sets of decision 

boundaries for each class are calculated as with the simple dynamic thresholding model. 

Thresholds are calculated in the same way as in the single-channel case and given these 

values, suitable linking coefficients and threshold decay terms for each channel become 

available. 

However, the use of the logical AND scheme to combine information between channels tends 

to inhibit the spread of pulsing activity required for effective segmentation/classification. As a 

44



result, we tend to use thresholds at slightly lower value than before and linking coefficients 

slightly larger than our prescription suggests. In our example, thresholds were set 2.5 standard 

deviations above class means rather than 3.5 as in the single channel case and the linking 

coefficients were multiplied by 2 after the prescription had been applied. This proved to be 

fairly effective here but see also section 2.8. Thus the linking coefficient for a channel x at 

time n is calculated as follows: 

Bn =2((7Z,[n-1)/ 83,4) -1) (33) 

2.7.4 The Augmented Method 

The extension of the augmented method into multi-channel form runs along very similar lines 

to the safe model. Once again, the only change to the model is in the linking equation and 

since linking is not multi-channel the alteration is identical to the single-channel version. 

The prescription for the linking coefficients is applied to each channel of the multi-channel 

method exactly as it was to the single-channel case but as with the safe method we find that 

the values calculated need to be increased by a factor of 2 to overcome the inhibitory effect of 

the logical AND scheme. Threshold values were the same as for the multi-channel safe 

method. Here this is achieved by multiplying the value of the lambda coefficient by 2 so that 

for channel x at time n, the prescription becomes: 

B naa Cale IVS md) Sell G4) 

‘max 

2.7.5 The Intensity-Coded Method 

The multi-channel, intensity-coded method uses a model that replaces the linking equation of 

the safe model with (35) so that intensity coding is multiplicative across the channels. Note 

that here we assume red, green and blue input channels but the equation generalises easily. 

Aside from this alteration, the model is identical to that employed by the multi-channel safe 

method. 

Lol] =ZaW uYeal SESE Sh (35) 

The prescription for f takes the linking modification into account by using (36). This 

appropriately balances the internal activation so that the method remains effective. 
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. (T*[n-1]/S* mia) —1 
nj=A (36) 

a Sh Sem Seen) 

As with the augmented method, the lambda coefficient is multiplied by 2. 

2.7.6 Results 

2.7.6.1 Qualitative Results 

Figure 2.21 displays the segmentations achieved by our four parameterisation methods. These 

results can be compared directly to the single-channel segmentations displayed in Figure 2.11, 

2.14, 2.15 and 2.16 and the multi-channel PCNNs appear to perform less well in this 

comparison. We believe that this is due to the high variance central Gaussian in each channel. 

In the single-channel case this is easily the least well segmented class because of the large 

intensity range overlaps with its neighbours and in the multi-channel case it appears in each 

class, degrading performance in each case. 

  
Figure 2.21. Multi-channel segmentations. Clockwise from top left, the simple dynamic 
thresholding method, the safe method, the intensity-coded method and the augmented method. 
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2.7.6.2 Quantitative Results 

Figure 2.22 shows the results equivalent to those in Figure 2.17 for the single-channel 

methods. Once again, variances of the Gaussians were made equal to one another and 

gradually increased to test performance with varying levels of overlap between classes. Here, 

each class was drawn from a distribution of different mean for each channel as in section 

2.7.1 so that the greyscale distributions would be identical. Threshold values for the PCNNs 

were set 2.5 standard distributions above the Gaussian means while linking coefficients were 

multiplied by 4/3 compared with the single-channel case, so that lambda for the augmented 

and intensity-coded methods was set to 4.0. 
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Figure 2.22. Quantitative Results. (a) Performance. (b) Times. 

2.8 Application To Real Images 

2.8.1 The Sowerby Image Data 

The Sowerby Image Database (SID) consists of a collection of images in JPEG and HIPS 

formats as well as various data files. The image files of principle interest here are the RGB 

calibrated images depicting real-world scenes and the images of segmentation interpretations 

that assign labels defining the type of various image regions. 

The RGB calibrated images are in 24-bit colour. They began life as 35mm slides before being 

digitised and recalibrated to remove image acquisition errors, These images were then 

segmented by an unspecified method and the resulting segments were labelled by hand. 

There are a total of 54 base-level labels for image regions but these are grouped ina 

hierarchical manner to give just the 11 parent labels listed below. 
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1, Atmospheric phenomenon (sky, cloud etc.) 

2. Bounding object (fence, gate etc.) 

3. Building 

4. Electrical object (pylon, wire etc.) 

5. Illumination shadow 

6. Landscape (soil, water, vegetation etc.) 

7. Mobile object (bike, car etc.) 

8. Road surface (unmarked areas) 

9. Road marking (white lines) 

10. Road border (gravel, mud etc.) 

11. Road sign 

It is these parent labels that are used to form the images of segmentation interpretations. 

These too are colour images with a different colour being assigned to each label and 

undefined regions arising from imperfect segmentation being left black. 

The RGB calibrated images and images of segmentation interpretation were each available in 

both the original HIPS format and a slightly degraded JPEG format. Unfortunately, Matlab 

does not recognise the HIPS file format so that we forced to use the degraded JPEGs. The 

JPEG versions of the RGB calibrated images are subsequently referred to as the input images 

while the JPEG images of segmentation interpretation are referred to as the labelled images. 

2.8.2 Data Selection and Sampling 

The initial intention was to sample for each class from the entire database of images, create 

class-conditional models using the sample data and use these models to parameterise our 

multi-channel PCNNs. However, closer inspection of the correspondence between the input 

images and the labelled images suggested that this would be ineffectual due to the nature of 

the labelling, 

We can see the problems we are faced with by looking at the ‘landscape’ class. Our multi- 

channel PCNN models are colour/intensity segmentation algorithms and will ultimately be 

incapable of treating ‘landscape’ as a single unified class when it includes regions as disparate 
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as a ploughed field and a pond. Similar problems exist for most of the parent labels employed 

and as a result, more limited experiments were proposed where sampling would be from 

carefully selected training images and testing would occur on the training images themselves 

and similar test images. 

2.8.2.1 Selection Criteria 

Sixteen of the images within the database are specified as test images and it was felt that our 

input images ought to be selected from amongst these. These test images were drawn from 

three different films: 11, 12 and 13 and the eight images from film 13 were selected for 

experimental purposes because here the classes seemed to be most uniform. Two of these 

eight images feature dirt tracks while the remainder feature tarmac surfaces so the group was 

initially separated along these lines. The four images within the tarmac group found to be 

least similar in the classes they featured were then discarded leaving us with four images in 

two groups. 

Within each group one image was designated for sampling purposes while the other was left 

purely for testing. Figures 2.23 and 2.24 display the input images from each group on the left 

hand side with the corresponding labelled images on the right. In each case the sampling 

images appear above the test images. 

  
Figure 2.23. The tarmac images. Clockwise from top left: sampling input image, labelled sampling 
Image, labelled test image, test input image. 
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Figure 2.24. The dirt-track images. Clockwise from top left: sampling input image, labelled sampling 
Image, labelled test image, test input image. 

2.8.2.2 Sampling 

The first step in sampling from the images selected was to form greyscale template matrices 

as used on the synthetic images in the sections above. These were to be created using the 

labelled sampling images and used to select regions of the input images from which to sample 

for each class. Unfortunately, the extraction of our templates was subject to error due to the 

degradation involved in the JPEG encoding of the labelled images. It was found that 

thresholding was unable to perfectly separate the labelled regions and while using a PCNN for 

this task might have been more effective, an objective measure of segmentation performance 

here was unavailable. 

Rather than confuse matters by employing a PCNN in the sampling process used to 

parameterise another PCNN, it was felt that thresholding, while error-prone, was the more 

sensible option here. The templates were still used as region selectors during the sampling 

process and the errors here were absorbed as an additional source of noise for our methods to 

contend with. 

Mean and variance values were calculated for each channel of each class present in the 

sampling images and the classes were rearranged in descending order of total mean intensity. 

Appropriate sequences of Smias, Tyaiss d's were then calculated for all our methods before 

individual beta values were assigned to each method according to the prescriptions developed 

in section 2.7 above. 
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2.8.3 Results 

2.8.3.1 Qualitative Results 

Figures 2.25 to 2.28 show the segmentations achieved by each method on the tarmac 

sampling image, tarmac test image, dirt-track sampling image and dirt-track test image 

respectively. Lambda values and kernels were identical to those employed in the varying 

variance experiment in 2.7.6. 

  

Figure 2.25. Tarmac sampling image segmentations. Clockwise from top left: simple dynamic 
thresholding, the safe method, the intensity-coded method, the augmented method. 
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Figure 2.26. Tarmac test image segmentations. Clockwise from top left: simple dynamic 
thresholding, the safe method, the intensity-coded method, the augmented method. 

  

Figure 2.27. Dirt-track sampling image segmentations. Clockwise from top left: simple dynamic 
thresholding, the safe method, the intensity-coded method, the augmented method.



Figure 2.28. Dirt-track test image segmentations. Clockwise from top left: simple dynamic 

thresholding, the safe method, the intensity-coded method, the augmented method. 

2.8.3.2 Quantitative Results 
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3 Analysis and Discussion 

The development of effective parameterisation methods for the pulse coupled neural network 

family is an important step in the continuing process of legitimising their use in image 

processing. Once available, such methods should remove the need for expert, task-specific 

intervention in the operation of these models and enable their integration into truly automated 

and versatile image processing systems. 

Here we have pursued a number of promising avenues in this developmental process 

beginning with an exploration of methods designed to achieve perfect image segmentation 

under limited conditions before moving onto alternative methods designed to be of more 

general utility under a wider range of conditions. 

3.1 Perfect Segmentation Methods 

The perfect segmentation method proposed by Kuntimad and Ranganath helps to justify the 

claim that effective parameterisation methods for the PCNN are within reach and ought 

therefore to be an active area of research and development. The method is founded in a 

principled manner on measured or otherwise known characteristics of the image regions we 

wish to segment and can thus be seen as data-driven and task-specific, thus avoiding the 

overly knowledge-driven approach prevalent in PCNN research. The method is also capable 

of optimal performance within certain constraints and we felt that in many ways it formed a 

good model for effective parameterisation methods. It was therefore quite influential in 

shaping the methods we would subsequently develop. 

However, the method was critically limited by the degree of intensity range overlap between 

adjacent regions it could overcome as well as by its reliance on specific border geometry 

conditions between the image regions to be separated from one another. The alternative 

perfect segmentation method we developed in section 2.1.8 shows us that if we rely on this 

latter condition then the former can be largely overcome. However, it also suggests that a 

reliance on border geometry conditions is a weakness that ought to be avoided. Even within 

the specified restrictions we found that we could falsify K&Rs claim that their method could 

guarantee perfect segmentation of an image. 

Initially these findings might seem to cast into doubt the whole parameterisation development 

process. However, the method is still effective in its task given fairly minor restrictions on the 
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spatial and intensity distributions present and we felt that more general methods might still be 

produced. Kuntimad and Ranganath’s suggested that future work should focus on the 

determination of optimal values for certain parameters based on the image probability density 

function and this was particularly influential in determining the form of the methods we 

developed here. 

3.2 Other Parameterisation Methods 

3.2.1 Simple Dynamic Thresholding 

Simple dynamic thresholding is obviously not one of our PCNN parameterisation methods but 

it nevertheless acted as a way-marker in the developmental process. A moving, global 

threshold here performs temporal segmentation, and the optimisation of the threshold values 

is based on a simple error minimisation criterion applied to the image p.d.f. and operating 

entirely outside the spatial domain. 

By adopting a probability-based form, the method avoided the pitfalls of a reliance on border 

geometry conditions but expectations were not high for the performance of the method since 

all local spatial context was also abandoned. Both qualitatively in Figure 2.11 and 

quantitatively in Figure 2.17, we found that our expectations were borne out, with 

performance being poor in both cases. Segmentation errors were common and occurred at an 

approximately linearly increasing rate with increasing Gaussian variance in the quantitative 

test. However, the errors occurred here for very obvious reasons and it was felt that the 

addition of limited spatial context in developing the PCNN parameterisation methods would 

enable us to address the sources of error systematically. 

3.2.2 The Safe Method 

The safe method was based on a relatively simple PCNN model designed to supply minimal 

spatial context information while still being compatible with a probability-based 

parameterisation method. By employing stepped linking in this model, it was found that we 

could effectively apply hard threshold values to the intensity range over which pulse capture 

could occur. This suggested a parameterisation method that could take advantage of the same 

decision boundary values as before but here, the segmentation of an image region would 
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occur by the spread of a wave of pulse-capture within a fast-linking loop and as such would 

be influenced by local spatial context not available to the thresholding method. 

Two distinct forms of error were identified in the simple dynamic thresholding method’s 

segmentation of regions of overlapping intensity ranges. These were dubbed low-tail and 

high-tail errors respectively and it was found that the safe method was capable of suppressing 

high-tail but not low-tail errors. From a qualitative perspective, the resultant partial 

improvement in performance is obvious from a brief comparison of Figures 2.11 and 2.14. 

The segmentation in the latter is much smoother than the former while still featuring well- 

preserved edges but overall it is still fairly rough. Likewise looking at the quantitative 

comparisons in Figure 2.17, we see a significant improvement over simple dynamic 

thresholding maintained over a range of variance values. Again, performance appears to 

decrease roLendy linearly with linear increases to the variance but the rate of decrease is lower 

here. Testing processing time for this model in Figure 2.17(b) suggested that the 

computational cost of the algorithm increased approximately linearly with increasing class 

overlap from an initial figure close to that of the simple dynamic thresholding method. 

Overall, the safe method was a promising development from the simple dynamic thresholding 

method. However, the improvement in segmentation performance was limited by the 

method’s inability to address low-tail errors so that this became the focus of the next 

development effort. 

3.2.3 The Augmented Method 

Where the spatial context available to the safe method was limited to a yes-or-no signal as to 

whether pulsing behaviour was occurring in a given neighbourhood, the augmented model 

added quantitative information regarding the number of pulsing neurons within the 

neighbourhood as well as their position. The modification to the model employed, resulted in 

a soft threshold on the pulse capture intensity range with the range being affected by the 

quantitative information available. 

By introducing a flexible pulse capture range, the augmented method was able to address low- 

tail as well as high-tail errors and was consequently capable of significantly better 

segmentation performance than the safe method. Figure 2.15 qualitatively displays this 

improvement in the form of a visibly much smoother segmentation than we saw previously 

and edges are still excellently well preserved. In Figure 2.17 we see a correspondingly large 
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quantitative improvement in performance with processing time close to that of the safe 

method and in Figure 2.18 we found that this method measured up well against the perfect 

segmentation methods: degrading gracefully in performance at a fairly gentle rate and being 

relatively cheap computationally. 

The drawback of the augmented method is that by making the pulse capture range flexible we 

can no longer directly derive optimal linking coefficients using the minimum error decision 

boundary values calculated from the image p.d.f. The decision boundaries still play a central 

role in the parameterisation but here they become a component of a heuristic prescription for 

beta, which is flexible by virtue of the lambda coefficient. 

3.2.4 The Intensity-Coded Method 

The intensity-coded method employed a model allowing for still further spatial context 

information to be communicated. As well as a quantitative measure of neighbourhood pulsing 

activity, here the intensity values of the corresponding image pixels was also included in the 

context passed between neurons. 

It was hoped that this additional information would enable the intensity-coded method to 

further reduce the error still present in the segmentations produced by the augmented method. 

Unfortunately this was not found to be the case and we must conclude that the transmission of 

intensity values are of no value to this form of model. Processing time was similar to the 

previous methods. 

3.2.5 Multi-Channel Extensions 

The method chosen here for extending the parameterisation methods into multi-channel form 

was very simple and yet surprisingly effective. The models employed were modified to 

perform a logical AND operation over the input channels to produce a single-channel output 

as before. This treatment was selected because there seemed to be a simple way of adjusting 

each of our parameterisation methods to account for this alteration. 

The more traditional way of performing image fusion with the PCNN is to operate individual 

PCNNs on each channel but to modify the models so as to perform inter-channel as well as 

intra-channel linking modulation. This approach has been applied to the fusion of RGB colour 
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images [10] and has also been used to fuse different filtered feature maps of greyscale images 

[13]: the authors here claiming that performance is better than using a logical AND over the 

filtered images. However, an appropriate parameterisation method for this technique is 

currently less clear than for the logical AND scheme so the models have been overlooked 

here. 

In experiments, it was found that with the addition of the logical AND operation, we could 

segment colour images that would have been impossible to segment by the single-channel 

methods. Comparing Figure 2.22 with Figure 2.17 we find also that segmentation 

performance of the multi-channel methods was comparable with that of the single channel 

methods on Gaussian classes of the same variance. The safe method no longer performed 

significantly better than simple dynamic thresholding but this was due to an improvement in 

the thresholding method’s performance rather than a failure of the safe method. 

Processing times for the multi-channel methods were approximately five times that of their 

single-channel counterparts and this is a major drawback of the method. However, more 

efficient software implementations are in development and a number of parallel hardware 

implementations for PCNNs have been proposed [14] — [16] so this is not necessarily such a 

great problem. 

3.3 Application to Real Images 

The three multi-channel PCNN parameterisation methods developed here were applied to a 

limited selection of RGB colour images from the Sowerby Image Database (SID). Once 

again, the simple dynamic thresholding method was used for comparison and if we look at 

Figures 2.25 to 2.28 we can see that the results were less than inspiring. 

In general, the smoothness of the segmentation was ordered as follows: 

simple dynamic thresholding < safe < intensity-coded < augmented. 

The sky was consistently well separated from neighbouring regions by each method but this is 

a trivial problem and the result cannot be interpreted as offering support to the use of the 

PCNN in the role of segmenter. In the tarmac images, the road regions were relatively well 

segmented by the augmented method: they were separated from the surrounding landscape 

regions and the region itself was smooth. However, large regions of building and landscape 
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that should have been separated from the roads were segmented at the same time step and by 

the classification scheme would have been classed as road. This problem was even more 

pronounced in the dirt-track images, where no clear separation between road and landscape 

was achieved by any of the PCNN methods. Other classes such as bounding object and 

electrical object were even less well dealt with and in general we can say that all the methods 

failed in the segmentation task presented to them. 

Looking at the quantitative results confirms the failure of each method employed. Figure 2.29 

displays the performance of each method on each image, this performance being defined as 

the mean number of correctly classified pixels per class. As should be expected, each method 

performed better on the sampling images than the corresponding test images but a score above 

50% was registered only once. On average, each PCNN method performed worse than the 

simple dynamic thresholding method and this can only be viewed as a failure of the PCNN. 

3.3.1 Reasons for the Failure 

In hindsight there are a number of good reasons as to why our models performed poorly on 

the segmentation task we set them here and we argue that the poor performance should not be 

interpreted as a general weakness of the PCNN approach to image segmentation but rather as 

a mismatch between problem and model form. 

The images in the SID were initially hand-labelled according to high-level semantic 

definitions like ‘electrical object’ or ‘landscape’ rather than being labelled according to the 

low-level image characteristics of colour and intensity upon which the PCNN operates. As a 

result, most class intensity distributions were far from the Gaussian form assumed in the 

parameterisation methods. Indeed, the true distributions were almost certainly multi-modal in 

nature and the components of the distribution appearing in a given image would differ 

considerably. For example, the dirt-track sampling image featured landscape areas composed 

entirely of green regions while the test image featured a brown plough fields still classed as 

landscape in the labelled image. 

Other problems include the apparently arbitrary labelling of road border regions and shadows 

where there was really no hope of separating these regions from their neighbours. For 
example, no road border regions are labelled in the tarmac test image when areas appear to be 

visible while in the dirt-track sampling image, road border regions are labelled to the right of 

the dirt track which are virtually impossible to discern in the input image. 
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We do not feel that the sampling problems from the JPEGs was a major determining factor in 

the failure of our methods. Outliers within classes are largely ignored by the parameterisation 

process because Ty,/; are set according to total class variance and accept that some of the 

‘lower’ intensity class may lie above the threshold. 

In summary, the PCNN is a low-level segmentation algorithm working on very primitive 

image features and as such was ill-suited to segmenting the SID images. The poor 

performance therefore stemmed from a misapplication of the model rather than ineffective 

parameterisation methods. To achieve automated labelling of the classes in the SID would 

require higher-level object recognition algorithms and although we feel that PCNNs could 

still play a valuable role as a pre-processing component for the recognition system, different 

parameterisation schemes would be required here, of a form as yet undetermined. 

3.4 Towards a Probabilistic Analysis 

Throughout the development process detailed above, we attempted to approach problems in a 

principled manner but were forced ultimately to adopt heuristic prescriptions for the key 

model parameters. While each of these could be justified logically as an incremental 

modification of a previous method, this led to the sort of isolated, relativistic analysis that 

does little to place the PCNN in a wider context. 

We wanted to understand in a more formal fashion exactly why each of the models and 

methods performed as they did and this reasoning led us to attempt to place the PCNN within 

a statistical framework. If this could be achieved, it was envisaged that the following principal 

benefits would become available for the whole PCNN family: 

1. Probabilistic analyses of model behaviour 

2. Deeper comparisons with alternative segmentation methods 

The problem facing us was that the dynamical nature of the PCNN makes a complete 

description in statistical terms complex. As a result, to the author’s knowledge, no such 

description has yet been attained. 

Consideration has been limited here to simplified, fast-linking models of the form used in the 

safe, augmented and intensity-coded parameterisation methods presented here. We also limit 
60



ourselves to the single-channel case although it is hoped that any solution might subsequently 

be extended to a wider range of models. 

Our approach was to study network behaviour within the crucial fast-linking loop since 

calculations external to this are not dynamically complex. It has been observed that the 

pattern of pulsing activity within the fast-linking loop of all the models used above, always 

progresses to a fixed point. We want to understand both the evolution from start point to the 

eventual fixed point and the fixed point itself. 

3.4.1 An Energy Function Formalism 

Energy functions are used in physics to describe the energy states of real physical systems. In 

the neural network literature, the term is used by analogy to refer to similar equations used to 

describe the state of the network or components thereof. The introduction of energy functions 

has been found to be of particular benefit in describing and analysing the behaviour of 

recurrent neural networks, where feedback loops exist in the connection pathway. Most 

famously, Hopfield [17] employed an energy-based formalism to prove the convergence of a 

class of recurrent network now commonly referred to as Hopfield Nets. This convergence 

proof relied upon the energy defined for the network always either decreasing or remaining 

constant and only being able to stay constant for a finite number of steps of the algorithm. 

Energy functions have also been employed in the development of Bayesian approaches to 

image analysis [18] and it was hoped that a similar formalism for the fast-linking PCNN 

might not only benefit our understanding of network behaviour but also lead towards the 

desired statistical interpretation. We begin by running through a brief comparison of the 

PCNN and Hopfield models before using this to motivate the form of our energy function. 

3.4.1.1 PCNN and Hopfield Models 

The PCNN and Hopfield networks feature numerous similarities, some of which are listed 

below: 

1. Both are dynamic and recurrent in nature 
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2. The state of either model is best expressed as the pattern of firing activity across the 

network. Due to differences in network topology, this is expressed as a state vector in 

the case of the Hopfield net and the output matrix Y in the case of the PCNN. 

3. This pattern of firing activity displays convergent behaviour. 

4. The weights on connections between neurons are symmetrical in both models. 

These similarities helped to motivate the energy-based approach to PCNN analysis but the 

form of the energy function developed owed more to the differences between the models, 

some of the more important of which are as follows: 

1. Hopfield nets are globally connected: each neuron is connected to every other neuron 

across the entire network. PCNNs are only locally connected over an area determined 

by the linking kernel W. 

2. Incoming weights to each neuron in the PCNN are identical, being defined by W. This 

is not true of the Hopfield net. 

3. The Hopfield net features no external inputs. It simply evolves from a starting point 

given its internal weight structure. In contrast, each neuron of the PCNN has an 

external feeding input that affects its firing behaviour. 

4. The standard Hopfield net features asynchronous update where neurons are updated 

individually. In contrast, PCNNs employ synchronous update where the firing status 

of all neurons is updated simultaneously. 

5. Hopfield nets feature both negatively and positively weighted connection while the 

PCNN usually only features positive connections. An exception to this rule would be 

the model with additional inhibitory linking fields introduced by Kuntimad and 

Ranganath and commented on above. 

The energy function for the Hopfield net is defined in a per-connection fashion with the 

energy for the whole network being the sum of these connection energies. Specifically, for 

neurons i,j the inter-neuron energy is defined by (37) where y; and y; are the output values of 

the two neurons. 
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Cy =— Wy (37) 

However, because of local, identically weighted connectivity and the existence of feeding 

inputs, it was felt that the energy function of the PCNN would be better expressed in a per- 

neuron fashion. The role of the feeding inputs in particular would be difficult to express via 

per-connection energies, while the connectivity arrangement in the PCNN makes it more 

natural to express interactive influence as an energy on each of the neurons involved than it 

would have been in the Hopfield model. 

3.4.1.2 The Energy Function Proposed 

For convergence purposes, we want to produce an energy function that will monotonically 

decrease in value throughout the fast-linking process. We note that at time step [n], once a 

given neuron is pulsing, Y,[7] = 1, the neuron will remain in the pulsing state throughout that 

time step. This follows from the fact that there are no negative linking values and it is because 

K&R’s inhibitory modification violates this property that we suggested its analysis would be 

more complex than a more standard model. This stay-on property alone ensures convergence 

of the algorithm since in the extreme case the network will progress to an all-pulsing state and 

otherwise will halt somewhere on the path to that state. 

However, we want the energy function to say something meaningful about how far along the 

path to the all-pulsing state the network will travel. In order to do this, we needed it to reflect 

calculations as to whether individual neurons will pulse at this time step or not. The energy 

function for individual neurons was therefore designed to satisfy the following conditions: 

1. It must remain constant while the neuron is in the non-pulsing state 

2. It must decrease when the neuron moves from the non-pulsing to pulsing state 

3. It must either further decrease or remain constant while in the pulsing state 

By looking once again at the equation for internal activation (38), we can see exactly how this 

was achieved. The pulsing of a neuron at time step 7 corresponds to the condition Uj[n] > 

T,[n]. We can therefore rearrange (38) to form (39) giving the conditions for pulsing at time 

step n. 
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Usln| = Sy{l + Bln]Luln}} (38) 

Ee = — Aln\L,{n] <0 39) 
y 

We will base our energy function around the LHS of (39) which takes on a value less than 

zero when Y;[n] = 1, and a value greater than or equal to zero when Y,[n] = 0. To satisfy 

condition one however, we need our energy function to be constant when Y,[n] = 0 rather than 

having a range of values. This is achieved by multiplying both terms by Y,[n] so that when 

Yj[n] = 0, the whole equation equals zero but when Y;[71] = 1, the equation takes on the same 

value as before. Applying this modification and disregarding time indices as we are only 

considering behaviour within a single time step, we arrive at the following energy function for 

neuron jj: 

ty 
ey “(#1 ~Y, Bly (40) y 

This satisfies condition one by taking on a value of zero if Y, = 0. Condition two is also 

satisfied because by (39), e,, will always be less than zero if Y, = 1. In considering condition 

three we note that the only variable here is the linking value Ly, which will never decrease 

during the fast linking process. If Ly remains constant then so too does ey while if Ly increases 

and Yj = 1, ey will decrease and so the third condition is satisfied. 

The Energy function for the entire network is simply the sum of the energies defined for each 

neuron. 

E =) ey (41) 

3.4.1.3 Convergence Proof 

There were initial fears that the convergence proof would be complicated by the synchronous 

dynamics of the PCNN but given the proposed form for our per-neuron energy function, the 

proof becomes very straightforward. We want to show that the network will necessarily 

progress from its initial state to a fixed state corresponding to an energy minimum. In 
demonstrating this, we note that any possible change in the state of the network Y, is the sum 
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of possible changes to the state of individual neurons. It is therefore sufficient to look at an 

arbitrary neuron y, and demonstrate that any change in its state Y, would result in the network 

energy decreasing and that the energy is bounded below by some value. 

We recall that, by positive linking, Y; can only possibly change from zero to one and by 

satisfying condition two above, we have shown that the energy for the neuron in question is 

guaranteed to fall in this case. However, a change in Yj, from zero to one can also affect the 

energy of the neuron’s neighbours by altering the value of the linking input. By (40) we know 

that this will only occur if the neighbour is already in a pulsing state and we know also that in 

this case the result will be a reduction in the value of ex. Thus ej is guaranteed to fall if Yy 

changes value and all neighbourhood energies are guaranteed to either remain the same or 

fall. This guarantees a reduction in total network energy and hence guarantees that any 

possible change in Y does likewise. 

Network energy has a lower bound determined by the kernel selected, the value of the linking 

coefficient beta and the ratio of pixel intensity to threshold value across the whole network. 

We have shown above that any possible changes in network state reduce network energy but 

by the direct correspondence between network equations and the energy function, we know 

also that if a change in state that would reduce E were currently available then the network 

would adopt the lower energy state. Indeed, movement on the energy landscape is of the 

steepest-descent variety because each neuron in the network will always adopt the lowest 

energy state available during a given loop. Energy will continue this steepest descent process 

until no available change in state would result in a further reduction. Thus the network will 

descend to a local energy minimum but the question remains as to whether or not this is a 

global minimum. 

We define the global minimum as the minimum possible network energy given the constants 

T, S, W and £. Since T and S determine the initial state of the network and because the 

behaviour subsequent to that is deterministic then there is only a single energy minimum, 

which is necessarily global. In the augmented scheme this makes sense since substituting for 

Ly shows that the energy function is quadratic in Y. 

Zi; 
ey -1(# = JAM (42) 

g 
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3.4.2 A Bayesian Interpretation 

For a Bayesian interpretation of our energy function, we consider the following properties: 

1. The first term is data-dependent while the second is data-independent 

2. For the general case where Yj; = 1, Sj < Ty, the first term takes on a value greater than 

or equal to zero of a magnitude dependent on the ratio of Sj to Ty while the second 

term takes on a value less than or equal to zero whose magnitude depends on the 

weighted sum of local neighbourhood pulsing activity. Thus the two terms operate 

antagonistically. 

The case stated in 2. is general because if ¥ = 0, ey = 0 and if Sy > Ty, the first term becomes 

negative as does ey, and Y, is thus initially set to one. These alternatives are therefore special 

cases while the case listed is that which determines network behaviour within the fast linking 

loop. If the magnitude of the second term is larger than that of the first then pulsing will 

occur, otherwise it will not. 

The proposal is that the first term is related to a likelihood on the network state while the 

second term is related to a prior. To make the proposal more concrete let us specify the 

following new variables: 

Ey 2,1 (43) 
Sy 

Ey =—Yiy¥j Aly (44) 

We then define the likelihood and prior terms as follows: 

P(S|Y) =exp{- o£} (45) 

PW) = exp{- CE} (46) 

Using Bayes’ theorem (47), we can write (48) for the posterior. 
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PS) © 

P(Y|S)« exp{- cE, Jexp{- ¢)E,} (48) 

To justify this interpretation, we note first that the state of the network Y at time step n 

corresponds to a classification where values of one mean the pixel has been classified as. 

belonging to the class under consideration and values of zero mean the pixel has been 

classified as belonging to some other class. Thus Y[v] is directly equivalent to C,. The 

exponential form for the prior and likelihood terms follows from information theory and the 

principle of maximum entropy [19]. This shows that when you look at the distribution with a 

given average energy that minimizes the entropy you arrive at an exponential expression for 

the probability terms. 
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4 Conclusions and Future Work 

In this research project we set out to develop effective parameterisation methods for the 

PCNN family and in section 1.4 we made an attempt to qualify what exactly we meant by 

effective. The following four characteristics were suggested: 

1. They should be fully automated. 

2. They should be flexible and yet powerful. 

3. They ought to produce parameter sets that are in some sense optimal for the 

application under consideration. 

4. They should improve the performance and reliability of the PCNN as an image 

processing tool. 

To conclude our work, we now judge how well each of the methods featured here measures 

up to these characteristics. 

The perfect segmentation methods were fully automated and powerful in their potential 

performance but inflexible by virtue of the limited conditions for their operation. They 

produced optimal parameters within the constraints placed on border geometry and intensity 

range overlap and could certainly be said to improve the performance of the PCNN while 

operating within these limits, but we don’t feel that they could be said to be reliable. They are 

simply too brittle and constrained for that. 

The safe method was also fully automated provided the kernel was fixed and the threshold 

values were set at fixed points defined by the class-conditionals models employed. We found 

that this was possible and could be effective across a range of problems. The safe method is 

not particularly powerful as an image segmenter but against this we can weigh its great 

flexibility. All it needs is a reasonable set of class-conditional models for the distributions 

present in the image. While Gaussians were assumed here, this need not be the case in general 

and once the class-conditionals are present, statistical theory will provide us with the 

minimum error decision boundaries we require. Given the threshold values, kernel and the 

particular model form selected, and given also an assumption of smooth spatial distributions 

within the image, we believe that the safe method can be considered an optimal way of setting 
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the parameters. The reason this optimal solution does not look very optimal is due to the 

limits of the model itself. Overall, we do not feel that the safe method can be viewed as 

improving the performance of the PCNN as compared with alternatives but it does offer 

reliable results over a wide range of problems. 

The augmented method is only fully automated if the kernel and thresholds are not user- 

adjusted and the lambda coefficient is also fixed. The method did sometimes benefit from 

minor adjustments to the lambda coefficient but these are far simpler to handle than 

alterations to the original model parameters. We class this model both as a powerful and 

flexible in an image segmentation role thus improving on either of the previous methods 

above, but while performance was excellent, we saw no sense in which the parameters could 

be said to be optimal here. Overall, the augmented model definitely seems to offer improved 

performance and reliability over more traditional methods for the treatment of the PCNN. 

The intensity-coded method measures up to our effectiveness criteria in almost identical 

manner to the augmented method. It performed very similarly in all experiments, causing us 

to suggest that the modification to the model employed had no overall effect on potential 

performance. 

The multi-channel extensions of our methods produced results that largely mirrored those of 

the single-channel experiments. Most of the comments above are therefore equally applicable 

here but there are notable exceptions. Automation was slightly reduced for each method as it 

seemed more difficult to produce consistently effective parameter sets. As well as this, 

processing time was considerably increased though we feel this might be overcome by 

hardware implementations. 

The application of our methods to the real images of the Sowerby Image Database proved to 

be largely unsuccessful but we feel there were generally good reasons why the PCNN as a 

class of model was unsuited to the task presented to it. As a result, we cannot blame the 

parameterisation methods themselves. 

The energy function approach to characterising PCNN behaviour was introduced to begin to 

place these models on a firmer foundation. Closely matching the central equation of the 

algorithms themselves, the energy function lays bare the antagonistic nature of the main 

model components within the fast-linking loop. It can be found that the any of the model 

forms featured will descend to a global energy minimum for that model, given the value of 
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certain constants but as yet this is of little use to us. What we need to be able to do is compare 

the minima for each model in an objective fashion and also the different minima achieved by 

the same model with different parameter values. Ideally we would be able to define the 

parameter values and model form that would give us an absolute global minimum energy and 

we would hope that these would correspond to the optimal model and parameters for the task 

at hand. A Bayesian/entropic interpretation of the energy function was tentatively proposed 

and we hope that this might also prove beneficial in the principled design of future 

parameterisation methods. 

Until then though we have to make do with our current parameterisation methods and on 

balance, we feel that the augmented and intensity-coded methods are the most promising 

considered here. They exhibit a flexibility lacking from the perfect segmentation methods 

while still offering high levels of performance in an image segmentation role. By Occam’s 

Razor, we would recommend the augmented method because of the simpler model used. 

4.1 Future Work 

Our current work has suggested a number of key areas that will be the focus of future 

research: 

1, The further investigation and development of the energy function method for PCNN 

analysis along with its Bayesian interpretation - We hope that this could yield truly 

optimal, general parameterisation methods and would help to establish the place of the 

PCNN within the image processing field. 

2. The detailed comparison of the PCNN with alternative low-level image processing 

algorithms - We believe that a statistical framework could prove to be of particular 

benefit in comparative studies. 

3. The development of parameterisation methods for the fusion PCNN suggested in [10] 

and [13] - Again, we hope that a probabilistic framework could be of use here. 

4. The investigation of multi-layer models and the development of parameterisation 

methods for them. 

5. The introduction of inhibitory connections and the investigation of their influence on 

the behaviour of our models. 
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6. The introduction of alternative feeding receptive field types - Current work has 

focussed on direct feeding, where the receptive field is a highly local measure of pixel 

intensity but the linking modulation within the PCNN is a general mechanism for 

grouping neurons according to similarities in their feeding input and if the 

characteristics of the feeding receptive field change then so too does the type of data 

we group together in the image. Alternative receptive field types might include 

physiologically motivated fields of a centre-surround form for example but there is no 

reason to restrict our models in this area. Feeding values might be local variances or 

the result of any number of filtering operations. The possibilities are endless. 
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