THE UNIVERSITY OF ASTON IN BIRMINGHAM

 DEPARTMENT OF MATHEMATICS
PORTFOLIO ANALYSIS

ABUL LAIS SHER

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF PHILOSOPHY

SUMMARY

S UMMARY.

In this dissertation, the techniques of portfolio analysishave been considered and the merits of the various models found in the literature are discussed. Portfolio analysis involves the determination of the most suitable combination of specific shares that should be included in the portfolio of an investor at any point in time.

The main purpose of this study has been to compare the suitability of the following five methods of portfolio selection:

1) The Filter Method
2) The Valuation Method
3) The Markowitz Model
4) The Sharpe Model
5) A Monte Carlo Technique.

Of these methods the Markowitz and the Sharpe approaches
might be termed as classical models - and the Valuation and Monte Carlo methods as developments proposed and tested by the author. The ad-hoc methods were used as a crude strategy against which the efficiency of the more complex method could be measured empirically.

Incidental to the main study, an examination of certain of the constructs of Investment Analysis was necessary (e.g. a test of the "Random walk hypothesis").

The Markowitz and the Sharpe models have each been developed into a composite routine. The algorithms were compared with programmes utilising more general quadratic progranming routines.

The Markowitz and Sharpe models, as developed, appeared to be consistently better than other methods. Since
the Sharpe model is considerably cheaper to operate than
Markowitz's model, it may be concluded that Sharpe's model
is the most efficient of those methods tested.

IN LOVING MEMORY OF

MY MOTHER

Summary
Page No.
Acknowledgements

CHAPTER I

1) Introduction 1
1.1) Achievements and Conclusions 4
CHAPTER II Investment Analysis
2.1.1) Introduction to Investment Analysis 6
2.1.2) Economic and Sector Analysis - including 7 some evaluation of the equations as predictors.
2.2) The Random Wa.lk Theory of Stock Market Price 9
2.2.1) Introduction 9
2.2.2) Serial correlation of price differences 12
2.2.3) The Random Walk Model 13
2.2.4) Empirical Evidence 16
2.2.5) The Stable Paretian Model. 17
CHAPTER III Methods of Portfolio Choice Based on Single Share Consideration.
2) Introduction 20
3.1) Ad Hoc Methods of Assessment 20
3.1.1) Introduction 20
3.1.1.1) Proposed rules for investi- 20 gation in individual share
3.1.1.2) Proposed rules for investing 20 in more than one share.
3.2) Optimum Filter Rule 21
3.3) A New Model for Portfolio S election 24
3.3.1) Introduction 24
3.3.2) Digression in present values 24

CHAPTER III (contd)

3.3.3) The Valuation Method 26
3.3.4) Combining the Growth Rate and Risk factor 26
CHAPTER IV Classicial Approach
4) Introduction 28
4.1.1) Economic Model of Portfolio Selection 28
4.1.2) Optimization Method 32
4.2) The Sharpe Diagonal Portfolio Selection Model 36
4.2.1) Introduction 36
4.2.2) Formulation of the model for n shares 36
4.2.3) Graphical representation of the model 38
CHAPTER V A Monte Carlo Technique.
5) Introduction 41
5.1) The Share price regression model. 41
5.2) Regression line for the Financial Times 42
Index against time logged U.K. car production,
5.3) Simulation model. 42
CHAPIER VI Data Collection, Results and Discussion.
6.1) Data Collection 50
6.2) Results and Discussion 54
6.2.1) Multiple Regression Analysis 54
6.2.2) The Random Walk Theory 55
6.2.3) Ad-hoc Methods 65
6.2.4) Optimum Filter Rule 65
6.2.5) The valuation method. 67
6.2.6) The Morkowitz Model 67
6.2.7) The Sharpe Model 69
Page No.
CHAPTER VI (contd)
6.2.8) Monte Carlo Method 70
6.2.9) Conclusions of the results. 70
6.3) Tables (1-54) 73
APPENDICES:-
Al The Markowitz Model 119
A2 The Sharpe Diagonal Model 129
A3 The Least Squares Linear Regression Model 139
\mathbb{N}_{4} Flow chart of Morkowitz's Model 141
A5 Flowchart of Sharpe's Diagonal Model 156
A6 Flowchart of Filter Method 164
A7 The Computer programmes and specimen outputs 167
BIBLIOGRAPHY 185

LIST OF FIGURES

Figure No.Page No.
1 Buy and Sell policy 23
2 Graph of $\frac{V^{\frac{1}{2}}}{S}$ against $\frac{\mu}{M}$35
3 Graphical representation of the 40Sharpe model
4 Regression simulation for the FTI 47
5 Regression simulation for one share 48
6 Block diagram of Monte Carlo procedure 49
7-15 Histograms of logarithm Share price 56 fluctuation of different Shares.
16
Comparison between the rates of return 66 of Shares
Comparison between the expected rate of 68
return and the actual rate of return obtained on the basis of prediction from previous year data.
18 Graph showing the rejection criteria for a 125 share.
Table No. Page No.
1 Multiple regression analysis 74
2 Serial Correlation (Average correlations) 79
3-4 Testing the fit of a normal distribution 80
$5-14$ Filter rule 81
15-32 Markowitz's Model 86
33-36 Sharpe's Model 98
37 Correlation (r) 103
38-39 Monte Carlo Method 105
40-49 Ad-Hoc Methods 107
50-51 Valuation Me thod 116
52 Comparison between Ad-hoc, Morkowitz's, 117 Shapre's and Monte Carlo
53 Comparison between Markowitz's and 117 Sharpe's Models
54 Comparison of Computing times 118

LIST OF COMPUTER PROGRAMME S

Programme No. Page No.
1 The Markowitz model 167
2 The Sharpe model 172Serial Correlation175
4 Logarithmic transformation 175
5 The Filter method 177
6 Calculation of rate of return 179Statistics
7 The Monte Carlo Model 182

ACKNOWLEDGENENI'S.

I would like to express my deep gratitude to my supervisor Mr.M.K.Hussey, without whose constant guidance and advice this work would not have achieved the desired level.

I feel indebted to Professor N.Mullineux, the Head of the Department of Mathematics, The University of Aston, for granting me the financial assistance and for allowing me to use all the Departmental facilities needed for this work.

My gratituade is also due to the Government of the People's Republic of Bangladesh for sponsoring me for a grant under the Colombo Plan.

I would also like to thank the following for the help rendered in completing this work:

Mr.S.J.Harborne for his useful suggestions and help in computer programming;

Mr.Md.Ali bin Hassan for collecting some useful data; My sister and friends for helping in different ways; Programming and Operating Staff of the University of Aston's Computer Centre.

CHAPTERI.

INIRODUCTI ON
1)
"October. This is one of the peculiarly dangerous months to speculate in stocks. The others are July, January, September, April, November, May, March, June, December, August and February" - Mark Twain.

All the models described in the literature for portfolio investment analysis rely on historical data relation to compare performance e.g. Share prices.

The term 'portfolio' means a list of "good" stocks and shares. It is a balanced whole, and at the same time it protects the investor in volatile situations. A portfolio analyst generally starts with information concerning individual shares, and he ends up with conclusions concerning portfolios. The job of the portfolio analyst is to find that portfolio which best meets the objectives of the investor.

The information regarding various types of shares constitutes one of the most important raw materials of a portfolio analyst. One source of such information is the Stock Exchange. The Stock Exchange is the market in which shares are bought and sold. It enables capital accumulation by governments, municipalities and public companies. It is one of the major institutions on which the national and the international economies are based. The Stock Exchange is notoriously short sighted, and it is inclined to deal with the future regardless of past experiences.

The price of a share, like the price of anything else, depends on supply and demand on a large number of factors, for example, past performance of the company, rate of dividend paid, long term prospects of the company and the market in which it operates.

Many investors, both private and institutional, buy and sell shares in the Stock Exchange through their brokers.

The collection of shares that an investor owns at any time is referred to as his portfolio. Owing to the wide diversity in personal and financial circumstances, the owners of portfolios have different requirements. Some need high income and no capital growth, while for others, it is the reverse. The optimum, however, would require a mixture of the se two extremes.

Whatever the investor's requirements may be regarding the performance of his portfolio, it is certain that he will wish to base his selection of shares on the fullest information available. This information may take one of the following two forms:
(i) Historical data
(ii) Personal assessment.

The theory of portfolio selection involves the precise determination of the combination of specific shares that should be in the portfolio of an investor at any point in time.

In recent years, a great deal of theoretical and empirical work has been done to formulate mathematical models of portfolio behaviour. The objective of these models has been to suggest specific ways of selecting the components of a share portfolio for a given level of risk.

The aim of this dissertation is to find a suitable forecasting technique and to develop computer application programmes for the classical methods of portfolio selection. This dissertation also deals with 'Investment Analysis' in which, amongst other things, past annual rates of return are used for forecasting the next year's performance of individual shares.

Chapters II and III describe the essential elements of investment analysis. In the first part of Chapter II, the use of multiple linear regression analysis for price forecasting is discussed. Later in the chapter, the validity of
random walk hypothesis is examined.
Chapter III presents methods of portfolio selection based on the consideration of a single share. For purposes of comparison, several ad-hoc methods are proposed in the first section. Alexander's ${ }^{(1)}$ filter technique is reviewed and applied in the second section. In the last part of the chapter, a new model of portfolio selection, known as the valuation method, is proposed.

Portfolio theory is concerned with decisions involving outcomes that cannot be predicted with complete certainty. The essential elements of portfolio theory were developed by Markowitz ${ }^{(16)}$ in 1952. In 1958, Tobin ${ }^{(24)}$ made the first practical attempt to use the theory for a positive capital mafket model. The actual method put forward by Markowitz was not very practical. Sharpe's ${ }^{(22)}$ diagonal model was able to overcome the computational problem that arose in the Markowitz model.

Since then, many others have contributed to this study. It may be noted that Markowitz's contribution in this field is fundamental in nature. Others have extended, modified and tested his original theory, but the essence still remains unchanged.

In Chapter IV, the classical models of the Markowitz and the Sharpe are discussed, and then, based on the above mode 7.s, algorithms and computer programmes much more efficient than those in existence, have been developed.

In Chapter V, a new simulation model (based on Sharpe's model) has been developed. This hopefully will prove to be an improvement on the classical methods.

Data collection techniques, empirical results and a discussion of these are given in Chapter VI.

The algorithms of the Markowitz and the Sharpe models

1) contd.
are developed in appendices Al and (A2,A3) respectively, while appendices A4, A5 and A6 contain the flow charts of the programmes used in the models of the Markowitz, Sharpe and filter methods.

Appendix A7 contains the programme codes used in this dissertation and the specimen outputs of the programmes. All the programmes are written in Fortran IV.
1.1) Achievements and Conclusions.
a) Multiple Regression Analysis.

The use of general economic indicators such as Gross National Product is not satisfactory. The share index indicators are more useful.
b) The Random Walk Model.

The random walk hypothesis appears to be valid in the short term. An attempt was made to fit a normal distribution to share price fluctuations, but the fit was not good. The fit was improved by using logarithms of share price fluctuations, but it still remains, in general, unsatisfactory.
c) The Ad-hoc Methods.

The ad-hoc methods are used as crude measuring device, against which the sophisticated methods could be measured empirically. Results obtained are better than expected.
d) The Filter Method.

The effectiveness of Filter Method depends upon the transaction cost.
e) The Valuation Method.

The Valuation Method is not yet fully developed as regards the most appropriate combination of risk and
1.1) contd.
e) contd.
growth factors. However, the present investigation indicated the usefulness of this approach to further research.
f) The Markowitz and the Sharpe Models.

The algorithms and computer programmes based on the above models have been satisfactorily developed. These programmes can also be employed as predictors of share market.
g) A Monte Carlo Technique.

The Monte Carlo model is found to be a good method of share selection. Its disadvantage lies in its high cost.
h) Comparisons.

The empirical results show that the Sharpe and the Markowitz models are the most efficient anongst all the methods considered. The Sharpe model is preferred to the Markowitz model because of its smaller computing cost.

CHAPTERII.
INVESTMENT ANALYSIS

2.1) Investment Analysis.

2.1.1) Introduction.

As mentioned in the introduction, investment analysis is concerned with studying the behaviour of a single share. The history of investment analysis is somewhat simpler than that of portfolio analysis - where emphasis is on the iteraction between the component shares in the portfolio.

The classic paper by Bachiler ${ }^{(2)}$ is essentially taken to be one of the pillars of the study of investment analysis. It is usual to consider investment analysis prior to portfolio analysis. In the crude sense investment analysis is used to censor individually each share that goes on a broker's 'acceptable' list (e.g. only those shares with a certain capital, dividend growth plus earnings may be acceptable). In the more sophisticated models, investment analysis may be used to calculate lagged regression forecasts for input into Markowitz or Simulation analysès.

There are two main schools of thought amongst investment analysts. Some believe that the share prices may be predicted from a technical or mechanical study of past prices. Others believe that share prices vary in a random fashion.

In this chapter we shall attempt to present evidence of both types of study and draw conclusions as to the most acceptable on the basis of empirical verification.

The first part of the chapter will consider the regression model of share prices and the second part will deal with the random walk model.

2.1.2) Economic and Sector Analysis - including some evaluation of the equations as predictors.

In this section a statistical method of forecasting will be described. The analysis of the stock market requires the study of an ordered sequance of share data. The sequence of closing price daily, weekly, monthly and quarterly intervals may be studied.

There are two types of forecasting indicator:-
a) General or economic relating to the whole of the economy, for example forecasting the Gross National Product (G.N.P) for the next year as a measure of the economic climate in general.
b) Specific indicators relating to the particular subdivision of the economy in which the share of interest is to be found.

In order to predict the share prices, multiple
linear regression analysis is used. Cohen, Gomme and Kendall ${ }^{(3)}$ used lagged economic relationships for forecasting future share prices. They used regression analysis for varying time lags and calculated multiple regression. They reported that the lagged relationships produced a good forecast and concluded it deserved serious consideration for short term (one or two years) economic forecasting.

Regression fit.

To fit the data in the equation

$$
P=a_{0}+a_{1} x_{1}+\ldots+a_{6} x_{6}
$$

where

$$
\begin{aligned}
P & =\text { Share price } \\
a_{i} & =\text { Regression Constants } \\
x_{i} & =\text { Different variables as described below }
\end{aligned}
$$

2.1.2) contd.

The following data are used for x_{i}

1) Gross National Product
2) The Unemployment Rate
3) United Kingdom Car Production
4) The Bank Rate
5) Financial Times Index (F.T.I)
6) Special Share Index (Industrial Share Price Index)
a) Chemicals
b) Engineering
c) Insurance
d) Motor
e) Newspapers
f) Household Goods
g) Textiles
h) Tobacco
i) Investment Trust
j) Electrical
k) Food Manufacturing
e) Banks
m) Wines and Spirits
n) Stores
o) Oils
p) Electronics, Radio and T.V.
q) Machine Tools

The quarterly data of fifty equity shares for the years 1968 to 1970 were computed to get multiple correlation coefficients and 't' statistics by using different parameters. This is shown in Table 1.

2.2) The Random Walk Theory of Stock Market Price.

2.2.1) Introduction.

For many years economic statisticians have been interested in the subject of price fluctuations in the stock market. One important model that has recently evolved from this research in the theory of random walks or the random walk-hypothesis. This hypothesis supposes that stock prices respond quickly to new information as it becomes available and that new items of information enter the market place in a random fashion. Specifically, periodic changes in price hourly, daily, weekly or monthly are independent of price changes during equivalent preceding periods. In other words day to day fluctuations in stock market prices are indistinguishable from numbers produced by some chance process.

The random walk hypothesis does not deny the possibility of correctly forecasting stock prices. It accepts the principle that investment analysts who can forecast company earning and dividends accurately should do a fairly good job of forecasting stock prices. What it denies is that the analysis of past data, particularly past market price data, can produce better than chance price forecasts. Most of the statistical investigations of the random walk hypothesis confirm the belief that successive price changes are statistically independent. According to Levey ${ }^{(13)}$ there are several
methods of testing the random walk hypothesis to find whether technical analysis is a desirable method of earning income in the stock market. Two of these methods
2.2.1) contd.
are statistical in nature. First, serial correlation studies attempt to measure the relationship between successive first difference in share prices, and second, runs analyses attempt to compare actual lengths of runs with mathematically determinable expected length. (Runs analysis measure the number of steps (or changes) taken in the same direction and compare this observed number with the number that would have occurred if the process is purely random). Academics who have performed these two types of statistical investigation have been virtually unanimous in their conclusions. They have contended that stock market price variations do follow a random walk and thus technical analysis cannot be used to produce a profit greater than those which would be produced by random selection. There are many serious weaknesses in statistical
test. There are as follows:-
a) They are not able to detect the nonlinear patterns which the chartists claim exist.
b) In runs analyses, they are too inflexible.
c) Statistical tests are very difficult to interpret. Just how large must a serial correlation coefficient be to determine that technical analysis can produce satisfactory profits? Just how much just the actual length of run exceed the expected length of run to determine that the market is sufficiently non-random to allow a profitable forecasting of future prices based upon past prices? (Indirectly connected with this problem of interpretation is the inability of the statistical tests to account for brokerage

2.2.1) contd.

c) contd.
commissions. It would be far better to produce results in terms of pounds and pence than in terms of serial correlation coefficients and related statistical measures).
d) The statistical tests do not consider the element of risk.
e) They fail to correct for the co-movement of stock prices.
f) Statistical tests are often not understandable to market practitioners who do not have any extensive background in statistics and mathematics.

Levy suggested simulation method of testing the random walk hypothesis that avoids these weaknesses of statistical test. Simulation has these advantages: it can detect nonlinear patterns, it can test for relative strength (thus filtering out the co-movement of stock prices), it can take into account brokerage commissions and express results in terms of pounds and pence, and it can measure the risk of given investment strategies. Very little work has been done in the area of simulation. Cootner ${ }^{(4)}$ has tested average trend indicators and Alexander ${ }^{(1)}$ has tested a device known as the filter technique. Their conclusions have been similar - that these technical. strategies can produce profits which are greater than the profits which would be produced by naive buy-and-hold policy but that the superior profits are not sufficient to cover transaction costs. Cootner's and Alexander's tests were certainly f'ar from exhaustive. In fact, whether one uses statistical testing or simulation,
2.2.1) contd.
the random walk hypothesis cannot be proved. All that can be indicated is that the specific strategies investigated do not yield greater profits than those which would be yielded by a random method of selection.

2.2.2) Serial Correlation of Price Difference.

The first and most obvious test of the random walk model is to look at estimates of serial correlation for various share prices and various values of time.

Let given price data be $P_{t}(t=1,2 \ldots, n)$, then estimates of serial correlations are found by forming the expressions

$$
\begin{aligned}
& x_{t}=P_{t}-P_{t-1} \\
& \bar{X}=\frac{1}{n-1} \sum_{t=1}^{n-1} x_{t} \\
& X^{\prime}=X_{t}-\bar{X} \text { and then } \\
& r_{s}=\frac{\sum X_{t}^{\prime} X_{t-s}^{\prime}}{\sum\left(x_{t}^{\prime}\right)^{2}}
\end{aligned}
$$

where
and $\quad r_{s}=$ serial correlation.
A number of writers have found estimates of serial correlation coefficients for various values of time.

The estimates are consistently near zero
and so are generally in accordance with the random walk
2.2.2) conta.
model. It is rather difficult however to decide whether the value obtained gives any indication of being significantly non-zero. For every large sample, if the true value is zero, every estimate should be approximately normally distributed with mean zero and variance n^{-1}.

There is no consensus among the studies about whether or not there is a predominance of estimates of one sign. Fama ${ }^{(7)}\left(T=\right.$ one day) and Kendall ${ }^{(11)}$ ($T=$ one week) found the majority of their estimates to be positive, whereas Cootner (4) and Moor(19) ($T=$ one week) and King(12) $(T=$ one month $)$ as well as Fama ($T=$ four and nine days) found negative estimates to be most common.

In our estimates we got four positives in 1959 and one positive in 1964 and one positive in 1968 out of nine shares. The average values of correlations are shown in Table 2.

2.2.3) The Random Walk Model.

This model originates from considerations of short term change in share prices. To illustrate, suppose we wish to know tomorrow's price of common stocks. To know tomorrow's price, it is sufficient to know what particular increment (Δ) to add (or subtract from) today's price, i.e.
$P_{t+1}=P_{t+\Delta}$
where

$$
P_{t+1}=\text { price as of time } t+1
$$

$P_{t}=$ price of time t
$\Delta \quad=$ increment of change in price.
On the listed stock exchanges, prices are
2.2.3) contd.
set by buyers and sellers. There are no secret deals. Under these conditions, with the price $\left(P_{t}\right)$ being set in a free market, and with a. 11 interested parties knowing P_{t}, then the price $\left(P_{t}\right)$ is used as a starting point for negotiation of price of the next trade, P_{t+1}. It is the change and not the absolute value, which constitutes the fundamental element in price determination in the short run. If the change (Δ) is known and is constant, then since P_{t} is always known, tomorrow's price $\left(P_{t+1}\right)$ is known.

Price change (Δ) can be measured in different ways; for example:
a) Simple arithmetic change: $\Delta=P_{t+1}-P_{t}$
b) Percentage change: $\Delta=\frac{\left(P_{t+1}-P_{t}\right)}{P_{t}}=\left(\frac{P_{t+1}}{P_{t}}\right)-1$
c) Relative change: $\Delta=\left(P_{t+1} / P_{t}\right)$
d) Logarithm of relative change:

$$
\Delta=\log \left(P_{t+1} / P_{t}\right)=\log \left(P_{t+1}\right)-\log \left(P_{t}\right)
$$

It is also possible to vary the length of the difference interval:-
(i) Daily changes
(ii) Weekly changes
(iii) Monthly changes.

The general random walk model involves three distinct hypotheses:

1) Any given set of change in price conforms to some probability distribution. The particular shape of the distribution is not specified by the theory but is supposed by many authorities to be normal.
2.2.3) contd.
2) The probability distribution is stationary.
3) Successive price changes are independent of each other Stationarity.

This implies that there is no trend in either the mean or the variance of the distribution of change over time. The total difference in price over some time span $(t-\epsilon)$ must equal the sum of the incremental difference of the span, i.e.

$$
P_{t}=P_{t-\epsilon}=\sum_{j=t-\epsilon+1}^{t} \Delta_{j}
$$

By stationarity we mean that if the process generating the observed changes in price is stationary, then neither the particular starting time (t) nor the span of time $(t-\epsilon)$ is of particular significance in determining either the mean or the variance distribution of changes. If stock market prices do change in a purely random way, then the average change over some time interval (ϵ) will be zero. The general consensus among authorities is that the empirical distributions of short-term changes in price of risky shares are in fact approximately stationary.

Assumption of Independence.
In statistical terms independence means that the probability distribution for the price changes during time period t is independent of the sequence of price changes during the previous time periods. In other words, independence means no serial correlation between successive changes in price.

2.2.4) Empirical Evidence.

Empirical evidence to support the assumption of independence has been presented by many scholars. Fama ${ }^{(8)}$ for example examined independence between successive price changes for each of the 30 stocks contained in the Dow Jones Industrial average. For each individual stock and for the group as a whole, Fama studied differencing interval of $1,4,9$ and 16 days us ing methods of
(1) Serial correlation measures
(2) Runs analysis
(3) Alexander's filter technique.
M.G.Kendall ${ }^{(11)}$ studied time series of various Δ_{t} by applying standard statistical procedures. He used 22 different industry aggregate price series, taken at weekly intervals from 486 to 2387 terms, to study the behaviour of short term changes in price. He concluded that there is no reason to hope to be able to predict price movements on the exchange for a week ahead, using historical price alone.

Further work by Osborne ${ }^{(20)}$ strengthens the random walk hypothesis from a different point of view. While Kendall worked with serial correlations for each series separately, Osborne worked with general effect of price changes. Osborne, however, was concerned with the logarithm at price differences. It must be noted that the Osborne measurements do not concern trends in prices of stocks but merely the statistical distribution of the changes in the logarithms, which as Osborne pointed out, correspond quite closely to percentage changes.

Bachelier ${ }^{(2)}$, the pioneer in speculative
2.2.4) contd.
price behaviour as a random walk, derived the theoretical properties of the distribution of changes in the prices. Unfortunately Bachelier's work did not receive much attention from economists, and in fact his model was independently derived by Osborne ${ }^{(21)}$ over fifty years later. The Bachelier-Osborne model assumes that price changes from transaction to transaction in an individual share are independent, identically distributed random variables. It assumes that transactions are fairly uniformly spread across time, and that the distribution of price changes from transaction to transaction has finite variance. If the number of transactions per day, week or month is very large, then price changes across these differencing intervals will be sums of many independent variables. Under these conditions the central-limit theorem leads us to expect that the daily, weekly and monthly price changes will each have normal distribution.

2.2.5) The Stable Paretian Model.

A particularly interesting and contraversial model of stock price changes is the Stable Paretian Model in which \log price is assumed to be a random walk but the changes come from a distribution with infinite variance. Mandelbort ${ }^{(15)}$ is the originator and chief protagonist of this model and Fama ${ }^{(5,6)}$ has provided the best expositions and empirical evidence in favour of it. The Stable Paretian distribution was first studied by Levy ${ }^{(13)}$ and arises in studies of some general forms of the central limit theorem.

It may be shown that if $x_{1}, x_{2} \ldots, x_{n}$ are
indepen ently and identically distributed random variables
2.2.5) contd.
then as n tends to infinity the distribution of their sum, if it exists at all, will be a member of the stable Paretian family.

The logarithm of the characteristic function for the stable Paretian family of distributions is

$$
\begin{aligned}
\log \phi(t) & =\log \int_{-\infty}^{\infty} \exp (i u t) d P(\bar{u}<u) \\
& =i \delta t-y|t|^{\alpha}[1+i \beta(t+|t|) \tan (\alpha \pi / 2)] .
\end{aligned}
$$

The above distributions have four parameters; α, β, δ and γ.
I) A measure of the height of the extreme tail areas of the distribution which we shall call the characteristic exponent α.
2) An index of skewness, β.
3) A location parameter which we shall call δ.
4) A scale parameter henceforth called y.
α is the most important among the four when the characteristic exponent α is greater than 1 , the location parameter δ
is the expectation or mean of the distribution. The scale parameter y can be any positive real number, but β, the index of skewness, can take any value in the range
$-1 \leqslant \beta \leqslant 1$. When $\beta=0$ the distribution is symmetric. When $\beta<0$ the distribution skewed to the left and when $\beta>0$ it is skewed to the right. The absolute value of β is a measure of skewness.

The characteristic exponent α of a Stable Paretian distribution determines the height of, or total probability contained in the extreme tails of the distribution. The values of α lies $0<\alpha \leqslant 2$. In the special case $\alpha=2$,
2.2.5) conta.
the Stable Paretian distribution is normal. When α is in the interval $0<\alpha<2$, the extreme tails of the Stable Paretian distributions are higher than those of the normal distribution, and the total probability in the extreme tails is larger than the smaller value of α_{0} The most important consequences of this is that the variance exists (i.e. is finite) only the extreme case $\alpha=2$. The mean, however, exists as long as $\alpha>1$.

Mandelbort's hypothesis states that for distributions of price changes in speculative series, α is in the interval $l<\alpha<2$, so that the distributions have means but their variances are infinite. The Gaussian hypotheses, on the other hand, state that α is exactily equal to 2. Thus both hypotheses assume that the distribution is Stable Paretian. The disagreement between them concerns the v alue of α.

Then the general notation of the the ory of random walks in share prices is that the changes in price conform to some probability distribution.

In conclusion we can say if a price series obeys a random walk, it is statistically completely characterized by the distribution of price differences. It is, therefore, important to consider the properties of this distribution.

The results will be discussed in Chapter VI. Computer programmes numbers 2 and 3 are used in these models and the specimen output of programme number 2 is given in Appendix A7.

> CHAPTER III.

MEIHODS OF PORTFOLIO CHOICE BASED ON SINGLE

SHARE CONSIDERATIONS.
3) Introduction.

This chapter deals with the choice of portfolio based on single share consideration (i.e. no correlations taken into account). In Section 3.1 ad-hoc rules for comparison purposes are noted. In Section 3.2 the optimum filter rule has been discussed.

3.1) AD-HOC METHODS OF ASSESSMENT.

3.1.1) Introduction.

In order to measure portfolio performances as well as to compare methods of analysis to see which is best, some absolute standard is necessary. Therefore, adhoc methods are suggested as standards against which other methods have been compared. In the ad-hoc method it is assumed that mean and variance imply measures of growth and risk respectively.
3.1.1.1) Proposed rules for investing in individual share.
a) Paying no attention to the risk the whole capital is invested in the share with highest expected return.
b) Without any consideration to the risk the whole capital is invested in a share with medium expected return.
c) The whole capital invested in share with lowest variance (no consideration for the expected returns).
d) The whole capital is invested in share with medium variance.
3.1.1.2) Proposed rules for investing in more than one share.
a) Invest equal proportions in each share.
b) Invest equally in three shares with highest rates of return.
3.1.1.2) contd.
c) Rank the shares according to highest mean rates of return and invest in the shares according to their respective ranks.
d) Rank the shares according to lowest variance and invest in share according to their respective ranks.
e) Rank the shares according to mean rate of return/ standard deviation and invest in shares according to their respective ranks.

The mean rate of return, vari ance and the standard deviation is calculated for each of 50 and 9 shares on the basis of quarterly data for the years 1968 to 1970 and 1971.

The results and the comparison will be discussed in Chapter VI.
3.2) Optimum Filter Rule.

Some people e.g. Alexander, Cootner believe
that share prices fluctuate randomly within certain limits. Outside these limits abnormal and optimum variations may be observed. Alexander investigated certain mechanical methods of stock trading known as Filter rules, and suggested that the use of such rules provided worthwhile profits greater than those obtainable, on the average, by a simple buy-and-hold policy.

The principal aim of investors dealing in stocks and shares is to buy and sell the right shares at the right time.

Alexander proposed and tested various filter rules which can be described as follows:

If the daily closing price of a share moves up at least X percent, buy and hold the share until its price moves down at least X percent from a subsequent high, at which time simultaneously sell and go short. The short position is maintained until the daily closing price rises at least X percent above a subsequent low at which time one covers and buys. Ignore moves of less than X percent. The more stringent the filter, the fewer losses are made, but the filter can be set with $X=5 \%, X=10 \%$ and $X=2 \%$, etc. Alexander tested filters ranging from 5\% to 50% over time periods from 1897 to 1959. Alexander's conclusion was consistent with beliefs held by technical analysts of the market and some specialists on the trading floor of the exchange: trends do exist and, once started, tend to both challenge the ability of traders to make profits by applying Alexander's rules.

Now from the above set rule it is possible to wait for a) rise for sell, wait for b) fall in price before buying. If we have n numbers of values for financial index, we can find the most profitable combinations of (a) and (b), based on past experiences and see if these continue into the future.

Here we will investigate the combination for $\& \frac{1}{K}$
(where $\mathrm{K}=$ number of shares) available for investment and must be realised on the last of the n days at the latest.

Figure (l) helps to explain our aim. The following flow diagram [Appendix A5] explains the construction and operation of the computer programming. The results obtained are given in Tables [5-14].

The optimum filter rule method is carried out using daily shares index of nine shares from 1959 to 1968. The results are discussed in Chapter VI.

Figure - 1.

3.3) A New Model for Portfolio Selection.

3.3.1) Introduction.

Company statistics give us some personal measure of performance. Whereas share prices reflect to some extent market fluctuation - balance sheets do not.

Traditional methods of portfolio analysis use functions of share price data to measure expected earnings and risk. This "new" method of portfolio analysis extracts measures of risk and growth from balance sheet data. A criteria is then suggested for combining these measures into a single measure of 'attractiveness'.

The Price/Earnings (P / E) ratio is sometimes used by economists as a measure of a company's figure expectations. If the P / E ratio is high one may argue that a firm is relatively 'Safe' and hence the investor will have to wait sometime before any profit is realised. Alternatively if the P/E ratio is low the potential buyer expects to receive his return quickly and this can be interpreted as a long term lack of confidence.

If the above reasoning is accepted then it follows that the inverse of P / E ratio may be used as a measure of risk. This in itself is not meaningful but we shall show in the following sections that the inverse of P / E may be used to compute a discount rate which will effectively quantify the risk associated with a share.
3.3.2) Digression in Present Value.

Most people would choose without difficulty the options between £5 and £l0 now - but they might have some difficulties in choosing between receiving $£ 5$ now and $£ 10$ in five years time.
3.3.2) contd.

If they were rational they would argue that since the going rate at which they could invest was $100 i \%$ then $£ X$ invested now would then yield a sum of $£ X(1+i)^{5}$ in five years time. If this $X(1+i)^{5}=£ 10$ then we might say that $X=\frac{£ 10}{(1+i)^{5}}$ was the discounted present value of £10 in five years time.

The rational person would then compare $£ 5$ and $\frac{£ 10}{(1+i)^{5}}$ in order to decide between the alternatives.

Suppose two shares A and B have cash flow pattern ($a_{1}, a_{2} \ldots, a_{n}$) and ($b_{1}, b_{2} \ldots, b_{n}$) for the time intervals $t=1,2, \ldots, n$ respectively. Then the discounted present v alue (D.P.V) of the above shares cash flowwill be

$$
(D \cdot P \cdot V)_{A}=\sum_{t=1}^{n} \frac{a_{t}}{(1+i) t}
$$

$$
\text { and } \quad(D . P \cdot V)_{B}=\sum_{t=1}^{n} \frac{b_{t}}{(1+i) t}
$$

The actual value of i is important. The following table notes the present values of $£ 100$ receivable in 10 years time for various values of i. Rate of i £100 receivable in 10 years time.
0.05
61.39
0.10 38.55
0.15 24.72
0.20 16.15
0.25 10.74
0.50
1.73

3.3.3) The Valuation Method.

The standard economic theory of share valuation suggests that the present value of a share is equivalent to the discounted present value of all its future earnings. If we make the assumption that the value of a share is simply its market price and that earnings are going to stay constant, then the following holds:

$$
\begin{aligned}
& P=E+\frac{E}{(1+i)}+\frac{E}{(1+i)^{2}}+\ldots \\
& \text { i.e. } \quad P=E \sum_{t=0}^{\infty} V^{t}
\end{aligned}
$$

where $V=\frac{1}{1+i}$ is the discount rate and i is the 'Interest rate'.

It is reasonable to assume in general that $0<\mathrm{V}<1$ so that

$$
P=\frac{E}{1-V} \quad \text { and } \quad P / E=\frac{I}{1-V}
$$

The discount rate, or measure of risk is then simply the inverse of P / E ratio, subtracted from unity. As a measure of growth it was decided to use the average price growth rate over the last three years combined.
3.3.4) Combining the Growth Rate with Risk factor.

If i_{g} is the growth rate of g th share, ($g=1,2, \ldots n$) and V_{g} is the risk factor for the g th share ($g=1,2, \ldots n$) an acceptable measure is given by their product $\left(I+i_{g}\right) V_{g}$. The n shares should be ranked according to this criteria (the g th share receiving rank $\left.K_{g}\right)$. The proportions of capital $X_{g}(g=1,2 \ldots n)$, then
3.3.4) contd.
the proportion is

$$
x_{g}=\frac{k_{g}}{\sum_{i=1}^{n} k_{g}}
$$

For the above analysis quarterly data of nine shares from 1968 to 1971 was used. The results and the comparison will be discussed in Chapter VI.
4) Introduction.

This Chapter reviews the practical concepts of portfolio analysis. Sections 4.1 and 4.2 summarise the work of Markowitz and Sharpe in portfolio analysis. Appendices AL, A2, and A3 give detailed proof of algorithms of the Markowitz and the Sharpe models developed. Appendices A4, A5 and A7 give the flow charts and the computing codes with the specimen outputs respectively for making the computations involved in Markowitz's quadratic programming and Sharpe's simplified diagonal models in this investigation.

4.1.1) Economic Model of Portfolio Selection.

The share prices fluctuate in such a random fashion that it is almost impossible to formulate any kind of rigid mathematical model. The aim of the mathematical formulations so far attempted was to get a procedure to predict maximum expected gain and minimum risk in a certain portfolio.

The portfolio analyst has to deal with clients looking for varied financial goals. Some clients want large capital growth, some high dividend return whilst the majority settle for a combination. The analyst, therefore, has to find a suitable utility function capable of combining capital, time, risk and return to suit the investors' particular circumstances.

Let R be a random variable with mean μ and variance σ^{2}.

Let the utility function be $u(R)$, Then by
Taylor's the orem:
$\mathrm{u}(\mathrm{R})=\mathrm{u}(\mu)+(\mathrm{R}-\mu) u^{\prime}(\mu)+\frac{(\mathrm{R}-\mu)^{2}}{2!} u^{\prime \prime}(\mu)+\ldots$
4.1.1) contd.

Taking expectations on sides and ignoring term greater than the second order we obtain
$E[u(R)]=E[u(\mu)]+\frac{\sigma^{2}}{2} u^{\prime \prime}(\mu)=u(\mu)+\frac{\sigma^{2}}{2} u^{\prime \prime}(\mu)$
[Since utility is unique up to a linear transformation we can put $u(\mu)=\mu$ and $\mathrm{E}(\mathrm{R}-\mu)^{2}=\sigma^{2}$, since $\mathrm{E}(\mathrm{R}-\mu)=0$]
putting $u^{\prime \prime}(\mu)=-\alpha$
and $E[u(R)]=M$ (say)
we have $\quad M=\mu-\alpha \frac{\sigma^{2}}{2}$.
The value of the constant α reflects the individual's attitude to risk.(i.e. The rate of change of marginal utility). Determining the form of the objective function and assuming α to be known the task is to find expression for μ and σ^{2}.

Let the means and variances of the n rates of return, $R_{i}(i=1,2, \ldots, n)$ be μ_{i} and $o_{i i}^{2}$ and the covariances are $\sigma_{i j}$. The rate of return R_{i} of the i th share is defined as

$$
R_{i}=\frac{P_{t+1}-P_{t}}{P_{t}}
$$

where

$$
\begin{aligned}
& P_{t}=\text { price at time } t \\
& \mu=E(R)=E\left(\sum_{i=1}^{n} X_{i} R_{i}\right) \\
&=\sum_{i=1}^{n} X_{i} \mu_{i} \\
& \sigma^{2}=V\left(\sum_{i=1}^{n} X_{i} R\right)
\end{aligned}
$$

4.1.1) contd.

$$
\begin{gathered}
=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \sigma_{i j} \\
M(x)=\sum_{i=1}^{n} x_{i} \mu_{i}-\alpha \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \sigma_{i j}^{2}
\end{gathered}
$$

The problem therefore reduces to one of quadratic programming, ie. to maximise $M(X)$ subject to the constraints

$$
\sum_{i=1}^{n} x_{i}=1 \quad \text { (Since the total investment is unity) }
$$

and $X_{i} \geqslant 0$ (One cannot invest a negative amount)
The above maximization of expected utility was presented by D.E.Farrar ${ }^{(9)}$.

This is the same formula that Markowitz derived independently. He assumed that an investor wanted to have maximum return with minimum risk.

Let μ_{i} be the expected rate of return, for each share i, where $i=1,2 \ldots n$ and the covariances of rate of return, $\sigma_{i j}$, for each pair of shares i and j. (is $=1,2, \ldots, n$).

The rate of return of a share is the same as defined above. The expected rate of return for the portfolio is the weighted sum of the expected rates of return for each share comprising the portfolio, the weight for the i th
4.1.1) contd.
share is the proportion of the total investment invested in that share. Thus, if X_{i} is invested in the i th share and μ_{i} is the expected rate of return for that share and if R_{i} is the true rate of return we have that

$$
E\left[R_{i}\right]=\mu_{i} \text { and hence } R=\sum_{i=1}^{n} R_{i} X_{i}
$$

Thus the expected value of the true rate of return is

$$
\begin{aligned}
E[R] & =E\left[\sum_{i=1}^{n} R_{i} x_{i}\right] \\
& =\sum_{i=1}^{n} x_{i} E\left[R_{i}\right] \\
& =\sum_{i=1}^{n} x_{i} \mu_{i}
\end{aligned}
$$

The variance of rate of return, denoted by
V is

$$
\begin{aligned}
V & =E\left[\left(\sum_{i=1}^{n} R_{i} x_{i}-\sum_{j=1}^{n} x_{j} \mu_{j}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \sigma_{i j}^{2}
\end{aligned}
$$

Now the efficient portfolios [the expected rate of return of any portfolio with the lowest possible standard deviation for its return is said to be efficient]

4.1.1) contd.

which provide the maximum expected return for each level of variance can be obtained by maximising

$$
M(X)=\sum_{i=1}^{n} X_{i} \mu_{i}-\alpha \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \sigma_{i j}^{2}
$$

Subject to $\sum_{i=1}^{n} X_{i}=1$ and $X_{i} \geqslant 0 \quad(i=1,2, \ldots n)$
which is obviously a quadratic programming problem. J.Lintner ${ }^{(14)}$ suggested an alternative

$$
M(x)=\frac{\mu_{1}}{V^{2}}
$$

where $\mu=$ Expected rate of return

$$
V^{\frac{1}{2}}=\text { Standard deviation }
$$

whereas the Markowitz function is of the form $M(X)=\mu-\alpha V$.

4.1.2) Optimization Methods.

The optimizations can be done by the following methods:
(i) Efficient sets
(ii) Quadratic Programming

(i) Efficient Set.

For the two variable case the relationship between the expected rate of return and the variances may be plotted by considering various values of ρ, where we have that the covariance between share 1 and 2, say, are as follows:

$$
\sigma_{12}^{2}=\left(\sigma_{1}^{2} \cdot \sigma_{2}^{2}\right) \rho_{12}
$$

where ρ_{12} is the coefficient of correlation, and $\sigma_{1}{ }^{2}$
4.1.2) contd.
(i) contd.
and $\sigma_{2}{ }^{2}$ are known.
To establish the method, from two variable
case

$$
\mu=X_{1} \mu_{1}+\left(1-X_{1}\right) \mu_{2}
$$

and $V=X_{1}{ }^{2} \sigma_{1}{ }^{2}+2 X_{1}\left(1-X_{1}\right) \sigma_{1} \sigma_{2} \rho_{12}+\left(1-X_{1}\right)^{2} \sigma_{2}{ }^{3}$
a) For the case when $\rho_{13}=1$ we get

$$
\begin{aligned}
V= & X_{1}^{2} \sigma_{1}^{2}+2 X_{1}\left(1-X_{1}\right) \sigma_{1} \sigma_{2}+\left(1-X_{1}\right)^{2} \sigma_{2}^{2} \\
& =\left[X_{1} \sigma_{1}+\left(1-X_{1}\right) \sigma_{2}\right]^{2}
\end{aligned}
$$

Hence

$$
\mathrm{V}^{\frac{1}{2}}=\sigma_{a}=\overline{+}\left[\mathrm{X}_{1} \sigma_{1}+\left(1-\mathrm{X}_{1}\right) \sigma_{2}\right]
$$

and represents a straight line.
b) Also, for $\rho_{13}=-1$,

$$
\begin{aligned}
\mathrm{V} & =\mathrm{X}_{1}^{2} \sigma_{1}^{2}-2 \mathrm{X}_{1}\left(1-\mathrm{X}_{1}\right) \sigma_{1} \sigma_{2}+\left(1-\mathrm{X}_{1}\right)^{2} \sigma_{2}^{2} \\
& =\left[\mathrm{X}_{1} \sigma_{1}-\left(1-\mathrm{X}_{1}\right) \sigma_{2}\right]^{2}
\end{aligned} \text { or } \mathrm{V}^{\frac{1}{2}}=\sigma_{\mathrm{b}}=\mp\left[\mathrm{X}_{1} \sigma_{1}-\left(1-\mathrm{X}_{1}\right) \sigma_{2}\right] \quad \text {. }
$$

which also represents a straight line.
c) For $\rho_{12}=0$,

$$
V=X_{1}{ }^{2} \sigma_{1}^{2}+\left(1-X_{1}\right)^{2} \sigma_{2}^{2}
$$

For the minimum risk (variance) therefore, we may differentiate with respect to X_{1} to give

$$
\begin{aligned}
& \frac{d V}{d X_{1}}=2 X_{1} \sigma_{1}^{2}+2\left(X_{1}-1\right) \sigma_{2}^{2}=0 \\
& X_{1}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left[\frac{d^{2} V}{d X_{1}}{ }^{2}>0 \quad \therefore \text { Minimum }\right]
\end{aligned}
$$

d) For $\rho_{13}=0.5$

$$
V=X_{1}^{2} \sigma_{1}^{2}+X_{1}\left(1-X_{1}\right) \sigma_{1}^{2} \sigma_{2}^{2}+\left(1-X_{1}\right)^{2} \sigma_{2}^{2}
$$

Now, supposing we allocate the following hypothetical values for $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$
4.1.2) contd.
(i) contd.

$$
\begin{array}{ll}
\mu_{1}=\mathrm{m}, & \mu_{2}=4 \mathrm{~m} \\
\sigma_{1}=2 \mathrm{~S}, & \sigma_{2}=4 \mathrm{~S}
\end{array}
$$

Then in the case (a) to (d) we are able to plot the following graph Figure (2) from $\mu=X_{1} m+4\left(1-X_{1}\right) m$

$$
\text { Hence } \frac{\mu}{m}=4-3 X_{1}
$$

and from
a) $\mathrm{V}^{\frac{1}{2}}\left(\rho_{12}=1\right)=\sigma_{a}=\mp\left(4 \mathrm{~S}-2 \mathrm{X}_{1} \mathrm{~S}\right)$
$\frac{\mathrm{V}^{\frac{1}{2}}}{\mathrm{~S}}=\mp\left(4-2 \mathrm{X}_{1}\right)$
As $0 \leqslant X_{1} \leqslant 1$ then

$$
\frac{\mathrm{V}^{\frac{1}{2}}}{\mathrm{~S}}=4-2 \mathrm{X}_{1}
$$

b) $\frac{\mathrm{V}^{\frac{1}{2}}}{\mathrm{~S}}\left(\rho_{12}-1\right)=\mp\left(6 \mathrm{X}_{1}-4\right) \geqslant 0$
c) $\frac{V^{\frac{1}{2}}}{S}\left(\rho_{12}=0\right)=\left(20 X_{1}{ }^{2}-32 X_{1}+16\right)^{\frac{1}{2}}$
d) $\frac{V^{\frac{1}{2}}}{S}\left(\rho_{12}=0.5\right)=\left(12 \mathrm{X}_{1}{ }^{2}-24 \mathrm{X}_{1}+16\right)^{\frac{1}{2}}$

From Figure (2) we see that the efficient sets are bounded, that triangle with boundaries $\rho_{12}=1$ and $\rho_{12}=-1$ ie. the triangle ABC.
(ii) Markowitz ${ }^{(12)}$ gave a method called the critical line method to solve his quadratic programming, by which the set of efficient portfolio could be calculated. If α is zero, the programming will select the portfolio with the largest rate of return. Intermediate values of α will return in portfolios that have lower than maximum expected return and higher then minimum variance. The objective function permits the selection

Figure-2
4.1.2) contd.
(ii) contd.
of efficient portfolios only. The complete set of efficient portfolios is obtained, therefore, simply by solving quadratic programming problems for all values of α between zero and infinity. The selection of α by the investor is equivalent to specifying the form of his utility function i.e. his attitude towards risk. For the analysis of the developed Markowitz's model, different sets of data are us ed and results obtained will be discussed in Chapter VI.
4.2) The Sharpe Diagonal Portfolio Selection Model.
4.2.1) Introduction.

Markowitz ${ }^{(17)}$ himself was well aware of the impracticality of trying to collect data directly on all the $\frac{1}{2} n(n+1)$ distinct entries in the covariance matrix. He (1959 p.56) acknowledged these difficulties and proposed an alternative simplified procedure which relates to the return and risk of individual shares to an overall market index. His sketch of this new model was developed by Sharpe ${ }^{(22,23)}$ which is known as the "Simplified diagonal model".

The "Simplified diagonal model" is so called because its covariance matrix is diagonal. Sharpe showed that this model simplifies the computational process leading to solution.
4.2.2) Formulation of the model for n Shares.

Let the r ate of return of the i th share be R_{i} where $R_{i}=a_{i}+b_{i} I+\tilde{u}_{i}$
4.2.2) contd.

$$
\begin{aligned}
a_{i} \text { and } b_{i} & =\text { Constants of regression } \\
I & =\text { Market index } \\
\tilde{u}_{i} & =\text { Random variables } \Omega \mathrm{N}\left(0, \sigma_{i}^{2}\right)
\end{aligned}
$$

Let the expected $v a l u e$ of $I=a_{n+1}$ and variance of $I=\sigma_{n+1}^{2}$.

The diagonal model assumes that shares are unrelated except through their common dependence on the market index (I); further, the random elements (\tilde{u}_{i}) are not related to the level of the index (I).

> This is expressed by

$$
\begin{aligned}
& \text { Covariance }\left(u_{i}, u_{j}\right)=0 \text { for all } i \text { and } j \quad i, j=1,2, \ldots, n \\
& \text { Covariance }\left(u_{i}, I\right)=0
\end{aligned}
$$

Taking the expected value of both sides of (4.2.2.1) we obtain

$$
E\left(R_{i}\right)=a_{i}+b_{i} \hat{I}
$$

The return of a portfolio is

$$
R=\sum_{i=1}^{n} R_{i} x_{i}
$$

where x_{i} are proportion.
The expected return of the portfolio R may be obtained from

$$
\begin{aligned}
E(R) & =\sum_{i=1}^{n} E\left(R_{i}\right) x_{i} \\
& =\sum_{i=1}^{n}\left(a_{i}+b_{i} \hat{I}\right) x_{i}
\end{aligned}
$$

4.2.2) contd.

$$
\mathrm{V}\left(\mathrm{R}_{i}\right)=\sigma_{i}^{2}+b_{i}^{2} \stackrel{\sigma}{n+1}_{2}^{\sigma^{2}} \quad[\mathrm{~A}-2]
$$

Thus the portfolio selection problem is now to maximise

$$
M(\underline{X})=E(R)-\alpha V(R)
$$

where $\alpha=$ The rate of change of marginal utility or risk measure

Subject to the constraints

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i}=1 & \\
x_{i} \geqslant 0 & {[A-2]}
\end{array} \quad \text { for all i } \quad \text { i=1,2 } \ldots, n
$$

Thus the only data required are the n values for each a_{i}, b_{i} and σ_{n+1}. For the analyst is of n sha res requires $(n+1) m+2$ items of input data, where m is the number of periods.

The diagonal model is particularly useful for working with large numbers of shares and hence for practical applications Sharpe performed initial test of both performance and efficiency.
4.2.3) Graphical representation of the model.

In Figure (3) a_{i} and b_{i} serve to locate the line relating the expected value of R_{i} to the market index (I). σ_{i}^{2} indicates the variance of R_{i} around the expected relationship (this variance is assumed to be the same at each point along the line).

Finally, a_{n+1} indicates the expected value of I
4.2.3) contd.
and σ_{n+1}^{2} the variance around the expected value.
Two sets of data are used for this analysis, the results will be discussed in Chapter VI.

Figure- 3 .

CHAPTER V
A MONTE CARLO TECHNIQUE.
5) Introduction.

The simulation model is basically an extension of Sharpe's model. The model purports to make future predictions (other models rely on historic estimates). Simulation models are particularly interesting because of the ir basic appeal to management.
5.1) The Share price regression model.

The model assumes that the rate of return of
Share prices and the rate of return of Financial Times
Index (RFTI) for the same period are related by linear relationship of the form:

$$
\begin{equation*}
P_{j}=a_{j}+b_{j} I_{j}+\tilde{u}_{j} \tag{5.1.1}
\end{equation*}
$$

where $P_{j}=$ Rate of return of Share prices
$I_{j}=$ Rate of return of FTI
a_{j} and b_{j} are regression constants and \tilde{u}_{j} is a random variable which is distributed normally with mean zero and variance σ^{2} where σ^{2} is the variance obtained from the regression analysis.

The rate of return of share prices and RFTI are calculated as defined in Chapter IV Section 4.1.1. In this model 50 shares are selected. By using programme number 6 the rate of return of 50 shares and FII for the years 1968 to 1970 are calculated on the basis of quarterly data.

The correlation coefficients (r) between the rate of return of share prices and RFTI are found to have a range of -0.029 to 0.96 (with 11 degrees of freedom). Out of the 50 correlation coefficients about two-thirds of the shares showed 'good' correlation (above 0.65) with
5.1) contd.
the corresponding RFTI as shown in Table 37. It seemed to indicate that the assumption of linearity is not unreasonable.
5.2) Regression line for the FTI against time lagged U.K. car production.
"For some years econometricians have been aware of the critical dependence of economic systems on the lag between cause and effect"(4). Thus, in this model we assumed the FTI is linearly related to U.K. car production lagged by six quarters. Quarterly data for FTI and U.K. car production for the years 1968 to 1970 were used to fit a regression line of the form

$$
\begin{equation*}
I_{t}=a+b K_{t-6}+\tilde{u} \tag{5.2.1}
\end{equation*}
$$

where a and $\mathrm{b}=$ are regression constants

$$
\begin{aligned}
& K_{t}=U . K . \text { car production at the end of } t \text { th period } \\
& I_{t}=F T I \text { at the end of } t \text { th period } \\
& \tilde{u}=\Omega N\left(0,{S o^{2}}^{2}\right)
\end{aligned}
$$

Using application programme ${ }^{(26)}$ the following

$$
\begin{aligned}
& a=250.92 \\
& b=0.0004 \\
& r(\text { correlation coefficient })=0.673 \text { (} 9 \text { degrees of freedom }) \\
& \text { So }^{2} \text { (variance) }=.0065
\end{aligned}
$$

5.3) Simulation Model.

A value of quarterly $U . K$. car production six quarters before the end of the simulation year (two quarters before beginning of the simulation year) is obtained.This is used to simulate a first value of FTI by using equation (5.2.1)
5.3) contd. \tilde{u} is assumed to be distributed normally with mean zero and constant variance. The variance $\left(\epsilon^{2}\right)$ of a further reading about the line is estimated as:

$$
\begin{equation*}
\epsilon^{2}=S o^{2}\left[1+\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \tag{5.4.1}
\end{equation*}
$$

where

$$
\frac{\sum_{i=1}^{n}\left(\bar{y}_{i}-\bar{y}\right)^{2}-\frac{\left[\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}{n-2}
$$

where $n=$ number of points taken to calculate the regression coefficients

$$
\begin{aligned}
& y_{i}=\text { Value of FTI at time } i \\
& x_{i}=\text { Value quarterly U.K. car production } \\
& \text { between periods i-7 and i-6. }
\end{aligned}
$$

The random distrubance term \tilde{u}_{i} was simulated in the first instance, by generating a uniform random variate in the interval generation[0,I]. (A standard I.C.L. facility was used for this purpose). This uniform variate (R_{N} say) was then 'normalised' by using the transformations:

$$
\left.\begin{array}{l}
N_{1}=u \sin T \\
N_{2}=u \cos T
\end{array}\right\}
$$

where
N_{1} and N_{2} are the required random unit normal variates.
Thus for each uniform random variate generated
5.3) contd.
two 'normal' variates are obtained. The values of N_{1} and N_{2} are multiplied by ϵ and the simulated values of FTI are given by

$$
\left.\begin{array}{l}
I_{t}^{\prime}=a+b K_{t-6}+\epsilon N_{1} \tag{5.4.3}\\
I_{t}^{\prime \prime}=a+b K_{t-6}+\epsilon N_{2}
\end{array}\right\}
$$

as shown in Figure (4).
Two values of RFTI say RFTI' and RFTI" are then calculated.

Then another uniform random number is generated to give two more unit random normal variates. These values are multiplied by the s tandard error σ_{j} of \tilde{u}_{j} and the results are substituted for \tilde{u}_{j} in the following equation

$$
\begin{align*}
& R_{j}=a_{j}+b_{j} R F T I+\tilde{u}_{j} \\
& j=1,2 \ldots, 50 \\
& R_{j}=\text { Rate of return of share } j \\
& \tilde{u}_{j} \text { is random normal variate with mean } 0 \text { variance } \sigma_{j}^{2} \\
& \sigma_{j}^{2}=\sigma_{O_{i}}^{2}\left[1+\frac{1}{2} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \tag{5.4.5}\\
& \text { where } \\
& \left.\sigma_{0_{i}}^{2}=\frac{\left[\sum_{j=1}^{n}\left(y_{i, j}-\bar{y}_{i}\right)^{2}-\frac{\left[\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{i, j}-\bar{y}_{i}\right)\right]^{2}}{n}\right]}{n-2}\right]
\end{align*}
$$

where $n=$ number of points taken in calculating the regression coefficients

$$
y_{i, j}=\text { value of rate of return of share } i \text { for } j \text { th quarter }
$$

5.3) contd.
$x_{j}=$ value of rate of return of FTI for j th quarter $x_{i}=$ value of rate of return of FTI predicted
this gives $\mathrm{R}_{\mathrm{N}_{1}}$ and $\mathrm{R}_{\mathrm{N}_{2}}$ as in Figure (5). Similarly 49 more random numbers are generated and used to simulate rates of returns for other 49 Shares. These give two sets of rates of returns for the 50 Shares analysed.

Each set is ranked and the highest (Best)
and Lowest (Worst) shares noted.
This whole procedure is repeated a thousand times, after which the procedure terminates. The number of times each share is highest $H_{j}(j=1,2 \ldots, 50)$ and the number of times is lowest $L_{j}(j=1,2 \ldots 50)$ is counted.

Then the proportion invested in the i th shares P_{i} is then given by:-

$$
\begin{equation*}
P_{i}=\frac{K_{i}}{\sum_{j=1}^{50} K_{j}} \tag{5.4.6}
\end{equation*}
$$

where

$$
K_{i}=\frac{H_{i}}{1000}\left(1-\frac{L_{i}}{1000}\right)
$$

The formula (5.4.7) is just one of many strategies that can be considered for ranking the shares. It is sensible because it gives a portfolio with most funds invested in a share which has most recorded highest and least recorded lowest in the simulation.

Block diagram Figure (6) explains the structure
of the above simulation. The computer programmes and their
5.3) contd.
specimen outputs can be found in Appendix A7.
Using programmes numbers 6 and 7 the
results are presented in Tables 38 and 39.
A discussion of the results, together with
a comparison against other models can be found in
Chapter VI.

Figure-4.

Figure-5.

6.1) Data Collection.

For this study two samples of closing share prices were selected. Sample 'X' consists of a detailed daily price study of nine equity shares over the period 1959 to 1968. Sample ' Y ' consists of a wider study of quarterly price data relating 50 equity shares for the years 1968 to 1971. The Financial Times Index (F.T.I) was recorded quarterly for the period 1968 to 1971. The shares in samples ' X ' and ' Y ' were chosen randomly. A list of the sample members is given below.

Sample 'X'.

Serial number
1
2
3
4
5
6
7
8
9
Sample 'Y'
Serial number

Name of Company
Barclays Bank Limited
Distillers Co.,Ltd.
Imperial Chemical Industries Ltd.,
Marks \& Spencer Limited.
British Insulated Callender Cables Lta.
Prudential Assurance Co.Ltd. 'A'
Rolls-Royce Limited.
W.H.Smith \& Son Ltd.,

Alfred Dunhill Ltd.,

Name of Company
Glaxo Group
Hoover Ltd.,
Robert Moss Ltd.,
Wilkins on Sword Ltd.,
Economic Insurance Go.,Lta.
Guardian Royal Exchange Assurance Ltd.,
Pearl Assurance Co., Ltd.
Royal Insurance Co., Ltd.
6.1) contd.

Sample 'Y' (contd)

9

Sun Life Assurance Society Ltd., Prudential Assurance Co.Ltd., 'A' Victory Insurance Co., Ltd. The British Motor Corporation Ltd. Ford Motor Co., Dunlop Co.,Lta.

The Zenith Carburetter Co.,Ltd. 'A' Bristol Street Group Ltd.,

Penguin Publishing Co.,Ltd. W.H.Smith \& Son., Ltd.

Dixon Peter \& Son., Ltd.
University Printers
Brixton Estate Ltd.,
Great Portland Estates Ltd.,
St.Martin's Property Corporation Ltd., James Fisher \& Sons Ltd.,

Church \& Co.,Ltd.
'K' Shoes Ltd.,
Thos.Frith \& John Brown Lta.,
Bear Brand Ltd.,
G.H.Heath \& Co.,Ltd.

Shaw Carpets Ltd.,
Alfred Dunhill Lta., Derby Trust Ltd.,

British Investment Trust Lta.,
The Calcutta Electric Supply Corporation Lti
British Petroleum Co.,Ltd.
The Darjealing Co., Ltd.
The Ceylon Tea Plantation Holdings Ltd.,
6.1) contd.

Sample 'Y' (contd).

38
39
40
41
42
43
44
45
46
47
48
49
50

Barclays Bank Limited.
Bank of Ireland. Bank of Scotland

Lloyds Bank Limited. Midland Bank Limited. The Distillers Co., Limited. Arthur Guinness Son \& Co., Ltd. Imperial Chemical Industries Ltd., Marks \& Spencer Ltd., British Insulated Callender Cables Ltd., Decca Ltd.,

Telefusion Lta.,
Alfred Herbert Ltd.,

In subsequent tables shares are noted by their respective serial numbers. For consistency we have collected the data at the middle of each quarter, when data is not available on this date, the price on the 'nearest' day is used.

In order to reduce data collection to a minimum when applying Markowitz's and Sharpe's Models to the data from sample 'Y', the sample of 50 shares was 'censored' down to 10 shares.

The 50 shares were screened according to the following criteria:

1) Average total capital employed.
2) Average pre-tax profit.
3) Average earnings.

Data obtained from the Moody cards ${ }^{(26)}$ was used as a basis for finding the ten most promising shares. It was interesting
6.1) contd. to note that they were all well-known companies which, in a way, justified the method of selection employed. The monthly share prices and the F.T.I. were subsequently collected from the Financial Times for the years 1968 to 1971.

The 10 companies left after completing
the censor exercise were:

Serial Number
1

2

3

4
5
6

7

8
9
10

Narne of Company
Glaxo Group.
Hoover Ltd.,
The British Motor Corporation Ltd.,
Dunlop Co.,Ltd.
British Petroleum Co.,Ltd.
The Distillers Co.,Ltd.
Arthur Guinness Son \& Co.,Ltd. Imperial Chemical Industries Ltd., Marks \& Spencer Ltd.,

British Insulated Callender Cables Ltd.

For the multiple regression alaysis, a special share index (the industrial share price index) was used. The name of the various economic indicators used are given in Chapter II Section 2.1.2. Data were collected for the years 1968 to 1970. The data of Sample 'X' for Price/Earnings (P/E) ratio was obtained for the years 1968 to 1970 .

The data for United Kingdom car production, Gross National Product (G.N.P) Bank rate, and the unemployment rate was obtained from the Monthly Digest of Statistics ${ }^{(27)}$ for the years 1968 to 1971.

Minor adjustments to the share prices were
6.1) contd.
made when there was a "scrip issue" or a "rights issue". All the above share prices are recorded in units of 5 p. For the ease of analysis the different share data are lettered as given below:

6.2) Results and Discussion.

6.2.1) Multiple Regression Analysis.

The ICL statistical analysis package XDL3
is used to calculate the multiple regression lines for different sets of economic indicators (as described in Section 2.1.2 Chapter II)

The results obtained from the multiple reregression analysis of the ' D ' and ' E ' data from the periods 1968 to 1970 are given in Table 1.

The prediction of share prices using ordinary economic indicators, is not satisfactory because the tests of significance of the correlation coefficients by 't' statistics indicated that they were insignificant at both the 5% and 1% levels (with 9 degrees of freedom correlation should be greater than or equal to 0.65 in order to be significant but they are in fact much below 0.65 whereas using share indices the predictions improved considerably, the correlation being above 0.65.)

The '*' marks shares are thus found to be
6.2.1) contd.
good predictors and as such can be used as a basis for next or subsequent years investment performance.

6.2.2) The Random Walk Hypothesis.

The hypothesis developed in Section 2.2
Chapter II are tested with respect to
(a) Serial correlation
(b) The normality assumption.
a) For the serial correlation, data 'A' was analysed by using programme number 3, for three different years 1959, 1964 and 1968. The average value of correlations are shown in Table 2. None of the correlations are significant.
b) Data 'A' was analysed for the years 1959 to 1968. By using programme number 4 empirical distributions of daily changes in logarithms of share prices for the year 1959 were obtained. One share (I.C.I) was investigated on the basis of 10 years data.

An attempt was made to fit a normal distribution to the share price fluctuations, but the fit was not good. Then logarithm of share price fluctuations are used for the year 1959. The Chi-square test was then used to check the goodness of it. The results are given in Table 3. The fit was improved by using logarithms of share price fluctuations. In general the fit was not satisfactory.

> An analysis over an extended period (10 years) was carried out for one share (I.C.I). This again did not improve the fit. Results are shown in Table 4. Histogram of logarithm share price fluctuations for the year 1959 using data ' A ' are shown in Figures (7) to (15). The logarithms of price fluctuations are found not to be normally distributed.

BARCLAYS SHARE

DISTILLERS SHARE

Figue-8.

I.C.I SHARE

Figure- 9.

MARKS \& SPENCER SHARE

PRUDENTIAL 'A' SHARE

$$
\begin{gathered}
\text { Log Share Price } \\
\text { Figure } \mathbf{- 1 3} .
\end{gathered}
$$

W.H.SMITH SHARE

Log Share Price

Figure - 14 .

6.2.2) contd.

Results for the above analysis are believed to be more extensive than any previous study.

6.2.3) Ad-hoc methods.

Using the rules suggested in Section 3.1 Chapter III the following results are obtained with data 'B' and 'D' for the years 1968 to 1971.

Proportion of investment in each share is obtained from the data 'D' for the years 1968 to 1970. Using the same proportion in 1971 the actual rate of return obtained is given in the following tables.

Using rules 3.1.1.1 results obtained are given in Table 41. Using rules 3.1.1.2 the results are given in Tables 40 to 45 .

Comparison with the Markowitz, Sharpe and Monte Carlo models are shown in Table 52.

A comparison between the rate of return of share prices using data 'B' for the periods (1968 to 1970) and 1971 are given in Figure 16.

It is observed that rule (e), Section 3.1.1.2
gives the best result followed by rule (b) in the same section.

6.2.4) Optimum Filter Rule.

This is a method of hindsight and it is simply
a buying and holding policy. Data ' A ' is used to calculate the optimum filter sizes as described in Section 3.2

Chapter III.
The results obtained using programme number 5

6.2.4) contd.

are given in Tables (5) to (14) and the Tables are selfexplanatory. Programme code and their output are given in Appendix A7.

The above method could be used as a predictor if the transaction cost is less than 2%.

6.2.5) Valuation Method.

Using data 'B' for the period 1968 to 1971 and ranking the corresponding products of risk and growth factors according to their ranks proportion invested, and the actual rate of return obtained on the basis of predictions from the previous years are shown in Tables 50 and 51.

As an empirical yardstick ad-hoc methods are used for purposes of comparison. Results obtained using data ' B^{\prime} and ad-hoc rules suggested in Section 3.1 Chapter III are shown in Tables 46 to 49. The results by the valuation method are not satisfactory in comparison with ad-hoc me thods.

6.2.6) The Markowitz Model.

The results obtained from the Markowitz analysis of the 'A', 'B', 'C' and 'D' sets of data by using programme number 1 are given in Tables 15 to 26,27 to 28, 29 to 30 and 31 to 32 respectively.

In Tables 15 to 24 results are given for data ' A ' computed year by year and compared each year for different values of α. The expected rate of return obtained on the basis of predictions from the previous year per day from 1959 to 1968 are shown in Figure (17). The graph shows that the degree of predictability will go up when α increases.

6.2.6) contd.

A comparison is made in Table 25-26 for different values of α between the expected rate of return and the actual rate of return per day using data 'A' for the period 1959 to 1967 and the year 1968. The expected and actual rates of return obtained on the basis of predictions from the previous years per day are nearly the same even for the small values of α.

In Tables 27-28 a comparison is made using data 'B' for different values of α between the quarterly expected rate of return and actual rate of return for the period 1959 to 1970 and the year 1968 .

The proportion investment figures for different values of α for the years 1968-1970 using data 'C' are used in Table 30 to calculate the actual rate of return per month for the year 1971. The above results (Table 30) are compared with the Sharpe model in Table 53.

Tables 31-32 are processed likewise using data 'D'. The results are compared with Ad-hoc, Sharpe and Monte Carlo methods in Table 52.

Table 54 shows the corresponding computer mill times for the different methods.

From the empirical results it may be concluded that in using a long time period and more detailed data prediction improves. This model gives the most satisfactory results of all the methods considered.

6.2.7) Sharpe model.

The results obtained from the Sharpe analysis of the ' C ' and ' D ' sets of data by using programme number 2, are given in Tables 33-36.
6.2.7) contd.

A comparison between the Sharpe and Markowitz models is shown in Table 53 and with other models in Table 52. From the empirical evidence it seems that more accurate predictions are obtained from higher values of α.

This model also gives the satisfactory results of all the methods considered. It takes less time in computing than Markowitz's, shown in Table 54.
6.2.8) The Monte Carlo Model.

The Monte Carlo model is tested using data 'D' for the periods 1968 to 1971.

The results obtained by using programmes numbers 6 and 7 are shown in Tables 38 and 39 respectively. Comparison with other methods are shown in Table 52.

From the empirical results it seems that the Monte Carlo model is a good predictor of rate of return of the shares, but it is costly in comparison with other methods as shown in Table 54.
6.2.9) Conclusion.

Of the models discussed in this investigation, it may be concluded that the following three stand out as the most powerful ones:

1) The Sharpe model
2) The Markowitz model
3) A Monte Carlo Technique

Empirical comparisons suggested that the other methods were either inefficient or too 'sensitive' for use.
6.2.9) contd.

The advantage of the ad-hoc methods is their simplicity. Originally suggested as a crude strategy against which the more sophisticated methods might be measured, empirical comparisons showed them to be as good as a number of the other methods.

The random walk hypothesis is valid only in the short term. An attempt was made to fit a normal distribution to logarithms of share price fluctuations, but in general the fit was not satisfactory.

The Monte Carlo model is found to be a good predictor of the rate of return of the shares, whereas the Sharpe and the Markowitz process only showed historical data. The advantage of simulation is that some attempt is made to predict the future behaviour of the share market.

Moreover, the simulation approach has a wide appeal to the managers. The major disadvantage of this model is its high cost.

The modified Markowitz model gives satisfactory results. In this model data input requires:
(1) Risk measures (one value)
(2) Share prices (m periods)

The difficulty is that the running time is increased since this model requires the complete covariance matrix as described in Appendix Al.

The Sharpe model helps to alleviate this difficulty. It reduces computing time by a half. In this model data input requires:
(1) Risk measure (one value)
(2) Share prices (m periods)
(3) Market index (m periods)
6.2.9) contd.

The storage requirement for the Sharpe model
is considerably less than that for the Markowitz model.
The Markowitz and Sharpe models are modified
in such a fashion that any one wanting to use the programmes as a share market predictor simply has to input the official share price list (together with risk coefficient) to get the investment programmes straight away as output.

The Markowitz and the Sharpe models are comparable and show an improvement over the ad-hoc methods. Of the two the Sharpe is preferred because of its smaller computing cost. The Monte Carlo method is useful though expensive. However, it is believed that the approaches developed in the present dissertation for:
(i) The Monte Carlo Method
(ii) The Valuation Method
will open up a new area of research for producing more reliable methods of portfolio selection.

SECTION 6.3

TABLES $1-54$

F* denotes only ore share (I.C.I)

Table Number	Data	Periods	Type of Analysis
1	D,E	$1968-1970$	Multiple regression analysis
2	A	1959 1964 \&-1968	Serial Correlation

Degree of freedom 9 Independent Variables at significant level 99.00\%

Share No.	Variables				Regression Constants					Multiple Correlation	Statistics
	X_{1}	X_{2}	X_{3}	X_{4}	a_{0}	${ }_{10}^{a_{1}}$	10.2 ${ }^{2.4}$	($\begin{gathered}a_{3} \\ 10^{-6}\end{gathered}$	a_{4}		
1	1 5 1	$\begin{array}{\|c\|} 2 \\ 6(a) \\ 2 \end{array}$	3	4.	$\left\|\begin{array}{r} 113.85 \\ 46.95 \\ 135.33 \end{array}\right\|$	$\begin{aligned} & -40 \\ & 1109 \\ & -43 \end{aligned}$	-318 -1716 - 268	10	2.24	$\begin{aligned} & 0.568 \\ & 0.715 \\ & 0.483 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.33 \\ & 0.35 \end{aligned}$
2	1 5 1	$\begin{array}{\|c} 2 \\ 6(\mathrm{~b}) \\ 2 \end{array}$	3	4	$\begin{aligned} & 99.06 \\ & 48.37 \\ & 10.21 \end{aligned}$	$\begin{gathered} 21 \\ -643 \\ 42 \end{gathered}$	$\begin{gathered} -211 \\ 2910 \\ -85 \end{gathered}$	-2	8.07	$\begin{aligned} & 0.860 \\ & 0.211 \\ & 0.583 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.55 \\ & 0.16 \end{aligned}$
3	1	$\begin{array}{\|c} 2 \\ 6(b) \\ 2 \end{array}$	3	4	0.49 20.09 26.83	$\begin{aligned} & 13 \\ & 27 \\ & 12 \end{aligned}$	$\begin{aligned} & -301 \\ & -217 \\ & -334 \end{aligned}$	-6	3.50	$\begin{aligned} & 0.814 \\ & 0.048 \\ & 0.232 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 0.08 \\ & 1.41 \end{aligned}$
4^{*}	1	2 $6(b)$ 2	3	4	$\begin{array}{r} 19.45 \\ 0.14 \\ 58.35 \end{array}$	$\begin{aligned} & -17 \\ & 837 \\ & -24 \end{aligned}$	$\begin{aligned} & -352 \\ & -2716 \\ & -406 \end{aligned}$	-10	3.87	$\begin{aligned} & 0.925 \\ & 0.662 \\ & 0.700 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 1.11 \\ & 1.68 \end{aligned}$
5	1	$\begin{array}{\|c} 2 \\ 6(c) \\ 2 \end{array}$	3	4	$\left\|\begin{array}{r} -30.42 \\ 45.22 \\ -22.68 \end{array}\right\|$	$\begin{array}{r} 52 \\ -509 \\ 34 \end{array}$	$\begin{aligned} & 538 \\ & 1806 \\ & 514 \end{aligned}$	20	-2.4¢	$\begin{aligned} & 0.628 \\ & 0.356 \\ & 0.509 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.75 \\ & 0.81 \end{aligned}$
6	1 5 1	$\begin{array}{\|c} 2 \\ 6(c) \\ 2 \end{array}$	3	4	$\begin{array}{r} 132.06 \\ 9.39 \\ 38.51 \end{array}$	$\begin{array}{r} -118 \\ 463 \\ -74 \end{array}$	$\begin{array}{r} 1050 \\ 705 \\ 1200 \end{array}$	-30	-401	$\begin{aligned} & 0.911 \\ & 0.527 \\ & 0.611 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.30 \\ & 2.37 \end{aligned}$
7	1 5 1	$\begin{array}{\|c} 2 \\ 6(c) \\ 2 \end{array}$	3	4	$\left\|\begin{array}{r} 131.97 \\ -1.30 \\ 109.87 \end{array}\right\|$	$\begin{array}{r} -59 \\ 545 \\ -\quad 58 \end{array}$	$\begin{array}{r} 270 \\ 5149 \\ 298 \end{array}$	5	-2.91	$\begin{aligned} & 0.445 \\ & 0.915 \\ & 0.418 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 3.26 \\ & 0.28 \end{aligned}$
8	1 5 1	$\begin{array}{\|c} 2 \\ 6(c) \\ 2 \end{array}$	3	4	$\left\|\begin{array}{r} 55.72 \\ 35.80 \\ -10.99 \end{array}\right\|$	$\begin{aligned} & -53 \\ & -323 \\ & -21 \end{aligned}$	$\begin{aligned} & 1201 \\ & 2254 \\ & 1308 \end{aligned}$	20	-2.79	$\begin{aligned} & 0.780 \\ & 0.339 \\ & 0.604 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 1.08 \\ & 1.09 \end{aligned}$
9	1	$\begin{array}{\|c} 2 \\ 6(c) \\ 2 \end{array}$	3	4	$\begin{array}{r} 253.51 \\ 93.68 \\ 91.12 \end{array}$	$\begin{gathered} 43 \\ -1415 \\ 121 \end{gathered}$	$\begin{aligned} & -1662 \\ & 10049 \\ & -1399 \end{aligned}$	-50	-6.4.4	$\begin{aligned} & 0.585 \\ & 0.479 \\ & 0.433 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 1.63 \\ & 0.77 \end{aligned}$
10	$\left\lvert\, \begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & 6(c) \\ & 2 \end{aligned}$	3	4	$\left\|\begin{array}{l} 162.16 \\ -4.93 \\ 105.97 \end{array}\right\|$	$\left\lvert\, \begin{array}{r} -73 \\ 557 \\ -52 \end{array}\right.$	$\begin{gathered} -55 \\ 4094 \\ 31 \end{gathered}$	-10	-3.50	$\begin{aligned} & 0.522 \\ & 0.944 \\ & 0.474 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 3.72 \\ & 0.061 \end{aligned}$

Degree of freedom 9 Independent Variables at significant level 99.00\%

Share No.	Variables				Regression Constants					Multiple Correlation	Statistics
	X_{1}	X_{2}	X_{3}	X_{4}	a_{0}	$\begin{gathered} a_{1} \\ 10^{-4} \end{gathered}$	$\begin{gathered} a_{2} \\ 10^{-4} \end{gathered}$	a_{3} 10^{-6}	a_{4}		
11	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 2 \\ 6(c) \\ 2 \end{gathered}$	3	4	$\begin{aligned} & 98.76 \\ & 43.75 \\ & 51.33 \end{aligned}$	$\begin{array}{r} -23 \\ -173 \\ 9 \end{array}$	$\begin{array}{r} -189 \\ 1819 \\ 106 \end{array}$	-30	-0.18	$\begin{aligned} & 0.700 \\ & 0.464 \\ & 0.156 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 1.52 \\ & 0.27 \end{aligned}$
* 12	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 2 \\ 6(d) \\ 2 \end{gathered}$	3	4	$\begin{array}{r} 41.11 \\ 8.61 \\ 55.09 \end{array}$	$\begin{array}{r} -37 \\ 143 \\ -42 \end{array}$	$\begin{array}{r} -18 \\ 1702 \\ -39 \end{array}$	2	0.94	$\begin{aligned} & 0.907 \\ & 0.964 \\ & 0.898 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 4.12 \\ & 0.21 \end{aligned}$
*	1 5 1	$\begin{array}{\|c} 2 \\ 6(d) \\ 2 \end{array}$	3	4	$\begin{aligned} & 162.95 \\ & 2.11 \\ & 98.02 \end{aligned}$	$\left\lvert\, \begin{array}{r} -63 \\ 664 \\ -34 \end{array}\right.$	$\left\lvert\, \begin{array}{r} -733 \\ -185 \\ 631 \end{array}\right.$	-18	-3.2]	$\begin{aligned} & 0.843 \\ & 0.788 \\ & 0.651 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 0.14 \\ & 1.51 \end{aligned}$
14^{*}	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 2 \\ 6(d) \\ 2 \end{gathered}$	3	4	225.01 -12.14 141.18	$\begin{aligned} & -112 \\ & 1289 \\ & -83 \end{aligned}$	-489 -322 -363	-14	-5.65	$\begin{aligned} & 0.902 \\ & 0.956 \\ & 0.828 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.61 \\ & 0.68 \end{aligned}$
* ${ }^{*}$	1 5 1	$\begin{array}{\|c} 2 \\ 6(d) \\ 2 \end{array}$	3	4	138.87 11.79 66.05	$\begin{aligned} & -68 \\ & 753 \\ & -38 \end{aligned}$	$\begin{aligned} & -391 \\ & -859 \\ & -278 \end{aligned}$	-20	-4.06	$\begin{aligned} & 0.926 \\ & 0.840 \\ & 0.738 \end{aligned}$	$\begin{aligned} & 2.44 \\ & 0.83 \\ & 0.81 \end{aligned}$
* 16	1 5 1	$\begin{gathered} 2 \\ 6(e) \\ 2 \end{gathered}$	3	4	143.81 -9.26 51.46	$\begin{array}{r} -78 \\ 932 \\ -45 \end{array}$	$\begin{array}{r} 30 \\ -144_{12} \\ 170 \end{array}$	-20	-6.0才	$\begin{aligned} & 0.908 \\ & 0.855 \\ & 0.660 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 1.32 \\ & 0.40 \end{aligned}$
17	1 5 1	$\begin{gathered} 2 \\ 6(e) \\ 2 \end{gathered}$	3	4	-56.26 55.77 -38.54	$\begin{array}{r} 83^{\circ} \\ -25 \\ 76 \end{array}$	$\begin{array}{\|c} 7 \\ -2362 \\ -20 \end{array}$	4	1.04	$\begin{aligned} & 0.853 \\ & 0.490 \\ & 0.849 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.51 \\ & 0.05 \end{aligned}$
18	1 5 1	$\begin{array}{\|c} 2 \\ 6(e) \\ 2 \end{array}$	3	4	-64.64 70.89 -60.09	84 21 76	$\begin{array}{r} 610 \\ -3758 \\ 600 \end{array}$	9	-1.07	$\begin{aligned} & 0.826 \\ & 0.469 \\ & 0.793 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.67 \\ & 1.06 \end{aligned}$
*	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\begin{array}{\|c} 2 \\ 6(e) \\ 2 \end{array}$	3	4	$\begin{aligned} & 228.20 \\ & -3.77 \\ & 215.94 \end{aligned}$	$\begin{array}{r} -80 \\ -822 \\ -77 \end{array}$		-1	-1.71	$\begin{aligned} & 0.798 \\ & 0.710 \\ & 0.692 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 1.44 \\ & 1.96 \end{aligned}$
20	1 5 1	$\begin{array}{\|c} 2 \\ 6(e) \\ 2 \end{array}$	3	4	$\begin{aligned} & -50 \\ & 681 \\ & -21 \end{aligned}$	$\begin{aligned} & -124 \\ & -1454 \\ & -8 \end{aligned}$		-16	-4.53	$\begin{aligned} & 0.616 \\ & 0.539 \\ & 0.347 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.47 \\ & 0.02 \end{aligned}$

Degree of freedom 9 Independent Variables at significant level 99.00\%

Share No.	Variables				Regression Constants					Multiple Correlation	statistics
	X_{1}	X_{2}	X_{3}	X_{4}	a_{0}	a_{1} 10^{-4}	a_{2} 10^{-4}	a_{3} 10^{-6}	a_{4}		
21	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\left.\begin{array}{\|c} 2 \\ 6(i) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{array}{r} 49.06 \\ 5.77 \\ 26.03 \end{array}$	$\begin{aligned} & -13 \\ & -40 \\ & -4 \end{aligned}$	$\begin{aligned} & -103 \\ & 1764 \\ & -67 \end{aligned}$	-4	-1.4	$\begin{aligned} & 0.410 \\ & 0.789 \\ & 0.187 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 1.93 \\ & 0.28 \end{aligned}$
22	1 5 1	$\left.\begin{array}{\|c} 2 \\ 6(i) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{aligned} & -4.32 \\ & 32.88 \\ & 16.71 \end{aligned}$	$\begin{array}{r} 52 \\ -827 \\ 44 \end{array}$	$\begin{aligned} & -388 \\ & 5109 \\ & -420 \end{aligned}$	-4	1.39	$\begin{aligned} & 0.645 \\ & 0.515 \\ & 0.583 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 1.60 \\ & 0.92 \end{aligned}$
*	$\begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}$	$\left.\begin{array}{\|c\|} 2 \\ 6(i) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{array}{r} -134.31 \\ 48.58 \\ -49.04 \end{array}$	$\begin{gathered} 116 \\ -1680 \\ 85 \end{gathered}$	$\begin{array}{r} 89 \\ 6662 \\ -41 \end{array}$	10	5.40	$\begin{aligned} & 0.906 \\ & 0.700 \\ & 0.832 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 1.70 \\ & 0.08 \end{aligned}$
24	1 5 1	$\begin{array}{\|c} 2 \\ 6(f) \\ 2 \end{array}$	3	4	$\begin{array}{\|c\|} -34.67 \\ 10.42 \\ 14.39 \end{array}$	8 -120 $-\quad 2$	$\begin{array}{r} 175 \\ 1443 \\ 106 \end{array}$	-1	4.73	$\begin{aligned} & 0.550 \\ & 0.256 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.49 \\ & 0.13 \end{aligned}$
25	1 5 1	$\begin{gathered} 2 \\ 6(f) \\ 2 \end{gathered}$	3	4	$\begin{aligned} & -10.27 \\ & 17.29 \\ & 25.40 \end{aligned}$	$\begin{array}{r} 10 \\ -19 \\ -\quad 4 \end{array}$	$\begin{array}{r} 27 \\ 384 \\ -\quad 27 \end{array}$	7	2.15	$\begin{aligned} & 0.785 \\ & 0.209 \\ & 0.219 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.31 \\ & 0.16 \end{aligned}$
*	1 5 1	$\begin{array}{\|c\|} \hline 2 \\ 6(f) \\ 2 \end{array}$	3	4	$\begin{array}{r} \hline 82.42 \\ 4.82 \\ 99.27 \end{array}$	$\begin{array}{r} -51 \\ 755 \\ -45 \end{array}$	$\begin{aligned} & -440 \\ & -811 \\ & -456 \end{aligned}$	-10	3.54	$\begin{aligned} & 0.888 \\ & 0.789 \\ & 0.782 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 0.31 \\ & 1.33 \end{aligned}$
27	1 5 1	$\begin{array}{\|c} 2 \\ 6(b) \\ 2 \end{array}$	3	4	$\begin{array}{r} 8.30 \\ 20.79 \\ 8.81 \end{array}$	$\begin{array}{r} 4 \\ -526 \\ -6 \end{array}$	$\begin{array}{r} 420 \\ 3209 \\ 412 \end{array}$	10	-1.96	$\begin{aligned} & 0.608 \\ & 0.420 \\ & 0.406 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 1.24 \\ & 0.82 \end{aligned}$
28	1 5 1	$\begin{array}{\|c} 2 \\ 6(\mathrm{~g}) \\ 2 \end{array}$	3	4	18.73 0.95 15.25	$\begin{array}{r} -10 \\ 90 \\ -9 \end{array}$	$\begin{array}{r} -31 \\ 26 \\ -26 \end{array}$	0	-0,34	$\begin{aligned} & 0.696 \\ & 0.579 \\ & 0.680 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.28 \end{aligned}$
29	1 5 1	$\begin{array}{\|c\|} 2 \\ 6(g) \\ 2 \end{array}$	3	4	$\begin{array}{r} -39.08 \\ -2.85 \\ 41.33 \end{array}$	$\begin{array}{r} 12 \\ -169 \\ -16 \end{array}$	$\begin{array}{r} -39 \\ 3267 \\ -160 \end{array}$	10	5.38	$\begin{aligned} & 0.565 \\ & 0.800 \\ & 0.282 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 1.37 \\ & 0.45 \end{aligned}$
*	1 5 1	$\begin{array}{\|c\|} 2 \\ 6(g) \\ 2 \end{array}$	3	4	$\begin{array}{r} 794-14 \\ -25.55 \\ 73.84 \end{array}$	$\begin{array}{r} -97 \\ 1311 \\ -62 \end{array}$	$\begin{aligned} & -207 \\ & -2095 \\ & -31 \end{aligned}$	-10	-949	$\begin{aligned} & 0.953 \\ & 0.818 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.57 \\ & 0.06 \end{aligned}$

TABLE 1 (oontd)
Degree of freedom 9 Independent Variables at significant level 99.00\%

Share No.	Variables				Regression Constants					Multiple Correlation	$\begin{gathered} t \\ \text { Statistics } \end{gathered}$
	X_{1}	X_{2}	X_{3}	X_{4}	ao	${ }_{1}^{a_{1}} 10^{-4}$	$\begin{gathered} a_{2} \\ 10^{-4} \end{gathered}$	$\underline{a_{3}} 1$	a. 4		
31	1 5 1	$\begin{array}{\|c} 2 \\ 6(h) \\ 2 \end{array}$	3	4	$\begin{aligned} & 99.31 \\ & -2.81 \\ & 41.57 \end{aligned}$	$\begin{array}{r} -55 \\ 539 \\ -30 \end{array}$	$\begin{array}{r} 1 \\ -284 \\ 91 \end{array}$	-10	-3.00	$\begin{aligned} & 0.809 \\ & 0.879 \\ & 0.613 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.17 \\ & 0.27 \end{aligned}$
32	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{array}{\|c} 2 \\ 6(i) \\ 2 \end{array}$	3	4	$\begin{aligned} & 18.4 \\ & 28.56 \\ & 24.49 \end{aligned}$	$\begin{gathered} 20 \\ 389 \\ 8 \end{gathered}$	$\left\lvert\, \begin{gathered} -73 \\ -2100 \\ -90 \end{gathered}\right.$	10	-1.59	$\begin{aligned} & 0.543 \\ & 0.500 \\ & 0.201 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 1.55 \\ & 0.30 \end{aligned}$
33	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{array}{\|c} 2 \\ 6(i) \\ 2 \end{array}$	3	4	$\begin{array}{r} 65.35 \\ 1.84 \\ 56.59 \end{array}$	-15 -124 -8	$\left\lvert\, \begin{aligned} & -393 \\ & 4046 \\ & -377 \end{aligned}\right.$	-6	0.15	$\begin{aligned} & 0.421 \\ & 0.865 \\ & 0.289 \end{aligned}$	$\begin{array}{r} 0.05 \\ 2.99 \\ 0.90 \end{array}$
34	1 5 1	$\begin{array}{\|c} 2 \\ 6(j) \\ 2 \end{array}$	3	4	$\begin{aligned} & 37.53 \\ & 12.31 \\ & 20.33 \end{aligned}$	$\begin{aligned} & -17 \\ & 104 \\ & -11 \end{aligned}$	$\begin{aligned} & 121 \\ & 171 \\ & 147 \end{aligned}$	-2-	1. 25	$\begin{aligned} & 0.465 \\ & 0.403 \\ & 0.320 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.12 \\ & 0.64 \end{aligned}$
35	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{array}{\|c} 2 \\ 6(0) \\ 2 \end{array}$	3	4	$\begin{aligned} & -79.18 \\ & -23.24 \\ & 355.76 \end{aligned}$	$\begin{gathered} 13 \\ -1205 \\ -92 \end{gathered}$	$\begin{aligned} & -2186 \\ & 22845 \\ & -2805 \end{aligned}$	10	38.98	$\begin{aligned} & 0.738 \\ & 0.916 \\ & 0.369 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 5.63 \\ & 0.94 \end{aligned}$
$*$ 36	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{gathered} 2 \\ 6(k) \\ 2 \end{gathered}$	3	4	$\begin{array}{\|r} 78.36 \\ 0.89 \\ 50.21 \end{array}$	-57 307 -45	$\begin{aligned} & 152 \\ & 392 \\ & 196 \end{aligned}$	-7	-1.52	$\begin{aligned} & 0.900 \\ & 0.654 \\ & 0.855 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.17 \\ & 0.88 \end{aligned}$
37	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{aligned} & 2 \\ & 6(k) \\ & 2 \end{aligned}$	3	4	18.10 29.71 8.00		-77 -556 124	20	-2.66	$\begin{aligned} & 0.667 \\ & 0.483 \\ & 0.451 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.26 \\ & 0.39 \end{aligned}$
38	$1 \begin{aligned} & 1 \\ & 5 \\ & 1\end{aligned}$	$\begin{aligned} & 2 \\ & 6(l) \\ & 2 \end{aligned}$	3	4	$\left\|\begin{array}{r} 173.13 \\ -1.94 \\ 127.84 \end{array}\right\|$	$\begin{gathered} -111 \\ 734 \\ -90 \end{gathered}$	$\begin{array}{r} 51.7 \\ 5389 \\ 590 \end{array}$	-10	-1.85	$\begin{aligned} & 0.640 \\ & 0.898 \\ & 0.600 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 1.89 \\ & 0.62 \end{aligned}$
$*$ 39	$\left\lvert\, \begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & 6(l) \\ & 2 \end{aligned}$	3	4	$\left\|\begin{array}{r} 794.35 \\ -144.93 \\ 358.43 \end{array}\right\|$	$\begin{aligned} & -464 \\ & 3214 \\ & -334 \end{aligned}$	$\begin{array}{\|c} 669 \\ 13978 \\ 1310 \end{array}$	-40	-33.87	$\begin{aligned} & 0.851 \\ & 0.959 \\ & 0.718 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 2.32 \\ & 0.48 \end{aligned}$
* 40	$\left\lvert\, \begin{aligned} & 1 \\ & 5 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & \phi(\ell) \\ & 2 \end{aligned}$	3	4	390.22	-237 1567 -161	$\begin{array}{r} 340 \\ 5496 \\ 631 \end{array}$	-40	-10.51	$\begin{aligned} & 0.911 \\ & 0.927 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 1.75 \\ & 0.62 \end{aligned}$

TABLE I (contd)
Degree of freedom 9 Independent Variables at significant level 99.00\%

Share No.	Variables				Regression Constants					Multiple Correlation	Statistics
	X_{1}	X_{2}	X_{3}	X_{4}	a_{0}	(${ }^{a_{1}} 10^{-4}$	a_{2} 10^{-4}	($\begin{gathered}a_{3} \\ 10^{-6}\end{gathered}$	a_{4}		
41	1 5 1	$\left.\begin{gathered} 2 \\ 6(\ell) \\ 2 \end{gathered} \right\rvert\,$	3	4	$\begin{aligned} & 93.98 \\ & 26.3 \\ & 26.45 \end{aligned}$	$\begin{gathered} -19 \\ 2389 \\ 3 \end{gathered}$	$\begin{array}{r} 430 \\ 5153 \\ 530 \end{array}$	-9	-4.94	$\begin{aligned} & 0.470 \\ & 0.613 \\ & 0.145 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 1.97 \\ & 0.77 \end{aligned}$
* ${ }^{*}$	1 5 1	$\left.\begin{gathered} 2 \\ 6(\ell) \\ 2 \end{gathered} \right\rvert\,$	3	4	232.66 -11.14 125.84	$\begin{array}{r} -137 \\ 674 \\ -96 \end{array}$	$\begin{array}{r} 421 \\ 5799 \\ 585 \end{array}$	-20	-6.37	$\begin{aligned} & 0.787 \\ & 0.948 \\ & 0.682 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 2.96 \\ & 0.71 \end{aligned}$
43	1 5 1	$\left.\begin{array}{\|c} 2 \\ 6(m) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{aligned} & 75.04 \\ & -5.21 \\ & 42.97 \end{aligned}$	$\begin{array}{r} -13 \\ 109 \\ -1 \end{array}$	$\begin{aligned} & -354 \\ & 2765 \\ & -306 \end{aligned}$	-6	-2.09	$\begin{aligned} & 0.551 \\ & 0.901 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 4.60 \\ & 0.10 \end{aligned}$
44	1 I	2 5 2	$\left\lvert\, \begin{gathered} 3 \\ 6(\mathrm{~m}) \\ \hline \end{gathered}\right.$	4	$\left\|\begin{array}{r} -12.66 \\ 13.52 \\ 25.79 \end{array}\right\|$	$\begin{array}{r} 20 \\ -192 \\ 17 \end{array}$	$\begin{aligned} & -205 \\ & 2424 \\ & -255 \end{aligned}$	-6	4.59	$\begin{aligned} & 0.790 \\ & 0.550 \\ & 0.334 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 1.89 \\ & 0.82 \end{aligned}$
*	1 5 1	$\left\|\begin{array}{c} 2 \\ 6(a) \\ 2 \end{array}\right\|$	3	4	$\left\|\begin{array}{l} 197.60 \\ -11.76 \\ 165.37 \end{array}\right\|$	$\begin{array}{r} -108 \\ 454 \\ -94 \end{array}$	$\begin{aligned} & -334 \\ & 5674 \\ & -283 \end{aligned}$	-9	1.64	$\begin{aligned} & 0.791 \\ & 0.951 \\ & 0.779 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 1.91 \\ & 0.40 \end{aligned}$
* 46	1 5 1	$\left.\begin{array}{\|c\|} 2 \\ 6(n) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{array}{r} 95.98 \\ 0.05 \\ 46.73 \end{array}$	43 -746 26	$\begin{aligned} & -640 \\ & 8970 \\ & -539 \end{aligned}$	-3-	6.50	$\begin{aligned} & 0.783 \\ & 0.895 \\ & 0.693 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 5.97 \\ & 1.75 \end{aligned}$
* ${ }^{*}$	1	$\left.\begin{array}{\|c\|} 2 \\ 6(j) \\ 2 \end{array} \right\rvert\,$	3	4	$\begin{array}{r} 185.63 \\ 49.48 \\ 172.52 \end{array}$	$\begin{aligned} & -86 \\ & 356 \\ & -79 \end{aligned}$	$\begin{aligned} & -272 \\ & 2698 \\ & -250 \end{aligned}$	-5	0.36	$\begin{aligned} & 0.897 \\ & 0.728 \\ & 0.889 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.73 \\ & 0.66 \end{aligned}$
48	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\left\|\begin{array}{c} 2 \\ 6(p) \end{array}\right\|$	3	4	377.08 -14.18 248.49	$\begin{aligned} & -172 \\ & 2137 \\ & -140 \end{aligned}$	$\left\lvert\, \begin{aligned} & -906 \\ & -609 \\ & -722 \end{aligned}\right.$	-5	-11.30	$\begin{aligned} & 0.924 \\ & 0.960 \\ & 0.440 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.27 \\ & 0.86 \end{aligned}$
49	1	$\begin{array}{\|c} \hline 2 \\ 6(p) \\ 2 \end{array}$	3	4	(r $\begin{array}{r}102.47 \\ -6.92 \\ 54.89\end{array}$	$\begin{aligned} & -71 \\ & 142 \\ & -72 \end{aligned}$	$\begin{array}{r} 830 \\ 4173 \\ 888 \end{array}$	10	6.79	$\begin{aligned} & 0.846 \\ & 0.726 \\ & 0.637 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.49 \\ & 1.57 \end{aligned}$
50 *	1 5 1	$\begin{array}{\|c} 2 \\ 6(q) \\ 2 \end{array}$	3	4	71.93 40.76 47.34	75 -684 -89	$\begin{aligned} & 1429 \\ & 4010 \\ & 1449 \end{aligned}$	20	-6.28	$\begin{aligned} & 0.972 \\ & 0.690 \\ & 0.676 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 1.73 \\ & 3.35 \end{aligned}$

TABLE 2

Time interval one day			
Share Number	Average correlations for the Year		
	1959	1964	1968
1	-0.50×10^{-2}	-0.50×10^{-3}	-0.86×10^{-3}
2	0.85×10^{-2}	-0.57×10^{-2}	-0.41×10^{-2}
3	0.40×10^{-2}	-0.59×10^{-2}	-0.36×10^{-3}
4	-0.84×10^{-3}	-0.33×10^{-2}	-0.16×10^{-2}
5	-0.45×10^{-2}	-0.33×10^{-2}	-0.22×10^{-2}
6	0.29×10^{-2}	-0.70×10^{-2}	-0.34×10^{-2}
7	-0.18×10^{-2}	-0.12×10^{-2}	-0.35×10^{-3}
8	-0.32×10^{-2}	0.66×10^{-2}	0.83×10^{-3}
9	0.15×10^{-1}	-0.46×10^{-3}	-0.16×10^{-2}

Year 1959	Price changes number of days	x^{3}	Degree of freedom	Level of Significance	
Share Number				5\%	1\%
1	170	17.19	4	0.711	0.297
2	158	16.63	5	1.15	0.554
3	215	16.41	7	2.17	1.24
4	210	23.16	7	2.17	1.24
5	171	14.21	5	1.15	0.554
6	105	4.61	2	0.103	0.0201
7	192	22.55	5	1.15	0.554
8	86	19.60	1	0.0039	0.002
9	42	8.74	3	0.352	0.115

TABLE 4

I.C.I. Share"	Price changes number of days	x^{2}		Degree of freedom	Level of Significance	
				5%	1%	
1960	226	2.92	7	2.12	1.24	
61	219	2.82	5	1.15	0.554	
62	242	10.17	7	2.12	1.24	
63	199	11.93	5	1.15	0.554	
64	220	11.11	6	1.64	0.872	
65	228	12.73	7	2.12	1.24	
66	195	14.54	6	1.64	0.872	
67	208	21.16	7	2.12	1.24	
68	237	24.28	8	2.73	1.65	
$59-68$	2189	11.42	9	3.33	2.09	

TABLE 5

T denotes 'Number of Transactions"

Year 1959	Share Statistics						\% Maximum
Share No.	Rises	Falls	No change	$\begin{gathered} \text { \% } \\ \mathrm{Falls} \end{gathered}$	\% Rises	T	Profit Achieved
1	103	87	116	1	7	9	90.12
2	95	75	136	1	10	3	23.33
3	110	110	86	2	8	4	36.48
4	128	88	90	6	1	5	62.85
5	89	92	125	8	9	5	45.44
6	71	22	183	2	8	5	45.62
7	94	107	105	5	5	2	- 2.26
8	55	36	215	2	6	3	15.89
9	35	7	264	1	10	3	24.86

TABLE 6.
T denotes "Number of Transactions"

Year 1960	Share Statistics						\% Maximum	\% Forecasted
Share No	Rises	Falls	No change	$\begin{aligned} & \% \\ & \text { Falls } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { Rises } \end{aligned}$	T	Profit Achieved	profit achieved from previous year
1	101	107	97	1	1	6	7.42	1.52
2	94	102	109	5	9	3	10.96	1.83
3	111	123	71	1	2	8	17.86	8.44
4	127	120	58	1	4	3	11.57	1.16
5	83	98	124	3	1	12	18.96	10.03
6	63	63	179	2	2	6	10.97	-0.34
7	99	123	83	5	2	6	20.87	-10.63
8	4	41	220	1	10	3	12.71	6.92
9	14	15	276	4	6	3	14.79	11.54

TABLE 7.

T denotes "Number of Transactions"

Year 1961	Share Statistics						\% Maximum Profit	\% Forecas ted profit
Share No,	Rises	Falls	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$	$\begin{gathered} \% \\ \text { Rises } \end{gathered}$	T		achieved frou: previous year
1	114	102	87	2	10	5	51.74	9.41
2	104	98	101	6	10	5	38.94	37.97
3	109	119	75	10	3	4	15.52	-7.93
4	121	107	75	1	6	5	20.92	10.47
5	102	86	115	5	9	2	10.90	1.52
6	99	85	119	2	8	6	56.78	2.16
7	87	107	109	10	9	5	22.59	-5.51
8	71	52	108	7	3	4	10.07	-0.38
9	31	15	257	5	8	2	10.71	10.71

TABLE 8.

T denotes "Number of Transactions"

Year	Share Statistics						\%	\% Forecastea
Share No	Rises	Falls	No change	\%	\% Rises	T	Profit	achieved from
1	101	111	95	9	4	4	22.14	2.70
2	87	96	124	10	5	5	27.09	-6.23
3	109	119	79	4	4	5	20.44	8.42
4	100	122	85	5	5	2	-16.71	-16.71
5	96	90	121	1	8	5	29.87	22.32
6	69	79	159	7	6	5	33.77	0.18
7	80	105	122	7	1	10	37.35	-20.98
4	44	53	210	2	3	7	28.07	4.78
9	30	24	253	5	3	3	14.73	8.70

T denotes "Number of Transactions"

Year 1963	Share Statistics						\% Maximum Profit	\% Forecas ted. profit
Share No,	Rises	Falls	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$		T		achieved froru previous year
1	80	105	122	3	2	7	14.77	8.73
2	86	106	115	2	7	6	45.38	6.50
3	109	104	94	2	10	5	32.90	11.36
4	115	100	92	3	9	6	46.05	5.13
5	110	80	117	1	7	7	52.73	29.24
6	46	55	206	10	4	5	27.38	-3.65
7	73	94	140	6	10	4	35.39	3.37
8	50	42	215	4	8	4	27.91	23.27
9	37	9	261	5	9	2	13.58	3.70

TABLE 10.

T denotes "Number of Transactions"

ar	Share Statistics						\%	\% Forecasted
Share No	Rises	Falls	No change	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$	\% Rises	T	Profit	achieved from
1	88	106	112	2	4	6	26.13	14.87
2	89	113	104	6	3	7	22.76	-14.50
3	99	121	86	9	2	4	11.70	-12.26
4	89	123	94	9	2	6	12.77	-24.05
5	85	107	114	1	2	8	13.86	- 5.24
6	70	73	163	5	5	7	36.67	7.28
7	95	96	115	2	8	4	33.48	11.30
8	50	56	200	7	2	4	11.62	-2.31
9	39	40	227	4	10	4	30.61	9.24

TABLE 11.

T denotes "Number of ${ }^{\text {Iransactions" }}$

Year 1965	Share Statistics						\% Maximum Profit	\% Forecas'ted profit
Share No,	Rises	Falls	No change	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Rises } \end{gathered}$	T		achieved from previous year
1	93	86	129	1	5	6	30.79	26.01
2	90	98	120	7	3	5	18.43	17.01
3	104	100	104	1	3	8	16.91	10.09
4	97	92	119	3	5	4	15.24	2.47
5	100	106	102	9	7	5	32.34	22.15
6	81	61	166	1	7	7	38.95	9.05
7	93	96	119	5	10	5	42.46	9.20
8	60	49	199	2	4	5	18.58	5.46
9	55	43	210	5	10	2	11.76	11.76

TABLE 12.

T denotes "Number of Transactions"

Year	Share Statistics						\%	\% Forecasted
Share No	Rises	Falls	No change	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$	$\begin{gathered} \% \\ \text { Rises } \end{gathered}$	T	Profit	achieved from
1	80	94	128	10	2	3	4.81	2.79
2	85	114	103	10	1	3	-20.31	-28.87
3	93	106	103	4	2	12	93.98	-14.68
4	97	99	106	4	1	8	11.96	-10.20
5	104	89	109	1	4	3	25.46	9.17
6	81	81	104	7	6	5	30.05	4.57
7	115	103	84	1	8	8	89.57	10.05
9	25	31	246	10	2	4	7.53	-17.28

TABLE 13

T denotes "Number of Transuctions"

Year ${ }_{1967}$	Share Statistics						\% Maximum Profit	\% Forecasted. profit
Share No	Rises	Falls	$\begin{aligned} & \text { No } \\ & \text { change } \end{aligned}$	$\begin{aligned} & \% \\ & \text { Falls } \end{aligned}$	$\begin{gathered} \% \\ \text { Rises } \end{gathered}$	T		achieved from previous year
1	108	94	105	1	5	6	33.06	4.76
2	93	91	123	1	5	10	56.91	34.12
3	123	98	86	1	10	6	48.83	8.32
4	108	105	94	2	9	6	37.86	3.53
5	99	101	107	1	5	7	33.74	23.70
6	92	87	128	1	4	8	23.61	. 6.37
7	108	110	89	10	9	5	35.30	24.15
8	68	43	196	5	8	5	33.35	5.16
9	33	32	242	2	2	8	23.24	2.99

TABLT 14.

T denotes "Number of Transactions"

Year	Share Statistics						\%	\% Forecasted
Share No	Rises	Falls	No change	$\begin{gathered} \% \\ \text { Falls } \end{gathered}$	\% Rises	T	Profit	achieved from
1	103	112	89	5	10	4	36.51	30.43
2	102	111	91	4	10	6	49.19	37.06
3	127	113	64	1	4	13	69.82	50.54
4	126	106	72	1	8	4	30.54	12.62
5	102	94	108	9	7	4	22.16	3.62
6	106	90	108	5	10	2	11.30	4.47
7	108	104	92	2	3	7	30.26	9.50
8	82	65	157	6	9	6	66.30	12.50
9	53	53	198	1	9	5	28.79	5.52

TABLE 15.

Year 1959	\%		Perce	age Inv	ted	
Share No.	of return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.17	10.92	15.84	11.86	9.80	8.34
2	0.13	0	0	0.91	3.90	3.98
3	0.17	5.84	13.08	13.51	12.24	11.13
4	0.23	21.16	2.69	1.17	0.60	0.35
5	0.05	0	0	0	2.93	5.32
6	0.17	4.18	7.71	5.80	5.17	4.61
7	0.004	0	0	0	0	2.62
8	0.12	0	5.64	19.55	23.55	25.35
9	0.17	57.90	55.05	47.20	41.78	38.29
\% Expected rate of return per day		1.183	0.17	0.163	0.155	0.147

TABLE 16

Year 1960	\% Mean rate of return	Percentage Invested				
Share No.		$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.01		0	4.10	4.82	4.93
2	0.01		0	0.13	1.41	2.05
3	0.03		0.51	3.64	3.96	4.03
4	0.08	100	26.53	14.83	9.37	5.87
5	-0.06		0	0	4.35	8.90
6	0.004		0	0	3.87	5.63
7	-0.02		0	1.47	3.35	4.20
8	0.04		47.44	45.56	40.44	37.11
9	0.03		25.52	30.27	28.73	27.25
\% Expected return	$\begin{aligned} & \text { ate of } \\ & \text { day } \end{aligned}$	0.077	0.054	0.038	0.028	0.022
\% Actual turn per d previous y	$\begin{aligned} & \text { te of re- } \\ & \text { from } \\ & r \text { r. } \end{aligned}$	0.037	0.027	0.028	0.026	0.023
\% Annual rat	隹 return	$11 \cdot 21$	$8 \cdot 12$	8.48	$7 \cdot 88$	6.97

Year 1961			Perce	tage Inve	ted	
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.13	0.98	20.15	10.03	5.06	2.57
2	0.05	0	0	6.33	6.27	6.24
3	-0.03	0	0	0	0	0
4	0.05	0	4.93	21.12	21.04	21.01
5	0.08	0	10.75	17.90	17.18	16.82
6	0.14	0	19.94	9.39	4.74	2.42
7	-0.05	0	0	1.05	10.52	15.25
8	0.02	0	0	4.28	12.19	16.14
9	0.17	99.02	44.23	29.89	22.99	19.54
\% Expected rate of return per day		0.173	0.14	0.105	0.074	0.058
\% Actual. . rate of return per day from previous year. $\%$ Annual rate of return		0.050	0.066	0.072	0.075	$\begin{array}{r}0.076 \\ \hline 23.10\end{array}$
		(15.20	20.06	21.89	22.80	$23 \cdot 10$

Year 1962	\% Mean rate		Percent	e Invest		
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	-0.004		0	0.64	2.20	2.67
2	-0.05		0	0	0	0
3	. 02		0	6.68	4.61	2.79
4	-0.05		0	0.01	12.61	19.44
5	0.07		43.57	36.10	27.76	22.92
6	-0.004		0	0	0	0
7	-0.10		0	0	0	2.14
8	0.03		12.81	22.95	24.17	24.22
9	0.10	100	43.62	33.62	28.37	25.81
\% Expected rate of return		0.100	0.07	0.063	0.046	0.034
\% Actual rate of return per day from previous. year.		0.099	0.041	0.028	0.024	0.007
\% Annual rate of return		$30 \cdot 10$	12.46	8.51	$7 \cdot 30$	$2 \cdot 13$

- :

Year 1963	\% Mean rate of return	Percentage Invested				
Share No.		$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	-0.004		0	0	0	2.19
2	0.09			4.52	4.06	2.91
3	0.08			0	1.31	3.64
4	0.08			7.04	10.93	11.84
5	0.15	100	47.84	28.17	19.56	14.18
6	-0.03			0	0	0
7	0.06			3.15	4.56	5.08
8	0.05			13.68	22.53	26.61
9	0.12		52.16	43.43	37.06	33.54
\% Expected r turn per	e of re-	0.147	0.130	0.171	0.100	0.092
\%. Actual turn per d vious year	te of re-from pre-	0.120	0.124	0.110	0.100	0.090
\% Annual ra	of return	$\begin{aligned} & 36.60 \\ & \text { TABLE } \end{aligned}$	37.82	$33 \cdot 55$	$30 \cdot 50$	27.45

Year 1964	\% Mean rate		Percent	e Invest		
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.03		21.32	17.73	16.12	14.08
2	-0.04		0	0	0	0
3	-0.04		0	0	0.85	3.35
4	-0.08		0	0	0.07	3.15
5	-0.01		13.50	23.71	26.46	26.71
6	0.02		7.06	6.16	5.47	4.48
7	0.10	86.32	29.40	17.34	13.01	10.32
8	-0.02		0	14.51	20.54	22.67
9	0.06	13.68	28.72	20.55	17.47	15.23
\% Expected rate of return per day \qquad		0.09	0.05	0.03	0.02	0.01
\% Actuaz rate of return per day from previou year.		-0.01	0.03	0.016	0.009	0.007
$\%$ Annual rate of return		-3.06	9.18	$4 \cdot 90$	2.75	2.14

TABLE 27

Year 1965	\% Mean	Percentage Invested				
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.06		19.98	18.30	16.25	14.91
2	0.02		0	0	0	0
3	0.004		0	0	0.27	2.60
4	0.03		0	2.01	4.75 -	5.43
5	-0.01		0	1.72	4.94	6.28
6	0.07		25.00	19.27	16.84	15.51
7	0.07		6.76	7.16	6.35	5.73
8	0.03		24.48	38.54	41.45	42.36
9	0.07	100	23.79	12.99.	9.14	- 7.16
\% Expected rate of return per Jay		0.165	0.085	0.065	0.056	0.051
\% Actual rate of return per day from previous year.		0.08	0.086	0.064	0.056	0.050
\% Annual Rate of Return ${ }^{24 \cdot 32}$			22^{2614}	19.46	17.02	15.20

Year 1966	\% Mean rate		Percent	ge Inves		
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	-0.03		4.08	23.42	26.32	26.96
2	-0.10		0	0	-	1.68
3	-0.03		4.20	3.41	3.04	2.80
4	-0.04		0	0	3.43	5.72
5	0.05		51.20	30.93	21.90	17.19
6	0.02		14.22	12.45	9.91	8.16
7	0.16	100	26.29	11.97	6.90	4.25
8	-0.06		0	8.75	14.34	16.80
9	-0.06		0	9.06	14.13	16.42
\% Expected rate of return - per day \qquad		0.161	0.07	0.017	-0.004	-0.016
\% Actual : rate of return per day from previou year.		-0.06	-0.002	70.02	-0.019	-0.022
\% Annual rate of return		-18.35	-0.61	-0.61	-0.59	-0.67

TABLE 23.

Year 1967		Percentage Invested				
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.10	25.31	29.79	16.55	12.43	10.56
2	0.08	0	5.02	6.15	6.39	6.55
3	0.11	74.67	22.21	10.01	6.82	4.28
4	0.07		4.67	5.40	5.39 -	4.52
5	0.07		22.46	20.04	18.95	17.52
6	0.04		0.09	14.07	18.89	20.95
7	-0.01		0	0	0	3.50
8	0.04		9.88	16.96	19.03	19.72
9	0.04		5.89	10.22	12.10	12.90
\% Expected rate of return per day		0.108	0.08	0.069	0.063	0.058
\% Actual rate of return per day from previous year.		-0.10	0.05	0.059	0.062	0.064
$\%$ Annual rate of return		$\begin{array}{r}-30.7 \\ \hline \text { TABLE }\end{array}$	$24^{15 \cdot 3}$	18.1	19.0	19.6

Year 1968	\% Mean rate		Percent	e Inves		
Share No.	return	$\alpha=1$	$\alpha=10$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.06	0.	0.91	8.11	9.15	9.68
2	0.08	0	0	0	0	0
3	0.11	0	19.80	13.53	9.55	7.56
4	0.11	0	10.75	9.05	7.95	7.39
5	0.004	0	0	12.12	24.31	30.40
6	0.14	27.56	24.24	14.50	9.75	7.37
7	0.04	0	0	5.67	7.28	8.09
8	0.15	72.44	36.30	26.71	21.95	19.57
9	0.07	0	8.00	10.30	10.05	9.93
\% Expected rate of return per day		0.147	0.13	0.100	0.082	0.073
\% Actual rate of return per day from previous year.		0.10	0.71	0.085	0.09	0.091
\% Annual rate of return		$30 \cdot 5$	21.6	26.0	$27 \cdot 4$	$27 \cdot 8$

Year 1959-67	Mean rate of	Percentage Invested			
		$\alpha=25$	$\alpha=50$	$\alpha=100$	
Share No.		0	5.01	4.29	3.91
1	0.00	0	0	1.24	1.93
2	0.02	0	4.68	4.38	4.21
3	0.01	0	0.24	0.75	1.00
4	0.02	0	24.06	23.49	23.21
5	0.06	78.85	22.40	20.17	19.04
6	0.01	0	12.88	13.77	14.13
7	-0.00	0	12.64	14.59	15.57
8	0.04	21.15	18.09	17.37	17.00
9					
\% Expected rate of		0.06	0.03	0.03	0.03

TABLE 26.

Year 1968	Mean rate		Percenta	Invested	
Share No.	return	$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	0.06	0	8.11	9.15	9.68
2	0.08	0	0	0	0
3	0.11	0	13.53	9.55	7.56
4	0.11	0	9.05	7.95	7.39
5	0.004	0	12.12	24.31	30.40
6	0.14	27.56	14.50	9.75	7.37
7	0.04	0	5.67	7.78	8.09
8	0.15	72.44	26.71	21.95	19.57
9	0.07	0	10.30	10.05	9.93
\% Expected rate of return per day		0.15	0.10	0.08	0.07
\% Actual rate of return per day from previous years		0.13	0.08	0.08	0.08
\% Annual rate of return		$39 \cdot 7$	$24 \cdot 4$	$24 \cdot 4$	24.4

Year 1959-67	\% Mean rate		Percenta	Invest	
Share No.	return	$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	2.97	0	0	0	0
2	1.39	0	0	0	0
3	1.37	0	26.36	27.30	27.78
4	3.12	0	0	0	0
5	1.85	0	16.54	17.11	17.40
6	5.27	86.16	17.08	13.89	12.30
7	0.52	0	19.44	20.40	20.87
8	1.63	0	5.10	7.10	8.10
9	3.76	13.84	15.48	7.4.19	13.55
\% Expected rate of return per quarter		5.06	2.33	2.17	2.09

TABLE 28.

Year 1968-70	\% Mean rate of return	Percentage			
Share No.	$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$	
1	0.66	0	13.92	14.17	14.30
2	1.25	39.59	16.13	14.70	13.98
3	-0.23	0	0	0	0
4	-0.24	0	0	0	0
5	0.02	0	10.13	10.73	11.03
6	0.60	0	0	0	0
7	1.03	19.03	20.62	19.61	19.10
8	0.20	0	0	0	0
9	1.38	41.38	17.33	16.78	16.51
10	-0.19	0	21.87	24.01	25.08

TABLE 30.

Year 1968-70	\% Mean rate of return	Percentage Invested			
Share No.		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	-0.35	0	0	0	0
2	3.24	0	0	0	38.75
3	2.70	0	0	0	0
4	-0.31	0	0	0	0
5	4.32	0	0	0	0
6	-2.46	0	0	44.47	0
7	1.09	0	0	0	0
8	-0.43	0	0	0	0
9	5.62	0	0	0	0
10	1.36	0	0	0	0
11	2.14	0	0	0	0
12	-6.73	0	0	0	0
13	0.73	0	0	14.68	0
14	-2.07	0	0	0	0
15	-0.67	0	0	0	0
16	-1.18	0	0	0	0
17	6.97	0	0	0	0
18	5.40	0	0	0	0
19	-0.73	0	0	36.07	0
20	0.56	0	0	0	0
21	2.85	0	10.50	0	0
22	5.22	0	0	0	0
23	8.22	0	0	0	0
24	4.01	0	0	0	0
25	-0.48	0	0	0	44.25
26	-1.38	0	0	0	0
27	0.83	0	0	0	0
28	-1.09	0	0	0	0
29	3.08	0	0	4.70	0
30	-4.38	0	0	0	0
31	0.39	0	0	0	0
32	0.92	0	0	0	0

TABLE 31 (contd)

Year 1968-70	\% Mean rate of return	Percentage Invested			
Share No.		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
33	3.25	0	0	0	0
34	-0.15	0	0	0	0
35	1.54	0	11.60	0	0
36	3.39	0	0	0	16.97
37	2.87	21.15	34.68	0	0
38	0.35	0.	0	0	0
39	-2.61	0	0	0	0
40	-2.07	0	0	0	0
41	2.13	0	43.22	0	0
42	-0.51	0	0	0	0
43	1.82	0	0	0	0
44	3.09	0	0	0	0
45	-1.46	0	0	0	0
46	4.67	78.85	0	0	0
47	-1.22	0	0	0	0
48	-2.62	0	0	0	0
49	-3.21	0	0	0	0
50	-4.60	0	0	0	0

Year 1971	\% Mean rate of return	Percentage Invested			
Share No.		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	1.91	0	0	0	0
2	9.97	0	0	0	38.75
3	-1.61	0	0	0	0
4	6.74	0	0	0	0
5	1.40	0	0	0	0
6	0.26	0	0	44.47	0
7	4.45	0	0	0	0
8	5.03	0	0	0	0
9	2.77	0	0	0	0
10	1.47	0	0	0	0
11	5.79	0	0	0	0
12	0.01	0	0	0	0
13	-1.12	0	0	14.68	0
14	0.71	0	0	0	0
15	4.31	0	0	0	0
16	-0.004	0	0	0	0
17	2.04	0	0	0	0
18	2.69	0	0	0	0
19	3.25	0	0	36.07	0
20	4.03	0	0	0	0
21	6.07	0	10.50	0	0
22	7.98	0	0	0	0
23	2.72	0	0	0	0
24	2.42	0	0	0	0
25	11.33	0	0	0	44.25
26	2.71	0	0	0	0
27	4.77	0	0	0	0
28	-3.84	0	0	0	0
29	4.27	0	0	4.70	0
30	2.53	0	0	0	0
31	1.09	0	0	0	0
32	-0.20	0	0	0	0
33	4.55	0	0	0	0

Year 1968-70	\% Mean rate of return	Percentage					$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
Share No.	Invested									
1	0.66	0	9.98	9.87	9.82					
2	1.25	37.94	15.61	14.17	13.45					
3	-0.23	0	0.51	0.66	0.73					
4	-0.24	0	3.80	4.64	5.06					
5	0.02	0	8.28	9.00	9.36					
6	0.60	0	11.03	11.02	11.01					
7	1.03	18.70	18.83	17.71	17.15					
8	0.20	0	7.79	8.41	8.72					
9	1.38	43.36	13.46	12.05	11.34					
10	-0.19	0	10.71	12.48	13.45					

TABLE 34

Year 1971	\% Mean rate		Percenta	nvested	
Share No.	return	$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	2.91	0	9.98	5.61	5.33
2	5.4.4	37.94	15.61	9.36	7.65
3	5.22	0	0.51	3.27	2.61
4	2.03	0	3.80	8.52	8.60
5	-0.10	0	8.28	8.72	11.33
6	2.38	0	11.03	2.45	2.36
7	2.05	18.70	18.83	7.96	8.02
8	1.58	0	7.79	4.91	5.22
9	0.04	43.36	13.46	10.75	13.47
10	3.43	0	10.71	38.52	35.41
$\%$ ictual rate of return per month.		2.46	2.38	2.37	2.37
Annual rate of return		29.52	$28 \cdot 56$	28.44	28.44

Year 1968-70	Mean rate of. return \%	Percentage Invested			
		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
1	-0.35	0	1.08	3.25	3.88
2	3.24	0	3.84	3.49	2.78
3	2.70	0	9.67.	7.87	6.49
4	-0.31	0	0	0.88	1.54
5	4.32	0	1.56	1.22	0.92
6	-2.46	0	0	0	0.27
7	1.09	0	0.82	1.37	1.42
8	-0.43	0	0	0.69	1.32
9	5.62	0	3.12	2.20	1.56
10	2.36	0	1.26	1.71	1.68
11	2.14	0	4.28	4.58	4.13
12	-6.73	0	0	0	0.41
13	0.73	0	0.22	1.11	I. 29
14	-2.07	0	0	0	1.07
15	-0.67	0	0	0.05	0.32
16	-1. 18	0	0	0	0.21
27	6.97	22.01	6.21	4.06	2.76
18	5.40	0	4.86	3.41	2.45
19	-0.73	0	0.72	1.46	1.69
20	0.56	0	0.29	1.38	1.63
21	2.85	0	1.78	1.80	1.54
22	5.22	0.	11.14	7.74	5.62
23	8.22	77.99	12.16	7.62	5.05
24	4.01	0	2.30	1.74	1.33
25	-0.48	0	3.17	6.14	7.02
26	-1.38	0	0	1.78	2.78
27	0.83	0	0.52	0.96	1.02
28	-1.09	0	0	0.08	0.27
29	3.08	0	1.25	0.98	0.79
30	-4.38	0	0	0	0
31	0.39	0	0	0.51	0.78
32	0.92	0	2.47	3.53	3.59

TABIE 35 (contd)

Year 1968-70	```Mean rate```	Percentage Invested			
		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
33	3.25	0	2.99	2.51	2.03
34	-0.15	0	0.65	1.58	1.84
35	1.54	0	2.90	2.32	1.98
36	3.39	0	0	0	0.44
37	2.87	0	2.30	1.77	1.43
38	0.35	0	0	0.43	0.64
39	-2.61	0	0	0	0.31
40	-2.07	0	0	0	1.04
41	2.13	0	1.08	1.44	1.35
42	-0.51	0	0	0.19	0.63
43	1.89	0	4.83	4.88	4.40
44	3.09	0	6.74	5.37	4.34
4.5	-1.46	0	0	0.92	1.63
46	4.67	0	5.85	4.34	3.22
47	-1.22	0	0	2.62	5.25
48	-2.62	0	0	0	1.33
49	-3.21	0	0	0	0.07
50	-4.60	0	0	0	0.34

TABLE 36

Year 1971	\% Mean rate of. return	Percentage Invested			
Share No.		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=1.00$
I	1.91	0	1.08	3.25	3.88
2	9.97	0	3.84	3.49	2.78
3	-1.61	0	9.67	7.87	6.49
4	6.74	0	0	0.88	1.54
5	1.40	0	'1. 56	1.22	0.92
6	0.26	0	0	0	0.27
7	4.45	0	0.82	1.37	1.42
8	5.03	0	0	0.69	1.32
9	2.77	0	3.12	2.20	1. 56
10	1.47	0	1.26	1.71	1.68
11	5.79	0	4.28	4.58	4.13
$\underline{12}$	0.01	0	0	0	0.47
13	-1.12	0	0.22	1.11	1.29
14.	0.71	0	0	0	1.07
15	4.31	0	0	0.05	0.32
16	-0.004	0	0	0	0.21
17	2.04	22.01	6.21	4.06	2.76
18	2.69	0	4.86	3.41	2.45
19	3.25	0	0.72	1.46	1.69
20	4.03	0	0.29	1.38	1.63
21	6.07	0	1.78	1.80	1.54
22	7.98	0	11.14	7.74	5.62
23	2.72	77.99	12.16	7.62	5.05
24	2.42	0	2.30	1.74	1.33
25	11.33	0	3.11	6.14	7.02
26	2.71	0	0	1.78	2.78
27	4.77	0	0.52	0.96	1.02
28	-3.84	0	0	0.08	0.27
29	4.27	0	1.25	0.98	0.79
30	2.53	0	0	0	0
31	1.09	0	0	0.51	0.78
32	-0.20	0	2.4 .7	3.53	3.59

Year 1971	\% Mean rate of return	Percentage Invested			
Share No.		$\alpha=1$	$\alpha=25$	$\alpha=50$	$\alpha=100$
33	4.55	0	2.99	2.51	2.03
34	5.78	0	0.65	1.58	1.84
35	1.29	0	2.90	2.32	1.98
36	6.03	0	0	0	0.44
37	1.62	0	2.30	1.77	1.43
38	1.01	0	0	0.43	0.64
39	3.73	0	0	0	0.31
40	-1.86	0	0	0	1.04
41	4.22	0	1.08	1.44	1.35
42	3.41	0	0	0.19	0.63
43	-2.02	0	4.83	4.88	4.40
44	0.40	0	6.74	5.37	4.34
45	-8.01	0	0	0.92	1.63
46	5.41	0	5.85	4.34	3.22
47	3.12	0	0	2.62	5.25
48	3.87	0	0	0	1.33
49	9.94	0	0	0	0.07
50	2.78	0	0	0	0.34

Confidence Limit 95\%

Share Number	Regression Constants		Correlation Coefficients r \qquad
	${ }^{\text {i }}$	b_{i}	
1	0.0063	0.6199	0.711
2	0.0422	0.6165	-0.110
3	0.0301	0.1983	-0.151
4	-0.0229	0.5079	0.608
5	0.0649	1.3674	-0.269
6	-0.0191	0.3410	0.720
7	0.0233	0.7820	0.840
8	-0.0030	0.0764	-0.027
9	0.0777	1.3536	-0.029
10	0.0324	1.1834	0.850
11	0.0270	0.3534	0.129
12	-0.0510	1.0267	0.893
13	0.0202	0.8111	0.820
14	-0.0032	1.1006	0.955
15	-0.0023	$0.278{ }_{4}$	0.826
16	0.0079	1.2385	0.824
17	0.0870	1.0925	-0.466
18	0.0678	0.8673	-0.425
19	0.0053	0.7903	0.854
20	-0.0358	0.1192	0.523
21	0.0511	1.4233	0.683
22	0.0674	0.9294	-0.156
23	0.0971	1.2006	-0.570
24	0.0597	1.2347	0.194
25	-0.0023	0.1574	0.184
26	-0.0072	0.4130	0.787
27	0.0227	0.9069	0.187
28	-0.0168	-0.3714	0.679
29	0.0551	1.5333	0.765
30	-0.0085	2.2147	0.811
31	0.0231	1.0809	0.878
32	0.0089	-0.0189	0.260

TABLE 37 (contd)

Share Number	Regression Constants		Correlation Coefficients 5
	a_{i}	b_{i}	
33	0.0556	1.4551	0.706
34	-0.0012	0.0173	0.482
35	0.0281	0.8037	0.633
36	-0.0339	-0.0116	0.653
37	0.0420	-0.0002	-0.462
38	0.0252	1.3672	0.855
39	-0.0033	1.4377	0.933
40	-0.0077	0.8193	0.901
4.1	0.0378	1.0396	0.328 '
42	0.0148	1.2507	0.895
43	0.0292	0.6497	0.607
44	0.0389	0.5007	-0.164
45	-0.0010	0.8540	0.930
46	0.0509	0.6124	-0.129
47	-0.0073	0.3122	0.707
48	-0.0118	0.9041	0.960
49	0.0478	1.4304	0.642
50	-0.0463	0.0447	0.576

TABLE 38

Share Number	Number of times in thousand simulations using stream X.		Percentage Invested	\% Mean rate of return for the year 1971	Weighted rate of return
	Best	Worst			
5	18	0	2.16	1.40	3.02
29	47	0	5.63	4.27	24.04
30	193	0	23.12	2.53	58.49
49	232	0	27.79	9.94	276.23
50	510	324	41.30	2.78	114.81
\% Actual rate of return per quarter					4.77
\% Annual rate of					15.08

TABLE 39

TABLE 40

Rank Number	Share Number	\% Mean rate of return	Share Number	Variance (10^{-4})
1	23	8.22	33	21
2	17	6.97	22	26
3	9	5.62	23	30
4	18	5.40	21	36
5	22	5.22	47	36
6	46	4.67	40	48
7	5	4.32	14	48
8	24	4.01	48	50
9	33	3.25	25	50
10	2	3.24	1	51
11	44	3.09	43	52
12	29	3.08	3	73
13	37	2.87	10	73
14	21	2.85	11	74
15	3	2.70	26	88
16	11	2.14	44	91
17	41	2.13	2	92
18	43	1.89	32	96
19	35	1.54	45	96
20	10	1.36	46	106
21	7	1.09	17	111
22	32	0.92	42	119
23	27	0.83	41	122
24	13	0.73	18	144
25	20	0.56	9	145
26	31	0.39	39	148
27	38	0.35	13	148
28	34	-0.15	8	156
29	4	-0.31	31	158
30	1	-0.35	20	166
31	8	-0.43	38	166

TABLE 40 (contd)

Rank Number	Share Number	\% Mean rate of return	Share Number	Variance $\left(10^{-4}\right)$
32	25	-0.48	7	166
33	42	-0.51	12	167
34	15	-0.67	19	167
35	19	-0.73	34	181
36	28	-1.09	50	193
37	16	-1.18	4	198
38	47	-1.22	6	203
39	26	-1.38	16	223
40	45	-1.46	27	233
41	14	-2.07	24	237
42	40	-2.07	35	253
43	6	-2.46	5	284
44	39	-2.61	49	318
45	48	-2.62	30	332
46	49	-3.21	37	381
47	36	-3.39	36	385
48	28	-4.38	15	449
49	50	-4.60	29	461
50	12	-6.73	28	672

TABLE 41

Rules	Share No.	\% Actual rate of return obtained on the basis of predictions from the previous years.
3.1.1.1 (a)	23	2.72
(b)	20	4.03
(c)	33	4.55
(d)	9	2.77
3.1.1.2 (a)	1 to 50	2.74

TABLE 42

Rule 3.1.1.2(b)	Share No.	\% Mean Rate of return 1971	Weighted mean rate of return
Rank No.	23	2.72	90.66
2	17	2.04	67.99
3	9	2.77	92.33
\% Actual rate of return obtained on the basis of predictions from the previous years		3.43	
\% Annual rate of return			

TABLE 43
Rule 3.1.1.2(c)

TABLE 44

Rule 3.1.1.2 (d)

Rank Number	Share Number	Proportion Invested	\% Mean rate of return 1971	Weighted rate of return
1	33	2.0296	5.55	9.23
2	22	2.0286	7.98	16.19
3	23	2.0278	2.72	5.52
4	21	2.0265	6.07	12.30
5	47	2.0265	3.12	6.32
6	40	2.0241	-1.86	-3.76
7	14	2.0241	0.71	1.44
8	48	2.0237	3.87	7.83
9	25	2.0237	11.33	22.93
10	1	2.0235	1.91	3.86
11	43	2.0233	-2.02	-4.09
12	3	2.0190	-1.61	-3.25
13	10	2.0190	1.47	2.97
14	11	2.0188	0.01	0.02
15	26	2.0160	2.71	5.46
16	44	2.0153	0.40	0.81
17	2	2.0151	9.97	20.09
18	32	2.0143	-0.20	- 0.40
19	45	2.0143	-8.01	-16.13
20	46	2.0123	5.41	10.87
21	17	2.0113	2.04	4.10
22	42	2.0100	3.41	6.85
23	41	2.0090	4.22	8.48
24	18	2.0046	2.68	5.37
25	9	2.0043	2.77	5.55
26	39	2.0038	3.73	7.47
27	13	2.0038	-1.12	-2.24
28	8	2.0027	5.03	10.07
29	31	2.0017	1.09	2.18
30	20	2.0001	4.03	8.06
31	38	2.0001	1.01	2.02

TABLE 44 (contd)

Rank Number	Share Number	Proportion Invested	\% Mean rate of return 1971	Weighted rate of return
32	7	2.0001	4.45	8.90
33	12	1.9999	0.01	0.02
34	19	1.9999	3.25	6.50
35	34	1.9970	5.78	11.54
36	50	1.9946	2.78	5.54
37	4	1.9936	6.74	13.44
38	6	1.9926	0.26	0.52
39	16	1.9885	-0.004	- 0.01
40	27	1.9865	4.77	9.48
41	24	1.9857	2.42	4.81
42	35	1.9824	1.40	2.56
43	5	1.9761	9.94	19.57
44	49	1.9691	2.53	4.97
45	30	1.9663	1.62	3.17
46	37	1.9564	6.03	11.79
47	36	1.9555	4.31	8.02
48	15	1.9425	3.87	7.51
49	29	1.9401	4.27	8.28
50	28	1.8972	-3.84	-7.29
\% Actual rate of return obtained on the basis of predictors from the previous years				2.72
\% Annual rate of return				10.88

Rule 3.4.2(e)

Rank Number	Share Number	$\frac{\bar{x}}{\sigma}$	Proportion Invested	\% Mean rate of return	Weighted rate of return
1	23	1.50	16.91	2.72	46.00
2	22	1.02	11.50	7.98	91.71
3	33	0.71	8.00	4.55	36.40
4	17	0.66	7.44	2.04	15.18
5	21	0.48	5.41	6.07	32.84
6	9	0.47	5.30	2.77	14.68
7	18	0.45	5.07	2.69	13.64
8	46	0.45	5.07	5.41	27.43
9	2	0.34	3.83	9.97	38.19
10	4	0.32	3.61	0.40	1.44
11	3	0.32	3.61	-1.61	- 5.81
12	5	0.26	2.93	1.40	4.10
13	24	0.26	2.93	2.42	7.09
14	43	0.26	2.93	-2.02	- 5.92
15	11	0.25	2.82	5.79	16.33
16	41	0.19	2.14	4.22	10.17
17	10	0.16	1.80	1.47	2.65
18	37	0.15	1.69	1.62	2.74
19	29	0.14	1.59	4.27	6.79
20	35	0.10	1.13	1.29	1.46
21	32	0.09	1.01	- . 20	-2.02
22	7	0.08	0.90	4.45	4.01
23	13	0.06	0.68	-1.12	-0.76
24	27	0.05	0.56	4.77	2.67
25	20	0.04	0.45	4.03	1.83
26	31	0.03	0.34	1.09	0.37
27	38	0.03	0.34	1.01	0.12
\% Actual rate of return obtained on the basis of prediction from the previous years					3.63
\% Ann	rate	urn			$14 \cdot 52$

Rule: 3.1.1.2
a) Invested equal proportion in all shares $=-0.97$
b) Invested equally in three shares with highest rate of return $=-1.73$

TABLE 47
Rule 3.1.1.2(c)

Share Number	\% Mean rate of return of $1968-70$	Rank Number	Proportion Invested	\% Mean rate of return of I971	Weighted rate of return
1	0.35	5	2.50	1.01	2.53
2	1.89	3	13.52	-2.02	-27.31
3	-1.46	8	0	-8.01	0
4	4.67	2	33.40	-5.93	-198.06
5	-1.22	7.36	4	0	3.12

Rule 3.1.1.2 (d)

Share Number	$\begin{aligned} & \text { Variance } \\ & 1968-70 \end{aligned}$	Rank Number	Proportion Invested	\% Mean rate of return of 1971	Weighted rate of return
1	0.065	8	10.09	1.01	10.19
2	0.017	2	11.87	-2.02	-23.98
3	0.031	4	11.35	-8.01	-90.91
4	0.028	3	11.46	-5.93	-67.96
5	0.009	1	12.17	3.12	37.97
6	0.039	6	11.05	2.77	30.61
7	0.072	9	9.87	-1.32	-13.03
8	0.041	7	10.98	2.69	29.54
9	0.036	5	11.16	-1.09	-12.16
\% Actual rate of return obtained on the basis of prediction from the previous years.					- 1.00
\% Annual rate of return					-4.00

TABLE 49
Rule 3.1.1.2 (e)

Share Number	$\frac{\bar{x}}{\sigma}$	Rank Number	Proportion Invested	\% Mean rate of return	Weighted rate of return
1	1.37	6	1.74	1.01	1.76
2	14.49	3	18.35	-2.02	-37.07
3	-8.29	8	0	-0.01	0
4	27.91	1	35.35	-5.93	-209.63
5	-12.86	9	0	3.12	0
6	6.89	4	8.73	2.77	24.18
7	-6.63	7	0	-1.32	0
8	26.67	2	33.77	2.69	90.84
9	1.63	5	2.06	-1.09	-2.25
\% Actual rate of return obtained on the basis of prediction from the previous years.					-1.32
\% Annual rate of return					-5.32

TABLE 50

Share Number	$\begin{aligned} & \mathrm{P} / \mathrm{E} \\ & \text { Ratio } \end{aligned}$	$\mathrm{V}=1-\frac{1}{\mathrm{P} / \mathrm{E}}$	Growth rate (g) $(1+i g)^{\frac{1}{2}}$	gV	Weighted rate
1	24.3	0.95885	1.2226	1.4372	0.1702
2	16.6	0.93976	1.2392	1.1645	0.1379
3	14.6	0.93151	1.1261	1.0490	0.1242
4	24.4	0.95902	1.3548	1.2993	0.1539
5	15.6	0.93590	1.0774	1.0083	0.1194
6					
7					
8	16.6	0.93976	1.5245	1.4326	0.1696
9	11.5	0.91304	1.1547	1.0543	0.1248
Total				8.4452	1.0000

TABLE 51

Rank Number	Share Number	Growth and Risk	Proportion Invested	\% Mean rate of return 1971	Weighted rate of return
1	1	1.437	17.02	1.01	17.19
2	8	1.433	16.96	2.69	45.62
3	4	1.299	15.39	-5.93	-91. 26
4	2	1.165	13.79	-2.02	-27.86
5	9	1.054	12.48	-1.09	-13.60
6	3	1.049	12.42	-8.01	-99.48
7	5	1.008	11.94	3.12	37.25
8	6			2.77	
9	7			-1.32	
\% Actual rate of return obtained on the basis of predictions from the previous years					-1.32
\% Annual rate of return					-5.32

'ARR' denotes Actual rate of return obtained on the basis of predictions from the previous years.

Ad-Hoc Methods		Values of α	Models			
			\% ARR per quarter			
Rule3.1.1.2	\% ARR per quarter		Markowitz	Sharpe	Monte Carlo	
					Stream	
					X	Y
(a)	2.74	1	4.37	2.50	4.77	5.24
(b)	3.43	25	3.17	3.30		
(c)	3.26	50	1.32	3.39		
(d)	2.72	100	6.04	3.25		
(e)	3.63					

TABLE 53

Values of	Models	
	\% ARR per month	
	Markowitz	Sharpe
1	2.56	2.46
25	2.45	2.38
50	2.43	2.37
100	2.42	2.37

TABLE 54

Programme Number	Name of the Model	Data Used	Mill time Seconds
1	Markowitz's	${ }^{\prime} \mathrm{A}^{\prime}$	45
		'B'	76
		${ }^{\prime} \mathrm{C}{ }^{\prime}$	29
2	Sharpe 's	'B'	35
		${ }^{\prime} \mathrm{C} \cdot$	18
5	Filter	'A'	211
7	Monte Carlo	${ }^{\prime} \mathrm{B}^{\prime}$	350

APPENDIX AI
MARKOWITZ MODEL

Markowitz's model of the portfolio problem as developed in Section 4.1.1 Chapter IV reduces to the problem of optmising the quadratic form

$$
\begin{equation*}
M(\underline{X})=\underline{q}^{\prime} \underline{X}-\frac{\alpha}{2} \underline{X}^{\prime} c \underline{X} \tag{A-1}
\end{equation*}
$$

Subject to the constraints

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=1 \tag{AI-2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and } x_{i} \geqslant 0 \text { for all i } \\
& \alpha>0 \quad i=1,2, \ldots, n
\end{aligned}
$$

In equation (Al-1)
\underline{p} is a ($1 \times n$) column vector (the expected rate of return of the share)
\underline{X} is a $(1 \times n)$ column vector (proportion invested in each share) C is a ($n \times n$) matrix (the covariance matrix of the rate of return of share α is a risk measure (the rate of change of marginal utility)

The dash represents the matrix transpose. The sum of the proportions x_{i} invested in each share must equal unity and only positive amounts can be invested as expressed in (Al-2).
I) Existence of Optimum.

We need to show that a maximum exists at a point \underline{X} say, and to examine what constraints, if any, there are on the form of P and C in equation ($\mathrm{Al}-1$).

Consider a neighbourhood point of the point $X, \underline{X}+\delta \underline{X}$ in equation (Al-1)
$M(\underline{X}+\delta \underline{X})=^{\prime}(\underline{X}+\delta X)-\frac{\alpha}{2}(\underline{X}+\delta \underline{X})^{\prime} C(\underline{X}+\delta \underline{X})$
(A1-1.1)
$=M(\underline{X})+\underline{p}^{\prime} \delta \underline{X}-\frac{\alpha}{2} \underline{X}^{\prime} C \delta \underline{X}-\frac{\alpha}{2}!\delta \underline{X}^{\prime} C \delta \underline{X}$
[since C symmetric]
for a stationary point at \underline{X} the coefficient of $\delta \underline{X}$ must vanish

1) conta.
at X

$$
M(\underline{X}+\delta \underline{X})=M(\underline{X})-\frac{\alpha}{2} \delta \underline{X} \cdot C \underline{X}
$$

Condition for maximum is

$$
M(\underline{X}+\delta \underline{X})<\mathbb{M}(\underline{X}) \text { for a.l1 } \delta \underline{X}
$$

(AI-1.4)
in neighbourhood and hence

$$
\begin{equation*}
\frac{\alpha}{2} \delta \underline{X}^{\prime} C \underline{X}>0 \text { for a.ll } \delta \underline{X} \tag{Al-1.5}
\end{equation*}
$$

A matrix C for which this is true and is called positive definite. [Note that $\alpha>0$].
1.1) Theorem.

Consider the symmetric matrix $C=\theta A^{\prime} A \theta>0$
where A is a $m \times n$ matrix with column rank n. Then if
$m \geqslant n C$ is positive definite otherwise it is positive semidefinite.
We need to show that $A^{\prime} A$ is positive definite
if $m \geqslant n$. We give only a heuristic discussion of the properties of $A^{\prime} A$. A matrix B is said to be positive definite if for all \underline{X} in $R_{n}(\underline{X} \neq 0)$ where R_{n} is the n dimension Euclidian space

$$
\begin{equation*}
\underline{X}^{\prime} B \underline{X}>0 \text { for all } \underline{X} \in R_{n} \tag{Al-1.1.1}
\end{equation*}
$$

case when $B=\theta A^{\prime} A$

$$
\begin{align*}
& \text { Let } p=\underline{\theta X} \underline{X}^{\prime} A^{\prime} A X=\theta(A X)^{\prime}(A X) \\
& \text { Let } \underline{Y}=\theta^{\frac{1}{2}} A \underline{X} \\
& \therefore p=\underline{Y}^{\prime} \underline{Y} \geqslant 0
\end{align*}
$$

The size of \underline{X} in (Al-1.1.2) is $n \times 1$ and the column
vector $A X$ will be $m \times I$ and each element will be a vector of dimension mn with the basis ($x_{1}, x_{3}, \ldots, x_{n}$).

If $m \geqslant n$ it is impossible to choose the $n x_{i}{ }^{\prime}$ s so
that $A X=0$ and hencefrom equation (Al-1.1.4) p > 0 and $A^{\prime} A$ is positive definite.

If $\mathrm{m}<\mathrm{n}$ it is possible to choose at least one

1) contd.
set of x_{i} 's so that $A \underline{X}=0$ and so

$$
p=0 \text { for some } x
$$

$$
\text { (Note } p k \text { for all } x \text {) }
$$

Then
(1) if $m \geqslant n A^{\prime} A$ is positive definite
(2) if $m<n A^{\prime} A$ is positive semi definite.

Example

$$
\begin{gathered}
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right) m=2 m>n \\
m=3 \\
A X=\left(\begin{array}{l}
3 x_{1}+x_{2} \\
x_{1}+x_{3} \\
2 x_{1}+2 x_{2}
\end{array}\right) \quad \text { There exist no vector }\binom{x_{1}}{x_{2}} \neq\binom{ 0}{0}
\end{gathered}
$$

and hence

$$
\begin{aligned}
& \underline{X}^{\prime} A^{\prime} \underline{A X}=\left(3 x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{2}\right)^{3}+\left(2 x_{1}+2 x_{2}\right)^{2}>0 \\
& \therefore A^{\prime} A \text { is positive definite }
\end{aligned}
$$

In this problem m and n are the number of periods and shares respectively. Thus providing we ensure that $m \geqslant n$ the matrix C is positive definite, the maximum exists and is unique.
2) Setting up the equations:

$$
\text { Incorporating the constraint } \sum_{i=1}^{n} x_{i}=1
$$

we can write the equation (Al-1) in the more convenient form

$$
M(\underline{x})=\sum_{i=1}^{n} p_{i} x_{i}-\frac{\alpha}{2} \sum_{i=1}^{n} c_{i i} x_{i}^{3}-\alpha \sum_{\substack{k=1 \\ i \neq j}}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{u}
$$

If we consider a delta variation of equation
(A1-2.1) we obtain
2) contd.

$$
\begin{equation*}
\delta \mathbb{N}(\underline{x})=\sum_{i=1}^{n} p_{i} \delta x_{i}-\frac{\alpha}{2}\left\{\sum_{i=1}^{n} c_{i i} 2 x_{i} \delta x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{N} c_{i j} x_{j} \delta x_{i}\right\} \tag{AI-2.2}
\end{equation*}
$$ $i \neq j$

Consider a delta variation of (Al-2.2) such that

$$
\begin{equation*}
0=\sum_{i=1}^{n} \delta x_{i} \tag{Al-2.3}
\end{equation*}
$$

Equation (Al-2.2) and (Al-2.3) are two equations relating the $\delta \mathrm{x}_{\mathrm{i}}=12, \ldots, \mathrm{n}$ and hence they are linearly dependent.

In other words at least one δx_{i} can be formed by a linear combination of the rest.

Let there exist a constant λ called a Lagrange
multiplier such that equation (Al-2.2) and. (Al-2.3) can be combined in a symmetric manner to form one equation in which the δx_{i} 's can be considered linearly independent. The justification for the process is that we should be able to determine a "unique value" of λ.

> Thus equation (Al-2.2) and (Al-2.3) are combined
to form the equation

$$
\begin{equation*}
\delta \mathbb{M}(\underline{x})=\sum_{i=1}^{n}\left[p_{i}-\frac{\alpha}{2}\left\{c_{i . i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{j}\right\}+\delta x_{i}\right. \tag{Al-2.4}
\end{equation*}
$$

The stationary point is given by $\delta \mathbb{M}(\underline{X})=0$ and so equation (Al-2.4) becomes
$0=\sum_{i=1}^{n}\left[p_{i}-\frac{\alpha}{2}\left\{c_{i i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{j}\right\}+\lambda\right] \delta x_{i}$ $i \neq j$

Hence with the assume λ the δx_{i} can now be
assumed linearly independent.
2) contd.

$$
\begin{aligned}
& p_{i}-\frac{\alpha}{2}\left\{c_{i i} x_{i}+\sum_{i=1}^{\substack{\text { Thus from equation (Al-2.5) we say that } \\
i \neq j}} \sum_{j=1}^{n} c_{i j} x_{i}\right\}+\lambda=0 \text { for all } i \\
& i=1,2, \ldots, n
\end{aligned}
$$

If we combine the n equations of ($\mathrm{A} \boldsymbol{l}-2.6$)
with the constraint $\sum_{i=1}^{n} x_{i}=1$, we have $(n+1)$ equations
for the $n x_{i}$'s and one λ.
Rewriting (Al-2.6) and (Al-2.1) in a more
convenient form we obtain

$$
\frac{\alpha}{2}\left[c_{i i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{j}\right]-\lambda=p_{i}
$$

and $\quad-\sum_{i=1}^{n} x_{i}=-1 \quad$ for all i

Equations (Al-2.7) are set up in the form

$$
\begin{equation*}
\mathrm{A} \underline{\mathrm{x}}^{*}=\underline{\mathrm{p}}^{*} \tag{AI-2.8}
\end{equation*}
$$

where \underline{X}^{*} is \underline{X} augmented by λ and \underline{p}^{*} is \underline{p} augmented by -1

A is of the form

2) contd.
where α is the risk measure
and C is the covariance matrix.
3) Iterative process.
a) Solve the matrix equation (Al-2.8) for \underline{X}^{*}
b) As we have not yet imposed the constraint that all the $x_{i} \geqslant 0$ for all $i \quad i=1,2, \ldots, n$ we may (and probably will) get some $x_{i}<0$.

The algorithm states that any $x_{i} \leqslant 0$ is set to zero and plays no further part in the problen. The justification can be easily seen in the case of the two shares X_{1} and X_{2}.

In Figure [18] $P Q$ is the maximum of M with X_{1} and X_{8}. It is seen that $X_{1}<0$, since the shortest distance between P and $v a l i d$ domain is $P S$ we set $X_{1}=0$.
c) Set up the reduced matrix system

$$
\begin{equation*}
\mathrm{A}^{* \mathrm{R}} \underline{x}^{* \mathrm{R}}=\underline{\underline{q}}^{* \mathrm{R}} \tag{Al-3.1}
\end{equation*}
$$

where information regarding those x_{i} 's set to zero is ignored.
d) We then return to (a) and resolve continuing the process until all the x_{i} 's in a particular iteration satis fying the constraint $x_{i} \geqslant 0$.

The two constraints impose $0 \leqslant x_{i} \leqslant l$ for all i

$$
i=1,2, \ldots, n
$$

e) When the iteration is complete the optimum value can be calculated from (i.e. the utility).

$$
\begin{equation*}
M\left(\underline{x}^{R}\right)=\underline{\underline{p}}^{\prime R} \underline{x}^{R}-\frac{1}{2} \alpha \underline{X}^{\prime R} c^{R} \underline{x}^{R} \tag{Al-3.2}
\end{equation*}
$$

where $\underline{\underline{p}}^{\mathrm{R}} \underline{x}^{R}=$ the expected rate of return.

Figure- $\mathbf{1 8}$.
3) contd.
f) If at any stage of the process all the x_{i} 's are found to be $\leqslant 0$ then no solution exists, though in this application it probably means that the data is incorrect.

A numerical example:

Optimize

$$
\begin{equation*}
M(\underline{X})=p^{\prime} \underline{X}-\frac{1}{2} \alpha \underline{X}^{\prime} \underline{C} \underline{X} \tag{A1-1}
\end{equation*}
$$

sub ject to

$$
\begin{aligned}
\sum_{i=1}^{3} x_{i} & =1 \\
x_{i} & \geqslant 0 \quad i=1, \ldots, 3 \\
\alpha & >0
\end{aligned}
$$

Let

$$
C=\left[\begin{array}{rrr}
20 & 1 & 2 \\
1 & 10 & 4 \\
2 & 4 & 30
\end{array}\right] \quad \underline{p}=\left[\begin{array}{l}
5 \\
6 \\
1
\end{array}\right]
$$

and

$$
\alpha=1
$$

from (Al-2.8) we get

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
20 & 1 & 2 & -1 \\
1 & 10 & 4 & -1 \\
2 & 4 & 30 & -1 \\
-1 & -1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
5 \\
6 \\
1 \\
-1
\end{array}\right]} \\
& \text { A } \\
& \text { ide. } A \underline{X}^{*}=\underline{p}^{*} \\
& \underline{x}^{*}=A^{-1} \underline{p}^{*} \\
& \underline{X}^{*}=A^{-1} \underline{\underline{P}}^{*}=-\frac{i}{847}\left[\begin{array}{rrrr}
-32 & 25 & 7 & 246 \\
25 & -46 & 21 & 496 \\
7 & 21 & -28 & 105 \\
246 & 496 & 105 & 5626
\end{array}\right]\left[\begin{array}{r}
5 \\
6 \\
1 \\
-1
\end{array}\right] \\
& \therefore \underline{X}^{*}=\left[\begin{array}{r}
249 / 847 \\
626 / 847 \\
-28 / 847 \\
1415 / 847
\end{array}\right] \\
& \text { Since } x_{3} \leqslant 0 \text { it is set to zero }
\end{aligned}
$$

3) contd.

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
20 & 1 & 2 & -1 \\
1 & 10 & 4 & -1 \\
2 & 4 & 30 & -1 \\
-1 & -1 & -1 & 0
\end{array}\right]\left[\begin{array}{r}
5 \\
6 \\
1 \\
-1
\end{array}\right] \\
& A^{R}=\left[\begin{array}{rrr}
20 & 1 & -1 \\
1 & 10 & -1 \\
-1 & -1 & 0
\end{array}\right]\left[\begin{array}{r}
5 \\
6 \\
-1
\end{array}\right]
\end{aligned}
$$

Then $\underline{X}^{*}=A^{-1 R} \underline{p}^{*}$

$$
\underline{X}^{*}=-\frac{1}{28}\left[\begin{array}{rrr}
-1 & 1 & 9 \\
1 & -1 & 19 \\
9 & 19 & -1
\end{array}\right]\left[\begin{array}{c}
5 \\
6 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 / 7 \\
5 / 7 \\
10 / 7
\end{array}\right]
$$

Then iterative process ends.
Here the Lagrange multiplier is $10 / 7$. Therefore
in this example our share investment policy is to invest $2 / 7$ of our capital in share one, $5 / 7$ in share two and none in share three. With the policy our expected rate of return, expected utility are given by

$$
\begin{aligned}
& M(\underline{X})=\underline{p}^{\prime R} \underline{X}-\frac{1}{2} \alpha \underline{X}^{\prime R} C^{R} \underline{X} \\
= & {\left[\begin{array}{ll}
5 & 6
\end{array}\right]\left[\begin{array}{l}
2 / 7 \\
5 / 7
\end{array}\right]-\frac{1}{2}\left[\begin{array}{ll}
2 / 7 & 5 / 7
\end{array}\right]\left[\begin{array}{l}
45 / 7 \\
52 / 7
\end{array}\right] } \\
= & \frac{40}{7}-\frac{1}{2} \cdot \frac{350}{49}=\frac{105}{49}
\end{aligned}
$$

The expected rate of return is $\frac{40}{7}$ and the expected utility is $\frac{105}{49}$.
4) Method used to solve the linear matrix equation

$$
\begin{equation*}
A \underline{X}=\underline{b} \tag{Al-4.1}
\end{equation*}
$$

where A, X and b are real.

$$
\begin{aligned}
& \mathrm{A} \text { is an } \mathrm{n} \times \mathrm{n} \text { matrix } \\
& \underline{\mathrm{X}} \text { is an } \mathrm{n} \times 1 \text { vector } \\
& \underline{\mathrm{b}} \text { is an } \mathrm{n} \times I \text { vector }
\end{aligned}
$$

The method used is similar to Crout factorisation (10)
4) contd.
using partial pivoting.
We split the matrix into the form

$$
A=L U
$$

where L is lower triangular and U is upper triangular.
Hence we can write (Al-4.1) in the form

$$
\begin{equation*}
\mathrm{L} U \underline{X}=\underline{b} \tag{Al-4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
U \underline{X}=\underline{Y} \tag{Al-4.3}
\end{equation*}
$$

Thus (Al-4.2) reduces to

$$
\begin{align*}
& L \underline{Y}=\underline{b} \\
& \underline{U X}=\underline{Y} \tag{AI-4.5}
\end{align*}
$$

$$
(\mathrm{Al}-4.4)
$$

We can now solve ($\mathrm{Al}-4.4$) for $\underline{\underline{Y}}$ from L and \underline{b} using forward substitution. Then we solve (Al-4.5) for \underline{X} from U and \underline{Y} usi g backward substitution.

The splitting of A into L and U is not unique. The method of solving (Al-4.4) and (Al-4.5) suggests that we may reduce the rounding errors if we form I and U so that $u_{i i}$ are as large as possible and $\ell_{i i}=$ unity. These conditions imply that $e_{i j}<u n i t y ~ i \ngtr j$. U is formed such that $u_{i i}$ are as large as possible. Since $l_{i i}$ are assumed unity, we do not store them and so it is possible to store a representation of LU on A. Computation uses double precision in the scalar products to help prevent a growth of rounding errors. The total matrix storage space is $n^{3}+n$ where n is the size of A.

APPENDIX A2
THE SHARPE DIAGONAL MODEL.

This Appendix describes in detail the portfolio selection procedure which may be used when "Sharpe's" assumptions are acceptable.

The solution technique is developed as follows:-

1) Formulation of Problem:

$$
\begin{equation*}
\text { Let } R=\sum_{i=1}^{n} x_{i} R_{i} \tag{A2-1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
R & =\text { The total return of portfolio } \\
x_{i} & =\text { The proportion in vested in each share } \\
R_{i} & =\text { The average return of share } i \\
n & =\text { The number of shares considered. }
\end{aligned}
$$

Suppose al so that

$$
\begin{align*}
R_{i}=a_{i}+b_{i} I+ & u_{i} \tag{A2-1.2}\\
& i=1,2, \ldots, n
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{a}_{i} \text { and } \mathrm{b}_{i} & =\text { Constants of regression [see Appendix }-\mathbb{A}] \\
I & =\text { Market index }(\text { e.g. Financial Times Index }) \\
u_{i} & =\text { Error term } \cap N\left(0, \sigma_{1}^{2}\right)
\end{aligned}
$$

Where it is assumed that u_{i} is independent of u_{i} and I this
is expressed as

$$
\left.\begin{array}{l}
\operatorname{Cov}\left(u_{i} u_{j}\right)=0 \tag{A2-1.3}\\
\operatorname{Cov}\left(u_{i} I\right)=0
\end{array}\right\}
$$

Taking the expected value of both sides of (A2-1.2) we obtain

$$
E\left(R_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} \hat{J}
$$

The expected return of the portfolio may be obtained as

1) contd.

$$
\begin{aligned}
E=E(R) & =\sum_{i=1}^{n} E\left(R_{i}\right) \\
& =\sum_{i=1}^{n}\left(a_{i}+b_{i} \hat{I}\right) x_{i} \\
& =\underline{A}^{\prime} \underline{X}+\underline{B}^{\prime} \underline{X} \hat{I}
\end{aligned}
$$

where the matrices $\mathrm{A}, \mathrm{B}, \mathrm{Q}$ and \underline{X} are given by

$$
\begin{aligned}
& \underline{A}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \underline{B}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \\
& \underline{Q}=\left[\begin{array}{ll}
\sigma_{1}{ }^{3} & 0 \\
0 & \sigma_{n}^{2}
\end{array}\right] \quad \underline{X}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

The variance of the rate of return of share i is
$V\left(R_{i}\right)=E\left(R_{i}^{2}\right)-\left[E\left(R_{i}\right)\right]^{2}$
From equation (A2-1.2)
$R_{i}^{3}=a_{i}^{2}+b_{i}^{2} I^{2}+u_{i}^{2}+2 a_{i} b I+2 a_{i} u_{i}+2 b_{i} I u_{i}$
$E\left(R_{i}{ }^{3}\right)=\sigma_{i}{ }^{3}+a_{i}{ }^{3}+2 a_{i} b_{i} \hat{I}+b_{i} E\left(I^{3}\right)$
$\therefore V\left(R_{i}\right)=\sigma_{i}^{2}+b_{i}^{2} \sigma_{n+1}^{2}$
[Note that there is no covariance term in this expression owing to the independence assumptions of the diagonal model expressed in (A2-1.3)].

The covariances between the r ate of return for the portfolio may be obtained as follows:

We have

$$
\operatorname{Cov}\left(R_{i} R_{j}\right)=E\left(R_{i} R_{j}\right)-E\left(R_{i}\right) E\left(R_{j}\right)
$$

Thus from (A2-1.2)

1) contd.

$$
\begin{gathered}
\operatorname{Cov}\left(R_{i} R_{j}\right) \equiv E\left[\left(a_{i}+b_{i} I+u_{i}\right)\left(a_{j}+b_{j} I+u_{j}\right)\right. \\
\left.-\left(a_{i}+b_{i} \hat{I}\right)\left(a_{i}+b_{j} \hat{I}\right)\right] \\
=a_{i} a_{j}+a_{i} b_{j} \hat{I}+b_{i} b_{j} \hat{I}+b_{i} b_{j} E(\hat{I})^{2} \\
-a_{i} a_{j}-a_{i} b_{j} \hat{I}-b_{i} b_{j} \hat{I}-b_{i} b_{j} \hat{I}^{3} \\
\operatorname{Cov}\left(R_{i} R_{j}\right)=b_{i} b_{j} ; \operatorname{var}(I)=b_{i} b_{j} \sigma_{I}^{a}
\end{gathered}
$$

Then from equation (A2-1.1)

$$
V=V\left(\sum_{i=1}^{n} R_{i} x_{i}\right)=\sum_{i=1}^{n} x_{i}^{2} V\left(R_{i}\right)+\sum_{i=1}^{n} \sum_{\substack{ \\i \neq j}}^{n} x_{i} x_{j} \operatorname{Cov}\left(R_{i} R_{j}\right)
$$

Using (A2-1.4), this gives
$V\left(\sum_{i=1}^{n} R_{i} x_{i}\right)=\sum_{i=1}^{n} x_{i}{ }^{2}\left(\sigma_{i}{ }^{2}+b_{i}{ }^{2} \sigma_{n+1}{ }^{a}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} b_{i} b_{j} \sigma_{n+1}^{a}$
$i \neq j$
$V=\underline{X}^{\prime} Q \underline{X}+\left(\underline{X}^{\prime} \underline{B}\right)^{2} \sigma_{n+1}^{2}$
where Q is an ($n \times n$) diagonal matrix with element σ_{i}^{2} along the diagonal.

Following Sharpe's suggestion we may obtain a more

compact expression for E and V by defining a hypothetical $(n+1)^{\text {st }}$ share such that

$$
\begin{aligned}
& a_{n+1}=\hat{I} \\
& b_{n+1}=-1 \\
& \sigma_{n+1}^{2}=\sigma_{I}^{2} \\
& x_{n+1}=\underline{B}^{\prime} x
\end{aligned}
$$

Then

1) contd.

$$
\begin{aligned}
& E=\underline{A}^{\prime} \underline{X}+a_{n+1} X_{n+1}=\underline{A}^{*} \cdot \underline{X}^{*} \\
& V=\underline{X}^{\prime} Q \underline{X}+\sigma_{n+1}^{2} X_{n+1}^{2}=\underline{X}^{*} \cdot Q \underline{X}^{*}
\end{aligned}
$$

from Section 4.2.2 Chapter IV.
Now the problem is to maximise

$$
\begin{equation*}
M\left(\underline{X}^{*}\right)=E(R)-\alpha V(R) \tag{A2-1.5}
\end{equation*}
$$

or

$$
M\left(\underline{X}^{*}\right)=\underline{A}^{*} \cdot \underline{X}^{*}-\alpha \underline{X}^{*} \cdot Q \underline{X}^{*}
$$

subject to the constraints

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=1 \\
& x_{i} \geqslant 0 \\
& \sum_{i=1}^{n} x_{i} b_{i}-x_{n+1}=0 .
\end{aligned}
$$

2) Solution of problem.

In this Section '*' has been omitted for the sake of clarity.

We seek to maximize the objective function

$$
\begin{equation*}
M(\underline{X})=E(R)-\alpha V(R) \tag{A2-2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
M(\underline{X})=\underline{A}^{\prime} \underline{X}-\alpha \underline{X}^{\prime} \underline{Q} \underline{X} \tag{A2-2.2}
\end{equation*}
$$

sub ject to the constraints

$$
\begin{aligned}
& \text { (i) } \sum_{i=1}^{n} x_{i}=1 \\
& \text { (ii) } x_{i} \geqslant 0 \\
& \text { (iii) } \sum_{i=1}^{n} x_{i} b_{i}-x_{n+1}=0 \quad \begin{array}{ll}
\text { for all } i \\
i=1,2, \ldots, n
\end{array}
\end{aligned}
$$

2) conta.

Consider a neighbourhood point of $\underline{X}, \underline{X}+\delta \underline{X}$

$$
\begin{align*}
M(\underline{X}+\delta \underline{X}) & =\underline{A}^{\prime}(\underline{X}+\delta \underline{X})-\alpha(\underline{X}+\delta \underline{X})^{\prime} Q(\underline{X}+\delta \underline{X}) \\
& =\mathbb{M}(\underline{X})+\underline{A}^{\prime} \delta \underline{X}-\alpha \underline{X} Q \delta \underline{X}-\frac{\alpha}{2}!^{\prime} \delta \underline{X}^{\prime} Q \delta \underline{X} \tag{2}
\end{align*}
$$

for a stationary point at \underline{X} the coefficient of $\delta \underline{X}$
$\left(\underline{A}^{\prime}-\alpha \underline{X}^{\prime} Q\right) \delta \underline{X}$ must vanish at \underline{X} and hence

$$
\begin{equation*}
M(\underline{X}+\delta \underline{X})=M(\underline{X})-\alpha \underline{X}^{\prime} Q \delta \underline{X}+0(\delta \underline{X})^{2} \tag{2}
\end{equation*}
$$

Condition for maximum is

$$
M(\underline{X}+\delta \underline{X})<M(\underline{X}) \text { for all } \delta \underline{X} \text { in the neighbourhood (A2-2.7) }
$$

from equations ($\mathrm{A} 2-2.6$) and ($\mathrm{A} 2-2.7$) a maximum requires

$$
\begin{equation*}
\alpha \delta \underline{x}^{\prime} Q \delta \underline{X}>0 \tag{A2-2.8}
\end{equation*}
$$

for all $\delta \underline{X}$ in the neighbourhood. The condition for a maximum, since $\alpha>0$ is that Q is positive definite. The matrix Q is positive definite because it is a diagonal matrix whose diagonal elements are all positive hemefor our problem a unique maximum exists. Let us define the Lagrangian function to incorporate our constraints
$M(\underline{X})=\sum_{i=1}^{n+1} A_{i} x_{i}-\alpha \sum_{i=1}^{n+1} \sigma_{i}^{3} x_{i}^{3}+\lambda \sum_{i=1}^{n} x_{i}+\mu\left(\sum_{i=1}^{n} x_{i} b_{i}-x_{n+1}\right) \quad(A 2-2 \cdot 9)$
where λ and μ are two Lagrangian multipliers at a stationary point $\frac{\partial \phi}{\partial x_{i}}=0$ for all $i \quad i=1,2, \ldots, n$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x_{i}}=a_{i}-\alpha 2 o_{i}^{2} x_{i}+\lambda+\mu b_{i} \tag{A2-2.10}\\
& \frac{\partial \phi}{\partial x_{n+1}}=a_{n+1}-\alpha 2 o_{n+1}^{2}-\mu \tag{A2-2.11}
\end{align*}
$$

We may reformulate the above equations (i,ii) of (A2-2.3), (A2-1.10) and (A2-1.11) in matrix form as:

$$
T \cdot \underline{Y}=\underline{C}
$$

where
2) contd.
$\left[\begin{array}{cccccc}2 \alpha \sigma_{1}^{3} & & & \\ 0 & 2 \alpha \sigma_{3}^{2} & & 0 & 1 & b_{1} \\ \vdots & & & & 1 & b_{2} \\ \vdots & & & & \vdots & \\ 0 & & 2 \alpha \sigma_{n}^{3} & & 1 & b_{n} \\ 0 & \ldots \ldots \ldots & 0 & 2 \alpha \sigma_{n+1}^{2} & 0 & -1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ B_{1} & B_{2} & B_{n} & -1 & 0 & 0\end{array}\right]\left[\begin{array}{l}\underline{\underline{x}} \\ x_{1} \\ x_{3} \\ \\ x_{n} \\ x_{n+1} \\ \lambda \\ \mu\end{array}\right]=\left[\begin{array}{c}\underline{c} \\ a_{1} \\ a_{a} \\ \\ \\ a_{n} \\ a_{n+1} \\ 1 \\ 0\end{array}\right]$ (A2-2.12)

Equation (A2-2.12) may then be rewritten in partitioned form

(A2-2.13)
where

$$
\begin{aligned}
& \mathrm{E}=(n+1) \times 2=\text { matrix } \\
& \underline{X}=(n+1) \times 1=\text { vector } \\
& \underline{I}=2 \times 1 \quad=\text { vector }
\end{aligned}
$$

expanding the above system

$$
\begin{align*}
& Q \underline{X}+E \underline{L}=\underline{A} \tag{A2-2.14}\\
& E^{\prime} \underline{X}=\binom{I}{0} \tag{A2-2.15}
\end{align*}
$$

We may rewrite equation (A2-2.14) as

$$
\begin{equation*}
\underline{X}=Q^{-1} \underline{A}-Q^{-1} E \underline{L} \tag{A2-2.16}
\end{equation*}
$$

Substituting (A2-2.15) into (A2-2.12) yields

$$
\begin{equation*}
E^{\prime} Q^{-1} \underline{A}-E^{\prime} Q^{-1} E L=\binom{1}{0} \tag{A2-2.17}
\end{equation*}
$$

[Note $I \neq E^{-1} \underline{A}-E^{-1} Q \underline{X}$ because E is not square]
Rearranging the equation ($\mathrm{A} 2-2.17$)

$$
\begin{equation*}
E^{\prime} Q^{-1} A-\binom{I}{0}=\left(E^{\prime} Q^{-1} E\right) L \tag{A2-2.18}
\end{equation*}
$$

solving for L we obtain
2) contd.

$$
\begin{equation*}
\underline{I}=\left(E^{\prime} Q^{-1} E\right)^{-1}\left\{E^{\prime} Q^{-1} \underline{A}-\binom{1}{0}\right\} \tag{A2-2.19}
\end{equation*}
$$

$$
Q=\left(\begin{array}{ccc}
2 \alpha \sigma_{1}^{2} & & 0 \\
2 \alpha \sigma_{3}^{2} & & \\
& 2 \alpha \sigma_{n}^{3} & \\
0 & & 2 \alpha \sigma_{n+1}^{2}
\end{array}\right) \quad Q^{-1}=\left(\begin{array}{lll}
C_{1} & \\
& C_{3} & \\
& & C_{n} \\
0 & & C_{n+1}
\end{array}\right)
$$

where $C_{i}=\frac{I}{2 \alpha \sigma_{1}{ }^{2}}$
C_{i} are identified with Covar(I) in the subsequent program

$$
E^{\prime} Q^{-1} E=\left(\begin{array}{cccc}
1 & 1 & \ldots \ldots & 1 \tag{A2-2.20}\\
b_{1} & b_{2} & \ldots \ldots & 0 \\
b_{n} & b_{n+1}
\end{array}\right)\left(\begin{array}{ccc}
c_{1} & & \\
& & C_{3} \\
0 & & \\
& & c_{n} \\
& & c_{n+1}
\end{array}\right)\left(\begin{array}{cc}
1 & b_{1} \\
1 & \\
\vdots & \\
& \\
& \\
1 &
\end{array}\right)
$$

$E^{\prime} Q^{-1}=\left(\begin{array}{ccccc}c_{1} & c_{2} & \ldots & C_{n} & 0 \\ b_{1} c_{1} & b_{2} b_{2} & \ldots & b_{n} & b_{n+1}\end{array} C_{n+1}\right)$
$E^{\prime} Q^{-1} E=\left(\begin{array}{cc}\sum_{i=1}^{n} c_{i} & \sum_{i=1}^{n} c_{i} b_{i} \\ \sum_{i=1}^{n} c_{i} b_{i} & \sum_{i=1}^{n+1} c_{i} b_{i}^{3}\end{array}\right)$
Using the notation of the program

Let

$$
\begin{aligned}
& \text { SURA }=\sum_{i=1}^{n} C_{i} \\
& \text { SUM }=\sum_{i=1}^{n} C_{i} b_{i}
\end{aligned}
$$

2) contd.

$$
\operatorname{SUMC}=\sum_{i=1}^{n} c_{i} b_{i}^{2}
$$

Now from equation (A2-2.21)

$$
\left.\begin{array}{l}
E^{\prime} Q^{-1} \underline{A}-\binom{1}{0} \\
=\left(\begin{array}{cccc}
C_{1} & C_{2} & \ldots & c_{n} \\
b_{1} C_{1} & b_{2} C_{2} & & b_{n} C_{n} \\
b_{n+1} & C_{n+1}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{n} \\
a_{n+1}
\end{array}\right)-\binom{1}{0} \\
=\left(\sum_{i=1}^{\sum_{i=1}^{n} c_{i} a_{i}-1}\right. \\
\sum_{i=1}^{n} \\
C_{i} b_{i} a_{i}
\end{array}\right) .
$$

where

$$
\begin{aligned}
& \sum_{i=1}^{n} b_{i} x_{i}-x_{n+1}=0 \\
& \sum_{i=1}^{n} b_{i} x_{i}=0 \\
& b_{n+1}=-1
\end{aligned}
$$

Let

$$
\begin{aligned}
& \text { SURD }=\sum_{i=1}^{n} c_{i} a_{i}-1 \\
& \text { SURE }=\sum_{i=1}^{n+1} c_{i} b_{i} a_{i}
\end{aligned}
$$

2) contd.

$$
\begin{aligned}
& \left(\begin{array}{ll}
\text { SUMA } & \text { SUMB } \\
\text { SUMB } & \text { SUMC }
\end{array}\right)\binom{\lambda}{\mu}=\binom{\text { SUMD }}{\text { SUNE }} \\
& \binom{\lambda}{\mu}=\frac{1}{\text { Determ }}\left(\begin{array}{rr}
\text { SUMC } & - \text { SUMB } \\
\text {-SUMB } & \text { SUMA }
\end{array}\right)\binom{\text { SUND }}{\text { SUME }}
\end{aligned}
$$

where
Determ $=$ SUMC.SUMA $-(\text { SUMB })^{2}$

$$
\begin{aligned}
& \lambda=\text { SUMC.SUMD }- \text { SUME SUMD } / \text { Determ } \\
& \mu=(\text { SUMA.SUME }- \text { SUMB SUMD }) / \text { DeterIn }
\end{aligned}
$$

We have solved for L, now we are in a position to solve for \underline{X} using (A2-2.16) we have to form E I where $E \underline{L}=\left(\begin{array}{cc}1 & b_{1} \\ I & b_{2} \\ \vdots & \\ i & b_{n} \\ 0 & b_{n+1}\end{array}\right)\binom{\lambda}{\mu}=\left(\begin{array}{c}\lambda+\mu b_{1} \\ \lambda+\mu b_{2} \\ \vdots \\ \mu b_{n+1}\end{array}\right)$

We have to solve

$$
\begin{gathered}
\underline{X}=Q^{-1}(A-E \underline{I}) \text { from }(A-2.16) \\
\underline{X}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
\vdots \\
a_{n} \\
a_{n+1}
\end{array}\right)-\left(\begin{array}{c}
\lambda+\mu b_{1} \\
\lambda+\mu \\
\vdots \\
\vdots \\
\lambda+\mu \\
b_{n} \\
\mu \\
b_{n+1}
\end{array}\right)=\left(\begin{array}{cc}
a_{1}-\lambda-\mu b_{1} \\
a_{2}-\lambda-\mu b_{2} \\
\vdots & \vdots \\
a_{n}-\lambda-\mu b_{n} \\
a_{n+1} & \mu b_{n+1}
\end{array}\right)
\end{gathered}
$$

We have not yet incorporated the positivity constraints in (A2-2.16).

This can be effected in a similar manner to
that used in the Markowitz model [AI].
At this point another advantage of the Sharpe
model is highlighted in that matrix reduction is relatively
2) contd.
simple. As before we iterate until the reduced set of $x^{\prime} s$ are positive. When the iteration is complete the optimum value can be calculated from (A2-1.5) (i.e. the expected utility)

$$
M\left(\underline{X}^{*}\right)=E(R)-\alpha V(R)
$$

where

$$
\begin{aligned}
\mathrm{E}(\mathrm{R}) & =\text { The expected rate of return of the portfolio } \\
\alpha \mathrm{V}(\mathrm{R}) & =\text { The varience of the portfolio }
\end{aligned}
$$

3) The Iterative process.
a) Solve the matrix equation as described above.
b) If the proportion invested in share $\left(x_{i}\right)$ is found to be negative or zero, we shall remove the share from the portfolios. These shares are listed by the program as zero percentage invested.
c) The matrix equation is reformulated omitting the shares eliminated by (b).
d) We then return to (a) and continue the iterative cycle until no share proportions are found negative.

When the iterative is complete we calculate

1) The expected rate of return and
2) The utility
APPEN D I X A3

Consider the linear model

$$
\begin{equation*}
\underline{R}=X \underline{\beta}+\underline{\mu} \tag{A3-1}
\end{equation*}
$$

where

$$
\underline{R}=\left(\begin{array}{c}
R_{1} \\
\vdots \\
\vdots \\
R_{n}
\end{array}\right) \quad X=\left(\begin{array}{cc}
I_{1} & I \\
\vdots & \vdots \\
\vdots & \vdots \\
I_{n} & I
\end{array}\right) \quad \underline{\beta}=\binom{b}{a} \quad \text { and } \underline{u}=\left(\begin{array}{c}
u_{1} \\
\vdots \\
\vdots \\
u_{n}
\end{array}\right) \quad(A 3-2)
$$

where $u_{i} \quad N\left(0, \sigma^{2}\right)$
The least squares criterion chooses the $\underline{\beta}$ such that $u^{\prime} u$ is minimized with respect to $\underline{\beta}$

NOW

$$
\begin{aligned}
\underline{u}^{\prime} \underline{u} & =(\underline{R}-\underline{X} \underline{\beta})^{\prime}(\underline{R}-X \underline{\beta}) \\
& =\left(\underline{R}^{\prime}-\underline{\beta}^{\prime} X^{\prime}\right)(\underline{R}-\underline{X} \underline{\beta}) \\
& =\underline{R}^{\prime} \underline{R}-\underline{R}^{\prime} X \underline{\beta}-\underline{\beta}^{\prime} X^{\prime} \underline{R}+\underline{\beta}^{\prime} X^{\prime} X \underline{\beta}
\end{aligned}
$$

$\frac{\partial\left(\underline{u}^{\prime} \underline{u}\right)}{\partial \underline{\beta}}=-\left(\underline{R}^{\prime} X\right)^{\prime}-X^{\prime} \underline{R}+2 X^{\prime} X \underline{\beta}=0$ for minimum

$$
\begin{equation*}
\therefore X^{\prime} X \beta=X^{\prime} \underline{R} \tag{A3-3}
\end{equation*}
$$

Substituting (A3-2) in (A3-3) we obtain in extenso

$$
\left(\begin{array}{ccccc}
I_{1} & \ldots & I_{n} \tag{A3-4}\\
I & \ldots & \ldots & I
\end{array}\right) \begin{array}{ccc}
I_{1} & l \\
\vdots & \vdots \\
& \vdots & \vdots \\
I_{n} & i
\end{array}\binom{b}{a}=\left(\begin{array}{cccc}
I_{1} & \ldots & \ldots & I_{n} \\
I_{n} & \ldots & \ldots & I
\end{array}\right)\left(\begin{array}{c}
R_{1} \\
\vdots \\
\vdots \\
R_{n}
\end{array}\right)
$$

For ease of printing the limits are omitted.

$$
\left(\begin{array}{ll}
\Sigma I_{i}{ }^{2} & \Sigma I \tag{A3-5}\\
\Sigma I & n
\end{array}\right)\binom{b}{a}=\binom{\Sigma I R}{\Sigma R}
$$

Then from (A3-5)

$$
\binom{b}{a}=\frac{I}{D}\left(\begin{array}{cc}
n & -\Sigma I \tag{A3-5}\\
-\Sigma I & \Sigma I_{i}^{2}
\end{array}\right)\binom{\Sigma I R}{\Sigma R}
$$

where $D=n \sum_{i=1}^{n} I_{i}{ }^{2}-\left(\sum_{i=1}^{n} I\right)^{a}$
$\therefore b=\left(n \sum_{i=1}^{n} I R-\sum_{i=1}^{n} R \sum_{i=1}^{n} I\right) / D$
(A3-7)
and $a=\left(-\sum_{i=1}^{n} I \sum_{i=1}^{n} I R+\sum_{i=1}^{n} I_{i}{ }^{2} \sum_{i=1}^{n} R\right) / D$
($\mathrm{A} 3-8$)

$A P$ PENDIX $\quad A_{4}$

FLOW CHART OF MARKOWITZ'S MODEL

S TART

SUBROUIINE COVARI ANCE
(X, ARATE, COVAR, IROW, IA, JA,KA, LA, LAPI, AIPHA, BB)
IAPI $=I A+I$.

$$
\mathrm{ALPHA}=\mathrm{ALPHA} * 2
$$

ALPHA $=$ The rate of change of Marginal Utility

,

START

SUBROUTINE RMLUSOL (A,N,IA, ISING, B) Subroutine replaces A by LU with unit diagonal on L omitted
IA is the declared size of A
N is the size of A used
Subroutine solves AX = B with $\mathrm{A}=\mathrm{LU}$ on R.H.S. in the form $L Y=B U X=Y$ ISING $=0$ Matrix Singular routine ignored. ISING $=1$ inverse exists

APPENDIX A5

FLOW CHART OF SHARPE DIAGONAL MODEL.

CALL SUBROUTINE LEAST SQUARES
(X, A, B, AMEAN,COVAR, ALPHA, IROW)
Subroutine Least Squares does regression analysis against F.T.I.
$X=$ Array of number of periods and number of shares and F.T.I.
A and $B=$ Regression constants
AVEAN $=$ The shares mean rate of return COVAR $=1$ /Variance
ALPHA $=$ The rate of change of marginal utility IROW = It associates with number of each share and keeping same number

CALL SUBROUTINE SOLVE
(B, COVAR, A,Y,N, IROW, ALPHA)
Subroutine solves set of Linear equations subject to positivity

STOP

START

SUBROUTINE LEAST SQUARES
(X,A,B, AMEAN, COVAR, IX, JX, ALPHA, IROW)
IX = Number of periods
JX $=$ Number of shares and F.T.I.

SUMISQ, SUMI $=0.0$

SUMI $=$ SUMI $+X(I, J X)$
SUMISQ $=$ SUMISQ $+X(I, J K) * X(I, J X)$
3
DETERM $=$ IXMI $\quad *$ SUMISQ-SUMI $*$ SUMI
$J X M I=J X-1$
JXMI = JX - 1

A

START

SUBROUITINE SOLVE
(B, COVAR, A, X, M, N, IROW, ALPHA)
Subroutine solves the matrix equation when determinant $=0$, there will be no feasible solution
DETERM = Determinant of $E^{\prime} D^{-1} \mathrm{E}$ AMU AND ALAM are Lagrange multipliers

SUMA, SUMB, SUME, SUMD, SUME $=0.0$

START

SUBROUTINE REDUCE
(COVAR, IROW, X, B, A, M, N, ALPHA)
Subroutine reduces matrix problem

A P P E NDIX

A P P E N D I X A7

CODES OF COMPUTER PROGRAMME S AND
THE SPECIMEN OUIPUIS

PROGRAMME NUMBER - 1.

```
        NASTER NARKOVITZ
        DINENSIOK A(11,11),B(11),C(11,11),IROL(11),D(11), X(10,36),
        1RR(10,24)
    C N IS NUNBER OF SHARES
        N=10
        KOUNT=N+1
        KOUNT NUST BF DECLARFD SIZE DF A,B,C,IBON,D
        CALL COUARIANCF(X,B,A,IROL, 10,36,10,36,11,ALPHA,BI2)
        1 DO ? I=1,KOUNT
        LOOP CDPIFS A,B INTO C,D
        BECAUSE PMLUSOL DESTORYS BOTH C AND D
        D(I)=R(I)
        DO 2 }j=1,\mathrm{ YOUNT
        2 C(I,J)=A(I,J)
        ISING TESTS THE MATPIX SINGULAR
        CALL BNLUSOL (C,MDUNT,N+1,ISING,D)
        IF(ISING•FO.1)GOTO 4
        1. RITE (?,3)
        3 FORNAT(1H0,?OHNO FFASIBLE SOLUTION)
        STOP01
        & CALL REDUCE (A,D,B,IRDT,N+1,KOUNT,KI)
        IF (YOUNT.EC.KI) GOTO 5
        KUUNT=KI
        GOTO 1
    5 nO 6 J=1, KOUNT-1
    6 VZITE(2,7)IROT (J),D(J)
    FINAL PRINT OF NON-ZERO X'S
    7 F0&NAT (1H0, 'SHARF(',I2, 2%)=,2PF(.2,'%')
        KM I IS NTMRER DF SHARES LHICH ARE NOT NEGATIUE
        KN1=KOTNT-1
        SUT}=0
        DN & I= 1,KN1
    8 STN=SUV+F(I)*D(I)
        ERR=SUR:
        VRITE(2,9)FFR
    9 FURNAT(1H0,'THF FYPECTED PATE OF RFTURN=',2PF5.2,'%')
        Stli: =A (1, 1)*D(1)*D(1)*0.5
        IF(经1•1.T.2) GO TO 11
        DO 11 \=2,WN1
        STM=SUN+A(J,J)*D(J)*D(J)*0.5
    LOOP CALCTLATES THE UTILITY
    ALIIY F.O: - 0.5*ALPHA*D'CD
        DO 10 I=1,J-1
    10 SUM=STIV+A(I,J)*D(I)*D(J)
    11 SUN=FRR-SUN
    |मITE(?,12)SUM
    12 FดRNOT(1H0,'THE UTILITY=',F9.ム)
        |BITE(2,13)
    13 FURNAT(1HO,'YFY TO SHARE NANES:-')
        N IS NUNBER DF SHARES
        LOOP WPITES THE TITLFS
        10 14 I=1,N
    14 bRITF(2,15)I, (R23(I,J), J=1,24)
    15 FORMAT(1:0,'SHARE(', I2,?H)=,24A3)
        STOP
        END
```


PROGRAMME 1 (contd)

SUBROUTINE CDUARIANCE $(X, A R A T E, C U V A R, I R U L, I A, J A, K A, L A, I A P 1, A L P H A$, 1BB)
SUBROUTINE PROCESS SHARE INFORMATION
OUTPUTS NEAN PATE OF SHARE RETURN
OUTPUTS CQUARIANCE MATRIX IN
FORM SUI TABLE FOR OUADRATIC PROGRAMMING
KA NUMBER OF SHARES
LA NUMBER OF PERIDDS
IA, JA IS DECLARED SIZE OF X, ARATE, COUAR IN CALLING SEGMENT
KA,LA IS USED SIZE OF ABOVE
IMPORTANT IAP $1=I A+1$
DIMENSION X(IA, JA), ARATE (IAP1), COUAR (IAP1, IAP1), IROW (IA), BB(IA, 24)
READ (1,1)ALPHA
1 FORMAT (FO.0)
LOOPS READS THE TITLE
DO $2 I=1, K A$
$2 \operatorname{READ}(1,3)(\operatorname{BE}(I, J), J=1,24)$
3 FORMAT(24A3)
ALPHA IS RISK MFASURE
ALPHA $=$ ALPHA*2.
C READ IN SHARE DATA
DO $4 \mathrm{I}=1, \mathrm{KA}$
$4 \operatorname{PEAD}(1,5)(X(I, J), J=1, L A)$
5 FGRMAT (10F0.0)
VRITE $(2,6)$
6 FORMAT (1H1,'SHARE INVESTMENT PROGRAM',/1H0,'INITIAL DATA MATRIX') DO $7 \mathrm{I}=1, \mathrm{KA}$
IROW (I) = I
$7 \operatorname{WRITE}(2,8) I,(B B(I, J), J=1,24),(X(I, J), J=1, L A)$
8 FORMAT (1H0,'SHARE (', I2,2H) , 3X,24A3,/(1H0,10F7.2))
DO $10 \mathrm{I}=1, \mathrm{KA}$
$\mathrm{SUM}=0$ -
DC $9 \mathrm{~J}=2, \mathrm{LA}$
TERM, $X(I, J-1)=X(I, J) / X(I, J-1)-1$.
9 SUM $=$ SUM + TERM
10 ARATE $(I)=\operatorname{SUM} /(L A-1)$
DG $12 \mathrm{~K}=1, \mathrm{KA}$
DO $12 I=K, K A$
$\mathrm{SuM}=0$ -
DO $11 \mathrm{~J}=1, \mathrm{LA}-1$
$11 \operatorname{StM}=\mathrm{CT} V+X(K, J) \times X(I, J)$
12. COUAR (K, I), COUAR $(I, K)=A L P H A *(S U N-A R A T E(K) * A R A T E(I) *(L A-1)) /(L A-?)$ DO $13 \mathrm{I}=1, \mathrm{FA}$ IRO: (I) $=1$
$13 \operatorname{COUAD}(\operatorname{IAP} 1, I), \operatorname{COUAR}(I, I A P 1)=-1$.
ARATE (IAP1) $=-1$ -
ALPHA $=A L P: \because \cap * 0 \cdot 5$
FRITE(2, 14)KA, ALPHA,LA
14 FORNAT (////1\%ก, 17HMARKOLITZ'S MODEL/
11H0, 2厶HTHE NUNRER OF SHARES IS ,I?/
21:4, 391HTHE RATE OF CHANGE OF MARCINAL UTILITY=,F5.1/
31H0, 'THF NLMBER OF PERIONS IS $\quad, 13 /$
$41 H 0$, THE DATA USED FUR THE YFAR 1968 TO 70',
51:R, 'NEAN PATE UF RETURN AND CQUARIANCE NATRIX') 1 17 $15 \mathrm{I}=1, \mathrm{KA}$
15 KRITE $(2,16)$ IROV (I), ABATE (I), (CIVAE (I, J), $J=1, K A)$
16 FORVAT (1H0,'SHARE (',I2, 3H) ,2PF5.2, '\%'/(1H0,0F7F9.4)) RFTUFN
END

PROGRAMME 1 (contd)

C
SUEROUTINE REDUCE $(A, B, C, I R O W, J A, I A, K I)$ SUBROUTINE REDUCES MATRIX JA=DECLARED SIZE IA=US ED SIZE DIMENSION A(JA,JA), B(JA), IROW (JA), C(JA)
$\mathrm{KI}=\mathrm{I} \mathrm{A}$
DO $2 \mathrm{~L}=1, \mathrm{I} \mathrm{A}-1$
IF (B(L).GT•0) GOTOL
$K I=K I+1$
WRITE(2,1) IROW(L)
1 FORMAT ($1 \mathrm{H} 0,{ }^{\prime} \operatorname{SHARE}(\prime, 12,3 H)=0$)
DUTPUT ALL VARIABLES SET TO ZERO
2 continue
IF (KI.EQ.IA) RETURN
if true no X was found negative
$\mathrm{K}=1$
DO $4 \mathrm{~J}=1, \mathrm{IA}-1$
LOOP REMOVES ROWS OF A
IF ($B(J) \cdot L E \cdot 0)$ GOTO 4
DC $3 \mathrm{~L}=1, \mathrm{IA}-1$
$3 A(L, K)=A(L, J)$
IROW (K) $=$ IROW (J)
$\mathrm{K}=\mathrm{K}+1$
4 CONTINUE
$\mathrm{K}=1$
DO $6 \mathrm{~J}=1, \mathrm{IA}-1$
LOOP REMOUES COLIMNS OF A
IF (B(J).LE•0) GDTO σ
DO $5 \mathrm{~L}=1,1 \mathrm{~A}-1$
$5 \mathrm{~A}(\mathrm{~K}, \mathrm{~L})=\mathrm{A}(\mathrm{J}, \mathrm{L})$
$C(K)=C(J)$
$K=K+1$
6 CONTINUE
DO $7 \quad \mathrm{I}=1, \mathrm{~K}-1$
$7 A(I, K), A(K, I)=-1$
$C(K)=-1$.
$A(K, K)=0$ 。
$\mathrm{KI}=\mathrm{K}$
C K SIZE OF REDUCED A RETURN
END

PROGRAMME 1 (contd)

SUBROUTINE RNLUSOL(A,N,IA,ISING,B)
C REAL MATRIX
C SUBROTUTINE BFPLACFS A BY LU VITH UNIT DIAGONAL ON L OMITTEI
C IA IS THE DECLARED SIZE OF A IN CALL ING SEGMENT
SOLUFS $A X=B$ VITH $A=L U$ ONE R•H•S.
ISING=0 NATRIX SINGULAR ROUTINE IGNORED ISING=1 INUERSE EXSISTS
DOUBLE PRECISION DP
DIMENSION $A(I A, I A), B(I A)$
DG $8 \mathrm{I}=1, \mathrm{~N}$
ITH STAGE
IP $1=I+1$
IM $1=I-1$
ANAX $=0$.
DO $3 K=I, N$
C FINDS MAXIMUM $H(I, I)$
$D P=A(K, I)$
IF (I.EC.1) GOTO 2
DC $1 \mathrm{~J}=1, \mathrm{I} \mathrm{K} 1$
CONPUTFS A DOUBLE PRECISION SCALAR PRODUCT
$D P=D P-A(K, J) * A(J, I)$
$A(K, I)=D P$
$A M O D=D A B S(D P)$
IF (AMOD.LT.AMAX) GOTO 3
$\triangle \mathrm{M} A \mathrm{X}=\mathrm{AMOD}$
IPIUROV $=\mathrm{K}$
CONTINUE
IF (ANAX.LE.0) GOTO 13
C MATRIX SINGULAR IF TRUE
IF (IPIVROV•EQ.I) GUTO 5
DC $4 \mathrm{~L}=1, \mathrm{~N}$
$Z=A(I, L)$
$A(I, L)=A(I F I V R O V, L)$
A(IPIUROV,L) $=$ Z
$Z=B(I)$
$B(I)=B(I P I V R O V)$
B(IPIURDt) $=$ Z
$Z=1 \cdot / A(I, I)$
IF (IP1.GT.N) GOTO 8
DO $7 \mathrm{~K}=\mathrm{IP} 1, \mathrm{~N}$
$A(K, I)=A(K, I) * Z$
$D P=A(I, K)$
IF (I.EO.1) GOTO 7
DO $6 \mathrm{~L}=1, \mathrm{IN} 1$
COMPUTES A DOURLE PRECISION SCALAR PRODUCT
$D P=D P-A(I, L) * A(L, K)$
$A(I, K)=D P$
CONTINUE
DO $10 \mathrm{JP}=2, \mathrm{~N}$
C SOLVE LY=B STURE Y IN B
$D P=B(J P)$
$K J=J P-1$
DO $9 \mathrm{~J}=1, \mathrm{KJ}$
$D P=D P-A(J P, J) * B(J)$
$10 \quad B(J)=D P$
$B(N)=B(N) / A(N, N)$
D0 $12 \pi=2, N$
C SOLVE UX=Y STORE X IN B
JR $\mathrm{P}=\mathrm{N}+1-\mathrm{\pi}$
$\pi \cap P 1=\mathrm{JL}+1$
$D P=E(J . R)$
DO $11 \mathrm{~J}=\mathrm{JL} R \mathrm{P} 1, \mathrm{~N}$
COMFUTES A DOUBLE PRECISION SCALAR PRODUCT

$12 B($ Lミ $)=D P / \cap(J!R$, , 月)
IS ING=1
RETURN
13 VFITE 2,14)
14 FOPMAT (1H1,15HMATRIX SINGULAR)
IS ING=0
RETURN
END
FINISH

OUTPUT OF PROGRAMME NUMBER 1

```
MARKUYITZ'S MODEL
THE NUMBER OF SHARES IS 10
THE RATE OF CHANGE OF HARGIHAL UTTLITY= 1.0
THE NUMSER OF DERIODS IS 36
TME DATA USED SOR THE YEAR 1068 TO 70
MEAV RATE OF RETURN AND COVARIANCF MATRIX
SHARE (1) 0.66%
```



```
    0.0089-10.0002 0.0005
SMARE( 2) 1.25x
    0.0031 0.0041 0.0058
    0.0032 0.0044 0.0010
SHARE( 3) =0.23%
    0.0268 0.0038 0.1154 0.0324 0.0101 0.0031 0.0028
    0.0284-0.0042 0.0060
SHARE( 6) =0.26%
    0.0089 0.0058 0.0324 0.0400}00.00060 0.0041 0.0064
    0.2115 0.0058 0.0056
SHARE( 5) 0.02x
    0.0030 
    0.0056 =0.0005 0.0019
SHARE( 6) 0.60X
    0.0028
    0.0016 0.0004 0.0099
SHARE ( 7) 1.03%
        0.0023 0.0015 0.0028
        0.0018 0.0054 0.0007
SHARE(8) 0.20X
```



```
        0.0130 0.00<0 0.0034
SHARE( 9) 1.38K
        =0.0002 0.0044 -0.0042 0.0052
        0.0020 0.0112 0.0005
SHARE(10) =0.19%
```



```
    0.2034 0.0005 0.0089
```

SHARE (4) $=0 \%$
SHARE(5) $=0 \%$
5HARE (6) $=02$
SHARE $(8)=0 \%$
SHARE(3) =0\%
SMARE (10) $=0 \%$
SHARE (1) $=0 \%$
5 HARE $(2)=34.59 \%$
SHARE (7) $=19.03 x$
SHARE (φ) $=41.38 \%$
THE EXPECTED RATE OF RETURN= 1.26x
THE UTILITY= 0,0097
KEY TO SHARE NARIES:-
SHARE (1) = 'GLAXU GROUP'
SHARE (2) = 'HOOVER LTD.'
SHARE (3) $=$ 'BRITISH HOTOR.
SMARE (4) = 'DURLOP CO '
SHARE (5) $=$ 'BRITISH PETROLEUH:
SMARE $(6)=$ DOISTILLERS.
SHARE (7) = 'GUTVESS(ARTHEK)SOR \& CO.LTD.'
SHARE $(b)=$ 'ITPERRIAL GMEHICAL INDUSTRIES ITD.'
SHARE $(\varphi)=$ 'MARKS \& SPEHCERS'
5mare (10) = 'british insulated Callender cables'

MASTER SHARPE
PRDGRAM USES THE SHARPE DIAGONAL MODEL
DIMENSION $Y(36,2), A(11), \operatorname{B}(11), \operatorname{AMEAN}(11), \operatorname{COUAR}(11), I R O W(11), X(11)$ ，
1 TI TLES（11，24） $\mathrm{N}=11$
SUBEOUTINE LFAST SQUARES DOES REGRESSIDN ANALYSIS AGAINST F．T．I CALL LEAST SQUARES（Y，A，B，ANEAN，COUAR，36，11，ALPHA，TITLES）
SOLUES SFT OF LINEAR EOUATIUNS SUBJECT TO POSITIVITY
CALL SOLUE（ $B, C D U A R, A, X, 11, N, I R O E, A L P H A, T I T L E S)$
STOP
END
SUBROUTINF：LEAST SCUARES（Y，A，B，AMEAN，COUAR，IY，JY，ALFHA，TI TLES）
$J Y=$ NUVPER OF SHARES＋INDEX
IY $=$ NIMBER DF PERIODS
DIMENSION Y（IY，2），A（JY），B（JY），ANEAN（JY），COUAR（JY），TITLES（JY，24）
ALPHA IS A RISK NEASUPE
$\operatorname{PFAD}(1,1) A L P H A$
1 FПRMAT（F0．0）
DO 2 $I=1, J Y$
$2 \operatorname{READ}(1,3)(\operatorname{TITLES}(I, J), J=1,24)$
3 FORMAT（24A3）
DO $4 \mathrm{I}=1$ ，IY
READING INDEX
$4 \operatorname{READ}(1,5)(Y(I, 1), I=1, I Y)$
5 FURMAT（36F0．0）
SUNISO，SITI $=0$ ．
$I Y M 1=I Y-1$
DO $6 I=1$ ，IYM 1
$S U M I=S U N I+Y(I, 1)$
$6 S$ SUMISC $=\operatorname{STMISS}+Y(I, 1) * Y(I, 1)$
DETERN $=I$ YM $1 * S U N I S Q-S U N I * S U M I$
JYN $1=J Y-1$
VRITE（2，7）
7 FORMAT（1H1，＇SHARE INUESTMENT PROGRAM＇，／1H0，＇INITIAL DATA MATRIX＇） DO $10 \quad J=1$, JYM 1
BFADING SHARF DATA
$\operatorname{TEAD}(1,5)(Y(I, 2), I=1, I Y)$
WBITE $(2,8) J,(\operatorname{TITLES}(J+1, K), K=1,24),(Y(I, 2), I=1, I Y)$
8 FOFMAT（1：\％0，＇STARE（＇，I？，2H），3K， $24 A 3 /(1 H 0,9 F 7 \cdot 2))$
SIMR，SIJMIR，STMRSO＝0－
DO $9 \mathrm{I}=1$ ，I YM 1
CALCULATING PATE DF RETURN
TERN，$Y(I, 2)=Y(I+1,2) / Y(I, 2)-1$ ．
SUMRSO＝SUNRSC＋TERN＊TERM
STMR＝STMM＋TFEN
9 SUMIP $=$ SIMMIF＋TFRM＊Y $(I, 1)$
ANEAN（ $J=$ STMNR／IYN1
LIERSE $P(I)=f(I)+B(I) * I N D E X$
A AND B APE TVU REGPESSION CUNSTANTS
$A(J)=(S T M I S(+S H M R-S T V I * S(N I R) / D E T E N M$
$B(J)=(I Y / 1 * S T M I:-S T M I * S T W R) / D E T E: M$
10 COVAF $(J)=(I Y-3) /((S U M P C O-B(J) * S T N I N-A(J) * S U N B) * 2 \cdot * A L P H A)$ VARIANCE AROUT R（I）$=A(I)+B(I) * I N D E X$
VITE 2,11$)($ TITLFC $(1, K), K=1,2 A),(Y(I, 1), I=1, I Y)$

$A(J Y), A N E A N(J Y)=S T N I / I Y N 1$
WHERF C口UAF＝1／2＊ノLEHA＊VAクIANCF
COVAT $(J Y)=(I \because-?) /((S T M I S \cap-I Y K 1 * A M E A N(J Y) * A M F A N(J Y)) * 2 \cdot * A L$ FHA $)$
UABIANC：ABOTT ANEAN
V ITE（2，1？）
1？FQRNAT（／／1世0，＇SHABE INUESTVENT PFGGPAN USING THF SHARPE DIAGONAL＇， -1% ，＇以DNLL＇）
サPITF（2，13）（J，A（J），B（J），ANEAN（J），COUAB $(J), J=1, J Y N 1)$

WRITE（2，14）JY：1，AIPHA，IY
14F円：NAT（140，＇S：AYFE NIACONAL，NODEL PBOBLEM＇／
11：10，＇THF NT：HF：DF SHAZFS •，I？ノ
21H月，＇TUF ：ATF MF CHANGF DF MARGINAL，UTILITY＝，F5•1／

／1：10，＇THF IATA USED FOR THE YEAB 1968 TO 70＇）
RFTU：N
FND
，N，N，I ROW，ALPHA，TI TL．F．S）
SOLVES THE MATRIX EOTIATION
WHFN DETERMINANT $=0$ THERE WILL BE NO FEASIBLE SOLUTIUN DETERM＝DETERNINANT OF E＇（OMI）E
AMU AND AL．AM ARE LAGRANGE MULTIPLIERS
N IS THE CURRFNT NUMRER OF SHARES＋INDEX BEING PROCESSFD M IS THE ORIGINAL NUMRFR DF SHARFS＋INDEX
DIMENSIUN $B(M), C D U A R(M), A(M), X(M)$ ，IHUL (M) ，TITLES $(M, 24)$
CONMON／SUM／SUMA，SUMB，SUMC，SUMD，SUNE
SUMA，SUNA，SUMC，SUMD，SUME $=0$ ．
DC $1 \mathrm{I}=1, \mathrm{~N}-1$
IROL $(I)=I$
SUMA $=$ SUMA + CQUART（I）
STMM $=$ SUNB + COUAR（I $) * B(I)$
$S U N C=S U H C+C O U A B(I) * R(I) * B(I)$
SUMD $=$ SUMD + COVAR（I）＊A（I）
$1 S U M E=S(M E+C D V A R(I) * A(I) * E(I)$
SUMC＝SUNC＋COUAR（N）
$S T M D=S I M D-1$ ．
$S U M E=S T M E-C O V A R(N) * A(N)$
ENTPY RESOLUF（ $B, C \cap U A R, A, X, M, N)$
INVERTING E＇（OM1）E
DETFPN＝SLIVC＊SUMA－SLMB＊SUMB
AMII＝（SUNA＊SUNE－SUNH＊SUND）／DETFFM
ALAM $=(S U N C * S U M D-S U M E * S U M B) / D E T E F M$
DO ？ $\mathrm{I}=1, \mathrm{~N}-1$
$2 X(I)=C O \cup A R(I) *(A(I)-(A L A M+A M U * B(I)))$
CALL REDUCE（COUAR，IROL，$X, B, A, M, N, A L P H A, T I T L E S)$
RETURN
END

SUBRDUTINE RFDUCE（CDUAR，IROV， $\mathrm{X}, \mathrm{B}, \mathrm{A}, \mathrm{M}, \mathrm{N}, \mathrm{ALPHA}, \mathrm{TI}$ TLES
SUBROUTINE REDUCFS MATRIX PROBLEN．
IROV IS THE SHARF IDENTIFICATION VECTOR
DIMENSIUN CQUAR $(M), A(M), B(M), X(N)$ ，IRDV（M），TITLES（M，24）
COMMON／SUM／SUMA，SUMR，SUMC，SUMD，SUHE
$J=1$
DO $3 \mathrm{I}=1, \mathrm{~N}-1$
TEST FOP POSITIVITY
IF（X（I）－GT•0．）GO TO ？
AMMENDVENT OF VECTOR STURAGE：
SUMA＝SUNA－COUAR（I）
SUNR＝SUMB－COVAR（I）＊R（I）
$\operatorname{SUMC}=\operatorname{SUMC}-\operatorname{COUAR}(I) * B(I) * B(I)$
SUMD $=$ SUMD－CDVAR（I）$* \Delta(I)$
$\operatorname{SUME} E \operatorname{SUN} E-C O U A R(I) * A(I) * B(I)$
WRITE（2，1）IROT（I）
1 FQRMAT（ $1 H 0$, ＇SHATRE（＇，I ？， $4 H)=0 \neq$ ）
REARRANGFMFNT OF UECTOR STORAGE
2 IROW $(J)=I$ ROW（I）
$\operatorname{COVAR}(J)=\operatorname{COVAR}(I)$
$A(J)=A(I)$
$B(J)=B(I)$
3 IF（X（I）．GT．0．）$J=J+1$
IROW（J）＝IROV（N）
$A(J)=A(N)$
COUAR $(J)=$ COVAR（N）
J IS NTVDFR GF POSITIUE $\because, C+1$
IF（J．NE，N）CALL RESOLVF（E，COVAR，A，X，M，J）
IF TRUE SOVF $X^{*} S$ NECATIUE
IF FAI．CE FINAL SULUTIUN FUTND
SUN：A, SUN $B=0$ ．
กロ $\in T=1, j-1$
$\mathrm{SUMA}=\mathrm{St} A+\mathrm{A}(I) *(A(I)+A(N) * B(I))$

STMP $=$ STMR $*$ ALPFA
STMB $=$ STN A－STNB
STMA＝THF FXPFCTFD RATE OF RETURN
STV：2＝THE UTIL．ITY
DП $4 \because=1, \mathrm{~N}=$ ？
D1） $4 \mathrm{I}=1+\mathrm{F}, \mathrm{J}-1$
LOOPS QRDFRS＞（I）INTO DFSCENDING 日RDER
IF（X（I）•1．F．※（K））GU TU $\&$
SGUP $=X(I)$
$X(I)=X(F)$
$\gamma(K)=5$ S．7P
ISWDP＝ITJV（I）
IRUF（I）$=1$ ROK（K）
ITOW（K）$=$ IStOP
4 CONTINTF
W\＃ITF（？，5）（IP）：（I），X（I），$I=1, J-1)$

एRITF（？，7）STJMA，STMT？
7 FU：GAT（1म日，＇THF EXPFCTFT 13ATE 日F BETUFN＝，？PF5•？，$\%$ ，，
－140，＇T：H ITIT．TY＝，BFF9．（1／）
WにITE（2，8）
R FOENAT（11：0，＂HFY TG SHARF NANF：：＊）
D0］ $9 \mathrm{I}=1, \mathrm{M}-1$
9 トRITF（？，10）I，（TITLFく $(I+1, \pm), J=1, ? ム)$
10 FITAMT（1H0，＇SHAKF（ $, 1 \Omega, 2: \%)=, ? \angle A 3)$
STOP 01
RFTUAN
KNI

OUTPUT OF PROGRAMME 2

SHARE INVESTMENT PROGRAM USING THE SHARPE DIAGONAL MODEL

1	$1 \quad \wedge(:)$	$8(1)$	MEAN RFTURN	COVAR(I)	
1	$10.694054 \mathrm{E}-09$	-0.1504885-03	$0.661518 E-02$	0.803934 E	02
2	$<\quad 0.107252 \mathrm{E} 00$	- - , 227098E-03	0.124971 E-09	0.110133 E	03
3	30.219523 E 00	-0,531632E-03	-0.229644E-02	0.868599 E	01
4	40.127470 E 00	-0.311202E-03	-0.237666E-02	0.501816 E	02
5	$5 \quad-0.876904 E=01$	$0.210697 E-03$	$0.215526 E-03$	0.653044 E	02
6	$6.0 .450491 \mathrm{E}=01$	-0.936767E-04	$0.596316 E-02$	0.875115 E	02
	$10.218488 \mathrm{E}-\mathrm{v} 1$	-U. $276982 \mathrm{E}-04$	$0.102919 \mathrm{E}=01$	0.126842 E	03
8	$8 \quad 0.886852 \mathrm{E}-01$	-0.207814E-03	$0.197699 \mathrm{E}-02$	0.770482 E	02
	$9 \quad 0.886291 \mathrm{E}=01$	-U. $179205 \mathrm{E}-03$	$0.138569 \mathrm{E}=01$	0.891967 E	02
10	$0 \quad 0.341444 \mathrm{E}=01$	-0.364874E-04	-0.194187E-02	0.112854 E	03
SHARPE DIAGONAL MODEL PROBLEM					
THE NUMBER OF SHARES 10					
THE RATE OF CHANGE OF MARGINAL UTIIITV $=1.0$					
THE NUMEER OF PERIODS 36					
THE DATA USED FUR THE YEAR 1968 TO 70					
SHARE (3) $=0 \%$					
SHARE (4) $=0 \%$					
SHARE (5) $=0 \%$					
SHARE (8) $=0 \%$					
SHARE (10) $=0 \%$					
SHARE (1) $=0 \%$					
SHARE (6) $=0 \%$					
SHARE $(9)=43.36 \%$					
SHARE (2) $=37.94 \%$					
SHARE (7) $=18.70 \%$					
THE EXPECTED RATE OF RETURN= 1.27%.					
THED UTILITY $=0.0078$					
KEY TO SHARE HAMES:-					
SHARE (1) = 'GLAXU GRUUP'					
SHARE (2) = 'HOOVER LTi.'					
SHARE (3) $=$ 'BRITISH MOTUR'					
SHARE (4) = DIHNLUP CU.'					
SHARE (5) $=$ 'BRITISH PETROLEUI'					
SHARE $(6)=$ DISTILLERS					
SHARE $(7)=$ 'GUTNESS (AFTHER)SON \& CO.LTD.'					
SHARE (8) = 'IHPERIAL CHEHICAL INDUETRTFS ITD.'					
$\operatorname{SHARE}(9)=$ 'MARKS \& SPENCERS'					
SHARE (10) = 'BRITISH INSULATED CALIFNDER CABLES'					

PROGRAMME NUMBER 3

```
    MASTER CORRFLAATION
    INTEGER T, C
    DIMENSIGN P(310),X(310),XDASH(310), R(310), B(24)
    1 FEAD (1,2,NNI=12)(F(I),I=1,24)
    2 FO:NNAT(24A3)
    RFAD(1,3)N, (P(T),T=1,307)
    3 FOPNAT(I3,10F0.0)
    VTE(2,4)(B(I),I=1,24)
    4 FOPIVAT(24A3)
    SUMA, SUMS, SUNC=0 -
    XBA:Q = P(N N ) P(1))/(N-1)
    DO 5 T=2,N
    \ XDASH(T)=F(T)-F(T-1)-XBAR
    DO }8\textrm{S}=1,\textrm{N}-
    IO 6 T=1,N-1
    IF(T+S.GT.N-1)GO TO 7
    SUNA= SUNA+XDASH(T)* XDASH (T+S)
    6 SUMP=SUNP + XDASH(T)*XDASH(T)
    7 R(S)=SUNA/SUT隹
    8 SUNC=SUNC+R(S)
        RRAR=SUNC/(N-2)
        HRITE(2,9)(S, (S),S=2,305)
    9 FORNAT (/A(1X,2H=(,I3,2H)=,F7.3))
    V:ITE (2,10)(S,R(S),S=306,307)
10 FORNAT (\Omega(1X,2HR(,I 3, 2H)=,F7.3))
    VBITE(2,11)ENAR
11 FORMAT (1H0,'AVEFAGE VALUE OF CORRFLATION=',F17.8/)
    G0 TO 1
12 CONTINUE
    STOP
    END
    FINISH
```

PROGRAMME NUMBER 4

```
        NASIEA DISTAIDUTIUN
        DI&ENSIUN:(400),((400),I(6400)
        HFAD(i,1)N
    1 FulmMAT(13)
        HFAD(1,2)(:(I),I=1,N)
    2 FUn:AT(10F0.0)
        D]) }3\quadj=1,N-
        ((U) =z(U) +1)/:(J)-1.
    3 (J) =ALJG(:(J+1))/ALJG(F}(J))-1
        W.ITE (2,4)(I,P(I),C(I),:(I),I=1,N)
    4 FURNAT(1H0,8K,'I',17K,'P(I)',18K,'DFLTA',10K,'DFL,TALDGP'/
    -1H,I3,35:17.8/))
        STUR
        END
        FINISH
```


OUTPUT OF PROGRAMME 3

GARCLAYS'SHARE 1559 , CALCULATION RASED ON DAILY SHARE INDEX

PROGRAMME NUMBER 5

```
    MASTER FILTER METHUD
    REAL INDEX
    INTEGER DAY, UP, DOWN, SAME
    DIMENSIUN INDEX(1000),PROF (10,10),ITRAN(10,10),A(10),B(24)
    DATA A(1)/3H /,A(2)/3H /,A(3)/3H /,A(4)/1HR/,A(5)/1HI/,
    1A(6)/3HS %/,A(7)/1HE/,A(8)/1HS/,A(9)/3H /,A(10)/3H /
    1 FEAD(1,2,END=20)(E(I),I=1,24)
    2 FORMAT(24A3)
    SAME, UP, DUNN=0
    READ (1,3)N
    3 FORNAT(I3)
    READ(1,4)(INDEX(J), J=1,N)
4 \mp@code { F O N N A T ( 1 0 F 0 . 0 ) }
    DC 9 I =1,10
    FALL=1/100.0
    DU 9 J=1,10
    RI SE=J/100•0
    I TRANT=1.
    UEST=100.0
    DAY=1.
    BPRICE=INDEX(1)
5 \mp@code { D A Y = D A Y ~ + ~ 1 . }
    IF(DAY.GT.(N-1))GO TO 7
    IF(INDEX(DAY).LT•(1•0+RISE)*EPRICE)GO TO 5
    I TRANT=I TKANT+1
    SPRICE=INDEX(DAY)
    UEST=UEST*SPIICE/BPRICE
6 ~ D A Y = D A Y + 1 . ~
    IF(DAI\cdotGT•(N-1))GO TO 8
    IF(INDEX(DAY).GT•(1.0-FALL)*SPRICE)GO TG }
    BPRICE=INDEK(DAY)
    G0 T0 5
7 UEST=UEST*INDFX(N)/EPRI CE
    I TRANT = I TRANT + 1
8 PROF (I,J)=UEST-100.0
    ITRAN(I, J)=ITR.ANT
9 CONTINUE
    WRITE(2,10)(E(I),I=1,24)
10 FONVAT(1H0,24A3)
    DU 14 j=1,N-1
    IF(INDEX(J+1)-INDEK(J)) 11,12,13
11 DU#N=DONN+1
    GO TU 14
12 SAME=SANE+1
    Gu T] 14
13UP=UPP+1
1 4 \text { CINNTINUF}
    #HITE(2,15)UF,DU#N,SAME
-15 FUHMAT(1H0,12%,'SHANE STATISTICS'/1H0,12X,'RISES=',I3/1H0,
    -12%,'FALLS=',I3/1110,12K,'NU C4ANGE=',I 3)
    WRITE(2,16)
16 FURMAT(1H0,37K,'PRUFIT ACHIEVED'/1H0,44K,'&'/1H0,38K,
    -'THANSACTIONS',///1H0,41X,'FALLSZ')
    VHITE(2,17)(I,I=1,10)
17 FOH.NAT(1:10,7%,10(12,6K))
        DU 18 J=1,10
18 WRITF(2,19)(PRDF(I,J),I=1,10),A(J),J,(ITRAN(I,J),I=1,10)
```



```
        G] TO 5
20 CuNTINUE
        STITP
        END
        FINISH

\section*{OUTPUT OF PROGRAMME 5}

\section*{'DISTILLERS'SHARE 1968 , CALCULATION BASED ON DAILY SHARE INDEX SHARE STATISTICS \\ RISES \(=10 \mathrm{~L}\) \\ FALLS \(=111\) \\ NO CHANGE: 91}

\section*{PROFIT ACHIEVED}

\section*{YRANSACTIONS}


\section*{PROGRAMME NUMBER 6}
\[
\cdot
\]
        Master fate
        DIMFNSION \(X(51,12), Y \operatorname{SUN}(51), \mathrm{YPAR}(51), Y \operatorname{SU}: \mathrm{Sin}^{(51,51)}\),
        - COVNR(51,51), RATER(51,1?),SI (wiA(51)
        \(\mathrm{V}=1\) ?
        \(\mathrm{N}=51\)
        KRITE ( 2,1 )
    1 FOENAT (1H1,15 , 'RATE DF RETURN OF SECURITIES AND FTI'/1H0,17X,
        - 'data fon 1960,69 and 70 Compined')
        DO \(2 \mathrm{~J}=1, \mathrm{M}\)
    2. \(\operatorname{READ}(1,3)(X(I, J), I=1, N)\)
    3 FUNMAT (51(8F0.0,1X),FG.2)
        DO \(6 \mathrm{~J}=\) ? , M
        DO \(4 \mathrm{I}=1, \mathrm{~N}\)
    4 RATER \((I, J-1)=(X(I, J)-Y(I, J-1)) / X(I, J-1)\)
        WRITE (2,5) (PATER(I,J-!) , I=1,N )
    5 FORMAT (1H0/(1H0,8F8.4ノ))
    6 CDNTINUE
        VRITE 2,7 )
    7 FOFMAT ( \(1 \mathrm{HI}, 21 \mathrm{X}\), 'DATA FGR 1968,69 AND 70 COMBINED')
        DO \(8 \mathrm{~J}=1\), i
    8 WFITE \((2,9)(X(I, J), I=1, N)\)
    9 FUNNAT (1H0,RF8.4,/(1H, \(853.4 /))\)
        WRITE \((?, 7)\)
        DO \(11 \mathrm{I}=1, \mathrm{~N}\)
        DO \(10 \mathrm{~J}=1, \mathrm{~V}-1\)
        X \((i, j)=\) RATER \((i, j)\)
\(10 \operatorname{xsum}(I)=\sin (I)+X(I, J)\)
    \(\mathrm{XBAR}(\mathrm{I})=\mathrm{XSU}(\mathrm{I}) /(\mathrm{M}-1)\)
    11 UPITE(2,12)I, XBAR(I)
12 FORNAT ( \(1: 10,10 X, 33\) HYEAN RATE OF RETURN OF SECURITY \((, I ?, 4: f)=\),
    -F7.4)
        WITE(2,15)
        DO \(16 \mathrm{~K}=1, \mathrm{~N}\)
        DO \(14 \mathrm{I}=\mathrm{K}, \mathrm{N}\)
        DO \(13 \mathrm{~J}=1, \mathrm{~K}-1\)
    13 XSUNSn \((I, K)=\because \operatorname{SinSn}(I, K)+X(K, I) * X(I, J)\)
    \(\operatorname{COVAR}(1, K)=X \operatorname{SUM} \cap(I, K) /(N-2)-X R A R(K) * X R A R(I) *(N-1) /(K-2)\)
    14 COVAR \((: S, I)=\operatorname{COVAR}(I, K)\)
15 FORNAT ( \(1: \% 0\), CGUARIANCE NATRIX C(I,J) FUN 1968,69 , AND 70 CONTINED'

16 UITF \((?, 17)(\operatorname{COVAS}(I, K), I=1, N)\)
17 Fロ:nvinc (1:0/ (1:00, RFR.4/))
    WRITE \((2,7)\)
    DO \(18 \mathrm{I}=1,50\)
    SI (i* \(\Delta(I)=((N-1) * \operatorname{CDVAS}(I, I)-(((N-1) * \operatorname{CDVAR}(N, I)) * * 2) /((N-1) *\)
    -Civa? ( N, N) ) \(/\left(\begin{array}{l}\mathrm{N}-\mathrm{P}) \\ \hline\end{array}\right.\)
18 Kite (?,19)I, Si (Mn(I)
19 FURNAT ( \(1 \pi 0,1 A K, 33 \because U \cap\) RIANCE ABOUT THE REGRESSION LINE , I?, \(5 \%\),
    - F8.4)
        STO?
        END
        FINISH:
****

\section*{OUTPUT OF PROGRAMME 6}

DATA FOR 1968,69 AND 70 COMBINED
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MEAN & Rate & N & 0 F & SECURITY & ( 1) & & -0.0035 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & 2) & & 0324 \\
\hline MEAN & RATE OF & RETURN & DF & SECURITY & 3) & & 70 \\
\hline MEAN & RATE OF & RETUR & OF & SECUR & 4) & & 0 \\
\hline MEAN & RATE OF & RETUR & OF & SE & 5) & & \\
\hline MEAN & RATE OF & & OF & & 6) & & \\
\hline ME & Rate of & RETURN & OF & SECURITY & 7) & & \\
\hline EAN & RATE OF & RETURN & OF & SECURITY & 8) & & -0.0043 \\
\hline MEAN & RATE DF & RETURN & OF & SECURIT & 9) & & 62 \\
\hline MEAN & RATE OF & R & OF & SECUR & (10) & & 36 \\
\hline MEAN & RATE OF & RETUR & OF & SECURIT & (11) & & 14 \\
\hline MEAN & RATE OF & & OF & & & & \\
\hline MEAN & RATE OF & RE & OF & SECURITY & (13) & & 3 \\
\hline M & RATE OF & RETURN & OF & SECURITY & (14) & & -0.0207 \\
\hline MEAN & RATE OF & RETURN & DF & SECURITY & (15) & & -0.0067 \\
\hline M & RATE OF & RETUR & OF & SECURI T & (16) & & 8 \\
\hline MEAN & Rate OF & RETUR & OF & SECUR & (17) & & 7 \\
\hline M & RATE OF & RETURN & OF & SE & ) & & 0 \\
\hline MEAN & RATE OF & RETURN & QF & SECUR & (19) & & 0.0073 \\
\hline M & RATE OF & RETURN & OF & SECURITY & (20) & & 0.0056 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (21) & & 0.0285 \\
\hline M & RATE OF & RETUR & OF & SECURIT & (22) & & 2 \\
\hline M & R & R & OF & SECu & (23) & & 2 \\
\hline MEAN & R. & RETURN & OF & SECUR & 24) & & 0.0401 \\
\hline M & RATE OF & RETURN & OF & SECURITY & (25) & & -0.0048 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (26) & & -0.0133 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (27) & & 0.0033 \\
\hline ME & RATE OF & RETURN & OF & SECURITY & (28) & & -0.0109 \\
\hline M & RATE OF & RE & OF & SECU & ) & & 8 \\
\hline MEAN & RATE OF & R & OF & SECUR & ) & & -0.0438 \\
\hline M & RATE OF & RETURN & OF & SECURITY & (31) & & 9 \\
\hline ME & RATE OF & RETURN & OF & SECURITY & (32) & & 0.0092 \\
\hline ME & RATE OF & RETURN & OF & SECURITY & (33) & & 0.0325 \\
\hline Mi & RATE OF & RETURN & OF & SECURITY & (34) & & -0.0015 \\
\hline M & RATE OF & RE & OF & SECU & (35) & & 4 \\
\hline & RATE OF & RETUR & OF & SECUR & (36) & & -0.0339 \\
\hline & RATE OF & RETURN & OF & SECURITY & (37) & & 0.0287 \\
\hline ME & RATE OF & RETURN & OF & SECURITY & (38) & & 0.0035 \\
\hline MEAN & RATE DF & RETURN & OF & SECURITY & (39) & \(=\) & -0.0261 \\
\hline ME & RATE OF & RETURN & DF & SECURITY & (40) & & -0.0207 \\
\hline M & RATE OF & RETURN & OF & SECURITY & (41) & & 0.0213 \\
\hline & RATE OF & RETUR & OF & SECURITY & (42) & & 0.0051 \\
\hline MEAN & RATE OF & geturn & OF & SECURITY & (43) & & 0.0189 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (44) & & 0.0309 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (45) & \(=\) & -0.0146 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (46) & \(=\) & 0.0467 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (47) & \(=\) & -0.0122 \\
\hline MEAN & RATE OF & RETURN & DF & SECURITY & (48) & & -0.0262 \\
\hline MEAN & RATE OF & RETURN & UF & SECURITY & (49) & & -0.0321 \\
\hline MEAN & RATE OF & RETURN & OF & SECURITY & (50) & & -0.0460 \\
\hline MEAN & RATE OF & RE & OF & SE & (51) & & 1 \\
\hline
\end{tabular}

\section*{OUTPUT OF PROGRAMME 6 (contd)}

\section*{DATA FOR 1968,69 AND 70 COMBINED}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ARIANCE & ABOUT THE & REGRESSION & LINE & 1 & 0.0051 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 2 & 0.0092 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 3 & 0.0073 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 4 & 0.0198 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 5 & 0.0284 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 6 & 0.0203 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 7 & 0.0166 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 8 & 0.0156 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 9 & 0.0145 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 10 & 0.0073 \\
\hline VARIANCE & ABDUT THE & REGRESSIUN & LINE & 11 & 0.0074 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 12 & 0.0157 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 13 & 0.0148 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 14 & 0.0048 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 15 & 0.0449 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 16 & 0.0223 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 17 & 0.0111 \\
\hline VARIANCE & ABDUT THE & REGRESSION & LINE & 18 & 0.0144 \\
\hline VARIANLE & ABOUT THE & REGRESSION & LINE & 19 & 0.0167 \\
\hline VARIANUE & ABDUT THE & REGRESSION & LINE & 20 & 0.0166 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 21 & 0.0035 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 22 & 0.0026 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 23 & 0.0030 \\
\hline VARIANCE & \(\triangle B O U T\) THE & REGRESSION & LINE & 24 & 0.0237 \\
\hline VARIANCE & ABDUT THE & REGRESSION & LINE & 25 & 0.0050 \\
\hline VARIANCE & ABOUT THE & REGRESS IUN & LINE & 26 & 0.0088 \\
\hline VARIANCE & ABCUT THE & REGRESS ION & LINE & 27 & 0.0233 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 28 & 0.0672 \\
\hline VARIANCE & ABLUT THE & REGRESSIUN & LINE & 29 & 0.0461 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 30 & 0.0332 \\
\hline VARIANCE & ABQUT THE & REGRESSION & LINE & 31 & 0.0158 \\
\hline VARIANCE & ABCUT THE & REGRESS ION & LINE & 32 & 0.0096 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 33 & 0.0021 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 34 & 0.0181 \\
\hline VARIANCE & ABDUT THE & REGRESS ION & LINE & 35 & 0.0253 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 36 & 0.0385 \\
\hline UARIANCE & ABOUT THE & REGRESSIUN & LINE & 37 & 0.0381 \\
\hline VARIANCE & ABCUT THE & REGRESS IUN & LINE & 38 & 0.0166 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 39 & 0.0148 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 40 & 0.0048 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 41 & 0.0122 \\
\hline VAPIANCE & ABOUT THE & REGRESSIUN & LINE & 42 & 0.0119 \\
\hline VARIANCE & ABCUT THE & REGRESSIUN & LINE & 43 & 0.0052 \\
\hline VARIANCE & ABCUT THE & REGRESSIUN & L.INE & 44 & 0.0091 \\
\hline VARIANCE & ABDUT THE & REGRESSIUN & LINE & 45 & 0.0096 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 46 & 0.0106 \\
\hline UARIANCE & ABOUT THE & REGRESS ION & LINE & 47 & 0.0036 \\
\hline VARIANCE & ABOUT THE & REGRESSIUN & LINE & 48 & 0.0050 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 49 & 0.0318 \\
\hline VARIANCE & ABOUT THE & REGRESSION & LINE & 50 & 0.0193 \\
\hline
\end{tabular}

\section*{PROGRAMME NUMBER 7}

Ni）tpacf
vistria vontremahoo
PIAL MAX NNIN

－ANUFSTX（50），ANYHSTY（Sn），AICX（5n），AIGY（50），ALX（5n），ALY Y（50），

PFAT \((1,1)(A(1), 1=1,50),(H(\nu), J=1,50),(S T G M A F T(K), K=1,50)\)
1 Finasat（10F0．0）
RFALC（1，1）StGMAF
TPI＝R．＊ATAN（1．）
FTIT0 \(=231.1\)
FTI71＝423．1R
XRAR \(=-01589\)
\(\mathrm{COV}=.0 \mathrm{CR} 5\)
STRE \(A \mathrm{~A}=0.7\)
\(\mathrm{N}=50\)
DO）in \(\mathrm{NI}=1,1000\)
\(\mathrm{R}=\) FFN ORL（ \(\triangle\) TAFAN）
\(\mathrm{l}=\operatorname{SORT}(-2.0 * \mathrm{Al} . \mathrm{OC}(\mathrm{B}))\)
\(T=T P I *(R)\)
\(x_{1}=11 * S 1 N(T)\)
\(\mathrm{Y}_{1}=1 \cdot \operatorname{Cos}(\mathrm{~T})\)
FTIFX＝FTIT1＋SIGNAF＊（X1）
FTIPY＝1TI71＋SIGNAF×（Y1）
品TIFY＝（FT1FY－FT17D）／FT170
AFTIPY＝（FTIFY－FT170）／FTI70
MAXY \(=-1.0\)
NAXY \(=-1.0\)
\(\operatorname{MINX}=1.0\)
\(\mathrm{NINY}=1.0\)
DO \(9 \mathrm{I}=1,50\)
\(Y X(I)=f(I)+F R(I)=A F T I P X\)
\(Y Y(I)=A(I)+\pi(I)=P F T I P Y\)
\(\mathrm{R}=\mathrm{FFNCPL}(S T P F A N)\)
\(\mathrm{v}=\mathrm{SCRT}(-2 \cdot 0 \times \mathrm{AL}\) OG（R））
\(T=T P I *\)（ \(?\) ）
\(\mathrm{x}_{1}=\mathrm{U} * \operatorname{SIN}(\tau)\)
\(Y 1=\mathrm{U} * \cos (T)\)

\(-((\mathrm{N}-1) *(O \mathrm{C})))\)
SIGNAY \((1)=\) SCRT \((S I G Y A P T(I)=(1+1.0 / F L D A T(N)+((R F T I F Y-X B A R) * * 2) /\)

\(X_{1}=S I C N A X(I) *\left(X_{1}\right)\)
\(Y 1=S I G N A Y(I) *(Y 1)\)
\(Y X(I)=Y X(I)+X 1\)
\(Y Y(I)=Y Y(I)+Y!\)
IF（YX（I）－NAXY）2，3，3
2 IF \((Y X(1)-N I N X) 4,4,5\)
3 NAYY＝YY（I）
\(J \mathrm{X}=1\)
GO 702
A \(V I W Y=Y Y(1)\)
\(K X=1\)
5 IF（YY（I）－VAXY）A，7，7
6 IF（YY（I）－NINY）\(a_{n} R, q\)
7 K K ．\(Y\)＝YY（I）
\(J \gamma=1\)
GI TO 6
8 VINY＝YY（I）
\(r Y=1\)
9 COR：TIM：
\(\operatorname{tax}(\lambda x)=t \operatorname{tax}(J x)+1\)
L．\(X(Y Y)=[. X(Y X)+1\)
\(\operatorname{IGY}(\sqrt{\prime})=\operatorname{ICY}(\omega Y)+1\)
t．Y（FY）\(=1 . Y(\) YY \()+1\)
10 Cantt：uF
\(k=17 F(?, 11)\)

M13 \(\mathrm{I}=1\) ， 50


\(A \mathrm{CF}(1)=1 \mathrm{CK}(\mathrm{t}) / 10 \mathrm{n} \boldsymbol{0}\) •


\(A 1 . Y(t)=1, \gamma(t) / 1\) nn 0 －
AtVESTY（I）＝A！\(t, X(!)=(1-A 1 . \times(I))\)
ANUFくTY（！）＝AICY（！）＝（1－N1Y（！））
T1TY＝TいTX＋f：NUF：TK（t）
13 T0TY＝7ワTY＊R：NVFSTY（！）
此17（ \(3,1 /\) ）
 1Tth：TF（\％）1ct\％）
10 15 \(\mathrm{I}=1,50\)

の：VF：TY（！）山ハ：1F「Ti（I）／T．1TY

 \(-\boldsymbol{p}^{\prime}(1)\)

STH：
rNi：
r1t15 S1

\section*{OUTPUT OF PROGRAMME 7}


1) ALEXANDER,Sidney S.
2) BACHELIER Louis,
3) COEN,P,J., GOMM, E.D. and KENDALL, M.G.
4) Cootner, Paul H.
5) FAMA,E.F.,
6)
7)
8)
9) FARRAR, Donald E.,
10) FOX, L.,
"Price Movements in Speculative Markets: Trends for Random Wa.lks", Industrial Management Review, Vol.2, No.2, May 1961.
"Theory of Speculation", originally published in Annales Scientifiques de \(\ell^{\prime}\) Ecole Norma]e Superieure Sup (3) No. 1018 (1900) English translation by A.J.Boness in Cootner (1964), pp.17-78.

Lagged relationships in Economic Forecasting. Journal of the Royal Statisties Society 1969, pp.133-163.

The Random Character of Stock Market Prices. The MIT Press, Cambridge, Mass:1964.
"Mandelbort and the Stable Paretian Hypothesis", Journal of Business Vol.36(1963) pp. 420-429.
"Portfolio Analysis in a Stable Paretian Market," Management Sciences (January 1965).
"Random Walks in Stock Market Prices". Financial Analysts Journal, Vol.21, No. 5 (September-October 1965), pp.55-59.
"The Behaviour of Stock Market Price", Journal of Business xxxvIII (1965) pp. 34-105.
"The Investment Decision Under Uncertainty," Engle Wood diffs: Prentice-Hall, Inc.,1962.
"An Introduction to Numerical Linear Algebra", Oxford, 1964.
11) KENDALL, G.M.,
12) KING,B.F.,
13) LEVY,R.A.,
14) LINTNER,J ,
15) MANDELBORT, B.,
16) MARKOWITZ,H.M.,
17)
18)
19) MOORE, A.B.,
20) OSBORNE, M.F.M.,
"The Analysis of Economic Times Series Part 1: Prices," Journal of the Royal Statistical Society Volume 96 (1953) pp.11-25.
"Market and Industry Factors in Stock Prices Behaviour", Journal of Business Vol. 39 (1966).
"Statistical Studies of the Stock Market Behaviour", Trans Society Actuaries, (March 1971) pp.D535-D543.
'Security Prices, Risk and Maximal Gains, from Diversification," Journal of Finance. Vol. XX (December, 1965) pp.587-615.
"The variation of Certain Speculative Prices," Journal of Business, Vol. 34 (1963), pp.392-417.
"Portfolio Selection," Journal of Finance, 1952, V11, No.1, pp.77-91.
"Portfolio Selection": Efficient Diversification of Investments, New York: JohnWiley \& Sons, Inc., 1959.
"The Optimization of a Quadratic Function subject to linear constraints", Naval. Research Logistic Quarterly Vol.3, No.l \& 2, (March-June, 1956) pp.111-133.
'Some characteristics of changes in common stock prices' (1962) in, Cootner (1964) pp.139-161.
"Browinan Motion in the Stock Market," Operations Research, Volume 7 (195) pp. 145-173.
21)

> "Periodic Structure in the Browninian Motion of Stock Price", Operation Research, Volume 10 (1962) pp. \(345-379\).
22) SHARPE,William F.,
23)

Unpublished Ph.D. Dissertation, June 1961, University of California, Los Angeles - "Portfolio Analysis Based on a Simplified Model of the Relationships Among Securities.
24) TOBIN,J ames.
"Liquidity Preference As Behaviour Towards Risk" Review of Economic Studies, Vol.25, (1957-58), pp.65-86.
Other References
25) The Aston University Application programme number - UAOs, Computer Centre B4TET.
26) Moodies Services Ltd., Moodies Housę 6, 7 and 8, Bonhill Street, London.E.C.7.
27) Monthly Digest of Statistics, Central Statistical Office, Great George Street, LONDON.S.W.IP 3AQ.```

