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Summary 

Typically machine control software is tested using software blocks to replace the 

physical machines. It is often beneficial to further test the controllers and drive 

hardware before using physical systems since unavailability or potential damage cost 

due to failure may make this impractical. The design of a physical machine emulator 

was investigated that ‘pretends’ to be a (single-shaft) machine or machine component. 

In addition to this the ‘test-rig’ was designed to characterise a machine connected to it. 

A set of models could then be compiled and used in isolation or in combination to form 

machines of arbitrary complexity that could be emulated. 

Models suitable to represent machines and components of the test-rig are examined, in 

particular system classification, continuous and discrete-time systems, linear and non- 

linear systems and their behaviour. Control strategies are proposed and theoretical and 

practical performance tests conducted. PID control is employed and implemented using 

a sampled data system incorporating a DSP. Further control strategies such as velocity 

feedback and feedforward are combined where applicable to enhance the test-rig 

control. 

The subject of system identification and parameter estimation is summarised, and the 

relevant methods are applied to identify and parameterise machine structures. Practical 

tests are conducted on physical machines constructed specifically for the purpose of 

characterisation. The design and construction of these machines and the test-rig is 

explained and practical performance tests conducted. 

Indexing terms: rotary machines, characterise, emulate, system identification, parameter 

estimation.
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Operators and Notational Conventions: 

Operators 

E is the expectation operator 

Notation 

e(t) =1) controller error, or 2) disturbance at time ¢ usually white noise (sequence) 

G(q) = “true” transfer function from u to y 

G(q,®) = transfer function from wu to y corresponding to a set of parameters 0 

G) = estimated transfer function (with parameters) 

G,,(q) = estimate of transfer function G(q) based on Z” 

G, =empirical estimate of transfer function G(q) based on Z” 

u(t) = input variable at time ¢ 

v(t) = disturbance variable at time ¢ 

V_— _=loss function 

x(t) =state vector at time t 

x  =1) arithmetic mean, or 2) not x (Boolean algebra) 

y(t) = output variable at time ¢ 

y(t) =predicted output variable at time ¢ 

Z =set of input-output data {u(0), y(0), ..., uN), »(N)} 

e(t,0) = prediction error y(t)— p(t |) 

2 = variance 

9 = 1) angle, where @ and 6 are velocity and acceleration respectively, or 

2) vector used to parameterise models 

6  =estimated parameters 

©  =variance or standard deviation 

ft = probability distribution 

@ = frequency (rads.sec”') 
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CHAPTER 1



1 Introduction 

1.1 Background to the project 

This area of research forms part of a joint project between the Department of 

Mechanical and Electrical Engineering at Aston University (AU) and the Manufacturing 

Systems Integration Research Institute at Loughborough University (LU). The project is 

titled "An Integrated Approach to the design of Control Systems for High-Speed 

Machines", and is funded by the DTI, EPSRC, SHS Ltd., and Cirrus Technologies Ltd., 

as part of the DHSM LINK programme with industry for the Design of High Speed 

Machinery. The project seeks to unify existing work on control system design for high 

performance machinery from the highest level where genericity and reusability are key 

issues to the lowest level where real time performance is paramount. The conjoined 

techniques are to be tested and proven in two specially assembled environments; a 

system emulation in software and system implementation in hardware. The project 

combines work in three areas - software engineering for control systems, simulation and 

emulation of complex dynamic systems and practical dynamic measurements on 

systems. The simulation and emulation aspects will involve characterising time- 

dependant (single-shaft) systems in some (generic) way and then constructing an 

emulator unit which is capable of "pretending" to be, for example four-bar mechanism 

or a slider crank etc. It is this part of the project which the author and this report is 

concerned with. 

1.2 Justification 

What does the "Machine Characterisation / Emulation" hope to achieve? 

1.2.1 In the context of the project 

Tools already exist for testing high level machine control code which replaces "real" 

outputs to drive units and "real" inputs from sensors with software blocks which 

emulate "ideal" manufacturer-supplied units. Moreover the high level machine control 

code can be executed on the target computer, eliminating the problems associated with 

porting software. The purpose of the software emulation would be to carry out initial 

trial concepts inexpensively. If certain control ideas cannot be made to work in the 

emulation, then it is almost certain that they could not be made to work in physical 
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reality. However, if they look workable in the emulation, then there is at least a strong 

possibility that the machine is realisable. This full software emulation allows testing and 

further development of this code to be conducted prior to hardware implementation, but 

there is no guarantee the "ideal" software blocks will behave exactly the same as the 

actual inputs and outputs of the machine. By using a physical machine emulator, these 

actual inputs and outputs will be employed, which may not have "ideal" characteristics 

(see figure 1 below). 

  
  

  
  

        
  

  

  

  

  
  

                    

  

  

High High 
Level Level Software 

Control Control 

ty t+ 
Input / Input / Target IO 
Output Software Output Hard 
Block Block ardware 

ty mt 
Physical Physical Physical 
Machine Machine Load 
Load’ "Load ' Emulator 

Software Emulation Hardware Emulation 

Figure 1.1 Diagrammatical representation of a) Software and b) Hardware Emulation. 

Software emulation is clearly the cheapest test that can be carried out on a proposed 

machine design. Potentially, it is limited in accuracy only by the in-exactness of models 

for the various machine "components". Many machine components can be modelled 

very accurately within the majority of contexts, but some components have not been 

modelled in any detail and occasions arise when familiar components are used in an 

unconventional context that might be outside the normal range for which the models are 

accurate. Under these conditions it may be desirable to 'characterise' the machine, which 

will result in a much more accurate representation. The fact that no software product is 

ever either completely finished or completely bug-free also raises the possibility that a 

machine design might appear to work in the emulation which could not work in reality. 

Thus, there is inevitably a need to "prototype" the proposed machine as closely as 

possible. The "hardware" prototyping would be used as a proof of concept stage.



1.2.2 Other application areas 

The Machine Emulator is expected to have uses outside the area of system 

development. It is predicted to have the ability to emulate a wide range of machines 

with a high bandwidth capability, including machines of an arbitrary description. This is 

a potentially useful tool for testing motor / drive pairs. During motor and drive 

development, various input demands are applied, and the corresponding mechanical 

response measured into a steady or varying machine, typically a dynamometer or 

induction brake providing an opposing torque. Another test is to apply a constant 

demand, and observe the motor/drive's ability to respond to changes in the machine. The 

machine emulator will be able to source as well as sink mechanical energy, which is not 

possible from a dynamometer or induction brake, and will also have a higher 

bandwidth. 

1.3 The representation of Machines 

The largest outcome of a previous project at Aston entitled Design and Application 

Methodologies for Multi-Axis High-Speed Machines with Independent Drives was a 

bundle of software called the Design Methodology Suite. This software allows a model 

of a dynamic system to be incrementally assembled and contains tools for synthesis and 

analysis of the system. It is claimed a whole-system simulation using this software is the 

most harsh test which can be carried out without prototyping in hardware. This software 

is now under further development (S.D Garvey 1996) in the context of this project, 

where dynamic models are to be used real-time in conjunction with LU's control 

software package. A generic simulation structure has been adopted where instances of 

machine (and motor / drive) classes can be used to build up an accurate system model. 

The type of machines which will be of greatest interest to this project will be heavily 

cyclic, time dependant linear / nearly linear. The machines will also be processed off- 

line, and this will be discussed in more detail later. 
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2 Literature Survey 

This chapter is split into two sections. The first is an overview of similar work in this 

area, and the second is an overview of System Identification and Parameter Estimation. 

2.1 Machine Emulation and Characterisation 
  

There seems to be little published literature on characterisation and emulation per se 

[29], but a significant amount on their constituent parts i.e. dynamic models, system 

identification, discrete real-time systems and mechanical construction issues. Some 

work has been published regarding the use of dynamometers to mimic mechanical 

“loads”, in particular for the use of testing motors, but this has been limited to energy 

dissipation only. The application of dynamic models was investigated in the first 

instance, and then system identification. 

J. Pu et al. (1989) considered modelling and control methods of pneumatic and electric 

drives, with the aim of achieving improved motion control. It was found that in general 

a model based control strategy can enable optimisation of selected performance 

characteristics, provided that an accurate model of the machine is known (or can be 

identified) and can be implemented within the motion controller in a way that can 

account for changing operating conditions. 

Several papers have been published which employ the use of dynamic models (and use 

other methods) to control robot manipulators in the presence of uncertainties such as 

payloads with unknown mass / inertia properties and external disturbances, and also 

take into account mode uncertainty. (J.K. Mills et al. 1989, C.Y. Kuo et al. 1990). C. 

Canudas de Wit et al. (1995) proposed a new dynamic model for control of systems 

with friction which captures most friction phenomena that are of interest for feedback 

control. 

G. Dodds & N. Glover (1995) created a rudimentary motor-load system which is used to 

derive complex models of robotic systems for use in feed forward control. The system 

models the electrical hardware and then the actuator and mechanical transmission 

effects can be determined. Real time filtering and estimation of differential parameters 
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is also discussed for off-line as well as for on-line implementation, but not in much 

detail. 

2.2 System Identification and Parameter Estimation 

System Identification is the evaluation of a system model representing the essential 

aspects of a system and presenting knowledge of that system in a usable form (Eykhoff, 

1974). Parameter Estimation is the derivation of the model parameters. 

The mathematical approaches used in identification are of either the deterministic or 

stochastic type. In the first case the noise is either not acting on the system or it is 

negligible. Stochastic models are models which take into account the noise. A 

deterministic model can be obtained by simply omitting the term corresponding to the 

random input. 

The following sub-sections are derived from current literature and provide an overview 

only. 

2.2.1 Methods of Data Processing 

Since the mid 1960's System Identification and Parameter Estimation has received 

serious interest, mainly due to advances in computers. The three main areas of research 

have been: 

1) Analogue Methods for Continuous-time models, 

2) Digital Methods for Continuous-time models, 

3) Digital Methods for Discrete-time Models. 

It is Discrete-time models which are of most interest to the author, as data will be 

sampled and produced in this way, even though much conceptual analysis will be in 

terms of continuous-time equations. 

There are two approaches to data processing; ‘off-line’ or batch processing approach, 

and ‘on-line’ or recursive approach. In the batch processing case the computational 

operations are carried out on the complete set of data as a whole, in contrast to the 

recursive approach where the parameter estimate is updated continuously while working 
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serially through the data. In general recursive algorithms yield less efficient parameter 

estimates for a given set of time-series data, but have the advantage of inherent on-line 

operation. The method more applicable to this project is batch processing, as the data 

will be processed off-line. 

2.2.2 Linear System Identification 

Mathematical Models 

The main representations of system models, in discrete-time form are: 

State Space Representation 

x(t +1) = Ax(t)+ Bu(t) + w(t) (2.1) 

y(t) = Cx(t) + Du(t) +v(t) (2.2) 

Stochastic Difference Equation 

Dayle) =Vbu(t—i) + nit) (23) 

Generalised Regression Model 

y(t)= Yay(t-i)+ Y bult—i) + nls) 24) 
isl i=0 

Where: u - input variable 

- output variable 

- state vector 

vw, n - noise 

A, B, C,D - matrices of parameters 

aj, bj - parameters 

v - z of the dynamic system 

Na, Nb - upper bound of the past history considered 

Basic Identification Procedures 

The simplest of these methods are deterministic, admit zero mean noise, but cannot 

express the uncertainty of the estimates caused by the noise. Some examples are: 
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+ Approximation of monotonous step responses by tangent method (Strejc, 1958), 

+ Repeated integration of differential equations (Strejc 1958, 1961), 

* Numerical deconvolution (Cuenod & Sage 1967; Sage & Melsa 1971) 

Some identification procedures apply an error cost function but do not assume the 

existence of noise. These tend to have a number of equations set up for identification 

equal to the number of model parameters being sought. It is sufficient then to set the 

partial derivatives with respect to the unknown parameters to zero. Within this category 

are: 

+ The use of orthogonal filters (Lampard 1955; Kitamori 1960), 

* Model adjustment technique (Marsik 1966,1967; Brunner 1961; Balchen & 

Hesgien 1966), 

* Search methods and gradient methods (Eykhoff 1974; Sage & Melsa 1971). 

Stochastic methods are based on the evaluation of a large number of data measured on 

the system, so a computer is necessary. It is assumed that noise is acting on the system 

to be identified, is mostly unknown, but satisfies some statistical properties. An 

increasing amount of information should successively increase the quality of estimates. 

Relations, or iterative formulas used for estimation are called estimators. Because an 

infinite number of samples is not available, the estimates can never reach the true 

values. This means that no solution exists satisfying exactly the selected system model 

for all input / output data sets, but only in the sense of the chosen error cost function. 

The stochastic approaches of identification are categorised according to the error cost 

function chosen for the estimation quality: 

+ Least squares (Streje 1980), 

+ Ordinary least squares (Anderson 1958; Levin 1960; Deutsch 1965), 

+ Weighted least squares (Deutsch 1965), 

+ Markov estimate (Deutsch 1965), 

* Stochastic approximation (Robbins & Monro 1951; Keifer & Wolfowitz 

1952; Blum 1954; Dvoretzky 1965), 

* Kalman-Bucy filtering (Kalman 1960; Kalman & Bucy 1961) 

+ Instrumental variable method (Kendal & Stuart 1961; Young 1970), 
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* Generalised least squares (Eykhoff 1967; Clarke 1967; Hastings-James & 

Sage 1969), 

+ Extended least squares (Panuska, 1968; Young 1972), 

+ Square-root filtering (Kaminski 1971; Peterka 1975; Karny 1976), 

* Maximum liklihood estimation (Anderson 1958; Deutsch 1965; Sage & Melsa 

1971; Astrom 1979), 

+ Baye's estimation (Ho & Lee 1964; Peterka 1976, 1978). 

2.2.3 Non-linear System Identification 

Mathematical Models 

Non-linear models can be thought of as linear models, but with unknown parameters in 

terms of difference equation coefficients. Simplifications can be made through various 

assumptions, and the state-space representation can be used. In this case the state vector 

x(t) is extended by the parameter 0(t) so that the new state vector is: 

E(n)= [22] 
Ht) (2.5) 

Basic Identification Procedures 

The most important methods are: 

* Gradient Techniques (Sage 1968; Bryson & Ho 1969; Bekey & Karplus 1968), 

* Stochastic Approximation (Robbins & Monro 1951; Keifer & Wolfowitz 1952; 

Blum 1954; Dvoretzky 1956), 

* Quazilinearization ((Henrici 1962; Kumar & Sridhar 1964; Bellman & Kalaba 

1965; Detchmendy & Sridhar 1965; Sage & Burt 1965; Sage & Smith 1966), 

+ Difference Approximation, 

+ Non-linear Filtering (Sage & Melsa 1971; Jazwinski 1970), 

+ Invariant imbedding (Sage & Melsa 1971). 
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2.2.4 Classification of Estimation Methods 

The following section has mainly been extracted from "Parameter Estimation for 

Continuous-Time Models - A Survey" (Young 1981). 

Output Error (OE) Methods 

Here, the parameters are chosen so that they minimise the error between the model 

output, denoted by ¥, and the observed output y, i.e. e(t) = y(t) - 9 (t). A system model 

can be represented as a state-space polynomial matrix description of the form: 

A(s)x(t) = B(s)u(t) G)} 

y(t) = x(t) + 6) (ii) } (2.6) 

or substituting (ii) into (i): 

y(t) = G(s)u(t)+ E(t) (2.7) 

where G(s)= A”'(s)B(s) is the transfer function, A(s) and B(s) are appropriately 

dimensioned coefficient matrices (s = d / dt), €(t) is the combined effect of the input 

and output disturbances at the output of the system, x(t) is the hypothetical 'noise-free' 

input, and y(f) is the output. 

In a SISO case of equation (2.6), the error can be defined as: 

B 
e(t) = W(t)- u(t) 

A (2.8) 

where B and A are the estimates of B(s) and A(S) respectively. See figure 2.1a. 

Equation Error (EE) Methods 

The EE approach derives from an analogy with static regression analysis and linear least 

squares estimation. Here the error function is generated directly from the input-output 

equations of the model. Referring to equation (2.6), e(t) is defined as: 
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e(t) = Ay(t)— Bu(t) (2.9) 

as illustrated in figure 2.1b. 

An alternative 'generalised equation error’ (GEE) can be defined to avoid problems that 

arise from the differentiation of a possible noisy signal. Here the input and output 

signals are passed through a state variable filter, denoted by F(s) in figure 2.1c. 

Prediction Error (PE) Methods 

As in the OE case, the error is defined as e(t) = y(t)— (t), but }(t) is defined as 

some ‘best prediction’ of y(t) given the current estimates of the parameters which 

characterise the system and the noise models. j(t) is the conditional mean of y(t) 

given all current and past information on the system. In a SISO case of equation (2.6), 

the error can be defined as: 

5PO-anO| D==| y@)-—ut) e(t) = y( Te ean 

as illustrated in figure 2.1d. 

Other arrangements are possible, for example, the PE approach within an EE context. 

The SISO case of this would be formulated: 

Cris, toe 
=a [A —B et) = 7 Avo Bu] it, 

which is shown in figure 2. le. 

In general, the PE method is more complex than the OE and EE equivalents since the 

concurrent estimation of the noise model parameters is required. 
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Other Methods 

The Maximum Likelihood (ML) method is a special case of PE, where the formulation 

of the error function is restricted by the additional assumption that the stochastic 

disturbances to the system have specified amplitude probability distribution functions. 
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The Bayesian (B) method is an extension of the ML method, in that deduced 

information on the probability distributions is included in the formulation of the 

problem. 

2.2.5 The use of Neural Networks in System Identification 

The mid to late 1980's saw wide spread interest in Artificial Neural Network (ANN) 

research due to renewed funding. Neural networks are particularly good at pattern 

recognition, and this can be extended to system identification. The features which make 

it suitable are learning, high speed processing of massive amounts of data, and the 

ability to handle signals with degrees of uncertainty. 

Various methods and applications of neural networks have been published. S. Chen and 

S.A. Billings (1992) presented three network architectures related to the identification 

of nonlinear discrete-time systems; multi-layer perceptron, radial basis function network 

and functional-link network. Advantages and disadvantages are discussed and 

illustrated using simulated and real data. S. Reynold and R. Shoureshi (1992) present a 

time-domain approach using ‘Hopfield’ networks (Hopfield, Tank 1985, 1986), and its 

application to the identification problem of linear time varying or time invariant 

systems. The model is described which is then referred to parametric identification in 

state space form, and simulation results show the feasibility of this identification 

scheme. 

D.T. Pham and X. Liu (1993) describe the use of Elman-type (1990) and modified 

Elman-type recurrent neural networks to identify dynamic systems, and it is shown the 

behaviour of high order linear and non-linear systems were able to be modelled. 

More recently, back propagation techniques have been developed. C. Pal (1994) 

describes a modified back propagation technique which is claimed to have a faster 

convergence rate and better accuracy than previous techniques, which is applicable to 

dynamic system identification. 

Other comparable methods have also emerged. C.S. Berger (1994) presented a method 

of identifying nonlinear dynamic models which exhibits fast convergence and adjusts its 

memory requirements to cope with the complexity of the problem. W.A. Porter (1995) 
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and E.B. Kosmatopoulos (1995) describe methods of identification where no prior 

knowledge of the system is required (black-box). J.H. Chen introduces a new neural 

network architecture which is claimed to overcome the shortcomings of traditional 

neural networks, that is slow convergence and long training time amongst others. The 

most recent contribution found was from G. Lera [1996]. Here a new type of recurrent 

network for modelling the input-output behaviour of a general class of discrete 

nonlinear systems is presented. This uses Elman [1990] and Jordan [1986] networks and 

is based on a state-space description of a nonlinear system. 

Perhaps one of the most useful papers, at least to begin with, will be 'Neural Networks 

and Applications Tutorial’ (I. Guyon 1991), because it assumes no prior knowledge on 

neural networks. This tutorial starts with an introduction to neural networks, goes on to 

describe and compare different architectures and then gives applications examples and a 

case study. 
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3 System Models 

A system can be thought of as a collection of objects interlacing with each other and can 

be quite large and complex. It can be useful to simplify the problem at the expense of 

completeness and accuracy. For example a system model may be limited to be accurate 

enough only over a particular range of operation. 

The most useful and frequently employed type of system design / analysis is where a 

system is characterised in terms of subsystems and components and their interactions 

with each other. Only sufficient detail of component parts is required for the system to 

operate over a particular range and accuracy. Frequently a combined analytical and 

experimental approach is necessary where accurate and complete models do not exist, 

for example during the prototyping of systems. 

System analysis is finding the response of a particular system to a specified input or 

range of inputs. This is important when the system does not exist (in the case of a 

feasibility study), or when experimental evaluation is impractical or too dangerous for 

experimentation. 

The system design problem is determining the system characteristics to produce a 

response to a specified input. This is often accomplished by using a parametric model, 

and calculating the parameters to give the desired response. Most systems are 

represented by means of specified relationships between the system variables. These can 

take the form of graphs, tables, differential equations, difference equations or a 

combination of these. Perhaps the most common system representation is in terms of 

ordinary differential equations with constant coefficients. This can encompass a large 

variety of systems and can often be used as approximate representations for systems that 

fall outside of this category. 

3.1 System Classification 

A very general mathematical model that encompasses almost all linear systems is shown 

below. 
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d™y d"y 

+a,(t) y(t) = 0 for all t<to a dt” 

dx Gane d"x 
=b,(t)x+b, Dns is O-t *Pn OFF x(t) = 0 for all t<to 

(3.1) 

There is one input x(t) and one output y(t). The conditions of x(t) and y(t) are necessary 

because otherwise the physical system could anticipate an excitation which is 

impossible. The equation is therefore unique and any specific input signal results in a 

corresponding unique output signal. 

3.2 System Nomenclature 

3.2.1 System Order 

The order of a system is the highest derivative of the response to appear in equations 

describing that system. Equation 3.1 is therefore said to be of nth order. 

3.2.2 Causal / Non-Causal (or physical or non-anticipatory) 

A causal system is one in which the present response does not depend upon future 

values of the input. Non-causal systems do not exist in the real world. 

3.2.3 Deterministic / Stochastic 
  

The outputs of a deterministic system can be determined from knowledge of the systems 

inputs up to that time. A stochastic system has an element of random behaviour, and its 

outputs are not always a specific function of the input. 

3.2.4 Linear / Non-Linear 

If all the derivatives of the excitation and response are raised to the first power and there 

are no products of these derivatives then the system is said to be linear. A linear system 

is usually so, partly because none of its components parameters change as a function of 

the excitation applied to it. Any system component however will change its 

characteristics if the forces applied are large enough. Linearity is therefore an 

approximation and will be defined within a particular range of normal input 

magnitudes. If a system contains a non-linear component then the whole system is 
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treated as non-linear. (An example of this is backlash in a gearbox which would 

otherwise be a linear system). 

3.2.4.1 Superposition 

If a system (or system element) is linear, then it will obey the superposition principle. 

The superposition principle is based upon what happens to the output of a system when 

two different signals are applied to its input, separately and then summed together 

(superimposed). If two separate inputs u; and u2 are applied to a system giving rise to 

outputs y; and y2 respectively, then the output which arises when the sum of these inputs 

(u, + ua) will be the sum of the individual outputs (y; + y2) only if the system is linear. A 

simple example of a linear system is a linear electronic amplifier with input wu, output y 

and an amplification factor k. It is apparent that this obeys the superposition theorem as 

figure 3.1a demonstrates. If the amplifier adds a constant offset c to the output so that 

y= Ku + c, then it does not obey the superposition theorem and is non-linear, as y; + y2 

# K(u, + uy). It is also worth considering the case that if the amplifier is over-driven the 

output will reach its supply rails and ‘clip’. This is clearly non-linear behaviour. 

Output y 

..(b) 

  

  Input u   u, U, u, + Up 

Figure 3.1 Superposition and Linearity (a) Linear System Model, (b) Non-Linear 

System Model (linear model with offset), (c) Non-Linear Model. 
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There are therefore two general requirements for obtaining linear models (which obey 

the principle of superposition), which are: 

1) offsets must be removed, and 

2) signals must be within a range of normal input magnitudes. 

It is worth noting that system (c) in figure 3.1 is linear between the axis intercept and 

y2 , and is therefore a linear system in this range of operation. 

3.2.5 Time-Variant / 

  

ime-Invariant 

Equation 3.1 represents a time-variant (or time-varying) system since the coefficients of 

the derivatives are functions of time. Such systems are difficult to analyse because 

differential equations with non-constant coefficients are difficult to solve. Systems with 

constant coefficients are known as fixed, time-invariant or stationary. 

3.2.6 Lumped-Parameter / Distributed Parameter 

To simplify system analysis it is usual to consider each element as a single property or 

function. For example, an electrical inductor is assumed to have pure inductance with 

no resistance or capacitance. If the resistance is significant then a separate model of a 

pure resistor is made to represent it. Such a system is known as a lumped parameter 

system, and each element has one independent variable, time. If more than one 

independent variable is considered, partial differential equations arise making analysis 

harder. A lumped-parameter system is usually only valid if the physical size of the 

system is of no concern, since excitations propagate through it instantaneously. A 

transmission line is an example of a distributed-parameter system. 

When lumping parameters it is important to make valid assumptions. For example, a 

model that includes every minor detail would take a long time to develop and may be 

difficult to achieve for limited returns over a simplified model. An over-simplified 

model however may bear no dynamic resemblance to the original system. 

3.2.7 Continuous Time / Discrete Time 

Continuous-time systems are usually represented by equations where inputs and outputs 

are represented for all values of time. Discrete-time systems are represented by 
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equations where inputs and outputs are represented for discrete values of time. All 

physical systems are continuous-time, but it is sometimes convenient to consider a 

systems behaviour at discrete instants in time, for example when using a digital 

computer. Continuous-time systems are usually represented by differential equations, 

and discrete-time systems by difference equations. Discrete-time systems are often more 

convenient to use and construct a model of a system with non-linearity or time- 

variation. 

3.3 Modelling the Plant 

The process of mathematical modelling (for control system design) can be thought of as 

an iterative process roughly comprising 6 stages: 

1) Identifying the various inputs, outputs and disturbances, 

2) Produce an idealised mathematical representation of the plant, 

3) Develop this representation (model) for the required accuracy, 

4) If necessary obtain data (possibly by performing experiments) to find unknown 

parameters, 

5) Re-do steps 2-4 until the model sufficiently represents the plant, 

6) Simplify the model for the operating limits of the control problem. This may include 

linearising non-linear equations for a specific operating range and removing 

redundant detail. 

The extent to which the above stages may be carried out depends upon the type of plant 

under examination. Mathematical modelling is not an exact science and there may well 

be more than one model which represent the plant sufficiently. This chapter will 

investigate steps 1, 2, 3 and 6, and chapter 5 will investigate steps 4, 5 and 6. 

3.3.1 Lumped Parameter Models 

A lumped-parameter model is one in which certain aspects of the system being 

modelled are imagined to be lumped at a single location, for example a pendulum may 

be considered to be a rod of no mass with a mass concentrated at one end. This type of 
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model makes assumptions some of which were mentioned in section 3.2.6. Furthermore 

the system must be linear, time-invariant and deterministic. 

When making lumped parameter models it is useful to use an analogy so that the 

models are of consistent form and different physical elements may be described by the 

same form of equation. There are many analogies and one will briefly be considered 

here, the force-current analogy. Examples of analogous physical elements of this kind 

are: 

. Translational Rotational 
Electrical Mechanical Mechanical 

v(t) vit) o(t) 

WA Pe eee aN oe 2 IN 
L (H) K(Nm*) K(Nm.rad*') 

where... 

r 1 
=> fou f()=K j v(t).dt T(t)=K J a(t).dt 

= K.x(t).dt =KO 

Here the force and current and corresponding equations can be thought to be analogous. 

The through variables are current, force and torque, and the across variables are 

voltage, velocity and angular velocity respectively. Many physical analogues are 

possible, but of most interest to this project are the rotational mechanical elements, and 

occasional reference to their electrical counterparts. 

It is also possible to use voltage as an analogue to torque. The electrical equivalent of 

the above rotational mechanical spring becomes: 

Electrical Mees te 

Vt) 

I) 
a(t) — a ‘ 

>AAN— 

C(F) K(Nm.rad') 

where... 
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v(t) = z fioae TW)=K fo(t).de 

3.3.2 Modelling a Lumped-Parameter Rotational System 

The mechanical system shown in figure 3.2 has two degrees of freedom. This means 

that two measurements are required to specify the position (not the state) of all elements 

in the system. These measurements are @ and 0. 

The shaft has a torsional stiffness k (N m rad’), the inertias have values of J; and J>, 

and the rotational dampers have friction coefficients B, and B:. The first step in the 

modelling process is to identify the inputs and outputs. The system is forced by one 

input torque (7) and has two outputs @ and @. The next step is to produce an idealised 

mathematical representation of the plant. 

  

  

Figure 3.2 Rotational Mechanical System 

The system first needs to be broken into parts which are easier to work with than the 

system as a whole, and these are shown below in figure 3.3. It is important when 

forming the equations that displacement and forces are all measured in the same 

direction, so that any acting in the opposite direction are made negative. For example, 

the opposing torque of the shaft acting on Jj, and the inertia of J; are both acting in the 

opposite direction to input torque and hence will have the opposite sign in that equation 

of motion. 
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Figure 3.3 Rotational Mechanical System Components 
  

In this example there are two equations of motion derived and these are: 

i (3.2) 

  

and 

—2-k(6,-6,)=0 (3.3) 

3.3.2.1 Electrical Equivalent of the Rotational System 

It is sometimes convenient to translate systems between different physical types of 

plant, for example mechanical to electrical or vice-versa. For the system shown in figure 

3.2 the through variable is torque and the across variable is angular velocity. Although 

the system is shown in free space, it is assumed that the measurements are made to 

some stationary reference point. The system circuit diagram for the rotational 

mechanical system is shown in figure 3.4. It can be seen by inspection that the rotational 

mechanical components have electrical “equivalents”. The electrical equivalent of the 

inertias are capacitors, and the electrical equivalent of the shaft (or torsion spring) is an 

inductor. An equivalent electrical circuit is shown in figure 3.5 where the through 

variable is current and the across variable is voltage. 

41
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Figure 3.4 System Circuit Diagram for the Rotational Mechanical System 

      

        

  

Figure 3.5 Electrical Equivalent of the Rotational Mechanical System 

The equations for the two equivalent system components are: 

Mechanical: Electrical: 

do, dy, Sov el: r SiGe t Be, +k [(@,-@,)dt =7 (3.4) pte i em! (3.5) 

and 

J,SOn Bo; -k {(o,-0,)dt=0 36) C, eee mits 7 einvdat=0 G.7) 
2 

where w, =—* 
dt 

3.4 State-space Models 

The equations of motion shown in the example in section 3.3.2 are both second order 

equations because the highest derivative involved is a second derivative. It is possible to 

solve ordinary linear first and second order differential equations directly, but complex 

systems may contain equations of many orders, and a systematic approach is required. 

The state-space method is such an approach. 
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The state-space method works by replacing high-order differential equations with a set 

of first-order differential equations. Equation 3.1 is an n" order differential equation 

that can also be represented by a set of first-order differential equations, known as the 

normal-form of system equations. For an n" order system there will be n simultaneous 

first-order differential equations and n unknown time functions to be solved for. These 

time functions are called state-variables, and their values at any instant in time specify 

the state of that system. These variables may represent signals in the system, or they 

may be a set of abstract quantities, as there are many ways in which the state variables 

may be selected, but must obey the following general rules: 

¢ They must be linearly independent — one cannot simply be a combination of others 

¢ There must be enough to completely specify the dynamic behaviour of the system 

¢ They cannot be inputs to the system 

For a general n" - order linear system with state variables q(t), g2(¢) ... g(t) and one 

input x(t) a set of simultaneous 1* order, linear differential equations can be written in 

the form: 

dq, (t) 
dt 

dq,(t) 

dt 

=A GO +42 OO) +--+ a, (09, (+5, Ox), 

= Ay, (4, (1) + 9 (142 (1) +--+ 2, (OG, () +b, Ox) 

HO (gy +4,9 (1. 0 +20 Oy D4, (0 +6,OO G8) 

A single output y(t) can be represented as: 

VD) = (09, (+0 (04, (0) +... 6,09, (0) GB.9) 

The advantages of this representation is that it can be written in matrix form which can 

be applied to all systems of all orders with little additional complexity. It is less 
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notationally complex than the general model of equation 3.1 and easier to implement 

models of this kind on a computer. If the system is fixed (time-invariant or stationary) 

the coefficients ajj(t), b\(¢) and c\(t) are constants instead of being functions of time. 

The states are written as the column vector x = [x1 x2 x3 ... sak , and the input and 

output vectors are u and y respectively. The state-space model is made up of the 

following pair of equations: 

x= Ax+ Bu - state equation (3.10) 

y=Cx+Du - output equation 3.11) 

where, if the system is of n-th order with m inputs and p outputs, 

x = nx] state vector (column vector) 

u =m] input vector (column vector) 

y =px1 output vector (column vector) 

A =nxn system (or plant) matrix 

B =nxm input (or distribution) matrix 

C =the pxn output (or measurement) matrix 

D =the pxm feed forward (or output distribution) matrix 

The vector x is the time derivative of the vector x, comprising the derivative of each 

individual element. The quantities A, B, C and D are purely numerical matrices (except 

in the case of time-variant or time-varying models). A block diagram of a state space 

system [1] is shown in figure 3.6. 
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  utjj—> B yi *Q) | a G y(t)                 

  

    

      

Figure 3.6 Block Diagram for State Space System 

3.4.1 State-Space Model of the Rotational System 

The rotational system described in section 3.3.2 can be easily converted from the 

ordinary linear differential equations into a state-space model. Equations 3.2 and 3.3 can 

be written as: 

J,6,+B,0, +O, —kO, =T and (3.12) 

J,0, + BO, -k0,+k0, =0 (3.13) 

The system is a second-order two degree-of-freedom system, so four state-variables will 

be required. These can be selected as follows: 

x, =9, x, =O, x; =, x, = 0, 

in which case: 

XS 
2
:
 

D:
D.

 

x= and x= 

‘>
 

2
2
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So, rearranging 3.12 and 3.13 so that 6, and 6, are on the LHS: 

  

—O, ey Fig eh where u is torque T(t) and 
J ‘ J J 

Ge ee, ee 
‘ J, J, . J, ‘ 

the matrices A, B, C and D can be defined as: 

0 1 0 0 0 LO Oab0) 
ee en Se 0-020 

A= nai Bae) C= D=0 
0 0 0 1 0 0.20 £0 

7 10 5 0 0001 

The state equation (x= Ax+ Bu) and output equation (y=Cx+Du) for this system 

will look like: 

6, OF 10 0 ie. 0 

Ga Olas cee eon Cdl ec é\}o o 0 jal") of (3.14) 

b, 7a? Shai 0, 0 

10 0 of, 
[0 1 0 O}6, us 

“lo 0 1 offa, ee 
00 0 146, 

Note that C is a unity matrix, and D is zero. The output y is therefore equal to x which 

comprises @,,6,,0, and @, . This will be used later for a simulation of the system. 
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3.4.2 State-Space Models from Ordinary Differential Equations 

Equation 3.1 is an nth order ordinary differential equation representing a system with a 

single input w and a single output y and is a stationary system if the coefficients are 

constant. Different choices of state variables produce different but equivalent state 

models of the same system. It can be shown that a special set of choices leads to what is 

know as canonical state models [1] which reflect a more ordered and structured 

approach to state model formulation. (Generally speaking canonical means irreducible, 

and usually refers to making an equation look simpler. In the case of a system of 

equations which are coupled, the canonical form comprises an equivalent set of 

equations which are not coupled). There are four common canonical state models which 

are known as the observable, controllable (also known as standard canonical form or 

phase variable form), observability and controllability canonical forms. 

Equation 3.16 is a normalised (a, = 1) ordinary differential equation representing an nth 

order system with a single input wu and a single output y (as equation 3.1 but with 

constant coefficients). 

dy d”'y d"y du d”"u d™u 
AVL Gta, —+—— = bu +b, — +..... +, , —_ +b, — oY FA dt ml pl ye 0 ly ml gm om ym 

  (3.16) 

If m=n—1 it can be represented by the four different but equivalent canonical state 

models, 3.17, 3.18, 3.19 and 3.20 below. 

Observable canonical form: 

x,] fo 0 -a lfm] [& x 
edt ter: 

ee ca 
a anes +| 5 kw y=(0 0 I 

: se 
x, | [0 Opt ay sill | abe x 

(3.17a) (3.17b) 
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Controllable canonical form: 

      

Diels Se We Eke Dabo a oe Be 
; : 50 0 : 
3 0 0 1 0 

Ge eee) ee ae ea de MA Xn 

(3.18a) (3.18b) 

Observability canonical form: 

3 0 1 0 re ve ee x] [Bn 4 

alee cae See : Tale ly y=[l Ones concer (0) 
: ; cece 2 vue: : 

: 0 (ss 
x, dy ee ee =a, [Loy By Xn 

(3.19a) (3.19b) 

B,, f, and f, are called the Markov parameters of the system and are given by 

By =5m> Bs =P ns ~4ysBm> Byer = Ay By ~ Ey ys Ay iby + By 2 O... 

Controllability canonical form: 

  

Ky] FO oe we oe 0 ay x] a 
Toe P= |elelo : 
0 ae ae THESE: : ne : oa: V=[By ve ee ee oe Bl}? 

: : - 0 : ; St [Ode ay: Bod mais | te ¥n 

(3.20a) (3.20b) 

where the Markov parameters of the system are the same as for the observability form. 
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Canonical state models provide an organised way of representing a high order scalar 

differential equation as opposed to an arbitrary representation, and they are beneficial 

for controller design, identification theory and system analysis. 

3.4.3 Alternative State-space Model of the Rotational System 

It is possible to combine equations 3.12 and 3.13 into one fourth-order differential 

equation by eliminating either @ from 3.12 or & from 3.13 and replacing with 

differential terms consisting of either @ or @ and derivatives respectively. 

Equation 3.12 can be rearranged 

0, = +916, 40,+27 (3.21) 

and differentiated twice to give 

8, = 218) + 216 46,420 (3.22) 

and 

6, = 24,4515) +6, sof (3.23) 

substituting 3.21 and 3.13 into equation 3.12 

1{46+4) +6 vt }va (40 4646, “47 }n4a wild +46, +6 vir}-0 

(3.24) 

expanded and like terms grouped gives 

(B,+B,)-6, +0, +5, +252) 6, + See Gf 4th 6 Te ATL AF (3.25) 

49



which is of the form of equation 3.16 where u=T, y= 6, , n = 4 and the coefficients 

are: 

a, =0, 4, =(B,+B,), a, =, +J, + 5b), a= Beast 2 = 

by =1, b, =, b, = b,=0. 

To put this in one of the canonical state-space forms both sides of the equation need to 

be divided by ap. Any one of the canonical state-space forms may then be used to create 

the required model. For example, the observable state-space model of equation 3.17: 

0 

  

000 % 

x,| {100 -4 a 
= if i = le a 0 10 Ben a) ie [o 00 y 

x, | [00 Lb —aee x, 

(3.26b) 

3.4.4 Other forms 

For certain system analysis it is sometimes useful to expand the coefficient matrices to 

separate the physical elements. For example, the rotational system equation shown in 

equation 3.14 could be re-written: 

10 0 O7f6, Oe OS Ue I et eA aL to 

0 J, 0 O16) |-k 0 & O16) JO -B oO 0 16) |-1 
i. |= q ad & * u 

070 One On Oe On ail|1asi|( 0) = 0) 0% A196; 

0 0 0 J,j//6| [&k 0 -k Oj[6,| [o 0 Oo -B,]|6,]} [0 

(3.27) 

Although strictly speaking this is no longer state-space form, the grouping of the 

Inertias, Spring Constants and Friction Coefficients can be helpful in system analysis. 
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3.5 Initial Conditions 
  

Sections 3.3 and 3.4 have been concerned with creating differential-equation models of 

systems. Used in system analysis it is necessary to specify the initial conditions of 

energy storage in the system, that is the state of the system. The values of the initial 

conditions are dictated by the nature of the system analysis. In this text the behaviour of 

a systems response to a forcing input is of most interest, rather than the systems 

transient response due to non-zero initial conditions. If a linear system is stable, the 

effect of the initial conditions on the output decreases with time. It is therefore common 

to set the initial conditions to zero. The effect of the initial conditions on non-linear 

systems however does not necessarily decrease with time. Initial conditions will be 

discussed in more detail later in the text in the context of specific systems. 

3.6 Fourier Series and Transforms 

Mathematical models described so far have been time-domain models for linear 

systems, in the form of ordinary linear differential equations arranged in a convenient 

form, There are many systems which are periodic in nature, for example the current and 

voltage in an alternating-current electrical circuit, or the displacement, velocity and 

acceleration of a slider-crank mechanism. The Fourier Series is a mode of analysing a 

periodic function in terms of its constituent sine and cosine components. This can be 

further extended to the Fourier-transform, which provides a method for creating and 

analysing frequency-domain models. Their use in this text is limited and for that reason 

they are not studied here in much detail. 

Fourier series can be applied to many more functions than Taylor’s and Maclaurin’s 

series, and while the theory of analysis is complicated, the application of these series is 

quite simple. 

3.6.1 Fourier Series Representation of Time Functions 

If a finite, one-valued function f(x) recurs periodically over successive intervals of 27 it 

is possible to represent it as a series of the form: 

F(x) = dy +4, cos(x) + a, cos(2x) +...+, cos(nx) 
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+b, sin(x)+ b, sin(2x)+...+5, sin(nx) (3.22) 

which can be written: 

F(x) =a, + XG, cosnx +b, sinnx) 
n=l 

(3.23) 

where do, a), ...,n, and bo, by, ..., bp, are real constants. 

It can be shown that over a range —z to +7 the coefficients are given by: 

1 ay =5- [Sa 

a, =f J (x).cos(nx).dx (where n = 1, 2, 3, ... 
nO 

  

(3.24) 

b=+f f(x).sin@x). de (where n = 1, 2,3, ccc. ) (3.25) Ree 

3.6.1.1 Convergence of Fourier Series 

The rate at which the partial sum of a Fourier series approaches the value of the 

function is important as it dictates the number of terms necessary to obtain the desired 

accuracy. Although it is beyond the scope of this text to discuss convergence and 

compare to other series, it is worth noting that a set of conditions exist known as the 

Dirichlet conditions [4] which assure the desired convergence of a Fourier series. 

Dirichlet Conditions 

These essentially restrict the function to be finite (convergent), have a finite number of 

maxima and minima in any finite time period, and have a finite number of 

discontinuities in any finite time period. 
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3.6.2 Fourier Transforms 

For signals that exist for only a finite period of time the Fourier series expansion 

becomes difficult and confusing to use, mainly because the finite signal is not easily 

represented by a set of continuous signals. A way around this problem exists and is 

called the Fourier transform [4]. By increasing the period of the function f(t) so that 

the limit T-~, all of the time function will be included in the series representation. The 

validity of the resulting expression depends on the nature of f(t) and the mathematical 

operations conducted in the development. Using the complex exponential form of the 

Fourier transform (substituting e*/" =cosna,t+ jsinna@,t into equation 3.23) the 

Fourier transform of f(y) is given by: 

F KO} = Flo)= frooma 6.26) 

and the inverse Fourier transform written as: 

FMF(@)} =f) = 3 [Faved G21) 

and the functions f(t) and F(@) are called Fourier transform pairs. For a function f(t) 

to have a Fourier transform it must adhere to the Dirichlet conditions (i.e. be 

convergent). Fourier transform pairs can be created using the above integral, and tables 

are available containing common Fourier transform pairs. 

3.7 Laplace Transform Models 

The Fourier transform is a useful tool for the analysis of signals and systems, but its use 

is limited to functions which can have such a transform, functions which converge 

(meet the Dirichlet conditions). Unfortunately this excludes many useful functions but 

by introducing a convergence factor (a) these functions then become integrable. This is 

done by integrating under a new variable s where s=o+j@ and is assumed to be 

positive and large enough to ensure the product f(#)e™ converges to zero as t 0. 

Known as the Laplace-transform, it provides the mathematical foundation for most 
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Srequency-domain models, and is of particular importance to control techniques. The 

Laplace transform method is a substitutional one in which linear differential equations 

are transformed into the complex-frequency or Laplace domain, manipulated and then 

inverse-transformed back. The mathematical manipulation is simplified as the 

integration operation in the time domain is replaced by algebraic manipulation of the 

transformed equations. 

The basic Laplace transformation of a time signal f(t) is defined as: 

L MO} =F) = [ feat (3.28) 

and the following notation is used 

& {x(t)} =X(s) = ¥ and conversely 7" {{X(s)} =L71 {¥} =x(t). 

In equation 3.22 the exponent st must be dimensionless and therefore s has the 

dimension of time’. Since s is a complex quantity it is referred to as the complex 

frequency. Laplace transform tables are use to transform equations to and from the 

complex frequency domain. 

3.7.1 Time response of an unforced system 

Consider the system shown if figure 3.7 below. 

  

  

Figure 3.7 Simple unforced lumped-parameter system 

This can be described by the differential equation 3.29 
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JO+kO=0 (3.29) 

The Laplace transform of this is 

J(s?F —s0(0)-6(0)) +k =0 (3.30) 

If, for the sake of argument let J=1x10°kg.m?, k=49.28Nm™' and the initial 

conditions 0(0)=0, 6 =25. Substituting these into equation 3.30 and rearranging for 

  

@ gives 

Be : 25s ; 

s’ +49.28x10 

25s 

s? +222? pay 

Using tables to find the inverse Laplace transform of this provides the time-domain 

solution for 0: 

@ = 25Scos(at) where @=222 (3.32) 

This is the unforced response of the system given the above initial conditions known as 

a transient response. It is, as expected an undamped oscillation (with frequency 35.33 

Hz). It is a cosine function as the initial condition 6 = 25 is a maximum at f =0. 

3.7.2 Time response of a system forced with a Unit Impulse 

The same system shown if figure 3.7 can be analysed in terms of its unit impulse. This 

is done by making all initial conditions zero and the input a unit impulse (1 is a Laplace 

unit impulse) instead of zero (or fixed). Equation 3.30 becomes 

J(s?8) +k =1 (3.33) 

which, after substituting in the parameters and rearranging gives 

32



10° 
d= (3.34) 

Set 222- 

The inverse Laplace transform of this is 

0=4.5sin(@.t) where @=222 (3.35) 

which is an undamped oscillation (with frequency 35.33 Hz), and is a sine function as 

the initial conditions 9, 6, and 6 are all zero at t=0. 

3.7.3 Initial and Final value theorems 

If f(t) and F(s) are a Laplace transform pair, then the initial value of a time function is 

given by 

£(0)=lim[fO]= lim[sF(5)] 6.36) 

and the final value of a time function is given by 

(ce) =lim[f(O]= lim|s(s)] 6.37) 

As an example, consider equation 3.31. Substituting this into equation 3.36 gives 

f(0)= in : oS 
sel 524222? 

Dividing numerator and denominator by s gives 

  

which agrees with equation 3.32 when f=0. 
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3.7.4 Transfer Function Models 
  

For a system having one input u(t) and one output y(t) the Laplace transform solution 

often takes the form 

F@=7 (3.38) 

F(s) is called the Laplace transfer function (usually referred to as LTF) where Y(s) and 

U(s) are usually polynomials such that 

m m-1 
b,S" +b, 1S" ++ Dy 

IS) == a S$ +4,,5" +--+, 
(3.39) 

If m=n the system is said to be proper. 

If m<n the system is said to be strictly proper. 

For real physical systems the Laplace solution is almost always a strictly proper rational 

polynomial, and the inverse Laplace transform is found using partial fractions to 

decompose F(s) into simpler terms. 

3.7.5 State-space model of a transfer function 

In the same way ordinary differential equations were put into their state-space canonical 

form in section 3.4.2, a rational polynomial transfer function in the form of equation 

3.39 may also be put into canonical state-space form. The transfer function must take 

this form, and the coefficient of the highest order denominator must be unity. The 

transform may then be conducted by inspection. For example, equation 3.39 can be put 

into the form of equation 3.18, the controllable canonical form. 

To transfer a state space equation into a transfer function, the equations of the form 3.10 

and 3.11 are first Laplace transformed into functions of s. 

L { X(t) = Ax(t)+ Bu(t) } becomes sx(s) = Ax(s) + Bu(s) (3.40) 

L£ { y(t) =Cx(t)+ Du(t)} ~~ becomes y(s) = Cx(s) + Du(s) (3.41) 
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Zero initial conditions are assumed, and equation 3.40 is rearranged for x(s) and 

substituted into equation 3.41 to yield that of equation 3.42. 

y(s)={C[sr - 4} B+ Dh u(s) (3.42) 

where the transfer function is given by 

YO _ Cs -Ay'B+D (3.43) 
u(s) 

Matlab can be used to perform this conversion by using the function ss2tf, and also 

from a state-space form to LTF form using the function tf2ss. 

3.7.6 Poles and Zeros 

The poles of a Laplace function are the values of s that make the function evaluate to 

infinity and are the roots of the denominator polynomial of the function. 

The zeros of a Laplace function are the values of s that make the function evaluate to 

zero and are the roots of the numerator polynomial of the function and, if the order of 

the numerator is lower than that of the denominator, when s= because the 

denominator becomes infinite and the function tends to zero. 

To use an example, the following equation 

ee) 

P= Ge Is=3) (3.44) 

has two poles, one at 3 and the other at —2, one zero at 5 and two zeros at infinity, one 

for each denominator s. In general the number of such zeros is equal to the number of 

poles minus the number of numerator zeros, in the case of equation 3.44 this is one. The 

poles and zeros can be complex values of s and will have real and imaginary parts. A 

complex pole of zero will have a complex conjugate, so in general any root will be of 

the form s =o + j@and may be plotted on an Argand diagram. Such a plot is known as 
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an s-plane plot or a Pole-Zero plot. Poles are usually identified by crosses, and zeros by 

a circle, so for equation 3.44 which has two poles and one zero, the Pole-Zero plot will 

be as shown in figure 3.8. 

Figure 3.8 Pole-Zero plot of equation 3.44 

Poles and Zeros of system functions will be used in chapter 4 to determine stability. 

3.8 Block Diagrams 

Block diagrams provide a pictorial representation of systems and their associated 

control structure. The application of block reduction techniques (or block diagram 

algebra) condenses the Laplace transform system and other equations into a form 

suitable for either design or inverse transformation to investigate responses in the time 

domain. 

The issue of initial conditions was discussed in section 3.5 and it was noted that in this 

text the behaviour of a systems response to a forcing input is of most interest, rather 

than the systems transient response due to non-zero initial conditions. If a linear system 

is stable then the influence of the initial conditions on the output becomes negligible as 

time progresses, so initial conditions are omitted (they are assumed to be zero) from a 

transfer function block as shown in figure 3.9. 

  

U(s) —» F(s) -» Y(s) 
      

Figure 3.9 Typical block diagram of a transfer function 
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It is important to note that the response of a non-linear system does not necessarily 

become independent of initial conditions as time progresses, so they need to be included 

in a block diagram, usually as separate inputs or separate blocks, as is also the case for 

linear systems with non-zero initial conditions. 

3.8.1 Block diagram of the rotational mechanical system 

The rotational mechanical system of section 3.3.2 is broken down into two parts 

described by two differential equations 3.2 and 3.3. Their Laplace transforms are 

equations 3.45 and 3.46 respectively, shown below. 

  

J,8°0, + Bs, +kO, —kO, =T (3.45) 

Jy8°0, + Bys0, -k0, +kO, =0 (3.46) 

These can be rearranged to 

4, = C+) Sp (3.47) 

and 

a= 0, (3.48) 

which describes a system with an input 7(s), an output 0,(s), and a feedback signal 

@,(s) multiplied by a constant k. The block diagram representation of this system is 

shown in figure 3.10. 

  

1 A(s) k 
Js? +Bs+k Jy8° + Bys tk 
  T(s) >| > 0,(s) 

      

  

    kk}       

Figure 3.10 Block diagram of the rotational mechanical system 
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3.8.2 Block diagram reduction 

Equation 3.47 could have been written as equation 3.49 which would have made the 

block diagram slightly more complicated shown in figure 3.11. 

= (3.49) 
Js +Bys+k Jis +Bstk — 

The best configuration really depends on the system in question, its application, and 

relation to the physical system it corresponds to. 

    

  

        

  

i ls) k 
u) | Js? +Bs+k i Jys° + Bs +k > ,(s) 

Leh 
Js +Bstk       

Figure 3.11 More complicated block diagram of the same system 

Block reduction techniques are based on three rules. The first deals with blocks in 

series, the second deals with blocks in parallel and the third deals with blocks in a 

feedback loop. 

If two blocks with transfer functions G; and G) are connected in series, they can be 

reduced to a single block with a transfer function G;G. 

If two blocks with transfer functions G; and G» are connected in parallel and their 

outputs summed, they can be reduced to a single block with a transfer function (G;+G)). 

If two blocks with transfer functions G; and G) are connected in a feedback loop (for 

example the right-hand two blocks in figure 3.11), they can be reduced to a single block 

with a transfer function G,/(1-G,G2). 

As an example figure 3.11 can be reduced using rule (3) to that of figure 3.12. 
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Figure 3.12 Reduced block diagram of the same system 

This could be further reduce to one block using rule (1). It is worth noting however that 

all the information which the block diagram contained about the internal structure of the 

system is lost by combining these blocks. 

3.9 Discrete-Time models 

All the time-domain systems discussed so far have been continuous-time models (see 

section 3.2.7). Many systems are modelled and analysed using digital computers and the 

algorithms use samples of continuous data taken at discrete instants in time. A discrete- 

time model is usually obtained by converting differential equations of the continuous- 

time model into difference equations. Difference equations are discrete-time 

approximations of continuous-time differential equations. A derivative can be 

approximated by finite differences of the form 

dy _ t+ At)- yO) 
dt At 

(3.50) 

where Af is a small time interval (assumed to be constant), and integrals can be 

approximated by the form 

: 
fy.ae = Det (G51) 

nat jy 

Generally speaking the smaller the time between samples the more accurate the 

derivative or integral will be, although this can lead to increased susceptibility to noise. 

It is important that the period between data samples is kept small compared with that of 

the data so that accurate reconstruction of the data is possible and aliasing does not 

occur. Frequently anti-aliasing and re-construction filters are place before and after the 

digital compensator respectively to prevent aliasing on unwanted high frequencies (e.g. 
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noise) and to remove the high frequency component after re-construction, but at a time- 

delay penalty to the system. 

3.9.1 Difference Equation Models 

A difference equation model can be expressed in the form 

Vy =A Vpy FOVpg He FAY, + Dott, + iM, + ByM, 9 ++ +b,,U, intr m (3.52) 

where an and bn values are constants, y is the output and wu is the input. This is called an 

ARMA model because the output y,, consists of two parts, an Auto-Regressive part 

which is a weighted dependence on previous outputs (the aj, terms) and a Moving- 

Average part which is a weighted average of the present and past inputs (the bj.» 

terms). 

3.9.2 State-Space Models 

The general form of the discrete-time state-space model is 

X41 = Ox, + Au, (3.53) 

Vier = i + Dt G.54) 

The output equation (3.54) is identical to its continuous-time counterpart, but the 

matrices ® and A are functions of the continuous-time A and B matrices and the 

sampling time (z) , and can be found by applying the equations [2]: 

    

Ar Ar 
4. 

  

  

@(r) =e" =I + Art ay (3.55) 

A(z) = A" [0(z)-1]B = iret At s fa (3.56) 
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or alternatively by using the Matlab function c2d which takes the A and B matrices and 

the sample-time as parameters and returns the ® and A matrices (denoted as Ay and 

By). 

3.9.3 The z-transform 

The Laplace transform changes continuous-time quantities into complex-time quantities 

allowing functions to be written in terms of the variable s. In much the same way the z- 

transform maps Laplace transform functions into discrete-time functions allowing it to 

be written in terms of a variable z. 

In its simplest form, multiplication by z’' is used as a notation to represent a delay of 

one time step in a discrete-time signal. Equation 3.52 can thus be rewritten 

Y(2) = 4,2 y(2)+a,27 y(Z)+--+4,2-"y(2Z) 

+byu(z)+b,z'u(z) +b,z-u(z)+-+-+b,2-"u(z) (3.57) 

which can be rearranged into the z-domain transfer function 

Y(z) _ by +bz'+b,27 $+-4+b, 2" 

U(z) az? +a,z? +--+a,2" 
(3.58) 

In the complex-frequency domain, multiplying by s implies differentiation in the time- 

domain, and in the z-domain, multiplying by z' implies a time delay of one sampling 

interval. Equation 3.50 shows that for a sample n where the sampling interval is 7,, the 

gradient of a variable y can be given by 

Gn =I (3.59) 
dt DS In s 

In the z-domain y, becomes Y(z) so equation 3.59 becomes 

Y(z)(-z"') 3.60 A (3.60) 
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It is apparent that multiplying Y(z) by (l1—-z”')/T, is equivalent to differentiation, and s 5 

can be substituted in a Laplace function by 

s=-—— (3.61) 

This is a first approximation and there are more accurate formulas which will not be 

discussed here. One such formula is the Tustin transformation, given by 

~ 20-27) 
res (3.62) 

which offers a closer approximation in most cases, but is often not worth the extra 

computation for the improved accuracy obtained. 

3.9.4 The Shift (q) Operator 

An operator analogous to the differential operator in linear differential equations with 

constant coefficients, is the shift (‘q’) operator in linear difference equations with 

constant coefficients. In operator calculus, all signals are considered doubly-infinite time 

sequences such as 

St) wherek=...,-1,0,1,... 

The forward-shift operator is denoted by q and has the property 

afk) = f(k +0) (3.63) 

The inverse of the forward-shift operator is the backward-shift operator (or delay- 

operator) and is denoted by q', such that 

q'‘u(t) =u(t-1) (3.64) 
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Operator calculus gives compact descriptions of systems and makes the manipulation of 

difference equations much simpler, for example 

y(k +na) + ay(k +na-1)+--++4,,y(k) = bou(k + nb) +---+b,,u(k) 

where na = nb (3.65) 

Using the shift operator gives 

g™ y(k)+a,q™'y(k)+---+4,,)(k) = bog” uk) ++ +b, uk) 

which after factorising becomes 

na 
(gq +aq™" +---+4,,)y(K) = (Byq”™ +--+ By uh) (3.66) 

The z-transform maps a semi-infinite time sequence into a function of a complex 

variable, and takes the initial values into consideration. In operator calculus, double- 

infinite time sequences are taken into consideration. The variable z is a complex 

variable and should be distinguished from the operator q. 

3.9.5 Including Noise in the Model 

Section 3.2.3 mentioned that a stochastic system has an element of random behaviour, 

and its outputs are not always a specific function of the input. Real physical systems 

will have noise on the measured signals and therefore have an amount of stochastic 

behaviour. Chapter 5 investigates methods for determining a mathematical model for an 

unknown system which describes the relationship between the input and output. These 

quantities are measured and consequently contain noise. Noise can be described as an 

undesirable addition to the useful signal or disturbance. There are various ways of 

including noise in system models and these are discussed below in the context of the 

individual models. 
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3.9.5.1 Noise Characteristics 

One common method to include noise in the model is to lump the noise into an additive 

term v(t) as shown in figure 3.13, represented by 

yO => g(ult—W)+v(0) (3.67) 

v(t) 

  

u(t)——>_ Git) y(t) 
      

Figure 3.13 Disturbance added to the output of the system 

The most characteristic feature of noise is that its value is not predictable. Information 

about past disturbances can be important about making qualified guesses about future 

values, and this is usually made within a certain degree of probability. 

v(t) can be given as 

v(t) = YaWett-) (3.68) 

where e(t) is discrete-time white noise; a sequence of independent, equally distributed 

random variables with a certain probability density function (PDF). It is usually 

assumed that /(0) is 1 so that these transfer coefficients are normalised. 

3.10 Discrete-Time Models of Linear Time-Invariant Systems with Noise 

This section of the chapter discusses classes of models for linear time-invariant systems. 

They all include a noise aspect, and are particularly suited to the characterisation 

function of the test-rig where models are created from measured variables containing 

noise. Chapter 5 discusses the choice of models and parameter estimation methods in 

detail. 
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3.10.1 Transfer-Function Models 
  

A discrete-time system G(¢) with input u(), output y(A and disturbance e() can be 

represented by the equation 

YD) = G(qyu(t) + H(qe() (3.69) 

where q is the shift operator and G(q) and H(q) are 

G@=Yshq", A(q)=1+D hg * (3.70) 
kel kel 

The model corresponds to three functions, G, H and the PDF of e, f.(.). G and H are 

usually expressed in terms of a finite number of numerical values, such as rational 

transfer functions or state-space representations. It is common to assume that e(f) is 

Guassian. 

Quite often it is not possible to determine the coefficients from knowledge of the 

physical system, and the determination of parameters is made using estimation 

procedures (see chapter 5). Such parameters are denoted by the parameter vector 6, so 

the model is now described by 

Y(t) = Gq, 0)u(t) + H(q,®)e(t) (3.71a) 

and 

S.(x,9) = the PDF of e(t); white noise (3.71b) 

Equation 3.71 is no longer a model but a set of models. 

G and H are often represented as rational functions where the numerator and 

denominator coefficients are the parameters. Such models are known as black-box 

models. 
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The following three sections will outline different ways of describing equation 3.71 in 

terms of @, i.e. different ways of parameterising the model set. 

3.10.1.1 Equation-Error (EE) Model Structure 

A simple discrete-time input-output model was described in section 3.9.1. Adding a 

noise term e(¢) yields the linear difference equation 

Vt)+ayt-D)+--+a, y(t—n,) = bu(t-1)+---+8, ™, u(t—n,)+e(t) (3.72) 

Since the white-noise term enters as a direct error in the difference equation, this model 

is called an equation error model. The adjustable parameters are 

O=[a, a,...4, b,..-b,, ir (3.73) 

If two polynomials are introduced: 

A(q)=l+aq" ++-+4,,.q°" (3.74) 

Bq) =bq' +---+b,,q"" (3.75) 

equation 3.72 corresponds to equation 3.71 with 

G(g,0)=2@ and H(q,0)= ! (3.76) 
Aq) Aq) 

Equation 3.72 is referred to as an ARX model because the AR refers to the 

autoregressive part A(q)y(¢) and the X to the extra input, the exogenous (externally 

generated) input B(q)u(t). When n, =0, equation 3.72 is a special case and is called a 

finite impulse response (FIR) model. 
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The signal flow is shown in figure 3.14. 
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Figure 3.14 ARX model structure 

3.10.1.2 ARMAX Model Structure 

The description of the properties of the noise term in equation 3.72 can be made more 

flexible by making the equation error as a moving average of white noise, giving the 

model: 

VO) + ay(t-)+--+4, yt—n,) =bu(t—-1) +--+, u(t—n,)+ 

e(t)+c,e(t-1)+--+e, e(t—n,) (3.77) 

The noise can be represented by the polynomial 

C(q)=1+¢q" Aone, g (3.78) 

Equation 3.77 can be rewritten 

Aq) y(t) = B(q)u(t) + C(qe(o) (3.79) 

which corresponds to equation 3.71 with 

= Ata) = and H(q,9) = ola) 
A(q) ae ~AQ@) 

(3.80) 
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and 

(3.81) 

The error term now incorporates a moving average (MA) part, so the model is called 

ARMAX, and is a widely used model. 

3.10.1.3 Other EE Model Structures 

Instead of modelling the equation error as a moving average as in the ARMAX case, it 

can be modelled as an autoregression, giving the ARARX model set 

1 
  A(q) y(t) = B(qyu(t) + D@ e(t) (3.82) 

and 

D(q)=1+d,q' +--+d,.q-™ (3.83) 

This model corresponds to equation 3.71 with 

BQ) 1 G(g,0)=—2 d = 3.84 
ag a GOD) 

and 

Galan, dren, | (3.85) 

It is also possible to use an ARMA description of the equation error giving the 

ARARMAX structure 
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c@) 
A(q) y(t) = B(q)u(t) + D(a)   e(t) (3.86) 

which corresponds to equation 3.71 with 

Bq) c@) G(q,0)=2 2 d H(q,0)=—— 3.87 
Ae) ue GO- KODGy ce 

and 

Bilao bake to. ModE (3.88) 

3.10.1.4 Output Error (OE) Model Structures 

The equation error model structures all have the polynomial 4 in the denominator of the 

transfer functions G and H. The output error (OE) models parameterise the transfer 

functions independently by having an intermediate variable w(t) such that 

Y(t) = w(t) + e(t) (3.89) 

where 

F(q)w(t) = B(qu(t) (3.90) 

The model can be rewritten 

BQ) 
F@) 
  Y)= u(t)+e(t) G.91) 

where the transfer functions G and H of equation 3.71 are 

ea) 
ee F(q) 

and H(q,9)=1 (3.92) 
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with parameters 

9=[q,...4, foes (3.93) 

3.10.1.5 Box-Jenkins (BJ) Model Structures 

The OE model above can be extended to further model the error term. The Box-Jenkins 

model describes the error term as an ARMA model which gives 

BOO) 44) 4 
AO igs 

e(t) (3.94) 

The transfer functions G and H are independently parameterised as rational functions, 

and was treated by Box and Jenkins [14]. Figure 3.15 shows the signal flow for this type 

of model. 
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Figure 3.15 Box-Jenkins model structure 

3.10.1.6 Summary of EE and OE Model Structures 

The EE and OE models discussed in this section can all be represented by the 

generalised model structure of equation 3.95, depending on which of the five 

polynomials (A, B, C, D, or F) are used. 

B® BO (9), LO cq) A = (gy) = F@) D(a) e(t) (3.95) 
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Figure 3.16 shows the signal flow for the EE and OE model sets 
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Figure 3.16 a) EE and b) OE model set structure 

Table 3.1 lists the commonly used model structures with the corresponding polynomials 

used and equations. 

  

  

  

  

  

  

  

        

Model Structure Polynomials used Model Equation 

ARX AB A(Q) yO) = B(qu(t) + et) 

ARMAX ABC A(q) y(t) = B(q)u(t) + C(qye(t) 

ARMA (time series) | AC A(q) y(t) = B(q)u(t) 

FIR B YO) = B(qyu(t) 

OE BF _ B@) 
y= F(@) u(t) +e(t) 

BJ BFCD B(q) C(q) 
=—u(t)+—e(t yO) Fy + Day ) 

  

Table 3.1 Some common black-box SISO models 

3.10.2 State-Space Models 

The state-space model discussed in section 3.4 can be extended to include disturbance, 

and the stochastic state-space model is 

x(t+1) = A.x(t)+ Bu(t) + w(t) 
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y(t) = C.x(t) + Du(t) +e(t) (3.97) 

where w(t) and e(t) are stochastic processes with certain covariance properties. Another 

way to represent this is the innovations form [11], the discrete-time case of which is 

x(t+1) = A.x(t) + Bu(t) +K.e(t) (3.98) 

y(t) = C.x(t) + Du(t) + e(t) (3.99) 

where the matrix K is known as the steady-state Kalman gain. This form is known as 

the innovations form because e(t) appears explicitly. Using the shift operator g, the 

equations can be rearranged 

Y(t) = G(q, u(t) + H(q, eC), (3.100) 

which corresponds to equation 3.71 with 

G(q,) = C)|q! - A@)}' B®) (3.101) 

H(q,0)=C(@)|q! - A@)}'K(0) +1 (3.102) 

3.11 Discrete-Time Models of Time-Varying Systems with Noise 

Equation 3.69 describes a discrete-time, linear, time-invariant model. A time-varying 

transfer function can be introduced by 

Gg) => g(k)q* (3.103) 
kel 

Using this, equation 3.69 becomes a time-variant model, 

Y(t) =G,(q)u(t) + (gett) (3.69) 

It is usual and more convenient however to use the state-space form. This is simply 

obtained by letting the matrices be time-varying 
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x(t +1) = A(t).x(t) + B).u(t) + K(0).e(t) (3.104) 

V(t) = C(t).x() + D(t).u(t) + (0) (3.105) 

Time-invariant systems are often used where there are non-equal sampling instants 

(multi-rate systems), in systems with time-varying parameters, and with linearisation. 

3.12 Table Look-Up 

For certain systems it is desirable to describe their properties using numerical tables or 

plots, often called graphical models. There are three reasons applicable here for the use 

of look-up tables: 

1) the equations are too computationally intensive, 

2) the equations are non-linear or contain non-linearity, and 

3) the necessary models are not available, or a look-up table may just be simpler. 

3.12.1 Simplification of Computationally Intensive Equations 

As the number of parametric variables increases in an equation, so does the 

computational overhead. Equations of motion can often be simplified if all or a subset 

of the independent variables are treated as parameters. The simplified forms of these 

parameterised equations must be made for large sets of parametric values. The choice of 

variables often determines the balance between computational costs and storage costs. 

In many cases, making one or more of the variables is an equation a parameter will 

greatly simplify the functional relationship. Consider the following power series of 

sin(x) for example 

x x? a; 
* x 
ED ee (3.106) 

depending on the required accuracy, the computation required could be very high, and it 

may be beneficial therefore to use a one-dimensional look-up table with x as the index. 

Generally, a function with n parameters can be replaced by a lookup table of n 
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dimensions, so it is likely to be more efficient to use a number of smaller parameter 

look-up tables, where necessary. 

3.12.2 Simplification of Equations Containing Non-Linearity 

Chapter 5 discusses system identification methods for the characterisation of machines. 

The identification methods employed assume a linear model, so models containing non- 

linearities, or non-linear models may be difficult or impossible to obtain. Assuming the 

model is time-invariant, it is feasible to use a look-up table to store the dynamic 

properties of the non-linear part of the machine instead of a mathematical model. 

3.13 Non-Linear Models 

A non-linear model is one for which the principle of superposition is invalid. Most 

dynamical systems are non-linear to some extent, and most linear systems are only 

(nearly) linear within a particular operating region. A common approach therefore is to 

restrict signal levels and ignore any slight non-linearities. If a system contains 

significant non-linear behaviour, a linear model will not be an accurate representation of 

its behaviour. The model must be modified by adding non-linear effects until it is 

sufficiently accurate. There are no analysis methods which work well with all non-linear 

systems as there are with linear systems, so each non-linear system needs to be treated 

separately. If the non-linearity is small then it may be permissible to ignore it, or 

alternatively the system may be linearised, or another approach is to treat the non-linear 

part of the system separately. If one of these approaches is taken, the system may not 

function well if an unexpected non-linear action occurs. This problem can be avoided to 

some extent by simulation studies, where the system is simulated and its reactions to 

non-linear actions analysed. 

3.13.1 Non-linear System Elements 

Non-linear system elements can be either continuous or discontinuous. Continuous non- 

linearities can be defined as elements whose input-output characteristics are continually 
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differentiable. A function such as y= x° is a continuous non-linear component, and 

examples are transducer characteristics such as thermistor or rubber springs. 

Discontinuous non-linearities cannot be modelled by analytic functions. Single-valued 

non-linearities are components which for each input there is only one possible output 

(except at switching points). Examples are saturation, deadzone and quantisation. A 

double-valued non-linearity has one of two possible outputs for a particular input, e.g. 

hysterisis. A multi-valued non-linearity has many possible outputs for a particular input, 

e.g. backlash. 

3.13.2 Linearisation 

The linearisation of non-linear models are convenient because much of the design and 

analysis techniques applicable to linear systems can be used. Such models only remain 

valid over a suitable range of operation, and outside of this further linear models will be 

required. One technique of linearisation is described by [2], which essentially uses a 

Taylor’s expansion to find the tangent at a chosen operating point, and assumes small 

derivations about this point. 

3.13.3 Representation of Models with Non-Linearities 

A non-linear model gives wide scope to describe systems, but analysis of such systems 

using established control system design techniques (chapter 4), or performing system 

identification (chapter 5) is difficult. It is often useful to use physical insight into the 

character of non-linearities, and to isolate them from the linear part of the system. It is 

quite common for system dynamics to be linear, but with static non-linearities at the 

input or output, such as saturation of actuators or non-linearity of measurement 

transducers. A model with a static non-linearity at the input is called a Hammerstein 

model, and a model with a static non-linearity at the output is called a Weiner model. A 

combination of the two is called a Weiner-Hammerstein model. 
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Figure 3.17 a) Hammerstein b) Weiner and_c) Weiner-Hammerstein models 

3.14 Dynamic Behaviour of Systems 

Previous sections in this chapter have shown how dynamic system components and 

systems can be represented by mathematical models. This section looks at the dynamic 

behaviour of these system components. 

A system component can be represented by a block such as that of figure 3.9 (but not 

necessarily in the s-domain). Typically the system will have a steady-state or transient 

response and a dynamic or forced response. The steady state output is easily measured 

and methods (such as the initial and final value theorems of section 3.7.3) exist to 

calculate this. To determine the dynamic behaviour it needs to be exited by some 

means, that is to apply an input signal of some kind (called a forcing function) and 

observe the systems output response to this input. An infinite number of forcing 

functions could be applied, but to simplify analysis certain specific forcing functions are 

chosen. Some of these are not possible to reproduce in a real-world physical system, but 

close approximations are possible and in any case they are still useful for theoretical 

analysis. 

3.14.1 Forcing Functions 

Unit Step 

The unit-step is where the input suddenly changes from zero to one and remains there, 

i.e. x(t) = 0 for t< 0, and x(t) = 1 for ¢ > 0. This has the Laplace transform X(s) = 1/s. 

This is a widely used signal in practice and is the most commonly used disturbance 

applied to systems. 
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Unit Ramp 

A unit ramp has a slope of 1 and is described by x(t) = 0 for ¢ < 0, and x(¢) = t for t> 0. 

The Laplace transform of this is X(s) = 1/s”. This is a step change of the derivative of 

the input and is useful where a step change is not possible. 

Unit Impulse 

A unit impulse is an impulse which is infinitely narrow in time and infinite in 

magnitude. The area under the impulse is equal to 1, and the Laplace transform is 

X(s) = 1. This is less frequently used in practice because to be useful the amplitude has 

to be so high that it is either unobtainable, so high that system is damaged or driven into 

a region of non-linear operation, or both of these. 

The above three forcing functions are called transient disturbances because the system 

normally starts from a steady-state before application of the signal and then settles to a 

steady state after some time. 

Sinusoidal Input 

When a sine wave is applied to the input of a linear system, the output will build up to a 

steady level which is also sinusoidal and of the same frequency but different amplitude 

and phase. This kind of analysis is called frequency or harmonic response analysis. The 

Laplace transform of a sinusoidal signal is X(s)= & sinwt = @/(s? +a’). 

3.14.2 Time-Domain Response Analysis 

The most frequently used forcing input for system analysis is the unit step, and a set of 

criteria have been developed to quantitatively specify a (bounded) system’s response to 

this input: 

Steady-state Error 

The difference between the required output and the steady-state output, normally found 

using the final value theorem. 
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Rise-time 

The time required for a system to achieve 90% (sometimes other ratios) of its final 

value. 

Overshoot 

The amplitude of the first peak of a response of a system. Usually expressed as a 

percentage of the steady-state value. 

Subsidence Ratio 

In a decaying oscillation this is the ratio of successive cycles of the response. 

Settling Time 

The time taken for the response to reach and stay within a range of its steady-state 

value, usually 5%. 

Various time responses can be plotted using Matlab functions such as impulse, step, 

and their discrete-time counterparts dimpulse and dstep. By choosing appropriate 

parameters the impulse response of the state-space rotational mechanical system of 

figure 3.2 can be plotted using Matlab script (see appendix A.1): 
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Figure 3.18 Impulse response of the rotational mechanical system. 
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3.14.3 Frequency-Domain Response Analysis 

For a sinusoidal input to a system, the response can be determined in terms of a 

magnitude and phase relative to this input. The magnitude and phase of a system 

represented by the transfer function G(s) can be found by replacing s by ja to give 

G(jo), since s=o+ j@ and G(j@) is a special case of G(s) [2,5]. The magnitude 

and phase can be found by applying the equations below [2]: 

[]V@? +(,0)’) 
M (@) =—\____ (3.107) 

II\(¢" +@,0)?) 
i-l 

i 

4, 

mo me 
$(@) = ¥ tan" (E9)-¥ tant) (3.108) 

isl isl & 

where a; and g; are the @ parts and c; and h; are the real parts of the rational polynomial 

transfer function G(j@), and m and n are the numbers of terms in the numerator and 

denominator respectively. 

The response of the system to a sinusoidal input of differing frequencies is termed its 

harmonic response, and this information is typically plotted onto one of three types of 

plot shown below. The same harmonic response information is plotted on all three 

graphs but each emphasises different aspects which may be used for different purposes. 

Bode Plot 

A Bode plot is a pair of plots in which the magnitude is expressed in dB’s and the phase 

in degrees, both plotted against the logarithm of frequency (in rad/sec). These are 

convenient for estimating systems consisting of more than one component because 

when they are both plotted together, the combined magnitude or phase at a particularly 

frequency is found by simply adding the two responses. The Bode plot of the state-space 

rotational mechanical system of figure 3.2 also used in section 3.14.2 can be found 

using the Matlab command bode (A,B,C,D); and is shown in figure 3.19. 
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Figure 3.19 Bode plot of the rotational mechanical system. 

Nyquist (or Polar) Plot 

The Nyquist plot is essentially an Argand diagram where the input is assumed to lie 

along the positive real (horizontal) axis, and for each frequency value there is a 

corresponding output vector of length ‘magnitude’ angled from the input vector ‘phase’ 

degrees (in a clockwise direction). The plot consists of the locus of the ends of the 

output vectors for frequency values ranging from 0 to «. The Nyquist plot of same 

mechanical system can be found using the Matlab command nyquist (A,B,C,D); and 

is shown in figure 3.20. 
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Figure 3.20 Nyquist plot of the rotational mechanical system. 

3.14.4 Characteristics of a first-order system 

First-order system components occur frequently such as the mechanical system shown 

in figure 3.21 which (assuming zero initial conditions) can be described by equation 

3.109 below. 

  

  

fi or Oe (3.109) 
1+25 laos 
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viscous coupling 
to ground 

Figure 3.21 First order rotational mechanical system. 

If the input A(s) is a unit step (X(s)=1/s) or unit impulse (X(s)=1) and £=1 then 

using Matlab it can be shown that the time response of the system is: 
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Figure 3.22 Time response of a first order system to a) unit step and_b) unit impulse. 

The important characteristics [5] are: 

1) the response is exponential with asymptotes to the steady state (input) value, 

2) the output reaches value 0.63x(¢) when t= 4, 

3) the output has values 0.95x(r) and 0.98x(t) when t= 34 and 44 respectively, 

The system’s response to a sinusoidal input of magnitude 1 (X(s) aa) can also be 

found using Matlab. Appropriate plots are the Bode plot and Nyquist plot: 

    

  

  

0 10 10! 

  

  

        

  

  10" 10° 10° ° 02 04 06 08 1 
Frequency (rad/sec) Real Axis 

Figure 3.23 a) Bode plot and_b) Nyquist plot showing the response of a first-order 

system to harmonic input. 

The important characteristics of the Nyquist plot [5] are: 

1) the Nyquist plot is a semicircle with centre (0.5, j0) and radius 0.5, 

2) fora very small @ the magnitude is unity and the phase is zero, 

3) as @—> © the magnitude tends to zero and the phase tends to 90° lag, 
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4) the lag is 45° when @=1/2, 

The important characteristic of the Bode plot is that the magnitude plot has a ‘corner 

frequency’ (see second-order system below) of o=1/2, after which the magnitude 

drops off at approximately 20dB per decade. 

3.14.5 Characteristics of a second-order system 

A general second-order system can be represented by the normalised differential 

equation: 

§+260,9+0, y=Ko, x (3.110) 

if the steady-state gain K is unity, the Laplace Transform of this is: 

o, -X(s) 
YS) Se 

&) 5° +260,5+@° 
(3.111) 

@,, is called the undamped natural frequency (rad s') and ¢ is called the damping 

ratio. Figure 3.24 shows the response to step and impulse inputs for a range of ¢, 

plotted using a Matlab script (see appendix A.2). 
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Figure 3.24 a) Step and_b) Impulse response of a second order system 
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The smaller the value of ¢ the more oscillatory the response. The frequency oscillation 

is called the damped frequency and is given by 

@,=0, 41-6? (3.112) 

When ¢ 21 there is no overshoot, and a value of ¢ ~ 0.7 is considered in control terms 

to give a ‘good’ response, i.e. small overshoot, quick settling. If ¢ <1 the inverse 

Laplace transform of equation 3.111 with a unit-step input is [5]: 

1fa,t 

y(t) =I snl, (O-Epr +008" ¢) (3.113) 

The steady-state gain of the system is unity so the transient part is the second term of 

this equation which is an oscillation which decays to zero as t > 0. If ¢ >1 equation 

3.111 can be factorised and inverse Laplace transformed to give a pair of exponential 

terms which also decay to zero as [> 0. 

The frequency response of equation 3.111 is also be plotted using the same Matlab 

script as above: 
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Figure 3.25 a) Bode plot and_b) Nyquist plot showing the response of a second-order 

system to harmonic input. 

The magnitude plot shows the curves tend to zero for very low frequencies and a slope 

of -40 dB per decade of frequency for increasing frequency after the ‘corner frequency’, 
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where the response intersects the zero dB line. There is a peak at the systems resonant 

frequency which tends to infinity as ¢ + 0. The phase plot shows a rapid increase in 

phase lag for small increases in frequency around @, for low values of ¢, between a 

value close to 0° to a value close to 180°. 

3.14.6 Characteristics of higher-order systems 

Section 3.7 discussed the Laplace transfer model of a system, and equation 3.39 

represents such a model in terms of a rational Laplace polynomials. It was also shown 

that the roots of the denominator are the poles of the function. If the denominator is 

factorised to give (s-p;)(s-p2)(s-p3)...(S-pn) the transfer function can be written as: 

Y(s) _ Nl) 
  

  

Se EN SS) En (3.114) 
X(s)  (S—P,)(S— P2)(S— ps).-(S— P,) 

which can be separated by partial fraction expansion to give: 

i (e) kad ae ae aed oe te iA (3.115) 
X(s) (s—p,) (S-p2) (s—ps) (s—p,) 

Laplace inversion gives the time response: 

y(t) = Ae” + Ase” + Ae” +--+ Ae? (3.116) 

It can be shown [5] that applying various transient forcing functions, the response is 

n 
made up of a steady-state component, and a transient component Aes The 

isl 

contribution of each term depends on the value of the pole p; (which determines its 

position in the s plane) and the magnitude 4,. If p; is real and negative 4,e”’ will decay 

to zero at a rate determined by pj, and if p; is real and positive 4,e”' will increase 

exponentially. If p; is complex, there will be another root forming a conjugate pair 

which together result in a cosine wave (at a frequency that depends on their distance 

from the origin), which increases exponentially, decreases exponentially, or remains the 
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same amplitude depending on whether the real part of the poles is positive, negative or 

zero respectively. 

A stable linear system will have poles in the left-half of the s-plane. Poles with large 

negative real parts produce a rapid exponential decay, and consequently these poles 

have less effect on a system than poles with smaller negative real parts. It is therefore 

the poles with most positive real parts that have most effect on a system, and these are 

called dominant poles. Dominant pole analysis requires that the non-dominant poles are 

well to the left of the dominant poles, and that any pole close to a dominant pole is close 

to a zero (which cancels its effect). Pole positions is important to system stability, and 

will be discussed further in the chapter 4. 
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4 Test Rig Control 

This chapter is concerned with the control of the machine emulation and 

characterisation test rig with various machines connected to it. When the test-rig is 

characterising a machine, the test-rig will be driving itself and the machine being 

characterised. Similarly when the test-rig is emulating a machine, the test-rig will be 

driving itself and the motion source connected to it (typically a motor / drive pair). The 

dynamic behaviour of these configurations may vary considerably and consequently 

impact the control strategy of each. The model of the ‘plant’ under control is very 

important in the design of the control system, and is why system models were discussed 

prior to this chapter. 

This chapter will first identify the control problem, and then examine various control 

strategies that may be employed to control the test-rig. Much of the mathematical 

procedures involved will be performed using Matlab and its associated ‘Control’ 

toolbox. 

4.1 The General Structure of the Test-rig 

The general construction of the test-rig was developed early in the project, and a 

diagram of this is shown in figure 4.1. It consists essentially of a motion source 

connected to a torque transducer, the other end of which is connected to an external 

machine. The variables directly measured are the output shaft torque and angle, and the 

motors current. The characterising / emulating ‘controlled-variable’ (discussed below) 

calculation and the outer control loop (discussed below) are performed using a DSP 

(digital signal processor) board. This consists of four pairs of discrete-time sampled 

analogue input and output signals and a fast processor designed to perform 

mathematical operations quickly. Chapters 6 and 7 explore the physical design of the 

test-rig in detail. 

The drives are PWM (pulse-width modulation) current-controlled generators that 

produce a current proportional to the input torque-reference voltage (chapter 7 describes 

PWM drive operation). The current passing through an inductance produces a 

proportional magnetic flux, which in conjunction with the stator field in a motor 

produces rotary motion. “Air-gap torque” is the torque between the stator and the rotor 
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of a motor, and is proportional to the motor current. It is different to the output torque 

because it is also driving the rotor’s inertia. Permanent-magnet DC motors have what is 

known as a ‘mechanical time constant’. If a stationary DC motor has a 1V step input 

applied to its terminals, then ignoring inductance (as the electrical time constant is 

negligible by comparison) and friction, a current of //R amps will flow. This will give 

rise to a torque of Kt/R Nm, and an angular acceleration of K/(R.J) rad/s”. As the motor 

speeds up, it will generate a back emf and the current flowing in the windings will 

therefore reduce. After an infinite amount of time has passed, the motor will have 

reached speed @ rads/s* where K,.@ = 1 (i.e. back-emf = applied voltage). The motor 

mechanical time-constant is (for any given voltage) terminal_speed / initial_acceleration 

= (R.JAK/), and is a classical first-order system, where the time-constant is the time 

taken for the motor to reach 63.21% of its final velocity. Larger motors tend to have a 

disproportionately higher inertia for their torque rating than smaller ones. Therefore, to 

achieve the required torque without forgoing a low mechanical time constant the motion 

source was chosen to consist of four smaller motors coupled mechanically. This of 

course assumes that the coupling method employed does not impact the mechanical 

time constant significantly, or introduce any other unacceptable characteristics. 
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Figure 4.1 Outline Block Diagram of the test-rig 

Two gearboxes were designed, both minimising backlash (an undesirable non-linear 

property of gear trains), friction and inertia. Considerable effort has been put into 

minimising the backlash, as this non-linear component would significantly impact the 

performance of the test-rig - chapter 6 discusses the gearbox designs. The backlash has 
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been reduced to a level where it can be considered negligible, but unfortunately the 

gears do have significant inertia, friction and, in the case of the Mk-II gearbox, viscous 

damping. These quantities have different values depending on which side of the gearbox 

they are observed. The gearbox ratios are 2.388:1 and 2.5:1 for the Mk-I and Mk-II 

respectively. Figure 4.2a shows a simple one-step gear train consisting of two gears, and 

figure 4.2b shows the conceptual layout of the test-rig gearbox. 

b) Yoranet 

     J, planet 
Figure 4.2 a) Simple one-step gear train, and b) Conceptual diagram of the test-rig 

gearbox 

A torque transducer with a very high shaft stiffness (38.2 KNm/rad) was chosen so that 

any resonant frequencies set up as a result of this flexibility and the inertias connected 

to each end would be very high and small in amplitude. Unfortunately, stiffer torque 

transducers tend to have a higher inertia (426x10% kg.m’), and high torque ratings (200 

Nm) leading to lower resolution (t10V = +200% of rated torque). The inertia is still 

acceptable compared with the rest of the test-rig but the low resolution means that the 

torque signal needs to be amplified, also amplifying any noise present. This can be 

filtered to some extent but only by incurring a slight time delay penalty. This noise 

problem is unfortunate, but is a physical limitation imposed by the choice of torque 

transducer. The shaft stiffness is extremely high, and for this application will be 

considered rigid. Figure 4.3 is a photograph of the dynamic mechanical parts of the test- 

rig, with the gearbox Mk-I connected. 
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Figure 4.3 The dynamic mechanical parts of the test-rig, with the gearbox Mk-I 

connected 

4.1.1 Referred Inertia 

If gears A and B in figure 4.2a have inertia’s J, and J,,, the inertia seen at shaft 4 and 

shaft B will be given by 

Sous d at ele (4.1) 

J tap = Ig + Fx (4.2) 

respectively, where n is the gear ratio of gear B to gear A, 

_ num _teeth, (43) 

* num _teeth, 

Equation 4.1 shows that the inertia at shaft 4 will be the inertia of gear A plus the 

referred inertia of gear B (J, /n”). This means that for the test-rig configuration shown 

in figure 4.2b the referred inertia of the gearbox centre gear and everything connected 
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directly to it will be 4n’ times less as seen by each motor. It is important therefore to 

keep the inertia of the gears low, particularly the planet gears. 

4.1.2 Friction and Damping 

Friction occurs between the meshing teeth of gears in the gearbox. Viscous damping is 

also present in the gearbox Mk-II, as it is oil lubricated, and occurs to a much lesser 

extent in the bearings of both gearboxes. Frictional and viscous damping forces at the 

point of the meshing gear teeth are measured at the shaft by the product of the force and 

the perpendicular distance from the centre of the gear. That is, the opposing torque 

developed by these forces is a function of the magnitude of the force and the gears 

radius. The gear’s radius is dictated by its circumference, which in turn is dictated by 

the gear geometry and ratio. Since the relationship between radius and circumference is 

linear, the relationship between the gear ratio and relative torque due to these losses at 

the ends of the gear train is proportional to the gear ratio. Referring to figure 4.2a, if the 

torque due to losses on each shaft are 7;,,, , and 7j,,, , then the relationship between 

them is 7)... y/ Tp. 4 =", Where n is the gear ratio (2.5 in this diagram and for the 

gearbox Mk-II also). 

The torque due to friction can be assumed constant in magnitude, and opposite in sign 

to velocity. The torque due to viscous damping is the product of angular velocity @ and 

the damping factor B. Although B is dependent on oil viscosity, it will be assumed to be 

constant as tests are conducted quickly and the temperature will not rise significantly. 

4.1.3 Measurement of variables 

The only variables measured directly are the output shaft torque (7,02), the output shaft 

angle (@), and the motor current (i,,). The angular velocity and angular acceleration of 

the output shaft are also required if the effects of the test-rig dynamics are to be 

estimated. Chapter 6 and 7 discuss the angle monitoring method, and electronic 

calculation of angular velocity. 

Differentiation of signals is inherently difficult, as any noise is amplified. The electronic 

estimation of the velocity is reasonably accurate and noise-free because it uses a 
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voltage-to-frequency converter, whose input is the edges of the orthogonal pulses 

produced by the shaft-encoder, which have a very fine resolution (4096 pulses per 

revolution). A tacho-generator was initially employed to monitor the output-shaft 

velocity, but this was found to produce a signal with excessive ripple. Velocity 

observation is discussed in detail in chapter7. 

A voltage proportional to the motor current is available for measurement and this can be 

used to calculate the acceleration of the output shaft (assuming the shaft torque is 

known). The shaft acceleration (rads/s”) can be approximated by: 

O=k1+k,T (4.4) 

The air-gap torque is determined by the motor’s torque constant, which is measured in 

N/A. The contribution of this torque is related to the output shaft acceleration by the 

torque constant and the test-rig dynamics, approximated by k (rads/s”.A). kp represents 

the contribution to output shaft acceleration by the output shaft torque, and has units 

rads/s*.Nm. 

Figure 4.4 shows the system variables of interest, which are presented to the DSP board 

containing the controller. 

Block containing 
dives, motors and 

‘earbox 

  

  
ke —=———> Test-rig dynamics tS Sxelies 

machine   

          

  V, motors current + 
actual torque (measurable) 

angular position (measurable) 

  

  
angular velocity a 

La dt       

Figure 4.4 System variables of interest 
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4.2 The Control Problem 

The two general functions of the test-rig and their control requirements are as follows: 

1) Machine Characterisation. When performing a characterising function the DSP 

board is used to derive the torque reference from a set of tests that are used to 

characterise a machine. The resulting measured variables are used to create a model 

of the machine (chapters 5 and 10). When characterising a machine it is the nature 

of the stimuli and the relationship between the resulting variables that is of 

importance, not the precise control of the external machine. Besides, without an 

accurate model of the (unknown) machine being characterised it is difficult to 

control it accurately (except using advanced control techniques, which are not 

investigated here). The types of machines to be characterised are most likely to be 

heavily cyclic, which means that ultimately the angle also needs to be controlled. 

2) Machine Emulation. When performing an emulating function, the DSP board is 

used to derive the angle reference from past and present measured variables 

(particularly torque) and a model of the machine being emulated (chapter 9). To 

emulate a machine an accurate representation of this model and the accurate control 

of the resulting output shaft angle is of importance. It is reasonable to assume that 

the external machine is most likely to be a drive / motor pair, being mainly inertial. 

Since accurate control is more important to the machine emulation function, and 

machine characterisation may even be conducted with open loop torque control, the 

controller design will initially be for the machine emulation function. 

Summary: 

It is apparent that the test-rig has dynamics that complicate the control problem, and 

closing the control loop around the controlled variable alone is insufficient. The 

inherent inertia and damping of the test-rig are minimised as far as practicable, and the 

(non-linear) backlash has been reduced to a level where it can be ignored. The 

justification for the particular construction of the test-rig has been left to chapter 6, but 

it can be assumed the set-up is optimal within the constraints of the project. 
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It is the purpose of this chapter to devise a control scheme allowing accurate control of 

the output shaft angle and torque. The test-rig’s friction, damping and inertia should be 

transparent to any external machine connected to it. That is, the test-rig should be 

capable of emulating a machine with parameters greater or less than the test-rig’s own 

parameters. 

4.2.1 Simplified Model of the Test-rig 

The drives have a very fast and linear current control loop which is many times faster 

than the response of the motors, and is much faster than other dynamic parts of the 

system. The dynamic behaviour of this part of the system will therefore be treated as a 

constant gain assuming it will be used within its operating region (the system is non- 

linear outside this region). The motors are electrically connected in series and rigidly 

mechanically connected in parallel. Since they are driven by a constant current (torque 

control), the motor’s and gearbox’s lumped parameters of inertia, damping and friction 

can be regarded as a single block. The only other inertia and damping are in the torque 

transducer, and since this has an extremely high shaft stiffness (higher than other parts 

of the system) which can be ignored, these parameters may be lumped with the others. 

All the inertia, damping and friction within the test-rig can therefore be referred to one 

point in the system - the output shaft (gearbox referred inertia calculations are made in 

chapter 6). Figure 4.5 shows a block diagram of this simplified test-rig model. 

    
i Drives & | Zurn | Motors & test- 

rig lumped =[-——> 
ee parameters             

Figure 4.5 Simplified Test-rig model 

4.3 Continuous-Time Control 

4.3.1 Controller Structure 

Figure 4.6 shows a standard arrangement for control systems. The pre-filter modifies the 

setpoint R(s), and is often not required. The comparator generates the error signal E(s) 

from the setpoint and the plant output Y(s) that is fed back. The forward path 
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compensator C(s) generates the plant-actuating signal U(s) from the error signal. Any 

external disturbance D(s) is typically summed to the output, but can also be summed to 

U(s) or regarded as a separate input to the plant. 

D(s) 

  
  

R(s) | Prefilter E(s) | Controller | U(S)| Plant Y(s) 
"|. Pfs) C(s) | G(s) ig                 

    

Figure 4.6 Block Diagram of a Typical Control System 

The model of the plant usually dictates the controller design. The plant block typically 

contains the actuators and transducers whose speed of response is significantly faster 

than that of the plant, in which case their characteristics can be ignored. The system 

block diagram(s) of the test-rig are similar to that of figure 4.6, and it is the aim of this 

chapter to develop practical test-rig control strategies. 

4.3.2 System Stability 

There are a number of ways of examining system stability. The requirement is to be able 

to quantify the output resulting from some input stimulus applied to the system. Some 

standard stimuli are used for this purpose, which are easily manipulated and for which 

the resulting system responses can be easily quantified. A method applicable to linear 

systems is to apply a bounded input signal and observe the response. If the response is 

bounded then the system is stable. Examples of bounded signals are the step input, a 

pulse input (particularly the wnit impulse), and a steady-state sinusoid. (An example of 

an unbounded signal is a positive exponential 4.e“). If the system settles to its original 

steady-state level then it is said to be asymptotically stable. If it produces any other 

steady state signal then it is said to be marginally stable. Any other response to an 

impulse means the system is unstable. The classification of non-linear systems is more 

complicated and various techniques have been developed to analyse the behaviour of 

these. 
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4.3.3 Stability of Laplace transfer models 

A unit impulse is frequently used to determine a system’s stability. If after the impulse 

has been applied the system settles to its original steady state then it is said to be 

asymptotically stable. If the system produces a bounded response other than the original 

steady state, it is said to be marginally stable. Any other response is said to be unstable. 

A unit impulse is mathematically convenient to use as its Laplace transform is 1. 

Assuming the transfer function is a rational polynomial with denominator order n, the 

output can be expressed in terms of partial fractions 

Ai a 4; (4.5) 
S+D, St+D, S+D, 
    y(s)= 

If the denominator is set to zero, the resulting equation is called the system’s 

characteristic equation. The roots are the poles of the transfer function F(s). Equation 

4.5 will have n poles -p1, -p2, ... , -Py Which may be real or occur in complex conjugate 

pairs. The time response of each pole can be found from the inverse Laplace transform 

  Age “ = Ae? (4.6) 
stp, 

Real Poles 

+ If the root of (s+ p,) is negative the exponent in the time response is also negative 

and this element decays exponentially, 

+ If the root is zero the time response will reduce to the constant A), and 

* If the root is positive the exponent increases exponentially. 

Complex Poles 

With a pair of complex conjugate poles 

4, and Ais 

S+D, St Pin 
  

where 4,=g+ jh, 4,,=g-jh, p,=a-jb, and p,=a+ jb the inverse Laplace 

transform becomes 
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‘| gtjh_, g-Jh = + jaye — jhe ar Ap 
moa sH] (g + jhe +(g— jhye 47) 

which can be simplified using the laws of indices and re? =r(cos6— jsin) to be 

lS Me Asay =a , 
£ + a bt—hsinbt 4.8 
[24 Sta+ jb ; [zcos mt Ge) 

From equation 4.8 it can be seen that the exponential term is the product of the real part 

of the complex conjugate poles and time, and it therefore this part which determines the 

system stability and not the imaginary part. 

To Summarise 

If the real parts of all system poles are negative then the system will be asymptotically 

stable, 

If the real parts of any system poles are positive then the system will be unstable, 

If the real parts of any system poles are zero and non-repeated then the system will be 

stable, 

If the real parts of any system poles are zero and repeated then the system will be 

unstable, 

Figure 4.7 summarises a system in terms of its dominant pole positions, and indicates 

the stable and unstable regions of the s-plane. 
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Figure 4.7 Stability regions, pole positions and impulse responses in the s-plane 

  A system’s poles are often called its characteristic values. 

It can be seen by inspection that the simple spring-inertia system described by equation 

3.31 (section 3.7.1) has two poles at j222 and —j222. Both these poles are unrepeated 

and have zero real parts so system is therefore marginally stable as expected, since it is 

an undamped oscillation. 

4.3.4 Stability of State-Space models 

Section 3.7.5 discussed a method for transforming a state-space model into a Laplace 

transfer function given by equation 3.43 shown below 

WS) _ fst —a}'B+D 
u(s) 

This can be rearranged to give the rational equation 
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y(s)_ B.C+DIsI— A] 
u(s) | [st A] 
  (4.9) 

If the input is a unit impulse, the poles are the roots of the denominator, [sr- 4]. The 

eigenvalues of the A matrix are the values of the scalar quantity 2 that satisfy the 

equation 

|ar- 4|=|4-a1|=0 (4.10) 

which is the system’s characteristic equation. The eigenvalues of the A matrix are the 

systems characteristic values and are identical to the roots of the determinant |sz = A. 

The characteristic values of a given system will be the same regardless of the chosen 

state-space representation, as the system dynamics will be identical. 

4.3.5 Closed-loop poles and zeros 

Figure 4.8 shows a typical feedback configuration with an additional element H(s) in the 

feedback path. 
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Figure 4.8 Typical feedback controller 

The open-loop transfer function of this system is: 

Go, = AS) H(s)G,(s)G,(s) (4.11) 
e(s) 
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and the closed-loop transfer function is: 

_ (3) Gn()Ge(5) 
= (4.12) 

rs) 1+H(s)G,(s)G_(s) 
CL 

The characteristic equation of equation 4.12 is the same as the open loop equation 4.11, 

and the closed-loop poles are therefore a function of the open-loop poles and zeros. H(s) 

is the transducer dynamics or feedback compensation. The plant transfer function is 

usually fixed and the controller design problem is usually to select Gc(s) (and possibly 

A(s)) to obtain the required closed-loop stability and performance. This is achieved by 

shaping the system’s frequency response curve or by placing the dominant closed-loop 

poles in preferred s-plane positions. 

If the transfer functions of equation 4.12 are expanded, the numerator of the resulting 

equation is made up of the numerators of Gc(s) and Gp(s) and the denominator of H(s). 

The closed-loop zeros are therefore the zeros of the plant Gp(s) and forward path 

controller Gc(s) and the poles of the feedback element H(s). 

Zero positions 

Adding a zero to a system reduces the system’s rank (the difference between the number 

of poles and zeros) by one. The ultimate phase shift of a system is given by —R90° 

where R is the rank of the system. The added zero reduces rise time, reduces the peak 

time, increases the overshoot and rotates the polar plot anticlockwise. The closer the 

zero is to the right-hand half of the s-plane the greater these effects. Zeros in the right 

half of the s plane can produce some peculiar responses and should be avoided. 

Pole positions 

Adding a pole to a system increases the system’s rank and consequently increases the 

phase shift at high frequencies and twists the polar plot clockwise. An added pole tends 

to reduce the oscillations in a system and as it becomes more dominant, make it more 

sluggish. 

Having zeros or poles close to an open-loop system’s dominant poles can extensively 

alter its response, and these are reflected in the closed-loop response. Adding poles and 
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zeros in the compensator and feedback path are therefore very important in control 

system design. 

4.3.6 PID control 

The PID controller is a closed-loop controller that consists of three feedback terms, the 

proportional term, the integral term, and the derivative term. 

Proportional Control (P) 

With Proportional Control, the output of the controller is directly proportional to the 

error signal, and the action is given by: 

v()=K,e(t) (4:13) 

To achieve both high accuracy and rapid response, the value of Kp must be made large. 

Unfortunately, most systems contain lag (e.g. the inertia of a rotating load), so 

increasing the gain causes instability. This lag may alter the feedback from negative to 

positive causing the output to drive past the desired value (overshoots) and as it is 

corrected it swings either side of the value until it finally settles. In the worst case 

oscillations in the output will be set up. 

Derivative Control (D) 

A standard method of stabilising a close loop control system is to provide an additional 

feedback signal that is proportional to the rate at which the error changes. Derivative 

control action can be represented by: 

de(t) 

dt (4.14) 
  VN=K, 

where Kg is the derivative control gain. 

A combination of proportional and derivative control will result in accurate, fast and 

stable response, but under certain conditions can cause the output to be offset from the 

input. Offset occurs because the derivative action will act to retard the output. The 

addition of another correction signal will eliminate this effect. 
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Integral Control (1) 

With integral control, an additional correcting signal is applied to the controller input 

which is proportional to the integral of the error. This can be expressed as: 

YO=K, feat (4.15) 

where K; is the integral gain constant. This control mode forces the controller to output 

a drive signal as long as any error exists, thus offset errors cannot occur. 

PID Control 

A closed loop system using a combination of proportional, integral and derivative 

control has the following control action: 

  YO=K,e)+K, felt).dr+K, ao 
(4.16) 

-k,[at+4. fe drag fe. (4.17) dt 

K, ; ; Kee or 
Usually ral is called the integral time constant (7}), and rem is called the derivative 

‘ P 

time constant (7), so the above equation can be written as: 

y=K aod fete)ae+7, set) (4.18) 

This is the equation for the control action of analogue servo systems. 

4.4 Control of the Test-rig for Machine Emulation — Method 1 

Section 4.2 outlined the general control problem for the test-rig. The emulation function 

will be developed in the first instance, and then attention will be given to the 

characterisation function, which requires a slightly different control approach. 

Two methods are investigated in this chapter to emulation a machine. Perhaps the most 

intuitive method is discussed in this section, and an alternative approach is discussed in 

the next section. 
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4.4.1 Machine Emulation Control Requirement 

When performing an emulating function, a model of the emulated machine is used to 

derive an angle reference from past and present measured and internal variables 

(chapters 8 and 9 discuss the choice of machines and models in detail). It is a 

requirement of the test-rig controller to accurately control this output shaft angle so that 

the external machine (typically a drive motor pair) sees an accurate representation of the 

machine being emulated. Figure 4.9 shows the conceptual way by which the external 

motion source is connected to the test-rig during machine emulation, and also how the 

external machine is connected to the test-rig during machine characterisation. 

      

a) 8 b) T _ | -——| : -—| 
machine motion machine unknown 

characteriser i emulator if source 8 machine 

                      

Figure 4.9 Conceptual connection of test-rig during a) emulation, and b) 

characterisation 

4.4.2 Model of the Plant (test-rig) under control 

Figure 4.5 shows a very simplified representation of the test-rig, and figure 4.4 shows 

the system variables of interest. This can be expanded by incorporating other aspects of 

the test-rig, such as its dynamics. The dynamics of the test-rig involve inertia, viscous 

damping and friction. 

The application of torque to the test-rig inertia and viscous damping can represented by 

the equation 

T =J6+ BO 

Taking the Laplace transform of this becomes 

T =Js?0+ Bs 

which rearranges to 
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Both sides of the equation can be differentiated (multiplied by s) 

Os 
T Js’ +Bs 

which is a transfer function relating torque to velocity 
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Figure 4.10 Detailed block diagram of test-rig 

Friction is a non-linear function of velocity with units Nm such that 

Ticion = K jreuon * SigM(®) (4.20) 

Since the test-rig is being modelled using Laplace Transfer Functions (LTF’s) which 

cannot be used with any non-linearities, it is normal practice to place a non-linear 

control loop around any non-linearities such as friction. The friction and control loop 
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cancel, and the non-linear control part can be added to the linear controller at the time of 

implementation. The two blocks labelled test-rig friction and friction compensator can 

therefore be ignored for now because they cancel to zero. 

As discussed in section 4.2.1, the response of the drive’s current control loop is very 

fast and linear. This combined with the electrical time constant of the motors is many 

times faster than the response of the other dynamic parts of the system, and can 

therefore be considered ideal (within their operating range). The drives and motors will 

therefore be treated as a constant kym. The two drives were adjusted to give 8.155 A per 

Vin, and the motors each produce 0.064 Nm/A. Each drive has two motors connected in 

series to it, so total torque produced is therefore 8.155 x 0.064 x 4 = 2,088 Nm/Vin. 

Multiplying this by the gearbox ratio gives 2.088 x 2.395 = 5 NnV/Vin. 

The external motion source from a test-rig perspective has one output, torque, and a 

corresponding input, angle. Since the torque from the external motion source is not 

predictable, it is shown as a disturbance input to the test-rig. The four measured 

variables also include signals n,(s), which represent measurement errors or noise on 

the feedback signals. 

To design a controller for the test-rig, the lumped parameters inertia and damping are 

required. The most significant inertias are in the gearbox and torque transducers — the 

motors have a very low inertia (7.1x10° kg.m’). The referred inertia calculations for the 

test-rig are in appendix C2.5; using the gearbox Mk-l it is 2.15 x 10° kg.m’, and using 

the gearbox Mk-II it is 0.63 x 10° kg.m’, as referred to the output shaft. The controller 

design will be based on using the gearbox Mk-I as this was used for most of the test-rig 

development. Viscous damping is small in the Mk-I gearbox and motors, but is still 

significant. Since it will only effect the controller parameters and not the dynamics of 

the test-rig, it can be over-estimated for now as 215x10° Nm/rad.s! which is also 

mathematically convenient for the test-rig LTF. Friction is a significant factor, much 

more so than viscous damping, but this will be dealt with later as described above. The 

three parameters of importance now are therefore: 

J=215x 10%kg.m?, B=215x10°Nm/rad.s!, and Km =5 Nmn/Vin. 

The overall LTF of the test-rig is 
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La 5 2326 
Js? +Bs  (2.15x10™)s? +215x10°s 5? +0.1s 
  (4.21) 

4.4.3 Equivalent state-space form 

Section 3.4 in chapter 3 described state-space models and how to convert a LTF to 

state-space form. The LTF of the test-rig can be converted to state-space form, which is 

convenient for simulation and implementation. 

The linear part of the test-rig equation can be written in the time-domain as: 

T =—6+—60 (4.22) 

This can be used to derive the A, B, C and D matrices, or an alternative (and far easier 

method for more complex systems) is to use the Matlab Control-toolbox function 

t£2ss. Using the following command lines 

» num=2326; 

» den=[1 0.1 0]; 

» [A,B,C,D] = tf2ss(num,den); 

gives A, B, C and D matrices: 

af 1 o-|4| c=[0 2326] D=0 

4.4.4 Open-loop Poles and Eigenvalues of the test-rig 

Section 4.3.2 and 4.3.3 discussed the stability of Laplace-transfer and State-space 

models respectively. The eigenvalues of the state-space form are the same as roots of 

the Laplace transfer function, and can be found using the Matlab function pzmap (or by 

inspection). 
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Figure 4.11 Pole-zero map of the test-rig using pzmap 

The system has no zeros except two at infinity (in general the number of zeros at 

infinity is equal to the number of poles minus the number of numerator zeros). The 

poles are at -0.1 and 0, so the system is a type | system. Both roots are real and the 

dominant pole is at the origin, which means that the system is predominantly first order 

and marginally stable. Its open-loop response to an impulse and a step input shown in 

figure 4.12a and b respectively. 

    

      

       

            

  

    

asX2 aX? 

: 16 
2 ; 14| 

: 12 
18 : 

g : B10 

=n : 2 
: 6 

os ‘ 
2 

° a a ee a | "9 4020 804060 6070 wo 
Time (secs) Time (secs) 

Figure 4.12 a) impulse and b) step responses of the open-loop test-rig 

It is clear that the open-loop test-rig is unacceptable for use as a shaft positioning 

system, and this is the control problem. 
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4.4.5 Closing the test-rig control loop 

Figure 4.10 shows the test-rig in detail. This can now be reduced slightly to show only 

the blocks of interest, and to incorporate a closed loop controller, shown in Figure 4.13. 
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Figure 4.13 Block diagram of test-rig with a position control loop 

The external disturbance d(s) is shown here as a disturbance to output-shaft angle. The 

input 0,.,(s) and output 0,,,.9(s) have been replaced by r(s) and y(s) for clarity. [2] 

Block diagram reduction on figure 4.13 will show that the closed loop output for this 

system is given by 

G(s)C(s) 1 
= Tac) Pes)? Goce’ a) 

and the controller output by 

oe OO) ar ay) u(s)=— Bae [r(s)—n(s)—d(s)] (4.24) 

Both equations 4.23.and 4.24 contain the common denominator term or characteristic 

equation 1+ G(s)C(s) and the system’s dynamics are therefore independent of external 

disturbance and noise inputs. It is also worth noting that the closed-loop characteristic 

equation is given by / + the system’s open-loop transfer function. 

The disturbance input and non-linear friction can therefore be ignored for now, which 

reduces the block diagram even further to figure 4.14. 
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Figure 4.14 Simplified block diagram of test-rig with a position control loop 

The closed-loop response can now be plotted, and as a starting point, the controller was 

set to a gain of 1. The response of the system to a step input is shown in figure 4.15. 

  

  

    

0 20 40 60 80 100 
Time (secs) 

Figure 4.15 Step responses of the test-rig with controller gain=1 

With a controller gain of 1, the system has a closed-loop gain of 2326, the poles are 

-0.05 +48.2286j and -0.05 -48.2286j, and the system is massively under-damped. 

4.4.6 Selection of test-rig gain using the Root Locus Plot 

The root locus diagram is based on a system’s open-loop transfer function such as 

equation 4.11, which will give the closed-loop pole positions. It is a plot of the locus of 

the positions in the s plane of the roots of the characteristic equation as the gain (or any 

other variable) varies from zero to infinity [6]. It shows which roots are dominant, how 
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close the other roots are, and how the positions of the dominant roots vary as K varies. 

Matlab has a function rlocus(num,den) which calculates and plots the locus of the 

roots of the closed-loop characteristic equation 

num(s) b H(s)=1+K a   

m(s) 
for a set of gains K, where mu is the system’s open-loop transfer function (this can 

den(s) 

be easily assimilated to equations 4.11 and 4.12). 

Figure 4.16 shows a root locus plot of the test-rig transfer function, equation 4.21. 
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Figure 4.16 Root locus plot of the test-rig transfer function with C(s)=1 

With a closed-loop gain of 2326 the system is under-damped as shown in figure 4.15. 

Using the Matlab function rlocfind, the gain and pole positions can be found at 

various points on the plot using a graphical pointer. The gain at the point where the two 

loci meet is 1.0748 x 10°, and there are two poles at this point at -0.05. Setting a 

controller gain to 1.0748 x 10° makes the system gain 2.5 x 10° and the step response 

of this is shown in figure 4.17a. 
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Figure 4.17 Step responses of test-rig with gain of a) 2.5 x 10° and b) 12.5 x 10° 

It can be seen that by reducing the gain the system becomes less oscillatory, but the 

settling time is increased. By increasing the gain by a factor of 10 the system has two 

poles at -0.05 + 0.1j settling time is marginally improved but the overshoot is now 

unacceptable — see figure 4.17b. 

It is therefore evident that a proportional controller alone is insufficient to control the 

test-rig. 

4.4.7 Frequency Response of the test-rig 

This section considers the response of the test-rig to a sinusoidal forcing input. The test- 

rig is a minimum-phase system (all poles are in the left half of the s-plane) and is a 

system of rank 2. [2] As frequency increases therefore, the phase-shift will ultimately be 

Rx-90 =-180°. 

Figure 4.18 shows a bode plot of the simulated test-rig, with a gain of 12.5 x 10°. 
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Figure 4.18 Bode-plot of the test-rig with gain set to 12.5 x 10° 

The gain margin is found to be oo and the phase margin 78.46°. The system is therefore 

stable at all frequencies. A general rule [2] is that the gain margin should be between 2 

and 2.5 and the phase margin between 45° and 65°. The gain margin is meaningless here 

because the system never reaches -180° phase shift. The phase margin is slightly higher 

than recommended, which indicates a higher damping ratio than recommended. 

4.4.8 Steady-state Error 

The final value theorem states that the final value of a system’s output in response to, 

for example, a unit step input is given by 

S(~e)=liml FO] = tim[sF(s)] 

For the test-rig with a gain of 12.5 x 10°, the closed loop transfer function is 

0.0025 
> 4.25 
s? +0.1s +0.0025 G2) 

the final error to a step input is the difference between the input and steady-state 

response: 
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. | 1 0.0025 | 
1— lim] s x—x——————___. 

soo] s_ 5° + 0.15 +0.0025 

which is zero. The final error to a unit ramp input is infinity. 

4.4.9 Position Controller 
  

Section 4.3.6 described the PID controller from a time-domain perspective. This section 

discusses its application to the control of the test-rig from a Laplace domain 

perspective. 

The Laplace transfer function of the PID controller of equation 4.16 is 

K, Gp =Kp+—£+5K, (4.26) 
Ss 

where Kp = proportional gain, selected for adequate rise time 

Kj = integral gain (units: gain / second), selected for steady state accuracy 

Kp = derivative gain (units: gain x seconds), selected to reduce oscillations 

and improve settling time 

This can also be written in terms of integral and derivative time constants, equivalent to 

the time domain equation 4.18 

Ge {164-451 (4.27) 
ot 

where T; = integral action time (units: seconds) = Kp / K, 

Tp = derivative action time (units: seconds) = Kp / Kp 

The proportional term is simply a gain. Low values of Kp tend to give rise to stable 

responses but high steady state errors, while higher values tend to improve the steady 

state errors but worsen the transient response, and if too high, make the system unstable. 
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The integral term gives a ramp output to any error input, and is therefore used to remove 

steady-state error. Integral action increases the system’s type number by one, and the 

introduced pole at the origin of the s-plane tends to make the system more sluggish. 

Integral action can also make the system less stable though because it introduces a 90° 

phase lag which increases oscillation and reduces the phase margin. In PI controllers, 

this can usually be offset by reducing the gain of the P term. 

If the rate of change of error is large then a large overshoot is likely, and derivative 

action will correct for this. Derivative action decreases the system’s type number by one 

(introducing a zero at the origin), causing a 90° phase lead, and an increase in the 

bandwidth of the system making it more sensitive to noise. The increase in damping 

allows higher gains of P and I terms to be used. Derivative action has no effect on the 

steady state response. It should be used with care as any noise is amplified, which is 

usually dissipated in the system, most probably in the motors as heat. 

Applying this to the test-rig 

The general requirement for the test-rig controller is that the test-rig must respond in as 

short a time as possible with minimum overshoot and offset, but it will inevitably be a 

trade off between these. The system is critically damped when the controller gain is 

1.0748 x 10°. At this gain, the system has two poles at -0.05 (from figure 4.16 using 

Matlab), but the settling time is too long. 

Figure 4.17a shows the response of this system to a step input. What is required is a PD 

controller to damp out the oscillations and reduce the settling time. 

4.4.10 Lead Compensation 

In practice, ideal derivative action cannot be achieved, so derivative action is 

approximated using a /ead-compensator. The equation generally describing this is 

Ts D 
Ts = is (4.28) 

aT,s+l 
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where « is less than 1 and normally greater than 0.1. A pole is introduced at —1/a7 and 

a zero at -1/T. The transfer function of a practical PD controller is therefore 

K,s+K, C= 4.29 ®) ak ys +l — 

and the transfer function of a practical PID controller is 

2 

C(s)= Kos +Kps+K, (4.30) 
s(aK,s +1) 

Since there is no steady state error, an ‘I’ term is not required, so a PD controller will be 

used. The values of KP and KD were found by trial and error and using KP = 0.5x10-2, 

KD = 10, and a = 0.05, the following response was obtained 

  

  

      

Time (secs) 

Figure 4.19 Compensated response of the test-rig 

The Matlab script to obtain this response is in appendix A.3. The behaviour of the lead 

compensator is determined by a and Kg, and a is difficult to select. With an ideal 

differentiator (« =(0) a near perfect response could be obtained, but this is of course 

unobtainable in practice. The settling time is many times better than before, but still 

unacceptable to this project. 
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4.4.11 Velocity Feedback 

In motion control, it is conventional to close control loops as shown in figure 4.20. 
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Figure 4.20 Position-Velocity-Torque control loops 

The torque control loop’s dynamics depends mainly on the internal delays, set up by the 

electrical time constant (L/R~0.16ms), and its behaviour is first-order with a very short 

time constant. For frequencies of velocity control, the torque loop will be virtually 

zero'"-order. 

Velocity feedback is a control loop outside the torque control loop, but within the 

position control loop. The velocity of the shaft is monitored using a velocity observer 

discussed in section 4.1.3. Its constructional details are in chapter 7. Using this signal 

avoids the problems of amplification of any high frequency noise component of the 

signal inherent in the process of differentiation of the position signal. The velocity 

feedback acts as damping to the position control system allowing higher position loop 

gains than before. The characteristic equation is the same for P + D control, but the 

numerator of the overall transfer function is different, resulting in a similar but different 

dynamic response, better than that of position and torque loops alone. 

4.4.12 Velocity Feedforward 

[9] The main disadvantage with the above scheme is that the position control loop has 

to drive the velocity loop, which can add delay for a fast changing signal. This problem 

can be overcome by feeding forward a signal representing the velocity demand, as in 

figure 4.21. 
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Figure 4.21 Control loops incorporating velocity feedforward 

A typical gain for this transfer function (ideally sG,) is 0.75. The problem with this 

scheme is that the velocity feedforward transfer function incorporates some kind of 

differentiation approximation, which tends to amplify errors. The advantage is that this 

addition does not affect loop stability and behaves like an external disturbance which 

enhances performance. 

4.4.13 Practical Test-rig Controller 

The controller designs above have all been based on a noise free system with ideal 

characteristics and zero delays in many parts of the system. In practice, there will be 

many delays in the system, particularly in the drives and motor electronics, and position 

and velocity observers/processing electronics. The DSP board which will contain the 

controllers will have delays in the anti-aliasing and reconstruction filters, and also in the 

processing of data. The system will also contain some non-linear behaviour, for 

example backlash in the gearbox (although this has been minimised). The controller 

designs above are useful as a starting point, and armed with this simplified behaviour it 

is possible to design controllers which can be adjusted in the field to match the system 

taking into account other previously ignored factors. Methods have been developed to 

set up controllers once in place, perhaps one of the best known is the Zeiger-Nichols 

method (J.G. Zeiger and N.B. Nichols, 1942), and other more recent methods [10]. 

Because the system can operate quite differently in practice than in simulation, a general 

controller will be designed and tuned when in place. The performance of this will be 

reviewed using real data. 
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PID is the most common form of controller and will be adopted here. Integral action can 

make a system sluggish, and in a velocity loop acts identically as a position loop and 

increases open-loop phase shift which will limit the maximum gain before instability. It 

is therefore highly undesirable in the velocity loop as it can cause stability problems. 

Ideal derivative action increases the bandwidth of the system but can cause problems by 

amplifying noise. A lead compensator is closer to a practical derivative controller, but 

its implementation can incur a computational overhead. 

A control system shown in figure 4.22 was initially considered since this would be the 

most flexible. It was uncertain that the velocity feedforward or I-term of the position 

controller would be needed, but these could always be removed by setting their 

coefficients to zero. Ultimately this system was not implemented because the system 

described in section 4.5 was applied instead. 
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Figure 4.22 Implementation of test-rig emulation control — Method 1 

Section 4.7 describes the software implementation of the controller components and of 

the overall controller. 
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4.5 Control of the Test-rig for Machine Emulation — Method 2 

Section 4.4 offered one approach to machine emulation. This assumed that the model of 

the load took shaft-torque as the input, and produced an angular-displacement output. It 

would be convenient instead to have a model which produced a torque output given an 

angular displacement input. This would allow torque to be controlled instead which is 

much easier as it is not integrated by the test-rig as velocity and angle are. The problem 

is that the models would need to be ‘inverted’ which is mathematically complex. 

However, there is a way to invert a model approximately without incurring all of the 

problems associated with model inversion. 

The way this is done is to put a stiff controller* around the model that is being emulated 

such that the model is driven to always track the angle and angular velocity being 

measured. The input to the (open-loop) model is the shaft-torque. This is described by 

figure 4.23. 

*Stiff refers to a system which has a mixture of relatively fast and relatively slow 

dynamics, neither of which can be ignored. 
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Figure 4.23 ‘Model Inversion’ Approximation 

There is a big advantage to using a very stiff controller to control a numerical model 

compared with using a very stiff controller to control a real model (the test-rig) to get 

angle and angular velocity. In one case, there is noise, delay and uncertain dynamics. In 

the other case, there is not. In practice however high values of Kcs in digital control will 

lead to instability, and only approximate models are achievable using lower values of 

Kes. 
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Figure 4.24 Implementation of test-rig emulation control — Method 2 

Figure 4.24 shows the controller structure chosen for the torque control method of 

machine emulation. The ‘model inversion approximation’ method shown in figure 4.23 

is used to derive the torque reference which is fed into the shaft-torque controller. The 

D term is incorporated to compensate for increased rise times due to the test-rig inertia, 

but this also amplifies noise on an already noisy signal, and so is unlikely to be used. 

The losses due to damping and friction effect the torque directly, and the errors due to 

these will appear directly in the torque error term. The damping and friction 

compensators are therefore unlikely to be beneficial, but their effect will be observed 

during practical testing of the controller. 

It can be seen that the only difference between figures 4.22 and 4.24 is the control 

scheme. Both incorporate an identical model of the machine being emulated, physical 

test-rig, and measured variables. The scheme shown in figure 4.24 was chosen since 

torque control is required, and tested using test profiles on a test set-up (section 4.8), 

and then using machine-emulation-models performing an emulation function (chapter 

De 
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4.6 Control of the Test-rig for Machine Characterisation 

As discussed in section 4.2, during machine characterisation the nature of the torque 

stimuli and the relationship between the resulting torque and angle is of importance. 

The precise control of the external machine is not important, but the exercising of all of 

the dynamics of the machine being characterised is. Since the types of machines to be 

characterised are most likely to be heavily cyclic, this involves applying torque stimuli 

over a range of angles. This means that ultimately the angle also needs to be controlled, 

but only very loosely. The angle will be varying due to the torque so only the mean 

angle needs to be adjusted by a slight torque offset, essentially providing a static offset. 

A structure similar to figure 4.24 is therefore appropriate, but incorporating extra 

control over the angle as shown in figure 4.25. 
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Figure 4.25 Implementation of test-rig characterisation control 

Since tight control of the angle is not required, a proportional only controller is used for 

shaft position. The same torque controller as described in section 4.5 is used to control 

the torque, but since the machine being characterised has unknown dynamics the D term 

will be omitted for stability. For some system identification methods (chapter 5) it may 

be necessary for the system to be driven open-loop. Torque is the most significant loop 

to cut, as this constitutes the system identification ‘input’. Provision has been made for 

operating the test-rig open-loop by allowing the torque feedback to be cut, and for the 
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friction and damping coefficients to be made equal zero. This may be beneficial to some 

system identification methods discussed in chapter 5. It is expected that the way the 

angle is controlled means that it will not affect the dynamic properties of the system 

significantly. 

4.7 Software Implementation of Controller Components 

The torque control blocks of figures 4.24 and 4.25 are identical in that they both 

generate a torque reference using the shaft angle. The only difference between these 

control strategies is that the emulation control generates a torque reference from a 

machine model, and the characterisation control generates a torque from a perturbation 

strategy. Control code was therefore written which is common to both, and is flexible 

such that the torque reference and control parameters are easily changed. The general 

code written to control the test-rig is in appendix B.1. Minor modifications are required 

for the application to different tests, and are discussed in the context of the test 

descriptions. 

The DSP board has four analogue inputs and four analogue outputs. Three of the inputs 

are used for angle, velocity, and torque, and the fourth is spare. One of the outputs is 

connected to the test-rig drives, and one is used to feed a perturbation signal to a drive- 

motor pair used to apply torque to the test-rig when it is emulating a machine. A 

sampling clock is applied to the DSP board that is fixed at 10 kHz, and anti-aliasing 

filters (described in chapter 7) are used to filter the velocity and torque signals prior to 

sampling. 

Function calls are kept to a minimum because they incur an overhead due to stack usage 

and program jumps. The control program shown in appendix B.1 has 15 distinct 

sections. 

1) Variable and macro definitions 

The variables used throughout the program are defined here, and include sufficient 

storage for past and present values of angle, velocity and torque. Macros are also 

defined that specify the DC offsets of the analogue inputs, and the scaling factors for the 

signals. 
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2) Read in control parameters 

Frequently changed parameters are stored in a separate text file (“‘ctrlpars”), and are read 

in before the control loop executes. This allows parameters to be changed quickly 

without the need for program re-compilation. 

3) Initialise memory and DSP 

Enough memory is dynamically allocated for data logging. The timer for measuring 

sample rates (used for program performance analysis and debugging) is initialised, and 

the ADC’s are stopped and their FIFO’s emptied. A user response is then required to 

continue, and sampling is then started. 

4) Input signals 

Function calls to read_next_voltaged() return the most recent inputs from the 

ADC’s. 

5) Scale and filter input signals 

The input signals are scaled into meaningful quantities and offsets are removed. 

Provision has also been made for the digital filtering of signals subsequent to sampling. 

Only the torque and velocity are filtered to remove noise, as the angle is required to 

have sharp transitions between -1 and +. 

6) Generate torque requirement 

The torque requirement is calculated using either: 

a) amachine emulation model and stiff shaft coupling model (figure 4.24), or 

b) a torque profile and angle profile (and associated control) for characterisation 

(figure 4.25) 

7) Angle control algorithm 

This algorithm (see 6b above) is used for generating a torque for angle control during 

characterisation. The control is PI and loosely controlled so as to not correlate the input 

and output signals excessively (chapter 5 discusses this in detail). 
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8) Damping and friction compensation 

When the damping (B;) and friction (Kr) are known they can be used here no negate 

the non-linear friction and the damping of the test-rig. 

9) Torque control algorithm 

The torque controller is a PID control algorithm and the parameters are defined in the 

“ctrlpars” file. The I and D terms are trapezoidal and finite-divided-difference methods 

respectively, and although crude are sufficient for this application. The next two 

sections discuss the differentiation and integration methods in more detail. 

10) Output signal(s 

The output signals are scaled to translate from meaningful units to a voltage that is 

applied to test-rig motor’s drives. 

11) Timing issues 

The timer measuring the period between samples is reset, and the sample counter is 

reset. This allows the data logging to store the data in the correct position of the storage 

arrays. 

12) Logging data 

The data is stored in arrays for retrieval later (when the test is complete). 

13) Maintaining a sufficient history of variables 

A number of past and present values of data are stored, which are required for the 

control loops and emulation models. 

14) Shutting down the test-rig 

Once the test is complete, the test-rig is shut down by applying a zero torque reference 

to the drives, and a message is printed to notify the user. 

15) Saving recorded data to file 

The data is saved to a file in a text format, which although not particularly compact is 

suitable for use with Matlab. 
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4.7.1 Differentiation in Software 
  

A basic form of differentiation can be found by 

_f@)=SO.4) 
Ape 

f(x) (4.31) 

This is sometimes referred to as a rectangular-slope method [28], and calculates the 

slope between the current and previous sample, where the period is of time x,—x,, ( 

=T ). It is also known as a first backward finite difference equation [24]. This and other 

divided difference equations are developed from the Taylor series to approximate 

derivatives numerically, for example backward and centered difference approximations. 

The errors of this differentiation method is proportional to the square of the step size, 

and more accurate approximations of the first derivative can be developed by including 

higher-order terms of the Taylor series. Approximations can also be developed for 

higher-order derivatives, but are not used here. Incorporating the second-derivative term 

for example, gives the equation 

_3f(%)=4 6.1) + £2) f'%) OF (4.32) 

and is more accurate. This equation is known as a second-order backward finite- 

divided-difference formula. 

Matlab script is shown in appendix A.4 (“diffrtnd.m” and “taylexl.m”) which 

differentiates integrated torque data (7p) from a simulation by using two methods. The 

first is the rectangular-slope method, and the second is the backward finite-divided- 

difference method (using 5 previous values and a highest derivative of first-order). A 

graph plotting the results is shown in figure 4.26. 
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Figure 4.26 Graph comparing two data differentiation methods 

The Taylor’s method has better noise immunity but filters the signal, since at higher 

frequencies the signal has significantly less amplitude than the true value of torque. 

Both these were tested using the test-rig but the backward finite-divided-difference 

method was actually employed because of its better noise immunity. 

4.7.2 Integration in Software 

Two integration methods were tried, both with similar results. The rectangular (or strip) 

method calculates the area under the signal by assuming the next sample will be the 

same as the current one, so if / is the integral of a signal x, 

Dyec(t) © Dye (t —V) + x(t) xT (4.33) 

The trapezoidal method calculates each ‘strip’ under the curve by calculating the height 

as the previous sample plus half the difference between that and the previous sample. 

Le. it is approximating the area of the trapezoid under the straight line connecting the 

data points x(t-1) and x(t), 

x(t)+x(t+1)) Trapt) ¥ Lap (t=) + Tx( $ (4.34) 
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4.8 PID tuning of the test-rig 

The torque control I and D parameters are coefficients of the error integral and 

derivative respectively. This approach (as opposed to using integral and derivative 

action time) was taken because it allows these terms to be disabled easily by simply 

setting them to zero. The Zeigler-Nichols rules for controller tuning [2,10] is widely 

used but tends to produce an underdamped response, which can usually be reduced by 

lowering the P-gain. Increasing the D-gain increases response speed, but because of the 

noise amplification was found to be of limited use. The basic approach adopted was to 

increase the P-gain (with I-gain and D-gain set to zero) until the system became 

oscillatory, and then back it off slightly. To avoid the problems of amplification of any 

high frequency noise only a small amount of D-gain could be applied. When this was 

increased the motors became noisy and consumed excessive power. 

During experimentation, the test-rig became very oscillatory and broke the centre gear 

of the spur-gear gearbox, as figure 4.27 illustrates. The replacement gear was made 

from steel, and substantially lightened by removing much of the material from within 

the gear. 

  

Figure 4.27 Gear broken due to unstable control 
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5 System Identification and Parameter Estimation 

Chapter 3 discussed various system models and their output responses to various inputs. 

Given sufficient inputs and corresponding outputs of a system, it is possible to construct 

a model of that system. This process is known as system identification. If the model has 

parameters, they will need to be found. This process is known as parameter estimation. 

There are five main aspects to the system identification problem: 

1) the choice of input stimuli within a permissible range which will exercise all 

dynamic aspects of the system, 

2) the manipulation of data to remove irrelevant components, 

3) the choice of system model, 

4) the fitting of parameters, and 

5) the testing of the model. 

The above process is iterative and if after step 5 the model is not good enough, then it 

will be necessary to go back to step 3 or 4, or even | or 2. The amount of user 

interaction required means that identification cannot be brought into a fully automated 

procedure. 

Matlab has a ‘System Identification’ toolbox, which has several functions to perform 

each of the above steps. Since most of the numerical computation required will be 

performed using this software, this chapter will not discuss the methods in fine detail, 

but rather provide an overview, highlighting the application of the various methods and 

the merits and drawbacks of each. Chapter 10 will make use of this background in 

selecting appropriate methods to characterise rotary mechanical machines. 

Two classes of identification methods will be explored; non-parametric and parametric, 

with reference to their corresponding models (the general form of which were discussed 

in chapter 3), and methods for selecting and validating models will also be considered. 

Perturbation signals will also be discussed, but since these can be specific to a particular 

experiment, they will also appear to some extent throughout the chapter. Finally the 

manipulation of the test data to extract the useful parts will be investigated. 
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5.1 The System Identification Objective 

The aim of this chapter is to discuss methods that are applicable to the machine 

characterisation function of the test-rig, specifically concerning the creation of 

mathematical representations of any external machine connected to it. Chapter 8 

describes a small selection of machines that were built specifically for the purpose of 

machine characterisation in the context of this project. All of these machines, and any 

others that are likely to be characterised on this test-rig have common properties; they 

are mostly linear (only a small amount of non-linearity if any), time-invariant, and 

heavily cyclic. Time-variant means that the machine’s behaviour changes with time, and 

cyclic means that these behavioural changes occur cyclically, which in this application 

means that the behavioural changes are related to the shaft angle. The models of these 

machines are SISO models, having one input, torque, and one output, angle. This 

chapter therefore has a heavy bias towards this kind of machine and corresponding 

models and identification methods. 

5.2 Background and Notation 

Different kinds of system models and their properties are discussed in Chapter 3. Since 

the test-rig collects discrete-time data, the discrete-time models of sections 3.9 to 3.12 

are particularly relevant to this chapter. 

The method adopted by Matlab to represent SISO data is to use column vectors y and u 

to represent output and input signals, where the row number corresponds to the sample 

number and their dimensions are (number of samples) by (number of inputs or outputs). 

This output-input data is collectively represented by a matrix whose first column(s) is 

the output data, and next column(s) is the input data, z=[y wu]. The Matlab function 

idplot is used to graph the data, idplot (z). The same method of representing the data 

will also be adopted in this text. 

In section 3.10.1, a general transfer function model (equation 3.71) was described 

containing two polynomials (G and H) which are functions of a set of parameters, 0. 

Different ways of describing this equation in terms of @ were outlined, that is, different 

ways of parameterising the model set. This set of models will be used extensively in this 

chapter. 
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System identification uses statistical methods and probability theory extensively. It is 

beyond the scope of this text to derive or discuss these in detail, but some aspects are 

discussed as they arise and when the author believes it beneficial to do so. 

5.3 Non-Parametric System Identification Methods 

Non-parametric identification methods for system identification are used to obtain 

models which are curves or functions, and not necessarily parameterised by a finite 

number of parameters. This section discusses such methods. 

5.3.1 Transient Analysis 

With transient analysis, the input is taken as a step or an impulse, and the recorded 

output constitutes the model. Chapter 3 discusses the response of first and second-order 

systems to step and impulse inputs, and this section relates this to the case where the 

model is unknown. Consider a real system Go(q), with input u(#), output (4), and 

disturbance v(t) described by the function 

Y(t) = G(q)u(t) + vd) (5.1) 

Impulse Response 

An impulse input of amplitude a described by 

i 2=0: 
wo={t ais (5.2) 

applied to equation 5.1 will give an output 

Y(t) = ag(t)+v(t) (5.3) 

If the noise level v(¢) is low, the coefficients go(t) and errors v(t) can be estimated by 

BO ean ain! (5.4 a,b) 
a a 
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Step Response 

Similarly, a step input of amplitude a described by 

a F2=0 
u(t) = Vis (5.5) 

applied to equation 5.1 will produce the output 

y= AY) g(k)+ v(t) 6.6) 
kel 

Likewise the coefficients go(¢) and errors v(¢) can be estimated by 

and error = wee) (5.7 a, b) 
a 

x) JO=ye=) 
a= 5 

Equation 5.7 is likely to have large errors if the noise is significant since it is a 

differentiation approximation. It is suitable however to find characteristics such as delay 

time, static gain, or dominating time constants, and these methods are used to determine 

parameters for control purposes. 

Transient analysis provides insight into cause and effect relationships, and time 

constants, damping factors, natural frequency and static gains are easily estimated. 

Both of the above methods suffer from the fact that many physical systems do not allow 

inputs of this type, or of sufficient amplitude where the error is insignificant. 

5.3.2 Correlation Analysis 

The discrete-time form of model used in correlation analysis is 

y= > g(out-H+v(0) 6.11) 
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g(k) is called the weighting function, since it describes the weight that the input at time 

(¢- k) has in the output at time ¢. The input is a stationary stochastic process independent 

of disturbances, such as white noise of zero mean and covariance o°. The following 

relation (called the Weiner-Hopf equation) [15] holds for the covariance functions 

Tut) =D) 8(hr, (tk) (5.12) 
k=O 

where r,,(t)=Ey(t+t)u(t) andr, (t) = Eu(t+)u(t) (5.13 a, b) 

(E is termed the expectation operator) and the covariance functions can be estimated 

from the data as 

N=max(1,0) 

mO=— DY, yt+ru(e) t=0, 41, 42,... (5.14) 
t=l-min( 1,0) 

1 a 

m= Lut oul) fy(-1) =%,(0) PAUL Dae (5.15) 
tl 

An estimate g,(k) of the weighting function g,(k) can be determined by solving 

F()= D&A (KW) 6.16) 
k=0 

The ease of which this can be solved depends on the input ({13] discusses this in detail). 

A simple way to estimate g,(k) is (when the input is not “exactly white”) to truncate 

5.11 at ” and treat it as an nth-order FIR model with the parametric least-squares 

method (section 5.4.2). Correlation analysis assumes that the input is uncorrelated with 

the disturbances, meaning that this method will not work properly when the data is 

collected from a system under output feedback. 
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5.3.3 Frequency Response Analysis 

Frequency analysis uses a range of sinusoidal input frequencies, and the change in 

amplitude and phase of the sinusoidal output determines the frequency response of a 

system. The same model as equation 5.1 is applicable, and if the input is 

u(t) =acos(ot), 1=0)1,2,..5. (5.8) 

and the system is stable, the output can be shown to be 

y(t) = bcos(wt +) + v(t) (5.9) 

where b= olG(Ja)| and Q= arg[G(jo)] (5.10 a, b) 

assuming that the system is initially at rest, so ignoring any transient effects. The 

estimate Gy (jm) is determined by finding the amplitude and phase for a number of 

frequencies in the range of interest. 

Often there is noise and irregularities that make @ difficult to determine directly. It is 

then necessary to correlate the output with cos(@t) and sin(wt). This procedure is 

called frequency analysis with the correlation method. 

5.3.4 Fourier Analysis 

Section 3.6.2 briefly discussed Fourier transforms, some of which will be applied here. 

A system can be represented by Y(s) = G(s)U(s). Transforming this to the time-domain 

(convolution integral) gives 

yO=[aue-1) de (5.11) 

where / is called the impulse response. G(s) and A(t) are related by G being the Laplace 

transform of h 
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G(s)=[r@e™ ae (5.12) 

If the input is chosen to be u =sin(wf) and the system is stable, and all transients have 

died away, the output can be given by 

y(t) =|G(Jjo)|sin(or + arg[G(jo)]) (5.13) 

The function G(ja) is therefore the response the systems angular frequency o. The 

following relationship then holds true 

Y(@) 

  

Y(@)=G(jo)U(@) and G(jo) = Ue (5.14 a, b) 

If )(t) and u(t) are known over a finite interval 0 < ¢ < S, the two equations 

Y(o=[y@e" dt and U,(@)= [ume at (5.15) 

can be used to form the estimate 

G.U0)= ae (5.16) 

where G; is known as the empirical transfer function estimate (ETFE) of the G, since it 

is formed directly from data without any other model assumptions other that linearity. If 

the input is u(t)=u, cos(wf) the estimate G, (jo) can be shown to be the Fourier 

transform 

(UE = [ »@cos(on).dr—j f° »(Osin(ot).at) (5.17) Ss US lo lo. 
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For discrete time samples of w(kT) and (kT) where (k = 1, ..., N), the following 

approximations are made 

N N 

Y,(@)=TY ykT)e7"" = and «UU, (@) =Tu(kT).e 1" (5.18 a, b) 
kel kal 

T is the sampling interval, and S = N xT’. If N is a power of 2 and @=kx2r, then the 

above process is known as the fast Fourier transform (FFT). 

5.3.5 Spectral Analysis 

Spectral analysis is a common method for analysis of signals and linear systems, and is 

an estimate of the frequency response of a system. It does not require any special input 

signals, but does not work for systems operating under feedback (i.e. so that the input 

and noise disturbances are uncorrelated). The mathematics behind this method is 

difficult, so a rather simplistic approach is adopted here. 

The spectrum of a signal is its frequency content, and the notation for the spectrum of a 

signal v(‘) is ®,(@) found by 

©,() =o) (5.19) 

Spectral density is the measure of the signal’s energy (or power), and between the 

frequencies @, and @, is found by 

[2 do (5.20) 

There are a number of ways of defining spectrum definitions, but for energy and power 

spectra it is the sum of the square of the absolute value of its Fourier transform, for both 

continuous and discrete time signals. 

The cross spectra between two signals u and y (®,,(@)) is defined as the product yu 

between the Fourier transform of y and the conjugate Fourier transform of u. Two 
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signals are said to be uncorrelated if their cross spectrum is zero. Cross spectra are 

mainly used for signals which belong to stochastic processes, and ®,,,(@) is a complex 

number equal to the covariance between Y(@) and U(@). Essentially this means that 

y(t) will on average have the component of u(f), but |o,,@)| times larger and 

arg ® ,,(@) radians phase delayed. For a system 

Y(t) = G(qt)u(t) + v(t) (5.21) 

it can be shown [25] that 

® ,(@)=|G(jol ,(0)+,(0) (5.22) 

and the cross spectra is given by 

® ,,, (@) = G(jo)®,,(@) (5.23) 

From this the frequency function can be estimated 

7 A) 
G, (jo) = 0") (5.24) 

The transfer function is obtained in the form of a bode plot (or other equivalent form). 

5.3.6 Summary of Non-Parametric SI Methods 

This section has outlined some simple techniques of transient and frequency response 

and how they can give some insight into the properties of linear systems. They are 

relatively easy to apply but give only moderately accurate models. The methods 

discussed are summarised below. 
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Transient Analysis 

Transient analysis is easy to apply, and gives a step or impulse response as a model. It is 

very sensitive to noise and can only give a crude model. 

Correlation Analysis 

This is based on a white noise input and gives a weighting function as the resulting 

model. It is less sensitive to noise on the output. 

Frequency Analysis 

This method is based on sinusoidal inputs and the resulting model is a frequency 

response. It is usually represented as a bode plot or equivalent transfer function. The 

drawback with this method is that it tends to take longer. 

Spectral Analysis 

Spectral Analysis does not require any special input signals, but does not work for 

systems operating under feedback. The transfer function is usually represented as a bode 

plot or equivalent transfer function form. 

Fourier Analysis 

Fourier analysis is closely linked with spectral analysis but only works for periodic 

signals and can be rather crude in practice. 

5.4 Parametric System Identification Methods 

This section reviews the various models and identification methods that are applicable 

to the characterisation function of the test-rig. Predictor models for each type of model 

and the methods employed to reduce the prediction errors are described. 

5.4.1 Parametric Models and Predictors 
  

There are two general kinds of parameterised models, white-box models and black-box 

models. 
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5.4.1.1 White-box models 
  

White-box (or custom) models are models that have been constructed to accurately 

represent a physical system and the parameters represent actual physical quantities, even 

though their values are not known. An example of a white-box model is the pair of 

equations 3.2 and 3.3, which describe the rotational mechanical system example. These 

equations fit the general form of equation 3.69, and in this case the one-step-ahead 

predicted output of y(¢) can be represented by 

D(t| 8) = Gg, O)u(t) (5.25) 

Equation 5.25 is the predicted value of the output at time ¢ according to the model, and 

is referred to as the predictor form. It is written as }(t|) to emphasise that the output 

of the model will depend on the vector 0. 

5.4.1.2 Black-box models 

Often systems cannot be modelled based on physical insights, but it is possible to use 

standard models, which can handle a wide range of different system dynamics. Black- 

box models are families of models, such as those described in section 3.10. The 

parameters of these types of models are unlikely to have any physical interpretation, but 

can accurately describe the relationship between the inputs and outputs of the system. 

5.4.1.3 Grey-box models 

Often insufficient information is available to specify the complete structure of a white- 

box model, but assuming a black-box model would be a waste of information and result 

in a less accurate model. Cases between these two structures are called grey-box models 

since it is analogous to a box where only some of the structure can be seen. 

5.4.1.4 Prediction 

Taking the OE model described in section 3.10.1.4 as an example, it is possible to 

predict what the output (¢) will be based on measurements y(s) and u(s), s < t— 1. The 
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noise term cannot be predicted since it is independent of previous values. The OE 

model for this (equation 3.91 fitted to equation 3.71) is 

Y(t) = G(q, B)u(t) + e(t) (5.26) 

This has the prediction 

S(O) = Gg, u(t) (5.27) 

The ARX model (equation 3.72) can be rearranged for y(t) 

Y(t) =-a,y(t-1)----- a, y(t—n,) + bu(t-1) +--+, u(t —n,) + e(t) (5.28) 

and the prediction is simply this with the error term removed 

y(t) =~a,y¢-1) =a, y(t =n, ) + Bult) +--+ 8, u(t) (5.29) 

The difference between 5.20 and 5.23 is that the OE model predictor is based entirely 

on the input, whereas the ARX model also uses past values of the output. 

The general description of discrete-time transfer functions is given by equation 3.71a 

Y(t) = G(q, O)u(t) + H(q, O)e(t) 

Dividing this by H(q,9) gives 

H'(q,9)y(t) = H'(q,0)G(q, 0)u(t) + e(t) (5.30) 

Since the noise term is unknown, the prediction of y(¢) is simply obtained by deleting 

e(t) and rearranging for y(t) thus 

F(t] 0) =[1- A *(g,®)] vO) + H'(g,0)G(g, ®u(s) (5.31) 
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This is a therefore a general predictor expression for the next value of output based on 

past inputs and outputs for models of the type described by equation 3.71. 

5.4.1.5 Minimising the Prediction Errors 

J(t|®) is a prediction of y(¢) at time (¢-1) irrespective of the type of model it 

corresponds to. How good this prediction is can be measured by calculating the 

prediction error 

e(t,0) = y(0)— S(t | 0) (5.32) 

Over a time period containing N samples (¢ = 1, ..., N), it is possible to evaluate how 

well the model with the parameter 0 represents the system by evaluating the sum of the 

squares of the errors over this period, called the quadratic criterion function or loss 

Junction (whose parameters are the parameter value 0, and the set of input-output data 

Z"= {u(0), y(O), «.-5 uN), OND}) 

eal 
Vy(0,Z")=—-D7e°(6,8) (5.33) 

t=] 

The problem is to choose the value of 0 that minimises 

6, =argmin/, (0,Z”) (5.34) 

(where ‘arg min’ denotes the minimising argument). Several variants of equation 5.33 

can be used, and in general any arbitrary positive, scalar valued function ¢(e) can be 

used as a measure of error, and the problem is then to minimise 

pee 
Ry(@Z")= ie £(e(t,0)) (5.35) 

t= 

Methods that minimise this loss function are called prediction error (PE) methods. 

There are many established methods that satisfy the criteria of equation 5.34 as a good 
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choice for parameter estimation. For example, equations 5.34 and 5.35 give the 

maximum likelihood (ML) estimate of 0, if ¢(-) is chosen as 

&(€) = log f,(e) (5.36) 

where /,(€) is the probability density function (PDF) of the noise e(t). This is discussed 

in more detail in section 5.4.3. 

The prediction error sequence is frequently passed through a stable linear filter L(q) 

€,,(t,0) = L(q)e(t,0) 1<t<N (5.37) 

which gives extra flexibility in dealing with effects such as high frequency disturbances 

not essential to the modelling problem, or slow drift terms and offsets. L thus acts as a 

Srequency weighting. For now it will be assumed that L(q)=1 as the pre-processing of 

the data is discussed in section 5.7. 

5.4.2 Linear-Regression and the Linear Least-Squares Method 

The general predictor described in the previous section could be written as the linear 

regression 

F(t| 0) = 9" (H+ H(t) (5.38) 

where 0 is the parameter vector (described in section 3.10.1) and @ is the regression 

vector, where for the ARX structure is 

e@)=[-ye-l) -y@-2) ... -y(t=n,) u(t-1) ... u(t-n,)T (5.39) 

h(t) is a data dependant vector, and can be ignored for this section. From equation 5.38 

the prediction error can be given by 
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e(t|®) = y()— 9" OO (5.40) 

and the criterion function resulting from equations 5.35 and 5.37with L(q) = 1 and 

&(e)= te’, is the least-squares (LS) criterion for the linear regression (equation 5.38): 

N 

7.0,2")=+S4[y-o" of (5.41) 
N tl 

Since this is a linear parameterisation and a quadratic function of 0, it can be minimised 

analytically, providing the inverse exists, which gives the /east squares estimate (LSE) 

04° =argmin/, (0,2) = [Feo] HHO (5.42) 
tat 

5.4.2.1 Weighted Least-Squares 

It may be that measurements at different time instants are considered to be of varying 

reliability. This may because noise corruption changes or that some measurements are 

less representative of a system’s characteristics. In such cases the choice of £(:) can be 

time varying 

N 

¥4(0,Z") =} €(e.8),0,1) 6.43) 
11 

so that less reliable measurements can be given less weight. An explicit weighting 

function B(N,t) can be applied, so the criterion function is 

’ Lee 
V0.2") = BV Oelel, 6),0) (5.44) 

tl 

so equation 5.41 becomes 
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Vy 0,2") => pw.) -9" (9) (5.45) 

Introducing this weighting function into equation 5.42 yields 

of =argmin/,(0,2")= [Eee Hoo" | FU BODeOYO 6.46) 

An advantage of the least squares method is that the global minimum of equation 5.41 

can be found efficiently and unambiguously (only the one global minima exists). Its 

main disadvantage is that if the equation error is not white noise then the parameters 

will not converge to the true values of the parameters. Further modelling may be 

incorporated into the equation error, but this typically leaves the LS environment. 

5.4.3 Maximum-Likelihood Method 
  

The system identification problem is one of extracting information from unreliable or 

stochastic data, and representing this information with parameters obtained from an 

estimator. Many estimator functions are possible, and a particular one that maximises 

the probability of an observed event is the maximum likelihood estimator (MLE). This 

estimator assumes that the noise in the model is Gaussian and was briefly discussed in 

section 5.4.1.5. The estimator can be written 

By, =(y") =argmax f, (0; y") (5.47) 

The definition of the probability density function (PDF) f,(x)= f,(x,...,x,) of a 

random vector e is said to have Gaussian or normal distribution if 

Os ane exp-4(x—m)! P*(x—m)| (5.48) 
(2n)% (det P 

where m is the mean and the covariance matrix is P containing 4; and det P is the 

determinant of the matrix P. 
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To calculate the maximum likelihood estimator, the joint PDF for the observations is 

firstly calculated. The PDF for y(i) is 

a (5.49) 
1 ee 

2nh, 2h, 

and since all the (i) are independent, the PDF of y" ow = y(1), y(2), ..., y(N)), the 

likelihood function can be given by 

  (x,-9)° f,@:x") = [ser - a, (5.50) 

Maximising the likelihood function is the same as maximising its logarithm, thus 

OY (y") = arg max log f,(;x") 

N N. *)_9)2 

Oy! (y") = arg max ~Flog2n—¥ toga, - 00-9") (5.51) 
isl j=l fi 

from which it can be found 

yO 
6M (y") = i, (5.52)   

§.4.4 Instrumental Variables Method 

Ideally the prediction error for a good model is independent of past data, i.e. 

e(t,0) = y(t) — H(t | 8) (5.53) 

is independent of the data set Z'' (Z’ = {u(0), y(0), ..., uN), v(N)}). If this is not the 

case and g(f,0) is correlated with Z‘" then the predictor is not ideal. This means that a 
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good model produces prediction errors that are independent of past data. To check this 

would amount to testing if all non-linear transformations of ¢(t,0) are uncorrelated with 

all possible functions of Z'', which is not feasible in practice. Instead a finite- 

dimensional vector sequence C(t) is derived from Z‘"', and a transformation of ¢(t,0) 

is defined which must be uncorrelated with this sequence, 

i< 
ree Cae, )) =0 (5.54) 

t=] 

a(e) is the chosen transformation of ¢(t,0), and the value of @ which satisfies this 

equation would be the best estimate 6”. 

To allow extra freedom in dealing with non-momentary properties of the prediction 

errors, the data is filtered to remove unwanted properties (equation 5.37). 

€,,(t,0) = L(q)e(t,0) 

A sequence of correlation vectors constructed from past data (and possibly 0) is chosen 

G(t,0) =C(t,2'",0) (5.55) 

and also a function a(¢) which is discussed below. An estimator can be calculated 

6, =sol [7, (0,2) =0] (5.56) 

which means ‘the solution to the equation /,(0,Z")=0, where 

F402") = LYE, 0)al6,(6,0) (6.57) 

The estimate is taken to be the value that minimises this function 
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6, =arg min| f, (0,2")| (5.58) 

which can be written 

- Pe 
6, =arg mini D75(6, ale, (t,9)) (5.59) 

tel 

The above method is a conceptual method, the implementation of which depends on the 

model structures and the choice of C, The best known is perhaps the application of this 

method to a linear regression, which is called the instrumental-variable method (IV). 

It is worth noting, that if L(q) = 1 and C(t,0) = p(t) then equation 5.59 describes the 

LSE that corresponds to the LSE of equation 5.42. The linear regression model is 

described by 

v(t|0) =" (0 (5.60) 

It was pointed out in section 5.4.2.1 that the LSE 6, will typically not tend to the actual 

parameters 9, because the equation error is not perfectly ‘white’ due to correlation 

between the noise v(¢) and g(r). A general correlation vector C(t) is chosen, the 

elements of which are called the instruments, or instrumental variables. This gives 

A Wy Tet r 

6f =sol}-— di cobw-0" @e]=0 (5.61) 
tl 

(which incorporates the regression model 5.60) and can also be written 

Ay alee ie 
Oy = [FE] VUsOro (5.62) 

tel tel 

provided that the inverse exists. It can be seen from equation 5.61 that for 6, to tend to 

0, for large N, 
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FESOM 6.63) 

should tend to zero. The instrumental variable ¢(¢) must therefore be correlated with 

the regression variables but uncorrelated with the noise. 

§.4.4.1 The Choices of Instruments 

One possibility for choosing the instruments for a SISO system is to assume the model 

(equation 5.60) is an ARX model 

A(q) y(t) = B(qhu(t) + v(0) (5.64) 

represented by equation 3.72 

YO) + ay(t-) +--+, y(t—n,) = u(t -1) +-+++b, u(t —n,) + v0) hy 

and choose the instruments similarly to this model such that the they are correlated with 

the regression variables but uncorrelated with the noise: 

C(t) =K(@)-x(t-1)...-x(t-n,) u(t-1)...u(t—n,)]’ (5.65) 

where K is a linear filter and x(t) is generated from the input through a linear system 

N(q)x(t) = M(q)u(e) (5.66) 

Most instruments are generated in this way, and because they are a function of past 

inputs by linear filtering can be written conceptually as 

6) = C(t") (5.67) 
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The input must be generated open-loop so that it is uncorrelated with the noise v(¢) in 

the system, and C(¢) will therefore be correlated with the regression variables and not 

the noise since it is generated from the input sequence. 

One choice of instruments is to apply the LS method to the ARX equation (3.72) and 

then use this LS model to determine N and M, letting K = 1. This method is permissible 

for open-loop systems but a different approach is required for closed-loop systems. 

5.4.5 Recursive Identification Methods 

All the identification methods discussed in this chapter so far have been off-line or 

batch methods, in which the recorded data is used simultaneously to find the parameter 

estimates. Identification methods where the parameter estimates are computed 

recursively in time while the system is in operation are called recursive or on-line 

identification methods, since the measured input-output data is processed recursively 

(sequentially) as it becomes available. The model is based on observations up to the 

current time and the need for this typically arises when a model is required to make a 

decision about the system ‘on-the-fly’, often termed adaptive, as in adaptive control, 

adaptive filtering etc... 

When the test-rig is performing tests on an external machine, the test-rig will apply 

various stimuli and collect data, which will subsequently be processed off-line. 

Decisions may then be made to require further tests, but the data will not be used 

recursively. These types of identification methods will therefore not be considered 

further. 

5.4.6 Summary of Parametric SI Methods 

The least squares method is easy to use and can be applied to the identification of 

dynamic models. The estimates obtained are consistent but only under restrictive 

conditions, Le. if the equation error is not white noise then the parameters will not 

converge to the true values of the parameters. Two different ways of modifying the LS 

method were given where consistent estimates can be obtained under less restrictive 

conditions. Firstly minimisation of the prediction error leads to the prediction error 
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methods, and secondly modification of the normal equations associated with the least 

squares method which leads to the class of instrumental variables methods. 

The prediction error methods (PEM) are a generalisation of the least squares method, 

where the parameter estimate is determined as the minimising vector of a suitable 

function of the sample covariance matrix of the prediction errors. A special case of the 

PEM for Gaussian distributed disturbances is the maximum likelihood method. Under 

certain assumptions the PEM estimates are consistent, and under a Gaussian assumption 

the estimates are statistically efficient (i.e. have minimum possible variance). 

The instrumental variables methods assume that the system is causal and asymptotically 

stable, and the input and disturbance are independent (the system is open loop), and 

belongs to the set of models considered (ARX). Under these (mild) assumptions the 

parameter estimates are consistent and Gaussian distributed, and the covariance matrix 

of the parameter estimates can be optimised by appropriate choices of pre-filter and the 

IV matrix. 

5.5 Experiment Design 

The goal of the identification procedure is to obtain a good model with a reasonable 

amount of work. The practical experiment has already been defined by virtue of the 

project goals and is discussed in detail in chapter 9. The remaining issues to be 

addressed are: 

1) the choice of perturbation signals, 

2) the choice of sampling interval and pre-sampling filters, 

3) applying these signals and practical considerations, 

4) pre-processing the collected data, 

5) choice of model and identification method to apply, 

6) model validation. 

As the beginning of the chapter outlined, the above processes of 3 - 6 are iterative and a 

final model will only be obtained after some trial and error. The remainder of this 

chapter discusses these issues from a general viewpoint. 
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5.5.1 Experimental Variables 

The general model of the external machine in this project is a dynamic SISO model with 

torque input and an angular output. Two other variables are measurable, motor current 

and angular velocity (although this is estimated), but these are not intended to be used 

for machine characterisation. 

5.6 Perturbation Signals and Sampling Interval 

The choice of input signal has a substantial influence on the observed data. The input 

signal determines the operating point of the system and which parts and modes of the 

system are exited during the experiment. Certain identification methods require a 

special type of input, particularly for non-parametric identification methods. For 

frequency analysis the input must be a sinusoid, for transient analysis a step or impulse, 

and for correlation analysis a white noise or pseudo-random sequence. For other types 

of identification methods it is only required that the input is persistently exciting (pe) of 

a certain order, i.e. that it contains sufficiently many distinct frequencies. To identify a 

system of nth-order the input typically needs to be of order 2n. The amplitude of the 

input is also of importance. 

The machines being characterised will have operational limits, and if these are exceeded 

they will exhibit non-linear behaviour — that is, the machines can only be assumed 

(nearly) linear within their operating region. With this in mind it is usually beneficial to 

use large inputs as this increases the signal-to-noise ratio and the disturbances will play 

a smaller role. A simple rule is that the experimental condition should resemble the 

conditions under which the models will be used in the future. 

Section 3.14 briefly discussed some forcing functions and the dynamic behaviour of 

various types of systems to these inputs. This section will extend this theory for the use 

in the context of system identification and investigate the use of more complex forcing 

functions. 
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5.6.1 White (Gaussian) Noise 

A true white noise has a mean value of zero, and has normally distributed amplitude 

with probability symmetrical about zero. It is a good test signal particularly for 

correlation testing, but in practice only white noise of a limited bandwidth is possible. 

5.6.2 Pseudo-random Binary Sequences 

An important type of periodic signal for identification is the pseudo-random binary 

sequence (PRBS) which has two levels, and can only switch from one level to the other 

at discrete points, t= 0, At, 2At, .... When the signal changes state is pre-determined so 

that the PRBS is deterministic and experiments are repeatable (in contrast to the 

discrete-interval random binary signal). The PRBS is periodic with period T = NAt, 

where N is the length of the sequence and an odd integer, and in any one period there 

are ’4(N+1) intervals when the signal is at one level and '4(N-1) intervals when the 

signal is at the other. The most commonly used signals are based on maximum-length 

sequences (m-sequences) and are easily generated using feedback shift register circuits. 

The maximum length of binary m-sequences is N = 2” — 1, where n is a positive integer 

greater than zero. They can be generated using an n-stage feedback shift register with a 

feedback to the first register consisting of the modulo-2 sum (exclusive-OR) of the logic 

value of the last stage and one or more of the other stages. The reason that the upper 

bound of 2” cannot be obtained is that the occurrence of an all zero state must be 

prevented. If this state did occur the state vector would remain zero for all future 

iterations. The register must therefore be started with any number other than all zeros. 

For all binary m-sequences each binary number (except for all zeros) occurs exactly 

once. Figure 5.1 shows a shift register circuit for generating a PRBS based on an m- 

sequence of length 2” — 1. 

It is important to note that not all combinations of bits for the feedback connection 

work, and tables of ones that do work are available [13]. The autocorrelation properties 

of a PRBS resemble those of white noise, and it is also easy to delay. 

There are three levels to select for use as an input signal, the period, the clock period 

and the amplitude. 
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Figure 5.1 Shift register circuit for generating a PRBS based on a (2” - 1)-digit 

m-sequence 

It can be shown [15] that the PRBS has similar properties to a white noise but the 

spectral densities are different since the PRBS is periodic. A C function to generate a 

PRBS signal is shown in appendix B.2. 

5.6.3 Sum of Sinusoids 

This class of input signal is given by 

u(t)= doa, sin(o,t+9,) (5.68) 

where qn are distinct angular frequencies of amplitudes a, and gn are their 

corresponding phases. 

5.6.4 Chirp Signals and Swept Sinusoids 

A chirp signal is a sinusoid with a frequency that changes over a frequency band (Q) «, 

<  < @; and time period 0 < ¢ < M such that 
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errecay) (5.69) 
u(t) = Acos (= deol FO 

The instantaneous frequency can be found by differentiating the cosine argument w.r.t. 

time 

t 
0, =O, AG -©,) (5.70) 

Due to the sliding frequency there will also be some power contributions outside the 

band Q. Functions to generate swept sine perturbation signals are shown in appendices 

A.5 and B.3. 

5.6.5 Periodic Signals 

The PRBS and Sum of Sinusoids are inherently periodic, and the Swept Sinusoid can be 

made periodic by simple repetition. When creating periodic signals the following must 

be ensured: 

¢ The PRBS signal must be generated over one full period (2” — 1) and then repeated. 

¢ To create a sum of sinusoids of period M, the frequencies must be chosen by 

@, =2n¢/M where ¢ =0,1,...,(M- 1). 

¢ To make the chirp signal periodic, @; and @: must chosen by 2nk,/M for two 

integers k, and k. The signal generated from equation 5.69 is then repeated. 

5.6.5.1 Properties of Periodic Signals 

A signal of period M can have at most a maximum of M discrete frequencies in its 

spectrum and is persistently exciting of at most order M. It is sometimes beneficial to 

use only one period of data for building non-parametric models as this increases the 

signal to noise ratio, Some methods have a performance threshold for finite samples and 

poor signal-to-noise ratios, and there may be an accuracy benefit from averaging the 

measurement over periods. 
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Using a periodic signal allows estimates of the noise in a system to be made. Once the 

transients have died away, the differences in the output response for identical input 

periods must be due to the noise. This can be used in the model validation process to 

distinguish between model errors and noise. The output can be represented by 

yt) =y, (1) + v(t) (5.71) 

where y,(t) is the noise free part of the output. It is periodic and the estimate of this over 

K periods for each period 1 <¢< M 

K-1 

5, =F > ye+kM) (5.72) 
k= 

The noise estimate is therefore ¥(t) = y(t)—},(¢) from which noise levels and colours 

can be estimated. The noise variance is estimated by 

> a) (5.73) 

5.6.6 Choice of Sampling Rate and Pre-sampling Filters 

In sampled data system there will be an inevitable loss of information and it is 

important to select the sampling instances to minimise these losses. It is far easier to 

work with data that is obtained through equidistant sampling instants of sampling 

interval 7, and this is assumed in this text. 

5.6.6.1 Aliasing 

Suppose a signal is sampled with a sampling interval 7, so that s, = s(kT) (k= 1, 2, ...), 

and the sampling frequency is written , = 2n/T. Shannon’s sampling theorem states 

that for a continuous signal to be reconstructed from a set of equally spaced samples, 

the signal must be sampled at a frequency which is greater than twice the highest 

frequency component present in the signal. This means that a sampled sinusoid with 

frequency higher than the Nyquist frequency, my = @,/2, cannot be distinguished from 
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one in the interval -@y to wy, and part of the signal spectrum that corresponds to 

frequencies higher than y will be interpreted as contributions from lower frequencies. 

This is called aliasing because the frequencies appear under assumed names. It also 

means that the spectrum of the sampled signal will be a superposition of different parts 

of the original spectrum, which is called frequency folding. 

5.6.6.2 Anti-aliasing / Pre-sampling Filters 

The information about the frequencies higher than the Nyquist frequency will be lost 

due to sampling, but it is important to ensure the folding effect does distort the 

frequencies below the Nyquist frequency. This is achieved by pre-sampling the signal 

with a filter known as a pre-sampling or anti-aliasing filter, and is placed before the 

sampling. 

Signals frequently consist of a useful part and a noise contribution. The noise 

contribution is usually broadband, so by choosing a sampling frequency such that the 

useful part of the signal is below oy, the effect of filtering the signal is to remove the 

high-frequency noise contributions. This of course changes the properties of the noise, 

but is necessary to prevent noise effects from the higher frequency region folding into 

the region -wy to @y. 

5.6.6.3 Sampling Rate 

For system identification data-acquisition, it is usual to sample sufficiently quickly so 

that the process is well damped above the Nyquist frequency, and high-frequency 

components that originate from the input are insignificant. From an information 

theoretic point of view it is beneficial to sample as fast as possible since slower 

sampling leads to data sets that are subsets of the maximal one, and hence less 

informative. There are two aspects that prevent sampling as fast as technically possible: 

1) Building models with very small sampling interval compared to the natural time 

constants is numerically sensitive due to the effects of round-off errors, and 

2) The model fit may be concentrated to the high-frequency band (this is discussed in 

the next section). 
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A sampling rate much slower than the interesting time constants of the system would 

provide little information about the system’s dynamics, and a fast sampling rate would 

not allow for much noise reduction. A good choice of the sampling rate is therefore a 

trade-off between noise reduction and relevance for the dynamics. In practice, where 

computer speed is not a problem, the sampled frequency is usually made five to ten 

times higher than the highest frequency component (or the fastest system pole) in the 

sampling input. It is often advantageous to sample at a higher rate than this, as the 

choice of T can be made later by digitally pre-filtering and reducing the original data 

record. 

5.6.7 Summary 

To summarise, the following principles are important: 

¢ The experimental condition should resemble the conditions under which the models 

will be used 

e The system is made identifiable by using a persistently exiting input and not 

allowing too simple feedback mechanisms 

¢ Periodic inputs can be particularly advantageous for single-input systems (where an 

integer number of periods should be applied) 

e A sampling rate of ten times the guessed bandwidth (or fastest system pole) in the 

system is usually a good choice 

5.7 Pre-processing the Data 

When the data has been collected it is unlikely to be adequate for immediate use in 

identification algorithms. There are several areas where the data is deficient and will 

cause problems unless proper action is taken. 

5.7.1 Offsets, Drifts and De-trending 

Offsets and low-frequency disturbances such as drift are not uncommon in data. They 

can often occur as external disturbances, or may be characteristics of the system which 

are not required for the identification problem (e.g. non-linear friction). This will force 
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the model to waste some parameters correcting the levels, so it is desirable to remove 

these unwanted artefacts either by data pre-treatment or by including them in the noise 

model. 

The easiest method of removing offsets is to subtract the mean levels from the input and 

output sequences before the estimation: 

N 

wO=y"O-F where =H" (6.74a, b) 

u(t) =u" (t)-w where “= (5.75a, b) 

  

Extending the noise model is rather more complicated and is more suited to on-line 

identification where the mean cannot be explicitly calculated and the use of a high-pass 

filter is employed. This has the same effect as removing offsets, and slow drifts also. 

It is particularly important to remove offsets when OE models are used because the 

discrepancy in levels will become the dominating factor and the system dynamics will 

be less influential. High pass filtering of the data 

5.7.2 Outliners 

Real data is prone to bad disturbances, for example sensor malfunction, conversion 

failure, or large disturbances such as spurious electrical noise. It is important that these 

outliners do not affect the models too any significant extent. Bad values such as these 

are usually easy to detect in a residual plot (residuals are the ‘leftovers’ from the 

modelling process, i.e. the part of the data that the model could not reproduce). There 

are a few ways of dealing with outliners (or ‘repairing’ the damaged data set). They can 

either be manually removed, filtered out (smoothed) or treated as missing data. Treating 

them as missing data involves estimating the missing values using PE methods and will 

not be discussed further in this text. 
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5.8 SI Method Selection, Model Selection and Validation 

There are no definite rules that can be applied to determine the ‘best model structure’ or 

“best identification method’. For real data there are no ‘best’ structures or methods. 

Different models can be obtained from the same data, and they will represent the actual 

system either more or less accurately depending on the criteria used to validate the 

model and its application. Experiment performance and data acquisition will invariably 

take considerable effort and time, and it is worth spending time estimating different 

models and using different methods. 

5.8.1 Choice of SI Method 

It is clear that for the purpose of this text the process will be identified off-line. When 

choosing an SI method the purpose of the identification is important since it specifies 

the type of model and its accuracy. The following list shows SI methods arranged in 

order of general ascending accuracy and computational complexity: 

e Transient analysis 

¢ Frequency analysis 

¢ Least squares method 

¢ Instrumental variables method 

Prediction error method (including ML) 

Of course the data and expected model govern the actual application of these methods, 

and in practice other factors will influence the choice such as previous experience and 

available software. 

Applicability of Methods 

Whether the system was operating in closed-loop when the data was collected 

determines which methods can be used. All of the prediction methods generally work 

equally well for data from closed-loop systems. The OE and BJ models normally give a 

correct description of the dynamics G even if the noise dynamics H are inaccurate. This 

is not the case for closed-loop systems. The spectral analysis method and instrumental 

variable techniques give unreliable results when used on closed-loop data and their use 

should be avoided under such conditions. 
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The prediction-error approach (including LS & ML methods) is applicable to all model 

structures including white-box models and black-box-parameterised, and can be applied 

to open and closed-loop data. The minimisation method is the same for all variations on 

the theme, and only the predictor is calculated differently. The correlation method is 

also generally applicable but is only used for linear black-box models. The IV method is 

a variant of this and is for the ARX model. 

5.8.2 Model Structure Selection 

The choice of model structure is perhaps the most important aspect for SI, and is based 

on knowledge of the identification procedures and physical insight into the system being 

identified. Chapter 3 described model structures applicable to the SI problem, and this 

chapter has described some methods to identify the parameters in those models. Once a 

model has been chosen it needs to be validated to determine its fitness, and this is 

discussed in section 5.8.3. 

Selecting the type of model involves the choice of linear or non-linear, white-box or 

black-box etc... and selecting the size of the model set involves selecting the order of 

the model or the degrees of the polynomials involved. A priori knowledge of the system 

is invaluable to the identification problem and it is this knowledge which forms the 

starting point of the exercise. The models appropriate to the test-rig characterisation 

function will generally be assumed linear and black-box-parameterised. A rule of thumb 

is to try simple models first and try more sophisticated models if the simpler ones do not 

pass the validation tests. 

Applicability of Various Black-Box-Parameterised Models 

Referring to table 3.1 the following model structures are discussed: 

e The ARX model A(q)y(t)=B(q)u(t)+e(t) is the easiest to estimate since the 

corresponding estimation problem is of a linear regression type. The ARX model is 

a good starting point for identification. The main disadvantage is that the 

disturbance model H(q,0) = 1/A(q) involves the system poles and the system 

dynamics may be incorrectly estimated because the A polynomial also has to 
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describe the disturbance properties. Higher orders of model may therefore be 

required. If the signal-to-noise is good, this problem is less pronounced. 

e The ARMAX model A(q)y(t)=B(q)u(t)+C(q)e(t) has more flexibility in 

handling the disturbance modelling since an extra polynomial C. 

e The OE model y(t) = FBu(t)+e(t) has the advantage that no parameters are used 

to describe the noise model and the system dynamics are described separately. The 

system needs to operate in open-loop but a description of the transfer function can 

be obtained regardless of the nature of the disturbance. Minimisation of the criterion 

function is more difficult than in the ARMAX case. 

e The BJ model V(t) = FOUN +52 e@) incorporates polynomials to describe all 

parts of the system and the disturbance properties are modelled separately from the 

system dynamics. 

The ARX and ARMAX models have common dynamics for the noise and the input and 

therefore are suitable when dominating disturbances enter early in the system, for 

example the input. In contrast the BJ model is convenient when the disturbance occur 

late in the system, for example as measurement noise in the output. 

Model Order Estimation 

The following procedure is useful to estimate the required order of a black-box- 

parameterised model: 

1) Sometimes the dynamics from u to y contains a delay of nj, samples, and some 

leading B coefficients are therefore zero. The delay of a linear system can be 

estimated using one of the non-parametric SI methods, tested using an ARX model, 

and chosen for the model that gives the best performance. 

2) Test many ARX models of different orders with this delay and pick the model that 

gives the best performance. 
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3) The model may be of the wrong order, and is likely to be too high an order since the 

poles of an ARX model also describe the noise properties. A residual analysis test 

will show this; a rule of thumb is that a slowly varying cross correlation function 

outside of the confidence region is an indication of too few poles, while sharper 

peaks indicate too few zeros or wrong delays. If there is pole-zero cancellation on a 

pole-zero plot, the extra poles are likely to be there to describe the noise. The 

remaining poles and zeros give a good indication of the necessary order of the 

dynamic model. Once this has been ascertained, ARMAX, OE or BJ models with 

the same order of G can be fitted, with first or second order models for the noise 

characteristics H. 

Bias and Variance 

The model errors that arise as a result of noise influence on the measurements is called 

variance errors. Using longer measurement sequences can typically reduce variance 

errors. Errors that prevent the model from adequately describing the system, even from 

noise-free data, because the model is simply not capable of describing the system, are 

called bias errors. Bias errors are apparent when the model is used with data collected 

under different conditions. A good model therefore is one that has both small variance 

and bias error. 

5.8.3 Model Comparison 

When a number of models of various structures have been made, they need to be 

compared. Prediction-error variances are best evaluated when they are given new data, 

ie. data other than that used in the model estimation. This is often called cross- 

validation, and it is a better test than using ‘old’ data. A larger model will always give a 

lower value of the criteria function for a particular set of data since it has been 

minimised over more parameters. The reason for this is that the extra and unnecessary 

parameters are used to fit the disturbances specific to that data. This is called over-fit 

and is undesirable because it is a poorer model of the system. The usual procedure is to 

use one set of data for the estimation, and the other set for its evaluation. A number of 

methods are used to locate the transition from relevant model fit to over-fit. They all 

follow this basic form 
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min f(d, Me (t,0) (5.76) 

where N is the number of data and d is @’s dimension (the number of estimated 

parameters). The function f(d,N) increases with d and decreases with N, so the model 

selected will represent a balance between model fit and the number of parameters. Some 

common choices of f(d,N) are: 

  

Akaike’s information criterion (AIC): min nfs lre “(t,0) 
tl 

(5.77) 

: & l+d/N 1 
Final Prediction Ei EPH): i t,0 iction Error (FPE) min inf oxo “(t,0) 

(5.78) 

Rissanen’s minimal description length (MDL): min in s{9 24 eee loen re (¢,0) 
tl 

(5.79) 

The FPE is a statistical estimate of the PE variance from using a new set of data, and the 

MDL aims at minimising the size of parameter storage. 

Besides comparing the model prediction error variances, the models can be simulated 

with the second data set and their response studied. For linear models this involves 

examining their bode-plots, pole-zero diagrams, and comparison of different models as 

discussed in the previous section. 

5.8.4 Model Validation 
  

The validation of a model is to decide whether it is acceptable for its intended use, and 

this is closely related to its quality. 
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Model Quality 

Model quality can have different meanings since it can be judged on different grounds. 

A model’s quality can depend on its application, its stability when used with different 

data sets, and its ability to reproduce the behaviour of the system. Comparing different 

models created from different data-sets is useful to gain confidence in a model. 

Simulations and bode diagrams are useful for this purpose). It is important to remember 

that some analysis methods are unreliable under feedback. A good test of a model is to 

simulate it using fresh data and then compare the output to the measured output. 

Residual Analysis 

The residuals are the parts of the data that the model could not reproduce, and are given 

by 

e(t) =e(t,8,) = y)-5t|6,) (5.80) 

The residuals should be independent from the input (i.e. uncorrelated). If this is not the 

case then the model is likely to be under-fitted. The covariance between residuals and 

past inputs is given by 

RX (a) =t yt +t)u(t) where |r] < (5.81) 
11 

e If these numbers are small then the model is likely to be a good fit, and for large N, 

will be approximately normally distributed with zero mean if e(f) and wu(¢) are 

independent. 

¢ If there is correlation for negative values of rt, i.e. values of ¢(¢) affect later values of 

u(t), and this suggests that the data was collected during feedback, and not that the 

model is necessarily incomplete. 

¢ When the ARX model is used, the LS procedure makes the correlation between «(f) 

and u(t) zero for the data used for the estimation. 
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If a model of the disturbance signal is required, the residuals should be mutually 

independent, and can be found by plotting 

bs pee 
RG) == De(ee+ 2) (5.82) 

tel 

If the numbers are not small for t # 0, part of e(¢) could have been predicted from past 

data, and is also a sign of model deficiency. 

5.9 Cyclic Machines 

Cyclically varying machines are more difficult to deal with than the machines 

considered so far since they are non-stationary, or time-variant. This means that 

parameters will change as a function of angle, and therefore as a function of time as the 

machine rotates. As discussed previously, there are two ways of viewing the problem; 

1) to represent the varying parameters as functions of angle, where angle is an input, 

leading to non-linear models which are not desirable. 2) to represent the varying 

parameters as functions of time, leading to time-variant but still linear models. The 

latter is the preferred choice due to the comparative mathematical simplicity and will be 

used wherever possible. 

5.9.1 Inertia variation G(0) 

The kinetic energy in a machine can be written 

KBi=15,07 (5.83) 

(since it would be imy? for a translational mechanical system). J, is termed the polar- 

inertia and if it depends on angle (0), the variation in K.E. can be written (using the 

product rule) 

    

dK E. ay d(Q?) +410? d(J,) (5.84) 

dt fi dt ¢ dt 
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since both Q? and J, are time varying. Applying the chain rule yields 

    

  

BOE a a eae (5.85) 
dt 7 a dd dt 

which simplifies to either 

(5.86) 

or 

OE =A Js ani oe (5.87) 
dt dt do 

which is linear. Hypothetically if the machine is loss-less, then if it is rotating with no 

external interaction it will have a specific K.E. The change in K.E. will therefore be zero 

(“* = 0] and substituting into equation 5.87 and rearranging gives 
t 

eT 
dQ__? do (5.88) 
dt OF, 

This represents the natural acceleration and deceleration of the machine due to varying 

inertia, and to make it rotate with constant velocity would require the application of a 

torque to cancel it out. The torque required is 

dJ =1 O02 

Gap ——# 5.89 Os, (5.89) 

which simplifies to 
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T, =40° Se ; 0 (5.90) 

This torque is the inertia variation (as a function of angle) multiplied by the acceleration, 

ae ice. Torque required = G(8)Q” , where G(0) = a a 

N
|
-
 

o 

There are two issues that have to be resolved, and they are what tests cover the 

behaviour of the machine (i.e. tests that exercise and extract all important dynamics of 

the machine), and what model structure to use to represent the machine. 

5.9.2 Tests to Charaterise Cyclic Machines 

There are three main tests required to characterise a time-varying machine: 

1) A “quasi-stationary” test to determine friction in both the forward and backward 

directions. This test requires the machine to be rotated as slowly as possible through at 

least one cycle in both directions. The quasi-static torque can then be measured and is 

likely to be different in both directions since energy can be stored and released in 

cyclically varying machines. For example in the forward direction the viscous drag 

corresponding to a given angle can be written T,.,.(0(¢)). 

2) A “constant-velocity” test for a range of different velocities to determine the viscous 

drag and variability of the inertia. The idea behind these tests is to attempt to drive the 

machine at constant velocity and observe the change in torque. This torque variation is 

made up of a viscous-drag component (B), and an inertia variation component (G), and 

for a given constant velocity Q, (Q=6) can be written 

To (0) = Q’ Tsp (0) + Q,'. BO) +Q,’.G(0) (5.91) 

A set of these equations can be created for different constant velocities for Ors a, 

and placed in a matrix equation for convenience 
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LQ) §Qy T,, (8) 1a. a2] |n'@ 
; B®) |=| °. (5.92) 

i INGO 4 
1 Q, 9, . T, (8) 

which can be rearranged to give the parameters 

19, o7)1h®© 
Tose(0) eens 

DO, “Ott @) 
BO) |=]. : : (5.93) 

Ge o hu: : e , 2] [h,@ 

1G, 9; |) ION” 
2 2 

where ~ “2 | is the pseudo-inverse of : 2 2 

(OMe Ore i he ‘n n n ‘n 

3) A sinusoidal excitation of the machine at frequency @ with the machine turning at a 

much lower frequency ©,,..,, (<<@). A set of distinct excitation frequencies can be 

applied starting at a frequency lower than the expected minimum resonant frequency of 

the machine. In this case the torque at the machine comprises 

T(t) = Tos (QQrieant) 

+; BO peat) Qnein 
+.2)GQqeint) Qnean (5.94) 
+ Tog Cos(wt +) 

and the shaft angle can be found by 

O(2) = Q cant + A.sin(@t + )) + B.cos(wt +) (5.95) ‘mean 

Q, is a constant velocity, so differentiating this equation twice yields ‘mean 
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Q(t) = 0-7 A.sin(@t +b) — @B.cos(wt + 6) (5.96) 

The excitation signal is 7/,..cos(@t+¢), and the phase-shifted contribution of the 

response 4 is the contribution from any damping and also if the machine excitation has 

not reached a steady state. If the machine excitation has reached steady state and the 

choice of @ is appropriate, A should be insignificant compared to B, and the A term can 

be ignored. If this is the case, multiplying equation 5.96 by J, gives the torque equation 

J, Q(t) =-J,@ B.cos(wt + >) (5.97) 

and J,Q(t) is the excitation torque Ty. cos(wt +) , so 

Tos¢ =~BO’ Ip Qreant) (5.98) 

@ should be chosen to minimise A and this is done by ensuring that it is sufficiently high 

compared to rotating frequency Q. (so that T,, cos(@t+) is superimposed on the ‘mean 

slower constant velocity rotation), and lower than any resonant frequencies of the 

machine. If @ is too small /,,(8) will tend to be averaged (‘smeared’) out and will not 

correctly represent the inertias at the corresponding angles. Figure 5.2 illustrates this. 

      

auetle ‘smeared’ out 
(@ too small, J, averages)    
  

Figure 5.2 Illustration of averaged Jp due to @ too low 
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The values of J,,(@) can be (and possibly should be) checked numerically by testing the 

condition 

aJ,(8) dp 2610) (5.99) 

for values of @ covering the range 0 to 27. 

5.9.3 Tests to Identify Internal Resonances 

The combined mass and flexibility of linkages within a machine gives rise to internal 

resonances, some of which effect the machine shaft angle. Hypothetically, if a 

mechanism were constructed entirely of rigid parts then its state could be specified by 

the state variables {0, 6 } alone. In practice, machines will contain components where 

the combined mass and flexibility give rise to resonant frequencies, some of which are 

within the frequency spectrum of interest (and therefore detectable), and some of which 

are not. If the mechanism has resonances within the frequency range of interest, then the 

state vector has additional vectors {g, q } which describe a displacement and velocityof 

the shaft from a reference position. Figure 5.3 shows a four bar mechanism, an example 

of a machine with internal resonances. 

  

Figure 5.3 Example of machine with internal resonances 
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The machine has additional state vectors consisting of g,, 5, ..., g,, and their first 

derivatives that describe the state of the internal modes of oscillation. Equation 5.100 

describes the components that make up the shaft torque for a non-constant velocity. 

Te3(8 op) = Tose Org ()) + 2B Ope (0) + Q? GO op) + Tp Bng O (5.100) 

The J,0(0) term is zero for a constant velocity. The internal dynamics of the machine 

can be represented by the equation 

M(O,.5(0)) GO) + CO,¢O).4(O) + KO ().4O = 2Q sec On Q)+YTO 

(5.101) 

The M, C and K matrices are mass, damping and stiffness coefficients respectively. 

Qicc is a vector of internal forces and the term Q7Q ,--(0,,(t)) represents the internal 

imbalance excitation. Y.7(t) is a force produced by the torque 7(). 

The internal oscillations will cause the shaft to oscillate around the measured 

angle 0 and an output equation relating equations 5.100 and 5.101 is ‘meas ? 

Orcas = Oya + X(t) (5.102) 

It is important that the speed of rotation is sufficient such that the shaft will not stop 

rotating or reverse, since this eliminates the non-linear frictional behaviour of the 

machine. 

The identification of cyclic machines is discussed in the context of example machines in 

chapter 9. 
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CHAPTER 6 
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6 Test Rig Design 

Some findings of this chapter have already been used in previous chapters, but this is 

unavoidable given the structure of this text. In practice much of the work was performed 

concurrently, and this chapter aims to consolidate the mechanical design aspects of the 

project. 

As previously discussed, the test-rig has two main purposes. Firstly it is required to 

characterise a rotary mechanical machine. The ‘external machine’ is likely to have the 

ability to store energy (i.e. converting kinetic energy to potential energy), and vice- 

versa, for example due to an inertial machine, or perhaps even a periodically changing 

inertia such as in a slider-crank mechanism. Secondly it is required to emulate a rotary 

mechanical machine, or mechanical component. The test-rig output shaft is likely to be 

connected to a drive / motor pair that will have the ability to apply torque to the shaft in 

either direction in an unpredictable manner. 

It was decided that the general form of the test-rig should take the form shown in figure 

6.1. Essentially it is required to produce a torque on the output shaft which is either a 

perturbation torque (in the case of machine characterisation), or a torque which is a 

consequence of the measured variables (in the case of machine emulation). 

Motion on Torque 

Source eee Transducer 

Ext. Machine / 
Motion Source 

ie 
i Velocity i 

thee 

Controller Interface 

Figure 6.1 General Construction of the Test-Rig. 
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6.1 Mechanical Specification 

The requirements of the test-rig that need to be specified are maximum torque, 

maximum rotational velocity, and torque-bandwidth (discussed below). The power is 

also important, and is the product of torque and angular velocity. The torque-bandwidth 

needs to be sufficient to excite all the modes of interest of an external machine during a 

characterisation experiment, and to represent the dynamics of a machine during an 

emulation experiment. When emulating a machine the test-rig needs to match or exceed 

the torque and angular velocity rating of the motion source. These of course depend on 

the operating range of the machine being emulated and the specification of the motion 

source driving it. It is assumed that the motion-source component of the test-rig is an 

electric motor, since this is the most feasible option. 

6.1.1 Test Rig Requirements 

The specification of the machines that may be emulated can vary considerably, and is 

consequently not a basis for specifying the test-rig performance. Since high performance 

motion sources were available in the laboratory it seemed natural to use these to drive 

the test-rig in machine emulation mode, and the specification of these was used as a 

basis for the test-rig specification, which was decided to be approximately: 

Maximum Torque: 50 Nm peak 

Maximum Velocity: 3000 rpm 

Torque Bandwidth: >300 Hz 

6.2 Mechanical Arrangement 

Various mechanical configurations to provide a controlled to the output shaft were 

investigated but only one seemed feasible which was chosen, and is discussed here. 

Figure 6.2 shows the power electrical and mechanical parts of the test-rig with an 

external drive / motor pair (Electrocraft / BRU200) connected, used to drive the test-rig 

during machine emulation. The test-rig is built on a 2" thick steel tabletop mounted on 

a rigid steel framework. The electrically noisy high power equipment and cables were 

kept apart from the small signal cables to reduce noise in the measured variables. The 

laboratory’s slide rail system was used to clamp the moving equipment to the tabletop, 
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which is sufficiently rigid to prevent unwanted vibrations. The other parts of the test-rig 

shown in the key are discussed in their corresponding sections below. 

  

KEY: 
1 = Motors (x4) 6 = Motor Series Inductors 

2 = Double Blower 7 = Shaft Encoder 
3 = Gearbox Mk I 8 = Torque Transducer 

4 = Motor Drives (x2) 9 = External Drive / Motor Pair 
5 = Drives Power Supply Transformer 

Figure 6.2 Test-rig with external drive / motor pair connected 

6.2.1 Motor Selection Criteria 

The most straightforward construction of the test-rig would be to use a directly coupled 

high performance motor. A market survey was performed to compare various motors to 

make the best choice for this test-rig. The criteria on which to base this choice are 

maximum speed, torque, power output, inertia and mechanical time constant. 
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6.2.1.1 Mechanical Time Constant 
  

The mechanical time constant (assuming a first-order system approximation) is the time 

required for the motor’s speed to attain 63.2% of its final value for a fixed voltage level, 

and is influenced largely by the motor’s inertia, shown below 

Tee: (6.1) 

Tm = mech, time const., R= motor resistance, J = rotor inertia, Ky; = torque constant (Nm/A) 

It is a measure of the goodness of a motor but it particularly relates to the operation of 

the motor in open loop. It is generally desirable to have a motor with a short time- 

constant. 

6.2.1.2 Torque Bandwidth 

Bandwidth is normally defined as the frequency at which the magnitude of a quantity 

drops to 1/V2 (its half power point) of its zero-frequency level. The rotor inertia and the 

stiffness of the output shaft of a motor form a low-pass filter, which limits (and 

determines) the upper frequency limit of a motor, and this can be found by 

shaft_stiffness / rotor_inertia. Torque bandwidth can therefore be found by 

  

6.2.1.3 Power Rate 

This torque is required to rotate the shaft, and since the product of torque and velocity is 

power, the power-bandwidth, known as the power-rate, is an important factor. Most 

motors however specify their mechanical time constant with other parameters, from 

which power-rate can be derived. Power-rate into an inertial load is given by 

Power Rate =T, x0, (6.2) 

units @ / sec. 
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6.2.1.4 Inertia Matching 

If an external machine (referred to in this discussion as a load) is predominantly inertial, 

then this inertia will need to progress between states of high and low kinetic energy 

quickly. Some of the air-gap torque Tyg (see section 4.1) is required to accelerate the 

rotor’s inertia, so given the motors inertia Jj; and the ‘load’ inertia J;, the shaft torque 

can be found by 

df 
Toy = Tyg X——*_ 6.3 SH AG Ue +J, ( ) 

The acceleration of an inertial load is given by T,, /J,, and the power rate into it is 

therefore given by De /J,,. Substituting equation 6.3 into this gives the power rate into 

the load, 

2 J, 

“Ta +d oa 
AG 

The maximum ‘power-rate’ from the motor is found to be achieved when J; = Jy, and 

this is called inertia matching. Ideally the inertia of the test-rig will match the inertia of 

any external machine attached to it, but since this is not predictable an exact 

specification of the required test-rig inertia is impossible. Typically during machine 

design, source and load inertias are connected together using a gear train, the ratio of 

which is determined by the two known inertias. No inertia is ever increased to improve 

matching, and the required angular velocities and torque also determine the ratio of the 

gear train. Since the load inertia is unknown, these two factors and the motor geometry 

alone were used to determine the gear ratio (section 6.3 discusses gearbox design). The 

motors used for the test rig have inertia of 7.1 x 10° kgm? per motor which is very low, 

and the inertia of the gearbox alone referred to each motor is 1.83 x 10° kg.m’, for the 

first gearbox construction (referred inertia calculations are in appendix C2.5). 

6.2.2 Choice of Motors 
  

The motors found to have the lowest mechanical time constants were brushed DC 

motors with iron-less rotors (of a ‘basket wound’ construction), but these tend to have a 
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relatively low torque rating. Motors were available with a mechanical time constant of 

1.4 ms producing 1.1 Nm continuous, 2.56 Nm peak (max. speed 7000 rpm), and it was 

decided that coupling eight motors of this type using a gearbox would be the preferred 

option. To provide the required torque / speed they would be geared down 

approximately 2.5:1 and this would also provide the mechanical coupling of their shafts. 

Figure 6.3 shows the conceptual test-rig construction. 

Torque 

lron-less Rotor Motors lron-less Rotor Motors Deansducel 

              

   

Shaft 
Encoder 

External 
Machine 

or 

Motion 
Source 

—__— 

Computer Interface 

Figure 6.3 Approach 2, using geared iron-less rotor motors. 

It was mentioned in section 6 that low inertia is important for system performance, and 

it is due the high T:J ratio of these motors that they were chosen. With an ideal gearbox, 

the test-rig was now potentially capable of delivering 8 x (1.1 x 2.5) = 22 Nm 

continuous (51.2 Nm peak), speeds of up to 2800 rpm. Due to the high cost of the 

motors and lack of a price incentive for buying eight at a time, four were initially bought 

to evaluate the design with the option of extending this to eight at a later stage. This 

would limit the torque to 11 Nm (25.6 Nm peak). Ultimately only four motors were 

purchased but this is sufficient to prove the concept of the test-rig. The important 

remaining issue was to design a gearbox with minimal inertia and backlash. 
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6.2.3 Motor Cooling 

The operating range of the motors is shown in figure 6.4. For the motors to run at their 

operating limits they each need to be force cooled with 11 litres/min of air at 9250 Pa 

(=2.73 in Hg, or 92.5 mbar) pressure. A 2.2 kW double blower was purchased which 

provides 44 litres/min at 9250 Pa (but 75 dBA of noise!). A manifold was constructed 

from soldered brass that splits the blower’s 3" outlet pipe into four 1" pipes to feed the 

motors forced-air cooling input. These can be seen in figure 6.2. The forced-air cooling 

is not essential, but allows the motors to be operated at full power thus allowing the 

test-rig to achieve a higher torque and power rate. 

HBB Continuous working range with no cooling 

[ERR] Continuous working range with forced air cooling 

[-_] Temporary working range 
rpm     

Figure 6.4 Motors Operating Range. 

6.2.4 Motors Brackets 

The motors are mounted on a bracket that has four mounting holes orthogonal to one 

another. The mounting holes are skewed by 45° so that two of these brackets holding 

motors may be offered up to each side of the gearbox, which is capable of connecting 8 

motors, 4 each side. Only one bracket was therefore used (see appendix C2.3). Figure 

6.3 shows the motor orientation. A different method was required for the gearbox Mk II, 

and this is discussed in the context of the gearbox. 
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6.3 Gearbox Design 

The design of gearboxes is an engineering discipline in itself, and it is beyond the scope 

of this project to provide an optimum design. Basic design fundamentals are observed 

however and the designs described here attempt to make the best use the resources 

available. 

The main issue is the mounting geometry of the motors. This effects the size and type of 

gear and the method of eliminating backlash. Two gearboxes were designed. The first 

design uses four planetary spur gears around a centre gear and uses a split-gear system 

to pre-load the gears to remove backlash. The second design uses four spiral bevel gears 

connected to the motors sandwiched between two larger spiral bevel gears, and presses 

the gear meshing together to pre-load the gears to remove backlash. In addition to 

providing a coupling method, the gear ratio also reduces the velocity and increases the 

torque. The motors velocity is 7000 rpm maximum, so to provide a close match to the 

specification described in section 6.1.1 the required gear ratio is 2.33. 

6.3.1 Spur Gear Gearbox 

The construction of the first gearbox is simple and is shown in figure 6.5. Only four 

planet gears were actually used, but provision was made on the gearbox casing for eight. 

The teeth are parallel with the axis so the gears produce only radial and tangential 

forces. The shaft bearings are single row radial ball bearings, and radial movement is 

sufficiently reduced by axially pre-loading each axis bearings using beryllium-copper 

crinkle washers. Normal meshing of the gears occurs when they are mounted at standard 

centre distances where backlash is quoted at 0.08 - 0.15mm. This equates to a maximum 

initial angular backlash of 0.4°. Each planet gear is constructed of two gears, one fixed 

to the shaft and one free to rotate about the shaft. The free gear is bolted to the fixed one 

with limited rotational adjustment available to allow their relative positions to take up 

any radial backlash (this adjustment appears to be necessary initially whilst the gears 

‘bed-in' and also periodically as the gears wear). The transmission force is therefore only 

acting on one of these gears at a time (per motor), depending on the direction of 

rotation. 

184



    
_a— !nput Shafts 

Output Shaft   

  

Figure 6.5 Gearbox MK I, using spur gears 

The gears are rated for a particular torque, speed, lubrication and lifetime. The gears are 

not run continuously for long periods of time and in any case are easily replaced. By 

reducing the lifetime the power (torque x speed) rating of the gears can be increased, 

and a thinner lighter material (Tufnol) used. The advantage of this is the obviation of 

lubrication and a large reduction in inertia compared to the other available materials. 

The main problem with this design is that when the motors are placed next to each 

another the distance between the motor centres is quite high. As a result, large diameter 

gears are required (particularly the centre gear) which have a greater than desirable 

inertia. Large holes were drilled through the sides of the centre gear to reduce mass and 

thus inertia. The inertia of the gearbox referred to the output shaft was calculated. 

The inertia of a solid disc (which a gear wheel essentially is) is given by: 

ya med! 
  

8 where m = mass, d = diameter (6.5) 

The number of teeth on the centre gear is odd so the planet gear teeth are meshing at 

different places and the cogging torque in minimised. Due to the geometry of the 

motors and availability of the gears, the gear ratio is 103:43 or (2.388:1). 
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Using the density of Tufnol = 1.36x10° Kg/m> the mass and the inertia of the solid gears 

can be calculated. The referred inertia of the gearbox at the output shaft can be found 

by: 

2 

J referred 10 O1P_shaft = Gee +S pret )x num _motors xn" + J. centre (6.6) 

where n is the gear ratio. 

For the Tufnol gears used, the gearbox inertia referred to the output shaft is 418.4x10° 

Kg.m’. Including the motor inertias, the referred inertia at the output shaft is 580.4x10° 

Kg.m’. The calculations and mechanical drawings for these can be found in appendix 

G22: 

6.3.2 Spiral Bevel Gear Gearbox 

The design outlined above has the disadvantage that the large spur gear wheels 

introduce considerable inertia into the system and the straight cut gears generate some 

cogging torque. An alternative to this design is shown below in figure 6.7, which uses 

spiral bevel gears, has much smaller gears and consequently much less inertia. 
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Idler Gear Input Shafts 
From Motors 
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= Direction of rotation cd 
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<> = Adjustable thrust 
to eliminate backlash 
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Figure 6.7 Gearbox MK II, using bevel gears 

Spiral cut gears also gears generate much less cogging torque than straight cut gears. 

Depending on the direction of rotation, the spiral bevel gears either thrust inward or 

outward (see figure 6.6). Backlash can therefore be eliminated by preventing the gears 

from thrusting outward by using thrust bearings which thrust the input gears inwards 

towards the output gears to take up any slack. The adjustment is provided using bicycle 

“bottom bracket cups’ (LHS). This reduces the gears centre distance thus pre-loading 

them and removing backlash. Because this does not allow any tolerance for gear run-out 

or thermal expansion, the input gears are forced inward via beryllium-copper crinkle 

washers that take up this movement and hence provide a near constant thrust force. 

thrust,     

  

  
      

    
    

  

        €     

Jos f= 
Figure 6.6 Rotation / Thrust Directions for Spiral Bevel Gear. 
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The gears are bought in sets, have a gear ration of 2.5:1 and are case hardened. Due to 

the material, and potential high speed of the gears, a high quality lubricant is required. A 

special lubricant is available but only in quantities of 10 gallons or more, and since the 

properties of this are similar to synthetic engine oil, the latter was used. 

Figure 6.8 shows a close-up of the physical construction of the Gearbox MK II with one 

side removed, and figures 6.9 a and b show the gearbox with one side removed and 

fitted. 

  

  
Figure 6.9 Gearbox MK II a) with one side removed, and b) fully assembled 
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Drawings in Appendix C2.4 show the construction of the spiral bevel gearbox, and also 

for the positioning of the motors. The motor positioning is awkward in that they have to 

be mounted radially to the gearbox, occupying considerable space. This is not a problem 

however provided the motors / gearbox assembly is at one end of the bench so that two 

of the motors can be positioned below the level of the bench top. 

The spiral bevel gear gearbox was designed and constructed late in the project, so 

considerable emulation and characterisation testing was performed using both 

gearboxes. Using the same calculations as in section 6.3.1, the referred inertia of the 

complete test-rig can be calculated, and was found to be 204x10° Kg.m? using the spur- 

gear gearbox. The calculations for this are in appendix C2.5. 

6.4 Measurement of Shaft Variables 
  

The variables of interest to this chapter are the variables that describe the state of the 

output-shaft, i.e. torque, angle and velocity. Their measurement is discussed but the 

electronic interfacing is left to the next chapter. 

6.4.1 Shaft Torque 

Chapter 4 discusses why the dynamic shaft torque cannot be measured using the 

motor’s current. For most servo-machines, the air-gap torque is proportional to current. 

The air-gap torque is the torque between the rotor and stator. Because the rotor has a 

significant inertia, the air-gap torque is not an accurate measure of output torque (except 

for steady state conditions). Hence a torque transducer is required to be placed in 

between the test-rig and the output-shaft. 

A very simplified view of the system is to look at the test-rig connected to external 

machine as two inertias connected by a flexible coupling. The resonant frequency of this 

system can be found by: 

(6.7) 
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(where K;, is coupling stiffness, J, and J) are the inertias) 

The natural frequency of this system needs to be as high as possible so that it does not 

limit the bandwidth of the test-rig or cause instability in a closed-loop control situation. 

To achieve this it is important that the inertias are as low as possible and the coupling 

stiffhess as high as possible. It is not possible to change the inertia of the external 

machine, but it is a design consideration to minimise the inertia of the test-rig 

components. The most flexible part of the coupling is the torque transducer. 

Unfortunately torque transducers rely on the shaft flexibility to measure the torque, and 

consequently the more rigid transducers are the higher torque-rated ones, which have a 

bigger inertia due to a larger diameter internal shaft. This inertia can be considered as 

consisting of two separate inertias (added to J, and J2), either side of an inertia-less 

shaft of a particular stiffness. Loss of measurement resolution is not a problem as fine 

accuracy is likely to be swamped with noise in any case, so a 200Nm transducer 

(TM212) was purchased, which is thought to be a good trade-off between torsional- 

stiffness and inertia for this purpose. The TM212 has a torsional stiffness of 38.2 

KNm/rad and inertia of 425x10° Kg.m’. Ifa mainly inertial machine is connected to the 

test rig, the resonant frequency of this second-order system can be calculated using 

equation 6.7. This should be much higher than the dynamics of interest. 

6.4.2 Shaft Angle 

There are two main types of shaft encoder, absolute and incremental. An incremental 

shaft encoder is used here since they generally offer better resolution, and a custom 

made resolution (1024 lines) was chosen for reasons explained in chapter 7. It contains 

a disc with a number of equally spaced radial lines which produce two output signals, 

‘A’ and ‘B’. There is also a third output ‘I’. A and B are both symmetrical square waves 

which are phase shifted by 90° (quadrature) so that the direction of rotation can be 

determined. I provides one pulse per revolution for position referencing. The @20mm 

hollow shaft allows it to be connected around the output shaft using appropriate 

packing. The inertia of the encoder is 750 g.cm”, which is very low compared with the 

inertias of the other test-rig components. 
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6.4.3 Shaft Velocity 

Two methods of monitoring shaft velocity were explored. 

The first uses a tacho-generator which is similar to a small motor, but has a much more 

linear response that produces an emf proportional to angular velocity (1.4 mV/rpm). It 

has an extremely low inertia (0.64 g.cm?) which can be considered negligible. The 

interface to this is discussed in chapter 7. 

The second method employs a frequency-to-voltage converter circuit that generates a 

voltage proportional to the frequency of one of the shaft encoder pulses (A or B). This 

circuit is also discussed in chapter 7. 

191



CHAPTER 7 
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7 Electrical / Electronic Interfacing Issues 

This chapter discusses the power electrical issues such as the choice of drives and the 

meeting their power requirement, and the smaller electronic signal issues such as the 

generation and conditioning of measurement signals. The circuit diagrams for all the 

circuits discussed in this chapter are in appendix E. 

7.1 The Motor Drives 

The motors operating range is shown in figure 6.4. The peak torque is 2.56 Nm at 40 A 

and this is possible with a terminal voltage of 75V. The length of time this can be 

sustained for is defined by the thermal time constant of the motors, and is discussed in 

the context of motor protection later in this chapter. Motor drives can generally be 

configured to operate in two modes, torque and velocity. Torque mode is used in this 

application, which controls the motor current (proportional to air-gap torque) to be 

proportional to an input reference voltage signal. If more than one motor is connected to 

any drive then they will need to be connected in series to ensure the current is shared 

evenly, and that all motors produce the same torque. This may not be the case if they 

were connected in parallel because any uneven motor resistances (which are effected by 

temperature) would determine the current flowing in each drive. It would then be 

difficult to control the electrical power consumed by each motor and the rating of one 

may be exceeded. Operating the motors in series therefore leads to three possible 

configurations of drives and motors for this application, shown in figure 7.1. 

a) 1@i 1@i c) 

4 motors, 4 drives 4 motors, 1 drives 

one 
4 motors, 2 drives: 

Figure 7.1 Possible Electrical Configurations of the Motors 
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The choice of configuration depends mainly on the drives available, so a search for 

suitable drives was performed. 

7.1.1 Choice of Motor Drives 
  

The choice of high performance linear DC drives was small because the current trend is 

to use brush-less DC and AC motors which require special drives. Most of the drives 

available are designed to be used with standard motors in standard configurations, 

which the test-rig is not. The motor manufacturers offer (expensive) drives specifically 

for the chosen motors, but these would require one drive per motor (‘a’ in figure 7.1) 

which is an expensive solution. The ideal solution would have been configuration ‘c’ in 

figure 7.1, but this would mean a peak voltage of 300V and a peak current of 40A, and 

stock drives with this specification do not appear to be available, except for thyristor 

models which switch on the supply frequency of 50Hz. 

The drives most suited to this application (after the expensive linear drives) are 

transistorised PWM servo controllers. These change the analogue input signal to a 

constant frequency, varying duty cycle (i.e. pulse-width modulation - PWM) signal that 

is applied to high current H-bridges. The frequency of operation tends to decrease with 

size, and is usually less than 10 kHz for drives suited to this project. The switching 

frequency however determines the sampling speed of the torque control loop, and the 

minimum load inductance required (section 7.1.2). A fast switching speed is therefore 

desirable. A drive was found having a switching frequency of 17kHz, so two of these 

were purchased to drive the motors in configuration ‘b’ (figure 7.1). Each drive is 

capable of supplying 35A continuous (70A peak) at 70-205V DC (supply voltage 50- 

145V AC 3-phase), and can be configured as torque (current) controllers. 

It is preferable to carefully balance the drives so that equal current flows down each pair 

of motors. This was accomplished by setting the two drives to operate in torque mode, 

adjusting them so that their gains were identical, and setting their current limits to 

+40A. 
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7.1.2 Transformers and Series Inductors 
  

The maximum power which can be delivered to the motors with forced-air cooling is 4 

x 1 kW =4 kW continuous, and 4 x 3 kW = 12 kW peak. A 6 kVA transformer capable 

of providing this was therefore chosen, which has a 415 V primary winding and 60, 80, 

100, and 140 V secondary tappings. The drives operate by switching a DC bus, which is 

obtained from rectifying and smoothing the AC supply. From the motors operating 

graph it can be calculated that the motors maximum voltage is 75 V. To prevent them 

suffering insulation damage the voltage should be kept below the motors limit x 2, so 

the 100 V tapping was used, making the DC bus 100 x V2 = 141 V. 

The drives have a switching frequency of 17 kHz which means that the PWM (pulse 

width modulation) output contains this fundamental frequency and its harmonics. The 

low frequency content of this output created by adjusting the pulse width is used to 

drive the motors, and so a minimum load inductance is required to filter out the high 

frequency components. A low inductance is beneficial since this reduces the electrical 

time-constant and thereby minimises the time-delay in producing torque. The minimum 

inductance specified by the drives is 0.7 mH, and since the inductance of two motors in 

series is 2 x 0.125 = 0.25 mH, a further 0.45 mH is required. Two 0.45 mH were 

therefore used, built to operate at 18 kHz and rated at 40 A. 

7.1.3 Motor Regeneration 

Regeneration is the action of motor braking, where the motor acts as a generator and in 

taking kinetic energy from the load converts it into electrical energy and returns it to the 

drive. This has the affect of increasing the bus voltage which could damage the drive if 

excessive. The drives have provision for connecting ‘power dump’ resistors so two high 

power 40 © resistors are used to dissipate any regenerative power. It is worth noting 

that some more sophisticated drives allow this energy to be fed back into the supply, but 

this can be expensive and is not popular. 

7.1.4 Electrical Noise Issues 
  

The orientation of the test-rig is such that all the signal lines (i.e. small signal lines from 

transducers etc...) are kept well away from power cables and sources of high electrical 
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noise. The test-rig bench is grounded at one point using a very low impedance 

connection, and panels are electrically bonded together to provide a low impedance at 

high frequencies. The drives are particularly electrically noisy since they switch high 

currents at high frequencies and this noise will have a tendency to emanate from 

connections to the drive. The motor supply cables are high power, screened (and 

armoured), are earthed at both ends and are run from the drives to the motors inside one 

of the metal tabletop sections. Ferrite rings were placed on both ends of the motor 

supply cables, and to the input of the transformer to reduce high frequency emissions. 

7.1.5 Interface to DSP 

The output from the DSP board is -3V to +3V and the output impedance is 2 KQ. The 

voltage input to each drive is -10V to +10V with input impedance of 20 KQ, so an 

interfacing circuit is required to amplify the signal by at least 3.33 and buffer the 

resulting signal with a low output impedance to reduce induced noise in the signal 

cables. An operational amplifier circuit was constructed with two stages, the first having 

a gain of 3.4, and the second consisting of two voltage followers to drive each motor 

drive. A third voltage follower was also used to drive an analogue meter for 

development purposes. 

7.2 Motor Protection 

The motor protection circuit uses Hall-effect current transducers to detect the amount of 

current flowing in the motors, and an opto-isolated open-collector arrangement to detect 

a motor voltage imbalance (appendix E.2.1). A 4.7 KQ pre-set resistor is used to set the 

amount of current that flows in the event of a motor failure (either open or short circuit). 

The purpose of measuring the current is so that the heating effect in the motors can be 

estimated. The heating within the motors can be approximated to a first order system, 

where the temperature is proportional to the square of the current times time (Pt), since 

the power dissipated by the motors is PR (R is the resistance of the motors and is 

assumed to be constant). A circuit was designed (appendix E.2.2) which uses analogue 

multipliers to square the current. This is fed into an RC first-order circuit which has the 

same thermal time constant as the motors. A relay switched by the blower changes the 
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value of this time constant to correspond to different thermal time constants with and 

without forced-air cooling (3.2 seconds and 10 seconds respectively). Comparators are 

used to detect when the RC voltage (estimate of temperature) exceeds a maximum (set 

by VRx3 and VRx4). Voltage-followers are also included to buffer the current and 

estimated temperature should they be required for use by the DSP board. The Pt trips 

and BLOWER_ON signals are then fed to the logical control part of the motor protection 

(appendix E.2.3). 

The control part of the motor protection simply latches any fault signal and switches off 

a relay which disconnects the drives. An emergency-stop switch is also connected 

allowing the user to shut off the drives. LED’s are used to signal the source of the fault. 

7.3 Torque Transducer Interface 

The torque transducer is powered from the signal-processing unit by a 24 volt supply. It 

produces a voltage proportional to the output shaft torque of 1V per 40 Nm (output 

impedance 500Q). The output is single-sided but is routed to the signal-processing unit 

through separately shielded wires in the supplied lead. The manufacturers suggest using 

an instrumentation amplifier to receive this signal as this will significantly reduce the 

effect of common-mode noise in the cable. A high quality precision instrumentation 

amplifier was chosen (INA 118), and the gain set to 1. This signal is then amplified by 

an operational amplifier with a gain set to 4, and both signals are output, so that the 

DSP can be connected to either. Another op-amp is also used to drive an analogue 

meter, which displays the torque for development purposes. 

7.4 Shaft Encoder Interface 
  

The shaft encoder used on the test-rig is a relative incremental type, which produces 

two quadrature signals, A and B, on the rotation of the shaft. An additional signal is 

produced, I, which is the index signal, occurring once per revolution. Many shaft 

encoder interface designs have been published, and they generally use some kind of 

latch circuit between the encoder signals and an array of binary up-down counters. The 

circuit designed here uses a similar technique but counts on the edges of the two 

quadrature signals from the shaft encoder. The top two traces of figure 7.2 shows the 
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two shaft encoder signals, A and B. The third trace is the I signal and the fourth trace is 

discussed later. 

  

  

  
  

        
  
    

  

      

        
                  
  

  

Figure 7.2 Signals from the shaft encoder 

The shaft encoder was specified to have 2048 pulses per revolution, which means that 

by counting on the edges of the A and B signals, a resolution of 8129 is achievable. 

Programmable logic devices were used to implement the design because they are easily 

re-configurable and can be designed to have a convenient pin-out, making construction 

easier. The PLD designs are shown in appendix E.4.1 and E.4.2. 

A synchronous state-machine was designed which produces a pulse on the detection of 

each edge of the A and B signals. A direction signal is also generated which 

corresponds to the direction of the shaft and dictates whether the counters are to count 

up or down. Figure 7.3 is a state graph of this circuit. Since the output to the counters is 

a function of the present state only, it is referred to as a Moore machine. The state 

diagram therefore has the output associated with the state. In this machine the least 

significant bit (Isb) of the state variables is used as the counter increment / decrement 

pulse, and the most significant bit (msb) as the direction signal. It can be seen therefore 

that when the counters are counting in one direction the states are rotating clockwise 

around the outside of the state graph, and when the counters are counting in the other 
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direction the states are rotating anti-clockwise around the inside of the state graph. 

Transitions between the two concentric sets of states occur when the order of the A and 

B pulses signifies a change in shaft direction. 
x im rs 

state 

state variables 

Ap ~— State transition 
: conditions 

  

Figure 7.3 State graph of the counter input pulse generation circuit 

Figures 7.4a and 7.4b show the simulation of the design, used to verify the functionality 

of the device prior to programming. The figures are a continuation of the same plot. 

A modulo-8192 counter is required to count a complete revolution, and a synchronous 

counter is required since ripple counters produce transient states and suffer from 
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accumulated propagation delays. The largest PLD available was a 22V10, having 10 

macro-cells, so the largest counter possible in one device is a modulo 2'° = 1024, 

assuming it would fit into the device. It was decided therefore to use two of these 

devices and use two separate counters, with the overflow / underflow of the first 

incrementing / decrementing the second. The first counter is a modulo-64, and the 

second is a modulo-128, which combined makes a modulo-8192 counter as required. 
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Figure 7.4a Simulation of the state machine’s operation (clockwise) 
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Figure 7.4b Simulation of the state machine’s operation (anti-clockwise) 
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Ideally the DSP board would read this binary value directly, but the board procured for 

this project has no provision for this, so the only other option is to convert the signal 

into an analogue form to feed into the DSP board, which then converts it back! The 

binary count is fed into a digital-to-analogue converter (DAC) to produce a ramp 

waveform representing the angular count. The most suitable DAC for this purpose in 

terms of output voltage was a DAC712. This is a 16-bit DAC so to get the required 

voltage range out, +10V, the least-significant two bits and the most-significant bit are 

grounded. A low pulse starts the DAC conversion on the WR pin, which is generated in 

the PLD containing the state-machine (CNTRIF6). This signal is the same as the first 

counter increment / decrement pulse, but delayed by one master clock cycle to allow the 

data lines on the DAC input to settle. 

Figure 7.5 shows a plot of (from top to bottom) the A and B signals, the I signal, and the 

DAC converter output, for the test-rig output shaft rotating at a constant speed. Figure 

7.2 shows the same signals from the same test but in much finer resolution such that it 

is impossible to see the DAC output as a ramp. 

  

    

  

  

  

          

  

Figure 7.5 Signals from the shaft encoder and output from the DAC 

The DAC output is fed directly to the DSP board, and no anti aliasing filter is used since 

the ramp will not be changing any faster than 50 Hz (the test-rig max speed = 3000 

201 

 



rpm). Putting a filter in line with the signal will also have the adverse effect of rounding 

the corners of the ramp waveform, which would have more effect at higher speeds. 

7.5 Velocity observation 

A tachometer was initially used to measure velocity. It produces a voltage proportional 

to velocity but also tends to produce significant ripple due to the low number of rotor 

segments. As an alternative, a velocity observation circuit was investigated, which uses 

a frequency to voltage converter (referred to here as an FV converter). 

The output from the angle counter provides 8192 pulses per revolution. At a shaft speed 

of 60rpm (1 Hz) the counter frequency is 8 kHz, and at the test-rigs maximum velocity 

of approximately 3000rpm (50 Hz) the counter frequency is 400 kHz. Even though the 

test-rig is unlikely to be used at this speed, a FV converter capable of operating at this 

frequency is desirable. The Analogue Devices ADVFC32 IC was chosen since the 

maximum input frequency is 500 kHz. The circuit is not shown here since it is well 

documented in the data sheet, and requires a minimal set of external components. 

The basic operation of the IC is reasonably easy to understand. Every time the input 

signal crosses a comparator threshold in a negative direction, a monostable is activated 

that switches a known current into a capacitor for a known period of time. As the 

frequency increases, the amount of charge injected into this integration capacitor 

increases proportionally. The voltage across the capacitor stabilises when the leakage 

current equals the current being switched into it. An external resistance determines this 

leakage. The net result is an average output voltage, which is proportional to the input 

frequency. 

Before the test-rig construction was complete, it was thought that perhaps the shaft 

might rest at zero velocity on a shaft encoder pulse boundary, thus producing a train of 

spurious, perhaps high frequency pulses, that would register as a velocity. To overcome 

this potential problem a circuit was designed to inhibit the pulse input to the F>V 

converter. 
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Referring to figure 7.3, an angular oscillation of a ‘stationary’ shaft between directions 

would involve the toggling between inner and outer circles of the state-graph. This 

would correspond to a change in the msb of the state variables, and it is possible to filter 

this signal to remove any changes of less than a particular width. For example, if the 

shaft were oscillating between SO and S8 in figure 7.3, a square wave of one state- 

change width would be produced, and if the shaft were oscillating around S8, $9, S10, 

S6, S7, SO, then a square wave of six state-changes width would be produced. A circuit 

to inhibit the FV converter during a transition of less than three state-changes, using 

cascaded D-type flip-flops is shown in figure 7.6. 
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Figure 7.6 Circuit to inhibit FV converter during direction change 

During testing it transpired that the shaft actually oscillated about several shaft-encoder 

positions, and the circuit of figure 7.6 did not perform adequately. This circuit was 

implemented in a PLD for flexibility, and ultimately a design using six D-type flip-flops 

was implemented. The PLD design code for this is in appendix E.4.3, and the 

simulation is shown in figure 7.7. 
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Figure 7.7 Simulation of the FV converter inhibitor 

Under certain conditions it was found that the shaft could oscillate even more than six 

positions, as figure 7.8 illustrates, and because forward and backward direction pulses 

are the same to the FV converter it would appear to be a rotating shaft. This is likely 

to have a serious impact on the control of the test-rig, and so it was decided to use the 

tachometer instead, with suitable filtering. 

  3.46 
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Figure 7.8 Plot of angle on a stationary shaft (motor drives on) 
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7.6 Anti-Aliasing Filters 

Section 5.6.6 discusses the choice of sampling rate and the use of pre-sampling filters to 

prevent aliasing. Shannon’s sampling theorem states that the signal must be sampled at 

twice the highest frequency content of the signal. The signal must therefore be filtered 

before sampling to remove frequencies above half the sampling frequency (i.e. the 

Nyquist frequency, x = @,/2). A sampling frequency of 10 kHz was chosen, so low- 

pass filters with a cut-off frequency of 5 kHz were required. 

Three types of filters were considered (which are the most common), and all involve a 

trade-off between pass-band to stop-band sharpness, flatness of the pass-band and stop- 

band, and phase shift. Chebyshev filters give a fast roll-off from pass-band to stop-band 

but incur some frequency ripple in the pass-band. Butterworth filters have a very flat 

pass-band, but Bessel filters have a very flat pass-band and provide excellent phase 

characteristics (at the expense of the roll-off sharpness). Since the shape of the sampled 

signals is important this linear phase-shift filter was chosen. A four-pole low-pass 

Bessel filter was designed with a cut-off frequency of 1500 Hz. This frequency was 

chosen because the dynamics of any machine to characterise / emulate will fall within 

this range. The roll-off is slower than the other filters, so it should be sufficiently low at 

and above 5 kHz to exclude any frequencies above the Nyquist frequency. Figure 7.9 

shows the circuit for one of these filters of which three were built. Two of the filters 

were used for velocity and torque inputs, and the third is a spare. The component values 

were calculated using standard tables [26]. 
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Figure 7.9 Four-pole Bessel filter circuit 
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8 Design of example Machines to Characterise / Emulate 

Sample machines with known characteristics are necessary to demonstrate the test-rigs 

operation. This enables a machine representation from a characterisation experiment to 

be used in an emulation experiment, and the accuracy of this determined by comparing 

the emulation to the physical machine. Many operations of the test-rig were tested 

individually and various control software and physical machines were used for this 

purpose. The characterisations were initially attempted using models of the machines in 

Matlab and applying identification methods, and these non-tangible machines are also 

described in this chapter. 

8.1 Choice of Machines 

A number of machines were chosen to test the functionality of the test-rig with varying 

complexity. As discussed in chapter 5, the choice of input stimuli should exercise all 

dynamic aspects of the system. The machines discussed here have been designed such 

that they have a variety of dynamic properties that require different identification 

methods to be employed. 

8.2 Cam / Sprung Follower 

A cam / sprung follower such as that shown in figure 8.1 was one of the first emulated 

machines due to its mathematical simplicity. 

     

  

Inertia, J 

Figure 8.1 Diagram of the cam / sprung follower machine 
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The force exerted on the cam due to the spring alone (the mass of the follower is 

considered negligible) is k.sin(8), so including the inertia and damping the torque can be 

found by 

T =k.sin0+B0+J0 (8.1) 

DSP code used to implement this emulation is in appendix B.4. Data was not collected 

but this emulation was used as a demonstration, where the motor’s current was limited 

(for safety) and the test-rigs shaft could be turned by hand. The action of the machine 

could be clearly detected, and increasing the inertia gave rise to an increased settling 

time of the machine, also clearly visible. 

8.3 Various Torsional Spring / Inertia Systems 

The torsional spring / inertia systems discussed here are simple linear time-invariant 

machines which are relatively easy to estimate the parameters for using techniques 

discussed in chapter 5. Matlab models of some of these machines are described and 

simulations are used in initial identification experiments discussed in chapter 9. 

8.3.1 Inertia - Torsional Spring - Ground System 

This system is shown in figure 8.2 and a similar machine was discussed in section 3.7.1. 

It is a second order, single degree of freedom system and can be described by equation 

8.2. It is the rotary equivalent of the mass — spring — damper system described in many 

textbooks. 

Jb+BO+kO=T (8.2) 

The state-space equivalent of this equation can be determined by inspection and is as 

follows: 

H 4 ‘seh A (83) 
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Figure 8.2 Diagram of the “Inertia - Torsional Spring — Ground” machine 

A simulation of this machine was performed using equation 8.3 in Matlab, and the 

script for this is in appendix A.6 (J=1x10° Kgm?, Ks=197 Nm/rad and B=0.21 

Nm/rad/s). Figure 8.3 shows this machine’s response to a swept-sine torque input. The 

machine is a second order system, and it can be seen from figure 8.3 that is has a 

resonance at approximately ¢ = 380 ms, where the frequency is 38 Hz (frequency = rate 

x time). 
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Figure 8.3 Simulation of the “Inertia - Torsional Spring — Ground” machine 

8.3.1.1 Resonant Frequency of a Spring / Inertia System 

The restoring torque of the torsional spring in figure 8.2 is directly proportional to the 

angular displacement of the inertia. If the system is given an impulse torque input then 

the system will oscillate, and this oscillation will be simple harmonic motion (s.h.m.). 

The general equation for s.h.m. is of the form of a second-order differential equation 
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  es =const.x, which equation 8.2 is if the external torque is zero and there is no 

damping. It is worth noting that there is 90° phase difference between the displacement 

(angle) and velocity, and also between the velocity and acceleration. The equations for 

these respectively is 

x= A.sin(@t), X= A..cos(@ rt), ¥=-A.*.sin(w 2) (8.4 a,b,c) 

Ignoring damping and assuming the external torque is zero after an initial perturbation 

(e.g. an impulse), the system in figure 8.2 can be described by the equation 

k.0+J6=0 (8.5) 

Substituting equations 8.4a and 8.4c into this and factorising gives 

(k-’J).Asin(o t) =0 (8.6) 

(k-o’J) must equal zero, so ’J =k. The resonant frequency can therefore be found 

by rearranging this for fy 

lL jk 
vo BG (8.7) 

If there is damping present, then the oscillations will be damped and die away and the 

resonant frequency will be slightly lower (see section 3.14.5). Increasing the damping of 

the system above will reduce the amplitude of the response in figure 8.3, and that of the 

resonant frequency will be less pronounced. 

8.3.2 Torsional Spring - Inertia System 

The spring inertia system first described in chapter 3 has been referred to throughout 

this text, but a simpler physical model was actually constructed. This was used for 

initial characterisation tests, which could be easily compared to simulations of the same 

machine. The machine consists of a torsional spring driven at one end and with an 

adjustable inertia connected to the other. Additional (balanced) masses can be added or 

removed to the fixed one to change the overall mass, and thus inertia. Figure 8.4 

outlines the construction of the machine, and figure 8.5 shows the actual machine used 

in the physical experiments. 
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The equations of motion that describe this machines behaviour are 

gau +B 
dt 

a0, 
dt 

J   -T=0 and T =k(0,-0,) (8.8a, b) 

  

Figure 8.4 Diagram of the Torsional-Spring / Inertia machine 

  

Figure 8.5 Physical Torsional Spring - Inertia machine 

Equations 8.8a and b can be put into state-space form through inspection and used for 

simulation. 

RE EHS  taer one



A simulation of this machine (J=1x107 Kg.m’, Ks=197 Nm/rad and B=0.21 Nm/rad/s) 

was performed using Matlab, and the script for this is in appendix A.7. Figure 8.6 

shows this machine’s response to a swept-sine torque input. 
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Figure 8.6 Simulation of the “Torsional Spring - Inertia’” machine 

The system output (angle 1) decreases with increasing input (torque) frequency and this 

mechanical system can be likened to an electrical LCR filter circuit. 

8.3.3 Inertia - Torsional Spring - Inertia System 

Section 3.3.2 describes a two degree-of-freedom mechanical system consisting of two 

damped inertias connected by a torsional spring, shown in figures 3.2 and 3.3. The input 

and output in this context are the torque and angle at one end of this system (for the 

sake of argument, the left-hand side). The system is described by equations 3.2 and 3.3, 

and put in state-space form in equations 3.14 and 3.15. The test-rig has the ability to 

measure 0, and 6, only, so for simulation the output equation 
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will be used, providing the necessary data for characterisation in chapter 9. A simulation 

of this system using a Matlab script (see A8) gives the machine’s response to a swept- 

sine torque input, shown in figure 8.7 where J)=1.2x107 Kg.m’, Jo=1.2x107 Kg.m’, 

Ks=237 Nm/rad, B,;=0.5 Nm/rad/s and B>=0.5 Nm/rad/s). 
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Figure 8.7 Simulation of the “Inertia - Torsional Spring - Inertia” machine 

The response of this system to an impulse input is shown in figure 3.18. The resonant 

frequency using equation 6.7 is calculated to be 100Hz, and can also be seen from the 

graph to be approximately 100 Hz at t= 570 ms. 

8.4 Electrical Analogues of Torsional Spring / Inertia Systems 

Chapter 3 discussed the criteria for lumped parameter models and presented some 

analogous physical elements that suit the force-current analogy. An electrical equivalent 

of the example rotational system (discussed above in 8.3.3) is given in section 3.3.2.1. 

The electrical equivalent of the inertia is capacitance, and of the torsional spring is 

inductance. The through variable is current and the across variable is voltage (analogous 

to torque and angular velocity respectively). The integral of voltage is therefore 

analogous to the shaft angle, and is simple to perform numerically. 

A linear voltage-controlled current-source was constructed analogously similar to the 

test-rig, which produces a current proportional to the applied input voltage. The current 

was not monitored because of the additional circuit complexity required, and in any case 

the current tracks the input voltage accurately. The current-source circuit is shown in 

figure 8.8. The current-source interface and variable-monitoring circuit is shown in 

figure 8.9. 

The circuit was originally intended to be driven directly from the DSP board’s DAC so 

that: 
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OV would correspond to -0.5A (0.5A sink), 

2.5V would correspond to 0A, and 

5V would correspond to +0.5A (0.5A source). 

This was ultimately changed to —SV corresponding to -0.5A and +5V corresponding to 

+0.5A, and since buffering was required the input op-amp configuration of figure 8.9 

was employed. 
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Figure 8.8 Current-source driver circuit 
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Figure 8.9 Current-source interface and voltage monitoring circuit 
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Current Driver Circuit Description 

TRI and TR2 are a long tail pair differential amplifier and the collector of TRI is 1.25V 

£1.25V above the —12V rail. Ulb and TR4 form a voltage follower producing 1.25V 

£1.25V across R9 which results in TR4 sinking 0.5A +0.5A from the output node. 

Constant Current Source 

D2 produces 1.25V below the +12V rail. Ula and TR3 form a voltage follower 

producing 1.25V across R8 which results in TR3 sourcing 0.5A to the output node. 

The net current in the load is therefore 0A +0.5A. 

TR3 and TR4 dissipate 6W with 0A O/P, 12W with +0.5A O/P, and 24W under 

transient conditions. A regulated uni-polar supply (28V) was used, and U2 (L165) is 

responsible for providing a stable OV between the two supply rails. The power 

dissipated by this device is OW with 0A O/P and 6W with +0.5A O/P. All three of these 

devices were therefore mounted on a heatsink with suitable cooling. 

Figure 8.10 shows the actual construction of the current source (top half of prototyping 

board) with an analogous machine connected (lower half of prototyping board). The 

analogous machine is discussed in 8.4.1 below. 

  
Figure 8.10 Physical construction of current source and analogous machine 
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8.4.1 Electrical Analogue of Inertia - Torsional Spring - Inertia System 

The analogous circuit of figure 3.5 was constructed. Ideally components would have 

been chosen to accurately represent the mechanical machine of section 8.3.3, but due to 

“preferred values” and component availability the actual values used gave it a slightly 

higher theoretical resonant frequency of 202 Hz. 

R;=N/C, R2=1KQ, C, = 6.6 pF, C= 6.6 uF, L=94 mH. 

Mechanical components that are analogous to this electrical machine are 

(B,=NI/C, B2=1.0, J, =0.5x10° Kg.m’, J,=0.5x10°Kg.m?, K, = 403). 

For clarity the circuit diagram of this machine is shown in figure 8.11. 

L=94 mH 

  

  

      

Figure 8.11 Electrical analogue of Inertia - Torsional Spring - Inertia system 

DSP code was written to perturb the machine using an impulse, step, PRBS and swept 

sine signal, shown in appendix B.S. Figure 8.12 shows the response of the analogous 

machine to impulse and swept sine perturbation signals respectively. Data was sampled 

at 10 kHz, so the time period between data samples is 100 us. The test parameters are 

defined in a file that is read by the DSP code, and are for the impulse and swept sine 

respectively is: 

501 num_samples 10001 num_samples 
2 num_channels 2 num_channels 
1 test_number 3 test_number   
10 impulse_length 10 my eng 
2 d 2.0 

   
decades_per_second 

10.0 start_frequency 
i) 1000.0 max_frequency 

imptest swpsnl0K filename 
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Figure 8.12 Response of the analogous machine to impulse and swept sine signals 

The resonant frequency was found graphically to be 205 Hz which was higher than 

expected, but this may be due to variation in actual component values within component 

tolerances. 

8.5 Slider-Crank Mechanism 
  

Figure 8.13 is a diagram of the first example machine that has cyclically changing 

parameters, a slider-crank mechanism. This type of machine has a sliding mass 

connected to a rotating link. There are three turning pairs (1-2, 2-3, 1-4) and one sliding 

pair (3-4). 

  

Figure 8.13 Slider crank mechanism conceptual diagram 

Figure 8.14 shows an ‘exploded view’ of the same machine constructed at Aston. 

Detailed design drawings of this machine are in appendix D.1, and figure 8.15 shows 

the constructed machine. 
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Figure 8.14 Slider crank mechanism constructional exploded view 

  

Figure 8.15 Slider crank mechanism constructed at Aston 

This machine can be considered to have two very significant parameters, a constant 

inertia and a cyclically varying inertia, as well as some less significant parameters such 

as torsional stiffness, lumped viscous damping and possibly some friction. 
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The most intuitive way of representing the cyclically varying inertia is as a function of 

angle. In its simplest form the machine can then be represented by an equation of the 

form: 

ao d’0 d’0 2+ Dang) ae + B—* — k(0, -9,) =0 8.11 ae oe a ie (0, -8,) (8.11)   J ax_max-F (8) 

However, if coefficients of a differential equation are made functions of state variables, 

inputs, or outputs, then the model becomes non-linear. This is not a problem for 

emulation where a model is given, but characterisation becomes much more difficult 

than for linear systems. This problem is discussed in more detail in chapter 9. 

8.6 Four-bar Mechanism 

Figure 8.16 is a conceptual diagram of a four bar mechanism built at Aston. Detailed 

design drawings are in appendix D.2. This type of machine has a varying inertia, and the 

linkages (bars) have independent modes of oscillation which are internal to the machine 

and detectable from the input shaft. 

Holes to allow inertia 
to be attached 

    

   

Fixed 

Reconfigureable 
Rotation 

D 

Figure 8.16 Four bar mechanism - conceptual sketch 

Provision has been made for springs to be attached so that energy may be stored and 

released in a cyclic manner. Each bar has distinct resonance, and this may be calculated 

using the dimensions of the bar and the materials properties. 
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Strength is the force a material can withstand before breaking. Stiffness is a materials 

opposition to being distorted (flexibility i) Ductility is the ability of a material to being 

distorted (toughness 1) 

G j : 7 Ei 
Stress is the force acting per unit cross-sectional area = i 

Units = Pa (1 Pa=1 Nm?) (8.12) 

where F' = force and A = cross-sectional area. 

Strain is the extension of unit length = (no units) (8.13) 

where e = extension and / = original length. 

When bending the bars there will initially be a linear region called elastic deformation, 

where the bar will resume to its original shape. After this, bending the bar further will 

result in non-linear deformation, called plastic deformation, where the bar will not 

resume to its original shape. The breaking stress (or ultimate tensile strength) is when 

the bar breaks. During elastic deformation the tensile strain is directly proportional to 

tensile stress. This is known as Hooke’s law and can be written: 

  
tensile SESS pays ee Units =Pa (8.14) 

tensile strain e/l Ae 

E is a constant known as the Young’s modulus and depends on the nature of the 

material; not it’s dimensions. A material with large E resists elastic deformation 

strongly, for steel E = 21. Since the bars in this machine are of fixed dimensions and 

material, equation 8.14 can be rearranged for F: 

ra42. (8.15) 

where A, E, and / are constants. The resonance of each bar can then be calculated using 

the s.h.m. equation (similar to that in section 8.3.1.1): 

1 | mass of oscillating system 
i. es (8.16) 

2n \ force per unit displacement 
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The dimensions were chosen to use standard sized steel flats and to give natural 

frequencies that would be detectable. These frequencies worked out to be AB = 10 kHz, 

BC = 775 Hz, and CD= 258 Hz. Dimensional details are given in appendix D.2, and a 

script to calculate this frequency is in appendix A.9 (rsntng_bar.m). 

The geometrical positioning of the bars was selected such that the machine would 

rotate, and the bar CD would be given a ‘kick’ to start it oscillating. Matlab script was 

written to simulate the movement of the machine with different arrangements of the 

bars, and the movement of the bars could be observed using animation. A plot of one 

such animation is shown below in figure 8.17, and the Matlab script for this is in 

appendix A.10. 
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Figure 8.17 Plot of a 4-bar mechanism animation 

  

This script also plots the angular movement, velocity and acceleration of bar CD around 

point D (refer to figure 8.16), and these plots are shown in figure 8.18. 
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Figure 8.18 Plots showing simulated angular behaviour of bar CD and input torque. 

against a uniform input shaft angle. 

The input torque is calculated ignoring gravitational forces acting on the machine. In 

practice there will be opposing and assisting torque every cycle due to gravitational pull 

on the 3 moving bars, which are more significant at lower velocities. The constructed 

machine is shown in figure 8.19, and constructional details are in appendix D.2. 
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Figure 8.19 4-bar mechanism constructed at Aston 
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CHAPTER 9 
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9 Machine Characterisation & Emulation 
  

This chapter discusses machine characterisation and emulation in the context of the test- 

rig, and gives examples using both simulations and experimental data. The example 

machines employed are those described in the previous chapter. 

All characterisation experiments will be conducted off line i.e. the data will be analysed 

after the experiment has been performed. To collect and analyse data on-line (real-time) 

would require more sophisticated methods and is beyond the scope of this text. The 

characterisation problem can be thought of consisting of two parts. Firstly, sufficient 

data needs to be collected for an accurate enough model of the machine to be obtained. 

This requires all dynamic properties of interest in the machine need to be exercised, and 

the data collected to be of sufficient frequency and resolution. The frequency range of 

interest to the test-rig has been previously defined as 0 to 1kHz, so a sampling 

frequency of 10kHz for practical tests has been chosen to cover this range with 

sufficient accuracy. Perturbation signals were discussed in chapter 5, and the 

applicability of these is discussed in the context of each experiment. Secondly the 

information has to be extracted and represented. Chapter 5 outlines various methods of 

identifying a system, and again the applicability of these is discussed in the context of 

each experiment. 

9.1 Adding noise to simulations 

Real physical systems have noise on the measured signals, as discussed in section 3.9.5. 

This chapter uses a number of simulated models, and consequently the signals tend to 

be ‘clean’. To make the data more realistic, noise is added subsequent to the machine 

simulation. Measured noise on real physical systems is generally random in nature and 

will often have frequency components much higher than those associated with the 

signal it corrupts. 

If a(t) is the pure signal, and n(¢) is the noise, then if 5(#) is the actual signal 

b(t) = a(t) +n(t) (9.1) 

if T is the sampling period, then the mean-square of the actual signal is found by 

[roa lh (9.2) i Snare : 
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[ (+noy dt 

ee ea Ce 

Feo ats2f acne dt [roa 
=o (9.4) 

The 2[ an dt term will tend to zero if a(t) and n(t) are uncorrelated in terms of 

phase, which is the case with random noise. 

A Matlab function addnoise() was written that adds noise to a signal vector matrix. It 

takes two arguments, the signal and the noise factor. Given the signal vector, a noise 

vector is created of the same size containing uniformly distributed random values 

(noise). The noise vector is then scaled so that the mean-square of the noise is the 

correct proportion of the mean-square of the signal. The noise vector is then added to 

the signal vector and the function exits. The Matlab script for this function is in 

appendix A.11. 

9.2 PE of Linear Time-Invariant Machines Using Least-Squares Methods 

Section 5.4.2 outlined the LS and weighted LS methods. The least-squares method of 

parameter identification is simpler and easier to understand than many other techniques, 

and exhibits equally good statistical properties for most practical situations. This 

subsection works through this PE method longhand before using the Matlab System 

Identification toolbox to perform the same tasks automatically. 

A system may be represented by: 

J = 0,0, (x) +0593 (x) +...+ 0,0, (2) (9.5) 

where 1; 2, -.-; Mn are known functions, and 

01, 82, ..., On are known parameters 

If pairs of observations are made {(x;, y;), i= 1, 2, ...,.N}, the parameters are required to 

be determined so that } computed from equation 9.5 and experimental values x; agree 

as closely as possible. The LS method calculates values to minimise the loss function: 

x 
V@)=— Y's, (9.6) 

isl 

226



where & =y,-3, 

=, ~9,9,(%)) ---.— 9,9, (%)) T=1,2,...,N 

which is simply another way of expressing equation 5.41. 

If the following matrices are defined: 

9 (%) 
o=[, o - 9, O=| : 

9" (xy) 

e=[6, 0, ... 0,]° 

yal, ae 2 yy) 

e=[e, &) ca yl 

then equations 9.6, 9.7 and 9.5 may be rewritten: 

V@)=—e"e= heh 

and similarly 

y=00 

If both sides are multiplied by ©’ , then the following equation holds true: 

0'00=0'y 

(957) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

where 6 are the estimated parameters and ® are functions of x. If ®’® is non- 

singular, the minimum is unique and is given by 

6=(0'0)'o'y 
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(o*o)'o" is said to be the pseudo-inverse of ® if ®’® is non-singular. 

If data weighting is required, then equation 9.13 can be rewritten 

6=(0'Wo)'o' Wy (9.14) 

Matlab has a built-in function pinv() that calculates the pseudo-inverse of a matrix. In 

the section that follows the above method is used to estimate the parameters for a linear 

time-invariant machine. 

9.3 LS Estimate of an Inertia - Torsional Spring - Ground system 

The Matlab script described in section 8.3.1 simulates the Inertia - Torsional Spring - 

Ground system, and saves the simulation data in a file. Only the perturbation torque, 

response angle and velocity, and period are stored, which is all that would be available 

from measurements on the test-rig. 

The Matlab script that performs this parameter estimation is in appendix A.12. The 

machine simulation was modified to make the period 1 x 10 s (simulated sampling 

rate T= 10 kHz), and add more simulation steps. This makes it similar to the test-rig, 

and the larger data set allows a more accurate parameter estimation to be performed. 2% 

noise is added to the perturbation torque, response angle and velocity signals, to 

simulate noise which may normally be present in the measurements of a practical 

experiment. Equation 8.2 describes the machine. Rearranging and labelling in the 

context of the Matlab script gives 

T, = JO + BO+k,0 (9.15) 

Since 6 is not available, this equation needs to be integrated: 

fr, = 70+ BO+ k, fo (9.16) 

The data is rearranged and integrated which leaves data of the form 
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so. a 

Jo, fe, fo, 9 4, 
=| 0 - a|ap rites 

{ln balk fo. 0, 

where n is the sample number. A plot of this data is shown in figure 9.1, where the x- 

axis is time (ms). 
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Figure 9.1 Manipulated data from the “Inertia - Torsional Spring — Ground” machine 

The remaining problem is to find a solution to the equation 

Jt =C.(J0,)+6,(0,)+c,(6,) (9.17) 

where Co, C and C) are the parameters and correspond to k,, B and J respectively. 

Since the numerical size of the data values effects its contribution in the estimation of 

the parameters, it is often beneficial for the data values to be weighted so that they all 

carry the same weight, i.e. they need to be normalised. This is performed by making a 

diagonal matrix containing the sum of the squares of the coefficients in each equation in 

es 

(9.18) 

 



and then dividing x and Tp by d. Equation 9.17 can be rewritten to combine the 

parameters (Co, C;, C2) into one matrix, 

nee (9.19) 

where C comprises the parameters. The roots of this equation 9.17 are found by 

C= piny(x")x {z, (9.20) 

Running the parameter estimation script five times produces: 

  

  

  

  

  

  

  

Ks B us 

Actual parameters | 197.3921 | 0.31 1x 107 

1 run 199.14035 | 0.301427 | 0.000992 

2"? run 197.59914 | 0.300749 | 0.000992 

3 run 198.81667 | 0.297941 | 0.001030 

4" run 196.56652 | 0.307889 | 0.001003 

5” run 197.36450 | 0.301863 | 0.001038             

This demonstrates that the parameters are estimated within reasonable accuracy about 

the true values, and that the least-squares method produces good results for this type of 

problem. 

9.4 LS Estimate of Inertia - Torsional Spring - Ground Using Matlab Toolbox 

Section 9.3 demonstrated how to estimate parameters of a simple system using a ‘long- 

hand’ method. This section performs the same task using the Matlab System 

Identification Toolbox. The toolbox contains functions to estimate parameters to system 

models where the model structure is both known and unknown, view the data, and 

validate the models subsequent to identification. 

The Matlab System Identification toolbox uses a matrix theta, which is common to 

most of its functions, and contains information about model structure, estimated 
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parameters, their estimated accuracy and other information. Most of the toolbox 

functions operate on this matrix, and it can be converted to more familiar forms and 

between continuous time and discrete time using model conversion functions. The 

internal representation of the theta format is specific to Matlab, the details of which are 

unimportant. 

Two data sets were created using the same simulation script as the last section and 

adding noise to the data in the same way. The data sets were created at different times 

and are therefore unique since the noise is of random nature. One of these data sets 

(est_dat.mat) will be used for parameter estimation and the other (val_dat.mat) for 

model validation. 

The Matlab System Identification toolbox is designed to operate on SISO systems and 

systems with many input and/or many output signals (called multi-variable), but these 

variables are treated as being separate entities. It is therefore not possible to use these 

toolbox methods using an input signal and its derivative. The system models being 

created are SISO systems where the input in torque and the output is angle. Angular 

velocity is therefore not strictly required for identification, and is only used for control 

purposes (discussed in chapter 4). 

The Matlab script for this section is in appendix A.13 (ident.m). Firstly the data is 

loaded, and the input-output data is merged into a column matrix. This can be viewed 

using idplot (), and is shown in figure 9.2. 
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Figure 9.2 Data used for parameter estimation prior to processing 
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The data is then filtered to remove frequencies higher than that of interest, and the 

constant levels are removed to make the data zero mean. The model structure is known, 

and is continuous-time of the following form 

dy d’y du du 
a y+a,—+a,—-=bhy+b,—+b, 
Cafe mee | ahay ieee 

(9. 21) 

where bp and b; are both equal to zero. The data was produced using a (simulated) 

continuous-time model but the Matlab identification functions estimate parameters for 

discrete-time models only. The data was initially fitted to a discrete-time model of the 

form 

ay V(t) + a, y(t -—T) + a, y(t — 27) = bu(t) + bu(t-—T) + b,u(t —2T) (9.22) 

where bo and b; are both equal to zero. The function arx() was used to perform this 

operation and the discrete-time model parameters ag, a), a2 and b; were estimated to be 

1.0, -1.9694, 0.9714 and 0.9898 x 10° respectively. The equivalent continuous-time 

parameters for equation 9.21 are bo = 1, b; = 0, by = 0, ap = 195.5426, a; = 0.2888, and 

a2 = 0.001, where ao, a; and a2 are approximately the values of ks, B and J from the 

original simulation. 

Both the parameter estimations described above have estimated the damping coefficient 

lower than it actually is, and this is because the original machine simulation is 

inaccurate. The calculation of the state vector (x) uses the Euler method, which 

essentially calculates the state vector using the old value, the slope and the step size. 

This is inaccurate since the magnitude of the predicted value is always greater than the 

true value, and a simulation using this method will have inherent negative damping. 

More accurate methods are available, and Matlab had a function called 1sim() which is 

accurate. The for loop that simulates the machine within smpl_ld can therefore be 

replaced with the following line for a much more accurate simulation; 

ly, x] = lsim( A, B, C, D, u, times, x0); 
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Using this more accurate simulation to produce a new data set and then performing the 

same identification as before now yields the parameters 195.2176, 0.3191, and 0.0010. 

It can be seen that the damping is now much closer to its true value. 

Using new data for model validation (val_dat.mat), the estimated model can be 

simulated using this input data, and the output of this compared to the original. 

It is desirable to evaluate how well the model fits the data. A simple test is to run a 

simulation whereby real input data is fed into the model, and the output of this 

simulation compared to the actual output. For this comparison new data is used 

(val_dat.mat) which was not used to build the model, and the Matlab function 

idsim() used to simulate the estimated system. Plotting the two system outputs on the 

same graph produces the plot shown in figure 9.3. Since the two are almost identical it 

is difficult to distinguish between the two. 
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Figure 9.3 Comparison between actual (solid) and simulated (dotted) outputs 

9.5 Characterisation of the Electrical Analogous Machine 

The electrical Capacitor — Inductor — Capacitor system, analogous to the Inertia — 

Spring — Inertia system, is a real physical system and is more appropriate for 

identification in this text since the data collected is real and contains real noise. The 

circuit of this system is described in section 8.4.1 and the method of data collection 

also. 
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Identification was initially performed using a sweep-sine perturbation input to the 

system, the same input as shown in figure 9.2. Two identical tests were made and the 

data was saved as “swpsn_e” and “swpsn_v” for estimation and validation respectively. 

Figure 9.4 shows the actual output from the electrical system to this input signal. 
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Figure 9.5 a, b: Outputs from identified system for different sized ARX models 
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Figure 9.5 c, d: Outputs from identified system for different sized ARX models 
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The arx() function was used to fit the data to a number of different ARX models using 

the LS estimate. The models were then simulated using the sweep-sine perturbation 

signal and the simulated output compared with the output from the physical system. 

Model structures of different orders were investigated and some of the more interesting 

ones are shown in figure 9.5. 

Figure 9.5a shows the simulation of an ARX model with two output coefficients, a; and 

2, (ao = | because the equation is normalised), and two input coefficients, by and b2, (bo 

= 0). This model is clearly of insufficient order to capture the dynamics of the system 

being identified. Figure 9.5b shows the simulation of an ARX model with four output 

coefficients, and four input coefficients. This model captures the input - output 

relationship in more detail, but a better model is specified using a model with six output 

coefficients and five input coefficients, shown in figure 9.5c. Figure 9.5d is a plot of an 

estimated model using eight output coefficients and seven input coefficients. Using the 

sweep-sine input signal it is apparent that this higher-order model contains no additional 

useful information about the machine. Using a higher-order model than necessary can 

often allow undesirable characteristics to be included in the model such as noise 

contributions, and the model is then described as over-fitted. 

The model using six output coefficients and five input coefficients is of higher-order 

than necessary to describe the electrical machine, and this can be due to a number of 

reasons. Firstly the system may be more complex than the circuit shows due to parasitic 

L, C and R in the circuit, and non-ideal behaviour of the current drive. Secondly the LS 

identification process is not ideal, and may over-fit a model where noise is present, 

particularly if the noise is non-white. This is demonstrated by using the LS method to 

identify a simulated machine with a) no noise present, and then b) with noise present. 

The simulated machine of section 8.3.3 is used to generate data. 

If no noise is added to the data the arx() function will fit a good model using 4-input 

and 4-output coefficients — the number of parameters required to correctly describe the 

system. Figure 9.6a shows the output from the simulated system (solid lines) and a 

simulation of the estimated system using a different data set with added noise (dotted 

lines). Since the two are identical it is difficult to distinguish between the two. If noise 

is added then the estimation is poor (figure 9.6b), and to regain a model that describes 
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the system to the accuracy of figure 9.6a requires six output coefficients and five input 

coefficients. The same number as the real electrical above. This suggests that it is the 

limitation of the LS identification procedure that is responsible for the necessary over- 

fitting of the ARX model, and not the imperfections in the physical machine. 
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Figure 9.6 a, b: Comparison between simulation (solid) and estimated (dotted) model 

outputs: 4 input & 4 output parameters identified from data with a) no noise, b) noise 

The ARX models created are discrete-time models of continuous-time systems. To 

represent a continuous-time model exactly in discrete-time would require an infinite 

number of input and output terms in the series. This is both impractical and undesirable 

(for reasons stated above), and by using a finite number of terms sufficient detail can be 

captured. The characteristics of interest to this experiment are the dynamics of the 

machine. Since the time constants of the machine are relatively low the signals were 

pre-processed to filter out components above 1 kHz, prior to experimenting with model 

structures of different orders. This was effective for the swept-sine perturbation and 

output signals because any frequency content above this is known to be noise. 

9.5.1 Characterisation of the Electrical Analogous Machine using PRBS 

The same electrical system was also characterised using a PRBS perturbation signal as 

discussed in section 8.4.1. Figure 9.7a shows the first 200 steps (20 ms) of the unfiltered 

input-output data. A disadvantage of using the electrical system described in section 8.4 

is that the current is assumed to follow the reference voltage accurately in the absence 

of measured feedback. The swept-sine signal is likely to be followed accurately because 

the frequency content is limited. The PRBS signal theoretically has an infinite frequency 
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content, but in practice the circuit will filter this signal and ‘round off’ the edges. The 

input data is therefore not strictly true, and only by filtering this signal in the same 

manner as the driver circuit is an accurate input-output data set obtained. Filtering the 

data through guesswork is likely to remove important information relating the output to 

the input, and is shown in figure 9.7b. Identification using this input-output data is 

therefore less likely to be as accurate as swept-sine test, or will involve a model of a 

higher order to include noise dynamics. 
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Figure 9.7 a, b: Unfiltered and filtered PRBS input-output Signals 

Typically analysing data gives rise to a large collection of models. Choosing the best 

model, called model validation is discussed in chapter 5, and for this experiment is 

conducted in the next section. 

9.5.2 Electrical Analogous Machine Model Validation and Selection 

There is no absolute procedure for validating models, but usually they are tested using a 

different set of data then that used for estimation, and evaluated using some kind of 

criterion. The Matlab Identification toolbox has several functions for comparing 

different structures which are used here. Appendix A.14 contains the script 

“idnt_arx.m” referred to in this section, the important part of which is shown below: 

  

rxstruc(ze, zv, struc(2, 2, 1:5)); % create arx's of different delays 
selstruc(V,0); % establish suitable delay value 
nn (3)? % extract delays 

V = arxstruc(ze, zv, struc(1:20, 1:20, nk-l:ink+1)); 
% test all combinations of arx 
% models with up to 20 a & b params 
% with delays around selected value 

nn = selstruc(V) % plot fit vs number of selected parameters 
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The identification is performed on data collected using a PRBS perturbation signal, and 

validated using the swept-sine perturbation signal used in the previous section. This is 

called cross-validation and is discussed in section 5.8.3. The arxstruc() function fits a 

range of ARX models specified in its third argument, to the estimation and validation 

data in the first and second arguments respectively. The sum of squared prediction 

errors is computed as applied to the validation data, and the resulting loss functions are 

stored with their corresponding structures in the matrix V. The function selstruc() 

selects the most appropriate structure according to a criterion specified in the second 

argument. These are discussed in section 5.8.3. Akaike’s Final Prediction Error (FPE) 

and Information Theoretic Criterion (AIC). Both simulate a cross-validation situation 

where only one set of data is available. Rissanen’s Minimum Description length (MDL) 

selects the structure that allows the shortest overall description of the observed data. 

When substantial noise is present, ARX models need to be of high order to describe the 

system dynamics and the noise dynamics, since they are directly coupled in this type of 

model (refer to figure 3.14). Alternatively the dynamic model only may be computed by 

using the IV method to fit the same data to an ARX model of lower order. 

The two scripts “idnt_arx.m” and “idnt_iv4.m” find the model which fits the data to an 

ARX model, and are identical, except “idnt_iv4.m” uses the IV counterpart of the 

arxstruc() function, ivstruc(). Figure 9.8 shows the output data from the electrical 

system using the PRBS and swept-sine tests. 
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Figure 9.8 a, b: Output data from physical PRBS and swept-sine tests 
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Five second-order ARX structures are created with different delays, and the best fitting 

of these determines the centre delay for the fitting of ARX models with up to twenty a 

and b parameters. This equates to 1200 models, which are plotted on a graph showing 

loss function vs the number of parameters. The default models returned have the lowest 

loss function, and from using LS and IV methods are models of 16 a and 18 b 

parameters, and 3 a and | 5 parameters respectively. Figure 9.9 a and b shows the 

swept-sine output from the LS and IV derived simulated models respectively. 
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Figure 9.9 a, b: Output data from simulated PRBS and swept-sine tests using LS 

The high-order model estimated by the LS function fits the data well, but a better model 

was estimated at the beginning of section 9.5 using only six output coefficients and five 

input coefficients (shown in figure 9.6c). It would appear therefore that the model is 

over-fitted. Noise is being represented in the model and although the validation data is 

reproduced accurately, this would not necessarily be the case for validation data with 

different characteristics. 

The model estimated using the IV method is of much lower order, but does not 

represent the machine very well at all. This is probably because the IV function is 

attempting to differentiate between the machine dynamics and the noise dynamics and 

there is either insufficient machine dynamics information, or perhaps the two signals are 

correlated in some way. 

The PRBS data set is likely to contain much less machine information than the swept- 

sine data set of the previous section leading to less concise models. Using the PRBS 

perturbation signal has probably not exercised the dynamics of the machine sufficiently, 
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or has exercised the dynamics of the machine sufficiently but generated excessive noise 

in doing so. 

  

9.5.3 Non-Parametric Characterisation of the Electrical Analogous Machine 

Section 5.3 discusses the theoretical background to non-parametric system identification 

methods. The Matlab SI toolbox contains several functions to perform this kind of 

analysis. The Matlab script shown in appendix A.15 (nonpar.m) performs several non- 

parametric analyses. Analysis is conducted on the swept-sine data collected from the 

electrical system test (swpsn_e). 

The function cra() performs correlation analysis and plots the results on a graph. The 

input and output are filtered so that they are as uncorrelated as possible and their 

covariance functions plotted. The correlation function between these filtered signals is 

then plotted, which can be used to check the correlation between the filtered output and 

input. Finally this same correlation function is scaled so that it is an estimate of the 

systems impulse response, and plotted with 99% confidence level lines (dashed). 
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Figure 9.10 Correlation analysis of the electrical system 
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The function spa() performs spectral analysis on the output-input data. Two matrices 

are returned, the estimated frequency function and the estimated disturbance spectrum. 

Figure 9.11 is a plot of the estimated frequency function plotted with linear frequency 

scales, and figure 9.12 is a plot of the estimated disturbance spectrum plotted with linear 

frequency scales. 
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Figure 9.11 Estimated frequency function (linear frequency scales) 
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Figure 9.12 Estimated disturbance spectrum (linear frequency scales) 
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9.6 Emulation of the Electrical Analogous Machine 

The physical parameters could be extracted in a similar manner to section 5.4, but this 

in not necessary since the model will be used directly for emulation. The optimal model 

order was obtained in the previous section using the script ‘idnt_arx.m’. Creating a 

model to fit the data is performed in Matlab using the command tn = arx(ze,nn); where 

ze is the data and nn specifies the model order. The polynomial coefficients are 

calculated using (a 8) = th2arx(th). 

The control software used to perform the emulation is described in section 4.5. The 

model was written in C code, and is a polynomial containing the coefficients returned: 

/* calculate model torque dem */ 
-00000000000000 

#define aml -5.25556352321326 
f#define am2 11.74504443782740 
#define am3 -14.27965314019990 
#define am4 9.93854432348819 
#define am5 -3.73848816027420 

#define am 

fidefine am6 0.59013408221406 

#define bm0 0.00000000000000 

#define bml 0.01276541800102 
#define bm2 -0.04658864455239 

#define bm3 0.06708665896887 
#idefine bm4 -0.04532714871371 

#define bm5 0.01209339513882 
mod_dem = bm0*torg[t] + bm1*torq[t-1] + bm2*torq[{t-2] + bm3*torg[t-3] + bm4*torq[t-4] + 

bm5*torg[t-5] 

- aml*ang[t-1] - am2*ang[t-2] - am3*ang(t-3] - am4*ang[t-4] - amS*ang[t-5] - 

am6*ang[(t-6]; 

A swept-sine signal was generated and fed via a spare DSP output to a drive-motor pair 

mechanically connected to the test-rig. Figure 9.13 shows the mechanical configuration. 
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Figure 9.13 Drive-motor pair connected to test-rig to drive emulated machine 

The test was run for 50,000 samples, at a sampling frequency of 10kHz, for a total time 

of 5 seconds. The data was then filtered to remove unwanted noise above 500Hz, and a 

plot of this data is shown in figure 9.14. 
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Figure 9.14 Plot of the measured data obtained from emulation test 
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The angle data is disappointing as it reveals very little about the oscillation of the shaft. 

The torque however shows the dynamic response of the test-rig emulation, and is 

comparable to the electrical analogous tests. Figure 9.15 is a close-up of the torque plot 

showing the model dynamics, and is comparable to the plot of the electrical-analogue 

model response to the same test. It is important to note however that the angle plot of 

figure 9.14 does not show much change at resonance. It is therefore possible that what is 

actually seen is the resonance of a system like that shown in figure 3.2 where one inertia 

is the test-rig, and the other is the external motor, and the non-rigid shaft in-between is 

the couplings and gear-train between the two. 
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Figure 9.15 Close-up of measured torque showing dynamics of interest 

Using the close-up (figure 9.16) of the resonant part of the emulated model (figure 

9.15), the resonant frequency can be calculated to be 345 Hz ( 1/((8245-8216) x 

100x10") ) since this is the reciprocal of the period. 
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Figure 9.16 Close-up revealing resonant frequency of the emulated machine 

9.7 Characterisation of Cyclic Machines 

Chapter 5 discusses the structure of cyclic machines and some of the tests required to 

identify certain aspects of these machines. It is preferable to represent the varying 

parameters as functions of time, leading to time-variant and linear models, but it is also 

convenient to represent the varying parameters as functions of angle, leading to non- 

linear models. 

9.7.1 Characterisation Tests for Cyclic Machines 

Chapter 5 outlined four tests to characterise a time-varying machine: 

1) A “quasi-stationary” (or static) test to determine friction in both the forward and 

backward directions, 7/,.,.(0(¢)) and Tose (O(2)) - 

2) A “constant-velocity” test for a range of different velocities to determine the viscous 

drag component (8), and inertia variation component (G). 

3) A sinusoidal excitation of the machine at frequency @ with the machine turning at a 

much lower frequency Q,,,, (<<), to determine the actual value of the inertia. 

4) An additional test was described to characterise internal resonance’s that can occur in 

machines incorporating some flexibility. Additional state vectors are required {q, q } 

which describe a displacement from a reference position. Equation 5.100 describes the 
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shaft torque for a non-constant velocity. It is made up of four terms and is repeated 

below for convenience 

Tey (8 og 2) = Tos Oey (€)) + 2.BO xj (0)) + Q? GO pop (OD) +I 8 pep (0) 

The internal dynamics of the machine can be represented by equation 5.101; 

M(,-5()) 4) + CO 6 O)4(0) + KO). = 2Q sec On O)+YTO 

The M, C, and K terms represent the forces due to the action of the mass, damping and 

stiffness respectively. The LQ yee Oep O) term represents the internal imbalance 

excitation of the machine, and Y.7(t) is a force produced by the torque 7(¢). 

The state vector contains a number of co-ordinates, each of which corresponds to a 

degree of freedom in the machine. It is likely that one of the co-ordinates is dominant 

over the others, and for modelling purposes it may be sufficiently accurate to consider 

only one or two of these. 

If the machine is rotating slowly at a constant velocity so that g = 0, and an impulse of 

unit area (ideally 1 Nm.s) at 0 = 0 is applied, a transient signal Xq(t) will occur which 

is detectable on the shaft (6,,.,, ). The vector Y converts this impulse on 7() into a force 

to which the system of equation 5.101 responds, and the shaft will oscillate about the 

reference angle. The measured angle can be found by equation 5.102 

(®yrcas = 9,7 + X(t) ) which relates equations 5.100 and 5.101. meas 

If the row vector X and column vector Y have a one in their first positions and zeros 

elsewhere, and assuming q and its first derivative are known, M, C and K are easily 

identifiable. 
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9.7.2 Characterisation of the Four-bar Mechanism 

  

The four-bar mechanism is a cyclic machine and the characterisation approach of the 

previous section will be applied. All the scripts used to perform this characterisation are 

in appendix Al6. 

Quasi-stationary test 

The mechanism was rotated in a forward direction at a very slow speed (approximately 

Srpm) and the angle, velocity and torque data recorded. A plot of the data is shown in 

figure 9.17 showing angle, velocity and torque from top to bottom. 
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Figure 9.17 Data recorded from quasi-stationary forward test 

The data was then split up into separate cycles of the machine (delimited by the angle 

transition), and reconstructed into shorter data of equal lengths (512 steps) using their 

Fourier transforms. This also has the effect of filtering the signal to remove the noise 

and unwanted dynamics of the machine and test-rig. A plot showing the result of this 

for the forward and reverse directions are shown in figure 9.18 a and b respectively 

(appendix A.16.1). The new time between samples is 39.0625 ms (100ps x 

200000/512). 
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Figure 9.18a, b; One cycle of data for a)forward and b) reverse directions 

Constant velocity test 

The mechanism was rotated at three different speeds at as near constant velocity as 

could be obtained from the test-rig controller. Increasing the gain of the controller 

tended to give rise to noise and oscillations that acted as additional perturbation signals. 

The three different speeds were 180 rpm (3 Hz), 360 rpm (6 Hz) and 540 rpm (9 Hz). 

The tests were run for 20 seconds as in the previous test and the data was split into 

revolutions and averaged as in the quasi-stationary test. 
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Figure 9.19 Average of one cycle of data for constant velocity at 180rpm 

The torque data was then arranged as in equation 5.93 so that the equation could be 

solved for the parameters Tos, (8), B(®) and G8) ; 
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To-(0)] [1 3 9) [7 
B®) |=|1 6 36] |7,(0) (9.23) 

G(®) 1 9 81] |7,(0) 

A Matlab script was written to perform this task (appendix A16.6), and the parameters 

were found as a function of angle. 

The above equation makes the assumption that the data was collected with a constant 

velocity. A small variation from this would have caused less accurate results, but the 

results plotted in figure 9.19 would suggest that the variation is quite large. A check to 

determine whether the data is likely to be useful is to differentiate the velocity signal to 

give acceleration and multiply by this an estimated inertia to give the torque (appendix 

A.16.7). 

The length of the rotating arm is 105mm, and a rough estimation of the average inertia 

can be found if the lumped mass at the outside of the rotating arm is guessed to be about 

50g. This estimated inertia is 0.105? x 0.05 ~ 0.5 kg.m?. Multiplying by the 

differentiated velocity gives the estimated torque variation due to the velocity variation, 

shown in figure 9.20. 
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Figure 9.20 Estimation of torque (Nm) due to velocity fluctuation (rad/s) 
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The purpose of this test is to determine the viscous drag and inertia variation. Equation 

5.91 is based on the velocity being constant. The velocity however is not constant and 

an additional term is included which is the product of inertia and acceleration, as in 

equation 5.100. This product would appear to be overestimated, but because the 

contribution to the measured torque is so significant, the calculated values of B and G 

are almost definitely wrong. The analysis of the data from the next two tests relies on 

these parameters, so to perform the calculations is purposeless. The data was collected 

however and is shown in subsequent figures. 

Ideally the test would be re-performed at this point to ensure the velocity is near 

constant. One method is to make changes to the controller to ensure tighter control of 

the velocity loop. Another method is to use the velocity data plotted in figure 9.20 to 

drive the machine harder when the velocity reduces. This would make the velocity 

variation less, and if this procedure were performed iteratively then in theory the 

velocity could be made constant. In practice this may not be achievable, but it may be 

close enough for the calculation of the B and G parameters to be near their true values. 

Sinusoidal excitation test 

This test also requires the machine to be rotated at a constant velocity, but with a 

sinusoidal excitation superimposed. The purpose of this is to calculate the actual value 

of the inertia knowing the viscous-drag (B) and the excitation torque (Tosc) assuming 

otherwise constant velocity, described by equation 5.98. The data recorded from this 

test was filtered and averaged in the same manner previously discussed in this section, 

and is shown in figure 9.21. 

250 

 



  a 

  

  

  

  

  

  

  

    
  

a 

g 
0 1 

i 
= : : : 

0 100 200 300 400 500 600 

eis 7 i 7 7 
3 
a 

10 + 

= 5 
0 100 200 300 400 500 600 

= 7 

= 
s 4 
2 

0 100 200 300 400 500 600 
Time (x100 us) 

Figure 9.21 Average of one cycle of data for sinusoidal excitation test 

If the data were gathered at a near-constant velocity the actual value of the inertia could 

have been obtained by applying equation 5.98. Unfortunately the data collected is not as 

valuable as was hoped, and time limitations prevent these tests from being repeated. 
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10 Conclusion 

Models in the context of rotating machinery have been discussed and the selection and 

parameterisation of these models investigated. A test-rig to perform characterisation and 

emulation tasks was designed and constructed and practical tests using specially built 

machines were performed. This work has encompassed a range of engineering 

disciplines combined to accomplish the rotary machine characterisation and emulation 

task. 

10.1 Achievements and Limitations 

System models were discussed and a number of these chosen to represent different 

machines. State-space models were used extensively in simulation, but in practical tests 

the ARX structure was found to be the most useful, primarily because of the 

identification methods employed. Electrical analogues of rotational mechanical 

components were discussed and an electrical analogue of a rotational machine 

comprising two inertias and a torsional spring was given. A current source was used to 

drive this electrical machine and preliminary tests using the DSP board were conducted 

prior to performing similar tests on the test-rig. 

Various test-rig control strategies were investigated and a versatile controller suitable 

for characterisation and emulation was implemented. It performed well for most tests, 

but the characterisation of the four-bar mechanism required tighter control of the 

velocity. Velocity feedforward control was not implemented, so only machines with 

small cyclically varying inertias would be able to be identified. Further development of 

the controller would be required to enhance this test, and either velocity feedforward or 

adaptive control techniques would be necessary. 

Four low-inertia motion-sources were used, and two complex methods of mechanical 

coupling were constructed. The first, a spur-gear gearbox performed sufficiently well 

for all tests conducted, but the spiral bevel-gear gearbox with smoother meshing and 

lower inertia would have enhanced the torque bandwidth of the test-rig, enabling 

machines to be characterised and emulated with more precision. The electrical 

interfacing performed well, and electrical noise was kept to a minimum. The angle 

measurement system was complicated in that the digital measurement was converted 
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into an analogue signal and then back to a digital quantity. The inevitable addition of 

noise and loss of accuracy was unfortunate but appeared not to impact the operation on 

the test-rig adversely. 

A small number of machines were constructed specifically to characterise and emulate. 

The electrical system was relatively noise free, required no software control and for 

these reasons was ideal for preliminary tests. The inertia-torsional spring system tests 

gave useful data, but were not discussed in the text because the machine was used 

extensively in simulation examples. Two cyclically varying machines were designed, 

but ultimately only the four-bar mechanism was used in practical tests. 

An overview was given of the most common system identification and parameter 

estimation methods, for both parametric and non-parametric models. Only the least- 

squares and instrumental-variables methods were used to characterise machines, which 

is all that was possible in the time constraints of the project. These methods performed 

sufficient well to identify the machines tested though, and an emulation of the electrical 

machine produced credible results. 

  
Figure 10.1 The author demonstrating the test-rig to visitors 
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This project forms part of a larger project titled "An Integrated Approach to the design 

of Control Systems for High-Speed Machines" as discussed in chapter 1. The test-rig 

was constructed in the “Machine Control and Drives Laboratory” in the department of 

Mechanical Engineering at Aston university, and was used in association with other 

projects in the laboratory for demonstrational purposes for research at Aston. Figure 

10.1 shows the author (right) demonstrating the test-rig to visitors at a presidential visit 

by the IMechE. The president of the IMechE, Pam Liversidge is pictured on the left. 

10.2 Future Work 

A number of interesting machines were made, and all but one was used in 

characterisation experiments. The experimental characterisation of cyclically varying 

machines was partly performed, but inadequate experimental results and time 

constraints prevented it from being thoroughly investigated. A more sophisticated 

controller would be required to further the research, perhaps using advanced techniques 

such as robust control. Tests for machine characteristics could be partly automated, and 

series of tests could be performed for particular types of machines. Greater modelling 

accuracy and higher bandwidth could be obtained through test-rig enhancements, but 

the existing construction offers much scope for further research. 
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Appendix A_ Matlab Scripts 

.1 Impulse Response of 2-Inertia + Spring System 

    

% J1,AL J2,A2 
% us See 
% | | | | 
et ===) b===/NPNYNINTN=2= | | 
% 1 | | | 
‘ = a 
$ I | 
% I*| Bl |*| B2 
8 a) = 
& | | 
% S11 M1 

a1 1.0E-03; 
32 1.0B-03; 
Ks 0.5 * Jl * (2*pi*100)*2; 
Bl = 0.4; 
B2 = 0.4; 

Asset 0 1 0, 
-Ks/J1, -B1/J1, Ks/J1, 

0, 0, 0, 
Ks/d2, 0,  -Ks/J2, 

B= 0 
1/31 3 

0 c 
0 iF 

c= {1000}; 
D=0; 

figure; 
impulse (A,B,C,D)7 

Kgm* 

Kgm* 
System has 100Hz res. 
0.44 

-B2/J; 

2 
2 

eS 
S
r
o
o
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A.2 Time Response of a Second-Order System 

% time response of a second-order system to a unit step and 
% unit impulse and frequency response plots 

wn = 1; % natural frequency 

num = wn*2; 

  & ----- step responses to different damping ratios -- 

for damp=0.2: 0.2: 1.0, 
den = [1 (2*damp*wn) (wn*2)]; 
step (num, den); 
hold on 
end 

for damp=1: 2: 10, 
den = [1 (2*damp*wn) (wn*2)]; 

step (num, den) 7 
hold on 
end 

+= 
figure; 
  impulse responses to different damping ratios ----- 

for damp=0.2: 0.2: 1.0, 
den = [1 (2*damp*wn) (wn*2)1; 
impulse (num, den) ; 
hold on 
end 

    

: 2: 10, 
den = [1 (2*damp*wn) (wn*2)]; 
impulse (num, den) ; 
hold on 
end 

% ----- bode responses to different damping ratios ----- 
figure; 
damp=0.05; den 
damp=0.1; den 
damp=0.5; den 
damp=1.0; den 
damp=2.0; den 

{1 (2*damp*wn) (wn*2)]+ bode(num,den); hold on; 
{1 (2*damp*wn) (wn*2)]; bode(num,den); hold on; 
{1 (2*damp*wn) (wn*2)]; bode(num,den); hold on; 
{1 (2*damp*wn) (wn*2)]; bode(num,den); hold on; 
(1 (2*damp*wn) (wn*2)]; bode(num,den); hold on; 

  

  % ----- nyquist responses to different damping ratios -- 
figure; 
damp=0.5; den 
damp=1.0; den 
damp=1.5; den 
damp=2.0; den 

{1 (2*damp*wn) (wn*2)]; nyquist(num,den); hold on; 
{1 (2*damp*wn) (wn*2)]; nyquist(num,den); hold on; 

(2*damp*wn) (wn*2)]; nyquist(num,den); hold on; 
{1 (2*damp*wn) (wn*2)]; nyquist(num,den); hold on; 

% now use ‘zoom! to frame the interesting part of the plots 

A.3 Compensated Response of Test-rig 

% PDentrl2.m 
% uses lead compensation for D part of controller 
% pole-zero map and step response of a PID controller in series 
% with the test-rig (D implemented as a Lead-compensator 

clear 

% controller parameters and transfer function 
Kp = 0.5E-4; was 1.0748E-6 for P only critically damped 
Kd = 10;  — alpha=0.05; 

  

Kp; 
1; 

Dnum = [Kd 1]; 
Dden = [alpha*Kd 1]; 
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(Cnum,Cden] = series (Pnum, Pden, Dnum, Dden) ; 

% plant transfer function 
Gnum = 2326; 
Gden {1 0.1 01; 

% 'add' the two systems (can't use 'series' because C(s) is not proper 
{num,den] = series (Cnum,Cden,Gnum,Gden) ; 
S'open loop transfer function’ printsys(num,den,'s') 

% close the loop, -ve feedback 
[nume,denc] = cloop(num,den,-1); 
"closed loop transfer function’ printsys(numc,denc, 's') 

% plot pole-zero map & step response 
figure 
pzmap (nume, denc) ; 
%(p,2] = pzmap(num, den) % display the poles & zeros 
figure 
step (nume, denc) ; 

A.4 Differentiation comparisons 

diffrtn4.m - DW 24/7/97 & 
% 
% loads ‘torque’ which is data from ident_1.2 and contains 
& T the time step (lms), TR torque, and fTR the integral of TR. 
% compares 2 methods of differentiating fTR; rectangular 
% and (Taylor) finite-difference formula. 
% Similar to diffrtn3.m. 

clear 
load ‘torque’ 
data_length = size(TR,1); 

% differentiation variables 
dx_rec = zeros (data_length,1); 
dx_taylor = zeros(data_length, 1); 

% add noise 
fTR = addnoise(fTR, 0.025); 

% filter signal 
{b,a] = butter (3,2500/5000); 
£TR = filter(b,a,£TR); 

% This script computes a finite-difference formula for the 1stm derivative of a 
% discrete signal based on present value of that signal and N previous values. 
iok = 0; 
while iok==0; 

dok = 1; 

  

N = input(' Enter number of previous values to use Ve 
M = input(' Enter highest order of derivative to use se 
if (MPN) 

disp(' Must have N>N I! '); iok=0; 
end 

end 
R= 0.0 - (0:N).'7 
TE = taylex1(R, M); 
TI = pinv(TE); 
format long 
pinvte = (TI(2,:)).' 
format short 

  

num_prev = size(pinvte,1); | % number of previous values required 

% perform differentiation 

  

for t=num_prev:data_length 
a@x_rec(t) = (£TR(t)-fTR(t-1))/T; 

$ dx_taylor(t) = -1000*sum(fTR(t-num_prev+l:t) .* pinvte); 
for index=0:5 

dx_taylor(t) = dx_taylor(t) + (£TR(t-index) * pinvte(index+1)); 
end 
dx_taylor(t) = dx_taylor(t)*1000; 

end 

figure; 
subplot (4,1,1), plot(f£TR, 'w'), ylabel('f TR'); 
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subplot (4,1,2), plot(TR, 'w'), ylabel('TR'); 
axis({0 1000 -2 2]); 
subplot (4,1,3), plot(dx_rec, 'w'), ylabel('dx_rec'); 
axis({0 1000 -2 2]); 
subplot (4,1,4), plot(dx_taylor, ‘'w'), ylabel('dx_taylorl 
axis({0 1000 -2 2]); 

  

% taylexl.m 
% Computes a 1-dimensional Taylor expansion matrix (SDG 1997). 
% R is a list of "x" coordinates 
% Mis the highest order of derivative of interest 

function TAYLOR = taylexl(R, M); 

N = max(size(R)); 

  

L=M+1; 
tdisp([' Representing ' int2str(L) ' derivatives')) 

zeros (N,L); 
DERIV=zeros(L, 2); 

  

DERIV(1,1)=0; 
DERIV(1,2)=1; 

for i=2:1; 
DERIV(i,1)=i-1; 
DERIV (i, 2)=DERIV(i-1,2)*(i-1); 

end 

% Fill the array TAYLOR 
for i=1:N 

tx = R(i); 
for j = 1:L 

TAYLOR (i, 3) =(tx*DERIV(j,1)) /DERIV(j,2); 

  

5 Swept-Sine Generation 

% SWPSIN version 4 

% Returns the value of a swept sine wave after t seconds. 
% x = swpsin4 (rate, £0,t) 
% £0 is start frequency, 
%  f increases exponentially at ‘rate’ decades/sec. 
4 (15/8/97 - Dw) 

function [x] = swpsin4 (rate, £0,t) 

k = rate * log(10); 
% freq = £0 * 10*(k10 * t) 
angl = (f£0/k) * exp(k * t); 
x = sin(angl); 

A.6 Simulation of 1-Inertia + Spring System 

% simple_load.m - 17/1/97 - Dw 
% Simulation of a l-inertia system + spring, for parameter estimation. 
% Try parameter ident. on an easier model first. 
$ 
% J, A 
% es 
= | | \\ 
@ TR =——( [= /NPN/N/N/NIN 
% | IN 
$ mee 
% | 
: (ajc 
& 
% State Variables : xx=[ velocity ; 
$ acceleration  ] 
$ 
3 x= angle B 
3 velocity 
& 
% Inputs TI -- External Torque on Inertia 
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% Parameters J -- Value of Inertia 

$ Ks -- Spring stiffness 
$ C -- Damping on J 
% 
% T -- time step (seconds) 

ry     

clear 
% set up variables 

No_of_steps = 800; 
T 0.001; % second(s) 
TR = zeros (No_of_steps,1); % input torque profile 

    

1:No_of_steps 
TR(i) = sweepsin(100,t); % torque I/P is sweep sine 
tettT; 

end 

J = 1.0-03; % Kgm*2 2 
Ks = 0.5 * J * (2*pi*100)*2; % System has 100Hz res. freq. ? 
eo = 0.247 % 0.444 = sqrt(J*Ks) why? 

A=[ 0, 1 
“Ks/3,  -C/S-_ 1; 

Bet 0 ; 
i/o Vi 

xx = [07 0]; % initial rates 
x = zeros (2,No_of steps); 

    No_of_steps; 
u = TR(t)7 % input, u = TI(t) 
%(122,t) = x(1:2,t-1) + xx*T; % x(t) = x(t-1) + xx*T 
xX = Atx(2,t) + B*u; % xx = Ax + Bu 

end; 

figure; 
subplot (3,1,1), plot(TR(:)), ylabel('Torque (Nm)'); 
subplot (3,1,2), plot(x(1,:)), ylabel('Ang (rads)'); 
subplot (3,1,3), plot(x(2,:)), ylabel('Vel (rads/s)'), xlabel('Frequency (Hz)'); 

% save the variables the parameter estimation part needs (T, TR, & x) 
save 'data' T TR x 

7 Simulation of Spring nertia System 

| 2.m - 28/11/97 - Dw 
of a spring + l-inertia system. 

  

machines 
Simulati 

  

  

a2 

Al, | | 
TR -/\/\/\/\/\-1 3 

1 

    

State Variables: xx=[ velocity : 
acceleration ] 

x={ angle ; 
velocity 

Inputs TI -- External Torque on Inertia 

Parameters g -- Value of Inertia 
Ks ~ Spring stiffness 
Dmpng -- Damping on J 

oe 
4°:

 3
° a

e 
de 

JP 
Ge 

dP 
0 

a 
dP
 d

P 
de 

de 
oF 

dP 
dP 

de 
UP 

oP 
uP 

0 
ee 

dP
 a

P d
P 

. -- time step (seconds) 
  

clear 
% set up variables 
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plot_xmin = 100; 

  

   

          

No_of_steps = 600; 
T 0.001; % second(s) 
TR = zeros(No_of_steps,1); % input torque profile 

:No_of_steps 
TR(i) = sweepsin(100,t); % torque I/P is sweep sine 
t=t+T; 

end 

1.0E-03; & Kgm*2 ? 
0.5 * J * (2*pi*100)%2; % System has 100Hz res. freq. ? 
0.31; % Nm/rad/s ? 

0, a i 
0, -Dmpng/J }; 

on 
/g li 

c= [ 1, Qo ie 

D=1/ Ks; 

xx = [07 0]; % initial rates 
x = zeros(2,No_of_steps); 

for No_of_steps; 
u = TR(t)7 % input, u = TI(t) 
x(1:2,t) = x(122,t-1) + xx*T, — & x(t) = x(tol) + xx*T 
XX = A*x(:,t) + Bu; & xx = Ax + Bu 
y(t) = C#x(:,t) + Deu; % y(t) = Cx + Du 

end; 

figure; 
subplot (2,1,1), plot(TR(:)), ylabel('Torque, u (Nm)'), grid, 

axis((plot_xmin, No of steps, -1, 11); 
subplot (2,1,2), plot(y(:)), ylabel(’Ang 1, y (rads)'), grid, 

axis({plot_xmin, No_of steps, 0.07, 0.09]); 
xlabel('Time (ms)')7 

u = TR; % input (Sys. Ident. toolbox requires row vectors) 
yoy? % output (Sys. Ident. toolbox requires row vectors) 

% save the variables the parameter estimation part needs (T, TR, & y) 
save ‘data’ Tu y 

A.8 Simulation of 2-Inertia + Spring System 

% machine8_3_3.m - 11/97 - Dw 
% Simulation of a spring + 2-inertia system. 

  

& 
$ Al a2 
$ a aes 
& | i Ks | | 
% TR--|J1_ |-/\/\/\/\/\-| 02 | 
& | | | 
$ ees ase 
8 | | 
% I*] cL #1 ©2 
% 
% State Variables: xx-=[ velocity 1 ; 
& acceleration_1 ; 
$ velocity 2 : 
& acceleration 2 ] 
% 
% x={[ angle1 ; 
$ velocity 1 ; 
$ angle 2” ; 
% velocity 2 ] 
% 

$ Inputs TI -- External Torque on Inertia 
$ 
% Parameters 31,32 -- Value of Inertia 
% Ks - Spring stiffness 
8 B1,B2 -- Damping on J1,d2 
% 

& if -- time step (seconds) 
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clear 
$ set up variables 

plot_xmin = 

No_of_steps 
7 

100; 

1000; 
0.001; 

TR = zeros(No_of_steps,1); 

t=0; 

    

  

  

second(s) 
input torque profile 

torque I/P is sweep sine 

  

a1 -2E-03; & Kgm*2 
J2 +2E-037 % Kgm*2 
Ks -5 * ((J1+92)/2) * (2*pi*100)~ % System has 100Hz res 
Bl Oh % Nm/rad/s 
B2 cS, % Nm/rad/s 

Ae LD 0, 1, 0, OF 
-Ks/J1, -B1/J1, Ks/J1, 0; 
0, 0, ’ é 
Ks/d2, 0, -Ks/J2, -B2/J2]; 

Bet 0 
-1/d1 
0 ; 
0 Ve 

c= [ 1, 0, 0, O1f 

xx = (07 0; 07 OF % initial rates 
x = zeros (4,No_of_steps); 

for t=2:No_of_steps; 
u = TR(t)? % input, u = TI(t) 
x(1:4,t) = x(1:4,t-1) + xx*T; 9 & X(t) = x(t-1) + xxtT 
xx = A*x(:,t) + B*u; % xx = Ax + Bu 
y(t) = C#x(:,t)¢ & y(t) = Cx + Du (D=0) 

end; 

figure; 
subplot (3,1,1), plot(TR(:)), ylabel('Torque, u (Nm)'), grid; 
subplot (3,1,2), plot(y(:)), ylabel('ang 1, y (rads)'), grid; 
subplot (3,1,3), 

  

xlabel('Time (ms)'); 
plot (x(2,:)), ylabel('Vel 1 (rads)'), grid 

u=R;  % input (Sys. Ident. toolbox requires row vectors) 
y= y'  % output (Sys. Ident. toolbox requires row vectors) 

% save the variables the parameter estimation part needs (T, TR, & y 
save 'data' Tuy 

9 Resonating Bar Calculations 

support 

6 
GP 

dP 
oP 

GP 
9° 

GP 
dP
 d

e 
oP 

dP 
GP
 G

e 
dP 

oP
 c

e 
OP 

oP
 rsntng_bar.m - 16/8/96 - DW 

Matlab script to calculate the natural frequency 
of a bar given its dimentions, density & youngs modulus. 
The bar is to be used in the second example load; a four- 
bar mechanism which will store strain energy, and 
have a detectable internal resonance - originating mainly 
from this bar. 

  

'm! is additional mass 
< 

support 

  - end view: 
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clear 
% set up variables 

  

b = 0.010; % dimension b (m) - actually this cancels out 
& and isn't relevant! (in theory 

h = 0.012; % dimension h (m) 
L = 0.430; % dimension 1 (m) 
E = 21069; % Young's modulus for steel (Pa = Nm*-2) 
a = 7000; % density of steel = 7800 Kg/m*3 

m = 0.100; % mass of the additional weight (kg) 

I = (b*h*3)/12; % 2nd moment of area 

k = 2*( 3*E*I/(L/2)°3 ); % stiffness of centre point 

am=b*h*L*d; % actual mass of the ‘spring’ 

em = am/3; % mass is 6 3 because the effective 
% mass of a spring is about 1/3 of 
% it's actual mass. (p.285 ‘Advanced 
% physics’ - T. Duncan’ 

em = em + m % add the mass of the weight 

fn = (1/(2*pi)) *sqrt (k/em) % natural frequency of a spring 
% fixed at both ends: 

oe 
de
 3
0 

op
 

  

A.10 Four-bar Mechanism Movement Simulation 
  

% four_bar_mech.m - 16/8/96 - Dw 
% Matlab script to analyse the movement of a four bar mechanism. 

x2,y2 x3,y3 

    

ks 
\INININININ== 

Z
e
e
    

clear % clear variable space 
close all % close all current figure windows 

% set up variables 

      
   
     

  

mass of driven bar CD (kg 
mass3 = 0.07; mass of link BC (kg) 
mass = 0.5*massl + 0.3*mass2 + 0.5*mass3; 

% the effective mass at point C 

0.105; ® length of bars (m) 
0.200; §.s=-- 8 Wer 
0.250; $= te "= 
0.150; % coordinates of 

yl = 0.150; ere Spicy 
x4 = x1 +b; % coordinates of 
y4 = 0.042; ¥ --: na" 

mass1 % mass in centre of driven bar CD (kg) 
% 
s 

    

  

ks = 200.0; % spring-constant of spring (N/m 
rpm = 1500; % speed of rotation (revs / min 
rps = rpm/60; ---- " =-- " ---- (revs / sec 
T = rps/360; % time for 1 loop iteration i.e. 1; 

XAB = zeros (360,1); % angle XAB record 
¥DC = zeros (360,1); % angle YDC record 
dypc¢_dt = zeros(360,1); % dypc_dt record 
ddyDé_dt = zeros(360,1); % ddYDC_dt record 
TR = Zeros(360,1); % I/P torque required record 
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xx = zeros (360,1); % xx, coord. record for animation 
yy = zeros (360,1); % yy, coord. record for animation 

% initial values 
last_C dist = 0; % initial angle 
last_dCdt = 0; % initial angular velocity 

% m is bar coordinates index 

  

% get animation requirements 
revs = input('how many rotations to animate?'); 

% calculate remaining coordinates for values of XAB 

    

    

for n= 
XAB(n) = (2*pi*n) /360; % convert deg to rad 
x2 = x1 - a*cos(XAB(n)); % calculate coords of B 
y2 = yl + a*sin(XAB(n)); % Sts st oo 

BD = sqrt ( (x4-x2)*2+(y4-y2)*2); % calculate length BD 

YDB = atan((y2-y4)/(x4-x2)); % calculate angle YDB 

BDC = acos ((c*2+BD*2-b*2) /(2*c*BD)) ; % calc. angle BDC 

DCB = asin(BD*(sin(BDC)/b)); % calculate angle DCB 

DBC = pi - (BDC + DCB); % calculate angle DBC 

CBA = DBC + (pi-YDB)-(pi-XAB(n)); % calculate angle CBA 
if (CBA>(2*pi)) 

CBA = CBA - 2+pi; % keep within 0<cBa<2? 
end 

Y¥DC(n) = YDB + BDC; % calculate angle YDC 

x3 = x4 - ctcos(YDCin)); % calculate coords of C 
y3 = y4 + ctsin(¥DC(n)); % = w= w= WH 

C_dist(n) = ypc(n) * c; % act. dist. of C from horz. 
aCdt(n) = (C_dist(n)-last_C dist) /T; & vel. of C 
ddcdt(n) = (dCdt (n)-1ast_dcdt) /7; % accn. of C 
last_C dist = C dist(n); % for next dyDC_dt 
last_dCdt = dcdt(n); % for next ddyDC_dt 

FC = mass*ddCdt(n) + 0.5*ks*(0.5323-C_dist(n)); 
% £ = m.a + 0.5*ks*(C_dist_max-C_dist) 

FCB = FC / sin(DCB); % force into link 
FBA = FCB * sin(CBA); % force into driving bar 
TR(n) = FBA * a; % input torque 

xx(m) = x1; % coordinates of A 
yy(m) = yl; a 
xx(m+1) = x2; % coordinates of B 

yy(m+1) = y2; a 
xx(m+2) = x3; % coordinates of C 
yy(m+2) = y3; Bo nn= M nnnn ane 
xx(m+3) = x4; % coordinates of D 

yy(m+3) = y4; Bonn nnn ae 
m=m+ 4; % increment by the number of coordinates 

end 

% zero the first point in dCdt and the first 2 in dCdt, 
% because they are invalid 
dcdt (1) = 0; 
ddedt (1:2) = [070]; 

  

% plot driven bar angle, angular velocity and acceleration. 
figure (1); 
subplot (4,1,1), plot (¥YDC), 

title('angle YDC (driven bar) vs angle XAB (I/P bar)'), 
xlabel('angle XAB (I/P bar)'), 
ylabel ('rads'); 
grid; 

subplot (4,1,2), plot (dCdt), 
title('dCdt (velocity) vs angle XAB (I/P bar)'), 
xlabel('angle XAB (I/P bar)'), 
ylabel('m/sec'); 
grid; 

subplot (4,1,3), plot (ddCdt), 
title('d*2Cdt*2 (acceleration) vs angle XAB (I/P bar)'), 
xlabel('angle XAB (I/P bar)'), 

ylabel ('m/sec*2"); 
grid; 
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subplot (4,1,4), plot (TR), 
title('input torque XAB vs angle XAB (I/P bar)'), 
xlabel('angle XAB (I/P bar)'), 
ylabel ('Nm') ; 

grid: 

& animate the four bar mechanism 
if (revs~=0) 

figure (2); 
hold; % allows for multiple plots 
axis({0, 0.5, 0, 0.3]); % set scaling for plots 
axis('equal'); % square aspect ratio 
axis (axis); % freeze scaling & current limits 
axis('off'); % turn off labeling & tick marks 
for n = l:revs 

for m= 1: 4: 360*4 
plot (xx (m:m+3), yy (m:m+3) ,'w') 7 % plot each increment 

plot (xx (m:m+3), yy(m:m+3),"k")¢ % erase -- " --- " -- 
end 

end 
plot (xx(1:4),yy(1:4),'w');  & plot last increment 

hold; 
end 

11 Adding Noise to a Signal 

% addnoise(x,noise factor) returns matrix 'x' with 'noise_factor' 
% rms uniformly distributed noise added. 
% (14/2/97 - Dw) 

  

function [y] = addnoise(x,noise_factor) 

rand (size (x))-0.5; % create noise array same size as x 
a sqrt (mean (mean(x.*2))); % mean square of x 

an_rms = sqrt (mean(mean(noise.*2))); % actual mean square of noise 

rn_rms = (noise _factor*x_rms); 

correction factor = rn_rms/an_rms; 
% to make noise ms = x_ms * 

noise_factor 
noise = noise * correction_factor; % noise ms now equals x_ms * noise_factor 
y = x + noise; 

A.12 Inertia - Torsional Spring - Ground system LS PE 

  

% par_est.m (V1.3) - 21/1/96 - pw 
% Parameter identification of a simple load - a 1 inertia, 1 spring 
% see ‘simple load’. 
% 
% Uses: D - time step (seconds) 
% ™ - I/P torque profile 
8 x - x = [ angle 1 ? (x = state vector) 
% velocity 1 } 
% 
‘oe 

clear 
load ‘data’ 

%add noise to recorded signals x and TR... 
x(1,:) = addnoise(x(1,:),0.02); 
x(2,:) = addnoise(x(2,:),0.02); 

  

TR = addnoise(TR, 0.02); 
figure; 
subplot (2,1,1), plot(x(1,:)), ylabel('Ang.') 
Ssubplot (2,1,2), plot (x(2,:)), ylabel('Vel.'); 

% move thetal and thetal. from rows 162 to rows 263 (create row 3) 
% fill row 1 with zeros ready for the lst integral 
% and create fTR with zeros for the Ist integral 
*(3,2) = *(2,2)¢ 
%(2,2) = x(1,:) 
x(1, = zeros(1,size(x,2))7 

  

fTR = zeros (size (TR)); 

% generate the 1st integral of theta and put in row 1 
% also generate 1st integral of TR 
for t=2:(size(x,2)) 

x(1,t) = x(1,t-1)+(T/2) * (x(2,t) +x (2,t-1))7 Strapez integ 
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fTR(t) = £TR(t-1)+(T/2)*(TR(t)+TR(t-1)); %trapez integ 
end 

% figure; 
‘subplot (3,1,1), plot(x(1 
tsubplot (3,1,2), plot (x(2 
subplot (3,1,3), plot (x(3 
‘figure; 
Ssubplot (2,1,1), plot(fTR), ylabel('fTR'); 
Ssubplot (2,1,2), plot(TR), ylabel('TR'); 

   

  

), ylabel('fang'); 
:)), ylabel('ang!); 

), ylabel('ang’'); 

  

% The equation which to find the parameters for is: 
% £TR = cO*f[thetal] + cl*{thetal] + c2*(thetal.] 
% where 'f' represents an integration & the params. are 
& cO = -Ks, cl =C, c2=J 

% transpose x to correspond to equations 
x= x'G 

% normalise the equations by dividing the 'coefficients' by the 
% sum of the squares of the coefficients in each equation... 
m = size(x,1); 
for i=l:m 

      

xtemp = x(i,:); % each row of data 
d = sqrt(xtemp * xtemp'); % d = sum of squares of coeffs 
if d==0 % check and trap any zero's to prevent / by 0 later 

d= 1.07 

x(i,2) = (i, 3) ./dy % normalise ‘coefficients’ 
£TR(i) = fTR(i)./d; % normalise ‘coefficients’ 

end 

% ‘nr! is the normalised set of roots 
nr = pinv(x)*£TR; 

fprintf(1,'Ks = $f\nC = %f\nJ = %f\n', nr(1), nr(2), nr(3))z 

13 Inertia - Torsional Spring - Ground system LS PE 

%ident.m - to use the identification toolbox for LS PE 

% add noise to the clean simulated signals, twice, and save for PE & verification 
clear 
load 'data' 

% Define the quantity of noise to be added 
% percent noise to add to signal pe = 2; 

pe = pc/100; 

% Add noise to recorded signals and save for identification 
ye = addnoise(y,pc) + 
ue = addnoise(u,pc); 
save 'est_dat' T ye ue 

% Add noise to recorded signals and save for verification 
yv = addnoise(y,pc); 
uv = addnoise(u,pe) ; 
save 'val_dat' T yv uv 

% load the data to be used for parameter estimation 
clear 
load est_dat % data with noise 
ze = [ye ue]; % [output input) 

figure 
idplot (ze) % plot the input / output data 

% filter data to remove frequencies higher than that of interest 
(BE,Af] = butter(4,1000/5000); % 4th order, 1kHz cut-off, 5kHz sampling 
ze(:,1) = filter(Bf,Af,ze(:,1)); 
ze(:,2) = filter(Bf,Af,ze(:,2))7 

znl = dtrend(ze); % remove const. levels to make data zero mean 

th = arx(ze, [21 1]); % perform the discrete time parameter estimation 

th = sett(th, 7); % set the sampling frequency to the model 

[A,B] =th2arx (th) % remove the ARX coefficients 
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A_row = A(1,:)7 ™ a0, al and a2 
Borow = B(1,2): bl (is the only non-zero input parameter) 

delt = 1E-4; % specify delta-t (i.e. time step) 

T= [1.0 delt delt*2/2; % Taylor-Expansion matrix 
1.0 0.0 0.0 ; 
1.0 -delt delt*2/2]; 

model = A_row*T / B_row % calculate the continuous time parameters 

% using new data, compare the actual 0/P, and simulated 0/P of new model 

load val_dat $ different data with noise for model validation 
ysim = idsim(uv, th); % put different data through new model 
figure 
plotiyv, 'w'); % plot validation 0/P data 
hold; 
plot(ysim, 'k:'); % plot new model simulated data on same graph 
ylabel('Angle (rads)'), xlabel('Time (x100 us)'); 

A.14 ARX Model Selection and Validation 

CoS arx.m - uses the identification toolbox for elec model SI 
using the functions arxstruc() and selstruc(). 

: prbstest is used for SI and swpsn_v for validation 

clear 
load prbstest % data from elec model 
ze = [prbstest(:,2), prbstest(:,1)]7 % [output input 
clear prbstest 

load swpsn_y % different data for model validation 
zv = [swpsn_v(1:8000,2), swpsn_v(1:8000,1)]; % [output input 
clear swpsn_v 

T = 1e-4; 

ze = dtrend(ze); % remove DC offsets 
zy = dtrend(zv); % remove DC offsets 

figure 

V = arxstruc(ze, zv, struc(2, 2, 1:5))7 % create arx's of different delays 
nn = selstruc(V,0); % establish suitable delay value 
nk = nn(3); % extract delays 
V = arxstruc(ze, zv, struc(1:20, 1:20, nk-1:nk+1)); 

% test all combinations of arx 
% models with up to 20 a & b params 
% with delays around selected value 

nn = selstruc(V) % the selected structure 

th = arx(ze, nn);  % fit data to selected model to calculate parameters 
th = sett(th, T);  % set the sampling interval 

% using new data, compare the actual 0/P, and simulated 0/P of new model 

ysim = idsim(zv(:,2), th); simulate new model using actual I/P signal 
% to compare simulated 0/P to the actual 0/P signal 

figure 
plot (zv(:,1), 'w'); % plot validation 0/P data 
axis({0 8000 -1.5 1.5} 
ylabel('Angle (rads)'), xlabel('Time (x100 us)') 

figure 
plot(ysim, tw'); % plot new model simulated data 
axis([0 8000 -1.5 1.51); 
ylabel('Angle (rads)'), xlabel('Time (x100 us) 

  

A.15 Non-Parametric Characterisation 

load swpsn_e % data from elec model 
ze = [swpsn_e(:,2), swpsn_e(:,1)]; % [output input 
clear swpsn e 
T= le-4; 

  

ze = dtrend(ze); 
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% perform correlation analysis 

figure 
ix = cra(ze); % ir = estimated impulse response vector 

%sr = cumsum(ir); % sr = estimated step response vector 
figure 
%plot (sr) 

% perform spectral analysis 

{G,PHIV] = spa(ze); % G = estimated freq func 
% PHIV = estimated disturbance spectrum 
% GN = sett(G, T); set sampling interval 

figure 
f££plot (GN) 
%bodeplot (GN) 

plot estimated freq func 
plots freq fncn with linear freq scales (uses Hz) 
plots freq fncn with log freq scales (uses rad/sec) 

figure 
ffplot (PHIV) 
%bodeplot (PHIV) 

plot estimated disturbance spectrum 

Ge = etfe(ze); 

A.16 Four-bar Mechanism Characterisation 

  

A.16.1 Quasi-stationary test 

% qsf_fpre.m 

clear 
load qsff2 

qsff£2(:,1) = qsf£2(:,1) - (( abs(max(qsf£2(:,1))) - abs(min(qsf£2(:,1))) )/2 )¢ 
% max = -min 

qsff2(:,1) = qsf£2(:,1) * ( (2*pi) / (max(qsf£2(:,1))-min(qs££2(:,1))) )+ 
% convert angle to radians (range -pi to pi) 

%figure 
subplot (3,1,1), plot(qsf£2(:,1), 'w'), grid, ylabel('Ang.'); 
ssubplot (3,1,2), plot (qsff2(:,2), 'w'), grid, ylabel('Vel.'); 
%subplot (3,1,3), plot (qsff2(:,3), ‘w'), grid, ylabel('Torq.'); 
%xlabel('x100 us'); 

% find the transitions of the angle signal 
count = 1; 

last_ang = qsff£2(1,1); 
for n=2:200000, 

new_ang = qsf£2(n,1); 
if ( abs(last_ang-new_ang) > 3 ) 

ang_trans(count) = n; 
count = count + 1; 

end 
last_ang = qsff2(n,1); 

end 

  

% change the length of the data for each revolution 
Np = 512; % New number of points 
Nh = 5; % Use the first 5 harmonics above 0 

  

:(size(ang_trans,2)-1), 
if ( (ang_trans(n)+1) < ((ang_trans(n+1)-2)-500) ) 

temp = len_chng( qsff2( (ang_trans(n)+1):(ang_trans(n+1)-2), :), Nh, Np )+ 
% change data length of nth rev 

split_data(:,n) = temp(:,1); 
split_data(:,ntl) = temp(:,2); 
split_data(:,n+2) = temp(:,3); 
n=n+ 3; 

end 
end 

    

% take the average of each revolution data 

   

  

ang_mean(:) = split_data(:,1); 
vel_mean(:) = split_data(:,2); 
tor_mean(:) = split data(:,3); 
for n=4:3:((n-1)/3), 

ang_mean(:) = ang mean(:) + split_data(:,n); 
vel_mean(:) = vel_mean(:) + split _data(:,n+1); 
tor_mean(:) = tor mean(:) + split data(:,n+2); 
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end 
one_rev_fwd(:,1) = ang_mean(:) / (n/3); 
one_rev_fwd(:,2) = vel_mean(:) / (n/3); 
one_rev_fwd(:,3) = tor_mean(:) / (n/3)7 

% ENSURE -pi < ANGLE < pi AND VEL IS +VE 
one_rev_fwd(:,1) = one_rev_fwd(:,1) - (( abs(max(one_rev_fwd(:,1))) - 
abs (min{one_rev_fwd(:,1))))/2 )? 

% max = -min 
one_rev_fwd(:,1) = one_rev_fwd(:,1) * ( (2*pi) / (max (one_rev_fwd(:,1))- 
min(one_rev_fwd(:,1))) ): 

% convert angle to radians (range -pi to pi) 

  

if ( min(one_rev_fwd(:,2)) <0 ) % vel shouldn't go -ve (bit of a bodge) 
one_rev_fwd(?,2) = one_rev_fwd(:,2) - min(one_rev_fwd(:,2)); 

end 

figure 
subplot (3,1,1), plot (one_rev_fwd(: 
subplot (3,1,2), plot (one_rev_fwd 

subplot (3,1,3), plot (one_rev_fwd 
xlabel('x100 us'); 

1), 'w'), grid, ylabel('Ang.'); 
2), 'w'), grid, ylabel('Vel.'); 
3), 'w'), grid, ylabel('Torq.') 

   

qsf_fwd = one_rev_fwd; 

save qsf_fwd qsf_fwd % save data for analysis 

16.2 len_chng. 

en_chng.m 

re-create (and plot?) a data matrix using a different number of points 
where (:,1) is the angle, (:,2) velocity and (:.3) torque. 
new vector = renstrcet( signal, nHarm, nPoints ) 

oP 
46 

de 
op 

ae 
oe 

function new_data = len_chng( data_matrix, Nh, Np ) 

%figure 
Ssubplot (3,1,1), plot(data_matrix(:,1), 'w'), grid; 
Ssubplot(3,1,2), plot (data matrix(:,2), ‘w'), grid; 
%subplot (3,1,3), plot (data_matrix(:,3), 'w’), grid; 

% RECONSTRUCT THE SIGNALS WITH DIFFERENT DATA LENGTHS USING FOURIER TRANSFORM 
enew_sig(:,1) = renstrct( data_matrix(:,1), Nh, Np )+ 

% won't work because of gibbs phenomenon 
x = cos(data_matrix(: 
y = sin(data_matrix(: 
new_x = renstrct( x, Nh, Np ); 
new_y = renstret( y, Nh, Np ); 
new_sig(:,1) = atan2(new_y, new_x); 
new_sig(:,2) = renstret( data _matrix(:,2), Nh, Np ); 
new_sig(:,3) = rcnstret( data matrix(:,3), Nh, Np ); 

      

figure 
Ssubplot (3,1,1), plot (new sig(:,1), 'w'), grid; 
&subplot (3,1,2), plot(new_sig(:,2), 'w’), grid; 
%subplot (3,1,3), plot (new sig(:,3), 'w'), grid; 

new_data = new_sig7 

  

16.3 renstret.m 

renstret.m 

re-create (and filter) a signal using a different number of points 
(this, fouri_s.m & gen_fbas.m written by SDG) 
new vector = renstrct( signal, nHarm, nPoints ) 

function new_vector = renstrct( signal, Nh, Np ) 

% --- Now re-create (and filter) that signal 
% --- using a different number of points (Np) 

coeffs = fouri_s( signal, Nh ); % Now we have found the coeffs. 
basis = gen_fbas( Np, Nh ); % Construct a diff. basis. 
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new_vector = basis * coeffs; % This is new signal. 

16.4 fouri 

% fouri_s.m 
    

function coeffs = fouri_s( signal, nharm ) 

This can be used as a part of a filtering operation. 
NOTE : signal is assumed to be a set of COLUMN vectors. 

% --- fouri_s --- 
% This function finds a "small" Fourier transform of a 
% signal represented by a large number of discrete points. 
% It produces a vector of coefficients of the basis 
% functions 
% cos (0*theta) 
% cos(1*theta) sin(1*theta) 
% cos(2*theta) sin(2*theta) 
% cos(3*theta)  sin(3*theta) 
& ... up to 
% cos(nharm*theta) sin(nharm*theta) 
8 
% 

ssig = size(signal,1); 

% --- Generate the basis of Fourier functions. 
basis = gen_fbas( ssig, nharm ); 

ibass = basis/(basis.'*basis); 

coeffs = ibass.'*signal; 

A.16.5 gen_fbas.m 

% gen_fbas.m 

function basis = gen _fbas( length, nharm ) 
% --- gen_fbas --- 
% This function generates a basis of "Fourier" functions 
% up to a certain order of harmonics. 
% cos (0*theta) 
% cos(1*theta) sin(1*theta) 
% cos(2*theta) sin(2*theta) 
% cos(3*theta) sin(3*theta) 
2... up to 
% cos(nharm*theta) sin (nharm*theta) 

% Create a vector of angles. 
theta = 2*pi*(0:length-1).'/length; 

basis = zeros(length, 2*nharm+l ); 

basis(:,1) = ones (length,1); 
kt=2; 

for iharm=1:nharm 
basis = cos(iharm*theta); kt=kt+1; 
basis = sin(iharm*theta); kt=kt+1; 

  

end 

16.6 cyclic.m 

% cyclic.m 

clear 
load cvf3a 
load cvf6éa 
load cvf9a 

torques (1,: 
torques (2, : 
torques (3, : 

evf3a(:,3)'7 
evf6a(:,3)'7 
evt9a(:,3)'F 

vel_pwrs = [1 3 9; 1 6 36; 19 81]; 

params = inv(vel_pwrs) * torques; 

save params params 
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16.7 torq est.m 

% torg_est.m 

  

clear 
load cvf3a 

0.0001; % T is the time step 0.1ms 
inertia = 0.5E-3; % kg.m*2 

vel = cvf3a(:,2)7 

  

for t=2:size(vel,1), 
acen(t) = (vel(t)-vel(t-1))/T; % adequate for estimation 

end 

torque = accn * inertia; 

figure 
subplot (2,1,1), plot(vel, 'w'), grid, ylabel('velocity'); 
subplot (2,1,2), plot(torque, 'w'), grid, ylabel('Torque'); 
xlabel('x100 us'); 
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Appendix B DSP and PC Programs 

B.1 Test-Rig Control Code 

control.c 

This module contains the code to control the test rig, and by changing 
the parameters in the file "ctl_pars", can be used for both emulation 
and characterisation since the method for calculating the torque (and 
angle) demand produces a torque reference only 

/ 

#include <stdio.h> 
$i nelude <stdlib.h> 
#include <link.h> 
#include <math.h> 
#include "..\ipopext\ipopext .h” 

    #include "..\timer\timer.h” 
#include "..\misc\misc.h" 
include "..\prtrbtn\swpsin.h” 
#include "..\prtrbtn\prbs.h 

int main(int argc, char *argv[]) { 

fidefine offset4 1 -0.056 /* (volts) to correct for cp4/chl offset */ 
fidefine offset4 2  -0.056 /* (volts) to correct for cp4/ch2 offset */ 
#define offset5_1 -0.139 /* (volts) to correct for cp5/chl offset */ 
#define offset5 2 -0.140 /* (volts) to correct for cp5/ch2 offset */ 

#define scaled 1 “1.0 /* rads/V */ 
#define scaled 2 -297.5; /* rpm/V */ 
#define scale5 1 5.0 /* Nm/V (200Nm/10V /4) */ 
#define scale5 2 1.0 

#define scale03 1.0 /* spare output */ 
#define scale04 1.0 /* spare output */ 
f#define scale23 1.0 /* 1,0V corresponds to 1Nm 22? */ 
f#idefine scale24 1.0 /* spare output */ 

define Btr 0.0 /* test-rig damping */ 
#define Kfric 0.0 /* test-rig friction (assumed const) */ 

/* these next variables are primarily for characterisation */ 
unsigned int num_samples; /* 10000 = 1 second at 10kHz sampling */ 
unsigned int num channels; /* number of data channels to record */ 
unsigned int test_number; /* test to perform */ 
unsigned long impulse length; /* for impulse test */ 
double dec_per_sec; /* for sweepsine test - decades per second */ 
double start_freq; /* for sweepsine test - start frequency */ 
double stop freq; /* for sweepsine test - stop frequency */ 

int cont_mode; /* 1=continuous mode, overrides num_samples */ 

char filename[20]; /* name of the file to save results */ 

double Pang, Tang; /* angle PI controller parameters */ 
double torq_ang_ctrl; /* for angle controller */ 
double Ptorg, itorgq, Dtorq; /* torque PI controller parameters */ 

double torq_damp correction; /* for test-rig damping correction */ 
double torq fric correction; /* for test-rig friction correction */ 

  

double 1; /* measured sample rate */ 
unsigned long time /* elapsed time (units 100us) & array indexer */ 
unsigned long index=0, n; /* array indexer and array index offset */ 

two_ch_data adc data 4, ade _data 5; 

double torq_req, ang_req; /* generated by either: 
machine emulation model, or 
characterisation profile generation */ 

/* allocate storage for history of signals */ 
#define t 6 /* present + t past values */ 
double ang{t+1]=(0}7 
double vel[{t+1]=(0}; 
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double 
double 
double 
double 

torq[t+1]=(0}; 
torg_error[t+1]={0}; 
torq_i_error[t+1]={0}; 
torq_d error; 

    

double torq_out; 

/* for data capturing */ 
double *data; 
int data_size; 

/* 
/* 

FILE *fd; it 

/* taylors expansion constants for 
#define te length 6 ie 
const double pinvte[te length] = ( 

/* GET CONTROL PARAMETERS FROM 
fd = fopen("ctrlpars", "r"); 

No!    

  

pointer to data array */ 
length of array */ 

input and output file descriptor */ 

diffrtn */ 
present + 10 past values */ 

-14285714285714, 
+08571428571429, 
-02857142857143, 

-0.02857142857143, 
~0.08571428571429, 
-0.14285714285714 

2
0
°
 

  

FILE "ctrlpars" */ 

if (fd L) { 
printf("file 'ctrlpars' does not exist\n"); 
exit (1); 

} 

printf ( 
fscanf(fd, "$d $*s ", snum_samples); 
fscanf(fd, "sd %*s ", &cont_mode); 
fscanf(fd, "td $*s ", &num_ channels); 
fscanf(fd, "ts $*s ", filename); 
printf ("num_samples = %d\n", num_samples); 
printf ("cont_mode = $d\n", cont_mode); 
printf ("num channels = $d\n", num channels); 

      

printf£("filename = %s\n", filename) ; 
print£("\n"); 

fscanf(fd, "tlf %*s ", &Pang); 
fscanf(fd, "$lf $*s ", slang); 
printf("P_angle = %1f\n", Pang); 

= #1£\n", Iang); 

fscanf (fd, $+s ", &Ptorg); 
fscanf (fd, &*s ", &Itorq); 
fscanf(fd, "slf %*s ", &Dtorq); 
printf("P_torque = %1f\n", Ptorg); 
print£("I torque = $1f\n", Itorq); 
printf ("D_torque = #1f\n", Dtorq); 

printf("\n"); 
fclose (fd) ; 

/* allocate memory for data logging */ 
data_size = num channels * num samples; /*+ no_channels * no_lines */ 
data = 
if (data 

  

NULL) { 
(double*)calloc((data_size + 6), sizeof (double) ); 

printf£("not enough DSP memory available for recording data\n\n"); 
exit (0); 

t 

/* initialize timer for sample rate measurement */ 
initialize_timerl(); 

/* setup the sampling etc... */ 
stop_sampling(4); 
stop_sampling(5); 
timer _wait (200); 
set_extern_trig(4); 
set_extern_trig(5); 

ys 

/* 
y* 

     

adc_data_4 = empty_FIFO(4); it 
adc_data_5 = empty FIFO(5); 
reseét_prbs(); 

return_to_continue(); 

/* start sampling & reset timer */ 

halt sampling via ADC comports */ 

wait for DAC FIFO's to empty */ 
use the external trigger I/P */ 

clear ADC FIFO's */ 
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start_sampling(5); 
start_sampling(4); 
reset_timerl(); 

/* MAIN CONTROL LOOP */ 

while( (time<num samples) || (cont_mode) ) { 

/* INPUT SIGNALS */ 
adc_data_4 = read_next_voltages(4); /* chi is angle */ 

/* ch2 is velocity */ 
adc_data_5 = read_next_voltages(5); /* chl is torque */ 

/* ch2 is spare ef 

/* SCALE, FILTER AND ALLOCATE SIGNALS */ 

      

ang(t] = (adc_data_4.chl + offset4 1) * scale4 1; 
vel{t] = (adc_data_4.ch2 + offset4_2) * scale4_2; 
torq[t] = (adc_data_5.chl + offset5_1) * scale5 1; 
/*spare[t] = (adc_data_5.ch2 + offset5 2) * scale5 2;*/ 

/* filter torque signal further as necessary [b,a] = butter (3,1500/5000) */ 
y* 
#define btl 0.04953299635725 
#define bt2 0.14859898907176 
#define bt3 0,14859898907176 
#define bt4 0.04953299635725 
#define at2 -1.16191748367173 
#define at3 0.69594275578965 
#define at4 -0.13776130125989 
torg[t] = bt1*torg[t]+bt2*torg[t-1]+bt3*torg[t-2] +bt4*torg[t-3] 

-at2*torg[t-1]-at3*torg[t-2]-at4*torq[t-3]; 
te 

/* don't filter angle signal */ 

/* filter velocity signal further as necessary [b,a] = butter (3,1500/5000) */ 
/* 
#define bvl 0.04953299635725 
#idefine bv2 0.14859898907176 
#define bv3 0.14859898907176 
define bv4 0.04953299635725 
#define av2 -1.16191748367173 
#define av3 0.69594275578965 
#define av4 -0.13776130125989 
vel[t] = byl*vel(t] +bv2*vel [t-1] +bv3*vel [t-2] +bv4*vel [t-3] 

~av2*vel [t-1]-av3*vel [t-2]-av4*vel[t-3]; 
th 

/* CALCULATE REQUIRED TORQUE AND ANGLE; torg_req AND ang_req */ 
/* i.e, for charac ~ put perturbation profile generator here, 

and for emulation - call model() from here */ 
torg_req = 0.0; 
ang_req = 0.0; 

/* ANGLE 'PI' CONTROLLER 
= calculate torque demand due to angel error (for charac only) */ 

/* torq_ang_dem = (ang_req - ang{t]) * Pang; */ 
/* need to put some thought into this - I need angle difference, and 

ang[t] is in the range 0 to 2*pi */ 
/*torg_ang_ctrl = ang_req7*/ 
torq_ang_ctrl = 0.0; /* for now */ 

  

/* CALCULATE DAMPING AND FRICTION COMPESATION */ 
torq_damp correction = vel[t] * Btr; 
torg_fric_correction = ((vel{t]>0) ? 1: -1) * Kfric; 

  

/* TORQUE 'PID' CONTROLLER - calculate torque demand */ 

/* calculate error */ 
torq_error[t] = torq_req + torq_ang_ctrl - torg(t]; 

/* integrate error (trapezoidal) for I term */ 
torq_ierror[t] = torq i_error[t-1] + (1/2)*(torq_error[t]+torg_error[t-1]); 

/* differentiate error (backward-finite-divided-difference) for D term */ 
torg_d error = 0; 

for (n=0; n<te_length; n++){   
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torq_d error += torq error(t-n] * pinvte[n]; 
} 
torq_d_error /= 7; 

/* control algorithm */ 
torq_out = Ptorq*torq error[t] + Itorq*torg i_error[t] + Dtorg*torq d_error aX q a q oo GS 

- torgq_damp Correction - torq fric correction; 

/* SCALE AND OUTPUT THE OUTPUT SIGNALS */ 
output_voltage(2, 3, (torq out * scale2_3) ); 
/* output_voltage(2, 4, 0.0); */ 
/* output_voltage(0, 3, 0.0); */ 
/* output_voltage(0, 4, 0.0); */ 

/* TIME SAMPLING RATE */ 
T = timerl_time(); /* T = sample rate */ 

reset_timerl(); 
timet+; /* increment elapsed time, xl00us if fs = 10kHz */ 

/* RECORD DATA FOR RETRIEVAL LATER (if not in continuous mode) */ 
if (!cont_mode) { 

data[index] = ang[t]; 
data[index+1] = vel(t]+ 
data{index+2] = torq[t]; 
data[index+3} = T; 
index += num_channels; 

/* RIPPLE OLD VARIABLES DOWN THE LINE AND STORE CURRENT ONES */ 
vel(t-3] = vel[t-2]; 
vel[t-2] = vel[t-1]7 
vel(t-1] = vel[t]; 

torg[t-3] = torq[t-21; 

  

torq[t-2] = torq[t-1]; 
torg[t-1] = torg[tl; 

torq_error[t-6] = torq_error[t-5]; 
torq_error[t-5] = torq_error[t-4]; 
torq_error[t-4] = torq error[t-3]; 
torg_error(t-3] = torq_error[t-2]; 
torq_error(t-2] = torq_error[t-1]; 
torq_error[t-1] = torq_error[t]; 

torg_i_error[t-1] = torq i_error[t]; 

index += num_channels; 

} /* end while (END OF EXPERIMENT) */ 

/* output nothing */ 
output _voltage(2, 3, 0.0) 
output _voltage(2, 4, 0.0); 
output _voltage(0, 3, 0.0); 
output _voltage(0, 4, 0.0); 

printf("test complete"); 

/* WRITE DATA TO A FILE ON PC */ 
if (!cont_mode) { /* if not in continuous mode */ 

printf(", writing to file...\n"); 
fd = fopen(filename, " 
if (fd == NULL) { 

printf("cannot open '%s' for writing.\n", filename); 
exit (1); 

  

} 
fprint£(fd, "\n"); 
for (index=0; index<data_size; index+=num_channels) { 

for (n=0; n<num channels; n++) { 
/* store data in file in text format */ 
fprintf(fd, "$10£ ", data{index+n]); 

} 
fprintf(fd, "\n"); 

} 
fclose(fd); 

} /* enf if(!cont_mode) */ 

printf ("\n"); 
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return (0); 

B.2 PRBS Generation 

* prbs.c - DW 19/9/97 

* Returns the next binary output in a 32-bit pseudo random 
* binary sequence. The internal state is static so that 

successive calls form the sequence. 

other variables are static to speed-up function calling 
/ 

#include "prbs.h" 

#include <stdlib.h> 
#include <link.h> 

static unsigned long shift_regs = 0x10000000; 

double prbs8() { 
static int fb, s4, s5, s6, s8; 

if (shift_regs & 0x10000000) s4 = 1; 
else s4 = 0; 

if (shift_regs & 0x08000000) s5 1; 
else s5 = 0; 

  

if (shift_regs & 0x04000000) sé = 1; 
else s6 = 07 

if (shift_regs & 0x01000000) s8 = 1; 
else s8 = 0; 

fb = s4 * (s5 * (s6 ~ s8)); 

if ((!s6 6& s8) || (s6 && !s8)) fb = 1; 
else fb = 0; 

if ((!fb && s5) || (fb && !85)) fb = 1; 
else fb = 07 

if ((!fb && s4) || (fb && !s4)) fb = 1; 
else fb = 0; 

shift_regs >>= 1; 

if (fb==1) 
shift_regs |= 080000000; /* set msb */ 

else 
shift_regs &= Ox7EFFFFFF; /* clear msb */ 

if (shift_regs & 0x01000000) * Af tsb == 1. */ 
return(1.0); 

else 
return (-1.0); 

double prbs16() { 
static int fb, s4, s13, s15, s16; 

if (shift_regs & 0x10000000) s4 = 1; 
else s4 = 0; 

if (shift_regs & 0x00080000) s13 
else $13 

  

if (shift_regs & 0x00020000) s15 = 1; 
else s15 0 2 

if (shift_regs & 0x00010000) s16 
else 816 

  

fb = 84 * (313 * (315 * 816))7 

if ((!s15 6& 516) || (s15 && !s16)) fb = 1; 
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else fb = 0 

if ((!fb && s13) || (fb && !s13)) fb = 1; 
else fb = 0; 

if ((!fb s& s4) || (fb && !s4)) fp-= 17 
else fb = 0; 

shift_regs >>= 1; 

if (fb==1) 
shift_regs |= 0x80000000; /* set msb */ 

else 
shift_regs g= Ox7FFFFFFF; /* clear msb */ 

if (shift_regs & 0x00010000) /* if lsb == 1 */ 
return(1.0); 

else 
return(-1.0); 

} 

double prbs32() { 
static int fb, s10, s30, s31, s32; 

if (shift_regs & 0x00400000) s10 = 1; 
else sl10 = 0; 

if (shift_regs & 0x00000004) s30 
else $30 

if (shift_regs s 0x00000002) s31 
else s31 

if (shift_regs & 0x00000001) 32 = 
else s32 = 

fb = s10 * (s30 * (s31 * s32)); 

if ((!s31 && $32) || (s31 && !s32)) fb = 1; 
else fb = 07 

if ((!fb && s30) || (fb && !530)) fb = 1; 
else fb = 0; 

if ((!fb && s10) || (fb && !s10)) fb = 1; 
else fb = 0; 

shift_regs >>= 1; 

if (fb==1) 
shift_regs |= 0x80000000; /* set msb */ 

else 
shift_regs 6= Ox7FFFFFFF; /* clear msb */ 

if (shift_regs & 000000001) /* if lsb == 1 */ 
return (1.0); 

else 
return(-1.0); 

void reset _prbs() { 
shift_regs = 0x10000000; 

  

swpsin.c - DW 19/9/97 

Returns the value of a swept sine wave after t seconds. 
x = sweepsin(rate, £0, £ max, t); 

f0 = start frequency, 

f increases exponentially at 'rate' decades/sec. 

* 

: 
* rate = decades/sec, 
* 
* 0 is returned if £ max is exceeded. 

to compile use : cl30 -v40 -c -s -g -al -mr swpsin.c 
/ 
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#include "swpsin.h" 

#include <stdlib.h> 
#include <link.h> 
#include <math.h> 

#define pi 3.1415926536 

double sweepsin(double rate, double £0, double f_max, double t) { 
double k, angl, freq; 

k = rate * 2.30258509299405; /* k = rate * 1og(10.0); */ 
freq = £0 * pow(10,0, (rate * t)) 
if (freq>f_max) 

return (0.0); /* return 0.0 if fmax exceeded */ 
angl = 2.0 * pi * (£0/k) * exp(k * t); © /* why 2* pi * 222 */ 
return (sin(angl)); 

B.4 Cam Emulation 

/* cam.c - DW 8/10/97 
* 1st load emulation on this rig config 
* - a cam + sprung cam follower. 

*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <link.h> 
#include <math.h> 
#include ". .\ipopext1\ipopex 
#include "..\timerint\timer.h" 
#include "functns.h" 

    
   

#define TRUE 1 
#define FALSE 0 
#define pi 3.1415926536 

int main(int argc, char *argv[]){ 

  

/* define macros & variables etc... */ 
two_ch_ data adc_data 4, adc_data 5 
#define offset4 1 0.0732 /* (volts) to correct for cp4/chl offset */ 
define offset4 2 -0.04 /* (volts) to correct for cp4/ch2 offset */ 
#define offset5 1 -0.2300 /* (volts) to correct for cp5/chl offset */ 
#define offset5 2 -0.001 /* (volts) to correct for cp5/ch2 offset */ 
#define scaled I 0.6377 /* -0.6471 rads/v */ 
#define scale4 2 -625.64 /* xrpm/V */ 
#define scale5_1 5.33 7* Nm/V (200Nm/5V /4) */ 
#define scale5 2 7.7257 /* amps / Volt */ 
#define A 0.2926 /* (rad/s*2)/amp */ 
#define B -0.5093 /* (rad/s*2) /Nm */ 
#idefine ks 1.0 /* spring constant */ 
#define pi 3.1415926536 
#define t 6 /* present + t past values +1 */ 
double ang[t]={0}; 
double vel[t]=(0); 
double torq{t]={0}; 
double current [t]={0)}; 
double accn[t]={0}; 
double error[(t]={0}; 
double i_error{t]=(0}; 
double d_error; 

  

double dem_torg=0.0, peak_torq=0.0, torq_out=0.0, voltage_out=0.0; 
double freq=0.0; /* swept sin frequency */ 
double P, I, D; /* PID controller parameters */ 
double T; /* measured sample rate */ 
char C; /* to weed out text from PID file */ 
FILE *in_file; 
int n; 

  

unsigned long int no_channels, data_size, index=! 
long double cumulative time=0.0; 
double *data; 
char filename [30]; 
FILE ‘out_file; 

/* taylors expansion constants for diffrtn */ 
#define te length 6 /* present + 10 past values */ 
const double pinvte{te_length] = { 

0.14285714285714, 
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6D); 

0.08571428571429, 
0.02857142857143, 

~0.02857142857143, 
-0.08571428571429, 
-0.14285714285714 

Ve 

/* setup the sampling etc... */ 
set_extern trig(4); 
set_extern trig(5); 
ade_data_4 = empty FIFO(4); 
ade_data_5 = empty FIFO(5); 

/* get peak_torq, P, I and D parameters from file "PID" */ 
in_file = fopen("PID", "x"); 
if (in_file == NULL) { 

printf("file 'PID' does not exist\n"); 
exit(1); 

} 
fscanf(in file, "tc tf $c %f %c $f $c #f", &C, &peak_torq, &C, &P, &C, &I, &C, 

printf("peak_torg = %f, P = $f, I = $f, D = $f\n", peak_torq, P, I, D): 
fclose(in_file); 

/* initialize timer for sample rate measurement */ 
initialize timerl(); 

/* allocate memory for data logging */ 
no_channels = 4; 
data_size = no_channels * 100001; /* no_channels * no_lines af 

/* 2 * 10000 => 1 second @ 10KHz */ 
data = (double*)calloc(data_size, sizeof (double) ); 
if (data NULL) { 

printf("not enough DSP memory available for that many lines\n\n"); 
exit (0); 

  

} 

/* initialize data to 0 'cos system doesn't !? */ 
for (index=0; index<data_size; index++){ 

data[index]=0.0; 
} 
index=0; 

xeturn_to_continue(); 

/* start sampling & reset timer */ 
start_sampling(4); 
start_sampling(5); 
reset_timerl(); 

/* control loop bit */ 
while (TRUE) ( 

/* input signals */ 
adc_data 4 = read next_voltages(4); /* chl is angle */ 

/* ch2 is velocity */ 
adc_data_5 = read_next_voltages(5); /* chl is torque */ 

/* ch2 is spare */ 
/* time sampling rate */ 
T = timerl time(); /* T = sample rate (secs) */ 
reset_timerl(); 
cumulative time += T; 

/* scale and allocate signals */ 
ang[t] = (adc_data 4.chl + offset4_1) * scale4 1 

    

vel[t] = (adc_data_4.ch2 + offset4_2) * scaled 2 
torg{[t] = (ade_data_§.chl + offset5_1) * scaled _- 
current[t] = (adc_data_5.ch2 + offsetS 2) * scale5 2; 

/* don't filter angle signal */ 

/* filter velocity signal as necessary */ 
#define bvl 0.29146494465726E-4 /* (b,a] = butter (3,100/5000) */ 
#define bv2 0.87439483397844E-4 
#define bv3 0.87439483396068E-4 
define bv4 0.29146494466281E-4 
#define av2 -2.87435689267748 
#define av3 2.75648319522570 
#define avd -0.88189313059249 
vel(t] = bvl*vel[t]+bv2*vel [t-1]+bv3*vel[t-2] +bv4*vel [t-3 

-av2*vel [t-1]-av3*vel [t-2]-av4*vel [t-3]; 

/* filter torque signal as necessary */ 
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#define btl 0.29146494465726E-4 /* (b,a] = butter (3,100/5000) */ 
#define bt2 0.87439483397844E-4 
#define bt3 0.87439483396068E-4 
#idefine bt4 0.29146494466281E-4 
#define at2 -2.87435689267748 
#define at3 2.75648319522570 
define at4 -0.88189313059249 
torg[t] = btl*torq[t]+bt2*torq[t-1]+bt3*torq[t-2] +bt4*torg[t-3] 

-at2*torg[t-1]-at3*torq[t-2]-at4*torq[t-3]; 

y 

/* don't filter current signal */ 

/* calculate shaft acceleration */ 
accn[t] = A*current[t] + B*torg(t]; 

/* calculate dem_torg for ‘cam + sprung cam follower’ */ 
dem_torg = peak_torg * ks * sin(ang[t]); 

/* calculate error */ 
error[t] = dem_torq - torg[t]; 

/* integrate error (trapezoidal) for I term */ 
i_error[t] = i_error[t-1] + (T/2)*(error(t]+error[t-1]); 

/* differentiate error (finite-divided-difference) for D term */ 
d_error = 0; 
for(n=0; n<=(te_length-1); n++) { 

d_error += error{t-n] * pinvte[n]; 
} 
d_error *= 1.0/7; 

/* control algorithm */ 
torg_out = dem_torq; 
/*torq_out = P¥error[t] + I*i_error{[t] + D*d_error;*/ 
voltage_out = torq out * 1.0; /* 22? 0/P is actually torq demand */ 

/* output the motors torque demand signal */ 
output_voltage(2, 3, voltage_out); 

/* record data for retrieval later */ 
/*data{index] = ang[t]; #/ 
/*datalindex+1] = vel(t]; i 
/*datalindex+2] = torq{t]; +f 
/*datalindex+3] = current[t]; */ 
/*index += no_channels; */ 

/* ripple old variables down the line as required */ 
vel(t-3] = vel[(t-2]; 
vel[{t-2] = vel[(t-1]; 
vel(t-1] = vel[(t]; 

torq[t-3] = torq[t-2]; 
torq[t-2] = torq[t-1]; 
torq{t-1] = torq[t]; 

  

/* current(t-3] = current[t-2]; */ 
/* current (t-2] = current [t-1]; */ 
/* current [t-1] = current[t]; */ 

/* accn(t-3] = acen[t-2 
/* accn(t-2) = acen[t-1 
/* acen(t-1) = accn[t];*/ 

  

error(t-6) = error[t-5]; 
error[t-5] = error[t-4]; 

  

error(t-4] = error[t-3]; 
error[t-3] = error[t-2]; 
error[t-2] = error[t-1]; 

error[t-1] error[t]; 

i_error[t-1] = i_error{[t]; 
} /* end while (end of control loop) */ 

/* stop motors */ 
output _voltage(2, 3, 0.0); 

print£("\a"); /* beep when done */ 
return (0); 
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B.5 Electrical Machine Perturbation 

/* ele_modl.c - DW 5/9/99 
  

* This program perturbs electrical machines similar to the following 
* using the current drive, with a step, impulse or chirp signal. 

  

* cl LL c2 
* ININININ 

* DAC O/P is proportional to plant current I/P and 
* ADC I/P is proportional to plant voltage output. 
* An external ADC/DAC trigger input is used (set to 10kHz). 
* The input and output signals are logged for off-line data analysis 

my 

#include <stdio.h> 
#include <stdlib.h> 
#include <link.h> 
#include—<math.h> 
#include "..\ipopext\ipopext.h” 
#include "..\timer\timer.h" 
#include "..\misc\misc.h” 
#include "..\prtrbtn\swpsin.h” 
#include "..\prtrbtn\prbs.h" 

  

int main(int argc, char *argv[]) { 

#define offset5_1 -0.139 /* (volts) to correct for cp5/chl offset */ 
#define offset5_2 -0.140 /* (volts) to correct for cp5/ch2 offset */ 
#idefine offset4_1 -0.056 /* (volts) to correct for cp4/chl offset */ 
#define offset4 2 -0.056 /* (volts) to correct for cp4/ch2 offset */ 

#define scale5 1 1.0 /* yolts input */ 
#define scaleS 2 1.0 /* spare input */ 
#define scale4 1 1.0 /* spare input */ 
#define scale4 2 1.0 /* spare input */ 

fidefine scale2_3 1.25 /* 2.5 V p/p (1.7 mA/V output ~ 4.25mA p/p) */ 
#define scale2_4 1.0 /* spare output */ 
#define scaled 3 1.0 /* spare output */ 
define scaleO4 1.0 /* spare output */ 

unsigned int num samples; /* 10000 = 1 second at 10kHz sampling */ 
unsigned int num_channels; /* number of data channels to record */ 
unsigned int test_number; /* test to perform */ 

two_ch_data adc data 4, adc _data 5 

unsigned long impulse_length; /* for impulse test */ 

    

double dec_per_sec; /* for sweepsine test - decades per second */ 
double start_freq; /* for sweepsine test - start frequency */ 
double stop fre /* for sweepsine test - stop frequency */ 

double T; /* measured sample rate */ 
unsigned long t=0; /* elapsed time (units 100us) & array indexer 

i 
unsigned long index=0, n; /* array indexer and array index offset */ 

double i_ref=0.0; /* current reference to circuit */ 
double *data; /* pointer to data array */ 
int data_size; 7* length of array */ 

char filename[30]; /* name of the file to save results */ 
char tmpstr[30]; /* for reading parameters from file */ 
FILE *fd; /* input and output file descriptor */ 

/* get parameters from file "params" */ 
fd = fopen("params", "r"); 
if (fd NULL) { 

printf£("file 'params' does not exist\n"); 
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exit(1); 
} 
print£("\n"); 
fscanf(fd, "$d %s ", snum_samples, tmpstr); 

printf ("num_samples = %d\n", num_samples); 
fscanf(fd, "$d $s ", snum channels, tmpstr) 
printf ("num channels = %d\n", num channels); 
fscanf(fd, "éd $s ", stest_number, tmpstr) 

printf ("test_number = $d\n", test_number); 
fscanf(fd, "$d %s ", simpulse length, tmpstr) 
print£("impulse length = $d\n", impulse length); 
fscanf(fd, "&f $s ", &dec_per_sec, tmpstr) 

printf ("dec _per_sec = %.4f\n", dec_per_sec) 
fscanf(fd, "tf $s ", &start_freq, tmpstr) 

printf ("start_freq = %.4f\n", start_freq) 
fscanf(fd, "$f ts ", freq, tmpstr); 

  

  

  

    

   printf ("stop freq = stop_freq); 
fscanf(fd, "Es $s ", filename, tmpstr) ; 

printf ("filename = $s\n", filename) ; 
print£("\n"); 
fclose (fd); 

/* display selected test (perturbation signal) */ 
if ((test_number < 1)||(test_number > 6)) 

printf ("invalid choice of perturbation signal\n\n"); 
return (1); 

printf ("Selected perturbation signal: "); 
if (test_number==1) printf(">"); else printf (" 
printf(""1 = impulse\n 
if (test_number==2) print£("> 
printf(" 2 = step\n 
if (test_number==3) printf(">"); else print£(" 
printf("3 = swept-sine\n 
if (test_number==4) printf ("> 
print£("4 = PRBS\n 
print£("\n"); 

  

; else printf (" 

wy 
    ; else printf (" 

  

/* allocate memory for data logging */ 
data_size = num channels * (num_samples+1); /* no_channels * no lines */ 
data = (double*)calloc(data_size, sizeof (double)); 
if (data == NULL) { 

printf("not enough DSP memory available for recording data\n\n"); 
exit (0); 

} 

/* initialize timer for sample rate measurement */ 
initialize_timerl(); 

/* setup the sampling etc... */ 
stop sampling (4); /* halt sampling via ADC comports */ 
stop_sampling(5); 
timer_wait (200); /* wait for DAC FIFO's to empty */ 
set_extern_trig(4); /* use the external trigger I/P */ 
set_extern_trig(5); 
adc_data_4 = empty FIFO(4); /* clear ADC FIFO's */ 
adc data 5 = empty _FIFO(5); 

reset_prbs(); 

/* initial eee (of input signals) */ 
ade_data_4.chl = 0. /* chi is spare */ 

  

adc data 4.ch2 = 0.0; /* ch2 is spare */ 
ade_data_5.chl = 0.0; /* chi is electrical cct output volts */ 
ade_data_5.ch2 = 0.0; /* ch2 is spare */ 

/*return_to_continue();*/ 

/* start sampling & reset timer */ 
start_sampling(5); 
start_sampling(4); 
reset_timerl(); 

/* calculate and output the perturbation signal (plant input), 
measure the corresponding input (plant output) & store both  */ 

while(t<num_samples) { 

/* calculate current reference for signal-type and time */ 
switch (test_number) { 

case 1: /* impulse - max 0/P for 10 step, then 0 */ 
if (t<impulse_length) 

ilref = 1.0; 
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else 

  

i_ref = 0.0; 
break; 

case 2: /* step - O/P was zero before lst iteration */ 
iref = 1.0; 

break; 
case 3: /* swept-sine, 2 decs/s, start f=10 Hz */ 
i_xef = sweepsin(dec_per_sec, start_freq, stop freq, t*0.0001); 

break; 
case 4: /* swept-sine, 2 decs/s, start f=10 Hz */ 
i_ref = prbs16(); 

break; 
/* the next two tests are for software development only */ 
case 5: /* test to determine the TPS board latency */ 

if (t>10) 
i_ref = 1.0; 

if (t>15) 
i_ref = 0.0; 

if (t>20) { 
if ( (t82) 0) 

i_ref = 1.0; 
else 

i_ref = 0.0; 
} 
if (t>30) 

i_ref = 0.0; 
break; 

case 6: /* continuous square wave, £ = sample / 2 */ 
if ((t82) != 0) 

i_ref = 1.0; 
else   

} 

  

_ref = 0.0; 

/* this makes the sqr wave O/P continuous */ 

/* scale and output the 'current' demand signal, and spares */ 
output_voltage(2, 3, (-i_ref * scale2_3) ); /* fed into inverting amp */ 
output_voltage(2, 4, 0.0); 
output_voltage(0, 3, 0.0); 
output_voltage(0, 4, 0.0); 

/* input signals and remove offsets */ 
adc_data_5 = read_next_voltages(5); /* chl is voltage */ 

/* ch2 is spare */ 
adc_data_4 = read_next_voltages(4); /* chl is spare */ 

i ch2 is spare */ 

/* time sampling rate */ 
T = timerl_time(); /* T = sample rate */ 
reset_timerl(); 

/* scale and store signals */ 
data[index+0] = i_ref * scale2_3; 
data(index+1) (adc_data_5.chI + offset5 1) * scale5_1; 

index += num channels; 

t++; /* increment elapsed time, assuming fs = 10kHz */ 

} /* end while (end of experiment) */ 

/* output nothing 
output _voltage(2, 
output_voltage (2, 
output_voltage(0, 
output_voltage (0, 

a 
3, 
4, 
3, 
4, e

c
c
o
 

2
0
0
0
 ) 

) 
) 
1) 

/* advance ADC values one sample since the inputs are deleyed 
by one sample due to a TPS DSP board ‘peculiarity’ */ 

for (index=0; index<data_size; index+=num_channels) { 
data[index+1] = data{index+3]7 

} 
data_size -= num_channels; 

printf("test complete, writing to file...\n"); 

/* write data to a file on PC */ 
/*get_file_name (filename) ;*/ 
fd = fopen(filename, w") 7 
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for (index=0; index<data_size; index+=num_channels) { 
for (n=0; n<num channels; nt++) { 

fprintf(fd, "$10£ ", data{indextn]); /* store data on file */ 
} 
fprint£(fd, "\n"); 

} 

fclose (fd); 
printf ("\n\a"); /* beep when done */ 
return (0); 
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Appendix C Test-Rig Mechanical Hardware 

This appendix provides practical design details of the test-rig. 

C.1 Hardware Procured 
  

  

  

  

  

  

Equipment Manufacturer | Model No. Spec 

Shaft Encoder Honher 88 20362D 2048 line hollow 

Torque-Transducer | Vibro-meter | TM212 200Nm 

Tacho-Generator Minimotor 1624 T 1,4 G9 1.4mV/rpm 

Servo Drives Norwin 1770 20/40 A max / peak             

C.2 Test-Rig Mechanical Design Drawings 

C.2.1 Motors Bracket for Spur Gear Gearbox 

  

    

  

  

  
  

  

                

ames orem, mouse came [Rave DW DONOTSORLE AL OMEHTDNY Bm 
coe “ [pae 12/96 |e oa 
nt bee OTHE Ee ATED. a ca 4:3 [ouecnm: Motors, Bracket & Spur A 

one Gear Box side view     
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i ge 
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C.2.2 Spur Gear Gearbox 

  

Item No. | Part Description Drwg No | Qty Reqd | Source 
  

Items built at Aston: 
  
  

  

  

  

  

  

  

  

  

  

  

  

1 Gearbox Faces - oleae 2 Aston 

2 Gearbox Base : i 2 1 Aston 
oo. , ~ eye 

Gearbox Output Shaft Soin (lolly 1 Aston 

(Input Shaft) Bearings os a 8 | NACHI (P/N 6201ZZ) | 

utput Shaft) Bearings laa iene: NACHI (P/N 6904ZZ) 
  

1 | HPC (PIN G1-103/T) 

  

  

    

8 HPC (P/N G1-43/T) 

8 | HPC (P/N PG1-43/T)             “| Planet Gears 
  

      
  

  

  

            11 | Spacers . Sa 10 

“12 | Hard Steel Shaft 015 (I/P) = Im+#? 

“13 | Hard Steel Shaft 20 (I/P) fe 200mm+? 
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C.2.4 Bevel Gear Gearbox 
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C.2.5 Referred Inertia Calculations 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

     
  

  

  

  

  

  

  

  

  

  

  

  

              

Gearbox: Spur (Mid)_| Spur (Mid) [Spur (Mik-b)] Bevel (Mik 
Material |Steel 1.0MOD_|Tufno! 1.0 MOD |Stee! 1.0 MOD 

density of gear material kgm*<3)___[D 7.70E+03| —_1.36E+03 7.70€+03| 
lapproximatly: 

planet gears-@ of gear(pcd-m)___|d 4306-02] 4.306-02 1,80E-02] 
planet gears - width of gear (m) h 1.606-02|1.606-02 7,00E-03} 
planet gears - @ of boss (m) id 2,00E-02| _2.00E-02| 1,50E-02| 
planet gears - width of boss (m) h 1,20-02|_1.206-02| 9006-03] 

lvolume of planet gear (mag) 232605] 2.326-05| 1:78E-06] 
lvolume of pianet boss (m*3 3.76-06| __3.776-06] 1596-06] 

mass of planet gear (kg 1796-01! 3.16E-02| 1.37E-0 
mass of planet boss (kg) 2906-02] 5.136-03| 1.22-02| 

inertia of planet gear (kam*2) = J=(m* dA) 78 4146-05] __7.30E-06 5.56E-07| 
inertia of planet boss (kgm%2) = d= (m*dA2)/8 1456-06] __2.56E-07 3,4d6-07| 
total inertia of planet gear (kqm*2)=_|J_planet = J_gear+ J boss 4.28E-05| __7.566-06| _7.56E-06|_9.00€-07| 

centre gear-Botgear(ecd-m)__ a 1.036-01| __1.036-01 A50E-02| 
centre gear - width (m) ih 1,606-02| 1.60602] 6,006.03] 
centre gear- B of boss (in) id 4.50E-02| 4.50€-02| 2.50E-02] 
[centre gear - width of boss (mi) Ih 1.00-02| 1.00€-02] 1,00E-09] 

[volume of centre gear (m*3) Vep* diana 1.336-04| —_1.336-04] 9.546-06] 
lvolume of centre boss (m3) = V=p*(d/2yro"h 1.59E-05| _1.596-05 ANNES 

mass of centre gear (kg) =D 1036400] 7.B1E01 7.35E-02] 
[mass of centre boss (kg) =D 1.226-01| _2.166-02/ 3.78E-02] 

inertia of centre gear (kqm*2) = d= (m= 4278 1.36E-03| _ 2,406-04) 1,86E-05| 
inertia of centre boss (kgm*2) IS=(m* dD) /8 B.10E-05| _§.486-06) 2.98E-06] 
total inertia of centre gear (kgm*2) = |J_center = J gear + J_boss 1,396-03| 2.46E-04|1.39E-03| 2. 16€-05] 

[gear ratio (a:1) 2.396+00| 2.39E+00|__2.39E+00| 2.39600] 
number of motors ‘4.00E+00| 4.006400] 4.00&+00| 4.0009] 
Imotor inertia (kam’2) 7.10E-06|7.106-06| _7.10E-06) _7.10€-06] 

referred ineria of g/box per motor (kgmJ_pianet + J_centre/(n*2num_motors) 1046-04] 1.836-05| _6.86E-05| 1. 856-04] 

inertia of the torque transducer (TM27 A26E-04| —A26E-04|—4:26E04) 4, 26E-04I 

referred inertia of ig at I/P shaft (kgm*Z@_motor+J_planefyinum_motors'n’2 + 
Jicentre + J torque trans) 2.96E-03| T.01E-03| 2.15603) 6. 30-04]     
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Appendix D Example Machine Design Drawings 

D.1 Slider Crank Mechanism 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

Part | Drwg | Part Description Qty | Source 

No. No Reqd 

1 i End Shaft 2. Aston 

ie 2 1 | Middle Shaft 1 | Aston 
Lee 5 ec cog en 

[ie 4 3 | Crankshaft Journal 2 [Aston 

- “4 Connecting Rod 2 | Aston rs 
Het gobs brag Re pe 

oe 7 - | Big End Bearing 2 | NACHI (P/N 6802 ZZ) 

es - | Little End Bearing 2 |HPC (P/N QM 9-5) 

9 : ; 4 |HPC(P/NKB 12) 

10 - | Gudgeon Pin ~ 2 | HPC (P/N DH 5-12 -Box of 10) 

“Ti -  |SpringPin 8 | HPC (P/N SAP 5-45 -Box of 10) 

“12 - | Main Bearing 5 | NACHI (P/N UCP 204) 
a ce gon ee Mi ita 

6 | Linear Bearing Support Gal Acton 

15 | 7 |BasePlate 1 | Aston             
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D.2 Four Bar Mechanism 

Part Drwg | Part Description Qty | Source 

No. No. Reqd 

iE 1 Shaft 2 Aston 

z Zz Rotating Arms 2 Aston 

3 oe Bolt M5 2 2 Perriam 

ee - Washer M5 seo 4 Perriam 

5 - | Nyloc Nut M5 2 |Perriam 

es 6 “6 | Middle Link 1 | Aston 

7 7 Driven Bars 2 | Aston 

8 8 Spacer 1 Aston a 

Es 92 Bolt M12 1 |Perriam 

10 - | Nyloc Nut M12 1 | Perriam 

it - | Main Bearing 4 | NACHI (P/N UCP 204) 

Z - | Pivot Bearing 2 |NACHI (P/N UCP 201) 

13 13 [Main Bearing Support 4 Aston 

j - Spring Pin 02mm az Perriam               
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Sprin Aston 

Base Plate 1 | Aston 

oe Machine Screws M? x ? “2 | Perriam cy 

7 Machine Screws M10x40| 8 | Perriam 

“i Machine Screws M10x 25] 4 ‘| Perriam oe 

Cap Screws MB x 30 14” |Perriam — 
Bea i wen         
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TOLERANCE (MATERIAL, PROJECTION | onicina: | DRAWN: DW? DONOTSCALE ALL DIMENTIONS INmr 
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UNLESS OTHREWISE STATED. DATE: Arms 2     
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TOLERANCE MATERIAL PARQUEGTION | oniGina, |[DRAWN: Z¢/ DONOTSCALE ALL DIMENTIONS IN mm 

DIMENSIONAL £02 i EE DATE: 2/ ¢/96 | TITLE: ba 
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UNLESS OTHREWISE STATED. ea Seale [Dare Driven Bars (2off) 7       
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endix E Electrical / Electronic Interfacing Circuit Diagrams A 

This appendix contains the circuit diagrams referred to in chapter 7. Below is a diagram 

showing the overall connection of the individual electrical / electronic parts. 

 
 

  

 
 

 
 

  
 
 

  
 
 

 
 

 
 

 
 

 
 

  

 
 

 
 

  

  
  

  
    

  
 
 

 
 

 
  
 

 
 

 
 

  
  

 
 

  
  
 
 

  
  

 
 

  
 
 

 
 

 
 

 
 

  
   
 

  
  

 
 

  
  

        
 
 

    

 
 

  
 
 

  
          

  
 
 

—
—
—
_
»
 > 

vex 
O
d
/
d
s
d
 

a
e
 

ne 
g 

Nivo 

f 
s+ 

O 
© 

+ 
© 

© 

s- 
@ 

© 

s+ 
© 

© 
he 

dN 
+
N
S
d
 

&
 

2
 

x
 

OQ 
o
 

13s3u 
@ 

re} 
peoyeno 

a
 
=]-9 

eee 
=
 

S
S
 

oo 
00 

wren 
‘soe 

eyu 
Jeonpsued) 

enbsoy 
‘s0eJe}u} 

Jepooue-yeys 
inexig 

uoRoaiesg 
S010 

S
a
 

ae 
ate 

x 
x 

E
y
 

xog/9 
v 

—
o
—
 

ic 
SJO}O 

soAug 

Jaonpsuel, 
dapooug 

= 
i 

anbiol 
y
e
u
s
 

ov 
A 

Ove 
J
O
W
J
O
J
S
U
L
 | 

Jamo 
—
_
_
 

fe 
e
e
 

aseud-¢ 
aseyd-¢ 

OV 
A
G
L
Y
 

316



ly and Drives Interface Power Su E.1 Electronic Interfacin: 
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E.2 Motors Protection Circuit 
  

E .2.1 Current, Over-Voltage and Imbalance Detection 

  

Drive A- 

Drive B+ 

Drive B- 
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E.2.2 Motors Temperature Estimation 
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E.2.3 Logic Control 
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E.2.4 Control PLD code 

Title Motors Protection 
Pattern PDS 
Revision 1.0 
Author David Wells 
Company Aston University 

Date 30/4/96 

OPTIONS TURBO = OFF 
SECURITY = OFF 

CHIP MOTPROT 2210 

;Pin Declarations 

inputs 
i PIN 1 SPARE_IP_1 
: PIN 2 SPARE_IP_2 
? PIN 3 SPARE_IP_3 

PIN 4 BAL_A_IP 
PIN 5 BAL_B_IP 
PIN é RESET 
PIN 7 EMERSTOP 
PIN 8 PWRUPTRP 
PIN 9 BLOWER 
PIN 10 12TB_BON 
PIN ql 12TA_BON 

;outputs 
PIN 13 I2TA_BOFF 
PIN 14 I2TB_BOFF 
PIN 15 DRV_EN 
PIN 16 BAL_B 
PIN 17 BAL_A 

PIN 18 I12TB 
PIN 19 127A 
PIN 20 TRIP 
PIN 21 BLOWER_OP 
PIN 22 SPARE_OP_1 
PIN 23 SPARE_OP_2 

EQUATIONS 

BLOWER_OP = BLOWER 

I2TA = ((I2TA_BOFF * /BLOWER) 
RESET * PWRUPTRP 

I2TB = ((I2TB_BOFF * /BLOWER) 
RESET * PWRUPTRP 

BAL_A = (/BAL_A_IP + BAL_A) * 

BAL_B = (/BAL_B_IP + BAL_B) * 

TRIP = (/PWRUPTRP + I2TA + 12' 

DRV_EN = /TRIP 

SPARE_OP_1 = GND 
SPARE_OP_2 = GND 

SIMULATION 

SETF BAL_A_IP BAL_B IP 
SETF /12TA_BOFF /I2TB_BOFF /12 
SETF RESET /BLOWER PWRUPTRP 

CLOCKF PWRUPTRP 

CLOCKF RESET 

FOR n 
BEGIN 

CLOCKF BAL_A_IP 
CLOCKF RESET 

1 TO 2 DO 

  

CLOCKF BAL_B_IP 
CLOCKF RESET 

CLOCKF I2TA_BOFF 

Circuit Logic 

;Balance trip A 
alance trip B 

#Reset switch I/P (0=RESET 
#Not used 

7Power-up trip (0=TRIP) 
Blower ON I/P (0=ON, 1=OFF 
71°2*t trip A, blowers off 
71*2*t trip A, blowers off 

  

   

71*2*t trip A, blowers on 
71°2*t trip A, blowers on 
Drive enable relay 
70/P latch & led 
70/P latch & led 
70/P latch & led 
70/P latch & led 
#0/P latch & led 
70/P latch & led 

+ (I2TA_BON * BLOWER) + I2TA) * 

+ (I12TB_BON * BLOWER) + I2TB) * 

RESET * PWRUPTRP 

RESET * PWRUPTRP 

TB + BALA + BAL_B + TRIP) * RESET 

TA_BON /I2TB_BON 
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CLOCKF RESET 

CLOCKF I2TB_BOFF 
CLOCKF RESET 

CLOCKF I2TA_BON 
CLOCKF RESET 

CLOCKF I2TB_BON 
CLOCKF RESET 

SETF BLOWER 
END 

yend simulation 

E 

  

.1 Control PLD code simulation 
  

    

    

Vector o    
   
Bat_A_IP 

    

    

   

  

   

    

   

See 
12TA_BON 
tere 
I2TB_E 

DRU_EN _ 
BAL_B 
BALA 
12TB 
12Ta 
TRIP 
BL     MOTPROT -HST <Ese> to Exit       
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E.3 Torque Transducer Interface 
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E.4 Shaft Encoder Interface 
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E.4.1 Shaft Encoder Interface PLD Code ~“CNTRIF” 
  

Title 

Pattern 
Revision 
Author 
Company 
Date 

Enc 
PDs 
6.0 
Dav: 
Ast 
w/t 

oder_Interface 

id Wells 
on University 
0/96 

;This design takes A & B pulses from an 'n' line per revolution encoder and 
outputs /UP and /DOWN signals to a counter to count '4n' lines per revolution. 
Also includes timing signal generation for the D/A convertor and digital 
;filtering of the input signals - see lab book 

CHIP ENC! 

;Pin Declarations 

inputs 
PIN 1 
PIN 8 
PIN 9 

PIN 1 

PIN 1 

;outputs 
PIN 23 

PIN 22 

PIN 20 
PIN 39 

PIN 18 
PIN 17 
PIN 16 

PIN 15 
PIN 14 

STATE MOORE_MACHINE 

DEFAULT_BRANCH 

ystate assignments 

so 
$1 
s2 
s3 
34 
ss 
86 
s7 
SB 
so 
$10 
sll 
$12 
$13 
$14 
s15 o

o
u
e
n
e
 

oe
 

ee
e 

193 
193 
193 
103 
/93 
193 
193 

192 
/02 
792 
/02 
Q2 
Q2 
2 
Q2 

/Q2 
192 
192 
792 
2 
Q2 
2 
Q2 

¢state transitions 

  

sO := 
+ 
+ 
+ 

S2 = 
- 
+ 
+ 

S3 

s4 i= 

  

UA 
(/B 
CA 
CA 

(/B 
a 

B) 
73) 
B) 

7B) 
B 

DR_IF  22V10 

CLK clock for state machine and mealy variable (DIR. 
A from encoder 
B from encoder 
I from encoder (not used in this design 
RST ;power-up reset I/P 

WR ¢write O/P to D/A 

RST_O2 #RST O/P to 2nd counter 
93 state variable 
Q2 state variable 

Qn ;state variable 
Qo state variable 
CNTR_CLK #mealy machine O/P, counter clock 

DIR jmealy machine 0/P, direction of count (0=down, 1=up 
RST_O1 #RST O/P to 1st counter 

HOLD_STATE 

* /Q1 * /Q0 ;0000 - powerup state 
* /Q1 * QO 70001 
* gi * /90 70010 
* Q1* Qo 70011 
* /Ql * /90 70100 
* /Q1 * QO 70101 
+ Qi * /Q0 70110 
* QL * QO 70111 
* /Q1 * /90 71000 
* /O1 * 00 71001 
* Ql * /Q0 71010 
* QL * 0b 21011 
* /Q1 * /Q0 71100 
* /Q1* QO 71101 
* Ql * /Q0 71110 
* Ql OO silil 

-> 80 
-> 81 
-> $8 
-> $1 

=> 82 

=> $14 
-> 82 
> $3 
-> $3 

=> 55 
-> $12 
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+h 
+ (A 

$5 := vec 

S6 := (/A 
+ (/A 
+ (A 
+ (A 

87 := vec 

SB r= (/A 
+ (/A 

8 
+ (A 

s9 := vec 

$10 := (/A 
+ (/B 
+ (A 
+ (A 

sll := vec 

$12 := (/A 
+ (/A 
+ (A 
+ (A 

$13 := vcc 

$14 := (/A 
+ (/A 
+ (A 
+ (A 

$15 := vec 

EQUATIONS 

Q0.CLKF = 
Q1.CLKF = 
Q2.CLKF = 
Q3.CLKF = 

QO.RSTF = 
Q1.RSTF = 
Q2.RSTF = 
Q3.RSTF = 

WR.D := /CNTR_CLK 
WR.CLKE 
WR.RSTF 

DIR = Q3 
CNTR_CLK = QO 

  

* /B) => 85: 
+ 5) -> s4 

-> $6 

*) (By ==> S$? 
* °B) => 87 
* /B) -> Sé 
* 8) == S10 

-> So 

* /B) -> 88 
+B) => sd 
SB ee 9 
* 8) => 89 

-> $10 

#1 (Bd) <2 S86 
* 8) => Sil 
* /B) -> S10 
* B) -> S11 

=> $12 

* 7B) -> $13 
* B) -> 813 
* /B) -> 84 
% B) => S12 

-> $14 

* /B) -> $15 
* B) => sl4 
* /5) => 815 
* B) -> 82 

-> SB 

CLK ;state machine clock 
CER 7 
CLK 3 
CLK ; 

RST ;resets 
Ret 7 
RST if 
RST; 

+/WR signal same as CNTRCLK, but delayed 
CLK 
RST 

RST_O1 = RST 

RST_02 = 

SIMULATION 

VECTOR status 

RST 

:= [Q3, 
SETF /A /B /CLK /RST 
PRLDF /Q3 /Q2 /Q1 /Q0 

CLOCKF RST 

FOR j:=0 TO 3 DO 
BEGIN 

CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
jtoggle A 
IF (A = vec) 

Q2, Ql, QO) 

THEN 
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BEGIN 
SETF /A 

END 
ELSE 

BEGIN 
SETF A 

END 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
toggle B 
IF (B = VCC) THEN 

BEGIN 
SETF /B 

END 
ELSE 

BEGIN 
SETF B 

END 
END 

FOR j:=0 TO 3 DO 
BEGIN 

CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
jtoggle B 
IF (B = VCC) THEN 

BEGIN 
SETF /B 

END 
ELSE 

BEGIN 
SETF B 

END 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 
itoggle A 
IF (A = VCC) THEN 

BEGIN 
SETF /A 

END 
ELSE 

BEGIN 
SETF A 

END 
END 

end simulation 
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E.4.2 Shaft Encoder Interface PLD Code —“MOD64” and “MOD128” 

The file below is “MOD64”. This is a modulo-64 binary up-down counter written to 

compile for a 22V10 programmable logic device. The state assignments and state 

transitions were created by C-code which is quicker than typing it by hand. “MOD128” 

is the same type of counter, the only difference being the number of states (128) and 

state variables (7). Because of its large size and similarity to “MOD64”, it has not been 

included in this text. 

Title modulo 64 up-down counter with wrap-around 
Pattern PDS 
Revision 1.0 
Author David Wells 
Company Aston University 
Date 1/10/96 

CHIP MOD_64 22v10 

#Pin Declarations 

inputs 
PIN 1 CLK #clock input 

PIN 2 DIR #count UP or /DOWN 
PIN 3 RST jclear input 

soutputs 
PIN 23 CLK_O borrow output 

PIN 22 DIR_O ;carry output 
PIN 20 QF ;counter 0/P msb 
PIN 19 QE ;counter 0/P 
PIN 18 QD scounter 0/P 
PIN 17 Qc ;counter 0/P 
PIN 16 QB ;counter O/P 

PIN a5) QA #counter 0/P 

STATE MOORE_MACHINE 

DEFAULT_BRANCH HOLD_STATE 

¢state assignments 

sO = /QF * /QE * /QD * /Qc * /QB * /QA 000000 
S1 = /QF * /QB * /QD * /QC * /QB* QA 7000001 
S82. = /QF * /QE * /QD * /QC * QB * /QA ;000010 
$3 = /OF * /QE* /QD * /QC * QB * QA ;000011 
$4 = /QF * /QE * /QD * QC * /QB * /QA 000100 
s5 = /QOF * /QE * /QD * QC * /QB* QA ;000101 
86 = /QF * /QB * /QD* QC * OB * /QA 7000110 
87 = /OF * /QE* /QD* QC * OB * QA ;000111 
s8 = /QF * /QE* gp +* /Qc * /QB * /QA ;001000 
89 = /QF * /QE* QD * /oC * /QB* QA 7001001 
$10 = /OF * /QE* QD * /QC * OB * /QA ;001010 
S11 = /QF * /Q9E* QD * /QC * OB* QA ;001011 
$12 = /QF * /Q9E* QD * QC * /QB * /QA ;001100 
S13 = /OF * /QE* QD * QC * /QB* QA ;001101 
$14 = /OF * /OE* QD* QC * OB * /QA ;001110 
$15 = /OF * /QB* QD* QC * QB* QA ;001111 
s16 = /QF * QE * /QD * /oc * /QB * /QA ;010000 
$17 = /QF * QE * /QD * /oc * /OB * QA ;010001 
818 = /QOF * QE * /gD* /oc * QB * /QA ;010010 
S19 = /QF * QE * /oD * /OC * QB * OA ;010011 
$20 = /QF * QE * /QD * QC * /QB * /QA ;010100 
821 = /QF* QE * /QD* QC * /QB* QA ;010101 
$22 = /OF* QE * /QD* QC * QB * /QA ;010110 
823 = /QF* QE * /QD* QC * QB* QA ;010111 
824 = /OF * QE * QD +* /QC * /QB * /QA ;011000 
825 = /OF * QE * QD +* /oc * /QB* QA ;011001 
S26 = /QOF* QE * QD * /QC * QB * /QA ;011010 
$27 = /QOF * QE * QD * /QC * QB* QA ;011011 
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S28 = /QF * QE * 
$29 = /QF * QE* 
$30 = /QF * QE * 
$31 = /QF * QE * 
832 = QF * /QE + 
$33 = QF * /QB * 
$34 = QF * /QE* 
S35 = QF * /QE* 
$36 = QF * /QE * 
$37 = QF * /QE * 
$38 = QF * /QE * 
S39 = QF * /QE * 
S40 = QF * /QE * 
Sal, = or 705 * 
S42 = QF * /QE * 
$43 = OF * /QE * 
$44 = QF * /QE * 
s45 = QF * /QE * 
S46 = QF * /QE * 
S47 = QF * /QE * 
$48 = OF * QE * 
649) = /0F + on * 
$50 = OF * Ge 
$51 = OF * QE * 
s52 = OF * QE* 
S53 = QF * QE * 
$54 = QF * OE * 
855 = QF * QE * 
856 = OF * QE * 
857 = QF * QE + 
858 = OF * OE * 
859 = QF * OF * 
S860 = OF * QE * 
S61 = QF * QE* 
s62 = QF * QE + 
S63 = OF * OE * 

#state transitions 

      

sO := ( DIR) 
+ (/DIR) 

$1 = ( DIR) 
+ (/DIR) 

s2 t= ( DIR) 

+ (/DIR) 
$3 ( DIR) 

+ (/DIR) 

84 := ( DIR) 
+ (/DIR) 

$5 = ( DIR) 
+ (/DIR) 

S6 = ( DIR) 
+ (/DIR: 

$7 = ( DIR) 
+ (/DIR) 

88 = ( DIR) 
+ (/DIR 

S89 = ( DIR) 
+ (/DIR) 

$10 := ( DIR) 
+ (/DIR) 

$11 := ( DIR) 
+ (/DIR) 

$12 := ( DIR) 
+ (/DIR) 

$13 := ( DIR) 
+ (/DIR) 

s14 ( DIR) 
+ (/DIR) 

$15 = ( DIR) 
+ (/DIR) 

$16 := ( DIR) 
+ (/DIR) 

$17 := ( DIR) 
+ (/DIR) 

$18 := ( DIR) 

+ (/DIR 
$19 := ( DIR) 

+ (/DIR 
$20 := ( DIR) 

+ (/DIR) 

P
E
E
R
 

E 
E
E
E
 

S
E
P
 
E
e
 

H
E
E
 

R 
E
E
E
 
E
E
R
E
 

2 2 

;countin 
;countin 
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7011100 
7011101 
7011110 
70211111 
7100000 
7100001 
#100010 
#100011 
7100100 
7100101 
#100110 
7100111 
7101000 
#101001 
7101010 
#101011 
7101100 
#101101 
#101110 
#101111 
7110000 
7110001 

7111110 
#111111 

g up, next state = Sl 
g down, next state = $255



821 

$22 

823 

824 

825 

$26 

$27 

s28 

829 

830 

s31 

$32 

833 

$34 

835 

S36 

837 

838 

$39 

840 

841 

$42 

$43 

844 

845 

S46 

847 

S48 

$49 

$50 

ssl 

$52 

$53 

$54 

$55 

S56 

$57 

S58 

sso 

$60 

S61 

= 

i 

= 

ie 

- 

+ 

+ 

+ 

. 

  

t
i
t
e
 

  

- 

+ 

+ 

+ 

+ 

  

* 

+ 

+ 

  

+
e
e
d
 
e
e
e
 
T
e
 

+ 

  

ie 

+ 

+ 

+ 

+ 

  

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

  

+
+
 

( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
(DIR) 
(/DIR) 
( DIR) 
(/DIR) 
(DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
( DIR) 
(/DIR) 
(DIR) 
(/DIR) 

S22 
$20 
$23 
s21 
S24 
S22 
$25 
823 
826 
824 
827 
s25 
$28 
S26 
$29 
$27 
$30 
$28 
$31 
$29 
$32 
$30 
$33 
$31 
834 
$32 
$35 
$33 
536 
$34 
$37 
$35 
$38 
$36 
$39 
837 
840 
$38 
$41 
$39 
842 
840 
$43 
841 
844 
842 
845 
$43 
S846 
844 
S47 
$45 
848 
S46 
$49 
847 
$50 
$48 
$51 
849 
$52 
$50 
$53 
851 
854 
$52 
s55 
$53 
S56 
$54 
S57 
855 
$58 
856 
$59 
S57 
S60 
s58 
sél 
$59 
862 
S60 
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$62 = ( DI 
+ (/DI 

$63 := ( DI 
+ (/DE 

EQUATIONS 

CLK_O = /OF 

DIR_O = DIR 

QA.CLKF = CLK 
QB.CLKF = CLK 
QC.CLKF = CLK 
QD.CLKF = CLK 
QE.CLKF = CLK 
QF.CLKF = CLK 

QA.RSTF = RST 
QB.RSTF = RST 
QC.RSTF = RST 
QD.RSTF = RST 
QE.RSTF = RST 
QF.RSTF = RST 

SIMULATION 

VECTOR status 
SETF /RST /CLK 

CLOCKF RST 

  

SETF /DIR 

FOR j:=0 TO 6 
BEGIN 

cLock 
END 

zend simulation 

=> 
=> 
=> 
=> 

R) 
R) 
R) 
R) 

gnext 

  

DIR 

DO. 

CLK 

7 DO 

F CLK 

(QF, 

S63 
s61 
so 
S62 

counter active on rising edge 

QE, QD, QC, QB, QA] 

#count up 

#set to count down 

#count down 

331 

;to see counter in hex 
#set to count up



E.4.3 Shaft Encoder Interface PLD Code 

  

OD64” and “MOD128” 
  

Title 
Patter 
Revisi 
Author 
Compan: 
Date 

CHIP 

n 
on 

YY 

Direction-toggle V-F inhibitor 
PDS 

2 
David Wells 
Aston University 
2/9/98 

FV_Inhibit 22V10 

#When a stationary shaft is at a transition boundary the position will be 
observed to be oscillating between adjacent 

  

his design inhibits the F->V converter input from CNTRIF for seven state~changes 
after a change of shaft direction. 

#Pin Declarations 

-CLKI 
- CLE 
- CLK! 
-CLKI 

o
s
w
n
e
 

22 
21 
20 
19 

17 
16 
15 
14 

Q B a 
By
 
Fh
 

Fa 

;inputs 
PIN 

PIN 
PIN 
PIN 

PIN 

outputs 
PIN 
PIN 

PIN 

PIN 
PIN 
PIN 

PIN 

PIN 
PIN 

PIN 

EQUATIONS 

DO 

D1 
D2 

D3 

ba. 
DS. 

D6. 

DO. 

Dl. 

D2. 
D3. 

D4. 

DS. 
Dé. 

bo. 

D1. 
D2. 
D3. 

D4. 
DS. 
Dé. 

  

CLK 
SPARE1 
CLK_EDGE 71 for +ve edge, 0 for -ve edge 
DIR 
CNTR_CLK 

NEW_CLK 
DO 

D1 

DIR_STBL 

CLK 
CLK 
CLE 
CLK 
CLK 
CLK 
CLK 

GND 
GND 
GND 
GND 
GND 
GND 
GND 

GND 
GND 
GND 
GND 
GND 
GND 
GND 

NEW_CLK = CLK * /CLK_EDGE + /CLK * CLK_EDGE 

DIR_STBL = (( DIR* DO * D1 * D2* D3 * D4 * DS * Dé) 
+ (/DIR * /DO * /D1 * /D2* /D3 * /D4 * /DS5 * /D6)) 

TO_V_F = DIR STBL * CNTR_CLK 

7 end of design 

aoe



SIMULATION 

#simulate an oscillation on a near stationary shaft in one quadrant 
;(see state graph appendix E. 
7 $0 -> S8 -> $9 -> S10 -> S6 -> S7 

SETF /CLK 
SETF /CNTR_CLK /DIR 780 
CLOCKF CLK sput shift regiseters into a known state 
CLOCKF CLK 
CLOCKF CLK 
SETF /CNTR_CLK DIR 788 
CLOCKF CLK 
SETF CNTRCLK DIR 789 
CLOCKF CLK 
SETF /CNTR_CLK DIR 7810 
CLOCKF CLK 
SETF /CNTR_CLK /DIR 786 
CLOCKF CLK 
SETF CNTR_CLK /DIR #87 
CLOCKF CLK 
SETF /CNTR_CLK /DIR 780 
CLOCKF CLK 

#normal clockwise rotation 
SETF CNTR_CLK /DIR 781 
CLOCKF CLK 
SETF /CNTR_CLK /DIR 782 
CLOCKF CLK 
SETF CNTR_CLK /DIR #83 
CLOCKF CLK 
SETF /CNTR_CLK /DIR 784 
CLOCKF CLK 
SETF CNTR_CLK /DIR 785 
CLOCKF CLK 
SETF /CNTR_CLK /DIR 786 
CLOCKF CLK 
SETF CNTR_CLK /DIR 387 
CLOCKF CLK 
SETF /CNTR_CLK /DIR #80 
CLOCKF CLK 

;end simulation 
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