
APPLICATION OF A PROBLEM-SOLVING
METHODOLOGY TO SOFTWARE USABILITY

GILBERT JAMES MANSELL
Master of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

February 1991

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with the au-

thor and that no quotation from the thesis and no information derived

from it may be published without the author’s prior, written consent.

The University of Aston in Birmingham

Application of a Problem-Solving
Methodology to Software Usability

Gilbert James Mansell

M.Phil.

1991

A real-world problem is analysed using the contingency

theory of Checkland and Jackson & Keys. The problem was

presented by a computer manufacturer, and is concerned with

the usability of software products. The problem is taken to

be soft rather than hard, and occurring in a complex multi-

organisational system where the relationships between the

systems agents, its customers and the problem-solvers is coer-

cive. A methodology representative of a radical design para-

digm is used to structure the problem. The suitability of the

chosen methodology, and the radical design paradigm, for the

problem context encountered in this research, is evaluated in

this thesis. The Jackson & Keys framework, augmented by
Jackson to cater for coercive problem contexts, is also

evaluated.

SYSTEMS METHODOLOGY, SOFTWARE USABILITY, DESIGN

METHODOLOGY, CRITICAL SYSTEMS THEORY.

ACKNOWLEDGEMENTS

During the course of this research the author was an investigator on
Alvey/SERC project GR/D/72952 - MMI/143, along with Mrs. L. A.

Macaulay and Dr. C. J. H. Fowler. No part of the research described in
this thesis was performed in collaboration with these colleagues. The

research was supervised by Mr. D. E. Avison.

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION 7

CHAPTER 2 - ACTION RESEARCH

Y
A
U

W
N
E
 Introduction 9

The Nature of Action Research 9

Problems Associated with Action Research 13

Methodologies for Action Research 16

Radical Design 18

Choice of Methodology 21

Methodology Choice in a Coercive Context 23

CHAPTER 3 - THE PRODUCTION & USE OF SOFTWARE

1

u
U
b
w
n

Introduction 27

Software 28

Software Engineering 31

Information Systems Development in Organisations 34

Software Production and Consumption 38

CHAPTER 4 - THE USTM PROJECT

1

U
b

w
n

Background 40

Problems Associated with the Project 46

Categorisation of Problem 47

Degree of Consensus in Problem Context 50

Choice of Methodology 53

CHAPTER 5 - USE OF DESIGN METHODOLOGY

1

U
b

w
n

Introduction 54

The Problem Identification Process 56

The Preparation Phase 56

The Exploration Phase 57

The Formulation Phase 60

5.1 Stage 1 - Review

5.2. Stage 2 - First Formulation

5.3 Stage 3 - Intervention Potential

The Project Potential Phase 63

6.1 Stage 1 - Project Matrix

6.2 Stage 2 - Final Formulation

7 Design Briefing 65

8 Objectives Tree 67

Conceptual Model 69

10 Counterplanning 74

11 User Trip 85

11.1 The Product

11.2 The Test System

11.3 Evaluation of User Trip

11.4 Operational Context of User Trip

11.5 Conclusions

CHAPTER 6 - EVALUATION

1 Introduction 98

2 Evaluation of Methodology Application 98

3 Evaluation of Radical Design 103

4 Evaluation of Jackson & Keys’ Framework 109

CHAPTER 7 - SUMMARY & CONCLUSIONS

1 Summary 119

2 Conclusions 120

2.1 Software Usability

2.2 Radical Design Methods

2.3 Contingency Theory

2.4 The USTM Project

REFERENCES 129

W
e
r
t

a
n
e
a
w
n
e

=
o

LIST OF FIGURES

Problem Pair Network 58

Objectives Tree 66

Objectives Tree (from user point of view) 71

Plan 1 73

Plan 2 75

Conceptual Model of RD3 80

Conceptual Model of ‘Design Products’ 81

Monitoring & Control of ‘Design Products’ 83

Quickbuild Methodology 86

Example Data-flow Diagram 87

Example Entity Model 88

CHAPTER 1 - INTRODUCTION

This thesis describes action research into the problem of software

usability. Chapter 2 explains the nature of action research, which is a

method of enquiry in the social sciences. The problems associated with

action research are discussed, in particular the problem of client domina-

tion since this phenomenon arose in this research. An overview of alter-

native methodologies for action research is given, and a more detailed

description of the tradition of radical design, since a methodology in this

tradition was used in this research. Theory that enables a choice of

methodology to be made is described, and the particular problem of

methodology choice in a coercive context is discussed.

Chapter 3 provides the context for the particular situation studied in

this research. It defines and categorises computer software, and describes

the engineering process by which it is produced. Use of software by

organisations that are building information systems is also described.

Finally, the problems inherent in software production and use are

defined.

Chapter 4 describes a particular project with which Mansell was

associated, conducted on behalf of a computer manufacturer and spon-

sored by the Alvey Directorate. The project was to create a methodology

that would improve the usability of the manufacturer’s software. Mansell’s

reaction to the course that the project took was unfavourable, and trig-

gered research into methodology for problem structuring, in particular in

coercive situations. Use was made of the work of Jackson & Keys (1984)

and Jackson (1987a). A decision was made to use an Open University

design methodology (devised for course T262) to analyse the problem.

Chapter 5 describes the application of the chosen methodology. A

game called PIG (Problem Identification Game) was played to explore the

problem structure, and then a number of design methods were applied to

develop a solution. These methods included a ‘user trip’ which involved

practical experience in the problem situation.

In Chapter 6 the application of the methodology is evaluated, and

the suitability of the radical design tradition for action research is dis-

cussed. The Jackson & Keys framework for categorising methodologies is

analysed and evaluated.

Chapter 7 summarises the work that has been done, and draws con-

clusions under the headings of software usability, radical design, con-

tingency theory for methodology choice, and the Alvey project that

sparked off the research.

CHAPTER 2 - ACTION RESEARCH

1. Introduction

This thesis describes an action research project. In this chapter the

nature of action research is defined together with problems that may arise

in its execution. As will be seen in Chapter 4 serious problems did indeed

arise in this project. A number of methodologies exist for performing

action research deriving from alternative paradigms. This chapter

describes a particular approach described as ‘radical design’, since it was

the one used in this project. Some theoretical considerations concerning

choice of methodology are also presented.

2. The Nature of Action Research

Action research has been variously defined (Rapoport 1970, Foster

1972, Susman & Evered 1978), and the following themes emerge:

[1] Action research is intended to contribute both to scientific theory

and to effective action in everyday life.

[2] Action research involves intervention in problematic situations, both

by the researcher and other stakeholders, with an intention of bring-

ing about change.

A theme that is sometimes stressed is that the change brought about by

action research may be in the perceptions, values and attitudes of the

participants in the research project. This orientation derives from the ori-

gin of action research in behavioural science, in particular the work of

10

Lewin (1947). From this perspective the purpose of action research is to

bring about education or re-education of the participants. Action research

from this perspective was pioneered in Britain by members of the Tavis-

tock Institute (Rapoport 1970, Clark 1976). Another important contribu-

tory stream to action research, however, was operational research (OR),

concentrating on apparently objective technical problems. Operational

research was founded on the assumption (Churchman et al. 1957) that

problems arise as a result of malfunctioning systems. Knowledge about

systems behaviour was gained by mathematical modelling and experimen-

tation. The socio-technical systems movement (Emery & Trist 1960) simi-

larly relied on optimising the functioning of systems, but concentrated on

mismatches between social and technical systems. More recent develop-

ments in action research methodology (Checkland 1981) reject the idea

that human action is systemic, and treat the notion of system as epistemo-

logical rather than ontological. Writers on the methodology of action

research vary in the stress they place on problem-solving or learning as

the primary purpose of action research. Nevertheless, the expectation of

many potential collaborators in action research will be that pressing prac-

tical problems will be solved.

The start-point of action research, then, is the identification of a

real-world problem. An iterative cycle then ensues of action planning,

action taking, evaluation and the specification of the learning that has

taken place (Susman & Evered 1978). Real-world problem-solving is so-

called to distinguish it from the laboratory problem-solving undertaken

by natural scientists. Action research is a form of applied social science,

and the researcher has little control over the definition of the research

problem (although that definition may change as a result of the action

aay

research process). Problem identification may be a prolonged process, and

any particular project may proceed little beyond structuring the problem.

For this reason the concept of problem-solving has been questioned by

Checkland (1981), and rejected by Eden (1987).

Heller (1986) distinguishes between five different approaches to

problem-solving. The traditional approach is that adopted in the natural

sciences, and to some extent in the social sciences, particularly psychol-

ogy. This approach uses laboratory research or carefully controlled field

experiments to test or establish scientific theory. The problems to be

solved are posed by the researchers, and no particular attention is given to

practical application of the results. At the opposite end of the problem-

solving spectrum is client-dominated consultancy. No explicit attempt is

made to generate validated knowledge. Theory may be drawn upon but it

may be heavily influenced by personal experience and ‘common sense’.

The problem to be solved is posed by the client and practical efficacy is

paramount. In between these two extremes lies the opportunity for action

research. Heller describes three possible situations. Firstly, there is the

situation where the researcher is dominant but is willing to build bridges

to users of the research findings. Secondly, there is the situation where

the researcher and a client share responsibility for problem identification

and research design. Thirdly, there is the situation where a client with a

problem requests help from a researcher. Heller uses the term research

action where the project has a significant emphasis on fact-finding, and

action research where the project has a greater emphasis on implementa-

tion. The view of problem-solving as a spectrum of activity ranging from

pure basic science to consultancy, with action research located somewhere

between the two, is a valuable clarification of the status of this type of

= 125

research. Nevertheless it obscures the philosophical differences between

pure scientists and action researchers.

The model of explanation central to traditional science has been for-

mulated by Popper (1959). According to this account, laws of science

explain phenomena. The laws may be validated by deducing from them,

in conjunction with certain initial conditions, descriptions of events that

may be observed. This ‘covering-law’ model is argued by some to apply

to the social as well as the natural sciences. The model is acceptable only

if there is the possibility of agreement between observers as to the nature

of the events that have been observed. Disagreement about theory is pos-

sible using a covering-law model, but not disagreement about what has

been observed.

There is a long history of rejection of the traditional approach of

natural science by interpretive social scientists. According to this perspec-

tive, social phenomena are meaningful to the human beings who create

them, whereas the events of the natural world are independent of subjec-

tive meaning. The meanings understood by social actors cannot be

observed. Two different actors may interpret the same action, in which

they are both involved, differently. Understanding of social phenomena

necessitates a hermeneutic rather than an empirical process, therefore.

Action researchers are committed to producing knowledge in the

service of action (practical knowledge), not knowledge for its own sake.

The covering-law model is only partly adequate for this purpose. In addi-

tion to being accurate, practical knowledge must be usable by the partici-

pants in some problem situation. Human action is undertaken for a pur-

pose, and practical knowledge must include knowledge of ways of estab-

lishing and clarifying purpose. Practical reasoning is concerned with ends

a3

as well as means, unlike conventional scientific reasoning that excludes

value judgements. Stakeholders in a problem situation will possess some

practical knowledge before conducting any form of research. This

knowledge may be tacit, however, rather than explicitly defined. Metho-

dologies for action research provide explicit generalised knowledge about

how to take action, including means of deciding on what purposes are

desirable. A number of alternative methodologies are available (see section

3 of this Chapter) that differ in their theoretical assumptions and practi-

cal applicability. Contingency theory exists that guides choice between

methodologies. A particular theory, that of Jackson & Keys (1984), is dis-

cussed in section 3 of this Chapter.

An action research project may produce practical knowledge of use

to stakeholders in a problem situation. Alternatively, a project may add to

knowledge about the methodology used to conduct it, or the contingency

theory used to choose the methodology.

3. Problems Associated with Action Research

Action research has not lacked criticism as a mode of enquiry, and

difficulties may arise when it is used. Firstly, action research may be

accused of being ‘unscientific’ because it works in only one setting at a

time, and relies on local knowledge rather than application of general

laws to specific cases. The covering-law model may be inadequate for

action research, but it is not irrelevant, the criticism runs. In fact, the

equivalent of a scientific theory in action research is a methodology,

which is a theory of action. If successive uses of a methodology in a

number of different projects yield satisfactory results then the theory is

to some extent verified. Secondly, action research does not generate

mitace

‘data’ as in positivist science, but rather interpretations of situations. An

interpretation is more or less persuasive rather than undeniably the case,

and an alternative interpretation may be possible. The hermeneutic pro-

cess for validating interpretation cannot break out of what is known as

the ‘hermeneutic circle’ ie. an interpretation can be validated only by

comparison with another interpretation. One answer to this type of criti-

cism is to re-examine the nature of conventional science, and argue that

the story about ‘laws of nature’ misrepresents the social nature of scien-

tific activity. According to Kuhn (1962) members of a scientific com-

munity share a paradigm, or set of assumptions about what problems are

important, and how one might go about solving them. Members of the

community engage in ‘normal science’ - a problem-solving activity that

confirms the shared paradigm. When normal science leads to anomalies,

the science in question enters a period of crisis, in which one paradigm

may be replaced by another. Kuhn claims that paradigms are ‘incommen-

surable’. Those who adopt different paradigms see a different world, and

will not be able to agree about the significance of observed events. From

this perspective action research is not weakened by the interpretive nature

of its data, because conventional science also relies on an unacknowledged

process of interpretation. As will be explained in section 3, the action

researcher appears to have a choice between a number of alternative

paradigms.

Another criticism of action research derives from concern over the

role of the client in the client-researcher relationship. The client may be

paying for the research, and seeking considerable control over its course.

It may be difficult or embarrassing for the researcher to disagree with or

criticise the client, or to publish findings that the client wishes to

=e1ST=

suppress. There may be stake-holders in the problem-situation other than

the client, and the researcher may wish to take their point of view into

account. Berry et al. (1986) report on research in the National Coal Board

(NCB) during a period of intense conflict between the union and the

management. The researchers wished to publicly disclose that the NCB

accounts were an inadequate basis for the justification of plant closure

decisions. The response of the NCB was to foreclose further research and

to refuse to engage in a review of the researcher’s arguments and those of

other academics. The researchers took a stand on moral grounds, consid-

ering that their duty as academics overrode the need to maintain good

relationships with the client. The issue for action research, in this case, is

the use of power to deny the application of the insights of research in the

interests of the community rather than sectional interest. The management

of the NCB, backed by central government, wished their point of view to

prevail. Other stakeholders, with different interests, were the union, the

miners and the general public. The academics concerned were also stake-

holders, with an interest in communicating their interpretation of the

situation.

It is clear from the preceding discussion about the role of the client

that action research raises ethical questions. Academics must add to

knowledge, but action researchers claim to produce practical knowledge

rather than knowledge for its own sake. Practical knowledge can be used

to take action but action is purposeful. The action researcher is concerned

with ends as well as means and must choose whose ends to serve. Deci-

sions about desirable ends can be taken only in the context of a value

system. Argyris et al. (1985) stress the importance of competence and

justice both of which they see as deriving from the need to pursue

el6l=

rationality. The action researcher should seek to enhance human com-

petence - that is to enhance the likelihood of achieving intended conse-

quences. Competent action must be preceded by rational determination of

purpose, and justice demands that all points of view be equally taken into

account. This value system is essentially democratic. The idea that injus-

tice is irrational is also to be found in the work of Ulrich (1983). Demo-

cratic determination of purpose is fraught with difficulty. Stakeholders in

a problem situation are not equally powerful, articulate or informed. It

has been suggested by proponents of what is known as ‘critical theory’

(Geuss 1981) that stakeholders may not clearly understand their own true

interest, because their ideas have been formed in a coercive society.

Habermas (1979) argues that true interests can be defined only in condi-

tions of complete freedom of discussion, and these conditions may be

absent.

4. Methodologies for Action Research

A number of methodologies exist for performing action research, for

example OR (Churchman et al. 1957, Rivett & Ackoff 1963, Ackoff &

Sasieni 1968), socio-technical systems design (Emery & Trist 1960), soft

systems methodology (Checkland 1981, Checkland & Scholes 1990), and

design methodology (Jones 1980). What these methodologies have in com-

mon is that they provide a number of recommended methods and tech-

niques for identifying problems, planning action, taking action and

evaluating the results. Where they differ is in the ontological and

epistemological assumptions they make. OR, for example, assumes that

problems arise as a result of malfunctioning systems. Knowledge about

systems behaviour is gained by mathematical modelling and

Dag

experimentation with a model. Socio-technical systems design assumes

that problems arise because of a mismatch between social and technical

systems. Technical systems are those studied by operational researchers,

such as stock control, production and distribution systems, and can be

optimised by the methods of OR. Social systems, however, are systems of

human beings performing roles under the influence of sets of values that

lead them to seek particular objectives. Knowledge of social systems will

in part be based on interpretation rather than empirical data capture. Soft

systems methodology (SSM) does not presume the systemic nature of a

problem context, and transfers the notion of systemicity to the process of

enquiry. It is intended for contexts characterised by complexity, lack of

agreement about purpose, or divergences in world-view. Use of SSM is

intended to bring about learning on the part of the participants. Design

methodology has its origins in engineering and architecture, but has pro-

gressively widened the sphere of application of its methods to systems,

including abstract systems. Its distinctive contribution to problem-solving

is the stress it places on generating ideas for new entities as opposed to

the study and optimisation of existing systems. March (1984) suggests

that the two conventionally accepted forms of reasoning, induction and

deduction, cannot give rise to new entities. Central to design is the

hypothesizing of what may be as distinct from what must be or actually

is. March names this type of cognitive activity ‘abductive’ reasoning.

Design methodology has been influenced by a ‘radical tendency’ of

designers who reject many aspects of contemporary society and seek to

use design methods to re-design society.

Zi8 =

5. Radical Design

The methodology used in the research described in this thesis

derived from the radical design movement. The term radical design is

used in this thesis to describe design methods and approaches that are:

[1] general-purpose, ie not specific to a particular branch of engineer-

ing.

[2] multi-level, ie suitable for designing at several different levels of

abstraction.

[3] accessible, ie intended for use by lay-people not technical experts.

The distinction between [1] and [2] above is that general-purpose methods

are suitable for designing different types of object at the same level of

abstraction (e.g. aircraft, bridges or houses), whereas multi-level methods

are suitable for designing hierarchies of objects, the higher levels of

which are abstractions (e.g. roads, transport systems and economies). An

example of a radical approach to design is that taken by Jones (1980).

Jones defines design as the initiation of change in man-made things and

by this definition widens the scope of design from engineering, architec-

ture and fashion to include the activities of planners, managers, politi-

cians and organised bodies concerned to bring about change in society.

Jones defines four types of entity amenable to design, components, pro-

ducts, systems and communities. Traditionally designers have been con-

cerned with products or components. Jones wishes to see systems and

communities treated as ‘designable’ ie under conscious human control.

This implies

the power to continuously remodel the whole fabric of indus-
trial society from top to bottom. (Jones 1980 p. 32).

Jones (1980) describes 35 design methods, including methods of

= 19'-

searching for ideas, methods of exploring problem structure, and methods

of evaluation. Jones also provides a framework that suggests which

methods are appropriate at various stages of a design project. The first

edition of Jones’ book was published in 1970 and, as the first Professor of

Design at the Open University, his ideas influenced the development of

undergraduate courses. The OU course T262, for example, first delivered

in 1975, contained a design methodology that drew upon Jones’ set of

design methods but augmented it, and provided a more explicit con-

tingency framework for choice of method. This framework recommended

methods as suitable for either products or systems (the more ambitious

aim of designing communities was not directly addressed). The other ele-

ment of contingency in selecting a method was whether the project was at

the exploration stage, or at the stage of generating ideas, or at the stage

of selecting promising ideas. The stages of a design project were

envisaged as:

- Problem identification

- Exploration

- Generation of ideas

- Selection of ideas

The methodology was not intended to produce detailed designs for any

particular product or system, and its use provides a means of problem

structuring. This is because of the intimate relationship between what is

perceived as a problem and what is perceived as a solution. Cross (1982a)

describes the problem-solving activity of a designer as ‘solution-focused’.

He argues that designers face ill-defined problems that lack definitive

formulation. Any formulation of an ill-defined problem is bound to con-

tain puzzles and inconsistencies. Furthermore, formulations of the

= 205

problem are solution-dependent, ie each formulation refers implicitly or

explicitly to a solution. In these circumstances a designer who works on a

solution is simultaneously defining a problem. Checkland (1981) refers to

ill-defined problems as ‘soft’, and defines a soft problem as one that can-

not be solved by choosing suitable means for pre-defined ends.

Checkland’s SSM concentrates on clarifying ends and postpones decisions

about means. Clarification of ends in SSM is a sophisticated social pro-

cess, involving debate among stakeholders. The T262 methodology does

not treat the clarification of ends as a social process but rather as a

psychological one. The designer becomes clearer in his or her own mind

about the nature of the problem, and does so by generating ideas to solve

it.

Another distinctive feature of radical design, and of T262 as an

example of it, is the stress on making design methods accessible. Cross

(1982b) argues that it is necessary to do more than merely allow users to

participate in design. The distinction between user and designer must be

eradicated, and knowledge of, and facility in, methods of design spread

widely through the community. The reason that Cross seeks this end lies

in his attitude to modern technology as pernicious, or having unacceptable

side-effects. Such technology, moreover, is unthinkingly accepted as inev-

itable by users and consumers, due to lack of understanding of the design

process as something amenable to social control. The T262 course, of

which Cross (the current Professor of Design at the Open University) was

co-author, was intended to disseminate knowledge of design methods.

Two issues arise from the application of a radical design approach in

action research. Firstly, since design must have as its focus the creation

of some new object (albeit an abstraction), a design paradigm will tend to

l=

re-ify human activity. There will perhaps be a greater emphasis on social

Structure as a determinant of human activity, and less attention paid to

intersubjective negotiation depending on interpretation of meaning.

Secondly, any approach that is radical in intent must have adequate

theory that enables coercive forces in society to be overcome. The mission

of radical design, to eliminate the distinction between designer and user,

may be unachievable without such theory. These issues are discussed in

Section 3 of Chapter 6, drawing upon the learning that resulted from the

Project described in this thesis.

6. Choice of Methodology.

Given the wide variety of possible approaches to action research, the

researcher is faced with the problem of choosing between alternatives.

Apparently working on the assumption that different methodologies might

be good for different purposes Jackson & Keys (1984) categorise the con-

texts in which problems may be perceived in terms of variations in the

complexity of the systems in which the problem is located, and variations

in the relationships among the participants in the situation. Simple systems

consist of a small number of elements with few or regular interactions. A

system may be experienced as complex for a variety of reasons including

the large number of its components and their inter-relationships, whether

it is difficult to observe the operation of the whole system, whether it is

difficult to construct a quantitative model of the system and whether the

system changes its structure dynamically. Jackson & Keys distinguish

between mechanical problem contexts which contain simple systems mani-

festing relatively easy problems, and systemic problem contexts which

contain complex systems manifesting difficult problems.

Sri st

The system in which the problem exists is one factor in determining

the character of the problem context, and the other is the nature of the

relationships among the decision-makers in the system. If the decision-

makers agree on a common set of goals for the system and make decisions

in accordance with those goals then the problem context is described as

unitary. If the decision-makers cannot agree on a common set of goals

and make decisions which are in accordance with differing objectives,

then the problem context is described as pluralist.

As a result of their analysis Jackson & Keys classify problem con-

texts into four different types:

{1]_ mechanical-unitary

[2] systemic-unitary

[3] _mechanical-pluralist

[4] systemic-pluralist

They then suggest suitable methodologies for tackling problems in each of

the four contexts. The techniques of classical OR are thought to be suit-

able for mechanical-unitary contexts. In systemic-unitary contexts the

systems of concern have many elements in close inter-relationship and

exhibit behaviour which is difficult to predict. There is, however, full

agreement about the goals of the system(s). In these circumstances the

use of management cybernetics (Beer 1985) is recommended. It seems

likely that socio-technical systems design, described earlier, also makes

assumptions consistent with systemic-unitary contexts. Jackson & Keys

define a mechanical-pluralist problem-context as one in which the plural-

ism concerns differences amongst decision-makers (of whom the

problem-solver may be one) outside the system, because the component

parts of mechanical systems are passive, not purposeful. If the

= Se

disagreements among decision-makers can be resolved then the problems

remaining can be solved using OR. The approach of Churchman (1979) is

recommended for resolving disagreements. In a systemic-pluralist context

the systems components are purposeful e.g. conscious actors or organised

bodies thereof, and are not in agreement as to the goals to be pursued. In

this context Jackson & Keys recommend a soft-systems approach, for

example use of SSM.

7. Methodology Choice in a Coercive Context

Jackson (1987a) and Keys (1988) have separately elaborated the con-

tingency theory for methodology selection, imparting a different orienta-

tion in each case. Jackson extends the contingency framework by re-

defining pluralist contexts as those in which the participants have to some

extent differing objectives, but a genuine compromise can be reached

upon which all agree (because their fundamental interests are not irrecon-

cilable). He then identifies a new type of relationship that may exist

between participants in a problem-context - a coercive relationship, in

which ‘any consensus that exists is only achieved through the exercise of

power and by domination (overt or more or less concealed) of one or

more groups of participants over others’. According to the logic of the

Jackson & Keys framework, coercive situations may be either mechanical

or systemic. Jackson tentatively assigns Ulrich’s Critical Systems Heuris-

tics (Ulrich 1983) to the mechanical-coercive category and suggests ‘an

approach based upon radical-structuralism is more apt in systemic-

coercive contexts.’

Jackson (1982) has rejected SSM for use in coercive contexts because

it provides no way of equalising inequalities in intellectual and linguistic

- 24-

resources and power imbalances among the stakeholders. The result of

these inequalities may result in use of SSM reproducing the existing social

order rather than facilitating radical action. Jackson accuses SSM of being

culpably ‘regulative’ because it is prepared to accept for implementation

changes emerging from a false consensus produced by distorted communi-

cation.

‘To have any claim to neutrality the methodology would have to

incorporate a prior commitment to establishing the condition for
unconstrained discussion’ and ‘challenge those social arrangements
which produce distorted communication.’ (Jackson 1982).

Checkland’s reply (Checkland 1982) to Jackson proceeds as follows.

Jackson tries to establish his case by argument alone, without appeal to

real-world evidence of a testable kind. SSM was developed by experience

in the world. Jackson takes as given an objective social reality character-

ised by structures that put constraints on groups. He assumes that there is

a valid distinction to be made between a true and a false consensus.

Jackson’s requirement that a prior commitment be made to equalise the

intellectual and power resources of individuals that wish to use SSM

would ensure that the methodology could never be used. In principle use

of SSM could be either:

‘conservative/regulatory or radical/emancipatory depending upon the
readiness to modify Weltanschauungen in the particular situation in
which the methodology is used.’

In practice Checkland concedes that

‘defining changes which are "culturally feasible" has lead to rather
conservative use of the methodology.’

The essence of the disagreement between Checkland and Jackson lies in

the issue of whether or not Weltanschauungen can be changed. Checkland

believes that they have been changed by use of SSM. Jackson agrees that

they could in principle be changed but believes that ideas derive from

society -

si

‘The ideas which flourish are likely to be those which support the
dominant political and economic groups in the system.’ Moreover
‘the ideas of some participants in social systems may be ideological
and may conceal the "real" nature of the social organisation.’

Jackson concludes therefore that use of SSM is unlikely to bring about

radical change in coercive situations. Jackson denies that changing men’s

ideas is liable to be in general fruitful in bringing about radical change -

‘political action rather than action at the level of ideas may be the
best means of removing the major structural barriers lying in the
way of communicative competence.”

Willmott (1989) reviews the debate between Jackson and Checkland

and finds weaknesses in both positions. In the case of SSM his judgement

is that it ‘simply lacks a social theory capable of accounting for why par-

ticular sets of perceptions of reality emerge, and why some perceptions

are found to be more plausible than others.’ Willmott finds Jackson’s

presentation of his case inadequate, however, because ‘it lacks any justifi-

cation for privileging the radical paradigm of analysis’.

Jackson & Key’s framework has been applied in a number of action

research projects (Carter et al. 1987, Jackson 1987c, Keys 1987), and has

influenced the work of a number of researchers (Banathy 1988, Flood

1989, Oliga 1988). Unresolved issues and areas for further research asso-

ciated with the framework are:

[1] The location of methodologies not examined by Jackson & Keys (e.g.

design methodology); in particular the discovery or development of

approaches suitable for coercive contexts.

[2] Doubt about the appropriateness of location of methodologies that

are examined by Jackson & Keys.

[3] Doubt about the philosophical basis of the framework e.g. whether

the nature of a problem context can be objectively established, or

whether the categories are ideal-types.

2/2612

[4] The problem of paradigm incommensurability.

This last problem derives from questioning the rationality of choosing

among methodologies deriving from alternative paradigms that make con-

tradictory assumptions. Resolution of this problem resolves the doubt

expressed in [3] above. Further discussion of these issues will be found in

Section 4 of Chapter 6.

CHAPTER 3 - THE PRODUCTION & USE OF SOFTWARE

1. Introduction

This thesis analyses the problem of software usability. In this chapter

the term ‘software’ will be defined and the processes by which it is pro-

duced and consumed will be described. Software is an engineered product

that is sold to organisations to enable them to construct computer-based

information systems. The production process is known as ‘software

engineering’ and the process that consumes the product within organisa-

tions is known as ‘information systems development’. The concept of ‘usa-

bility’ is vague but is associated with notions of fitness for purpose and

ease of use. Long (1986), for example, states that a system must be usable:

[1] to perform specific tasks;

a by specific users; and

[3] in a specific physical and social environment.

Study of the literature, reveals a number of concerns about the software

engineering and information systems development processes. These con-

cerns are reported in this chapter. The purpose of this chapter is to pro-

vide a context for the specific problem notified to the researchers in this

project. The client in this case was a computer manufacturer that pro-

vided software with its machine ranges.

27

=O8'c

2. Software

Computers are general-purpose machines that perform specific func-

tions only when loaded with a program of instructions. Many different

programs may be available for a particular type of computer. The

behaviour of the computer varies depending on the program currently

executing. The term ‘software’ is sometimes used to refer to computer

programs in general, in contrast to ‘hardware’ - the physical machinery.

Computer programs are not physical entities although they may be

encoded on a physical medium such as magnetic disc or semi-conductor

memory. Computer programs are abstract structures expressed as coded

statements that can activate a defined machine. The term ‘software’ also

has a more specific meaning, when used to refer to programs available for

sale (or available free in the case of public domain software), as distinct

from programs produced by a single computer user for private use. Press-

man (1987), for example, categorizes software as follows:

SYSTEMS SOFTWARE - for example compilers, editors, operating sys-

tems, file management utilities, and telecommunication monitots.

REAL-TIME SOFTWARE - for example software that monitors and con-

trols a system in its environment by responding rapidly to external events

with control signals.

BUSINESS SOFTWARE - for example applications packages that process

business transactions and support common business operations with infor-

mation.

ENGINEERING AND SCIENTIFIC SOFTWARE - for example software

that performs numerical analysis, simulates the operation of systems or

provides computer-aided design facilities.

EMBEDDED SOFTWARE - for example instructions encoded in read-

490 =

only memory that replace conventional electronics within larger systems.

PERSONAL COMPUTER SOFTWARE - software that could include

items from any other category, but designed to run on a low-cost,

machine for a particular market-place.

ARTIFICIAL INTELLIGENCE SOFTWARE - for example expert system

shells.

This categorisation defines a software market-place and represents

programs that the purchaser of a computer might expect to be available

with the machine, thus obviating the need to produce them by in-house

programming. Macro & Buxton (1987), taking the point of view of a

provider of programming services, distinguish between software projects,

which produce programs for a single identified end-client, and software

products, which are programs written for a multiplicity of, as yet,

unsecured (and maybe unknown) clients. The problem of software usabil-

ity presented by the computer manufacturer in this research was a prob-

lem to do with software products.

The main business interest of a computer Manueactirer is in the

manufacture and supply of computer equipment. Since computers are use-

less without programs to direct their operation, however, computer

manufacturers also supply software products with their machines. All

computer manufacturers supply systems software and may supply other

categories of software depending on their view of the market for their

equipment. A major computer manufacturer, such as IBM or ICL,

attempts to be represented in as many markets as possible, and will pro-

duce software in all of Pressman’s categories. Computer manufacturers

produce software products and do not typically involve themselves in

software projects as a major line of business. Software products are

=130\=

general-purpose - that is the manufacturer intends them to be used by as

many customers as possible, in order to spread the development costs

widely. Software projects are initiated by the users of computer equip-

ment and they may be performed entirely in-house or by establishing

contracts with specialist software houses.

A computer manufacturer’s customers will always use some standard

software products, for example the systems software. In other cases the

customer has a choice between using the manufacturer’s software and ini-

tiating a software project. This would be true, for example, of business

software. In some cases software products may be available from third-

party software vendors that rivals the manufacturers native products. A

customer, therefore, assesses the software products available for the

machines it uses, and decides whether to acquire them and/or to initiate

software projects. A computer manufacturer experiences a marketing

failure every time a customer decides not to use one of its products, and

purchases a rival product, or initiates a software project to provide the

facilities required. A customer decides whether to buy software products

or to develop its own applications on the grounds of cost and utility.

Software products are liable to be cheaper than in-house development

because the software vendor can spread its development costs over the

market. The marginal cost of producing one more copy of a software pro-

duct is low. General-purpose products, however, may contain some facili-

ties that are unwanted by any particular prospective user and yet be lack-

ing in others. The functionality of a software product is a compromise

between the possibly conflicting demands of customers. In-house

development of software may be preferable to using a product ill-suited

to user requirements.

=3l-

3. Software Engineering

Software engineering is a relatively junior engineering discipline.

Software products first became available in the 1950’s and software relia-

bility has remained a problem since then. Typically, early versions of a

software product contain many design and implementation errors and a

customer may have to wait years before the product is error-free.

Software maintenance represents a considerable cost to software vendors

and the detection and correction of errors may greatly inconvenience

users. Software errors are known in the industry as ‘bugs’, as if to imply

an external agent causing the software to malfunction. In fact the ‘bugs’

are introduced by failure in design and implementation. In the late 1960's

practitioners and users started referring to a ‘software crisis’ (Sommerville

1982). Research to address the crisis has taken the form of developing

techniques for coping with systems complexity, managing cooperating

groups of designers and computer programmers, and measuring the qual-

ity of software (Lamb 1988). Determination of user requirements remains

a largely unsolved problem. ~

Software engineering consists of a, possibly repeated, cycle of four

phases:

[1] Requirements Analysis.

[2] Systems Design.

[3] Systems Implementation.

[4] Systems Maintenance.

Each phase can be broken down into further sub-phases. Descriptions of

this ‘software life-cycle’ in the literature assume a software project with

an identified end-client. For example Cohen, Harwood & Jackson (1986)

32

describe a ‘contractual model’ found useful in Standard Telecommunica-

tion Laboratories Ltd. (a member of the STC plc group). Here each phase

of software development is regarded as the subject of a contract between

two parties, called the customer and the supplier. The completion of each

phase is signalled by the customer acknowledging that the item delivered

to him by the supplier satisfies the terms of the contract between them.

The existence of a customer simplifies the elicitation of user requirements

and the validation of designs and implementations. The process starts with

receipt of a customer’s statement of requirements:

‘a class of document infamously incomplete, ambiguous, inconsistent
and generally unsatisfactory.’ (Cohen et al. 1986).

Requirements analysis consists of removing these defects by respecifying

requirements in a formal (mathematical) language. Once a formal specifi-

cation has been created there is no further uncertainty in software design

and implementation. Proofs of correctness are constructed for each map-

ping from specification to design to implementation. The account of

Cohen et al. represents the most advanced thinking in software engineer-

ing, and yet it gives only limited assistance to the producers of software

products, who do not have captive customers. Harker & Eason (1984)

point out that establishing requirements for software products is prob-

lematic because of the distance of the supplier in time and space from its

customers. The distance in time arises because the products are to meet

needs some time in the future. Information technology creates new ways

of working and possibly new types of job. A software producer cannot

expect to respond passively to clearly expressed user requirements, but

must in some cases create requirements by innovative design. The distance

in space arises because software products are intended for a mass market.

The software producer cannot negotiate requirements in such a way as to

- 33-

produce an unambiguous specification with many hundreds or thousands

of customers. Eason and Harker (1988) discuss the options open to

software vendors hoping to develop successful software products. These

include the following:

[1] Building formalised models of generic users to be used as a frame of

reference for the design team.

[2] Employing people from user organisations.

[3] Bringing typical users into the supplier organisation on a temporary

basis.

[4] Forging a relationship with a ‘favoured customer’.

[5] Studying appropriate user groups within the supplier organisation.

None of these options is a completely acceptable alternative to producing

software for a client on a contractual basis.

The specification and implementation characteristics of software, the

so-called S-type, P-type or E-type features defined by Lehman (1980),

also influence the likelihood of securely establishing requirements. In S-

type (specifiable) systems the requirement can be precisely specified, is

invariant with time, and a provable implementation can be achieved. Such

systems are small and within the capabilities of a single person to achieve

within a reasonable timescale. Much computer science research into for-

mal specification of requirements is implicitly concerned with S-type sys-

tems. In the case of P-type (programmable) systems a complete and pre-

cise specification of requirements can be given, but a provably correct

implementation cannot be derived from them. E-type (evolutionary) sys-

tems are those whose requirements will change with time, either because

the environment of the system changes exogenously or because the system

= 3405

itself changes its environment. Specifications of E-type systems rapidly

become obsolete, and new versions need to be continually produced. The

great majority of software products are E-type systems.

4, Information Systems Development in Organisations

Organisations rely on information systems (IS) to co-ordinate and

control their activities (see for example the account of Davis & Olsen,

1985). Examples of IS are accounting systems, production planning and

control systems, and sales analysis and forecasting systems. This approach

to categorising IS concentrates on the support they provide to organisa-

tional functions. Another approach to categorising IS concentrates on the

support they provide to hierarchical levels in an organisation. Using this

principle, examples of IS would be transaction processing systems,

management information systems and decision support systems. IS can be

analysed and designed at a level of abstraction above the technology used

to implement them. This principle has characterised the work of

Langefors (1973). Langefors defines an information system as a system

for the collection, storage, processing and distribution of information. The

information system is part of a wider system known as the object system.

The information stored and processed in an information system derives

from the activities of the object system, and may be used to co-ordinate

and control those activities. Langefors describes a model of an informa-

tion system as infological if the model is free from implementation con-

siderations. Information systems may be constructed by mapping an info-

logical model to a datalogical model that presumes a certain type of tech-

nology to support the processing. Langefors develops a model of required

data-flow in an information system by means of precedence analysis - a

= 35 =

process that defines the output requirements of the system, and reasons

about the logical precedents of the output data in terms of stored data,

input data and intermediate processes. Langefors’ ideas have influenced

the information systems development methodology known as ISAC (Lun-

deberg, Goldkuhl and Nilsson 1981). ISAC models an object system as a

network of functions consuming input and producing output, then selects

those functions that transform data and produces an infological model by

precedence analysis. The infological model is then mapped to a datalogical

model.

Ideas similar to those of Langefors are to be found in the work of

Ross (1977) who describes a Structured Analysis Language that models

systems by top-down decomposition of function, and shows the inputs to,

and outputs from, these functions. These ideas are embodied in the infor-

mation systems development methodology SADT, described by Ross &

Schoman (1977). Structured Analysis creates the equivalent of Langefors’

infological model. The data-flow diagrams produced by Structured

Analysis may be converted to executable computer-based systems by the

techniques of Structured Design described by Yourdon & Constantine

(1979). Integrated accounts of structured analysis and design of informa-

tion systems are provided by Gane and Sarson (1979) and De Marco

(1979).

Distinction between infological and datalogical considerations is also

important in modelling the structure of data, as distinct from the

processes that operate on it. Some authorities argue (Howe, 1983, Avison,

1985) that data analysis should precede functional analysis because it may

be possible to share data among applications and thus avoid data duplica-

tion. Data models, for example based on the relational model of Codd

=36.=

(1970) or the entity/attribute/relationship model of Chen (1976), are

implementation-free models of the structure of the data required by

organisational IS.

It is during the process of mapping from an infological model of an

IS to a datalogical model that use of software products will be considered.

For example to map a data model to a database design requires knowledge

of the database management system (DBMS) to be used. A DBMS is a

software product that may be purchased from a computer manufacturer

or a third-party software vendor. It may be possible to implement some

of the functions shown on a data-flow diagram by applications package.

This decision must be made before further design work continues that

results in the specification of programs to be developed in-house. In gen-

eral, software products form ready-made sub-systems that may be used to

implement all or part of IS requirements. An organisation necessarily

chooses to use certain software products when it chooses a hardware sup-

plier. This is because computers are useless without systems software, and

organisations very rarely attempt to develop their own. .

The process of IS development in organisations has been criticised

for its neglect of human factors and social issues, for example by

Lyytinen (1987):

‘The IS community faces a paradox: despite impressive advances in

technology, problems are more abundant than solutions: organisations

experience rising costs instead of cost reduction, IS misuse and

rejection are more frequent than acceptance and use.’

Bjorn-Anderson (1988) diagnoses failures in workplace ergonomics,

organisational ergonomics and societal ergonomics. ‘Workplace ergonom-

ics’ is concerned with problems of fatigue and discomfort in using infor-

mation technology. ‘Organisational ergonomics’ is concerned with the

organisational purpose of information systems, and the necessity of

a3) =

providing satisfying jobs with adequate professional content and oppor-

tunities for social contact. ‘Societal ergonomics’ is concerned with pursu-

ing desirable social objectives, such as full employment. Failures in each

of these areas has resulted from

‘the narrow engineering approach to the area of human/machine

communication, the instrumental approach to communication and its
purpose, and finally the naive assumption that our technology is
neutral.’ (Bjorn-Anderson 1988).

Lyytinen focuses on the inadequacy of information systems develop-

ment methodologies, particularly those described as technical design-

oriented methodologies. Floyd and Keil (1983) describe the problem of

reduction in such methodologies and point out the following dangers:

[1] Equating people with things (people as data sources or receivers) or

with computer programs (people as information processors).

[2] Reducing objects to data about the objects.

[3] Reducing goal-oriented action carried out by people to the process-

ing of symbolic information.

A number of methodologies exist that promise. to deliver more

effective information systems, for example ETHICS from Mumford

(1983), an adapted version of Checkland’s SSM from Wilson (1984), and

MULTIVIEW from Wood-Harper, Antill & Avison (1985). Mumford

stresses the socio-technical rather than narrowly technical nature of infor-

mation systems, and urges user participation in systems design. Use of

SSM encourages the exploration of issues from many points of view prior

to the selection of a primary task to be supported by an information sys-

tem. MULTIVIEW eclectically combines techniques from SSM, socio-

technical systems design, data analysis and functional analysis. None of

these approaches is widely used in practice, and the prevailing paradigm

in organisational information systems development is technical design.

98

5. Software Production and Consumption

Software production and consumption is a system beset with prob-

lems. The software engineering paradigm necessitates the unambiguous

specification of user requirements. Software vendors find it difficult to

establish user requirements. Software design cannot proceed without some

model of requirements, so software producers use strategies like designing

a product for a ‘favoured customer’ or gaining access to ‘typical’ users.

These strategies do not guarantee a comprehensive definition of user

requirements. Software products often contain many errors when released.

The mapping of designs from formal specifications may reduce program-

ming errors. Not all software producers yet use formal specification, how-

ever, perhaps because of a shortage of skilled practitioners. Although for-

mally specified software is amenable to proof of correctness, it is still

possible to introduce errors into the specification, particularly when con-

verting a vaguely specified user requirement into the language of

mathematics. Some aspects of a software product are very difficult to

specify formally, for example the user interface. Successful software pro-.

ducts have typically been through many iterations of a cycle of release,

use, feedback of criticisms and error reports, and re-release. There is lit-

tle evidence that this situation will change. Since most software products

are E-type systems, the possibility of eliminating the maintenance phase

of the software life-cycle seems remote.

The nature of IS development in organisations also poses problems.

The infological modelling that is conducted is at a level of abstraction

above implementation, and this causes human characteristics and require-

ments to be ignored. Decisions to automate work systems are taken on the

grounds of cost and efficiency, not on whether jobs of adequate quality

= 39 =

and quantity should exist. People are often treated as a means of imple-

menting information systems (ie as information processors), rather than as

clients to be served by them.

CHAPTER 4 - THE USTM PROJECT

1. Background

A research project entitled ‘User Skills and Task Match (Methodolo-

gies for Matching IT Products to User Needs)’ was approved for funding

by the Alvey Directorate towards the end of 1985. The collaborators in

the project were a computer manufacturer (who provided the project

manager), and Huddersfield Polytechnic. The Polytechnic was represented

by three academics, a computer scientist, a psychologist and Mansell, sup-

posedly a specialist in methodology. The proposed research was stated in

the submission document to have three main objectives:

[1] To provide a means of producing more valid and rigorous software

product specifications.

[2] To enable user’s requirements to be more fully incorporated into the

product design process.

[3] To improve communication between marketers and designers.

The product of the research was envisaged as a design methodology.

The background to the research proposal was as follows. At the

time, Government policy towards information technology research in the

United Kingdom was to encourage academic collaboration with industry

and to channel funding through the Alvey Directorate. Alvey-approved

projects necessarily involved industrial collaboration. Alvey categorised

research into the areas of Intelligent Knowledge Based Systems (IKBS),

Software Engineering, Very Large Scale Integration (VLSI), and Man-

ho

BC: § es

Machine Interface (MMI). The USTM proposal was accepted as an MMI

project.

The manager of the USTM project had been appointed by the com-

puter manufacturer to oversee MMI initiatives within the software pro-

ducing division of the company. The USTM project was only one of his

concerns, therefore, and his brief overall was to raise the profile of

human factors issues within software production. The computer

manufacturer was aware that software usability was becoming an issue in

the industry. The initiative in seeking Alvey funding for the project lay

with the project manager, and the academics were in a sense ‘recruited’

by him to help in implementing his ideas. The motives of the project

manager appeared to be:

[1] To be be seen to be taking vigorous action in the discharging of new

responsibilities.

[2] To gain another Alvey award for his company (such awards were

prestigious).

The project manager characterised the problem to be investigated as fol-

lows. Designers lacked information about the prospective users of

software and the tasks that they performed. This could give rise to pro-

ducts that were difficult to use, but also to products that exhibited inap-

propriate functionality. In conditions of uncertainty designers tended to

provide too many functions rather than too few, and this complexity

might worsen usability, as well as being uneconomic from the vendor’s

point of view. The project manager considered that the problem was in

part caused by a communication gap between marketeers and designers.

Marketeers were familiar with the market for software products, and to

some extent understood user and task characteristics. Their software

=AD =

‘specifications’ were informal, however, and did not provide sufficient

guidance to software designers. The designers were good technicians who

lacked market awareness and often operated under conditions of uncer-

tainty about the ultimate use of the products they were designing. As

pointed out in Chapter 3 software vendors in general have the problem of

not being able to thoroughly analyse user and task characteristics prior to

design, however competent the marketing staff. This is because software

products must be sold to many end-user organisations, and the charac-

teristics of each one cannot be analysed in detail. This is in contrast to

in-house systems development where the users are ‘captive’. Existing

software engineering methodologies assume that user requirements can be

accurately captured. A software vendor hoping to sell to a wide market

cannot be totally confident that requirements are known prior to design

of the product.

The analysis of the problem was provided by the project manager

and so was the solution. This was to take the form of a methodology. The

Alvey proposal implied that this methodology would be used by mark-

eteers to improve their software requirements specifications and thus

reduce designer uncertainty. In practice this is not how the methodology

came to be used. The physical form of the methodology was specified as

a training manual, to be supplemented by training courses. The structure

of the proposed methodology was described as follows in the Alvey pro-

posal. It was to have five distinct ‘levels’ - the market level, the user level,

the object level the task level and the dialogue level. The term ‘level’

seemed to correspond to the idea of a phase or step, in that it was

implied that the user of the methodology would complete tasks at the

market level before starting on the user level and so forth. Iteration

3143 =

around the levels was anticipated, however. The term ‘phase’ was used

with a different meaning, however, in the description of the methodol-

ogy. The methodology was described as having three ‘phases’ - Market

Review, Product Requirements and Outline Design, and Product Develop-

ment. To complete the Market Review phase the user would proceed

through the five levels, and then proceed through them again to complete

the Outline Design phase. So the methodology consisted initially of five

phases repeated twice as a block of five. Each block of five, however,

might involve iteration before it could be regarded as finished. The Pro-

duct Development Phase consisted of prototyping a product, and the

details of the phase were not to be addressed in the Alvey funded

research (neither was the Dialogue level). The conceptual architecture of

the methodology did not survive long after the start of the research. In a

sense it was a facade constructed to impress the grant-awarding body. It

was a professional piece of ‘methodology-speak’ that included references

to levels, phases, iteration, users, objects, tasks and dialogue, but meant

very little. In terms of action research it represented a commitment to

action with no clear theory informing the action, or enabling sense to be

made of the problem situation. The proposal was accepted, however.

The proposal stated that the methodology would be evaluated by

testing it in two of the computer manufacturer’s market areas. It is indeed

difficult to imagine how a software requirements specification methodol-

ogy could be evaluated in any other way but by trying it out. Even if

the methodology had been ‘successfully’ applied, there might well be

uncertainty about whether the success was due to the inherent worth of

the methodology, or chance variations in the skills of the practitioners, or

chance developments in the market-place for the product. Nevertheless, as

Bary te

it turned out the methodology was not evaluated in this way at all.

After acceptance of the research proposal by Alvey two of the

academics, the computer scientist and the psychologist, were seconded to

the computer manufacturer to prepare the ground for the project and

familiarise themselves with company procedures. During this secondment

the project took a turn that caused it to deviate sharply from the propo-

sal. At the instigation of the project manager a series of three-day

workshops were run called Developing a Product Opportunity (DPO).

These were attended by company staff. A typical workshop consisted of

two teams each comprising a marketeer, designers and a technical author.

Each team was responsible for developing a particular software product.

Lectures on the five levels were given to them, and team members

worked on tasks associated with each level. The DPO workshop pro-

gramme seemed premature because an untested methodology was being

taught to company staff. From the point of view of the participants,

however, there were benefits to be gained by withdrawing from a pres-

surised work environment and spending time discussing their product. To

some extent it did not matter that details of the methodology were

obscure, unclear, arbitrary and lacking in theoretical justification. The

‘levels’ provided a framework for group discussion.

Plans were made to evaluate the project in its present form. The

methodology was to be evaluated in three ways:

[1] An evaluation of the workshops.

[2] Evaluation by case-study.

[3] Evaluation by historical analysis.

The rationale for evaluation by workshop was that designers and mark-

eteers were educated and skilled people, and if they thought the content

Lass

of the workshop was satisfactory then it had survived an important test.

An end-of-workshop questionnaire was, therefore, provided. Hutt et al.

(1987) report a favourable reaction to this evaluation, in particular the

participants liked the team-building nature of the exercise. The acid test,

however, was whether they subsequently used the methodology in their

work, and whether it gave rise to better specifications. Note that the

methodology was now being taught to marketeers, designers and technical

authors, not just marketeers. It could be the case that software products

will improve simply by causing marketeers and design staff to come

together periodically for group discussions. In other words the specific

content of the USTM methodology might be irrelevant.

Evaluation by workshop could not conclusively prove the worth of

the USTM methodology. Such evaluation could be provided only by

attempting to use the methodology to specify the requirements for a piece

of software. This was planned to take place but, due to the exigencies of

organisational life, never did. Thus the project failed in its most impor-

tant piece of validation. It seems extraordinary that the authors of a

methodology could teach its use to others without having used it them-

selves, with varying degrees of success under varying circumstances, the

methodology gradually being refined in use. Hutt et al. (1987) compare

USTM with Checkland’s SSM and Harker & Eason’s (1985) Open-Systems

Approach, in that ‘all three are concerned with getting the requirements

right’. This remark reveals hubris.

Evaluation of the methodology by historical analysis was to take the

following form. An existing product was to be chosen. Its dysfunction

was to be predicted by comparing its actual specification with the specifi-

cation that would have been produced if USTM had been used. Finally

magi o

its actual dysfunction would be established by field research and com-

pared with the predicted dysfunction. This is a difficult but not unac-

ceptable way of proceeding, and needs many repetitions to guarantee

validity. It is no substitute for using the methodology and refining it in

use. It was stated earlier that the conceptual architecture of the metho-

dology did not survive. DPO corresponded to this architecture, and was

the equivalent of the Market Review phase. The equivalent of the Product

Requirements and Outline Design phase was retitled High Value Solution

(AVS), and the equivalent of the Product Development phase was retitled

Completing Product Requirements (CPR). The five levels were abandoned

in specifying the latter two phases. Changes to a methodology are a sign

of health if these derive from practical use, and learning from use. In this

case the revised phases were to be developed in the same way as DPO -

by workshop. The essence of the work to be done in HVS was as follows.

For each high level task to be performed in some market area, a parti-

tioning was effected between man and computer according to specified

principles. The composition of a set of automated tasks comprised a

software product. CPR was to be concerned with planning the imple-

mentation and delivery of the product.

2. Problems Associated with the Project

After a year’s work on the USTM project Mansell was experiencing

considerable frustration with it. The burden of his criticism was as fol-

lows:

[1] A methodology for product specification is being developed not by

using it and refining it as a result of reflection on use, but by teach-

ing it to prospective users. Some improvement of the methodology

aA]

results from this, but it seems an unsatisfactory way of proceeding.

[2] The content of the methodology seems arbitrary and garbled in

places.

[3] Validation of the methodology is not taken sufficiently seriously.

[4] The project is subject to ‘industrial’ project management with tight

time schedules, and no opportunity for thought or reflection.

[5] Academics are being used as ‘trainers’ in the delivery of course

material, rather than contributors of ideas. The role of the academic

seems to be to add legitimacy to the material - to give the impres-

sion that the courses derive from academic research.

[6] There has been no real analysis of the problem situation, and yet

rapid moves are being made in delivering a problem ‘solution’.

Mansell was particularly concerned with clarifying the nature of the

problem and finding out more about the problem situation. The remainder

of his time on the project was, therefore, spent in problem structuring.

An issue that had to be faced was that of selection of methodology for

performing this work. Guidance was sought in the work of Checkland

(1981) and Jackson (1987a).

3. Categorisation of Problem

Checkland’s research has been concerned with problems defined as

follows:

‘A problem relating to real-world manifestations of human activity

systems is a condition characterised by a sense of mismatch, which

eludes precise definition, between what is perceived to be actuality

and what is perceived might become actuality.’ (Checkland 1981).

Underlying this definition is a distinction between laboratory problems

and real-world problems, and between hard problems and soft problems.

- 48 -

A laboratory problem is of the type worked on by natural scientists, and

is defined by the investigator. A real-world problem is suffered by people

in the world, and may be perceived differently by different people. The

investigator cannot control the definition of the problem. Real-world

problems raise the issue of subjectivity in definition. A hard problem is

posed as a need to define suitable means for an agreed end. A problem is

described as soft if there is confusion or disagreement over desirable

ends. The issue of subjectivity in problem definition raised by Checkland

has caused a shift of emphasis in SSM from ‘problems’ to ‘problem situa-

tions’, defined as:

‘a nexus of real-world events and ideas which at least one person
perceives as problematic.’ (Checkland 1981).

The issue of subjectivity raises the question of whose viewpoints should

be taken into account during problem analysis. One way of answering this

question is to pre-define roles considered important in problem situations,

and consider the situation from the point of view of these roles. SSM

gives prominence to the roles of problem-owner and problem-solver.

Checkland defines a problem-owner as

‘The person or persons taken by an investigator to be those likely to

gain most from achieved improvement in a problem situation.’

(Checkland 1981).

Potential problem-owners in the situation studied in this research are

software marketeers, software designers and software users. The concern

of the marketeers is the development of a portfolio of attractive, profit-

able products. The concern of the designers is clarity in requirements

specification so that professional skills can be employed in producing

effective and economical solutions. Marketeers and designers come from

different cultures. Marketeers have a superficial grasp of technicalities

and strongly developed social skills, whereas designers are technicians

- 49 -

with an orientation towards technological virtuosity rather than human

requirements. Both marketeers and designers have a common motive in

desiring the commercial success of the software products with which they

are associated. Software users are not a homogenous group. Direct end-

users have to make use of software products during their work. Frequent

users may have different requirements from casual users. Indirect users of

software rely on intermediaries to operate the software and provide the

results. Other interested parties in user organisations are those who

manage staff who make use of information technology, and those respon-

sible for recommending purchase of I.T. products. There is a conflict of

interest between software vendors and their customers that derives from

the nature of commercial activity - one party is trying to make money

out of the other. The commercial relationship is not transient, however,

because a software product may be in use for a number of years and may

be enhanced during this period. The customer may have a maintenance

contract with the vendor, and may be able to put pressure on the vendor

because of the customer’s economic power, or via user groups. The

interests of all the employees of a user organisation are not uniform.

Managers strive for productivity and lowering of costs whereas direct

end-users need to have jobs that can be performed without undue stress

or difficulty. Harker and Eason (1984) state that user problems with

information technology are common, and report on software products that

use confusing terminology, function according to complex and rigid rules,

and do not support user tasks well or require that tasks be performed in

some unnatural way.

In summary, the problem situation contains problem-owners who do

not share a uniform point of view, and whose interests may be in

- 50-

conflict. These factors are sufficient for the problem to be deemed soft

rather than hard. There is further reason, however, deriving from the

motivations of the would-be problem-solvers. The project was a colla-

boration between an industrial and an academic partner. The problem-

solvers were not a homogenous body with respect to their goals and

world-view. In principle, commercial and industrial firms are concerned

with profit, and academic institutions are concerned with learning. The

two opposed motives can result in alternative and conflicting views of

what to take to be a relevant system. A further complicating factor is the

coercive element in the problem context.

4. Degree of Consensus in the Problem Context

Jackson (1987a) considers that the relationship between participants

greatly affects the character of a problem-context. The critical dimension

of the relationship is the degree of agreement that exists over objectives.

This can range from complete agreement (a unitary context), through

some measure of disagreement that is nevertheless réconcilable (a pluralist

context), to contexts where power is exercised by some participants over

others (coercive contexts). The exercise of power may be overt or more or

less concealed, involving deception or distortion of the truth. Jackson

(1987b) states that:

‘the exercise of power in the social process can prevent the open and

free discussion necessary for the success of interaction’

and refers to the ‘emancipatory interest’ that human beings have in free-

ing themselves from the constraints imposed by power relations (in addi-

tion to their technical interest and practical interest).

Two aspects of the problem-context were considered to be coercive.

Firstly, employers may use information technology to reduce dependence

= 5] =

on their employees and software vendors collaborate in this process.

Changes to working practices and use of technology are often forced on

employees. Secondly the relationship between the problem-solvers in the

project was coercive because of the industrial collaborator’s control over

the project. Academic values were under threat from commercial values.

The research of Child (1987) is evidence of the coercive nature of

the introduction of information technology. Child claims that the follow-

ing objectives feature prominently in managerial intentions when intro-

ducing new technology:

[1] Reducing operating costs and improving efficiency.

[2] Increasing flexibility.

[3] Raising the quality and consistency of production.

[4] Increasing control over operations.

Effects on the labour force include reductions in manpower, break-

ing down of traditional task boundaries, and subjection to greater degrees

of monitoring and control: Child highlights the degradation of jobs that is

made possible by the application of information technology and states

that:

‘Of all the developments discussed in this paper, the degradation of

jobs can be the most confidently identified as a managerial strategy

- it has a long history, has been widely discussed and practised, and

for many years found a place in managerial, engineering and even

personnel literature (though never without its critics).’

By job degradation Child means reducing the skill required to do a job

and increasing managerial control over task performance. He gives exam-

ples in the areas of numerical control of machine tools, newspaper pro-

duction, electronic point-of-sale systems and cash dispensing systems.

Evidence that attempts to introduce new technology are coercive and gen-

erate conflict are provided by Willcocks and Mason (1987). The following

mi SDI

cases illustrate this point.

In 1982 the Department of Health and Social Security devised a 15
year ‘operational strategy’ to computerise the recording, assessment, calcu-
lation and payment of all UK social security and welfare benefits. The

major objective was a £700 million saving on operating costs by 1995

resulting from the displacement of 2500 employees. A seven month strike
took place at the Newcastle computer centre in 1984 and incurred costs of

£150 million.

The National Coal Board introduced the Mine Operating System

(MINOS) in selected collieries from the early 1980's. It provided central-

ised computer control and detailed monitoring of colliery activities. Pits

without the system were deemed uneconomic and 41000 redundancies were

achieved between 1981 and 1984. The miner's strike over pit closures and

redundancies was the most bitter industrial relations conflict of the 1980's.

The newspaper industry has been revolutionised in the 1980's by the

introduction of computer systems that permit direct input and composition

of text by journalists, editors and tele-add staff. The traditional job of

typesetting has been eliminated. When News International moved its news-

paper production from Fleet Street to Wapping 4500 workers were

dismissed and bitter conflict ensued.

The other aspect of coercion relevant to this research derives from

the fact that the problem-solvers were ‘managed’ in their work by a

representative of the computer manufacturer. All Alvey-funded research

took the form of collaboration between academics and industrialists.

Academics were not free therefore, to choose areas of research uncon-

strained by commercial considerations. Alvey submissions were con-

strained not only by the requirement to link academics with industrialists,

but also by the themes defined as suitable for funded research. These

themes were chosen because they were seen by government as relevant to

British competitiveness in the world information technology market. HCI

was seen as an ‘enabling technology’ that would give rise to better pro-

ducts and greater commercial success. The USTM methodology was

funded as an example of collaborative HCI research. The general Alvey

framework was coercive in the sense that academic freedom was con-

strained, but a greater degree of coercion resulted from subjecting

research to direction by commercial interests. The project manager in this

= 53 =

research treated the academics as employees whose function was to design

and deliver training courses for company staff. Commercial firms cannot

be expected to sponsor and direct unbiased research. In this case it was

inevitable that a corporate point of view would be taken that assumed

that the problem-owner was the computer manufacturer. More fundamen-

tal, however, was a lack of understanding of what counted as research.

Action research necessarily takes place in the real-world where academic

values are perhaps not understood or admired. An action researcher has to

face this issue and make appropriate accommodation. It is essential, how-

ever, that academics retain control over what counts as research otherwise

truth becomes the servant of sectional interest.

5. Choice of Methodology

As explained in Chapter 2, little guidance is provided by Jackson in

how to proceed in coercive situations, although his work alerts the action

researcher to the possibility of their existence. In this project Mansell

decided to use a radical design methodology, partly because of its eman-

cipatory philosophy, and partly to test the validity of Jackson's ideas and

his understanding of them. The methodology was used after a year of

frustration with the USTM project, at a time when pressure from the

coercive nature of the situation was intense. Use of a design methodology

in structuring soft problems raises the issue of the ontological status of

human activity systems. A designer conceives of new objects or systems.

Whether human activity can be ‘designed’ in the same way that cars or

transport systems can, is a contentious matter. This issue will be discussed

in Chapter 6. The next Chapter describes the application of the chosen

methodology.

CHAPTER 5 - USE OF DESIGN METHODOLOGY

1, Introduction

The OU design methodology devised for course T262 (Jacques &

Talbot 1975, Cross & Roy 1975) was used in the course of this research.

Chapter 4 of this thesis has explained the background to the choice of

methodology. Firstly, the problem situation was perceived as ‘soft’, due to

the multiplicity of possible problem-owners and diversity of world-views.

The ‘obvious’ choice of methodology was use of SSM, therefore. Secondly.

however, the problem situation was perceived by Mansell to be coercive,

and the research of Jackson (or from Checkland’s point of view the

unsupported assertion of Jackson) indicated that SSM was not suitable for

coercive situations. It is Mansell’s belief that the project manager in this

case would not have tolerated use of SSM because the project plan had

been made and the desired solution specified prior to the start of the pro-

ject. Doubts about the solution and the course of the project were

vigorously brushed aside by the project manager. Little guidance on how

to proceed in coercive situations was available from the literature, how-

ever.

Use of the T262 methodology might appear quixotic. Despite its ori-

gins in the work of a generation of radical designers it has no recent his-

tory of success in tackling soft problems in coercive situations. Moreover

it is open to the criticism of naivety about the ontology and epistemology

of human activity systems. It could be argued that any design

54

= 55a

methodology, if applied to human activity, will make the naive assump-

tion that human activity systems exist as designable entities. This naivety

has been dispelled by Checkland in his replacement of a hard with a soft

systems approach. Nevertheless it seemed possible that application of a

solution focus to a problem situation (the distinctive contribution of the

design paradigm in contrast to the interpretive approach of SSM) might

yield valuable clarification, particularly when the constraints placed on

the project by the client were removed. In this case, however, there are

limits to the rational case for choice of methodology. T262 was applied

partly in desperation to allow Mansell to clarify his own thoughts about

the situation. The reason why such an apparently obscure approach was

adopted was because Mansell had used the methodology before, and

found it led to personal enlightenment about a problem situation.

The structure of a T262 project is as follows. The methodology

starts with a problem identification process during which a game called

PIG (Problem Identification Game) is played (Jacques & Talbot 1975).

The problem chosen is then explored, using a number of methods from a

Design Methods Manual (Cross & Roy 1975). There is no prescribed

sequence for use of these methods, or any rigid prescription of which

ones to be employed. There is, however, a loose contingency structure

for use of the methods. Firstly, the design project might be either at the

exploration stage, or at the stage of generation of ideas, or at the stage of

selection of promising ideas. Different methods are on the whole more

suitable for one stage rather than another. Secondly, the focus of design

might be either a system, a product or a component. Particular methods

are suitable for each of these possibilities. After having applied any par-

ticular method, guidance is available on which method to use next.

= 56 =

2. The Problem Identification Process

Problem Identification consists of phases of preparation, exploration,

formulation and determination of project potential. In the preparation

phase a problem statement is selected or prepared. The exploration phase

analyses the problem situation in terms of pairs of elements from the

situation that have a problematic relationship to each other. In the formu-

lation phase an initial analysis is made of what is unsatisfactory in the

problem situation, and an attempt is made to define the core of the prob-

lem and its ramifications. Finally, a potential project to solve the problem

is defined. The objective existence of ‘problems’ is not questioned by the

methodology, and the weltanschauung of the definer of the problem is not

enquired into. Alternative points of view of the problem situation are not

sought. Use of PIG however, encourages creative thought, and this itself

may give rise to multiple alternative views of the problem.

3. Preparation Phase _

The preparation phase consists of selection of a starting problem

statement. The statement chosen represented what was problematic about

the project, rather than being an expression of the problem to be solved.

Selection of a problem statement expressing unease about the project

itself is an indication that the problem context was coercive. The follow-

ing statement by Nissen (1984), was chosen as input to PIG, with no clear

idea of the likely consequences.

During the short history of information systems research most

studies have centred around producing knowledge on which to

base methods of design and implementation of such systems.

The implicitly intended knowers of such knowledge were mainly

persons specializing in information systems analysis and design.

The values they supported in their work were predominantly

those of their employers. The research methods applied were

fetched from natural science and from objectively explaining

= 57 =

Social sciences,

This statement seemed to diagnose what was wrong with the

approach being taken in the Alvey-funded research. The project was con-

cerned with the generation of knowledge for use by professionals in the

interests of their employer (the computer manufacturer), and had a scien-

tific facade (Alvey-funded research). The academic discipline expected to

make a major contribution was psychology - an ‘objectively explaining’

social science. From the point of view of the computer manufacturer, the

function of the academics in the project team was to provide legitimacy

to the knowledge being offered. The consumers of the knowledge were

intended to believe that they were consuming the fruits of objective

research. The academics believed that what they were doing could possi-

bly be regarded as research if the work could be scientifically validated.

The computer manufacturer did not take this validation seriously. The

nature of the collaboration caused the academics to behave like employees

of the computer manufacturer.

4. The Exploration Phase

The exploration phase consists of the generation of a ‘key problem

pair’ and the subsequent generation of a network of problem pairs. A

problem pair consists of two elements from the problem situation that

have a problematic relationship to each other. An asterisk is used to indi-

cate the problematic relationship. The key problem pair chosen was:

Research Methods * Systems Development Methods.

Choosing this as the key pair implied that the generation of knowledge

about system development methods posed a research problem.

The generation of a network of problem pairs is the aspect of

= 58 -

(3)

Users
*

Researchers

[0]

Research Methods
*

Systems Development Methods

 0)

Research Methods
*

Suitable Research Methods

(2]

Methodology to improve usability
*

Validation of this

 (4] (5]

Academic Research
*

Methodology to improve usability
*

Problem Solving Users

FIGURE | - Problem Pair Network

- 59-

Problem Identification that is most like a game. It is played as a board

game using throws of a die to move round the board. Each time a move

is made certain operations are carried out that result in the generation of

a new problem pair. Playing the game causes one’s thinking about, and

knowledge of, a situation to be formalized in a semantic network. The

‘game’ aspect encourages creative thought.

The problem pair network that resulted is shown in Figure 1. The

train of thought behind this network developed as follows.

0 tol

The problem being analyzed is that of finding suitable research

methods to generate knowledge about systems development methods.

0 to 2

This general problem is exemplified in the project described in this

thesis.

0 to3

Here a revulsion against the idea of ‘research’ and ‘researchers’

occurred. Knowledge should not belong to a privileged group to be doled

out as it sees fit. Users of systems should be empowered to enhance their

own knowledge about how to change them. This thought was brought

about by PIG requesting that a complete contradiction of the original

problem statement be drafted. Here is the antithesis of Nissen’s statement

that was produced.

During the long history of information systems research most
studies have centred around methods for incrementally revising
such systems by the users of the systems themselves. - The
knowledge is not intended for technical specialists but for any-

one who needs or wishes to provide information or receive it.

The values informing this work have derived from hostility to

capitalism and centralized bureaucracy. The research methods

employed have derived from phenomenology.

- 60 -

1to4

Methods to generate knowledge about methods should not have to

count as scientific research. The model of disinterested, objective, scien-

tific enquiry is not appropriate for problem solving in systems of human

activity. The values of scientific academic research have a problematic

relationship with the requirements of problem solving.

2to 5

The computer manufacturer’s view of a methodology to improve

software usability does not involve users. It takes the form of workshops

attended by professional designers and marketeers. The user is the person

who should assess software usability, and unless the methodology incor-

porates user research it cannot be successfully validated.

5. The Formulation Phase

The Formulation Phase of PIG subdivides into the following Stages:

[1] Stage 1 - Review

[2] Stage 2 - First Formulation

[3] Stage 3 - Intervention Potential

5.1. Stage 1 - Review

At this stage of PIG a succint statement is made that provides the

latest view of the problem. The following statement was made.

System development methods are suitable only for application by
experts, not by users of the designed products. Academic
research into systems development methods itself poses a metho-
dological problem - is a science paradigm appropriate? Perhaps
researchers should become both designers and users. Users of
information technology products need to be given the means of
altering/redesigning the products to meet their needs. These
users may be ignorant of appropriate methods. There should be

61 =

a ‘science of method’ that allows people to choose appropriate
design methods. There may be a problem for vendors of infor-

mation technology of judging exactly how much of the product
design should be ‘hard’ (difficult/impossible to change), and
how much ‘soft’ (amenable to change by the users). A design
that is too hard is inflexible, and design mistakes are difficult,
slow and costly to correct. A design that is too soft requires too
much user effort to make it usable.

5.2. Stage 2 - First Formulation

The purpose of this stage is to formulate a systematic and explicit

statement of the problem, its causes and ramifications.

The following analysis was made of what was wrong, unsatisfactory

or undesirable about the situation.

Vendors waste money producing software products that are not
usable, or usable with difficulty. These products are not com-

mercial successes.

Users suffer the frustration of using badly designed and docu-
mented software. They may give up using the software or use
only a fraction of its potential. The purchaser wastes money.

Software designers feel frustrated at the time they waste work-

ing on failed products.

The core of the problem is the gap between designers and software users.

The following analysis was made of the causal factors.

The educational system is elitist. Designers are well-educated

experts, whereas many users will be less well-educated or lack

an understanding of technology.

There is a dichotomy between technological and social impera-

tives. Software is a form of technology that can automate human

information-handling tasks, and radically alter the way in

which people must work. What is good for ‘efficiency’ may not

be good for people.

The designer may be ignorant of the context of use of software.

Designers very rarely use their own products. Designers serve

the interests of their employers, not those of users.

Ramifications of the problem were specified as follows.

Scarce design talent is misused.

User frustration and fatigue could lead to health problems or

- 62 -

accidents. In the future a major disaster could occur as a result
of poor software usability, for example in military applications,

air traffic control or the nuclear industry.

5.3. Stage 3 - Intervention Potential

At this stage the possibilities for change in the present situation are

identified. The analysis identifies firstly the people who would benefit

from change or be penalized by it, and those who have the power to

sponsor change or stifle it. Secondly, aspects of the situation that are easy

to change, and those aspects that might be change-resistant, are identi-

fied.

Interested parties who might be expected to benefit from attempts to

improve the situation were identified as follows.

Direct end-users of software should be able to work more effectively
and make fewer mistakes.

IT vendors should have fewer failed products.

Designers might benefit in the long run as they enhance their skills
and improve their job satisfaction.

Interested parties whose best interests might be served by leaving the

sitaation as it stands were identified as follows.

Designers in the short-run lose autonomy and need retraining.

User organisations need to acquire expertise in specifying require-
ments and tailoring software. This may be very expensive, particu-
larly for small organisations.

Interested parties who might have the power to initiate, sponsor or sup-

port change were identified as follows.

IT vendors.

Government.

The position of designers was ambivalent; clearly they could resist but

might welcome change.

Moving on from the interested parties to the problem situation itself,

it is evident that the problem situation is a socio-technical system. The

=~ 63 =

specification and creation of user-revisable software is a problem for

software engineering (a technical problem). The technical problem can be

solved only if the requirements can be clarified. The information technol-

ogy supply and demand system is a social system. Bringing about change

in this system is difficult because nobody owns the system. There is no

point in solving the technical problem unless the solution relates

appropriately to the surrounding social system.

6. The Project Potential Phase

The Project Potential Phase of PIG consists of the following Stages:

[1] Stage 1 - Project Matrix

[2] Stage 2 - Final Formulation

6.1. Stage 1 - Project Matrix

By this stage of PIG the player should have constructed a well-

formulated problem statement consisting of a ‘core’, supported by some

assessment of causes, effects and likely responses to intervention. In this

stage three types of intervention are considered. Firstly, ACTION involves

taking direct action in the real world to solve the problem. Secondly,

PLAN involves the devising of a plan for action at some future date.

Thirdly, RESEARCH involves an enquiry, the results of which might

contribute to future action. Each type of intervention can occur at one of

two points of intervention. Firstly, CORE involves changing some aspect

of the problem core. Secondly, PERIPHERY involves changing some

aspect of the environment of the problem situation. The following

analysis was made at this stage.

ACTION ON THE CORE

- 64 -

Design, implement, use and evaluate a piece of software that is
intended for easy revision by users.

ACTION ON THE PERIPHERY

Give training courses to designers that encourage them to think about

human factors.

PLAN FOR INTERVENTION ON THE CORE

Specify an enhanced methodology for software design that is
intended for both designers and users.

RESEARCH ON THE CORE

Study software in use and analyse its usability.

RESEARCH ON THE PERIPHERY

Get more information on designers and users (educational back-
ground, organisational role, nature of tasks performed etc.)

6.2. Stage 2 - Final Formulation

In this stage one of the suggestions for intervention is chosen and a

design project specified in the following form:

[1] A short summary of the problem core.

[2] Proposed action.

[3] Expected outcome.

[4] Doubts about successful completion.

The following formulation was made.

CHOICE OF ACTION

Specify an enhanced methodology for software design that is

intended for both designers and users.

PROBLEM CORE

Usability problems in professionally designed software - gap between
designers and users.

ACTION

Concentrate on the deferring of design decisions - which decisions to
defer, and how to give the user the power to take them.

OUTCOME

Uncertain. Some feel for the feasibility of the idea of deferring

design decisions. .

DOUBTS

Are there any generalized principles or would each application area

yield unique criteria? It may be difficult to generate generalizable

knowledge.

- 65 -

7. Design Briefing

The second major component of the OU design methodology consists

of the application of a number of design methods. The objective of this

work is the generation of possible solutions to the problem identified ear-

lier. The outcome of this work corresponds to a design brief - a prelim-

inary statement of what needs to be designed. Much more detailed work

would be necessary to implement feasible designs.

Use of the Design Methods Manual necessitates the formulation of a

strategy. This is because it consists of a collection of fifteen design

methods from which appropriate methods must be selected and combined

in an overall design process. Thus the designer is responsible for provid-

ing the structure for use of the methods, taking account of contingent

factors. One contingent circumstance is the action that the designer is

seeking to take at a particular time, either to explore a problem area,

generate solutions or select appropriate solutions. The other contingency is

concerned with the nature of the thing to be designed, whether it is a

system, a product or a component of a product.

At the outset it seemed that most emphasis should be put on explor-

ing the problem situation, since inadequacies had been perceived in this

area. Moreover the focus of design was clearly a system, albeit an abstract

system. So the strategy was adopted of following these methods in this

sequence:

[1] Objectives Tree

[2] Counterplanning

[3] User Trip

Each of these methods was recommended for systems design at the

- 66 -

Improve Make users Help sell

user more more

satisfaction efficient software

Make s/w
more
usable

Facilitate Conduct Rapidly Bea

tailoring of user revise aoe

software research software

Defer Make s/w
design easily
decisions revisable

Research Research Research

user task system.

Eharacteristics bharacteristics bharacteristics

Specify Specify
appropriate appropriate
methodology methodology

FIGURE 2 - Objectives Tree

67, =

problem exploration phase. An Objectives Tree is a method of defining

the design objectives and sub-objectives in a project. Counterplanning is

a method of examining the assumptions underpinning a design proposal,

and by considering conflicting assumptions coming to a changed percep-

tion of the problem. A User Trip is a method for finding problems,

insights and ideas, based on the careful and deliberate use of an existing

product or system. The User Trip was conducted while working in a user

department of the computer manufacturer. The OU design methods were

supplemented in this project by SSM-style root definitions and conceptual

models. For example, as a result of difficulties encountered in construct-

ing an objectives tree, root definitions and conceptual models were also

used. They also proved useful during Counterplanning.

8. Objectives Tree

The procedure to be followed when using this method is:

[1] List the known objectives for the project.

[2] Expand this list of objectives into sets of both higher-level and

lower-level objectives.

[3] Represent the hierarchy of objectives diagrammatically.

The objectives hierarchy produced is shown in Figure 2. The project is

concerned with making software more usable. Higher level objectives to

which this contributes are:

[1] Improve user satisfaction.

[2] Make users more efficient.

[3] Help computer manufacturer sell more software.

Software is made more usable by achieving the following objectives:

f ASTON UNIVERSITY —
LIBRARY ant

1 incor

E168 =)

[1] Facilitate the tailoring of software by users.

[2] Conduct user research.

[3] Rapidly revise software when requested by users.

[4] Send designers on user trips.

Facilitating the tailoring of software by users requires the following

objectives to be achieved:

[1] Defer appropriate design decisions.

[2] Make software easily revisable.

User research takes the form of:

[1] Research user characteristics.

[2] Research task characteristics.

[3] Research system characteristics.

The ‘enhanced methodology for software design’ referred to in the Final

Formulation Stage of PIG would contribute to the objectives of deferring

appropriate design decisions, and making software easily revisable.

After constructing the objectives tree, the following conclusions

were reached. The proposed action for solving the identified problem was

only one possibility among many. There was considerable uncertainty that

any particular action would produce the right effect. In short, a loss of

confidence in the proposed solution was experienced. In addition an

objectives tree was felt to be too constraining a model - a network rather

than a hierarchy was felt to be more suitable. The idea of using an SSM

conceptual model presented itself so the design strategy was modified to

try this out.

= 695i

9. Conceptual Model

At this point an attempt was made to construct a conceptual model

of a human activity system relevant to the problem being worked on. The

attempt was not successful but is reported here to show the learning that

took place. Confusion was experienced during the exercise as to whether a

model was being produced of what exists in the world or of some ideal-

type system. Another attempt was made later in the project. First of all a

number of alternative root definitions were produced.

A system that ascertains user requirements for software and produces
such software subject to the constraint that any particular product

must have a viable number of customers.

A system that determines what software is necessary for a given
range of computers, and persuades, educates or trains customers to

use it.

A system that determines what software is suitable for meeting
organisational needs and acquires and installs it.

A system that monitors use of third party software, reports errors and
receives corrections and makes suggestions for improvement.

The first two of these (embryonic) definitions are from the point of

view of the software vendor, and the second two from the point of view

of the user. The first definition is of a requirements-driven system that

seeks the greatest happiness of the greatest number. In real-world terms

the first definition has a certain ring of truth and would apply to certain

products in certain markets. A computer manufacturer, however, does not

simply respond passively to requirements, but creates requirements by a

marketing and training effort. This aspect is captured by the second

definition that places the onus of requirements generation with the ven-

dor. Historically the bulk of computer software has been produced in this

way, because of user ignorance of new technology. Neither ‘definition

captures the full richness of the software business.

The third and fourth definitions describe systems that might, or

G0

arguably ought to exist in user organisations. The software market is

competitive and users can often choose between competing products pro-

viding similar features. User organisations may also have a choice

between developing applications in-house and using standard software

packages. Software users have an on-going relationship with software

vendors. Errors are reported and eventually corrected, and new releases

of software are made containing enhancements. Users have some oppor-

tunity to influence future product development by making comments and

criticisms.

A fifth root definition was produced.

A system of software producers and software users, linked by flows

of software, information about software, error reports and informa-

tion about requirements.

This root definition is unacceptable in SSM terms because it refers

to activities that take place in the real-world, rather than defining an

ideal-type human activity system. It is a market-place that has no owner

and is not under central control. Software vendors cannot control the

organisational activities of their customers, so they. cannot ensure use of

their products. Users cannot require vendors to produce exactly what they

want.

If the system is compared with Checkland’s ‘formal systems model’

then the following observations can be made:

[1] The system has no ongoing purpose or mission. It exists as a self-

maintaining causal network.

[2] No measures of performance are meaningful since no objectives are

being pursued.

[3] The system contains no decision-taking process. The system com-

ponents have local decision-taking processes but there is no overall

Improve

user
satisfaction

Work in
user
group

=i =

Improve
user

efficiency

Make
software

more usable

Notify

requirements
to vendor

Conduct
user

research

FIGURE 3 - Objectives Tree
(from user point of view)

Esto

co-ordination.

This state of affairs is typical of economic activity in a market-place with

no planning and control at a level above organisational activity. Competi-

tion between computer manufacturers and software vendors may give rise

to inefficiency, for example too many different incompatible models of

computer. Scarce software design skills may be wasted replicating

software for incompatible machines. Competing hardware and software

vendors may not be able to afford the research necessary to thoroughly

establish user requirements. User requirements may vary arbitrarily

because of lack of planning in the user industries.

The conceptual modelling exercise was discontinued at this point

because of the intractable nature of the system. One lesson that was

learned, however, was that the objectives tree (Figure 2) produced earlier

was biased towards the point of view of a software vendor. A similar tree

was constructed for a user organisation, based around the objective of

making software more usable (see Figure 3). A user organisation con-

cerned with this objective would conduct user research and work in a

user group, with the aim of communicating requirements to the vendor.

Given the current state of the art, user organisations would not normally

set about revising third party software themselves. If they were pro-

foundly dissatisfied with commercially available general-purpose software

they might commission special-purpose software. However, it seemed very

unlikely that user organisations would be concerned with usability as dis-

tinct from functionality. Any system set up to liaise with vendors would

deal equally with either aspect of software.

It had become clear during these exercises that an objectives tree is

a special case of an SSM conceptual model. Each activity on a conceptual

Make s/w
more
usable

Facilitate
tailoring of
software

Defer
design

decisions

Specify
appropriate
methodology

213 =

Make s/w
easily

revisable

Specify
appropriate
methodology

FIGURE 4 - Plan 1

= 74 =

model seeks to achieve an objective. Each activity can itself be modelled

as an activity system, so the concept of hierarchy is incorporated. An

objectives tree is an insufficiently systemic model, however, since it is

constrained by its hierarchic structure. Moreover, the SSM root definition

and conceptual model explicitly evinces a point of view. At this point in

the application of T262 Mansell felt he was beginning to understand the

difference between a design paradigm and the interpretive approach of

SSM.

10. Counterplanning

The Counterplanning procedure starts with an existing plan, propo-

sal, design or decision. The basic assumptions underlying the plan or pro-

posal are identified. An alternative set of counter assumptions is gen-

erated. Using these counter assumptions a counter plan is generated that is

deliberately the ‘deadly enemy’ of the original plan. By considering the

plan and counter plan together a new plan is synthesized.

The existing plan (Plan 1) is shown in Figure 4. The focus of the

proposed action or solution is the specification of design methods that

make it possible for designers to defer certain critical decisions about

their product. Users will then be able to take these decisions themselves,

but to do so will require the software product to be easily revisable. The

feature of easy revision requires the application of appropriate design

methods. The assumptions underlying this plan were specified as follows:

[1] User tailoring of software will improve usability.

[2] User tailoring of software is organisationally feasible.

[3] Contexts of use for software products vary substantially (i.e. there is

a need for user tailoring in specific task or organisational contexts.)

Specify
required
software

Specify
required
info. sys.

Specify
required

technology

Specify
required
systems

Specify
social

objectives

S75) =

Specify
human

activities

FIGURE 5 - Plan 2

= 76\=

[4] It is more desirable to facilitate user tailoring of software than all

the other things that could be done to improve usability.

[5] The current structure of the software business cannot be changed.

[6] Usability is a clear, sharply focused concept.

[7] Usability problems are worth solving.

The following counter assumptions were made:

[1] Variations in contexts of use for software products are arbitrary and

undesirable.

[2] The software business is badly organized and can be changed.

[3] Usability is not a clear, sharply focused concept.

[4] Usability problems with software are relatively trivial.

The essence of the counter assumptions is that the usability problem

points to a more substantial structural problem in the software business.

The plan (Plan 2) based on these counter assumptions is shown in

Figure 5. The orientation of this plan is towards the specification of

required software at a national level. Some state planning agency would

specify social and economic objectives to be pursued. Systems required to

pursue these objectives would be specified. The implementation of these

systems would require appropriate technology, and the specification of

appropriate patterns of human activity. To perform the specified task

would necessitate the construction of information systems, and these

would require the specification of software systems. This utopian (or in

the wrong hands totalitarian) plan presumes the feasibility of planning

economic and social activity at a level above organisations. Organisations

are brought into existence to implement rational plans. Use of technology

and specification of human activity is similarly derived from rational

its

planning.

The relationship of this plan to what was previously conceived of as

a software usability problem is as follows. In society at present there is no

effective planning of economic and social activity. Organisations have

considerable autonomy, and human activity and information systems

evince arbitrary and irrational variability. Competing software vendors

have to sell products in a market with this characteristic of irrational

variability. The attempts of the software vendor to divine the characteris-

tics of the market-place, and compromise between conflicting arbitrary

requirements, produces products with what are perceived as usability

problems. If, for example, there was specified one standard national pay-

roll package, then its performance could be optimized on all relevant

dimensions. The current situation permits the existence of many alterna-

tive payroll packages for many alternative types of computer. The proba-

bility of any particular package being optimal is much lower in the exist-

ing situation.

The Counterplanning exercise terminates with a plam that is a syn-

thesis resulting from dialectical tension ecreer the original plan and the

counter plan. It had become apparent that counterplanning requires a shift

in world-view. So any new plan would have to be made from a particular

point of view. Reluctantly the decision was taken to adopt the point of

view of the computer manufacturer. Plan 1 was feasible but the likelihood

of improving the situation was uncertain. Plan 2 was utopian and infeasi-

ble. Plan 1 involved the design of methods to achieve a particular pur-

pose. Plan 2 involved the re-design of most of the economy. The syn-

thesis of the previous two plans, Plan 3, was an attempt to design a sys-

tem that would deliver required software. Plan 3 was more ambitious than

= 18 —

Plan | but far less so than Plan 2. SSM conceptual modelling was used to

sketch out a design. The first attempt at a root definition was as follows.

RD 1

A system owned by a computer manufacturer that establishes requirements

for, and designs, implements and maintains general purpose software sys-

tems intended for sale to the manufacturer’s customers.

One problem with this definition is that organisations do not have

requirements for general purpose software systems. They have require-

ments for information systems and wish these to be met in the most

economic way. This may involve the use of general purpose software. The

other problem is that a computer manufacturer does not simply establish

requirements and then satisfy them. It will only do so if this can be done

profitably, and this implies the existence of a large enough market.

An attempt to meet these objections gave rise to a second attempt at

a root definition.

RD 2

A system owned by a computer manufacturer that establishes requirements

for information processing in organisations, and conceives of, designs,

implements and maintains general purpose software systems that are

intended to meet those requirements in a sufficiently large market to war-

rant investment in the software.

This root definition posed problems over conceptualizing the system

as a transformation. In RD 1 the transformation was thought of as

Requirements into Satisfied Requirements. This could not be true of RD

2 because not all requirements were to be satisfied by this system.

Requirements that could be serviced profitably would be met by selling a

- 79 -

product. The system in question, however, was not concerned with sel-

ling, simply with making products available for sale. A transformation of

requirements (which are abstract) into products (which are concrete) was

also unsatisfactory.

A third and final root definition was drafted as follows.

RD3

A system owned by a computer manufacturer that determines markets for

general purpose software systems, conceives of possible software products

to sell profitably in these markets and designs these products.

The CUSTOMERS of this system would be the implementors of the

designs (i.e computer programmers and technical authors). They would be

responsible for converting abstract specifications into working systems.

The ACTORS in the system would be marketeers and systems designers.

The TRANSFORMATION performed by the system would be of a Pro-

duct Opportunity into a Design for a Product. The existence of a product

opportunity can only be guessed at, until a profitable sale of a product is

made, When such an event occurs it proves the prior éxistence of a pro-

duct opportunity. A product opportunity partly derives from a prospective

purchaser’s objective requirement for some service. Opportunities can be

to some extent created, however, by skillful marketing! The transforma-

tion performed by the system is problematic, therefore, in that there can-

not be total certainty that is has taken place. The WELTANSCHAUUNG

of the root definition is that software must be sold in a market-place and

its production must be profitable; software production is liable to be pro-

fitable, that is, markets exist. The OWNERS of the system are senior

managers in the computer manufacturer. The ENVIRONMENT of the

system includes the company ssales-force, prospective customers,

=80'=

Understand the
market for

software products

Conceive of
suitable
products

Design
products

a

Select economically
feasible

product ideas

FIGURE 6 - Conceptual Model of RD3

melee

Clarify
target

end-users

Specify
timing

requirements

6

5

Clarify Clarify Specify

product equipment user

purpose constraints interface

\ y

Specify
product

functions

Specify
data

volumes

iz:

Specify
data

structures

FIGURE 7 - Conceptual Model of "Design Products"

= 82s

prospective end-users of products, and systems development staff in the

customer organisations.

The conceptual model of the system is shown in Figure 6. The,

Design Products activity was selected for more detailed analysis. It was

taken to be ‘A system that converts ideas for software products into

detailed designs suitable for implementation’. CUSTOMERS of the sys-

tem are computer programmers who would have to code from the design

specification and technical authors who produce documentation for the

product in parallel with the programming activity. ACTORS of the sys-

tem were systems designers. The TRANSFORMATION performed by the

system was of an outline specification of a product into a detailed design

specification. The WELTANSCHAUUNG of the definition of the system

is that it is possible and desirable to produce an abstract representation of

a software product prior to its implementation. The OWNERS of the sys-

tem were project managers and quality control staff concerned with stan-

dardizing design methods and specifying documentation standards. The

ENVIRONMENT of the system included the marketeers-who generated

the ideas for products and would be concerned about their realization.

The conceptual model of the system is shown in Figure 7.

The rationale for this model with respect to the root definition is

that an ‘idea for a software product’ is taken to be a specification of the

purpose of the product and its target end-users, together with a specifica-

tion of the equipment on which the product is to run. These specifica-

tions may be vague, (because an idea for a product is not a design) and so

the Design activity must clarify them (Activities 1, 4 and 5). A ‘detailed

design’ of a software product is assumed to consist of a specification of

product functions, user interface, timing requirements, data volumes and

= 83 =

Design
products

Monitor and control

the design of products

FIGURE 8 - Monitoring & Control of "Design Products"

- 84 -

data structures (Activities 2, 3, 6, 7 and 8).

Attention was now directed to the monitoring and control of the

Design Products sub-system, using the model shown in Figure 8. The

effectiveness, efficacy and efficiency of a Design Products system was

reviewed. Effectiveness of the activity was apparently determined by the

market research and product conception activities in the surrounding sys-

tem. Marketing failure could give rise to well-designed products that

were commercial failures. Efficacy of the activity was problematic. Since

ideas for products were necessarily vague there was a problem in deciding

whether a design did or did not meet requirements, and if so how well.

Efficiency was not thought to be a problem - this was a question of

motivating and managing talented professional staff. To ensure efficacy

in design the monitoring and control activity had to provide a means of

validating designs that checked that suitable means were being pursued

for known ends. The ends to be pursued, however, were necessarily

imprecisely expressed. To some extent desirable ends became clear only

after suitable means had been provided. This is the central paradox

embodied in the activity of design that has given rise to the concept of

solution focusing. The paradox was thought to be resolvable by the inclu-

sion of prototyping in the monitoring and control sub-system. Designs

would be realized in a working prototype, exposed to live use to clarify

requirements and test solutions, and the results of the exercise used to

revise the designs. The relevance of prototyping was explored in the next

phase of the project.

Basie

11. User Trip

A User Trip is a method for finding problems, insights and ideas

based on the use of an existing product or system. The procedure fol-

lowed is to decide which user’s point of view is to be adopted, decide the

limits and variations to the user trip and carry out the trip, recording

actions, impressions, thoughts and ideas. The implicit assumption in the

method is that the product or system to be used is the one with which

problems are associated. Since the problem to be solved in this project

was concerned with the usability of software products, the decision was

taken to use a particular product in its real operational setting.

11.1, The Product

The product in question is known as Quickbuild. The product con-

sists of:

[1] A methodology for information systems analysis and design.

[2] A suite of software components.

[3] Documentation in the form of a User Guide and on-screen Help.

[4] Training.

The software components consist of:

[1] Quickbuild Pathway (a series of menus that guide the user through

the analysis and design stages).

[2] A Data Dictionary that is used to store documentation associated

with analysis and design.

[3] A Database Management System (IDMS).

[4] A Transaction Processing System to permit multiple interactive

access to stored operational data.

- 86 -

Project
Initialisation

Application
Analysis

Database Process
Design Design

Implement
and
Test

Live

Running

FIGURE 9 - Quickbuild Methodology

Despatch Notification

1

TOMER t
x Amendments AMEND ORDER

—_—____—_+ |
Cancel lations

Changes

V pe ee

Dl

: —> ORDER

Ord : ALLOCATE ORDER Irder A

Al location
Despatch Notification

Free Stock Outstanding Order

3

DELIVER ORDER

 Allocated Orders

Free Stock

N2 3
PRODUCT

Noki fication of Despatch

Changes to Stock

rl
a a

UPDATE STOCK New Products

$$
A Ad justments)

Deletions

Deliveries

FIGURE 10 - Example Daka-flow Diagram a

CUSTOMER

PLACES

ORDER

DELIVERED .AS

LIVERY

CONTAINS

PRODUCT

ORDER ITEM

FIGURE 11 - Example Entity Model

COMPRISES ” BY

8s

- 89 -

[5] A fourth generation language product set that permits applications to

be implemented that update, report on or query stored data.

The product is intended to be used by relative newcomers to data pro-

cessing, for example non-technical business users.

11.2. The Test System

The Quickbuild methodology is shown diagrammatically in Figure 9.

The Application Analysis phase creates a data-flow diagram of a required

information system and an entity/relationship data model. In Database

Design the entity/relationship model is converted into an IDMS schema

design. In Process Design the required application is specified using a

fourth generation language set. The user interface is also designed in this

phase. Implementation consists of generating an operational database and

compiling application programs.

For purposes of a User Trip, the Application Analysis and Database

Design phases of the methodology were applied to a simple system.

Quickbuild Pathway was used to enter the documentation of: the een

into the Data Dictionary. The data-flow diagram and the entity model of

the example system are shown in Figure 10 and Figure 11. The logic of

the system is as follows.

Allocate Order Function

Customers place orders for products and these orders are recorded. The

quantity ordered by the customer is compared with the quantity available,

and if sufficient is available then the order is allocated. Allocation causes

the free stock level to be adjusted and a message to be sent to the Deliver

Order function. Outstanding orders are regularly checked to see if they

can be satisfied.

260.2

Deliver Order Function

On notification of order allocation the required goods are selected and

despatched. The order is deleted from the Order Data Store and the quan-

tity despatched is subtracted from the quantity in stock recorded in the

Product Data Store.

Amend Order Function

Outstanding orders may be amended by the customer. They may be can-

celled completely, or the quantity ordered may be adjusted. In either case

the Order Data Store is updated.

Update Stock Function

New products are from time to time introduced to the product range and

existing products withdrawn. Deliveries of products are made to replenish

existing stocks. The Products Data Store is updated to reflect these

changes.

11.3. Evaluation of User Trip

The information gained during the Trip was piuctured according to

Eason’s Causal Framework of Usability (Eason 1984). This framework

assumes that the user reaction to a system is determined by system func-

tions (task match, ease of use and ease of learning), task characteristics

(frequency and openness) and user characteristics (knowledge, discretion

and motivation).

System Functions - Task Match

If a system offers a good task match then it supports the user in the exe-

cution of a task in a beneficial way. The following problems were

encountered during the user trip.

0)

(2]

(3]

-91 -

Ideally it should have been possible to draw data-flow diagrams and

entity models directly on the screen, rather than convert the

diagrams to form-filling responses as required by Quickbuild Path-

way. The form-filling, however was an improvement over the

command-driven interface to the dictionary that preceded Quick-

build Pathway.

A very serious problem was encountered over the representation of

data-flow diagrams. They were supposedly part of the Quickbuild

methodology and yet Quickbuild Pathway did not allow for the

specification of data-flows and data-stores - just operations and

events. The reason for this deficiency appeared to be that Quick-

build Pathway was compatible with an obsolete dictionary architec-

ture i.e a version of the dictionary that did not support data-flow

diagrams. The feature was only marginally usable.

There was no way at all of specifying which functions on the data-

flow diagram were to be automated and which were not - an

activity known as ‘setting the automation boundary’ in structured

systems analysis.

System Functions - Ease of Use

The ease of use dimension is a reflection of the effort that the user has to

make to use the system efficiently. The following problems were encoun-

tered.

(4 Assuming that use of the product was split over several

sessions,there was no convenient way of recording how far had been

reached in any session. A ‘Produce a report telling me everything I

have done so far’ function was ‘required. The only way to document

the work of each session seemed to be to interrogate the data

(2]

(3]

2192,

dictionary directly, using dictionary command language. Use of this

language required expertise beyond the level of the assumed user.

There seemed no easy way of correcting errors that had been made.

Attempts to repeat steps that had gone wrong generated further error

messages, because the software did not allow duplicate entries to be

made in the dictionary. The software, however, would report an

error condition only after making an erroneous entry in the diction-

ary. Errors had to be corrected using dictionary command language.

The Database Design task had undesirable consequences. The pro-

duct had a feature of automatic generation of an IDMS schema

(records, sets and data-items) from the previously specified entity

model. When this feature was initiated the software picked up every

single entity, attribute and relationship in an entire shared data dic-

tionary, and generated an enormous spurious database specification.

This damage took a considerable amount of time to repair using data

dictionary control language. The authors of the documentation for

the product seemed to have assumed that the user would. have a data

dictionary for his sole use - no mention was made of the possibility

of shared use, which is the commercial norm.

System Functions - Ease of Learning

Quickbuild Pathway was well provided with help facilities and learning

proceeded at a reasonable pace. However it was thought that the user

would have very considerable problems if he had not already learned the

techniques of data-flow diagramming and entity modelling, and did not

have some grasp of physical systems design. In other words the product

did not teach the methodology that had to be used. The methodology was

described in the supporting manual but needed prior knowledge to

997s

understand it. The associated training course also assumed knowledge of

the methodology.

User Characteristics - Knowledge

To use the Quickbuild product effectively the user would have to know

how to use the techniques of data-flow diagramming and entity model-

ling. Knowledge of the underlying dictionary architecture and command

language also proved essential. If any other than a naive translation of

entity model to IDMS schema was required, then the user would need

knowledge of IDMS. Although use of the 4GL product set was not

included in the trip, some limited use of the dialogue generator, Applica-

tion Master, was made. This required knowledge of IDMS database navi-

gation, and interactive screen design. Overall a reasonable degree of

technical competence was required to use Quickbuild. This degree of

competence was more than the target users could be expected to possess.

User Characteristics - Discretion

This variable refers to the power of the user to choose not to use the pro-

duct if he finds it unacceptable. Quickbuild Pathway is clearly a discre-

tionary item that the user could ignore if he chose to use dictionary com-

mand language instead. No particular systems analysis and design metho-

dology can be imposed on a computer manufacturer’s customers, so the

user could choose not to apply the techniques of data-flow diagramming

and entity modelling. Even if these techniques were used the results need

not be entered in the dictionary. Use of the dictionary itself is mandatory

if IDMS and the 4GL product set is to be used. Customer organisations

would have some policy on which software products were to be used, but

none of the Quickbuild products were absolutely essential to building

information systems. Conventional files were an alternative to IDMS.

264.2

COBOL was an alternative to the 4GL product set. Typical mainframe

customers used IDMS and the dictionary, and made some use of the

4GL’s whilst retaining COBOL. They would use Quickbuild Pathway if

there were cogent reasons for doing so, but its use was likely to be dis-

cretionary.

User Characteristics - Motivation

A poorly motivated direct end-user may use what discretionary power he

possesses to avoid using the product. Motivation may be affected by many

other factors than those directly related to the product. Nevertheless

some information technology products take on an aura of mystery and

enchantment, that captivates and motivates their users. Examples of such

products are the Apple Macintosh and the UNIX operating system. A

certain amount of glamour is associated with the Quickbuild 4GL’s, and a

menu-driven front-end to the dictionary has novelty value at least.

Nevertheless a subjective judgement says that Quickbuild lacks that spe-

cial factor that motivates users in its own right.

Task Characteristics - Frequency

It is thought that a frequently performed task supported by software

requires a different style of interface from a task that is infrequently

performed. In the former case a command-driven interface is often pre-

ferred, giving maximum power to what is likely to be a skilled user. In

the latter case a menu-driven form-filling interface with rich help facili-

ties is thought to be required. Quickbuild Pathway falls into the latter

category and its purpose is clearly to enable the infrequent, less skilled

user to build information systems in the same way, and using the same

tools, that a skilled, professional systems designer does. End users of

information could possibly build their own systems using Quickbuild,

95%

eliminating the need for professional systems designers and computer pro-

grammers. As currently constituted the product seems to fail in achieving

this purpose.

Task Characteristics - Openness

Openness refers to the task which the user is performing. The more open

the task the more the user has flexibility in deciding precisely how to

perform it, the next action to take, and the information required to per-

form it. Quickbuild is attempting to support the user task of information

systems analysis and design. Quickbuild assumes a closed task in that it

imposes a fixed sequence of development phases on the user, assumes

fixed outputs for each phase that must be entered in the dictionary, and

specifies the analysis and design techniques to be used. It is arguable that

the task of information systems development should be treated as more

open than this. Development sequence should not be rigid, but should

encourage creative thinking and prototyping approaches. Specific tech-

niques should not be mandatory, but a wide range of optional techniques

supported. On the other hand the relatively naive user -would perhaps

welcome process structure, gradually requiring more flexibility as skill

and competence grow.

11.4. Operational Context of User Trip

The User Trip was conducted in a realistic operational context. This

was the Group Information Systems Division of the computer manufac-

turer. GIS had the responsibility of developing internal company infor-

mation systems. It did not produce software for sale to customers. It had

the role of a customer, therefore, with respect to the software producing

division of the company. The major respect in which GIS was unlike a

=96°<

customer was that it did not, and presumably would not have been able

to, use competitor’s products. The way in which it used software pro-

ducts, however, was the same as the company’s commercial customers.

GIS had many years experience of developing information systems

using company software. It used VME mainframes, IDMS, DDS, and

COBOL, and some use was being made of Quickbuild 4GL’s, principally

Application Master. The Quickbuild Pathway product was being proto-

typed in GIS prior to general release. The User Trip described in this

thesis formed part of this prototyping process.

It was evident that GIS was not an ideal prototyping environment

for the product. The GIS staff were proficient dictionary users at com-

mand language level. Quickbuild Pathway was a distraction to them. This

accords with the principle that skilled users prefer command languages

and are irritated by menu systems, whereas naive users need the structure

provided by menus and form-filling. GIS made use of a shared dictionary

and shared databases. Quickbuild Pathway ignored this possibility.

11.5, Conclusions

The User Trip confirmed the existence of a prototyping activity

used to validate software designs within the company. This activity was

in-house, however, and conducted in a less than ideal environment in the

case of the product investigated. The User Trip by no means gave

exhaustive experience of the company’s product line, or of its software

validation activity. Nevertheless, valuable learning took place. It became

evident that software products were far more than code. Documentation,

training and support all formed part of the product set, and products

were linked into systems of products. Usability was a complex

=! 97

phenomenon and was inextricably bound up with functionality. Whether

or not a product was used was not solely to do with usability (or func-

tionality for that matter). To a certain extent the computer manufacturer

could enforce use of software by linking items together in a way that

ensured that if one product was used, then others had to be. Informal

conversations with the Quickbuild design team made clear the risks of

designers being cut off from users of their products. Project schedules did

not permit effective prototyping, or even informal contact with custo-

mers. Designers were not permitted contact with prospective customers.

This was left to marketeers.

CHAPTER 6 - EVALUATION

1. Introduction

This Chapter performs evaluation in three areas. Firstly, the applica-

tion of the OU Design Methodology will be evaluated. Secondly, the

paradigm of Radical Design will be evaluated with respect to its suitabil-

ity for use in systems of human activity and for bringing about change in

coercive situations. Finally, the contingency framework used in this

research to select a problem-solving methodology will be evaluated.

2. Evaluation of Methodology Application

The contention of Cross (1982a) and Darke (1979) that design is a

solution-focused activity has been confirmed in this research. The solu-

tion focus changed several times during the project, however. At the end

of the problem identification process the focus was on a methodology for

designing user-revisable software. The input to problem identification had

been Nissen’s (1984) statement describing information systems research as

positivist, and performed on behalf of employers to ‘improve’ the design

and implementation of information systems. This statement was felt to

characterise the ‘official’ Alvey-funded project of which the author was

nominally a part. The ‘solution’ that emerged from problem identification

was not directly concerned with positivist-orientated employer-dominated

research, but rather with the employer’s initial problem statement con-

cerning software usability. The connection between the input to, and the

98

- 99 -

output from, the problem identification process, is that applied

externally-funded research of any sort is bound to contain coercive ele-

ments (whether acknowledged or not) due to the nature of society, and

the usability of products by consumers or employees is bound to be

affected by the same contradictions. Current methods of production often

fail to produce products that best suit the interests of consumers or end-

users. It is contradictory for a producer of products to sponsor research

on behalf of the users of its products. The proposed solution, of facilitat-

ing the revision of unsatisfactory products by the users themselves, may

be applicable in some circumstances, and is certainly technically feasible

in the case of software. It may be impossible, however, to divorce a

software product from its context of use on some task system, and both

systems may need to be revisable to bring about any improvement in the

user’s lot.

A loss of confidence in the proposed solution was experienced dur-

ing the design briefing process that followed problem identification. The

construction of objective trees and SSM-style conceptual models

encouraged a more holistic view of the problem context, and developed

the idea that the problem was structural, rather than local to one producer

of a product. The counterplanning exercise generated several shifts of

solution focus, and this is the intended purpose of the method. During

counterplanning the following solution foci arose:

[1] A national system for software production and use.

[2] A system to produce software rationally, from the point of view of

the computer manufacturer.

[3] A manufacturer-owned system to produce designs for marketable

products.

- 100 -

[4] A manufacturer-owned system to monitor and control the produc-

tion of designs.

The focus of design had become increasingly conservative during

counterplanning. The process is recommended to be self-consciously

dialectical, with the tension between plan and counter-plan generating an

appropriate synthesis. The plan in this case may be characterised as radi-

cal humanist; the counter-plan was radical structuralist, and yet the syn-

thesis was conservative. The conclusion reached at the end of counter-

planning was that the problem to be solved lay somewhere inside an

internal company system. While this conclusion is disappointingly conser-

vative, it was perhaps necessary to believe it while conducting a user trip

inside the computer manufacturer. The manufacturer had already defined

the problem as owned by itself, and it it was difficult to resist this idea.

Experience gained on the user trip increased subjective understanding of

software usability, and for the first time crystallized ideas as to the nature

of usability. It became clear that a software product was not a single

entity, but a complex interaction between code, hardware,” documentation

and training course, all of which were components of the product. Usa-

bility was also a complex phenomenon resulting from an interaction

between a product, a user and a task. Attempts to improve software usa-

bility would have to take into account the complex nature of these sys-

tems.

Intrinsic to design activity, according to Cross (1982a), is the use of

codes to refer to objects of design. Engineering drawing is an example of

the use of such an object code. Systems designers use flow diagrams, and

diagrams representing relationships between the structural components of

a system. The OU Design Methods Manual did not recommend any

= AQL =

particular notation for design. This was because the methods were

intended to be independent of any particular application area, such as

engineering or architecture, and intended to be equally useful when

designing artefacts or systems. The absence of an object language or

design notation proved to be a problem when applying the design

methods. Initially, an objectives tree was thought of as a design language,

but this proved to be confusing and restrictive. Confusion arose between

the objectives of the project being undertaken, and the objectives of the

system being designed, and the diagrams produced were sometimes a mix-

ture of both. The objectives tree was too restrictive a model for systems

design, because a tree is a hierarchy and systems are networks. At the

stage of drawing objective trees it was not clear what to take to be a sys-

tem relevant to solving the problem being worked on. For this reason, and

also because of its richer modelling language, SSM root definitions and

conceptual models were used. The SSM conceptual model seems to be a

satisfactory language for general purpose systems design. Checkland

(1981) disassociates use of SSM from design, possibly because design is

associated with hard systems engineering. SSM conceptual models are not

supposed to be designs, but ideal-type models of systems defined from a

particular point of view. Their purpose is for use in comparison with

real-world activity, and the initiation of a debate among interested par-

ties. It is nevertheless clear that an SSM conceptual model is a flexible

and powerful design notation. The issue to be resolved is whether a

design paradigm is appropriate for systems of human activity, or whether

an interpretive paradigm, such as underpins SSM, is necessary. The issue

of notation is trivial in comparison with the philosophical issues at stake.

These will be addressed in the next section of this Chapter.

- 102 -

Before leaving the evaluation of the application of the OU metho-

dology, however, some attention will be given to whether it ‘worked’ -

that is whether it produced a design for something that if implemented,

would alleviate the problem being researched. The answer is clearly ‘no’.

Before this could be established in any project, however, it would be

necessary to implement the design and evaluate the implementation.

Evaluation of systems implementation is not a trivial exercise, and there

is a tenuous link between the success of a system and the methodology

used to specify and design it. Even if a system can be credited with some

degree of success and some measure of this can reasonably be attributed

to methodology, then it is still not clear whether application of the same

methodology by different people would not have given a different result,

or whether another methodology might have done even better. So at the

level of systems design it is difficult to prove that any methodology

objectively ‘worked’. Subjectively it can be reported that this methodol-

ogy is fun to use and, generates creative thinking and valuable learning.

At the end of the process of using the methodology the author had

formed a richer picture of the problem situation. The sequence of activi-

ties to be followed when using the methodology is somewhat incoherent.

The discontinuity between Problem Identification and Design Briefing is

artificial. The Project Potential Phase would be more logical after Design

Briefing rather than at the end of Problem Identification.

The methodology was chosen because of its origins in the radical

design movement, and because the problem context was felt to be coer-

cive. Coercion did not lessen as a result of using the methodology, and it

contains no specific methods for dealing with it. The subjective discom-

fort of being subjected to coercion lessened, however, because use of the

- 103 -

methodology took the form of a protest. From the point of view of other

members of the research team though, this member was regarded as a

drop-out and a trouble-maker. The lesson learned here was that indivi-

dual acts of protest are ineffective in the face of structural coercion, but

preferable to supine submission.

3. Evaluation of Radical Design

The answer to the question of whether a design paradigm is suitable

for intervention in systems of human activity, is that it depends on who

is the designer. This is compatible with the stance of Checkland (1981)

who finds the deficiency of hard systems approaches to be the assumption

that a system is required to meet agreed objectives. Where this is true it

perhaps does not matter who produces the design. If the boundary of

design is widened to include the setting of objectives, however, and if a

principled objection is raised to primacy being given to the viewpoint of

a systems designer, in comparison with the viewpoints of the systems

agents, customers or victims, then a conventional design paradigm must be

rejected. Before a radical design paradigm can be embraced, however, the

issue of whether it is appropriate to regard human activity as systemic

must be addressed. Designers conceive of objects, whether physical or

abstract, and if human activity systems do not exist then a design para-

digm is not appropriate for intervention in human affairs. Checkland

takes the view that an interpretive account of human activity is preferable

to one that stresses the existence of systems in the world. This is because

human activity systems are not material objects but abstractions used to

explain, justify or plan human action. Each participant in human activity

has his own view of its purpose, and of suitable means to achieve it.

- 104 -

Successful collaborative activity implies negotiation about ends and means,

and interpretation of the meaningful actions of others. Human activity has

structure as a result of the ongoing prosecution of purpose accompanied

by ongoing discourse about desirable action. Structure is created by pro-

cess and is not a determinant of it. Lilienfeld (1978) has pointed out the

ideological function of systems theory in legitimizing particular social

structures, and criticised systems-based accounts of human activity as

being inherently conservative. Silverman (1970) denies the relevance of

the biological analogy that he sees underlying systems-based accounts.

Beer’s (1972) application of systems theory to organisations, for example,

was originally heavily dependent on biological analogy, as indicated by

the title of his book ‘The Brain of the Firm’. Beer’s later work (Beer

1985) in developing the viable systems model (VSM) avoids reductionist

analogy. Bowey (1980) points out that a social system should more

appropriately be compared to a species than an organism. The crucial

difference between an organism and a species is the presence of cyber-

netic control in the organism. The idea that cybernetic control. by negative

feedback loop explains the persistence of organised human activity under-

pins Beer’s VSM. Other organisational theorists have made use of a cyber-

netic analogy, for example Argyris and Schon (1978) in discussing organi-

sational learning, suggest that it may be regarded as single-loop (revision

of a theory of action about how to achieve organisational goals), or

double-loop (revision of organisational goals). A cybernetic model of sys-

tem control applied to human beings is conservative because it provides

no theory to explain or justify radical change, and also ideologically regu-

latory in that it can be used to justify inequalities in power relations

between people. Checkland retains the concept of cybernetic control to

=105,<

refine ideal-type models of human activity, but rejects the idea of struc-

tural determination of human activity. The systems paradigm is epistemo-

logical as far as Checkland is concerned, not ontological. Reification of

human activity systems is a linguistic device that may have ideological

function, or may simply be a shorthand way of referring to complex

processes. Clearly such systems do not have material existence and,

according to some writers of the soft systems tendency can be only sub-

jectively defined. Carter, Martin, Mayblin & Munday (1984), for exam-

ple, define a soft system as:

‘A system depending largely on non-routinised human actions, so
that human capacity for free choice, and the agent’s limited access
to the subjective values, beliefs and wishes of the participants means
that wholly objective description or quantitative modelling are not

appropriate.’

The philosophy underpinning this position is objective idealism - human

activity systems exist but objective knowledge of them is unobtainable.

Ideas about the system determine its nature, and the ideas of others can

never be securely known. Checkland’s position corresponds to philosoph-

ical idealism. He defines the word ‘system’ (Checkland 1981) as ‘a model

of a whole entity’ and says that ‘an observer may choose to relate this

model to real-world activity.’ Different observers might choose to apply

different models dependent on their world-view. So ‘systems’ belong

entirely to the realm of ideas not to the world of things.

The objection to an idealistic account of human activity - that it can

be only subjectively interpreted and that ideas determine structure - is

that human activity may be shaped by forces and historical circumstances

of which all the participants are unconscious. Actions may have unin-

tended consequences, and participants accounts of intention and purpose

may be shaped by ideology. In some cases the ideas of the participants in

human activity are crucial to defining what goes on - for example, two

- 106 -

actors pretending to quarrel in a play are not quarreling, however realistic

their performance. In other cases human beings are swept along by social

forces that they barely understand, for example in war or revolution, and

an objective specification of events is valuable independent of individual

interpretation.

The argument about the relevance of the design paradigm to human

activity has proceeded as follows. Since designers need to design objects

that are capable of objective existence (albeit as abstractions), then if sys-

tems of human activity do not exist the design paradigm is irrelevant.

Some critics of systems theory applied to human activity concentrate on

the type of system perceived (cybernetic models are rejected), and some

concentrate on problems of subjectivity in identifying systems whose

components are abstractions. These latter problems can seem to justify the

espousal of some form of idealism. Idealism brings problems associated

with erosion of the concept of truth - it provides no way of distinguish-

ing between an ideologically distorted account, and one that corresponds

to facts that remain true whatever the ideas of individuals may be. An

acceptable ontology for social enquiry and intervention, therefore, must

allow for the objective existence of systems and systems-generating

mechanisms. This corresponds to the philosophical position known as real-

ism. The conclusion must be that a design paradigm could in principle be

relevant to intervening in social systems.

Simply because the objects for a hypothetical design process exist is

not sufficient guarantee that such objects are designable. Many objects

exist that are not thought to be suitable objects for design (for example

living creatures). Man can intervene in the natural world but not funda-

mentally redesign it, the argument might run. Successful interventions in

= LOT

the natural world are underpinned by powerful and well-tested scientific

theory. The social world might be ‘natural’ like the objects of study of

physics and chemistry. As in physical science there would be ‘laws’ of

social science that no social engineer or systems designer could ignore. To

the extent that social action was consonant with those laws, then it would

be a consequence of them and not of freely chosen action. Action not

consonant with the governing laws would inevitably fail to achieve its

purpose. Structuralist accounts of social action follow this model. So, for

example, any attempt to organise human activity that ignored the princi-

ples underpinning the VSM would fail, assuming that structure does

indeed determine human action, and that Beer has correctly defined

relevant structural principles. The issue is whether human activity sys-

tems exist because of the determination of people (perhaps designers) that

they should, or whether they exist because of structure generating

mechanisms in society. If the latter is true then it will be crucial to gain

understanding of those mechanisms, and the limits they place on human

action. It is possible that the process of design as a human activity is the

outcome of some structuration process. The issue then is whether design

can produce feedback to the process that generates it. The distinction

between natural and designed systems has as its heart a methodological

dualism that demands that a qualitative distinction be maintained between

the natural and the social sciences. If man is securely part of the natural

world, then his design activity is a natural phenomenon, as is all human

activity.

Location of design activity within a structuration process enables

appropriate consideration to be given to radical as distinct from conven-

tional design. The latter may be compared with systems engineering,

- 108 -

convincingly ascribed by Checkland (1981) to a hard-systems paradigm.

Conventional design assumes agreement over objectives and places design

in the hands of experts in particular technologies, such as engineering or

architecture. People described as systems designers are liable to be sys-

tems engineers, computer scientists or management scientists. The mission

of radical design was to reduce the need for professional designers by

defining general design methods suitable for clarifying requirements in

any application area, and teaching these methods in a widely accessible

way. Open University courses, for example, impose no entry qualifica-

tions and can be studied by those unable to attend a conventional educa-

tional institution. The OU T262 course was radical to the extent that it

was devised by people dissatisfied with conventional technology and the

direction taken by modern industrial societies. The OU T262 course was

also radical in its intention to empower students to act to bring about

change in society, by providing a problem-solving methodology. The

course signalled problems to students and provided tools to help in their

solution. The weakness of the course is the absence of a coherent theory

of what gives rise to exploitative and alienating technology, and how fun-

damental social change may be brought about. Cross (1982b) describes the

role of radical design in bringing about a more desirable future. He views

design as a process that can be influenced and controlled to produce dif-

ferent products. Engineers can be educated to resist the socially irrespon-

sible demands of industry. Alternative technology necessitates an alterna-

tive design process that eliminates the distinction between designer and

user. Designers must realise that

‘we are all users, that we are all lay-people, that we are all dom-

inated by the design process.’

The essential weakness of this position is that it determines to bring about

- 109 -

change by changing men’s ideas. The practical action that might ensue

from ‘re-design’ of unacceptable features of society is individualistic.

Radical design methodology liberates the mind, but has no component

that empowers successful collective action.

4, Evaluation of Jackson and Keys Framework

Three aspects of the contingency framework of Jackson (1987a) and

Jackson & Keys (1984) will be evaluated here. These are:

[1] The success of the framework in producing an insightful categorisa-

tion of problem-solving methodologies.

[2] The success of the framework in making appropriate recommenda-

tions for choice of problem-solving methodology.

[3] The soundness of the philosophical underpinning of the framework.

The framework is theoretically underpinned by Habermas’ distinc-

tion between the human technical, practical and emancipatory interest.

Human technical interest lies in the understanding and control of natural

and social systems. Some systems can be studied empirically and

mathematical models of them constructed. The understanding gained by

this form of modelling enables man to intervene effectively in the world.

This represents the paradigm of operations research and systems engineer-

ing. Jackson & Keys describe systems that can be optimised or engineered

as ‘mechanical’. Progress cannot be made with an operations research or

systems engineering project unless the objectives of the system being stu-

died or designed are clear. Choice of desirable ends for human activity

cannot derive from man’s technical interest alone. The human practical

interest lies in sustaining satisfactory social relationships without which

collaborative activity performed to pursue technical interest cannot take

- 110 -

place. Agreement about suitable purpose is a social not a technical

phenomenon. Jackson & Keys describe a problem context as mechanical-

unitary if a simple system is to be optimised or engineered, and there is

agreement about its purpose. Where there is lack of agreement but there

is potential for consensus, the context is described as mechanical-pluralist.

Where not all the participants have equal power and so do not equally

contribute to the decision-making, the context is described by Jackson as

mechanical-coercive. The need to be free from coercion derives from

man’s emancipatory interest.

Some problems with the framework may be observed at this point.

Operations researchers and systems engineers have always been conscious

of the need to clarify objectives, and this clarification is part of OR and

SE methodology. It cannot be predicted in advance of starting a project

quite what difficulties might be encountered in resolving differences of

opinion. No description of OR and SE constrains the process to unitary

situations. De Neufville and Stafford (1971) in a classic formulation of

the OR/SE paradigm state that definition of objectives is. the first phase ©

of the process of what they describe as ‘systematic analysis’. Their

account of objective-setting includes consideration of pluralist situations -

‘Much of the value of systematic analysis lies in the identification of

objectives and the clarification of issues, not in their concealment.’

The essence of the criticism, then, is that a distinction between

mechanical-unitary and mechanical-pluralist contexts does not adequately

partition problem-solving methodologies. OR/SE is intended for both

types of context, and attempts to bring about a transition from a pluralist

to a unitary situation. The history of OR/SE demonstrates a decreasing

emphasis on mathematical modelling, and an increasing concern about

strategy and objective-setting. The OR/SE that is located by Jackson and

-11l-

Keys in the mechanical-unitary category, is the OR/SE of the 1960's not

the 1980’s. An objection that can be raised to the mechanical-coercive

category is that it is empty - no methodologies are available for coercive

contexts. Jackson (1987a) locates Ulrich’s Critical Systems Heuristics in

this category. The critical component of Ulrich’s work is that he insists

that all those affected by proposed change in society should have their

interests considered - not just those that powerful people see fit to con-

sult. The method he proposes to use to ensure that all interests are con-

sidered is polemical debate. He proposes no way of equalising power

differences between participants in the debate. In a coercive situation,

moreover, those with power control the agenda of the debate. There

seems insufficient justification to discriminate Ulrich’s work from that of

Checkland, Ackoff and Churchman, all of whom are concerned with

bringing about accommodations in pluralist contexts.

So far we have considered methodologies suitable for problem-

solving in the analysis and design of mechanical systems. It is arguable

that there is just one paradigm applicable here:

[1] Establish requirements.

[2] Build a model of a system to be optimised or constructed.

[3] Implement the solution implied by the model.

The relationship between those affected by the system will determine

whether the context is unitary, pluralist or coercive. This will affect

requirements determination. The history of OR/SE shows an increasing

concern with establishing objectives in pluralist contexts. In coercive

contexts the interests of the powerful are liable to prevail, and there is no

problem-solving methodology. that can solve this meta-problem. The

categorisation of methodologies suitable for systemic contexts will now be

1

considered.

Some systems are too complex to be amenable to mathematical

modelling and their functioning cannot be optimised. A model of such a’

system is necessarily ‘conceptual’ rather than analytic. The conceptual

models used in SSM, for example, are linguistic rather than mathematical.

An SSM conceptual model is an abstract system where each component is

an expression of purpose - it defines part of a purposeful system. The

purpose is expressed in natural language. Reliance on abstraction is one

way of solving the problem of complexity when analysing or designing

systems. To use purpose as a principle of abstraction is commonplace in

engineering - a complex assembly is thought of in terms of its function

with respect to other systems components. This abstraction is useful in

design even if the system or sub-system is amenable to mathematical

modelling, and may be essential if it is not. If a design for a system is

presented as a conceptual model reliant on some principle of abstraction,

the question arises as:to whether this design will meet requirements or

bring about desirable ends. The question of validity is answered in OR/SE

by ‘running’ the mathematical model and proving that the results are

optimal. The answer provided by Beer is that a design will be satisfactory

if the principles embodied in the VSM are followed. Beer's position is

that particular systems may be too complex to model, but there are

universal structural principles determining the functioning of complex

systems. If these principles are understood and applied in design, then the

absence of a mathematical model is not important. Structuralist accounts

of human activity do not usually stress the importance of subjectivity in

defining systems (one such account that does is that of Espejo (1987)).

Checkland’s position is that human activity systems do not exist in the

= 3s

world, but are ways of perceiving and making sense of the world. An

SSM conceptual model, therefore, is correct to the extent that it is a

defensible derivation from a root definition. Whether a root definition

defines a system that will meet human requirements, or bring about

desirable ends, depends on the Weltanschauung of the person considering

it.

The Jackson & Keys framework allocates Beer’s VSM to the

systemic-unitary category. This is because Beer’s work is not primarily

concerned with resolving conflict over desirable purpose. Checkland’s

SSM is allocated to the systemic-pluralist category. This is because

Checkland’s subjectivist stance makes SSM in principle suitable for

modelling systems from diverse points of view. SSM also encourages

debate among interested parties. There is no reason to suppose, however,

that SSM is not suitable for systemic-unitary contexts and mechanical-

pluralist contexts. Checkland has also argued the relevance of SSM to

coercive contexts (see the debate in Chapter 2, Section 6). So the Jackson

& Keys framework does not seem to securely locate SSM. With respect to

the ‘coercive’ column of the contingency matrix, no methodologies are

located in the systemic-coercive category. Jackson (1987a) suggests that

‘an approach based upon radical structuralism is more apt in systemic

coercive contexts’, but the problem is that no methodology exists that

takes such an approach.

The Jackson & Keys framework is suggestive but not ultimately per-

suasive in categorising problem-solving methodologies. This is perhaps

because the authors were not primarily concerned with constructing a

taxonomy and illuminating what exists, but with constructing a frame-

work for action, and pointing in some cases to what ought to, but does

- 114 -

not yet, exist. Jackson’s accounts of the framework indicate its status as a

contingency scheme -

‘Mechanical-unitary contexts require traditional management science.

Systemic-unitary contexts require treatment from organisational

cybernetics. Mechanical-pluralist and systemic-pluralist contexts are
best tackled using soft system thinking. Critical management science
should be employed to deal with mechanical-coercive and systemic-
coercive contexts.’ (Jackson 1987a).

The conclusion must be that Jackson intended the framework to be

underpinning theory for choice of problem-solving methodology (as

indeed it was assumed to be in this thesis). In Jackson (1987b) a number

of case-studies are presented deriving from the work of the Community

OR Centre at Hull University. The Jackson & Keys framework was

clearly used as a means of choosing a suitable methodology to tackle par-

ticular problems. When the framework was used in this research the prob-

lem that was encountered was that all social systems seemed to be com-

plex and coercive. To make use of the framework a subjectivist stance

had to be adopted, where problem contexts were not assumed to have

objective characteristics but were essentially however you chose to view

them. So one person might see a mechanical-unitary context’ and another

might see a systemic coercive-context and yet they might both be investi-

gating the same problem. The success of the framework as a contingency

scheme, therefore, depends on the soundness of its philosophical basis. If

the subjectivist approach is correct then it is not meaningful to ask

whether the framework successfully chooses appropriate methodologies

for particular problem contexts. A subjective interpretation of the course

of a project is all that can be expected.

Subjectivism is implicit in the Jackson & Key’s framework. The

paradigms underpinning some of the methodologies categorised by the

framework are opposed to each other. For example, OR/SE is implicitly

=115=

realist in its assumption that systems have objective existence. SSM denies

the objective existence of systems. Beer’s VSM is a structuralist model

and structuralism is inherently deterministic in contrast to Checkland’s

voluntarism. Critical management science is in part inspired by the Marx-

ist philosophy of dialectical materialism. Marxist theorists would diagnose

ideology in the OR/SE, cybernetic and soft systems paradigms, and pro-

ponents of these would diagnose dogma in the work of Marxists. The

essential point is that the methodologies, approaches and philosophies

categorized by Jackson & Keys are theoretically incompatible. If metho-

dologies A, B and C each make incompatible philosophical assumptions,

then it cannot be rational to argue that under some circumstances it may

be correct to choose A and under other circumstances correct to choose B.

The only way to refute this criticism is to adopt a subjectivist stance that

maintains that there is no absolute truth. Truth has meaning only within

some theoretical framework - so there can be positive truth deriving from

a positivist epistemology, and interpretive truth deriving from an anti-

positivist epistemology. A subjectivist defence of the Jackson & Keys ~

framework is clearly possible, but it imparts a serious weakness to the

process of methodology choice. The action researcher is invited to behave

as if there were objective truth to be had about the complexity of the

system being studied and the relationship of the participants in it. On the

basis of what is true about these factors a problem-solving methodology is

chosen. The contradiction can arise, however, that the methodology

chosen can appear to make theoretical assumptions incompatible with the

theory used to choose it. For example Checkland’s SSM is underpinned by

the assumption that there is no objective definition possible of a problem

situation. The action researcher, however, was acting only ‘as if’ there

- 116 -

was objective knowledge to be had to guide methodology choice. In which

case it is impossible to judge what would count as a correct choice of

methodology. The contradiction at the heart of the Jackson & Keys

framework is that if methodology choice is based on objective criteria

then a methodology underpinned by subjectivism cannot rationally be

chosen; and if methodology choice is based on subjective criteria then a

methodology that depends on objective truth cannot rationally be chosen.

Jackson (1990) claims to see a way out of this labyrinth. The

categorisation scheme must not be used to establish the objective nature

of a problem context in terms of its complexity or the relationship

between the participants. It should be used to explore the consequences

of adopting any particular methodology. Any problem context can be

viewed in a variety of ways, ranging from mechanical-unitary to

systemic-coercive. The consequences of adopting different viewpoints

should be explored, and different stakeholders may come to different

conclusions as to the right approach to adopt.

By taking this line Jackson denies that there ‘can be an objectively

‘correct’ choice of methodology for some problem context. There remains

the problem, however, of allowing subjective or contingent choice of an

approach that insists that there is objective truth to be known about the

world. For example, an employee may see a situation as coercive and an

employer may not. If the employee is a Marxist she will believe that the

coercion is objectively and demonstrably present in the structure of

society, and not merely a subjective response to society. Furthermore, a

Marxist will be impatient with the notion of following a tortuous con-

tingency procedure with respect to a series of problems over time, say in

industrial relations, where the possible existence of pluralism or coercion

sie

is deliberated upon. To a Marxist the existence of coercion is taken for

granted, and to treat it as an open question to be decided afresh on each

occurrence of a problem is a-historical. Similarly, to a managing director,

the request to view reality through the eyes of a Marxist is liable to be

unacceptable. In fact, Jackson’s ideas are acceptable only to those who do

not adhere to what he describes as an ‘isolationist’ or an ‘imperialist’

stance. These categories, along with those of ‘pragmatist’ and ‘pluralist’

are defined in Jackson (1987d).

An isolationist strategy is one that rests upon a particular paradigm,

and rejects or ignores all others. For example, it would be isolationist to

analyse all problems by attempting to build and optimise a mathematical

model of the system argued to contain the problem. The problem of para-

digm incommensurability does not arise from an isolationist standpoint.

An imperialist strategy rests upon a particular paradigm, but seeks to

ensure that the paradigms of other approaches are subsumed by the dom-

inant one. Checkland, for example, argues that hard approaches are a spe-

cial case of a soft approach.

‘--- the relation between "hard" and "soft" systems thinking is

not like that between apples and pears: it is like that between

apples and fruit. The well-defined problem needing solution is

the special case within the general case of issues calling for

accommodations.’ (Checkland 1985).

A pragmatist strategy is distrustful of theory and concentrates on

gaining proficiency in what works well in practice. A pragmatic approach

may be taken, for example, by OR practitioners in commerce and indus-

try, or by academics who act as consultants.

Jackson rejects isolationism, imperialism and pragmatism and recom-

mends what he describes as pluralism. Using this strategy, methodologies

deriving from different paradigms are respected and studied, and meta-

= 118 =

theory is developed that allows choice among the competing approaches.

A pluralist must have difficulty reconciling the Marxist perspective, argu-

ably the most historically significant reaction to systemic-coercive situa-

tions that has been made. Marxism is imperialist in that is based upon the

philosophy of dialectical materialism, and explains systems-based

problem-solving methodologies as responses to the needs of capitalism.

Jackson must either accept Marxism as a valid response to systemic coer-

cion, and such acceptance is simultaneously called for by the pluralist

position and destructive of it, or he must reject it. If he rejects it then

the systemic-coercive category of problem context appears to be com-

pletely intractable with respect to problem-solving methodology.

CHAPTER 7 - SUMMARY & CONCLUSIONS

1, Summary

This thesis describes action research into a soft problem relating to

software production and use. The problem relates to the usability of

software intended to perform specific tasks, when used by specific users,

in a specific environment. The problem arises because, for commercial

reasons, general-purpose software products are developed for a wide

market, not for specific customers. The problem was presented by a com-

puter manufacturer that supplied software products with its machines.

The manufacturer wished to improve the usability of its software. Impor-

tant actors in the software production process were marketeers and

designers. The manufacturer felt that there was a communication gap

between marketeers and designers. Marketeers were supposed to be: los

to customers and end-users, and generated product specifications for

implementation by designers. These product specifications were vague,

ambiguous and incomplete from the designer’s point of view. From the

marketeer’s point of view, designers were technicians out of touch with

the market-place.

The research project was funded by Alvey, and controlled by a pro-

ject manager from the computer manufacturer. This person rapidly sup-

plied a problem analysis and plan for the problem solution, and

attempted, largely successfully, to force the academics associated with the

project to implement this plan. The project manager's solution to the

liq

- 120 -

problem was to run training courses for software marketeers and

designers. The project manager’s approach to the research and his prob-

lem solution, is treated as part of the problem in the research described in,

this thesis.

The areas surveyed to establish a body of knowledge relevant to the

research were software engineering, information systems development,

design methodology, systems methodology and contingency theory for

problem-solving. A radical design methodology was used in this research

rather than SSM, which might have been an alternative. The contingency

theory of Jackson (1987a) influenced this choice. The reason for the

choice lay in the nature of the problem situation, the control that the

computer manufacturer had over the research, and the unwillingness of

the project manager to allow the project to deviate from a pre-planned

course. Successful use of SSM requires a willingness to seek reconciliation

of opposed world-views on the part of the participants. This willingness

did not exist in the research team, and the atmosphere was coercive. Use

of a radical design methodology meant that the author’ of this thesis

effectively withdrew from the Alvey project, and took an individualistic

approach.

The methodology used derived from the OU, and involved use of a

Problem Identification Game, followed by application of some design

methods chosen according to a loose contingency structure. PIG was ini-

tially addressed not to the problem of improving the usability of software,

but to the problems perceived in the project set up to investigate the

problem. The process of enquiry was seen to be problematic because what

purported to be academic research was under the control of a commercial

firm with no concern for academic values. The analysis generated by

- 121 -

playing the game indicated that the core problem associated with the pro-

ject was the fact that the computer manufacturer’s solution to the prob-

lem (training courses for software marketeers and designers) excluded

software users. An ineradicable distinction between designers and users

was likely to be perpetuated by the project in its present form. One of

the objectives of radical design is to abolish the distinction between

designers and users.

Problem identification was followed by the application of three

design methods, Objectives Tree, Counterplanning and User Trip. During

the attempt to define a hierarchy of objectives for the project (an Objec-

tives Tree), SSM root definitions and conceptual models were constructed.

This activity can be regarded as the eclectic incorporation of an addi-

tional design method. Counterplanning requires the reversal of the

assumptions that have underpinned the project so far. It is a dialectical

process that is intended to result in the synthesis of a new plan. The

counterplanning process was supplemented by further use of root defini-

tions and conceptual models. The User Trip took the form of secondment

to a team of software specialists who were prototyping a piece of

software shortly to be released by the computer manufacturer. A subjec-

tive understanding of usability issues and the organisational features of

software production was enhanced during this period of time.

2. Conclusions

The conclusions drawn from this piece of work will be categorised

under the headings of:

[1] Software Usability.

[2] Radical Design.

=122-

[3] Contingency Theory.

[4] The USTM Project.

2.1. Software Usability

Usability is a nebulous concept. A product or product feature is

presumably usable if it is used - but it may be used because there is no

adequate alternative, or because the user has been coerced into using it;

its use may give rise to frustration and inefficiency. A product or product

feature that is not used is not necessarily unusable. The user may have

received inadequate training, may not understand the documentation or

may be resisting changes in work practice for other reasons. Eason’s

suggestion (Eason, 1984) that a user’s reaction to a system is the result of

a complex interaction of system functions, user characteristics and task

characteristics was found valuable in this research. Usability is an emer-

gent property of software in use by a particular person for a particular

task. Usability is not a property of software in isolation.

It may be misleading to focus attention on a single software product

when analysing usability. A user is performing a series of tasks

throughout a working day. More than one software product might be used

during the day, and more than one product might be used during one

task. The user’s discretionary power over which product or product

feature to use will vary from one product to the next. From the users

point of view a software system is being used, and it is the usability of

the overall system as well as that of any particular product that is impor-

tant. For example, it is possible to buy separate spreadsheet, word-

processing and DBMS packages. The usability of all three packages will

be greatly enhanced if they share a common interface. Software vendors

- 123 -

need to concentrate more on defining, modelling and supporting user

tasks than on producing software as traditionally conceived.

The structure of economic activity, and the software business in

particular, is not conducive to the production of well-designed products

that support human tasks. There is irrational variability in administrative,

commercial and industrial systems, given a capitalist mode of production.

The information technology industry is similarly irrationally fragmented.

In the case of computer systems, for example, there are many incompati-

ble models of computer on the market, and complete software systems

have been developed for each competing range. There is also irrational

variability in systems software. Scarce design talent is misused by repli-

cating software products for incompatible machines and incompatible sys-

tems software. The user’s time is wasted learning different interfaces to

different products. More resources could be allocated to meeting usabil-

ity requirements if there was less irrational product differentiation on the

part of software vendors. There is also irrational variability in require-

ments due to lack of systems standardisation in user industries.

Software products inherently bring with them usability problems

because of the distance of the designer from the end-user. A model of

software specification that implies elicitation of user requirements is

inappropriate. There are too many potential users to make this feasible,

and at the time of software specification it cannot be established with

certainty who the users will be. The software may be intended to support

tasks that are possible only because of the existence of the software. E-

type systems create requirements as well as responding to them. Only if

users become designers can this problem be overcome. This solution is

unrealistic on economic grounds - software products are cheaper than

= 12455

bespoke systems. It is also politically naive - IT products may be intended

to produce job degradation, as for example in the printing and publishing

industries.

From a software vendor’s point of view, usability is a problem only

insofar as it impacts on costs and revenue. If a product is bringing in

maximum achievable revenue the vendor is unlikely to be concerned with

improving its usability, unless maintenance costs attributable to poor usa-

bility are unacceptably high. In a seller’s market maintenance costs can be

kept low by deferring requests for enhancement. Enhancing product usa-

bility is likely to to increase the vendor’s costs. A product’s market suc-

cess may well depend on its perceived usability, however, particularly in

a competitive market. Software vendors sell to corporations not to direct

end-users. The interests of the two are not the same. Direct end-users

wish to work at tasks that are interesting and do not impose undue stress.

Badly designed software can be a considerable cause of stress and frustra-

tion. Automation may bring redundancy and job degradation.

In this research the problem of software usability was found to be a

soft problem and not, therefore, the sort of problem amenable to ‘solu-

tion’. By the end of the research a richer picture had been formed of the

problem situation.

2.2. Radical Design Methods

Radical Design has two essential characteristics. Firstly, it is com-

mitted to the belief that there is a common process underlying all design

practice, and that design is the bringing about of change in the man-

made world. Design covers a wider sphere of intervention than classical

civil, mechanical or electrical engineering, or newer branches of

- 125 -

engineering such as systems and software engineering. It includes inter-

ventions in systems of human activity. Not only is the scope of design

very wide from the radical perspective, but the process of design is,

extended to include making decisions about what to design. Secondly,

radical design is committed to the task of abolishing the distinction

between designer and user, and empowering users to act in the design

process. This aim would not be achieved by merely bringing about user

participation in design, because user participation does not challenge the

conventional design process. Bringing about fundamental change in the

design process is important from the radical perspective because the wel-

tanschauung of radical design implies rejection of the values of industrial

society, based as they are upon careless exploitation of natural resources,

pollution of the natural environment and alienating work.

Historically, radical design has similar origins to soft-systems metho-

dology. Both arose in the 1970's as a reaction against conventional hard-

systems engineering. Soft-systems methodology, in particular the work of

Checkland, has a much higher content of explicit social theory. The

absence of social theory from radical design weakens its potential for

effective collective action. Use of radical design methods inspires

creativity but encourages an individualistic response to problem situations.

Checkland’s SSM is better equipped to produce effective collective action,

but at the risk of it being based on a false consensus in coercive situa-

tions, The strength of radical design is its explicit commitment to a value

system that causes it to take certain types of problem seriously - that is,

in urgent need of solution, rather than being a particular way of looking

at the world. The implication of a soft systems approach is that in plural-

ist situations accommodations should be sought. The implication of a

- 126 -

radical approach is that in certain types of pluralist situation there is a

correct point of view to be held.

2.3. Contingency Theory

The contingency theory of Jackson (1987a), based on that of Jackson

& Keys (1984), was used in this research. Jackson attempts to categorise

problem-solving methodologies into six categories, each of which

corresponds to a type of problem context. The categorisation scheme

appears to have been intended as a means of choosing a methodology

appropriate to a particular problem situation. The categorisation is not

completely convincing because some methodologies seem to be relevant to

more than one category. A major problem arises in using the categories to

choose an appropriate problem-solving methodology. This is the problem

of paradigm incommensurability defined in Chapter 6. From a radical

perspective the social world appears objectively coercive. It is not accept-

able from this perspective to choose to view the world otherwise. Only

from a subjectivist perspective is it rational to choose among methodolo-

gies that make opposed philosophical assumptions. It is, however, para-

doxical to choose a methodology that denies the validity of a subjectivist

stance.

2.4, The USTM Project

The claim has been made in Chapter 2 that this thesis describes an

action research project. The ‘official’ USTM project was not action

research but rather consultancy, because what was allegedly previously

established scientific knowledge was being packaged, and presented to

people who arguably needed to know it (ie marketeers, designers and

- 127 -

technical authors). The work of Mansell was an attempt to perform action

research in an inimical environment. In terms of Susman & Evered’s

(1978) model of action research, comprising action planning, action tak-

ing, evaluation and specification of the learning that has taken place, the

greatest problem that Mansell encountered was in the taking of action. In

the spirit of action research this should comprise an intervention in the

problem situation informed by relevant theory. Having defined the prob-

lem situation as coercive, and as a result of this reaction to what was

going on having impaired the relationship with the client and the other

problem-solvers, Mansell had made action difficult to take. In this respect

the situation can be compared to that of Berry et al. (1986) described in

Chapter 2. If would-be action researchers reject the primacy of the client

then they may find it impossible to complete the project in the ideal-

typical manner. The action components of Mansell's work consist of the

User Trip, which put Mansell in the position of a problem-owner strug-

gling to use a software package, and publication of the results of the

research. The latter is a form of action, and may be the only one that it

is possible to take in a coercive situation (as in the case of Berry et al.

1986). For example Mansell (1989) delivered a paper at an academic

conference describing the problems encountered on the project. The reac-

tion to the verbal delivery of this paper was hostile. Rejection of

client-dominated research seemed to trigger deep emotions in academics.

One reaction, from a senior academic, was that Mansell had ruined a per-

fectly good project by his intransigence.

If publication is to count as action in an action research project then

it becomes difficult to say at what point the project ends. In conventional

scientific research submission of a thesis marks the end of a piece of

- 128 -

research. In the case of action research it could mark a new beginning.

3. Future Research

This piece of work has exposed the inadequacy of design methodol-

ogy, however radical in intent, in making progress in coercive situations.

Jackson’s work alerts the practitioner to the existence of coercion, and is

helpful in analysing the intellectual origins of alternative methodologies

for action research. It provides little guidance, however, in how to

proceed in coercive situations. Its subjectivist orientation gives rise to

contradiction when guiding methodology choice. It may be more valuable

in the future, therefore, to concentrate on enhancing some existing

methodology, rather than tolerating a profusion of inconsistent and con-

tradictory approaches. For example, recent elaborations of SSM (Check-

land & Scholes 1990) give the impression that this methodology is

healthily responsive to change. Enhancement of SSM to cater for sys-

temic coercion would be a worthy research project for the future. In

Jackson’s terminology this would be an example of imperialism rather

than his favoured alternative of pluralism.

REFERENCES

Ackoff R. L. & Sasieni M. W. (1968), Fundamentals of Operations

Research, Wiley.

Ackoff R. L. (1981a), "The Art and Science of Mess Management", /nter-

faces 11, pp 20 - 26.

Ackoff R. L. (1981b), Creating the Corporate Future, Wiley.

Argyris C. Putnam R. & Smith D. M. (1985), Action Science, Jossey-Bass.

Argyris C. & Schon D. (1978), Organizational Learning, Addison-Wesley.

Asimow M. (1962), Introduction to Design, Prentice Hall.

Avison D. E. (1985), Information System Development: A Database

Approach, Blackwell Scientific Publications.

Banathy B. H. (1988), "Matching Design Methods to System Type", Sys-

tems Research 5, pp 27 - 34.

Beer S. (1972), The Brain of the Firm, McGraw-Hill.

Beer S. (1985), Diagnosing the System for Organisations, Wiley.

Berry A. J. Capps T. Cooper D. Hopper T. & Lowe E. A. (1986), "The

Ethics of Research in a Public Enterprise", in Heller F. (ed), The Use and

Abuse of Social Science, Sage.

Bjorn-Anderson N. (1988), "Are Human Factors Human", Comp. J. 31

(5), pp 386 - 390.

Bowey A. M. (1980), "Approaches to Organization Theory", in Lockett M.

& Spear R. (eds), Organizations as Systems, OU Press.

Burrell G. & Morgan G. (1979), Sociological Paradigms and Oreanitsa-

tional Analysis, Heinemann.

Carter P. Jackson M. C. Jackson N. & Keys P. (1987), "Community OR at

Hull University", Dragon 2 (2).

Carter R. Martin J. Mayblin B. & Munday M. (1984), Systems Manage-

ment and Change, Harper & Row.

Checkland P. B. & Scholes J. (1990), Soft Systems Methodology in Action

Wiley.

Checkland P. B. (1981), Systems Thinking Systems Practice, Wiley.

Checkland P. B. (1982), "Soft Systems Methodology: A Reply to M. C.

Jackson", Jnl. Appl. Sys. Anal. 9, pp 37 - 39.

Checkland P. B. (1983), "OR and the Systems Movement: Mappings and

Conflicts", J. Opl. Res. Soc. 34, pp 661 - 75.

Checkland P. B. (1985), "From Optimizing to Learning: A Development of

Systems Thinking for the 1990’s", J. Opl. Res. Soc. 36 (9), pp 757 - 767.

Chen P. P. (1976), "The Entity-Relationship Model - Towards a Unified

View of Data", ACM TODS | (1).

Child J. (1987), "Managerial Strategies: New Technology and the Labour

Process", in Finnegan R. Salaman G. & Thompson K. (eds), /nformation

(29

- 130 -

Technology: Social Issues, Hodder & Stoughton.

Churchman C. W. Ackoff R. L. & Arnoff E. L. (1957), Introduction to

Operations Research, Wiley.

Churchman C., W. (1979), The Design of Enquiring Systems, Basic Books.

Clark A. W. (1976), (ed) Experimenting with Organisational Life, Plenum.

Codd E. F. (1970), "A Relational Model of Data for Large Shared Data

Banks", Comm. ACM 13, pp 377 - 387.

Cohen B. Harwood W. T. & Jackson M. I. (1986), The Specification of

Complex Systems, Addison-Wesley.

Cross N. & Roy R. (1975), 7262 Man-made Futures: Design and Technol-

ogy, Units 13 - 16, Design Methods Manual, OU Press.

Cross N. (1982a), "Designerly Ways of Knowing", Design Studies 3 (4), pp

221 - 227

Cross N. (1982b), "Design Education for Laypeople", in Evans B., Powell

J. & Talbot R. (eds), Changing Design, Wiley.

Cross N. (1984) (ed), Developments in Design Methodology, Wiley.

Darke J. (1984), "The Primary Generator and the Design Process", in

Cross (1984).

Davis G. B. & Olson M. (1985), Management Information Systems,

McGraw-Hill.

De Marco T. (1979), Structured Analysis and System Specification, Pren-

tice Hall.

De Neufville R. & Stafford J. H. (1974), Systems Analysis for Engineers

and Managers, McGraw-Hill.

Dickson D. (1974), Alternative Technology, Fontana.

Eason K. D. (1984), "Towards the Experimental Study of Usability", Beh.

and Inf. Tech. 3 (2), pp 133 - 143.

Eden C. (1987), "Problem-Solving or Problem-finishing", in M. C. Jackson

& Keys P. (eds), New Directions in Management Science, Gower. .

Eden C. Jones S. & Sims D. (1983), Messing About in Problems, Pergamon.

Emery F. E. & Trist E. L. (1960), "Socio-technical Systems", in Church-

man C. W. & Verhulst M. (eds), Management Science Models and Tech-

niques, Vol 2, Pergamon.

Espejo R. (1987), "From Machines to People and Organisations: A Cyber-

netic Insight on Management", in Jackson M. C. & Keys P. (eds), New

Directions in Management Science, Gower.

Flood R. L. & Carson E. R. (1988), Dealing With Complexity, Plenum.

Flood R. L. (1989), "Six scenarios for the future of systems ‘problem

solving", Systems Practice 2, pp 75 - 99.

Floyd C. & Keil R. (1987), "Adapting Software Development for System

Design with the User", in Galliers R (ed), Information Analysis - Selected

Readings, Addison-Wesley. 4

Foster M. (1972), "An introduction to the theory and practice of action

research in work organisations", Human Relations, 25 (6).

Gane C. & Sarson T. (1979), Structured Systems Analysis: Tools and

Techniques, Prentice Hall.

Geuss R. (1981), The Idea of a Critical Theory, Cambridge University

- 131 -

Press.

Habermas J. (1972), Knowledge and Human Interests, Heinemann.

Habermas J. (1974), Theory and Practice, Heinemann.

Habermas J. (1979), Communication and the Evolution of Society,

Heinemann.

Harker S. D. P. & Eason K. D. (1984), "Representing the User in the

Design Process", Design Studies 5 (2), pp 79 - 85.

Harker S. D. P. & Eason K. D. (1985), "Task Analysis and the Definition

of User Needs", in Proceedings of the IFAC Conference ‘Man-Machine

Systems’, Sept. 1985.

Heller F. (1986), "Introduction and Overview", in Heller F. (ed), The Use

and Abuse of Social Science, Sage.

Howe D. R. (1983), Data Analysis for Data Base Design, Arnold.

Hutt A. Donnelly N. Macaulay L. Fowler C. & Twigger D. (1987),

"Describing a Product Opportunity: A Method of Understanding the

User’s Environment", in Diaper D. & Winder R. (eds), People and Com-

puters III, Cambridge University Press.

Jackson M. C. & Keys P. (1984), "Towards a System of Systems Metho-

dologies", J. Opl. Res. Soc. 35, pp 473 - 86.

Jackson M. C. (1982), "The Nature of Soft Systems Thinking: the Work of

Churchman, Ackoff and Checkland", Jnl. Appl. Sys. Anal. 9, pp 17 - 29.

Jackson M. C. (1983), "The Nature of Soft Systems Thinking: Comment

on the Three Replies", Jn/. Appl. Sys. Anal. 10, pp 109 - 113.

Jackson M. C. (1987a), "New Directions in Management Science", in Jack-

son M. C. & Keys P. (eds), New Directions in Management Science,

Gower.

Jackson M. C. (1987b), "Community Operational Research: Purposes,

Theory and Practice", Dragon 2 (2), pp 47 - 73.

Jackson M. C. (1987c), "Systems strategies for information management in

organisations which are not machines", Int. J. Inf. Mgt. 7, pp 187 - 195.

Jackson M. C. (1987d), "Present Positions and Future Prospects in

Management Science", Omega 15 (6), pp 455 - 466.

Jackson M. C. (1990), "Beyond a System of Systems Methodologies", de

Opl. Res. Soc., 41, p 657.

Jacques R. & Talbot R. (1975), 7262 Instruction Manual, OU Press.

Jacques R. (1982), "Changing Assumptions about Design Problems", in

Evans B., Powell J. & Talbot R. (eds), Changing Design, Wiley.

Jones J. C. (1980), Design Methods, Pitman.

Karapin R. S. (1986), "What’s the use of social science? - A review of the

literature", in Heller F. (ed), The Use and Abuse of Social Science, Sage

Publications.

Kast F. E. & Rosenzweig J. R. (1985), Organization and Management: A

Systems and Contingency Approach, McGraw-Hill.

Keys P. (1988), "A Methodology for Methodology Choice", Systems

Research 5 (1), pp 65 - 76.

Kuhn T. (1962), The Structure of Scientific Revolutions, University of

Chicago Press.

- 132 -

Lamb D. A. (1988), Software Engineering: Planning for Change, Prentice

Hall.

Langefors B. (1973), Theoretical Analysis of Information Systems, Auer-

bach.

Lehman M. M. (1980), Programs, Programming and the Software Life-

Cycle, Dept. of Computing and Control, Imperial College, University of

London.

Lewin K. (1947), "Group Decision and Social Change", in Newcomb T. M.

& Hartley E. L. (eds), Readings in Social Psychology, Holt, Rinehart &

Winston.

Lilienfeld R. (1978), The Rise of Systems Theory, Wiley.

Long J. (1986), "Designing for Usability", in Harrison M. D. & Monk A.

F. (eds), People and Computers: Designing for Usability, Cambridge

University Press.

Lundeberg M. Goldkuhl G. & Nilsson A. (1981), Information Systems

Development - A Systematic Approach, Prentice Hall.

Lyytinen K. (1987), "Information Systems Development: Theoretical Con-

structs and Recommendation", in Boland R. J. & Hirschheim R. A. (eds),

Critical Issues in Information Systems Research, Wiley

Macro A. & Buxton J. (1987), The Craft of Software Engineering,

Addison-Wesley.

Mansell G. J. (1989), "System Design and Social Science", in Flood R. L.

Jackson M. C. & Keys P. Systems Prospects, Plenum.

March L. J. (1984), "The Logic of Design", in Cross (1984).

Mumford E. (1983), Designing Human Systems, Manchester Business

School.

Nissen H. E. (1984), "Acquiring Knowledge of IS", in Mumford E. Hir-

schheim G. Fitzgerald G. & Wood-Harper A. T., Research Methods in

Information Systems, North Holland.

Popper K. (1959), The Logic of Scientific Discovery, Harper & Row.

Oliga J. C. (1988), "Methodological foundations of systems”methodologies",

Systems Practice, 1, pp 87 - 112.

Pressman R. (1987), Software Engineering - A Practitioners Approach,

McGraw-Hill.

Rapoport R. N. (1970), "Three Dilemmas in Action Research", Human

Relations, 23 (6) pp 499 - 513.

Rittel H. W. J. & Webber M. M. (1981), "Dilemmas in a General Theory

of Planning", in Emery F. E. (ed), Systems Thinking Vol. 2, Penguin.

Rivett B. H. P. & Ackoff R. L. (1963), A Manager’s Guide to OR, Wiley.

Ross D. T. & Schoman K. E. (1977), "Structured Analysis for Require-

ments Definition", EEE Trans. on Software Engineering SE-3 (1).

Ross D. T. (1977), "Structured Analysis - A Language for Communicating

Ideas", JEEE Trans. on Software Engineering, SE-3 (1) pp 16 - 34.

Roy R. (1975), Design Project Guide, OU Press.

Roy R. (1975), 7262 Man-made Futures: Design and Technology, Unit 12,

Design Project Guide, OU Press.

Silverman D. (1970), The Theory of Organizations, Heinemann,

- 133 -

Simon H. A. (1969), The Sciences of the Artificial MIT Press.

Sommerville I. (1982), Software Engineering, Addison-Wesley.

Susman G. & Evered R. D. (1978), "An assessment of the scientific merits
of action research", Administrative Science Quarterly, 23, December.

Ulrich W. (1983), Critical Heuristics of Social Planning, Berne: Haupt.

Willcocks L. & Mason D. (1987), Computerising Work, Paradigm.

Willmott H. (1989), "O.R. as a Problem Situation: From Soft Systems
Methodology to Critical Science", in Jackson M. C. Keys P. & Cropper S.
A. (eds), Operational Research and the Social Sciences, Plenum.

Wilson B. (1984), Systems: Concepts, Methodologies and Applications,
Wiley.

Wood-Harper A. T. Antill L. & Avison D. E. (1985), Information Systems
Definition: The Multiview Approach, Blackwell Scientific Publications.

Yourdon E. & Constantine L. (1979), Structured Design, Prentice Hall.

