TEAR PROTEIN COMPOSITION AND CONTACT LENS WEAR

by

Murchison George Elton Callender

A thesis submitted for the degree of

Master of Philosophy

in the

University of Aston in Birmingham

October 1985

University of Aston in Birmingham TEAR PROTEIN COMPOSITION AND CONTACT LENS WEAR

Murchison George Elton Callender

Thesis submitted for the Degree Master of Philosophy 1985

Summary

Tear Protein composition has been extensively investigated since lysozyme, one of its major components, was discovered by Fleming in 1922. Much of the current interest lies with the analysis of its components and their interaction with the contact lens during wear.

Because of the limit volume of tear fluids, some of its components are not readily accessible for analysis. Recent developments in micro-electrophoresis and immunochemistry have enabled the identification, characterization and quantification of proteins found in tears.

The use of hydrogels in contact lens wear have been plagued with problems associated with proteinaceous deposits and chemical preservatives which appear to provoke an adverse eye reaction. The aetiology of which may be immunologic and/or toxic. Preservatives such as Thimerosal and Chlorhexidine appear to bind or complex with the denatured protein on the lens. These preservatives concentrate and are later released onto the eye to precipitate a toxic reaction. In addition the preservatives may inhibit the four principal proteins - Lysozyme, Lactoferrin, Specific tear prealbumin and IgA, that play a protective role against infection.

A 24 week group comparative study was initiated to investigate changes in tear protein composition with hydrogel lens wear and its associated care regimen. Acrylamide gel electrophoresis was used to look at the distribution of the total protein profile while immunoelectrophoresis was employed to quantify lysozyme and IgA levels among four groups of subjects.

In general, it was found that there was not significant difference among the groups in the total protein, lysozyme and IgA (secretory) levels over the period of 24 weeks (p=0.0001). Also there was no significant difference in protein profiles among the Group with respect to time (p=0.0001). However, there was a gradual increase in protein content with time which may be due to seasonal changes.

Key Words

Tears - Protein - Electrophoresis - Contact Lens - Hydrogels

INTRODUCTION

Much of the current interest in human tears lies with the analysis of its components and their interaction with the contact lens during wear. Understanding the composition of the tears can lead to a more meaningful analysis of subjects with normal tears or, with various ocular and systemic diseases or those wearing contact lenses.

Because of the limited volume of tear fluids some of its components are not readily accessible for analysis. Recently, sensitive analytical techniques have been developed for the identification, characterization and quantification of proteins found in tears. Such a development is not only important for understanding the physiologic role of tear proteins but is also a valuable diagnostic tool.

Considerable progress has been made in the last decade in the development of hydrogel contact lenses for the correction of refractive anomalies of the eye. Yet numerous questions concerning the interaction of hydrogel material with the tear fluid components remain unanswered.

It is the purpose of this dissertation to review the literature on the lacrimal system with special reference to the tear protein composition and to attempt to correlate clinically observable changes in the eye's response to hydrogel contact lens wear with changes in the tear protein composition.

ACKNOWLEDGEMENTS

I would like to extend my sincere thanks to the following people:

Professor Graham F.A. Harding for his encouragement and guidance during the course of the work presented in this thesis.

Dr. John L. Larke who initiated my involvement in this work while I was on sabbatical at his Soft Lens Research Laboratory, The University of Aston in Birmingham. His support and advice are greatly appreciated.

The members of staff and technicians of the Department of Ophthalmic Optics for their assistance.

Professors Emerson Woodruff and Jacob Sivak for their encouragement and the opportunity to complete this work during their respective terms of office as Director, School of Optometry, University of Waterloo Ontario, Canada.

Professor Paul Morrison, Department of Biology, University of Waterloo, for his advice, continual support and use of his laboratory facilities.

The faculty and staff of the School of Optometry, University of Waterloo for their advice and assistance.

The subjects who gave up their time to participitate in this study.

Mr Chris Young and Dr. Dan D. Sheni for their assistance with the statistical analysis of the data.

I would like to acknowledge the following organizations for their financial support to this study: Ontario Ministry of Health Fellowship, Nuffield Foundation Fellowship, Bausch & Lomb Soflens International, Ciba Vision Care Inc. and Burton Parsons-Alcon Inc.

I am grateful to Joan MacLean, Judi Carter, Louise Walchuk, Diane Marleau and Cynthia Baptiste for typing and processing the thesis through the computer services, University of Waterloo.

ABBREVIATIONS AND SYMBOLS

Angstrom	Α
centimeter	cm
degree Celsius	ОС
dioptre	D
gram	g
hour	hr
international unit	IU
litre	1
mean	×
mercury	Hg
microgram	ug
microlitre	ul
milliampere	mA
milliequivalent	mEq
milligram	mg
millilitre	m1
millimetre	mm
millimole .	mmo 1
milliosmole	mOsm
minute	min
molar	М
mole	mo1
nanometre	nm
parts per million	ppm
poly-hydroxyethyl methacrylate	PHEMA
poly-methyl methylacrylate	PMMA
second	sec
standard deviation	SD
standard error of the mean	SEM
statistical analysis system	SAS
volume	vol
week	wk
	WIX

DEDICATION

This thesis is dedicated to my parents:

Elton

and

Dorothy (deceased 23/11/84)

My sincere thanks to my wife, Chloe, and daughters, Paula and Janielle for their love, understanding and support throughout the time spent on this thesis.

CONTENTS

Summaryii
ACKNOWLEDGEMENTS iii
DEDICATION v
ABBREVIATIONS and SYMBOLSvi
INTRODUCTION xii
Chapter 1. The Leavised Sentem
Chapter 1: The Lacrimal System
Introduction
The Secretory System
Reflex Secretors
The Distributory System
The Excretory System 7
Charles 2. Director Property and Green and Government
Chapter 2: PHYSICAL PROPERTIES AND CHEMICAL COMPOSITION OF
THE TEAR FILM 9
Introduction9
Physical Properties
Secretion Rate
Osmotic Pressure
pH
Temperature
Chemical Composition
Lipid Layer
Aqueous Layer
Mucin Layer 23
Chapter 3: HUMAN TEAR PROTEINS
Introduction
Anodal Proteins
Specific Tear Prealbumin
Serum Albumin
Cathodal Protein Component
Intermediate Protein Components
Non-Lysozyme Antibacterial Factor
Metal-Complexing Proteins
Transferrin
Ceruloplasmin

Immunoglobulins		3.
Immunoglobulin A (IgA)		31
Immunoglobulin G (IgG)	• •	2
Immunoglobulin E (IgE)	• •	2
Complement Components		20
Complement Components	• •	3
Other Tear Proteins		40
Metabolic Enzymes		40
Lysosomal Hydrolases	• •	4
Proteinase Inhibitors (Antiproteases)	• •	4
Chapter 4: SYNTHETIC POLYMERS IN CONTACT LENS APPLICATION .	• •	46
Introduction		46
Classification of Contact Lens Polymers		4
Thermoplastics		47
Polymethylmethacrylate	• •	47
Gas Permeable Rigid Materials		10
Elastomers		40
Hydrogels	• •	47
Hydrogels		50
Covalently Crosslinked Hydrogels	• •	50
Ionically Crosslinked Hydrogels		50
Particle-particle Bonding Hyrogels	• •	50
Hydrogel Contact Lenses		51
Physicochemical Aspects of Hydrogel Lens Polymers		51
Chemical Composition	!	51
Physical Properties	!	54
Hydration	!	54
Permeability	!	55
Manufacture of Hydrogel Contact Lenses	!	57
Lathe-cutting	!	58
Spin-casting		58
Interaction of Hydrogel Lenses with Human Tears and Care Regimen		59
Contamination of Hydrogel Lenses		50
Care Systems		60
Heat Disinfection		40
Chemical Disinfection		20
	• • •	00
Chapter 5: STATEMENT OF THE PROBLEM		62
		20
Chapter 6: EXPERIMENTAL DESIGN AND METHODOLOGY	,	45
Experimental Design	6	5
Population Size	6	6
Selection of Subjects	6	7
Informed Consent	6	9
Diagnostic Lens Fitting	6	9
Experimental Procedures	7	
Treatment		1
Instructions on Care Regimen		1
Schedule of Visits		2
Methodology		
Collection of Tear Samples	(4
Absorbent Materials	!	4
Glace Capillary Tubos	1	4
Glass Capillary Tubes	. 7	5
Determination of Total Tear Protein Concentration	. 7	7
Electrophoretic Distribution of Tear Proteins	. 7	8

Determination of Tear Lysozyme Concentration Determination of Tear IgA Concentration	79
Clinical Methods	79
Data Recording and Analysis	51
Chapter 7: RESULTS	82
Introduction	82
Missing Data	32
Biochemical Results	34
Total Tear Protein Determination	34
Electrophoretic Distribution of Tear Proteins	38
Tear Lysozyme Concentration	96
Percentage Lysozyme in Total Protein	98
Tear IgA (secretory) Concentration)1
Clinical Results	16
Pachometric Measurements	16
Corneal Staining	18
Complications 10)8
Chapter 8: DISCUSSION AND CONCLUSIONS	0
Introduction	0
Discussion	.0
Conclusions	.6
Suggestions and Recommendations for Further Investigations 11	.7
Appendix A: EXPERIMENTAL SECTION	.8
Introduction	8
Determination of Papain Adsorption on Hydrogel Lenses	8
Materials and Methods 11	8
Results	1
Conclusion	1
Determination of Mercuri-Papain Complex	2
Materials and Methods 12	2
Results	3
Conclusions	5
Appendix B: DETERMINATION OF TOTAL TEAR PROTEIN	
CONCENTRATION 12	6
Introduction	6
Materials	6
Working Reagents	7
Method	8
Appendix C: ELECTROPHORESIS: THEORY AND METHODS	0
Theory	0
Methods	0
Moving Boundary Electrophoresis	1
Done Diectrophoresis	1

App	endix D: ACRYLAMIDE GEL ELECTROPHORESIS
N V N	Introduction 132 Materials 132 Working Reagents 133 Method 134 Quantification of Protein Fractions 138 Scanning Densitometry 138 Analysis of Densitometric Tracing 138
Appe	endix E: AGAROSE GEL IMMUNOELECTROPHORESIS (ROCKET IMMUNOELECTROPHORESIS)
N	ntroduction 141 Materials 141 Methods 143
Appe	endix F: STATISTICAL AND RAW DATA
Appe	endix G: POSTER AND CLINICAL EVALUATION FORMS 203
REF	ERENCES 215
	TABLES
1.	The Properties and Composition of Human Tears
2.	
	Amino Acid Content of Human Reflex Tears 20
3.	Amino Acid Content of Human Reflex Tears
 4. 	
	Reported Levels of Human Tear Proteins
4.	Reported Levels of Human Tear Proteins
4.	Reported Levels of Human Tear Proteins
4.5.6.	Reported Levels of Human Tear Proteins.22Composition and Water Content of Some Hydrogel Lenses.53Subjects Profile68Treatment Code for Subjects in Group70
4. 5. 6. 7.	Reported Levels of Human Tear Proteins
4. 5. 6. 7. 8.	Reported Levels of Human Tear Proteins
4. 5. 6. 7. 8. 9.	Reported Levels of Human Tear Proteins.22Composition and Water Content of Some Hydrogel Lenses.53Subjects Profile68Treatment Code for Subjects in Group70Schedule for Data Collections73Incidence of Adverse Eye Reactions109Reported Levels of Lysozyme in Tears of Normal Subjects.113
4. 5. 6. 7. 8. 9.	Reported Levels of Human Tear Proteins

14.	Linear Regression Analysis for (Total) Tear Protein with Respect to Visit	158
15.	ANOVA for Percentage Distribution of Protein Fractions in Set 1 (PER 1) as the Dependent Variable	159
16.	Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 1 (PER 1) with Respect to Visit	160
17.	ANOVA for Percentage Distribution of Protein Fractions in Set 2 (PER 2) as the Dependent Variable	161
18.	Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 2 (PER 2) with Respect to Visit	162
19.	ANOVA for Percentage Distribution of Protein Fractions in Set 3 (PER 3) as the Dependent Variable	163
20.	Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 3 (PER 3) with Respect to Visit	164
21.	ANOVA for Percentage Distribution of Protein Fractions in Set 4 (PER 4) as the Dependent Variable	165
22.	Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 4 (PER 4) with Respect to Visit	166
23.	ANOVA for Lysozyme as the Dependent Variable	167
24.	Linear Regression Analysis for Lysozyme with Respect to Visit	168
25.	ANOVA for Percentage Lysozyme in Total Tear Protein as the Dependent Variable	
26.	Linear Regression Analysis for Lysozyme in Total Tear Protein with Respect to Visit	170
27.	ANOVA for IgA as the Dependent Variable	
28.	Linear Regression Analysis for IgA with Respect to Visit	
29.	ANOVA for percentage IgA in Total Protein as the Dependent Variable	
30.	Linear Regression Analysis for Percentage IgA in Total Protein with Respect to Visit.	
31.	Statistical Analysis: I. Total Protein Lysozyme IgA and Corneal Thickness	
32.	ANOVA for Central (Cornea) Thickness as the Dependent Variable	
33.	Linear Regression Analysis for Central (Cornea) Thickness with Respect to Visit	
34.	Statistical Analysis II. Electrophoretic Distribution of Protein Fractions	
35.	Raw Data Collected from Each Subject: I. Total Protein Lysozyme,	187

36.	Raw Data Collected from Each Subject: II. Electrophoretic Distribution of Protein Fractions
	FIGURES
1.	Schematic Diagram of the Lacrimal System
2.	A Section of the Eye and Lacrimal Apparatus
3.	The Structure and Composition of the Tear Film 16
4.	Collection of Tear Sample 76
5.	Graph of Mean Percentage Distribution of Tear Protein 86
6.	Electrophoretic Separation of Tear Proteins into 13 fractions 91
7.	Graphs of the Mean Percentage Distribution of Sets of Protein Fractions in Groups A,B,C and D
8.	Graph of the Mean Lysozyme Concentration 97
9.	Graph of Mean Percent Lysozyme in Total Tear Protein 99
10.	Graph of Mean IgA Concentration 102
11.	Graph of the Mean Percent IgA in Total Tear Protein
12.	Graph of the Mean Apparent Corneal Thickness 107
13.	Comparison of Calibration Curve of Certified Protein Control vs Serum Albumin
14.	Vertical Gel Column Electrophoresis Apparatus
15.	Preparation and Staining of the Acrylamide Gels
16.	Photo-Volt Densitometer for Scanning Acrylamide Gels 139
17.	Digitizing Pad(DP) and Commodore PET Microcomputer 140
18.	Preparation of Antiserum Agarose Gel in Glass Mould 145
19.	Shandon Apparatus for Rocket Immunoelectrophoresis 147
20.	Rocket Immunoelectrophoresis Plates for Lysozyme Assay 150
21.	Rocket Immunoelectrophoresis Plates for IgA Assay

Chapter 1

THE LACRIMAL SYSTEM

1.1 Introduction

The lacrimal system is of paramount importance for the maintenance of the optical integrity and normal eye function. An important contribution of this system is that it provides and maintains a continuous tear film covering the cornea and conjunctiva. The tears serve to protect, lubricate, cleanse and maintain an optically uniform corneal surface.

The system, as shown in Figure 1., consists of: (1) a secretory system, which provides the lipid, aqueous and mucin components: (2) a distributory system regulated by the eyelids and the blinking mechanism and (3) an excretory system which expels excess secretions and contaminants by way of the lacrimal duct (Jones, 1973; Holly and Lemp, 1977).

1.2 The Secretory System

Human tears are produced by a group of glands (Fig. 2) generally described as the lacrimal glands or the lacrimal secretory system (Botelho, 1964). Because of the complex neurogenic control of these glands they are classified as basic, reflex and psychogenic secretors (Botelho, 1964; Jones, 1966).

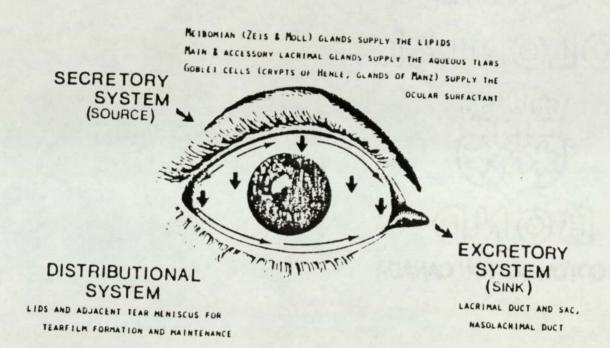


Figure 1: Schematic Diagram of the Lacrimal System (taken from Holly and Lemp, 1977)

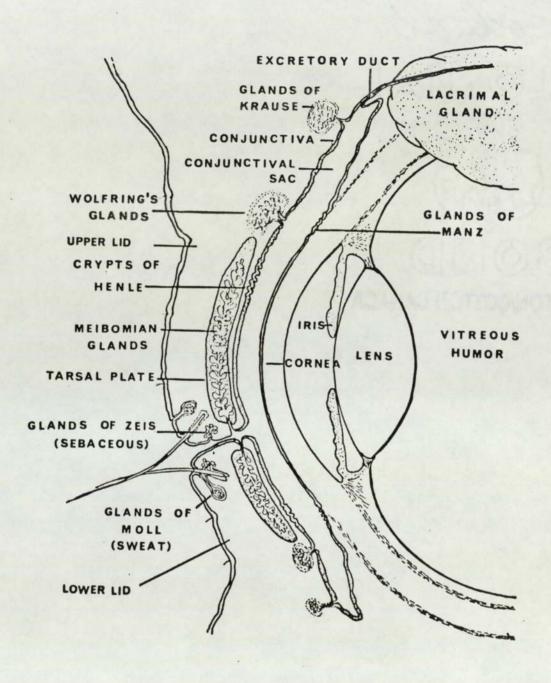


Figure 2: A Section of the Eye and Lacrimal Apparatus. Modified after Botelho (1964).

1.2.1 Basic Secretors

The basic secretors are exocrine glands with no known efferent nerve supply (Jones, 1966). These glands produce a continuous supply of secretions which are vital for the preservation of vision in some vertebrates. These include all vertebrates that spend all or some part of their life on land and two completely aquatic mammals, the whale and seal (Botelho, 1964).

Jones (1966) states that only the basic secretors are functional during the first few days or weeks of life in most new born. Normally during sleep or when the eyes are closed only the basic secretors are active.

The basic secretors consist of three types of glands which produce the triplelayered precorneal tear film. These glands are described by Wolff (1946) and more recently by Jones (1966) as the oily, aqueous (watery) and mucin secretors.

a. The Oil Secretors

The oil secretors consist of the Meibomian glands in the upper and lower tarsi, and the glands of Zeis in the palpebral margin of the upper and lower eyelids (Fig. 2). The major contributors to this oily secretion are the Meibomian glands. (Jones, 1966).

b. The Aqueous Secretors

These are the accessory lacrimal glands of Krause located near the upper and lower conjunctival fornices and the accessory lacrimal glands of Wolfring, three of which are in the upper margin of the upper tarsus and one in the lower tarsus (Fig. 2). There are also some minor glands in the plica and caruncle which together assist in the production of the middle or aqueous layer of the precorneal film (Jones, 1966).

c. The Mucin Secretors

The mucin secretors are the goblet cells of the tarsal conjunctiva and of the crypts of Henle along the upper and lower tarsi as shown in Figure 2 (Jones, 1966; McEwen, 1962).

There is also histochemical evidence of mucin-producing cells in the lacrimal glands (Allen et al. 1972; Jensen, et al. and Michelsen, 1969).

The amount of mucin secreted, by these glands per day has been estimated by Ehlers and co-workers (1972) to be 2 to 3 ul. Most of this mucin secreted forms the inner mucin layer of the precorneal film which is loosely attached to the microvilli of the corneal epithelium. The rest is dissolved in the aqueous layer.

1.2.2 Reflex Secretors

These are the principal lacrimal glands located superiorly and temporally to the globe, in a bony fossa, in the roof of the orbit (Wolff, 1946; Jones, 1966). They consist of a larger superior or orbital portion and a smaller inferior or palpebral portion (Fig. 2).

The reflex secretors are histologically similar to the accessory lacrimal glands of Krause and Wolfring but appear to differ in their neurosecretory control. Whereas the basic secretors appear to function independent of either afferent or efferent nerve supply, the reflex secretors are controlled by sensory fibers of the fifth cranial nerve (afferent pathway) and the seventh cranial nerve, which is the efferent pathway (Duke-Elder, 1968; Jones, 1966).

Recent studies by Gillette and co-workers (1980) confirmed that the lacrimal glands and accessory lacrimal glands are similar both histologically and in their secretory products. However, the presence of myoepithelial cells in the accessory gland tissue suggests autonomic innervation. This finding contradicts the classical differentiation of these two types of aqueous secretors.

The reflex secretors have only one efferent nerve supply but because of the many afferent pathways, the main lacrimal gland may be stimulated in four major ways according to Botelho (1964) and Jones (1966). These are peripheral, retinal, psychogenic and secretagogue stimuli.

a. Peripheral Sensory Stimulation

The sensory nerve endings of the conjunctiva, cornea, uvea, nasal mucosa and the skin in the immediate area of the eye may be stimulated by trauma, foreign bodies such as a contact lens, environmental pollutants etc., to activate reflex secretions. These secretions may also be activated when the basic secretions become inadequate.

b. Retinal Sensory Stimulation

Light entering the eye stimulates reflex tearing. Hence, under normal conditions retinal stimulation by light provides a reflex component of the basic secretions which is derived from the main lacrimal glands (Jones, 1966). The amount of this secretion is kept constant because of retinal adaptation to light. However, when the intensity of the light is suddenly increased or in pathological photophobia, this component is altered. Retinal reflex secretion is absent when the eyes are in the dark-adapted state and during sleep. (Jones, 1966).

c. Psychogenic Stimulation

This type of reflex stimulation is unique to man. It is never seen in lower animals (Botelho, 1964; Jones, 1966). Any strong emotional reaction, including joy and laughter, triggers tearing. This type of secretion is of no apparent physiological significance to the normal eye.

d. Secretagogue Stimulation

Stimulation of the secretory cells by "secretogogue" agents, such as mecholyl, pilocarpine and mustard gas derivatives, transported via the blood stream, cause both basic and reflex tearing (Botelho, 1964; Jones, 1966).

All of the aforementioned types of reflex secretions except peripheral sensory reflex, are unaffected by topical anesthesia of the cornea and conjunctiva. (Record, 1979).

1.3 The Distributory System

The tears secreted are distributed by the lids and the hydrostatic gradient in the tear meniscus along the edges of the upper and lower lids (Holly, 1980).

Jones (1973) believes that with each blink, there are changes in the pressure beneath the upper lid which help to distribute the tears. After each blink the precorneal tear film is reformed with the resurfacing of the mucin layer and the redistribution of the aqueous and lipid layers.

When the eyes are open, tear distribution to the exposed parts is made primarily by the physical forces of the surface, interfacial tension and gravity (Jones, 1973; Holly 1980). This is demonstrated by the flow of tears along the upper and lower marginal tear strip or meniscus. These join laterally, to form a tear pool. Medially the tear strips pass into the lacus lacrimalis which in turn carries the tears by capillary attraction and gravity into the lacrimal excretory system (Jones, 1973 and Maurice, 1973).

1.4 The Excretory System

The excretory system consists of the lacrimal puncta, canaliculi, sac and naso lacrimal duct. Tear drainage through this system is closely involved with the interaction of the lids, orbicularis muscles and preseptal muscles. The act of blinking propels tear secretions from the lacus lacrimalis through the lacrimal passage and out the inferior meatus into the nasal passage.

It is estimated that the excretory system removes 90 percent of the tear secretions; the rest is lost through evaporation (Jones, 1973).

Chapter 2

PHYSICAL PROPERTIES AND CHEMICAL COMPOSITION OF THE TEAR FILM

2.1 Introduction

The physical properties and chemical composition of human tear film have been extensively investigated over the last 200 years. However, because of the scantiness of the tear secretions and variability in composition, due to such factors as evaporation, inadequate mixing of the secretions of the various glands and the disproportionate contributions of the basic and reflex secretors, the published data, summarized in Table 1, are variable. (Altman, 1961; Lambert, 1983)

2.2 Physical Properties

The first documented chemical analysis on tears was done by Fourcrory and Vanquelin (1791) who described the tear fluid as a clear watery alkaline liquid which when heated, evaporates leaving a little oil and many salty substances. Duke-Elder's (1968) review of some of the early investigations on the physiochemical properties of this watery fluid indicates that it has a specific gravity slightly above unity; a conductivity ($\lambda \times 10^{-5}$) 1,950 to 2,272; viscosity (η) 1.050 to 1.405; surface tension (γ) 0.694 to 0.749 and refractive index 1.336 to 1.3369.

Other physical properties of tears, such as rate of secretions, osmotic pressure, pH and temperature, which are of a more recent era of investigation, require a more detailed review in light of their clinical importance in the formulation of ophthalmic solutions, including contact lens solutions and in the fitting characteristics of contact lenses.

Table 1. The Properties and Composition of Human Tears (Modified after Lambert, 1983)

Characteristic Physical Properties	Value
pH Osmolarity Volume Evaporation rate Flow rate Refractive index Surface tension	6.5-7.6 302 ± 6.3 m0sm/L 6.5 ± 0.3 µL 10.1 x 10 ⁻⁷ gm/cm ² /sec ⁻¹ 1.2 µ1/min 1.336 40.1 ± 1.5 dyne/cm

Water Sodium Potassium Chloride Bicarbonate	98.2% 145 mEq/L 20 mEq/L 128 mEq/L
Potassium Chloride	145 mEq/L 20 mEq/L
Chloride	20 mEq/L
The state of the s	
Bicarbonate	170 mEd/F
	26 -F-/T
Calcium	26 mEq/L 2.11 mg/dL
Magnesium	Trace
Zinc	Trace
Glucose	
Amino acids	3 mg/100 m1 8 mg/100 m1
Urea	7-20 mg - 1/100 mg
Oxygen	7-20 mg urea N/100 m1
Total protein	155 mg Hg (eyes open) 0.9 ± 0.1%
Lysozyme	1 3 + 0.1%
Complement	1.3 ± 0.6 mg/ml Present
fucus secretory substance	
ysosomal hydrolases	Present
ysosomal enzymes	Present
actate and Pyruvate	Present Present

2.2.1 Secretion Rate

The rate of tear secretion was first investigated by Schirmer (1903). He measured the rate of moistening of filter paper strips inserted into the lower conjunctival sac of patients with extirpated lacrimal sacs. The flow rate was found to be 0.67 gm per 16 waking hours which is equivalent to 0.6 to 0.8 ul per minute. The Schirmer technique, although widely used as a diagnostic test, is questionable because the irritation caused by the filter paper induces varying amounts of reflex secretions (Norn, 1965).

Recent studies based on the dilution rate of dyes and radioactive tracers applied to the marginal tear strip, provide a more reliable measure of the basic rate of tear secretions (Maurice, 1963; Mishima, et al. 1966; Norn, 1965; Sorensen, 1975). Mishima and co-workers (1966) measured the tear turnover rate as 16 percent per minute with the aid of fluorescein and a fluorophotometer. From this information they computed the average tear volume to be 7.0 ul and the average tear flow rate as 1.2 ul per minute. Sorensen (1975) found the rate of tear flow was 0.6 ul per minute by measuring the decay rate of radioactivity of a radioisotope placed in the tears. The results from these two recent techniques do not vary markedly from the less sophisticated Schirmer filter paper technique.

There is also general agreement among investigators that the tear flow rate decreases with increase in age and that there is minimal difference between the sexes except in young females who have a higher secretion rate than that of males (deRoetth, 1953; Furukawa and Polse, 1978; Henderson and Prough, 1950; Wright and Meger, 1962). In some ocular diseases such as kerato-conjunctivitis sicca (KCS) there is a significant reduction in tear secretion (Wright and Merger, 1962).

There are many drugs that affect the tear secretions. Antimuscarinics such as atropine and scopolamine are known to decrease tear secretions (Crandall and Leopold, 1979). Antimuscarinic compounds are also found in several over-the-counter preparations such as sedatives, nasal decongestants, antitussives, internal analgesics and antidiarrheals which decrease tear secretion and may result in symptoms of discomfort in contact lens wearers (Chang, 1977).

Garner and Rahi (1976) reported a reduction in tear secretions in 14 of 22 patients on Practolol, a beta - adrenergic receptor blocking agent, used in the management of cardiac dysrhythmia and ischaemic heart disease.

There are also many reports of drugs that increase tear secretions. Crandall and Leopold (1970) classified these as muscarinics, sympathominetic, antihypertensive and miscellaneous drugs, such as marijuana and heroin in chronic users.

2.2.2 Osmotic Pressure

The osmotic pressure of the tear fluid is of prime importance in the maintenance of the optical integrity of the cornea. Electrolytes such as sodium, potassium and chloride ions, are the main contributors to osmotic balance. Proteins, because of their high molecular weight and low concentration in tears, contribute an insignificant part of the total osmotic pressure (Mastman et at, 1961; Van Haeringen, 1981).

There is general agreement among investigators that the normal osmotic pressure of tears is similar to that of plasma which is equivalent to 0.90 percent sodium chloride solution (Krogh, et al. 1945; Mishima, 1965; Schaeffer, 1950). However, the tear tonicity is subject to dynamic change because of such factors as, tear evaporation between blinks, rate of tear flow and the amount of metabolites excreted into the tears (Mishima, 1965; Van Haeringen, 1981).

Terry and Hill (1978) using a dewpoint depression technique, found that tear samples collected from normal subjects during the waking day ranged from 0.90 to 1.02 percent sodium chloride equivalents. The mean value was about 0.97 percent sodium chloride equivalents or 310 mOsm/kg. These findings are in close agreement with those reported by Mastman and co-workers (1961) and more recently with Gilbard and co-workers (1978). It is interesting to note that with prolonged lid closure, the osmotic pressure of tears decreases. This decrease is attributed to a reduction in the evaporation of the basal tear secretion (Terry and Hill, 1978).

Since tear osmolarity is a function of tear secretion and evaporation, any abnormal decrease or increase in tear secretion will alter the state of hydration of the cornea. In keratoconjunctivitis sicca (KCS) there is a decrease in tear production, as indicated by the Schirmer test (Mackie and Seal, 1981) which results in an increased tear osmotic pressure and dehydration of the cornea.

Gilbard and co-workers (1978) found an average tear osmolarity of 343 mOsm/L in a group of patients afflicted with KCS. On the other hand, normal patients fitted with contact lenses show a marked increase in lacrimation during the contact lens adaptation period. This reflex tearing dilutes the electrolytes and proteins, thus decreasing the tear osmolarity. This resulting relative hypotonicity reflects the corneal edema often seen in the early stages of contact lens adaptation (Callender and Morrison, 1974; Hill, 1978; Schmidt et al., 1974; Uniacke and Hill, 1970).

2.2.3 pH

The tear pH closely approximates that of the blood plasma, pH 7.4 (Abelson et al,1981; Carney and Hill, 1976; McEwen, 1962). Wide variations have been found by Carney and Hill (1976) in the normal population and in a given individual at different times of the day. They found the pH ranged from 7.14 to 7.82. It appears to be lowest under conditions of prolonged lid closure as during sleep, because of the acid by-products associated with the relative anaerobic state, and increases as the eyes are opened because of the loss of carbon dioxide (Carney and Hill, 1976; Norm, 1977).

The tears are more alkaline with increased lacrimation (McEwen, 1962) and in certain external inflammatory diseases (Tapaszto, 1973). Tear samples collected directly from the lacrimal glands also showed a more alkaline pH (Rexed, 1958). The greater alkalinity of the tears in these reports appears to reflect the type of tear composition which McEwen (1962) attributes to the presence of the basic protein, lysozyme.

In spite of the variations in tear pH reported, it is maintained within a relatively constant range, because of the buffering system which consists of bicarbonate and protein species present in the tears (Carney and Hill, 1979; Iwata, 1973).

2.2.4 Temperature

The temperature of the tears is rather difficult to measure because of the scantiness of the fluid. However, it can be inferred that it is not too different from that of the corneal surface.

The temperature of the corneal surface has been measured Markovitch (1951) as 30°C, by Amano (1954) as 35°C and by Matthauis (1961) as ranging between 30 to 35°C. Ehlers (1965) cites the work of Braendstrup (1952) which indicated that the epibulbar temperature was higher in children than in adults and decreased with increasing age. The temperature was slightly higher nasally than temporally. Prolonged lid closure resulted in 0.5°C increase in temperature while a decrease of 1°C resulted if blinking was prevented for 5 minutes.

Hill and Leighton (1965) made the first attempts to measure the corneal temperature under a contact lens. They noted that the corneal temperature was altered by wearing contact lenses. Hamano (1978) reported that wearing a polymethylmetharcrylate (PMMA) rigid contact lens resulted in an initial decrease of 1.5°C in corneal temperature followed by a gradual increase. This initial decrease in temperature is due to the heat of evaporization of the tear film on the lens surface. As the lens surface becomes dry, the cornea is warmed up by thermal conduction. In contrast, wearing the polyhydroxyethylmetharcylate (PHEMA) soft contact lens, results in a decrease in corneal temperature with no subsequent increase. When the soft contact lens attains the corneal temperature, its water content decreases and its optical characteristics are altered. These changes in the soft contact lens are more pronounced in high water content soft lenses (Fatt, Chaston, 1980a & 1980b).

It is apparent from all these reports that the temperature of the tear film depends on such factors, such as the ambient temperature, the frequency of blinking, the rate of evaporation from the cornea and the type of contact lens material being worn.

2.3 Chemical Composition

Wolff (1946) was the first to describe the tear film as consisting of three layers: a superficial lipid layer; a middle aqueous layer; and a layer of mucin adjoining the corneal epithelium (Fig. 3). Since this description, numerous reports have appeared regarding the composition and function of each layer of the tear film herein reviewed.

2.3.1 Lipid Layer

The outer lipid layer of the tear film is approximately 0.1 um thick (Fig. 3). Its functions are to reduce the rate of evaporation of the underlying aqueous layer and to form a barrier along the lid margins to prevent the overflow of tears onto the lids (Mishima, 1965).

There is a lack of agreement among investigators on the nature and relative amounts of the different lipid classes. The three principal classes in tears are wax esters, cholestryl esters and triglycerides (Tiffany, 1978). Pes (1897) reported that the meibomian secretions contained fat, fatty acids and cholesterol. Linton, and co-workers (1961) identified neutral lipds, an unidentified lipid and some pospholipids. They could not detect the presence of cholesterol and free fatty acids. Ehler (1965), using a more reliable analytical procedure, found both cholesterol and cholesteryl esters, fatty acids, phospholipids and traces of trglycerides. Nicolaides and co-workers (1981) identified both wax esters and cholesteryl esters among the neutral fats as well as other hydrocarbons, free fatty acids and mono, di and triglycerides. This lack of agreement among investigators on the tear lipids composition is due not only to inadequate analytical procedures but also to sample collection techniques. In many studies the analysis was done on pooled samples, either from one individual or a group of individuals. Tiffany (1978) found that no two meibomian samples taken from the same individual are alike and that there are significant differences in lipid class composition between individuals with normal tear film functions.

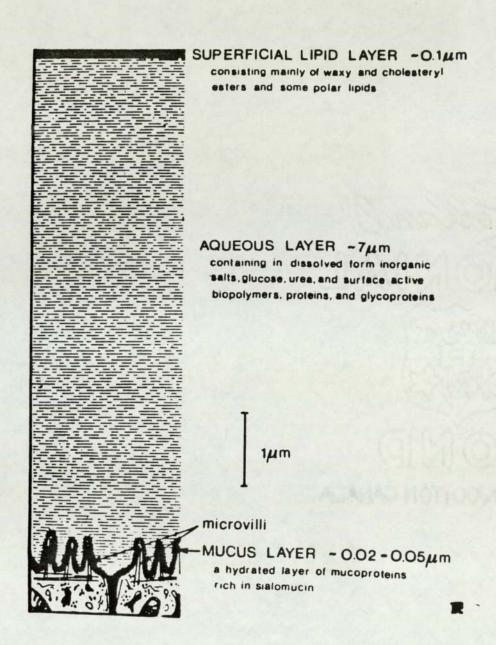


Figure 3: The Structure and Composition of the Tear Film (Taken from Holly and Lemp, 1977)

In spite of their high molecular weight, lipids melt at or near the corneal temperature (Brown and Dervichian, 1969). Andrew (1973) attributes the fluidity of these lipids to the number of branched chains and unsaturated hydrocarbons in the long-chain alcohols and fatty acid groups making up the lipid molecules. Recently, Nicolaides and Ruth (1982) found an unusual group of highly polar fatty acids in steer and human meibomian lipids which they believe aid in the spreading of the hydrophobic lipid layer over the aqueous layer.

2.3.2 Aqueous Layer

The aqueous layer makes up the bulk of the tear film; the thickness of which is about 7 µm (Fig. 3). It provides lubrication for the eyelid movement over the cornea and is the medium for transporting nutrients and antibacterial components necessary for the protection of the eye against pathogenic organisms. It also flushes away metabolic waste and foreign particulate matter which may be harmful to the cornea and conjunctiva (Holly and Lemp, 1977).

This layer is composed of 98.2 percent water and 1.2 percent solids (Ridley and Sorsby, 1940). The solids consist of both small and large molecular weight components. The small molecules make up the electrolytes, glucose, urea and free amino acids, while proteins, lipids and mucopolysaccharides constitute the macromolecules (Iwata, 1973).

The small molecules play an intrinsic part in the regulation of the osmotic pressure of the cornea and in supplying its metabolic needs (Van Haeringen, 1981). The principal inorganic molecules are the electrolytes sodium, potassium, chloride and bicarbonate ions. The concentrations of these have been compared with those in plasma or serum by Botelho (1964), Botelho, and co-workers (1973), Giardini and Roberts (1950) and Thaysen and Thorn (1954).

Sodium, the predominant cation among these electrolytes, was found by the Thaysen and Thorn (1954) to be equivalent to that of plasma and independent of the rate of tear secretion. The concentration varies between 142.5 and 147.0 mEq/L. In contrast, the potassium concentration is 3 to 5 times greater in tears

than in plasma of the same healthy group of subjects. A mean tear potassium level of 16.2 + 4.8 mEq/L was measured by Thaysen and Thorn (1954). This evidence supports the theory that potassium is actively secreted by the lacrimal glands, while sodium is passively transported from the blood across the blood-tear barrier. In general, any changes in the sodium level initiates the opposite change in the potassium level in order to maintain the osmotic balance between the extracellular and intracellular spaces of the cornea (Iwata, 1973).

Tapaszto (1973) found no significant difference in the concentrations of sodium and potassium between tears of healthy and diseased eyes. In fact, his findings were similar to those reported by Thaysen and Thorn (1954).

Chloride ions, like sodium and potassium play an important role in the osmotic regulation of the cornea. The mean tear chloride concentration of 128 ± 5.2 mEq/L appears to be higher than that in plasma (105.6 mEq/L) and independent of the tear secretion (Balik, 1955; Botelho, 1964; Giardini and Roberts, 1950; Iwata, 1973; Thaysen and Thorn, 1954). This evidence suggests that chloride ions are actively secreted by the lacrimal glands.

The bicarbonate ions form a buffer system with carbonate ions which may be responsible for the regulation of the tear pH (Iwata, 1973). Botelho (1964) measured the tear bicarbonate concentration as 26 mEq/L which is not signficantly different from that of serum (21-30 mEq/L).

Other inorganic ions listed in Table 1, such as calcium, magnesium, zinc, manganese and phosphate are found in low concentrations in the aqueous layer (Avisar, et al., 1977; Calderia, et al. 1982; Tapaszto, 1973; Uotila, et al. 1972). The role of calcium, magnesium and zinc in diseased eyes is not clear. However, Tapaszto (1973) found that their concentrations are increased about twofold in bacterial conjunctivitis and blepharoconjunctivitis; while in iritis and iridocyclitis their concentrations are decreased to one half the normal values. Iwata (1973) suggests that calcium and magnesium may be associated with cellular enzyme activity and the regulation of cell membrane permeability.

In addition to the electrolytes, the aqueous layer contains low molecular weight organic components such as glucose, urea and amino acids. Most investigators have found that the glucose level in tears is much lower than in blood. Values ranging from 3 to 10 mg percent have been reported. (Balik, 1961; Gasset, et al. 1968; Giardini and Roberts, 1950). Because of this low tear glucose concentration, it is doubtful that this source of glucose plays a significant role in corneal metabolism (Maurice, 1973).

Glucose in tears originates mainly from the blood; only a small amount appears to be produced by the conjunctival goblet cells (Iwata, 1973). Evidence to support its origin from the blood is presented by Tapaszto (1973) who reported that in diseased eyes the tear glucose concentration may increase 2 or 3 times the normal value depending on the glucose concentration in the serum. Gasset and coworkers (1968) and Sen and Sarin (1980) found that most diabetics show an elevated tear glucose level following the administration of the glucose tolerance test. Such evidence suggests that the elevated glucose load in the blood results in transudation of glucose through the blood-tear barrier in the lacrimal gland.

The urea concentration in tears is reported by Thaysen and Thorn (1954) to be equivalent to that in plasma. They found a mean tear to plasma ratio of 1.02 ± 0.07. The level of plasma urea ranged from 32.8 to 138.5 mg/100 mL. Balik (1959) found the tear urea concentration higher than that in plasma. However with increased lacrimation the urea level decreased. Since the urea concentration is independent of the rate of lacrimation, it would appear that it is not produced by the lacrimal gland.

Among the nitrogenous compounds, free amino acids are also present in the aqueous layer. Balik (1958) reported the amino acid concentration in tear to be 7.58 mg/100 ml, which is 3 to 4 times greater than in serum. Flachmeyer and Weichert (1963) isolated approximately 17 amino acids from human tears. These are listed in Table 2. It is not known whether all or some of the amino acids found are secreted by the lacrimal glands, filtered from the blood or are due to the deg-

Table 2. Amino Acid Content of Human Reflex Tears (Flachmeyer and Weichert, 1963)

Amino acid	Concentration Range (ug/ml)
Alanine	5.7 - 12.1
Arginine	2.9 - 4.3
Aspartic	4.0 - 7.0
Glutamic	3.1 - 7.3
Glycine	13.4 -26.2
Leucine &	2.6 - 5.8
isoleucine	
Lysine	1.7 - 4.6
Serine	3.8 -13.4
Taurine	0.8 - 3.2
Threonin	3.8 -10.8
Valine	1.7 - 4.6
α-aminobutyric	Trace
Histidine	Trace
Phenylalanine	Trace
Proline	Trace
Tyrosine	Trace
Histamine	Trace

radation of proteins and polypeptides. In addition, the role played by these amino acids in the synthesis of tear proteins or the maintenance of the integrity of the external ocular tissue is not clear. The aqueous layer also contains a variety of macromolecules. These consist of proteins, mucopolysaccharides, lipids and other large molecules (McEwen, 1962).

Proteins are a major tear component, they differ both quantitatively and qualitatively from those found in serum. The concentration ranges from 0.2 to 4.52 gm/100 ml depending on the technique of tear collection and the method of analysis employed (Krause, 1959). Table 3 summarizes the techniques employed and the mean tear protein concentrations reported by various investigators.

There is general agreement among investigators that these tear proteins can be electrophoretically separated into three principal groups of protein fractions. There is a fast anodal migrating group, the cathodal migrating group (lysozyme) and an intermediate group with a mobility similar to serum globulins (Brunish, 1957; Liotet and Reveilleau, 1965; Liotet, Warnet and Arrata, 1982).

Recently, as many as 60 protein fractions have been separated by Gachon and co-workers (1979), many of which have been identified and will be reviewed in greater depth in a subsequent chapter.

Reported Levels of Human Tear Proteins (From Callender, 1973) Table 3.

Investigator	Method of Stimulating Tear Flow	Method of Protein Determination	Tear Protein Value gm/100 ml.
Magaard (1882)	Unknown	Unknown	1.4638
v. Rotth (1922)	Ammonia	Refractometry	0.25 - 0.60
Ridley (1930)	Lemon Juice	Salting-out	0.699
Junnola (1952)	Methyl-mustard Oil	Nephelometry	0.136 - 0.592
Balki et al (1953) Unknown	53) Unknown	Colorimetry	4.52
Brunish (1957)	Onion Vapours and air pollutants	Colorimetry	0 40 - 0 40
Erickson (1958)	Unknown	Colorimetry	38 - 2 90
Krause (1959)	Bromacetone	Colorimetry	0.35
Callender (1973)	None	Colorimetry	1.02 + 0.05

2.3.3 Mucin Layer

The innermost layer of the tear film, the mucus layer, is approximately 0.02 to 0.05 um thick (Fig. 3). Mucus plays a critical role as a wetting agent by reducing the interfacial tension between the corneal epithelium and the aqueous layer and by stabilizing the extremely thin precorneal tear film between blinks (Holly and Lemp, 1971; Lemp, Holly, Iwata and Dohlman, 1970). In addition to lowering the interfacial tension, mucus maintains this low tension by masking and removing hydrophobic contaminants, such as meibomian lipids and epithelial cell debris rich in phospholipids (Holly, 1981).

The mucus layer is composed of mucopolysaccharides and glycoproteins, which are carbohydrate-protein complexes (Iwata, 1973). Histochemical studies by Norn (1969) showed that mucus threads collected from the lower fornix contain carbohydrates. Since then, numerous studies have shown, in addition to a number of tear-derived proteins and lipids, three principal mucus-type glycoproteins (GP1, GP2 and GP3M) of high molecular weight, detectable by electrophoretic methods (Iwata and Kabasawa, 1971; Moore and Tiffany, 1979, 1981). The two largest of these GP1 and GP2, appear to be aggregates consisting of the third (GP3M) held together by disulphide and other types of bonding (Moore and Tiffany, 1979). Further analysis of these indicates the presence of a high proportion of the amino acids, serine and threonine and the sugars, fructose, mannose, galactose, glucose, galactosamine, glucosamine and sialic acid (Moore and Tiffany, 1981; van Haeringen, 1981).

The site of origin of these glycoproteins has been demonstrated by Moore and Tiffany (1979) to be exclusively in the conjunctival goblet cells and not the lacrimal tissue as indicated by Allen, et al. (1972).

The tear film instability may be used as a clinical tool in the diagnosis of tear film deficiencies. This is a measure of the time elapsed between the last blink and the appearance of the first dry spot or break in the tear film. A tear film breakup time (BUT) shorter than 10 seconds is indicative of an abnormally unsta-

ble tear film (Lemp, 1973). Observations of a simultaneous occurence of tear film instability and a decreased goblet cell population in patients afflicted with Sjogren's syndrome by Ralph (1975) have lead to the speculation that mucus deficiency is the cause of tear film instability in these dry eye conditions. However, Dohlman and his co-workers (1976) did not find a marked deficiency in mucus concentrations in these conditions but suggested that a qualitative difference in the glycoprotein composition may be responsible for the tear film instability.

Chapter 3

HUMAN TEAR PROTEINS

3.1 Introduction

The proteins in human tears have been the object of intensive investigation since lysozyme one of the major tear proteins, was discovered by Fleming in 1922.

In early studies paper electrophoresis was the method of tear protein separation. This method did not provide optimum conditions for maximizing the separation of the many protein fractions. Consequently, only a maximum of six fractions have been detected by this technique (Brunish, 1957; McEwen and Kimura, 1955).

More recently, other types of supporting media have been used and more tear protein fractions have been separated and identified (Sapse, Bonavida, Stone and Sercarz, 1969). In general, up to 14 protein components can be detected from a single tear sample by acrylamide gel electrophoresis (Callender, 1973). However, Gachon and co-workers (1979) have detected at least 60 protein components from pooled human tears separated by two-dimensional acrylamide gel electrohoresis.

Three principal groups of tear proteins are herein described according to their relative electrophoretic mobilities, these are: the anodal albumins, cathodal lysozyme and the components of the intermediate group.

3.2 Anodal Proteins

Tear albumins make up 25-35 percent of the total proteins in normal human tears (Liotet, et al. 1982). They are the fastest migrating protein fractions located at the anodal end by acrylamide gel electrophoresis (Bonavida, et al., 1969). These proteins are separated into two components: specific tear prealbmin and serum albumin.

3.2.1 Specific Tear Prealbumin

Specific tear prealbumin is a major tear protein fraction found in tears of most animal species but not found in other body fluids (Bonavida, et al. 1969).

This protein has the same electrophoretic mobility as serum prealbumin but differs in immunochemical and physical properties. Antiserum raised to serum prealbumin does not react with tear prealbumin (Bonavida, Sapse and Sercarz, 1969; Josephson and Weiner, (1968). Hence the name "Specific tear prealbumin" (STP) was proposed by Bonavida and co-workers (1969). In addition, its molecular weight, 15,000 - 20,000 daltons, is much lower than serum prealbumin 61,000 Bonavida et al., 1969).

This anodal tear protein shows genetic polymorphism in acrylamide gel electrophoresis (Azen, 1976). It may be separated into 5 subfractions all of which are not always present at the same time. Band 1 is usually in combination with the slower migrating major band (2,3, or 4) or a faster major band (5). These genetic markers in tears may be of use in genetic investigations (Van Haeringen, 1981).

The absence of specific tear prealbumin in serum suggests it must be locally synthesized. Bonavida and co-workers (1969) identified sites of protein synthesis by culturing slices of the lacrimal tissue in a medium containing ¹⁴C-labelled amino acids. These sites were assayed by radioimmuno-electrophoresis and gel electrophoresis to ascertain the presence of STP. Other evidence in support of STP production by the lacrimal glands is the absence of this protein in human tears after surgical removal of the lacrimal gland or in ocular diseases, such as Sjogren's syndrome, where the lacrimal glands are non-functional (McEwen et al. 1957, Erickson, 1955).

The role of specific tear prealbumin is still unclear. Josephson and Wald (1969) showed that STP interacts with lysozyme to enhance its bacteriocidal properties. They postulated that at pH 7.0 lysozyme, a positively charged protein, is unable to interact efficiently with bacteria which are also positively charged. Specific tear prealbumin, a negatively charged protein, neutralizes the bacteria thus increasing the activity of lysozyme.

Sapse and co-workers (1968) postulated that acidic STP and basic lysozyme, being oppositely charged proteins, provide a buffering system in the tears. Any alteration in the ratio of these two components results in eye irritation. Hence the ratio of STP to lysozyme may be used as a diagnostic index of the condition of the lacrimal gland.

3.2.2 Serum Albumin

Serum albumin, a relatively minor protein component of normal tears, migrates in an electrophoretic field at a slightly slower rate than specific tear prealbumin (Bonavida, Sapse and Sercarz, 1969). Its molecular weight is 69,000, daltons (which is greater than STP) and is immunologically similar to blood albumin (Josephson and Lockwood, 1964).

Serum albumin is not synthesized by the lacrimal gland. Its concentration increases after mechanical stimulation, and in certain disease states (Josephson and Lockwood, 1964). Such an increase can be considered to be an indicator of a physiological response at the blood-tear fluid barrier. The function of this protein in tears is not apparent.

3.3 Cathodal Protein Component

There is only one negative migrating tear protein component separated by electrophoresis. This has been identified by McEwen et al. (1955) as lysozyme.

Lysozyme makes up 20 to 40 percent of the total human tear protiens (Brunish, 1957; McEwen and Kiwura, 1955; Sapse, et al., 1967; Liotet, et al., 1982).

Since human tear lysozyme was first discovered by Fleming (1922) it has been subjected to extensive investigation. It is also found in other biological fluids and tissues in man, animals and plants. These include: saliva, serum, leukocytes, gastrointestinal mucous, spleen, kidney, liver, lungs, lymph glands, milk, eggs, turnips, cabbage and cauliflower (Selinger, Selinger and Reed, 1979).

The physicochemical properties of human lysozyme differ from other sources of this protein. When compared with hen egg lysozyme, its amino acid composition and antigenic properties are significantly different, but its molecular weight (14,000-15,000 daltons) and electrophoretic mobility in an alkaline medium are similar (Bonavida, et al., 1967; Jolles and Jolles, 1967).

Tear lysozyme is produced by lysosomes, known celluar ultrastructures, found abundantly in monocyctes, polymorphonuclear leukocytes, eosinophils and basophils (Horwitz, et al 1978). The site of tear lysozyme production is not definitely known. However, there is evidence which suggests that it is produced in the lacrimal gland. Covey and co-workers (1971) found that there was no correlation of the lysozyme levels in paired serum and tear samples. The fact that the level in tears is significantly higher than in serum and independent of the rate of tear flow, provides added support for local synthesis. (de Koing and van Bijsterveld, 1984; Sapse, et al, 1968).

Recently, Gillette and co-workers (1981) identified sites of lysozyme in the acinar and ductular cells of the main and accessory lacrimal gland with the aid of an immunohistochemical technique. This evidence suggests that lysozyme is either produced in the lacrimal tissues or concentrated from serum.

Lysozyme (muramidase) is a mucolytic enzyme which catalyzes the depolymerization of sugars from peptidoglycan polymers which form the cell-walls of bacteria (Regan, 1950; Ronen, et al. 1975). This activity results in cell lysis, especially, of gram-positive organisms because their cell-walls are not protected by a lipopolysaccharide layer as is the case for gram-negative organisms (Selinger, et al. 1979).

Although the mechanism of action of human tear lysozyme is similar to that of hen egg lysozyme, its activity is 3 to 3.5 times greater at an equivalent concentration (Jolles and Jolles, 1967). This antibacterial activity is influenced by pH, temperature and the level of pyruvic acid in tears (Khan and Erdec, 1972; van Haeringen and Glasius, 1974).

In addition to the bacteriolytic activity, several other functions of tear lysozyme have been cited by Gillette and co-workers (1981). These include: bacteriostatic action, bactericidal action without lysis, facilitating secretory IgA bacteriolysis in the presence of complement, determining the rate of lysis in an IgM antibody-complement system and promoting contact inhibition of cells. Lysozyme is also believed to be effective against viruses (Ferrari, et al 1959).

Lysozyme level in normal tears differs from that in various ocular diseases (Regan, 1950; Tapaszto, 1973). In normal tears the level does not vary with changes in tear flow rate (Sapse, et al, 1968; van Haeringen and Glasius, 1974). However, Ridley (1928) noted a decrease in lysozyme concentration with prolonged tearing.

Most investigators agree that there is no significant variation between sexes, race or diurnal pattern (Pietsch and Pearlman, 1973; Regan, 1950). However, Regan (1950) reported that repeated measurements done on the same individual showed a high degree of variability in lysozyme levels over periods ranging from one week to one year.

Many investigators have found that age has no effect on the tear lysozyme level (Avisar, et al, 1979; Regan, 1950; Sen and Sarin, 1980), while others noted a gradual decline with advancing age (Mackie and Seal, 1976; Pietsch and Pearlman, 1973). The decrease in lysozyme activity seems probable since the tear production decreases with age (Henderson and Prough, 1950). Decreased tear volume however, does not necessarily indicate a low concentration of lysozyme as Pietsch and Pearlman (1973) have observed many subjects with low tear production but normal lysozyme levels. This lower lysozyme level observed with advancing age may be a reflection of a reduction in the number of acinar and ductular cells in the lacrimal glands.

Lysozyme has been reported to be reduced or absent in some ocular diseases such as conjunctivitis, corneal ulcers, herpes keratitis, trachoma, and systemic lupus erythematosus with paralimbal keratitis (Milton, 1965; Regan, 1950; Sen and Sarin, 1980; Tapaszto, 1973). In most cases the levels are not consistently reduced to be of diagnostic value. However, in keratoconjunctivitis sicca (KCS)

and Sjogren's syndrome, the lysozyme levels are consistently and significantly lower than in normal tears. Therefore the tear lysozyme assay can be used to compliment the Schirmer tear test in the diagnosis of these cases (van Bijsterveld, 1969).

Other health problems which reflect a reduction in tear lysozyme levels are, severe protein-caloric malnutrition in children (Watson, et al, 1978) and smog irritation (Sapse, et al, 1968.

The use of some therapeutic drugs appear to alter the level of lysozyme. Erickson (1960) studied the effect of several ophthalmic drugs on the tear lysozyme level in normal subjects. She found that scopalamine was the only drug to decrease the tear lysozyme concentration significantly. Johnsson and co-workers (1978) investigated some antimicrobial agents, such as chlorhexidine and thimerosal, which are used as preservatives in some ophthalmic solutions, including contact lens solutions. They found, by *in vitro* studies, that only chlorhexidine decreased the lysozyme activity.

The effect of several β-adrenergic blocking agents on tear lysozyme were investigated by Mackie and co-workers (1977). They found that patients taking practolol showed a marked reduction in tear lysozyme level. However, Strasser and Grabner (1982) did not find a reduction in tear lysozyme level in patients treated with timolol, a beta-blocking drug for glaucoma treatment.

It appears that the measurement of tear lysozyme concentration may be a useful indicator for the early detection of adverse effects of some drugs and disinfectants.

3.4 Intermediate Protein Components

The intermediate components consist of variety of proteins that originate from either the lacrimal glands or the serum. These proteins may be classified as ani-bacterial agents, some of which are metal complexing proteins, immunoglobulins and complements of the immune systems and enzymes.

3.4.1 Non-Lysozyme Antibacterial Factor.

Thompson and Gallardo (1941) reported that lysozyme was not the only antibacterial factor in tears and that there was a heat-sensitive factor primarily responsible for anti-staphylococcal activity. This observation was later confirmed by Friedland and co-workers (1972) who isolated and studied the physicochemical characteristics of this tear protein which they called a non-lysozyme antibacterial factor (NLAF).

Non-lysozyme antibacterial factor is a low molecular weight protein (5,000-7,500 daltons) with an anodal electrophoretic mobility similar to the intermediate tear protein fractions (Friedland, et al. 1972). Such a difference in electrophoretic mobility enables its separation from lysozyme and quantification of its specific activity. Unlike lysozyme, it lacks the ability to lyse the cell wall of Micrococcus lysodiekticus as demonstrated by spectrophotometric assay. Nevertheless, this factor shows a stronger antibacterial effect against many potential pathogens, few of which are affected by lysozyme even at high concentrations (Friedland, et al, 1972).

Ford and co-workers (1976) found this non-lysozyme antibacterial factor to be similar or identical in action to beta lysin, an antibacterial factor previously identified in platelets, serum and other body fluids. They found that tears contained more beta lysin-like activity than beta lysin in serum and aqueous humor.

The site of production of tear beta lysin is not known. Since platelets, the primary source of beta lysin, are not found in tears, it is suggested that it may be actively secreted or selectively filtered from the plasma and concentrated in the lacrimal gland (Ford, et al., 1976).

Recently, Selsted and Martiniz (1982) and Jansen and co-workers (1984) reinvestigated the presence of NLAF and/or beta lysin. These investigators were unable to detect tear fluid fractions with structural and antibacterial properties reported for NLAF and beta lysin.

3.4.2 Metal-Complexing Proteins

There are three metal-complexing proteins which are almost always present in human tears. These proteins, identified as lactoferrin, transferrin and ceruloplasmin, appear to have a protective role in the defense mechanism of human tears and are discussed below.

3.4.2.1 Lactoferrin

Lactoferrin is an iron-complexing protein first identified in bovine milk, human tears, and a number of external secretions (Masson, et al, 1966). Its distribution parallels that of lysozyme which Masson and co-workers (1969) suggest are complimentary or synergistic in their functions.

Because normal plasma lactoferrin concentration is 1.5 mg percent (Bennett and Mohla, 1976) and normal tear lactoferrin is 145 mg percent (Broekhuyse, 1974), it appears that tear lactoferrin is locally produced. Immunohistological studies by Gillette and Allansmith (1980) confirmed that lactoferrin is localized in the acinar epithelial cells of both main and accessory lacrimal glands. More recently, Stuchell, and co-workers (1981) showed that the concentration of lactoferrin increased with reflex tearing. Both studies therefore lend support for the lacrimal secretory system as the primary source of lactoferrin in human tears.

Purified lactoferrin is a thermolabile protein with a molecular weight, 82,0000 daltons, which, like transferrin, binds reversibly to iron ion but differs from transferrin both in chemical and immunological properties (Broekhuyse, 1974). It is an anodal migrating protein located among the globulin (intermediate) factions.

Lactoferrin has both bacteriostatic and bacteriocidal properties (Gillette and Allansmith, 1980). Oram and Reiter (1968) demonstrated its activity against Bacillus subtilis, Bacillus stearothermophilus, staphylococcus aureus, staphylococcus epidermidis and Pseudomonas aeruginosa. They found that in the presence of iron the virulence of some gram-negative bacteria increased. Thus it would appear that lactoferrin complexes with iron making essential iron ions unavailable for microbial metabolism. Lactoferrin also binds to proteins such as albumin, IgA,

IgG and ovalbumin. The complex formed has an electrophoretic mobility between the original proteins (Hekman, 1971). This interaction with specific antibodies IgA and IgG may produce a more powerful antimicrobial system than either lactoferrin or the specific antibodies alone.

3.4.2.2 Transferrin

Transferrin is an iron-complexing protein reported to be present in tears (Sapse, et al, 1969). However in some reports it can only be detected in tears, along with serum albumin and IgG, after mild trauma to the conjunctival mucosa (Josephson and Lockwood, 1964). It is probable that transferrin is not locally produced but rather a transudate from serum.

Although it has the same electrophoretic mobility and molecular weight as lactoferrin, it is immunochemically different (Broekhuyse, 1974).

Transferrin has not been associated with any ocular diseases but the similarity of its physiochemical properties with lactoferrin, particularly its binding with iron, suggests a probable bacteriostatic-related activity in depriving microbes of this essential metabolic element. Schade (1963) found that human serum transferrin inhibited several species of bacteria. However, Oram and Reiter (1968) found no inhibition of Bacillus stearothermophilus even at high concentrations of transferrin. They postulated that the iron-acceptor molecules in B. stearothermophilius possess a higher affinity for iron than serum transferrin and therefore survives in this medium. However, in the presence of lactoferrin the organism is unable to compete for the free iron. Lactoferrin has 300 times more affinity for iron than transferrin (Broekhuyse, 1974).

3.4.2.3 Ceruloplasmin

Ceruloplasmin is a copper-complexing, α -2-glycoprotein which is sporadically found in human tears (Sapse, et al. 1969; Liotet, et al. 1982). It is an anodal migrating protein with a molecular weight of 151,000 daltons (Josephson and

Lockwood, 1964). Although it is immunologically identical to plasma ceruloplasmin, its electrophoretic mobility in acrylamide gel differs somewhat (Sapse, et al. 1969). They attribute this difference to the sialic acid content of the glycoprotein or to genetic variations of the protein.

The site of tear ceruloplasmin synthesis is unknown. Its low concentration in tears suggests that it is not produced locally but may be transported from the blood. Josephson and Lockwood (1964) proposed an active transport mechanism since its high molecular weight prevents passive diffusion across the blood-tear barrier

The physiological role of tear ceruloplasmin is not apparent. Its serum concentration is decreased in Wilson's disease. This is a degenerative disease of the liver with ocular manifestations of copper deposition at the corneoscleral lumbus, known as Kayser-Fleisher's ring (Newell, 1965). Josephson and Lockwood (1964) suggest that this protein may be important in copper metabolism. In addition, it may play a role in certain detoxification activities, as it is a powerful oxidizing agent (Records, 1979).

3.4.3 Immunoglobulins

Immunoglobulins (Ig) are a complex group of heterogenous proteins that possess antibody activity. In humans, they are divided into five major classes: IgG, IgM, IgA, IgD and IgE, and subclasses within each group (Allansmith, 1982). The classes differ not only in antigenic specificity but also in physiochemical properties, distribution, turnover, quality and function (Harkness, 1970).

Human immunoglobulins are found in internal and external body secretions and in essentially every body component exposed to the lymphatic circulation (Hahn, 1982). Immunoglobulins found in the external secretions - tears, saliva, nasal and bronchial fluids, colostrum, breast milk, perspiration and secretions of the gastrointestinal tract are predominantly IgA but smaller amounts of IgG, IgM and IgI may be present (Allansmith, 1973; McClellan, et al. 1973).

3.4.3.1 Immunoglobulin A (IgA)

IgA in tears differs from serum IgA both chemically and immunologically. It consists of two molecules, each identical with serum IgA, linked by a glycoprotein chain called the secretory component or transport piece and a cysteine-rich polypeptide chain called the J-Chain (Allansmith, 1982; Harkness, 1970). Thus IgA in tears exists as secretory IgA (S-IgA).

Secretory IgA is a unique immunoglobulin in that it is the product of two types of cells - plasma cells and epithelial cells. Fluorescent antibody studies on the main and accessory lacrimal glands by Franklin and co-workers (1973) and more recently by Gillette and co-workers (1980) have identified IgA - containing plasma cells and also IgA and the secretory component. These have been localized in the epithelial cells, acinar lumina and intercellular spaces. It is unclear as to how and where the synthesis of S-IgA takes place. Allansmith (1982) suggests that the secretory component migrates to the epithelial cell surface where it combines with dimeric IgA. The combination is then secreted into the acinar lumen as secretory IgA. Secretory IgA adheres to mucus which then spreads as "immunologic paint" to protect the cornea and conjunctiva.

Secretory IgA appears to play a major role as a mucosal antibody paint with antibody specificity that is antiviral and antibacterial. Its viral neurtalizing activity in volunteers experimentally infected with rhinovirus, and its antibody activity to herpes simplex virus in normal subjects, have been documented (Bonavida, et al., 1969). However, the mechanism by which it functions as an antibacterial agent is much more complex and not well understood. Dawson (1976) suggested that S-IgA may mediate compliment-dependent bacteriolysis or enhance phagocytosis. Williams and Gibbons (1972) suggested that it may act by inhibiting bacterial adherence to mucosal surfaces. This inhibitory action prevents the colonization by pathogenic organisms, thus allowing the unattached bacteria to be washed away by fluids bathing these external surfaces. This hypothesis has been confirmed by Reed and Cushing (1975) who showed that Shigella-induced kerato-

conjunctivitis in guinea pigs could be prevented by precoating the organism with S-IgA.

Most investigators found an average IgA level of 20-30 mg/100ml in normal tears (Little, et al. 1969; Sen, et al. 1976). Sen and co-workers (1978) found that the tear IgA in normal, healthy eyes appeared to increase with increase in age and it was higher in females. It does not follow a diurnal pattern but tends to fluctuate more widely than the serum levels (Allansmith, 1973; Horwitz, et al. 1978).

Secretory IgA levels may be altered in a variety of conditions thus the determination of its concentration in tears may be used as a diagnostic aid in many immunological disorders. Watson, and co-workers (1978) found in protein-calorie malnourished children, the concentration of tear S-IgA was significantly reduced in contrast to the elevated serum IgA level. These children showed a significant increase in susceptibility to infections of the mucosal surfaces which may be due to impaired production and/or binding of secretory component without a reduction in the synthesis rate of IgA.

Sen and Sarin (1979) found that the tear IgA level was significantly elevated in patients with certain type of acute external eye diseases such as bacterial conjunctivitis, blepharoconjunctivitis, corneal graft reaction and Keratomalacia. Some drugs also appear to alter the levels of secretory IgA in tears. Garner and Rahi (1976) reported a decrease or absence of S-IgA in tears from a group of patient who were taking practolol, a beta-adrenergic receptor-blocking agent. They found the level of tear IgG, transferrin albumin and lysozyme were unchanged in these patients. Johnsson and co-workers (1978) investigated the effects of contact lens disinfectants, chlorhexidine and thimerosal on the human eye. They found an absence of IgA and IgE in tears of patients after the use of thimerosal for one to two weeks. It was suggested that this disinfectant causes damage to the immunoglobulin - producing plasma cells.

3.4.3.2 Immunoglobulin G (IgG)

Tear IgG is identical to serum IgG both in its physicochemical and antigenic properties. This protein consists of two heavy chains held together by a pair of disulfide bonds and two light chains each of which is attached to a corresponding heavy chain, through a C-terminal cysteine, by a disulfide linkage (Harkness, 1970). The molecular weight of IgG is less than that of IgA (M.W. 150,000 vs 160,000 daltons) and its electrophoretic mobility is slower than IgA (Allansmith, 1982; Harkness, 1970).

IgG, the predominant immunoglobulin in serum, is present in low concentrations in human tears (Little, et al. 1969). In most investigations it is reported as being detectable but only occasionally quantifiable in normal tears (Bluestone, et al. 1975; Centifanto and Kaufman, 1975; Sen, Sarin, et al. 1978). However, McClellan and co-workers (1973) were the only investigators to quantify the tear IgG level. They found IgG levels of 14 mg/100 ml which were approximately equal to that of IgA (17 mg/100 ml).

IgG is produced by plasma cells at the rate of about 28 mg per day per kg of body weight (Records 1979). It is found in higher concentrations in circulating plasma and extravascular tissues than any other immunoglobulin. Allansmith (1979) reported that there is high correlation between serum and tear IgG levels. This suggests that serum IgG diffuses across the blood-tear barrier in the lacrimal gland where it is concentrated and released with the lacrimal secretions. Evidence to support the localization of IgG in the lacrimal tissues was first presented by Franklin and co-workers (1971) and confirmed by Gillette and co-workers (1980). In both studies, immunofluorescent staining was used to identify IgG in the interstitial and plasma cells of the main and accessory lacrimal glands.

IgG is the principal source of protective humoral immunity against infective organisms and their toxins in the extravascular tissue (Allansmith, 1982). Its mode of action is by opsonization, immobilization and fixation of complement.

McClellan and co-workers (1973) observed a rise in tear IgG levels in some eye diseases, such as herpes simplex keratitis, acute follicular conjunctivities and vernal conjunctivitis. They suggested the increase IgG levels was due to transudation of serum protein in tears. In contrast, lower levels of IgG were found in children with trachoma as compared to a control group. The role of IgG in the pathogenesis of trachoma is not clear.

3.4.3.3 Immunoglobulin E (IgE)

IgE is a unique immunoglobulin which has recently been isolated and shown to be capable of mediating an atopic type of hypersensitivity in man (Brauninger and Centifanto, 1971). This immunoglobulin consists of two light and two heavy chains, like IgG, but has a much higher carbohydrate content and consequently a higher molecular weight 200,000 daltons (Harkness, 1970).

The average levels of IgE in tears and serum have been measured by Allansmith (1972), as 61 ng/ml and 201 ng/ml respectively. Because of the sparsity of the protein, the site of production is not definitely known. Its anatomical association with mucous membranes suggests it may be locally synthesized (Brauninger and Centifanto, 1971). This hypothesis is supported by Allansmith and coworkers (1976), who identified IgE by an immunofluoresence technique in the plasma cells of the main and accessory lacrimal glands. They have also shown that the level of IgE in tears increases relative to that of serum IgE in allergic conjunctivitis which suggests transudation from serum.

The clinical importance of tear IgE has been demonstrated by Ballow and Mendelson (1980), who identified specific IgE antibodies to pollen by the radioallergosorbent test (RAST). IgE attaches to mast cells and basophils in the tissues through which it controls the release of blood components at the site of inflammation. The presence of an allergen causes the combination of allergen with the antibody IgE which is attached to the mast cell. This reaction alters the mast cell membrane, and causes the release of its histamine which produces the characteristic symptoms of allergic conjunctivitis (Allansmith, 1982).

The level of histamine in normal tears averages 10 ng/ml. This level is consistently higher only in vernal conjunctivitis (Allansmith, 1980).

3.4.4 Complement Components

The complement system is recognized as a higher order of the humoral immune system in the body's defense against infection (Yamanoto and Allansmith, 1979). It is composed of 18 or more plasma proteins which can be activated by certain antigen antibody reactions. These proteins are of extremely high molecular weights. C1 has a molecular weight between 600,000 and 1,000,000; C2, C6, C7 and C9 have 120,000 or less, and C4, C5 and C8 have between 200,000 and 300,000 (Allansmith, 1982).

The protein components may be activated by one of two pathways. The classic pathway and the alternate pathway (Allansmith, 1982; Yamamoto and Allansmith, 1979). The classic pathway is triggered when C1 binds to sites on IgG or IgM that complex with the antigen. This sets up a chain reaction in the sequence C4, C2, C3, C5, C6, C7, C8 and C9 to damage the membrane of the infective organism.

The alternate pathway involves the interaction of a group of at least four proteins, including Properdin and Factor B, which act directly on C3 bypassing the C1, C4 and C2 sequence of the classic pathway. In both pathways the C3 component is the pivot for activating the enzyme sequence C5 through C9.

Activation of the complement system in humans results in cell membrane lysis, polymorphonuclear leukocyte chemotaxis, release of histamine, opsonization and finally viral neutralization (Yamamoto and Allansmith, 1979).

The presence of these components in tears and their physiological role have been under investigation for the last decade. Chandler and co-workers (1974) detected C4 in normal tears using a hemolytic assay technique. Bluestone and coworkers (1979) using a sensitive electro-immunodiffusion technique, were only able to detect C3 in tears of the normal individual.

More recently, Yamamoto and Allansmith (1979) demonstrated the presence of hemolytic complement activity of each of the nine complement components of the classic pathway in tears. The alternate pathway has also been shown to be present.

Kijlstra and Veerhus (1981) were unable to demonstrate the classic complement pathway in stimulated tears but found a factor which inhibited the hemolytic complement activity when added to normal human serum. They found that this heat-labile anticomplimentary factor has a molecular weight of approximately 150,000 daltons which distinguishes it from lysozyme and lactoferrin but does not distinguish it from the immunoglobulins.

The clinical significance of this anticomplementary factor is not fully understood. It may regulate complement activations on the external surface of the eye under inflammatory conditions.

The sparsity of these proteins (complement and anticomplement) in tears makes quantitative analysis difficult. Thus levels of these tear proteins have not been correlated with ocular diseases (Allansmith, 1982; Krjistra and Veerhuis, 1981).

3.5 Other Tear Proteins

A number of other protein components have been isolated from human tears. These include metabolic enzymes, lysosomal hydrolases and antiproteinases, among others (van Haeringen, 1981).

3.5.1 Metabolic Enzymes

Twelve metabolic enzymes have been identified in stimulated tears by van Haeringen and Glasius (1974a). They found the distribution of these enzymes indicated high activities of the glycolytic pathway enzymes (lactate dehydrogenase, pyruvate kinase and aldolase) and enzymes of the tricarboxylic acid cycle (malate dehydrogenase and isocitrate dehydrogenase). While those of the pentose - phosphate shunt (glucose - 6 - phosphate dehydrogenase), the sorbital pathway (sorbitol dehydrogenase) and the amino acid pathway (glutamate dehydrogenase, glutamate - oxalacetate transaminase and glutamate - pyruvate transaminase) were relatively low.

The possibility that these enzymes originated from the lacrimal gland is questionable since the corneal and conjunctival tissues, in contact with the tear fluids, may also produce these enzymes (van Haeringen and Glasius, 1974 a,b; Kahan and Ottovay, 1975).

Lactate dehydrogenase (LDH), the principal enzyme found in tears has been investigated more than the other metabolic enzymes (van Haeringen, 1981). Conflicting reports on its origin has been attributed to the differences in technique for sampling tears among investigators. van Haeringen and Glasius (1976a) did a comparative assay of LDH on samples collected by absorbent filter paper with those collected by microcapillary tubes. They found the LDH level was 10 to 20 times higher in samples from the filter paper than those from the microcapillary tubes. This suggests that the filter paper caused trauma to the corneal and conjunctival epithelia resulting in the release of LDH from desquamated epilthelial cells. MacKay et al. (1980) were unable to detect LDH in tear collected by capillary tubes, however elevated LDH levels were found in tear samples after gently rubbing the eyelids. Kahan and Ottovay (1975) found higher levels of LDH activity in tears and the corneal epithelium of rabbits compared with those of humans, while the activity in tear glands of both species was similar. In spite of the differences in species, it would appear that the source of LDH is from the corneal epithelium. The difference in the LDH-isoenzyme pattern between tears and serum found by van Haeringen and Glasius (1974 b) rules out the possibility of transudation of LDH from the blood into the lacrimal glands. Recently, Jacq et al. (1982) investigated the 5 isoenzymes of LDH. They concluded that tears, conjunctiva and lacrimal glands were poor in LDH-isoenzymes and that LDH in tears came mainly from other ocular tissues in contact with the tears; the cornea being the primary source.

Changes in the LDH content of tears and the distribution of the isoenzymes may be of diagnostic use in both ocular and systemic diseases. Kahan and Ottovay (1975) noted that various corneal diseases, mainly herpes cornea, have a tear LDH

content and isoenzyme distribution which are dissimilar from those of healthy individuals. Similar changes in tears of the diabetic reflect alterations in the metabolic processes in the cornea.

Fullard and Carney (1984) investigated the tear LDH levels relative to malate dehydrogenase (MDH) levels as an index of metabolic activity of the corneal epithelium under open and closed eye conditions. They found an elevated tear LDH/MDH ratio following overnight lid closure. This elevated LDH/MDH ratio was attributed to the hypoxic state which resulted in the unbinding of intracellular muscle type (M) LDH, increased cell membrane permeability and the efflux of LDH in the tears.

Other metabolic enzymes found in tears are amylase, hexokinase and glutamate - pyruvate transaminase (van Haeringen and Glasius, 1974C). Studies by these investigators suggest that all three enzymes are synthesized by the lacrimal gland.

The physiological role of amylase is not clear. Liotet (1969) suggests that it plays a role in glycogen metabolism by liberating glucose for the corneal epithelial cells. This enzyme shows a wide variation in activities between individuals, the level of which is dependent on the presence of calcium (Ca⁺⁺) in the tears (van Haeringen et al., 1975). Frequent use of the ophthalmic medications containing EDTA, a calcium sequestering agent, would inhibit the amylase activity and may lead to an adverse eye reaction (Anderson and Leopold, 1979).

3.5.2 Lysosomal Hydrolases

The lysosomal enzyme activities of 10 acid hydrolases have been observed in the human lacrimal gland and tears (van Haeringen and Glasius, 1980). These have been idientified as: β -hexosaminidase, α -galactosidase, β -galactosidase, α -fucosidase, α -mannosidase, α -glucosidase, β -glucosidase, α -glucuronidase, acid phosphatase and sulfatase.

From studies on tear enzyme activities, comparing methods of tear collection, van Haeringen and Glasius (1976 a&b) concluded that these enzymes are produced

in the lacrimal gland. Singer et al. (1973) previously reported that hexosaminidase A levels in tears were 6 to 10 times higher than in serum. This fact makes it unlikely that these enzymes originate from the blood and are transported into the lacrimal gland. Although the high concentration of these enzymes in non-traumatized tear samples suggest they are relased from the lacrimal gland, there is no histochemical evidence in support of the conclusion by van Haeringen and Glasius (1976 a&b) that these enzymes are found in the lysosomes of the secretory cells in the lacrimal gland's acini.

Many of the inborn errors of metabolism can be identified by specific deficiency of the corresponding lysosomal enzymes in tears (Singer *el al.*, 1973; van Haeringen, 1981). The two commonly reported inherited diseases of metabolism are Tay-Sachs and Fabry.

In Tay-Sachs disease the inherited metabolic disorder is identified by the absence of β -hexosaminidase A activity in tears (Singer et al., 1973). β -hexosaminidase consists of two fractions (A&B) of which fraction A is composed of 38 to 72% of the total activity; total activity reported by Singer et al. (1973) being 4576 \pm 665 nmol per ml per hour.

Fabry's disease is another of these metabolic disorders in which the lysosomal enzyme, α -galactosidase, activity in tears can be used to diagnose the condition. This enzyme also exists in two forms (A&B) which are distinguishable by their relative thermostabilities. The major component, α -galactosidase A, is thermolabile and represents about 90% of the total activity; the remaining 10% activity is due to the thermostable component, α -galactosidase B (Johnson et al., 1975). Thus the affected individual, carrier or normal can be identified by assaying tear samples for total α -galactosidase activity and again, after heating, for α -galactosidase B. The difference is the α -galactosidase A activity which is deficient in hemizygotes with Fabry disease and heterozygous carriers.

The use of tear samples for identifying patients with these inherited metabolic disorders from carriers and normals is a very practical and more economical method than the use of serum. The collection of tear samples by absorbent filter paper and measurement of the relative amount of these enzymes is a sensitive diagnostic method for identifying these inherited disorders in the population. (Anderson and Leopold, 1979; Singer et al., 1973).

3.5.3 Proteinase Inhibitors (Antiproteases)

Human tears have several inhibitors of proteolytic activity, the level of which is much lower than that in serum (Kueppers, 1971; Zirm et al., 1976). These inhibitors have been identified as alpha 1 - antitrypsin, alpha 2 - macroglobulin, inter- α -antitrypsin, alpha 1 - antichymotrypsin and a thiol-dependent protease inhibitor, papain (Anderson and Leopold, 1981).

There is conflicting evidence on the origin of these protease inhibitors. van Haeringen (1981) reported that alpha 1 - antitrypsin was secreted by the lacrimal gland because its level in normal tear was not altered by mechanical irritation or hypersecretion of tears. He suggested the other antiproteases may originate in the corneal or conjunctival tissues. Immunologic studies both by Berman et al. (1973) and Zirm et al (1976) have shown that these tear protease inhibitors are similar to those in plasma. They also observed a concomitant increase in serum albumin with increasing antiprotease activity in tears of inflamed eye. From this they concluded that the presence of antiproteases in tears was due to a passive leakage of these proteins from blood vessels that supply the inflamed eye.

The main function of antiproteases in tears appears to be protection of the tissues of the cornea and conjunctiva. This is achieved by controlling the collagenolytic activity in the tissues. alpha 1 - antitrypsin and α_2 - macroglobulin appear to be responsible for most, if not all, of the collagenase inhibitory activity because of their broad specificity (Berman *et al* 1973). These two antiproteases show an increased activity in corneal ulcerations, bacterial and viral infections (Anderson and Leopold, 1981; Zirm *et al.*, 1976).

Anderson and Leopold (1981) investigated tear inhibition of the thiol-protease, papain, and the possible relationship of its inhibitory activity in patients with external ocular diseases. They found low inhibitory activity with blepharitis and infectious conjunctivitis. While in allergic conjunctivitis the inhibitory activity was higher than in normal tears.

Bosmann et al. (1980) found the range of inhibitory activity in normal tears was from 0.49 ug to 1.14 ug. of papain inhibited per 10 ul tears. They indicated that this amount of antiprotease activity was more than enough to inhibit the residual papain activity on hydrogel contact lenses that were chemically disinfected after using the Soflens^R enzymatic (papain) cleaner.

Protease inhibitors in human tears may be of importance in controlling the course of ocular inflammation. The level of activity in tears may be of diagnostic and prognostic value for a number of ocular diseases. However, more sensitive methods of analysis need to be developed to differentiate the activities of the five proteolytic inhibitors identified.

Chapter 4

SYNTHETIC POLYMERS IN CONTACT LENS APPLICATION

4.1 Introduction

This historical development of contact lens materials warrants review in order to appreciate those unique characteristics in the designs of current synthetic polymers which make them compatible with the ocular tissues and tear fluids.

Fick (1888) described the first contact lens which was made of glass for the correction of refractive anomalies of the eye. In spite of the obvious shortcomings of glass (fragility and difficult to modify) it was used exclusively for many years until the introduction of synthetic plastics in the late 1930's (Bier and Lowther, 1977; Mandell, 1981).

Feinbloom (1936) developed the first scleral contact lens which had a plastic scleral portion fused to the glass corneal portion. Because of the toughness, optical properties, biocompatibility and relative ease of manufacturing, this plastic, polymethyl-methacrylate or PMMA, replaced glass.

The next period was devoted to the development of new lens designs in the PMMA material until the introduction of hydrogels by Wichterle and Lim (1960). Since then, research efforts have been concentrated on the development of contact lens material with qualities superior to those of PMMA, as it was realized that long term PMMA wear leads to corneal complications attributed to hypoxia (Mandell, 1981). This realization triggered the search for gas permeable materials.

4.2 Classification of Contact Lens Polymers

Polymers are long chain, high molecular weight molecules, made up of a number of repeating units linked together by covalent bonds, each derived from a starting unit called monomer (Refojo 1978). If the monomers are identical, the polymer is said to be a homopolymer. Polymers containing more than one type of monomer are called copolymers. These may be further described as random, alternating, block or grafted, depending on the arrangement of the monomers in the polymer chain (Bier and Lowther, 1977; Refojo, 1978).

Tighe (1979) classified these contact lens polymers as thermoplastic, synthetic elastomers and hydrogels, each having physico-chemical properties which reflects the uniqueness of the group; however, none having all the properties described by Pappas (1982) as the ideal contact lens material.

4.2.1 Thermoplastics

Thermoplastics are synthetic polymers which can be shaped or moulded under heat and pressure but are rigid at room temperature (Tighe 1982). Contact lenses made from these materials have good optical properties; however, they tend to be uncomfortable because of their rigidity and poor wettability. The principal material of this group is polymethylmethacrylate (PMMA).

4.2.1.1 Polymethylmethacrylate

Polymethylmethacrylate (PMMA) has been used extensively since Feinbloom (1936) reported on its use in a scleral contact lens design. The material can be synthesised by radiation or chemically induced polymerization of methylmethacrylate (MMA) in the presence or absence of solvents (Pappas 1982).

PMMA has most of the attributes of an ideal material, except it is rigid, hydrophobic and practically impermeable to oxygen, water and other metabolites necessary to support normal corneal metabolism (Refojo, 1973). Its oxygen diffusion coefficient (11 x 10^{-7} cm²/hour) is approximately four times smaller than that of a hydrogel and five times lower than that of the synthetic elastomers

(Refojo, 1973). Because of its relative impermeability to atmospheric oxygen, PMMA lenses must be fitted in such a way that normal blinking facilitates a continuous exchange of oxygenated tears between the lens and cornea (Mandell, 1981).

To a great extent, because of the impermeability of PMMA, several other thermoplastics are currently being used, or suggested for use, as gas permeable rigid contact lenses.

4.2.1.2 Gas Permeable Rigid Materials

There are several gas permeable rigid materials many of which vary in their oxygen-diffusing characteristics due to differences in their polymeric formulation. Examples of these materials are cellulose acetate butyrate (CAB), silicone acrylates, t-butyl styrene and fluorocarbon copolymers (Greco, 1984).

Silicone acrylates are the most widely used of these gas permeable materials because of their enhanced physiological tolerance and potential for use as extended wear contact lenses (Benjamin & Simons, 1984; Levy, 1983; Zantos and Zantos, 1985). The formulation consists of varying proportions of siloxanyl alkylmethacrylate, methylmethacrylate, methacrylic acid or hydroxyethylmethacrylate (HEMA) and crosslinking agents (Andrasko & Bennett, 1985). The siloxanyl alkylmethacrylate provides the oxygen permeability characteristics, while the methylmethacrylate and methacrylic acid or HEMA provide the rigidity and the wettability characteristics respectively.

The properties of these polymers which allow increased gas permeability are the same ones that contribute to the problems of poorer wetting characteristics than PMMA. In addition, gas permeable materials have a greater affinity for protein and lipid deposits, which are a source of great discomfort to the contact lens wearer (Seidner and Sharp, 1984).

4.2.2 Elastomers

Synthetic elastomers are polymers made from crosslinked dimethylpolysiloxane with varying proportions of a silica filler added to provide the flexibility, pliability and resilience of the silicone lens (Bier and Lowther 1977; Phares, 1972). The entire mixture is polymerised at high temperature and pressure to form a moulded silicone rubber lens (Seger, 1980).

Tighe (1979) describes the properties of these elastomers as being intermediate between those of the thermoplastics and hydrogels. They possess a degree of toughness associated with the former and the softness or flexibility of the latter. The most outstanding feature of this material is its high oxygen permeability which greatly exceeds that of both thermoplastics and hydrogels. This is attributed to the polymer backbone of alternating silicone to oxygen atoms which has not only greater segmental mobility but much higher solubility for oxygen than polymers with all-carbon backbones (Tighe, 1981).

Comparative studies on the three classes of polymers have judged the silicone elastomers to have the best equivalent oxygen performance - 18% E.O.P. (Hill, 1972). This property makes them ideal candidates for contact lens usage.

An undesirable characteristic of the material is its high wetting angle (greater than 90⁰) which makes it hydrophobic and uncomfortable to wear (Tighe, 1979). Surface modification by irradiation or chemical coating is necessary to improve the wettability of the finished contact lens (Refojo, 1973). However, such surface treatments are non-permanent and tend to alter the gas permeation and optical characteristics of the lens surface (Refojo 1973; Tighe 1979). In addition, silicone has a great affinity for lipid and protein deposits (Lipman, 1981). This accumulation of deposits compounds the problem of poor surface wettability.

4.2.3 Hydrogels

Hydrogels are three dimensional polymers which are characterized by their ability to take up and retain water. These polymers are held together by crosslinks which may be weak cohesive forces, hydrogen bonds, ionic bonds or covalent bonds (Bruck, 1974).

The classification of hydrogels by Erid et al. (1968) is based on three types of crosslinking or bonding. These are described as:

4.2.3.1 Covalently Crosslinked Hydrogels

These are three dimensional polymers such as polyhydroxyethyl methacrylate (PHEMA), a synthetic polymer developed for biomedical and contact lens applications (Wichterle and Lim, 1960, Wichterle, 1971).

4.2.3.2 Ionically Crosslinked Hydrogels

These are three dimensional, thermally reversible gels such as polyelectrolyte hydrogels which have been suggested by Michaels (1965) for use as membranes for ultrafiltration and dialysis, battery separators and surgical implants. Refojo (1967) suggested that these gels could be used for contact lenses because they are optically transparent and more permeable to water than non-ionic gels having similar water contents at equilibrium swelling.

4.2.3.3 Particle-particle Bonding Hyrogels

These are three dimensional microcrystal hydrogels formed by the interaction of discrete colloidal particles. These gels are derived from both natural and synthetic polymers; examples of which are the tobacco mosaic virus, collagens and nylon (Erdi et al. 1968). collagens have the most potential for contact applications (Refojo and Leong, 1980). However, there are no clinical studies to support this claim.

Of the three classes of hydrogels, covalently crosslinked hydrogels have stimulated most interest in their general applications as demonstrated by Wichterle and Lim (1960) who pioneered the work on HEMA. Since then there has been a proliferation of a variety of hydrogels with improved properties for contact lens applications.

4.3 Hydrogel Contact Lenses

The introduction of hydrogel soft contact lenses has added a new dimension to the fitting of a contact lens. Techniques which apply to the fitting of a rigid thermoplastic lens cannot be used with hydrogels because of their unique physicochemical characteristics which depend both on the physical shape of the cornea and the chemical composition of the tears. This section will review the physicochemical characteristics of hydrogels, the manufacture of lenses, and their interaction with the tears and care regime.

4.3.1 Physicochemical Aspects of Hydrogel Lens Polymers

The designing of hydrogel polymers for contact lens applications requires consideration of the chemical, physical and physiological factors necessary to optimize the performance of the lens on the eye. If the contact lens is considered as an extension of the cornea, then the hydrogel material must meet the requirements of hydration, permeability, mechanical stability, surface wettability in addition to optical transparency (Peppas, 1982; Tighe, 1976).

4.3.1.1 Chemical Composition

The diversity of the chemical composition of polymers used in the manufacture of hydrogel soft contact lens is illustrated in Table 4. It is apparent, from this partial list of lenses available in Canada since 1970, that three major chemical components have been used to design hydrogel lens materials. Thus hydrogel contact lens can be classified into three groups based on chemical composition: (a) those consisting of poly (hydroxylethylmethacrylate) or poly HEMA (b) those consisting of poly HEMA copolymerized with one or more comonomers such as N-vinyl-2-pyrrolidone (VP) or methyl methacrylate (MMA) and (c) those containing principally poly (N-vinyl - 2 - pyrrolidone), usually copolymerized with at least one other non-HEMA polymer (Cordery, 1974; Refojo, 1978; Parker, 1983).

Group A lenses are based on HEMA as described in the original patents by Wichterle and Lim (1961, 1965). HEMA is crosslinked with varying amounts of ethyleneglycol dimethacrylate to produce hydrogels with water contents varying from 30 to 40 percent (Pedley et al., 1980). Examples of these listed in Table 4 are Soflens^R, Hydron^R and Durasoft^R

Group B lenses are made from a modified HEMA, HEMA copolymers and HEMA terpolymers. Since homogenous poly HEMA can only be made to contain a maximum of 40 percent equilibrium water content, polymerization of HEMA with more hydrophilic monomers could produce hydrogels with water contents greater than 40 percent (Tighe, 1976). The principal monomer used for this purpose is N-vinyl pyrrolidone (VP) or its polymeric form, polyvinyl pyrrolidone (PVP), extends the range of water contents from 40 to over 90 percent, depending on the mixture of monomers (Pedley et al. 1980; Tighe 1976). Examples of lenses made from these copolymers are Softcon^R and Permalens^R with water contents 55 and 71 percent, respectively (Table 4).

Group C lenses are based on N-vinyl pyrrolidone or its polymeric form, polymerized with acrylic monomers (MMA) other than HEMA (Parker, 1983). Examples of these listed in Table 4 are Sauflon R 70 and Sauflon PWR, also marketed as B&L 70 and B&L CW. Other hydrogel lenses using methyl methacrylate and copolymers other than HEMA or PVP have been patented (Refojo 1978), one such example is the CSIR lens which is made of a copolymer of glycerylmethacrylate and methylmethacrylate. The equilibrium water content of materials in Group C range from 38 to 79 percent.

Table 4. Composition and Water Content of Some Hydrogel Lenses.

These are some of the lenses available in Canada since 1970.

COMPANY	TRADE NAME	POLYMER	HYDRATED REFRACTIVE INDEX	PERCENT WATER CONTENT
American Optical	Aosoft	HENA /NVF /HMA	1.43	42.5
American Optical	SOFTCON	HENA/PVP	1.40	55
Alden Optical	AL47	HENA/HA/NVP	1.43	36.5
Bausch & Lomb	Boflens	IIEMA	1.43	38.6
Bausch & Lomb	CW79	PVP/HMA	1.39	79.0
Bausch & Lomb	B&L 70	PVP/PPIA	1.39	70.0
Calcon	Gelfex	пена/нна	1.43	35.5
Canadian Contact Le	ns Contaflex	HEHA/PVP	1.40	55
Central Canada C.L.	C-Flex 40	HEHA/HMA/NVP	1.43	40
	C-Flex 50	HEMA/HMA/NVP	1.41	52
	C-Flex 38	HEMA	1.43	38
CIBA Vision	CIBASOFT	HENA	1.43	37.5
Cooper Vision	Permathin'	HEMA/NVI/+BHA	1.43	42.5
Cooper Vision	Permaflex	PVP/HPLA	1.38	72.0
Cooper Vision	Permalens	HEMA/PVP	1.38	71
coper Vision	Duragel 75	PVP/HMA	1.37	73.5
coper Vision	Cooper 38	HEMA	1.43	38
yntex Ophthal. Inc.	CSI	PGHA/HDIA	1.44	38.5
ominion C.L. Lab	Toyo 515	REMA/VA	1.43	35.5
reflex Canada Ltd.	Freflex	HEMA/HA	1.41	60
rontier	Hydromac	HEHA/MA	1.40	52
ernes-Hind	llydrocurve 11	HEHA/NVP	1.43	45
arnes-Hind	Hydrocurve II	HEMA/Acrylamide	1.41	55
ngram & Bell Canada	AMSOF	HEMA	1.43	
alvin C.L. (Canada)	TC50	НЕНА/НА	1.44	43
" " Ltd.			1.44	50
	TC75	ПЕНЛ/НЛ	1.39	75
dical Optics	Sauflon 70	PVP/tota	1.39	70
•	Sauflon PW	PVP/MMA	1.39	79
dron Canada	llydron	HEMA	1.43	
6 N Optical	Toyo 515	HEHA/VA	1.445	38.6
" "	Toyo 1500	HEMA/VA	1.457	35.6
" "	H 79	HEMA/VA	1.43	29
	K 69	HEMA/VA	1.41	37
	N6N 70	PVF/HMA		60
stic Contact Lens	Durasoft	HEMA	1.39	70 30
stic Contact Lens	PCL38	HENA	1.43	38

CODE:

GMA	Glycerylmethacrylate	
HEMA	Hydroxyethylmethacrylate	
М	Hethnerylic Acid	
MAI	Hethylmethacrylate	
HVP	N-Vinyl Pyrrolidone	
PVP	Poly Vinyl Pyrrolidone	
VA	Vinyl Acetate	

4.3.2 Physical Properties.

The relevance of the various properties of a hydrogel lens material depends on whether the lens is intended for daily wear or extended wear or whether it will be heat disinfected or chemically disinfected. Such factors must be considered in terms of their relative importance to the lens application.

4.3.2.1 Hydration

Hydration is the most important and essential property of hydrogels for contact lens application. A hydrogel in the dry state (xerogel) is hard and glossy like PMMA and can be deformed under pressure or heat (Larke, 1978; Refojo, 1972). However, when hydrated it becomes soft and rubbery. Water acts as an internal plasticizer, allowing the polymer chains to move easily with respect to each other (Larke, 1978).

The amount of water absorbed by the hydrogel, expressed as the equilibrium water content, depends on the concentration and type of hydrophilic groups and the density of the crosslinks (Refojo, 1973). As the number of crosslinks are increased, the number of reactive sites decreases and the water content and pore diameter decrease (Refojo, 1972). In general, the amount of water absorbed has a profound effect on the permeability, mechanical strength and biocompatibility of the material. For example, increasing the water content of the material increases its permeability to water and water soluble molecules and ions; while, it reduces the mechanical strength and increases its sensitivity to changes in the ambient environment (Pedley et al., 1980; Refojo, 1973).

The degree of swelling depends not only on the chemical composition previously discussed but also on such factors as pH, osmolarity, temperature, pressure and composition of the hydrating medium (Refojo, 1965, 1972; Yasuda et al., 1966). Clinical evidence suggests that diurnal variations in tear osmolarity and pH may affect the dimensional stability of the lens fit and proneness of the hydrogel to deposit formation (Hill and Carney, 1970; Hill, 1978). Changes in hydration of the material brought about by variations in tear osmolarity and pH are insignificant when compared to those induced by heat sterilization.

The effect of temperature on the equilibrium water content can be quite complex but it is normally reversible. Tighe (1976) reports there is a small but significant linear variation over a wide range of temperatures with some hydrogels; while with others, an increase in temperature leads to an initial decrease in water content followed by a rapid increase in water content with the concurrent development of a translucence or opaque gel. Therefore, it is important to consider the water content of the hydrogel lens when it is on the eye at 35°C and when heat is used as the procedure for lens disinfection.

The equilibrium water content also affects the optical transparency and refractive index of hydrogels. Tighe (1981) states that there is a linear relationship between refractive index and equilibrium water content. This is demonstrated in Table 4 which shows that the refractive index decreases with increasing water content.

4.3.2.2 Permeability

Hydrogels in the hyrated state have a certain porosity which selectively allows the penetration of water soluble molecular and ionic species in the water-filled polymer matrix. This porosity, commonly defined as the "average pore" radius of the network can be measured and calculated in various ways (Refojo, 1965). The average pore size increases with increasing water content as illustrated by Tighe (1982); water contents of 40, 60, 80 and 85 percent have average pore sizes of 4,6, 20 and 30A⁰ respectively.

Because of the pore sizes (5-30A⁰), small water soluble substances such as fluorescein, oxygen, carbon dioxide, urea, glucose, electrolytes and other metabolites can diffuse in and out the hydrogel contact lens with relative ease (Refojo, 1972). Substances of larger dimensions, such as protein, bacteria and viruses cannot penetrate an intact hydrogel lens (Refojo, 1972).

At the equilibrium water content these hydrogels will have an equal concentration of solutes and ions between the gel matrix and hydrating medium. Some of these substances have a greater affinity for the polymer matrix than the aqueous medium and as a result concentrate in the lens. Subsequent release of some substances, like ophthalmic preservatives (benzalkonium chloride, chlorobutanol and chlorhexidine), are known to be toxic to the ocular tissues of contact lens wearers (Refojo, 1972). This property of absorption and desorption of hydrogels is also a useful method of dispensing drugs into the eye in a continuous manner (Waltman and Kaufman, 1970).

The permeability of hydrogels to oxygen is an important property to be considered in selecting materials for contact lens application. Permeability of the material to oxygen depends on: (1) its resistance to the diffusion (D) of the dissolved gas and (2) the solubility (K) of the gas in the material (Refojo, 1979). The product of these two factors, DK, is the permeability.

Yasuda et al. (1966) found that the oxygen permeability of various hydrogel membranes was proportional to the equilibrium water content. This relationship was further investigated by Ng and Tighe (1976) with a variety of hydrogels used for or suggested for use as contact lens materials. These included HEMA, non-HEMA and polyelectrolyte complex gels with water contents ranging from 20 to 70 percent. They concluded that the oxygen permeabilities of hydrogels with water content 30 percent or less depended both on chemical composition and the proportions of "free" and "bound" water. While at higher water contents the oxygen permeability increased exponentially with increasing water content, irrespective of the chemical composition of the polymer. Furthermore, the permeability values at eye temperature 34°C were almost double those values obtained at 25°C

The presence of a hydrogel contact lens on the cornea acts as a limiting barrier to atmospheric oxygen. The amount of oxygen diffusing through the hydrogel contact lens occurs in accordance with Fick's Law of diffusion. This is expressed mathematically by Fatt and St. Helen (1971) as:

$$J = \frac{DK(Pa-Po)}{L} \qquad \dots (1)$$

where J is the oxygen flux (ul cm⁻²hr⁻¹); DK is the permeability of the material; (Pa-Po) is the difference in oxygen tension between the anterior and posterior surfaces of the contact lens (mm Hg) of a given thickness L (cm). It is apparent from this forumula that the amount of oxygen at the contact lens-cornea interface depends on the thickness of the lens and the permeability of the material to oxygen.

The compatibility of the hydrogel lens with the cornea will to a great extent, depend on the oxygen consumption rate of the corneal epithelium. The average oxygen consumption rate established by Hill and Fatt (1963) is 7.8 ul cm⁻²h⁻¹. Ng and Tighe (1976) used existing data on human consumption rates to determine the lens design which would support the oxygen needs of the cornea. From the computed values, one can select the material with a known water content and corresponding DK value to design the lens which would provide the oxygen needs of a given cornea.

An alternative approach has been suggested by Decker et al. (1978) in which a relationship has been established between the oxygen transmissibility of the hydrogel lens on the eye and the amount of corneal swelling. It is apparent from these studies that the hydrogel lens in situ causes the oxygen tension at the contact lens-cornea interface to be lower than in the open eye without a contact lens. Therefore, the lens with the higher oxygen transmissibility will produce a lower corneal swelling.

4.3.3 Manufacture of Hydrogel Contact Lenses

Hydrogel contact lenses are made by either lathe-cutting or spin-casting methods. These methods require precise control of the temperature and humidity of environment to prevent partial hydration of the polymer during manufacture of the lens.

4.3.3.1 Lathe-cutting

This procedure is carried out with dehydrated (xerogel) semifinished blanks or blanks cut from the polymerized rods. The blanks are lathed much in the same way as a PMMA or other thermo-plastic materials. However, because of the hardness of the hydrogel material the lathe speed must be 6,000 rpm rather than the 3,000 rpm used with PMMA, to ensure a smooth surface finish (Skudder 1978). The surfaces are polished with aluminum oxide mixed with mineral oil, paraffin oil, oxylene or some other non-aqueous fluid (Bier and Lowther 1977).

Since the lens swells in an aqueous environment, the dimensions must be calculated for the dehydrate lens which when hydrated swells to the desired hydrated parameters. The finished lens is inspected for surface defects and the physical dimensions verified before hydration.

The lens is then hydrated to extract all residual leechables (unreacted monomers, catalyst and polishing compound) and cleaned with a nonionic detergent.

The lens is inspected, bottle and disinfected by heat or chemical methods.

4.3.3.2 Spin-casting

Spin-casting or centrigual casting is a unique technique developed by Wichterle (1961) and is the present manufacturing method used solely by Bausch and Lomb Soflens^R under licensing rights from National Patent Development Corporation.

The process starts with a mixture of two monomers: ethylene glycol monomethyl methacrylate. A predetermined volume of the mixture is injected into a concave spinning mould of known radius. Polymerization is initiated when the liquid spreads from the centre towards the edge of the mould and is completed while the mould is still spinning. This process takes place in an oxygen-free and climatically controlled environment.

The lens is then removed from the mould and placed in distilled water at temperature 1900F to extract the unreacted monomers from the finished lens. After extraction, the lens is inspected for surface and structural defects and verified for power and other physical dimensions.

The lenses are then bottled in 0.9 percent saline and sterilized by autoclaving. Lenses moulded from the spin casting procedure depend on factors such as, the shape of the concave mould, volume of the mixture, speed of rotation, surface tension, gravity and centrigual force (Clements, 1978). Precise control of these variables is necessary to produce accurate and repeatable lens parameters.

4.4 Interaction of Hydrogel Lenses with Human Tears and Care Regimen

Hydrogel lenses are generally accepted by a significant proportion of the public. Furthermore, many wearers prefer hydrogel lenses to the rigid PMMA lenses because of the comfort experienced with the former. However, inspite of the comfort, there are several well-defined problems associated with hydrogel lenses that are not usually found with PMMA lenses. These problems include durability, contamination and disinfection. The focus of this section is on contamination and disinfection.

4.4.1 Contamination of Hydrogel Lenses

Hydrogel lenses, because of their hydrophilic properties, attract numerous contaminants to their surfaces. These contaminants include micro-organisms, tear proteins, mucus, lipids and other organic and inorganic compounds (Kleist, 1979).

Bacteria, molds or fungi are capable of metabolizing hydrogel polymers. The degree of susceptibility to microbial attack is related to the composition of the polymer and the aqueous environment in which it is hydrated (Refojo, 1973). Some hydrogel lenses contain linkages that are more susceptable to attack than others (Refojo,1973). Furthermore, many of the surface contaminants from the tears serve as nutrients for microorganisms and, together with a well-regulated temperature and pH of the tears, ideal conditions exist for the proliferation of microbes. For these reasons, hydrogel lenses must be cleaned and disinfected daily after use.

4.4.2 Care Systems

Several commercially available care products have been developed for the cleaning and disinfection of hydrogel lenses. The efficacy and advantages of each of these methods have been exhaustively reviewed (Callender & Lutzi, 1979; Phillips, 1977; Lutzi & Callender, 1984).

The two principal methods of disinfection are heat and chemical.

4.4.2.1 Heat Disinfection

Heat disinfection was the first method approved by the U.S. Food and Drug Administration for use with the Bausch & Lomb Soflens contact lens. It is a widely used procedure for both medium and low water content lenses and is effective against all organisms except spores (Callender & Lutzi, 1979). However, this procedure has a number of shortcomings, notably lens discolouration, polymer degradation and surface spoilage from denatured protein and other surface contaminants (Koetting, 1975; Ruben et al, 1975).

4.4.2.2 Chemical Disinfection

Chemical disinfection, as an alternative to heat, is a simple and effective procedure for disinfecting hydrogel lenses. However, its safety has been questioned because of the ontowards adverse ocular reactions reported in the literature (Callender & Lutzi, 1979).

These disinfecting agents may be classified as:

Oxidative Agents

- a. Hydrogen Peroxide
- b. Iodophors
- 2. Antimicrobial Agents (preservatives)

These antimicrobial agents are used in the following combinations:

- a. Chlorhexidine, Thimerosal and Disodium Edetate. eg. Flexcare^R
 (Burton Parsons-Alcon, Inc.)
- Alkyl Triethanol Ammonium Chloride, Thimerosal and Disodium
 Edetate eg. Hydrocare^R Soaking Solution (Allergan Pharm., Inc.)

The principal oxidative agent which is compatible with all types of hydrogels is 3% hydrogen peroxide. This compound is an effective microbicide. However, because of its low pH 3.0 and strong oxidizing effect, this disinfectant must be neutralized before the lens could be placed on the eye. Neutralization is acheived by one of the following methods: platimum, sodium pyruvate or with a catalyst, catalase (Lutzi & Callender, 1984).

The combined antimicrobial formulations are equally effective in killing all organisms within 30 mins to 6 hours (Kaspar, 1976). However, because of the absorptive and adsorptive properties of hydrogels, preservatives can diffuse into the lens matrix and interact with the polar (-OH) charged regions of the hydrogel. This interaction results in preservative binding and an increased concentration in the lens (Sibley & Yung, 1973). Bound preservatives can be released from the lens into the patient's eye and cause ocular irritation.

Studies have shown that chlorhexidine binds weakly to HEMA lenses and is slowly released without adverse effects to the eye (Otten & Szabocisk, 1976; Refojo, 1976; Ruben, 1980). However, if proteins and other contaminants are on the lens, chlorhexidine binds to the contaminants in addition to the polymer, thereby increasing the concentration of the adsorbed preservative. Kaspar (1976) has shown that a dirty HEMA lens adsorbs twice as much chlorhexidine as a clean lens.

This increase capacity of soiled lenses to bind preservatives necessitates an effective cleaning procedure which would free lenses of deposits and ensure effective disinfection. Several commercially available methods for cleaning hydrogel lenses have been reviewed by Phillips (1977). These include surfactants, organic solvents, oxidizing agents and enzymes.

Chapter 5

STATEMENT OF THE PROBLEM

A common problem associated with hydrogel soft contact lenses is the accumulation of deposits after periods of wear varying from a few days to several months (Koetting, 1973). These deposits, which are mainly proteinaceous, become denatured on the lens surfaces with the use of the disinfection procedure (heat or chemical) required to keep the lens in an aseptic state when not worn (Allen et al., 1978; Karagoezian, 1976; Wedler, 1977).

This denatured protein appears to provoke an adverse eye reaction, the aetiology of which may be immunologic and/or toxic (Allansmith et al, 1977, Cumming and Karagoezian, 1975; Spring 1977). In the latter case preservatives such as chlorhexidine and thimerosal may be solely responsible for the adverse reaction. These preservatives bind to protein deposits thereby increasing their concentrations above the level considered to be safe for use in the eye. Bound preservative may then be transferred from the lens to the eye and subsequently cause a toxic response or may act as an allergen which precipitates the allergic response (McMonnies, 1978).

Preservatives have also been implicated in interfering with the natural defense mechanism of the eye against infection. Johnsson et al. (1978), reported a disturbance in the microflora of the eye due to preservatives. In addition they demonstrated a decrease in lysozyme activity and the absence of tear IgA and IgG with the use of a chemical disinfection system containing 0.005% chlorhexidine.

Three types of cleaning agents have been developed for the removal and prevention of deposit formations. These are surfactants, oxidizing agents and enzymatic cleaners. The efficacy of these have been investigated by Hathaway and Lowther (1978). Of these three methods, a proteolytic enzyme (papain) has been

proven to be the most effective way of removing deposits and alleviating the adverse eye reaction (Allansmith et al., 1977; Eriksen, 1980; Lowther, 1977). However, papain has been reported to produce asthma, rhinitis, urticara and angioedema in workers exposed to airborne papain in a meat tenderizing plant (Novey et al., 1979). Thus the use of papain as a cleaner for hydrogel lenses may be another cause of the adverse reaction. Fichman et al. (1978) have demonstrated the presence of residual papain activity on hydrogel lenses after use. They suggested that the combination of the papain cleaner with the chemical disinfection system may lead to the red eye syndrome. To test this hypothesis a preliminary experiment was designed (see Appendix A). The results therein support the hypothesis that in the in vitro state papain binds to hydrogel lenses and forms a complex with mercury.

Recently there have been a number of case reports on hydrogel lens wearers manifesting an apparent sensitivity to the enzyme (Keller, 1983; Davis, 1983; Fichman et al., 1978). In the absence of specific immunological studies to determine the specific allergen, the cause of the adverse response could be due to any number of chemical components interacting with the hydrogel lens and the eye.

The problems associated with the interaction of the tear components, preservatives and hydrogel lenses are very complex. Our current knowledge of the aetiology of these adverse ocular responses is largely due to "case histories". Such publications in themselves are useful but in the absence of sound scientific methodology the results may lead to unreliable interpretation. Thus, it is the purpose of this study to correlate clinically observable changes in the eye's response to hydrogel contact lens wear with changes in the tear protein composition.

There are four principal tear proteins that play a protective role in eye against microbial invasion. These are lysozyme, lactoferrin, specific tear albumin and the immunoglobulins IgA and IgE. All of these proteins are secreted by the lacrimal. The prolonged use of the hydrogel lens disinfections solutions containing antimicrobical chemical may inhibit the production of these antimicrobial proteins.

Thus making the eye more susceptible to the invasion of pathogenic organisms. The resulting inflammatory response will alter the tear protein concentrations. Liotet et al. (1982) found that inflammatory reactions induce an increase in serum albumin and immunoglobulin fractions with gel electrophoresis.

Therefore, in this study the tear protein composition will be monitored in the following manner:

- The total protein concentration will be used as an index of overall change.
 An increase in concentration may be indicative of an inflammatory reaction.
- The electrophoretic distribution of the tear protein profile may indicate changes in specific protein fractions relative to others.
- 3. Two of the principal antimicrobial proteins, Lysozyme and IgA will be studied. These may indicate specific changes in the protein composition. Tapaszto (1973) reported an increase in these tear proteins in supperative eye diseases. While in the presence of chemical disinfectants a decrease in lysozyme activity has been reported (Johnsson et al., 1978).
- 4. The immune response to a hypersensitivity of the chemicals used in the hydrogel care systems may reflect a change in IgE. Therefore IgE will be studied.
- The proteinase inhibitors in tears provide a protective function for the ocular tissues against proteolytic enzymes. Papain, a hydrogel lens cleaner, may alter the concentration of these proteinase inhibitors. Of the three proteinases present only alpha-1-antichymotrypsin will be monitored.

The information dervied from this analytical approach may be a major contribution to the understanding of the eye's response to hydrogel lenses and their care regimen.

Chapter 6

EXPERIMENTAL DESIGN AND METHODOLOGY

6.1 Experimental Design

In planning this study it was necessary to consider a clinical design which would yield maximum effect without bias.

There are three fundamental designs for clinical studies: the matched pair or paired organ type; the cross-over type; and the group comparative type (Maxwell, 1968). With a paired organ study, a smaller number of subjects could be used. However, this method was rejected because of the possible sympathetic effects resulting from the treatment of one eye on the contralateral eye. Callender (1973) noted that tear sampling of one eye caused an alteration in the tear protein concentration in the contralateral eye as a result of the sympathetic reflex.

The cross-over design involves subjecting the patient to one type of treatment and then to a second type of treatment: for example, heat disinfection of lenses for one period, followed by chemical disinfection for another period, or vice versa. The difference in response to the two treatments is assumed to be due to the difference in treatment. The results here may be affected by the patient's adaptation or sensitization to the first treatment. Thus it was felt that the cross-over design would be unsuitable for this study.

The most suitable design was a group comparative study wherein all treatment procedures were administered concurrently so that the interaction between groups and between periods of sampling could be compared without bias to adaptation or preconditioning.

6.2 Population Size

It was also necessary to determine the number of subjects that would give a precise estimate of the parameters and their differences to be measured. The principal parameter under investigation was the protein content with special reference to specific components in human tears. Obviously, the larger the population, the more precise would be the estimates of the parameters and their differences. However, financial resources and time imposed restraints.

In view of the data obtained from the sensitivity of the protein analysis techniques used in a previous study by Callender (1973), it was calculated that ten subjects per set of observations were required to measure a detectable difference between means of 0.35gm% total protein (p=0.05).

The statistical method for estimating sample size according to Davis (1967) was applied:

$$N = \frac{(U\alpha + U\beta)^2}{D^2} \dots (1)$$

Where: $D = d/\sigma$ (2)

 σ = Experimental error

d = Difference between Means, important to detect

 α = Risk of ascertaining a difference when none exists

 β = Risk of saying there is no difference when one exists

N = Number of observations required

From the previous study σ = 0.35 mg% and d = 0.35 mg% were obtained to compute N.

From the statistical tables:

$$U = 1.96$$
; when $\alpha = \beta = 5\%$
 $u\alpha = u\beta = 1.6444$

Therefore:

$$N = (1.6444 + 1.6444)^{2}$$

$$(.35/.35)$$

$$N = 10.8$$

To guard against the possibility of loss of data from subjects' non-attendance, for reasons unforseen at the start of the study, a 50% wastage rate over the period was estimated. Hence, 15 subjects per set of observations appeared to be ideal to avoid a reduction of confidence in the interpretation of the results.

6.3 Selection of Subjects

Subjects were obtained through posters (Appendix G) placed within the University of Aston in Birmingham, and the City of Birmingham Polytechinic Institute. Interested subjects were asked to make an appointment for a screening at the research clinic. This procedure was designed to eliminate those subjects with obvious pathologies, known allergies, subnormal tear production, low tear break-up time (BUT), and other health problems contraindicating contact lens wear. A detailed profile is given in Appendix G.

One hundred (100) caucasian subjects were screened and forty-two (42) were accepted for soft contact lens wear.

Of the volunteers rejected, because of very low spectacle prescriptions or emmetropia, fourteen (14) were asked to act as paid control subjects. It may be argued that a bias was introduced by accepting these subjects as controls. Nevertheless, since the primary aim of the study was to investigate changes in tear protein content in healthy eyes, it was reasonable to assume that there is no correlation between refractive status and tear protein composition. There is no information in the literature to refute this assumption.

A profile of the subjects selected is given in Table 5. The group consisted of 35 males and 21 females ranging in age from 16 to 45 (Mean: 24.8 years, S.D. \pm 6.2 years).

Table 5. Subjects Profile

Group	N	SEX Male	X Female	AC	AGE (YRS) Mean	S.D.
	14	6	5	19–37	23.8	±5.0
	14	7	7	19-35	24.2	¥6.8
	14	10	4	16-32	22.4	14.1
	14	6	5	19-45	27.6	47.6
TOTAL	56	35	21	16-45	24.8	1 6.2

6.4 Informed Consent

On completion of the screening, the selected subjects were given a demonstration of the method for tear collection and other clinical procedures required for data collection during the period of study (Appendix G). Subjects were informed that study was approved by the University Committee for Human Research. They were assured that none of the procedures to be utilized would be harmful to their vision. They were then asked to sign the consent form shown in (Appendix G).

6.5 Diagnostic Lens Fitting

Subjects selected for contact lens wear were fitted with the U3 and U4 Bausch and Lomb Soflens^R (polymacon) contact lenses according to standard clinical practice. This type of hydrogel lens was selected because of the ease of fitting, its reliable performance, comfort and good physiological response.

The lens powers ordered ranges from -0.50 D to -8.00 D (Mean. -2.70 D S.D \pm 1.39). On completion of the diagnostic fitting, the subjects were randomly divided into three (3) groups of fourteen (14) contact lens wearers and the other fourteen (14) non-wearers acted as the control group (see Table 6).

TABLE 6. Treatment Code for Subjects in Group

Subject	THICIALS	DR	AT	Ä	AH	PM	AE	ES.	丐	KT	SF	r,	LU	25	DR
Group	1	DI	D2	D3	D4	D5	D6	D7	D8	D9	010	D111	D12	D13	D14
Subject Initials	(3 1	PG	AB	ВО	MN	SC	GD	IC	CT	KH	GT	RS	見	SC
Group	5	3 6	3 5	3 1	3 1	ß	95	C2	83	60	C10	C11	C12	C13	C14
Subject Initials	6		3 5		AW TC	2	EU I	t :	8	BA	7 1	PH C	85 E	3 ;	LS
Group	B1	B2	B3	84		8 E	2 4	70	0 0	B10	811	112	B13	817	****
Subject Initials	Z	LG	28	FH	EC	NL	K	RA	. I	RC	MW	M	AR	DB	
Group	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	

Treatment Code

Group A = Heat: Salt Tablets + Enzyme Cleaner (papain)

Group B = Chemical: Flexcare + Preflex

Group C = Chemical: Flexcare + Preflex + Enzyme Cleaner (Papain)

Group D = Control

6.6 Experimental Procedures

The following procedures were carried out before data collection and analyses:

6.6.1 Treatment

The randomly divided groups were assigned the following treatment procedures:

Group A: Heat Disinfection
Non-preserved saline and Enzymatic (papain) cleaner

Group B : Chemical Disinfection
Flexcare + Preflex (surfactant) cleaner

Group C : Chemical Disinfection
Flexcare + Preflex + Enzymatic (papain) cleaner

Group D : Control group wearing spectacles if required.

6.6.2 Instructions on Care Regimen

Groups A, B and C were given verbal and written instructions on the care and hygiene procedures designed for their respective care regimes (Appendix G).

Group A was directed to clean their lenses twice per week with the Soflens R enzymatic (papain) tablets, and to heat-disinfect their lenses daily, after use, with freshly made non-preserved saline in the Bausch & Lomb Aseptron R unit.

Group B was directed to clean their lenses after daily wear with Preflex^R, a surfactant, then rinse and store overnight in Flexcare^R, a chemical disinfectant consisting of 0.001% Thimerosal and 0.005% Chlorhexidine.

Group C was given the same chemical system as Group B but in addition to the daily use of a surfactant, they were instructed to use the Soflens^R enzymatic (papain) tablets twice per week prior to overnight storage in the chemical disinfection solution. This procedure was designed to precipitate the mercuri-papain complex.

Group D was the control group of non-wearers. No treatment procedure was given.

6.6.3 Schedule of Visits

Prior to the start of the study, subjects in groups A, B and C were given instruction on lens insertion and removal and on the procedures for caring their lenses.

A baseline tear sample was collected from the right eye of each subject (including the controls) on day zero before the treatment procedure began.

In order to avoid variations in data due to diurnal rhythm, a Latin square appointment system was suggested by Hirji (1978). The simplicity of this system allows the construction of an appointment schedule for each subject within a group, and hence cancels out the diurnal variations in the parameters to be measured. Although this appointment system solves the problem of variability in data, it imposes limitations on the number of subjects the investigator could see within an hour. Hence, a modification of the Latin square model was adopted as shown in Table 7. This allowed each subject to be seen once at all possible times between 10.00 and 13.40 hours. In so doing, the mean data collection time for each group was similar. Also, note that each subject was always seen on a specific day of the week once every three weeks for a period of 24 weeks.

Unscheduled visits were available when necessary to attend to clinical problems or to replace lost or torn lenses. A spare pair of lenses for each subject was kept in stock at all times so that a replacement could be obtained immediately without loss of wearing time.

Table 7. Schedule for Data Collection

Σ I H												
	DAY / I.D.	0.					WEEK	WEEKS / TIME OF DAY	OF DAY			
	M	TH	Œ.	0	3	9	6	12	15	18	21	24
A1 A4	A7	A10	A13	10:00	10:20	10:40	11:00	11:20	11:40	12:00	12:20	12:40
B1 B4	B7	B10	B13	10:20	10:40	11:00	11:20	11:40	12:00	12:20	12:40	13:00
C1 C4	C2	C10	C13	10:40	11:00	11:20	11:40	12:00	12:20	12:40	13:00	13:20
D1 D4	D7	010	D13	11:00	11:20	11:40	12:00	12:20	12:40	13:00	13:20	13:40
A2 A5	A8	A11	A14	11:20	11:40	12:00	12:20	12:40	13:00	13:20	13:40	10:00
B2 B5	B8	B11	B14	11:40	12:00	12:20	12:40	13:00	13:20	13:40	10:00	10:20
C2 C5	83	C111	C14	12:00	12:20	12:40	13:00	13:20	13:40	10:00	10:20	10:40
D2 D5	108	D111	D14	12:20	12:40	13:00	13:20	13:40	10:00	10:20	10:40	11:00
A3 A6	A9	A12		12:40	13:00	13:20	13:40	10:00	10:20	10:40	11:00	11:20
B3 B6	B9	B12		13:00	13:20	13:40	10:00	10:20	10:40	11:00	11:20	11:40
63 66	65	C12		13:20	13:40	10:00	10:20	10:40	11:00	11:20	11:40	12:00
D3 D6	60	D12		13:40	10:00	10:20	10:40	11:00	11:20	11:40	12:00	12:20

6.7 Methodology

The study employed both biochemical and clinical methods to monitor the ocular response to the treatment procedure of each group. However, the principal focus was on the biochemical analysis of tears collected at the predetermined intervals during the study.

6.7.1 Collection of Tear Samples

Over the last several decades a number of investigators have assayed the total protein and specific protein components in human tears. The values reported vary widely. van Haeringen (1981) attributed these discrepancies in tear protein values primarily to the methods of sampling. Tears may be collected by absorbent materials such as: Schirmer filter paper, cellulose sponges and cotton threads, or by glass capillary tubes.

6.7.1.1 Absorbent Materials

Collection of tears by an absorbent material requires that the pre-weighed material be placed within the conjunctival sac where it is soaked with tears. The tear-saturated material is then weighed to determine the sample volume. The tears are then eluted in an appropriate volume of saline or buffered solution. van Haeringen (1981) summarizes many of the flaws in this method: (1) it causes irritation to the conjunctiva and stimulates reflex secretion from the main lacrimal gland, (2) mucus and denuded cells adhere to the absorbent material, (3) it causes damage to the corneal and conjunctival epithelial cells, which results in the liberation of their contents; namely, metabolic enzymes, lysosomal enzymes and other proteins, and (4) there is poor recovery of the tear proteins when the tears are eluted in saline or the appropriate buffered solution.

Josephson and Lockwood (1964) found that the absorbent material caused trauma to the conjunctival sac. This resulted in increased levels of serum albumin, gamma globulin and transferrin not usually found in non-traumatized eyes.

6.7.1.2 Glass Capillary Tubes

Collection of tears by a glass capillary tube requires that it be placed in the lower tear strip at the margin of the external canthus (Fig. 4). Tears are drawn into the tube by capillary action with minimal stimulation to reflex secretion. Since the basal secretion rate of tears is approximately 1.2 ul per min. (Mishima et al, 1966) a 10 ul capillary tube could be filled in 7 to 10 minutes. In spite of the relative ease of sampling with this method, there is a potential risk of ocular injury if the researcher's hands are unsteady. Only fire-polished sterile tubes should be used with this method.

van Haeringen (1981) points out the essential differences between these two methods of sampling. In the capillary method, only freely floating tear fluid is collected; while with the absorbent material, not only fluid is collected, but also mucus and other cellular debris.

Stuchell and co-workers (1984) compared the quantitative effects of these two methods of sampling on several tear proteins. They found no signifiant difference in the concentration of lysozyme and lactoferrin in samples collected by either technique. In contrast, the concentration of serum proteins (albumin, IgE and transferrin) were significantly higher in tears collected with the absorbent filter paper.

In view of the numerous observations on the effects of the collection technique on the tear chemistry, the glass capillary tube method was chosen as the procedure for tear collection in this study. Previous studies by Callender and Morrison (1974) indicated that small sample volumes were more appropriate for tear protein micro-assays in that they minimized variations in protein values caused by evaporation, changes in the rate of secretion and reflex secretion. Experience has shown that the maximum time a subject could sit still during tear collection ranges from 5 to 10 minutes. Thus a maximum volume of basal tears one could collect in this time would be 6 to 12 ul.

Figure 4: Collection of Tear Sample.

A lateral view of a subjects right eye showing the collection of tear sample from the inferior marginal tear strip (MTS) with a 10 ul capillary tube.

- 1. C Capillary Tube.
- 2. LC Lateral Canthus.
- 3. LL Lower Lid.
- 4. MTS Marginal TearStrip.
- 5. UL Upper Lid.

In this study tears were collected by placing a 10 ul sterile microcapillary pipette (Drummond Scientific) in the lower tear strip at the margin of the external canthus of the right eye of each subject (Fig. 4). Samples were collected while the contact lens was on the eye instead of after lens removal, as the trauma from lens removal would stimulate reflex tear secretion. Special care was taken to avoid any physical stimulation of the eye. If stimulation was suspected the sample was discarded.

Approximately 12 ul of non-stimulated tears were collected within 10 minutes. All samples were stored at -20 C in the sealed microcapillary tubes then brought to room temperature immediately before the tear protein assays were done. In this study all analyses were performed on a single tear sample to avoid multisampling error.

Because of the small sample volume, the tear protein assays had to be limited to total protein content, protein electrophoresis and two specific tear proteins - Lysozyme and Secretory IgA. IgE and Alpha-1- antichymotrypsin had to be deleted from the protocol because their concentrations were below the detection limit of the immunoelectrophoretic techniques being used for the tear protein analysis. To obtain measurable values much larger sample volumes would be needed.

6.7.2 Determination of Total Tear Protein Concentration

The Lowry et al (1951) method for total protein was modified for the determination of the protein concentration of 2 ul of tears. (Appendix B) A standard curve was prepared from a certified protein standard (Sigma Chem.). This calibration curve was checked by running 3 standards (5, 10, 20 ug per tube) whenever the tears were being analyzed. Samples were read in a Cecil DB Spectrophotometer at 750 nm.

6.7.3 Electrophoretic Distribution of Tear Proteins

Prior to the discussion of the electrophoretic techniques used in this study, a review of the theory of electrophoresis and its development are presented in Appendix C.

The technique of disc gel electrophoresis by Ornstein and Davis (1962) was modified for the separation of the low concentration of proteins in a 2 ul tear sample. This modification was originally demonstrated by Callender (1973), to resolve the tear proteins into 12 to 14 fractions without the use of 0.1% (w/v) sodium dodecyl sulphate and the large pore spacer gel (Appendix D).

Electrophoretic separation was conducted at pH 8.6 using 1.25 mA per gel for the negatively charged proteins. Lysozyme, a positively charged fraction, was not included, as this fraction was analysed independently.

After the proteins were separated, the gels were fixed and stained with Coomassie brilliant blue R in 10% acetic acid. The gels were then destained and the protein fractions (bands) were scanned at 570 nm with a Photovolt densitometer. The electrophoretic distribution of the protein fractions were quantified by measuring the area under the peaks with a digitizing table coupled to a PET commodore microcomputer Fig. 14 (Appendix D).

6.7.4 Determination of Tear Lysozyme Concentration

The Laurell et al (1966) technique of rocket immunoelectrophoresis described in Appendix E was used for the determination of the tear lysozyme concentration. A 1/2 ul tear sample for each subject and calibrated pooled tear lysozyme standards were applied to the appropriately labelled sample wells of the 1% Agarose plate containing the lysozyme antibody (DAKO Immunoglobulins Ltd).

The polarity of the Shandon electrophoretic chamber was reversed (samples at the positive electrode) and the current adjusted to 8 mA. Electrophoresis ran for a period of 16 hours. After this was completed the gel was washed for two days with several changes of 0.9% saline. This was followed by a one day wash in distilled water.

The gel was stained with Coomassie brilliant blue R in a methanol acetic acid mixture, destained and allowed to dry.

The rocket heights were measured and the lysozyme content of the unknown samples quantified from the linear calibration curve of the standards.

6.7.5 Determination of Tear IgA Concentration

The Laurell et al (1966) technique of rocket immunoelectrophoresis previously described, was modified for the determination of the IgA levels in the tears (Appendi E).

A 1 ul tear sample for each subject and three dilutions of a standard serum was applied to the sample wells of the 1% Agarose plate containing IgA (secretory) antibody (DAKO Immunoglobulins Ltd).

The polarity of the Shandon electrophoretic chamber was in the normal position (samples at the negative electrode) and the current adjusted to 8 mA. Electrophoresis ran for a period of 16 hours.

The gel was washed for two days with several changes of 0.9% saline, followed by a one day wash with distilled water.

The gel was stained with Coomassie brilliant blue R in a methanol acetic acid mixture, destained and allowed to dry.

The Rocket heights were measured and the tear IgA concentration of the unknown samples computed from the linear calibration curve of the standards.

6.7.6 Clinical Methods

Subsequent to the collection of the tear sample a modified contact lens aftercare assessment was done. The following items were recorded on the progress sheet (Appendix G):

 History: special attention was paid to reports of red eyes, stinging, burning, irritation, itching, blurred vision, photophobia, excessive tearing and reduced wearing time, as these are symptoms of an adverse reaction to the care system and/or lens.

- Visual Acuity: evaluated on an internally illuminated Snellen acuity chart with a constant external illumination.
- 3. Stability of visual acuity after the blink.
- Over-refraction: when necessary to determine supplemental power required to improve the visual acuity.
- 5. Biomicroscopy: with lenses on, to assess lens performance and to check for deposits.
- 6. Biomicroscopy: with lenses removed, to assess corneal integrity with the use of fluorescein stain. Staining was classified as light, moderate or heavy; and the area of cornea stained was estimated as a percentage of the total corneal surface.
- 7. Upper lid eversion and examination: conducted on all subjects. The tarsal plate was classified as described by Allansmith et al (1977).
- 8. Pachometry: special attention was paid to the measurement of the central corneal thickness, since any form of corneal trauma results in swelling of the cornea. The pachometer used was a commercially available Haag-Streit corneal pachometer which was modified by Hirji (1978) to facilitate "blind" recording of the measurements. This apparatus was similar to that described by Mandell and Polse (1969). Prior to each session of data collection, the pachometer was calibrated with contact lenses of known thickness as advocated by Mandell and Polse (1969).

Central corneal thickness measurements were recorded as apparent thickness. These values were not converted to true corneal thickness as the investigator was only interested in the relative differences after the baseline measurements were obtained.

6.8 Data Recording and Analysis

The recording of the procedures described in Methodology generated a large volume of data. However, only the data pertaining to the biochemical analysis of tears collected and the corneal response to contact lens wear, as measured by pachometry, were analyzed.

The data was fed into the University of Waterloo IBM computer system where it was stored and retrieved for subsequent analysis. Statistical Analysis System (SAS) was used to compare the eye's response to hydrogel lens wear and care regimen among groups and between visits. Analysis of variance (ANOVA) and the Student Newman-Keuls test were the methods employed. A 5% level of significance was chosen for this study.

Chapter 7

RESULTS

7.1 Introduction

The data collected were stored in the computer and subsequently retrieved to ascertain the most appropriate method of analysis. The raw data presented in Appendix F, Tables 35 and 36 indicate that there are missing data and unequal group sizes at various visits.

7.2 Missing Data

Although fourteen (14) subjects were entered in each group, data were not collected from each subject for each scheduled visit because of withdrawals from the study or unkept appointments. The following subjects withdrew or were discontinued from the study:

1. Group A:

Subject A12, age 20, failed to keep the baseline data collection appointment. She was ill and subsequently decided to withdraw from the study.

2. Group B:

Two subjects were lost at the start of the study.

- a. Subject B11, age 21, did not keep the baseline data collection appointment. Numerous attempts to set up another appointment were futile. Subject withdrew from the study.
- b. Subject B13, age 26, attended the baseline data collection visit. Two hours after receiving his lenses he reported an adverse reaction (red eyes, itching, burning and general discomfort). The lenses were evaluated and found to be clinically acceptable. Purging the lenses

of the chemical disinfection solutions and prescribing heat for a week seemed to alleviate the problem. The subject was asked to resume the original treatment procedure prescribed so that he could continue in the study. However, the problem recurred. Subsequently he was diagnosed as being sensitive to thimerosal and was discontinued for the study.

3. Group C

Three subjects were discontinued due to adverse ocular reactions at different periods of the study.

- a. C3, age 16, was discontinued because of occurance of red eyes and subepithelial infiltrates after the 18th week visit. Lens wear was discontinued and the subject monitored weekly for 3 weeks. During this period the red eyes cleared but the infiltrates were still present. After the infiltrates had cleared, lens wear was resumed and the adverse response recurred.
- b. Subject C7, age 23, showed signs of an adverse ocular response (mild red eyes, discomfort and moderate staining of the cornea). Lens wear was discontinued to allow corneal repair and the lenses were purged. As a result no data was collected on 18th week visit. She resumed lens wear on the 21st week visit and the adverse ocular response was again observed. She was discontinued.
- c. Subject C8, age 20, showed a similar type of adverse reaction as that of C3 at week 6. He was monitored weekly until the infiltrates had cleared by week 9. He resumed wear and the problem recurred. He was discontinued.

4. Group D:

There were no withdrawals and very few missing data.

The other reasons for missing data were loss of sample during the assay or subject unable to attend because of vacation. In these instances every attempt was made to collect the data on the week prior to or the week after their scheduled appointment.

As a result of the missing data and unequal group sizes, the SAS linear models ANOVA and the student Newman-Keuls test were employed.

7.3 Biochemical Results

7.3.1 Total Tear Protein Determination

The total tear protein concentration was determined from the calibration curve derived from serial dilutions of a certified protein standard in Appendix B Fig. 13. These standards were freshly prepared for each set of determinations. The regression coefficient or slope and the coefficient of correlations (r) were used to calculate the protein concentration for each set of samples.

1. Baseline: Protein Concentration

The tear protein concentrations for the baseline samples (visit = 0) for each group is presented in the raw data in Table 35 (Appendix F) and the mean protein concentration for each group is shown in Table 31 (Appendix F). These values show differences among the groups, however the differences are not statistically significant (df = 50, p = 0.05).

2. Treatment: Protein Concentrations

The mean tear protein concentration for each treatment group per visit is given in Table 31 (Appendix F) and is graphically presented in Figures 5A and 5B. These graphs show an increase in protein concentration with time.

The statistical analysis given in Appendix F. Tables 13 and 14 for protein as the dependent variable is summarized as follows:

- a. Group differences are lightly significant (p=0.04)
- b. Visit differences are significant (p = 0.0001)
- c. Group x visit interactions are not significant (p = 0.44)

d. There is some influence of the visit on the protein concentration. The estimated upward slope of the line is significant (p = 0.0001). Its rate of change is approximately 15 units per visit. However, the r-square value indicates that only 12.69% of the data was fitted by the model.

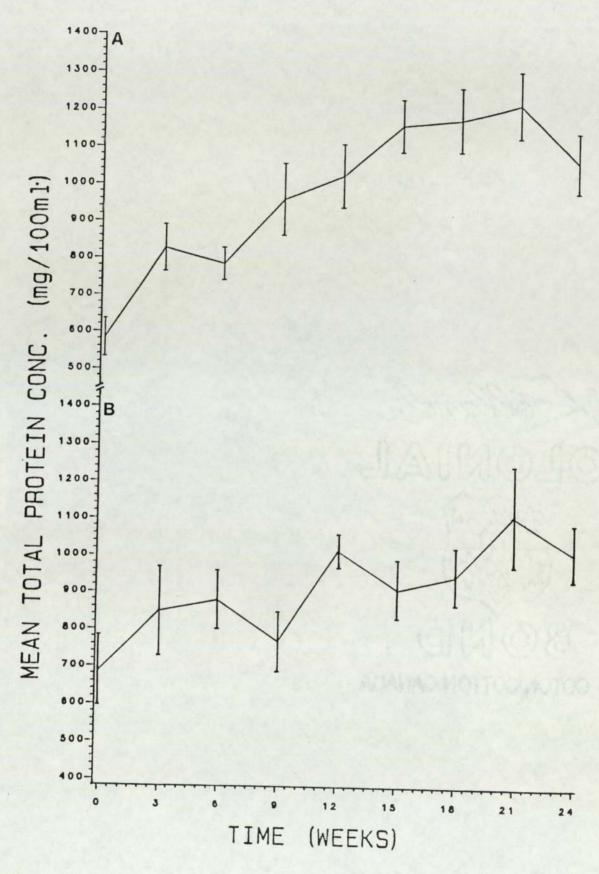


Figure 5a: Graph of the Mean Total Tear Protein During Study

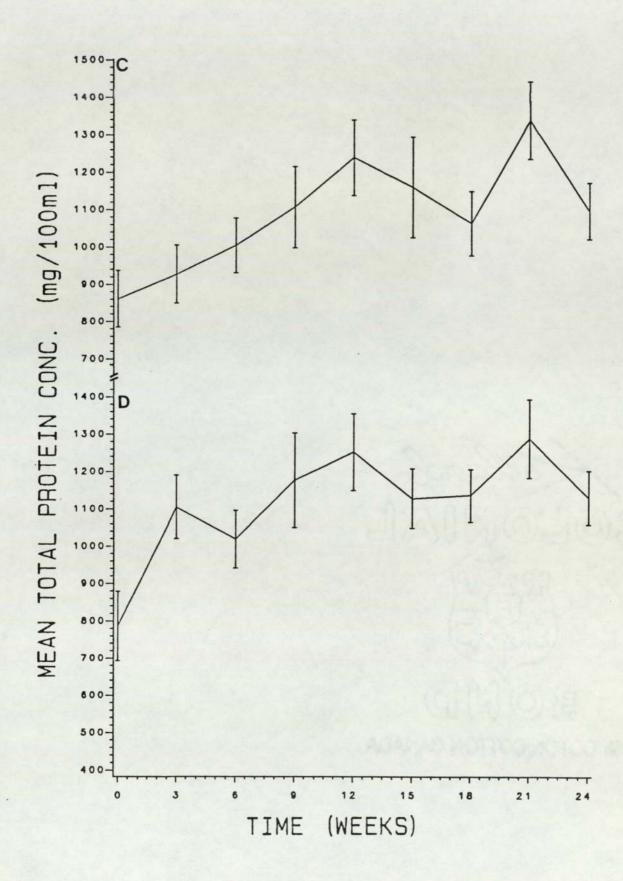


Figure 5b: Graph of Mean Total Tear Protein During Study

7.3.2 Electrophoretic Distribution of Tear Proteins

The technique of acrylamide disc gel electrophoresis by Orntein and Davis (1962) was modified to take a 2 ul tear sample per gel. The tear proteins were separated and their electrophoretic distribution quantified by measuring the area under the peaks with a digitizing table coupled to a microcomputer (Appendix D).

Figure 6 shows the distribution of the thirteen positive migrating fractions frequently observed as dense blue bands. These bands are graphically represented by peaks in Figure 6B which are labelled in decreasing order of their electrophoretic mobility in the acrylamide gel. Protein fractions migrating to the anode (+ ive) are denoted by Arabic numerals; the fastest being 1 and the slowest 13.

These protein fractions may be further differentiated into sets of protein I, II, III and IV and indicated in Tables 15-22 (Appendix F.) as PER 1, PER 2, PER 3 and PER 4 respectively. These sets of protein fractions are identified in the order of their relative mobilities. Lines of demarcation are taken as the deepest troughs between the sets of fractions.

1. Baseline: Distribution of Proteins

The mean percentage distribution of the sets of fractions (PER 1, PER 2, PER 3 and PER 4) is presented in Table 34 (Appendix F). This distribution appears to be similar among subjects and among the four groups of subjects. The rank order is as follows:

- a. PER 3 50%
- b. PER 1 25%
- c. PER 2 13%
- d. PER 4 12%

2. Treatment: Distribution of Proteins

The mean percentage distribution of the sets of fractions (PER 1, PER 2, PER 3, and PER 4) for each group per visit is presented in Table 34 (Appendix F) and graphically illustrated in Figures 7A, 7B, 7C and 7D.

Within each group of subjects, the graph for each set of fractions shows variability. Also among the four groups of subjects there is variability among the sets of fractions.

The differences among groups are statistically analyzed by the linear models in Appendix F, Tables 15-22, respectively for each set of fractions (PER 1, PER 2, PER 3 and PER 4) as the dependent variable. These may be summarized as follows:

a. PER 1:

For PER 1 as the dependent variable:

- i. Group differences are not significant (p = 0.43)
- ii. Visit differences are significant (p = 0.0001)
- iii. Group x visit interactions are not significant (p = 0.11)
- iv. Regression analysis shows no apparent linear trend (p = 0.097)

b. PER 2:

For PER 2 as the dependent variable:

- i. Group differences are not significant (p = 0.142)
- ii. Visit differences are significant (p = 0.0001)
- iii. Group x visit interactions are not significant (p = 0.99)
- iv. Regression analysis shows a significant positive trend over time (p = 0.0001)

c. PER 3:

For PER 3 as the dependent variable:

- Group differences are not significant (p = 0.20)
- ii. Visit differences are significant (p = 0.0001)
- iii. Group x visit interactions are not significant (p = 0.51)
- iv. Regression analysis shows a significant negative trend over time (p = 0.0001)

d. PER 4:

For PER 4 as the dependent variable:

- i. Group differences are not significant (p = 0.11)
- ii. Visit differences are significant (p = 0.004)
- iii. Group x visit interactions are not significant (p = 0.42)
- iv. Regression analysis shows no significant trend (p = 0.1)

There is an apparent increase in protein content in PER 2 with a concomitant decrease in PER 3. The net change appears to increase the overall protein content with time.

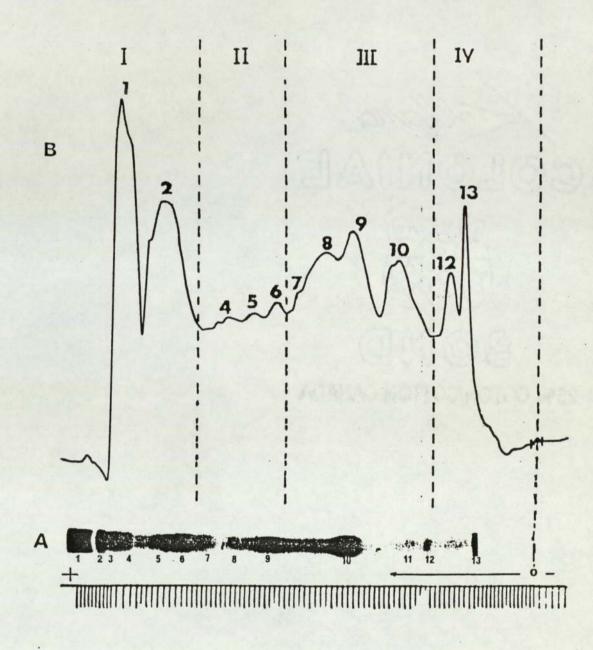


Figure 6: Electrophoretic Separation of Tear Proteins into 13 Fractions

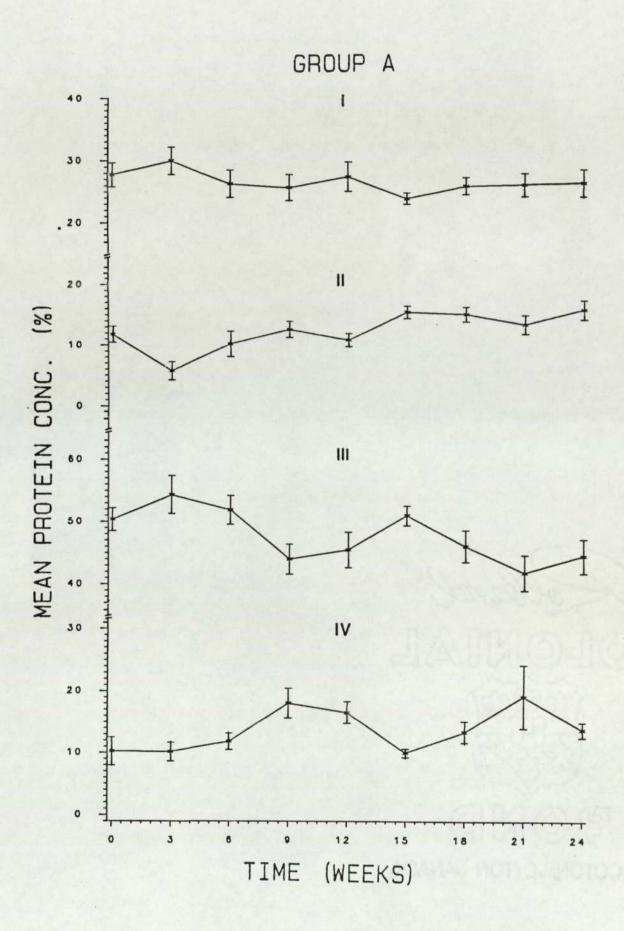


Figure 7a: Graphs of the Mean Percentage Distribution of Sets of Fractions (I, II, III & IV).

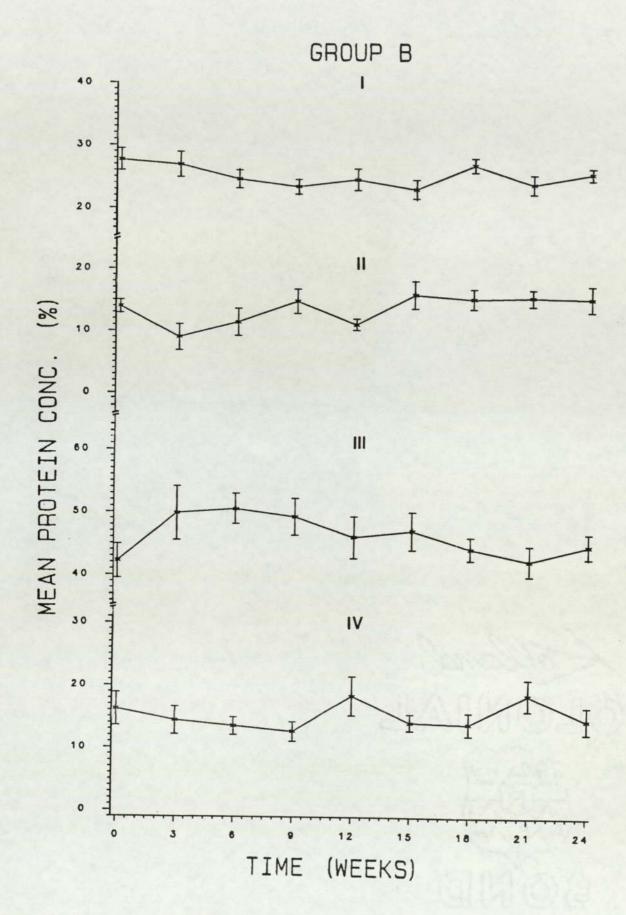


Figure 7b: Graph of the Mean Percentage Distribution of Sets of Fractions (I, II, III & IV).

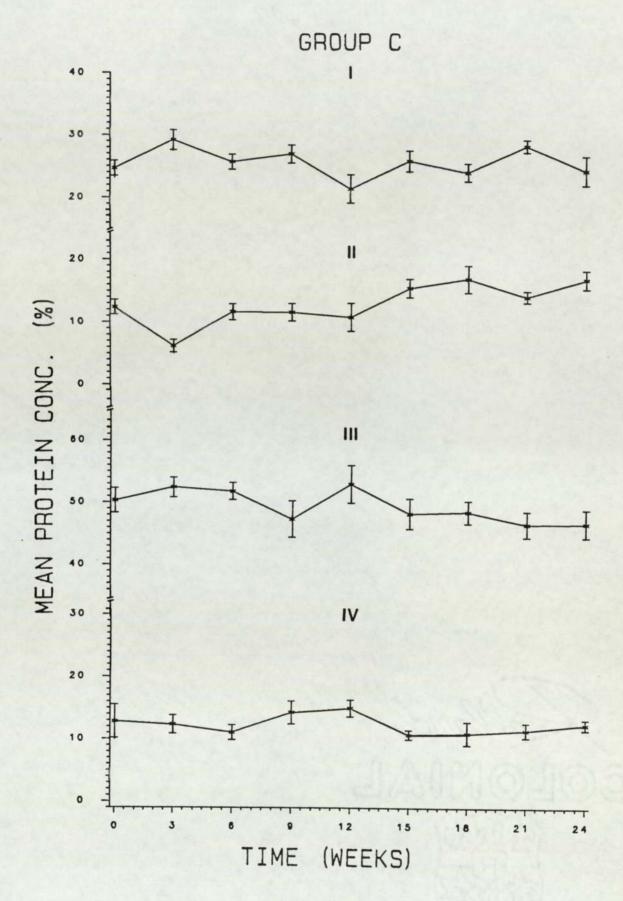


Figure 7c: Graph of the Mean Percentage Distribution of Sets of Fractions (I, II, III & IV).

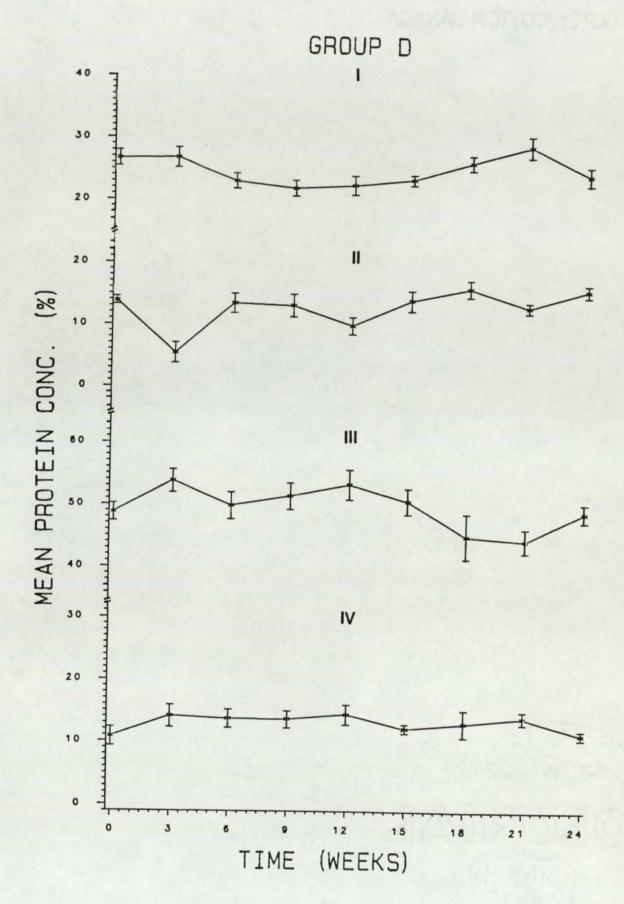


Figure 7d: Graph of the Mean Percentage Distribution of Sets of Fractions (I, II, III & IV).

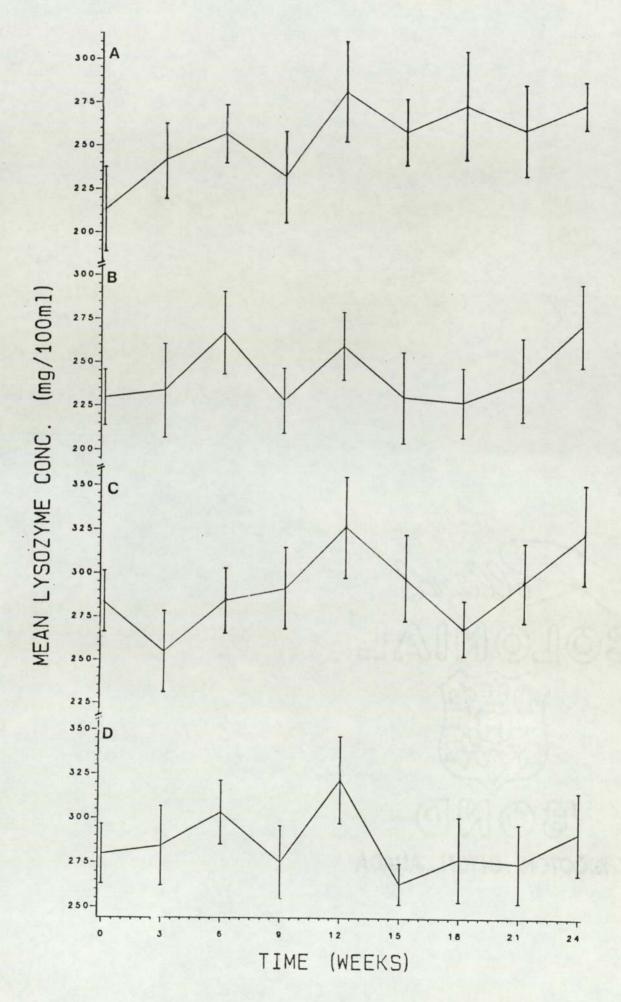


Figure 8: Graph of the Mean Lysozyme Concentration.

7.3.4 Percentage Lysozyme in Total Protein

There appears to be a linear tend towards a decrease in the percentage lysozyme in total protein which is graphically illustrated in Figures 9A and B from the data presented in Table 31, Appendix F.

The statistical analysis for the percentage lysozyme in total protein as the dependent variable is presented in Tables 25 and 26, Appendix F. The analysis may be summarized as follows:

- 1. Group differences are not significant (p = 0.75)
- Visit differences are significant (p = 0.0001)
- Group x visit interactions are not significant (p = 0.96)
- 4. Regression analysis shows a significant negative linear trend (p = 0.0001)

It would appear that changes in specific protein components, excluding lyso-zyme, affect the ratio of lysozyme to total protein. However, only 13.69% of the data fits this negative slope.

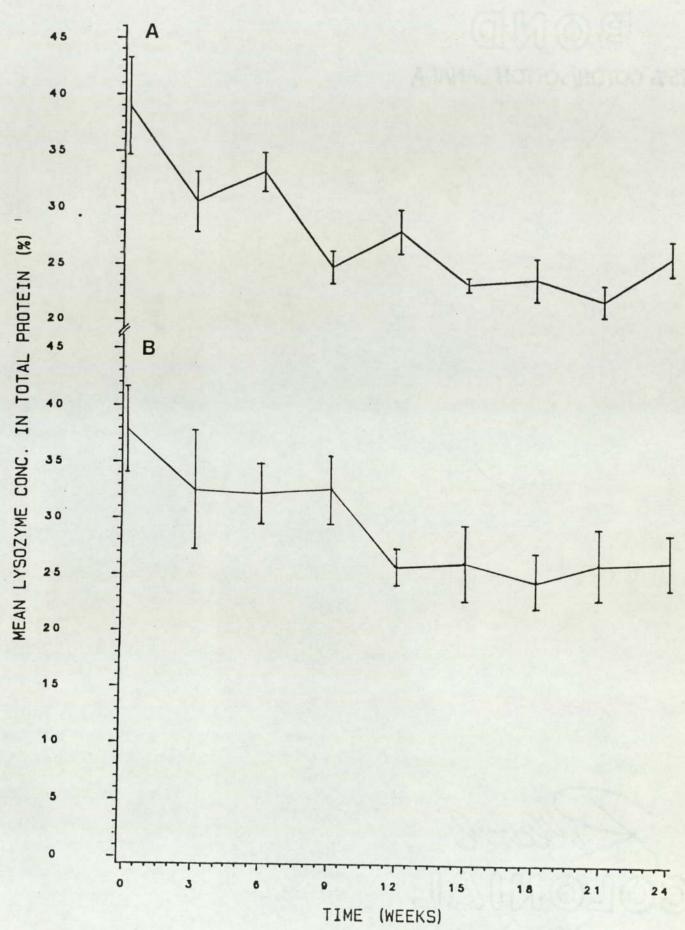


Figure 9a. Graph of the Mean Percent Lysozyme in Total Tear Protein

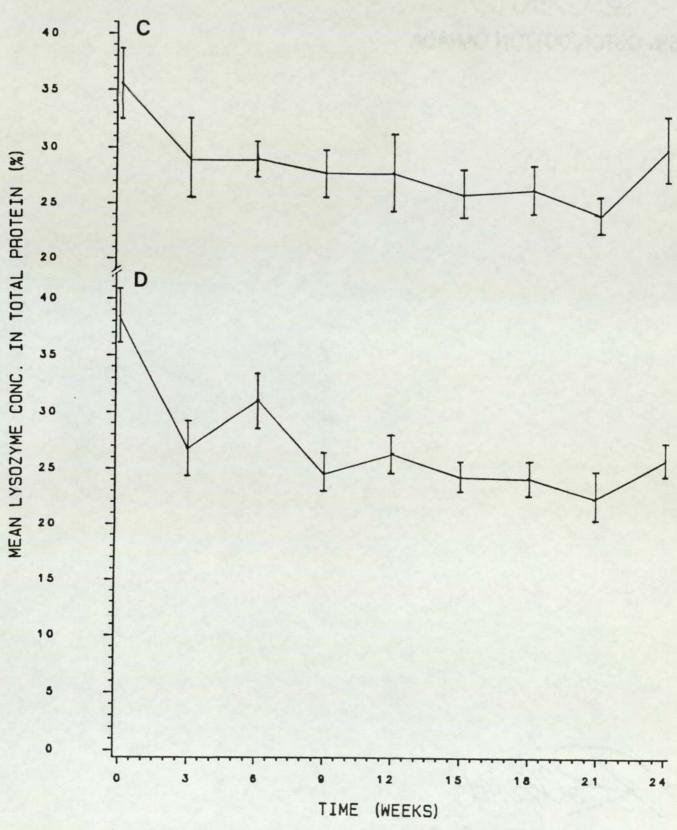


Figure 9b. Graph of the Mean Percent Lysozyme in total tear protein

7.3.5 Tear IgA (secretory) Concentration

Rocket immunoelectrophoresis was used to determine the tear secretory IgA concentration for each group. A calibration curve was prepared from a serum standard for each set of determinations (Appendix E.). The coefficient of correlation (r) obtained from the serial dilution of standards (peak height vs concentration) was used to calculate the concentrations of the measured peak heights of the unknown tear samples.

1. Baseline: IgA Concentration

The tear IgA (secretory) concentration for the baseline samples (visit = 0) for each group is presented in the raw data in Table 35 (Appendix F). The mean lysozyme concentration for each group shows that there is very little variability in the baseline IgA levels among the groups. The differences are not statistically significant (df=49; p=0.05).

2. Treatment: IgA Concentrations

The mean IgA (secretory) concentration for each group per visit is given in Table 31, Appendix F and graphically illustrated in Figure 10. Inspection of the error bars (SEM) suggests that there is no difference in the mean values between visits.

The statistical analysis for IgA as the dependent variable is presented in Tables 27 and 28 (Appendix F). The analysis may be summarized as follows:

- a. Group differences are not significant (p = 0.66)
- b. Visit differences are not significant (p = 0.06)
- c. Group x visit interactions are not significant (p = 0.43)

Thus it appears that the level of IgA is not influenced by the treatment procedures (heat or chemical disinfection) nor is it influenced by time.

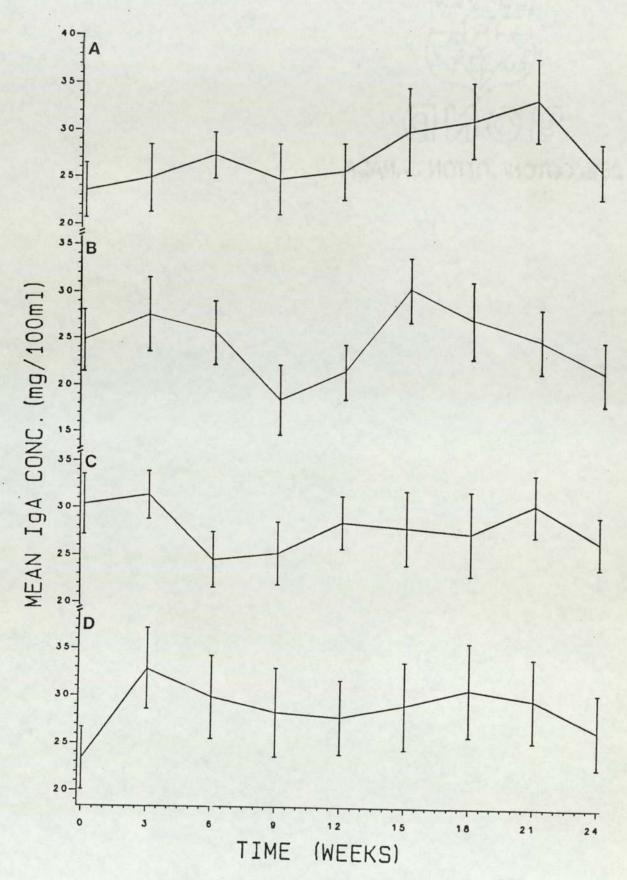


Figure 10. Graph of the Mean IgA Concentration

7.3.6 Percentage IgA in Total Protein

The percentage mean IgA in total tear protein for each group per visit is tabulated in Table 31, Appendix F and graphically illustrated in Figures 11A and B.

Statistical analysis shows 58.8 percent of the data fits the model presented in Tables 28 and 29 (Appendix F). The analysis for the percent IgA in total protein as the dependent variable may be summarized as follows:

- Group differences are not significant (p = 0.88)
- Visit differences are significant (p = 0.0001)
- 3. Group x visit interactions are significant (p = 0.01)

Comparing IgA to IgA in total protein it seems that the "visits" have no influence on IgA as the dependent variable but are of significant influence on the IgA in total protein model. Therefore, it would appear that changes in the total protein content affect the ratio of IgA to total protein.

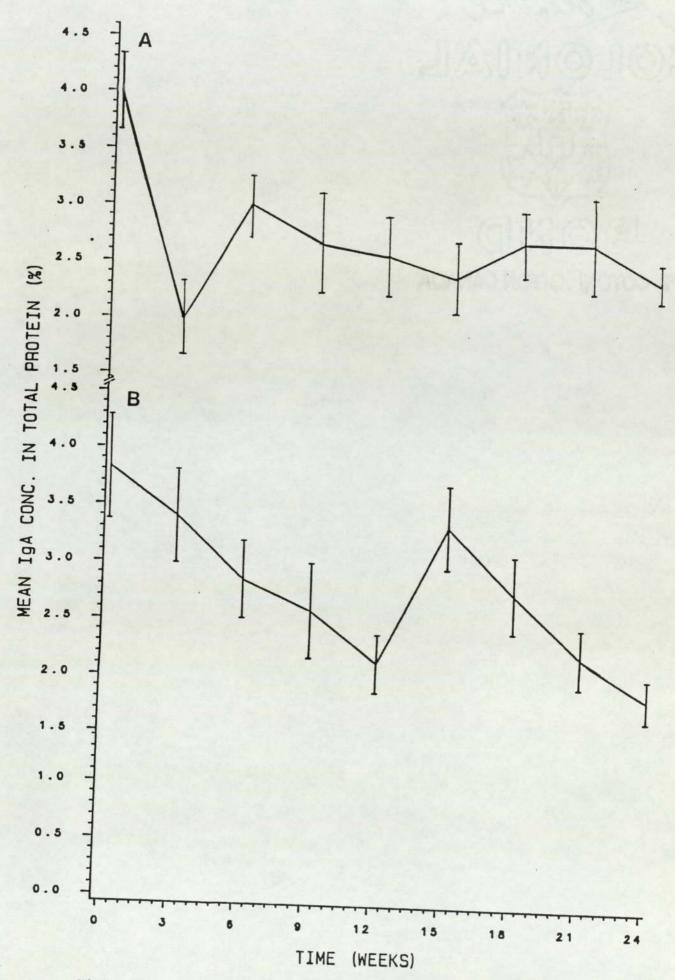


Figure 11a: Graph of the Mean Percent IgA in Total Tear Protein

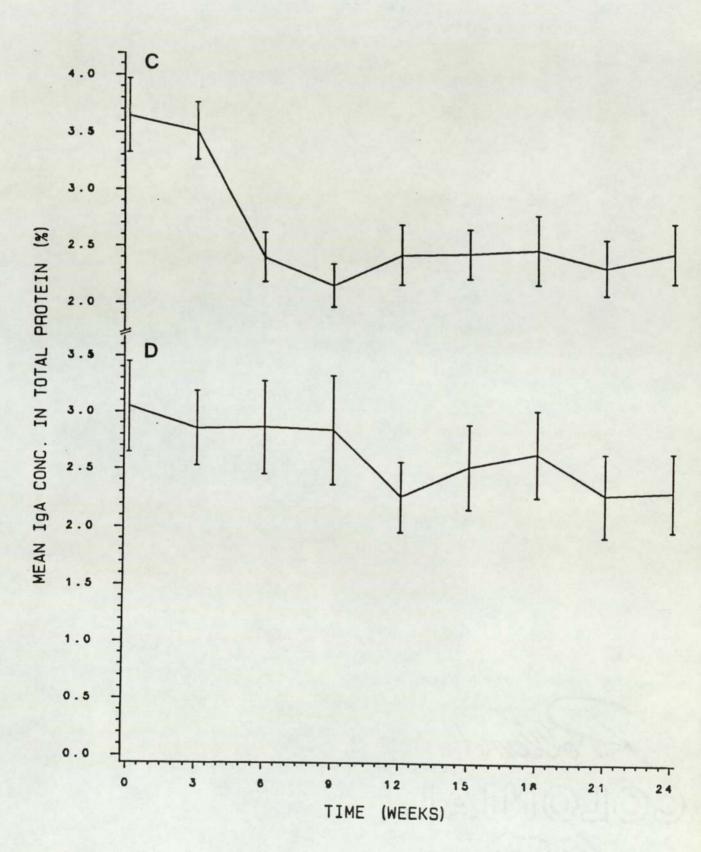


Figure 11b: Graph of the Mean Percent IgA in Total Tear Protein.

7.4 Clinical Results

General assessment of visual acuity, refractive status and corneal curvature were evaluated in accordance with standard optometric procedures. There were no apparent differences in these parameters among the group or between the groups over the period of 24 weeks.

The frequency of those clinical signs which are indicative of an adverse ocular response to the treatment procedures summarized in Table 8 are reported herein:

7.4.1 Pachometric Measurements

The apparent corneal thickness data obtained by the self-recording pachometer are presented in Table 31 (Appendix F) and are graphically illustrated in Figure 12.

The mean baseline thickness appears to be similar among the groups and compares with the normal values reported by Mandell and Polse (1969).

The mean differences among the groups during the period of treatment are statistically analyzed by the linear models presented in Tables 32 and 33 (Appendix F). The r-square value indicates 92.1% the data fits the model. The analysis of variance for the corneal thickness (cornea) as the dependent variable may be summarized as follows:

- 1. Group differences are not significant (p = 0.77)
- Visit differences are significant (p = 0.0001)
- Group x visit interactions are not significant (p = 0.56)
- 4. Linear regression analysis shows no significant trend over time (p = 0.51)

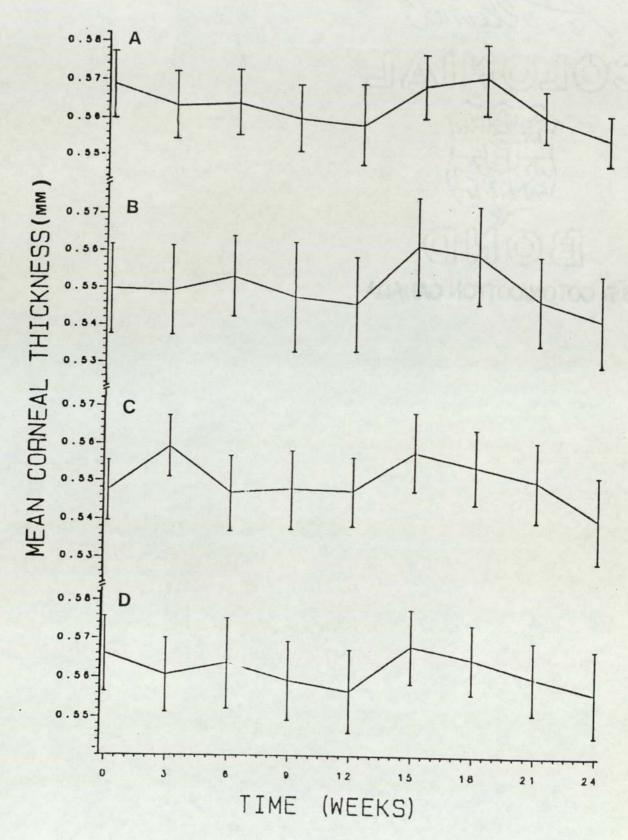


Figure 12. Graph of the Mean Apparent Corneal Thickness

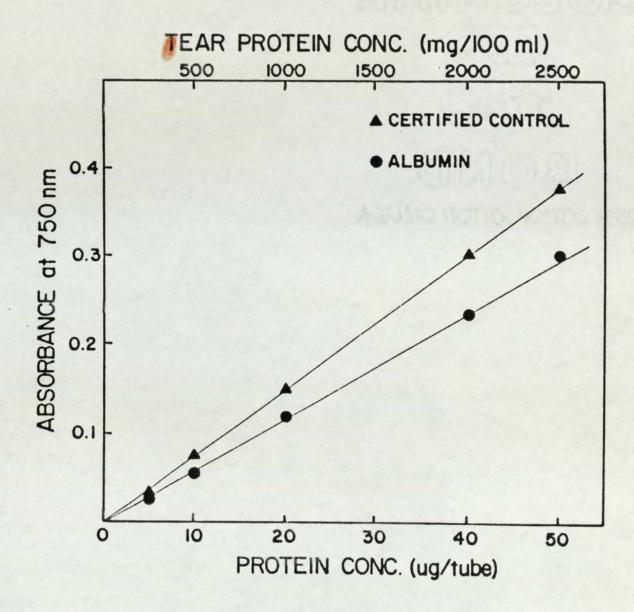


Figure 13: Comparison of Calibration Curve of Certified Protein Control vs Serum Albumin

7.4.2 Corneal Staining

Corneal staining was assessed before and after treatment with the aid of 1% sodium fluorescein and the biomicroscope. An eyepiece graticule was used to assess the area of staining observed during the examination.

Staining was almost always present in Groups B and C and only occasionally in Group A and D (Table 8). The incidence of staining greater than 1% of the corneal surface area was 38.5% for subjects in Group B, 36% in Group C and only in 7.7% of Group A. These differences were judged to be significant (df = 49; p = 0.05).

7.4.3 Complications

Red Eyes

Four (4) subjects developed red eyes (one from Group B and 3 from Group C). The subject in Group B developed red eyes during the first week. Further investigation confirmed that he was sensitive to Thimerosal. The three subjects in Group C with red eyes appeared to be sensitive to the Chlorhexidine and/or possibly the residual papain-preservative complex on the lens.

2. Subepithelial Infiltrates

Two of the three subjects with red eyes in Group C also had subepithelial infiltrates. The first case (C8) was observed during Week 7 and second case in Week 18. Lens wear was discontinued and the condition cleared in 3 weeks. The solution-papain treatment may be the causative agent.

3. Giant Papillary Conjunctivitis

There was no apparent change in the appearance of the tarsal conjunctival value in any of the contact lens wearing groups. However, one control subject, (D11) showed grade 1 giant papillary conjunctivities at Week 18. This was attributed to a spring allergy.

Table 8. Incidence of Adverse Eye Reactions

	Nui	mber (Percen	ntage) in Gr	oup
Adverse Reactions	A	В	С	D
Red Eyes	0.0	1 (7.7)	3 (21.4)	0.0
Corneal Infiltrates	0.0	0.0	2 (15.4)	0.0
Corneal Area Stained				
1% or More	1 (7.7)	5 (38.5)	5 (36.0)	0.0
Conjunctival Changes	0.0	0.0	0.0	1 (7.0)
Total Number	13	13	14	14

Chapter 8

DISCUSSION AND CONCLUSIONS

8.1 Introduction

Human tears are a mixture of secretions from the lacrimal glands, conjunctival glands and other small glands which empty their contents into the conjunctival sac. Because of the complexity of its composition, the protein values obtained vary widely, indicating a number of variables operating; one of which is the method of sampling.

In this study care was taken to avoid stimulation. The values obtained will be interpreted as those of non-stimulated tears and will be the basis for the discussion and conclusions.

8.2 Discussion

The mean total tear protein concentration of 1.024 g/100 ml for the four groups studied compares favourably with current value of 0.9 g/100 ml by Lambert (1983). In earlier studies there were many discrepancies in the reported values which are attibuted to the method of sampling (van Haeringen, 1981). In most cases an irritant was used to stimulate tear flow (Table 3). Brunish (1957) reported a decrease in tear protein content in stimulated tears. This observation was supported by Callender and Morrison (1974) in a study wherein a decrease in tear protein concentration was observed during the initial stages of adaptation to PMMA contact lens wear. This change in tear composition was attributed to excessive tearing.

The method employed for assaying these tear proteins is another reason for the discrepancy. For example, colorimetric methods may be influenced by non-protein nitrogenous substances. The method used in this study is minimally affected by these substances (Lowry et al, 1951).

In this study there was no significant difference in protein levels among the groups, however, there was a linear upward trend with time. This trend may be attributed to seasonal variations in the tear protein, as the study progressed from Winter to Summer. It could be postulated that the increase in protein concentration was due to an increase in tear evaporation as the subjects tended to be more outdoors where the temperature and humidity could not be controlled as within the University environment.

This increase in protein concentration may also be due to an adaptive phenomenon. Although there was no apparent stimulation caused by the sampling technique, reflex tears could have resulted from the awareness of the samples being taken in the earlier visits.

A third explanation may be that there is transudation of serum proteins caused by conjunctival irritation due to environmental conditions.

Electrophoretic separation of the tear proteins indicated that 12 to 13 bands or protein fractions were usually present with all groups. The number of fractions detected is in agreement with that reported by Sapse et al (1967). Gachon and co-workers (1979) detected at least 60 fractions. However, this higher number of fractions reported was not obtained with a single sample but with pooled tear samples, using a crossed immunoelectrophoresis method. Many of the fractions identified are not normally present in the tears.

In order to facilitate the analysis of these fractions it was necessary to divide them into four (4) distinct areas which correspond to their relative mobilities from the cathode to the anode. The data derived indicated that there was no significant difference between groups over time. However, there was a significant alteration in the two intermediate areas identified as II (PER 2) and III (PER 3). The linear regression analysis indicated a significant increase (p=0.0001) in PER 2 fractions with respect to time. Previous studies by Callender (1973) identified serum proteins as the major component of these fractions (PER 2). This observation, in addition to the increase in total protein lends support to the hypothesis

that the increase in protein concentration may be due to conjunctival irritation from sampling or environmental conditions.

There is no agreement in the literature on the way serum proteins enter the tear fluid. The incidence of high serum albumin levels in tear fluids of conjunctival hyperemia has lead Jannsen and van Bijsterveld (1983) to conclude that serum proteins enter tears by leakage from the conjunctival capillaries. From the clinical evaluation of subjects in this study, there was no redness of eyes except in those four cases, B13, C5, C7 and C8, in which there was an adverse response to the chemical disinfection procedure. Since all groups showed an increase concentration in fractions II (PER 2) and in total protein content, this increase must be attributed to seasonal changes or sampling technique.

Lysozyme and IgA are both important antibacterial agents in tears which have a protective function. These two proteins appear not to be affected by the modes of treatment. The mean lysozyme level for the overall study was 269 mg/100 ml. This value is much higher than those values compiled by Stanifer et al (1983) in Table 9. The higher value obtained is attributed to the modified immunoelectrophoretic technique employed and the fact that a human tear lysozyme standard was used instead of egg lysozyme. Human tear lysozyme is 3.5 times more active than egg lysozyme (Jolles and Jolles, 1967).

There was no difference in lysozyme levels among the groups although there was variablility within each group. Horwitz et al (1978) noted a diurnal variation in lysozyme levels in normal subjects. The level was lowest between midnight and 3:00 a.m. and peaked between 9:00 a.m. and 12:00. Since all samples collected during this study were between 10:00 a.m. and 1:40 p.m., then they are peak values and are quite comparable with the 200 mg/100 ml reported by Horwitz and co-workers (1978).

It is interesting to note that there was no significant linear trend in the lysozyme level with time. This is due to the fact that the lysozyme concentration is independent of the rate of secretion. This has been documented (van Haeringen and Glasius 1974c).

Reported Levels of Lysozyme Assays in Tears of Normal Subjects (from Stanfier et al, 1983) Table 9.

Assay Method			
	Method of Collection	Normal tear lysozyme Concentration	Reference Standard
Schirmer Lysoplate Assay Schirmer	Schirmer Paper a40-70	O unit activity/ul	a40-70 unit activity/ul Hen Epgwhife Ivensymme
Schirmer Lysoplate Assay Schirmer	Schirmer Paper b>22.5	b ₂ 22.5mm diameter lysis	Hen Fourhite Lysosyme
Schirmer Lysophite Assay Schirmer	Schirmer Paper		Himan Took Inc.
Spectrophotometric	Microcanillam, b.t.	100	numan lear Lysozyme
	apillaly cube	6.1mg/ml	Hen Eggwhite Lysozyme
Immunodiffusion Micropipette	ipette	1.3mg/ml	Human Serim Lysozyme
Electrophoresis Filter paper Schirmer Pape	Filter paper (basal) Schirmer Paper (reflex)	0.65mg/ml 1.60mg/ml	Human Leukemic Urinary Lysozyme

"Unit activity" is the amount of enzyme required to cause a decrease in the spectrophotometric absorption of M. lysodeikticus substrate of 0.001 in the first minute of reaction. a.

b. clear zone. under standard conditions.

This study also shows that the use of solutions preserved with chlorhexidine during hydrogel lens wear do not alter the lysozyme content in tears. This finding is not in agreement with that of Johnsson and co-workers (1978) who reported a decrease in lysozyme activity in *in vitro* studies on chlorhexidine. Both Groups B and C used Flexcare which contained 0.005% chlorhexidine. There are reports of drugs decreasing the activity of lysozymes; one example is Practolol which causes ocular toxicity with longer term use (Mackie and Seal, 1975). It is prudent therefore, that long term studies be done to determine the effect of chlorhexidine on the tear lysozyme level.

It is also interesting to note that the tear IgA level did not show a significant difference among the groups, however, there was some variability within each group. Similar results have been reported by Mannucci and co-workers (1984) from the tears of patients on daily wear contact lenses. However, they found a significant increase (approximately twice the level) in the tears of patients on extended wear lenses. In the absence of an immumopathological condition, it was suggested that the elevated IgA was due to the continuous mechanical stimulation of the conjunctival tissues in extended wear. Their elevated value of 23.8 + 14.8 mg/100 ml is within the range of normal values found in the present study. Horwitz and co-workers (1978) did not find a diurnal trend but noted the wide variation more in normal subjects. Similar observations were found by various investigators as shown in Table 10. McClellan and co-workers (1974) found values ranging from 8 to 60 mg/100 ml.

The present investigation shows as a mean value for all samples 27.2 mg/100 mls which is comparable with those of Sen et al (1976) and Sen and Sarin (1979).

The percentage lysozyme in total protein and the percentage IgA in total protein provide some interesting information. Although there was no linear trend with respect to time in the analysis of either lysozyme or IgA, there was a significant linear trend (p=0.0001) when each of these proteins is expressed as a percentage of the total protein. Since the levels of lysozyme and IgA are independent of

Table 10: Reported Levels of IgA in Tears of Normal Subjects.

Reference	No. of Subjects	IgA (mg/100m1)		
Brauninger and				
Centifanto (1971)	24	9 - 50		
Garner and Rabi (1976)	100	125 (IU/m1)		
Little <u>et al</u> (1969)	10	21		
Mannucci <u>et al</u> (1984)	17	11.3 ± 2.9		
McClellan <u>et al</u> (1973)	74	17		
McClellan <u>et al</u> (1974)	61	22 (8 - 60)		
Sen <u>et al</u> (1976)	50	24.6		
Sen and Sarin (1979)	90	26.0 ± 13.2		
Present Study	53	25.6 ± 11.5		

the rate of tear secretion, their percentages in total protein should be similar with respect to time. In this work the percentage lysozyme in total protein and that of IgA in total protein showed a decrease with time. It is evident that the decrease observed is influenced by the increase in a protein component not assayed. The protein profile obtained by acrylamide gel electrophoresis suggests it is a protein in Group II (PER 2).

The clinical results indicate that subjects in Group A (thermal disinfection) were trouble free throughout the 24 weeks of the study. There was no apparent difference between the ocular response of this group and control group D. However, the persistence of corneal staining, which was present in 38.5% and 36% of subjects for Groups B and C respectively, is indicative of the solution intolerance reported by Coward and co-workers (1984).

The incidence of infiltrates in 14.4% of Group C is of interest since infiltrates are due to an inflammatory response which may be viral, bacterial, toxic or other causes. Ophthalmological consultations indicated in both cases that the condition was neither bacterial nor viral in origin. This lead to a postulation of a toxic and/or allergic reation which may be excerbated by the Thimerosal-papain complex.

In spite of the adverse ocular response observed in the chemical disinfection Groups B and C, there was no significant difference in corneal thickness nor tear protein composition among the groups.

8.3 Conclusions

Several conclusions may be drawn from the results of the study. These are:

- The change in tear protein composition noted was not due to the hydrogel lens wear and/or care systems but may be due to seasonal and environmental conditions.
- 2. The micro-techniques of gel electrophoresis and immunoelectrophoresis adapted for small samples are a novel contribution to the study of the lacrimal and other glandular fluids where secretions are scanty.

- Acrylamide gel micro-electrophoresis can be used to separate tear proteins into 13 observable fractions.
- 4. There is some evidence for in vitro interaction between papain and hydrogel lenses, and papain and Thimerosal. However, there is no statistically significant evidence to show that Chlorhexidine and/or Thimerosal is responsible for adverse eye reactions observed. These preservatives do not alter the concentrations of lysozyme and IgA as was previously suggested by Johnsson et al (1978).

8.4 Suggestions and Recommendations for Further Investigations

From this study, the following suggestions and recommendations are made for further investigations on tear proteins.

- 1. A long term study on the effects of Chlorhexidine and Thimerosal on the antibacterial proteins should be undertaken. In addition to lysozyme and IgA, specific tear pre-albumin (STP) and lactoferrin should be studied. Pre-liminary studies on lactoferrin show that it is approximately half the concentration of lysozyme and that is is not affected by Chlorhexidine and Thimerosal preserved hydrogel lens solutions.
- 2. Isoelectric focusing should be utilized to provide a more definitive separation of the intermediate protein fractions (PER 2 and PER 3). This, in addition to crossed immunoelectrophoresis, would enable the identification of those fractions which showed change during this study.
- 3. The antiproteinases should be investigated as to their role when residual papain is present in the eye. Radioimmunodiffusion may be the technique necessary to quantify low concentrations of these proteins.
- 4. IgE plays an important role in the eye's response to allergens. Therefore, it may be of clinical significance to study the effects of Thimerosal, a known sensitizer, on IgE. Because of the low concentration of this protein in tears, a radioimmuno diffusion method should be employed.

Appendix A

EXPERIMENTAL SECTION

A.1 Introduction

Enzymatic cleaning has proven to be an effective method of removing denatured tear proteins from hydrogel contact lenses. Since all enzymes are proteins then it is possible that papain replace the digested tear proteins coating on the lens. This residual papain may be bound to the lens surfaces following heat or chemical disinfection. In the latter case, Thimerosal may interact with the sulphydryl group of papain and the elevated concentration of the mercuri-papain complex could exacerbate the red eye syndrome. This chain of events may reflect changes in the tear protein composition.

To test this hypothesis an in vitro experiment was designed to clarify:-

- whether papain binds to the hydrogel lens with either heat or chemical disinfection and
- 2. whether papain forms a complex with Thimerosal.

The results of these preliminary experiments formed the basis for the design of the human study.

A.2 Determination of Papain Adsorption on Hydrogel Lenses

A.2.1 Materials and Methods

Twenty-four (24) new Bausch and Lomb Soflens^R contact lenses which had never been worn were divided into 4 groups each containing 6 lenses. All lenses were of identical parameters (-3.00 B3) and were made from a 38.5% water content HEMA hydrogel (polymacon).

All lenses were handled with surgical gloves and tweezers during each treatment procedure. The procedures were as follows:

1. GROUP A

Each lens was friction cleaned with freshly prepared saline and rinsed several times with saline. Saline was prepared by dissolving the Bausch and Lomb salt tablet in the appropriate volume of distilled water to make a 0.9% saline solution.

The lenses were then soaked (3 per vial) in 10 ml of freshly made Bausch and Lomb Soflens^R Enzymatic (papain) cleaner and mixed constantly for 2 hours.

After removal from the papain solution each lens was again friction cleaned with saline, rinsed several times with saline and heat disinfected in the Bausch and Lomb Professional Aseptron^R unit for one hour.

The entire procedure was repeated 24 times to simulate 6 months or 24 weekly papain cleaning cycles which a patient would do with his/her lenses.

The lenses were then purged by storing in freshly prepared saline using the Bausch and Lomb salt tablets. Purging was repeated 3 times over a period of 48 hours.

2. GROUP B

Each lens was friction cleaned with Preflex^R, a surfactant cleaner which contains 0.002% Thimerosal, 0.1% edetate disodium and surface active agents (Burton Parson-Alcon Pharm.) The lenses were rinsed several times with Boil-N-Soak^R., a rinsing solution which contains 0.001% Thimerosal, 0.1% edetate in a buffered normal saline solution.

The lenses were then soaked (3 per vial) for one hour in 10 ml. Flexcare, a disinfecting solution which contains 0.005% Chlorhexidine digluconate, 0.001% Thimerosal, 0.1% Edetate disodium in a buffered saline solution.

The entire procedure was repeated 24 times. The lenses were then purged as described in Group A. Purging was necessary to remove the absorbed Flexcare^R which might interfere with the protein assay procedure.

3. GROUP C

Each lens was treated in the same manner as those in Group B but two additional procedures were introduced. After each lens was cleaned with Preflex^R and rinsed with the Thimerosal preserved saline, they were soaked (3 per vial) in 10 ml of freshly prepared Soflens^R Enzymatic (papain) cleaner and mixed constantly for 2 hours.

After removal from the papain solution, the lenses were rinsed and friction cleaned with the Thimerosal preserved saline before soaking in Flexcare $^{\rm R}$ for one hour.

The whole procedure was repeated 24 times before the lenses were purged as described in Group B.

4. GROUP D

Each lens was treated in the same manner as those in Group A but the papain cleaning step was omitted. Instead, the lenses were soaked in freshly prepared saline for the two hour period before heat disinfection. Group D lenses acted as the controls.

5. TOTAL PROTEIN ASSAY

All lenses in Groups A, B, C and D were purged and stored in non-preserved saline for at least 48 hours before they were assayed for protein adsorption. The protein was solubilized by heating each lens in 0.6N NaOH (0.5ml/lens) in a 70^oC waterbath for one hour before the Lowry method for total protein determination was performed (See Appendix B).

A.2.2 Results

Table 11 shows the mean protein concentration measured for each of these groups of lenses. The mean difference between Group A and Group D (control lenses) is 1.094 ug per lens.

The mean difference between Group B and Group D lenses is 1.700 ug per lens. Since there was no enzyme used with Group B lenses, one must assume that there is a reaction between a non-protein source of nitrogen groups in Preflex^R and/or Flexcare^R bound to the lens and the reagents used for protein determination.

The mean difference between Group B and Group C lenses is 0.263 ug per lens. The difference in this case appears to be not significant.

Table 11: Residual Papain Assay of Total Protein on Hydrogel Lenses

Total Protein (µq/lens) Conc.

Lens #	А	В	С	D
1	1.875	1.875	3.162	0.625
2	2.500	2.500	1.875	****
3	1.500	1.875	2.500	0.625
4	1.500	3.187	2.500	0.625
5	1.937	****	2.000	0.625
6	0.625	1.875	3.125	0.312
Mean	1.656	2.264	2.527	0.562
S.D.	0.625	0.583	0.479	0.140

**** Lens torn during cleaning procedure.

Analysis of variance (ANOVA) was used to compare this statistical sample of unequal size. The SAS 2x2 factorial model was employed. The results indicate a significant difference between heat and chemical (p=0.0001) and between enzyme and no enzyme with either mode of treatment (p=0.007).

A.2.3 Conclusion

This study shows that the treatment of Bausch and Lomb Soflens contact lens with the enzyme (papain) cleaner and heat results in the absorption of papain on the lens. However, there is no evidence of papain absorption with chemical disinfection.

A.3 Determination of Mercuri-Papain Complex

A.3.1 Materials and Methods

Soflens^R enzymatic cleaning tablets

These are commercially available papain tablets made by Allergan Pharmaceuticals, California, for the cleaning of hydrogel contact lenses.

2. Boil-N-SoakR

This is a buffered saline solution which contains 0.001% Thimerosal and 0.1% Edetate disodium. This preserved saline is made by Burton Parson-Alcon Pharmaceuticals.

3. Mercury working standards

Mercury standards were made from a stock mercury reference (BDH) containing 1000 ppm (1m1 = 1 mg Hg = 4.98 mmol/L) by diluting the stock solution with deionized distilled water to make 1, 5 and 10 ppm respectively. Edetate disodium was added to each working standard to make a 0.1% w/v solution corresponding to its concentration in the Boil-N-Soak solution.

4. Preparation of papain solutions

All samples were made up in duplicate unless otherwise stated.

a. Papain in saline

One Soflens^R enzymatic cleaning tablet (papain) was dissolved in 10 ml freshly made saline. Saline was prepared by dissolving the Bausch and Lomb salt tablet in the appropriate volume of deionized distilled water.

b. Papain in Boil-N-Soak^R

One Soflens R enzymatic cleaning tablet (papain) was dissolved in 10 ml of Boil-N-Soak R .

The papain solutions were kept in screw-capped vials at room temperature for 24 hours before they were analysed.

5. Determination of Mercury (Hg)

The mercury standards, samples of Boil-N-Soak^R and papain solutions were analysed by aspirating 20 ul of each into the graphite furnace of the flameless atomic absorption spectrophotometer (Pye Unicam, Model Sp 9-01). All samples were mixed before reading in the spectrophotometer. The mercury absorbance levels were recorded on a chart recorder. Three readings of each were taken and averaged.

After samples of the Papain-Boil-N-Soak^R solution were read, the mixture was centrifuged at 15000 rpm to precipitate the papain and the supernatant was analysed for mercury. Then the supernatant and precipitate were reconstituted in a vortex mixer and reanalysed as previously described.

The concentration of mercury in the samples could be determined from a calibration curve by plotting the peak heights (absorbance) of the standards against their respective concentrations (ppm). However, in this experiment a programmable calculator (Texas Instrument, Model 59) was used to compute the mercury concentration of the unknown solutions from the correlation coefficient for the standard calibration curve.

A.3.2 Results

Table 12 shows the levels of mercury present in the samples. The mercury level in the Papain-Boil-N-Soak R mixture ranges from 4.10 to 4.23 ppm. This level is quite similar to that obtained for Boil-N-Soak R (4.3 ppm).

The mercury level in the supernatant after centrifuging shows only trace amounts present (0 to 0.3). This result is similar to that obtained from the Papain-Saline solution.

Analysis of the reconstituted supernatant and precipitate mixture shows that the mercury level returns to an average value of 3.94 ppm. This suggests that the mercury removed from the supernatant was absorbed by the papain rather than by the glass vial and/or stopper.

Table 12: Mercury Content of a Papain-Boil-N-Soak Solution.

Sample	Absorbance (mean peak height cm.)	Conc. (ppm)
Standard #1 (1 ppm)	2.8	1.00
Standard #2 (5 ppm)	12.5	5.00
Standard #3 (10 ppm)	17.5	10.00
Papain & Saline (No Thimerosal)	0.0	0.00
Boil-N-Soak	10.8	4.30
Papain & Boil-N-Soak Solution #1	10.6	4.23
Papain & Boil-N-Soak Supernatant #1	0.0	0.00
Papain & Boil-N-Soak Reconstituted #1	9.7	3.90
Papain & Boil-N-Soak Solution #2	10.3	4.11
Papain & Boil-N-Soak Supernatant #2	0.8	0.30
Papain & Boil-N-Soak Reconstituted #2	10.0	4.00

A.3.3 Conclusions

This study shows that when papain is mixed with a solution containing Thimerosal, an organic mercurial antimicrobial agent, a complex is formed.

The results from these in Vitro experiments indicate that the enzymatic papain cleaner is absorbed by the hydrogel lens and that it forms a mercuri-papain complex in a solution containing Thimerosal.

Bosmann et al. (1980) reported the presence of residual papain activity on chemically disinfected lenses while heat disinfected lenses were devoid of this activity. This suggests that the combination of papain with the chemical disinfectant may be the cause of the adverse eye reactions reported. However, they showed that the amount of inhibitory activity in the tears was more than enough to inhibit this small but measurable residual papain activity which is bound to the lens after chemical disinfection.

Whether residual papain or its mercury complex causes the inflammatory response warrants an investigation. This may be possible with a controlled clinical study in which the tear proteins could be monitored during the use of various hydrogel lens care systems.

Appendix B

DETERMINATION OF TOTAL TEAR PROTEIN CONCENTRATION

B.1 Introduction

The Lowry et al. (1951) method for total protein concentration was modified to accommodate a 2 ul tear sample. The colour reaction which develops between the copper-carbonate-protein complex and the Folin Phenol reagent was read at 750 nm in a spectrophotometer against known standards.

B.2 Materials

Stock Reagents

Unless stated otherwise all reagents were analytical grade, obtained from British Drug House Ltd.,

- 1. Cupric Sulphate
- 2. 2N Folin-Ciocalteou Phenol Reagent
- 3. Sodium Tartrate
- 4. Protein Standard Solution 8% (w/v) (Sigma)

Certified to contain:

Albumin 5.0 g/dL

Globulin 3.0 g/dL

5. Human Serum Albumin IV (Sigma)

B.3 **Working Reagents**

1.	Cupric sulphate 1% (w/v)	
	CuSO ₄ .5H ₂ O 1.0 Distilled water to	g 100. ml
2.	Sodium tartrate 2% (w/v)	
	Sodium tartrate Distilled water to	2.0 g 100.0 ml
3.	Sodium carbonate in 0.1N NaOH 2% (w/v)	
	Sodum carbonate 0.1N sodium hydroxide to	20.0 g 1.0 L
4.	Human serum albumin iv (Sigma) 1% (w/v)	
	Human serum albumin Distilled water	0.1 g 10.0 ml
	This reagent should be kept frozen in 1.0	ml aliquots
5.	Protein calibration standard 1% (v/v)	
	Certified protein standard (Sigma) 8% Distilled water	1.0 ml 7.0 ml
nis	standard should be kept frozen in 0.5 ml al	iquots.

6.	Alkaline copper solution (Reage	nt A)
	1% Cupric sulphate 2% Sodum tartrate 2% Sodium carbonate in 0.1N NaOH to	1.0 ml 1.0 ml 100.0 ml
7.	1N Folin-Ciocalteau phenol reagent	(Reagent B)
	2N Folin - Ciocalteau phenol reager Distilled water	1.0 ml 1.0 ml

B.4 Method

A 2 ul tear sample was added to 3 ml of reagent A. The test tubes were mixed rapidly with a vortex mixer, then allowed to stand for 10 minutes at room temperature. Next, 0.3 ml of reagent B was added to each tube and mixed rapidly. This rapid mixing was essential because reagent B is unstable in an alkaline solution. The tubes were incubated at room temperature for 30 minutes, then read against a reagent blank at 750 nm. in a D.B. spectrophotometer (CE 373, Cecil Instruments).

The total protein concentration was determined from a calibration curve of the 1% certified protein solution. The volumes used were 0.5, 1.0, 2.0, 4.0 and 5.0 ul. These volumes correspond to 5, 10, 20, 40 and 50 ug/tube respectively. The standards were done in duplicate and were treated by the same procedure as the tear samples.

The protein concentration of the tear sample was read directly from the calibration curve in Figure 13 or calculated with the aid of a programmable calculator. Figure 13: Comparison of Calibration Curve of Certified Protein Control vs Serum Albumin

Appendix C

ELECTROPHORESIS: THEORY AND METHODS

C.1 Theory

Electrophoresis is a sensitive analytical method based on the principle that changed particles, usually ions, in solution will migrate toward one electorde in an electrical field (Smith 1976). If these particles are differently charged, they will migrate in opposite directions. The positively charged particles mirgrate to the cathode (-ive pole) the negatively charged ones to the anode (+ive pole). The movement of these charged particles through the conducting medium is termed "Electrophoretic mobility".

The rate of migration of mixtures of charged particles by this technique will depend upon the strength of the electrical field, the molecular size, shape net charge and the degree of ionization. It also depends on the conducting medium which could be paper, starch, agarose, acrylamide gel or cellulose acetate. Thus a mixture of tear proteins will migrate at different rates through the conducting medium. This results in the separation of similar proteins into moving bands or fractions. The sharpness of the separation will depend upon the concentration of these fractions and the supporting medium.

C.2 Methods

There are two principal types of electrophoresis (1) moving boundary electrophoresis and (2) zone electrophoresis (Smith, 1976).

C.2.1 Moving Boundary Electrophoresis

The method of moving boundard electrophoresis was introduced by Piction and Linder in 1892 and refined by Tiselius in 1937 (Block et al., 1955). This technique employs a quartz U-tube filled with a buffer solution of known ionic strength and density. The position and size of the different fractions are determined by observing the change in refractive index which occurs at the boundaries between similarly charged particles. This technique has the following disadvantages: (1) the boundaries are unstable (2) separation is incomplete (3) a large sample volume is required and (4) fixing of the substances at the positions to which they have migrated is not possible because diffusion occurs when the current is switched off. This problem does not occur when the solution is held in a stabilizing medium such as in zone electrophoresis.

C.2.2 Zone Electrophoresis

The principle of separating charge particles in an electrical field is similar to that of boundary electrophoresis however the supporting medium, which may be paper or gel, enhances the separation of these particles into discrete zones. This permits detection and quantification by chemical and physical methods.

Filter paper electrophoresis was widely used for several years until other supporting media were developed. These supporting media are starch, agar, agarose, polyacrylamide gel and cellulose acetate (Smith, 1976). Of these, agarose and polyacrylamide gel have been found to give best separation. It was for this reason they were selected for this study.

The development of immunological techniques combined with histochemical stains, enzyme reaction and radioiostope labelling have made it possible to detect and quantify proteins present in micro quantities (Laurell et al, 1966; Mancini et al 1965). Since the tear volume is quite small any analysis of the protein components would require the most sensitive technique to detect changes in the protein composition. Therefore it was for this reason polyacrylamide gel electrophoresis and agarose gel electrophoresis were selected as the techniques of choice.

Appendix D

ACRYLAMIDE GEL ELECTROPHORESIS

D.1 Introduction

The technique of disc gel electrophoresis by Ornstein and Davis (1962) was modified to accommodate the low concentration of tear proteins.

The principle of electrophoretic analysis is based on the fact that proteins, being amphoteric, can behave either as acids or bases in an electrical field. Thus when a 2 ul of tears is placed on a vertical gel column medium of a constant pore size, and a constant current is applied between the cathode and anode of the column, the proteins are separated according to their charge density and molecular size. After separation of the migrated protein fractions, the gel is fixed, stained with a protein stain and destained. The characteristic protein bands are quantified by a scanning densitometer.

D.2 Materials

Stock Reagents

Unless stated otherwise all reagents were analytical grade, obtained from British Drug House (BDH) Ltd., U.K.

- 1. Ammonium Persulphate
- 2. Boric Acid
- 3. Cyanogum 41
- 4. Citric Acid (anhydrous)
- 5. 2-dimethylaminoethyl cyanide.
- 6. di-sodium tetraborate.

- 7. Sucrose
- 8. Tris hydroxyethyl methylomine

D.3 Working Reagents

All working reagents were freshly prepared for daily use on lens stated otherwise. Working reagents were kept at $4^{\circ}\mathrm{C}$ when not in use.

1. Ammonium persulphate 10% (w/v)

Ammonium persulphate	1.0 q
Distilled water	10.0 ml

2. 2-Dimethylaminoethyl cyanide 10% (w/v)

2-dimethylaminoethyl	cyanide	87%	(w/v)	1.0	m1
Distilled water				'	7.7	

3. Borate buffer pH 8.5 (Block et al, 1958)

Sodium tetra borate	17.5 q
Boric acid	9.3 q
Distilled water to	2.0 L
The pH was adjusted to	8.5

4. Sucrose 30% (w/v)

Sucrose	3.0 q
Distilled water	10 0 ml

This was kept frozen in 1 ml aliquots. Each day one aliquot was used then discarded.

5. Tris-citric acid buffer pH8.6 (Schultze and Hermans, 1966).

0.0591 M tris hydroxymethyl methylamine	0.717 q
0.00705 M citric acid	0.135 g
Distilled water .	100.000 ml
pH adjusted to	8.6

6. Cyanogum 41 (acrylamide and N,N-lmethylene-bisacrylamide) 5% (w/v)

Cyanogum 41	5.0 q
Tris-citric acid buffer	100.0 ml

This pH adjusted to 8.6 if necessary, before the solution was filtered and stored at 4°C .

D.4 Method

Preparation of Acrylamide Gels

The 5% cyanogum 41 in tris-citric acid buffer was brought two room temperature. Twenty (20)ml of this solution was degassed by bubbling nitrogen gas for 15 minutes and 0.2 ml of 2-dimethylaminoethyl cyanide was added and mixing. Then 0.2 ml of 10% ammonium persulphate was added and mixed gently.

Approximately 15 ml of the mixture was poured into a shell type vial. The height of the fluid column within the electrophoresis tube was adjusted to 65 mm by pouring the 5% cyanogum 41 mixture into the shell vial before polymerization occurred.

Next, 20 ul of distilled water was carefully layered on the surface of the polymerizing gel to ensure formation of a smooth flat gel surface. This was best done with a 1.0 ml disposable syringe with a 23 gauge needle attached. The top of the needle was placed against the inner wall of the tube, close to the top of the gel solution, and the water was then slowly and and evenly layered on top of the gel solution.

Polmerization was complete in 15 to 20 minutes and the gels were stored at $4^{\circ}\mathrm{C}$.

2. Preparation of the Electrophoresis Chamber

A Buchler Polyanalyst (Buchler instruments) vertical gel column electrophoresis apparatus was employed (Fig. 14). The upper chamber was modified by changing the grommets to a smaller size in order to hold the much smaller electrophoresis gel tubes. The lower reservoir was filled with 600 ml of borate buffer pH 8.5. Eight (8) of the prepared gels tubes were removed from the shell vial and the outer surface of each tube was rinsed with buffer solution to remove adhering pieces of gel. The water overlay on the gel column surface was removed with a 1.0 ml syringe with a 23 gauge needle attached and replaced with 20 ul of 30% sucrose.

The gel tubes were fitted into the grommets in the upper reservoir and adjusted so that they all protruded the same distance into the lower reservoir buffer when the upper chamber was placed on top of the lower chamber.

3. Application of Sample

The tear sample was slowly expressed under the surface of the sucrose layer from a disposable microcapillary tube (Drummond Scientific). Next, 0.5 ul of 1.0% bromaphenol blue solution was added. Finally, the remaining space in the tube was filled with the upper reservoir buffer. Care was taken to prevent mixing of the buffer with the sucrose (Fig. 15A).

4. Power Supply Adjustment

LKB constant power supply, Model 2103, was used with the current set at 1.25 mA per gel tube. A maximum of eight tube could be run at a time. Migration of the bromophenol blue indicator took 10 to 12 minutes to reach the anode (+). The current was switched off when the indicator was approximately 5 mm from the anode edge of the gel.

5. Fixing and Staining Proteins

After electrophoretic separation of the proteins, the gels were removed from the tubes with a teflon plunger (Fig. 15B), fixed and stained with 0.05%, Coomassie brilliant blue R250 in 10% acetic acid and destained overnight in 7% acetic acid (Chrambach et al, 1967). The gels were stored in a dark cupboard in screw-cap vials containing 10 ml, 7% acetic acid until they were analyzed by densitometry. The protein fractions are seen as dense blue bands in the destained gels.

Figure 14: Vertical Gel Column Electrophoresis Apparatus. This apparatus consists of:

- a. LKB constant power supply, Model 2103
- Buchler Polyanalyst electrophoresis chamber modified to hold micro gels

CODE:

- i. EL Electrical Leads
- ii. LE Lid Electrode Assembly
- iii. PCE Platinum Cathode Electrode
- iv. UBR Upper Buffer Reservoir
- v. GT Gel Tube
- vi. PAC Platinum Anode Electrode
- vii. LBR Lower Buffer Reservoir
- viii. LAS Level Adjustment Screw
- ix. WAJ Water Cooling Jacket

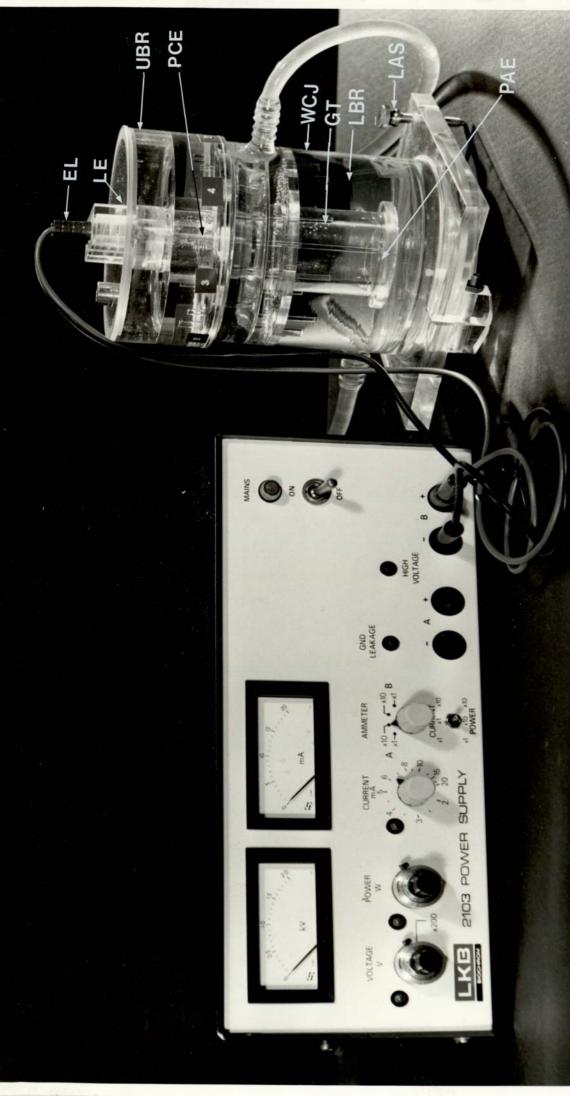
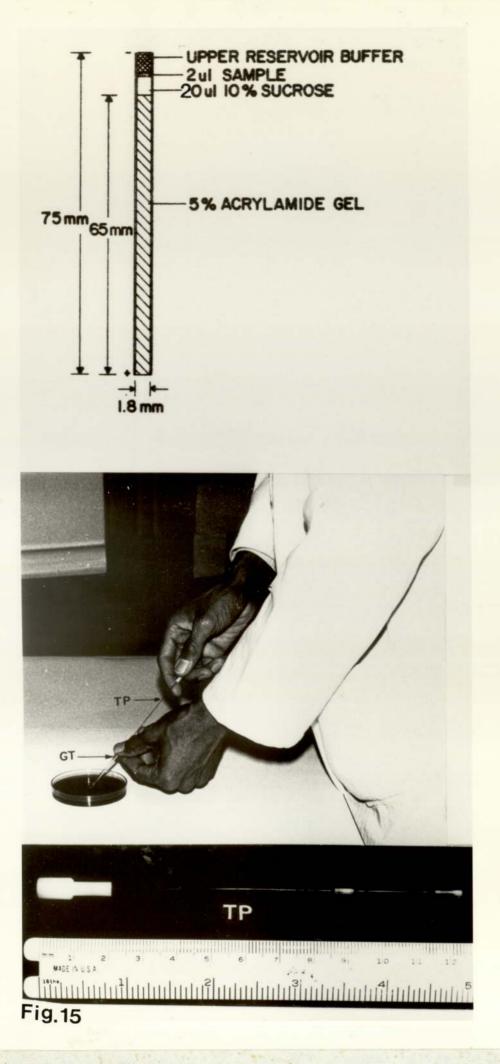



Figure 15: Preparation and Staining of the Acrylamide Gels.

D.5 Quantification of Protein Fractions

D.5.1 Scanning Densitometry

The gels were scanned at 580 nm using a Photo-Volt densitometer with a sample stage modified to accommodate these microgels. The density of the various protein fractions were graphically traced on a chart recorder (Fig. 16).

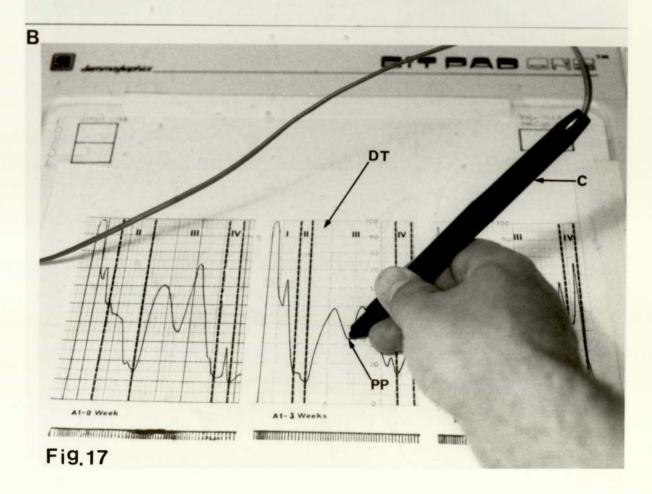
The protein fractions were differentiated into Groups I,II,III and IV in the other of the relative mobilities in the gel from the anode (+) to the cathode (-) end of the gel respectively. The area of group demarcation was taken as the deepest troughs between the protein fractions of of each group (Fig. 17B).

D.5.2 Analysis of Densitometric Tracing

The area under the peaks in each group was calculated with the aid of a micro-computer (Commodore PET) which was connected to a digitizing pad (Summa-graphics BIT. PAD ONE) as shown in Figure 17A, 17B and described by William (1983). The graph of the protein fractions was taped to the surface of the digitizing pad and the cursor was used to trace the preprogrammed points for each group of fractions. The computer then calculated the X and Y coordinates and displayed the area and percentage of each group of protein fractions. This information was transfered to the University of Waterloo Mainframe Computer for storage until needed for statistical analysis.

Figure 16: Photo-Volt Densitometer for Scanning Acrylamide Gels.

Figure 17: Digitizing Pad(DP) and Commodore PET Microcomputer.


Figure A:

Digitizing Pad (DP) (Summagraphic BIT PAD ONE) and Commodore Pet Microcomputer. This microcomputer unit was used to calculate the percentage protein distributution for each set of proteins (PER 1, PER 2, PER 3, PER 4).

Figure B:

Cusor (C) Tracing the Preprogrammed Points on the Densitometric Tracing (DT) on Digitizing Table.

Appendix E

AGAROSE GEL IMMUNOELECTROPHORESIS (ROCKET IMMUNOELECTROPHORESIS)

E.1 Introduction

This technique developed by Laurell (1966) involves the electrophoresis of a specific tear antigen eg. Lysozyme of IgA, in an agarose gel medium containing the corresponding antibody. Migration of the antigen in the electrical field results in a long rocket-like immunoprecipitate.

The gel is washed, stained and destained. The length of the rocket measured is linearly correlated to the amount of antigen.

E.2 Materials

Stock Reagents

Unless stated otherwise all reagents were analytical grade, obtained from British Drug House Ltd.

- 1. Barbitone
- 2. Calcium Lactate
- 3. Coomassie Brilliant Blue R (Sigma)
- 4. Sodium Barbitone

Working Reagents

The following reagents were stored at 4°C

1. Monospecific immunoglobulins (DAKO) produced in the rabbit

- a. Antihuman Colostrum IgA (alpha-chains and secretory piece). Lot 019E
- b. Antihuman Lysozyme (Muramidase) Lot 0288
- c. Antihuman Lactoferrin Lot 0788
- Worthington Lysozyme Reagent Set (Worthington diagnostics) Lot 70E937
- ImmunosticsTM Reference Normal Serum (Seward) (See page 144)
- 4. Pooled Normal Serum
- 5. 0.12M pH8.6 Barbitone Buffer

Sodium barbitone	20.60 g
Barbitone	3.68 g
Calcium lactate	1.23 g
Distilled water	1.00 L

1ml of 0.5% thymol in isopropanol was added to prevent the growth of microorganisms.

This barbitone buffer was diluted 1:1 to make the 0.06M solution required for the 1% agarose gel and reservoir buffer.

6. Coomassie Blue Stain 0.5% (W/V)

Coomassie brilliant blue R (Sigma)	5g
Methanol	450m1
Acetic acid	100m1
Distilled water	450m1

Coomassie blue powder was added to the methanol-acetic acid mixture and mixed with a magnetic stirrer. The solution was filtered into an amber bottle the next day.

7. Destaining Solution

Methanol	250 m1
Acetic acid	100 ml
Distilled water	450 m1

E.3 Methods

1. Preparation of 1% Agarose Gel

To 100 ml of 0.06 M barbitone buffer of pH8.6 was added 1gm of agarose. This suspension was gently boiled while being stirred until all the agarose was dissolved. 20 ml aliquots of the hot agarose solution was pipetted into screw-capped vials, cooled and stored at 4°C.

2. Preparation of Agarose-antiserum mixture

A vial containing 20 ml of the molten 1% agarose was placed in a 55°C waterbath and allowed to liquify. 15 ml of the liquified agarose was pipetted into a clean vial mounted in the waterbath and a specific volume of the antiserum was added and gently mixed. Care was taken to avoid bubbles.

In this study the volume of the following antisera required to give optimum results as shown below:

Antiserum	Volume	(u1/15m1	agarose)
Colostrum IgA	25		
Lysozyme	300		

3. Preparation of Antiserum-agarose Gel Plates

In order to obtain an antiserum-agarose gel of uniform thickness, a mould was made (Fig. 18). This consisted of two cleaned glass plates measuring $20 \times 10 \times 0.3$ cm between which was placed a U-shaped frame made from a 1 mm thick teflon sheet. The three pieces of the mould were tightly held together by means of bulldog clips.

The mould was heated to approximately 45°C with an incandescent lamp before injecting the antiserum-agarose mixture.

A 10 ml disposable syringe was used to withdraw the antiserum-agarose mixture from the vial in the 55°C waterbath. The mould was held in a slanting position and the contents of the syringe were injected at the lower corner of the slit between the two glass plates. This method of injecting the mixture prevented the inclusion of air bubbles.

INMINUNOS ILEST TELET TROP PROPRIATIONS

The specific protein content in International Units (IU) has been obtained by comparison with international and national standards using IMMUNOSTICS antisera. The specific protein concentration in mg/litre is based on a comparison with a variety of standards, the accuracy of which cannot be guaranteed in the absence of international agreement.

STORAGE

IMMUNOSTICS reference preparations should be stored at +4°C.

PRODUCT DETERIORATION

Use before expiry date printed on the label. Do not use if the preparation shows any sign of contamination or is strongly turbid. Some deterioration in the more labile proteins (\mathcal{B} lipoprotein, C3, C4, C5) can be expected with time.

1) Normal serum pool. Obtained from healthy donors who had no history of recent illness or hepatitis. It has been calibrated for the following proteins

Protein	% WHO Standard 67/86	Conc. in mg/l
lgG	-CATT A 1126 LESTATION	9 520
IgA	111 2222 1 199	1 .1 570
IgM .	149	1 170
Protein ill 1	% British Standard 74/520	Conc. in mg/l
Complement C3	112	900
Complement C4	103	213
Complement C5	91	- 1 · 4 · 4 · 4 · 4
Albumin	134	44 400
∞2 Macroglobulin	178	2 460
Transferrin	107	2 735
cx 1 Antitrypsin	120	2 040
B Lipoprotein	129	
Orosomucoid	104	550
TBG	92	103
Prealbumin	122	295
Haptoglobin	53.5	614
Ceruloplasmin	120	325
Properdin Factor B	.20	169
*Not established		103

- 2) Kappa preparation contains approximately 500 mg/l of Kappa light chains.
- 3) Lambda preparation contains approximately 500 mg/l of Lambda chains. The Kappa and Lambda preparations have been obtained from pools of Bence Jones proteins and partially purified on Sephadex G 100 to remove cross-reacting
- 4) IgD preparation contains 82 mg/l of polyclonal IgD. 5) IgE preparation contains 5mg/l of polyclonal IgE.
- 6) IgA secretory component preparation contains secretory component equivalent to 5,200 mg/l of secretory IgA.

- 7) ∝ Fetoprotein preparation contains 50 mg/l of ∝ FP. 8) C-Reactive Protein preparation contains 47 mg/l of C-RP. 9) Pregnancy Serum Pool contains 780 mg/l of Pregnancy associated ∝ 2 glycoprotein (PAG) and 74 mg/l of Pregnancy specific & 1 glycoprotein (SP1).

PRECAUTIONS

IMMUNOSTICS reference preparations have been tested and found negative for Hepatitis B surface antigen (HBs Ag) at both donor and final pool levels, by passive haemagglutination (PHA) and radioimmunoassay (RIA). However, these tests cannot guarantee the absence of the causative agent of viral hepatitis. These products should therefore be handled in the same manner as any potentially infective biological

REFERENCES

- 1) Alexsen, N.H., J. Kroll and B. Weeke, 1973. A manual of quantitative immunoelectrophoresis. Methods and Application. Universitetsforlaget. Oslo. (Also published in Scand J Immunol 2: Suppl 1)
- 2) Laurell, C.B., 1972 Electrophoretic and electroimmunochemical analysis of proteins Universitetsforlaget, Oslo. (Also published in Scand. J. Clin. Lab. Invest 29: Suppl. 124 21 37).
- 3) Thompson, R.A., 1977. Techniques in clinical immunology. Blackwell Scientific **Publications**

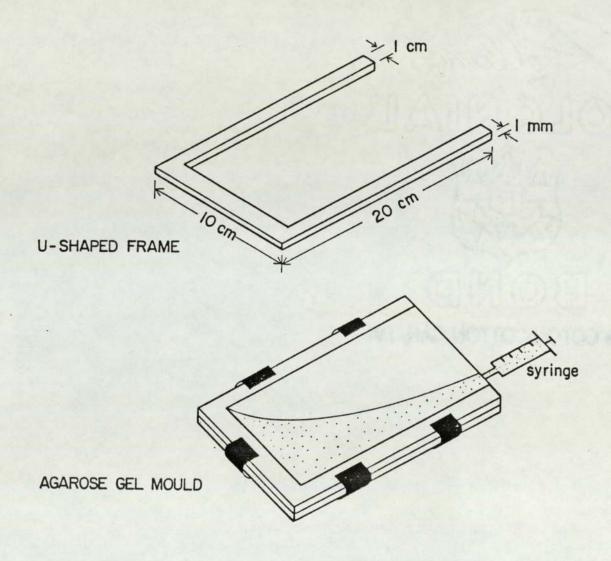


Figure 18: Preparation of Antiserum Agarose Gel in Glass Mould

Once the mould was filled, it was held in the upright position and allowed to solidify at room temperature and then stored at 4°C until the tear samples were applied.

The clamps were removed from the mould and the upper glass plate was carefully slid off. Next, the U-shaped frame was removed. The gel plate was placed on a sheet of graph paper which was used as a template for punching the sample wells 1 cm apart along a line 1 cm from the edge of the gel. The circular wells were punched out with a 3 mm gel puncher and the small cylinders of gel cut out were removed with a No. 23 gauge syringe needle.

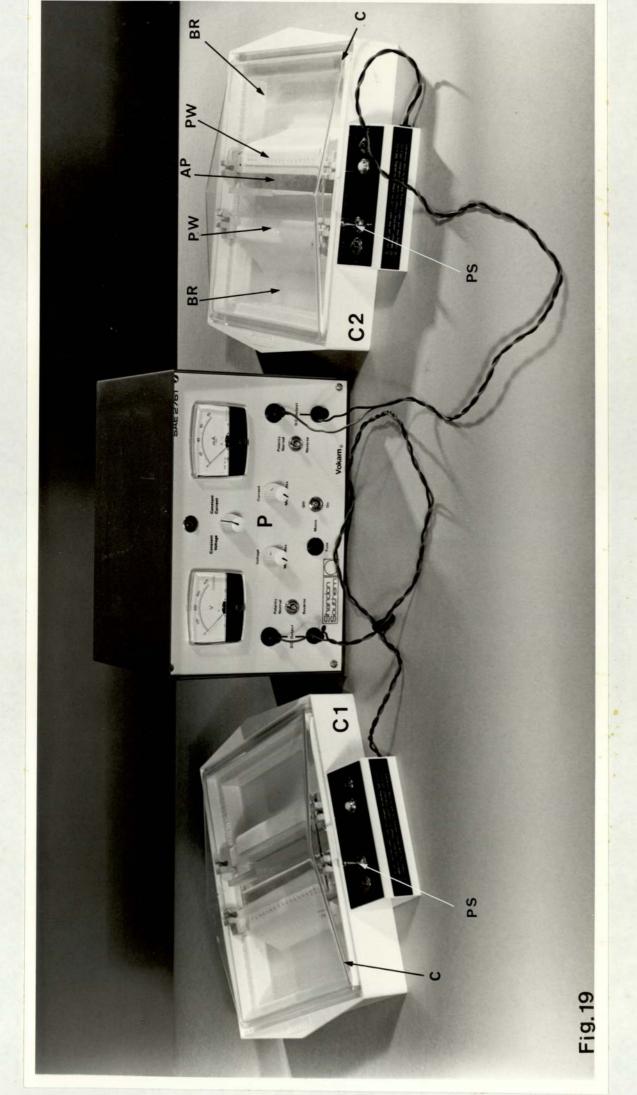
4. Preparation of Electrophoresis Chamber

A Shandon electrophoresis unit which consisted of two electrophoresis chambers and Vokam stabilized DC power supply was employed (Fig. 19). Each buffer reservoir was filled with 500 ml of 0.06 M barbitone buffer of pH 8.6. The level of the electrode buffer in each compartment was checked to ensure that they were of equal height.

The connecting bridges were made from Whatman chromatography filter paper 3 mm measuring 20 x 10 cm. On the edge of one of the bridges was labelled 1 to 18 in pencil to correspond to the 18 sample wells.

The gel plate was placed centrally between the two reservoirs. The connecting bridges were moistened with the electrode buffer and positioned along the long edges of the gel, allowing an overlap of 5 mm onto the gel. The rest of the filter paper made contact with the reservoir buffer.

5. Application of Samples


The polarity of the two chambers were adjusted so that the sample wells for the IgA assay was at the cathode (-ive) in chamber C1 and those for the lysozyme were at the anode (+ive) in chamber C2 (Fig.19).

The power supply was switched on and the voltage adjusted to approximately 1 volt per cm before applying samples to the respective wells. This precedure was necessary to avoid diffusion of the sample from the well.

- Figure 19: Shandon Apparatus for Rocket Immunoelectrophoresis. The apparatus consists of:
 - a. Power supply SAE 2761 (Shandon Southern). This accommodates two electrophoretic chambers.
 - b. Electrophoretic Chambers (Shandon Southern).

CODE:

- i. AP Agarose Plate Containing Antiserum.
- ii. CC Chamber Cover.
- iii. FPB Filter Paper Bridges.
- iv. BR Buffer Reservoir.
- v. PS Polarity Switch.
- vi. EL Electrical Leads.
- vii. PW Paper Work.

The volume of the tear sample and serial dilution standards varied with each type of tear protein to be assayed. These were as follows:

1. Immunoglobulin A (IgA)

A 1 ul tear sample for each of the subjects and serial dilutions of a standard serum were applied to the appropriately labelled sample wells. The dilutions for the calibration curve were: 1:2, 1:3, 1:4, 1:5, 1:6 and 1:10. At least three of these were used for each run.

2. Lysozyme

A 1/2 ul tear sample for each subject was applied to the appropriate wells.

A commercial calibration standard was not available at the time of this study. However, known volumes of pooled tears were assayed by the spectrophometric procedure marketed by Worthington Diagnostics and corresponding volumes of the same pooled tears were used in immuno-electrophoresis method.

The concentration of the lysozyme determined by the spectrophotometric procedure multiplied by a factor of 3.5 (since human lysozyme is 3.5 times more active than egg lysozyme) was equated with the peak height of the corresponding volumes used in the immunoelectrophoresis and the calibration curve was established.

3. Power Supply Adjustment

Following the application of the tear samples and dilution standards, the power supply was switched to constant current. The current was adjusted to 8 mA.

The cover for the electrophoretic chamber was replaced and the electrophoresis ran overnight for approximately 16 hours.

4. Washing the Agarose Gel

After the electrophoresis was finished, the gel was placed in a dish containing a 0.9% saline solution. The gel was washed for 2 days with several

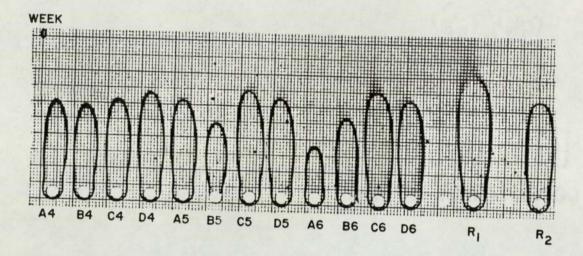
changes of the saline solution each day and then soaked in distilled water for one day in order to remove the salt. The distilled water wash was changed 3 times.

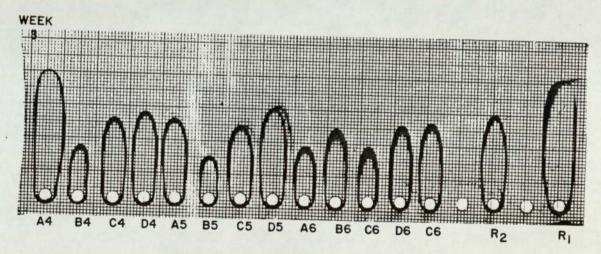
5. Staining and Destaining the Agarose Gel

The gel was stained with 0.5% Coomassie brilliant blue in a methanolacetic acid mixture for 5 minutes and then washed with a methanol-acetic acid destaining solution until the background was slightly bluish. Three or four changes over a period of 15 to 30 minutes were required to complete this procedure.

6. Drying the Agarose gel

The gel was placed on an acetate sheet, blotted with soft cellulose tissue to remove the liquid phase and allowed to dry at room temperature overnight.


7. Quantification of Peak Heights


The height of the various peaks (antigen-antibody precipitate zone) can be measured directly by overlaying the acetate sheet on a sheet of metric graph paper. The peak height was measured from the tip of the peak to the top of the sample well with an accuracy of 0.5 mm.

A calibration curve was obtained by plotting the peak heights of the standard dilutions against their concentrations as shown in Figure 20A, 20B, 20C for Lysozyme and Figures 21A, 21B and 21C for IgA. By interpolation on the curve, unknown samples can be quantified. In this study a programmable calculator (Texas Instrument Model 59) was used to compute the correlation coefficient of the standard calibration curve from which the peak height of the unknown sample was input and the protein concentration calculated. This is the preferred procedure because the calibration curve data are seldom perfectly linear thus computation of the line fitted to the data approximates the data.

Figure 20: Rocket Immunoelectrophoresis Plates for Lysozyme Assay

A 0.5 ul tear sample was taken for the lysozyme assay from each subject at each visit for a period of 24 weeks. Tear lysozyme standards are R1=2ug/ul, R2=1ug/ul, R4=0.5 ug/ul.

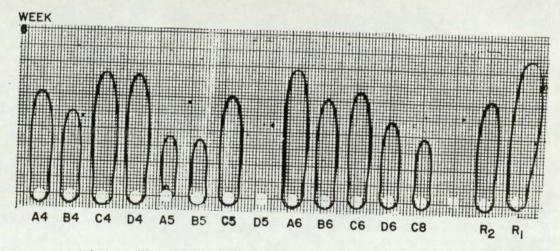


Figure 20a: Rocket Immunoelectrophoresis Plates for Lysozyme Assay

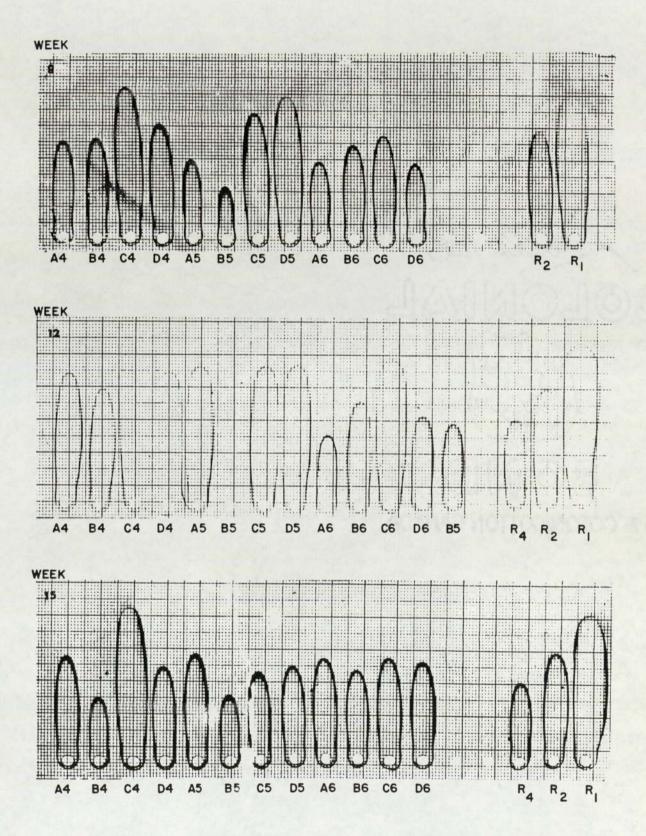
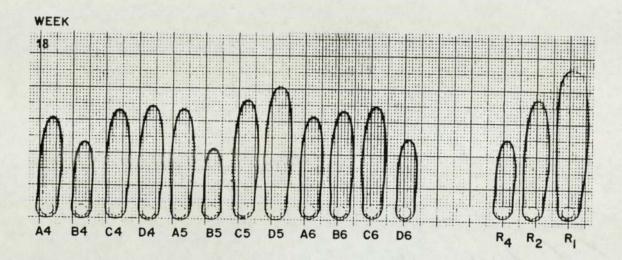
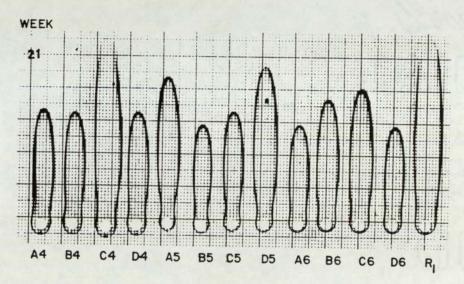




Figure 20b. Rocket Immunoelectrophoresis Plates for Lysozyme Assay

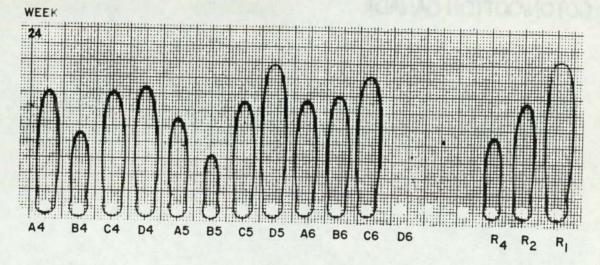


Figure 20c. Rocket Immunoelectrophoresis Plates for Lysozyme Assay

Figure 21: Rocket Immunoelectrophoresis Plates for IgA Assay

A 1 ul tear sample was taken for IgA (secretory) assay from each subject at each visit for a period of 24 weeks. A reference serum standard containing 1570 mg/L IgA was used to calibrate the pooled serum standard of 1220 mg/L. Pooled serum dilutions were:

So=neat, $S_2=1:2$, $S_3=1:3$, $S_6=1:6$, $S_{10}=1:10$. Reference serum $R_1=1:1$, $R_2=1:2$.

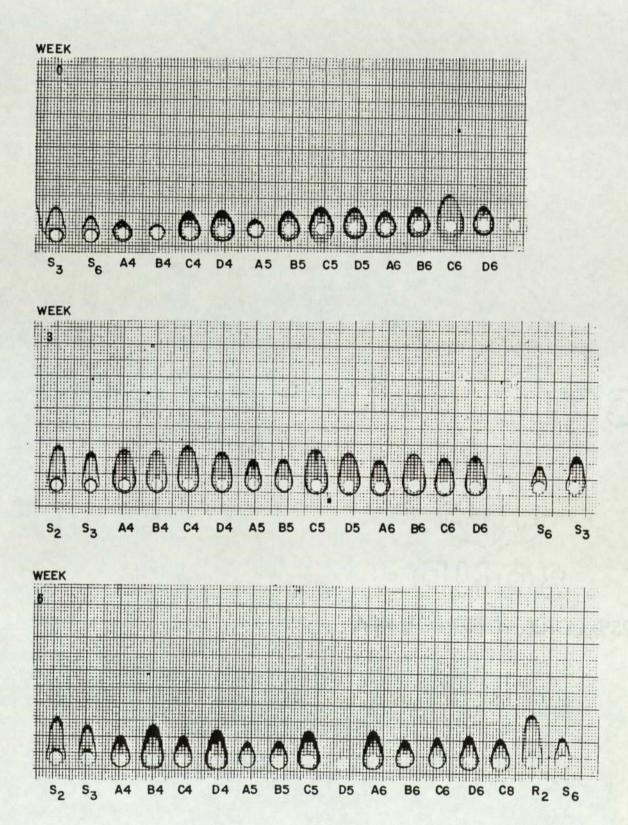
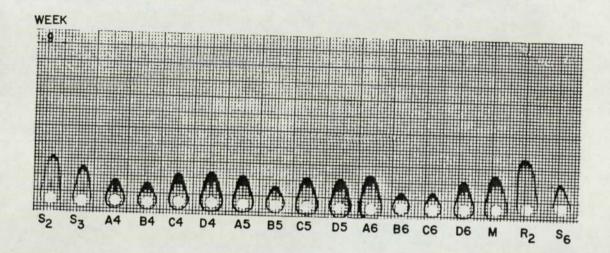
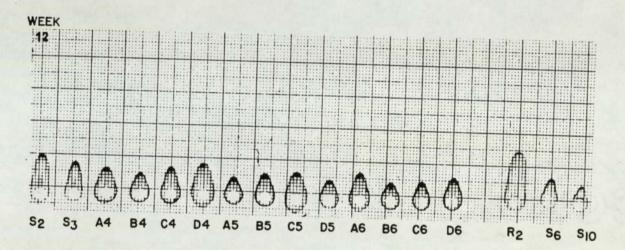




Figure 21a: Rocket Immunoelectrophoresis Plates for IgA Assay

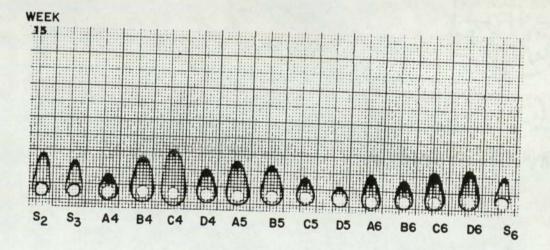


Figure 21b: Rocket Immunoelectrophoresis Plates for IgA Assay.

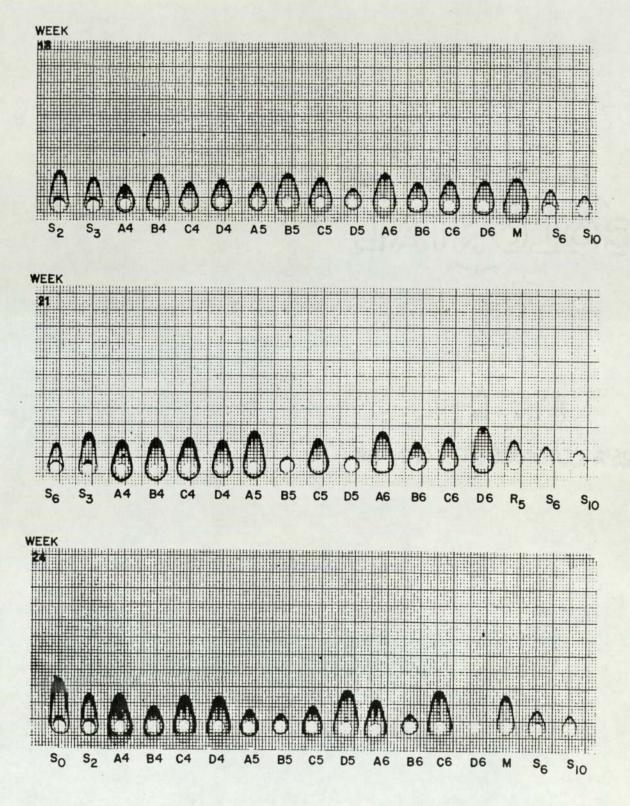


Figure 21c: Rocket Immunoelectrophoresis Plates for IgA Assay

Appendix F STATISTICAL AND RAW DATA

Table 13: ANOVA for (Total) Tear Protein as the Dependent Variable SAS

IRE	
PROCEDUR	FUTAL
MODELS	
LINEAR M	VAR IABLE:
RAL LI	DEPENCENT
GENERAL	DEPE

C. V.	26.2189	TOTAL MEAN	1024.53191489	PR > F	0.0001 0.0001 0.0001	
R-SOUARE	0.522499		1024	F VALUE	13.37 4.50 16.13 1.01	
PR > F	0.0001	ROCT MSE	268.62135225	TYPE III SS	2894649.06449427 16221380.60632404 9310194.43009099 1754402.09855662	
OF	85	384	469	P.	50 8 24	
SOURCE	MCDEL	ERHOR	CORRECTED TOTAL	SJURCE	GRCLP ID(GROUP) VISIT GROUP*VISIT	

0.0404 TESTS OF HYPOTHESES USING THE TYPE III MS FOR ID (GROUP) AS AN ERROR TERM 2.57 F VALUE TYPE I'I SS 2894049.06449427 DF 3 SOURCE GREUF

Visit

V1								
h Respect to			PRGE>F	0.0001		PKUB > [11]	0.0001	
Wit						ă		
) Tear Protein			F VALUE	62.791	0.1269	T FOR HO:	25.725	
Cotal			N H	28	E O		37	
lysis for (T			SGJARE	6532045 104028	R-SQUARE AUJ R-SQ	STANDARD	27.916725	
Table 14: Linear Regression Analysis for (Total) Tear Protein with Respect to Vi		TOTAL	SOUARES	6532045 44940274 51472319	322.534 1013.854 31.81145	PARAMETER EST IMATE	829.815 15.974830	
Linear		ABLE:	DF	432	MEAN	7		
Table 14:	SAS	DEP VAR JABLE: TOTAL	SOURCE	MCDEL ERROR C TOTAL	RÖUT MSE DEP MEAN C.V.	VARIABLE	INTERCEP VISIT	

0.4279

0.94

R 1) as the			C.V.	18.2092	PER MEAN	25.48910455	PR > F	0.0142 0.0001 0.0001 0.1052	ERROR TERM	0.4279
ons in Set 1 (PE			R-SQUARE	0.454008	a	25.4	F VALUE	3.58 3.80 4.35 1.40		0.94
ANOVA for Percentage Distribution of Protein Fractions in Set 1 (PER 1) as the Dependent Variable		40.75	PR > F R-	0.0001	ROOT MSE	36736	TYPE 111 SS	231 • 59143012 3851 • 652 05581 750 • 53182613 722 • 21238943	ES USING THE TYPE III MS FOR SUBJIGROUP) AS AN DF TYPE III SS F VALUE	231.59143012
tage Distribution le	CEDURE		DF PI	82 0.	311 ROD	393 4.64136736	DF .	47 8 24 77	THE TYPE III	3 23
ANOVA for Percenta Dependent Variable	GENERAL LINEAR MODELS PROCEDURE	RIABLE: PER			м				UTHESES USING	
Table 15: A SAS PROT=1	GENERAL LINE	DEPENDENT VARIABLE:	SOURCE	MODEL	ERROR	CORRECTED TOTAL	SOURCE	GROUP SUBJ(GROUP) VISIT GROUP*VISIT	TESTS OF HYPOTHES SOURCE	GROUP

otein Fractions in Set 1 Table 16: Linear Regression Analysis for Perce

tionof Protein	PROBSE	0.0971		PRUB > T 0.0001 0.0971	
SAS (PER 1) with Respect to Visit PROT=1 DEP VARIABLE: PER	F VALUE	2.765	0.0070	T FOR HO: PARAMETER=0 51.437	
nalysis lor Per t to Visit	MEAN	85.945544	R-SQUARE ADJ R-SQ	STANDARD ERRCR 0.509271 0.035948	
(PER 1) with Respect to Visit	SUM OF SQUARES	85.945544 12184.660 12270.606	5.575241 25.489105 21.87304	PARAMETER ESTIMATE 26.195496 -0.059776	
(PE)	P	392 393	MSE	D 11	
SAS (PER 1) PROT=1 DEP VARIABLE: PER	SOURCE	MODEL ERROR C TOTAL	ROOT MSE DEP MEAN	VARIABLE INTERCEP VISIT	

ANOVA for Percentage Distribution of Protein Fractions in Set 2 (PER 2) as the Dependent Variable Table 17: SAS PROT=2

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: PER	PER			
SOURCE	DF	PR > F	R-SQUARE	C.V.
MODEL	82	0.0001	0.500895	34.5521
ERROR	311	ROOT MSE		PER MEAN
CORRECTED TOTAL	303	4.41968984	•	12.79138669
SOURCE	DF	TYPE 111 SS	F VALUE	PR > F
GROUP SUBJ(GROUP) VISIT GROUP*VISIT	W 7 4 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8	160.08470334 2 444.45353109 2989.03875620 173.53038090	2.73 2.88 19.13 0.37	0.0432 0.0001 0.0001

RROR TERM	PR > F	0.4249
AS AN E	F VALUE	0.95
IF HYPOTHESES USING THE TYPE III MS FUR SUBJIGROUP) AS AN ERROR TERM	TYPE III SS F	160.08470334
USING THE 1	DF	М
HYPOTHESES (
TESTS OF	SOURCE	GROUP

Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 2 0.0001 PROBSF 0.0001 PROB > |T| 0.1140 20.774 T FOR HO: PARAMETER=0 F VALUE 50.437 MEAN R-SQUARE ADJ R-SQ 0.033320 STANDARD 1387.549 27.510676 (PER 2) with Respect to Visit 1387.549 10784.185 12171.734 5.245062 12.791387 41.00464 SUM DE 9.953091 PARAMETER EST IMATE DEP VARIABLE: PER ROOT MSE CEP MEAN 393 DF Table 18: VARIABLE INTERCEP MODEL ERROR C TOTAL SAS PROT=2 SOURCE

Table 19: ANOVA for Percentage Distribution of Protein Fractions in Set 3 (PER 3) as the Dependent Variable

TOT WOUNT TOTAL	retremede ni	more to telectioned practical of florein flactions in set 3 (FER 3) as the	Tac III SHOTTON	o (FER 3) as the
PROT=3				
GENERAL LINEAR MODE	MODELS PROCEDURE			
DEPENDENT VARIABLE:	: PER			
SOURCE	DF	PR > F	R-SOUAPE	;
MODEL	82	0.0001	0.460542	14 46.0
ERROR	311	ROOT MSE		0101-010
CORRECTED TOTAL	393	6*96900169		48-22521377
SOURCE	DF	TYPE 111 SS	u	
GROUP SUBJ(GROUP) VISIT GRGUP*VISIT	. W. C. 4	827.48823200 8099.33692649 2480.38874063	5.68 3.58	0.00000
	47	1125.58091580	0.97	

TESTS OF HYPOTHESES USING THE TYPE III MS FOR SUBJ(GROUP) AS AN ERROR TERM 0.2018 1.60 F VALUE TYPE III SS 827.48823200 DF SOURCE GROUP

Linear Regression Analysis for Percentage Distribution of Protein Fractions in Set 3 (PER 3) with Respect to Visit Table 20:

SAS (PER 3) wit

DEP VARIABLE: PER

	PROBSE	0.0001		PROB > T	0.0001
	F VALUE	19.023	0.0463	T FOR HO:	67.604
	SQUARE	1295.880 68.120406	R-SQUARE ADJ R-SQ	STANDARD	0.753918
100	SQUARES	1295.880 26703.199 27999.080	8.253509 48.225214 17.11451	PARAMETER ESTIMATE	50.968152
	OF	392	M SE AE AN	H.	
	SOURCE	MODEL ERROR C TCTAL	ROOT MSE DEP MEAN C.V.	VARIABLE	INTERCEP

ANOVA for Percentage Distribution of Protein Fractions in Set 4 (PER 4) as the 0.0227 46.0643 PER MEAN 13.49429499 PR > F 0.0200 3.32 VALUE 0.292798 R-SQUARE u. 2738.01550831 2738.31804086 883.86559534 960.86603123 TYPE III SS PR > F 0.0034 ROCT MSE 6.21605786 GENERAL LINEAR MUDELS PROCEDURE UF 82 311 393 DF 244 Dependent Variable DEPENDENT VARIABLE: PER CURRECTED TOTAL GROUP SUBJ(GROUP) VISIT GROUP #VISIT Table 21:. PROT=4 SOURCE SOURCE ERROR MODEL

TESTS OF HYPUTHESES USING THE TYPE III MS FOR SUBJ(GROUP) AS AN ERROR TERM

0.1002

VALUE 2.20

TYPE III SS 385 • 01 550831

DF

SOURCE

GROUP

	RGB>F	.2231		, II	0.0001
	۵	0		80	00
	VALUE	1.489	.0038	HO: TER= 0	21.463
	L		00	T FOR	2
	MEAN	307607 3-183128	A-SQUARE	TANDARD	0.00254
				U1	00
8	SUM OF	64.307607 16927.786 16992.094	6.571387 13.494295 48.69752	PARAMETER EST IMATE	12.883262
BLE: PE	DF			DF	
DEP VARIA	SOURCE		ROOT DEP M	ARIABLE	INTERCEP
	DEP VARIABLE: PER	SUM OF SQUARES SQ	SUM DF SQUARE F VALUE 4.307607 64.307607 1.489 6992.094 43.183128	IABLE: PER SUM OF SQUARE SQUARE SQUARE SQUARE SQUARE SQUARE 164.307607 1.489 352 1692.094 43.183128 16992.094 T MSE 6.571387 R-SQUARE 0.0038 MEAN 13.494295 ADJ R-SQ	IABLE: PER SUM OF SQUARES 1 64.307607 64.307607 1.489 352 16922.094 43.183128 0.0038 MEAN 13.494295 ADJ R-SQUARE 0.0012 PARAMETER STANDARD T FOR HO: PROB

Table 23: ANOVA for Lysozyme as the Dependent Variable

SAS GENERAL LINEAR MCDELS PROCEDURE DEPENDENT VARIABLE: LYSO SOURCE DF PR > F R-SQUARE MCDEL 84 0.0001 0.507715 ERROR 364 RGUT MSE CUERECTED TUTAL 443 60.91770229 SOURCE 0F TYPE III SS F VALUE SACOPTIS 3 12149042.89917047 13.12 VISIT 3 1214904.266628893 4.09 VISIT 24 57704.22749750 0.65								268.			
LINEAR MODELS PROCECURE T VARIABLE: LYSO DF 84 364 D TJTAL 443 0F 351					R-SOUABE	0.507715				13.12 5.76 6.09 0.65	
SAS GENERAL LINEAR MODELS PROCEDU DEPENDENT VARIABLE: LYSO SOURCE MCDEL RCDEL SA ERROR CURRECTED TUTAL SOURCE GROUP SURCE GROUP VISIT GROUP*VISIT SA 249 VISIT GROUP*VISIT	aron and and a		2.E		PR > F	0.0001	RGCT MSE	60.91770239	TYPE III 55	146042.89317047 1046752.63502067 1214.04.56628393 57704.22745730	
SAS GENERAL LIN DEPENDENT V SOURCE MCDEL ERROR CURRECTED T CURRECTED T SOURCE GRGUP 10 (SRJUP) V I SIT GACUP*VISIT			EAR MODELS PROCEDUR	AR IABLE: LYSO	. O.F.	48	364		JC.	17 C M 4 N	
		SAS	GENERAL LIN	DEPENDENT V	SOURCE	MCDEL	ERROR	CURRECTED T	SOURCE	GRGUP 1 GRGUP 1 GRGUP 1 GRGUP * V I S I T	

22.6484. YSD MEAN 0.0001 0.0001 0.8992

0.0911

2.2€

F VALUE

TYPE III SS

DF

SCURCE

145042.39817047

TESTS OF HYPOTHESES USING THE TYPE III MS FOR LOTGROUP) AS AN ERROR TERM

PR > F

Table 24: Linear Repression Analysis

ISIT	•		PR08>F	0.1101		PRSB > [T]	0.0001
to V						PRS	
n Kespect			F VALUE	2.563	0.0036	T FOR FO: PARAMETER=0	38.179
ne wit			ı			T FO	
Lysozyi			MEAN	.909	LARE K-SO		0341
ysis for			80	15368.842	R-SOLARE ADJ K-SO	STANDARD	5.810341 C. A91840
Table 24: Linear Regression Analysis for Lysozyme with Respect to Visit		LYSO	SUM OF SQUARES	15868-842 2674905 2693774	78.683684 269.101 29.24128	PARAMETER ESTIMATE	260-028
Linear		BLE:	DF	432	MSE E AN	UF	
Table 74:	SAS	DEP VARIABLE: LYSO	SOURCE	MODEL ERROR C TCTAL	BEP MEAN	VARIABLE	INTERCEP

0.7463

3.41

F VALUE

TYPE 111 53 0.02362922

DF

SCLACE GROUP

TESTS OF HYPUTHESES USING THE TYPE III MS FOR IC(GREUP) AS AN ERROR TERM

Table 25: ANOVA for Percentage Lysozyme in Total Tear Protein as the Dependent Variable SAS

*		;		P602-02	0.28235275	0	0.00011
		R-SCUARE	0.445070			F VALUE	1.23
Ê		PR > F	0 •0001	ROGT MSE	0.07993284	TYPE 111 5S	0.02362622 0.54337390 0.82941985 0.04503475
IEAR MODELS PROCEDURE	VARIABLE: LYSTUT	DF	84	364	448	OF	4 N
GENERAL LINEAR MC	DEPENDENT VARIABL	SCURCE	MODEL	ERPCR	CCRRECTED TUTAL	SOURCE	GROUP 10 (GROUP) VISIT GROUP*VISIT

to Visit

to							
Respect							
with			PRCB>F	0.0001		E	001
Protein			PRC	0.0		FR08 > 1	0.0001
Tear			ш	т	00	9	mæ
yme in Total			F VALUE	68.523	0.1369	T FUR HO:	43.143
Table 2b: Linear Regression Analysis for Lysozyme in Total Tear Protein with Respect to			SQUARE	0.561322 0.008199056	R-SOUARE ACJ R-SQ	STANDAFU	0.0005657371
ir Regression An		LE: LYSTCT	SUM DE SQUAPES	0.561822 3.541992 4.103814	0.393549 0.284143 31. E6723	PARAMETER ESTIMATE	0.338129
Lines		BLE:	DF	432	MEAN	OF	
Table 2b:	SAS	DEP VARIABI	SDURCE	MODEL ERROR C TOTAL	ROGT DEP M	VARIABLE	I NTERCEP VISIT

PH > F 0.6532

F VALUE

TYPE 111 SS 1223-38059335

OF

SOURCE

0.54

Table 27: ANOVA for IgA as the Dependent Variable SAS

ELS PROCECURE	: IGA	90
GENERAL LINEAR MODELS PROCECURE	DEPENDENT VARIABLE: IGA	SALIBCE

t.			PROBSF	0.3709		PROB > [1]	0.0001
Table 28: Linear Regression Analysis for IgA with Respect to Visit			F V ALUE	0.602	0.0019	T FOR HO:	23.476
ysis for IgA wi			SQUARE	135.808 169.295	P-SGUARE ADJ K-SQ	STANDARD	1.126187
Regression Anal		IGA	SUM UF SQUARES	135.808 73135.373 73271.182	13.011335 27.277304 47.73022	PARAMETER ESTIMATE	26.437957
Linear		ABLE: 1	DF	432	A S E A N	C.F.	
Table 28:	SAS	DEP VARIABLE: IGA	SOURCE	MODEL ERRUR C TOTAL	AGOT MSE DEP MEAN	V AR IABLE CF	INTERCEP

0. 8838 FP > F

0.22

F VALUE

TYPE 111 SS 0.00037887

DF

SOURCE GREUF

TESTS OF HYPUTHESES USING THE TYPE III AS FOR IS(GROUP) AS AN ERROR TERM

ıble				> 0	31.9206	IGATOT MEAN	0.02735856	PR > F	0.1744 0.0001 0.0001 0.0175
Dependent Varia				R-S GU ARE	0.588526			F VALUE	1.665 7.651 12.79 1.74
Table 29: ANOVA for Percentage IgA in Total Protein as the Dependent Variable				PR > F	0.0001	ROCT MSE	0. 30673362	TYPE III SS	0.00937337 0.02945565 0.00779552 0.00319191
for Percentage IgA i		GENERAL LINEAR MODELS PROCEDURE	ABLE: IGATOT	OF	84	366	L 450	OF	4 N W W & 4
Table 29: ANOVA	SAS	GENERAL LINEAR	DEPENDENT VARIABLE: ISATOT	SOURCE	MGDEL	ERROR	COFRECTED TOTAL	SOURCE	GACUP 10(GACUP) VISIT GACUP*VISIT

to Visit

Table 30:	Line	ar Regression Ar	alysis for Perce	entage IgA in Tot	Linear Regression Analysis for Percentage IgA in Total Protein with Respect	-
SAS						
DEP VARIABLE: IGATOT	ABLE:	IGATOT				
SOURCE	P	SUM CF SQUARES	SQUARE	F VALUE	PRCE>F	
MODEL ERROR C TOTAL	432	0.005054881 0.051000 0.066055	0.005054981	35.799	0.0001	
DEP M	MEAN	0.011883 0.027588 43.07245	R-SOUARE ADJ R-SO	0.0765		
VAFIABLE	P	PARAMETER EST IMATE	STANDARD	T FOR HO:	PR.08 > T	
INTERCEP		0.032709	0.001028517	31.602	0.0001	

Table 31: Statistical Analysis: I. The mean, SD and SEM derived from raw data on corneal thickness (Cornea), total protein (Total), lysozyme (Lyso), IgA, percentage lysozyme in total protein (PERlyso) and percentage IgA in total protein (PERlgA).

SAS					
VARIABLE	LABEL	N	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN.
GROUP=A	VISIT (weeks	s)=0			
CORNEA		13	0.56900000	0.03251410	0.00901779
LYSO		13	583.84615385	183.82684160	50.98439255
IGA		13	214.00000000	70.31358332 10.43498719	19.50147923
PERLYSO		13	38.96611804	15.47084429	4.29084018
PERIGA		13	4.00259166	1.23322385	0.34203475
GROUP=A	VISIT (weeks	5)=3			
CORNEA		13	0.56269231	0.03392242	0.00940839
TOTAL		13	827.69230769	224.13365976	62.16349252
LYSO	•	13	244.30769231	77.22627426 12.85333460	21.41871474
PERLYSO		13	30.53145412	9.54627862	2.64766131
PERIGA		13	2.85271214	1.15919998	0.32150423
GROUP=A	VISIT (weeks	5)=6			
CORNEA		13	0.56346154	0.03176375	0.00880968
TOTAL		13	785.38461538	155.59645372	43.15469171
LYSO		13	258.76923077	59.88621690	16.60944813
IGA PERLYSO		13	27.23000000 33.16344593	8.80483579 6.11033782	2.44202207
PERIGA .		13	3.46386640	0.85704166	1.69470279 0.23770059
GROUP=A	VISIT (weeks	3)=9			
CURNEA		13	0.56007692	0.03377983	0.00936884
TOTAL		13	960.76923077	345.62652142	95.85954963
LYSO		13	230.61538462	75.55741576	20.95585668
IGA		11	24.68545455	12.33458014	3.71901584
PERLYSO PERIGA		11	24.78422058	5.35869036	1.48623330
500.10-4					
GROUP=A	VISIT (weeks	1)=12			
CORNEA		12	0.55675000	0.03831953	0.01106190
TOTAL		12	1025.00000000	293.92330478	84.84834957
LYSO IGA	•	12	283.16666667 25.47083333	94.96969214	27.41538866
PERLYSO		12	27.95434190	6.70765407	1.93633294
PERIGA		12	2.57725534	1.22372670	0.35325947
GROUP=A	VISIT (weeks)=15			
CORNEA		13	0.56792308	0.03063076	0.00849544
TOTAL		12	1160.83333333	244.25985914	70.51174771
LYSO		12	269.00000000	62.13475093	17.93675759
IGA PERLYSO	*	12	29.71166667 23.16530027	16.00212931	4.61941683
PERIGA		12	2.44405317	2.18858354 1.15173642	0.63178965
					0.00247707

Table 31: Continued

SAS					
VARIABLE	LABEL	N	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=A	VISIT (we	eks)=18			
CORNEA		13	0.57030769	0.02202052	
TOTAL		13	1176.92307692	0.03202963	0.00888342
LYSO		13	274.46153846	309.87590568 108.74175477	85.94411284
IGA		13	30.85153846	14.34868568	30.15953635
PERLYSO		13	23.66304326	6.98785323	3.97960938 1.93808178
PERIGA		13	2.67340772	1.00974137	0.28005187
GROUP=A	VISIT (we	eks)=21			
CORNEA		13	0.55976923	0.02730126	
TOTAL		13	1217.692307.69	321.76994489	0.00757201
LYSO		13	258.15384615	73.51853072	89.24292579 20.39037171
IGA		12	32.98000000	15.21235503	4.39142863
PERLYSO		13	21.72385404	5.18020481	1.43673031
PERIGA		12	2.70823872	1.40151085	0.40458133
GROUP=A	VISIT (wee	eks)=24			
CORNEA		13	0 55304615		
TOTAL		13	0.55384615 1064.61538462	0.02568348	0.00712332
LYSO		11	274.36363636	290.13259568	80.46830388
IGA		13	25.46307692	45.15589159 10.50125341	13.61501359
PERLYSO		11	25.65770041	5.09475957	2.91252366
PERIGA		13	2.35018824	0.60502092	1.53612781
GROUP=B	VISIT (wee	ks)=0			
CORNEA			ONE CONTRACTOR OF CONTRACTOR		
TOTAL		13	0.54961538	0.04339650	0.01203602
LYSO		13	688.46153846	302.26495424	83.83321472
IGA		12	229.66666667	55.19442220	15.93325726
PERLYSO		12	24.87916667 38.03863528	11.04422635	3.18819353
PERIGA		12	3.82571476	13.12122237	3.78777063
			3.023/14/6	1.59175749	0.45950081
GROUP=B	VISIT (wee	ks)=3			
CORNEA		12	0.54933333	0.04155464	0.01100===
TOTAL		12	853.33333333	409.48600450	0.01199579
LYSO		12	233.50000000	93.04202374	118.20842746 26.85891873
IGA		12	27.96750000	11.75067745	3.39212839
PERLYSO		12	32.30712010	18.39544361	5.31030716
PERIGA		12	3.40084781	1.41418596	0.40824032
GROUP=B	VISIT (week	ks)=6			
LORNEA		13	0.55315385	0.04005733	
TOTAL		13	876.15384615	0.03905732 283.59414843	0.01083255
LYSO		12	266.66666667	82.22511597	78.65486489
IGA		12	25.74750000	12.91850127	23.73634642
PERLYSO		12	32.23051656	9.06385194	3.72925009
PERIGA		12	2.85303521	1.17146325	2.61650868 0.33817231

Table 31: Continued

SAS					
VARIABLE	LABEL	N	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=B	VISIT (week	s)=9			
CORNEA		13	0.54761538	0.05296310	0.01468932
TOTAL		13	785.38461538	285.26640720	79.11866603
LYSO		12	227.66666667	64.19194701	18.53061894
IGA PERLYSO		10	18.40800000 32.48152695	10.97541880	3.47073217
PERIGA		10	2.58765773	1.31456093	0.41570067
GROUP=B	VISIT (week	s)=12			
CORNEA		13	0.54584615	0.04594534	0.01274294
LYSO	•	13	1014.61538462	147.79577038	40.99117142
IGA		12	21.53166667	9.00808408	2.60040988
PERLYSO	THE WEST	12	25.73062094	5.59212451	1.61430730
PERIGA		12	2.13675887	0.87825733	0.25353105
GROUP=B	VISIT (week	s)=15			
CORNEA		13	0.56153846	0.04672903	0.01296030
TOTAL	- 11	13	916.15384615	269.46052468	74.73490296
LYSO		12	229.33333333	90.23739734	26.04929282
IGA		12	30.3333333	11.21,768679	3.23826724
PERLYSO		12	25.91629990	11.15873554	3.22124948
PERIGA		12	3.33930544	1.26175706	0.36423789
GROUP=B	VISIT (week	s)=18			
CORNEA		13	0.55900000	0.04746402	0.01316415
TOTAL	No. of Lot of Lot	13	949.23076923	268.90089681	74.57969011
LYSO		12	226.16666667	68.63054360	19.81193141
IGA		12	27.12416667	13.95647615	4.02888763
PERLYSO		12	24.78971720	8.11125110	2.34151650
PERIGA		12	2.76116637	1.15823407	0.33435338
GROUP=B	VISIT (week	s)=21			
CORNEA		13	0.54692308	0.04307834	0.01194778
TOTAL		13	1116.15384615	475.66687330	131.92625398
LYSO	. 502246	10	239.40000000	75.25394047	23.79738548
IGA	7 . V. S	12	24.08083333	12.92341811	3.73066946
PERLYSO PERIGA		10	25.77691996 2.22123273	9.73605722 0.87382841	3.07881162 0.25225253
GROUP=B	VISIT (week	s)=24			
CORNEA		13	0.54169231	0.04400452	0.01220466
TOTAL		13	1082.30769231	273.19571270	75.77085772
LYSO IGA	· TALDE	11	270.36363636 21.28750000	78.26017215	23.59632973
PERLYSO	The same	11	26.20717352	10.66427692 7.91217600	3.07851158 2.38561082
PERIGA		12	1.87280973	0.64936380	0.18745518
					0.10143318

Table 31: Continued

SAS													
VARIABLE	LABE	L	N		ME	AN			DARD		-	ERROR	2
GROUP=C	VISIT	(weeks)=0											
CORNEA			14	0	.54750	0000		0.029	84511	0	.007	97844	
TOTAL			14		.42857				76906			89687	
LYSO			14	283	. 28571	1429			50950			84175	
IGA			14	30	. 33642	2857	11	.977	08107			00956	
PERLYSO			14	35	.59960	959	11	.667	35291	3	. 118	23123	1
PERIGA			14	3	. 64679	084	1	.200	76005	0	. 320	91662	
GROUP=C	VISIT	(weeks)=3											
CORNEA			14	0	. 55928	3571	0	. 030	40351	0	008	12568	
TOTAL			14		.85714				18112			86839	
LYSO			14	255	. 28571	429	85	.054	21671			69559	
IGA			14		. 28714		9	.473	07718	2	.531	78637	
PERLYSO			14		.33439		12	.336	76729			13975	
PERIGA			14	3	.50818	1123	0	.940	44801	0	. 251	34530	Ì
GROUP=C	VISIT	(weeks)=6											
CORNEA			13	0	54700	000	•	025	75045				
TOTAL			14		28571				75845 26716			91761	
LYSO			14		57142				77051			88127	
IGA			14		40500				99322			70824 36178	
PERLYSO	100		14		27107				36649			50316	
PERIGA			14		39786			40.000	74340			68029	
GROUP=C	VISIT	(weeks)=9											
CORNEA			13	0.	54800	000	0	.037	44552	0.	010	38552	
TOTAL			13	1106.	15384	615			41131		X 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18818	
LYSO			13	294.	46153	846			77870			40901	
IGA			10		08900		10	.379	45026	3.	282	27037	
PERLYSO			13		99167		6	.956	44931	1.	929	37190	
PERIGA			10	2.	14713	816	0	.600	66496	0.	189	94694	
GROUP=C	VISIT	(weeks)=12											
CORNEA			13	0	54753	846	0	032	73280	0	000	07844	
TOTAL			13		46153				79897			20367	
LYSO			13	329.	53846	154			92045			42881	
IGA			13		30769				29653			99307	
PERLYSO			13		18557				19805			40421	
PERIGA			13	2.	41814	823			58030			58499	
GROUP=C	VISIT	(weeks)=15											
CORNEA			13	0	558001	000	0	0376	35279	0	010	40047	
TOTAL			13		230769	103955			9331			19847	
LYSO			12		833333				9454			37418	
IGA			13		701536				70004			38909	
PERLYSO			12		969136				36123			15200	
PERIGA			13	100000000000000000000000000000000000000	42494	Marie Marie VIII		A STATE OF THE PARTY OF THE PAR	6664			19177	
										٠.			

Table 31: Continued

SAS					
VARIABL	E LABEL		MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=C	VISIT (week	s)=18 -			OF MEAN
CORNEA		12	0 55435000		
TOTAL		12			0.00991412
LYSO		12	268.00000000	295.60800211 55.06359959	85.33467980
IGA		12	27.08666667	15.25982624	15.89549202
PERLYSO		12	26.54363735	7.27053475	4.40513239
PERIGA		12	2.45889919	1.05473252	0.30447505
GROUP=C	VISIT (week	s)=21 -			
CORNEA					
TOTAL		12	0.55050000	0.03618513	0.01044575
LYSO		12	1336.66666667	359.85687391	103.88173151
IGA		12	296.36363636 30.02333333	73.41835292	22.13646631
PERLYSO		11	23.74829726	11.33183234	3.27121823
PERIGA		12	2.30513638	5.50758037 0.84449739	1.66059796
GROUP=C	VISIT (week	1=24			0.24378540
	Tani (Heek.	3,-24			
CORNEA		11	0.54063636	0.03724050	
TOTAL		10	1095.00000000	237.31132857	0.01122843
LYSO IGA		7	323.14285714	72.36810663	75.04443128 27.35257328
PERLYSO		10	26.09100000	8.65423268	2.73670867
PERIGA		7	30.28412300	7.47532156	2.82540597
		10	2.43375314	0.82926072	0.26223526
GROUP=D	VISIT (weeks)=0			
CORNEA					
TOTAL		14	0.56607143	0.03608849	0.00964505
LYSO		14	786.42857143	346.66781135	92.65086979
IGA		14	279.71428571	62.65832693	16.74614227
PERLYSO		14	23.36500000 38.41073703	12.28672313	3.28376488
PERIGA		14	3.04827158	8.98080178 1.50464830	2.40022024
GROUP=D	VISIT (The second secon	1.50404630	0.40213417
GROUP-D	VISIT (weeks)=3			
CURNEA		14	0.56071429	0.0000000	
TOTAL		14	1105.00000000	0.03500424 318.69324532	0.00935528
LYSO		14	284.42857143	83.39407310	85.17435253
IGA		14	32.88857143	16.01583921	22.28800355
PERLYSO PERIGA		14	26.97493489	8.85741608	4.28041308 2.36724402
FERTUA		14	2.85459316	1.23796409	0.33085982
GROUP=D	VISIT (weeks)	=6			
CORNEA	CONTRACTOR OF				
TOTAL		12	0.56375000	0.03977008	0.01148063
LYSO	H. TELL TO A CO.	13	1018.46153846	279.16083040	77.42528370
IGA		13	303.07692308	64.51674400	17.89372528
PERLYSO		13	29.91076923	15.73154181	4.36314466
PERIGA		13	31.16285995 2.86501027	8.59719452	2.38443274
		17.00	2.00301027	1.48363984	0.41148765

Table 31: Continued

SAS					
VARIABLE	LABEL	N	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=D	VISIT (wee	ks)=9			
CORNEA		14	0.55928571	0.02751020	
TOTAL		14	1176.42857143	0.03761020 471.03171774	0.01005175
LYSO		14	275.00000000	76.38263999	20.41411923
IGA		11	28.32727273	15.43092226	4.65259812
PERLYSO		14	24.77878016	6.63679587	1.77375831
PERIGA		11	2.84287632	1.59860383	0.48199719
GROUP=D	VISIT (wee	ks)=12			
CORNEA		14	0.55671429	0.03951130	0.01055984
TOTAL		14	1250.71428571	382.18932654	102.14439406
LYSO		14	321.28571429	91.65019499	24.49454493
IGA		14	27.83785714	14.46155018	3.86501186
PERLYSO		14	26.57001207	6.70909294	1.79308051
PERIGA		14	2.26172285	1.13090119	0.30224606
GROUP=D	VISIT (wee	ks)=15			
CORNEA		14	0.56807143	0 03555505	
TOTAL		14	1127.14285714	0.03555595 296.29581298	0.00950273
LYSO		14	263.00000000	42.57662775	79.18838695 11.37908241
IGA		14	29.11142857	17.26654072	4.61467712
PERLYSO		14	24.29150458	5.34187151	1.42767521
PERIGA		14	2.52194594	1.37980355	0.36876801
GROUP=D	VISIT (week	ks)=18			
CORNEA		14	0.56492857	0.03316964	
TOTAL		14	1135.00000000	263.02237401	0.00886496
LYSO		14	276.85714286	88.42107053	70.29568633 23.63152512
IGA		14	30.83500000	18.33886321	4.90126736
PERLYSO		14	24.43306085	6.29372568	1.68206894
PERIGA		14	2.63933756	1.42065960	0.37968725
GROUP=D	VISIT (week	s)=21			
CORNEA		13	0.56030769	0.0222125	
TOTAL		14	1287.14285714	0.03301359	0.00915632
LYSO		14	274.28571429	393.98220521 82.38691884	105.29617346 22.01883025
IGA		14	29.78500000	16.43191348	4.39161360
PERLYSO		14	22.41135163	7.75611317	2.07290844
PERIGA		14	2.28167687	1.35051204	0.36093952
GROUP=D	VISIT (week	s)=24			
CORNEA		13	0.55646154	0.03948969	0.01005045
TOTAL		13	1129.23076923	258.95500055	0.01095247 71.82119481
LYSO		10	291.20000000	72.81147651	23.02501056
IGA		13	26.54538462	14.03346869	3.89218392
PERLYSO		10	26.33177105	4.54077915	1.43592045
PERIGA		13	2.31356430	1.21436579	0.33680447

Table 32: ANOVA for Central (Cornea) Thickness as the Dependent Variable		LS PROCEDURE	CGRNEA	DF FF R-SQUARE C.V.	85 0.0001 0.521546 2.0481	383 ROCT MSE CORNEA MEAN	468 0.01139722 0.55647122	OF TYPE III SS F VALUE PR > F	3 0.01270292 32.60 0.0001 50 0.55529659 85.50 0.0001 8 0.00938551 9.03 0.0001 24 0.00289245 0.93 0.5638
for Central (Cornea)		AR MODELS PROCEDURE	RI ABLE: CGRNEA	DF	85	383		OF	5,00 8,45
Table 32: ANOVA	SAS	GENERAL LINEAR	DEPENDENT VARI	SOUFCE	MODEL	ERROR	CURRECTED TOTAL	SUUNCE	GROUP . ID (GROUP) VISIT GROUP*VISIT

TERM	۸ × ط	0.756
AS AN ERRUP	F VALUE	0.38
TYPE III MS FOR ID (GROUP) AS AN ERRUR TERM	TYPE III SS	0.01270252
USING THE TYPE I	0F	т
TESTS OF HYPOTHESES USING THE	S CU ACE	GROUP

ct to Visit

kness with Respec			PRCB>F	0.5108		PRC 8 > 11	0.5108
1 (Cornea) Thich			F VALUE	0.433	0.0010	T FUR HO: FARAMETER= 0	175.339
Table 33: Linear Regression Analysis for Central (Cornea) Thickness with Respec			SQUARE	0.0005671832	R-SQUARE ADJ R-SQ	STANDARD	-0.00015146 0.CCC2501143
ar Regression An		CORNEA	SOUARES	1 0.0005871832 0.0005671832 32 0.585531 0.001355395 33 0.586118	0.036816 0.556982 6.609858	PARAMETER ESTIMATE	-0.00015146
Lines		BLE:	DF	433	MSE	2	
Table 33:	SAS	DEP VARIABLE: CORNEA	SOURCE	MODEL EYROR C TCTAL	ROOT MSE CEP MEAN	VARIABLE	INTERCEP

Table 34: Statistical Analysis II: The mean, SD and SEM derived from raw data for the distribution of protein fractions in sets PER 1, PER 2, PER 3 and PER 4.

SAS				
VARIABLE	N		FTAUDADO	
VARIABLE	,	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=A	VISIT=0			
PER1 PER2	!!	27.71282286	6.39635132	1.92857249
PER3	11	11.74400422 50.33835557	4.46788066	1.34711671
PER4	ii	10.20481735	6.16685278 7.58463830	1.85937607
		10.20401733	7.56463630	2.20005449
GROUP=A	VISIT=3			
PER1	11	29.92667987	7.38186398	2.22571573
PER2	11	5.64400496	4.90198858	1.47800517
PER3	11	54.28673060	10.00545032	3.01675678
PER4	11	10.14258457	5.15338930	1.55380534
GROUP=A	VISIT=6			
PER1	10	25 2665626		
PER2	10	26.26856361 10.08688914	6.86581576 * 6.69603759	2.17116158
PER3	10	51.83943177	7.24095367	2.11747301 2.28979060
PER4	10	11.80511548	4.21715907	1.33358279
GROUP=A	VISIT=9			
GROUP-A	V1511-9			
PER1	13	25.64340864	7.47561371	2.07336220
PER2	13	12.45798534	4.78039033	1.32584173
PER3	1.3	43.92163657	8.67084748	2.40486040
PER4	1.1	17 -97696945	8.64411216	2.39744536
GROUP=A	VI511=12			
PEHI	10	27.41857355	7.47123445	2.36261178
PER2	10	10.65697867	3.32868693	1.05262323
PER3	10	45.43130977	8.88267041	2.80894702
PER4	10	16.49313800	5.66641666	1.79187828
GROUP=A	VISIT=15			
PERI		22 2222222		
PER2	11	23.88666939 15.22951498	3.00324093	0.90551121
PER3	11	50.91078878	3.31459486 5.25056621	0.99938795
PER4	11	9.97302685	2.32839534	1.58310528
The second secon			1.01000004	0.70203761
GROUP=A	VISIT=18			
PER1	13	25.89820737	4.96929658	1.37823489
PER2	13	14.78870667	4.39788297	1.21975327
PER3	13	45.95162001	9.25695810	2.56741824
PER4	13	13.36146596	6.19698862	1.71873540
GROUP=A	V151T=21			
PER1	12	26.07611562	6.46197699	1 00541000
PER2	12	13.05458244	5.33017791	1.86541208
PER3	12	41.75019080	9.68111047	2.79469587
PER4	12	19.11911114	17.67055417	5.10104960
GROUP=A	VISIT=24			
PERI	12	26 30700000	7 51455555	
PER2	12	26.39788862 15.44725738	7.51426226	2.16918067
PER3	12	44.38694578	5.41990891 9.30892035	1.56459293
PER4	12	13.76790823	4.21310283	2.68725384
			4.21310203	1.21621803

SAS				
VARIABLE	N	MEAN	STANDARD DEVIATION	STD ERROR OF MEAN
GROUP=B	VISIT=0			
PER1	11	27.69148406	5.58898578	1.68514262
PER2	11	13.91601007	3.51914117	1.06106098
PER3 PER4	11	42.16988573	9.00768396 £.85749774	2.71591890
PERM		16.22262014	6.65/49//4	2.67063603
GROUP=B	VISIT=3			
PERI	11	26.87066192	6.68975664	2.01703752
PER2	11	8.97038209	€.88254736	2.07516611
PER3	11	49.77547014	14.27501580	4.30407921
PER4	11	14.38349585	7.37016919	2.22218962
.afritifi=B	v151T=6			
PER1	В	24.51808900	4.18059695	1.47806423
PER2	В	11.4722325	6.29021206	2.22392580
PER3	8	50.49753105	6.83511552	2.41657827
PER4	В	13.51215670	4.05201084	1.43260217
GROUP=B	VISIT=9			
PER 1	10	23.31773963	3.65272197	1.15509211
PER2	10	14.84270849	6.14314161	1.94263195
PER3	10	49.18130826	9.23909318	2.92165780
PER4	10	12.65824361	4.94838433	1.56481652
GROUP=B	VISIT=12			
PER 1	8	24.44698025	4.87299162	1.72286271
PER2 PER3	8	11.22571072	2.5571040B 9.44116525	0.90407282
PER4	8	18.41605961	B. B3569456	3.33795599
		10.4.00000	0.00000400	5.12505577
GROUP=B	VISIT=15			
PER 1	10	22.87873752	4.72980766	1.49569651
PER2	10	16.02745881	6.95415119	2.19909569
PER3	10	46.94635398	9.61937098	3.04191220
PER4	10	14.14744969	4.06692359	1.28607416
GROUP=B	VISIT=18			
PER1	11	26.66761931 .	3.66513065	1.10507847
PER2	11	15.31545903	5.29173057	1.59551680
PER3	11	44.09067547	6.09886793	1.83887787
PER4	11	13.92624619	6.08852816	1.83576031
GROUP=B	VISIT=21			
PER1	10	23.59017403	4.82010847 -	1.52425213
PER2	10	15.58520245	4.09921806	1.29628657
PER3	10	42.16174261	7.75631547	2.45276231
PER4	10	18.66288091	8.00603972	2.53173206
GROUP=B	VISIT=24			
DEDI		25 20542214	2 7527.055	
PER1 PER2	8	25.30643314 15.48464214	2.75371655	0.97358582
PER3	8	44.55309367	5.82812228 5.56712224	2.06055239
PER4	8	14.65583105	5.99787413	1.96827494
	A STATE OF THE STA		0.00.07413	2.12050873

SAS				
VARIABLE	N	MEAN	STANDARD	STD ERROR
			DEVIATION	OF MEAN
GROUP=C	VISIT=0			
PER 1	13	24.57396263	4.32534275	1 10050404
PER2	13	12.34842372	4.22152493	1.19963424
PER3	13	50.28367389	7.13129600	1.97786564
PER4	13	12.79393976	9.59025939	2.65985938
GROUP=C	VISIT=3			
PER1	13	29.14516543	5.72131372	
PER2	13	6.13894002	3.69224812	1.58680692
PER3	13	52.38730456	5.82743110	1.02404538
PER4	13	12.32858999	5.36892989	1.48907323
GROUP=C	VISIT=6			
PER1	11	25.58291294	2 22152212	2 222
PER2	11	11.58234275	3.98157012 4.18759019	1.20048856
PER3	11	51.76483767	4.62083732	1.26260595
PER4	11	11.06990664	3.88594357	1.17165607
GROUP=C	VISIT=9			
PERI	12	26.85592732	5.08238973	1 46715054
PER2	12	11.56439445	4.84997606	1.46715954
PER3	12	47.32803603	10.06485427	2.90547316
PER4	12	14.25164219	6.30474416	1.82002287
GROUP=C	VISIT=12			
PER1	11	21.32454600	7.51591589	2 26612201
PER2	11	10.74904955	7.42862213	2.26613391
PER3	1.1	52.96218275	10.05600206	3.03199870
PER4	11	14.96422170	4.42909701	1.33542300
GROUP=C	VISIT=15			
PER1	12	25.73144180	5.81632823*	
PER2	12	15.30823343	5.07357306	1.67902933
PER3	12	48.22474440	8.40580935	2.42654814
PER4	12	10.73558037	2.64103094	0.76239996
GROUP=C	VISIT=18			
PER 1	9	23.87857844	4.31082175	1 4000
PER2	9	16.70847987	6.39097070	1.43694058
PER3	9	48.47674185	5.42440685	2.13032357 1.80813562
PER4	9	10.93619985	5.68335303	1.89445101
GROUP=C	VIS11=21			
PER1	11	28.07744944	3.34236035	1 0077777
PER2	11	13.89269457	2.94138741	1.00775956
PER3	11	46.54835294	6.81659749	0.88686167
PER4	11	11.48150305	3.84331461	2.05528148 1.15880296
GROUP=C	VISIT=24			
PERI	10	24.22910488	2 2011-1-	
PER2	10	16.66647983	7.23119540	2.28670477
PER3	10	46.69008697	4.67694377 7.12932434	1.47897948
PER4	10	12.41432832	2.64384005	2.25449031
			2.04004005	0.83605563

SAS				
ARIABLE	N	MEAN	STANDARD	STD ERROR
			DEVIATION	OF MEAN
GROUP=D	VISIT=0			
GROOP-D	V1311-0			
PER1	13	26.68125966	4.57591861	1.26913148
PER2	13	13.81944015 48.75299134	2.24893677 5.06717476	1.40538142
PER3 PER4	13	10.74630884	5.40908465	1.50021016
FERT				
GROUP=D	v1517=3			
		26 22222404	5.27610431	1.59080530
PERI	11	26.72223484 5.43026750	5.50800677	1.66072653
PER2 PER3	ii	53.78198154	6.03001353	1.81811749
PER4	11	14.06551612	5.90094455	1.77920173
GROUP=D	VISIT=6			
PERI	10	22.96352840	3.82049387	1.20814624
PER2	10	13.53330970	4.90225083	1.55022783
PER3	10	49.84244461	6.82098812 4.55163749	2.15698583 1.43935415
PFR4	10	13.66071730	4.55163745	1.45555415
GROUP=D	VISIT=9			
1411991			4 42507277	1.27740848
PERI	12	21.78383095	4.42507277 6.23629453	1.80026316
PER2	12	51.37719598	7.34985237	2.12171962
PER3 PER4	12	13.57402042	4.75260328	1.37195839
,				
GROUP=D	VISIT=12			
PER1	12	22.24006295	5.29424752	1.52831762
PER2	12	10.12329696	4.73141526	1.36584194
PER3	12	53.26626155	8.26419441	2.38566743
PER4	12	14.37037854	5.55907794	1.60476757
GROUP=D	VISIT=15			
GRUUP-D	V1311-13			
PERI	11	23.12301805	2.73243147	0.82385909
PER2	11	14.17517253 50.59007084	5.48608972 6.78735653	2.04646499
PER3	11	12.11173858	2.44512879	0.73723407
PER4				
GROUP=D	VISIT=18			
	9	25.80352197	3.66873407	1.22291136
PER1 PER2	9	16.20171834	4.06886115	1.35628705
PER3	9	45.02498523	10.89348753	3.63116251
PER4	9	12.96977445	6.50643692	2.16881231
	VISIT=21			
GROUP=D	V1311-21			
PER1	12	28.44011234	5.96139057	1.72090522
PER2	12	13.26003679	2.89874816 6.77211132	0.83679652
PER3	12	44.33591030 13.96394056	3.63056039	1.04805251
PER4	12			
GROUP=D	VISIT=24			
		23.81119704	5.05153846	1.45825354
PER 1	12	16.04643930	3.34771228	0.96640129
PER2 PER3	12	48.85740803	5.01247703	1.44697748
PER4	12	11.28495563	2.49452129	0.72010627

Table 35: Raw Data Collected From Each Subject: I. The data on lysozyme (Lyso) and IgA are expressed in mg%. Lysozyme in total protein (PERLYSO) and IgA in total protein (PERIGA) are expressed as a percentage Corneal thickness (Cornea) is expressed in mm.

SAS

OBS	GROUP	ID	VISIT	LYSO	IGA	TOTAL	CORNEA	PERLYSO	PERIGA
1	A	1	0	246	20.66	750	0.540	32.8000	2.75467
2	Â	2	Ö	192	21.43	510	0.534	37.6471	4.20196
3	Â	3	o	56	15.30	560	0.606	10.0000	2.73214
4	Ā	4	Ö	244	13.17	490	0.600	49.7959	2.68776
5	A	5	ő	250	9.68	360	0.525	69.4444	2.68889
6	A	6	Ö	114	20.14	440	0.555	25.9091	4.57727
7	A	7	0	240	25.03	620	0.558	38.7097	4.03710
8	A	8	0	216	18.53	380	0.590	56.8421	4.87632
9	A	9	Ö	180	32.08	770	0.600	23.3766	4.16623
10	A	10	Ö	214	13.56	420	0.602	50.9524	3.22857
11	A	11	0	284	41.44	920	0.610	30.8696	4.50435
12	A	12	0			320	0.0.0		4.30433
13	A	13	0	332	38.41	850	0.540	39.0588	4.51882
14	A	14	Ö	214	36.71	520	0.537	41.1538	7.05962
15	A	1	3	334	16.84	920	0.530	36.3043	1.83043
16	A	2	3	216	4.37	490	0.578	44.0816	0.89184
17	A	3	3	298	9.62	640	0.603	46.5625	1.50312
18	A	4	3	370	42.72	1340	0.577	27.6119	3.18806
19	A	5	3	222	27.59	740	0.516	30.0000	3.72838
20	A	6	3	136	30.90	940	0.536	14.4681	3.28723
21	A	7	3	174	9.24	620	0.534	28.0645	1.49032
22	A .	8	3	168	27.73	720	0.600	23.3333	3.85139
23	A	9	3	140	34.66	810	0.600	17.2840	4.27901
24	A	10	3	246	13.40	620	0.572	39.6774	2.16129
25	A	11	3	246	41.42	970	0.602	25.3608	4.27010
26	A	12	3		0.0000000000000000000000000000000000000	• • • •	0.002		
27	A	13	3	294	36.81	960	0.513	30.6250	3.83437
28	A	14	3	332	27.42	990	0.554	33.5354	2.76970
29	A	1	6	220	25.92	950	0.526	23.1579	2.72842
30	A	2	6	246	17.79	730	0.525	33.6986	2.43699
31	A	3	6	270	20.33	750	0.614	36.0000	2.71067
32	A	4	6	262	24.96	880	0.600	29.7727	2.83636
33	A	5	6	134	17.52	490	0.538	27.3469	3.57551
34	A	6	6	342	34.88	1010	0.548	33.8614	3.45347
35	A	7	6	256	27.11	750	0.540	34.1333	3.61467
36	A	В	6	314	39.04	950	0.595	33.0526	4.10947
37	A	9	6	314	45.01	940	0.586	33.4043	4.78830
38	A	10	6	210	31.18	620	0.562	33.8710	5.02903
39	A	11	6	188	31.18	740	0.603	25.4054	4.21351
40	A	12	6				1025		
41	A	13	6	328	23.32	790	0.538	41.5190	2.95190
42	A	14	6	280	15.75	610	0.550	45.9016	2.58197
43	A	1	9	292	33.34	1340	0.530	21.7910	2.48806
44	A	2	9	144	10.98	820	0.536	17.5610	1.33902
45	A	3	9	84	4.88	310	0.614	27.0968	1.57419
46	A	4	9	232	20.33	950	0.558	24.4211	2.14000
47	A	5	9	182	30.28	620	0.534	29.3548	4.88387
48	A	6	9	176	37.05	690	0.542	25.5072	5.36957
49	A	7	9	256	B.77	820	0.540	31.2195	1.06951
50	A	В	9	322	29.37	960	0.600	33.5417	3.05937
51	A	9	9	348	42.93	1130	0.603	30.7965	3.79912
52	A	10	9	182		930	0.564	19.5699	
53	A	11	9	278		1390	0.596	20.0000	
54	A	12	9			Water Street, San Land			
55	A	13	9	218	22.00	920	0.504	23.6957	2.39130
56	A	14	9	284	31.61		0.560	17.6398	1.96335

Table 35: Continued.

SAS

SAS									
OBS	GROUP	10	VISIT	LY50	1 GA	TOTAL	CORNEA	PERLYSO	PERIGA
57 58 59	AAAA	1 2 3	12 12 12	302 158 154	27.21 13.24 4.46	1340 870 530	0.503 0.532 0.603	22.5373 18.1609 29.0566	2.03060 1.52184 0.84151
60	A	4	12	296	23.62	1010	0.586	29.3069	
61	A	5	12	336	15.88	1290	0.533	26.0465	1.23101
63	Ä	7	12	302	24.78 39.89	1080	0.522	28.2353 27.9630	4.85882 3.69352
64	A	8	12	294	28.27	1480	0.590	19.8649	1.91014
65	A	10	12	372	36.99	960	0.588	23.3333	3.85312
67	Ä	11	12	384	36.38	950	0.576	32.6316	2.28947
68	A	12	12						
69 70	A	13	12	432	28.83	1140	0.536	37.8947	2.52895
71	A	1	15	244	14.98	1080	0.544	22.5926	1.38704
72	A	2	15	158	3.57	750	0.535	21.0667	0.47600
73	A	3	15	194	9.63	920	0.601	21.0870	1.04674
75	A	5	15	260	43.28	1370	0.540	18.9781	1.67087
76	A	6	15	242	30.24	950	0.550	25.4737	3.18316
77 78	A	7 8	15 15	394	44.79	1600	0.550	24.6250	2.79937
79	A	9	15	294	44.79	1360	0.600	21.6176	
80	A	10	15	260	35.82	1010	0.588	25.7426	The state of the s
81	A	11	15	282	55.71	1270	0.612	22.2047	4.38661
83	A	13	15	302	27.91	1210	0.523	24.9587	2.30661
84 85	A	14	15	342 248	28.61	1380	0.554	24.7826	
86	Â	2	18	156	34.83	1160 780	0.542	21.3793	3.00259 2.85256
87	A	3	18	222	12.19	560	0.612	39.6429	2.17679
88	A	5	18	216	23.27	850	0.582	25.4118	
90	Ä	6	18	250 222	24.43	1080	0.548	23.1481	2.26204 3.68070
91	A	7	18	188	29.43	1140	0.522	16.4912	2.58158
92	A	8	18	272	40.34	1490	0.606	18.2550	2.70738
94	A	10	18	300	46.79	1340	0.612	18.5827	3.68425 2.93731
95	A	11	18	246	59.04	1340	0.608	18.3582	4.40597
96 97	A	12	18	506	12.74	1480	0.540	34.1892	0.86081
98	A	14	18	506	14.44	1670	0.574	30.2994	
99	A	1	21	216	26.86	1190	0.522	18.1513	2.25714
100	A	3	21	196	23.52 8.86	950	0.534		2.47579 0.98444
102	A	4	21	238	47.32	1100	0.573	21.6364	
103	A	5	21	308	57.24	1540	0.536		3.71688
104	A	6	21	206	53.52	960	0.542	23.6782	6.15172
106	A	8	21	264	34.63	1490	0.594	17.7181	2.32416
107	A	10	21	27B 17B	43.07	1560	0.580	17.8205	
109	Â	11	21	224	20.66	1140	0.580		1.81228
110	A	12	21						
111	A	13	21	462 276	36.59	870	0.536	24.8387	1.96720
113	A	1	24	354	27.43	1210	0.530	29.2562	2.26694
114	A	3	24	264	13.28	720	0.526	30.0000	1.50909
116	A	4	24	276	38.99	1420	0.556	19.4366	1.59028
117	A	5	24	212	18.42	750	0.534	28.2667	2.45600
119	A	6	24	260	34.21	1030	0.540	25.2427	3.32136
120	A	8	24	354	31.11	1280	0.580	27.6562	2.43047
121	A	10	24	242	37.56 35.52	1160	0.580	20.8621	3.23793
123	Ä	11	24	256	35.52	1460	0.554	21.1429	2.53714
124	A	12	24						
125	A	13	24		14.73	1080	0.530		1.36389
. 20					14.73	560	0.542		2.63036

Table 35: Continued.

OBS	GROUP	ID	VISIT	LYSO	IGA	TOTAL	CORNEA	PERLYSO	PERIGA
127	8	1	0	246	25.64	690	0.557	35.6522	3.71594
128	В	2	0	168	22.96	480	0.522	35.0000	4.78333
129	В	3	0	216	22.19	610	0.498	35.4098	3.63770
130	В	4	0	230	5.03	550	0.627	41.8182	0.91455
131	В	5	0	184	22.46	340	0.536	54.1176	6.60588
132	В	6	0	204	22.46	360	0.608	56.6667	6.23889
133	В	7	0	260	34.79	820	0.573	31.7073	4.24268
134	В	8	0	286	33.17	940	0.600	30.4255	3.52872
135	В	9	0	126	45.94	1400	0.517	9.0000	3.28143
136	В	10	0	242	10.65	570	0.492	42.4561	1.86842
137	В	11	0						
138	В	12	0	262	19 37	490	0.532	53.4694	3.95306
139	В	13	0	TOTAL .	(13) (37)	620	0.570		
140	В	14	0	332	33.89	1080	0.513	30.7407	3.13796
141	В	1	3	344	19.46	810	0.542	42.4691	2.40247
142	В	2	3	322	22.74	780	0.536	41.2821	2.91538
143	В	3	3	304	26.02	630	0.498	48.2540	4.13016
144	В	4	3	126	40.35	620	0.620	20.3226	6.50806
145	В	5	3	100	27.59	640	0.528	15.6250	4.31094
146	В	6	3	200	37.04	1030	0.602	19.4175	3.59612
147	В	7	3	240	43.44	1660	0.578	14.4578	2.61687
148	В	8	3	134	29.12	570	0.604	23.5088	5.10877
149	В	9	3	240	41.59	1480	0.512	16.2162	2.81014
150	В	10	3	178	3.01	230	0.502	77.3913	1.30870
151	В	11	3	Line .					
152		12	3	218	16.57	630	0.530	34.6032	2.63016
153		13	3						
154		14	3	396	28.68	1160	0.540	34.1379	2.47241
155	В	1	6	146	1.27	330	0.550	44.2424	0.38485
156	В	2	6	290	24.14	1190	0.536	24.3697	2.02857
157	В	3	6	314	15.25	720	0.510	43.6111	2.11806
158	В	4	6	210	40.83	1010	0.620	20.7921	4.04257
159	В	5	6	128	20.00	590	0.525	21,6949	3.38983
160	В	6	6	256	20.00	610	0.610	41.9672	3.27869
161	В	7	6	372	48.80	1340	0.565	27.7612	3.64179
162	В	8	6	264	35.25	1210	0.600	21.8182	2.91322
163	В	9	6	318	27.11	820	0.530	38.7805	3.30610
164		10	6	274	20.33	820	0.486	33.4146	2.47927
165		11	6						
166	В	12	6	224	37.14	770	0.552	29.0909	4.82338
167		13	6			950	0.565		
168		14		404	18.85	1030	0.542	39.2233	1.83010
169	В	1	9	216	2.85	580	0.598	37.2414	0.49138
170	В	2	9	272	15.45	830	0.521	32.7711	1.86145
171	В	3	9	232	12.20	880	0.500	26.3636	1.38636
172	В	4	9	246	17.62	880	0.636	27.9545	2.00227
173	В	5	9	106	17.17	610	0.504	17.3770	2.81475
174	В	6	9	228	11.30	380	0.620	60.0000	2.97368
175	В	7	9	356	37.51	1180	0.560	30.1695	3.17881
176	В	8	9		37.51	820	0.607	29.5122	4.57439
177	В	9	9	154	17.44	380	0.510	40.5263	4.58947
178	В	10	9	164		550	0.480	29.8182	
179	B	11	9			000			-
180		12		264		1080	0.520	24.4444	
181		13	9			1290	0.565		
182		14		252	15.03	750	0.498	33.6000	2 00400
	-		-					-5.0000	00400

Table 35: Continued.

SAS

OBS	GROUP	ID	VISI	LYSO	IGA	TOTAL	L CORNE	A PERLYS	PERIGA
183	В	1	12	196	19.23	950	0.555	20.6316	2.02421
184	В	2	12	288	27.21		0.520	26.6667	
185	В	3	12	292	23.22		0.496	25.6140	
186	В	4	12	266	17.81		0.638	27.1429	
187	В	5	12	170	20.91	920	0.533	18.4783	
188	В	6	12	232	13.94	690	0.593	33.6232	
189	В	7	12	180	36.99		0.562	14.8760	
190	В	8	12	224	8.52	890	0.600	25.1685	
191	В	9	12	236	36.99	880	0.514	26.8182	
192	В	10	12	278	17.68	1080	0.480	25.7407	1.63704
193	B	11	12						•
194	В	12	12	390	11.14	1180	0.528	33.0508	0.94407
195	В	13	12			1040			
196	В	14	12	356	24.74		0.505	30.9565	2.15130
197	В	1	15	140	15.34	550		25.4545	
198	В	2	15	98	20.33	570		17.1930	
199	В	3	15	248	26.75	950		26.1053	
200	8	5	15	134	43.28		0.654	9.5714	3.09143
201		>200	15	142	36.50		0.540	14.9474	
202	B	6	15	206	22.42		0.615	21.6842	2.36000
204	В	8	15	304	33.74		0.566	30.0990	3.34059
205	В	9	15	204	34.63		0.600	20.4000	
206	В	10	15	314	47.00	1340		23.4328	3.50746
207	В	11	15	360	25.02	1100	0.486	34.5455	2.27455
208	В	12	15	330	44.34	640	0.548	E1 - E535	
209	В	13	15	330	77.34		0.566	51.5625	6.92812
210	В	14	15	252	14.65		0.506	36.0000	2 00000
211	В	1	18	262	4.64		0.572		2.09286
212	В	2	18	192	30.81	770		24.9351	0.67246
213	В	3	18	248	29.80		0.508	22.9630	4.00130
214	В	4	18	148	43.13		0.655	13.5780	
215	В	5	18	134	40.21	880	0.548	15.2273	4.56932
216	В	6	18	242	27.35		0.604	29.1566	3.29518
217	В	7	18	150	17.03	680		22.0588	2.50441
218	В	8	18	244	31.91		0.608	18.0741	2.36370
219	В	9	18	230	29.43	1180	0.540	19.4915	2.49407
220	В	10	18	184	11.15	570	0.486	32.2807	1.95614
221	В	11	18						
272	В	12	18	350	49.85	1470	0.525	23.8095	3.39116
223	В	13	18				0.600		
224	В	14	18	330	10.18	870	0.516	37.9310	1.17011
225	В	1	21	164	8.86	780	0.572	21.0256	1.13590
226	В	2	21	220	12.21		0.512	27.8481	1.54557
227	В	3	21	212	20.17		0.490	19.6296	1.86759
228	В	4	21		52.28		0.628	16.2238	3.65594
229	В	5	21	210	8.23		0.500	48.8372	1.91395
230	В	6	21		30.56		0.596	34.6667	4.07467
231	В	7	21	298	35.66		0.560	19.8667	2.37733
232	В	В	21		20.56		0.600		2.33636
233	В	9	21	160	19.77		0.532	19.5122	
234	В	10	21		21.72		0.508	22.7083	2.26250
235	В	11	21	-					
236		12	21		37.60	2240	0.546		1.67857
237		13	21			1320	0.554		
238		14	21	420	21.35	1530	0.512	27.4510	1.39542
239	В	1	24	224	5.51	690	0.574	32.4638	
240	В	2	24		39.31	1410	0.510		2.78794
241	В	3	24		32.00	1230	0.500	27.1545	2.60163
242	В	4	24		22.25	1010	0.624		2.20297
243	В	5	24		11.24		0.512	13.8272	1.38765
244	В	6	24		10.29			42.5000	1.60781
245	В	7	24		18.07			29.5495	1.62793
246	В	8	24		29.02			27.8992	2.43866
247	В	9	24		17.66				1.96222
248		10	24	270	13.07	1290	0.488	20.9302	1.01318
249		11	24	20.	35.01				
250 251		12	24	284	35.01			20.5797	2.53696
252		13	24		22.02	950	0.553		
232			24		22.02	1460	0.496		1.50822

Table 35: Continued.

545									
ever e	CDINID	ID	VISIT	LYSO	IGA	TOTAL	CORNEA	PERLYSO	PERIGA
085	GRUUP	10	V1311	2,30					
253	C	1	0	246	24.49	690	0.570	35.6522	3.54928
254	C	2	0	246	16.83	1140	0.566	21.5789 42.0408	3.98163
255	C	3	0	206	19.51	490	0.558	55.2174	5.89348
256	C	4	0	254	27.11	750	0.580	38.6667	3.76933
257	C	5	0	290	44.54	940	0.537	30.8511	4.73830
258 259	č	7	0	340	39.67	1080	0.555	31.4815	3.67315
260	č	8	o	200	32.08	1030	0.580	19.4175	3.11456
261	c	9	0	240	37.51	810	0.556	29.6296	4.63086
262	C	10	0	384	57.13	1480	0.540	25.9459	3.86014
263	C	11	0	380	9.49	620	0.475	61.2903	1.53065
264		12	0	312	32.73	830	0.504	37.5904	3.94337
265	C	13	0	336	28.24	1120	0.550	30.0000	4.37258
266	C	14	3	334	27.11	550	0.574	60.7273	3.06182
267 268	c	2	3	440	22.74	1040	0.558	42.3077	2.18654
269		3	3	292	26.02	1140	0.571	25.6140	2.28246
270	c	4	3	222	46.50	1270	0.604	17.4803	3.66142
271	CCC	5	3	200	41.77	1270	0.580	15.7480	
272	C	6	3	222	33.26	1020	0.518	21.7647	
273	C	7	3	234	35.59	1180		19.8305	
274	C	8	3	74	16.57	460 850		16.0870 27.5294	
275	C	9	3	234 322	30.97	1210		26.6116	
276		10	3	176	25.61	440		40.0000	5.82045
277		12	3	246	26.51	730		33.6986	3.63151
279		13		300	44.32	890		33.7079	4.97978
280		14		278	33.06	940	0.543	29.5745	3.51702
281		1	6	358	19.06	1080	0.580	33.1481	
282	C	2		340	17.79	1080	0.585	31.4815	1.64722
283	C	3		202	17.79	1010	0.552	24.9383	
284		5		324 256	25.46	960	0.590	26.6667	
285		6		276	24.96	820	0.530	33.6585	
287	C	7		400	48.80	1790	0.564	22.3464	
288		8		264	37.96	1210		21.8182	
289	C	9		304	9.22	750	0.560	40.5333	
290		10		188	25.76	810	0.556	23.2099	3.18025
291	С	11		322	6.24	790	0.466	40.7595	
292		12		192	24.13	750 1130	0.500	25.6000 21.5929	2.45929
293		13		342	23.32	1070	0.520	31.9626	
294		1		416	38.63	1820	0.624	22.8571	
296		2		376	16.27	1530	0.585	24.5752	
297	C	3		208	10.17	750	0.558	27.7333	1.35600
298	C	4		390	29.37	1200	0.551	32.5000	
299	C	5	9	320	29.37	990	0.564	32.3232	
300) C	6		256	13.56	580	0.520	44.1379	
301	C	7		348	37.51	1670	0.566	20.8383	
302		В		330	29.37	1090	0.556	30.2752	2.69450
303		10		206		900	0.556	22.8889	
304		11		354		1130	0.474	31.3274	
306		12		192		590	0.510	32.5424	
30		13		218	15.03		0.546	24.7727	1.70795
308		14		214	31.61	1250	0.514	17.1200	2.52880

Table 35: Continued.

SAS									
085	GROUP	ID	VISIT	LYSO	IGA	TOTAL	CORNEA	PERLYSO	PERIGA
309 310 311 312 313 314 315 316	00000000	1 2 3 4 5 6 7 8	12 12 12 12 12 12 12	376 396 260 476 328 354 188	34.80 20.43 19.23 24.78 24.78 16.27 21.30	1140 1740 1050 1600 1160 1090 1140	0.607 0.567 0.552 0.564 0.570 0.530 0.568	32.9825 22.7586 24.7619 29.7500 28.2759 32.4771 16.4912	3.05263 1.17414 1.83143 1.54875 2.13621 1.49266 1.86842
317 318 319 320 321 322 323 324 325 326 327 328 329		9 10 11 12 13 14 1 2 3 4 5 6 7	12 12 12 12 12 12 15 15 15 15 15	180 420 472 196 334 304 348 402 180 396 206 246 434	30.02 55.08 31.24 34.05 31.28 24.74 16.05 19.62 17.83 56.31 19.81 35.46 47.00	1260 2050 720 830 1180 1140 1340 770 2180 860 1190 1920	0.565 0.552 0.479 0.508 0.534 0.532 0.592 0.582 0.582 0.582 0.582 0.582 0.530	14.2857 20.4878 65.5556 23.6145 28.3051 26.6667 25.9701 30.0000 23.3766 18.1651 23.9535 20.6723 22.6042	2.38254 2.68683 4.33889 4.10241 2.65085 2.17018 1.19776 1.46418 2.31558 2.58303 2.30349 2.97983 2.44792
330 331 331 333 114 111	0000000	8 9 10 11 12 13	15 15 15 15 15 15	284 340 224 268 222	40.37 36.39 10.25 21.61 25.47 13.95	1160 1210 480 560 1140 920	0.600 0.562 0.473 0.503 0.542 0.546	24.4828 28.0992 46.6667 23.5088 24.1304	3.48017 3.00744 2.13542 3.85893 2.23421 1.51630
337 338 339 340 341 342 343 344	00000000	1 2 3 4 5 6 7 B	18 18 18 18 18 18	346 288 262 240 272 250	25.77 19.74 33.83 27.35 33.20 33.20	1180 1240 1270 770 1080 950	0.606 0.578 0.576 0.565 0.536 0.562	29.3220 23.2258 20.6299 31.1688 25.1852 26.3158	2.18390 1.59194 2.66378 3.55195 3.07407 3.49474
345 346 347 348 349 350 351 352	00000000	9 10 11 12 13 14 1	18 18 18 18 18 18 21 21	196 300 354 166 242 300 356 392	44.31 59.04 13.12 21.65 3.08 10.75 28.96 11.37	1400 1660 920 700 750 830 1610 1340	0.578 0.566 0.470 0.541 0.545 0.528 0.590 0.574	14.0000 18.0723 38.4783 23.7143 32.2667 36.1446 22.1118 29.2537	3.16500 3.55663 1.42609 3.09286 0.41067 1.29518 1.79876 0.84851
353 354 355 356 357 358	000000	3 4 5 6 7 8	21 21 21 21 21 21	400 232 286	51.04 41.11 38.63 32.29	1530 1010 1400 1980	0.564 0.572 0.526 0.584	26.1438 22.9703 20.4286	3.33595 4.07030 2.75929 1.63081
359 360 361 362 363 364 365 366		9 10 11 12 13 14 1	21 21 21 21 21 21 24 24	228 270 270 178 372 276	33.89 29.49 16.78 19.95 36.20 20.57 31.09 20.58	1210 1660 770 950 1600 980 1220 1060	0.585 0.554 0.467 0.520 0.548 0.522 0.586 0.562	18.8430 16.2651 35.0649 18.7368 23.2500 28.1633 42.8302	2.80083 1.77651 2.17922 2.10000 2.26250 2.09898 2.54836 1.94151
367 368 369 370 371 372 373	0000000	3 4 5 6 7 8 9 0	24 24 24 24 24 24 24	286 260 320	36.60 22.73 43.78 25.90	850 1140 1400	0.570 0.567 0.540 0.552	33.6471 22.8070 22.8571 	4.30588 1.99386 3.12714
374 375 376 377 318	0000	10 11 12 13 14	24 24 24 24 24	350 238	22.25 21.23 14.73 22.02	1080 710 900 1110	0.450 0.516 0.538 0.514	32.4074 33.5211	2.06019 2.99014 1.63667 1.98378

Table 35: Continued.

SAS									
OBS	GROUP	ID	VISIT	LYSO	IGA	TOTAL	CORNEA	PERLYSO	PERIGA
379 380 381 382 383 384 385 386 387 388 389 390 391	D D D D D D D D D D D D D D D D D D D	1 3 4 5 6 7 8 9 10 11 12 13 14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	272 276 232 274 270 260 180 200 226 332 412 332 294 356	23.73 22.57 0.97 27.11 24.79 22.46 16.90 23.95 22.32 21.11 45.51 33.89 1.13 40.67	810 790 530 620 570 560 750 420 590 710 1730 1140 620 1170	0.590 0.591 0.553 0.570 0.542 0.595 0.565 0.565 0.575 0.536 0.543 0.616 0.503 0.628 0.518	29.1228 47.4194	2.92963 2.85696 0.18302 4.37258 4.34912 4.01071 2.25333 5.70238 3.78305 2.97324 2.63064 2.97281 0.18226 3.47607
393 394 395 397 398 399 400 401 403 404 405 406 407 408 409 410	00000000000000000	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33333333333336666	428 380 286 242 258 210 192 144 218 366 278 386 356 408 184 314	26.02 44.39 1.09 37.99 39.41 37.04 36.97 25.42 24.03 41.42 52.72 49.10 0.52 44.32 24.65 27.19 0.76 35.87	1010 1340 690 1030 940 1140 880 610 1340 1710 750 1480 950 1260 770 1070	0.588 0.600 0.541 0.550 0.542 0.597 0.540 0.560 0.522 0.617 0.506 0.602 0.520 0.520 0.520 0.520 0.520 0.520 0.520	42.3762 28.3582 41.4493 23.4951 21.3223 22.3404 16.8421 16.3636 35.7377 27.1642 19.4030 19.6491 37.0667 26.0811 37.6842 32.3810 23.8961 29.3458	2.57624 3.31269 0.15797 3.68835 3.25702 3.94043 3.24298 2.88864 3.93934 3.93433 2.87135 0.06933 2.99459 2.59474 2.15794 0.09870 3.35234
411 412 413 414 415	D D D	5 6 7 8 9	6 6 6 6 6	186 304 314 264 304	27.44 24.94 47.72 29.28 43.65	810 950 1520 560	0.603 0.540 0.530 0.561	22.9630 32.0000 20.6579 47.1429 26.6667	3.38765 2.62526 3.13947 5.22857 3.82895
417 418 420 421 422 423 424 426 427 428 428 429 430 431 433		111 122 133 144 15 66 77 8 9 100 111 122 133 144	9 9 9 9 9 9	300 328 298 378 424 168 208 288 368 172 202 278 286 354 334 292 232 244	49.07 47.45 0.97 29.85 40.66 29.28 0.81 32.08 29.37 28.47 41.30 48.35 37.51	1070 1310 620 1210 2120 770 830 830 950 820 960 1180 810 1560 2050 1640 820 1080	0.603 0.497 0.607 0.506 0.623 0.580 0.552 0.580 0.538 0.524 0.548 0.540 0.555 0.605 0.494 0.600 0.508	28.0374 25.0382 48.0645 31.2397 20.0000 21.8182 25.0602 32.7273 38.7368 20.9756 21.0417 23.5593 35.3086 22.6923 16.2927 17.8049 28.2927 22.5926	4.58598 3.62214 0.156694 1.91792 3.80260 0.09759 3.64545 3.09158 4.30208 4.09746 4.63086

Table 35: Continued.

SAS									
085	uROUP D	10	VISIT	LY50	IGA 36.40	TOTAL 2150	CORNEA 0.608	PERLYSO 18.7907	PERIGA 1.69302
436	D	2	12	274	25.62	1390	0.594	19.7122	1.84317
437	D	3	12	192 318	0.06	900	0.553	21.3333	0.00667
439	D	5	12	336	16.27	810	0.532	41.4815	2.00864
440	D	6	12	188	19.75	570	0.580	32.9825	3.46491
441	D	7 8	12	234	24.21	1140	0.526	20.5263	2.12368
443	D	9	12	224	37.57	1000	0.522	22.4000	3.75700
444	D	10	12	420 338	32.64	1340	0.560	31.3433 25.2239	2.43582 2.95970
446	D	12	12	396	44.80	1350	0.500	29.3333	3.31852
447	D	13	12	426	0.62	1300	0.626	32.7692	0.04769
448	D	14	12	464	37.00	1600	0.502	29.0000	2.31250
449	D	1 2	15 15	294 248	21.40	850 1150	0.633	34.5882	
451	0	3	15	180	1.78	900	0.554	20.0000	
452	D	4	15	224	29.20	960	0.580	23.3333	3.04167
453	D	5	15	220	9.38	750 920	0.561	29.3333	
455	D	7	15	268	46.12	1360	0.555	19.7059	3.39118
456 457	D	8	15 15	324	37.28	1840	0.566	13.4783	
458	D	10	15	330	34.68	1160	0.556	28.4483	
459	D	11	15	316 268	55.71	1600	0.606	19.7500	
461	D	13	15	252	0.69	1060	0.600	23.7736	
462	D	14	15	272	16.74	1070	0.514	25.4206	
464	D	2	18	330 244	32.82	1530	0.622	21.5686	2.14510 2.91171
465	D	3	18	208	1.11	950	0.574	21.8947	0.11684
466	D	5	18	258 314	30.28	900	0.560	29.6552 34.8889	3.48046
468	D	6	18	156	34.36	900	0.584	17.3333	3.81778
469	D	7	18	154	37.36	1010	0.555	15.2475 18.1818	3.69901
471	D	9	18	222	46.79	1070	0.536	20.7477	4.37290
472	D	10	18	364 336	51.82	1610	0.556	22.6087 25.0746	3.21863
474	D	12	18	382	59.04	1450	0.510	26.3448	3.91642 4.07172
475 476	D	13	18	330	0.52	940	0.608	35.1064	0.05532
477	D	14	18	418 372	21.26	1330	0.508	31.4286 27.7612	1.59850
478	D	2	21	304	32.31	1650	0.560	18.4242	1.95818
479	D	3	21	160	1.74	1140	0.550	19.5122 20.5263	0.21220
481	D	5	21	330	8.85	820	0.544	40.2439	1.07927
482	D	6	21	204	30.19	1180	0.588	17.2881	5.11356
484	D	8	21	184	35.66	1160	0.550	15.8621	3.07414
485 486	D	9	21	250 350	31.77	1180	0.534	21.1864	2.69237
487	D	11	21	258	33.01	1930	0.562	18.1347	1.71036
488	D	12	21	204	23.48	820	0.496	24.8780	2.86341
489	D	13	21	322 448	1.82	1920	0.596	36.5909 23.3333	0.20682
491	D	1	24		29.26	1270	0.615		2.30394
492	D	2	24	204	36.57	1270	0.580	33.3858 30.9091	2.87953
494	D	4	24	294	36.12	1320	0.559	22.2727	0.14394 2.73636
495 496	D	5	24	354	46.17	1310	0.572	27.0229	3.52443
497	D	7	24	336	36.32	1400	0.547	24.0000	2.59429
498	D	8	24	270 270	33.20	1360	0.548	19.8529	2.44118
500	D	10	24	282	30.42	1010	0.524	26.7327	3.01188 0.97537
501	D	11	24	168	22.76	620	0.613	27.0968	3.67097
502	D	12	24	310	36.32	1000	0.480	31.0000	0.07327
504	D	14	24		23.19		0.510		2.08919

Table 36: Raw Data Collected from Each Subject: II. The data on the distribution of the sets of protein fractions was measured by the Digitizing Pad. Each set of protein fractions is expressed as a percentage of the total area of the electrophoretograph.

545 OBS GROUP SUBJ VISIT SUM PERT PERZ PER3 PER4 4000 28.1500 17.2250 51.3500 3.2750 A 2373 35.1454 9.4817 50.8639 4.5091 0 0 1543 37.2003 7.3234 51.1342 5 0 2673 33.6700 12.3831 40.6659 13.2810 6 0 4413 25.9461 17.6071 45.9325 7 0 8 8 0 1468 28.6104 10.9673 41.6894 18.7330 9 9 0 3620 25.6630 11.1326 58.0110 5.1934 10 A 10 0 3170 16.3722 16.5300 58.5489 8.5489 11 A 11 0 4476 20.4870 14.6783 53.3512 11.4835 12 A 12 0 4278 22.4638 3.6933 45.8859 27.9570 4.4157 8.1624 56.2890 13 A 13 0 2242 31.1329 3122 33.8245 2.6586 56.3741 2167 34.6562 11.2137 46.8389 14 1 3 7.1429 15 A 2 3 7.2912 3 16 A 3828 34.0125 5.6426 55.1202 5.2247 17 A 4 3 4579 23.9790 4.4551 58.3315 13.2343 2987 28.6910 15.6679 51.4563 4.1848 18 5 3 19 A 6 20 3 5.5731 60.2375 11.1219 4127 23.0676 8 3 9 3186 27.1500 22 3 2.3854 56.5286 13.9360 23 10 1191 47.9429 10.3275 29.4710 12.2586 3 11 3 4384 25.4562 0.0000 58.1661 25 12 3 3894 22.9841 4.1602 54.6995 18.1561 26 13 3 2727 27.4294 0.0000 69.9303 2.6403 27 A 1 6 3564 30.6397 2.8900 55.6397 10.8305 28 A 2 6 2715 34.4015 5.9669 56.5009 3.1308 29 3 6 30 1885 31.9894 12.2546 39.0981 16.6578 A 4 6 3423 23.0500 14.4610 47.2393 15.2498 31 5 6 32 A 6 6 33 7 6 3420 34.4152 5.9064 45.7018 13.9766 4088 12.5245 26.6879 45.1566 15.6311 4874 26.1182 8.2684 51.2310 14.3824 34 A 8 35 A 9 6 36 A 10 37 A 6.8123 58.7624 11.0764 11 6 1923 23.3489 4411 25.5498 4194 20.6485 38 A 8.2748 58.2634 9.3467 60.8011 12 6 39 13 6 40 9 4800 28.7083 6.9375 46.1250 18.2292 8.9907 34.3387 21.0557 41 2 9 1724 35.6148 42 1911 42.5432 13.8148 31.7635 11.8786 3458 32.8514 15.9630 38.7796 12.4060 A 3 9 43 9 3483 20.0115 13.7238 52.1677 14.0970 4167 25.2700 14.0389 34.2453 26.4459 44 5 9 45 6 9 46 3375 19.7333 5.5704 31.5852 43.1111 5026 18.9614 17.9268 52.6064 10.5054 7 9 47 8 9 5445 26.0790 9.8623 50.7805 13.2782 3957 20.6217 20.9502 43.4167 15.0114 48 9 49 A 10 9 50 A 5556 17.2426 15.5868 51.7279 15.4428 11 9 4084 22.0372 13.0020 49.2654 15.6954 51 A 12 9

4618 23.6899 5.5868 54.1793

9.1160 43.2377 4355 35.3617 9.1160 43.2377 12.2847 3412 29.4842 11.2837 45.9848 13.2474

3722 28.1032 11.8485 37.7754 22.2730

9.0498 27.9412 20.6448

4355 35.3617

1768 42.3643

16.5440

52

53

54

55

56

A

A

13

2

3

9

12

OBS	GROUP	SUBJ	VISIT	SUM	PER 1	PER2	PER3	PER4
57	A	5	12	4421	27.4825	4.8405	61.1400	6.5370
58	A	6	12	3744				24.6261
59	A	7	12	4824			50.3109	16.6459
60	A	8	12					
61	A	9	12	3562	19.8203		47.6137	20.3818
62	A	10	12	3471	28.4932		50.4754	11.0919
63	A	11	12	3727	19.3185	14.1401	49.3426	17.1988
64	A	12	12					
66	A	1	15	3484	24.5121	18.6567	50.9759	5.8553
67	A	2	15				30.3733	3.0333
68	A	3	15	3312	21.4372	8.9070	59.9034	9.7524
69	A	4	15	3929	23.8483	17.3836	46.4749	12.2932
70	A	5	15	3371	26.2830	18.4218	42.7766	12.5185
71	A	6	15	4490	27.4610	11.4031	49.2650	11.8708
72	A	7	15	2 407		13.7261		
74	A	9	15	3497 2990	18.1870 21.6722		59.5939	8.4930
75	A	10	15	3475	23.4245	12.9766	54.7826	8.7482
76	A	11	15	3906	24.3472	15.0026	48.0287	12.6216
77	A	12	15	4803	22.6109	18.2594	48.8653	10.2644
78	A	13	15	2903	28.9700	14.2267	50.0861	6.7172
79	A	1	18	4569	24.9070	16.2180	46.5091	12.3659
80	A	2	18	1512	37.5000	10.3175	24.0741	28.1085
81	A	3	18	2884	30.0971	18.1692	36.9972	14.7365
83	Ä	5	18	4345	23.3372 25.7630	19.2405	46.9735	10.4488
84	A	6	18	4498	20.9649	12.7612	50.2223	13.2503
85	A	7	18	2648	29.6073	18.3157	38.2175	13.8595
86	A	8	18	4335	17.3702	21.8685	57.3702	3.3910
87	A	9	18	4645	24.8009	12.0990	44.1981	18.9020
88	A	10	18	3439	26.1122	13.8994	43.0358	16.9526
90	A	11	18	5688	21.9058	19.6906	47.0464	11.3572
91	A	12	18	4969 2643	25.5182 28.7930	9.9014	57.4562	7.1242
92	A	1	21	2348	32.2828	11.1584	56.1862	7.1510
93	A	2	21	4006	30.2047	13.3300	41.3130	15.1523
94	A	3	21	3811	25.6626	13.3823	46.6544	14.3007
95	A	4	21	3934	24.6823	19.1408	40.5186	15.6584
96	A	5	21	2941	29.6158	17.6471	43.9986	8.7385
97	A	6	21	3130	30.9904	19.2652	30.4792	19.2652
98	A	7 B	21	2420	7 2222	2 5721		
100	A	9	21	3420 2988	7.2222	2.5731 4.8862	16.1696	74.0351 20.0134
101	A	10	21	1982	27.3966	10.6963	45.0050	16.9021
102	A	11	21	3257	26.9266	18.1762	45.5941	9.3030
103	A	12	21	5246	24.4949	14.5444	50.7244	10.2364
104	A	13	21	3585	25.3556	11.8550	50.9344	11.8550
105	A	1	24	1451	35.2860	22.3983	33.9076	8.4080
107	A	2	24	2030	34.5320	18.6700	30.0493	16.7488
108	A	4	24	5476	17 9328	18.4823		
109	A	5	24	2499	26.2105	15.6863		11.8335
110	A	6		4390	21.4579	10.7289	53.0979	14.7153
111	A	7	24	2986		8.1380		10.7837
112	A	8	24	3045	18.1281	26.0755		17.1429
13	A	9	24					
14	A	10	2004 0	2911	17.5885	12.5386	64 8265	5.0464
15	A	11				16.7296		4.1189
16	A	12	24	3182	35.1037	8.9252 5	51.0371	4.9340
17	A	13	24	2703	27.0810	11.7277		5.1683

Table 36: Continued.

OBS	GROUP	SUBJ	v1511	SUM	PERI	PER2	PER3	PER4
118	В	1	0	1917	34.5331	15.5451	44.6531	5.2686
119	В	2	0	1873				
120	В	. 3	0	2215				
121	В	4	0	2650		17.0189		-0.0
122	В	5	o	1572		14.8219		
123	В	6	o	2149		15.0302		
124	В	7	0	4531	18.7155	14.4560		
125	В	8	ő	3764		10.8927		
126	В	9	0	884	THE RESIDENCE OF THE PARTY OF T			
127	В	10	0	004	31.7073	20.7014	26.1312	21.3801
128	В	11	0	2192	26.2318	0.3533		
129	В	12	0			9.3522		8.2117
130	В	1		3439		14.9753		24.4257
131	В	2	3	1320	34.6970	11.2121	28.1818	25.9091
132	В	3	3	2328	32.6890	1.3746	54.8969	11.0395
133	В	4		2071	20		48.6244	
134	В	5	3	3671	20.1035	12.8575		18.4146
135	В	6	3	4052	26.7522	24.2103	41.2883	7.7493
136	8	7	3	3385	16.7208	12.6440	62.6588	7.9764
137	В	8	3	4341	20.0645	3.3402	68.4174	8.1778
138	В	9	3	3494	34.8025	8.2427	38.2370	18.7178
139	В		3	4888	22.3200	4.6645	53.6007	19.4149
140	В	10	3	1724	.14.2227	12.9350	27.3202	25.5220
141	В		3	2547	29.7212	0.0000	62.1516	8.1272
142	В	12	3	4254	23.4838	7.1932	62.1533	7.1697
143	В		6					•
144		2	6	3873	30.2866	0.0000	53.0855	16.6279
	В	3	6					
145	В	4	6	5424	22.8245	15.6711	43.6578	17.8466
146	В	5	6	3208	24.4701	16.1160	40.7107	18.7032
147	В	6	6	2394	20.7185	11.1111	57.9365	10.2339
148	В	7	6		***************************************			
149	В	8	6	4013	27.0870	14.0045	44.2562	14.6524
150	В	9	6	3865	17.5679	16.7141	53.0401	12.6779
151	В	10	6	:				
152	В	11	6	1932	28.6232	3.5714	59.1097	8.6957
153	В	12	6	5312	24.5670	14.5896	52.1837	8.6596
154	В	1	9	1899	24.9078	6.8984	45.5503	22.6435
155	В	2	9	3519	29.6107	6.0529	53.3959	10.9406
156	В	3	9					
157	В	4	9	5105	24.7209	17.9824	46.4643	10.8325
158	В	5	9	3376	24.3187	23.3116	41.3211	11.0486
159	В	6	9	2993	17.3070	19.3451	52.7230	10.6248
160	В	7	9	5967	21.7027	15.0327	50.7960	12.4686
161	В	8	9	5603	22.5058	16.7946	50.3302	10.3694
162	В	9	9	2296	26.9164	21.9948	31.1411	19.9477
163	В	10	9					
164	В	11	9	4502	22.5677	12.0613	53.3319	12.0391
165	В	12	9	5752	18.6196	8.9534	66.7594	5.6676
166	В	1	12					and the second second
167	В	2	12	5042	17.0766	6.6839	58.4292	17.8104
168	В	3	12	5134	26.5875		47.5653	15.0565

Table 36. Continued.

SAS

OBS	GROUI	SUB.	J VISI	T SUM	PER	21	PER2	PER3	PER4
169	В	4	12	262	6 31	607	0 10.396	38.880	4 10 1165
170	В	5	12	197		2908			
171	В	6	12	183		845			
172	В	7	12	555		5506			
173	В	8	12	522		157			
174	В	9	12						2 0.5565
175	В	10	12					No.	
176	8	11	12						
178	B	12	12	4121		4610			3 9.6461
179	В	1 2	15	2190		9406			
180	В	3	15 15	230		8966			
181	В	4	15	4486	CHILD IN THE PERSON NAMED IN	7820			
182	В	5	15	392		8970			
183	В	6	15	201	31.	2572	19.908	3 35.7661	1 13.0684
184	В	7	15	4170	17	7458	14.796	2 50	
185	В	8	15	1444		4072	13.711		
186	В	9	15	4412		5938	28.739		
187	В	10	15	3745		8625	19.786		
188	В	11	15					. 55.6679	17.4633
189	В	12	15	2990	21.	4047	21.137	1 43.5117	13.9465
190	В	1	18	2481		1741	7.5373	54.0911	
191	В	2	18	4181		9371	13.7527	7 47.1418	16.1684
193	B	3	18	2473		6401	13.9507	42.9034	13.5059
194	В	5	18	4332		4524	14.1736	51.3389	14.0351
195	В	6	18	2371		1316	14.8039		
196	В	7	18	2541	25.8	3560	7.0051	43.0146	24.1244
197	В	8	18	4131	31.7	,,,,			
198	В	9	18	2313	29.9		13.6771		14.6454
199	В	10	18	2057	29.7	7521	23.8651		4.1937
200	В	11	18	4172	23.0		21.5244		9.9660
201	В	12	18	4132	23.7		18.1510		15.3883
202	В	1	21	1129	27.8		17.7305		7.4298 20.3901
203	В	2	21	3197	28.1		11.2293		9.3838
204	В	3	21	5361	19.3	621	12.0873		35.1800
205	В	4	21	3238	20.8	771	12.3533	49.4750	17.2946
206	B	5	21	4644	16.6	236	14.5564	42.6357	26.1843
208	8	6	21						
209	В	8	21	5123	22.2		16.2795	42.2799	19.2075
210	В	9	21	4221	31.8	408	13.6224	36.8870	17.6498
211	В	10	21	2663	26.2	061	24 8067		
212	В	11	21	3697	19.2		24.8967	39.2039	9.6132
213	В	12		3641	23.4		14.2007	56.0725	10.4950
214	В	1		1362	29.0		4.7724	36.4460	21.2304
215	В	2	22000	2585	26.5		16.4410	40.6021	25.5507
216	В	3	24	4088	24.5		13.6742	44.1781	17.7563
217	В	4	24					44.1701	17.5636
218	В	5		3459	24.7		16.7100	50.1012	B.4707
219	В	6		2588	24.0		11.8238	50.3091	13.7944
	В	7		4568	25.19		16.4405	52.3862	5.9764
22_	В	8	24	2945	28.1	154	19.0153	38.6757	14.1935
223	В	10	24		- 30				
224	В	11	4	3192	20	20			
25	В	12	24	3132	20.11	28 2	25.0000	40.9461	13.9411
	15.00	100000	- T		4				

SAS

OBS	GROUP	SUBJ	VISIT	SUM	PER1	PER2	PER3	PER4
226	C	1	0	3634	28.3159	10.4018	55.1734	6.1090
227	C	2	0	3648	24.0406	13.8432	57.1546	4.9616
228	C	3	0	3141	31.5823	5.9535	53.0723	9.3919
229	C	4	0	1564	19.0537	13.8107	41,5601	25.5754
230	C	5	0	4661	20.0386	18.4295	48.2085	13.3233
231	C	6	0	3562	20.2695	9.9663	33.9697	35.7945
232	С	7	0	5738	19.9373	13.2450	55.9254	10.8923
233	С	8	0	3188	25.6901	16.2798	49.3099	8.7202
234	C	9	0	4224	23.6979	13.3523	50.9706	11.9792
235	C	10	0	2833	21.8143	9.4246	45.9230	22.8380
236	C	11	0	2742	31.4004	4.6681	60.7586	3.1729
237	C	12	0	3236	25.4326	18.4487	47.4969	8.6218
238	C	13	0	2125	28.1882	12.7059	54.1647	4.9412
239	C	1	3	1526	29.4889	4.8493	52.8178	12.8440
240	C	2	3	3108	31.0489	4.9228	55.0837	8.9447
241	C	3	3	3161	36.8554	2.6574	45.5236	14.9636
242	C	4	3	5172	23.5692	7.9466	46.2104	22.2738
243	C	5	3	5410	29.3900	7.9298	50.5360	12.1442
244	C	6	3	3065	22.1860	5.2202	51.6150	20.9788
245	C	7 B	3	2838	26.4271	3.5588	56.4834	13.5307
247	C	9	3	1639	37.5229	7.6876	48.0171	6.7724
248	C	10	3	3776	22.1766	5.9846	59.7490	12.0898
249	c	11	3	2516	23.2786 36.8839	4.5816	63.1621	8.9778
250	C	12	3	1895	33.7731	5.0079	53.8553	4.2528
251	c	13	3	4858	26.2865	2.5731	55.2902	6.6491
252	č	1	6	2934	30.6408	5.8964	49.8637	13.5992
253	č	2	6	3531	29.5667	6.9952	51.7984	11.6398
254	C	3	6	000.	23.5007	0.5552		
255	C	4	6	3883	26.9379	9.9665	52.6655	10.4301
256	C	5	6	3727	25.1140	11.5374	48.0011	15.3475
257	C	6	6	4129	30.7338	13.2235	48.4863	7.5563
258	C	7	6	5596	16.7262	18.6383	51.7691	12.8663
259	C	8	6	2981	24.9916	13.9886	43.8108	17.2090
260	C	9	6	5449	23.4171	18.0033	50.6515	7.9281
261	C	10	6					
262	C	11	6	2296	24.5209	9.9739	61.3240	4.1812
263	C	12	6	1077	23.6769	7.4280	55.7103	13.1848
264	C	13	6	3488	25.0860	11.7546	55.3326	7.8268
265	С	1	9	6303	22.6083	8.8529	49.9921	18.5467
266	C	2	9	4875	22.8718	11.8359	53.8256	11.4667
267	C	3	9	3860	26.9948	13.7047	49.1451	10.1554
268	C	4	9	3666	23.4861	9.9018	58.1560	8.4561
269	C	5	9	5273	27.4227	12.4597	52.5887	7.5289
270	C	6	9	1274	34.9294	17.8964	19.0738	28.1005
271	C	7	9					
272	C	8	9	4518	25.4980	0.0000	53.3422	21.1598
273	C	9	9	3652	24.3702	10.7886	49.8083	15.0329
275	C	11	9	5347	24.7241	15.2422	45.8575	14.1762
276	C	12	9	3819	28.1749	11.5475	51.5842	8.6934
277	C	13	9	1879	22.5000	18.2407	40.7099	18.5494
278	C	1	12	6319	38.6908	8.3023 9.9541	43.8531	9.1538
279	c	2	12	5471	19.8133	7.1651	56.7495	13.4831
280	C	3	12	4227	12.5384	0.0000	58.0333	14.8419
200	-	3		7221	12.5564	0.0000	70.8087	16.6548

SAS																			
OBS	GROUP	SUBJ	VISI	r su	м	1	PER	1		F	EF	2		PE	R3		P	ER4	
281 282	C	4 5	12	468	;	28	3.1	77	7	6	. 5	15	7 5	1.	420	6	3	. 88	59
283	C	6	12																
284	C	7	12	461				90				06			608			. 59	
286	c	9	12	467 540				71				29			766 509			. 56	
287	C	10	12	436				908				69			660		4	. 38	RO
288	C	11	12	212				929	9			11			939	8		15	
289	C	12	12	296				993				52			406			84	
291	c	1	15	527 372				982				03			682			51	
292	C	2	15	366				923				73			999 371			57	
293	C	3	15	272				338				19			463			68	
294	C	4	15	4519				739				29	4 4	7.	289	2 1		00	
296	c	5	15 15	3279				155				92			920			57	
297	Č	7	15	5458				302				38			415:	2 1	0.	91	61
298	С	8	15						•			20.	, ,	• •	400	, ,	٠.	27	55
299	С	9	15	327				800				012		9.:	266	5 1	ο.	45	23
300	C	10	15	277				324				118			329	7	7.	52	61
302	c	11	15	136				929				23		5.	7752	2 .		000	
303	C	13	15	4170				717					5 5	3.3	3333	3 1		359	
304	С	1	18	5252	2	23	. 6	101	1	6	. 8	126	5	3.3	3130)		264	
305 306	C	2	18	4708	3	23	. 4	282				482			3934			230	
307	Č	3	18	3508		26	. 01	669	,	6		906		, .	7765			665	
308	C	5	18	4435				241		2	. 4	014	4		586			715	
309	С	6	18	2555				176				753			1344			972	
310	C	7	18							770									
311	C	9	18	3677		10		259	2	_	٠.			٠.					
313	C	10	18	5758				411				795 199			1362 1666			558 472	
314	C	11	18						-									412	-
315	C	12	18	3873				230				545			113		١.	611	2
316	C	13	18	2092				02				943			006			935	
318	c	2	21	4772				250				358 961			967			142	
319	C	3	21					,,,,						. 4	742		١.	324	6
320	C	4	21	3593				72	1	2 .	10	069	54	.5	505		· .	375	5
321	C	5	21	4061				58							039	12	2.	213	7
323	c	7	21	2814				103				18		. 2	573 252	17		590	
324	C	В	21		•													565	
325	C	9	21	2659			77			В.	31	14	40	. 6	168	17		299	7
326 327	C	10	21	3090				74				150	54	. 7	896			957	
328	C	11	21	2693 3016			54	19				03			893			548	
329	C	13	21	4233	2	27	23	84	13	2 .	07	18	53	. 4	509			65	
330	C	1	24	1879	2	22.	40	55	18	3.	04	15	46	. 5	141	13	. (38	9
331	C	2	24	2889	1	15.	92	25	17	7.	96	47	57	.0	093			03	
333	c	3	24	2144	2	,,	57	46	10		77	43	52		707		٠.		
334	C	5	24	3892	2	5.	61	66				26	44	. 5	529			72	
335	C	6	24	5484	2	25.	03	65	21	١.	04	30	41	. 39	931			27	
336	С	7	24	5343	1	8.	90	32	23	3.	11	44	46	. 5	469			35	
357	C	8	24	:		W.													
338 339	C	9	24	4666	2	4.	86	37	16		20	23	49	. 20	70	9	. 7	300)
340	c	11	24	1722	1	6.	376	63	10		221	0.7	55	51	68	17		862	,
341	C	12	24	2295	2	9.	934	46	19	. (04	14	39.	08	50			390	
342	C	13	24				660		10	. :	349	99	34.	69		14			

Table 36: Continued.

SAS

343								
OBS	GROUP	SUBJ	VISI	T SUM	PER1	PER2	PER3	PER4
343	U	1	U					
344	D	2	0	4942	32.8410	8.5998	52.3068	6.2525
345	D	3	0	2780	26.6187			
346	D	4	0	3469	22.1101			15.9412
347	D	5	0	4277	22.7496			17.8162
348	D	6	0	2456	26.5472			12.4186
349 350	D	7	0	2578	31.8852		THE RESERVE OF THE PARTY OF THE	
351	D	8	0	3069	30.6289			
352	D	10	0	2247	25.5007 26.1440			18.8696
353	D	11	0	5005	22.3377			4.5087
354	D	12	0	3614	32.6785		51.1688	10.6294
355	D	13	0	4674	18.1001	14.2276		5.0083
356	D	14	0	2591	28.7148		57.1980	15.0620
357	D	1	3		20.7140	12.0004	37.1900	1.7300
358	D	2	3	4235	31.1468	3.0911	45.5168	20.2454
359	D	3	3	2718	32.4503	6.7329	50.7726	10.0442
360	D	4	3	2130	30.3286	17.7465	42.3474	9.5775
361	D	5	3	5746	26.6968	8.5799	60.3028	4.4205
362	D	ô	3	4250	25.4118	11.5529	57.0118	6.0235
363	D	7	3	4656	19.7809	5.3265	59.4502	15.4424
364	D	8	3	3629	33.1496	0.0000	53.1000	13.7503
365	D	9	3	and the	and the same			
366	D	10	3	4949	25.5809	3.3340	50.4344	20.6506
367 368	D	11	3	5669	20.4269	3.3692	57.8056	18.3983
369	D	12	3	F 11 10				
370	D	14	3	5228	18.5348	0.0000	60.2525	21.2127
371 -	D	1	6	1899	30.4371	0.0000	54.6077	14.9552
372	D	2	6	4628	27.7874	10.6525	39.8012	21. 7500
373	D	3	6	4020	21.1014	10.6525	39.8012	21.7589
374	D	4	6	3204	22.7840	16.1673	46.2547	14.7940
375	D	5	6	4653	24.7152	9.5852	49.0866	16.6129
376	D	6	6	3886	20.1750	23.2887	46.1143	10.4220
377	D	7	6		26.2965	15.8633	43.2276	14.6126
378	D	8	6					
379	D	9	6	3386	21.5889	16.4796	47.2534	14.6781
380	D	10	6					
381	D	11	6		18.9778	8.7080	57.3592	14.9550
382	D	12	6		22.1991		50.5110	10.6170
383	D	13	6		16.7498	9.7235	59.6782	13.8486
385	D	14	6	3064	28.3616	8.1919	59.1384	4.3081
386	0	2	9	eeen				
387	D	3			26.1081	1.7477	61.1892	10.9550
388	D	4			23.5337	11.7306		6.9515
389	D	5			23.8328		49.3108	13.6283
390	D	6			19.3802		49.7514	9.4751
391	D	7	9	ENGON (3.3602	23.5/64	37.4231	17.6183
392	D	8	1000	6035	20.7788	13.5874	48 3347	17.2991
						.0.5074	40.3347	11.2991

Table 36: Continued.

SAS													
UBS	GRUUP	SUB	VISI	T SUM	1 1	ER 1		PER 2		PER	3	PE	R4
393 394 395 396 397 398 399	000000	9 10 11 12 13 14	9 9 9 9 9 9 1 2	356 623 645 408 621 207	8 2 8 1 0 2 8 1	8.398 0.808 6.166 1.960 5.696 2.946	90 90 98 94	19.6 17.2 13.3 17.2 7.3 9.5	972 168 059 014	47. 56. 44. 54.	9836 9516 9694	2 14 5 13 0 15 1 22	.7865 .4117 .5336 .8824 .0328
400 401 402	D D	3 4	12	352 326		5.085		B.7 6.7					. 2868 . 5521
403 404 405 406 407 408 409 410 411 412 413	000000000000	5 6 7 8 9 10 11 12 13 14	12 12 12 12 12 12 12 12 12 12 12 12 12	318 358 480 249 386 518 486 586 5210 3412	5 27 9 29 9 29 3 18 3 22 4 16 9 11	3.732 7.419 4.953 9.051 3.146 2.110 6.879 1.484 8.906	8 2 6 5 7 1 1 1 0	4.7 9.7 9.9 12.0 15.9 10.9 12.9 19.9 3.8 5.6	908 605 848 979 782 523 864 580	56.4 49.4 39.0 46.5 56.6 48.5 59.6 68.4	4003 7817 0556 9324 9168 6817 6432	13 15 19 18 9 13 19	.0376 .3891 .3046 .8079 .9231 .9942 .4868 .9864 .3896
414 415 416 417	0 0 0	2 3 4 5	15 15 15	3851 4541 2582	21	.162	7 1	5.85	555	49.8 54.4 47.6	594	8.	2963 5224 1294
418 419 420 421	0 0 0	6 7 8 9	15 15 15	2808 3157 3726	22	. 1096	6 2	0.51 2.61 4.60	64	39.4 42.3 45.0	503	12.	7407 9237 6806
422 423 424 425 426 427	0 0 0 0	10 11 12 13 14	15 15 15 15 15	4983 3420 3685 4019 5358	24 24 22	.4194 .8538 .8304 .5180	4	3.32 9.32 8.65 4.62 4.22	75 67 80	60.5 51.3 55.0 60.3 50.3	743 882 135	14. 11. 12.	7497 4444 4247 5404 7768
428 429 430 431	0 0 0	2 3 4 5	18 18 18	4945 3622 3606	26	. 1234 . 4771 . 4870	1	7.31 8.85 8.90	70	45.5 49.4 56.6	478	5.	0455 2181 9279
432 433 434 435	0 0 0	6 7 8 9	18 18 18	1136		. 4261		7.25		23.59			7289 1418
436 437 438 439	0 0 0	10 11 12 13	18 18 18	4682 4603 3376	20.	0282 0521 9917	22	2.334	99 9	48.03 55.48 32.40	356	9.	2734 6024 2690
440 441 442	DDD	14	18 21 21	3307 5292		4611		.06		51.95			5210
443 444 445 446	0 0 0	3 4 5	21 21 21 21		28.	6206 2763 1378 2637	13	.579	13 4	12.01	05	9.6 10.2 20.5	5824 2722
447 448	D	7 8	21	2042 3812		0225		.446		8.94		19.5	
149 150 151 152 153	000000	9 10 11 12 13 14	21 21 21 21 21	3378 2101 2747	24. 24. 34. 20.	2263 9529 1859 2218 2403 1292	16 12 11 9	.492	7 4 6 5 7 4 9 5	7.99 7.33 0.68 3.36 5.44 5.59	45 50 09 03 23	14.1 11.6 12.6 10.9	1241 5024 5406 9472 9346
155 156 157 158 159	0 0 0 0 0	1 2 3 4 5 6	24 24 24	1638 4948	28. 20.	9893 1441 1698 0835	14	.048 .163 .895	6 4	9.89 9.45 9.31 3.71	05 29	8.2 13.6 13.1	217
160 161 162 163 164 165 166	D D D D D D D	7 8 9 10 11 12	24 24 24 24 24 24 24	3318 3247 3115 1696 3931 5184	31. 22. 14. 19. 27. 21.	7594 7963 2051 0289 8703 0415 7593 8870	13 20 14 13 19 16	.719 .652 .110 .510 .974 .155 .126	B 4 9 4 4 5 1 5 4 5 5	2.15 3.18 7.30 8.52 1.59 0.67 0.44	87 52 33 20 67	11.3 10.3 12.9 14.5 13.1	788 374 637 264

Appendix G

POSTER AND CLINICAL EVALUATION FORMS

- G.1 Poster
- G.2 Clinical Evaluation Form
- G.3 Patient Consent Form
- G.4 Patient Information on Method of Tear Collection and Clinical Procedures
- G.5 Contact Lens Progress Evaluation Form
- G.6 Slitlamp Evaluation Form
- G.7 Examination of the Tarsal Conjunctival
- G.8 Instructions to Groups A, B and C

DEPARTMENT OF OPHTHALMIC OPTICS

Soft Lens Research VOLUNTEERS REQUIRED

Volunteer subjects are required for a soft contact lens study starting October 15th :1979.

The purpose of this study is to investigate the efficacy of commercially available cleaners prescribed for the care and maintenance of these lenses.

Interested persons should be spectacle wearers. Volunteers will be fitted with lenses at a reduced fee. Half of this fee will be refunded if all visits necessary for data collection are kept. Contact lens solutions will be provided at no cost.

Interested persons should contact:

Murchison Callender

Soft Lens Research
Room 188
Main Building
Tel: 021 359 5355/Direct
021 359 3611/Ext. 517

THE UNIVERSITY OF ASTON IN BIRMINGHAM SOFT LENS RESEARCH

CLINICAL EVALUATION OF SOFT CONTACT LENSES

SOFT CON	TACT LENSES		AGE:
CONFIDENTIAL (To be completed by patient)		Mr. Miss Mrs.	Official Patient No:
Surname	Other names_		
Home Address	Term Address		
Tel:	Tel:		
Occupation:			
Name of regular Optician (if any)	Family Docto	r	
Address	Address		
Visual "correction" Wearing at present: Spectacles (Contact Lense	s Both	None
If spectacles worn:- Age when spectacles Full time Part time All dist	les first pre	scribed	Close work
If contact lenses worn:- Every day I	ntermittantly	Infrequent	ly Discontinued
When was your last eye examination?			
Have you any complaints on the performance	of your pres	ent lenses?	
Family History: Are there any instances	of eye diseas	ses* in a	
Grandparent	e.g. *G1	aucoma	
Parent	Re	tinal Detachment	ī
Brother/sister	Cat	taracts	
None known	B1: of	indness or very p unknown origin.	oor sight

Personal History		
General Health:	Any past:	Any eye treatment
all the second s		other than glasses
Good	Eye disease	Yes 🗍
Indifferent	Eye Injury	No T
Poor	Neither	
Do you suffer from any of the	following conditions:-	
Frequent colds	Red eyes	П
Catarrh	Red eyelids	ñ
Sinus trouble	Scaly eyelas	hes
Hay fever	Styes	
Asthma	Sore or grit	ty eyes
Food allergies	Itching eyes	=
Drug allergies	Watering eye	
Boils, abscesses	Sticky eyes	
Pimples, Acne	Discharging	eves H
Lip cold sores	Intolerance	
Headaches/Migraine	Double visio	
Dandruff	Intermittent vision	
Are you at present taking any pills, tablets or medicines poy your doctor?	regular Ye.	s 🔲
(please state what, if known)	No	

Other relevant comments:

UNIVERSITY OF ASTON IN BIRMINGHAM

DEPARTMENT OF OPHTHALMIC OPTICS

SOFT LENS RESEARCH

DECLARATION	to	be	signed	Ьу	experimental	patients	on	initial
registration.								

patients have rece experimen	attend	ling and	ti	ne	Son	of i	t 1	Le	ns en	1	Re de	se	ar ri	ch	C	11	ní	c.	а	nd	1	
I hereby subject.	agree	to	act		ıs	а	V	01	un	te	ee	r	ex	pe	ri	me	nt	al				
	Signed																					
	Date.																					
NAME (Block Ca	pitals)																				
ADDRESS																						
												•				•						
																			•			

DEPARTMENT OF OPHTHALMIC OPTICS SOFT LENS RESEARCH

COLLECTION OF TEAR FLUID SAMPLES

The purpose of this experiment is to collect samples of tear fluid for subsequent analysis. The tears are collected by means of a sterile glass capillary, one end of which is placed immediately above your lower lid. It will aid the experimenter and lessen the risk of accidents if you keep your eye as still as possible during this procedure.

J R Larke

DEPARTMENT OF OPHTHALMIC OPTICS

SOFT LENS RESEARCH

PATIENT FITTING AND 'BASELINE' DATA

Prior to the fitting of soft contact lenses various measurements will be made of your eyes. Generally this will consist of the use of various optical instruments, although a sample of tear fluid will also be collected, and a nylon thread will touch upon your eye in order to measure corneal sensibility.

You will be asked to fill in a number of questionnaires and photographs will be taken of your eye.

The fitting of soft contact lenses will involve the use of a number of lenses, and you may not find this a particularly pleasant process.

Please remember that if you want a lens removed at any time this will be done immediately.

J R Larke

THE UNIVERSITY OF ASTON IN BIRMINGHAM THE DEPARTMENT OF OPHTHALMIC OPTICS

CONTACT LENS PROCE	ESS CHECK	HARD	SOFT	CARE SYSTEM
PATIENT			Date	Time worn today hrs.
HISTORY				Max. wearing time hrs. SUMMARY OF VISIT
				Complaints:
				Relevant Findings:
	RICHT EYE	1 5 5	T EYE	Diagnosis:
Visual Acuity	20/	1	20/	Treatment:
Retinoscopy	20/		20/	MODIFICATIONS O.D. O.S.
Subjective (best sphere)	20/		20/	B.C
Fluorescein				S.C.R/W
Pattern (H.C.L.)				0.Z.D.
Kerntometry & mire				DIA
appearance (S.C.L.)				BLEND
Sup. gaze St. ahead	Position	Lag	Position	ADDITIONAL INFORMATION:
Biomicroscopy				
(C		0	PLAN FOR NEXT VISIT:
Biomicroscopy)		0	
Pachometry				
Keratometry	Dum		mm	
Retinoscopy				
Subjective (sphero-cyl)	20/		20/	Student Clinician
Verification of let (B.C./Dia./O.Z./Pow	20/		20/	
Inspection for nick cloudy patches, muc	s, spots.	W. A. H.		Supervising Clinician
Photography of unus biomicroscope findi	ual	1		
				Optometry June 78 1854A-J

Name Data Visit No.	SOFT LOIS SLIT LAIP E	ASDYL UL BERNINGRAF F.OPHTHAMHE OFFICS REFEARCH WHIMATICH*	CCITROL BUX-SOL SOL.					
A: GEDENA								
1. Mone (OSTERLARICAL)	Ľ	اليها لر						
Ficro edena - intercellular a fluid which is limited to the and is seen only by the une o	egithelium of the sitt iamp.	Strings.	ra - intracellular cyct viewed by the maked sy at Illumination.	ic occurulati	on to			
Slight accurts in the epitheli		Contraction of the Contraction o	or without any stream!					
2. (a) Locali and - ever loca the		6. (a) Cirev	recribed - over less th		1			
3. (b) Generalised - over more the cornes.	than 501 of	7. (b) Comes:	the comes.		H			
Moderate amounts of the epithe by direct (limination.	L	J L Sames em	se with strong involve		7			
4. (a) Localised - over less the the cornes.		7 7 200	the cornes.	- 🗆				
5. Its Generalised - ever more the cornea.	an sox or	7 - 01 20-	the cornes.					
A PLUDRECEIN STREETING		1 [-1]	-					
INITIALITE TO EMARITY IN		C-1224 TOWAL STAINING						
1. m staining	LES LA	(a) EVIDENCE OF STAL	Intred Indian					
- M.()		1. No statuted		R	-4			
3. Penetain				1 2. Millian				
L Mary] 1. Punetate		$\overline{\Box}$	H			
		4. Linner			H			
5. Arrusca		S. Arcusts		=	H			
er depar sheerth		4. Other specify			H			
A DEPTH OF STALFFORD 17 PRESENT		(A) AFEA OF STAINS	HS IT THE DIT - COUNTR					
1. Spethallal.				AREA				
2. Involves stress (partial)		T In-strange IN of the	no total cornes area					
1. Invelted full corner thickness	一一	1. Invelving 15 but 4	SK of the total					
(c) ALEA OF STATISTICS IT PRESENT -COPINS	ATEA	1			Ħ			
1. Involving <12 of the total currer erec 2. Involving >15 but <35 of the total correct area.	금님	1. Involving 5% but a cormea sens. 4. Involving 10% but			H			
3. Involving > 15 but < 10f of the total corner over.	百诗	5. Involving 15% but						
4. Lavelring >106 but <250 of the total		6. Involving 50% but						
E. Involving >255 but < 508 of the total	DF	T Involving the total			H			
involving>505 but < 755 of the total	DI				7.			
h lawsiving the total area of the cornea.					i			
PANTELION CHUNES RESTURBURE		5. MIL (24)						
1. No flare or sells .	It by	,	K		J			
2. Plaint (194	= =	4. Moderahu (See						
		J. HAPPED CHI.			-			

THE UNIVERSITY OF ASTON IN BEGINGHAM: THE DEPARTMENT OF OPERALL C CYTICS Soft Lens Research Examination of the Tarsal Conjunctiva of the upper eyelids.

Patient Tel/Contact Visit No Deta File	······································	CCHTROL NCH-SCL SOL	3
TARUAL CONJ		L.E.	
.A. S.TH n had a s. B. U:IFCN: microsc 1,2 and .C. ECK-U:I were 0D. GLUT P or great	ppearance(where the mooth surface). PATTLLARY appearance opically elevated position of the partial position of the partial papers appearance of the partial papers appearance of the papers appeara	conjunctiva is devoid of papillae as ce(in which small(4 to 8 per mm.) apillae were detected over zones scance(in which some of the papillae eter resulting in non-uniform appear (in which papillae 1mm. in diameter	ance
.G. Other Co	otion of zones 4 and	5.,	

THE UNIVERSITY OF ASTON IN BIRMINGHAM THE DEPARTMENT OF OPHTHALMIC OPTICS

SOFT LENS RESEARCH

Instructions for Group A

- Hygiene. Before putting on or taking off your lenses, always wash your hands. Rinse them thoroughly and dry them with a lint-free towel. Before handling your lenses avoid oily substances such as hand creams, lotions, or cosmetics.
- 2. Putting on Lenses. Remove right lens from storage container, place it in the palm of the left hand, and rinse with <u>freshly made saline</u> solution before putting on the lens. Check to make sure your lens is not inside out. Repeat for left lens. Discard solution in the storage container so that fresh solution may be used in the evening.
- 3. Cleaning Lenses. When removing lenses in the evening, remove right lens, place in palm of left hand and place a few drops of saline on the lens. Rub lens thoroughly with index finger of right hand, being careful not to contact the lens with your fingernail. Do one side of the lens and then the other. Rinse lens with saline and place lens in case filled with fresh saline. Repeat for left lens.
 - * Use the Bausch and Lomb protein remover tablets twice per week in addition to daily cleaning with saline.
- 4. Heat Disinfection of Lenses. Place the lens case in the recessed compartment of the Bausch and Lomb heat unit, close the cover and press the button to start the disinfecting cycle.
- 5. Eye Drops. Eye drops or other eye medications or solutions intended for hard contact lenses must NOT be used by wearers of soft lenses. If used, medicants or preservatives will be absorbed by your lenses and serious damage to the eyes could result.
- 6. Wearing Schedule. You may wear your lenses up to eight hours per day during the first week and in most cases full time wear will be reached by the end of the second week. Once full time wear is achieved lenses may be worn during all waking hours, but must NOT be worn during sleep.
- 7. Sports Wear. Soft lenses may be worn for sporting and athletic activities and are superior to hard contact lenses for such activities as they are not easily dislodged from the eyes.
- 8. Swimming. Soft lenses should not be worn for swimming or other water sports unless a mask is worn. Otherwise the lenses may become contaminated with microorganisms if worn in fresh water or in salt water, or if worn in chlorinated water, chlorine may be absorbed by the lenses and can result in severe eye irritation.
- 9. Water. Fresh water or tap water will lower the salt content of soft lenses and will cause them to adhere tightly to the tissues of the eyes. This can cause damage to the eye if removal of lenses is attempted before the tears have a chance to bring the salt content back to normal.
- 10. Eye Make-up and Hair Sprays. If eye make-up or hair sprays come into contact with your soft lenses they can cause severe eye irritation or can permanently destroy the lenses.
- 11. Blurring of Vision. If vision blurs while wearing your lenses this is usually due to drying of the lenses and should clear up after blinking several times while moving the eyes back and forth. Check to make sure your lenses are in the proper eyes.
- 12. Pain, Discomfort, Redness. If these symptoms occur, remove lenses, clean with saline, and rinse with saline, and put them back on. If symptoms persist, remove lenses and telephone the clinic for an appointment.

THE UNIVERSITY OF ASTON IN BIRMINGHAM THE DEPARTMENT OF OPHTHALMIC OPTICS

SOFT LENS RESEARCH

Instructions for Group B

- Hygiene. Before putting on or taking off your lenses, always wash your hands. Rinse them thoroughly and dry them with a lint-free towel. Before handling your lenses avoid oily substances such as hand creams, lotions, or cosmetics.
- 2. Putting on Lenses. Remove right lens from storage container, place it in the palm of the left hand, and rinse with flexcare solution before putting on the lens. Check to make sure your lens is not inside out. Repeat for left lens. Discard solution in the storage container so that fresh solution may be used in the evening.
- 3. Cleaning Lenses. When removing lenses in the evening, remove right lens, place in palm of left hand and place a few drops of preflex on the lens. Rub lens thoroughly with index finger of right hand, being careful not to contact the lens with your fingernail. Do one side of the lens and then the other. Rinse lens with flexcare and place lens in storage container filled with fresh flexcare. Repeat for left lens.
- 4. Lens Storage. Flexcare contains antibacterial agents which will keep your lens free of contamination only if fresh flexcare is used daily, and if lenses are properly cleaned with preflex and rinsed with flexcare before overnight storage. We recommend that you periodically check your solutions expiration dates to guard against adverse effects and insure proper hygiene of your lenses.
- 5. Eye Drops. Eye drops or other eye medications or solutions intended for hard contact lenses must NOT be used by wearers of soft lenses. If used, medicants or preservatives will be absorbed by your lenses and serious damage to the eyes could result.
- 6. Wearing Schedule. You may wear your lenses up to eight hours per day during the first week and in most cases full time wear will be reached by the end of the second week. Once full time wear is achieved lenses may be worn during all waking hours, but must NOT be worn during sleep.
- 7. Sports Wear. Soft lenses may be worn for sporting and athletic activities and are superior to hard contact lenses for such activities as they are not easily dislodged from the eyes.
- 8. Swimming. Soft lenses should not be worn for swimming or other water sports unless a mask is worn. Otherwise the lenses may become contaminated with microorganisms if worn in fresh water or in salt water, or if worn in chlorinated water, chlorine may be absorbed by the lenses and can result in severe eye irritation.
- 9. Water. Fresh water or tap water will lower the salt content of soft lenses and will cause them to adhere tightly to the tissues of the eyes. This can cause damage to the eye if removal of lenses is attempted before the tears have a chance to bring the salt content back to normal.
- 10. Eye Make-up and Hair Sprays. If eye make-up or hair sprays come into contact with your soft lenses they can cause severe eye irritation or can permanently destroy the lenses.
- 11. Blurring of Vision. If vision blurs while wearing your lenses this is usually due to drying of the lenses and should clear up after blinking several times while moving the eyes back and forth. Check to make sure your lenses are in the proper eyes.
- 12. Pain, Discomfort, Redness. If these symptoms occur, remove lenses, clean with preflex, and rinse with flexcare, and put them back on. If symptoms persist, remove lenses and telephone the clinic for an appointment.

THE UNIVERSITY OF ASTON IN BIRMINGHAM THE DEPARTMENT OF OPHTHALMIC OPTICS

SOFT LENS RESEARCH

Instructions for Group C

- Hygiene. Before putting on or taking off your lenses, always wash your hands. Rinse them thoroughly and dry them with a lint-free towel. Before handling your lenses avoid oily substances such as hand creams, lotions, or cosmetics.
- 2. Putting on Lenses. Remove right lens from storage container, place it in the palm of the left hand, and rinse with Flexcare solution before putting on the lens. Check to make sure your lens is not inside out. Repeat for left lens. Discard solution in the storage container so that fresh solution may be used in the evening.
- 3. Cleaning Lenses. When removing lenses in the evening, remove right lens, place in palm of left hand and place a few drops of Preflex on the lens. Rub lens thoroughly with index finger of right hand, being careful not to contact the lens with your fingernail. Do one side of the lens and then the other. Rinse lens with Flexcare and place lens in storage container filled with fresh Flexcare. Repeat for left lens.
 - * Use the Bausch and Lomb protein remover tablets twice per week in addition to daily cleaning with Preflex.
- 4. Lens Storage. Flexcare contains antibacterial agents which will keep your lens free of contamination only if fresh Flexcare is used daily, and if lenses are properly cleaned with Preflex and rinsed with Flexcare before overnight storage. We recommend that you periodically check your solutions expiration dates to guard against adverse effects and insure proper hygiene of your lenses.
- 5. Eye Drops. Eye drops or other eye medications or solutions intended for hard contact lenses must NOT be used by wearers of soft lenses. If used, medicants or preservatives will be absorbed by your lenses and serious damage to the eyes could result.
- 6. Wearing Schedule. You may wear your lenses up to eight hours per day during the first week and in most cases full time wear will be reached by the end of the second week. Once full time wear is achieved lenses may be worn during all waking hours, but must NOT be worn during sleep.
- 7. Sports Wear. Soft lenses may be worn for sporting and athletic activities and are superior to hard contact lenses for such activities as they are not easily dislodged from the eyes.
- 8. Swimming. Soft lenses should not be worn for swimming or other water sports unless a mask is worn. Otherwise the lenses may become contaminated with microorganisms if worn in fresh water or in salt water, or if worn in chlorinated water, chlorine may be absorbed by the lenses and can result in severe eye irritation.
- 9. Water. Fresh water or tap water will lower the salt content of soft lenses and will cause them to adhere tightly to the tissues of the eyes. This can cause damage to the eye if removal of lenses is attempted before the tears have a chance to bring the salt content back to normal.
- 10. Eye Make-up and Hair Sprays. If eye make-up or hair sprays come into contact with your soft lenses they can cause severe eye irritation or can permanently destroy the lenses.
- Blurring of Vision. If vision blurs while wearing your lenses this is usually due to drying of the lenses and should clear up after blinking several times while moving the eyes back and forth. Check to make sure your lenses are in the proper eyes.
- 12. Pain, Discomfort, Redness. If these symptoms occur, remove lenses, clean with reflex, and rinse with lexcare, and put them back on. If symptoms persist, remove lenses and telephone the clinic for an appointment.

REFERENCES

- ABELSON MB, SOTER NA, SIMMON MA, DOHLMAN J and ALLANSMITH MR. (1977 Histamine in human tears. Am. J. Ophthalmol. 83:417-419.
- ABELSON MB, UDELL IJ, WESTON JH. (1981) Normal human tear pH by direct measurement. Arch. Ophthalmol. 99:301.
- ABELSON MB, BAIRD RS, ALLANSMITH MR. (1980) Tear histamine levels in vernal conjunctivitis and other ocular inflammations. Ophthalmol. 87:812-814.
- 4. ADAMS AD. (1979) The morphology of human conjunctival mucus. Arch. Ophthalmol. 97:730-734.
- ALLANSMITH MR. (1973) Immunology of the tears. In the Preocular tear film and dry eye syndromes. Holly FJ. and Lemp MA.. (eds.) Int. Ophthalmol Clin. 13:47-72.
- ALLANSMITH MR. (1979) Defense of the ocular surface. Thoft RA.
 Friend J. (eds) Intern. Ophthalmol Clin. 19:93-105.
- 7. ALLANSMITH MR. (1982) The eye and immunology. St. Louis, CV Mosby Co. Chapts. 1 & 3.
- 8. ALLANSMITH MR, and HUTCHISON D. (1967) Immunoglobulins in the conjunctiva. Immunology 12:225-229.
- ALLANSMITH MR. DRELL D, ANDERSON RP and NEWMAN L. (1971)
 Comparison of electrophoretic mobility of tear lysozyme in 50 subjects.
 Am. J. Ophthalmol. 71:525-529.
- ALLANSMITH MR, WHITNEY CR, McCLELLAN BH and NEWMAN LP.
 (1973) Immunoglobulins in the human eye. Arch. Ophthalmol. 89:36-45.
- ALLANSMITH MR, HAHN GS and SIMON MA. (1976) Tissue, tear and serum IgE concentration in vernal conjunctivitis. Am. J. Ophthalmol. 81:506-511.

- ALLANSMITH MR, KAJIYAMA G, ABELSON MB, SIMON MA. (1976). Plasma cell content of main and accessory lacrimal glands and conjunctiva. Am.
 J. Ophthalmol. 82:819-826.
- ALLANSMITH MR, KORB DR, GREINER JV, HENRIQUEZ AS, SIMON MA.
 FINNERMORE VM (1977) Giant papillary conjunctivitis in contact lens
 wearers. Am. J. Ophthalmol. 83:697-708.
- 14. ALLEN J, BOTTING R, SHARP A, TUFFERY AA. (1978) Deposits on contact lenses. The Optician 175:8-9.
- ALLEN M, WRIGHT P and REID L. (1972). The human lacrimal gland.
 Arch. Ophthalmol. 88:493-497.
- 16. ALLEN RC, HARLEY RA, TALAMOR RC. (1974) A new method for determination of alpha-1- antitrypsin phenotypes using isoelectric focusing on polyacrylamide gel slabs. Am. J. Clin. Pathol. 62:732-739.
- 17. ALLERHAND J, KARELITZ S, PENBHARKKUL S, RAMOS A and ISESSBERG HD. (1963) Electrophoresis and immunoelectrophoresis of neonatal tears. ADAMS AD.(1979) The morphology of human conjunctivae mucus. Arch J. Pediat 62:85-92.
- 18. ALTMAN PL. (1961) Physical properties and chemical composition of tears: Man. In: Blood and other body fluids. Dittmer DS. (ed). Washington D.C. Fed. Am. Soc. Exp. Bio. pp 488-490.
- ANDERSON JA, LEOPOLD IH. (1979) Enzymatic activities found in human tears. Docum. Ophthalmol. Proc. Series 18:333-340.
- ANDERSON JA, LEOPOLD IH. (1981) Antiproteolytic activities found in human tears. Ophthalmol. 88:82-84.
- 21. ANDRASKO GJ, BENNETTES. (1985) The rigid silicone-acrylates' revival.

 Contact Lens Forum 10:55.
- ANDREWS JS. (1970) Human tear film lipids. I. composition of the principal non-polar components. Exp Eye Res. 10:223-227.

- ARNOLD RR, COLE MF, McGEE JR. (1977) A bactericidcal effect for human lactoferrin. Science 197:263-265.
- 24. ARNON R. (1970) Papain. In: Methods in enzymology. Perlmann GE. and Lorand L. (eds). New York Acad. Press 19:226-244.
- 25. AVISAR R, SAVIR H, SIDI Y, PINKHAS J. (1977) Tear calcium and magnesium levels of normal subjects and patients with hypocalcemia or hypercalcemia. Invest. Ophthalmol. 16:1150-1151.
- 26. AVISAR R, MENACHE R, SHAKED P and SAVIR H. (1981) Lysozymes content of tears in some external eye infections. Am. J. Ophthalmol. 92:555-558.
- 27. AVISAR R, MENACHE R, SHAKED P, RUBINSTEIN J, MACHTEY I, SAVIR H.(1979) Lysozyme content of tears in patients with Sjogren's syndrome and rheumatoid arthritis. Am. J. Ophthalmol. 87:148.
- AZEN EA. (1976) Genetic polymorphism of human anodal tear protein.
 Biochem. Genet. 14:225-235.
- 29. BAKER D, TIGHE BR. (1981) Polymers in contact lens applications (viii) the problem of biocompatibility. The Contact Lens 10:3-14.
- BALIK J. (1952) The lacrimal fluid in keratoconjunctivitis sicca. A quantitiative and qualitative investigation. Am. J. Ophthalmol. 35:773-782.
- 31. BALIK J. (1958) The amino acid content of tears. (abstract) Ophthal. Lit. 12:4847.
- BALIK J. (1959) Uber die Ausscheidung des Harnstoffes indie Tranen. Acta
 Ophthalmol. (Kbh) 37:103-111.
- 33. BALIK J, KUBAT Z. (1968) Changes in tear proteins concentration in patients wearing gel contact lenses. The Optician 155:205-207.
- 34. BALIK J. (1961) The level of glucose and its elimination in tears. Csl. Oftal 17:508-512.
- 35. BALLOW M, MENDELSON L. (1980) Specific immunoglobulin E antibodies in tear secretions of patients with vernal conjunctivitis. J. Allerg Clin. Immunol. 55:112-118.

- BARBER GW. (1973) Physiological chemistry of the eye. Arch. Ophthalmol. 89:236-255.
- BELLEMARE F. (1979) Compatibility of enzymatic cleaning with cold contact lens disinfection. Int. Contact Lens Clin. 6:219-222.
- 38. BENJAMIN W, SIMONS M. (1984) Extended wear of oxygen-permeable rigid lenses in aphakia. Int. Contact Lens Clin. 11:547.
- 39. BENNETT RM, MOHLA C. (1976) A solid-phase radioimmunoassay for the measurement of lactoferrin in human plasma variations with age, sex and disease. J. Lab. Clin. Med. 88:156-166.
- 40. BERMAN MB, BARBER JC, TALAMO RC, LANGLEY CE. (1973) Corneal ulceration and serum antiproteases. I. X1-Antitrypsin. Invest. Ophthalmol. 12:759-770.
- 41. BIER N, LOWTHER GE. (1977) Contact lens correction. London: Butterworth. Chapts. 3 & 4.
- 42. BLANCO M, CURRY B, BOGHOSIAN MP. (1975) Studies of the effect of enzymatic cleaning on the physical structure of hydrophilic lenses. Contacto 19:17-20.
- 43. BLOCK RJ, DURRUM EL, ZWEIG G. (1955) A manual of paper chromatography and paper electrophoresis. New York: Academic Press.
- 44. BLUESTONE R, EASTY DL, GOLDBERG LS, JONES BR, PETTIT TH. (1975)

 Lacrimal immunoglobulins and complement quantified by counterimmunoelectrophoresis. Br. J. Ophthalmol. 59:279-281.
- 45. BONAVIDA B, SAPSE AT. (1968) Human tear lysozyme. II. Quantitative determination with standard Schirmer strips. Am. J. Ophthalmol. 66:70-761.
- 46. BONAVIDA B, SPASE AT, SERCARZ EE. (1969) A unique lacrimal protein absent from serum and other secretions: Specific tear prealbumin. Nature 221:375-376.

- 47. BONAVIDA B, SAPSE AT, SERCARZ EE. (1967) Human tear lysozyme. I. purification physiochemical and immunochemical characterization. J.Lab. Chem. Med. 70:951.
- 48. BOSMAN BH, GUTHEIL RL, ANDERSON JA. (1980) Residual enzyme activity on soft contact lenses and its inhibition by tears. Int. Contact Lens Clin. 7:156-161.
- 49. BOTELHO SY. (1964) Tears and the lacrimal gland. Sci. Am. 211:78-86.
- 50. BOTELHO SY, GOLDSTEIN AM, ROSENLUND ML. (1973) Tear sodium potassium chloride and calcium at various flow rates: children with cystic fibrosis and unaffected siblings with corneal staining. J. Pediatr. 83:601-606.
- 51. BOTELHO SY, MARTINEZ EV. (1973) Electrolytes in lacrimal gland fluid and in tears at various flow rates in the rabbit. Am. J. Physiol. 225:606-609.
- 52. BRAUNINGER GE, CENTIFANTO YM. (1971) Immunoglobulin E in human tears. Am. J. Ophthalmol. 72:558-561.
- 53. BRAUNINGER GE, SHAH DQ, KAUFMAN HE. (1971) Direct physical demonstration of oil layer on tear film substance. Am. J. Ophthalmol. 73:132-134.
- 54. BROEKHUYSE RM. (1974) Tear lactoferrin: a bacteriostatic and complexing protein. Invest. Ophthalmol. 13:550-554.
- 55. BROWN SI, DERVICHIAN DG. (1969) The oils of the meibomian glands: physical and surface characteristics. Arch. Ophthalmol. 82:537-540.
- 56. BRUCK, SD. (1974) Blood compatible synthetic polymers. Illinois: Charles C. Thomas.
- 57. BRUMISH R. (1957) The protein components of human tears. Arch. Ophthalmol. 57:554-556.
- 58. BUTTLER JE.(1973) The occurrence of immunoglobulin fragments: two types of Lactoferrin and a Lactoferrin -IgG2 complex in bovine colostral and milk whey. Biochem. Biophys. Acta 295:341-351.

- 59. CALDERIA JAF, LUTHOLD WW, SABBAGA E. (1982) Tear calcium levels in normal subjects. Opthalmologica Basel. 184:114-119.
- 60. CALLENDER MGE. (1973) A quantitative and qualitative study of human tear proteins before and after adaptation to non-flexible contact lenses. MSc thesis, University of Waterloo.
- 61. CALLENDER M, LUTZI D. (1979) The incidence of adverse ocular reactions among soft contact lens wearers using chemical disinfection procedures. Can. J. Optom. 41:138-140.
- 62. CALLENDER M, MORRISON PE. (1974) A quantitative study of human tear proteins before and after adaptation to non-flexible contact lenses.

 Am. J. Optom. Physiol. Opt. 51:939-945.
- 63. CARNEY LG, HILL RM. (1976) Human Tear pH: Diurnal variations. Arch. Ophthalmol. 94:821-824.
- 64. CARNEY LG, HILL RM. (1979) Human tear buffering capacity. Arch. Ophthalmol. 97:951-952.
- 65. CENTIFANTO YM, KAUFMAN HE. (1970) Secretory immunoglobulin A and herpes keratitis. Infect. Immun. 2:778.
- CENTIFANTO YM, GOORHA RM, KAUFMAN HE. (1970) Interferon induction in rabbit and human tears. Am. J. Ophthalmol. 70:1006-1009.
- 67. CHANDLER JW, LEDER R, KAUFMAN HE, CALDWELL JR. (1974) Quantitativive determinations of complement components and immunoglobulins in tears and aqueous humor. Invest. Ophthalmol. 13:151-153.
- CHANG FW. (1977) The possible adverse effects of over-the-counter medications on the contact lens wearer. J. Am. Optom. Assoc. 48:319-323.
- 69. CHECHIK-KINNA E. (1946) Treatment of perforating wounds and burns of the eye with lysozyme (abstract). Arch. Ophthalmol 36:626.
- 70. CHRAMBACH A, REISFELD RA, WYCKOFF M, ZACCARI J. (1967) A procedure for rapid and sensitive staining of protein fractionated by polyacry-lamide gel electrophoresis. Anal. Biochem. 20:150-154.

- 71. CLEMENTS LD. (1978) Spin casting Bausch & Lomb Soflens (polymacon) contact lenses. In: Soft contact lenses. Ruben M. (ed.). New York: John Wiley & Sons, Inc. Chapt. 27.
- 72. COPELAND JR, LAMBERTS DW, HOLLY FJ. (1982) Investigation of accuracy of tear lysozyme determination by the quantiplate method. Invest.

 Ophthalmol. Vis. Sci. 22:103-110.
- CORWIN JM and WEITER JJ. (1981) Immunology of Chorioretinal disorders. Arch. Ophthalmol. 25:287-305.
- 74. COVEY W, PERILLE P, FINCH SC. (1971) The origin of tear lysozyme. Proc. Soc. Exp.Bio. Med. 137:1362-1363.
- 75. COWARD BD, NEUMANN R, CALLENDER M. (1984) Solution intolerance among users of four chemical soft lens care regimens. Am. J. Optom. Physiol. Opt. 41:138-140.
- 76. CRANDALL DC, LEOPOLD IH. (1979) The influence of systemic drugs on tear constituents. Ophthalmol. 86:115-125.
- 77. DAUGHADAY WH, LOWRY OH, ROSENBROUGH NJ, FIELDS WS. (1952)

 Determination of cerebrospinal fluid proteins with the Folin phenol reagent.

 J. Lab.Clin. Med. 39:663-665.
- 78. DAVIS DL. (1967) Design and analysis of industrial experiments. 2nd Ed. Oliver and Boyd.
- DAWSON CR. (1976) How does the external eye resist infection. Invest.
 Ophthalmol. 15:971-974.
- 80. de KONING EWJ, van BIJSTERVELD OP. (1984) Schirmer test values and lysozyme content of tears in acute dendritic keratitis. Invest. Ophthalmol. Vis. Sci. 25:55-58.
- de LUISE VP, TABBARA KF. (1983) Quantitation of tear lysozyme levels in dry-eye disorders. Arch. Ophthalmol. 101:634-635.
- 82. de ROETTH, A. (1953) Lacrimation in normal eyes. Arch. Ophthalmol. 42:185-189.

- 83. DOHLMAN CH, FRIEND J, KALEVAR V, YAGODA D, BALAZS E. (1976) The glycoprotein mucus content of tears from normals and dry patients. Exp. Res. 22:359-365.
- 84. DOUGHMAN DJ. (1977) Basic and clinical considerations of tear film stability. Contant Lens J. 10:25-31.
- 85. DHIR SP, GARG SK, SHARMA YR, LATH NK. (1979) Prostaglandins in human tears. Am. J. Ophthalmol. 87:403-404.
- DUKE-ELDER S. (1968). System of Opthalmology. Vol. IV. The physiology of the eye and of vision. London: Henry Kimpton. pp 419-423.
- 87. EHLERS N. (1965). The precorneal film: Bromicroscopical histological and chemical investigation. Acta Ophthalmol. Supp. 81.
- 88. EHLERS N, KESSING SV, NORN MS. (1972). Quantitative amounts of conjunctival mucous secretion and tears. Acta Ophthalmol.59:210-214.
- 89. ENSINK FTE and van HAERINGEN NJ. (1977). Pitfalls in the assay of lysozyme in human tear fluid. Ophthal. Res. 9:366-373.
- 90. ERICKSON OF. (1960). Drug influences on lacrimal lysozyme production. Stanford Med. Bull. 18:34-39.
- 91. ERIKSEN S. (1980). Prevention of destructive deposits with enzymatic cleaning. The Contact Lens J. 9:20-23.
- 92. EYLAN E, RONEN D, ROMANO A, SMETANA O. (1977). Lysozyme tear level in patients with herpes simplex virus eye infection. Invest. Ophthalmol. Vis. Sci. 16:850.
- 93. FARRIS RL, STUCHELL RN, MANDEL ID. (1981a) Basal and reflex human tear analysis. I. Physical measurements: osmolarity, basal volumes and reflex flow rate. Am. Acad. Ophthalmol. 88:852-857.
- 94. FARRIS RL, STUCHELL RN, MANDEL ID. (1981b) Basal and reflex human tear analysis. II. Chemical analysis: lactoferrin and lysozyme. Am. Acad. Ophthalmol. 88:858-862.

- 95. FATT I, CHASTON J. (1980a) Temperature of a contact lens on the eye. Int. Contact lens Clin. 7:195-198.
- 96. FATT I, ST HELEN R. (1971) Oxygen tension under an oxygen- permeable contact lens. Am. J. Optom. Arch. Am Acad. Optom. 48:545-555.
- 97. FATT I, CHASTON J. (1981) The response of vertex power to change in dimensions of hydrogel contact lenses. Int. Contact Lens Clin. 8:22-28.
- 98. FATT I, CHASTON J.(1980b) The effect of temperature on refractive index; water content and central thickness of hydrogel contact lenses. Int. Contact Lens Clin. 7:250-255.
- 99. FEINBLOOM W. (1936) A plastic contact lens. Trans. Am. Acad. Optom. 10:37-44.
- 100. FELIX RH, IVE FA and DAHL MG. (1974) Cutaneous and ocular reactions to practolol. Br. Med. J. 4:320-324.
- 101. FERRARI R, CALLERO C and PODIO G (1959) Antiviral activity of lysozyme. Nature 183:548.
- 102. FICK E. (1888) A contact-lens. Arch. Ophthalmol. 17:215-226.
- 103. FICHMAN S, BAKER VV, HORTON HR. (1978) Iatrogenic red eyes in soft contact lens wearers. Int. Contact Lens Clin. 5:202-206.
- 104. FLACHSMEYER R, WEICHERT P. (1963) Die reien aminosauren in der enschlichen tranenflussigk. v. Graefe. Arch. Ophthalmol. 165:516-518.
- 105. FLEMING A, ALLISON VD, (1922) Observations on a bacteriolytic substance (lysozyme) found in secretions and tissues. Br. J. Exp. Pathol. 3:252-260.
- 106. FLEMING A.(1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. London Biol. 93:306.
- 107. FORD LC, de LANGE RJ and PETTY RW. (1976) Identification of a non-lysozyme bactericidal factor (beta-lysin) in human tears and aqueous humor. Am. J. Ophthalmol. 81:30-33.
- 108. FOURCROY AF, VAUQUELIN. (1791) Examen chimique des larmes et de l'humeur des narines. Ann. Chime. 10:113-130.

- 109. FRANCOIS J, RABAEY M. (1960) Agar micro-electrophoresis of human tears. Am. J. Ophthalmol 50:793-797.
- 110. FRANKLIN RM and BANG BG. (1980) Mucus-stimulating factor in tears. Invest. Ophthalmol Vis. Sci. 19:430-432.
- 111. FRANKLIN RM, KENYON KR and TOMASI TB. (1973) Immunohistologic studies of human lacrimal gland: localization of immunoglobulins, secretory component and lactoferrin. J. Immunol. 110:984-992.
- 112. FREY WH, de SOTA-JOHNSON D, HOFFMAN C, McCALL JT. (1981)
 Effect of stimulus on the chemical composition of human tears. Am. J.
 Ophthalmol 92(4):559-561.
- 113. FRIEDLAND BR, ANDERSON DR, FOSTER RK. (1972) Non-lysozyme antibacterial factor in human tears. Am. J. Ophthalmol. 74:52-59.
- 114. FULLARD RJ, CARNEY LG. (1984) Diurnal variation in human tear enzymes. Exp. Eye Res. 38:15-26.
- 115. FURUKAWA, RE, POLSE KA. (1978) Changes in tear flow accompanying aging. Am. J. Optom. Physiol.
- 116. GACHON AM, VERRELLE P, BETAIL G, DASTUGUE B. (1979) Immunological and electrophoretic studies of human tear proteins. Exp.Eye Res. 29:539-553.
- 117. GARNER A, RAHI AHS. (1976) Practolol and ocular toxicity: antibodies in serum and tears. Br.J. Ophthalmol. 60:684-686.
- 118. GASSET AR, BRAVERMAN LE, FLEMING MC, ARKY RA, ALTER BR. (1968) Tear glucose detection of hyperglycemia. Am. J. Ophthalmol. 65:414-420.
- 119. GIARDINI A, ROBERTS JRE. (1950) Concentration of glucose and total chloride in tears. Br. J. Ophthalmol. 34:737-743.
- 120. GILBARD JP, FARRIS RL, SANTAMARIA J.(1978) Osmolarity of tear microvolumes in kerato conjunctivitis sicca. Arch. Ophthalmol. 96:677-681.

- 121. GILBARD JP, FARRIS RL. (1979) Tear osmolarity and ocular surface disease in keratoconjunctivitis sicca. Arch. Ophthalmol. 97:1642-1646.
- 122. GILLETTE TE, ALLANSMITH MR, GREINER JV, JANUSZ M. (1980) Histologic and immunohistologic comparison of main and accessory lacrimal tissue.
 Am. J. Ophthalmol. 89:724-730.
- 123. GILLETTE TE, GREINER JV, ALLANSMITH MR. (1981) Immunohistochemical localization of human tear lysozyme. Arch. Ophthalmol. 99:298-300.
- 124. GILLETTE TE, ALLANSMITH MR. (1980) Lactoferrin in human ocular tissues. Am. J. Ophthalmol. 90:30-37.
- 125. GRABNER G, FORMACK I, DORDA W, LUGER T. (1982) Human tear lyso-zyme: a comparison of electro-immunodiffusion, radial immunodiffusion and a spectrophotometric assay. v. Graefes Arch.Clin. Expt. Ophthalmol. 218(5):265-270.
- 126. GRECO A. (1984) Freedom of choice: a gas-permeable materials overview. Int. Contact Lens Clin. 11:720-729.
- 127. GROSBERG SE. (1972) The interferons and their inducers: molecular and therapeutic considerations. N. Engl. J.Med. 287-79.
- 128. HAMANO H, MINAMI S, SUGIPMORI Y. (1969) Experiments in thermometry of the anterior portion of the eye wearing a contact lens by means of infra-red thermometer. Contacto 13(2):12-22.
- 129. HAMANO H, MIYABE K, MITSUNAGA S. (1972) Measurements of thermal constants of cornea and hard and soft contact lens materials. Contacto 16:5-6.
- 130. HAMANO H.(1978) Fundamental researches in the effects of contact lenses on the eye. In soft contact lenses. Ruben M. (ed). New York: John Wiley & Sons, Inc. Chapt. 8.
- 131. HARKNESS DR. (1970) Structure and function of immunoglobulins. Post-grad. Med. 48:64-70.

- 132. HEKMAN A. (1971) Association of lactoferrin with other proteins, as demonstrated by changes in electrophoretic mobility. Biochem. Biophys. Acta 251:380-387.
- 133. HENDERSON JW, PROUGH WA. (1950) Influence of age and sex on flow of tears. Arch. Ophthalmol. 43:224-231.
- 134. HILL RM, TERRY JE. (1976) Human tear cholesterol levels. Arch. Ophthalmol. 36:155-160.
- 135. HILL RM, CARNEY LG. (1970) Tear pH, how predictable? J. Am. Optom. Assoc. 49:269.
- 136. HILL RM, YOUNG W. (1973) Cholesterol levels of human tears: case reports. J. Am. Optom. Assoc. 45:424-428.
- 137. HILL RM. (1970) Comments on contact lens adaptation: osmotic pressure of the tears. Contact Lens Soc. of Am. J. 4:15-21.
- HILL RM. (1972) New contact lens materials: a physiological prospective.
 J. Am. Optom. Assoc. 43:298-300.
- 139. HILL RM, AUGSBURGER A. (1971) Oxygen tensions at epithelial surface with a contact lens in situe. Am. J. Optom. 48:416-418.
- 140. HILL RM. (1967) Effects of hydrophilic plastic lenses on cornea respiration.
 J. Am.Optom. Assoc. 38:181-184.
- 141. HILL RM, FATT I. (1963) Oxygen uptake from a limited volume reservoir by in vivo human cornea. Science 142:1295.
- 142. HILL RM, LEIGHTON AJ.(1965) Temperature changes of human cornea and tears under a contact lens. I. The relaxed open eye and the natural and forced closed eye conditions. Am. J.Optom. 42:9.
- 143. HILL RM. (1978) The physiology of soft lens systems. In: Soft contact lenses. Ruben M.(ed.) New York: John Wiley and Sons, Inc. Chapt. 4.
- 144. HIRJI NK. (1979) Some physiological constraints on the design of synthetic hydrogel contact lenses intended for continuous (extended) usage. The Contact Lens J. 8(1):14-16.

- 145. HIRJI NK. (1978) Some aspects of the design and ocular response to synthetic hydrogel contact lenses intended for continuous usage. PhD thesis, University of Aston in Birmingham.
- 146. HOLDEN BA, MARKIDES AJ. (1971) On the desirability and efficiency of chemical sterilization of hydrophilic contact lenses. Aust. J.Optom. 54:325-336.
- 147. HOLLY FJ. (1978) Preocular tear film. Contact Intraocul. Lens Med. J.4:134-142.
- 148. HOLLY FJ. (1973) Formation and stability of tear film. In: The preocular tear film and dry eye syndromes. Holly FJ. and Lemp MA. (eds). Int. Ophthalmol. Clin. 13:73-96.
- 149. HOLLY FJ. (1980) Tear film physiology. Am. J. Optom. Physiol. Opt. 57:252-257.
- 150. HOLLY FJ. (1981a) Tear film physiology and contact lens wear. I. Pertinent aspects of tear film physiology. Am. J. Optom. Physiol. Opt. 58:324-330.
- 151. HOLLY FJ. (1981b) Tear film physiology and contact lens wear. II. Contact lens tear film interaction. Am. J.Optom. Physiol. Opt. 58:331-341,1981.
- 152. HOLLY FJ. (1979) Protein and lipid adsorption by acrylic hydrogels and their relations to water wettability. J. Polymer. Sci. Polymer. Symp. 66:409-417.
- 153. HOLLY FJ. (1978a) Surface chemical evaluation of artificial tears and their ingredients I. Interfacial activity at equilibrium. Contact and Intraocul. Lens Med. J. 4:14-31.
- 154. HOLLY FJ, PATTERN JT, DOHLMAN CH. (1977) Surface activity determination of aqueous tear components in dry eye patients and normals. Exp. Eye Res. 24:479.
- 155. HOLLY FJ. (1978b) Surface chemical evaluation of artificial tears and their ingredients. II Interaction with superficical lipid layer. Contact Intraocul. Lens Med. J. 4(3):52-65.

- 156. HOLLY FJ, LEMP MA.(1977) Tear physiology and dry eyes. Surv. Ophthalmol. 22(2):69-87.
- 157. HOLLY FJ, LEMP MA. (1971) Wettability and wetting of the corneal epithelium. Exp. Eye Res. 11:239-250.
- 158. HORWITZ BL, CHRISTENSEN GR, RITZMANN SR. (1978) Diurnal profiles of tear lysozyme and gamma A globulin. Ann. Ophthalmol. 10:75-80.
- 159. HUBER A. (1960) Temperaturmessuhng am auge Opthalmologica 139:351-357.
- 160. HUTH SW, MILLER MJ, LEOPOLD IH. (1981) Calcium and protein in tears. Arch. Ophthalmol. 99:1628-1633.
- 161. IWATA A. (1973) Chemical composition of the aqueous phase. In: The preocular tear film and dry eye syndromes. Holly, FJ. and Lemp MA. (eds.) Int. Ophthalmol. Clin. 13:29-46.
- 162. IWATA S, KABASAWA I. (1971) Fractionation and chemical properties of tear mucoids. Exp. Eye Res. 12:360-367.
- 163. JACQ C, LIOTET S, WARNET VN, ARRATA M.(1982) Lactic dehydrogenase isoenzymes in the ocular tissues and liquids. Ophthalmologica 184:174-178.
- 164. JANSSEN PT, van BIJSTERVELD OP. (1983) Origin and biosynthesis of human tear fluid proteins. Invest. Ophthalmol. Vis. Sci. 24:623-630.
- 165. JANSSEN PT, MUYTJENS HL, van BIJSTERVELD OP. (1984) Nonlysozyme antibacterial factor in human tears: fact or fiction? Invest. Ophthalmol. Vis. Sci. 25:1156-1160.
- 166. JENSEN OA, FALBE-HANSEN I, JACOBSEN T, MICHELSEN A. (1969)
 Mucosubstances of the acini of the human lacrimal gland (orbital part). I.
 Histochemical identification. Acta Ophthalmol. 47:606-619.
- 167. JOHNSSON J, NYGREN B, SJORGEN E.(1978) Disinfection soft contact lenses in liquid - a method that has been questioned. The Contact Lens J. 6(5):3.

- 168. JOHNSON DL, Del MONTE MA, COTLIER E, DESNICK RJ. (1975) Fabry disease: diagnosis by α -galactosidase activities in tears. Clin. Chim. Acta 63:81-90.
- 169. JOLLIES J and JOLLIES. (1967) Human tear and human lysozymes. Biochem. 6:411-417.
- 170. JONES LT. (1966) The lacrimal secretory system and its treatment. Am. J. Ophthalmol. 62:47-60.
- 171. JONES LT. (1973) Anatomy of the tear system in the preocular tear film and dry eye syndromes. (eds.) Holly FJ. and Lemp MA. Int.Ophthalmol. Clin. 13(1):3-22.
- 172. JORDAN A, BAUM J. (1980) Basic tear flow. Does it exist? Ophthalmol. 87:920-930.
- 173. JOSEPHSON AS and LOCKWOOD DW. (1964) Immunoelectrophoretic studies of the protein components of normal tears. J.Immunol. 93:532-539.
- 174. JOSEPHSON AS, WALD A. (1969) Enhancement of lysozyme activity by anodal tear protein. Proc. Soc. Exp. Biol. Med. 131:677-679.
- 175. JOSEPHSON AS, WIENER RS. (1968) Studies of the proteins of lacrimal secretions. J. Immunol. 100:1080-1092.
- 176. KAHAN IL, OTTOVAY E. (1975) The significance of tears' lactate dehydrogenase in health and external eye diseases. Albrecht v. Graefes Arch. Klin Exp. Ophthalmol. 194:267-276.
- 177. KAHAN IL, ERDEC Z. (1972) On the keto acid content of tears. Ophthal-mologica. 164:71-77.
- 178. KARAGEOZIAN HL.(1976) Use of amino acid analyzer to illustrate the efficiency of an enzyme preparation for cleaning hydrophilic lenses. Contacto 20:5-10.
- 179. KASPAR H. (1976) Binding characteristics and microbiological effectiveness of preservatives. Aust. J. Optom. 59:4-9.

- 180. KIJLSTRA A, VEERHUIS R. (1981) The effect of an anticomplementary factor on normal human tears. Am. J. Ophthalmol. 92:24-27.
- 181. KINN JB, TELL RA. (1973) A liquid crystal contact lens device for measurement of corneal temperature. Institute of Electrical and Electronic Engineers. Trans. Biomed. Eng. 20:387.
- 182. KLEIST FD. (1979) Appearance and nature of hydrophilic contact lens deposits - Part 1: Protein and other organic deposits. Int. Contact Lens Clin. 6:120-130.
- 183. KLEIST FD. (1979) Appearance and nature of hydrophilic contact lens deposits - Part 2: Inorganic deposits. Int. Contact Lens Clin. 6:177-186.
- 184. KOETTING RA.(1973) Coping with coating The most serious soft lens problem. Opt. J. Rev. Optom. 4:20-27.
- 185. KRAUSE U. (1959) A paper electrophoretic study on human tear proteins.

 Acta Ophthalmol. Suppl. 53:1-67.
- 186. KROGH A, LUND, AC, PEDERSEN-BJERGAARD K. (1945) The osmotic concentration of human lacrymal fluid. Acta Physiol. Scand. 10:88
- 187. KUEPPERS F. (1971) Proteinase inhibitors in human tears. Biochem. Biophys. Acta 229:845-849.
- 188. LAMBERTS DW. (1983) Physiology of the tear film. In: The Cornea. Smolin G. and Thoft RA. (eds). Boston: Little, Brown and Co. 31-42.
- 189. LARKE JR, NG CO, TIGHE BJ. (1971a) Hydrogel polymers in contact lens application: a survey of existing literature - Part I. The Optician 162(4206):12-16.
- 190. LARKE JR, NG CO, TIGHE BJ. (1971b) Hydrogel polymers in contact lens applications: a survey of existing literature - Part II. The Optician 162(42307):12-16.
- 191. LARKE JR. (1978) Some physical properties of hydrogel contact lenses. In: Soft contact lenses. Ruben M. (ed.) New York: John Wiley & Sons, Inc. Chapt. 5.

- 192. LAURELL CB. (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 15:45-52.
- 193. LEE RG, KIM SW. (1974) Adsorption of proteins onto hydrophobic polymer surfaces: adsorption isotherms and kinetics. J. Biomed Mater. Res
- 194. Res. 8:251-259.
- 195. LEMPMA, HOLLY FJ, IWATA S, DOHLMANN CH. (1970) The precorneal tear film. I. Factors in spreadiwing and maintaining a continuous film over the corneal surface. Arch. Ophthalmol. 83:89-94.
- 196. LEMP MA, WEILER HH. (1983) How do tears exist? Invest. Ophthalmol. Vis. Sci. 24:619-622.
- 197. LEMP MA. (1973) Breakup time of the tear film. In preocular tear film and dry eye syndromes. Holly FJ.and Lemp MA. (eds). Int. Ophthalmol. Clin. 13(10:97-102.
- 198. LEVINE SN. (1969) Thermodynamics of adsorbed protein film. J. Biomed. Mater. Res. 3:83-94
- 199. LEVY B. (1983) The use of a gas-permeable hard lens for extended wear.

 Am. J. Optom. Physiol. Opt. 60:408-409.
- 200. LINTON RG, CURNOW DH, RILEY WJ. (1961) The meibomian glands. An investigation into the secretion and some aspects of the physiology. Br. J. Ophthalmol. 45:718-723.
- 201. LIOTET S. (1967) Pouvoir amylasique des larmes humaines. Ann. Ocul. (Paris) 200:526.
- 202. LIOTET S and REVILLEAU J. (1965) E'tude des larmes humaines par electrophorese et par immuno-electrophorese. Ann. Ocul. (Paris) 198:12.
- 203. LIOTET S, WARNET VN, ARRATA M.(1982) Functional exploration of the lacrimal gland by tear electrophoresis. Ophthalmologica, Basel 184 (2):87-91.
- 204. LIOTET S, WARNET UN, ARRATA M. (1982) Lactic dehydrogenase isoenzymes in the ocular tissues and liquids. Ophthalmologica, Basel 184(3):174-178.

- 205. LIPPMAN JI. (1981) Gas permeable contact lenses: An overview. Contact Intraocul. Lens Med. J. 7:15-25.
- 206. LITTLE V, CENTIFANTO Y, KAUFMAN H. (1969) Immunoglobulins in human tears. Am. J. Ophthalmol. 68:898-905.
- 207. LOWRY OH, ROSENBROUGH NJ, FARR LA, RANDALL RJ. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
- 208. LOWTHER GE. (1977) Effectiveness of an enzyme in removing deposits from hydrophilic lenses. Am. J. Optom.Physiol. Opt. 54:76-84.
- 209. LOWTHER GE, HILBERT JA. (1975) Deposits on hydrophilic lenses: differential appearance and clinical causes. Am. J. Optom. Physiol. Opt. 52:687-692.
- 210. LUTZI D, CALLENDER M. (1985) Safety and efficacy of a new hydrogen peroxide disinfection system for soft lenses: In-a-Wink. Can. J. Optom. 47:30-33.
- 211. MACKAY C, ABRAMSON DH, ELLSWORTH RM, KITCHIN DF, PESCHE M. (1980) Lactate dehydrogenase in tears. Am. J. Ophthalmol. 90:385-387.
- 212. MACKIE IA, SEAL DV. (1981) The questionable dry eye. Br. J. Ophthalmol. 65:2-9.
- 213. MACKIE IA, SEAL DV. (1975) Tear fluid lysozyme concentration: guide to practolol toxicity. Br. Med. J. 4(5999):732.
- 214. MACKIE IA, SEAL DV. (1976) Quantitative tear lysozyme assay in units of actitivity per microlitre. Br. J. Ophthalmol 60:70-74.
- 215. MANCINI G, CARBONARA AI, HEREMANS JF. (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem. 2:235-254.
- 216. MANDELL RB, POLSE KA, (1969) Keratoconus: Spatial variation of corneal thickness as a diagnostic test. Arch. Ophthalmol. 82:182-188.
- 217. MANDELL RB. (1981) Contact lens practice, 3rd ed. Springfield, Illinois: Charles C. Thomas.

- 218. MANNUCCI LL, POZZAN MP, FREGONA I, SECCHI AG. (1984) The effect of extended wear contact lenses on tear immunoglobulins. Contact Lens Assoc. Ophthalmol. J. 10:163-165.
- 219. MAPSTONE R. (1968) Determinants of corneal temperature. Brit. J. Ophthalmol. 52:729-741.
- 220. MARKOVITCH A. (1951) Considerations sur la division de l'appareil lacrymal. Ann Oculist Paris 184:803-810.
- 221. MASSON PL, HEREMANS JF, DIVE C. (1966) An iron-binding protein common to many external secretions. Clin. Chim. Acta 14:735.
- 222. MASTMAN GJ, BLADES EJ, HENDERSON JW. (1961) The total osmotic pressure of tears in normal and various pathologic conditions. Arch. Ophthalmol. 65:509-513.
- 223. MATTHAUS W. (1961) Uber Thermoelektrische messungen am menschlichen auge. Klin Mbl Augentieilk 138:227-235.
- 224. MAURICE DM. (1973) The dynamics and drainage of tears. In preocular Preocular tear film and dry eye syndromes. Holly FJ. and Lemp MA. (eds.). Int. Ophthalmol. Clin. 13(1):103-116.
- 225. MAURICE DM. (1963) A new objective fluorophotometer. Exp. Eye Res. 2:33-38.
- 226. MAURICE DM. (1971) The tonicity of an eye drop and its dilution by tears. Exp. Eye Res. 11:30-33.
- 227. MAXWELL C. (1968) The choice of design for clinical trials. Clinic. Trial J. 5:1139-1143.
- 228. McCLELLAN B, BETTMAN JW, ALLANSMITH MR. (1974) Tear and serum immunoglobulin levels in Navajo children with trachoma. Am. J. Ophthalmol. 87:106-109.
- 229. McCLELLAN B, WHITNEY CR, NEWMAN LP, ALLANSMITH MR. (1973)

 Immunoglobulins in Tears. Am. J. Ophthalmol. 76:89-101.

- 230. McEWEN WK.(1962) Secretion of tears and blinking. In: The eye vol. 3, Davson H. (ed.). London: Academic Press. Chapt. 10.
- 231. McEWEN WK, KIMURA SJ, FEENEY KL. (1958) Filter-paper electrophoresis of tears. III. Human tears and their high molecular weight components.

 Am. J. Ophthalmol. 45:67-70.
- 232. McEWEN WK and KIMURA SJ. (1955) Filter-paper electrophoresis of tears.
 I. Lysozyme and its correlation with keratoconjunctivitis sicca. Am. J.
 Ophthalmol. 39:200.
- 233. McEWEN WK and GOODNER IK. (1969) Secretion of tears and blinking. In: The eye Vol. 3, 2nd ed. Davson H.(ed.). New York: Academic Press pp.341-378.
- 234. McMONNIES CW. (1978) Allergic complications in contact lens wear. Int. Contact Lens Clin. 5:182-189.
- 235. MICHEALS AS. (1965) Polyelectrolyte complexes. Ind. Eng. Chem. 57:32.
- 236. MILTON LR. (1965) Paralimbal ring keratitis and absence of lysozyme in lupus erythematosus. Am. J.Ophthalmol. 60:532-535.
- 237. MISHIMA S.(1965) Some physiological aspects of the precorneal tear film.

 Arch. Ophthalmol. 73:233-241.
- 238. MISHIMA S, GASSET A, KLYCE SD, BAUM JL. (1966) Determination tear volume and tear flow. Invest. Ophthalmol. 5:264-276.
- 239. MISHIMA S, MAURICE DM. (1961) The oily layer of the tear film and evaporation from the corneal surface. Exp. Eye Res. 1:39-45.
- 240. MOORE JC, TIFFANY JM. (1981) Human ocular mucus. Chemical studies. Exp. Eye Res. 33:203-212.
- 241. MOORE JC, TIFFANY JM. (1979) Human ocular mucus. Origins and preliminary characterisation. Exp. Eye Res. 29:291-301.
- 242. MONTGOMERY PC, ROCKEY JH, MAJUMDAR AS, LeMAITRE-COEHLO IM, VAERMAN J and AYYILIDIZ A. (1984) Parameters influencing the expression of IgA antibodies in tears. Invest. Ophthalmol. Vis. Sci. 25(3):369-373.

- 243. MUTO N. (1931a) Uber die physiologische temperatur des kaninschen und menschenauges und die beeinflussung durch verschiedene manipulationen. Acta Soc. Ophthal. Jap. 35:197-242. Cit. Zbi ges Ophthal. 23:589,1931.
- 244. MUTO N.(1931b) Uber die physiologische temperatur des kaninschen und menschenauges und die einflusse von verschiedine manipulationen. Acta Soc. Ophthal. Jap. 35:778-791. Cit. Zbi ges Ophthal 25:827(1931).
- 245. NEURATH H, WALSH KA. (1976) Role of proteolytic enzymes in biological regulation: A review. Proc. Natl. Acad. Sc. USA. 73:3825-3832.
- 246. NEWELL, FW. (1965) Ophthalmology: principles and concepts. St. Louis: C.V. Mosby, pp. 420.
- 247. NG CO, TIGHE BR. (1976a) Polymers in contact lens applications. V.

 Designs and calibration of a technique for "dissolved" oxygen permeability
 measurements. Br. Polymer. J. 8:78-82.
- 248. NG CO, TIGHE BR. (1976b) Polymers in contact lens application. VI. Thee dissolved oxygen permeability of hydrogels and the design of materials for use in continous wear lenses. Br. Polymer J. 8:118.
- 249. NICOLAIDES N, KAITARANTA JK, RAWDAH TN, MACY JI, BOSWELL FM, SMITH RE. (1981). Meibomian gland studies: comparison of steer and human lipids. Invest. Ophthalmol. Vis. Sci. 20:522-536.
- 250. NICOLAIDES N, RUTH EC. (1982) Unusual fatty acids in the lipids of steer and human meibomian gland excerta. Current Eye Res. 2:93-98.
- 251. NIELSEN NV, ERIKSEN JS. (1979) Timolol transitory manifestations of dry eyes in long term treatment. Acta Ophthalmol. 57:418-424.
- 252. NORN MS. (1965) Lacrimal apparatus tests. Acta Ophthalmol. 43:557-565.
- 253. NORN MS. (1977). Human tear pH. Arch. Ophthalmol. 95:170.
- 254. NOVEY HS, MARCHIOLI LE, SOKOL WN, WELLS ID. (1979) Papain-induced asthma physiological and immunological features. J. Allergy Clin. Immunol. 63 (2):98-103.

- 255. ORAM JD, REITER B.(1968) Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochem. Biophys Acta 170:351-365.
- 256. ORNSTEIN L. (1964) Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121:321-349.
- 257. ORNSTEIN L, DAVIS BJ. (1964) Disc electrophoresis. Distillation Industries. Monograph.
- 258. OTTEN M, SZABOCSIK. (1976) Measurement of preservative binding with Soflens (polymacon) contact lens. Aust. J.Optom. 59:277-283.
- 259. PARKER JH. (1983) The influence of material structure upon contact lens cleaning. Contact Lens Forum 8:27-44.
- 260. PEDLEY DG, SKELLY PJ, TIGHE BJ.(1980) Hydrogels in biomedical applications. Br. Polymer. J. 12:99-110.
- 261. PEETERS TL, VANTRAPPEN GR.(1977) Factors influencing lysozyme determination by its lysoplate method. Clin. Chim. Acta 74:217-225.
- 262. PEPPAS NA. (1982) Contact lenses as biomedical polymers: polymer physics and structure-properties evaluation as related to the development of new materials. In: Extended wear contact lenses for aphakia and myopia. Hartstein J. (ed.) St Louis: The C.V. Mosby, Chapt. 2.
- 263. PEPPAS NA. (1981) Properties-based optimization of the structure of polymers for contacat lens applications. Contact Intraocul. Lens Med. J. 7:300-314.
- 264. PES O. (1897) Ricerche microchimiche sulla secrezione delle ghiandole schacee palpebrali. Arch. Ottal. 5:82-91. Cit. Tiffany (1978).
- 265. PIETSCH RL and PEARLMAN ME. (1973) Human tear lysozyme variables.

 Arch. Ophthalmol. 90:94-96.
- 266. POLSE KA, MANDELL RB. (1970) Critical oxygen tension at the corneal surface. Arch. Ophthalmol. 84:505-508.
- 267. POLSE KA, DECKER M. (1979) Oxygen tension under a contact lens. Invest. Ophthalmol. Vis. Sci. 18:188-193.

- 268. RALPH RA. (1975) Conjunctival goblet cells density in normal and dry eye syndromes. Invest. Ophthalmol. 14:299-302.
- 269. RECORDS RE. (1979) Physiology of the human eye and visual system.
 Maryland, Harper & Row, Chapts. 2 & 3.
- 270. REED WP, CUSHING AH. (1975) Role of immunoglobulins in protection against shigella-induced keratoconjunctivitis. Infect. Immun. 11:1265.
- 271. REFOJO MF. (1965) Permeation of water through some hydrogels. J. Appl. Polymer. Sci. 9:3417-3425
- 272. REFOJO MF. (1967) Polyelectrolyte complexes: permeability to water and potential uses in ophthalmology. J. Appl. Polymer. Sci. 11: 1991-2000.
- 273. REFOJO MF. (1972a) Physicochemical properties of hydrophilic soft contacat lenses and their physiological implications. J. Am. Optom. Assoc. 43:262-265.
- 274. REFOJO MF. (1972b) A critical review of properties and applications of hydrogel contact lenses. Surv. Ophthalmol. 16:233-246.
- 275. REFOJO MF. (1973) Contact lens materials. In: The preocular tear film and dry eye syndrome. Holly FJ. and Lemp MA. (eds.) Int. Ophthalmol. Clin. 13:263-277.
- 276. REFOJO MF. (1976) Reversible binding of chlorhexidine glucomate to hydrogel contact lenses. Contact and Intraocul. Lens Med. J. 2:47-55.
- 277. REFOJO MF. (1978) The chemistry of soft hydrogel lens materials. In: Soft contact lenses: Ruben M. (ed.). New York: John Wiley and Sons, Inc. Chapt.3.
- 278. REFOJO MF. (1980) Mechanism of gas transport through contact lenses. J. Am. Optom. Assoc. 50 (3):285-287.
- 279. REFOJO MF. (1984) General polymer characateristics. J. Am. Optom. Assoc. 55(3):184-185.
- 280. REFOJO MF. (1984) Binding of proteins and foreign materials. J. Am. Optom. Assoc. 55(3):194.

- 281. REFOJO MF, YASUDA H. (1965) Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate. J. Appl. Polymer Sci. 9:2425-2435.
- 282. REFOJO MF, HOLLY FJ. (1977) Tear protein adsorption on hydrogels: a possible cause of contact lens allergy. Contact Intraocul. Lens Med. J. 3:23-35.
- 283. REFOJO MF, LEONG FL. (1980) Protein hydrogel contact lenses. Contact Intraocul. Lens Med. J. 6:33-36.
- 284. REGAN E. (1950) The lysozyme content of tears. Am. J. Ophthalmol. 33:600-605.
- 285. RENNERT OM, KAISER D, SOLLBERGER H, JOLLER-JEMEIKA S. (1974)
 Antiprotease activity in tears and nasal secretions. Human Genetik
 23:73-77.
- 286. REXED U. (1958) The pH of the lacrimal fluid determined by a capillary micro-glass electrode. Acta Ophthalmol 36:711-718.
- 287. RIDLEY F. (1928) Lysozyme: an antibacterial body present in great concentration in tears and its relation to infection of the human eye. Proc. R. Soc. Med. 21:1495-1506.
- 288. RIDLEY F, SORSBY A. (1940) Modern trends in ophthalmology. New York, Hoeber.
- 289. RONEN E, EYLAN E, ROMANO A, STEIN R, MODANS M. (1975) A spectrophotometric method for quantitative determination of lysozyme in human
 tears: Description and evaluation of the method and screening of 60 healthy
 subjects. Invest. Ophthalmol. 14:479-484.
- 290. RUBEN M. (1980) Chlorhexidine (CH) and the PHEMA soft lens. The contact lens J. 9:3-14.
- 291. SAPSE AT, BONAVIDA B, STONE WJr., SECARZ EE. (1967) Proteins in human tears: II Quantitative determination of the major proteins in human tears. Invest. Ophthalmol. 6:670.

- 292. SAPSE AT, BONAVIDA B, STONE WJr., SECARZ EE. (1968) Human tear lysozyme: III. Preliminary study on lysozyme levels in subjects with smog eye irritation. Am. J. Opthalmol. 66:76-80.
- 293. SAPSE AT, BONAVIDA B, STONE WJr., SECARZ EE. (1969) Proteins in human tears. I. Immunoelectrophoretic patterns. Arch. Ophthalmol. 81:815-819.
- 294. SCHAEFFER AJ. (1950) Osmotic pressure of the extraocular and intraocular fluids. Arch. Ophthalmol. 43:1026-1035.
- 295. SCHIRMER O. (1903) Studien zus physiologie und pathologie der tranenabsondersung und tranenabfluss. Graefes Arch. Clin. Exp.Ophthalmol. 65:197-921.
- 296. SCHMIDT PP, SCHOESSLER JP, HILLRM. (1974) Effects of hard lenses on the chloride ions of the tears. Am. J. Optom. Physiol.Opt. 51:84-87.
- 297. SCHULTZE HE, HERMANS JF. (1966) Molecular biology of human proteins.
 Vol.1. New York: Elsevier Publishing Co. pp.91,874.
- 298. SELINGER DS, SELINGER RC, REED WP. (1979) Resistance to infection of the external eye: the role of tears. Surv. Ophthalmol. 24:33-38.
- 299. SELESTED MR, MARTINIZ RJ. (1982) Isolation and purification of bactercides from human tears. Exp. Eye Res. 34:305-318.
- 300. SEN DR, SARIN GS, MANI K, SAHAK. (1976) Immunoglobulins in tears of normal Indian people. Br. J. Ophthalmol. 302-304.
- 301. SEN DK, SARIN GS, MATHUR, SAHA K. c and) Biological variation of immunoglobulin concentrations in normal human tears related to age and sex. Acta Ophthalmol. 56:439-444.
- 302. SEN DK, SARIN GS. (1979) Immunoglobulin concentrations in human tears in ocular diseases. Br. J. Ophthalmol. 63:297-300.
- 303. SEN DK, SARIN GS.(1980) Immunoassay of human tear lysozyme. Am. J. Ophthalmol. 90:715-718. SILBERT JA. (1978) Prostaglandins and the ocular inflammatory response. Rev. Optom. 115:53-54.

- 304. SIBLEY KJ, YUNG G. (1973) A technique for the determination of chemical binding to soft contact lenses. Am. J. Optom. Arch. Am. Acad. Optom. 50(9):710-714.
- 305. SINGER JD, COTLIER E, KRIMMER R. (1973) Hexosaminidase A in tears for rapid identification of Tay-Sacks disease and its carriers. Lancet 2(8738):1116-1119.
- 306. SKUDDER CD. (1978) Lathe cut Hydron lenses. In: Soft contact lenses. New York: John Wiley & Sons, Inc. Chapt. 26.
- 307. SMITHIES O. (1955) Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochem. J. 61:629-641.
- 308. SMOLENS J, LEOPOLD IH, PARKER J. (1949) Studies of human tears. Am. J. Ophthalmol.21:153-160.
- 309. SMITH I.(ed.) (1976) Chromatographic and electrophoretic techniques. Vol.2.
 Zone electrophoresis. 4th. ed. London: William Heinemann Med. Books Ltd.
- 310. SNEIDER L, SHARP SM. (1984) Surface deposits with gas permeable lenses.
 Contact Lens Forum 9:55.
- 311. SORENSEN T. (1975) Determination of tear flow using a radioactive tracer. Acta Ophthalmol.(supp.) 125:43-44.
- 312. SOUTH M, COOPER MD, WOLLHEIM FA, GOULDRA. (1968) The clinical significance of IgA deficiency: the IgA system. The clinical significance of IgA deficiency: studies in patients with agammaglobulinemia and ataxiatel-angiectasia. Am. J. Med. 44:168-178.
- 313. SPRING TF. (1974) Reaction to hydrophilic lenses. Med. J. Aust. 1:449-450.
- 314. STANIFER RM, ANDREWS JS, KRETZER FL. (1983) Tear film. In: Biochemistry of the eye. Anderson RE. (ed.) San Francisco: Manuals program. Am. Acad. Ophthalmol. Chapt. 1.
- 315. STRASSER G, GRABNER G. (1982) The influence of long-term treatment with Timolol on human tear lysozyme and albumin content. v. Graefe's .

 Arch.Clin. Exp. Ophthalmol. 218:93-95.

- 316. STUCHELL RN, FARRIS RL, MANDEL ID. (1981) Basal and reflex human tear analysis. II. Chemical analysis: lactoferrin and lysozyme. Ophthalmol. 88:858-862.
- 317. STUCHELL RN, FELDMAN JJ, FARRIS RL, MANDEL ID. (1984) The effect of collection technique on tear composition. Invest. Ophthalmol. Vis. Sci.25:374-377.
- 318. TAPASZTO I. (1973) Pathophysiology of human tears. In: The preocular tear film and dry eye syndromes. Holly FJ. and Lemp MA. (eds). Int. Ophthalmol. Clin. 13:119-147.
- 319. TARTOVSKAJA SI. (1939) Lysozyme in therapy of corneal diseases. (abstract) Am. J. Ophthalmol. 22:1427.
- 320. TERRY JE, HILL RM. (1978) Human tear osmotic pressure. Diurnal variations and the closed eye. Arch. Ophthalmol. 96:120-122.
- 321. THAYSEN JH, THORN NA. (1954) Excretion of urea, sodium, potassium and chloride in human tears. Am. J. Physiol. 178:160-164.
- 322. THOMPSON R, GALLARDO E. (1941) The antibacterial action of tears on staphylococci. Am. J. Ophthalmol. 24:289-300.
- 323. TIFFANY JM.(1978) Individual variations in human meibomian lipid composition. Exp. Eye Res. 27:289-300.
- 324. TIGHE BJ. (1976) The design of polymers for contact lens applications. Br. Polymer. J. 8:71-77.
- 325. TIGHE BJ. (1979) Modern contact lens materials. The Optician 177(#4578):28-29.
- 326. TIGHE BJ. (1981) Contact lens materials. In: Stone J, Phillip AJ. (eds)
 Contact lenses, vol.2, 2nd ed. London: Butterworths, Chapt. 13.
- 327. TSUNG PK, HOLLY J. (1981) Protease activities in human tears. Current Eye Res. 1:351-355.
- 328. UNIACKE NP, HILL RM. (1970) Osmotic pressure of the tears during adaptation to contact lenses. J. Am.Optom. Assoc. 41:932=936.

- 329. UOTILA MH, SOBLE RE, SAVORY J. (1972) Measurement of tear calcium levels. Invest. Ophthalmol. 1:258-259.
- 330. van BIJSTERVELD DP. (1969) Diagnostic tests in the sicca syndrome. Arch. Ophthalmol. 82:10-14.
- 331. van HAERINGEN NJ. (1973) Non-lysozme antibaterial factor in tears. Am. J. Ophthalmol. 72:533-535.
- 332. van HAERINGEN NJ. (1981) Clinical biochemistry of tears.
 Surv.Ophthalmol. 26:84-96.
- 333. van HAERINGEN NJ, GLASIUS E. (1974a) Enzymes of energy-producing metabolism in human tear fluid. Exp. Eye Res. 18:407-409.
- 334. van HAERINGEN NJ, GLASIUS E. (1974b) Lactate dehydrogenase in tear fluid. Exp. Eye Res. 18:345-349.
- 335. van HAERINGEN NJ, GLASIUS E. (1974c) Enzymatic studies in lacrimal secretion. Exp.Eye Res. 19:135-139.
- 336. van HAERINGEN NJ, GLASIUS E. (1975) Cholesterol in human tear fluid. Exp.Eye Res.20:271-274.
- 337. van HAERINGEN NJ, ENSINK F, GLASIUS E. (1975) Amylase in human tear fluid: origin and charactersitics compared with salivary and urinary amylases. Exp. Eye Res. 21:395-403.
- 338. van HAERINGEN NJ, GLASIUS E. (1976a) The origin of some enzymes in tear fluid determined by comparative investigation with two collection methods. Exp. Eye Res. 22:267-272.
- 339. van HAERINGEN NJ, GLASIUS E. (1976b) Characteristics of acid hydrolases in human tear fluid. Ophthalmic. Res. 8:367-373.
- 340. van HAERINGEN NJ, GLASIUS E. (1977) Collection method dependent concentrations of some metabolitics in human tear fluid, with special reference to glucose in hyperglycaemic conditions. v. Graefes. Arch. Ophthalmol. 202:1-7.

- 341. van HAERINGEN NJ, VROOLAND JL, GLASIUS E. (1978) Beta hexosaminidase activities in tears and plasma diphosphoglycerate in blood of diabetic patients. Clin. Chim. Acta 86:833-838.
- 342. van HAERINGEN NJ, GLASIUS E. (1980) Lysosmal hydrolases irn tears and the lacrimal gland: effect of acetylsalicylic acid on the release from the lacrimal gland. Invest. Ophthalmol. 19:826-829.
- 343. WALTMAN SR, KAUFMAN HE. (1970) Use of hydrophilic contact lenses to increase ocular penetration of topical drugs. Invest. Ophthalmol. 9:250-255.
- 344. WATSON RR, REYES MA, McMURRAY DN. (1978) Influence of malnutrition on the concentration of IgA, lysozyme, amylase and amino peptidase in children's tears. Proc. Soc. Exp. Biol. Med. 157:215-219.
- 345. WEDLER FC. (1977) Analysis of biomaterials deposited on soft contact lenses. J. Biomed. Mater. Res. 11 525-535.
- 346. WHITING PH, ROSS IS, BORTHWICK LJ. (1979) N-acetyl-B-D-glucosaminidase levels and diabetic microangiopathy. Clin. Chim. Acta 97:191-195.
- 347. WICHTERLE O and LIM D. (1960) Hydrophilic gels for biological uses.

 Nature 185(4706):117.
- 348. WICHTERLE O, LIM D. (1961) US Patent 2,976,576.
- 349. WICHTERLE O, LIM D. (1965) US Patent 3,220,960.
- 350. WICHTERLE O. (1971) Hydrogels. In: Encyclopedia of polymer science and technology. Bikales, MN (ed.). New York: Interscience. 15:273-291.
- 351. WILLIAMS RC, GIBBONS RJ. (1972) Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177:697-701.
- 352. WILLIAMS TD. (1983) Computer-based analysis of visual fields: age-related norms for the central visual field. Can. J. Optom. 45:166-169.
- 353. WINDER AF, RUBEN M, SHERAIDAH GAK. (1977) Tear calcium levels and contact lens wear. Br. J. Opthalmol. 61:539-543.

- 354. WOLFF E. (1946) Mucocutaneous junction of lid margin and distribution of tear fluid. Trans. Ophthalmol. Soc. U.K. 66:291-308.
- 355. WRIGHT JC, MEGER GE. (1962) A review of the schirmer test for tear production. 67;564-565.
- 356. YAMAMOTO GK, ALLANSMITH MR. (1979) Complement in tears from normal humans. Am. J. Ophthalmol. 88:758-763.
- 357. ZANTOS SG, ZANTOS PO. (1985) Extended wear feasibility of gaspermeable hard lenses for myopes. Int. Eye Care 1:66.
- 358. ZIRM M, SCHMUT O, HOFMANN H. (1976) Quantitative bestimmung der antiproteinasen in der menschlinchen tranenflussigkeit. Albrecht von Graefes Arch. Ophthalmol. 198:89-94.