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SUMMARY 

The principal aim of this project is to qualitatively and quantitatively evaluate satellite 
imagery for the mapping of unimproved semi-natural chalk grassland in lowland Britain and 
to develop a methodology that permits the classification of chalk grassland. 

The rationale behind the project is to provide various governmental and independent 
agencies with an operational information system capable of creating quickly and 
inexpensively natural resource maps, specifically chalk semi-natural grassland maps, as an 
aid to environmental, and ecological planning and for monitoring change. Within the study 
areas, major land cover classifications were evaluated with the assistance of ground data and 
existing topographical maps. 

The use of temporal and spatial features for classification of the multisensor data sets were 
investigated and the spectral characteristics of different chalk grassland types analysed. 

Detailed chalk grass sub-community categories, as defined by English Nature (EN) for the 
Salisbury Plain Range, were poorly represented by the spectral classes. However, broader 
groupings interactively chosen with ecological significance were mapped successfully with 
TM and SPOT. Off the main range areas isolated Special Sites of Scientific Interest (SSSI) 
‘status’ chalk grass fields were also successfully mapped using July TM data. SSSI 
classification using a earlier spring TM image was moderately successful and a June SPOT 
scene produced results which were of limited value. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Introduction 

Grassland is a widespread vegetation type of great economic value and ecological interest. 

It’s importance to man is well known; as an exploitable crop for both man and his domestic 

animals, in the provision of stability to the ground surface, for many amenity and 

ornamental applications and as an integral part of an attractive landscape. 

Whilst the total amount of grassland in the UK has recently slightly decreased, as shown by 

the 1947-1980 Department of the Environment and Countryside Commission survey 

(Huntings, 1986), dramatic changes have taken place in the specific types of grassland 

which now exist. These changes reveal losses of semi-natural grassland and gains in 

agriculturally improved pasture. Historically, much of the lowland areas of Britain were kept 

as permanent pasture. Where this permanent pasture corresponded with underlying chalk 

bed-rock, these areas were termed ‘chalk downland’; and were found to be of considerable 

biological richness (Duffey et al., 1974). Over the past four decades much of the permanent 

pasture has been ploughed and converted to arable crops. Even where it has been retained as 

grassland there has often been fertilizing and re-seeding, which completely changes the 

botanical composition which has developed over centuries. Often the only pastures to escape 

destruction or modification have been military land and on ground too steep to plough. 

However, with modern implements this latter factor is no longer a constraint. 

It has been estimated that during the last forty years in England, there has been a 95% loss 

of herbaceous species-rich meadows and an 80% loss of lowland chalk sheep walks 

(Adams, 1987). However, these figures are based on a poor data base and there is a 

genuine need to know what is happening in the countryside. It is now an urgent necessity to 

develop a method of accurate quantitative assessment of our natural grassland resources. 

1.2 Ecological Importance of Chalk Grassland 

The largest continuous areas of chalk grassland now left in the UK are in Wiltshire 

(Ratcliffe, 1977), namely, the military training areas of Salisbury Plain. Here security 

measures have debarred a relatively large tract of downland from agricultural use. Most of 

this is only lightly grazed by rabbits and hares and undergoes minimal management, but the 

balance between grasses and herbaceous plants has remained favourable (from the ecological 

point of view) of maintaining diversity. Still other sites in Wiltshire e.g., along the valley of 
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the River Wylye, contribute strongly to the list of biological key sites, which are 

characterized by extreme species richness. There are also numerous examples of 

agriculturally improved pasture used for hay, silage production and intensive grazing. All 

these sites are included in the study area, which contains a large cross-section of the 

different grassland communities of lowland Britain. 

Semi-natural chalk grassland of Salisbury Plain was specifically chosen for study, because 

these areas sustain a wide variety of flora and fauna in a dynamic and finely balanced 

ecosystem. However, the balance is susceptible to disturbance, particularly intervention by 

man in the form of agricultural improvements. The protection and preservation of these 

environments requires techniques for monitoring changes in the nature and species 

composition of the vegetation. 

1.3 Brief Introduction to Remote Sensing : Definition and History 

The definition of remote sensing can be said to be (Fussel et al., 1986) :- 

"the non-contact recording of information from the 

electro-magnetic spectrum, by means of mechanical, 

photographic, numeric or visual sensors located on mobile 

or static platforms". 

Satellite remote sensing can be defined by its mode of operation. Remote sensing satellites 

orbit the Earth at a variety of altitudes and their sensors gather electromagnetic energy 

reflected, emitted or backscattered from the part of the Earth-atmosphere system below the 

satellite 

The rise of remote sensing stems from the first developments of photography (pre-1925), to 

the more sophisticated photogrammetric methods that were catalysed by two world wars. 

This has continued right up to the space age and the use of satellite digital imagery of the 

present day. A concise review of the major phases in the history of remote sensing is given 

by Barrett and Curtis (1982). 

Although it would seem that remote sensing has had a long pedigree, satellite remote sensing 

is a relatively new and rapidly developing science. The 1970’s and 1980’s have seen an 

explosion in the advancement of the communications technology, sensor development, 

computing (the handling and transfer of data); and the wider application of the satellite 

remote sensing systems. All of this bodes well for the future of both the science and 

15



application of remote sensing. 

1.4 Satellite Remote Sensing of the Earth's Resources 

There are two groups of Earth resource satellites; first, the manned satellites which carry 

photographic and other sensors, which provide images of the Earth’s surface, an example 

being the Space Shuttle. Second, the unmanned satellites that carry a wide range of non- 

photographic sensors for the production of images of the Earth’s surface, an example being 

the Landsat generation of satellites. It is this second group of Earth observation satellites, 

dealing in the visible and infrared regions of the spectrum, that are now discussed. For 

detailed description of the characteristics of these satellites see Chapter four, section 4.1. 

1.4.1 Earth Resource Satellites : Operational Criteria 

Technically, an earth observation satellite system should be able to assist in the 

quantification of the type, amount, location and condition of land-cover resources, either in 

spatial (maps) or tabular (estimates) formats. 

The use of satellite data in the inventory process requires that the satellite technology :- 

* be implementable by the ‘user’ agency, 

* provide consistent information with user-defined limits, and 

* be cost competitive. 

In addition the user should be aware of data advantages and limitations. 

1.4.2 Satellite Remote Sensing : Advantages and Disadvantages 

Curran and Plummer (1987), focused attention on the use of remote sensing as a potentially 

useful source of data from the agricultural and ecological viewpoint in the UK. They saw the 

main areas of application regarding inventories in the mapping of :- 

(i) habitat, 

(ii) land cover, and 

(iii) crop types. 
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The benefits of producing satellite derived thematic maps would be :- 

* the acquisition of relatively up-to-date vegetation maps, and 

* to derive their areal extent and generate inexpensive cartographic products for field 

workers. 

The problems incurred by such application of satellite data were also highlighted. 

Applications are limited by; cloud cover, the spatial resolution of current sensors, the 

availability of suitable sensor data, a shortage of multitemporal data, data costs and very 

importantly a general lack of dialogue between the remote sensing ‘expert’ and the potential 

‘user’ i.e., the broader ecological and agricultural community. Curran and Plummer (1987) 

illustrated that over the previous three years, an average of twelve articles were published on 

the topic of remote sensing and ecology/agriculture, but none were published in leading 

biological publications, such as the Journal of Applied Ecology. In conclusion there was a 

very definite need to develop operational methodologies for the mapping of habitats, land 

cover and crop types (Fuller et al., 1989a). 

Adams and Gardner (1984), provided a critique on the shortcomings of satellite remote 

sensing in the ecological context. The spatial resolution of given satellites overstates the 

capacity of the sensor to discriminate accurately target features on the ground. In practise, 

ground features do not align themselves exactly to pixels and most pixels contain a mixture 

of cover classes. There can also be serious spillover effects from surrounding pixels, for 

example, a small herbaceous field in a wood might be overshadowed by the spectral 

response pattern of the wood and become invisible on the image. Finally, the informational 

land use criteria of certain land cover types are very difficult to distinguish when just using 

spectral information (e.g., green cereals, grass leys and herb-rich meadows will all emit 

similar spectral response patterns at specific points in the growing season). 

1.5 Remote Sensing and Grasslands 

One of the most economically and politically important vegetation application of remotely 

sensed data has been the discrimination of crop types and the forecasting of crop yields. The 

large area coverage and sequential nature of satellite imagery (and the opportunity for 

computer data processing) offers the potential for relatively cheap, timely and accurate 

agricultural/land cover inventory. For example, the Landsat Multispectral Scanner (MSS) 

has been employed successfully using both single date and multitemporal image sets, in crop 

identification and inventories (Hay, 1974; Taylor er al., 1983; Wall et al., 1984; Odenweller 

and Johnson, 1984; Belward and Taylor, 1986); with Landsat (TM) Thematic Mapper 
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(Townshend, 1984), and with SPOT data (Jewell, 1989). 

In the context of remote sensing, grasslands have been studied less than croplands, because 

of their less direct economical value, and because of their greater complexity in terms of 

overall diversity and management practices. 

Vegetation studies have generally fallen into two categories, studies concerned with 

vegetation types and those concerned with vegetation amount. Work on grasslands also 

follow this mode. Up till now, the main research work performed on grasslands concern the 

(i) mapping of grasslands or rangeland units via aerial photography (Everitt , 1985) or 

satellite data using MSS (Girard, 1981; Brown and Ahern, 1983) and TM (Fuller et 

al., 1989b; Fuller and Parsell, 1990); and the 

(ii) evaluation of green biomass or forage production from; on site spectral 

measurements (Thalen et al., 1980; Richardson et al., 1983; Girard, 1986), or satellite 

MSS data (Carneggie et al., 1977; Curran, 1983; Tucker et al., 1983), airborne TM 

(Curran and Williamson, 1987) and TM data (Thomson et al., 1985). 

1.5.1 Rationale behind Present Work 

Firstly, the rationale behind this study was to determine if satellite derived data, specifically 

data acquired by Landsat Thematic Mapper (TM) and SPOT-High Resolution Visible 

(HRV), could be used to inventory or assist in the mapping of chalk grassland types. 

Secondly, with the difficulties of access to large tracts of Salisbury Plain, the ability to easily 

and safely collect the required data from orbital platforms would be desirable. The Salisbury 

Plain Training Areas (SPTAs), which are owned by the MoD (Ministry of Defence) are 

extensively used for live artillery exercises, making blanket ground sampling difficult and 

hazardous! 

For effective management it is necessary to acquire periodic data on the boundaries, extent 

and condition of the resources. Remote sensing has been shown to be a useful tool for 

mapping tasks in delineating the boundaries and areal extent of grassland units (Carneggie et 

al., 1983). Remote sensing also offers advantages in the collection of information, that 

would accrue from being synoptic, repetitive and cost effective in relation to conventional 

ground survey. 
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There is significant interest from agencies in obtaining information about the spatial 

distribution and amount of grasslands. The Department of the Environment (DOE) are 

interested in the amount of improved pasture nationally, and the former Nature Conservancy 

Council (NCC) now known as English Nature (EN), are interested in mapping traditionally 

managed meadows and semi-natural grassland. There is even more emphasis for this kind of 

information with the advent of the EEC’s Common Agricultural Policy (CAP), incorporating 

‘set-aside’ and a network of Environmentally Sensitive Areas (ESAs). There is therefore 

much scope for research into grassland mapping and surveys using remote sensing 

techniques. If methodologies for processing and analysing satellite data can be refined to 

provide an acceptable model for vegetation cover, they may gain acceptance by those with an 

interest in operational ecological or vegetation mapping applications (Fuller et al., 1989a). 

1.6 Earth Resource Satellites Role : English Nature’s (EN) View Point 

It is clear that the amount of unimproved lowland meadows and semi-natural grassland has 

fallen dramatically in recent decades. To defend against the further loss of such resources 

(including permanent chalk grassland), ecologists require regional and national inventories 

of existing sites so as to prepare an overall conservation strategy. Satellite remote sensing 

offers a tool with which to do this. 

EN was authorised by parliament (under the 1981 Wildlife and Countryside Act) to be 

responsible for the appraisal and notification of Sites of Special Scientific Interest or SSSIs. 

The act was intended to provide a solid foundation for conservation policy in the UK. In this 

tole, EN require the production of vegetation or habitat maps. The reasons behind this are 

outlined by Hume et al., (1986) and they are :- 

* as a basis for the designation of new reserves or SSSIs, 

* as a data base for management planning and agreements and 

* for monitoring exercises in response to management or external influences. 

Budd (1985), used simulated SPOT (S.SPOT) data in a study of the Somerset Levels and 

found that the data was able to detect change in a SSSI. He stated that :- 

"the imagery was able to provide an efficient monitoring 

tool for SSSI habitats”. 

He also found that generalised descriptions of habitats with some ecological significance 

could be mapped and often formed basic site information for areas of conservational interest. 
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Detailed plant community field mapping is time consuming, expensive and often local in 

scope; but where this type of information is desired there is no substitute for a complete field 

survey. However, there are situations where more generalised information is required in the 

wider countryside (especially recently with CAP etc.,) so there is a real need for ecological 

data covering large areas. No comprehensive data sets are available on the amount and type 

of habitats, and it is information of this nature that is needed, if the impact of current and 

future planning decisions are to be efficiently evaluated. This shortage of information is 

particularly severe for grasslands - despite their economic importance and the fact that they 

cover half the farmable land (Duffey er al., 1974; Girard er al., 1990). 

The use of satellite imagery in conservation has numerous benefits including the systematic 

detection and mapping of sites of ecological interest. There is a further economic advantage 

in that it may reduce the costs of ground survey work, by replacing the traditional ecological 

Phase I survey. Phase I surveys are defined as general blanket habitat survey of all cover 

types and are followed by a more specific Phase II survey. Phase II surveys concentrate on 

those habitats of ecological or conservational interest : sites are visited throughout the 

growing season and complete flora and fauna species lists are compiled. Alternatively, 

satellite imagery can be used to identify sites of ecological conservational interest and thus 

replace the costly Phase I stage. Field personnel can then perform a ‘Phase I.5' survey 

(pers. comm. R. Keymer, Head of Field Unit, English Nature) to validate sites and if this is 

the case, ecological expertise can then be used in detailed ground Phase II habitat survey of 

these sites. This enables, a pin-pointing of resources and man hours to those areas of 

greatest importance. Satellite derived thematic maps also provide a spatial structure to an 

information system which might be set up. This could be important in terms of 'minimum 

area’ needs for ecosystem preservation (Trodd, 1987). Minimum area needs for a habitat is 

the minimum areal extent in which that habitat ecosystem needs to be, in order to be able to 

exist and maintain itself independently. Remotely sensed satellite data also has the benefit 

that areas with difficult access can be surveyed, as can those with restricted access. This can 

be a problem with ground census surveys and suspicious landowners. 

The spatial resolution of the newer systems are approaching 10m pixel size, such as 

panchromatic SPOT. This level of resolution displays spatial details equivalent to the 

traditional remotely sensed data source of ecological mapping, which is medium scale aerial 

photography. The spectral resolution of satellite sensors, with near-infra red (IR) and mid- 

TR bands as aids to discrimination, also improve upon aerial photography. For an account of 

the role and use of aerial photography in ecology and conservation see Fenton (1983). The 

reasons for the apparent reluctance of ecologists to embrace satellite remotely sensed data for 

operational use are cited as : poor spatial resolution; the resultant vegetation maps having 
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poor accuracy and reliability, and a general unawareness of ecological ‘users’ in the potential 

of digital remote sensing techniques (Fuller et al., 1989a). Conventional automated 

classifier's produce mapping accuracies that are typically less than 80 %, at the Anderson et 

al., (1976) Level I and II hierarchical classification schemes. 

TM and SPOT resolution ensures that the identification of an area of vegetation is dependant 

on the physiognomic condition and presence or absence of dominant species. These are the 

attributes selected in the National Vegetation Classification (NVC) scheme employed by EN 

in their classification of vegetation types. Dominance can be considered an appropriate 

discriminatory parameter for satellite sensors (Hume et al., 1986; Girard et al., 1990). 

Furthermore due to their high resolution, the ability of TM and SPOT to generate more 

visually realistic maps, should mean greater acceptance of digitally-derived products by field 

personnel, and a significant improvement in the application of remote sensing techniques as 

a tool in resource management. 

1.7 Aims of the Research 

The aim of this project is to qualitatively and quantitatively evaluate satellite imagery for the 

mapping of unimproved semi-natural chalk grassland in lowland Southern Britain and to 

develop a methodology that permits the classification of chalk grassland. 

In order to achieve this aim the following objectives were identified :- 

i ) fully test and evaluate two different satellite sensors. The research will also focus 

on the multitemporal nature of the data by analysing ‘spectral response patterns’ of the 

grass cover types at key points in their growth calendar; 

ii_) to explore and devise methodologies in order to extract maximum information, 

which can be readily implemented and applied to real operational tasks; 

iii ) to analyse the number of bands and their ‘best’ combination, with respect to TM in 

feature selection; 

iv ) to examine two different supervised ‘per-pixel’ classification algorithms, 

minimum distance and maximum likelihood, by fully quantifying accuracies achieved, 

balanced against their performance speed. Simulated ‘per-field’ classification, 

integrating field data directly with the satellite remotely sensed data, will fully train and 

test the classifications. Unsupervised classification techniques will also be 

investigated; 

v_) to examine spatial post-classification modal filtering and the effects of altering the 

size of the filter window; 
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vi ) compare the costs of satellite data and analysis with those of traditional survey 

techniques; 

vii) and illustrate how satellite data can be an invaluable tool for ‘users’, such as 

ecologists, by providing information for their present mapping tasks, and for further 

monitoring exercises. The research also briefly discusses how the digital nature of the 

satellite data will allow the methodology to be relatively easily implemented with other 

spatial information in a Geographical Information System. 

1.8 Summary 

It is not anticipated that satellite remote sensing will provide a total solution to the mapping 

of chalk semi-natural grassland. However, it is envisaged that it will make a useful and 

valuable contribution to the task. It is to identify and assess this contribution which is the 

main interest of this research. If the findings achieve a certain reasonable accuracy (i.e., 

greater than 80%), then there is the possibility of extrapolating the methodology to other 

geographic areas and in doing so, assessing other potential sites of chalk grasslands in 

Southern England. Ecologists using this data could then locate these potential sites using 

satellite data and evaluate them in the field, using ecological criteria. These two surveying 

methods should then complement each other, since it would be inappropriate to determine 

the floristic/ecological quality of these grasslands solely by remote sensing. The role of 

remote sensing is to estimate the spatial distribution of grassland types, using species 

dominance as a spectral indicator and discriminatory factor, which is in turn a consequence 

of their botanical composition, phenological stage of development and management regime. 
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CHAPTER TWO 

THE STUDY AREA AND GRASS COMMUNITY TYPES 

This Chapter gives a brief description of the study area and of the three main areas of interest 

within the whole study area, along with descriptions of the major chalk grassland 

community types and their importance ecologically as a habitat. 

2.1 Description of the Study Area, Salisbury Plain, Wiltshire, UK 

The study area is situated around Salisbury Plain in Wiltshire, which is found in southern 

England. Salisbury Plain consists of several areas used by the army for training purposes. 

The Salisbury Plain Training Area (SPTA) consists of three major areas (see Figure 2.1) or 

ranges :- i) West SPTA (WSPTA); ii) Larkhill, containing the impact area for artillery 

training, and iii) the Eastern SPTA (ESPTA). All three ranges are used for military 

deployment and training and are owned by the MoD. Access to these ranges is restricted and 

they undergo minimal management or agricultural usage. Areas surrounding the ranges are 

also owned by the MoD and are termed schedule I and schedule III land (Porley, 1989). 

Schedule I land is tenanted to local farmers, whilst schedule III land is used predominantly 

for training, but with limited farming allowed. Table 2.1 gives a brief description of the 

agricultural use on the scheduled land. 

Table 2.1: Description of the Permitted Agricultural Activities on the 

Scheduled Land surrounding the Three Ranges (Porley, 1989) 

  

  

WSPTA Larkhill ESPTA 

Perimeter is cropped for Grazing and cropped grasslands Cattle grazing in pens 

hay and arable crops along narrow border in the north and some arable crops 

and extensive south of the range 

  

AEN botanical field survey was conducted in June/July (1985-86) for all three ranges, for 

further information readers are referred to Porley (1989). Only calcareous grassland (CG) 

and mesotrophic or neutral grass (MG1) Arrhenatherum elatius areas were considered in this 

survey, this included the military range areas, the scheduled land and some smaller areas off 

the ranges. Extensive areas of land within the SPTA were not calcareous grassland and these 

Tegions represent many land uses, but improved agricultural land was found to be the most 
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extensive. These areas were not surveyed by the EN field unit. The SPTAs also contain 

some forestry, which was established for military training purposes. These plantations are 

generally small and scattered and consist of mixed conifer and broadleaved species. 

The study area is a rectangle of approximately 630km2, centred at 19 51'W -51° 14'N in 

Southern Wiltshire and covering the three SPTAs. Selected test-sites of 512x512 pixel 

extracts were located centred at 2° 04'W - 51° 14'N, covering the western ranges of 

Salisbury Plain (WSPTA); Larkhill (SPTA), and centred around the village of Wylye 19 59" 

- 519 08'. These areas are covered by the Ordnance Survey (OS) 1: 50 000 Landranger 

series No. 184. Figure 2.1 shows the location of the study areas and the extent of the MoD 

ranges. 

The relief for the most part is low-lying, the altitude never exceeds 200m. 

Geomorphologically, it is a gentle physical landscape characterized by monotonous 

expanses of rolling downland and grass clad escarpments formed on the chalk. The soil type 

being for the most part brown earths with rendzinas on the steeper ground (Jones, 1981). 

The area consists of gently undulating downs with cultivated fields grouped on the tops of 

the downs, and grassland occupying the bottoms and sides of the valleys. The MoD 

rangeland consists for the most part of semi-natural grasslands and scrub, situated on dry 

trellis valley network. Duffey er al., (1974) gives an account of the history of chalk 

grassland in Wiltshire. 

2.2 Description of Chalk Grass Types 

The chalk grass communities and sub-communities used in the analysis are related to the 

National Vegetation Classification (NVC) scheme (EN, England Field Unit publication), 

with adaptations to it, regarding the SPTAs specifically (Porley, 1989). These adaptions of 

the community level of the major chalk grassland types are described below (where CG 

denotes calcarious grassland and MG is mesotrophic grassland) :- 

CG3a - typical sub-community as described by the NVC. 

CG3a/di- sub-community not described in the NVC, but occurs as a mosaic of 3a 
and 3di. The floristics of the mosaic vary along a continuum from a close 
affinity to 3a through to the 3di sub-community. It was regarded by EN as 
an intermediate between these communities. 

CG3di - sub-community not described by NVC, but characteristic of large areas of 
the SPTAs. 
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CG3d - sub-community described by the NVC, but when frequent associate 
Arrhenatherum elatius is co-dominant, it was found by EN field personnel 
to be difficult to separate this from MG1 grassland community type. 

MG1 - community described by NVC as mesotrophic grassland (MG), 
dominated by Arrhenatherum elatius. Often difficult to separate from 
CG3d sub-community when Bromus erectus occurs at high constancy : a 
situation commonly encountered on the SPTA. 

For a more general discussion of the vegetation classification and field data acquisition, 

readers are referred to the EN SPTA field survey report (Porley, 1989) and the relevant EN 

NVC scheme guides. 

Standard vegetation classification procedures were followed. All three ranges were divided 

into sites using topographical references. Each site was then further divided into a grid 

system and a number of quadrats were selected depending on the size of the site. A total 

sample of 479 quadrats were analysed. As far as possible communities and sub- 

communities were allocated in the field using the NVC scheme. Two sub-communities were 

found to be distinct associations not described by the NVC, but recognised on the SPTA. B. 

erectus dominant (CG3a) grassland made up 82.5% of the total amount of chalk grassland 

present. CG3a is defined in the NVC as swards in which B. erectus makes up more than 

10% of the cover. EN considered ‘that the variation in vegetation on the SPTA was 

adequately sampled, and hence the maps accurately reflect the distribution of the community 

types’. 

However, it should be noted that there were certain limitations within the survey. There was 

a time constraint of a sampling window of a couple of weeks each season in which to 

undertake the field work. This was because of the dangerous nature of some of the ranges 

and access was only possible with military escort. Problems were also found in allocating 

difficult sub-community associations. It was accepted that the precise point where a sward is 

or is not a sub-community depended largely on individual opinion and the accurate and 

consistent judging of cover abundance of sub-community associate or variant species 

presence. 

A more detailed description ‘down to their sub-community level’ of the botanic and general 

physical nature of the major grassland types found on the West SPTA, is given by Table 

2.2. The accuracy of the field survey in relation to the results gained in this research is 

discussed further in Chapter Eight, section 8.3. 
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Table 2.2 : Botanical Descriptions of Community Types recognised on the 

Western Salisbury Plain Training Area (WSPTA) Test Site 

(from Porley, 1989) 

  

  

EN's Code Physiognomy 

CG3a Herb rich, fine-structured turf with quite frequent scattered tussocks of 

Bromus erectus. 

CG3a/di This is characterised by small discrete patches of CG3a and CG3di 

forming a mosaic. The floristics of the mosaic can vary along a continuum 

from a close affinity to a CG3a to a less species-rich CG3di. 

CG3di Bromus erectus more dominant, but shows close affinities to the typical 

sub-community (CG3a). Contains Filipendula vulgaris variant in 

characteristic sub-community. 

CG3d Bromus erectus dominant forming rank tussocks, very few herbs or fine- 

leaved grasses. When Arrhenatherum elatius becomes co-dominant it is 

difficult to separate this an MG1 grassland. 

MG1 Rank mesotrophic grassland community, dominated by Arrhenatherum 

elatius tussocks with smaller amounts of Dactylis glomerata and Holcus 

Janatus. 

  

The importance of the SPTAs as given by EN are outlined below :- 

i) the most important consideration is size: the SPTA can be described as three large 

blocks of chalk grassland. The area as a whole encompasses by far the largest 

continuous areas of unfragmented lowland chalk grassland in the British Isles and is 

of international importance in the context of North West Europe. 

ii) A large proportion of the chalk grassland in the SPTA is on relatively flat ground, 

which is rare in Europe due to its suitability for agricultural improvement. 

iii) The study area is of high scientific value, because very little management is 

practiced by the MoD, consequently there is considerable scope for undertaking 

ecological studies. 
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CHAPTER THREE 

MULTISPECTRAL REFLECTANCE AND VEGETATION 

Remote sensing offers the potential for rapidly monitoring vegetation, soil and water 

resources. An analysis of plants and soil tends to be complex because of their inherent 

characteristics, and because plants are dynamic with constantly changing conditions. A 

successful remote sensing application must be tailored to solve or manage this complexity 

and this requires an understanding of plants and soil and their interactions with the 

electromagnetic spectrum. The major applications of remote sensing in plant sciences are the 

identification of land use patterns, the inventory of types, the areal extent and yield of crops 

and other plant communities. The difference in reflectivity that allows discrimination of plant 

species or vegetation types can be traced to their leaf and canopy characteristics and these 

characteristics influence the leaf's optical properties and the reflection patterns received by 

airborne and orbital sensors, which represent the integration of their effects (Knipling, 

1970). 

3.1 The Physical Interaction of Multispectral Reflectance with Plants and 

Soil 

Light reflectance from plant material is an integrated response of the plant structure and soil 

background. The spongy mesophyll layer of the leaf structure is important in terms of 

remote sensing, because it scatters near infrared (near-IR) light. A review of the literature 

shows that reflectance varies with cellular structure, maturity, shade, background soil, leaf 

area, pigmentation changes and physiological stresses. 

Within the wave bands of 0.4 to 2.5m, electromagnetic radiation reflected from vegetation 

can be divided into three regions :- 

* the 0.4 - 0.75um visible light region dominated by pigments where there is very 

little reflectance, however there is a reflectance peak at the green wavelength (i.e., 

healthy vegetation appears green); 

* the 0.75 - 1.35m near-IR region , a region of high reflectance due to the internal 

leaf structure i.e., the mesophyll region of the leaf structure. Different plant types can 

have very different internal structures, thereby giving different near-IR reflectance 

responses whilst having a similar reflectance in the visible wavelengths; 

* and the 1.35-2.50pm the middle-IR_ region, is strongly influenced by water 

concentration in the tissue, which is a function of the total amount of water present in 
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the leaf and leaf thickness. Strong water absorption of the spectrum occurs at 

wavelengths 1.45um and 1.95pm. 

Figure 3.1 shows a typical spectral reflectance curve for green vegetation and identifies the 

significant spectral response regions, the physical and biological mechanisms which 

influence reflectance of vegetation; and the location of satellite spectral bands. 
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It has been found that in general the spectral reflectance curves for mature and healthy leaves 

are similar in that they follow these patterns of significant spectral response as in Figure 3.1, 

but that they differ in magnitude for different vegetation types. 

Some of the parameters which influence the complete spectral response of vegetation are 

discussed below. All these factors must be considered when trying to interpret spectral 

response patterns from vegetation. 

Factors shown to affect the spectral reflectance of single leaves are (Myers, 1983) : 

* Leaf maturation : different spectral reflectance is attributed to the fact that young 

leaves are more compact with few air spaces, while old leaves are 'spongy' and have 

many air spaces. Furthermore, young leaves tend to contain more pigments. Hence, 

young leaves tend to have less reflectance in the visible region due to higher pigment 

levels, and significantly lower in the near-IR, because the mature leaves have more 

intercellular air spaces and increased reflectance in the near-IR region. 

* Pigments : such as the chlorophylls and the carotenoids absorb light and hence 

markedly affect reflectance of plant leaves. The type and amount of the different 

pigments present in the leaf distinctly affect the reflective spectrum. 

* Internal leaf structure : leaf mesophyll arrangements have the most influence on light 

reflectance over the near-IR wavelength interval. In general plants with compact 

mesophylls, when compared with leaves with thick mesophylls, have lower 

teflectance. 

* Leaf damage : diseases etc., that interfere with the internal structure and thus the 

internal reflection of light will affect the reflectance, especially in the near-IR region. 

* Leaf pubescence : it has been found that hairiness of leaves affect the reflection of 

visible light but the effect is not as great in reflecting infrared light. 

* Leaf water content : evidence suggests that dehydration increases reflectance greatly 

over the entire 0.5-2.5,m wavelength interval and that in general, the correlation of 

leaf water content with reflectance is strongest in the near-IR region of the spectrum. 

* Leaf senescence : this is the deterioration in plant leaves, flowers and roots that end 

their functional life. In perennial plants the above-ground vegetation dies yearly, but 

the crown and the roots remain alive. Herbaceous annual plants have a progressive 

senescence of their leaves from the older to the younger, followed by death of both 

stems and roots. During leaf senescence, starch, chlorophyll, protein and nucleic acid 

components are degraded. The change of colouration is caused by the unmasking of 

yellow and orange carotene when the chlorophyll is lost. As leaves senesce, their light 

reflectance usually increases markedly in the green visible light wavelength peaking at 
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0.55pm (Knipling, 1967) and to a lesser extent in the red and the blue region of the 

visible spectrum. There is also a slight decrease in the near-IR reflectance and a 

marked increase in the middle-IR, due to the decrease in tissue moisture content. 

In order to fully understand the spectral response of vegetation one also needs to explore the 

nature of the interaction of soil as a background component with the electromagnetic 

spectrum. The radiant energy of the sun is partially absorbed by the soil surface and 

transformed chiefly into heat. A small part of this energy is diffusely reflected. The pattern 

of reflectance at various wavelengths is considerably different for plants. See Figure 3.2, 

which shows a typical soil to have considerable less peak-and-valley variations in 

reflectance compared to vegetation. 
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Figure 3.2 : Typical Spectral Reflectance Curves For Vegetation And Soil 

(Adapted From Lillesand And Kiefer, 1979) 

Throughout the spectral range of reflected solar energy (0.25-2.5,1m), the spectral 

reflectance of soils differs substantially from vegetation. Numerous soil properties influence 

the reflection of electro-magnetic energy : these include the mineral content, particle size, 

soil texture, soil colour, organic matter, chemical composition, structure and surface 

roughness, polarizing properties and soil moisture. 

Soil moisture is one of the major factors that needs to be considered in the plant-soil-air 

interface. From a practical viewpoint, knowledge of soil moisture levels is important for 

31



growing crops and for estimating the impact on the spectral response of vegetation with a 

dry or wet soil background. Research has indicated that subtle differences in soil water can 

be detected with the thermal infrared and the green and red spectral bands, while the 

reflected near-IR shows the more severe water stress conditions (Myers, 1983). Reflectance 

decreases as soil moisture increases for wavelengths 0.4 - 1.34m. Whilst this observation 

is valid for any soil type, it is worth noting that it can be applied only for a given soil at any 

one time, because of the effects produced in the soil by different grain sizes, textures and 

mineralogy. Probably the most appropriate and sensitive part of the electromagnetic 

spectrum is radar from the microwave region, for the detection of moisture content in soils 

(Lilliesand and Kiefer, 1979). 

3.2 Vegetation Canopy Characteristics 

Having briefly discussed the factors relating the reflectance responses of single leaves and 

background soil component, it is now necessary to consider the expanded situation of a 

satellite sensor remotely sensing a vegetation canopy target on the Earth’s surface. Figure 

3.3 shows the pathways of radiation from the sun, incident to the Earth and being detected 

by a passive sensor. 

Sun (source of energy) 

rae Passive Sensor 

a QQ, Propagation of 
energy 

Atmosphere 

Radiation from another 
area.   

  

    
Figure 3.3 : The Pathways of Radiation to a Passive Remote Sensor 

(Adapted from Lillesand and Keiffer, 1979) 
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Figure 3.3, also illustrates that there are numerous atmospheric interactions of the radiance. 

All electromagnetic radiation before and after it has interacted with the Earth's surface has to 

pass through the atmosphere, prior to its detection by a remote sensor. As a direct result of 

scattering, absorption and refraction, this passage will alter the speed, frequency, intensity, 

spectral distribution and direction of radiation. These effects are most marked for the visible 

and near-IR radiation, with scattering (i.e., haze) primarily affecting the visible 

wavelengths. Certain molecules in the atmosphere absorb wavelengths, producing heat and 

longer wavelengths, such molecules include water vapour, carbon dioxide, ozone and 

suspended particles. They absorb radiation causing a decrease in the amount received by the 

sensor and also emit radiation of their own, thus adding to the radiation at the sensor. 

The spectral radiant flux (A) incident on the earths surface is either reflected (pA), absorbed 

(QA) or transmitted (tA). As no energy is lost in the process then : 

OA =pA+OA+TA (3:1) 

This relationship is illustrated in Figure 3.4, which shows the basic interactions between 

electromagnetic energy, the Earth and an Earth surface feature (vegetation). 

If these proportions differ for different features on the Earth’s surface, then it is possible to 

identify such features spectrally. The angular nature of reflectance needs to be considered 

and it is described by two rather broad terms; hemispherical and directional. Hemispherical 

refers to the angle of incidence and collection of radiant flux over a hemisphere, and 

directional refers to the incidence or collection of radiant flux for one direction only (see 

Figure 3.5). In remote sensing, spectral reflectance measurements will be either 

bihemispherical, where the angles of incidence and collection are hemispherical, as would 

be the case in laboratory studies; or bidirectional where the angles of incidence and 

collection are directional, as would be the case with a satellite sensor. 
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Figure 3.4 : Pathways of Spectral Radiant Flux Incident on Earth's Surface 
and Vegetation (Adapted from Lillesand and Keiffer, 1979) 

The geometric manner in which an object reflects energy is also an important consideration. 

This factor is primarily a function of surface roughness of the object. There are two types of 

reflector : specular reflectors which are flat surfaces that produce mirrorlike reflections, 

(i.e., the angle of reflectance is equal to the angle of incidence), and diffuse reflectors which 

are rough surfaces that reflect uniformly in all directions (i.e., exhibit Lambertian 

properties). Surface roughness is of importance because the surface needs to be rough 

enough to allow radiation to interact with the surface of the objects. If the surface is smooth 

and radiation is reflected without interaction, then little information will be transmitted to the 

sensor. Fortunately, the majority of Earth’s features appear rough at the visible and near-IR 

wavelengths. Most Earth surfaces are neither perfectly specular or diffuse reflectors. Their 

characteristics are somewhere in between the two extremes, the majority being diffuse and 

non-perfect Lambertain in nature. Figure 3.5 also illustrates the geometric character of 

specular reflectors, near-perfect specular reflectors, near-perfect diffuse reflectors and 

diffuse reflectors. 
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Figure 3.5 : A Graphical Description of the Angular Nature of Reflectance Measurements 
and the Geometric Manner of Reflectance for Specular and Diffuse Reflectors 

(Adapted from Lillesand and Kiefer, 1978; Curran, 1985) 

Incident radiation is reflected, transmitted and absorbed by plant leaves; the response from 

individual leaves often being referred to as ‘leaf hemispherical reflectance’ (Curran, 1985). 

Although it is necessary to understand the reflectance properties of individual leaves, this 

knowledge in itself does not explain the observed response of vegetation canopies, known 

as canopy bidirectional reflectance (Knipling, 1970; Tucker, 1977). As vegetation canopies 

are mixture of leaves, other plant components, background and shadow; there may be no 

simple relationship between the hemispherical reflectance of individual leaves and the 

bidirectional reflectance of the canopy (canopy reflectance). The ideal measurement for use 

in remote sensing is the bidirectional distribution function (BRDF), which is the 

bidirectional reflectance at all possible angles of collection (Curran, 1985). As this is very 
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difficult to measure unless in a laboratory situation, researchers use a simplified 

measurement - the bidirectional reflectance to measure canopy reflectance. It is the 

bidirectional reflectance that describes the remotely sensed reflectance of a vegetation canopy 

made up of its components of mosaics of leaves, other plant structures, background and 

shadow. Reflectance from a canopy is considerably less than that from a single leaf, because 

of attenuation of incident radiation by variation in leaf orientation, shadows and non-foliage 

background. 

In investigating the spectral response patterns of vegetation, an awareness and 

understanding of the following effects is important (Swain and Davis, 1978) : 

i) Temporal effects - This is where the spectral characteristics differ with time for a 

single type of vegetation in the same location. 

ii) Spatial effects - This is where spectral response is different for a single type of 

vegetation in different locations. 

With spatial effects differences can be due to vegetation/soil mixture over a small 

geographical area; or due to the different weather conditions, soil types or cultural practices 

over a large geographical area. 

It is therefore inadvisable to ignore the impact of the temporal! and broad area spatial effects 

on the spectral response. The fact that they exist has caused great difficulty in situations 

where a limited set of spectral response data (from a single geographic location and a single 

date) has been utilized as training data, for mapping a particular species of vegetation over a 

large geographic area. 

Variation in spectral response for vegetation cover types can be attributed mainly to (Swain 

and Davis, 1978) :- 

* amount of ground cover (due to cultural practises) i.e., fertilizer regimes and 

planting procedures, intensity and type of grazing, 

* amount of ground cover (due to natural causes) i.e., differences in soil type, soil 

moisture, 

* variations in maturity due to different varieties, growth rates, planting date. 

* disease, moisture stress and insect infestations, 

* geometric configuration of ground cover i.e., blowing down of crops, row 

direction, slope, aspects, 
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* environmental variables such as atmospheric conditions, wind conditions and angle 

of reflection and 

* topographical variables i.e., elevation, slope and aspect. 

It is of fundamental importance to realise that unique, unchanging spectral signatures or 

‘spectral response patterns’ are virtually non-existent in the natural world. Although 

measurable and recognisable spectral response patterns of a particular vegetation type may 

exist, they are related to both a specific geographic area and a particular date and time. These 

response patterns are combinations of the reflectance and emittance from the vegetation 

types, which are to be identified. 

The spectral variability of vegetation is a major problem when attempting to identify and 

map features of interest. To reduce this variation the following steps are recommended 

(Swain and Davis, 1978) :- 

* collect data when the spectral response pattern is significantly different from other 

cover types (eg, oilseed rape which has a dramatic yellow colour when in bloom), 

* obtain data when variations for given species are a minimum (eg, the middle of the 

growing season), 

* collect data at intervals throughout the growing season and 

* collect data under restricted environmental conditions (eg, specified sun angle, 

season). 

A brief outline has been given of the physical nature of how electromagnetic radiation 

interacts with vegetation : this ranged from a consideration of single leaves to complete 

vegetation canopies. The importance of understanding total canopy effects, as well as single 

leaf spectral reflectance characteristics, is well documented. Gausman et al., (1973) found 

that individual leaf characteristics for twenty different crops revealed very little spectral 

differences. However, Chance (1981) found in a satellite analysis of several of the crop 

types, that it was evident that differences did occur, which were difficult to explain in terms 

of the findings of Gausman. Chance therefore argued, in light of this fact, that the actual 

reflective differences (for field crops detected by satellite data in the near-IR), were due 

mainly to species growth architecture, and not due to leaf reflectance characteristics such as 

size, shape and orientation. Therefore, by understanding mechanisms such as change in 

pigments, internal leaf structure and water content, apparent in the phenological 

transformation from vigorous green vegetation to senescent vegetation; together with total 

canopy effects such as growth architecture, soil background etc., it is possible to interpret 

multispectral reflectance of vegetation. The discussion will now be focused on semi-natural 
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habitats and grasslands. 

3.3 Semi-natural Vegetation and Grasslands 

Prior to satellite studies of semi-natural vegetation and grasslands, in-situ studies were 

conducted in order to attempt to correlate spectral response patterns with vegetation 

variables; the aim being to acquire an understanding of the complex relationships between 

the biophysical parameters of vegetation and its reflectance. Useful data from airborne or 

orbital sensors can be interpreted if it is known how the energy recorded by the spectral 

bands interacts with the vegetation. A leading exponent of such studies is Tucker (1977; 

1978; 1979), who worked on grass canopies. In the first study canopy reflectance in the 

near-IR was quantitatively related to physical/biotic factors, including per cent soil cover, 

total biomass, leaf water content and chlorophyll content. The latter study correlated red and 

IR ratio's to green leaf area and green leaf biomass. Senescent grass material was also 

analysed spectrally (Tucker, 1978; Rao et al., 1979). The results gained helped to elucidate 

the spectral contribution of mixed live/dead canopy situations, as it was found that as 

material senesced, reflectances increased across the spectrum. 

A literature review, has not identified the development of a ‘universal’ methodology for 

range/grassland assessment using satellite data. Common problems which hinder reliable 

estimates of the areal extent and condition of grasslands and semi-natural vegetation include; 

the wide variety of species composition, different soil backgrounds, differential growth 

rates of individual plants from site to site and the different spectral reflectance characteristics 

of green and senescent material. 

These problems were confirmed in a study of rangeland production using remotely sensed. 

techniques (Carneggie er al., 1977). The production of rangeland was found to be a function 

of elevation, slope, aspect and various other physical, biological and chemical characteristics 

of the soil. Similarly with the mapping of cover types, Jones et al., (1987) highlighted the 

fact that British semi-natural habitats are a difficult environment to study. Their ecology is 

both variable and complex, in that semi-natural vegetation exhibit diffuse boundaries and the 

land cover is spatially variable. 

Semi-natural chalk grassland is a very complex habitat, even on a small scale. For instance 

within one-quarter square metre of semi-natural grassland, many species of green vegetation 

(grasses and herbaceous plants) may exist with standing senescent and dead vegetation, and 

sometimes bare soil. Efforts to interpret vegetated surfaces have been hampered by soil 

background signals, which varies with soil type, soil moisture and soil management. The 
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literature indicates that the effects of soil reflectance, canopy structure and leaf orientation 

are at least as important as individual leaf characteristics in determining composite canopy 

reflectance. 

In consideration of only canopy parameters the spectral reflectance depends upon :- 

* the spectral reflectances and relative proportions of the individual components, 

* the geometric arrangement of the individual components, and 

* the shadow cast by canopy components. 

Ahern et al., (1981) conducted a detailed study in Canada of the optical characteristics of 

mixed grass and rough Fescue rangeland vegetation, using MSS and simulated TM. It was 
  

suggested that to simplify matters one can consider grassland as being made up of two 

components; the green component (healthy vegetation) and the brown component (senescent 

or dead material). The differences in reflectance of senescent and green tall prairie grasses 

over the visible and infrared part of the spectrum for the equivalent TM bands were 

examined. The spectral reflectance of green leaves was found to be generally low across the 

blue and red regions of the spectrum (because of chlorophyll absorption), and higher in the 

green (giving the characteristic green colour). The reflectance then rises very rapidly at about 

the near-IR and then slowly decreases with increasing wavelength to 2.35um. The 

reflectances of brown or senescent matter in general was higher than green vegetation in the 

visible region, lower in the near-IR, and higher again in the mid-IR (TM-5 and 7) part of the 

spectrum. For a much more thorough description of the reflectance characteristics of 

grassland vegetation see Ahern et al., (1981); and Asrar et al., (1986). The third vegetation 

or flowering component of herbaceous vegetation can be ignored in this broad framework, 

as it does not usually dominate an area when viewed vertically (Ahern et al., 1981). 

The geometric arrangements and structure of these components is important. For example, 

large amounts of green grass and herbaceous matter may be completely obscured by brown 

carryover vegetation from the previous season, which is maintained during the early part of 

the growing season. Also counter examples of heavy carryover obscured by green grass 

and/or herbaceous material may be present. If the carryover is removed this will expose bare 

soil, until the green growth of the new season is established. In such cases, a remote 

sensing measurement will tell little about the component which cannot be seen. A related 

geometric effect is that the predominantly vertical structure of grass leaves contrasts with the 

random horizontal configuration of the leaves of herbaceous species. Unless the herbaceous 

species are obscured by grasses or carryover vegetation they will alter and perhaps dominate 

the reflectance response. Canopies of vertical orientated elements produce lower canopy 
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reflectance than canopies of more horizontal elements. Rao et al., (1979), showed that the 

bidirectional and angular aspects were more pronounced for a standing crop such as a 

cereal, than for a mown crop such as hay. 

Shadows cast by individual components decrease the reflectance response throughout the 

spectrum. Shadowing depends on the slope, solar angle and sensor angle at the time of 

image acquisition, and the shadow casting efficiency of individual components. For 

example, in a remote sensing context, a tall headed senescent grass will cast a much more 

prominent shadow than a small herbaceous plant near to the ground, whose shadow is 

mostly obscured when viewed vertically. 

Many variations can occur within this broad framework i.e., individual grass species can 

exhibit different senescent times and colouration. Semi-natural vegetation and grasslands 

can be configured in so many different ways, and made up of so many different species that 

many workers using satellite data (Ahern er al., 1981), have found it difficult to 

quantitatively relate spectral reflectance and the areal extent of species and community type. 

Therefore, subsequent studies of this type of habitat have become increasingly complex in 

their analysis. Asrar er al., (1986), developed statistical procedures that allowed different 

grassland components of tall grass prairie to be distinguished i.e., green vegetation, 

senescent vegetation and the bare soil component. These were spectrally distinguished by 

objective discriminant and canonical discriminant analysis. It was shown that remote 

sensing of grasslands could result in quantitative information on the amount, condition and 

type of grassland vegetation, provided that the effects of physical physiological processes 

on spectral characteristics were understood. Using a Barnes multi-band radiometer which 

simulated TM performance, accuracies of 94% were achieved for estimates of areal coverage 

of the three components; green vegetation, senescent material and the soil factor. A 

simulation of MSS bands produced significantly lower accuracies. 

3.3.1 Production Studies 

A large number of ‘production’ or 'yield’ studies have been conducted in N.America, where 

rangeland resources have been assessed by satellite imagery. Studies have linked MSS data, 

by exploration of band ratios and vegetation index models, to rangeland parameters in 

multitemporal analysis (Carneggie er al., 1977; Thomson et al., 1980; McDanial and Hass, 

1982). Correlations were found between transformed vegetation index and greenness 

vegetation index with green forage production, green cover and plant moisture. The results 

indicated that MSS spectral radiance was sensitive to critical seasonal changes, this was in 
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providing a quantitative measure of vegetation growth, conditions and inherent ecological 

characteristics for the vegetation/soil system. 

An illustration of phenological development and spectral response was provided by 

Carneggie er al., (1977), who used visual and automated techniques for information 

extraction on forage production, range condition and changing growth conditions. 

The use of single date imagery was usually restrictive in such studies, as temporal 

considerations are generally of considerable importance. The presence of senescent material 

can mask green vegetation in the canopy and increase red reflectance MSS band-5 (Curren, 

1983). Curran and Williamson (1987), used airborne MSS scanner data to map estimates of 

Green Leaf Area Index (GLAI) of limestone grassland. The GLAI is an accepted method for 

quantifying production of plant canopies of agricultural and semi-natural grasslands in the 

UK. 

In a study of grassland canopy characteristics, Ripple (1984) used radiometer data 

simulating TM bands. TM-4, the near-IR band, was found to be the best indicator of total 

wet biomass and canopy height, whilst percentage cover correlated best with mid-IR band 

TM-7 and the visible bands TM-1, 2 and 3. Band ratios were more significant than 

individual bands, when correlations were found of spectral response and canopy variables. 

A study by Thomson er al., (1985), using TM cn rough Fescue rangeland in Canada, 
  

provided information on rangeland condition and forage production. Quantitative biomass 

estimates in this type of rangeland were difficult, but correlations between TM-5 and TM-7 

and senescent material were significant, whilst TM-4 showed a positive correlation with the 

amount of green material. 

It can be seen therefore, that satellite data can provide qualitative and quantitative 

information on the productivity of grass/rangelands. Productivity is in turn related to the 

type of grassland vegetation and it is in identifying grassland types which is the main focus 

of this research. 

3.3.2 Inventory Studies 

The major problem which exists in attempting to map semi-natural vegetation is that the 

ground data classification legend is usually ecologically based, whilst the remote sensing 

classification legend is of a much more general land cover scheme. The remote sensing 

classification legend is commonly the Anderson et al., (1976) scheme. Problems are 
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incurred when remote sensing studies are performed, using traditionally produced 

vegetation maps as training data for automated classification. Semi-natural vegetation is very 

complex and in reality exists as a continua, rather than as a group of discrete classes. A solid 

line on such a vegetation map is often misinterpreted as being a sharp precise boundary, 

when in fact semi-natural vegetation is rarely separated by sharp distinct lines. A more 

‘diffuse transition zone’, or ecotone (Watson er al., 1978), which can be narrow or wide, 

commonly exists between units. 

The classification scheme quoted frequently from the literature in this thesis, refers to the 

US Geological Survey (USGS), which has received a wide currency in the remote sensing 

community. The USGS land cover classification scheme is described by Anderson er al., 

(1976) and is characterised by hierarchical levels, describing different scales and detail of 

land use and cover. Level I being the most general with increasing detail described in 

descending levels. 

Level I classifications schemes are generally successful when using satellite data (Weaver, 

1984). However, at such a very broad level ecological detail is at a minimum and therefore 

not really of value for the serious study of semi-natural vegetation. Level II classifications 

are partially successful (Everitt et al., 1979; Synder and Story, 1986). Level III 

classifications using satellite data are more ecologically valid, however such studies often 

encounter problems and misclassifications, although there have been successful 

applications. Watson et al., (1978), using MSS data was able to describe Level III grassland 

community units dominated by specific species and Ruth er al., (1986) was able to 

discriminate to an adapted Level III scale of specific crops, herbaceous pasture, rangeland, 

scrub and range/scrubland. 

The provision of land cover information, using Landsat has been successful in areas 

characterised by large homogeneous cover units and where cover types are composed of one 

or two types of plant only. Land cover description becomes more difficult, where land cover 

types are composed of complex mixtures of vegetation types (Townshend and Justice, 

1980). 

Examples of the use of remotely sensed techniques in the description of semi-natural 

vegetation are now presented. MSS data was applied for the mapping of the distribution of 

wetland vegetation communities in N. America. Barlett and Klemas (1980), demonstrated a 

method of discrimination that was species specific and was a function of a ‘separability’ 

measure. This was in turn a function of the effects of seasonal change i.e., separability was 

greatest in December and poorest in May, June and July. The application of in-situ 

radiometry was used in the continuing study of tidal wetland grasses (Barlett, 1981), using 
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standard field biometric techniques. This demonstrated further that the observed variability 

in canopy reflectance was produced by temporal changes in canopy morphology and 

composition in terms of canopies dominated by specific species. 

The potential of the first four bands of TM in discriminating salt marsh vegetation in the UK 

was studied using a portable radiometer by Budd and Milton (1982). Canonical variate 

analysis was performed to aid discrimination; however perfect separation into species 

groups was not possible although some clustering of species groups in feature space was 

evident. The poor results were attributed to the fact that multitemporal data was not used, as 

this would have improved the classification. However, the estimation of ground biomass 

was successful for some species groups. 

Other types of semi-natural vegetation have also been the subject of study. Weaver (1984), 

worked on moorland communities in the UK and used MSS and airborne thematic mapper 

(ATM) data. The ability of using satellite imagery in monitoring different levels of detail was 

investigated. Broad Level I land cover groups such as water, agriculture and moorland were 

easily delineated with reasonable clarity using MSS data. A second finer scale break down 

of the moorland was attempted; four classes of moorland were discernible using ATM, with 

its finer spatial resolution. It was also found that at this level of detail, the optimum number 

and identity of bands varied for each moorland class (Weaver, 1987). Use of multispectral 

SPOT data for upland ecological mapping in the UK, was assessed by Jones et al., (1987). 

A high level of discrimination of Level I land cover categories was apparent despite strong 

interband correlations. 

Effective qualitative inventory of grassland units was achieved by the use of colour and 

colour infrared aerial photography (Watson er al., 1978). MSS data also used in the study, 

provided an overview of the six major natural cover units found in the rangeland. By 

automatic classification of MSS data, Everitt et al., (1979), successfully mapped at a Level 

II rangeland scale, native and improved grassland in N.America. The satellite estimates of 

areal extent in hectares corresponded well with the figures derived from aerial photography. 

Research in France (Girard, 1981; 1984; 1986) has concerned both topics; biomass 

production or its agronomic value and the mapping of the spatial distribution of limestone 

permanent grassland, in central France. Girard (1981), mapped grassland units using MSS 

multitemporal data. Detailed botanical data was collected and it was found that various 

factors such as soil, slope and management varied the botanical composition, which in turn 

varied the agronomic value. The grasslands were linked to phytosociological associations 

comprising of dry, medium moist and wet grasslands. From these associations agronomic 
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values were calculated, based on fodder utility. It was found that moist grazed and mown 

grasslands were the most productive, whilst wet and dry grassland units had the lowest 

production. Classification of two dates of MSS was achieved by density slicing MSS band- 

7, with thresholds chosen from knowledge of detailed field data. Thematic maps were 

manually produced from the classifications, and delineations were refined by intimate 

knowledge of the geology, geomorphology and botanic field data. Cross referencing of the 

two dates of classification, increased the accuracy of the final thematic map for most land 

cover categories. 

On-going research on the same study area was conducted by Girard (1984a, 1984b). The 

1984a study further refined the methodology by the input of in-situ field radiometer 

measurements. This spectral information was combined with the botanical data to provide 

description of the grassland units and used for input in to the MSS satellite data. This 

radiometer and botanic information was used to choose threshold values for the 

classification of a normalised difference vegetation indice of the MSS data. S.SPOT data 

was also assessed and evaluated for grassland mapping and estimation of production Girard 

(1984b). Girard (1986), then went on to model the spectral and botanical parameters of the 

grassland units. Eight agroecological units were characterised by species and their coverage 

through time. Spectral behaviour of these units were defined using the in-situ radiometer 

measurements from the red and near-IR part of the spectrum, to create a seasonal spectral 

behaviour model. Using remote sensing techniques, this could then be used in the 

classification and survey of grassland, and to evaluate production. 

However, not all inventory studies dealing with semi-natural vegetation and grassland have 

proved to be so successful. To overcome the difficulties many workers have refined or 

suggested refinements to methodologies for automated classification and these are discussed 

further in Chapter Six, section 6.2.4. 
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CHAPTER FOUR 

MATERIALS AND METHODOLOGY 

The first part of this chapter deals with the satellite sensors used in this study, together with 

descriptions of the utility of these sensors in applied research. The second part of the chapter 

describes the imagery, the imaging processing hardware and the methods used in data 

handing. 

4.1 Satellite Sensing Systems 

A brief outline of the types of Earth resource satellites was given in Chapter One, section 

1.4. Chapter Four provides a more detailed introduction and review of the two satellite 

sensor systems; Landsat Thematic Mapper (TM) and SPOT-HRV, which together provided 

the satellite data used in this study. This includes a description of each sensor’s 

characteristics and each sensor’s spectral band complement as pertinent to vegetation 

reflectance characteristics. Salomonson et al., (1980), provides further discussion of 

Landsat TM characteristics. 

4.1.1 Landsat-5 Thematic Mapper (TM) 

Data from the Landsat series of satellites have been available since 1972 (Curran, 1985). 

The prime source of data from the first three satellites was the Multispectral System Scanner 

(MSS), which was a four band system with an Instantaneous Field Of View (IFOV) of 

79m. The TM of Landsat-4 and Landsat-5 represented a major improvement compared with 

MSS in terms of the location and number of spectral bands available, the spatial resolution, 

and the geometric fidelity of the data. 

The various characteristics of TM and its data are now briefly discussed. An overview of the 

main differences between TM and MSS can be seen in Table 4.1. Fundamentally, the TM 

and MSS operate in the same way, both being optical-mechanical scanners. Radiation from 

small areas of the Earth's surface is focussed on a detector and the resultant electrical signal 

which is generated, represents the amount of radiation reflected or emitted from the small 

elemental piece of ground. 

The development and introduction of the Landsat-4 and -5, second generation Landsat series 

tepresented a significant advance in remote sensing data acquisition technology. Landsat-5 

was launched on March 1984 and carried both MSS and TM sensors. The new TM sensor 

had improved pointing accuracy and stability characteristics, namely, 0.01 degree and 10-6 
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degrees per second respectively. It consisted of a seven band, earth looking radiometer. The 

location and width of the seven bands were carefully chosen for sensitivity to certain natural 

phenomena and to minimise the attenuation of the surface energy by atmospheric water. 

The TM is a scanning optical-mechanical sensor system that records reflected and emitted 

energy in the visible, near-infrared, middle-infrared, and thermal-infrared regions of the 

electromagnetic spectrum. A telescope directs the incoming radiant flux obtained along a 

scan line to linear arrays of detectors (sixteen for each spectral band and four for the thermal 

band) and the scanning mirror can operate in both forward and reverse scans. 

Table 4.1: Comparison of the Landsat Thematic Mapper (TM) with 

Landsat Multispectral Scanner (MSS) 

(from Townshend et al., 1988) 

  

  

TM Band No. Thematic Mapper MSS Band No Multispectral scanner 

Landsat-4, 5 of Landsat-4, 5 Landsat-1, 3 of Landsat-1, 3 

(um) (um) 

1 0.45-0.52 

z 0.52-0.60 4 0.50-0.60 

3 0.63-0.69 5 0.60-0.70 

4 0.76-0.90 6 0.70-0.80 

5 1.55-1.75 7 0.80-1.1 

6 10.4-12.5 

7 2.08-2.35 

Quantization levels : 8 bits, 256 levels 6 bits, 64 levels 

Field of view (FOV) : 186km 185km 

Spatial resolution : 30m bands 1-5, 7 79m 

120m band 6 

Altitude of satellite : 705km 919km 

Frequency of coverage : 16 days 18 days 

  

Notes : The bands on the Landsat-4 and 5 MSS are numbered 1-4. Landsat-3 MSS carried a thermal infrared 

band, which failed shortly after launch. 

Landsat-5 covers a 185km swath from an sun-synchronous orbit of 705km altitude, to 

provide coverage every sixteen days (Billingsley, 1984). It has an IFOV and sampling 
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interval of 30m in the cross-track and along-track directions, for six bands in the reflective 

part of the spectrum. A seventh band in the thermal infrared part of the spectrum has a 120m 

spatial resolution. In contrast, the MSS provides a spatial resolution of approximately 80m 

in all bands. Finally, the radiometric resolution has been increased from 64 levels (MSS), to 

256 levels (TM). This effectively corresponds to a four-fold increase in the grey scale being 

used to measure the intensity of Earth's radiation in each discrete spectral band. 

4.1.1.1 The Characteristics of TM’s Spectral Bands 

TM senses more bands than MSS and the TM bands were chosen with a closer relationship 

to the characteristic spectral responses of vegetation and surface materials (Table 4.2). New 

bands of TM includes band 1 from the blue visible part of the spectrum and TM-5 and TM-7 

from the middle infrared. The TM spectral bands represent important departures from the 

bands found on the traditional MSS also carried on board Landsat-4 and Landsat-5. The 

original MSS band widths were selected based on their utility for general vegetation 

inventories and geological studies. Conversely, most of the TM bands were after years of 

analysis chosen for their value in the discrimination of vegetation and vigour, measurements 

of plant and soil moisture, cloud and ice differentiation and geological discrimination. The 

TM bands are situated to make maximum use of the dominant factors controlling leaf 

reflectance; such as pigmentation, leaf structure, and moisture content, as discussed in 

Chapter Three, section 3.1. 

Bands 1 and 3 were chosen to coincide with chlorophyll-absorption peaks. Band 1 can 

differentiate vegetation from soil and band 3 can discriminate between plant species. Band 2, 

with the green chlorophyll-reflectance peak can be used to assess the vigour of the 

vegetation. Whereas spectral response in the visible bands is controlled primarily by plant 

pigments, the response in the near-IR (infrared) sensed by band 4 is controlled mainly by 

the physical structure of the mesophyll layer of leaves, and gives some indication of the 

biomass. Band 5, in the middle-IR, is on a shoulder between two water-absorption bands, 

and gives some indication of the water content (Townshend, 1984). 

The spatial resolution of TM is 30m which is finer than the 80m resolution of Landsat MSS. 

Therefore, for areas containing small fields the dominance of boundary effects can be 

reduced. Individual fields as small as 30m width can be detected and identified, which 

greatly aids the accuracy of land use classification for fields less than 5 hectares (DeGloria, 

1984a). 
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Table 4.2 : Potential Vegetational Applications for Single TM Spectral 

Bands (adapted from Jenson, 1986; Townshend et al., 1988) 

  

  

TM WAVELENGTH APPLICATIONS 

BANDS (um) 

1 0.45-0.52 Separation of coniferous and deciduous woodlands and 

(blue-green) differentiates soil and vegetation. 

2 0.52-0.60 This band spans the region between the blue and red 

(green) chlorophyll absorption bands and therefore corresponds to the 

green reflectance of healthy vegetation. 

3 0.63-0.69 This is the red chlorophyll absorption band of healthy 

(red) vegetation and represents one of the most important bands for 

vegetation discrimination. Used for vegetation cover mapping 

and identification of cropping practices. Least effected of the 

visible bands by atmospheric attenuation. 

4 0.79-0.90 Vegetation survey through reflection by mesophyll layer. 

(near-IR) Responsive to the amount of vegetation biomass present. 

5 1.55-1.75 Sensitive to the turgidity or amount of water in plants, used 

(mid-IR) in plant vigour studies. 

tf 2.08-2.35 Lithological discrimination. 

(mid-IR) 

  

The improved spatial resolution over MSS, enables the detection of greater detail, such as 

drainage networks, roads and localised land cover, and provides greater mapping and 

mensuration accuracy. The new infrared spectral bands present on TM, provide improved 

crop and ecological monitoring (Staenz et a/., 1980) and the ability to detect moisture content 

or stress in vegetation (DeGloria, 1984a). The increased radiometric resolution increases the 

scope for improved vegetation discrimination, as well as greater sensitivity to minor changes 

in vegetation ground cover. 

In comparison with MSS there is a seven-fold areal improvement of IFOV for TM. In terms 

of visual analysis this improvement is undeniably beneficial. Since compared to MSS, there 

are a far smaller proportion of mixed pixels, automated classification is inherently likely to 

be more successful, though the problems of intra-target variability associated with finer 

spatial resolution also need to be considered. 
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However, with these advances of TM, there are also drawbacks present. The combined 

effects of increased spatial, spectral and radiometric resolution, means that the acquisition 

data rate of the TM is nearly ten times higher than that of MSS. Secondly, as mentioned in 

the preceding paragraph, for certain types of digital analysis, the improved spatial resolution 

can be disadvantageous for some applications unless more sophisticated types of 

information extraction are used. 

4.1.1.2 Comparison of TM and MSS Data. 

Numerous studies have been conducted comparing actual and simulated TM and MSS, both 

in data quality, information content and utility for applications (Ahern er al., 1980; Badhwar 

et al., 1984; DeGloria, 1984a; Owe and Ormsey, 1984). In general, the findings have been 

summed up by Williams et al., (1984), who evaluated classification accuracies for the two 

sensors. It was shown that the classification accuracies were significantly improved by 

using TM data, because of it’s increase in the number of bands and improved radiometric 

quantization. In contrast, the improved spatial resolution of TM did not enhance 

classification performance for all cover types. Williams attributed this to being a function of 

a ‘per-point' or 'per-pixel' classification algorithm and heterogeneous cover types. This 

latter effect is described in more detail in Chapter Six, section 6.1.5, dealing with 

classification and spatial resolution. 

A comparison of MSS and TM using Principle Components Analysis (PCA), which is 

described in more depth in Chapter Five, section 5.1.3.2, looked at the dimensionality of 

useful information content (Anuta et a/., 1984), found there were two significant dimensions 

in the MSS and up to four in the TM. Spectral analysis produced twice as many separable 

classes in TM than in MSS. Classes such as field edges, were separated out in TM, but were 

mixtures in MSS and in many cases not spectrally distinct. 

Based on the improvements in spectral, spatial, and radiometric resolution, Solomonson 

(1984) suggested that :- 

"from a wide variety of analyses and results, it appears 

that the TM can be described as being twice as effective 
in providing information as the Landsat MSS". 

These findings verify the high quality of TM data and suggested a significant increase in 

usefulness over MSS, in most earth resource applications. DeGloria (1984a), concluded that 

TM data would be more than sufficient for meeting most of the inventory objectives of the 

renewable resource specialist. 

49



4.1.2 SPOT-1 High Resolution Visible (HRV) 

The SPOT-1 (Systeme Probatoire d'Observation de la Terre) satellite was designed by the 

French National Space Centre (CNES) in collaboration with Belguim and Sweden. The first 

SPOT was launched in February, 1986 and operates in a sun-synchronous near-polar orbit 

at a altitude of 832km. 

The SPOT satellite consists of two parts, the SPOT bus, which is a standard multipurpose 

platform, and a sensor system payload. The payload consists of two identical High 

Resolution Visible (HRV) imaging instruments. The HRV sensors can operate in one of two 

modes : a panchromatic (P) mode with a single broad band (similar to a typical black-and- 

white photograph) having a resolution of 10m; and a multispectral (XS) colour mode of 

three narrower spectral bands of 20m spatial resolution (Table 4.3). 

In contrast to Landsat's scanning mirror, SPOT is the first satellite with ‘pushbroom’ 

sensors, where each pixel across a scan line is viewed by an individual detector (6000 in 

panchromatic mode, 3000 in multispectral mode). These detectors form a linear array which 

is moved in a forward direction by the motion of the satellite, hence the name ‘pushbroom 

scanner’. This approach avoids problems associated with the mechanical means of moving 

the scanner mirror as used in TM and MSS, since the pushbroom scans electronically. 

Unlike Landsat, SPOT has new capabilities, these capabilities include nadir and off-nadir 

viewing, up to 27° from the vertical. Light reflected by the target is focused by a plane 

mirror onto the detector array. The mirror is steerable through a range of + 27°, allowing the 

instrument to view any point within a strip 475km to either side of the satellite ground track 

(Mather, 1987a). The off-nadir flexibility increases revisit capabilities, which are very 

important for observation of phenomena with short time scales or for seasonal vegetation 

monitoring. During the 26-day period separating two successive SPOT satellite passes over 

a given point on the Earth, and taking into consideration the steering capability of the 

instruments, a point on the Earth’s surface could be observed on seven different passes if it 

were on the equator and on eleven occasions if at a latitude of 45°. 

A further important product of off-nadir viewing is the capability of recording stereoscopic 

pairs of images of a given scene. Stereoscopic imagery is obtained by imaging a target area 

from one side on day 1 and by imaging it from the same angle, but imaging it from the next 

orbit to the east on day 2. This assumes cloud free conditions for both days. Stereoscopic 

aerial photographs have been widely used over many years in photogeology and 

cartography, and it is in these areas that satellite applications in cartography, 
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photointerpretation and the compilation of digital terrain models, that SPOT represents a 

considerable advance over Landsat products. 

Table 4.3 : SPOT Sensor System Characteristics 

(adapted from Jenson, 1986) 

  

  

HRV Sensor Multispectral mode Panchromatic mode 

(um) (um) 

Band Number 

1 0.50-0.59 0.51-0.73 

a 0.61-0.68 

3 0.79-0.89 

Quantization levels : 8 bits 6 bits 

Field of view (FOV) : 60km 

Spatial resolution (IFOV) : 20m (at nadir) 10m 

Altitude of satellite : 832km 

Frequency of coverage : 26 days 

Angular field of view (AFOV) : 4.130 

Off-nadir viewing : +270 

  

If off-nadir viewing is used, care must be exercised to ensure the resulting effects from a 

non-vertical view angle are taken into consideration. The maximum angular deviation from 

the vertical with Landsat MSS is 5.8°, whereas the maximum viewing angle from the 

SPOT-HRV is 33°, taking account of the Earth's curvature (Mather, 1987a). At these high 

viewing angles the non-Lambertain nature of the reflectance from Earth surface cover types 

will be a significant factor. This last point is referred to later, when viewing angle is 

discussed in relation to this study (section 4.2.2.2). 

The mode, panchromatic or multispectral and nadir or off-nadir observations, can be 

programmed via the on-board computer, thus making it in theory, a very flexible system. 

4.1.2.1 The Characteristics of SPOT’s Spectral Bands 

The three multispectral bands of SPOT were selected primarily for vegetation and biomass 

investigations (Table 4.4.) and as can be seen from the table they are comparable in 
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wavelength with TM bands 2, 3 and 4. This together with the fact that SPOT currently 

provides the finest spatial resolution, yet available from an operational civilian satellite, 

indicates it is therefore likely to be of greatest value for detailed vegetation mapping. 

Table 4.4 : SPOT-HRV Multispectral (XS) Vegetational Band Applications 

(adapted from Jones, 1987) 

  

  

SPOT WAVELENGTH APPLICATIONS 

BANDS (um) 

XS-1 0.55-0.59 Region of minimum absorption due to chlorophyll 

(green) in the visible part of the spectrum. 

XS-2 0.61-0.68 Part of the spectrum where considerable radiation 

(red) absorption due to chlorophyll. 

XS-3 0.79-0.89 Area of peak absorption due to mesophyll layer of 

(near-IR) leaves. 

  

The potential capability of SPOT utility for vegetation studies as expressed by Jones et al., 

(1987) suggested that :- 

"SPOT-HRV data with its spectral bands chosen to optimise 
vegetation discrimination, should provide an ideal tool 
for the mapping of complex semi-natural vegetation. It 
also provides the opportunity of field pointing 
flexibility, which offers the possibility of obtaining 
high resolution multispectral data at critical times in 
the phenological cycle”. 

4.1.2.2 Comparison of SPOT and TM Data 

Chavez and Bowell (1988) investigated spectral information content of TM and SPOT, 

using an agricultural region for the test area. Analysis and comparisons were made 

statistically using correlation matrices for all data sets involved, which were four bands of 

TM and three bands of SPOT. The results showed that original TM bands contained more 

spectral information and that TM band-5 revealed field/soil differences not seen in other 

spectral bands. A Principle Component Analysis (PCA) illustrated that the SPOT data was 

approximately two dimensional and the TM data was close to three dimensions (dimensions 

are used in statistical sense and relate to variance or informational components 'per-pixel’). 

The amount of correlation and percent of variance beyond the second PC, implied that there 
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was new information in the third dimension of TM data compared with SPOT. The results 

imply that SPOT data for the most part duplicates the spectral information contained in TM 

data, whilst TM contains spectral information not present in SPOT data, even when using 

only four of the available six spectral TM bands. 

Toll and Kennard (1984) analysed S.SPOT spatial characteristics compared with TM, for 

discrimination of land cover categories. It was apparent that the higher spatial resolution of 

SPOT significantly reduced boundary problems, whilst increasing within field variations in 

a ‘per-pixel’ procedure. The increased within-field heterogeneity at the finer spatial 

resolution, increased spectral variability within a class that resulted in class overlap or 

miscategorisation. Reduced within-class variation at coarser resolutions led to an increase in 

accuracy of multispectral S.SPOT from 41.2 % at 20m to 51.7% at 80m resolution. This 

effect would be much less with SPOT data degraded to TM's 30m resolution, although an 

exact quantitative measurement of this was not addressed. Spatial resolution and 

classification are discussed further in Chapter six, section 6.1.4, and further studies 

comparing SPOT and Landsat are mentioned in section 4.1.4. 

4.1.3 TM Applications in the UK 

There now follows a brief review of TM applications which are related to this study and 

located in the UK. This supplements the more wide ranging summary and literature review 

which is given in Chapter three, section 3.3. Numerous studies assessing the potential of 

TM, for vegetation studies have been made. Initial studies were made using the data from 

aircraft-mounted scanners, which simulated the spectral performance of the TM. This 

aircraft or airborne TM (ATM) data has been extensively investigated and there are 

numerous examples in the literature (Budd and Milton, 1982; Wardley er al., 1987). 

The National Environmental Research Council (NERC) Daedalus campaign in 1982 using 

ATM, evaluated its usage in many applications. Work of interest to this study [concerned 

with using (ATM) in related subject matter] has been made in ecological and agricultural 

studies (Wardley and Curran, 1984; Townshend, 1984). 

Weaver (1987), employed ATM in studies of upland semi-natural vegetation and found it a 

feasible way of monitoring moorland resources. Further research on upland vegetation using 

TM has been carried out, looking at landscape classification, vegetation communities and the 

mapping of upland improved pasture (see for example; Haines- Young and Mather, 1987; 

Williams, 1987 and Wyatt and Jones, 1987). 
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Preliminary analysis of lowland heath cover types was conducted using in-situ radiometer 

and ATM data by Wardley er al., (1987). The classification of lowland heath was achieved 

with moderate accuracy, by using single date TM data to discriminate between the vegetation 

communities (Foody and Wood, 1987). 

Previous work on lowland grasslands has dealt with agriculturally managed pastures, as 

well as semi-natural grasslands. A comparison of aerial photography, ATM and TM, was 

carried out for the surveying of grasslands features (Fuller et al., 1989b). It was found that 

for generalised grassland inventories, TM proved to be the most successful in terms of 

accuracy, cost and flexibility. The temporal requirements for grassland classification and 

mapping has been investigated by many workers; using TM for upland vegetation (Morten, 

1987), (Haines- Young and Mather, 1987), and for lowland vegetation (Wooding, 1987). 

The general consensus being that a combination of a Spring and Autumn scene, produces 

the best discrimination of grassland from other cover-types, and thus classification accuracy. 

4.1.4 SPOT Data Applications 

4.1.4.1 Introduction 

Analysis of SPOT data for a wide range of applications has been undertaken. Studies 

investigated by the Principle Evaluation Programme or PEPS campaign, (comparing SPOT 

utilization with MSS and TM data) have been quite widespread. Such work includes the 

provision of forest inventory data (Khorram, 1987), qualitative assessment of urban and 

suburban fringe monitoring (Townshend, 1987), general renewable resource land cover 

assessment (Cilhar et a/., 1987) and crop and soil mapping (Buttner, 1987). 

4.1.4.2 General Conclusions 

General conclusions found from preliminary work with SPOT or simulated (S.SPOT) data, 

have found that the utility of the improved spatial resolution and therefore more 

informational content, lends itself more readily to visual interpretation than to the ‘state of 

the art’ automated processing techniques. Analysis of the SPOT data indicates that it is 

unlikely to yield any further land cover information beyond USGS Level I or II, when using 

machine algorithms based on spectral rather than spatial data characteristics (Milazzo and 

DeAngelis, 1984). The higher spatial resolution does not extract more detailed information, 

but rather improves the accuracy levels for those classes or features that can be readily 

distinguished i.e., clear boundary detail. 
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In the selection of training areas, the availability of greater numbers of pure pixels in 

homogeneous classes, such as crops, meant it was easier to interactively eliminate boundary 

pixels (Merrit, 1984). Cilhar er al., (1987), also found SPOT data improved detection of 

field boundaries and that field area measurements were more accurate. 

Conversely however, the higher spatial resolution introduces increased intraclass confusion 

in heterogeneous classes such as urban areas, which decreases the overall accuracy levels 

obtainable. Spatial discrimination as a function of the spatial resolution was seriously 

assessed using degraded SPOT data of 80m resolution (Toll and Kennard, 1984). 

Classification accuracy of the degraded multispectral SPOT was actually higher than the 

original data set. The reduced intraclass variation of the degraded data reduced spectral 

overlap and miscategorisation, although small homogeneous classes revealed reductions in 

classification accuracy in the degraded data, because of the increase in boundary pixels. 

It is clear therefore that increasingly finer spatial resolutions does not automatically mean 

better automated classification performances; it is more a function of the defined classes of 

interest. Uniform homogeneous classes will benefit, but heterogeneous classes with large 

amounts of intraclass variation will produce confusion. Such a problem was highlighted by 

Sakata et al., (1987), where training polygons of urban classes contained very large 

variances. 

Having briefly discussed the spatial resolution parameter of the SPOT sensor, the spectral 

resolution of the multispectral mode of SPOT, as compared to other sensors will now be 

examined in terms of applications. It has been shown conclusively that the two visible bands 

of SPOT data are highly correlated (Jones er al., 1987; Jewel, 1987), therefore it is 

effectively a two band sensor. Classification studies using two bands SPOT-2 (red) and 

SPOT-3 (near-IR), showed virtually no decrease in accuracy compared to using all three 

SPOT bands. Thus indicating that the second visible waveband contributes little to the 

classification and may even confuse the situation (Pedley, 1987). 

Feature selection studies on TM data have found that the near-IR and wave bands such as 

middle-IR (TM-5) help to increase classification accuracy, especially in agricultural studies 

(Cilhar et al., 1987). A more detailed description of feature selection and its application to 

TM is given in Chapter five, section 5.1. The utility of band TM-5 was illustrated in 

comparison studies between SPOT and TM (Toll and Kennard, 1984; Sakata et al., 1987). 

Classification assessment was carried out using the three TM bands that corresponded with 

SPOT, and also with the TM spectral regions not included in SPOT. Results showed that 

when similar band compliment was used, comparable classification results were obtained 
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from TM and SPOT, but the accuracy gained was significantly increased by inclusion of one 

of the middle-IR bands TM-5 or TM-7. Therefore, the limited spectral resolution of SPOT 

may limit class discrimination whatever method of classification is attempted. This point was 

illustrated by Cilhar et al., (1987), in assessing the spatial resolution of SPOT for the 

detection of field boundaries. He found that it was essential that spectral contrast was 

evident between adjacent fields in the first place, in order to detect the boundaries. This 

illustrates the interlinked relationship of spectral and spatial resolution, in that there has to be 

spectral contrast present in order to detect spatial details, regardless of how fine the spatial 

resolution is. 

Other workers have found however that in their specific sites, land cover classifications of 

SPOT data were no better or worse than TM performance (Van Kasteren and Verhoef, 

1987). Buis (1984), compared S.SPOT with ATM and TM using an unsupervised 

approach, he actually found S.SPOT exhibited more spectral classes for their specific study 

area. This was attributed to the higher spatial resolution of the SPOT data and relatively 

homogeneous cover types. Also the overall best band for discrimination of crops in a study 

in Brazil was found to occupy the near-IR window of the spectrum, band 3 of SPOT and 

band 4 of TM (Batista er al., 1987). 

In a direct comparison of TM and SPOT, a quantitative and qualitative determination of the 

trade off between the spectral and spatial resolution, produced very varied results. This is 

because the spectral and spatial parameters are highly interrelated, such that spatial resolution 

is a function of spectral resolution and vice versa (see Table 4.5). 

In order to take full advantage of the higher spatial information SPOT provides, 

development and incorporation of contextual algorithms is recommended, using the spatial 

information in an automated classification process. Results of preliminary work in this 

Tesearch area are now discussed, which go some way to achieving this aim. Khorram 

(1987), in a comparison of TM and SPOT sensors, generated textual data from the near-IR 

band, as an aid and improvement to forestry classification. On-going projects, such as 

Fernandez et al., (1987) working on crop identification, are developing texture parameter 

extraction algorithms and Jones et al., (1987), are investigating the use of contextual 

information in knowledge based classifiers for upland semi-natural vegetation. 

Improvements by the use of such an approach have been demonstrated by Pedley (1987), 

using S.SPOT. Contextual information was used in the form of 'per-field', as opposed to 

‘per-pixel' based classifier, to significantly improve classification of a low lying agricultural 

region. 
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Table 4.5 : Spatial and Spectral Characteristics of TM and SPOT 

  

  

SPOT ™ 

Advantages Disadvantages Advantages Disadvantages 

Spatial More detail, Greater intra- Less intra- More mixed 

resolution clear boundaries class variation class variation pixels 

Spectral Near-IR band No middle-IR More None 

resolution band discriminatory 

range 

  

There are a number of general conclusions regarding SPOT's utility, which have been 

determined by a number of researchers, working on a variety of applications (Milazzo and 

DeAngelis, 1984; Sakata er al., 1987; Jewel, 1987); and they can be summarised as follows 

* the high spatial resolution of SPOT at present, lends itself to visual interpretation 

more readily than automated techniques, 

* the spectral resolution is no better or probably worse than current sensors such as 

TM and 

* the greater informational content of spatial detail in the SPOT is not exploited by 

current traditional 'per-pixel' spectral classifiers and some form of contextual data 

needs to be incorporated. 

4.1.4.3 Semi-natural Vegetation and Grasslands 

Pertinent applications related to this study, regarding the utility of SSSPOT and SPOT data 

are now discussed. Most initial investigations of SPOT data, or its simulation, were 

qualitative in nature and forecast promising results from this new sensor. Ripley (1987), 

reported that the improved spatial resolution was a definite advantage in mapping complex 

wetland communities. Qualitative analysis of S.SPOT in multispectral and panchromatic 

modes was investigated by DeGloria (1984b), Merrit (1984) and Sailer er al., (1984) for its 

use in agricultural inventory. From this work, it was found that the characteristics of spectral 

tones and textures could be used to discriminate crop types and their different stages of 

growth. Small fields and boundaries, and within-field variability of canopy surface 

properties were identified. 
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Several boundary conditions were also discernible :- 

* intra-field boundaries, resulting from management practices, 

* inter-field boundaries independent of the contrast between fields i.e. roads, tracks, 

and hedges had unique tonal signatures, and 

* boundaries between cultivated regions and semi-natural vegetation, where a sharp 

contrast occurs between the uniform tone signature of cultivated land and the variable 

tone signature of the semi-natural vegetated areas. 

In a comparison of S.SPOT and aerial photography in mapping productivity levels of 

permanent pasture in France (Girard, 1984b), eight grassland units were differentiated from 

aerial photography, which compared to seven units classified from S.SPOT when using 

vegetation indices and supporting ground data. The resolution of SPOT enabled 

heterogeneities such as topographical effects, soil background and moisture content, as well 

as management practices, to be taken into account. SPOT was also found to be a useful tool 

in inventorying the spatial distribution of grassland units and their potential productivity 

level (Curren et al., 1987). Curran used actual SPOT data, in which he found that the 

relationship of near-IR and red vegetation indices, correlated well to vegetation amount and 

hence productivity. 

Semi-natural upland grassland communities were mapped using S.SPOT, and compared to 

panchromatic aerial photography (Hume et al., 1986). An enhanced false colour compesite 

of the digital SPOT data was visually interpreted by using colour tone, as the criteria for 

defining vegetation boundaries. As opposed to panchromatic photography or the other two 

bands of SPOT, the near-IR, SPOT-3 band, was shown to be important for discrimination 

of specific vegetation communities. 

S.SPOT was compared with MSS for rangeland resource mapping (Maslanik er al., 1984). 

The S.SPOT produced significant improvements over MSS in rangeland classification, and 

the finer resolution pixels produced more interpretable results. S.SPOT was used to identify 

rangeland types, small areas of interest and linear features. The higher spatial resolution of 

S.SPOT over MSS, resulted in fewer mixed pixels and clearer boundary detail, but 

contained more variation or noise within the cover types. 

An evaluation of multispectral SPOT data for the mapping of upland semi-natural vegetation 

by topographical correction was assessed by Jones er al., (1987). Results suggested that 

SPOT data exhibited good potential for the discrimination of these cover types. 
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4.2 Methodology 

To devise a suitable methodology for the classification of semi-natural chalk grasslands, 

theoretical reasoning was used to consider known physical properties of the land surface and 

its interaction with multispectral radiance. This was used with empirical evidence from the 

literature. 

4.2.1 Imagery 

The Landsat-5 TM data used for the study, were portions of scenes 202 (path), 24 (row), 

acquired 9th July 1984 and the 8th May 1985. These were the most recent TM images of the 

study area available at the initiation of this work that corresponded with the EN ground data 

collection. An additional SPOT-1 multispectral image (K, J : 28, 246) dated the 15th of June 

1986, was also obtained for the study. Table 4.6 gives details of the imagery used for the 

analysis, further scene imagery characteristics can be found in Appendix 1. Although, the 

imagery acquired is from different years, the seasonal timings May, June and July coincide 

with the period of maximum vegetation growth. Unimproved grasslands are by their nature 

permanent features and as the Salisbury Plain Training Area (SPTA) ranges are semi-natural 

in nature and undergo minimal management (Porley,1989). The use of multitemporal data 

from different years was felt to be valid. This is in contrast to an agricultural application, 

because of the ephemeral nature of crops, where imagery throughout the growing season 

would be required. 

Table 4.6 : Details of the Imagery used in the Study 

  

  

Scene Sensor Path / Row Date Cloud/cover* View angle 

1 TM-5 202 24.0 09.07.84 1215 Vertical 

2 TM-5 202 24.0 08.05.85 0100 Vertical 

3 SPOT 028 246 15.06.86 0000 Vertical 

  

*Cloud/cover denotes the amount of cloud present in each quadrat (0 is minimum : 5 is maximum) 

Reference data used to support the analysis consisted of :- i) identification by ground 

observation : detailed chalk grassland survey of the SPTAs carried out in the summers of 

1985 - 86, by English Nature’s (EN) field unit (Porley, 1989)( see Appendix 2); and ii) 

farm records (1984 - 85), the author obtained by visiting the area, showing field boundaries 
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and crop type (see Appendix 3). In order to facilitate a grassland survey, the general land 

cover was initially assessed in the training areas. Any non-grassland cover types could be 

masked out of the imagery at a later stage. From farm records the land cover/crop types 

identified were, winter wheat, spring wheat, winter barley, spring barley, oilseed rape, 

woodland, urban areas and the various grassland community types. 

4.2.2 Data Handling 

The Landsat-5 TM and SPOT data acquired was in Royal Aircraft Establishment (RAE) 

format computer compatible tapes (CCTs), subscenes of which were down loaded via a host 

computer to the Digital Image Processing System (DIPS). The data were handled by a low 

cost DIPS developed inhouse. 

CCTs of the imagery were down loaded on to mainframe (Vax 6510 bpi). A subsampled 

extract of the entire scene for one band (the near-IR band), was then transported over to 

DIPS via standard Kermit serial line. For all sets of imagery the near-IR band was used, 

since it displays good contrast without enhancement and is least affected by the atmosphere 

(Townshend et al ., 1988). Therefore by using this band it was easier to determine the 

location of the areas of interest and 512x512 pixel full resolution extracts centred on these 

study areas were extracted for further processing. 

The data was not calibrated or radiometrically corrected because classification and mapping 

were the main objectives of the study. Such corrections become more important, when 

studies are addressed dealing with vegetation amount rather than type (Curran and 

Williamson, 1987). 

For each data set a false colour composite (FCC) was created, with TM, bands 4 (red gun ), 

5 (green gun ) and 3 (blue gun ) were combined. For the SPOT imagery, band 3 (red gun), 

band 2 (green gun) and band 1 (blue gun) were combined. The rationale behind the FCC 

selection is described in Chapter five, sections 5.1 and 5.2., although some analysis of other 

new and traditional TM band combinations was undertaken (Chapter seven, section 7.1). 

The images were contrast enhanced to facilitate interpretation and processing. 

Scaled FCC were produced, using TM-4, 5 and 3 band combination and SPOT-3, 2 and 1 

band combination. These were used in conjunction with Ordnance Survey (OS) maps and 

ground data to visually identify the major and minor land uses of the study area. 

Contrast enhancing, or stretching, is a transfer function via look-up tables (LUT), which



alter old pixel values to new pixel values. Various stretches can be applied which basically 

shifts the pixel values to the full radiometric range. Fundamentally, a stretch expands the 

original input brightness values (BV) to make use of the total range or sensitivity of the 

output device, a display medium which is generally a video cathode ray tube. There are 

linear and nonlinear digital contrast enhancement techniques (Jensen, 1986). Linear stretches 

shift the pixel values by equal amounts. Nonlinear stretches reduce contrast in high and low 

values, but increase mid-range values and with this stretch the amount of shifting is 

proportional to number of pixels with specific value. 

4.2.2.1 Registration and Geometric Correction 

The use of two or more images of the same scene but taken at different times, i.e., 

multitemporal data, will generally enhance the classification of the imagery (see Chapter 

five, section 5.3). A fundamental pre-requisite for the use of multitemporal data is the ability 

to register the imagery to a common projection, i.e., image to image and/or map. This is 

necessary for pixel to pixel comparison from one date to another. The accuracy of any 

results derived from multitemporal data sets are closely related to the accuracy of registration 

of the original scenes (Anderson, 1985). 

Geometric correction of each scene was carried out, matching image points with known 

ground locations, as found on 1: 50000 scale OS maps, and using the corresponding pairs 

of co-ordinates to generate the co-ordinate transform equations. Approximately twenty 

ground control points (GCPs) in the vicinity of the study area were used for each temporal 

subscene. 

For detailed comparison, the two TM scenes and the SPOT scene were registered to the 

BNG (British National Grid). Geometric correction restores the image, correcting the 

random internal sensor distortions (systematic distortions) that the satellite imagery can 

contain. Most of the the digital data that the user receives have already had systematic error 

removed by the satellite companies (Billingsley, 1983). Random changes in the sensors 

orbital characteristics (non-systematic distortions), such as yaw and roll can also be 

corrected by this procedure, but sufficient number of GCPs are needed to do this accurately 

(Jensen, 1986). Generally, ‘users' have to correct this latter type of geometric error, 

depending on the amount of image preprocessing already done before the ‘user’ receives the 

data. 

An auto-linear contrast stretch was found to be the most effective for ground control 

pointing of features which were easily recognised on both the stretched images and the OS 
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map. The sample and line numbers were determined from the starting image, and the BNG 

co-ordinates read off from the map were converted to sample and line numbers in the target 

image. Accurate GCPs require points with high contrast and reproducible positions. Road 

and rail intersections provide good control points, but care must be exercised with natural 

features. 

Two basic procedures must be preformed to geometrically correct a remotely sensed image 

(Jensen, 1986) :- 

* spatial interpolation : this is the geometric relationship between input pixel location 

and the associated map co-ordinate of this same point, used to rectify the output image. This 

interpolation uses least-squares criteria to model the corrections and transformations which 

correct the imagery to a geographic frame of reference. Approximately 20 control points for 

each scene, were used to determine the second order poynominal which describes the 

transformation from the starting (original image) to target (BNG map) co-ordinates. Once 

the transformation or T-matrix describing the transformation has been created, this can be 

stored and used to geometrically correct the imagery when all the processing, such as 

classification, has been completed. 

* intensity interpolation : which is the process whereby pixel brightness values (BV) 

or digital numbers (DN) are calculated, once the spatial interpolation has been determined. 

There are three methods of intensity interpolation in common use, each with its own 

advantages and disadvantages. The practice of BV interpolation is commonly referred to as 

resampling. The first is termed nearest-neighbour and is the simplest to calculate. It basically 

takes the DN of the pixel in the input image that is closest to the computed output co- 

ordinates. A full mathematical explanation is given by Mather, (1987a). The advantages are 

that it is computer efficient and that its use ensures that the pixel values in the output image 

are 'real', in that they they are copied directly from the input image. They are not artificial 

values, such that this interpolation does not alter the pixel DN. It is often the very subtle 

changes in brightness value or DN that make all the difference when discriminating 

vegetation types, thus this method is often favoured by earth scientists (Jensen, 1986). On 

the other hand, it does produce a rather blocky effect, as pixels tend to be repeated (Mather, 

1987a). 

The other two interpolation techniques use averages to compute output intensity value and 

often remove valuable spectral information. The second method is termed bilinear 

interpolation and this takes account of the four neighbouring pixel values and computes new 

DN based on the weighted distances to these points. This interpolation results in a smoother 

output image, because it is essentially an averaging process. Thus sharp boundaries in the 
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input image may be blurred in the output image and the computational requirements are 

greater than nearest-neighbour. 

The third in common use, bicubic convolution, works in the same manner as bilinear 

interpolation, except that the weighted values of the 16 nearest pixel values in the input 

image, are used to estimate the new value on the output image. This technique is more 

complicated than the other two, but it tends to give a more natural-looking image, without 

the blockness of nearest-neighbour or the over-smoothing of the bilinear method (Mather, 

1987a). The penalty being a considerable increase in computing requirements. 

The resampling algorithm should therefore be considered carefully, and the choice of 

method therefore depends on the amount of computer facilities available and on the use the 

corrected image is put to. If it is to be used solely for classification, the replacement of raw 

data values with fabricated interpolated values by the last two techniques described, may 

have an effect on the subsequent classification. 

Geometrical and resampling error of scene to scene registration of multitemporal data is 

substantially less than that involved in scene-to-map registration i.e., the geometrical 

changes of rotation are less between two scenes (Townshend et al., 1988). Therefore, 

classification was carried out on registered scenes, and as a final step the classifications were 

transformed to map coordinates by bicubic convolution. By geometrically correcting after, 

rather than before the classification, this eliminates the need for choosing the nearest- 

neighbour method and it would be the most economical procedure for this type of straight 

classification study (Mather, 1987a). 

As a formal and quantitative account of classification accuracy, an additional data set of a 

ground vegetation survey map was integrated with the satellite data sets. Integration of the 

vegetation map data and remotely sensed data can be used for quantitative and qualitative 

interpretation and analysis of images (Pedley, 1986). When integrating data sets from two 

different sources (i.e., vector cartographic data and raster satellite data), Baker and 

Drummond (1984), put forward requirements that the two data sets :- 

* be of the same format (i.e., conversion of vector data to raster format), 

* be transformed to a common co-ordinate system (i.e., the BNG in this case), 

* be of compatible resolution, and 

* be contemporaneous. 

All of these criteria were fulfilled by the data obtained for this study. 
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The EN vegetation map compiled by field survey, was vector digitised and converted to 

raster format and transferred to the image analysis system (DIPS). The raster vegetation or 

cartographic data can be produced in two forms. Firstly, as an overlay showing boundary 

detail for visual comparison with the satellite data. Then secondly, digital cartographic data 

can be employed to generate solid region of interest polygons for the pertinent ground cover 

types : these can then be combined with the registered multitemporal satellite data This 

procedure can then be used to supervise the training area allocation for classification, and 

assess the accuracy by selection of test verification data as well. It also enables pixel-by- 

pixel comparisons to be made between ground data and satellite classifications. 

Once the data sets have been integrated, complete images can be displayed, with near-IR on 

the red gun, the red visible band on the green gun and the digital vegetation map on the blue 

gun. It is possible to display individual components, such as the digital vegetation map, a 

vegetation index image and a density slice or a composite image, as an aid to image 

interpretation and analysis. Pedley (1986), suggested that such a set up can enable further 

processing, in that selected features of interest, for instance field boundaries from an OS 

map, can be shown and used as a basis for 'per-field' automated classification. 

4.2.2.2 Environmental Variables : Atmospheric Effects, View Angle and Topographical 

Effects 

The radiance measured by earth orbiting satellites is a combination of the energy reflected 

from the ground (attenuated by the atmosphere), and the radiance of the atmospheric path. 

The path radiance in turn, is caused by the illumination of atmospheric components by 

sunlight, by other components of the atmosphere and by light reflected to the ground. Due to 

the combined effects of attenuation and path radiance, a given pixel as seen at the orbiting 

sensor may appear either lighter or darker than it would at the ground. There is as yet no 

adequate measure of atmospheric effects (Jensen, 1986). 

Certain bands will almost certainly be affected by the degree of interactions of radiation and 

the atmosphere. In the case of Landsat TM, the affect will be strongest for band 1 and least 

for band 4, and to a certain extent with TM-5 and TM-7 by the presence of water vapour. 

The spectral coverage of SPOT means that atmospheric effects are less significant than with 

TM. There is no quantitative estimate of the atmospheric contribution, however, these 

effects can be estimated by various methods and models in order to calculate attenuation and 

brightness (Jenson, 1986). 

Since the sub-scenes obtained for this study area were for the most part cloud free, unhazy



and that TM band 1 was not used in the colour display of imagery, the atmospheric effects 

were ignored. 

Classification using spectral responses assumes that spectral responses are spatially 

independent. However, dissimilar spectral responses can be observed from areas of the 

same land cover class, sensed under different viewing geometries. Vegetation canopies often 

exhibit a rather different detected spectral response when viewed at a angle, compared to that 

when viewed vertically downwards i.e., nadir viewing. One of the main reasons for this is 

that vegetation canopies are imperfectly diffuse (non-Lambertian) reflectors and they do not 

reflect incident radiation equally in all directions (as previously mentioned in Chapter three, 

section 3.2). The magnitude of this effect is modulated by intra-class spectral variability i-e., 

the effect is more apparent for a homogeneous cover class covering a large spatial area, than 

for a heterogeneous cover class. 

This effect is not thought to be significant for MSS data, which has a 11° field-of-view and 

for TM data which has a field-of-view of + 15° from nadir. But for other sensors, such as 

Advanced Very High Resolution Radiometer (AVHRR), Synthetic Aperture Radar (SAR) 

and SPOT, the field-of-view can be up to + 112° from nadir and thus view angle-effects 

will be very significant (Foody and Wood, 1987). Barnsley (1984), reported that for the 

higher latitudes (>50°) such as the UK, that SPOT (or other satellite) imagery collected 

close to the summer solstice will have minimal view-angle effects. 

The SPOT imagery, acquired for this study was dated June, which is close to the summer 

solstice, and therefore (due to the use of TM scenes and a nadir SPOT scene of + 16° view 

angle all acquired in the summer season), an assumption was made that the view angle effect 

on spectral response for a given cover type would be insignificant. 

Topographical effects of the terrain on spectral response from nadir pointing sensors have 

been shown comprehensively to be very significant. Holben and Juistice (1980), found that 

a wide range of pixel values can be associated with one cover type, due solely to variations 

in slope angle of the terrain and aspect, and thus influence the accuracy of information 

extracted from remotely sensed data. Hall-Konynes (1987), investigated topographical 

effects on Landsat data for three dates in gently undulating terrain in Southern Sweden. 

Gently undulating terrain was defined as terrain dominated by slopes between 1° and 159. 

The relationship between Landsat MSS and TM response variation and topographic 

parameters within cropped areas and forest was weak, but for some pasture covers a 

topographical effect was identified (for April only) relating to slope aspect and slope 

magnitude. 
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Therefore, in the context of this study conducted in the Salisbury Plain area, which can be 

essentially described as gently undulating chalk downland, with slope angles of the range of 

10-139 and with a mean gradient of about 7°, topographic factors, such as slope degree and 

slope aspect, should not unduly adversely affect spectral response, even though dealing 

primarily with grasslands cover types. Since the study area is gently undulating lowland, 

variation due to topography was less significant than variation due to real vegetational 

differences. 

4.2.3 Digital Image Processing System (DIPS) 

An inhouse workstation was used, which was based on an IBM PC-AT image processing 

system called 'ITS-30' (Flach and Chidley, 1987)(Flach er al., 1987), which was controlled 

by commands from a keyboard and mouse drive. It incorporates a software package termed 

‘iconoclast *, which have been integrated in a 'WIMP'S' environment to provide a user- 

friendly front end with pop-up menus and interactive screen update. 

In addition several subsystems or peripherals were used :- 

* a text character generator used to display instructions and information on a 

colour monitor, 

* a floppy disc drive card controlling the floppy disc unit and also interfacing 

that unit to the system. Standard 5.25 inch, soft sectored discs were used to 

store and input additional software. A 230 megabyte two-sided high density 

laser disc storage system. 

* a standard serial line interface (via Kermit) for communication with host 

computer (Vax 8650 ), 

* three 0.5 Megabyte image planes ( frame stores ) each capable of storing 1024 

x 512 x 24 bit image. Each image plane is attached separately to the Red, Green, 

Blue inputs of high resolution display monitor, providing 256 shades of each 

colour combining to give a palette of 16.8 million colours, 

* the framestore on each image plane is configured as two pages of 512 x 512 

pixels, eight bits deep. This means six images or bands can be held in the 

framestore simultaneously, although only three bands can be displayed on the 

monitor at any one time. 
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* a super VHS full colour video camera, whose output can be digitised via a 

frame grab module to provide a 512 x 512 x bit image and 

* an Integrex colour jet 132 ink-jet plotter and Al H.P. plotter, to provide hard 

copy of images displayed on the monitor. 

As well as the ‘iconoclast ’ image processing software, the system also incorporates video 

digitisation, a digital mapping system and a spatial analysis package culminating into a full 

Geographical Information System (GIS) environment. 

4.2.4 Training and Test Area Selection 

Due to the fact that comprehensive ground data or a priori knowledge was available, 

supervised classification was attempted and training data selected. Ground data in the form 

of EN vegetation maps incorporating the NVC scheme, were used in conjunction with 

remotely sensed satellite imagery. 

Such information may be used for two purposes, (Bradbury and Macdonald, 1986). Firstly, 

‘training sites’ were used for the generation of spectral statistics for each cover class. 

Standard statistics are generated, such as the mean (X ), standard deviation ( s ) and 

covariance matrices. Secondly ‘test or verification’ sites from the reference ground data are 

used to assess the land cover classification performance. 'Per-point' or 'per-pixel' sampling 

test areas were chosen primarily, because they enable classification confusions between 

cover types to be highlighted by the production of confusion matrices (Bradbury and 

Macdonald, 1986). By using objective ‘test’ areas for the assessment of classification, lower 

relative levels of accuracy can be expected, compared to results quoted for other references. 

However, the use of test areas produce classification figures that are in fact the ‘real’ 

accuracy of remote sensing results and not the higher subjective results obtained when 

classification performance is judged by sole usage of training area data (Congalton, 1991). 

The training areas were selected at random, but stratified to avoid boundaries in cover 

classes. Training populations were selected that were approximately equal for each class and 

the number of pixels in each class were determined by the procedure put forward by Swain 

and Davis, (1978). This is where there are 10n to 100n pixels per class, where n is the 

number of bands used in the classification. It is important to represent the classes with 

sufficient number of pixels, and to ensure that they comprise an exhaustive and 

representative set of all the spectral variation for each class, within the study area. However, 

care must be exercised in training area selection (McMorrow and Hume, 1986). Further 
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information on the selection and sampling of training and test sites see Chapter Seven, 

sections 7.3.1.1, 7.3.1.4 and 7.3.1.5. 

Many classifying algorithms assume that the data exhibits a Gaussian or normal distribution, 

but this is not always the case. It has been shown that the method of training data selection, 

as much as the type of classifier used, affects classification accuracy. Hixon et al., (1980) 

reported that the major variable affecting classification accuracy is not so much the type of 

classifier used, but rather the method used to generate training statistics. 

Whilst a considerable amount of effort has been devoted to the analysis of the performance 

of classification algorithms, research into training data and its selection has largely been 

ignored. Adequate and representative training data with respect to their parent class are 

needed, since the inclusion in the training data of pixels which do not belong to the class in 

question can seriously distort sample statistics and hence the performance of the classifier. 

Most classification algorithms are parametric in nature, in which certain assumptions apply 

regarding the normality of data distributions. 

A study by Mather (1987b), drew attention to the effects of the inclusion of atypical pixels in 

training data; a robust automated procedure was outlined for the removal of such pixels and 

such a procedure was demonstrated on model data. Glasbey (1988), took this a stage further 

and used actual multispectral training data of two cover types. When a more robust 

estimation of probability membership was applied to the training data, it was found that 

outlining or atypical pixels were ignored. The atypical pixels were found to correspond with 

boundaries of fields, the training areas had been specified too large and had included 

boundary pixels. Therefore, either care should be exhibited with training area selection, or 

the application of a robust procedure should be used to protect against atypical pixel values, 

which may be present in the training statistics. One such procedure could be the use of a 

crude form of spatial auto-correlation i.e., model filtering to remove atypical pixels in the 

training data. This technique is usually applied to filling in missing scan lines in digital 

imagery, (Mather, 1987a). 

The establishment of training area polygons on the enhanced imagery from a priori 

knowledge was the initial stage in the classification procedure. Training areas were defined 

by means of a mouse, and from these areas the multi-dimensional pixel values were used to 

generate statistic files. These were used to examine and compare spatial characteristics of the 

data. The statistics for each cover class were then viewed by a number of quantitative image 

processing functions. Graphical methods allow fundamental understanding of the spectral 

nature of the data, rather than relying on totally abstract statistical analysis (Jenson, 1986). 
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However, such statistical measures, such as transformed divergence, provide a quantitative 

assessment of the data and are discussed in Chapter Five, section 5.1.2 on statistical 

separation. Frequency histograms of DN values were generated. Frequency histogram plots 

are basically grey level DN values plotted against the frequency of occurrence of grey levels 

for a specific cover type and wavelength band. Frequency histogram plots can be used to 

check the characteristics of training data sets for bimodel or multimodel distributions. 

The multispectral response graph or coincident spectral plot is basically the mean ( x) 

spectral response for each cover type plotted against wavelength. Standard deviation (s ) 

from the mean is calculated and displayed either side of the mean. The larger the standard 

deviation the greater the variance. From examination of coincident spectral plots, the relative 

spectral response of cover types are illustrated from one part of the spectrum to another. 

Specific combinations of wavelength bands, graphically illustrated by coincident spectral 

plots, could enable the spectral discrimination of cover types, which were probably not 

possible in any single wavelength band or other band combination. 

Separability measures of the classes were graphically illustrated by coincident spectral plots 

and computed two dimensional scatter plots using two bands. Having graphically checked 

the training class statistic files, they were then inputted into the classifying algorithm and 

then the raw classified images were displayed and compared with ground reference thematic 

maps. 

Confusion matrices were generated, which enabled classification accuracies between the 

cover types to be highlighted. The accuracy value for each cover class was simply taken to 

be the percentage of correctly identified pixels in the ‘test/verification’ sites for each cover 

class. Errors of omission are the percentage of incorrectly identified pixels in the test sites 

for each cover type (i.e., class x was classified as another class). Errors of commission 

represent the amount of over-estimation by the classifier (i.e., pixels from other classes are 

labelled as class x). Confusion matrices are described in more detail in Chapter seven, 

section 7.3.1.4. 

In summary therefore, it would seem that any classification performance is only as good as 

the training data used. Which is in turn dependent on the skill of the analyst, his knowledge 

of local vegetation and land cover, and the way training areas are selected. 

The basic classification procedure used in this study is an adaption based on the flexible 

methodology put foreword by Van Genderen and Uiterwyk (1987). Such a procedure 

allows efficient and reliable classification and production of thematic maps from digital data. 
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An overview of the procedure is outlined below and is schematically illustrated by Figure 

4.1, with the various stages annotated :- 

i) enhancement of the imagery by contrast stretching or spatial filtering, to facilitate 

digital and visual analysis; 

ii) to define interactively training area locations, from which training statistics are 

generated; 

iii) view and edit training statistics, this can be done graphically by viewing the shape 

of histograms of class statistics, or by generating scatterplots showing the bivariate 

frequency distribution for two bands, and/or by statistical methods by using some 

form of measure of separability, a common example being transformed divergence; 

iv) the analyst selects and implements a suitable classifier; 

v) the results of the classification can be viewed on the display and compared with 

ground data. If insufficiently accurate, it is possible to loop back in the sequence of 

stages to either revise the training sites, the training statistics or apply another 

classification algorithm; 

vi) the next stage is to specify the accuracy of the results, usually by means of a 

confusion matrix; 

vii) once acceptable classification has been obtained, post classification techniques 

such as logical smoothing or model filter, can be applied to increase accuracy, or 

present a more ‘thematic map’ quality to the end product. 
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CHAPTER FIVE 

IMAGE ANALYSIS TECHNIQUES 

This chapter introduces the reader to some of the analysis techniques available and employed 

in the extraction of information from remotely sensed imagery. A detailed account is given 

of the background and the various options used in feature selection, and the reasons for 

choosing particular band combinations used in this study. This goes hand-in-hand with a 

teview of interactive visual analysis and of the various colour displays that can be used. The 

final section of this chapter deals with the use of multitemporal data sets in the analysis of 

relevant areas of research. 

5.1 Feature Selection 

5.1.1 Introduction 

Feature selection is the technique used to select, or otherwise combine in someway, the 

original bands of multidimensional data. This is done to :- 

i) produce a displayable image, and 

ii) reduce the volume of data that must be processed and analysed. 

It is obvious that it is to the 'users' advantage to work with as few components or bands as 

possible, because in operational circumstances there will be limits of both time and budget 

for processing the data. The main objective is to remove data redundancy and efficiently 

extract useful information. 

In the case of TM, there are seven bands available; however generally the coarser resolution 

thermal band is not usually used, i.e., it is frequently discarded in general mapping 

applications of remote sensing (Townshend et al., 1988). In the appropriate conditions, each 

of the remaining six reflective spectral bands can contribute unique information. 

The prime requirement is to identify which three band subset would be optimum for a 

particular application. There are 180 possible three band combinations for the six spectral 

TM bands, when considering all band permutations and display colours. If colour 

assignment is resolved (see section 5.2.2 on colour assignment), there are still twenty band 

triplet permutations possible. 

Feature selection both for the creation of colour composite imagery and for digital analysis 
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should be carefully tailored to the results desired for a specific application. Since there is no 

‘best’ subset of bands for all cover classes, it is important to identify what are the most 

significant classes of interest and which spectral bands contain the most information of 

interest. 

Multispectral data can be expected to contain a certain degree of correlation between the 

different spectral bands for the same object in the band images. Therefore, these images can 

be said to contain a certain amount of redundant data. This can be reduced by choosing the 

least correlated bands, since remotely sensed multispectral data has been shown to contain 

high interband correlations; MSS, Staenez et al., (1980); TM, Townshend and Justice 

(1980); SPOT, Toll and Kennard (1984). There is a redundancy of information which is 

source dependant, such that the intrinsic dimensionality required to characterise a specific 

data set is often less than the number of available bands. Research has shown that 

classification performance does not increase exponentially with the number of bands used. 

Work on TM has illustrated that for most specific tasks, three or four bands provided overall 

classification accuracies comparable to using all seven bands (Toll, 1984; Ahern et al., 

1980). The value of some sort of data compression is evident, especially in the light of on- 

going and future sensor development, where there is a trend of increasing spatial and 

radiometric quality, which results in larger volumes and dimensionality of data generation 

and therefore computational demand. 

There are several common approaches to the reduction of the dimensionality or feature space 

of the data. The simplest method involves manual selection of an optimum subset based 

upon a priori knowledge. Selection can also be made upon one of a number of statistical 

separability measures or by reducing the dimensionality of the data by various 

transformations. The latter two methods are now discussed in detail. 

5.1.2 Statistical Separation 

5.1.2.1 Transformed Divergence 

The most common and accepted statistical separability measure is the transformed 

divergence measure; there are numerous others, but only transformed divergence is 

considered here. Transformed divergence methods allow the relative worth of features to 

assessed in a quantitative way. This procedure determines the mathematical separability of 

classes; in particular, feature selection is performed by checking how separate various 

spectral classes remain when reduced sets of features are used. Provided separability is not 

lowered by the removal of features, then those features can be considered of little value in 

73



aiding discrimination and therefore should be discarded in the classification process 

(Richards, 1986). 

Pairwise transformed divergence is a measure of two probability density distributions 

(Singh, 1984). The divergence statistic, measures the separability of any two classes in 

feature space taking into account both the differences in their mean vectors and variance- 

covariance matrices. It can be computed for various multispectral band groupings, in order 

to optimise the number and choice of waveband combinations in feature selection (Cushnie, 

1984). The divergence measure of statistical separation can also indicate separability 

between classes, and has been used as an indirect approximation of classification 

performance (Thomas et al., 1987). 

The use of divergence or any separability index has therefore two roles :- 

i) it recommends the lowest number of bands that will produce adequate accuracy 

(band feature selection); and 

ii) it identifies classes that have poor separability for a given data set. 

Thomas et al., (1987), provides a review paper of most of the common multi-band statistical 

separability indices used in remote sensing. It is evident that such techniques can be very 

useful in feature selection (Richards, 1986), however this technique was not used in this 

study because of software limitations. 

5.1.3 Transformations 

For some applications it may be advisable to use new and more suitable data sets. A suitable 

method of data transformation can then be applied to the data. 

5.1.3.1 Band Ratios 

The process of dividing spectral bands of the same image is known as ratioing. It is one of 

the most common transformations applied to remotely sensed images. Band ratios can 

reduce the dimensionality of the data set, highlight differences in spectral reflectance 

between different cover types and can eliminate undesirable effects on the recorded 

radiances, such as topographical effects. The most common spectral ratio used in studies of 

vegetation is the simple ratio of near-infrared (IR) band over the red visible band. This ratio 

exploits the fact that vigorous vegetation reflects strongly in the near-IR and absorbs in the 

visible red. It has been found that this band ratio correlates well with vegetation amount and 
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with Green Leaf Area Index (GLAI) by Curran, (1983). More complex ratios involve sums 

of, and differences between, spectral bands; for example - the Normalized Difference 

Vegetation Index (NDVI) has been widely used (Mather, 1987a). Such ratios are suggested 

to be more appropriate for use in studies over time for a single area, where comparisons of 

production are to be made. 

5.1.3.2 Principal Component Analysis 

Reduction of the dimensionality of a data set can be achieved by principal component 

analysis (PCA). This second systematic approach involves the linear transformation of the 

original bands to a set of uncorrelated new orthogonal transformed components, in which a 

maximum amount of spectral information is accounted for in descending order along the 

transformed component. One common linear transformation is called the principal 

component or Karhunem-Loeve transformation, in which new data sets are created. These 

PC generated images are then totally uncorrelated with each other. They correspond to the 

eigenvector of the image covariance matrix and are ordered by decreasing eigenvalues. The 

informational content of the multispectral bands is redistributed among these components in 

such a way, that most of it is concentrated in the first few principal components. Generally, 

a subset of the three or four higher order eigenvectors will account for almost all the 

information contained in the entire set of original wavelength bands, resulting in 

approximately the same classification performance as if all the original bands had been used. 

In essence, eigenvector coefficients define the orthogonal co-ordinate system projected 

through the dimensions of maximum variance or information content of the data in N- 

dimensions. The first component has direction through the maximum variance with length 

proportional to the first eigenvalue. The remaining vectors and values determine the 

orientations and lengths respectively of the second and higher components axis, each in the 

direction of the maximum variance remaining in the data (for fuller mathematical 

explanation, see Dean and Hoffer, 1983) . 

By transforming the original multi-band data set using PCA, the optimum dimensionality or 

information content can be determined from the eigenvalues. In addition, specific original 

bands can be defined using eigenvector coefficients, as being the most important in terms of 

information content (feature selection); for both specific cover types and for a multi-class 

situation. One concern is that there is potential loss of descriptive information about the 

relative importance of the various wavelength bands for individual cover class 

discrimination. In a multi-class situation, of varying a priori probabilities, the eigenvector 

coefficients will indicate only the the overall importance of the original wavelength bands for 
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the entire data set. Individual cover classes may not be optimally represented in the 

eigenvectors, since some classes may have high a priori probabilities and/or a relatively 

large spectral variance and therefore exert more influence on the resulting eigenvectors. 

Previous research has shown that with MSS imagery, the first two principal components 

contain 98% of the essential variance, or information content, present in all original spectral 

bands. However, PCA of TM imagery revealed that it was the first three principal 

components that contain 98% of the information. Therefore, it can be said that MSS data is 

basically two dimensional and that TM data is three dimensional. There are numerous 

examples in the literature of the use and application of PCA (Anuta et al., 

1984)(Townshend, 1984). 

PC generated images of MSS data gave greater classification performance for general land 

cover classes, than the best three original spectral bands in feature selection (Ready and 

Wintz, 1973). Generation of PCs for TM data created a subset of three higher ordered 

eigenvectors, that when classified produced approximately the same classification 

performance as if all seven original bands had been used. Here, there is the added advantage 

on the saving of computational processing time (Dean and Hoffer, 1983). 

PCs have been used in the analysis of biomass and percentage cover of monoculture grass 

canopy using TM. The first two principal components contained all the variation found in all 

the origina! spectral bands (Ripple, 1984). It was suggested that from PC transformation 

that two or possibly three PC subsets of the original bands may be sufficient for mapping 

grassland vegetation characteristics with TM imagery. 

5.1.4 Feature Selection for Three Colour Display 

Since only three bands or images can be seen on a image display at any one time, many 

authors have addressed the question of which three band subset to use. It has been shown 

convincingly from empirical evidence (Townshend, 1984), that the best combination of 

three bands for TM data includes one from each of three regions of the spectrum (the visible, 

near-IR and the middle-IR). This is most readily done by simple correlation analysis of the 

bands. The more complex techniques mentioned in the previous section, have also been 

used in feature selection for the best three band or image colour display; and these are now 

discussed. 

Studies have used transformed divergence values, for band feature selection and for the 

analysis of spectral class separability of TM. In the former case, Buis (1984), used this 
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measure to select the optimum number of bands for ATM and TM. It was found that adding 

a fourth, fifth and sixth spectral band did not significantly increase separability, and that a 

three band subset was an appropriate number with which to process. 

Other workers have investigated alternative methods to transformed divergence, as a means 

of determining optimum band selection. Chavez er al., (1984) addressed the problem in 

detail by using automated statistical means, since :- 

“in deciding which band combination contains the most 

information on the basis of visual analysis would be very 

difficult and a time consuming process”. 

A quantitative statistical technique called the Optical Index Factor (OIF) was developed. This 

was used to rank the twenty possible combinations of the six spectral bands, based on the 

amount of correlation and total variance present between the various data sets being used. 

The OIF algorithm generates values and the largest value generated from the OIF for a 

particular three band subset displays the most information and the least amount of 

duplication, as measured by variance. For a temperate agricultural region, it was found that a 

combination of one visible band (TM-1, 2 or 3, all of which provide similar information); 

one longer wavelength IR band (TM-5 or 7, which provide information different from the 

other bands, but were correlated to each other); together with TM band 4 from the near-IR 

region, (which contributed unique information), provided the most useful information. TM 

band 4 was present in five of the first six ranking triplets generated by the OIF. 

Having established that TM-4 provides information not provided by other bands, there is the 

question of which visible band to use and which middle-IR band to choose. As this study is 

concerned with vegetation, specifically grasslands mapping, the relevant literature was 

reviewed, where it was found that precise three band triplets utility was quoted. 

The literature suggests that most band selection is made rather crudely by calculating 

correlation coefficients for each band in the multispectral imagery and selecting the three 

least correlated bands. Applications, using this measure of informational content, 

consistently found a three band subset of TM-4, 5 and 3 was the optimum. For example, 

Staenez et al., (1980), working on nine common crop types found that the lowest band 

intercorrelations were for TM bands 4, 5 and 3, and similar results were also found by Toll 

(1984). DeGloria (1984a) investigated crop discrimination, described the low interband 

correlation of TM-4, 5 and 3 in terms of physical interaction of the specific bands and 

surface material. The relative low correlation resulted from the combined influence of 
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vegetated and non-vegetated surfaces absorbing red radiation TM-3; plant canopy structure 

and background surfaces reflecting near-IR, TM-4; and plant canopy moisture and moist 

surfaces absorbing mid-IR TM-5 radiation. Gorden er al., (1986), used TM bands 4, 5 and 

3 to separate fruit tree orchards from other vegetation cover types using multitemporal 

imagery. 

Further studies, more relevant to this research topic, also found that a subset of bands TM- 

4, TM-5 and TM-3 were the best, for USGS hierarchical (Anderson et al., 1976) Level I 

classification (Townshend er al., 1983); for Level II (Synder and Story, 1986; Toll, 1984; 

Anuta et al., 1984); for assessing rangeland conditions (Thomson er al., 1984), and for 

mapping lowland British grasslands (Fuller and Parsell, 1990). 

Thomson et al., (1985), investigated three band colour displays for the visual interpretation 

of rangeland conditions. It was found that TM-7 had slightly more cross correlations with 

other bands than did TM-5, and therefore TM-5 was found to be the better middle-IR band. 

The least correlated three band subset was again TM-4, 5 and 3. 

Other sources have suggested that TM band 1, primarily designed for water penetration, 

appears to be the most powerful of the visible bands, even over land areas (Chevez et al., 

1984; Colvacaresses, 1986). However, this might be true for general land cover categorises, 

but the preceding evidence suggests that the visible TM band 3 is superior for specific 

vegetation and range/grassland studies. 

Sheffield (1985) presented a different statistical band subset selection algorithm, which was 

applied to the seven TM bands. This approach used an adaption of a general principle 

component (PC) transformation, without actually performing rotational transformation and 

therefore using the original band statistics. Thus, the use of this procedure provides a single 

preferred choice, decided uniquely by the statistics of the scene or subscene and taking into 

account any correlation that exists between different bands, for a particular sensor. In 

accordance with other workers, band combination of TM-4, 5 and 1 and band combination 

of 4, 5 and 3, were selected by the computer algorithm for several quite different satellite 

scenes, as the two ‘best’ triplets with the most information content. Colvocaresses (1986), 

reviewed the voluminous available literature on TM spectral response and band selection. 

In order to make a colour display or colour composite, as mentioned before the three least 

correlated bands should ideally be used. However, with this method some redundant 

information will be retained, whilst a certain amount of information present only in the 

omitted bands is lost. One solution to this problem is to use all the available data and apply 
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some form of data compression technique. 

One method of display and reduction of the dimensionality of the data set can be achieved by 

band ratios (Jewel, 1987). There are drawbacks however; ratio images contain no brightness 

(albedo) information (Rothery, 1987) and secondly as with PC colour displays, colour 

images of band ratios are scene dependent, and interpretation of the images requires a lot of 

experience and knowledge of the area and its management (Thomson et al., 1984). 

Thomson used multidate normalised difference vegetation indice (NDVI) from MSS data 

and concluded that it was unsuitable as a operational rangeland management tool, due to its 

complexity of interpretation. 

A widely used method of data compression is the principal component (PC) transformation. 

The PC technique is arguably one of the best ways to select data to be assigned to the three 

fundamental colours, in order to produce colour displays of multispectral imagery for visual 

interpretation (refer to section 5.2.2 on colour display). In a statistical sense, the use of the 

first three PC images in a colour combination, presents as much information as possible 

using three colours, in comparison to a original three band colour composite image. 

However, it cannot be said beforehand that for visual interpretation of all kinds of features, 

the PCs of an image are exactly equivalent to the original bands. The PC images are also 

usually contrast enhanced in order to obtain displays suitable for visual interpretation, even 

though the variance or informational content is greater than any three original spectral band 

subset. 

A problem encountered in this technique is in the display and enhancement of such 

transformations. Caution should be used, because when the variance of the displayed data is 

increased too much by means of high contrast transformations, unwanted artifacts can be 

introduced and identified as real features by visual interpretation. Bryant (1988), stated that 

with simple stretches the colours became unpredictable: small changes in the input scene, 

lead to wild changes in output colours. This undesirable behaviour so hampered image 

understanding, that the original multispectral images had to be constantly at hand in order to 

interpret the reduced PC image; which ironically defeats the object of the exercise in the first 

place. 

A systematic study of the PC technique for image display in a geological application using 

MSS, avoided artificial artifact creation by using linear radiometric enhancement 

(Santisteban and Munoz, 1978). Canas and Barnett (1985), demonstrated the PC technique 

as a potential method for the presentation of essential information contained in multispectral 

imagery in the form of a FCC. Ellis (1977), found that PC data sets maximised colour 
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differences of cover classes to a degree not possible with other data dimensionality reduction 

techniques, such as vegetation indices. 

Another drawback however, is that the PC transformation image generated is scene 

dependant, this results in images to which exact physical meaning cannot easily be 

attributed, i.e., they are false and completely arbitrary. They cannot be related simply to 

surface spectral response properties; i.e., areas of shadow or under low angle illumination 

can be particularly confusing (Rothery, 1987). Indeed, the PC images are simply different 

representations of the original data, but with certain defined statistical properties. This is in 

contrast to a three original band composite, where assigned colours are not scene dependent. 

Original three band FCCs are easy to interpret, because each primary colour relates to a 

single spectral band and can be interpreted in terms of relative reflectance and absorption. 

This is useful, since many interpreters have learned the general relationships between 

ground cover types and colour of standard false colour composites of three bands. For a PC 

generated FCC, the analyst has to learn a new set of cover type to colour relations, which 

can be seen as a major disadvantage. 

Canas and Barnett (1985) argued the case for PC colour display. Their paper dealt with an 

exact investigation of FCCs generated from PCA, as opposed to conventional FCC of the 

original bands of MSS. It was illustrated that the total variance in MSS standard FCC was 

73% for their study area, whilst a FCC of the first three PC contained 98% of the variance, 

with very little sacrifice of information. 

The fact that the PC derived colour display was scene dependent was seen as a possible 

benefit, in that the analyst can choose the colour scheme in such a away as to depict features 

of interest most clearly and that the PC FCC can be applied as a standard process in the 

absence of a priori knowledge. 

5.1.5 Summary 

For the framework of this study, feature selection of the TM was mainly a function of 

manual selection based on a priori knowledge from the literature. A three band subset of 

TM-4, 5, and 3 was chosen for overall information content in a colour display for manual 

interpretation, and for ease of interpretation in automated processing. 

The choice of bands used in this study to discriminate cover types, stems from a solid 

theoretical base (Chapter Four, section 4.1.1.1), empirical evidence of fellow workers 

gleaned from the literature (section 5.1.4.) and qualitative results of colour displays of the 
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data (Chapter Seven, section 7.1). The latter was based on heuristic considerations, such as 

intuition and experience rather than the more mathematically found techniques such as PCA 

or probability densities of subsets of features using divergence distance. Thus, cutting out 

much needless statistical manipulation in the form of computational processing time. 

Original band data was chosen, as opposed to data sets created by transformations such as 

PCA or image ratios. It was considered that the utility of scene independent displays 

outweighed the advantages of the other dimensionality reduction methods. A goal of this 

study is to evaluate the use of satellite imagery in operational mapping of lowland semi- 

natural grassland types. It was envisaged that visual interpretation of the imagery, could 

offer as much valuable information as complex machine processing techniques to agencies 

such as EN. In view of this therefore, for further applications, or the long term routine 

monitoring of such resources, the scene independent displays could be most effectively used 

by visual interpretation. This will mean that with a relatively small amount of training, an 

analyst aware of temporal considerations could make fairly confident projections as to 

general cover classes of interest from their assigned colour and tone. 

In all the above described methods of data dimensionality reduction and feature selection, it 

must be emphasised that the usefulness of the results can only be measured by each ‘user’ 

with regard to the particular features of interest in the image under consideration, e.g., “one 

man's noise is another man's signal’. In general, it is recognised that PC displays are of 

particular benefit in geological applications, band ratios for vegetation production studies, 

and original three band selection procedures for general land cover category applications and 

mapping tasks. 

5.2 Visual Analysis 

The use of interactive visual interpretation of the imagery in this study was justified for the 

following reasons :- 

* visual interpretation of the digital hardcopy images is a relatively simple exercise. 

On the other hand automated processing and classification requires a fairly complex 

procedure involving access to hardware and software development. Such equipment 

and expertise is not yet readily available to most organisations involved in habitat 

monitoring or ecological evaluation and 

* the spatial resolution of the most recent sensors are not fully exploited by current 

classifying algorithms, which take account of spectral information but generally do not 

81



consider spatial relationships. Visual interpretation uses both sources of information. 

Visual analysis of satellite imagery, either in the form of photographic products or 

interactively on digitally enhanced images, has long been regarded as the ‘poor relation’ to 

automated image analysis. With the advent of more and more sophisticated image processing 

algorithms, visual interpretation has largely been discarded. Visual interpretation can 

however, produce just as reliable and accurate results. Visual interpretation relies on colour, 

textural and contextual information involving the use of an extremely complex and 

sophisticated computer the human brain; whilst most common automated techniques utilize 

only spectral information. 

Colour monitors work in the three primary colours, red, green and blue. Multispectral 

imagery normally returns more than three bands of data. Therefore, since only three bands 

of data can be displayed simultaneously on the monitor, one problem that inevitably arises is 

that of making the most effective three-band colour composite image. This problem is 

discussed in detail in this chapter, section 5.1, with regard to TM data and feature selection. 

As multispectral SPOT has a complement of only three bands, colour composite formation 

presents no such problems. 

5.2.1 Colour Composites 

Since most multispectral remote sensing sensors contain more bands than SPOT, it is 

obvious that a number of three band combinations can be made. Using TM as an example, a 

number of band combinations are now discussed. By assigning bands 1, 2 and 3 to the 

blue, green and red guns of the monitor respectively, a natural or true colour composite 

(TCC) is formed. Alternatively, by assigning a infra-red band of the sensor to the primary 

colour guns, a false colour composite (FCC) is formed. Usually TM-4 is assigned to the red 

gun, TM-3 to the green gun and TM-2 to the blue gun, for forming a standard FCC (see 

Chapter Seven, section 7.1). 

A FCC is arguably the most effective means of visual presentation of multispectral imagery. 

Yet if qualitative and semi-quantitative visual interpretation is to be relevant to future remote 

sensing systems and not be entirely displaced by numerical automated methods, some way 

of combining information from a number of image bands to create a single composite image 

needs to be employed. 

Therefore, regarding the informational content of a colour composite there are two questions 

which need to be addressed. Which three bands to choose and to which three colours should 
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they be assigned to produce the best match between feature space and visual colour space? 

As discussed in section 5.1.4 on feature selection, consideration of information content 

suggests that the three most uncorrelated bands will provide best results. From numerous 

studies dealing with feature selection the overall trend is clear; TM band 4 is the most 

important, secondly the importance of at least one band from the middle-IR and at least one 

band from the visible part of the spectrum. 

Having established that the near-IR TM-4 is a required part of the three band subset for 

visual analysis, the question now arises concerning the choice of which visible band to 

choose and which of the two middle-IR bands. Townshend et al., (1988) suggested TM-2 

as the best representative visible band, since it is this band that usually displays the largest 

dynamic range of the visible bands. However, theoretical, see Chapter Four, section 4.1.1.1 

on spectral characteristics of TM and empirical evidence, see section 5.1.4 on feature 

selection of the usage of TM visible bands in vegetation cover mapping, suggest TM-3 (red 

visible) as the most appropriate band. TM band 5 was chosen in preference to TM-7, for the 

same reasons. 

Alternatively, the choice of bands can be made qualitatively by visual inspections of the 

bands together with a priori knowledge of some known features of interest, or conversely 

the absence of such features from the selected band triplet, the choice of bands can then be 

modified. 

5.2.2 Colour Assignment. 

Having made the choice of the best three TM band subset i.e., bands 4, 5 and 3 from the 

preceding section; the next question is then, to which colour on a visual display device are 

these bands then assigned? The allocation of a band to one of three primary colours can be 

governed by using the fact that the human eye is not equally sensitive to all colours. Mather 

(1987a), suggested that the eye is most sensitive to the red and green components and least 

sensitive to blue. Therefore, the band containing most potentially interesting information to 

the ‘user’, should be assigned to red or green gun so finer colour discrimination will be 

possible visually and the band of least importance assigned to the blue gun. Townshend et 

al., (1988) suggested the red gun be assigned to the mid-IR TM-5, green to TM-4 and blue 

to TM-3. The advantage being that in the resultant image green vegetation appears green, 

bare surfaces or urban areas appear purple and water bodies appear blue. 

However, the allocation of TM-4 to red, TM-5 to green and TM-3 to blue, where green 

vegetation appears bright red or pink, although more unnatural in colouration have been 
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familiar to a wide range of ‘users’ for many years, working with both MSS and colour-IR 

photography. 

The selection of three band sub-set 4, 5 and 3 assigned to R, G and B colours respectively 

would seem to agree with other studies, where visual interpretation were important parts of 

their analysis (Ahern et al., 1981; Thomson er al., 1984; Trolier and Philipson, 1986; Fuller 

etal ., 1989b). 

For the SPOT data, bands 3, 2 and 1, were assigned to R, G, B guns respectively. This 

approximates the standard FCC of MSS bands (3, 2 and 1) and is equivalent to the TM band 

complement of (4, 3 and 2). 

Although, the TM band subset of 4, 3 and 2 would complement the SPOT band data. The 

selection of TM (5, 4 and 3) over (4, 3 and 2) was made, because the latter is statistically 

only two dimensions (see section 5.1.4) i.e., using information from just the visible and 

near-IR part of the spectrum. Whereas, the 5, 4 and 3 band triplet uses information from the 

visible, near-IR and mid-IR parts of the spectrum. Hence, the resultant image display will 

have more spectral contrast or information. 

5.2.3 Summary 

In examining the evidence from the section on feature selection, together with the section on 

colour assignment. A FCC of TM bands 4, 5 and 3 assigned respectively to the red, green 

and blue guns, suggest that this specific composite is the optimum combination for the 

extraction of key vegetation information via visual interpretation and to facilitate automated 

processing in a semi-natural grass vegetation application. For the SPOT data, bands 3, 2 and 

1, were assigned to R, G, B guns respectively, this approximates the standard FCC and was 

chosen for the same reasons as the TM combination. 

5.3 Multitemporal Imagery 

5.3.1 Introduction 

Multitemporal imagery can be quite easily defined (Mather, 1987a) :- 

-aS a number of images of the same area taken at 

different times". 
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The main utility of multitemporal imagery has been in renewable resources assessment, in 

monitoring and the detection of change. 

There are two types of multitemporal imagery; data from different years and data from 

different seasons - the latter type are particularly suitable in vegetation studies. The season 

will often have a strong influence on the appearance of vegetation, due to the phenological 

effects; cover types distinguishable readily at one time of the year may be difficult or 

impossible to separate at another. The season also determines sun angles, this is especially 

important in upland environments, where topographical effects will come into play 

(Townshend and Justice, 1980). 

5.3.2 Agricultural Studies 

There are numerous citations in the literature expressing the advantages of seasonal 

multitemporal imagery covering the growing period in vegetation studies, or more 

specifically agricultural investigations. Classification of crop cover types in the UK, using 

single data imagery has rarely exceeded 75% in accuracy, because the spectral characteristics 

of crops leads to ambiguous spectral response patterns (Taylor er e/., 1983; Allan, 1987). 

Single data images rarely possess sufficient spectral differentiation between all cover types. 

In effect, a single ‘best time’ in the growing season that can be captured by satellites does 

not exist, which will reliably and predictably provide crop discrimination (Badhwar et al., 

1987). Synder and Story (1986), stated that :- 

"multitemporal imagery was crucial, when identifying 

beyond the USGS Level I land cover classes". 

Hay (1974), working on agricultural inventory techniques using high altitude photography, 

was one of the first to recognise the importance of the timing of the imagery in the study of 

vegetation. It was found that the most accurate inventory data was obtained using a 

combination of two or more dates of photography in a sequential technique, whereby the 

phenological differences of a crop at different times in its growth cycle were used as 

identification characteristics for that crop. In conjunction with this, the use of crop 

calendars, gave a temporal description of the condition and the state of development of 

specific crops (Brown er al., 1980). 

Sailer et al., (1984) recommended at least three different dates within a single growing 

season in order to make with some degree of certainty unambiguous crop identification at 

Level II. Belward and Taylor (1986), illustrated that crop analysis problems in the UK were 
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more easily solved by using multitemporal imagery and knowledge of the local crop 

calendar. 

Through the use of multitemporal observations, a valuable dimension is added to remotely 

sensed procedures relating to agricultural feature detection and identification. Multitemporal 

satellite coverage allows a specific field to be sampled over the growing season, the resulting 

pattern of spectral values over time represents the phenological development. Using MSS 

data Odenweller and Johnson (1984), built up temporal-spectral profiles representing 

specific target crop types. It was demonstrated from these profiles that non-vegetated 

classes, annual crops, perennial vegetation such as pasture and rangeland could be identified 

based on the amplitude and distinctive shape of the profile. Badhwar er al., (1987) 

investigated this method, using MSS data on Argentina summer crop classification and took 

it a stage further in classifying specific annual crops. It was found that generally each of the 

major annual crops were associated with specific parts of the growing season i.e., winter 

wheat occupied a different time scale when compared with later developing crops, such root 

crops like potatoes. 

A study of multitemporal SPOT data for crop discrimination in the UK using vegetation 

indices represented as co-incident spectral plots, provided indications of the dates imagery 

was needed for general crop separations (Jewel, 1987). Grassland were found to be 

separable in April imagery, some cereals in June, and a July image was needed for 

separation of wheat and barley. This was a function of the fact that these two cereals have 

different senescent rates; there is a decrease in near-IR reflectance for winter and spring 

barley in relation to winter wheat, which corresponds to an earlier change in colour due to 

ripening and senescence of barley. In a September image, the root crops were discernible 

since the cereals by that stage had been harvested. Classification of the vegetation indices by 

simple density slice produced 75-85% accuracy of crop types using multitemporal data. 

It is therefore necessary to quantify the important temporal features of agricultural scenes in 

a remote sensing context. De Gloria (1984a), suggested the following features :- 

* the date in the growing season when the crop canopy becomes spectrally detectable, 

* the date in a growing season when a crop has reached a maximum vegetative 

indicator value, i.e., biomass or similar variable, 

* the length of growing season, and 

* the date at which a crop progresses from maximum vegetative indicator value to 

senescence or ripening. 
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5.3.3 Semi-natural Vegetation and Grasslands. 

As in agricultural studies, the timing of imagery is also crucial in relation to the phenology of 

semi-natural vegetation and grasslands. Carneggie et al., (1977), was able to successfully 

monitor rangeland conditions using MSS data throughout a growing season. Everitt er al., 

(1979), stated that successful Level II estimation of areal extent of rangeland required 

summer imagery. Moreover, multitemporal data is especially useful when certain cover 

types can only be discriminated at specific times of the year, i.e., Nardus and Molinia are 

very similar upland grasses that were separated in May, because Molinia retains its senescent 

  

material longer in the season (Hume et al., 1986). Similarly bracken was found to be more 

easily detected in the early spring when it is brown, rather than later in the season when it 

turns green and can be confused spectrally with other upland cover types (Williams, 1987; 

Booth, 1989). 

Thomson er al., (1984), reported the importance of multidate imagery in Canadian rangeland 

assessment and for an understanding of the phenological development of the grasslands. 

Single date MSS data was found to be unable to provide reliable information concerning 

Fescue rangeland conditions. Visual interpretation of rangeland conditions was found to be a 

lot more successful with TM multitemporal imagery (Thomson er al., 1985). Early May and 

early July scenes provided the most information, concerning greening up and forage 

production of grassland. 

5.3.4 Summary 

The importance of having good temporal coverage is clearly evident. The multitemporal data 

set used in this study consisted of a late spring May TM (1985) scene, and early summer 

June SPOT (1986) and July TM (1984) scenes. The imagery was from three consecutive 

years and corresponded with the time that the ground data was collected in the field by EN. 

Since the target cover type of this study was relatively static in nature, (the MoD rangeland 

and permanent grassland), the use of data from different years was felt to be validated, and 

helpful in building up an understanding of the temporal profiles of these grassland 

community types for the important three month period of May to July. 
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CHAPTER SIX 

CLASSIFICATION 

This chapter covers the concept of classification of remotely sensed images, and the 

different types of classification procedures most commonly used. It also discusses the effect 

of spatial resolution on the classifiers performance. It then deals with methods employed in 

the improvement of classifications and finally a brief account is given of how digital satellite 

data can be integrated with other data bases to form a Geographical Information System 

(GIS) and it's future potential. 

6.1 Introduction 

In theory, an ideal cover type or target gives a unique pixel value in each spectral band; so 

across a given number of spectral bands, a cover type can be identified by the pattern of 

pixel values. This is termed the ‘spectral response pattern’ of a specific land cover type. 

Figure 6.1a shows a scatter plot of two spectral bands plotted against each other. This figure 

illustrates an idealised land cover or ‘target’ class, which is identified by a unique point in 

feature space. In reality a more complex situation exists, a land cover type has inherent 

statistical variation in pixel values, therefore in a scatter plot pixel values form a cluster of 

points rather than a single unique point, as in Figure 6.1b. The land cover class or object 

can be identified by its cluster in feature space. A classification algorithm is simply the 

mathematical separation of feature space into regions, which efficiently enclose each cluster 

and therefore allows discrimination between land cover classes, see Figure 6.1c. 

Automatic classification of pixels that make up remotely sensed images, involves associating 

each pixel in the image with a label describing a real-world object. There are basically two 

alternative methods. Supervised methods attempt to relate pixel groups with actual surface 

cover types and are termed informational classes. Using a priori knowledge, multi-training 

areas of specific cover types are selected throughout the area of interest. Standard statistics 

from the training areas are then used by the chosen classifying algorithm. With the second 

or unsupervised method, the identities of land cover types to be specified as classes within a 

scene, are not generally known a priori.. The computer groups or clusters pixel data into 

different spectral classes according to some statistically determined criteria. The analyst then 

labels these clusters or ‘natural’ groupings in multispectral feature space, as far as possible 

as representing informational classes. The theory of classification can be found in general 

Temote sensing text books, such as Curran (1985), Lillesand and Keiffer (1979); or more 

specifically in image processing texts, such as Jensen (1986) and Mather (1987a). 
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Figure 6.1 : A) Idealised Data in Two-dimensional Feature Space B) Actual Spread or Clusters 

of Data Points C) Decision Regions and Boundaries used by Classifying Algorithm 

There are a variety of classification and clustering algorithms available. The analyst is faced 

with choosing the most efficient procedure for the task. It can be assumed that each 

classification scenario has particular advantages and disadvantages and that there is an 

optimum strategy for each specific land cover class. 

Both supervised and unsupervised methods assume that the image data form separate 

89



groups in N-dimensional feature space, when N-bands (or features) of data are each placed 

on orthogonial axis and that they can be associated with observed ground cover types. 

Groups of data can be described by parametric or non-parametric techniques. 

Parametric classification assumes that each group can be enclosed by a boundary such as a 

hyper-ellipsoid decision volume of maximum likelihood or the rectangular box of the 

simpler minimum-maximum box classifier. Non-parametric classifiers make no assumption 

about the shape of data distributions, except that the groups of data can be separated by 

some discriminant function. 

Skidmore and Turner (1988), used a non-parametric classifier to inventory pine stands of 

different ages using SPOT data. The non-parametric supervised approach involved the 

collection of training data. Every pixel of the first training cover class were then assigned to 

a cell or vector position in N-dimensional feature space by their brightness value. The 

numbers of pixels (for the first class) in each cell were summed. Similarly, the pixels of the 

second cover class were summed into the cells of N-dimensional feature space, but were 

stored as separate records (to the first class). This process was continued for all the 

remaining training cover classes. Each cell was then tested sequentially by the classifier. The 

classifier found the class with the highest empirical probability in the cell and assigned that 

cover class identity to the cell. The highest probability for each cell was calculated by 

dividing the number of pixels in a cell for a specific cover class, by the total number of 

pixels tallied for all cover classes in the cell. This process was repeated until every cell was 

assigned to a cover class. The number of training area pixels were normalised and every cell 

in feature space was considered as separate decision rules and not function based like 

parametric classifiers. 

A priori probabilities were found by a preliminary unsupervised classification and these 

probabilities were modified empirically. Test areas were chosen where empirical 

probabilities of correct classification of 75% or over were found. This increased the 

classification accuracy from 70% to 87%, and this result compared well to traditional 

parametric supervised maximum likelihood classifier which achieved a mapping accuracy of 

56%. The disadvantages of this technique were the amount of computation time necessary, 

quoted as :- 

"four times the computer processing unit (CPU) time 

required for maximum likelihood classifier", 

and is therefore more expensive and not really practical for budget orientated operational 
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tasks, and the second disadvantage was the small pixel sample size (typically less than 50 

pixels per cover type) for use as test areas with empirical probabilities of 75% and over. 

6.1.1 Supervised Classification 

Supervised classification can be said to contain three basic steps :- 

(i) the generation of representative seed or training statistics, 

(ii) input of these statistics into appropriate classifier and the subsequent assignment 

of non-sampled areas to informational classes, and 

(iii) the output of results and assessment of accuracy. 

A review of the literature suggests that supervised classification is the most widely used. 

The question then arises as to what supervised classifier to use? Since there are various 

types of classifier available, each with its own advantages and limitations. The two most 

accepted supervised approaches were examined for this study : minimum distance and 

maximum likelihood classifiers. These algorithms are readily available in most image 

processing systems. 

The 'minimum distance to means’ automated approach defines the decision boundaries of 

‘spheres’ or clusters from training statistics. Each pixel from the whole image is examined 

to see which training cluster it is most closely related to. Mean vectors are needed for each 

class in each band from the training data. The algorithm can calculate the distance of a pixel 

from each mean vector training cluster, using Euclidean distance or ‘round the block' 

distance measures based on Pythagorean theorem (Swain and Davis, 1978). Pixels with the 

minimum distance from the mean of each class are thus assigned to that class. The 

advantage of this classifier is that minimal computation is needed. The disadvantage being 

that this classifier relies on mean values of the training data and not on the standard 

deviation, which produces less accurate results when training clusters exhibit a variety of 

deviations. 

The maximum likelihood classifier on the other hand, uses all properties of the training data 

ie., variance, correlation and mean in calculating the probability of a pixel value belonging 

to each training cluster and being assigned to it; as long as it displays a normal or gaussian 

distribution. It is usually the most accurate of the classifiers, because it most efficiently 

delegates clusters in feature space by elliptical contours, which correspond more realistically 

to cluster shapes of real objects. This decision rule can be modified by Bayes decision rule, 

this is identical to the maximum likelihood rule, but incorporates prior probabilities 
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concerning the encounters of specific land cover classes (Pedley and Curran, 1991). The 

disadvantage is that this system is computationally complex and therefore less efficient in 

CPU time. 

Literature sources give a confusing picture about this classifier and its utility in various 

applications. The maximum likelihood classifier was found to be surprisingly the most 

accurate for an area of complex land cover patterns (Story et al., 1984). Other studies have 

shown, that with relatively uniform classes where this classifier would be expected to 

perform well, the maximum likelihood classifier produced a lot of confusion. This result 

was attributed to it being a 'per-pixel' classifier, the similarity of cover types present and the 

time of year (Taylor et al., 1983). Hixson er al., (1980), compared five different supervised 

classifiers, both ‘per-pixel' and 'per-field’ based; for an agricultural application. It was 

found that similar accuracies were yielded for all five procedures, however the minimum 

distance was the easiest to use and cost the least per classification. 

6.1.2 Unsupervised Classification 

Unsupervised methods simply determine the characteristics of non-overlapping groups of 

pixels in terms of their spectral band values, these are termed ‘spectral classes’. A clustering 

algorithm is used which clusters the image pixels in feature space. Pixels are allotted or 

rejected from a cluster based on distance from the cluster centre in terms of spectral band 

values. Clustering algorithms generally act in two modes, the first mode builds clusters 

(groups of clusters in spectral space) in which there are mean vectors associated with each 

cluster. The second mode is where each pixel is assigned to one of these mean vectors, this 

is a similar procedure to the minimum distance classifier described previously. It is this 

second mode which is used to reduce the number of spectral groupings generated by 

unsupervised approach. There are various parameters open to choice by the analyst :- 

* the number of pixels to sample, 

* distance used between pixels (maximum number of pixels between centriods of 

spectral classes), 

* number of spectral classes to generate, 

* and the measure of difference between spectral classes. 

The usage of the unsupervised approach is well documented (Synder and Story, 1986) and 

has been demonstrated as a useful preliminary technique of data analysis before supervised 

classification (McMorrow and Hume, 1986). 
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As mentioned before, each classification approach is not necessarily suited for a specific 

application. Unsupervised classification when compared to supervised (maximum 

likelihood), produced lower mapping accuracies of Level II categories, when S.SPOT was 

analysed in an agricultural application (Sailer et al., 1984). Furthermore, it was found to be 

very time consuming and therefore a more costly methodology to implement. Townshend 

and Justice (1980), found that when using MSS data, the unsupervised approach was not 

demonstrably superior to supervised classification in studying regions of complex terrain. 

6.1.3 Hybrid Classification Approach 

Hybrid methods using both unsupervised and supervised procedures have been explored 

and are claimed to have the best of both worlds. There are various methodologies open to 

the analyst; one methodology involves delineating training areas and the training data is then 

clustered using the unsupervised approach. Clustering strategy may produce thematic maps 

directly or the algorithm can generate statistics, which can be input into a supervised 

classifier. Initially, randomly selected training sites are grouped into spectral classes using a 

clustering algorithm. These clusters are then interactively edited by the analyst in terms of 

combination or separation. This refined statistic file is then used to classify the full data set 

into spectral classes using a supervised classifier; typically maximum likelihood. Finally the 

spectral classes can then be grouped into informational cover types by the analyst, using 

ground data and ancillary data. Taylor et al., (1983) in a study of crop types found that by 

interactively editing and combining spectrally similar classes, higher accuracy levels were 

achieved, but at a cost of fewer informational classes. This approach was used successfully 

in a rangeland application using S.SPOT and MSS data (Maslanik er a/., 1984). Ruth et al., 

(1986), described a typical usage of the semi-unsupervised approach using TM for a general 

land cover assessment. 

Chuvieco and Congalton (1988), adopted a hybrid classification methodology and tested it 

on TM data of complex Mediterranean vegetation. The limitations of the two traditional 

approaches were discussed. In supervised classification, the analyst tries to classify 

informational categories, which can often be composed of several spectral classes. 

Conversely, with the unsupervised approach spectral groupings may have unclear meaning 

from a ‘users' point of view. Therefore, Chuvieco and Congalton put forward a 

methodology that generated both supervised and unsupervised training statistics. Clustering 

analysis was then used as a tool to improve the definition of training statistics. The 

clustering analysis, was defined as not simply a reduction process as used in the classic 

unsupervised approach, but rather as a method of combining similar groupings from both 

supervised and unsupervised approaches. The result was to produce training statistics that 
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are a powerful match of the two traditional methods. The strength of these new groupings, 

or the separability was evaluated by multivariate discriminant analysis. From these functions 

it was possible to regroup original training classes and to test membership in the correct 

grouping. The accuracy of the cluster hybrid approach was tested against the traditional 

supervised and unsupervised approach, by discrete multivariate statistical techniques. The 

cluster hybrid approach achieved 64% normalised accuracy, as opposed to 60% supervised 

and 48% unsupervised. 

The one major benefit of such a system is that it can highlight artificial classes that have no 

spectral uniqueness and therefore, cannot be accurately assessed or classified. It is 

therefore, a useful process in training area selection, and hence in achieving reliable 

classification results, although the results were not significantly different from the straight 

forward supervised approach and employed greater computational demand. 

6.1.4 Spatial Resolution and Classification 

Conventional classification techniques do not automatically lend themselves to more accurate 

results when using TM data, compared with MSS. The increased spatial and spectral 

resolution of TM with respect to MSS, does not necessarily correspond with improved 

thematic accuracy, whilst in some cases it can actually cause a deterioration. The cause of 

this is now explained in more detail below. 

6.1.4.1 Spatial Resolution and 'per-pixel' Classifier 

Many workers have quantitatively demonstrated both with the utilisation of TM (Ahern et 

al., 1980; Townshend and Justice, 1980) and the introduction of SPOT or S.SPOT in 

studies of comparison with MSS (Toll and Kennard, 1984; Maslanik et al., 1984), that the 

increased spatial resolution does not necessarily give better results. The performance of 

‘per-pixel' maximum likelihood classifier often can not improve accuracy, but can actually 

diminish accuracy results. This apparent paradox can be explained in terms of two 

antagonistic effects :- 

(i) the proportion of mixed pixels decreases with increased spatial resolution which 

enhances classification performance, and 

(ii) the increased spatial resolution enhances the intrinsic heterogeneity or scene noise 

for a given theme or cover class, thus producing the increase of spectral response 

variance. This can then lead to a spectral overlap amongst distinct cover classes. 
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Irons et al., (1984), worked on actual TM (30m spatial resolution) and degraded TM (80m 

spatial resolution). A quantitative evaluation of the consequences of increased spatial 

resolution of actual TM data was carried out. To detach the effects of mixed pixels from the 

effects of spectral variability, classification of all pixels (pure plus mixed pixels) was 

compared with the classification of just pure pixels at the two spatial resolutions. An 

analysis of variance (ANOVA) design was used for statistical evaluation of the various 

treatments. A 'per-pixel' maximum likelihood classifier was used. By increasing the spatial 

resolution from MSS to TM specification a decrease in classification performance was found 

for the pure pixel situation. Since only pure pixels were used, the decrease in accuracy can 

be attributed solely to increased within class spectral variability, incurred with the finer 

spatial resolution. 

In the pure plus mixed pixel case, increasing the spatial resolution did not significantly affect 

accuracy. The reduction of mixed pixels at the finer spatial resolution counteracted the 

detrimental effects of increased spectral variability within cover types. The spatially 

degraded data was 4% more accurate over the actual TM data in the pure pixel case; this was 

in the main a consequence of the grassland cover type which contained a lot of variation. It 

was suggested that the 30m resolution of TM would be suitable for row crops and forestry 

classification, these are cover types that are more uniform spectrally. This agreed with 

findings by Synder and Story (1986), where it was found that full resolution TM benefited 

the classification of water, crops and forest, as opposed to degraded 60m resolution TM 

data. 

Permanent grassland however, have been consistently found to be heterogeneous in nature, 

compared to monoculture intensive crops (Badwhar et al., 1984). This is due largely to the 

fact that many species are present and to differences in physiognomy and soil moisture. In 

addition to differences between fields due to management and within field differences due to 

slope and aspect. Agriculturally improved or re-seeded grassland give a more homogeneous 

signal, more similar to crops. The effect of increased spatial resolution on the accuracy of 

classification of remotely sensed data taking account of field uniformity is illustrated by 

Curran and Williamson (1986), see Figure 6.2. 
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Figure 6.2 : The Relationship between Spatial Resolution and Classification 
Performance for Flelds of Differing Size, with Regards to Satellite Data, 
(source Curran and Willlamson, 1986) 

The 'per-pixel' maximum likelihood decision rule is a commonly used algorithm. The trend 

for the increase in spatial resolution of sensors, has consequences not readily exploited by 

this algorithm. The consequences of increased resolution clarifies the shapes, boundaries 

and alters the textural appearance of cover classes. These are apparent on TM and SPOT 

imagery and facilitate visual interpretation. Therefore, new approaches to automated 

classification of SPOT and higher resolution sensors are needed that exploit image texture or 

context, and encompass spatial information. 

6.1.5 Classification of Semi-natural Vegetation. 

A difficulty encountered in this type of study, is the need to reconcile traditional vegetation 

survey methods on the ground with the objective classifiers used in remote sensing. This 

difficulty is compounded by the lack of clear boundaries and the heterogeneity of the 

vegetation. 

As a consequence of field survey classifications, the type of classification scheme adopted 

by the remote sensing analyst can be difficult (Williamson, 1987). Traditional vegetation 

surveys are carried out by trained botanists/ecologists, the emphasis being on the presence 

or absence of species. Factors such as plant phenology (flowering, senescence), substrate 

background and surface moisture are of less interest in their perception of the terrain, when 

their objective is to produce vegetation maps. However, these factors affect the remote 

sensing signal, there is therefore a need to reconcile the vegetation map generalisations to the 

remotely sensed classification scheme. One way of generalising the spectral information to 

that of the generalisation of the botanical classification, would be the use of filtering or 
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smoothing techniques, so that one achieves a closer fit, in terms of ground information and 

spectral information. 

6.2 Strategies Used to Improve Classification 

Various techniques have been developed that can improve classification accuracy. 

Techniques such as image smoothing, which decrease the spatial resolution of the remotely 

sensed data, can increase accuracy as described in the previous section. Other techniques 

such as increasing the information available to the classifier can also improve accuracy. This 

can take the form of extra spatial information from within the image, known as texture and 

context information; or it can be from the addition of ancillary data from other data bases. 

These various strategies are now discussed in more detail. 

6.2.1 Application of Filters 

There are two basic types of spatial filter : low-pass filters and high-pass filters. Low-pass 

filters suppress high frequency information i.e., lines and edges, so that detail will be 

blurred or noise removed. High-pass filters amplify local detail and produce sharper images; 

they highlight edges and linear elements. 

Low-pass or smoothing filters are now considered in more detail. Filtering of images makes 

use of moving window algorithms. The filter window is usually made up of a 3 pixel row 

by 3 pixel column, termed a ‘kernel’; centred at the pixel of interest. This window then 

moves along and down the image, until the whole image has been screened (see Figure 

6.3). 

There are two basic types of smoothing or spatial filter. Mean or averaging filters act on the 

central pixel of interest in the window, by replacing it with the mean value of the nine pixels 

in the 3 x 3 kernel. The effect of this filter is that it reduces the overall variability of the 

image. Median filters utilize the median of the kernel rather than the mean. The median filter 

is generally superior to the mean filter for two reasons. The median is always equal to one 

of the values present in the kernel and unlike the mean it is less sensitive to extremes in data 

value. 
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Figure 6.3 : A Moving Spatial Filter with a 3 x 3 Pixel Window 

Filters can be applied at the pre-classification or post-classification stage. It is not 

appropriate however, to apply a meanial filter to classified images, because values of the 

pixels in classified images are arbitrary and intended merely to differentiate the pixels in 

feature space. Meanial filter procedure may produce pixels with values not previously 

present in the image and are therefore not representative of defined classes. 

6.2.1.1 Classification and the Use of Filters 

Many studies have been conducted which set out to improve computer classification results. 

Various options can be selected for refining the classification procedure both at pre- 

classification level and at post-classification stage. One such option open to the analyst is the 

use of filters. The use of filters is a compromise between the benefits derived from 

improved visual quality, more ‘thematic map like’, and the drawback of lost image detail or 

information. 

The spatial resolution of TM has resulted in images which are visually more interpretable, 

ie., the tonal and textural qualities of urban areas and woodland, and individual agricultural 

fields are easily distinguished by eye (DeGloria, 1984a). Computer classification of TM 

images however, has been less than satisfactory, producing typically ‘salt and pepper’ 

appearance or noise effects. The same kind of problems occur for SPOT data, with its finer 

20m spatial resolution. 

As discussed previously (section 6.1.5) greater spatial resolution on 'per-pixel’ classifier 
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can lead to decreasing classification accuracy. For instance, a residential cover class, 

comprising of grass, trees and buildings, because of the finer resolution the pixels may be 

assigned to their component cover types; rather than to the overall category to which they 

belong i.e., residential. In order to reduce this type of target variability or noise, the image 

may be smoothed prior to classification using various spatial filters. A 3 x 3 or 5 x 5 kernel 

meanial filter is usually applied. The range of digital values is reduced smoothing out scene 

detail, but at the expense of increasing mixed pixels at spatial boundaries i.e., they become 

blurred (Dutra and Mascareukas, 1984). Therefore, procedures which decrease scene noise 

without decreasing the proportion of boundary pixels should result in improved accuracies. 

This can involve using smaller kernels or windows. 

A technique described by Gilmour (1987), addressed this problem, by stressing the 

importance of optimum window size with pre-classification averaging filters. It was found 

that by keeping the window as small as possible, the blurring of small regions and 

boundaries between cover classes was lessened. 

An alternative is the use of median filters, where detail is smoothed but boundaries are better 

preserved. Ahern et al., (1980), used median filters to reduce variance within a field and still 

preserve field boundaries. Visual inspection confirmed that field boundaries remained sharp; 

only the corners were blurred. This resulted in significant increase in classification accuracy. 

The degree of boundary preservation is dependent on the size and shape of the filter (square 

or cross shape) and the orientation of the boundaries. The 3 x 3 pixel sized square filter 

produces the best compromise between boundary preservation and the reduction in scene 

noise (Townshend et e/., 1988). Pre-classification filtering has little effect on the accuracy 

of homogeneous classes, but can substantially increase the discrimination of classes with a 

high degree of internal variance. 

A different approach to the pre-classification filtering problem was adopted by Cushnie 

(1984), here he combined filtered data with original TM data. This was then compared to 

both original TM data and data that had been smoothed by averaging and median filters. The 

four feature combinations were then fully tested by the maximum likelihood classification 

technique. The original TM-5 band was used to replace filtered TM-5, to assess whether 

degraded (filtered) data of two other TM bands will smooth out scene noise, whilst the 

original TM-5 at full resolution will preserve boundary detail. Results showed that the use 

of average and median filters prior to classification improved accuracy as compared to raw 

TM, due to a reduction in scene noise. The use of median filter reduced the amount of mixed 

pixels by its boundary preserving properties. Classification results of the mixed resolution 

bands was dependent on the spatial filter used with the original TM and on the ratio of the 
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filtered to non-filtered bands. However, the combination did reduce the effects of poor 

boundary resolution, whilst retaining the advantage gained by smoothing scene noise and 

particularly reduced the errors associated with heterogeneous cover types. 

6.2.2 Spatial Information 

From section 6.1.4.1, it would seem desirable that for high resolution sensors, there is a 

need to exploit the spatial information content. Gurney and Townshend (1983), provided a 

general survey of the use of spatial or contextual information in the classification of remotely 

sensed images and put foreword a typology of context. Context was defined as :- 

"the relationship between one pixel or a group of pixels, 

and the pixels or groups of pixels in the remainder of the 

image". 

Alternative more wider ranging definitions of context can also be applied to remotely sensed 

data. Pattern recognition algorithms work on groups of pixels and not just individual pixels. 

For instance right-angle shapes, where occurring in specific alignments and specific 

numbers such as four, could indicate depending on the image context (i.e., urban or rural 

region), the presence of a building or agricultural field. 

Gurney and Townshend suggested that contextual information procedures were categorised 

according to : whether they are applied to raw or classified data; whether they apply to 

individual pixels or groups of similarly classified pixels or objects; and by the form of 

spatial relationship between pixels. 

A distinction was made between contextual information already present within an image and 

context derived from non-image sources. The latter includes knowledge of the geographic 

context of the image as a whole, and is usually gained from topographical or geological 

maps, (use of external ancillary data is described in section 6.2.3). In visual interpretation, 

the human eye senses the combination of colour, shape and proximity of associated classes 

and texture. In the machine processing of a remotely sensed image only one function, the 

‘spectral response pattern’ is normally used. Therefore, there is some form of emulation of 

the human eye with the introduction of contextual, or spatial information. 

Context of a pixel refers to its spatial relationship with other pixels in the remainder of the 

scene. Contextual decision rules can be applied to raw image data (spectral numerical 

properties), or to classified (labelled) data. In considering the single pixel situation with 
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classified data, preliminary classification can be amended by considering classifications or 

labels assigned to other pixels. Therefore classification errors would probably be reduced, 

by the introduction of this spatial information. 

Contextual procedures were categorised by Gurney and Townshend (1983) into four basic 

types of spatial relationship. These are i) distance; ii) direction; iii) connectivity; and iv) 

containment and are as shown in Figure 6.4. 

Pixel 

i Su DISTANCE (D) 

a eee DIRECTION 
il) 

CONNECTIVITY 
iii) 

wy @ r CONTAINMENT   
HP : Pixel or setof pixels of interest 

( § : Pixel or set of pixels related to P 

Figure 6.4 : The Four Basic Types of Spatial Relationship 

(From Gumey and Townshend, 1983) 

Distance and direction can be applied to both single and groups of pixels (objects), and on 

raw or classified data. All pixels within a given distance or direction of the pixel of interest 

are considered and an assignment is made on the basis of spectral characteristic plus relative 

arrangement. 

Such procedures have been successfully demonstrated in agricultural cover type studies, 

where 'per-field' or contextual classification algorithms were used; compared to the more 

traditional 'per-pixel' classification. Anuta er al., (1984), used Supervised Extraction and 
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Classification of Homogeneous Objects (SECHO), which divided the scene to be classified 

into homogeneous units or fields. These fields were then classified using the maximum 

likelihood classifier. Homogeneous cover types were assumed to be greater than one pixel 

in size, therefore adjacent pixels would be highly correlated. Hence, the degree of 

correlation diminished with an increasing distance between pixels. With SECHO, the 

analyst interacted by assigning specified threshold value, below which adjacent pixels were 

grouped into a homogeneous field or unit. Statistics from these fields were calculated and 

compared to the original class statistics and a ‘homogeneous field’ unit was classified into a 

class it most closely resembled. 

Connectivity and containment apply only to groups of pixels or objects and are therefore 

used when some form of segmentation of the data has been made i.e., this is normally 

classification. Pixels connected to or contained in a segment, could be reassigned or 

teclassified to a specific class. 

6.2.2.1 Contextual Reclassifiers 

Any classification results will inevitably contain error. A classifier attempts to partition 

feature space in regions representing different classes i.e., associate each pixel with a feature 

class by some unique discrimination function (in remotely sensed: images this is attempted 

using spectral information). 

Classification does not produce as a rule true homogeneous regions, but rather a ‘salt and 

pepper’ appearance consisting of noise or unwanted detail. Before description of such a 

classified image, it may be necessary to process it further by some segmentation method 

(partitioning of image space) i.e., a contextual reclassifier. Such a method would reduce 

image noise and produce regions or objects more representative of the features of interest. 

By employing contextual information as a further segmentation process, at least a proportion 

of the noise or error may be corrected by reassigning classified pixels to another class. Pixel 

based reclassifiers are based on the use of local windows of varying sizes; they possess a 

similar method of operation to the spatial filtering techniques described in section 6.2.1. 

Logical or modal filtering operates by a decision rule that determines whether the central 

pixel is to retain its original value or it is to be changed to that of one of its neighbours 

within the window eg, in a 3 x 3 window at least five of the nine pixels must belong to one 

class before the central pixel's value is altered to that class. There have been numerous 

studies assessing pixel based reclassifiers. Initial studies investigated the spatial relationship 

of pixels and post classification smoothing or noise reduction. Algorithms were developed 
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using simple majority mode functions, where individual pixels or small areas were replaced 

by their most frequently recurring neighbour, (Davis and Peet, 1977; Letts, 1979). The use 

of post classification modal filters are the simplest form of contextual reclassifier. 

Different techniques have also been studied, using the majority mode theme, but 

incorporating different contextual procedures. One approach was taken by Thomas (1980), 

a minimum proximity function, with analyst specified discrimination level, was developed, 

which employed distance as a parameter. The spectrally classified pixel was regarded as the 

first dimension or 'primitive'. A second dimension pixel was created, which involved the 

spatial relationship between spectrally classified primitives. Noise incumbent to the target 

class was qualitatively defined as :- 

"the departure from the spectral response pattern 

homogeneity for each target cover class". 

This procedure improved the spatial coherency of the spectrally classified data. The 

contextual reclassifying procedure was tested against raw classified data and the areal extent 

of forestry classes from ground data. In comparison with ground data, the results were 

superior for the additional spatial post processing technique. 

Rothery (1982), used post classification modal filtering to help overcome the influence of 

topographic effects causing the misclassification of pixels in a geological application. Small 

areas received a typically full or oblique illumination and in consequence pixels were 

assigned to the wrong theme by the classifier. The contextual procedure of containment was 

used, in which areas that were less than eight classified pixels (minimum theme) and non- 

uniform were deleted and the remaining classified areas were allowed to expand to fill the 

vacated or misclassed spaces. The resulting classified image corresponded more realistically 

to ground information. 

The definition of the size of the minimum theme area allowed to pass through the filter is 

often chosen interactively, and is a trade off between deleting small correctly classified areas 

and leaving too many incorrect patches. Townsend (1986), addressed this problem by 

refining the modal filtering of classified imagery by the development of a ‘logical smoothing 

operator’. Any areas in a classified image, which were smaller than the smallest feature of 

interest, were termed elementary regions and represented noise and therefore should be 

removed. By constraining the logical smoothing operator, desirable information was not 

lost. The logical smoothing filter was constrained by a connectivity rule, such that it acted 

on elementary regions of the image. The constrained logical smoothing operator worked by 
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two decision rules. The first decision rule ascertained whether the central pixel of the 

operator window was connected by the same value to neighbouring pixels. Connected sets 

of pixels were termed ‘regions’ i.e., they represented useful information. The second 

decision rule, the appliance of modal or majority filter operator, would only work if there 

was a ‘no’ answer to the first decision rule. Thereby, the logical operator would modify 

only elementary regions, which in effect meant the removal of noise and the retention of 

useful information. 

In theory, a filtering window of any size could be used. Improvements in classification 

accuracy with increasing size of windows might be expected. However as more distant 

pixels were considered, it was found that a decrease in accuracy occurred when windows 

greater than 5 x 5 pixels were used (Gurney and Townshend, 1983). Townsend (1986), 

limited the window to 3 x 3 pixel kernel in order to inhibit information loss. 

Gurney and Townshend (1983), considered more elegant ways of refining 'per-pixel’ 

reclassifiers, rather than using simple majority rule. Different thresholds could be adopted 

for each class of interest. For example, one class might require a large number of pixels 

present before reassigning a pixel, whereas for another class only a few pixels would be 

required. Such a procedure, might be applicable where different error rates are associated 

with different classes. 

Another refinement would be the use of some form of weighting when distance and/or 

direction functions are brought into play, such that the more distant pixels have 

proportionally less importance. It is worthy to note that such procedures are again linked to 

window size and potential loss of useful information. 

What ever procedure is chosen, the actual degree of improvement attained will be a function 

of the relative sizes of the pixels and the areal extent of cover classes at ground level. 

Finally, the use of some form of contextual information is more important with the higher 

spatial resolution sensors, because of the higher internal spectral variability of classes at 

such a level. 

6.2.3 Intelligent Procedures 

A brief outline of the various methods employed in trying to improve classification by 

intelligent procedures are now discussed. Several refinements to the classification approach, 

specifically concerned with semi-natural vegetation are described in this Chapter, section 

6.4. 
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6.2.3.1 Decision Rules 

Belward and Taylor (1986), showed that despite not having data at the optimum points in 

the phenological cycle for the crops of their study area, a twenty per cent increase in 

accuracy could be achieved in classification, by using an intelligent decision rule approach 

based on multidate imagery. The method employed created co-incident spectral plots for all 

bands and all dates, from which it was possible to identify the bands most likely to provide 

areliable basis for classification of the crops raised in the study area. Specific spectral data 

were utilized that were likely to yield reliable results, rather than the total data set for all 

dates. It was argued that in using the complete data set it would have introduced confusion, 

due to the overlapping nature of the ‘spectral response patterns’ of many crops in MSS 

feature space. As a further extension of this study, Belward and DeHoyos (1987) compared 

decision rules incorporated in a simple supervised binary tree classifier, with the maximum 

likelihood algorithm. Similar levels of accuracy were achieved with these two classifiers, 

but the binary decision tree classification was favoured due to the ease of training, the 

computational simplicity and it was found to be quicker. 

A further extension of this principle was suggested by Allan (1987), who proposed that 

with crop studies using TM, the data required for analysis could be reduced to a tenth of the 

original. This would still achieve reliable classification results without significant 

degradation. He argued that with present farming practises in the UK, intensive farming 

procedures produced homogeneous crop parcels to such an extent, that very small samples 

of spectral data could predict crop cover type. Furthermore, small samples would reduce the 

variation in the data and hence reduce overlap between classes that lead to confusion and 

misclassification. 

6.2.3.2 Knowledge Based Systems. 

A further development of decision rules is knowledge based systems, where a priori 

knowledge is used. Knowledge based systems can consist of a set of rules describing each 

class type; or they can include ancillary data. There are three basic methods used in this 

approach :- 

i) to stratify or segment prior to classification, 

ii) incorporate ancillary information during the classification operation, and 

iii) post classification incorporation, where the classified data is modified by ancillary 

data. 
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If detailed information, in the form of a complex model that characterises a given class, (eg, 

a detailed description of the objects or targets to be detected and the relationships amongst 

them), can be input to the methodology, this is in effect developing a priori knowledge of 

the real world depicted on the remotely sensed image. Blonda er al., (1988), developed such 

a knowledge based system for the classification of general land cover types of multitemporal 

TM imagery. A priori knowledge used here, was in the form of expert photointerpretation 

of ‘spectral response patterns’ and interfaced into the system, in terms of defined rules for 

the thematic descriptions. The approach used ‘fuzzy logic’ or ‘uncertainty’ to predict cover 

class, by using the rules described by expert photo-interpreter, as membership functions for 

fuzzy sets, defined on the image spectral values. The Knowledge Base (KB) used rules or 

‘facts’ and was represented by an expression :- 

attribute (object, value) (6.1) 

eg, intensityin band1 (pasture, x-value) 

The KB approach considers the impossibility of giving the precise definition for each real 

class, hence the classes are characterised only through the use of fuzzy possibility functions. 

This contrasts with the traditional parametric approach, which provides an estimate of the 

indetermination level by random statistical distributions; the variability within a class is 

considered as noise superimposed on the real value. 

The photo-interpreter expert analysed the images and qualitative linguistic terms (such as 

high, low etc.,) were applied to spectral response patterns of a class, in order to describe the 

tules that associate the ground data to spectral characteristics of the multitemporal imagery. 

Using logical terms and operators eg, very, not, and, or, high and low; functions were 

defined by the relationship :- 

m (Ci, X, K) (6.2) 

where m, represents the measure of the possibility of belonging to the 

Ci, class, for a pixel with 

X, grey level, in the 

K, spectral band. 

Blonda et al., (1988), compared the fuzzy logic approach with the classical probabilistic 

maximum likelihood approach. It was found that the approaches gave comparable results, 

with fuzzy logic slightly better i.e., overall accuracy of 91% compared to maximum 

likelihood result of 86%. This was attributed to the fact that fuzzy logic performed better 

with heterogeneous classes, whereas the more uniform crops such as crop land and pasture 
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were classified with the same precision. It was concluded that a traditional statistical 

maximum likelihood descriptor works well for mainly homogeneous classes, and that the 

fuzzy based descriptor provides a better description of the real world and its non- 

homogeneity. 

Some form of segmentation is necessary before the classification process can take place, for 

instance in supervised classification, this usually takes the form of partitioning the image by 

eye in the selection of training areas. Segmentation partitions the image data into connected 

homogeneous regions. Most segmentation is achieved manually, however automated 

segmentation methods have been developed which use spatial and spectral data from the 

image (eg, edge detection). Automatic segmentation can be region or domain based, for 

example, a clustering procedure can be applied which splits and merges pixels to produce 

homogeneous regions (Cross and Mason, 1985). Automatic segmentation can use edge 

detection, locating points of large contrast and linking these points into connected 

boundaries. Parcels of land can be recognised as individual units. These units are termed 

‘fields’, a term which is applied generally to all such parcels of land whether they are 

agricultural fields, forest stands or urban blocks. In effect segmentation identifies areas 

which are meaningful to the ‘user’, as opposed to areas which can be distinguished from the 

image on spectral grounds alone. 

In a segmentation procedure, ancillary data can be used together with remote sensing data. 

Ancillary data is any type of information used in the classification process, not directly 

obtainable from either spatial or spectral characteristics of the remotely sensed data. Tailor et 

al., (1987), described the use of automated segmentation of remotely sensed images. 

Knowledge based automated segmentation as used by Tailor er al., supplemented the 

information by a priori knowledge in the form of digitised map boundary data. In this way 

the segmentation was refined using a rule base derived from domain data; this acted as a 

series of constraints on region properties, i.e., the variance of pixels in the region. The 

image was then classified using the segmented data by a 'per-field' classifier as opposed to a 

‘per-pixel' classifier. 

Pedley (1987), also used boundary data gleaned from digitised map data, in which statistics 

for each field were then generated and imputed to classifying algorithm. The standard 

maximum likelihood ‘per-pixel' classifier was used as well as the equivalent 'per-field’ 

classifier. The latter was further modified by two refinements, i) to include a measure of 

spatial variation for each class by the input of one band of standard deviation and ii) by 

including a measure of prior probabilities. The resultant classification accuracies were 

significantly greater than the ‘per-pixel' method and the resultant thematic images were more 
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easily interpretable. Such 'per-field’ classification systems are directed principally towards 

applications of crop monitoring, where their use with regular shaped agricultural fields of 

relatively homogeneous cover types will be of most benefit. 

Other forms of ancillary data can be input into classifications of remote sensing data. Raster 

elevation data was included together with SPOT imagery by Sakata et al., (1987). The 

elevation data was input in the form of a digital terrain model (DTM) to reduce topographic 

effects on the classification procedures. Slope and aspect terrain components were 

incorporated into the classification algorithms in the form of prior probabilities, decision 

tules and image segmentation using contextual information. 

6.2.3.3 Probability Measures 

Early work on probability measures could be a promising new approach with regards to the 

classification of semi-natural vegetation. Wood (1988), discussed ways in which to analysis 

and display ecological continuum of semi-natural vegetation using TM data. It was 

suggested that probability measures would be a more realistic way of mapping semi-natural 

vegetation. The resultant image would indicate changing levels of confidence in the cover 

type selected by the classifier. Alternatively, posterior probabilities could be used. Within 

regions of classified cover type, the variations in probability could be mapped using zones 

of membership. The resultant image then indicates gradients of group membership 

likelihood and illustrate the direction of likely confusion. However, this is an area of 

research where there is much scope for further investigation. 

6.2.4 Methodology Refinements for Semi-natural Classification and Grasslands 

The need to refine methodologies is perhaps more important when considering complex 

semi-natural vegetation, as opposed to monoculture crop canopies, when attempting 

conventional automated classification techniques. Since there is extreme diversity in the 

species composition of semi-natural vegetation communities and boundaries between these 

communities are commonly diffuse in nature (see Chapter Three, section 3.3 on the 

problems of semi-natural vegetation). It is worthy to note that the adequacy of 

improvements on the classification depends on the ‘users’ end requirements. For instance, 

whether is it more important for the accurate mapping of semi-natural vegetation or is the 

priority tabular results in the form of statistics. 

Foody and Wood(1987), investigated the use of TM for ecological monitoring of lowland 

semi-natural heathland, where classification accuracies of around 70% overall, were 
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achieved using automated classifiers. He suggested various refinements to the classifying 

procedure in order to improve results that would be needed for a more realistic mapping 

exercise, such as input into a geographical information system (GIS) data base. Four types 

of refinement proposed by Foody and Wood, and implemented by other workers are briefly 

discussed below : 

* Hierarchical method :- this is the removal of classes that are accurately classified i.e., 

classes with low commission errors can be removed. McMorrow and Hume (1986) 

used a graphics mask to mask out areas that had been successfully classified. Another 

method is by the input of ancillary data in the form of discrimination variables such as 

slope, aspect or elevation data from topographical maps (Jones er al., 1987); or other 

forms of ancillary data (Blazye, 1987). 

* Rule modification :- this is where the classification rules are modified on the basis of 

misclassification error in the classification of training areas. The training classification 

can be used to provide information on potential misclassification which can then be 

incorporated into the classification proper (Belward and Taylor, 1986). In effect a 

priori knowledge of misclassification is gained and the classification rules can be 

modified accordingly. 

* The creation of 'fuzzy' or ‘uncertain’ classes :- where a class may contain 

proportions of other classes, not too dissimilar to mixels (mixed pixels). It is apparent 

that semi-natural vegetation does not exist as discrete units, consequently the spectral 

difference between two classes can be very variable. If a sample of each class were 

obtained at the end point of the continua along which they lie, they may well be 

spectrally dissimilar. However, near the arbitrary defined break point between the two 

classes the difference may be so insignificant, as to make spectral classification very 

difficult. With an ordinary classifying algorithm, a sample may be allocated to one 

class when it reflects the qualities of two classes. In such circumstances it could be 

more appropriate to allocate a ‘fuzzy’ class, which shows it to have marginal 

properties of two classes. Fuzzy set approaches do not make rigid assumptions about 

the characteristics of the data, they allow for natural variation or ‘fuzzyness’ of the 

scene to be mapped (Foody, 1992).This is more realistic for the representation of 

prevailing ground conditions. Ancillary data or field investigation could then be used 

to reconcile the uncertainty or create a intermediate class. 

* Ordination or probability mapping :- This approach could be used where the concept 

of classification into discrete classes is inappropriate, because of the continuum of 

vegetation types in semi-natural vegetation. The adoption of ordination techniques 

could be more suitable, with the replacement of classification with probability 

contours, derived from the Mahalanobis distance between the sample areas and the 
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class (group) centroids. The Mahalanobis function is crudely a measure of the distance 

of an observation from the class mean, corrected for variance and covariance of that 

class, and takes account of the probability of membership (Mather, 1987a). The 

mapping of probabilities of group membership of different vegetation communities 

would indicate their spatial distribution and thus models their continua. 

Alternatively, quite simple measures can be adopted for the improvement of classification. 

Topographical effects on the classification of upland semi-natural vegetation can be 

ameliorated by dividing classes into terrain related sub-classes (McMorrow and Hume, 1986; 

Williams, 1987). 

More elaborate and elegant methodology refinements can be used, such as in a study 

conducted by Jones er al., (1987), who used various parameters to improve discrimination 

and accuracy of automated classification algorithms, whilst using SPOT data for upland 

semi-natural vegetation mapping. Incorporation of ancillary data in the form of Digital 

Elevation Model (DEM) has already been mentioned. Further refinement of the classification 

procedure was achieved by assigning prior probabilities in maximum likelihood 

classifications, based on a knowledge of the general ecological principles which determine 

the likely distribution of the observed vegetation. 

Blazye (1987), used ancillary data from the Institute of Terrestrial Ecology (ITE) land 

classification system, which provided a rich source of information about the spatial patterns 

of land cover types and their relationship to the physical attributes of the landscape. The 

whole of the UK has been classified according to one of thirty-two ITE land classes. 

Blazyes study site in N. Wales contained upland semi-natural vegetation and contained four 

of the ITE land classes. From TM imagery, nineteen spectral classes were extracted to train 

and test a maximum likelihood classifier. This data set was then stratified according to the 

four ITE land classes and reclassified. By this stratification of the image data, confusion 

was decreased between classes with similar spectral responses, but were from different ITE 

land classes and were thus not present together in the reclassification. The mean 

classification accuracy improved by twenty percent after the stratification using the ancillary 

data. 

6.3 Geographical Information Systems (G.I.S.): the future ! 

Effective environmental or renewable resource management is limited by the quality and 

quantity of present available data. The lack of standardised surveying procedures, makes 

comparisons, integration and analysis of habitat data recorded from different sources, a 
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difficult task. Furthermore, the surveys to-date have been irregular and inconsistent both in 

time and space. Consequently, survey effort may be lacking in some areas, but may be 

duplicated in others. Data quality is likely to be both spatially and temporally variable owing 

to the range of survey personnel expertise. The logistics and cost of surveys and the 

management of data generated are further problems. 

A possible solution to these problems would be remotely sensed surveys and classifications 

incorporating ancillary data. The most suitable sensor data at present for a county and 

regional level, would appear to be TM (Foody and Wood, 1987; Young, 1986). 

The digital form of satellite data, allows automatic classification and transformation by 

means of a Geographical Information System (GIS). Extensive ground data can be 

compared with images by means of such a system. Image feature files, ground data and 

classification results can be input to the GIS. 

The end products of the GIS being thematic maps, which could be one of various forms, 

dictated by the analyst to show salient features of interest. At base level a thematic map is 

divided into polygons or regions, according to categories of the theme, i.e., a land cover 

map showing cultivated land, woodland and urban areas. From the GIS thematic maps of 

different emphasis can also be readily produced i.e., land productivity, or lines of 

communications. 

With the increasing informational content of successive sensor platforms, the development 

of GIS, capable of handling multidate, multiplatform remotely sensed data and sophisticated 

geographical data bases, can take advantage of the more detailed and reliable description of 

the Earth's surface. 
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CHAPTER SEVEN 

RESULTS 

This Chapter gives the findings of the interactive visual analysis of the study area, together 

with initial supervised classification results and the final results gained from the application 

of a refined methodology. Results are given both for the Salisbury Plain Training Areas 

(SPTAs) range grass analysis and for permanent chalk grasslands of Special Sites of 

Scientific Interest (SSSI) status off the immediate Salisbury Plain MoD ranges. 

7.1 Qualitative Assessment for Feature Selection 

The various methods for feature selection have been discussed in Chapter Five, section 5.1 

and 5.2. In conjunction with this, a brief account of the qualitative assessment of various 

band subset combinations of TM is provided and the results are given below. Although a 

subjective process, if specific features of interest, as in this case the SPTA ranges are easily 

identified from the imagery; a relatively quick look at the various band combinations and 

colour permutations can produce interesting results and be a valid input into the analysis 

(Table 7.1). 

Various three band combinations were assessed for the utility and potential operational 

usage. All combinations were displayed on the colour guns in red, green and blue order 

respectively and enhanced by contrast stretching. 

In conclusion, it was found that the most readily interpretable image was with TM bands 4, 

5, and 3, in which vigorous green vegetation appears as bright red tones. This result 

further supports the conclusions drawn from Chapter Five on feature selection, where 

theoretical and empirical evidence is regarded. However, as with all remote sensing data, 

the user has to recognise that the utility of such composites cannot be assessed independent 

of the spatial, spectral and temporal characteristics of the scene being imaged (Townshend. 

et al., 1988). 

7.2 Qualitative Interpretation of Multitemporal Single and Composite 

Multispectral Data Sets 

This section refers to visual discrimination of features of interest from the multisensor, 

multitemporal data set. The reasons for the choice of the three bands of the TM have already 

been outlined in Chapter Five, section 5.2 and in the previous section. An appreciation of 

the utility of their resultant images and an introduction to their analysis, can be obtained 

through the examination of single bands and their combinations in relating image properties 

112



Table 7.1: Three Band Thematic Mapper (TM) Combinations and their 

Information Content 

  

Band combination Comments on Colour Composite 

  

453 Best overall contrast and largest range of variation, was found to 

contain most informational content of the study area. Although the 

resultant colours are unnatural, statistically the data is three 

dimensional in nature and it follows colour perceptions familiar to 

‘users’. It is also the three band subset most quoted in UK grassland 

studies, using TM (Fuller and Parsell, 1990; Fuller er al., 1989b; 

Belward et al., 1990; Foody and Wood, 1987). 

451 This composite was found to be similar to 4 5 3, but with slightly 

less variation present for this study area. It is referred to by many 

sources both qualitatively and quantitatively as the best combination 

for many applications (Trolier and Philipson, 1986; Chavez and 

Bowell, 1988) 

432 Not as satisfactory as 4 5 3, much less variation present and hence of 

lesser value for feature extraction. Known as the standard FCC 

(SFCC), which is familiar to users of Landsat MSS and colour IR 

photography for it’s land cover and tonal associations. Also 

equivalent to the best FCC of SPOT. 

Seal Quite a narrow range of contrast, needs the extra dimension of the 

IR bands for vegetation discrimination. This band combination, 

termed the natural colour composite, it is the closest in terms of the 

human perception of the terrain i.e., vegetation appears green and 

bare fields brown, grey etc.. It has much less informational value for 

vegetation studies than do false-colour presentations. 

543 This variation of the best three band subset has been quoted as the 

most useful by some users (Townshend er al., 1988; CCRS, 1987). 

This is because in the resultant image, green vegetation does indeed 

appear green, bare surfaces and buildings appear purple, and water 

bodies appear blue. However, for discrimination of vegetation types 

the 4, 5, 3 subset was judged by the author to be superior to the 5, 

4, 3 permutation. 

  

* Tn general the best band combination for vegetation use involves one of the three bands in the visible 
spectrum in combination, with the near-IR band and one of the two middle IR bands. 
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to ground conditions. For all three sets of imagery, original data was enhanced by auto- 

linear median contrast stretch function. The listing of imagery follows a seasonal sequence, 

rather than the year it was acquired so as to follow the phenological development of 

vegetation. 

Belward et al., (1990) suggested with semi-natural vegetation application, primary analysis 

by eye of the FCC can help to define classes by :- 

* identification of subdivisions in broad ecological classes such as croplands, 

* identifying classes that show poor spectral separation from ecological related groups 

and 

* identifying cover types of no direct interest to the ecologist, which are nevertheless 

spectrally important. 

Additional collaborative information was gathered from existing UK TM imagery of the 

same three band subset and colour display (Hilton er a/., 1988). Seven such images were 

available which Hilton er al., had used in FCC analysis (mainly for teaching purposes) and 

of these, there were four southern lowland agricultural scenes which were applicable to this 

study area. These scenes were multitemporal in nature, mainly from 1984-85 and covered 

the majority of the crop calender. From visually analysing these scenes, it was possible to 

construct a summary of scene independent cover type, and colour associations for scenes of 

similar topography and nature to that of the study area. The results are given below in Table 

7.2 and provide further comparative information and guidance on the visual analysis and 

training area selection used in this research project. 

Using SPOT data a similar FCC evaluation carried out by the NRSC (1983), can also be 

used for comparative purposes. The visual appearance of several different agricultural cover 

types for a single date (May 1983) using a Derbyshire test site, is given by Table 7.3. The 

semi-natural grassland found in this study was on limestone and not chalk, but it was felt it 

did provide some useful information. 

All subsequent descriptive analysis relate to 512 x 512 extracts of West SPTA and of 

extracts centred around the village of Wylye. This is an area south of the Salisbury Plain 

training areas which includes a large selection of the various land cover types and uses that 

occur in the region : it is also the location of the study site used in the permanent chalk SSSI 

analysis. 
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Table 7.2 : The Seasonal Visual Appearance of Vegetation Cover Types for 

4, 5, 3 TM Band Composite for Lowland UK (from Hilton et al., 1988) 

  

  

Cover type Month 

January April May June July August 

Ploughed Blue Blue or Blue Blue Blue tones 
or bare white (chalk) 

Cereals Orange, Red Bright Purple 
pale red red 

Unimproved Pale orange Pale orange Orange Greenish 
grassland , yellow & , yellow & orange & 

green tones green tones yellow 

Improved Tans, gold Orange Red 
grassland orange 

Oilseed rape Pink Magenta, Magenta, 
pink pink 

Mixed. Black/ Green/ Light brown, Brown, red. 
woodland brown brown red 

Coniferous Black Black Black Dark brown Dark brown 
woodland /olack /olack 

  

Table 7.3 : The Spectral Responses of Cover Types for May, 

using S.SPOT SFCC Bands 3, 2 and 1 (NRSC, 1983) 

  

  

Cover type or feature Description of feature on SFCC 

Winter cereal Bright red/pink 

Spring cereal Light red, pink, light brown/grey, light red/green 

Broadleaved/mixed Dark red/green (coarse texture) 

woodland 

Coniferous woodland Black/very dark green 

Grass leys (improved) Bright red 

Rough grassland Blue/green or blue pink 

(unimproved/semi-natural) 

Bare or low vegetation White to cyan/grey 
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7.2.1 TM May 1985 

Band 4 (0.76-0.90um) 

Water bodies were very apparent, they appeared black due to absorption of the near-IR. 

Linear features such as major roads were visible. The MoD rangeland was quite distinct, 

such that it was darker in appearance than the surrounding farmland. Woodland appeared 

even darker and there were two tones apparent; broadleaved woodland was darker, whilst 

coniferous was slightly lighter in tone. Vigorous vegetation appeared very bright and this 

related to the fact that by May, winter cereals and improved grasslands were well 

established and growing vigorously. Permanent chalk grassland of SSSI status, revealed 

within field differences with this band. 

Band 5 (1.55-1.75m) 

Again water bodies appear very black, band 5 even picked out a small river system (the 

River Wylye). Linear features such as roads were not as clear as on TM-4. Chalk tracks 

used by tanks on the rangeland and bare ground were very bright and distinctive. The 

rangeland was less distinct and quite light in appearance, reflecting the carry over of 

senescent material from the previous season. Woodland features were not as apparent as on 

the previous band, although coniferous woodland did appear darker and with broadleaved 

woodland now appearing as a lighter tone, a reversal from band 4. Vigorous vegetation was 

very dark in appearance, this was attributed to the fact that band 5 (mid-IR) produces a 

lower response due to its absorption by foliar moisture. Permanent grassland exhibited 

uniform tones within fields, but between fields there were differences. 

Band 3 (0.63-0.69m) 

Water bodies were very indistinct, but linear features such as roads and tracks were 

detectable. The response of chalk tracks, bare fields and areas of low vegetation were very 

reflective and was similar to that as found with TM-5S. This occurred because the red visible 

part of the spectrum was being reflected by these cover types. The rangeland produced a 

similar response to that found with TM-5. Woodland and vigorous vegetation were dark in 

appearance, but they were very similar in tone and not as discernible as with TM-5. Overall 

there were more general tones for all the cover types, but there was not the spectral contrast 

of the IR bands. 

A FCC image was then generated from these three bands of TM (see Figure 7.1) on the 

Digital Image Processing (DIP) workstation, as described in section 7.1 (Table 7.1). The 

spectral response patterns of the various cover types were noted and are given by Table 7.4. 
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Figure 7.1 : WSPTA Study Area, May 1985 TM (Bands 4 5 and 3) FCC 
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Table 7.4 : The Spectral Responses of Cover Types for May, using TM 4, 

5 and 3 False Colour Composite 

  

  

Cover type Description of the unit on FCC 

Winter Cereals Ranges from dark red (most developed), bright red (growing well), 

dirty purple (vegetation developing) to white (the influence of chalk 

soil background) 

Spring Cereals Light purple to white (spring cereal growth is thin and patchy, 

which has produced a mosaic of tones in this late spring imagery) 

Oil seed rape Bright pink in appearance, quite distinct 

Root crops Light blue to grey tones 

Bare fields Light blue to white 

Urban Dirty blue and textured 

Broadleaved woodland Dark green to black 

Coniferous woodland Brown to dark red 

Permanent grassland Orange/green to grey 

Rangeland Grey/green and blue mottled tones 

  

7.2.2 SPOT June 1986 

Band 3 (0.79-0.89,.m) 

Linear features such as road and railways were more evident with this near-IR band than the 

equivalent TM band, which is attributed to SPOT's increased spatial resolution. The extent 

of the rangeland was easily discernible, with the rangeland being quite dark in appearance, 

compared to the surrounding agricultural fields which were comprised of more lighter 

tones. Urban areas were distinguishable with a characteristic mottled tone and texture. 

Band 2 (0.61-0.68um) 

Field boundaries were identified and thus small field patterns could be distinguished. Chalk 

tracks, bare fields, or fields with low vegetation amount were very apparent with bright 

tones. Conversely, with this band the rangeland appeared lighter in tone than the 

surrounding agricultural land compared with SPOT's near-IR band. This is due to the red 

visible part of the spectrum being absorbed by vigorously growing vegetation of crops in 

early summer. 
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Figure 7.2 : WSPTA Study Area, June 1986 SPOT (Bands 3 2 and 1) 

Standard FCC 
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Band 1 (0.5-0.59,1m) 

This band was very similar to band 2 in terms of tones regarding cover types. However, 

there were subtle differences within the rangeland and certain field types were lighter in tone 

compared with band 2. 

A Standard FCC (SFCC) was generated (see Figure 7.2), since SPOT only contains three 

multispectral bands. This FCC is similar to the general composite formation found with 

Landsat MSS, due to the choice of spectral wavelengths. It thus provides a picture for 

interpretation that is familiar to 'users' (see Table 7.5 for a description of the cover types). 

Table 7.5 : The Spectral Responses of Cover Types for June using SPOT 

Standard False Colour Composite 

  

  

Cover type Description of the unit on FCC 

Winter cereals Bright red and red tones 

Spring cereals Light red and pink tones 

Bare fields Cyan to blue/grey to white tones 

Urban Dirty blue (coarse texture) 

Broadleaved woodland Red/black (some confusion with cereals) 

Coniferous woodland Green/black 

Permanent grassland _ Dirty pink/grey 

Rangeland Greenish grey and pinkish grey, together with mottled green, grey 

and pink 

  

7.2.3 TM July 1984 

Band 4 

Water bodies were very distinct, as were linear features such as major roads. Urban areas 

were very dark in tone. The rangeland appeared dark, as did areas of coniferous woodland 

and winter cereals. In the case of the winter cereals, the absorption of the near-IR can be 

explained by the fact that the crops have ripened and senesced. The decrease in reflectance 

is caused by the reduction of moisture in ripe crops. The situation of the coniferous areas 

could be explained by the fact that 1984 was a hot and dry summer and that these woodland 

areas were experiencing water stress. However, most woodland areas were quite light in 

tone (easily identified by their textural quality), as were areas of continuing vigorous 

vegetation growth. The June/July period is the period of maximum vegetation growth and 
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Figure 7.3 : WSPTA Study Area, July 1984 TM (Bands 4 5 and 3) FCC 
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production. 

Band 5 

Water bodies were quite clear, but linear features such as roads were not so discernible as 

compared with TM-4. Chalk tracks were very evident being bright in tone, as were bare 

fields and fields with low vegetation amount, such as fields cut for hay etc,. The rangeland 

was less distinct with a light grey tone. Coniferous woodland ranged from a dark tone to 

mid grey, whilst mixed and broadleaved woodland exhibited a mid grey tone with highly 

discernible textural quality. Crops exhibited a range of colouration from black, to dark 

medium and light grey tones. This reflected the various growth stages and phenological 

development of the various crops present. Permanent grassland was light grey in tone and 

showed within field variation, this was thought to be attributed to differences in soil 

moisture. 

Band 3 

Water bodies were indistinct in this band and linear features were only moderately 

detectable. The chalk tracks were visible and the rangeland was of similar appearance to that 

as in TM-5, but just a shade darker. Woodland was very distinct, both coniferous and 

broadleaved appeared black. Broadleaved areas not distinguishable on the other two bands 

were clearly illustrated with this band. With crops, the various grey tones seem to 

correspond to their growth stages. Mid grey tones corresponded well with established 

growing crops and grassland, and light grey to white areas corresponded to permanent 

grassland and mature ripening cereals. A FCC image was again generated in the same way 

as the previous TM image (see Figure 7.3), and description of the cover types is given by 

Table 7.6. 

It is apparent that there was a lot more colour variation present in the July 1984 TM image 

compared to the other two images, and this can be explained by the fact that crop phenology 

factors comes into play. The winter and spring cereals were for the most part ripe by this 

stage and exhibited different spectral responses in relation to the May 1985 TM imagery. In 

the May image spring and winter cereals were green and just beginning to grow vigorously 

and exhibit more similar spectral responses. Hence, the colour variation found in the 1984 

July image is a function of crop calender, different growth stages of specific crops and 

intra-crop differences from field to field. 
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Table 7.6 : The Spectral Responses of Cover Types for July using TM 4, 5 

and 3 False Colour Composite 

  

  

Cover type Description of the unit on FCC 

Winter cereals Purple to redish purple 

Spring cereals Dirty red 

Oil seed rape Bright pink 

Root crops Brick red 

Bare fields White to very light green 

Urban Dirty blue (textured) 

Broadleaved woodland Brownish orange to bright red (textured) 

Coniferous woodland Black to brown with dark green 

Permanent grassland Bright orange to greyish green 

Rangeland Green, greyish green and dull orange 

  

7.2.4 Summary 

Evaluation of the FCCs illustrated the various land cover categories present, by the wide 

variety of spectral response patterns evident in the imagery. These were markedly different 

within, and between the imagery and were readily distinguishable. It was also noted that 

there was within field tonal variation present in the TM imagery (a function of its spectral 

resolution) and with the SPOT data (a function of its spatial resolution), which was less 

easy to differentiate and interpret. 

It is clearly evident from the FCC stretched images that the TM contained much more 

information than the SPOT imagery from a qualitative point of view (see Figures 7.1 to 

7.3). This phenomenon was even more apparent when the TM-84 July image was 

assessed. This was for the most part a factor of crop phenology in that cereals were 

spectrally distinguishable by that time of the growing season. 

Areas under arable crops are regularly ploughed, resulting in a disturbed soil profile with 

chalk flints at the surface. Examples of such were clearly evident in the imagery, where the 

darker soils and the chalk flints produced a mottled 'salt and pepper’ appearance. 

123



In summary, the following points can be made :- 

ii) 

iii) 

iv) 

As anticipated each individual band of the TM 4, 5, 3 composite when viewed singly 

contributed useful information. This confirmed previous work that stated that one band 

from each of the three sections of the spectrum, visible, near-IR and mid-IR, provides 

the most useful general information, without too much redundancy or duplication. 

The two visible bands of SPOT were very similar and in marked contrast to the near- 

IR, which provided independent new information. However, it must be noted that the 

two visible bands did provide some information, as there were subtle differences 

evident. Therefore, depending on the analysts interest, this information may be 

important. 

The FCC of the SPOT imagery clearly demonstrated a much poorer range of spectral 

variation, as compared to both TM composites. 

The rangeland was very distinct on all three sets of imagery and could easily be 

visually delineated from the surrounding agricultural land. However any attempt to 

further subdivide the rangeland by visual means into homogeneous units proved 

impossible. The imagery of the rangeland proved to be too complex in approximating 

the general grassland thematic map provided by EN. This was not surprising 

considering the informational classes present, since they are :- 

a) very similar in dominant species composition and physiognomy, 

b) that trained botanical field personnel had difficulty in identifying and delineating the 

classes, and 

c) the semi-natural nature of the vegetation meant it occurs as a continuum, rather than 

discrete classes. 

These results did not bode well for the application of automatic classification algorithms for 

the mapping of the semi-natural range grassland types. 

7.3 Automated Classification Results 

7.3.1 Initial Supervised Classification 

All classifications were carried out using the maximum likelihood and the minimum distance 

classifiers. The first classifications used all range grass units of major areal extent. All 

results relate to WSPTA and both the TM and SPOT imagery were resampled and registered 

together at 25m spatial resolution for a direct comparison, using the nearest neighbour 

transformation. The classifications were then performed and then the classified overlays 

were then warped to British National Grid (BNG), using the bicubic convolution (see 
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Chapter Four, section 4.2.2.1.). Twenty one ground control points (GCP) were used to 

geometrically correct both the TM image files, and nineteen were used to correct the SPOT 

image file. 

As an indication of the geometric accuracy, the root mean square (RMS) error was 

calculated for a number of points in each image file using the following formula (Jensen, 

1986) : 

af 2 25 
RMS error = (K - Xorig) 5 V- Yong (7.1) 

where x and y are the actual pixel locations on the image (in terms of BNG coordinates), 

and Xorig and Yorig are the theoretical (accurate) BNG coordinates. 

These data sets were then reduced to the ‘best fit’ sixteen GCPs and a RMS error for the 

whole data sets were calculated as + 1.27 pixels (see Appendix 4). All three imagery data 

sets could then be directly compared and contrasted, since they all have the same spatial 

resolution (25m). The classification statistics generated were obtained using the same 

training and test sites for all three data sets. Therefore, the only variables between the three 

data sets were the spectral resolution between the SPOT and the TM; and the image 

temporal characteristics in terms of vegetation phenology between the three dates. The cover 

types used in the training procedure for the whole WSPTA extracts are described in Table 

Tals 

Minimum Distance Classifier : 

The minimum distance used the Euclidean distance measure with a threshold of 16. This 

classifier is described in more detail in Chapter Six, section 6.1.1. The larger the threshold 

the more likely that there will be no unclassified pixels, however the confidence limits for 

each class are much reduced. The normal threshold is about three times the standard 

deviation for each class i.e., a normal figure of between 6 - 16. The figure of 16 was 

chosen as a result of examination of the training data statistics, primarily the standard 

deviation and through the analysts experience. The computer processing unit (CPU) time 

involved in operating this process was 14.6 minutes, for the best three band classification. 

With the inclusion of two further visible bands of TM, in a five band classification, the 

CPU time rose to 24 minutes, the significance of this will be discussed later. 
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Table 7.7 : Grassland Communities and Cover Types occurring on the 

whole Western Salisbury Plain Training Area (WSPTA) 

  

  

Class Classification Description of the land cover types 

colour code 

1 Red CG3a (Calcarious range grassland) 

2 Green CG3a/di ( "™ pi i 

3 Blue CG3d action e aie) 

4 Cyan CG3di ar . Nit) 

5 Yellow MG1 (Mesotrophic range grassland) 

6 Magenta Wheat (mainly winter) 

7 Light Red Barley (mainly winter) 

8 Light Green Agricultural I calcarious grassland 

9 Light Blue Urban 

10 Light Cyan Agricultural II calcarious grassland 

11 Light Yellow Open-cast Quarry (Chalk) 

12 Light Magenta Chalk tank tracks 

13 Brown Coniferous woodland 

14 Orange Broadleaved or mixed woodland 

  

Maximum Likelihood Classifier : 

The maximum likelihood classifier was used with a probability threshold of 90%. This is 

the likelihood that pixel x belongs to class n, and it is the minimum acceptable probability 

for inclusion into that class. By increasing the percentage probability this will lower the 

acceptable range of standard deviation, and thus the more homogeneous the class brightness 

values will be. It is thus standard for a normal percentage probability figure being 90% and 

above. The CPU time involved in this process is significantly increased when compared to 

minimum distance. It was recorded as being 81.4 minutes, an increased factor of over five, 

for the best three band classification. For five band classification it increased to 182.4 

minutes, an increased factor of over twelve. This could be an important consideration with 

regard to the costs of processing and this would have to be balanced with the benefit of 

increased accuracy this algorithm has been suggested to have (see Chapter Six, section 

6.1.1) 
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7.3.1.1 TM May 1985 

A five band classification scheme using bands 4, 5, 3, 2, and 1 was first attempted. 

Fourteen informational classes were identified and used to train the classifier (see Chapter 

Four, section 4.2.4 on training and test site selection). Evidence from the previous analysis 

(section 7.2), it was apparent from the imagery that certain cover types were a potential 

source of error and that this was a direct result of the temporal development of the 

vegetation. 

For the rangeland of West SPTA (WSPTA), five semi-natural grassland units were initially 

chosen with which to train the classifier. These were not the most important botanically as 

far as informational classes useful to English Nature (EN), but they were chosen because 

they covered the largest areal extent necessary for the required number of pixels to train and 

assess the classification (Swain and Davis, 1978). This applied to all three data sets and 

Chapter Two Table 2.2 gives the description of the major grassland types found on the 

WSPTA and used initially in the supervised classification procedure. Only pure swards of 

grass type were used in all the selection of training and test areas, this was because the EN 

survey also found areas that were mixed i.e., there were areas that contained CG3d and 

MGI grassland units. This in effect reduced the areal extent of homogeneous areas that 

could be utilised in sampling, this therefore meant that any random sampling strategy was 

biased/limited to these areas. Pure sward areas were used, because it was necessary to 

ascertain if any unique spectral response patterns were revealed in the chalk grassland 

types. 

7.3.1.1.1 Analysis of Training Statistics 

It is necessary to examine the statistical properties, because when using parametric 

classifiers, such as maximum likelihood, there are certain inherent assumptions that must be 

fulfilled by the statistical parameters of the training data. This can be done by graphical 

processes as described in Chapter Four, section 4.2.4. These can greatly aid the analyst in 

checking the characteristics of potential training data sets (Swain and Davis, 1978). 

However, this assumption of normality can easily be departed from, depending on the 

cover types. Grasslands are one such cover type, because of their complexity and different 

management regimes (Glasbey, 1988). It was recommended that attention is given to the 

amount of variability within-fields, particularly in the way that it relates to between-field 

variability of pixel values. Glasbey showed that between-field variability of the same grass 

cover type invalidated the assumption of normal distribution, as did within-field variability. 
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Histogram plots can be used to check that the data utilized have a ‘Gaussian’ or normal 

distribution. Data may be normally distributed in different wavelength bands, yet in certain 

spectral bands it could have a bimodal or multimodal distribution. Failure to separate a 

bimodal training informational class into two spectral classes may cause classification errors 

which could have been avoided. 

Coincident spectral plots plot the mean in spectral response for each class of interest for 

each wavelength band. The standard deviation from the mean is also plotted and thus give 

an indication of the variance of the data. The small values of standard deviation relative to 

mean values indicate a marked degree of spectral separation of the clusters in feature space. 

Table 7.8 : Training Area Statistics for Classification of WSPTA, TM-85 

Data (Bands 4, 5, 3, 2, and 1) 

  

Class Statistics (mean and + one standard deviation) 

  

Band CG3a CG3a/di CG3d CG3di MG1 Agri I* Agri II* 

  

grass grass 

4 113.3 80.0 84.4 82.7 95.9 144.8 117.4 

33) 6.4 5.9 4.5 4.5 46 3.9 

3 105.1 110.3 101.5 111.1 104.8 69.1 96.5 

3.4 a3 3.1 4.3 4.7 4.1 2.9 

3 32.7 40.5 38.5 40.2 36.0 24.2 31.6 

25 1.5 1.2 1.6 1.4 4.2 4.0 

2 36.9 39.0 38.3 38.5 37.4 31.9 36.6 

0.8 2.0 0.9 1.1 0.9 0.9 0.9 

1 83.9 90.2 88.5 89.6 85.7 78.6 82.5 

15 3.1 2:3) 2.0 1.8 1.4 1.4 

  

* Agric I & II denotes agricultural calcareous grasslands outside the immediate range area 

Scatter plots allow the analyst to plot the pixel brightness values of spectral bands in feature 

space. Usually two spectral bands are plotted against each other to give a two-dimensional 
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plot, but it can be more. The usefulness of this to the analyst is that it can illustrate certain 

band combinations where virtually complete spectral discrimination is apparent, even 

though such discrimination is not possible in any single wavelength band. It is a good 

graphical way at looking at spectral overlap of training class statistics. An example of the 

results of the statistical data generated from TM-85 are given by Table 7.8. 

7.3.1.1.2 Qualitative Interactive Supervised Classification Results - Maximum Likelihood 

This is where the analyst can interactively display individual classified class components of 

the classification overlay, over the FCC image. This process aids the effective analysis of 

multispectral data by increasing the in-depth understanding of the spectral characteristics of 

the cover types involved, particularly the temporal and spatial effects on vegetation which 

are significant (Swain and Davis, 1978). 

Each individual class or theme can then be viewed in isolation and qualitatively compared to 

the ground information. An example of the results of this form of analysis is given below :- 

CG 3a - Off the range some known CG3a areas were correctly classified partially or fully. 

Small areas in the schedule III land were also classified (light yellow/green on FCC). 

CG 3a/di - classified large areas of WSPTA and Larkhill, the pixels being for the most part 

confined to the ranges (light green on FCC). A good general correspondence to the EN 

survey three areas correctly labelled, however over classified in CG3d and MG1 areas. 

CG 3d - exclusive to ranges (blue/green on FCC), a good general correspondence to the EN 

survey, however confusion with CG3d especially along chalk tracks. 

CG 3di - classified most of WSPTA (grey/green on FCC), apart from major areas of other 

grass classes. 

MGI - very good general correspondence to the EN survey on the range, also classified a 

large portion of the schedule III agricultural grassland to the south east of the range. It 

also picked out the remaining CG3a areas and a few areas in north western pastoral 

agricultural region (orange/green on FCC). 

Wheat - picked out all the brown/dark reds areas on FCC, that field data indicated as winter 

and spring wheat fields. 

Barley - picked out all the bright orange areas on FCC, that field data indicated were mostly 

winter barley. However, large amounts of confusion with vigorously growing 

agricultural grassland, especially in the north western pastoral region i.e., airport 

verges were classified as barley. 

Agricultural grass I - bright brick red areas on FCC, confusion with cereal growth stage, 

however picked out fields in the north western pastoral region. 
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Urban - classified all of the urban areas, but also large misclassifications with coniferous 

woodland (dirty blue/black on FCC) and areas of wheat/cereal (also dirty blue/black on 

FCC). 

Agricultural grass II - orange on FCC, picked out areas of the schedule III land areas, 

around the airport and scattered fields in the rest of the agricultural areas. 

Quarry - 100% classification i.e., just picked out the quarry. 

Chalk tracks - picked out the larger bare chalk track areas on range and bare fields in 

agricultural areas. 

Coniferous woodland - picked out the remaining coniferous areas, not classified as urban. 

Broadleaved woodland - picked out some scrub and broadleaved areas, but also within the 

range classified dirty blue/purple areas on FCC and cereal growth stage in agricultural 

areas. 

7.3.1.2 SPOT June 1986 

Thirteen spectral/informational classes were used to train the classifier. It was evident that 

there were less spectral classes present, as compared to TM especially with regards to crop 

types. 

7.3.1.2.1 Analysis of Training Statistics 

Inspection of the class statistics (Table 7.9) reveals the mean and standard deviation for the 

five classes of grass selected for the study. 

Standard graphical processes (section 7.3.1.1.1) are now described. Examples of this type 

of analysis are presented later in the results in section 7.3.2.1. Inspection of the class 

statistics via histogram plots revealed normal distributions and an adequate degree of class 

separation in SPOT's near-infrared band 3. SPOT's two visible bands both exhibited 

normal distributions for the classes, but they also showed a high degree of class 

overlapping as a result of the classes having similar means. 

Coincident spectral plots, show that as expected the urban class has a high variance and it 

was also noted that the bare dry chalk quarry had a high reflectance and variance in all three 

bands. 
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Table 7.9 : Training Area Statistics for Classification of WSPTA, SPOT-86 

Data (Bands 3, 2 and 1) 

  

Class Statistics (mean and + one standard deviation) 

  

  

Band CG3a CG3a/di CG3d CG3di MG1 

3 126.2 97.4 112.1 102.1 114.7 

4.0 5.0 3.8 4.0 3.1 

2 30.3 32.7 31.3 32.0 32.1 

0.9 13 et 1.0 ea 

1 47.1 47.5 47.4 47.2 48.4 

0.9 1.0 1.4 0.8 1.0 

  

A spectral scatter plot of just the five chalk grass classes show the spectral separation in 2- 

dimensional feature space, using the more highly discriminatory SPOT-3 band verses 

SPOT-2. It gives a good indication of the relationship of reflectance, with CG3a/di being 

the least reflective followed by CG3di, CG3d, MG1 and CG3a being the most reflective. 

This being in part due to the shorter more productive swards absorbing more of the radiance 

in a June situation . 

Both maximum likelihood and minimum distance algorithms were tested with the SPOT 

data, to see if there was significant difference in quantifiable results in accuracy. This is to 

see if the faster minimum distance classifier would produce an equivalent accuracy to the 

supposedly superior maximum likelihood algorithm. For results of the minimum distance 

classification see Figure 7.4, and for maximum likelihood results see Figure 7.5. 

7.3.1.2.2 Qualitative Interactive Supervised Classification Results - Minimum Distance 

CG 3a - small amounts of the range and areas of scrub within the range were classified. Off 

the range a known CG3a area was correctly classified, however large amounts of crop 

areas (dull red on the FCC) were misclassified as CG3a. 

CG 3a/di - on the range one large area was correctly classified (grey/green on the FCC), 

however large amounts of CG 3di and 3d were incorrectly classified as 3adi. There 

were also confusions with urban and coniferous classes. 
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Figure 7.4 : Minimum Distance Classification of WSPTA, 

June 1986 SPOT Data 
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Figure 7.5 : Maximum Likelihood Classification of WSPTA, 

June 1986 SPOT Data 

133



  

CG 3d - scattered distribution on the range (blue/grey on FCC), some correspondence with 

the EN field map, but confusion with CG3di. 

CG 3di - small amount classified, large omission error with CG 3d (grey on FCC). 

MGI - good correspondence with EN field map, but some confusion with CG 3d and 3di. 

Off the range, fields of low vegetation (pink/grey on FCC) were also picked up. 

Cereal 1 - classified 100% all the bright red areas on FCC. The remaining dirty or dull red 

areas being misclassified as CG 3a. 

Cereal 2 - classified 100% all the bright pink areas on FCC (barley or cereal growth stage). 

Low vegetation - classified 100% all the light grey areas on FCC. These correspond to areas 

of low vegetation, cut silage or hay where the background substrate affects the 

reflectance. Also picked up some of the smaller tracks within the range. 

Urban - classified the majority of urban areas (blue/grey on FCC). As well as some track 

areas within the range. 

Quarry - the chalk quarry present in the extract (bright white on the FCC) was correctly 

classified. 

Chalk tracks - the classifier picked out the remaining larger track areas within the range 

(cyan on FCC) and some bare areas off the range. 

Coniferous woodland - majority of coniferous woods and plantations were classified 

correctly (black on FCC). 

Broadleaved woodland - majority of broadleaved woods were classified correctly (dark red 

on FCC), however large amounts of confusion were apparent with a crop growth 

stage. 

7.3.1.2.3 Qualitative Interactive Supervised Classification Results - Maximum Likelihood 

CG 3a - classified small isolated areas of the range and areas of scrub within the range 

valley. Again off the range a known 3a area was correctly classified, however smaller 

amounts of crop areas (dull red on the FCC) were misclassified, as compared to the 

minimum distance classifier. 

CG 3a/di - similar result to the minimum distance classifier, the pixels being for the most 

part confined to the range. There were also less confusions with urban and coniferous 

classes. 

CG 3d - a lot more scattered in distribution and less in amount on the range (very much 

more salt and pepper in appearance) compared to the minimum distance. Large 

amounts of confusion with CG3a/di and CG3di. CG3d was also classified off the 

range in agricultural fields, which were correctly classified as crops with the minimum 

distance classifier. 

CG 3di - 70% of the range, large amount classified compared to minimum distance. Much 
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better correspondence to the EN field map. However, still error with CG3a/di and 3d. 

MGI - similar result to the minimum distance classifier. 

Cereal 1 - similar result to the minimum distance classifier. However, also picked out the 

dirty or dull red crop areas being misclassified as CG3a with the minimum distance 

classifier... 

Cereal 2 - similar result to the minimum distance classifier. 

Low vegetation - similar result to the minimum distance classifier. 

Urban - classified much more of the urban areas, but also classified all the bare areas as well 

as much more of the track areas within the range. 

Quarry - similar result to the minimum distance classifier. 

Chalk tracks - similar result to the minimum distance classifier. 

Coniferous woodland - similar result to the minimum distance classifier. 

Broadleaved woodland - similar result to the minimum distance classifier, but classified 

more of the dark red crop growth stage as broadleaved woodland. 

Generally, the difference between the two classifiers for most of the classes were minimal, 

except for four classes. Overall, the minimum distance gave a much more thematic map like 

quality compared to the maximum likelihood classifier. The maximum likelihood classifier 

did however give a much more accurate representation of the grass class CG3di, but at the 

expense of misclassifying the grass class CG3d. The surprisingly good performance of 

these qualitative results, belies the disadvantage of SPOT's spectral resolution. 

7.3.1.3 TM July 1984 

A five band classification and a three best band (4, 5 and 3) classification were undertaken 

for this date of imagery. Fourteen informational cover classes were again used to train the 

classifier. 

7.3.1.3.1 Analysis of Training Statistics 

Inspection of the class statistics (Table 7.10) shows the mean and standard deviation for the 

seven classes of grass type selected for the study. 

A comparison of the statistics files generated for the five band and the three band 

classification were very similar. This serves as a good cross checking process, since both 

files were independently generated, but the training areas were selected at approximately the 

same locations. 
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Table 7.10 : Training Area Statistics for Classification of WSPTA, TM-84 

Data (Bands 4, 5, 3, 2, and 1) 

  

Class Statistics (mean and + one standard deviation) 

  

Band CG3a CG3a/di CG3d CG3di MG1 Agril Agri II 

  

grass grass 

4 108.7 88.2 101.8 96.9 106.4 98.6 107.4 

55 4.3 33) 6.2 See. 3.2 95 

5) 100.9 92.7 87.3 89.5 89.8 141.2 110.7 

9.6 2.6 2.8 3.2 31 4.7 7A 

3 39.7 40.8 38.2 37.4 38.6 65.1 43.2 

2:5 1.5 12 1.6 1.4 4.2 4.0 

2 41.0 40.9 40.8 3972 40.6 52.0 43.3 

V5 1.1 0.8 53 0.9 1.9 1.6 

1 93.6 93.8 93:3 91.8 93.9 108.5 97.9 

1.8 1.8 15 1.4 1.4 212) 2:3 

  

7.3.1.3.2 Qualitative Interactive Supervised Classification Results - Maximum Likelihood 

CG 3a - classified small isolated areas of the range, also small areas of Larkhill range. Off 

the range some known CG3a areas were correctly classified, but not all. North west of 

WSPTA partial and whole fields were classified (dull green on FCC). This area is 

predominantly pastoral with much smaller fields, compared to the rest of the arable 

land surrounding the WSPTA. 

CG 3a/di - classified large areas of WSPTA and Larkhill, the pixels being for the most part 

confined to the range (green/blue on FCC). A good general correspondence to the EN 

survey i.e., three areas correctly labelled, however over classified in CG3di and 3d 

areas. 

CG 3d - exclusive to ranges (green/orange on FCC), a good general correspondence to the 

EN survey, however confusion with CG3di. 

CG 3di - some good general correspondence to the EN survey, however confusion with 
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CG3d. 

MG1 - very good general correspondence to the EN survey, even in mixed areas of CG3d. 

Some agricultural areas were also picked out, these had the same tone and colour on 

the FCC as MG1 areas on the range (dull orange). 

Wheat - picked out all the dark blue/purple/red areas on FCC, that field data indicated were 

winter and spring wheat. 

Barley - picked out all the pale blue areas on FCC, that field data indicated were mostly 

winter barley. 

Agricultural grass I - picked out all grass areas that have been cut, where there is low dry 

vegetation and soil background. These are mostly areas in schedule III land on the 

edge of the range, small fields in the north western pastoral region and cut areas 

around runways of a local airport. 

Urban - classified all of the urban areas, but also classified track areas within the range 

(dirty blue on FCC) and small areas of wheat (also dirty blue on FCC). 

Quarry - 100% classification of the quarry. 

Chalk tracks - picked out the larger bare chalk track areas. 

Coniferous woodland - picked out most of the coniferous areas, but also small cereal areas 

that appeared black on FCC. 

Broadleaved woodland - picked out scrub and broadleaved areas, but also classified bright 

red crop growth stage as broadleaved woodland. 

7.3.1.4 Initial Quantitative Classification Results 

Since it is primarily the range grasslands which are of interest, test verification areas were 

selected from ground data for the five range/grassland units. 

* The first test areas were selected subjectively, these were linked to the training area 

locations. This was performed as a preliminary exercise to ascertain the spectral 

uniqueness of the grassland units and give some indication of the usefulness of the 

classifier. 

Results are normally presented by a confusion matrix (Chapter four, section 4.2.4). In this 

matrix the number of pixels in the training or test data correctly classified are represented 

along the leading diagonal. Off diagonal elements represent the misclassified pixels, either 

incorrectly omitted from the class (vertical direction), or incorrectly included from another 

class (horizontal direction) errors of commission. The overall accuracy is then calculated by 

summing the leading diagonal and dividing by the total number of pixels tested. Errors only 

in commission are not as significant as errors of omission, for instance where low or no 
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omission errors the classes can be said to be identified with reasonable high accuracy. 

An example confusion matrix is given by Table 7.11, for the initial classification using TM- 

85 data. As shown in Table 7.11, classification accuracy for individual classes varied 

widely, CG3a/di was most accurately identified (98%), and CG3di the least (17%), whilst 

MGI and CG3d achieved less than 50% accuracy. The greatest amount of confusion occurs 

where CG3di has a large omission error and was misclassified as CG3a/di and conversely a 

lot of MG1 has been incorrectly omitted and was misclassified as CG3di. The greatest 

commission error occurred with CG3a/di, where pixels from all the other classes have been 

labelled as CG3a/di. 

Table 7.11 : Accuracy of Maximum Likelihood Initial Classification of 

WSPTA, May 1985 TM Data (Bands 4, 5, 3, 2 and 1) 

  

True (Test Data) Class 

  

  
  

CG3a CG3a/di CG3d CG3di MGI 
No. of Pixels 267 239 251 226 229 

CG3a 108 0 0 0 0 

(0.40) (0.00) (0.00) (0.00) (0.00) 

CG3a/di 48 235 17 162 12 

(0.18) (0.98) (0.07) (0.72) (0.04) 

Predicted CG3d 4 0 234 26 36 

Class (0.01) (0.00) (0:93); (Os) (0.16) 

CG3di 14 4 0 38 118 

(0.05) (0.02) (0.00) (OFE7)) 1 (0.52) 

MGI 44 0 0 0 63 

(0.16) (0.00) (0.00) (0.00) (0.28) 

Overall Normalised Accuracy 55.3 % 
  

* figures in the brackets denote normalised accuracy where each column in the matrix sum to one 

The overall results of this classification for all the data sets is given by Table 7.12 for the 

five grassland units. 

A 3 x 3 kernel modal filter was applied as a post classification process (see Chapter Six, 

section 6.2.2.1), this a simple way of introducing contextual information and to produce a 

more ‘thematic map like' product and hence have more correspondence to the EN's field 

vegetation map. 
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Table 7.12 : Initial Normalised Classification Accuracy of the Five Semi- 

natural Grassland Units of WSPTA for the Three Data Sets 

  

  

Data set Overall accuracy (%) 

Normalised Normalised plus model filter 

T™ 85 55.3 57.1 

SPOT 86 65.2 70.9 

T™ 84 68.0 70.8 

  

A summary of individual unfiltered class results and sources of error for all the three data 

sets is given below :- 

Normalised % Accuracy 

Class TM-84 TM-85 SPOT-86 

CG3a 54 40 61 —_- low omission errors in all data sets, some 

commission error in TM-85 with 3a/di 

CG3a/di 100 98 98 - no omission errors, high commission errors in all 

three data sets with 3di 

CG3d 88 93 75 - low omission errors in all data sets, some 

commission errors with MG1 

CG3di 68 17 30 - high omission errors with 3a/di in all dates, some 

commission error in TM-85 with MG1 

MG1 30 28 62. - omission errors with 3d and 3di in all dates, 

some commission error in SPOT-86 with 3d 

In general, modal filtering increased the accuracy by between 2-5%, with the greatest 

increase for the SPOT imagery. 

7.3.1.5 Secondary Quantitative Classification Results 

* The second stage of this process was a more realistic test, whereby objective test area 

selection was made. This will give a real and more accurate assessment of the 

classification. The test areas were chosen totally independent of the training areas. 

The overall results showed that only class CG3a/di was successfully classified (> 60%), all 
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the other classes were less than 20% correctly classified. CG3a, CG3d and CG3di were all 

misclassified as CG3a/di, whilst MG1 was generally misclassified as CG3di. The overall 

results of this procedure for all three data sets are given by Table 7.13. 

Table 7.13 : Secondary Normalised Classification Accuracy of the Five 

Semi-natural Grassland Units of WSPTA for the Three Data Sets 

  

  

Data set Overall accuracy normalised (%) 

T™ 85 27.0 

SPOT 86 43.1 

TM 84 32.0: 

  

In summary, with the more objective test data CG3a/di still classified the most accurately 

with a range of 90-98% for all three dates. All the other classes were very confused i.e., 

none of the classes achieved an accuracy over 20% with the TM imagery, whilst no class 

had an accuracy over 45% with the SPOT data. 

The secondary quantitative analysis of the grassland units was to test the hypothesis that it 

was possible to discriminate the grassland communities using reflectance data alone, since 

both the TM and SPOT have the same spatial resolution (25m). However, as seen from 

Table 7.14, the results are very much poorer and give a more realistic indication of the 

ability of satellite data in mapping specific grassland types and its complex subdivisions. It 

is unclear why SPOT should produce higher accuracies with its two statistical dimensional 

data, compared to the the five bands of TM which has three statistical dimensions, from the 

inclusion of the mid-IR band (Townshend, 1984). Modal filtering was not attempted, 

because where the accuracies are below 50-60%, it is very unlikely to improve the results. 

A comparison between the two classifying algorithms with the SPOT data, with both the 

initial classification test data and the more objective secondary test data was also 

undertaken. The SPOT data achieved overall the best results, so it was chosen to assess 

minimum distance and maximum likelihood classifiers using the same training and test 

areas, and with regard to the CPU time of each process (Table 7.14). 

As can be seen the maximum likelihood performed better compared to the minimum 

distance classifier, however at a cost of over five times more CPU time. 
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Table 7.14 : The Comparison in Accuracy and Time taken for the Two 

Classifying Algorithms using SPOT Data 

  

Overall Normalised % Accuracy 

  

  

Initial Test Areas Secondary Test Areas 
Min. Dist. Maxi. Likeli. Min. Dist. Maxi.Likeli. 

STA 65.2 38.8 43.1 

Modal Filter 59.5 70.9 39.1 45.5 

CPU time 14.6 81.4 
(mins.) 

  

A comparison between the five band TM classification and the best three band classification 

was also undertaken for the July 1984 data. The results gained showed that the inclusion of 

a further two visible bands of TM did not significantly increase the accuracy, if anything it 

was slightly better with the best three band subset. The overall normalized accuracy using 

the more objective test data, using five bands of data was 32.3%, the best three band subset 

result was 34.1%. Therefore, the far greater CPU time involved (see section 7.3.1) with the 

five band classification did not merit its usage in further analysis. The best three TM bands 

4, 5, and 3 were therefore used in all subsequent processing, with the advantage of 

considerable time saving. An important consideration for a routine operational methodology 

that will have limits in both time and money. 

7.3.2 Revised Classification Procedure : Application of a Mask 

7.3.2.1 TM July 1984 

The July TM 1984 data was chosen to test this refinement in the analysis, because of the 

greater variation and thus spectral information present compared to the other two data sets. 

All subsequent refined classifications were carried out using the original spatial resolution 

of TM (30m) and SPOT (20m). In the previous two classifications (sections 7.3.1.4 and 

7.3.1.5), the two types of sensor were resampled to a common 25m spatial resolution. This 

did not have any significant effect on the classification. 

The next stage of the analysis was the introduction of refinements to the methodology, this 

was in the form of a graphics mask of just the rangeland area. It has been suggested that 

such a mask is of benefit when attempting to classify semi-natural vegetation (McMorrow 
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and Hume, 1986). The masked area of interest was then contrast stretched, this highlighted 

more spectral and spatial variation or information within the rangeland area (Belward et al., 

1990). This was then qualitatively viewed to see if it had any meaningful representation 

with the EN informational classes from their field maps of the range. 

Eight informational classes were identified and used to train the classifier. Of these eight 

classes, four classes were made up of grassland units, two of woodland cover types, one of 

bare soil and one of chalk tracks used by military vehicles (Table 7.15). The grassland unit 

CG3a was removed from this part of the analysis, because this particular class occurred 

mainly in the MoD schedule I and III land and only within the range in a limited spatial 

distribution. 

Table 7.15 : Grassland Community Types and Cover Types 

occurring on the Masked WSPTA 

  

  

Class Classification Cover type description 

Colour Code 

1 Red CG3a/di (Calcarious grassland) 

2 Green CG3di Ce v ) 

3 Blue CG3d ae” , ) 

4 Cyan MG1 (Mesotrophic grassland) 

5 Yellow Bare ground/low vegetation 

6 Magenta Exposed chalk/tracks 

i Brown Coniferous Woodland 

8 Orange Deciduous or Mixed Woodland 

  

Training statistics analysis via frequency histograms for TM band 4, illustrated that the eight 

classes were unimodal. There were quite distinct peaks, but some overlap was evident 

between all the grass units (Figure 7.6). Band 4 gave the best discrimination of the classes 

and shows nicely the increase in reflectance from species rich CG3a/di to the more reflective 

species poor MG] at the other end of the spectrum. Band 5 showed all the grass classes 

were unimodal in nature, but there was a lot more overlap evident. Coincident spectral plots 

for the three bands illustrate the degree of spectral overlap for all the classes (Figure 7.7). 
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Figure 7.6 : Frequency Histogram of Four Range Grass Classes,WSPTA, 

TM Band-4, July 1984 
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Figure 7.7 : Coincident Spectral Plots of Seven Cover Classes for WSPTA, 

July 1984 TM Data (mean value + one standard deviation) 
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Figure 7.8 : Scatter Plot of Seven Cover Classes, WSPTA, 

July 1984 TM Data 

Two dimensional scatterplots of bands TM-4 verses TM-S illustrate the spread of class 

clusters in spectral feature space (Figure 7.8). This shows overlap between CG3a/di and 

CG3di and also between CG3d and MG1. There also could be confusion between this latter 

pair and deciduous woodland and all the grass units and the bare/low vegetation class. 

Objective test areas were used and the number of pixels used to test the classification for 

each class is given by Table 7.16. 
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Qualitative analysis of the data with EN field vegetation maps (Figure 7.9), indicated some 

good general correspondence, the minimum distance classifier being slightly better in 

performance (Figures 7.10 and 7.11). However, it was also apparent that there were some 

misclassification and confusion between classes. 

LEGEND 
Red : CG3a/di 
Green : CG3di 
Blue : CG3d 
Cyan : MGI 

Brown : Conif. wood 

  

Scale 1 : 100000 

Figure 7.9 : Field Data Map of the Distribution of Vegetation Communities 

for the Masked Range Classification 
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Figure 7.10 : Minimum Distance Classification of Masked WSPTA, July 

1984 TM 

  

Scale 1: 100000 

Figure 7.11 : Maximum Likelihood Classification of Masked WSPTA, July 

1984 TM 
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Table 7.16 : Number of Pixels used for the Test on Classification Accuracy, 

July 1984 TM 
Number of pixels : 

Class 1 2 3 4 5 6 Z 8 

Pixels 446 500 479 500 282 149 72 88 

The overall accuracy for TM-84 achieved with maximum likelihood was 79.9% (Table 

7.17), compared to 34.1% without the graphics mask in the proceeding classification. Thus 

the improvement in accuracy was found to be quite significant. It was also noted that use of 

the CPU was greatly reduced by the application of the mask, since the algorithm is only 

processing the area inside the mask and not the whole extract. 

Table 7.17 : Accuracies of the two classifiers with Graphics Mask of 

WSPTA, July 1984 TM Data (Bands 4, 5, and 3) 

  

Normalised Percentage Accuracy (%) 

  

  

Min. dist. modal filter Max. likeli. modal filter 
Class (3x3) (3x3) 

1.CG3a/di 90 94 88 97 

2.CG3di ik 75 67 ul 

3.CG3d 48 32 53 57 

4.MG1 2 80 59 66 

Overall 12:3, 76.9 75.8 79.9. 
accuracy for all classes 

  

The mean increase in accuracy by the introduction of post-classification modal filtering was 

4 - 5%. The mean increase in accuracy by using the maximum likelihood classifier was 

3.5%. Some classes were more accurately represented by the minimum distance classifier, 

for example MG1 and CG3di, which would account for the better qualitative appearance of 

the minimum distance result (Figure 7.10). 

Examination of the confusion matrixes in detail reveal the following general trends in all the 

data. CG3a/di, bare/low vegetation, chalk tracks, and the two woodland classes were 

identified with high accuracy. CG3di had some omission errors with CG3d, CG3d had a 

lot of omission errors with 3a/di and with some errors with MG1. MG1 exhibited omission 

errors with CG3d. 
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With the apparent more successful results achieved with the application of a mask on the 

TM-84 data. The next stage of the analysis was to incorporate the graphics mask in the 

classification of all data sets, and further refine the methodology with additional knowledge 

both from within the data set and from ancillary information to use in a tertiary or final 

refinement of the methodology classification (see section 7.3.4). 

7.3.3 Simulated 'Per-Field’ Classification 

In order to see how well satellite multispectral data can discriminate and map the specific 

Salisbury Plain grassland community and sub-community types, a simulated 'per-field' as 

opposed to a 'per-pixel' classification was performed. This can be said to be the theoretical 

quantifiable ‘acid test’, in which every pixel will be tested by a correspondence matrix of the 

classified overlay and the EN field vegetation map. 

This was achieved by video frame grabbing the EN field thematic map, this is where the 

map image is captured by a video camera. Once the image has been grabbed and saved on 

the image processing work station, it was transformed to the BNG. The vegetation 

boundaries on the map were then delineated and saved in the digital mapping and spatial 

analysis component of ‘iconsys ’ software package. The next stage was to then infill the 

various parcels with a theme, taken from the field map. This results in a colour coded 

thematic map (Figure 7.12), that can be compared directly with the supervised classification 

overlays on a per-parcel or 'per-field’ basis (Pedley, 1986). To do this the classified 

overlays were geometrically corrected to the rasterised field map (see Chapter Four, section 

4.2.2.1). 

This analysis was performed on the four major grassland types found on WSPTA and used 

in the analysis described in section 7.3.2. The classes and classification colours are 

described below, along with the total number of pixels for all the fields and the number of 

fields per class that were used to test the classification :- 

No. of fields or 

Class No. Class Colour code Total No. of pixels parcels per class 

2 CG3a/di Green 3969 5 

3. CG3d Blue 20415 6 

4. CG3di Cyan 19498 8 

5 MGI Yellow 6705 6 

148



  
  

Class Legend 

GM CG3a/di N 
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me McL Scale 1 : 66500 

Figure 7.12 Thematic Map of Ground Data Registered to WSPTA SPOT Data 

(Note : the Classification Legend is the same as in Section 7.3.1) 

The classification results for all three data sets are summarised below in Table 7.18. 

Table 7.18 : Supervised Classification Results for the Simulated 'per-field' 

Classification for all Data Sets (WSPTA) 

  

Class TM-84 TM-85 SPOT-86 
Maxi. Likeli. Filter Maxi. Likeli. Filter Min. Dist. Filter Maxi. Likeli. Filter 

  

  

Ds 57.0 66.0 42.0 45.2 58.7 63.6 . 46.4 51.3 

3. 19.0 20.3 18.0 17.3 23.8 25.2 13.8 8.2 

4. 30.0 34.6 42.0 49.4 17.0 14.0 30.2 35.6 

Se 27.7 36.0 27.7 34.0 46.6 55.4 49.0 61.7 

Overall 33.4 39.2 32.3 36.4 36.5 39.6 34.8 39.2 
  

These results give a ‘true’ indication of the ability of satellite data to spectrally discriminate 
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the grasslands units at this sub-community level, since every available pixel was used in the 

test verification process. The overall results for all the data sets are similar despite the 

differences in year and using two different sensors of different spectral band combinations. 

Figure 7.13, shows the simulated ‘per-field’ classification accuracies for the three data sets 

and with filters applied. Class 3 (CG3d) was constantly the poorest in classification 

accuracy, whilst class 2 (CG3a/di) achieved the best result. In every case each class suffered 

quite high omission and commission errors with every other class. A test comparing the two 

different type of classifiers with the SPOT data did not significantly alter the end result. 
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CG3a/di CG3d CG3di MG1 Grass Classes 

Figure 7.13 : Simulated 'Per-field' Maximum Likelihood 
Classification Accuracies for the Three Data Sets 

The results do show however, that at this detailed specific level of grassland community 

type, satellite data does not discriminate with sufficient reliability or accuracy. The next 

stage was to further refine the methodology to see if the classification accuracy could be 

further improved. 

It is also necessary to be made aware of the following errors implicit in this particular 

analysis (these are discussed in more detail in Chapter eight). These include :- 

i ) errors by field workers, 

ii) errors in parcels where mixtures of grass types not described by EN's field thematic 

map, 

iii) errors where other cover types present i.e., woodland, chalk tracks, etc and 

iv) where at the edge of the range especially the schedule III land, farmers have managed 
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the land such that it alters the spectral response, but the informational class is still the 

same. For example, where the EN field map has classified an area as MG1, the 

imagery clearly shows that the farmer has cut the grass for hay or silage and the 

imagery therefore displays it as a different spectral class of low vegetation or stubble. 

7.3.4 Tertiary Classification : Final Refinements to Methodology 

As a final stage to the methodology, further refinements were introduced by editing the 

informational classes using the input of three types of information :- 

* input of information from unsupervised classification regarding spectral classes 

present, 

* empirical evidence from statistical analysis from EN, and 

* the analysis of confusion errors from initial supervised classifications. 

7.3.4.1 Unsupervised Classification 

As part of the training procedure it is advisable (Curran, 1985) to instigate an unsupervised 

classification of the whole data set, to determine if the number of classes chosen during 

training bear anything more than scant relation to the number of statistically separable 

spectral classes in the whole data set. This can be achieved by dividing the image data into 

its natural groupings or clusters in feature space. The results of this classification are 

dependent upon the number of classes that are initially chosen by the analyst. This 

procedure is described in more detail in Chapter Six, section 6.1.2. 

7.3.4.1.1 TM July 84 

All available classes were chosen, which were fourteen in number (Table 7.19). 

Such an exploratory technique gives a good indication of how the spectral classes relate to 

informational classes. One major range spectral class and two agricultural grassland classes 

were found. Also four cereal, two woodland classes, two bare or low vegetation, two 

minor quarry classes and one urban class were distinguished. This process also provides 

clues as to where spectral confusions, hence misclassifications are going to occur. 
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Table 7.19 : Unsupervised Classification WSPTA whole Extract, July 1984 

TM (Bands 4, 5, and 3) 

  

  

Class Mean value per band 
Peak 

No.of Pixels 4 5° 3 Colour * Land cover types classified 

1 10561 96 80 36 R _ -90% of the range. Some confusion with cereals 

(dark purple/red on FCC) 

2229) 96 40 30 G_ -coniferous woodland. Some confusion with 

cereals (very dark red on FCC) 

3 1726 96 112 48 B__ -bare fields or low vegetation (light blue on FCC). 

Large extent in north western pastoral region (hay 

cut) 

a 891 120 72 36 C_ -areas of SSSIs (orange on FCC) and bright pink 

(rape) on FCC 

5 529 96 144 60 Y_ -bare fields no vegetation (light blue to whites on 

EGG) 

6 450 78 80 48 M_— -cereal I (purple on FCC). Slight confusion with 

some range and urban 

349 120 32 36 Lr -cereal II (bright red on FCC) 

287 120 104 36 Lg_ -areas of SSSIs (yellow/green on FCC) and 

permanent pasture in north western region 

9 134 102 80 60 Lb -cereal III (blue/purple on FCC) growth stage 

10 87 144 80 30 Lc -cereal or improved grassland (very bright orange 

on FCC) 

1 43 60 96 48 Ly - urban areas, airport runways, however large 

errors of omission with non-urban cover types 

12 40 54 48 30 Lm_ -coniferous woodland II 

13 25 162 112 162 Br -chalk quarry 

14 17 108 112 72 O - -small area within quarry even brighter pixels 

  

* for explanation of the annotated colour symbols see Table 7.7, where R equals red, G equals green etc. 

The next relevant step is to repeat the process with the graphics mask applied, so only the 

range area is subjected to the unsupervised classification. This is where choosing the 

number of classes becomes important and shows how many significant spectral classes 

within the range are present (Table 7.20). 
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Table 7.20 : Unsupervised Classification WSPTA Rangeland, 

July 1984 TM (Bands 4, 5, and 3) 

  

Class Mean value per band 
Peak 

No. of Pixels 4 5 3 Colour * Land cover types classified 
  

D2 710 92 85 36 R _ -70% of the range (blue/green areas on FCC) 

2 778 104 90 39 G_ -25% of the range (orange areas on FCC), 

some rough approximation to class MG1. 

3 122 92 105 48 B_ -2-3% of range corresponds to low or dry 

vegetation (grey on FCC). Also picked out chalk 

track areas 

4 70 96 130-57 © C - low vegetation or bare areas i.e., larger track 

areas and where rangeland has been cut in schedule 

Ill region 

ay 25 84 60 30 Y _ -coniferous woodland 

iS, 12, 80 39 M_ -very small part of the range (dark green on FCC) 

7 12 108 70 30 Lr - bright orange/red on FCC, scrub mixed/broad 

leaved woodland 

8 11 100 135 69 Lg - grey/white on FCC, minor areas of chalk track 

and bare land 

  

* for explanation of the annotated colour symbols see Table 7.7, where R equals red, G equals green etc. 

The number of classes chosen was eight. This was the maximum number of classes that 

could be chosen with a more than adequate peak number of pixels represented. The 

threshold for the number of pixels being ten or less, since classes 9 - 14 contained very 

small peak number of pixels and could not be easily identified on the unsupervised 

classification overlay. This result confirms the number of training classes chosen in the 

secondary rangeland masked classification (section 7.3.2). The unsupervised spectral 

classes comprised three range classes, three low vegetation, bare and track classes, and two 

woodland classes. The previous supervised classification (section 7.3.2) which used 

informational classes comprised four range classes, two bare/low vegetation and two 

woodland classes. 

As a method of cross checking it was thought prudent to compare the mean statistics found 

in the unsupervised classification and used in the previous supervised classifications for the 

Tange grass units. These figures are shown below :- 
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Supervised Unsupervised 

Class training class means natural class means 

4 5 3 4 5 3 

CG3a/di 89.9 92.3 40.6 92 105 48 Class 3 

CG3di 94.4 89.5 37.6 52,47 85, 36 Class 1 

CG3d 101.7 87.8 38.3 

MG1 106.1 89.7 38.8 104 90739 Class 2 

As it can be seen the three natural unsupervised classes roughly match the supervised 

training class means, which adds some validity to the spectral discriminatory potential of the 

data. 

7.3.4.1.2 TM April 1985 

In a fourteen class unsupervised classification of the whole extract, the range was well 

discriminated again from the surrounding agricultural land. The range was made up of two 

major classes. The rest of the classes were made up of woodland classes and a large 

number of crop growth stages and vigorously growing green vegetation. This was a 

reflection of the date of the imagery i.e., April being the beginning of the rapid growth 

period. Of note was a spectral class that picked out SSSI areas (yellow/green on FCC) and 

large expanses of the agriculturally managed schedule III land adjacent to the range. 

Again the next stage was to repeat the process with the graphics mask applied. The results 

of the unsupervised analysis are given by Table 7.21. 

Eight spectral classes were chosen interactively above the threshold of the peak number of 

pixels (i.e., greater than 10). Of these there were four significant range classes, one 

woodland class, one bare class and one crop class. The first three of the unsupervised grass 

classes means compared well with CG3a/di, CG3di and MG1 supervised training statistic 

means. The fourth unsupervised range (class 4) mean did not relate to the remaining CG3d 

supervised class, however the unsupervised class 4 had also picked out the bare chalk areas 

which will bias the mean values in the three bands away from the mean values used to train 

the classifier in recognising the CG3d class. 
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Table 7.21 : Unsupervised Classification WSPTA Rangeland, 

April 1985 TM (Bands 4, 5, and 3) 

  

Class Mean value per band 
Peak 

No. of Pixels 4 5 3 Colour * Land cover types classified 

  

1709 80 105 39 R _ -75% of the range (blue/grey areas on FCC) 

2 426 96 100 33 G_ -10% of the range (orange/grey areas on 

FCC), some rough approximation to class MG1. 

3 62 76 115 51 B_ -10% of range (light blue/green on FCC). Also 

picked out a lot of the chalk track areas 

50 68 80 33 C  -5% of range (yellow/green on FCC) 

5 35 92 120 42 Y  -small area bright red on FCC, cereal or improved 

pasture 

6 31 116 80 27 M__ -coniferous or mixed woodland 

16 60 95 39 LR_ -remaining larger chalk track areas 

8 12 60 55 27 LG _ - very small part of the range (blue on FCC) 

  

* for explanation of the annotated colour symbols see Table 7.7, where R equals red, G equals green etc. 

7.3.4.1.3 SPOT June 1986 

In the unsupervised classification of the whole extract, thirteen classes were identified 

showing that there are less spectral classes present compared to TM, even though it is June 

the period of most vegetation growth. Most of the whole extract was described by the first 

six classes. Class 1 represented 99% of the range (red/grey & green/grey on FCC), but it 

also picked out woodland, urban areas and crop areas off the range. The rest of the 

classification categories were made up of two crop classes, one urban class and two classes 

representing bare, chalk tracks and low vegetation. 

Again the next stage was to repeat the process with the graphics mask applied. The results 

are given by Table 7.22. 
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Table 7.22 : Unsupervised Classification WSPTA Rangeland, 

June 1986 SPOT (Bands 3, 2 and 1) 

  

Class Mean value per band 
Peak 

No. of Pixels 4 5 3 Colour * Land cover types classified 

  

1 8578 100 30 45 R_ -85% of the range (blue/green grey areas on FCC) 

also red/black woodland 

D724 120 27 45 G_ - 10% of the range (red/pink grey areas on FCC), 

3) 423 95 42 54 B_ -chalk track areas 

4 116 70 30 42 C_ -black/green coniferous woodland and burnt areas 

of the range 

3 61 115 42 57 Y — -chalk track Il areas (grey on FCC) 

6 46 90 51 63 M_ -chalk track III areas (white on FCC) 

iD 27 140 27 45 Lr -scrub broadleaved woodland (bright red on FCC) 

8 12 90 72 75 Lg_ - very small area linked to chalk tracks 

  

* for explanation of the annotated colour symbols see Table 7.7, where R equals red, G equals green etc. 

The unsupervised classification produced two range spectral classes, four classes associated 

with the bare chalk tracks and two woodland classes. A comparison between the two 

spectral range class band means and the informational range class means used in the 

supervised classification is shown below :- 

SPOT bands (mean) 

Informational Supervised Unsupervised Spectral 

Tange class 3 2 1 3 2 1 range class 

CG3a/di 97.4 32.7 47.5 100 30 45 1 

CG3di 102.1 32.0 47.2 120 27 «45 2 

CG3d 112.1 le 47.4 

MG1 114.7 321 48.4 

This shows that most of the discriminatory information is contained in the near-infared band 

3, and that the informational classes fall in between the two spectral natural clusters found 

by the unsupervised classifier. 
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7.3.4.2 Class Editing 

Having gained useful information on the composition of natural spectral classes present 

within the data sets. The next stage was the further final refinement of the procedure which 

was comprised of two parts, these were :- 

i) the editing of classes to statistically significant noda or points on continuum based 

on species richness and on canopy structure, and 

ii) the analysis of confusion errors from initial supervised classifications. 

EN undertook some statistical analysis from their ground data based on sample quadrats. A 

comparison of means of samples was conducted on the community types to see if 

differences between the species-richness of communities were statistically different using 

TWINSPAN. They found that three groups were apparent, these were i) CG3a and 

CG3a/di; ii) CG3d and CG3di, and iii) MG1. There were significant differences in species- 

richness between these groups but not within them. It was noted that the variation of the 

community types was as a continuum from short species rich swards to taller mesotrophic 

species poor swards and that these three groups existed as noda on this continuum (Porley, 

1989). 

By careful examination of the confusions errors experienced most commonly from the 

previous classifications, it was possible to observe repeated classification errors between 

pairs of classes suggesting the following systematic trends for all data sets in all 

classifications. This arose from the fact that each pair were physiognomically similar and 

hence spectrally related. Whilst keeping in mind that it is the omission errors that are most 

the most significant :- 

Common general error trends from previous analysis 

omission errors :- commission errors :- 

Some CG3a/di labelled as 3di 

CG3di confused with 3a/di A lot of CG3di labelled as 3a/di 

CG3d confused with 3a/di A lot of CG3d labelled as MG1 

MGI confused with CG3d and 3di MG!1 labelled as 3d. 

This knowledge was combined with the statistical results that EN conducted, together with 

the information of the spectral classes present from the unsupervised classification, to 

produce a final edited training set of three range grassland units. 
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Three groupings were formed, the grassland units CG3a and CG3a/di were combined; as 

were CG3di and CG3d, whilst MG1 remained by its self. These edited grassland groups 

were then used in the final classifications. 

7.3.4.2.1 TM July 1984 

The whole extract was first classified to see if the edited range classes were confined to the 

range areas and that if this were the case, that would mean there would be little confusion 

with the other land cover types that occur in the mainly agricultural surrounding area. This 

would show that the range classes were indeed spectrally valid. After this analysis, the next 

stage was the application of the mask and to quantitatively assess how accurately the three 

edited range classes were represented. The training area statistics for the complete extract 

and for all the classes are given by Table 7.23. 

Table 7.23 : Edited Grassland Communities and Cover Types found on the 

WSPTA and their Training Statistics, July 1984 TM (bands 4, 5, and 3) 

  

  

TRAINING STATISTICS 

CLASS CLASSIFICATION DESCRIPTION a 5 3 
COLOUR CODE Mean Std. dev Mean Std. dev Mean Std. dev 

1 Red MG1 105 2.4 88 2.0 38 det 

2 Green CG3di & CG3d 940 3.7. 89 2.2 38 0.9 

3 Blue CG3a & CG3a/di 88 = 3.2 3 2.6 41 15 

4 Cyan Agril grass (SSSI) 111 3.9 104 63 40 2.0 

5 Yellow Agri Il grass (SSSI) 124 2.6 91 27. 35 0.9 

6 Magenta Winter barley 88 2.3 89 52 60) 8 ay 

7 Light Red Winter wheat I 101 2.6 562.6 34 LS 

8 Light Green Oil seed rape 127 0.3 125 22 43 1.6 

5 Light Blue Winter wheat II 90 2.6 61 25. 40 1.6 

10 Light Cyan Bare / stubble OF) 2:5 127 03 65 3.8 

11 Light Magenta Urban 76 84 8262: 44 4.5 

12 Brown Coniferous Woodland 79 3.0 47. 21 32, 1.1 

13 Orange Deciduous or Mixed 109 13.0 69 «9.4 30 1.8 

Woodland 

14 White Open cast quarry 124 2.9 134 0.9 72 3.9 
(chalk) 
  

Analysis of the class statistics by the methods used earlier (section 7.3.1.1.1) was 
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undertaken for the three range grass units and for two agricultural chalk grass types that 

were identified from field data as of SSSI status. These two chalk grass types are referred to 

as SSSI I and SSSI II. 

Examination of frequency histogram plot of TM band 4, showed that all five grass classes 

are unimodal, but that there was some overlap between MG1 and SSSI I. A coincident 

spectral plot of all fourteen classes showed that in band 5, class SSSI I exhibited quite a 

large standard deviation. This was further illustrated by examination of a scatter plot of TM 

band 4 verses band 5, where class SSSI I has a much larger spread of data and more overlap 

with other classes. Whilst of the other non-grass classes winter wheat class I, the urban 

class and broadleaved woodland all displayed large standard deviations in all three bands. 

From a visual “quick-look’ qualitative inspection, the classified thematic maps, displayed a 

certain degree of overall correspondence with the EN ground survey data and that this 

correspondence was more accentuated for the crop land. For the qualitative assessment of 

both minimum distance and maximum likelihood classifiers performance for all classes for 

the whole WSPTA extract refer to Appendix 6. 

By observing the training statistics, the high standard deviations present in some of the 

classes, were seen to cause some problems in the finished classification overlays (see Table 

7.23), where there were confusions in the classification of winter wheat, broadleaved 

woodland and the urban classes. Overall however, the classification can be said to be the 

best so far, with the minimum distance, which does not rely on the statistical standard 

deviations parameters as much as the maximum likelihood, being qualitatively the superior. 

The next stage of the analysis is to be able to quantify whether the accuracy of the rangeland 

classes is increased or not by the additional knowledge used to edit the classes for all three 

data sets. The range was masked off again even though the range classes were not confused 

with the other mainly agricultural land cover classes. Training and test sites were chosen 

carefully and were kept the same in location and in number of pixels for all three data sets. 

7.3.4.2.1.1 Masked TM July 1984 

Seven classes were used to train the classifiers, both classifiers were again assessed, (for the 

complete statistics of the training file [ctrain84.csd] see Appendix 5). The seven classes 

consisted of : the three edited grass groupings (referred to as class 1, 2, and 3), bare/stubble 

class, cereal class and two woodland classes. In the selection of test and training areas all the 

large areas of homogeneous grass sward as found by EN, were used in this analysis. For 
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instance, three large areas were used as test sites for each class. This amounts to an almost 

complete test, since all possible areas were used, except those areas that were not surveyed 

by EN, that were chalk tracks and the immediate areas associated with them and areas that 

were found to contain a mixture of classes from the field survey. 

Analysis of the training class statistics by the histograms etc, were satisfactory. Class 

standard deviations were relatively small and there were no indications that the 

classifications would not be satisfactory. 

The classified thematic map produced by minimum distance classifier can be seen in Figure 

7.14, and it can be compared with EN's field vegetation map with corresponding edited 

grassland classes (Figure 7.15). Note that from a visual qualitative inspection, the classified 

thematic maps, showed a certain degree of overall correspondence with EN ground survey 

data. 

Whilst a confusion matrix gives an indication of the accuracy of the classification, they do 

not give any estimate of the level of confidence in the results. To do this and to determine the 

accuracy of individual categories, the true 95% confidence limits for each category the 

following two-tailed test was applied (Jensen, 1986) : 

p=p~+ [1.96 V(~) Q~)/n + 50/n] (7.2) 

where :- _ p = actual class accuracy expressed as a %, 

p~ = the percent of a class calculated as being accurately classified (the number 

of pixels correctly identified divided by the total number of pixels), 

q~ =to 100 - p~, and n = the number of pixels in each class. 
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Figure 7.14 : Minimum Distance Classification of WSPTA, with Edited 

Grass Classes July 1984 TM 

LEGEND 

  

   

    

Red: MG1 
Green : CG 3di & 3d 
Blue : CG3a & 3a/di 
Brown :Wood plantations 

“Scale 1 : 100000 

Figure 7.15 : Field Data Map of the Distribution of Edited Grassland 

Classes used in the Tertiary Classification 

(Note : areas of red hatch denote where two classes are mixed. These areas 

were not used in the training and testing of the classification) 
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A summary of the results for the three edited classes are given below :- 

Normalised Accuracy % 

Class Min. Dist. plus filter * Max. Likeli. plus filter Confidence 

(3x3) (3x3) limits (95%) 

1 MGI 90.6 92.2 84.3 87.5 90.1 - 93.9 

2CG3d & 3di 81.3 87.0 83.7 88.1 84.6 - 89.4 

3 CG3a & 3a/di 36.1 36.0 28.9 28.2 32.1 - 39.9 

OVERALL 69.3 71.6 65.6 68.0 70.5 - 73.5 

* The confidence limits for each data set were calculated by using the best results achieved; 

in this case this was the minimum distance classifier with 3 x 3 modal post classification 

filter. 

The results of the edited grass class supervised classification are shown by Figure 7.16. 
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Figure 7.16 : Classification Accuracies for the 
Edited Grass Classes, July 1984 TM 

Examination of all the confusion errors show in general that there were small omission 

errors between class 1 and 2, and between 2 and 3. However, large omission errors were 

evident between class 3 and 2, where what should be CG3a and 3a/di was being classified 

as CG3d and 3di. This result was contrary to all previous results, since CG3a/di 

consistently achieved greatest accuracy. The component of CG3a in class 3 can be ignored 

as being a contributing factor, due its very small spatial extent within the range. These 

results perhaps give a truer picture of the accuracy of classifying CG3a/di, since in previous 
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classifications test areas were selected from the one very large pure area of CG3a/di. In this    
classification however, all the other much smaller regions were included in the 

test/verification site selection process (in conclusion this shows how important test training 

selection is in the final outcome of result i.e., need at least one test site for each reasonable 

large pure sward area), which gave a much lower overall result for class 3. 

Minimum distance classifier performed slightly better than the maximum likelihood 

classifier, whilst application of post classification smoothing filter increased accuracy from 2 

- 6%. 

7.3.4.2.2 Masked TM May 1985 

Examination of the statistics showed that they fulfilled all the necessary assumptions 

regarding the normality of the data, good separation of clusters etc,. The classified thematic 

map produced by minimum distance classification can be seen in Figure 7.17. 
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Figure 7.17 Minimum Distance Classification of WSPTA with Edited Grass 
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A summary of the results for the three edited classes are given below :- 

Normalised Accuracy % 

Class Min. Dist. plus filter Max. Likeli. plus filter* Confidence 

(3x3) (3x3) limits (95%) 

1MG1 48.0 47.5 TSA 76.6 74.1 -79.9 

2CG3d & 3di 45.3 46.2 46.1 52.0 48.4 - 55.6 

3 CG3a & 3a/di 34.6 34.4 33.0 32.8 30.0 - 36.0 

OVERALL 42.6 42.7 51.4 53.8 52.1 - 55.9 

* The maximum likelihood plus modal filter results were used to calculate the the 95% 

confidence limits. 

The results of the edited grass class supervised classification are shown by Figure 7.18. 
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Figure 7.18 : Classification Accuracies of the Edited Grass Classes, 

May 1985 TM 

Again class 3 had the poorest results. Large omission errors occurred between class 1 and 2 

(this was not so large with the maximum likelihood), and between class 2 and 3. Class 3 

showed even larger omission errors with class 2. 

-Here the individual class and overall accuracies are lower than the 1984 data. The maximum 

likelihood produced better results and where the class has been classified with over 50% 

success then filtering further increased the accuracy. 
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Figure 7.19 : Minimum Distance Classification with Edited Grass Classes 

June 1986 SPOT 
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Figure 7.20 : Minimum Distance Classification of SPOT with 7x7 Modal 

Post-Classification Filter 
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7.3.4.2.3 Masked SPOT June 1986 

It was noticed in the supervised training process, that all the grass classes were made up of 

complete mixtures of pixel tones, they all contained red, pink, green and grey pixels. Unlike 

the more tonally distinct situation found with the TM data, where it was found that there was 

generally distinct general tonal associations for the various specific grass classes. 

Examination of the statistics as before proved satisfactory, however there did seem to be 

some evidence of spectral overlap between the vigorously growing grass class 1 (MG1), the 

crop class and broadleaved/mixed woodland. 

A summary of the results for the three edited classes are given below :- 

Normalised Accuracy % 

Confidence 

Class Min. Dist. plus filter Max. Likeli. plus filter limits (95%) 

(3x3) (3X3) 8 9X5) ee x7) 

1MG1 63.7 66.9 70.3 72.4 75.9 79 69.5 - 74.5 

2 CG3d & 3di 70.9 74.0 67.6 F12 74.7 80.9 69.1 - 72.9 

3 CG3a & 3a/di 66.9 68.3 70.3 72.6 73.4 74.4 70.3 - 75.7 

OVERALL, 67.1 69.7 69.4 T24. 74.6 WD 70.7 - 73.3 

* The maximum likelihood plus 3 x 3 modal filter results were used to calculate the 95% 

confidence limits. 

The classified thematic map produced by minimum distance classification can be seen in 

Figure 7.19 with an overall accuracy of 69.4% . Figure 7.20 shows the same classification 

but with a much larger filter kernel (of 7 x 7 pixels) and an overall result of 77.7%. The 

effects of post-classification modal filtering on the accuracy of the classification of the edited 

grass classes is shown by Figure 7.21. 
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Figure 7.21 : Effects of Post-Classification Modal Filtering on the Accuracy 

of the Edited Grass Classes 

The results of the edited grass class supervised classification are shown by Figure 7.22. All 

grass classes were classified with roughly equivalent accuracy. Confusion occurred between 

class 1 and class 2, each showed omission errors with each other. Whilst class 3 showed 

confusion errors with class 2. 

  

es y ry y y LEGEND 

ROW | Bo tte 
* Bn 

  

MG1 CG3d & 3di CG3a & 3a/di_ Edited grass classes (Groupings) 

Figure 7.22 : Classification Accuracies of the 
Edited Grass Classes, June 1986 SPOT 

The SPOT maximum likelihood results were slightly better than the best TM results. This 

was mainly because class 3 was identified more accurately with the SPOT data. The 

maximum likelihood was 3% more accurate than the minimum distance and filtering 
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progressively increased accuracy with increased kernal size. The overall accuracy increased 

by 8.3% after application of the 7 x 7 pixel smoothing post classification filter. 

As a further test of the accuracy, the areas of each grass unit on the Salisbury Plain was 

measured by EN, and these can be compared directly to the WSPTA figures calculated by 

the satellite classifications (Table 7.24). 

Table 7.24 : The Classified Percentage and Areas of the Land Cover Types 

found on WSPTA for all Three Data Sets, Compared to English Nature (EN) 

Ground Estimates 

  

TM-84 (30m) TM-85 (30m) SPOT-86 (20m) EN Estimates 

Class Noof %ofarea Area Noof %ofarea Area Noof %ofarea Area %of area Area 
Pixels (Ha) Pixels (Ha) Pixels (Ha) (Ha) 

  

MG1 24414 «34.7 2,197 16448 23.4 1,480 41606 26.1 1,664 22 1,367 

CG3di 27894 «39.6 «2,510 30560 43.4 2,751 77357 484 3,094 66 4,104 

&3d 

CG3a & 12811 18.2 1,153 14251 20.3 1,283 16050 10.2 642 12 744 

3a/di 

Bare/ 2434 35 219 2025 3.0 182 14367. 9.3575 

Stubble 

Crop 618 08 56 1431 2.0 129 11015 74 440 

Coniferous 983 14 88 714 1.0 64 1071 0.9 43 
woodland 

  

Broadleaved 707 1.0 64 = 4840 6.8 436 778 0.6 32 
woodland 

Totals of 6,080 6,056 6,415 6,215 
grasses (Ha) 

  

The results show a comparable overall total amount (Ha) of grass types between the three 

data sets and EN figures (Porley, 1989). However, individual categories varied widely in 

comparison to EN estimates. Overall, the SPOT data gave the best results, with the two TM 

data sets over estimating the CG3a and 3a/di group. Both the TM-85 overall grass figure had 

to be adjusted to compensate for over classification of broadleaved/mixed woodland; as did 
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the SPOT-86 figure due to over classification of crop/arable areas in schedule III areas, that 

were really grass areas waiting to be cropped for hay 

7.4. Classification of the Wylye Study Area 

As a secondary part of the research programme, as well as looking at the capability of 

satellite sensors in mapping and inventory of the chalk rangeland, the ability to detect the 

unimproved agricultural chalk grassland that occurs in the surrounding agricultural land was 

also investigated. The study area is shown by Figure 7.23, the example data set is of July 

1984 TM data (bands 4, 5 and 3). EN provided field data on SSSIs present in the area and 

the Wylye region was chosen as the study area, because it contained numerous examples 

with which to train and test the classification (see Appendix 8). 

  
Scale 1 : 100000 

Figure 7.23 Wylye Study Area Extract, July 1984 TM Data 

(Bands 4 5 and 3) 
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7.4.1 TM July 1984 

7.4.1.1 Unsupervised Classification 

An unsupervised classification was first performed to give an indication of the number of 

spectral classes present in the imagery. Fourteen classes were chosen for the analysis and 

the resultant classes are described in terms of informational cover classes (Appendix 7, 

Table A7.1) :- 

The major classes comprised of six crop growth stages (mainly spring and winter cereals), 

however these were totally confused with woodland. Two classes of SSSIs or permanent 

pasture, one class of semi-natural rangeland, one class of low vegetation or stubble, and one 

class of bare ground. This information was then used as a aid in a supervised approach. 

7.4.1.2 Supervised Classification 

As well as EN field data, general agricultural information was used to train the classifiers, 

this information can be found in the form of farm maps that are in Appendix 3. 

Classification of arable land cover classes eg, crops were not an important aspect of the 

projects objectives, so no attempts were made to refine the arable land classification except 

where such refinements improved the classification of the grassland communities. Thirteen 

informational land cover classes were identified for the supervised classification, which was 

performed using the two classifiers. The crop growth stages were used, as were the SSSI 

and range classes, however the bare and low vegetation class was combined and water and 

two woodland classes were introduced (see Table 7.25). 

Analysis of the training class statistics proved satisfactory and the classifications were 

performed. Qualitatively with the maximum likelihood, the SSSI, range, bare, four crop, 

and the coniferous classes were generally identified correctly. Confusions were apparent 

between two of the crop classes and also between broadleaved/mixed woodland, the water 

class and a few crop areas that appeared very dark on the FCC. In comparison, the 

minimum distance classified a lot more of the range class throughout the whole extract, for 

instance in SSSI areas, along road fringes and along river valleys. There was less 

misclassification between two crop types, but this was countered by far more 

misclassification of broadleaved/mixed woodland as a crop type. 
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Table 7.25 : Class Types and Number of Test Pixels, Wylye classification 

July 1984 TM 
  

  

Class No. Class cover type No. of test pixels 

1 SSSII permanent chalk grassland 203 
2 SSSI II permanent chalk grassland 194 
3 semi-natural range grassland 212 
4 bare or low vegetation 231 
5 crop or improved grassland 230 
6 cereal growth stage I 335 
3 winter cereals I 263 
8 winter cereals IT 348 
9 oil seed rape I 66 
10 water 220 

ll oil seed rape IT 236 
12 coniferous woodland 196 

ile) broadleaved mixed woodland 352 

  

An example of a whole confusion matrix for the supervised minimum distance classification 

of the Wylye region using TM-84 data is given by Table 7.26. 

Table 7.26 : Supervised Minimum Distance Classification of Wylye, 

July 1984 TM (Bands 4, 5, and 3) 

  

Class (true) 
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96.5 9.3 27.0 0.0 0.0 

2.0 90.0 3.0 0.0 0.0 

70.3 0.0 0.0 

70.0 0.0 
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0.0 0.0 
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0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 25.0 20.0 

0.0 0.0 1.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

99.0 0.0 0.0 0.0 

0.0 100.0 0.0 0.0 

0.0 

0.0 

0.0 74.0 2.0 

0.0 2.0 77.0 

  

Overall normalised accuracy 70.12% 

  

Note : unclassified pixels are not included in this matrix 
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As anticipated the major sources of error were between class 6 and 7 (cereal classes ) and 12 

and 13 (the two woodland classes) in both omission and commission. Class 7 had the 

lowest accuracy 50%, whilst class 10 crop II (rape) was classified at 100% accuracy. There 

was also some confusion between coniferous woodland and water. The two SSSI chalk 

grasslands had minor errors with each other and with the rangeland, where 27% of the range 

was misclassified as the SSSI grass class 1. 

A summary of the other results pertaining to use of filtering and maximum likelihood are 

given below in Table 7.27 for the grass classes of interest and the overall accuracy for all 

classes. 

Table 7.27 : Classification Accuracy of the Grass Classes, Wylye Extract 

July 1984 TM 

  

Normalised accuracy % 

  

  

Class Min Dist Filter Maxi. Likeli. Filter 

(3x3) (5x5) (3x3) (5x5) 

1. SSSIT 97.0 97.0 DD 89.7 90.6 92.1 

2. SSSI II 90.2 94.0 97.0 97.0 99.0 100.0 

3. Range 70.3 75.0 755 95.8 100.0 98.6 

Overall* 70.1 2a TS1 67.2 67.6 67.4 

  

* the overall figure is given for all classes in the classification 

The results show for the grass classes of interest that the maximum likelihood classifier 

performed better, however overall the minimum distance was more accurate, and the 

introduction of filtering generally increased the accuracy. The same sources of error were 

apparent in the maximum likelihood i.e., woodland and cereals, but there were slightly more 

intra-cereal confusions (class 6 and 7). 

7.4.2 TM May 1985 

7.4.2.1 Unsupervised classification 

An unsupervised classification was first performed to give an indication of the number of 

spectral classes present in the imagery. Fourteen classes were chosen with an adequate 
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number of peak value pixels to represent the natural clusters for the analysis and are 

described in Appendix 7, Table A7.2. 

The major classes comprised of three cereal growth stages, two classes of emerging cereals 

(low vegetation/bare), and two crop growth stages (vigorous green growth). Two classes of 

SSSIs or permanent pasture, one major class of semi-natural rangeland, one class of bare 

ground and two classes of woodland, with one of these being confused with water. Again 

this information was then used as an aid in a supervised approach. 

7.4.2.2 Supervised classification 

Thirteen informational land cover classes were identified for the supervised classification, 

which was performed using the two classifiers. The cereal crop growth stages and one crop 

class were used, as were the SSSI and range classes, two bare and low/emerging vegetation 

classes, two woodland classes and a water class was introduced (Table 7.28). 

Analysis of the training class statistics proved satisfactory although class 4 (bare) exhibited 

large standard deviation especially in TM band 5. The classifications were then performed 

with the two classifiers. Qualitatively, the maximum likelihood appeared to be the better of 

the two classifiers, the minimum distance over classified SSSI class II in crop areas and 

over classified the range in areas that were agriculturally managed crops. 

Table 7.28 : Class Types and Number of Test Pixels, Wylye Classification 

  

  

May 1985 TM 

Class No. Class cover type No. of test pixels 

1 SSSI I permanent chalk grassland 65 
2 SSSI II permanent chalk grassland 81 
3 semi-natural range grassland 177 
4 bare or low vegetation I 64 
5 crop or improved grassland 78 
6 cereal growth stage I 88 
7 winter cereals I 85 
8 winter/spring cereals 11 
9 oil seed rape 88 
10 water 47 
ll low vegetation/bare II 107 
12 coniferous woodland 62 
13 broadleaved mixed woodland 126 

  

There was a different emphasise compared to the July 1984 TM imagery, with more 

emerging crop/soil background classes in the May 1985 imagery, this being a function of the 
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season. It was also noted that the woodland classes were much more apparent compared to 

the 1984 image. 

A summary of the results (Table 7.29) shows that there was no confusion between the 

woodland and the crops this time. With unfiltered minimum distance, seven classes were 

correctly classified over 90%, the lowest accuracy was with crop class 9 (63%), which was 

confused with another crop class 7. The overall result was 87%. There were relatively small 

confusions between the two SSSI classes and between the range class 3 and the bare/low 

vegetation class 11. The unfiltered maximum likelihood classifier in comparison correctly 

classified nine classes over 90%. The overall result was 85.5%. However, the lowest 

accuracy was 36% with class 5, which had large omission errors with SSSI class 1, these 

two classes did exhibit similar tones on the FCC. There was also greater confusion evident 

between the two SSSI classes with the maximum likelihood classifier. There was also 

omission errors in class 7, with classes 6 and 8, which are all cereal growth stages. 

However unlike, the minimum distance, the range class was correctly classified. 

Table 7.29 : Classification Accuracy of the Grass Classes, Wylye Extract 

May 1985 TM 

  

Normalised accuracy % 

  

  

Class Min. Dist. Filter Maxi. Likeli. Filter 

(3x3) (5x5) (3x3) (5x5) 

1. SSSII 100.0 100.0 100.0 100.0 100.0 100.0 

2. SSSI II 71.6 77.8 89.0 52.0 61.0 68.0 

3. Range 71.8 78.0 84.2 100.0 100.0 100.0 

Overall* 87.0 87.6 90.1 85.5 Sit 88.5 

  

* the overall figure is for all classes in the classification 

7.4.3 SPOT June 1986 

7.4.3.1 Unsupervised Classification 

An unsupervised classification was first performed to give an indication of the number of 

spectral classes present in the imagery. Eleven classes were chosen with an adequate number 
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of peak value pixels to represent the natural clusters for the analysis (see Appendix 7 

Table A7.3). 

Major spectral classes consisted of three cereal, three bare/low vegetation, two woodland, 

two SSSI chalk grasslands and one range. In attempting a supervised procedure, analysis of 

the FCC and the unsupervised result illustrated the difficulty in separating grasslands from 

crops. It was clear that only three major land cover groups were any thing like spectrally 

discernible, and these were the bare/low vegetation group, growing vegetation and 

woodland groups. 

7.4.3.2 Supervised classification 

Thirteen informational land cover classes were identified for the supervised classification, 

which was performed using the two classifiers. Two winter cereal and two cereal crop 

growth stages were used, as were the SSSI and range classes, three bare and low/emerging 

vegetation classes, two woodland classes and a water class was introduced (Table 7.30). 

Analysis of the training class statistics proved satisfactory. The statistics did show that the 

similarity of the two visible bands and their near complete spectral overlap for all the classes. 

The classifications were then performed using the two classifiers. Qualitatively, the 

minimum distance and to a greater extent the maximum likelihood both over classified the 

SSSI classes in cereal areas. Generally however, the bare and some of the crop classes were 

identified correctly. Confusions were apparent between range and woodland, and also 

between crop classes and woodland. 

Table 7.30 : Class Types and Number of Test Pixels, Wylye Classification 

June 1986 SPOT 
  

  

Class No. Class cover type No. of test pixels 

1 SSSI permanent chalk grassland 213 
os SSSI II permanent chalk grassland 255 
3 semi-natural range grassland 249 
4 bare a7, 
5 cereal growth stage I 142 
6 cereal growth stage II 150 
7 winter cereals I 170 
8 winter cereals II 225 
2 low vegetation/bare I 133 
10 water 112 
11 low vegetation/bare II 132 
12 coniferous woodland 165 
13 broadleaved mixed woodland 333 
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The classification results are summarised and are given by Table 7.31. 

Table 7.31 : Classification Accuracy of the Grass Classes, Wylye Extract 

June 1986 SPOT 

  

Normalised accuracy % 

  

  

Class Min Dist Filter Maxi. Likeli. Filter 

(3x3) (5x5) (3x3) (5x5) 

1. SSSIT 55.8 53.1 52.6 83.5 86.4 89.2 

2. SSSI II 64.7 12.9 78.8 79.0 81.2 83.1 

3. Range 69.1 74.7 78.0 55.0 65.1 74.7 

Overall* 7116 79.8 81.4 99ST 82.1 83.8 

  

* the overall figure is for all classes in the classification 

Overall with the minimum distance classifier, five classes were classified over 90%, these 

were bare, cereal I and II, winter cereal I and IJ, and coniferous woodland. Class 9, low 

vegetation/bare I was totally misclassified as low vegetation/bare II (class 11). There were 

large omission errors with SSSI class 1 being classified as class 5 (cereal I), SSSI class 2 

being misclassified as SSSI class 1, winter cereal class 8 and low vegetation class 9. The 

range (class 3) was also confused with classes 8, 9 and 11. Finally mixed/broadleaved 

woodland was confused with the range, and two cereal classes (class 6 and 8). 

The results were generally a bit better with maximum likelihood, there was a similar trend in 

errors except that there was more misclassification of the range and mixed/broadleaved 

woodland classes. 

7.4.4 Permanent Chalk (SSSI) Grassland Classification 

It was evident that the two spectral SSSI classes were adequately mapped in two of image 

dates by supervised classification, however it was also clear that there was serious over 

classification in areas that were obviously crops with the TM and that there were more 

serious problems with the SPOT data. Therefore in an attempt to fine tune the procedure 

only the two SSSI classes were used as training input, this together with the careful 

selection of training and test data would allow a more accurate assessment of the ability of 

satellite imagery in the mapping of chalk grasslands of SSSI status. 
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The training class statistics are given by Table 7.32 for the two spectral classes for TM 

1984. 

Analysis of the training statistics proved satisfactory and classification took place with more 

stringent thresholds. A trial and error process was undertaken whereby with the minimum 

euclidian distance threshold was decreased to a threshold of 15 and the probability of class 

membership in the maximum likelihood was increased probability 95%, such that any pixels 

classified as either class 1 or 2 would be very likely to be that class with regard to their 

training data statistical parameters. 

Table 7.32 : Training Statistics for SSSI Spectral Classes, July 1984 TM 

(Bands 4, 5, and 3) 

  

Mean and + one standard deviation 

  

Class Colour on FCC 4 5 3 

Class 1 Yellow/green 112.6 110.4 41.4 

25 3.9 1.5 

Class2 Orange 124.6 95:2 36.3 
2.8 5.8 1.4 
  

The overall best classification result was 90% with minimum distance classifier and modal 

filtering. Class 1 had an accuracy of 86% and class 2 a figure of 94%, there were small 

omission errors i.e., 12% of class 1 was classified as class 2 and 5% of class 2 was 

classified as class 1. Figure 7.24, shows the spatial distribution of the two spectral classes 

of SSSI 'status' chalk grassland in the Wylye region. The same process was then repeated 

for the two other data sets. 

With the TM 1985 data set the best overall classification result was 84.2% with modal 

filtering and maximum likelihood. This time class 1 was more accurately identified with 

92%, whilst class 2 had an accuracy level of 76%. The errors being 8% of class 1 being 

misclassified as class 2 and 12% of class 2 being classified as class 1. 

Application of the same process to the SPOT data proved to be problematic, there was no 

degree of spectral uniqueness evident as in the two dates of TM. The best overall result was 

28.4%, with the two classes achieving results of 36% and 21% respectively. It was apparent 

from interpretation of the SPOT image, that there was no spectral separability between the 

permanent chalk grassland and actively growing crops, and this was borne out by the 

previous unsupervised procedure. The reasons put forward to account for this being both 
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the spectral resolution of SPOT and the phenology of vegetation in a June situation. 

vy ~ . ot rear 
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Class Legend 

Scale 1: 100000 
GM Permanent Chalk Grassland I 

Ge Permanent Chalk Grassland II ‘ 

Figure 7.24 : Supervised Classification of the Spatial Distribution of 

Permanent Chalk Grassland 

7.5. Larkhill Range Test Area Data Set 

The last stage of the analysis was to test the final revised methodology on a different data 

set. For this the Larkhill range training area was chosen, this is described in Chapter two, 

section 2.1. Larkhill although smaller in area than WSPTA, was a continuous block and 

contained sufficient areal extent of grassland units to provide adequate numbers of pixels for 

training and testing of the same grassland units found in WSPTA. The Eastern range or 

ESPTA was much more discontinuous, smaller in areal extent and made up of more 
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complex grassland units, which were unique to it (Porley, 1989). 

The same procedure as used in section 7.3.4 classification was repeated. Just the 1984 data 

set was used, time constraints did not permit the further testing of the 1985 and 1986 data 

sets or the selective testing of the ESPTA. 

7.5.1 Unsupervised Classification 

First the Larkhill range was masked off and an unsupervised classification undertaken to 

give an idea of the number of spectral classes present and to see how they related to 

WSPTA. Seven significant peak number of classes were found. The statistics and how they 

relate to the ground cover types are given by Appendix 7 Table A7.4. 

From this it can be seen that these natural spectral classes correspond for the most part with 

the WSPTA unsupervised classes and with the edited seven training classes from the 

supervised 7.3.4 classification, except that is for the replacement of the scrub/broadleaved 

woodland with a new 'burnt' range class. This is because unlike WSPTA, the Larkhill range 

is mainly used as a artillery range and that by July the ground would be very dry and since 

1984 was a hot summer, the explosion of artillery shells would very likely ignite the range 

locally. 

7.5.2 Supervised Classification 

The same training statistic file [ctrain84.csd] (see Appendix 5), generated from WSPTA 

section 7.3.4.2.1 classification with the edited three major grassland units, was used to train 

both minimum distance and maximum likelihood classifiers. 

Qualitatively, the two classifiers performed as such (where there are major differences 

between the classifiers this is commented on) :- 

No. Class Comments 

IR MGI classified areas mainly confined to northern periphery of the range 

(light orange on FCC) and green/orange areas on schedule III land 

2G CG3di & 3d classified 90% of the range that is not schedule III land 

(blue/green/grey on FCC) 

3B CG3a/di& 3a 5% of the range classified (light blue/grey on FCC), however the 

minimum distance classified most of the bare/low vegetation on the 

schedule III land 
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4C_ Bare or low minimum distance just classified the bare areas, whilst the maximum 

vegetation likelihood classified low vegetation areas as well 

5Y Cereal virtually none found with minimum distance, a few areas of bright 

orange with the maximum likelihood classifier were mapped 

6Br Coniferous minimum distance picked out some plantations, whilst the maximum 

woodland likelihood classified plantations, valley shadow and areas linked to 

burnt areas 

7O_ Scrub/broad classified scrub areas on the range, but also orange/red areas on 

woodland schedule III land, which were vigorously growing green vegetation 

(improved grasslands/cereals). 

The majority of the burnt areas were unclassified, because it was not a significant class in 

WSPTA and thus was not represented in the training data and input into the classifier. 

Test verification areas were then selected from the EN field survey on the distribution of 

community types and confusion matrixes were generated. A summary of the results of 

percentage correctly classified for all seven classes is given by Table 7.33. 

In the case of the minimum distance classifier, classes 4 and 7 were successfully classified. 

Concentrating on the first three range grass classes, there were errors between class 1 and 

class 7. Class 2 was confused with class 1 and 3. Class 3 was totally confused (82% 

omission error) with class 2 and class 6 was to some degree confused with class 2 and class 

Te 

In the case of maximum likelihood where there were differences, it was classes 4 and 5 that 

were successfully classified. Class 2 was confused with class 3, and again class 3 was 

totally confused (87% omission error) with class 2. Class 6 was confused with class 7 and 

class 7 was confused with class 5. 

Overall, maximum likelihood performed slightly better and filtering increased the accuracy 

where a class was sufficiently correctly identified in the first place. 

In comparison with the WSPTA data set, class 1 was again identified most successfully, 

class 2 was slightly less successfully mapped and class 3 was for both WSPTA and Larkhill 

data sets poorly represented. The overall trend for both was the same, with the test data set 

(Larkhill) giving credence to the validity of the results gained from the WSPTA data set. 

This gives some indication of the level of discriminatory ability of the satellite sensors (albeit 

just TM in this case) in the mapping of these specific chalk grass groupings. 
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Table 7.33 : Supervised Classification Results of the Larkhill Range, 

July 1984 TM (Bands 4, 5 and 3) 
  

  

  

Class Min Dist Filter Maxi. Likeli. Filter 
(3x3) (3x3) 

1.MG1 78.2 93.0 71.6 90.1 
2. CG3di & 3d 60.0 62.7 65.1 69.1 
3. CG3a/di & 3a 16.5 12.0 11.0 7.1 
4. Bare & low vegetation 100.0 100.0 100.0 100.0 
5. Cereal 0.0 0.0 100.0 100.0 
6. Coniferous woodland 68.2 86.4 47.7 45.5 
7. Scrub/broadleaved 90.0 100.0 72.5 90.0 

woodland 

Overall 60.0 64.8 67.7 71.6 
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CHAPTER EIGHT 

DISCUSSION 

8.1 Summary of Research 

This chapter discusses the findings of this research and attempts to define the positive and 

negative elements found in terms of temporal, spatial and spectral characteristics of the target 

classes and the imagery. 

In feature selection with the TM imagery, the best three band subset was found to be 4, 5 and 

3 on the red, green and blue colour guns for discriminating key target vegetation classes. The 

July 1984 TM image provided the most qualitative information, this was a consequence of the 

vegetation phenology when compared with the earlier in the season May TM imagery; and the 

superior spectral resolution of July TM scene when compared with the June SPOT imagery. 

The next stage was to quantify the amount of information extraction for all three data sets, this 

was achieved by automated supervised classification. 

8.1.1 Supervised Classification 

A comparable application (Trodd, 1987) used multidate Landsat TM to detect ecological 

important unimproved neutral grassland, but it was found that the traditional supervised 

classification techniques were inappropriate; therefore this study used an alternative approach. 

A methodology was developed using a binary decision tree, where relevant vegetation indices 

were used as decision rules. From this it was possible to detect a single land use category of 

unimproved pasture. Initial attempts using supervised maximum likelihood failed to positively 

identify any of the unimproved grassland. 

Referring to Chapter Seven, section 7.2, it was evident that unlike Trodd's study, the range 

and the ecologically significant individual chalk grass SSSI fields around Wylye village were 

consistently spectrally (tonally) distinct by eye, compared to surrounding cover types 

(McGuire and Collins, 1988; McGuire er al., 1989). Therefore, it was envisaged that 

traditional supervised classification procedures would work (Fuller and Parsell, 1990) and 

these were used in all subsequent classifications and procedures. 

The initial full extract supervised classification results, using objective test data, gave overall 

accuracy results of the WSPTA range classes of 43% for the SPOT-86 data, 32% for TM-84 

and 27% for TM-85 data. This analysis compared directly TM and SPOT, as both data sets 
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were resampled to 25m pixel spatial resolution (Chapter Seven, section 7.3.1). The reason for 

SPOT's apparent better performance was unclear, it was expected that the inclusion of the 

mid-IR dimension of the TM data would make it a superior tool in mapping these types of 

vegetation. The overall poor performance in all three dates indicates the inability of satellite 

spectral data to discriminate the full complement of all five sub-community range grassland 

types as found on the Salisbury Plain Training Areas (SPTAs) by the English Nature (EN) 

ground survey. 

Specific classifier performance was evaluated for the two algorithms using SPOT data. 

Maximum likelihood was on average 4% more accurate compared with minimum distance 

classifier, this increased to 7% when modal post-classification filtering was applied. This is 

off-set by the fact that the more complex maximum likelihood algorithm, used five times more 

computational time. Similar findings were obtained by Booth and Oldfield (1989), where 

speed and accuracy were tested for four different classification algorithms. Although 

maximum likelihood produced slightly higher accuracies, minimum distance plus post- 

classification modal filtering was recommended, because of the reduced time needed to run 

this classifier. 

A quantitative comparison of feature selection of the TM data, showed that using five bands of 

data did not increase the accuracy compared with a best three band classification. The 

Computer processing unit (CPU) time was also halved when just using three bands. 

In the secondary classification a graphics mask was applied, such that only the range areas 

were used in the analysis (Chapter Seven, section 7.3.2). There was a significant 

improvement in accuracy with the TM-84 data. Application of the mask reduced the number of 

grass classes to four. Overall accuracy levels of 80% was achieved with the application of a 

modal filter, compared to just 32% achieved with the previous initial classification, using the 

full complement of grass classes and all other cover types. 

A digital vegetation map was created from the EN ground survey data and was used as an 

input to test the classification; this would in effect produce a 'per-field' classification or its 

simulation of it. The digital EN vegetation map allowed the delineation of training and test 

areas, such an objective process places implicit trust in the ground survey, and avoids the 

influence of colour variation on the FCC data sets (Williams, 1987). This equivalent of a 'per- 

field’ classification (Chapter Seven, section 7.3.3) using the total range area and four grass 

classes to test the classification, produced overall accuracy levels of 39% for TM-84, 36% for 

TM-85 and 39% for the SPOT-86 data. The performance of the two classifiers was 

comparable. These results were similar to the initial objective classification (Chapter Seven, 
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section 7.3.1), but a lot poorer than the masked secondary classification (Chapter Seven, 

section 7.3.2). This was because the masked classification used a much lower population of 

test pixels compared to the total test population used in the simulated 'per-field’ classification, 

and because of other reasons put forward in section 7.3.3. However, this result did give an 

indication of the ability of satellite sensors to spectrally discriminate, at this ecological level, 

the different Bromus erectus dominant sub-community vegetation types. 
    

Having established that this was the level of accuracy likely to be attained in attempting to map 

the grassland units at this level of detail, the next stage of the analysis was to intelligently edit 

the grassland units to see if improvement in accuracy could be achieved. 

One part of this process was the unsupervised classification of the WSPTA. Belward er al., 

(1990) argued that because semi-natural habitat classes consist of many species, soil types 

etc., they therefore exhibit multimodal probability distributions. Unsupervised classification 

overcomes this problem of distribution assumptions and was therefore better for mapping and 

inventory of heterogeneous ground cover types. 

In this study it was found that unsupervised classification on both the whole extract, and of 

just the masked range for all three data sets, failed to create thematic maps showing ecological 

units to the level of detail found in the ground survey. This procedure however, was found to 

provide valuable information regarding how the informational classes used in supervised 

classification related to the spectral classes present within the imagery at any one point of time. 

The unsupervised classification information, together with other refinements of the 

methodology, were then used in the tertiary classification scheme (Chapter Seven, section 

7.3.4), where the range grassland units were amalgamated into three groupings (groups 1 to 

3). With the TM-84 data, the first two groups were classified with over 80% accuracy, this is 

about the figure stipulated as the acceptable level of reliability in land cover classification 

(Anderson et al., 1976). The third class made up of CG3a and CG3a/di achieved a best result 

of only 36%. One component of this grouping had previously been identified with the most 

accuracy in the initial and secondary classifications. This disparity in results was thought to be 

explained by inclusion of all the significant areas of this class in the test analysis, since in the 

previous two classification schemes only one large area had been used to test the accuracy. 

Analysis of the TM-85 data produced somewhat poorer overall results. Class accuracies 

ranged from 33% to 77%, again group three was poorly identified. The maximum likelihood 

classifier performed significantly better compared with the minimum distance algorithm, 

especially with group one containing the MG1 grassland class. 
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The SPOT data was overall only slightly better than the TM-84 data; this was because with the 

SPOT data all three classes were identified with similar range of accuracy i.e., between 60 to 

70%. Modal filtering and increasing the kernel size also improved the accuracies. Wilson 

(1992), compared different procedures for classifying remotely sensed data using simulated 

data sets and recommended using single or multiple pass smoothing post-classification modal 

filters, as a simple effective way of yielding improvements in accuracy. 

For operational digital classification there is a need to fully assess the reliability of the results. 

Confidence limits at 95% were calculated for the tertiary classification results (Chapter Seven, 

section 7.3.4) and these give an indication of accuracy assessment of the three data sets and of 

the cover types used in the analysis. Methods of computing accuracy for automated 

classification are the subject of much discussion (Congleton er al., 1983; Pedley, 1987). 

Previously in this study, accuracy figures quoted are the overall accuracy and the normalised 

class accuracy for accuracy assessment between different dates, classifiers and sensors. 

As well as the traditional overall accuracy figures, 'normalised’ accuracy levels were also 

quoted throughout Chapter seven. This technique standardises the error matricies, it uses an 

iterative proportional fitting procedure which forces each row and column in the matrix to sum 

to one. In this way individual cell values within the matrix are directly comparable, since 

differences in sample sizes are eliminated. It is thus a better representation of accuracy, 

because it contains information about the off-diagonal cell values (Congalton, 1991). 

However, there is another statistical technique of use in accuracy assessment and this is called 

KAPPA. The result of performing a KAPPA analysis is a KHAT statistic (an estimate of 

KAPPA). The KHAT statistic is computed as follows (Congalton et al., 1983) :- 

L 
ND Xis-(Kie* Xa 

a i=) 

r 2 
N : » (x i+ 4 X44 

el 

(8.1) 

where r = No. of rows in matrix , Xj j = No. of observations in row i and column i 

Xj += marginal totals row i , Xx ; = marginal totals column i, and N = total 

observations 

Table 8.1 provides a comparison of the overall accuracy, the normalised accuracy, and the 
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KHAT statistic for the two classification algorithms and the application of filters used in the 

three different multitemporal multisensor data sets for the tertiary classification results 

(Chapter Seven, section 7.3.4). 

Table 8.1 : A Comparison of the Overall Three Accuracy Measures for the 

Two Classification Approaches for each Multitemporal Data Set 

  

  

Data set Classification Overall Normalised KHAT 

approach accuracy (%) accuracy (%) accuracy (%) 

TM-84 Min. Dist 68 69 52 

Min. Dist + 70 TZ, 55 

filter 

Max.Likeli 64 66 47 

Max. Likeli + 66 68 50 

filter 

TM-85 Min. Dist 42 43 15 

Min. Dist + 42 43 15) 

filter 

Max. Likeli 51 51 30 

Max. Likeli + 53 54 33 

filter 

SPOT-86 Min. Dist 68 67 51 

Min. Dist + 71 70 54 

filter 

Max. Likeli 69 69 54 

Max. Likeli + 72 72 56 

filter (3x3) 

Max. Likeli + 75 TS: 60 

filter (5x5) 

Max. Likeli + 79 78 66 

filter (7x7) 
  

As can be seen all three accuracy measures agree about the relative ranking of the results. 

Normalised accuracy generally gave the highest results, followed by overall accuracy and with 

the KHAT estimate of accuracy being the lowest, since each accuracy measure incorporates 
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different information about the error matrix. As already described, overall accuracy only 

incorporates the major diagonal, normalised accuracy directly includes the off-diagonal 

elements and the KHAT accuracy indirectly incorporates the off-diagonal elements as a 

product of the row and column marginals. Congalton (1991) recommended that all three 

accuracy measures be used to glean as much information from the error confusion matrices 

Formulation for estimated large sample variances of KAPPA is given by (Hudson and Ramm, 

1987) : 

a@)-2 1 &(1- 6), 2(1-0,)(20,9,~-63) ‘ (1-0,) (0,- 403) 

(1-6,)° (G- @,) (1-¢,) 
(8.2) 

where 

    

The test statistic for significant difference in large sample between two independent KAPPA's 

is given by (Rosenfield and Fitzpatrick-Lins, 1986) : 

7_ (ki - Ra) 
Jey 2 

0, +0, 

where Z is the standard normal deviate and o is the variance of KAPPA. If Z exceeds 1.96 

(8.3) 
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then the difference is significant at the 95% probability level. 

KAPPA is a powerful technique in its ability to provide information about single matrix, as 

well as to statistically compare matrices. Table 8.2 presents the results of the KAPPA analysis 

to test the significance of each matrix alone. This test determines whether the results presented 

in the confusion matrix are significantly better than a random result (i.e., the null hypothesis : 

KHAT = 0). 

Table 8.2 : Results of the KAPPA Analysis Test of Significance 

for Individual Error Matrices 

  

Test of Significance for each confusion matrix 

  

  

Max. Likeli + filter KHAT Statistic Z Statistic Results % 

result for each data 

Set 

T™M-84 0.4972 36.26 sb 
TM-85 0.3266 2077 Ss 

SPOT-86 0.5609 51.86 Ss 
  

4 At the 95% Confidence Level 

b S= Significant 

This indicates that the refinement of the amalgamation of the original classes into three 

groupings in the tertiary classification was a valid exercise, since Table 8.2 shows that all 

three individual data sets have produced significant results. 

The next series of tables presents the results of the KAPPA analysis that compares the 

confusion matrices two at a time to determine if they are significantly different. Table 8.3 

shows the results of the KAPPA analysis on the significance of using different classifying 

algorithms and the impact of using post-classification smoothing filters of different kernal 

size. 
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Table 8.3 : Results of the KAPPA Analysis for Comparison between 

Confusion Matrices for different Classification Algorithms and for Post- 

classification Modal Filtering, using SPOT-86 Data 

  

Test of Significant differences between confusion matrices 

  

  

Comparison Z Statistic Results 4 

Min. Dist. vs. Max. Likeli. 1.767 Ns 5 
Min. Dist. vs. Max. Likeli. + 3x3 filter 1.287 NS 

Min. Dist. vs. Max. Likeli. + 7x7 filter 7.780 S 
  

@ At the 95% Confidence Level 

bs= Significant, NS= Not Significant 

The result of the KAPPA analysis show that the there was no significant difference between 

minimum distance and maximum likelihood algorithms and therefore, given the choice of 

these two approaches, one should use the easier, quicker, or more efficient approach because 

accuracy will not be the deciding factor. On the other hand post-classification modal filtering 

was found to be important, increasing the kernal size of the filter was found to have a 

significant effect on the increase in the overall accuracy. 

Similar results are presented in Table 8.4 comparing the maximum likelihood classification 

results for the three dates of the data. Each result shows that each date is significantly different 

and it therefore shows the importance of the timing of the imagery in this type of analysis. 

Table 8.4 : Results of the KAPPA Analysis for Comparison between 

Confusion Matrices for the Three Dates of Imagery 

  

Test of Significant differences between confusion matrices 

  

  

Multitemporal Comparison Z Statistic Results 4 

July 84 vs. May 85 8.45 sb 

July 84 vs. June 86 3.74 S 

May 85 vs. June 86 12.89 Ss 
  

@ At the 95% Confidence Level 

bs= Significant, NS= Not Significant 

The last part of this analysis was to see if there was any statistical significant difference in the 

results relative to the type of sensor used. The ‘best’ result of TM (TM-84, July) was 
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compared with the ‘best’ result achieved from the SPOT data. The KAPPA analysis (see 

Table 8.5) illustrated that there was no significant difference between the ‘best’ results of the 

two different sensors. It was envisaged that the TM sensor with its superior spectral 

resolution would have been the better remote sensing platform, however as it can be seen the 

use of SPOT produces equally promising results. This result can probably be explained by the 

fact that SPOT’s 20m spatial resolution represents more accurately the spatial heterogeneity of 

the semi-natural range chalk grassland groups and that the coarser resolution of the TM sensor 

is compensated by it’s greater dynamic spectral range. Due to this, and despite the findings of 

the KAPPA analysis, TM would be the sensor recommended for similar study applications. 

Provided that is, that the ground cover types one is attempting to map are not so closely 

related and heterogeneous in nature as in the case of the SPTA range chalk grassland types 

found in this study. 

Table 8.5 : Results of the KAPPA Analysis for Comparison between the 

"best' Supervised Classification Results for TM Sensor *1 and SPOT 

Sensor *2 

  

Test of Significant differences between confusion matrices 

  

Sensor Comparison Z Statistic Results 4 

TM-84 *1 vs. SPOT-86 *2 0.477 Ns 

9 At the 95% Confidence Level 

b S= Significant, NS= Not Significant 

  

It is therefore, recommended that KAPPA statistic be adopted by the remote sensing 

community, as the standard measure of accuracy for thematic classification as a whole and for 

individual categories. This is endorsed by a large number of fellow workers (Congalton et al., 

1983; Rosenfield and Fitzpatrick-Lins, 1986; Hudson and Ram, 1987; Congalton, 1991; 

Pedley and Curran, 1991). 

It is therefore apparent that a classification needs to be assessed. For only then can the 

decision made on that information from the classification have any validity in management 

tasks. In addition, it is critical for the use of quantitative analysis of remotely sensed data to 

continue, since remotely sensed data is just a small subset of the vast amounts of spatial data 

used in GIS, and the techniques described here can be applied and integrated with all the 

spatial data used in such systems. 

As a further test, the amount of each class in hectares, generated from the classification was 
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compared with EN statistics from their ground survey. It was expected that the satellite figures 

would be less than the EN figures, due to the presence of other cover types present within the 

range area. Figure 8.1 shows the percentage of areas in hectares for the main three groups 

present on the WSPTA. The differences can be explained by the fact that for no obvious 

reason some areas of the range were not surveyed by EN and that therefore the EN statistics 

could be underestimated compared with the satellite derived findings. Also, an attempt was 

made to match as closely as possible the manual construction of the mask with the extent of 

the range from the EN field map, differences were likely to have occurred. Conversely, 

overestimation may have occurred compared to the satellite figures, due to EN including areas 

in the scheduled MoD land off the immediate range, which were areas ignored by this 

analysis. Also by the inclusion of other cover types present within the range but not surveyed 

by the EN field unit; for example, chalk-tracks, crops and woodland plantations, which were 

land cover classes picked out by the satellite analysis. 

  

LEGEND 

M84 

i ™.-85 

SPOT-86 

EN Ground Estimates 

  

% 
of
 
th
e 

ar
ea
 

& 
Ny 3 

YY 

/ 
| / 
] | Z 

  

1 2 3 Edited 1: ’ grass classes 
MG1 CG3di CG3a G ; 

& 3d & 3a/di (Groupies) 

Fig 8.1: The Classified Percentage of Grass Cover Types found on WSPTA, 
Compared to English Nature Ground Estimates 

The last stage of the range class analysis, and as a final test of the 

methodology, the edited range groups training class results were applied to a different data set 

: this was carried out on the TM-84 data only (Chapter Seven, section 7.5). The statistics 

derived from the training procedure of WSPTA tertiary classification were used to classify the 

different study area of Larkhill range and an accuracy assessment was carried out. The overall 

results were comparable to those achieved with WSPTA. The best overall minimum distance 

result was 64% : group 1 (93%) and to a lesser extent group 2 (63%) were successfully 

identified. The best maximum likelihood overall result was 72%, with group 1 (90%) and 

group 2 (70%) respectively. However, as with the WSPTA results, the group 3 class was 

very poorly identified in both cases, it never achieved a greater correspondence than 17% with 
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identified in both cases, it never achieved a greater correspondence than 17% with the ground 

data. The results suggest that the grouping of class 1 and 2 can be identified and mapped from 

satellite data with reasonable success. However the class 3 group (CG3a and CG3a/di), which 

is the more botanically important sub-community type in ecological terms of species richness, 

could not be reliably mapped. 

8.2. Rationale Behind the Editing of the Range Classes into Groupings 

The grasslands were divided into units or communities and sub-communities by the national 

vegetation classification (NVC) scheme. In reality no such clear cut divisions exist. Rather the 

grasslands units form a continuum and grassland species rarely exist in large homogeneous 

stands. Blazye (1987), stated that :- 

"since grassland exists as a continuum any arbitrary 

division of it is likely to lead to errors of commission 

and omission in classification", 

Therefore improved classification accuracy was achieved by amalgamation of the grass 

classes, due to their similar spectral response exhibited by such closely related cover types. 

EN conducted a statistical comparison of the means of species richness on the SPTA 

grassland types. Three groupings of the grassland types were found to be statistically 

significant. It was found that there was a difference between the three groups, but not within 

them regarding species richness and structure. The groupings were; (i) MG1; (ii) CG3d & 

CG3di, and (iii) CG3a & CG3a/di. These groupings reflected distinct noda along a 

continuum, relating from left to right, taller rank mesotrophic species poor communities to 

short turf species rich communities and therefore were less of an arbitrary division. It was 

therefore on this basis that the different sub-community types were amalgamated into these 

three groupings to be used in the supervised training procedure and hence improve their 

automated classification. 

8.3 Sources of Error and Problems Encountered in the Classifications 

8.3.1 WSPTA Range Grass Classes 

The first attempt at a national study of land cover using satellite derived data (Huntings, 1986) 

dealt with five major cover types. These were cultivated land, which covered all crops and 

included grass leys; grassland which comprised of improved and permanent grassland; 
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woodland; semi-natural vegetation and finally developed land. Considerable misclassification 

occurred between the crops and the improved grassland. In addition to this, large errors 

existed in the classification of permanent and improved grassland, and it was concluded that 

the degree of misclassification was directly related to the season that the imagery was 

acquired. 

Spectral classification of satellite imagery, for the identification of semi-natural vegetation 

classes, was found to be difficult due to the fact that within-class variance was often greater 

than the variance between classes. Blazye (1987), in attempting to map semi-natural 

vegetation found that the overall accuracy was low. It was suggested that the 30m resolution 

of TM whilst sufficient for the classification of homogeneous vegetation i.e., arable crops; 

was insufficient in areas such as grassland where the accuracy was less reliable, since the 

vegetation cover varies considerably within the 30m pixel area. The semi-natural nature of the 

SPTA grasslands meant that the range classes were very heterogeneous and therefore difficult 

to extract in classification. The complex nature of grasslands have been addressed in several 

previous chapters of this thesis (see Chapter Three, section 3.3; Chapter Six, section 6.1.4.1 

and Chapter Seven, section 7.3.3.1.1.1.). 

The ground survey itself was not without its own difficulties; the rangeland grass vegetation 

sub-communities were found to be very complex, with subtle variations not easily explained 

by EN's own National Vegetation Classification Scheme developed for ground surveys. It 

was apparent that EN field operatives found that there was considerable variation within the 

CG3d sub-community i.e., that this association sometimes approached class CG3a floristics 

in the field and at other times the observation in the field matched well the text book NVC 

CG3d description. Field observations also found that the floristic boundaries between 

calcareous grassland CG3d and the mesotrophic or neutral MG1 grass type, were somewhat 

blurred (Porley, 1989). The collection of ground data is a subjective process, the influence of 

operator error of the survey personnel is not usually addressed (Curran and Williamson, 

1985). Curran and Williamson, found error associated with the ground data exceeded the 

estimated error contained in the remotely sensed data. Therefore, the field map is itself a 

subjective document based on apparent dominance rather than quantitatively defined classes. 

Field operator error was not assessed in this study. 

Also few studies have been conducted that attempt to discriminate grasslands down to specific 

species dominant type from satellite sensors, this is because of the complex nature of 

grasslands. However, a few such studies have been attempted. It was shown by Girard et al., 

(1990), that it was possible to successfully differentiate calcareous grass range classes, using 

multi-seasonal SPOT data in France. Floristically different grass units were distinguished 
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according to seasonal change in reflectance. A Bromus erectus dominant phytosociological 

range class was identified, as were seven other phytosociological classes dominated by other 

completely different grass species. The SPTA ranges of this study however, had just the 

equivalent of just two such classes; the Bromus erectus dominant (CG3) association and the 

neutral class (MG1) Arrhenatherum elatius, since all the other classes used in the analysis 

were Bromus erectus dominated sub-communities of this association. Such a detailed 

discrimination level may be well beyond the scope of space-borne sensors using spectral data 

alone. It is important to consider that to-date nearly all the land cover satellite classification 

applications found in the literature consider results successful if broad general land cover 

classes such as water, soil, woodland, crops and urban; achieve greater than overall 85% 

accuracy (Taylor et al., 1983; Huntings, 1986; Pedley and Curran, 1991). 

8.3.2 Unimproved Chalk (SSSI) Grassland : Wylye Study Area 

Although few UK satellite studies have been conducted in relating grassland botanical 

parameters with spectral reflectance, other studies have attempted to map and classify 

grasslands with the emphasise on the landuse of grasslands. Previous attempts have been 

successful in differentiating between such grassland landuse types, however imagery was 

available from all the critical times spread out throughout the growing season. Fuller and 

Parsell (1990), were able with TM to distinguish between different grassland types under 

different management practises in lowland Britain. Managed, hay cut, grazed, standing hay 

and unmanaged non-agricultural rough grassland were all distinguished using multi-seasonal 

imagery. This study had only imagery from the late spring/early summer part of the season, 

and to make matters worse each date was from different years. 

In attempting to classify the unimproved chalk grasslands in the Wylye study area, it was 

necessary to be able to discriminate them from improved grasslands present within the study 

area, as well as from other cover types. Improved grassland and grass leys in the scheduled 

MoD land in general, had a higher green component (Green Leaf Area Index) in May than the 

unimproved grassland. This was the predicted result (Trodd, 1987), when one considers 

management practises, such as fertilizer application, should produce a more vigorous growth. 

In the May TM image, unimproved grassland especially noticeable on the unmanaged range 

had a more persistent senescent component to their 'top or blanket cover’. It was too late in 

the growing season however, for the higher component of senescent vegetation or ‘blanket 

cover' to be spectrally significant (Morten, 1986), for some of the SSSI sites which were 

agriculturally managed. 

In the July TM image, it was possible to distinguish between the improved and unimproved 
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grassland. In theory this is to be expected due to the red edge effect (Trodd, 1987), as a result 

of the interpretation of the ‘spectral response pattern’ in terms of the physical properties, 

which would be more pronounced for improved grassland. This is because of the greater 

vitality, less senescent cover and because soil moisture decreases the mid-infrared (IR) 

reflectance for improved grassland. The improved grassland has a more open canopy, such 

that background soil component influences the spectral reflectance. Unimproved grassland has 

a more closed canopy due to senescent material underlying the green leaf top cover. 

In a NRSC study (1983), it was suggested that the blue/grey appearance on SPOT false 

colour composite (FCC) in May of rough grassland, was so because of the high proportion of 

dead senescent material within it. This type of grassland would be equivalent to the military 

rangeland of the SPTAs. Tones of pink/grey indicated the new seasons growth coming up 

through the dead material. Improved grassland displayed bright red tones, representing tall 

densely growing vegetation, dull darker red tones indicated shorter swards; whilst dark pink 

to blue/grey tones represented grass types under different management practises such as :- i) 

high proportion of senescent material, ii) recently grazed or iii) mown, and that these cover 

types showed quite large within-field variation. All these tones were present within the Wylye 

extract of the June SPOT imagery used in this study, but the later date meant that there was 

increased confusion with other crops, mainly cereals. 

In the Wylye whole extract classification (Chapter Seven, section 7.4), the unsupervised 

procedure found two spectral classes relating to the informational cover class of chalk grass 

SSSI areas. Therefore, these two classes were used in the training procedure of the 

supervised analysis. The spectral classes occurred within the same field and/or between 

different fields; for the former this was probably due to local variables within fields; such as 

amount of herbaceous species, soil moisture, slope, aspect etc.; and for the latter these 

differences reflect the different management regimes imposed on them. The two spectral 

classes both achieved accuracies of 90% or over for the July TM-84 data. Usage of the two 

classifiers was comparable in terms of accuracy. This July period seems to be the optimum 

time of the year for this particular cover type. Watson (1979), used aerial photography and 

found that the best separation of herb-rich meadows from other cover types, was when all or 

most of the major herbaceous species of grasslands had reached their phenological peak. 

Milton and Rollin (1990), showed the importance of flowers as a canopy component in mid- 

summer and this could account for the discriminatory factor of the July TM data. 

With TM-85 data, the unsupervised classification showed confusion problems with improved 

grassland. This was reflected in the supervised result where one class (SSSI I) was identified 

with 100% accuracy, whilst the other spectral class (SSSI II) produced a range of accuracy of 
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between 52 to 77%. The SSSI Il class was confused with improved grassland because it had 

less senescent carryover material from the previous season and a more pronounced green 

vigorous growth. In May therefore, the SSSI II class was confused with similarly growing 

improved grassland and growth stages of cereals. 

Unsupervised classification of the SPOT data showed it was reasonably easy to separate the 

broader land cover classes such as bare/low vegetation, vigorously growing vegetation and 

woodland. Specific vegetation types such as grasslands and crops were confused with each 

other. Overall classification accuracy of the two SSSI classes was poorer compared to the TM 

results for supervised classification, because of confusions with agricultural crops. Grasses 

have been separated from other crops with multitemporal SPOT in early spring scenes of April 

and May imagery (Jewel, 1987). However, it was found that June and September scenes 

revealed confusion and overlap of reflectance with other crops eg, with cereals in June and 

root crops in September. 

As a secondary part of this analysis of the Wylye study area (see Chapter Seven, section 

7.4.1), it was attempted to classify just the single land cover category of the SSSI areas, by 

using the two spectral classes found by manual interpretation (McGuire er al., 1989) and 

evident in the unsupervised analysis. TM-84 data gave an overall accuracy of 90% for the two 

classes, they were both above the generally accepted minimum accuracy level (85%). The 

TM-85 data had an overall accuracy of 84%, just under the minimum and the SPOT data failed 

completely in giving a good correspondence. SPOT's overall accuracy was 28%, due in part 

to the spectral resolution of the sensor, combined with problems of similar crop vegetation 

phenology in a June situation. 

In the classification of the single category SSSI sites, this analysis used satellite images to 

locate all the unimproved chalk grassland provided by ground data and identified numerous 

other potential areas, which are areas for subsequent field survey, thus rejecting vast areas of 

arable land without the need for a full field reconnaissance. 

8.3.3 Other Non-grass Cover Class Results 

There is theoretical evidence (Chapter Three) that the structure of the canopy should provide 

discriminatory information. Deciduous trees have large umbrella canopies, whilst grasses 

exhibit shorter linear canopies. However, the strongly correlated growth phases in the leaves 

of grasses and deciduous trees provided some automated classification confusion. Visual 

interpretation using textual and contextual information, was more successful in the 

discrimination of these two cover types. With the June SPOT data broadleaved/mixed 
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woodlands were highly confused with improved grasslands and winter cereals, there were 

also confusions between spring cereals and permanent chalk grasslands, due to the variability 

of growth of these cover classes. Similar findings were reported using S.SPOT May imagery 

by the NRSC (1983). TM bands 4 and 5, were found to be best in woodland discrimination 

and the May TM image was found to be the best in identifying woodland areas. 

The May TM-85, the June SPOT and to some extent the July TM-84 images all showed 

confusions that were apparent between actively growing crops and grassland. Fuller and 

Parsell (1990) found that by incorporating October data, where there was stark spectral 

contrast between these two cover types, the problem was solved. It would therefore have been 

preferable to have multitemporal imagery from the different seasons, instead of data from 

three different years. 

8.3.4 Summary 

The classification errors incurred with the SPTA range grass units can be attributed to their 

closely resembling ‘spectral response patterns’. However, high classification accuracies for 

non-grass and grass cover types, indicate the suitability of the classification approach in 

periodic grassland area updating. Taking into account the spatial complexity of the SPTAs, the 

obtained results can be viewed as acceptable for the inventory and subsequent management 

and monitoring of the SPTA ranges. The results of the evaluation of satellite imagery for the 

classification and mapping of the chalk grassland SSSIs in the Wylye study area were highly 

successful for the July TM-84 data, moderately successful for May TM-85 data, and limited 

when using SPOT data dated June. 

8.4 Costs of Alternative Surveying Methods 

As previously mentioned, ecological resource inventories are needed by agencies like EN, 

local authorities etc., who use these data through the planning process to allocate financial 

assets to present and future policies and management proposals. The ‘soundness’ of any 

conservation policy depends on the accuracy, detail, source and timeliness of this natural 

resource information. 

A major problem facing resource managers is the lack of inventory data covering large areas; 

for instance, regional or national data bases (Krebs, 1978). Existing inventory data where 

available lack uniform and robust survey methodologies and do not have standardised 

accuracy levels. 
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Application of remote sensing technology can efficiently and cost effectively fill the data gaps. 

One key question therefore is the relative cost of remote sensing compared with other more 

traditional survey methods. A cost assessment should include work hours, travel, field work; 

and all the materials necessary for analysis/interpretation, accuracy assessment and production 

of final products. 

Alternative natural resource surveying methods have traditionally been : i) conventional 

ground survey, and ii) aerial photography :- 

i) Conventional ground survey : local, county or regional ecological ground survey tend to 

be intuitive, from local knowledge of enthusiasts, limited by means of access; but 

scientifically sound due to detailed botanical survey dealing with indicator species. More 

general national census ground surveys on land cover types are no longer logistically 

possible, the last such survey in England was performed in 1963 (Coleman and Maggs, 

1965); 

ii) Aerial photography : usually panchromatic and limited in areal extent, this format can be 

expensive for regional inventories. 

With traditional manual air-photo interpretation all the information in map format has to be 

hand digitised if it is to be entered into a digital database. This increases cost and is very time 

consuming. The cost trade-off point between the manual analysis of aerial photography and 

the computer aided digital analysis of satellite imagery, depends upon the amount of area that 

needs to be covered, and the level of detail required by the user. For example, it makes sense 

to use satellite derived data the larger the area and the broader the classification legend. 

The costs of the various survey methods are examined in detail for the Wylye SSSI analysis 

(Table 8.6), compiled for one 512 x 512 pixel extract which covers 225km2 (2,250Ha). The 

costs are given for conventional ground survey, and the equivalent survey based on the 

interpretation of aerial photographs. The costs are also compared between the manual 

interpretation of satellite imagery and machine supervised classification of the digital data 

(McGuire et al., 1990). 

In terms of cost per area, Fuller et al., (1989b) stated that :- 

"the cost of TM imagery was equivalent to £ 0.10 per km2". 

In terms of EN economic objectives as mentioned in Chapter One, section 1.7, such an 

operational remotely sensed survey could replace the traditional phase I blanket survey. This 
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could be done by initially stratifying the landscape and highlighting the specific cover types of 

interest : in this case, the identification of potential ecologically rich grassland. This results in 

the efficient pin-pointing of resources in terms of expertise of field personnel and time. Once 

these sites have been identified, field workers could be sent to do detailed botanical survey 

and assess potential sites not previously recorded, but classified from remotely sensed 

products. 

In addition, the full field survey of the SPTA ranges took trained personnel two years to 

complete (Porley, 1989). Once the imagery was in-house, the satellite analysis would take 

much less time to process the images and interpret the results. Therefore, after initial field 

survey for botanical detail, the ranges could be monitored in the future using stratified field 

work derived from satellite imagery, for a fraction of the cost of subsequent full field surveys. 

Table 8.6 : Cost of Ground and Remote Sensing Surveys 
  

  

  

Ground Survey * Aerial Photography * Satellite Data * 
Digital format Photographic format 

(CCT) (Prints) 

Availability Commissioned Commissioned Widely available 

Cost of Imagery N/A £525 - 750 £1,125 (Quarter scene) £500 

Time taken 2 - 3 man months 3 weeks 4-6 Hrs 8 - 10 Hrs 
survey & interpretation interpretation (CPU) time interpretation 

Equipment Survey materials Stereoscope Tape reader Data transfer 
& maps Zoom transfer scope —_ image processing equipment 

system 

Total costs £5 - 6000 £3 - 4000 £ 1500 - 1850 £900 - 1300 

  

* Figures from the NRSC Ltd, 1992; and standard consultancy rates. 
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CHAPTER NINE 

CONCLUSIONS 

9.1 Introduction 

There is a large body of published research in the USA, relating to crop/land cover 

classification using remote sensing techniques. However, this information does not 

transfer well in the context of the UK situation, due to different crops, farming 

practices, climate, geology and soils. Griffiths and Smith (1988) stated :- 

"that as yet there is little published research on 

cultivated land classification from high resolution 

satellite imagery in the UK". 

Also UK studies of semi-natural environments have all tended to be focused in the 

highland areas and not in the lowland areas. Therefore, any further information on 

semi-natural cover types in lowland areas, that relate to identifying optimal image dates 

and image processing techniques, will help develop an effective methodology for 

routine and systematic monitoring and mapping. 

It is apparent that more and more agencies interested in natural resources (from English 

Nature (EN) and local authorities, to county based natural trusts) have decided to 

develop and apply biological data bases. The digital nature of remotely sensed data 

makes it ideal for incorporation into a GIS, which is the ultimate data base for spatial 

information. 

It is apparent that no comprehensive natural resource data bases exist in the UK (Fuller 

et al ., 1990; Fuller er al ., 1989a; Belward et al ., 1990). The few UK county phase I 

or census studies performed have had to use volunteers (wild-life trusts) or part-time 

MSC teams of variable expertise. The logistics and costs of these surveys impose a 

severe burden on national organisations (such as EN). Suitable baseline studies, using 

remotely sensed data of standard format, are needed to evaluate land cover and habitat 

changes on a local and county scale in the UK (Foody and Wood, 1987). 

9.2 Aims of the Thesis 

The prime aim was first to evaluate the extent to which satellite derived data could be 

used to compile an inventory of different range chalk grassland types in the Salisbury 

Plain area. The principle objective was to derive a methodology to classify chalk 
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grasslands. This classification was based mainly on the ‘spectral response patterns’ of 

the different chalk grassland types. 

The results show that satellite analysis did provide some contribution to the mapping of 

the very detailed sub-community categories, as defined by EN for the Salisbury Plain 

range areas, although the classification was limited in accuracy. By refining the 

methodology however, broader groupings interactively chosen with ecological 

significance, were successfully mapped with TM and SPOT data. Off the main range 

areas, isolated SSSI unimproved chalk grass fields were successfully mapped using 

July TM data, the other two dates (May TM and June SPOT) were of limited value. 

9.3 Satellite Remote Sensing of Semi-natural Lowland Chalk Grassland 

9.3.1 Image Band Selection 

Qualitative, interactive, manual assessment of scene independent, original band FCCs is 

a good means of getting the ‘user’ to gain an understanding of target spectral 

characteristics and the associated sensor characteristics. 

For visual display; and to facilitate image processing, the best three bands of TM were 

found to be a 4, 5 and 3, and SPOT 3, 2 and 1 FCC displayed on R, G and B colour 

guns. This allowed a detailed study of lowland semi-natural range vegetation 

communities and also of unimproved chalk SSSI grassland. 

9.3.2 Classification Accuracy 

The classification accuracy was assessed by comparison with the SSSI ground census 

by scoring the classification on a field-by-field basis. The range area class maps were 

assessed by a fully quantitative pixel-by-pixel approach with field verification vegetation 

maps. 

9.3.2.1 WSPTA Range Study Area 

The use of training areas as test verification areas give biased results (Pedley and 

Curran, 1991; Congalton, 1991). Therefore, for all subsequent classifications 

independent objective test verification areas were used. 

The two most commonly used and widely available classification algorithms were tested 
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in this study. With the two classifiers it could not be said categorically that one was 

better than the other. This study found that they generally gave comparable results : on 

occasions minimum distance performed better and at other times the maximum 

likelihood proved to be slightly more accurate. However, in a research situation 

maximum likelihood is recommended, but in an operational cost/benefit situation, 

minimum distance is suggested because of the savings in computer processing unit 

(CPU) time and thus expense. It may be that the extra improvement brought about by 

the use of maximum likelihood classifier is not considered sufficient to justify the 

increased complexity. 

An application of a graphics mask over other non-rangeland cover types, was found to 

increase the accuracy of the classification of semi-natural grassland vegetation 

community types. 

A 'per-field' classification (whereby every pixel is tested) is recommended where the 

appropriate amount of ground data information exists. The negative findings of this 

analysis (i.e., never greater than 40% classification accuracy overall) give a true 

indication of the ability of satellite senors, to map and inventory such closely inter- 

related grassland types, when using traditional supervised classification techniques. 

These grassland types were all inter-linked, differing only at specific sub-community 

level, and some of the sub-classes were unique to the Salisbury Plain MoD training 

areas (Porley, 1988). 

The negative findings made it necessary to further refine the methodology. This was 

achieved by the application of a mask of agricultural cover types; by the addition of 

unsupervised classification information; editing of the classes according to confusion 

matrix errors, and by using ancillary statistical information provided by EN. By doing 

this, both the individual edited classes and the overall results were generally 

significantly improved. However, group class 3 comprising of the sub-community 

classes CG3a and CG3a/di, could not be reliably mapped. 

It was found that in a comparison of the two sensors TM and SPOT, in the tertiary 

classification, that for lowland chalk range grass types the accuracy levels were not too 

dissimilar. This was rather unexpected : what was expected was that the better spectral 

resolution of TM (i.e., the inclusion of a mid-IR band) would out weigh the better 

spatial resolution of the SPOT sensor. The apparent success of the SPOT data could be 

explained in terms of the semi-natural grass classes heterogeneity and it’s natural 

variation, in terms of it existing as a continuum. The classification results of the May 

TM imagery were less accurate than that for the other two dates, because in the spring 

scene the grassland cover types were not as discernible from other vegetation cover 
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types as later on in the season. 

9.3.2.2 Wylye Study Area 

Individual SSSIs were generally found to be spectrally distinct on TM imagery; 

however with the May TM image some SSSI fields were confused with improved 

grasslands and cereals. The absence of spectral contrast present in the SPOT image 

meant that by automatic classification individual SSSI fields were not so readily 

discernible and therefore not so accurately mapped. 

SSSI informational cover class classifications for the three data sets were found to be 

best with the July TM imagery, adequate with the May TM and unsuccessful with the 

SPOT June data. The application of SPOT data in monitoring SSSI chalk grasslands 

was found to be limited. 

The use of automated supervised techniques to detect fields of permanent chalk 

grassland has been shown to be successful for practical operational purposes. 

However, it must be noted that with such a remote sensing study it is inappropriate to 

identify the ecological quality of these fields : such a survey would go hand in hand 

with the follow up complementary botanical field survey. The satellite survey is a 

method of segmenting the study area, detecting existing chalk grassland and also 

indicating potential sites of ecological interest. 

From this part of the study the following conclusions are drawn. Using a relatively 

simple operational procedure the method of analysis using TM produced acceptable 

levels of accuracy for this study area. There is also the added advantage that if visual 

analysis is undertaken using satellite photographic prints, this is a simple exercise and 

does not require digital image processing equipment. Also it was found with the Wylye 

SSSI analysis, that the superior spatial resolution of SPOT does not override the better 

spectral resolution of TM. 

It must be noted that just a single informational class was being identified, and that since 

the area of study was predominantly arable, TM spectral contrast with the grassland was 

high in July, as the cereals were ripening. The identification of other classes, or 

working in different geographical locations, may complicate the situation. This study 

was specific to the identification and mapping of potential and existing chalk grassland 

SSSIs only. However, the basic principles of the methodology are valid and simple 

adaptations of the proposed methodology could be easily implemented for other 

applications of direct interest to other agencies. Taylor et al., (1983) discussed briefly 

the commercial market for operational programs in agricultural applications. 
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The evaluation of advanced sensor systems is needed now for operational applications 

by resource professionals, because the future will bring the development of low-cost 

image processing systems (Elgy and Chidley, 1987). This will mean that image 

processing facilities will become increasingly available to organisations with limited 

financial resources and, provided that the cost of remotely sensed products remain 

relatively low, there will be a much greater demand for satellite products. 

9.3.2.3 Larkhill Study Area 

Using the TM-84 data, the Larkhill test data set just produced comparable results with 

the WSPTA analysis, these results validate the spectral ‘uniqueness’ of the edited final 

classes used in the tertiary classification. However, the edited class group 3, made up of 

sub-community classes CG3a and CG3a/di, were unsuccessfully classified. This was in 

agreement with the results found with the WSPTA analysis and therefore suggests that 

when using traditional processing techniques with satellite data, these more species- 

Tich, shorter sward range grass types do not have sufficient spectral discrimination to be 

reliably mapped. 

9.4 Classification Problems Encountered 

From these research findings, the main problems encountered in the classification of 

semi-natural vegetation using satellite imagery, appear to stem from the complex nature 

of many of the cover types. Their boundaries are not sharp distinct entities, but are more 

zones of transition and that traditional classifiers can be said to be inappropriate for their 

classification. 

Belward et al., (1990), remarked that :- 

"the satellite's view of Earth is not the same as that 

of the ecologist". 

It is inappropriate to try to match classified satellite data with traditional field ecological 

division. If satellite data is used cover types must be identified such that they have both 

ecological significance and have some degree of spectral homogeneity. 

Although there was some overlap between the species poor Arrhenatherum dominated 

(i) MGI class; and the species richer Bromus dominated grassland groups (ii) CG3di & 

CG3d; and (iii) CG3a & CG3a/di : there was sufficient separation to justify keeping 

them as individual grassland groupings. The overall results suggest that the 

classification to the level of three grassland groupings as recognised by EN is a realistic 
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goal. 

This study found that, due to the inherent nature of semi-natural vegetation existing as a 

continuum, the different SPTA chalk original sub-community types could not be 

reliably separated using Landsat TM or SPOT data. Despite the negative findings 

regarding the separability of these specific chalk sub-community range classes, the 

Tange area itself was sufficiently spectrally unique in all three dates of imagery. The 

areal extent could be easily identified and this could used to serve as a base in future 

monitoring exercises by EN, by identifying reduction or fragmentation of the range by 

agricultural incursions. By amalgamating the original range classes into three groupings 

the classification was more successful, and this was tested to validate the results by 

using a different study range area (Larkhill). Finally, it was also found that the spatial 

distribution of chalk grass SSSIs could be isolated and mapped using satellite sensors, 

providing it was an appropriate sensor and the correct date of imagery. 

9.5 Summary of the Findings 

It was not the aim of this research to identify new functions that are needed for 

improving image processing, but rather the improvement of a robust methodology 

needed for operational systems in mapping of land use and cover. 

It is apparent that the accuracy of the final classification maps is largely dependent upon 

a wide range of factors relating to the spectral contrast between the cover types to be 

classified and the spatial and spectral resolution of the sensor. The pertinent findings are 

summarised below : 

* Use of training areas as test areas give biased results, as quoted in Literature. 

* Overall classification accuracy is poor at the original class level; this is not really 

surprising when considering that most of the range grass units were Bromus 

erectus dominant and therefore very similar in physiognomy, type and structure. 

* When overall accuracies were less than 50%, the application of a post- 

classification smoothing filter could reduce the accuracies and was therefore not a 

useful process. 

* With the direct comparison between the TM and SPOT sensors, where the 

spatial resolution was the same (Chapter Seven, section 7.3.1), it was found that 

the SPOT data produced equivalent results in the range analysis. The data 

suggests that SPOT's three bands were as good as the best three TM bands, and 

that TM-5, the mid-IR band may be superfluous when discriminating chalk range 

grassland units dominated by one major species of grass. These results are 

difficult to explain, it was expected that the TM with its superior spectral 
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resolution would give significantly greater accuracy. When the two sensors were 

compared in their original format in the tertiary classification (Chapter Seven, 

section 7.3.4), the 20m spatial resolution of SPOT verses the 30m resolution of 

the TM data, no significance statistical difference was found. 

* When investigating the dimensionality of the data in terms of the number of 

bands needed (referring specifically to the TM sensor) it was evident that the best 

three band subset was all that is needed, rather than the full compliment of 

available bands. 

* By intelligent editing of the original classes in the refined tertiary classification 

groupings, classification accuracies were improved and this classification scheme 

was tested on a different study area. 

* The careful selection of training and test areas was found to be very important, 

eg, with the initial and secondary classifications, very good results were achieved. 

for the sub-community class of CG3a/di. In contrast, the accuracy level was very 

much poorer in the final tertiary classification, where different, more 

comprehensive test areas were used to assess this class's classification. 

* Overall the performance of the two classifiers : maximum likelihood and 

minimum distance were comparable, however it was evident that individual 

classes varied in accuracy according to the classifier used. 

* It was possible to identify and map unimproved chalk grass SSSI fields using 

July TM imagery. 

In conclusion this study has found that satellite derived data can be used for :- 

i) directing detailed botanical field survey and generating inexpensive cartographic 

documents (hardcopy) for field workers; 

ii) the routine monitoring and change assessments in areas such as the SPTAs, 

because of the repeatable systematic coverage offered by satellites; 

iii) it could also be possible that classified satellite images could be used by EN to 

review their own mapping. The assumption that their field maps are ‘definitive’ 

can be questioned with regard to the associated error inherent in the field survey 

and that satellite mapping might provide a ‘truer’ picture in a generalised sense. 

These findings support the claim that TM provides accurate cover and distribution data 

at a scale of individual fields for most major land uses. Fuller and Parsell (1990), stated 

that :- 

"no other method could realistically do this". 
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The general principles of the methodology outlined in this project should apply to the 

classification of other environmental features using multispectral remotely sensed 

imagery. 

Applied 'users' need to be aware, that if successful operational procedures are to be 

made, then the image analyst needs to :- 

* understand the characteristics of the target features, 

* be familiar with the characteristics of the imagery and with image processing 

techniques. 

As mentioned previously in Chapter One and Chapter Eight, there are considerable 

advantages to satellite remote sensing, these are now briefly summarised : 

* That traditional data sources of information are often found to be inadequate; be it 

survey maps, aerial photography, or specialised data bases. Some data may be out of 

date, information may be lacking in certain themes, and data from different sources are 

often unsuitable for direct comparison. However, satellite data offers itself as a single- 

source data and this is recognised as a major step foreword in environmental studies 

(Hersan, 1991). 

* Field work can be substantially reduced when using satellite data, and great savings in 

cost can be made over conventional ground surveys. 

* More importantly, satellite data is digitally based and permits ready incorporation into 

a GIS and other data bases which include :- 

i) new information from image analysis giving an up-to-date overview on land 

cover information on the distribution of major cover types including farmland, 

semi-natural vegetation and woodland; 

ii) digital geocoded data : the information is extensive and accurate; it can be 

overlaid on standard topographical maps; it is easy to combine ancillary data; 

scales can be varied without loss of information quality, and map updating is 

greatly facilitated; 

iii) the data can, subject to cloud cover be thoroughly up-to-date, acquired in real 

time, and finally 

vi) follow up environmental monitoring studies can be quickly completed by 

acquiring additional imagery at a later date. 
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9.6 Recommendations for Future Work 

Further testing is recommended of the two other temporal data sets (TM-85 and SPOT- 

86) on the other range areas on Salisbury Plain and/or the further testing of the 

methodology on other areas in lowland Britain where chalk grasslands occur. 

It is further recommended that panchromatic (P) SPOT data of 10m resolution be 

acquired and merged with Landsat TM bands 4, 5 and 3, via an Intensity, Hue and 

Saturation (IHS) transformation. Thereby combining the merits of both sensors for a 

truly powerful tool of spatial and spectral information (Chavez er al., 1991). With such 

imagery, in a field-by-field survey as used in the SSSI analysis, it is envisaged that 

such a natural resource survey tool would be of great benefit for county or regional 

biological databases and as a base-line input into environmental GIS applications. 

A brief exploration of the more sophisticated classification techniques currently being 

researched was given in Chapter Three and Chapter Six with regard to semi-natural 

vegetation. Recent work has been published (Foody and Wood, 1987; Trodd er al., 

1989; Foody and Trodd, 1990), which suggest that successful development of 

probability measurements are more in tune with what is the true situation on the ground 

- with regards to semi-natural vegetation existing as a continuum. Other approaches 

along the same lines are currently being investigated. Foody (1992) evaluated a 'fuzzy' 

set algorithm to model semi-natural heathland through its continua. It was found to be 

more appropriate than a conventional image classification. The fuzzy membership 

functions derived from the analysis were related to canopy composition and were 

suggested to be a more useful input into GIS, because it reveals gradual transitions 

between classes, not the sharp artificial boundaries characteristic of most classified 

scenes and thematic maps. These forms of analysis will probably be used in the future 

with regard to these types of vegetation communities and remotely sensed data. 

Finally, it is recommended that 'per-field' analysis be undertaken with specific single 

category class classifications, such as with the fragmented unimproved chalk grass 

SSSI sites. Also that probability measurements or fuzzy set approaches be used in the 

classification of semi-natural vegetation as in the SPTA range areas, where no arbitrary 

borders exist, but rather ecozones of transitions occur along continua and not as 

mutually exclusive discrete classes. 

In the general sense of remote sensing research and development Townshend (1992), 

provided a recent review of the European effort in remote sensing and described the 

research challenges of the future. A brief summary of the main points stressed were :- 
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* the need for improving methods of information extraction by contextual 

information and per-field based methods; 

* the much more wider use of new sensors such Earth Resources Satellite (ERS-1) 

and the micro-wave sensors; 

* the matching of sensor characteristics to informational needs for land cover 

applications; 

* and the moving towards more operational uses of remotely sensed data. 
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APPENDIX 1 

IMAGERY CHARACTERISTICS :- 

Table A1.1 : SUBSCENE DATA SET DETAILS 

  

  

Imagery Origin Size (No of pixels) No of bands 

TM-84 x-5 y-126 1250 750 5 

TM-85 x-0 y-0 1250 750 5 

SPOT-86 x-0 y-0 1850 850 3 
  

Table Al.2 : EXTRACT (WSPTA) DATA SET DETAILS 

  

  

Imagery Origin Size (No of pixels) Spatial resolution 

x y 

TM-84 90 236 512: S12 30m 

TM-85 85 110 S12 512 30m 

SPOT-86 35), 320 512 512 20m 
SPOT-86 540 320 512.512 20m 
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APPENDIX 2 

GROUND REFERENCE DATA :- 
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Figure A2.1 : Field Data on the Distribution of Grass Community Types, WEST SPTA 
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Figure A2.2 ; Field Data on the Distribution of Grass Community Types, WEST SPTA 
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APPENDIX 3 

GROUND REFERENCE DATA :- 

AGRICULTURAL ‘GROUND DATA’ IN THE FORM OF FARM 
RECORDS 

    

    

Scale 1 : 10,000 

  
LEGEND 

Winter Wheat 

Spring Wheat 

Winter Barley 

Permanent Chalk Grassland   
Wood Plantations   H

m
 
o
a
B
O
a
 

Buildings 

Figure A3.1 : Map of Crops Grown, Manor Farm, Wylye, Wiltshire, 1984, 
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APPENDIX 4 

CORRECTION OF THE IMAGERY :- 

GEOMETRIC CORRECTION 

The correction was carried out using a least squares fit to a polynomial of the form 
(Jensen, 1986) :- 

xX=a+bX+cY+dXY (A2.1) 

y=e+fX+gY +hxy (A2.2) 

where : a- hare constants 

(x,y) are the old image pixel co-ordinates and 

(X.Y) are the new image pixel co-ordinates (measured in metres) 

Table A4.1 : THE EQUATION COEFFICIENTS, GCPs AND THE RMS ERROR 

  

  

  

T Matrix 
x x, 
-37.58203 160.3408 
0.9791622 -0.2168493 
0.2247314 0.9758749 
-5.5544078E-06 -2.5816262E-06 

POINT REAL X REAL Y PREDICT X_ PREDICT Y_ERROR 

1 165.0000 246.0000 167.0811 245.1850 2.2350 

2 150.0000 260.0000 148.9958 260.4759 PA112 

3 165.0000 266.0000 163.7290 266.4311 1.3422 

4 179.0000 232.0000 179.5215 232.1737 0.5496 

5 44,0000 248.0000 44.2807 247.8290 0.3287 

6 282.0000 497.0000 282.4217 497.3201 0.5294 

7 639.0000 700.0000 638.8839 701.4540 1.4586 

8 666.0000 723.0000 666.3268 722.9545 0.3299 

9 260.0000 726.0000 259.6745 724.8987 1.1484 

10 1164.0000 245.0000 1163.3464 244.6709 0.7318 

11 1186.0000 325.0000 1186.5713 325.3052 0.6477 

12 1156.0000 624.0000 =1158.3159 623.8908 2.3185 

13 1167.0000 671.0000 1164.7013 670.5034 2.3517 

14 1073.0000 689.0000  1072.6180 689.1249 0.4019 

15 914.0000 561.0000 914.5619 560.9006 0.5706 

16 304.0000 _ 210.0000 _302.9503___- 209.9050 1.0540 

RMS error for the whole data set 1.26827 
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APPENDIX 5 

SUPERVISED CLASSIFICATION, TRAINING INPUT :- 

TRAINING AREA STATISTI 

An example of a training area file with the standard statistics generated is now given. 

The file is [ctrain84.csd] and was used in the Tertiary supervised classification, Chapter 

seven, section 7.3.4.2.1.1 and also used in the test area (Larkhill) supervised 

classification, section 7.5.2. The classification was carried out using TM-84 data, 

bands 4, 5 and 3, on the masked WSPTA range study area, where the grass classes 

were edited into three groupings. Altogether a priori input knowledge for seven land 

cover classes were input, with which to train the classifier. 

[ Ctrain84.csd ] : FILE 

7 No. of Classes 3 No. of Bands 

0 Class No. (Class 1 : MG1) 0 Colour assigned class (Red) 

387 No. of pixels in training class 

0 Band on Red display store (TM-4) 

106.077519 Mean pixel value 2.917552 Standard deviation 

99 Minimum 115 Maximum values 

1 Band on Green display store (TM-5) 

88.679587 Mean pixel value 2.650774 Standard deviation 

83 98 Min - Max values 

2 Band on Blue display store (TM-3) 

38.687339 Mean pixel value 1.564807 Standard deviation 

35 46 Min - Max values 

Bands TM-4 TM-5 TM-3 

T™-4 8.5 0.6 -0.3 Covariance Matrix 

TM-5 06 7.0) (18 

T™-3 -0.3 1.8. 24 
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1 Class No. (Class 2 : CG3di & CG3d) 1 Colour assigned class (G) 

450 (No. of Pixels) 

0 (TM-4) 

92.486667 (Mean) 4.245375 (Std.dev) 

86 108 (Min - Max) 

1 (TM-5) 

90.046667 2.586594 

83 100 

2 (TM-3) 

38.335556 1.462471 

35 44 

18.0 0.0 50:2 Covariance Matrix 

0.0 6.7 1.4 

0.2 14 S21 

2 (Class 2 : CG3a/di & CG3a) 2 (Colour Blue) 

373 (No. of Pixels) 

0 (TM-4) 

86.772118 2.173663 

79993. 

1(TM-5) 

96.697051 2.186694 

89 103 

2 (TM-3) 

41.058981 1.291726 

38 47 

47 0.1 0.4 Covariance Matrix 

0.1 48 08 

0.4 0.8 Ly, 

3 (Class 4 : Bare/Low Vegetation) 3 (Cyan) 

364 (No. of Pixels) 

0 (TM-4) 

99.112637 2.877854 

90 107 

1 (TM-5) 

141.560440 5.329287 

123 160 

2 (TM-3) 
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65.008242 3.996891 

53 76 

8.3 6.7 Tz Covariance Matrix 

67 2284 15.6 

42. 15:6 160 

4 (Class 5 : Cereal) 4 (Yellow) 

46 (No. of Pixels) 

0 (TM-4) 

112.956522 6.844159 

100 124 

1 (TM-5) 

79.543478 3.751779 

70 87 

2 (TM-3) 

43.130435 2.561325 

38 49 

468 -9.1 -9.0 Covariance Matrix 

-9.1 14.1 6.6 

90 66 66 

5 (Class 6 : Coniferous Woodland) 12 (Brown) 

76 (No. of Pixels) 

0 (TM-4) 

83.750000 2.525206 

78 92 

1 (TM-5) 

59.157895 7.002957 

49 74 

2 (TM-3) 

30.881579 1.624538 

29 38 

6.4 6.8 24 Covariance Matrix 

68 49.0 De 

2A eS 202.6) 

6 (Class 7 : Scrub/Broadleaved Woodland) 13 (Orange) 

55 (No. of Pixels) 

0 (TM-4) 
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115.545455 7.274558 

100 127 

1 (TM-5) 

78.127273 3.421363 

67 87 

2 (TM-3) 

34.090909 2.894904 

30 41 

52199 126-2 -13:8 

126° P17 1d 

-13.8 £1 8.4 

Covariance Matrix 
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APPENDIX 6 

QUALITATIVE CLASSIFICATION RESULTS :- 

FROM PTER SEVEN SECTION 7.3.4.2.1 FOR TM. YY 1984 

Qualitative assessment of both minimum distance and maximum likelihood classifiers 
performance for all classes in the whole WSPTA extract are given below :- 

Minimum Distance :- 

1 MG1 - 30% of the range, not quite match NCC field map for this class 

2 CG3di & CG3d - 40% of the range, quite a good match with EN 3di and 3d 

distributions 

3 CG3a & CG3a/di - 30% of the range, some isolated classified areas off the range 

including roads and runways 

4 Agri I grass (SSSI) - all green/yellow areas on FCC, picked out small areas within 

range 

5 Agri II grass (SSSI) - all dull orange areas on FCC, completed SSSI I fields and 

classified complete fields of SSSI II status 

6 Winter barley - distinct class fully classified 

7 Winter wheat I - picked out all dark red wheat growth stage 

8 Oil seed rape - distinct class (pink/orange on FCC) fully classified 

9 Winter wheat II - picked out all dark dirty blue wheat growth stage 

10 Bare/stubble - good correspondence with all the bare, stubble or mown areas 

11 Urban - some good correspondence with urban areas and runways, but small bits of 

the range and areas in fields of winter wheat II also classified 

12 Coniferous Woodland - some areas correctly classified, whilst other areas classified as 

winter wheat II 

13 Deciduous or Mixed Woodland - this class was broadly classified correctly, however it 

was overclassified in areas that were winter wheat I i.e., the edges of fields etc. 

14 Open cast quarry (chalk) - distinct class fully classified 

Maximum Likelihood :- 

1 MG1- similar to the minimum distance result 

2 CG3di & CG3d - similar to the minimum distance result 

3 CG3a & CG3a/di - similar to the minimum distance result, but overclassified around 

the chalk tracks 

4 Agri I grass (SSSI) - similar to the minimum distance result, but more of the NW 

pastoral region classified 
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5 Agri II grass (SSSI) - similar to the minimum distance result, but some confusion with 

crop areas 

6 Winter barley - same as minimum distance 

7 Winter wheat I - same as minimum distance 

8 Oil seed rape - bright pink on FCC, smaller amount classified compared to minimum 

distance 

9 Winter wheat II - similar to the minimum distance result 

10 Bare/stubble - smaller amount classified compared to minimum distance 

11 Urban - as well as urban areas it was vastly overclassified in wheat, bare/stubble and 

range areas, classifying from dark red/blue to light blue areas on the FCC 

12 Coniferous Woodland - similar to the minimum distance result 

13 Deciduous or Mixed Woodland - as well as broadleaved woodland areas it was vastly 

overclassified in urban and coniferous areas, classifying from dark brown/red to 

bright orange areas on the FCC 

14 Open cast quarry (chalk) - same as minimum distance 
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APPENDIX 7 

UNSUPERVISED CLASSIFICATION RESULTS :- 

FROM CHAPTER SEVEN SECTION 7.4.1.1 

Unsupervised Classification of the Wylye Extract, July 1984 TM (Bands 4, 5 and 3) 

An unsupervised classification was first performed to give an indication of the number 

of spectral classes present in the imagery. Fourteen classes were chosen for the 

analysis and the resultant classes are described in terms of informational cover classes 

Table A7.1 : Unsupervised Classification of the Wylye Extract, 

July 1984 TM (Bands 4, 5 and 3) 

  

  

Class * | Colouron FCC Informational class 

1R dark red/black — water, coniferous and mixed woodland and wheat 

2G pink spring cereals, rape and some mixed woodland 

3B light green stubble or mown 

4C orange/green small part of range and schedule III land, some of SSSI 

fields and river meadows 

SY: dark blue winter cereals 

6M orange SSSIs fields fully or partially 

TLr green exclusive to and most of the range 

8Lg light blue bare no vegetation 

9Lb bright red cereal growth stage 

10Le yellow/green SSSIs fields partially and river valley meadows 

liLy blue/black small amount of winter cereal growth stage 

12Lm bright blue winter cereal growth stage 

13Br bright purple cereal growth stage 

140 light yellow/green very small amounts of SSSIs permanent pasture 

  

* for explanation of the annotated colour symbols see Table 7.7, where R equals red, G equals green 

etc. 
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FROM CHAPTER SEVEN SECTION 7.4.2.1 TM May 1985 

Unsupervised classification of Wylye Extract, May 1985 TM (Bands 4, 5 and 3) 

An unsupervised classification was first performed to give an indication of the number 

of spectral classes present in the imagery. Fourteen classes were chosen with an 

adequate number of peak value pixels to represent the natural clusters for the analysis 

and are described below in Table A7.2:- 

Table A7.2 : Unsupervised Classification of Wylye Extract, 

May 1985 TM (Bands 4, 5 and 3) 

  

Class Colour on FCC Informational class 

  

1R__ blue/grey mainly rangeland, parts of SSSI fields and some urban 

2G mottledpurple mainly cereal areas, emergent growth with soil background 

to white 

3B bright reds/ mainly winter cereals, vigorous green growth, some river 

oranges meadows 

4C_ dirty orange/ majority of SSSI fields full and partial and periphery part of 

green range 

5Y _ green/black all broadleaved and mixed woodland, some coniferous 

6M_ dirty black/ cereal growth stage I, completed some fields that were classified 

purple as class 2, as well as some woodland 

7Lr brown/red cereal growth stage II, completed fields that were classified as 

class 6 

8Lg_blue/white cereal growth stage III, more soil background influence 

9Lb black water and some coniferous woodland 

10Lc pink/orange crop I (spring oil seed rape) 

11Ly white bare soil 

12Lm light blue small amount of range, mostly bare/low vegetation class 

13Br bright pink/ crop II (spring oil seed rape) 

orange 

140 grey low vegetation or stubble 
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FROM CHAPTER SEVEN SECTION 7.4.3.1 SPOT June 1986 

Unsupervised Classification of Wylye Extract, June 1986 SPOT (Bands 3, 2 and 1) 

An unsupervised classification was first performed to give an indication of the number 

of spectral classes present in the imagery. Eleven classes were chosen with an adequate 

number of peak value pixels to represent the natural clusters for the analysis (Table 

A7.3). 

Table A7.3: Unsupervised Classification of Wylye Extract, 

June 1986 SPOT (Bands 3, 2 and 1) 

  

Class Colour on FCC Informational class 

  

1R_ dark red to majority of the rangeland, parts of SSSI fields, various cereal 

pink to grey growth stages and broadleaved/mixed woodland 

2G light pink portions or whole SSSI fields and more mature cereal areas 

3B _black/reds to mainly woodland coniferous and mixed also roads/hedgerows 

black/greens and copses, some within field crop variation and small amount 

of the range 

4C light to dark grey low vegetation/bare fields and chalk tracks 

5M_ light green/grey sections of roads and within field cereal variation 

6Lr_blue/white predominantly bare, small vegetation component 

7Lg light pink/white predominantly bare, some significant green emergent vegetation 

growth 

8Lb white bare 

9Le grey low vegetation/bare fields 

10Ly pink/orange water 

11Lm bright pink mature cereal 
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FROM CHAPTER SEVEN SE: IN 7.5.1 TM JULY 1984 

Unsupervised Larkhill Range Classification 

Unsupervised classification was undertaken to give an idea of the number of spectral 

classes present and to see how they related to WSPTA. Seven significant peak number 

of classes were found. The statistics and how they relate to the ground cover types are 

given by Table A7.4. 

Table A7.4 : Unsupervised Class Statistics Larkhill Range, 

July 1984 TM (Bands 4, 5 and 3) 

  

Band means 

Class ColouronFCC 4 5 3 Informational class 

  

1R__ green/blue 90 80 36 80% of the rangeland 

to grey 

2G light green/grey 90 100 42 10% of the rangeland 

3B orange 110 80 33 5% of the range mainly on periphery and 
schedule ITI land 

4C light grey/olue 90 120 51 low vegetation/bare fields on schedule III land 
and chalk tracks 

SY  black/blue 50 60 36 some coniferous areas, mainly areas of burnt 
range 

6M_ purple 65 75 36 areas linked to burnt areas (mixels) 

TLr black 35 35 30 _ burntareas 
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APPENDIX 8 

GROUND REFERENCE DATA :- 

WYLYE S' YY AREA 

Permanent Chalk and SSSI containing Grassland 

Table A8.1 Ground Data used in the Wylye Study Area Analysis 

  

  

COUNTY/SELECTION AREA : WILTSHIRE 

Site Name Grid Ref Site Habitat Type Notes 

Area : Grass 

(Ha) 

Cortondown SU928387 19.9 basic/calc, 

lowland 

Parsonage SU050412 188.6 _ basic/calc, rich Wessex downland, 

down lowland archaeological interest 

Scratchbury & ST915437 53.5 basic/calc, out standing insect fauna 

Cotley hills lowland 

Starveall & ST992404 19.0 basic/calc, rich Wessex grassland 

Stony down lowland. 

Steeple §U037387 21.1 basic/calc, Wessex type grass 

Langford down lowland 

Stockton Wood ST958366 61.5  basic/calc, _ orchid rich area 

& down lowland 

Tytherington ST912385 6.1 basic/calc, 

down lowland 

Well bottom ST957417 16.3 _ basic/calc, 

down lowland 

Wylye & $U003360 72.8  basic/calc, vital site for Wessex 

Church dean lowland grassland 

downs 

Yarnbury castle SU037403 9.1 basic/calc, archeological interest 

lowland 
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APPENDIX 9 

LIST OF NOTATIONS :- 

™ 
ATM 
SPOT-HRV 

S.SPOT 
MSS 
EN 
SPTA 
WSPTA 
ESPTA 
NVC 
MG 
CG 

SAR 

USGS 
DIPS 
ccT 

FCC 
SFCC 
TCC 
NRSC 
GCP 
BGN 
RMS 
PCA 
OIF 
GLAI 
BRDF 
NDVI 

IR 
BV 
DN 
KB 
CPU 
GIS 
SECHO 
DEM 
LUT 
ANOVA 

Thematic Mapper 
Airborne Thematic Mapper 
Systeme Probatoire d'Observation de la Terre - High Resolution 
Visible 
Simulated SPOT 
MultiSpectral Scanner 
English Nature 
Salisbury Plain Training Area 
Western Salisbury Plain Training Area 
Eastern Salisbury Plain Training Area 
National Vegetation Classification scheme 
Mesotrophic Grassland 
Calcarious Grassland 
Institute of Terrestrial Ecology 
Synthetic Aperture Radar 
Advanced Very High Resolution Radiometer 
United States Geological Survey 
Digital Image Processing System 
Computer Compatible Tapes 
Royal Aircraft Establishment 
False Colour Composite 
Standard False Colour Composite 
True Colour Composite 
National Remote Sensing Centre 
Ground Control Point 
British National Grid 
Root Mean Square 
Principle Component Analysis 
Optical Index Factor 
Green Leaf Area Index 
Bidirectional Distribution Function 
Normalised Difference Vegetation Index 
Transformed Divergence 
Infra-Red 
Brightness Value 
Digital Number 
Knowledge Base 
Computer Processing Unit 
Geographical Information System 
Supervised Extraction & Classification of Homogeneous Objects 
Digital Elevation Model 
Look-Up Tables 
Analysis of Variance 
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