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Summary’

The work described in this thesis is concerned with the applicatim
of the finite element method related to fracture mechanics, for Mode I,
mixed-mode, I and II, plane stress/strain problems, and Mode I axisymmetric

bodies under axisymmetric loading.

Numerical examples are presented to demonstrate the validity of the
fracture program packages, which has been translated from its existing
Algcl format to Basic, during the course of this work, in order to suit
the HP 9845 desk-top camputer. These programs include Mode I and mixed-

. mode I and II plane crack problems, and Mode I axisymmetric bodies under
axisymmetric loading.

An improvement to the accuracy of the values of stresses calculated
using the already, available standard plane stress/strain finite element
method has been achieved, by the application of a smoothing technique.
Numerical examples are given in détails describing the technique and its
application. All examples are run on the HP 9845 desk-top camputer.

All the above mentioned programs are run in conjunction with the
automatic mesh generation package available in the Department of Mechanical
Engineering of the University of Aston, except that of the Mode I
axisymmetric program which deploy a semi automatic mesh generation method.

A preview of the most useful methods for the determination of the

stress intensity factors has been presented in a short concise form.
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CHAPTER 1

Fracture mechanics is a procedure by means of which

the existence of the crack like defect in the engineering,

structure will lead to failure, at average stresses well

below the yield strength. This problem arises in all kinds

of metals.

One approach to the prediction, and hence the prevention

of such failures, is based on the determination of stress

intensity factors, which defines the magnitude of the

singularities in the stress field near the crack tip. A

knowledge of the crack tip "stress intensity factor" as a

function of applied load and geometry of the structure is

necessary. This information combined with the experimentally

determined critical stress intensity factors and crack growth

rates for the structural material make such predictions

possible. A review of studies in fracture mechanics is in

Chapter 4.

Numerous methods are available for the evaluation of the

stress intensity factors. These have been described in

Chapter 5. Among these methods is the finite element

method. Its application to fracture mechanics without

catering for the singularities near the crack tip requires

a very fine mesh in that region. This is time consuming in

ela



data preparation and very expensive regarding computer

time. Also due to the availability and increasing trend

to use desk-top computers with a limited capacity, the number

of degrees of freedom employed in the solution is restricted.

A method which modify the standard finite element formulation

to allow for the singularities is the Hilton and

Hutchinson (°°) method is used in the work of this thesis.

This method has been adopted and developed by Richards and

(62)
Robertson and is briefly described in Chapter 6.

Due to the fast deve lopment of desk-top computers, and

the ease of their availability at a reasonable cost, the

original programs were translated from ALGOL language to

BASIC language and are implemented on the HP 9845 desk-top

computer available in the Mechanical Engineering Department

at Aston University. Chapter 3 reviews some numerical

examples for the application of plane stress/strain problems.

In this chapter a smoothing technique was adopted, as part

of the work during the preparation of this thesis, and used

to overcome the erratic behaviour of the calculated values

of the shear stresses. This has been successfully achieved.

Chapter 7 describes some numerical examples for the

application of Mode I and mixed-mode plane stress/strain

fracture problems, and also Mode I axisymmetric fracture

problems. The programs used are those of Robertecn °')

rus. :
wood 19) ang Al-Shargi (68) | They are translated to BASIC

from ALGOL as part of the work carried out during the

aS



preparation of this thesis, and have been implemented

successfully on the HP 9845 desk-top computer, although

there were some limitations due to the capacity of this

particular computer.

Discussion of the results and possible further

improvements on prgrams used throughout this thesis

with suggested future work are in Chapter 8, together with

drawn conclusions.



CHAPTER 2

THE FINITE ELEMENT METHOD

2.1 INTRODUCTION

The finite element method is essentially a process

through which a continuum, with infinite degrees of

freedom, can be approximated by an asssemblage of sub-regions

each with a specified but now finite number of degrees of

freedom. The behaviour of each sub-region or element is

described by a set of assumed functions are usually ofa

polynomial form and by using sufficient number of elements,

an acceptable representation of the overall real situation

is obtained. The process is analogous to a piece-wise

Rayleigh-Ritz method, where integrations required re aseinc

the appropriate functional must be evaluated for each

element in turn and the total contribution obtained by

summation.

The finite element method is one of the powerful

methods of numerical stress analysis presently available.

In the past two decades, the developments and refinements

in the field of analysis have been very impressive. By

means of the finite element method approximate solutions

can be calculated for a wide range of structures of complex

properties.

The method has been applied to three dimensional

bodies, plane bodies, axi-symmetric bodies, plates, shells, etc.



Linear and non-linear materials, time independent and time

dependent materials, and non-homogenous and anisotropic

bodies can be analysed with most equal ease.

Of the general finite element methods, for the solution

of continuum mechanics problems, the “stiffness method" with

displacements as primary unknowns, is the one more

commonly used since it is the most well developed approach.

All the work and numerical examples in this thesis

will be based on this method.

2.2 BRIEF HISTORICAL BACKGROUND

The finite element method, essentially as known today,

was introduced in 1956 by Turner, Clough, Martin and

Topp +7 41°97): Their paper was concerned with the application

of simple finite elements (pin-jointed bar and triangular

plate with inplane loads) for the analysis of aircraft

structures and is considered as one of the key contributions

in the development of the finite element method. Subsequent

wider applications of variational principles and, more

recently still, methods of weighted residuals have

broadened the regions of applications beyond the field of

structural mechanics.

The development of high speed digital computers made

this numerical method very attractive, and the use of the

finite element method has found a wide range for its

application to different mathematical and engineering problems.

len



2.3 GENERAL DESCRIPTION OF THE FINITE ELEMENT METHOD

In the finite element method, the actual continuum is

represented as an assemblage of sub-regions called the

finite elements. These elements are considered to be

interconnected at specified points which are called nodes

or nodal points. The nodes usually lie on the element

boundaries when.adjacent elements are connected. The

variation of the field variable inside the continuum is

not known and it can be approximated over an element by

means of simple functions which are defined in terms of

the values of the field variable at the nodes. Derivations

of the element stiffness matrices and load vectors are based

upon a variational principle and an assembly of the element

equations is carried to obtain the overall equilibrium

equations, in matrix form. These equations are solved

for the unknown nodal displacements and if required the

values of nodal and element stress and strain throughout

the continuum are computed.

2.4 GENERAL PROCEDURE OF THE FINITE ELEMENT METHOD

The basic steps involved in the finite element analysis

could be summarised as follows:

(i) Discretization of the structure or domain.

(11) Selection of an appropriate polynomial model to

represent the variation of the field variable over

a typical element (in the case of the approach used

‘oben



here, this is the displacement).

(iii) Derivation of element characteristic matrices and

vectors.

(iv) Assemblage of all element characteristic matrices

and vectors to obtain the overall equilibrium

equations.

(v) Solution of the system equations to find the nodal

values of the field variable, (in this case the

displacements).

(vi) Computation of nodal and element stresses and strains.

2.4.1 Definition of the Finite Element Mesh

The continuum is subdivided into sub-regions or

elements, whose form depend on the problem at hand: “This

is equivalent to replacing the domain having an infinite

number of degrees of freedom by a system having a finite

number of degrees of freedom. The shape, size, number and

configurations of the elements have to be chosen carefully

in order to represent the Domain correctly and as closely

to the actual structure as is adequate, without increasing

the computational effort needed for the solution of the

problem.

It is appropriate to discretise the continuum either

into one-dimensional (line), two-dimensional or three-

dimensional sub-regions. The elements used are straight

lines or curves in the one-dimensional case, straight sided

or curvilinear triangles and quadrilaterials in the two-

-7J-



dimensional plane stress and plane strain situations.

The general three-dimensional solid may be divided up into

the tetrahedran element, rectangular prisms, etc. If the

solid enjoys axial symmetry in its geometry, then ring

. type elements are used.

In every case each element is connected to the next,

through node points on its boundary, and the nodes are

numbered and referenced to a coordinate origin. The elements

are defined by a series of node numbers (element nodal

connections) and from this information an element stiffness

matrix relation may be determined between nodal forces and

displacements.

Various considerations are to be taken into account

in the discretization process:

Gi) Type of Elements:

The type of problem at hand will usually give an

indication of the type of element needed,If the structure

under consideration is a truss, then the element used is

the one-dimensional bar or line element, or in case of

short beams, a three-dimensional element may be used.

However, in some cases, there is a choice in selecting the

type of element and that may depend on different things, like

the number of degrees of freedom needed, the expected

accuracy and the care with which the necessary equations .can

be derived. In certain problems two or more type of elements

5



are used for idealisation.

(ii) Size of Elements:

The size of the element influence the convergence of

the solution directly and hence it has to be chosen with

care. If the size of elements is small, the final solution

is expected to be more accurate. However, smaller size

elements means more of them and more computational time.

Usually elements of different sizes are required in the

discretization of a continuum; usually elements have to he

very small in the regions where steep gradients of the

field variable exits. The aspect ratio of the element is

important, this ratio is that of largest dimension of the

element to the smallest dimension. For a two-dimensional

element, the aspect ratio of unity generally yield best

results.

(iii) Number of Elements:

The number of elements chosen for idealization depends

on the required accuracy of the solution, and will dictate

the total number of degrees.of freedom involved. Although

the increase in the number of elements generally means

more accurate results, there will be a limit beyond which

the accuracy of the solution can not be improved to any

Significant amount, and the cost will be high.

(iv) Symmetrical Configuration:

If the configuration of the body as well as the external

Gun



conditions are symmetrical, only half or a quarter of .the

body need be considered, this of course makes the problem

easier and the time required for the solution much shorter

for a given accuracy.

(v) Node Numbering Scheme:

The finite element analysis of practical problems

leads to matrix equations in which matrices involved will

be banded. A matrix is "banded" if all non-zero coefficients

are clustered about the leading diagonal. Banding is a

simple way to exploit matrix sparsity because zeros outside

the band need neither be stored nor processed.

The number of non-zero coefficients in the stiffness

matrix is independent of how nodes are numbered. But

changing the node numbers changes their arrangement.

The bandwidth of the overall or global characteristic

matrix depends on the node numbering scheme and the number

of degrees of freedom considered per node. Since the

number of degrees of freedom per node is fixed for any

given type of problem, the bandwidth can be minimised by

using a proper node numbering scheme. Furthermore, since

most of the matrices involved are symmetric, the demands

on the computer storage can be substantially reduced by

storing only the elements involved in half band width

instead of storing the whole matrix.

The bandwidth could be defined as:

-10-



Bandwidth (B) = (D+ 1).f£

where D is the maximum largest difference in the node

numbers occurring for all elements of the assemblage.

f is the number of degrees of freedom at each node.

2.4.2 (a) Selection of Displacement Function
 

The assumed element behaviour is governed by its

displacement function which is chosen to define the

displacement field within the element in terms of its

nodal displacements. Usually the same form of function is

used in all the elements of the discretization, but it is

not essentially to do so. If different types of elements

are used, it will be clear that these functions will need

to be different in the different types of elements. If

a polynomial function is used, then it will be appreciated

that the degree of the polynomial will govern the ability

of the element to approximate the true displacement field.

The functions chosen to describe the assumed

displacement pattern within a given element must satisfy

FOUR requirements:

(a) The function must be continuous within the element.

(ii) The displacement must be continuous between adjacent

elements, i.e. no interelement gaps are overlaps must

be implied.
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(iii) The state of constant strain must be included in the

displacement function.

(iv) Rigid body displacements must be represented in the

displacement function.

(b) Generation of Polynomial Shape Functions

Finite elements can be classified into three categories

according to the order of the polynomial used in the

| interpolation function, these categories are simplex,

complex and multiplex?) , The simplex elements are those

in which the approximating polynomial consists of constant

and linear terms. In the two-dimensional anlaysis the

simplex elements are the triangular or rectangular element

defined by three and four corner nodes respectively. These

two elements present the lowest possible forms of

approximation and are of limited accuracy.

The complex elements are those for which the

approximating polynomial consists of quadratic, cubic and

higher order terms, according to the need, in addition to

the constant and linear terms. The complex elements may

have the same shape as the simplex elements, but will have

additional boundary nodes and some times, internal nodes.

For the two-dimensional analysis a triangular or

rectangular element may be used for which an obvious

improvement which is the addition of a number of nodal

-12-



points along the sides of these elements in addition to

those at the corners. These are the Isoparametric elements

where both the geometry and the displacement of the element

are described in terms of the same parameter and are of the

same order, their shape functions yield a quadratic

displacement function. In the case of axi-symmetric solids,

a ring element is used in the descretization which can have

any cross-sectional shape as above.

Finally, the multiplex elements are those whose

boundaries are parallel to the coordinate axes to achieve

interelement continuity and whose approximating polynomials

contain higher order terms. As an example of a multiplex

element in two dimensions, is the rectangular element.

Here it can be noted that the boundaries of the simplex

and complex elements need not be parallel to the coordinate

axes.

In all cases suitable polynomials which satisfy the

four conditions in section 2.4.2 can be written by

introducing only terms which give the appropriate variation

along the sides of the element.

As an example, an 8=-node isoparametric quadrilateral

element can be defined in terms of the local coordinates €

and n, as shown in Fig.(2.1).The relationship between the

cartesian coordinates and the local coordinates could be

written in the following general form,

-]3-
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ulns il N,X, + NX, + N3X3 + ..e. [IN] {x} (2.1)

MlNY, + NoY, + NY, + .... [Nw] {fy} (2.2)
x 22 3 3K Il

1

in which {x} and iyo} list the nodal coordinates X and Y

~

and N, and Noeeeee etc. are functions of € and n. For any
1

value of — and n, the X and Y coordinates can be found

once the functions Nare known.

In the isoparametric formulation, the same functions,

i.e. N Noyes etc. are used to define the variation of

displacement components u and v as well as the geometry.

ulé,n) = Niu, + Nou, t+... = Ly] fu} (2.3)

v(&,n) = Nyv, + Novo +... = [N] {v3 (2.4)

To find the shape functions

xX = ajta,Etagntasintacétagn-ta,é-n-tagen- (2-5)

Sth ben by ee ee eee)

by substituting the appropriate nodal values in

yond feel

etc.

yields eight equations of type

-15-



{x} [a] {a,}

faye {x}ee:

and the shape functions follows as

[N, N, N, Ny Ne..-Ng] = [1 & mn &n ee on? e*n en*JIAl”

This can be cumbersome. It is possible to use a more

direct approach by interpolation.

For corner nodes

oeN, = Z(1+8,) (Lng) (Egtng-))

For mid-side nodes

N, = 5(1-*) (1419) ats E, = 0

Ny = 5(14E5) (1-n*) at ny = 0

where

a ees

tae Blas

2.4.3 Derivation of Element Characteristic Matrix and Vectors

The strain energy stored in the element may be computed

(62)from the expression

1 .= s fe} [D]° {ce} dyol (2.7)

otLe



where

Ue is the element strain energy.

{ce} is the vector of strains.

[D] is the elasticity matrix defined by

{o} = [D] fe} (2.8)

where {o} is the vector of stresses.

The displacement field within the element is assumed

to: be

{u}® = [NW] {ul6 es. (2.9)

where

[N] is the element shape function.

{ule is the element nodal displacements.

Differentiating equation (2.9)

{e}
e

[B] ful, ia {25ie)

where

[B]

=

2] J (2521)

with [3] an appropriate differential operator matrix.

Using equation (2.10) into equation (2.7)

sm

as (ajo (f[B] [PD] dvol) ae (5 13)

-l7-



vu, = 5 (ule [kK], {ulé (2.13)

where [Kk], is called the element stiffness matrix, i.e.

tc[Ik], = /[B)~(>] [B] avol (2.14)

The forces on an element arise from three sources,

firstly due to body forces, secondly due to external nodal

forces and thirdly due to surface traction, i.e. the

total potential energy of the element

V2 0: + Q (2,15)

where UL is as defined in equation (2.13) and

Q = -(U_ + Up + Ug) (2.18)

Up = f {ul (PP dyer (2.17)
vol

“where

{F} is the body forces of the system

{ui} is the general displacement function.

ic
a e

Un = {ul}. {R} (2.26)

where

{ule is the nodal displacement.

{R} is the external nodal loads.

be



u,=f  {ul® {s} aa (2.19)
area

where {S} is the surface tractions.

Since {ul = [N] tu}? (2.20)

tajt = tal® [w] * (2521)u = tah. .

: a te a: a” 1- » © = =(f tull iN] tridvole{u} (Ri+/ ful [N] ~{s}da)
vol area

(25.22)

Since the nodal displacements tule are independent of

the general coordinates X and Y, therefore it can be taken

out of the integrals of equation (2.22).

i.e. . . t
a=-f{u}l (f [N]"{F}dvol+{r} f [N] “{s}aa) (2.23)

vol area

And the terms in Brackets in the above equation

represent the total loading system on the element, Q, so

that

at

ie ih AGT (2.24)

2.4.4 Assemblage of All Element Characteristic Matrices

and Vectors to Provide the System Matrices and Vectors

Summing U, over all the elements yields the total

strain energy stored in the solid

a]Qu



nh

U= £ U (2.25)

Now for compatibility the element nodal displacements

may be written in terms of the generalised coordinates

{q} of the discretized system in the form

fa} =(c] {q} (2.26)

So that

v=d toRC) (2.27)

where

{ul is the array of unconnected displacement of elements.

[kK] is the unconnected stiffness matrix.

[Cc] is the connection compatibility matrix.

U =5 fq}" [c]*[R] [c] {q} (2.28)

u = Stq}* [x] {a} (2.29)

where [K] is the assembly stiffness matrix given formally by

([c] * (R] (J.

The externally applied loads will have a potential

energy function ®. If these loads are expressed in terms

of the generalised forces Q, applied at the generalised

coordinates q, then



Q =={q}"{Q} (2.30)

and the total potential energy of the system can be

written as

veu+2=5 {q}*[K]{q} - {a}* {9} (2.31)

For equilibrium, V must be stationary so that

sy = 0 = {éq}"([K]{q} - toh) (2.32)

Since the variations of {6q} are arbitrary, equation

(2.32) yields the usual stiffness equilibrium equation

[K]{q} = {Q} (2.33)

After imposing the displacement boundary conditions

equation (2.33) may be solved for the q's and the element

strains and stresses may subsequently be found.

For the non-linear situation, the same procedure will

lead to non-linear algebraic equations.

2.4.5 Solution of System. Equations
 

Numerous routines are available for the solution of

the stiffness equations ‘°4) , These are usually based on

the Gaussian elimination or Cholesky decomposition processes.

Efficient routines take account of the symmetric banded

nature of the stiffness matrix in order to reduce the

storage requirements demanded of the computer.

ee



(i) Frontal Solution Method

In recent years the "frontal solution method" has

been adopted and used effectively. Usually an element by

element frontal assembly and elimination procedure is

employed. Such procedure can utilize a relatively small

memory. The efficiency of "frontal" methods is independent

of node numbers and is dependent on the element processing

order.

The frontal method stores only equations that are

currently active. Equations that have received all of their

element (and constant) contributions are eliminated to

provide storage for equations that may become active with

the next element.

Since in this method the equations are assembled in

the order of the elements, an effective ordering of the

elements is necessary.

An advantage of this method is that at any one time

only the equations that are currently needed are assembled

in thé high-speed storage ‘/4),

(ii) Cholesky Reduction Sequence
 

The Cholesky triangular factorisation method is well

suited to large problems. Expressing the simultaneous

equations in matrix form, we have,

[K] {x} = {b} (2.34)

=-22=-



where [K] is a symmetric positive-definite matrix using

Cholesky factorization, [K] can be written as

fyi" = ik] (2.35)

where [u] is a lower triangular matrix with positive diagonal

terms.

To obtain the displacement vector {xX}, by substituting

equation (2.34) into (2.35) ,then

(tJ (L] Six} = {b} (2.36)

or

(uJ fy] = {b} (2237)

where

i] = [ole 1x} | (2.38)

The last two equations can easily be solved by

forward and backward substitution. Equation (2.37) and

(2.38) are solved with vector {y} overwriting vector {b}

and vector {X} overwriting vector {y}. The matrix [1]

will overwrite matrix [K] in the solving routine by using

the recursive relationships.

j-1

Vij =. (Rij =k wizejz)/235 fORG J <1: (2 239)

z=1

and

i-1 3
Qs ae Kii - a (iz) (2.40)

Z=

wae



2.4.6 Computation of Nodal and Element Stresses and Strains

In the standard formulation of plane stress and plane

strain, the stiffness matrix is given by

[KJ]. = Jf [B] “[p] (B] ax ay (2.41)

in which [B] is the matrix defining the strains in terms

of the nodal displacements and [D] is the elasticity matrix

which relates the stress to the strain.

For plane problems, the strain displacement matrix is

given by

ou
OX es

{el = x95 = (B]{ul (2.42)
ON og oy
[Sy ox

In which [B] = [B,, Bor ----- (2.43)

with

on O
Ox

Bi = 0 oe (2.44)
dy

ON oN,

oy OX

as Ny is defined in terms of € andn, it is necessary to

change the derivatives to em and y , noting that

if

a eee 9 yao) ox (2.45)

3
aa ee ee we
an on an ay ay

-—24—



where [sz] is the Jacobian matrix, can be evaluated by a

numerical process, noting that

 

aN, aN. aN, KX, ¥y

CG 06 ag X, ¥

3] = ; s : (2.46)
[ aN, aN, aN, ; F

on on on

where

ne emer Te
OG ON; OG

and

oa : 2.48ee tee
A

So
oN;

ON, ee

se = Golf? °° (2.49)
oN,

on

N.
5 aL

oN. E
= = fot) b> re (2.50)

i
on

and hence [BJ can be formulated.

The only further change which is required to be done

is to replace the element area in equation (2.41) as

ax ay = det(J] an 2€



The limits of integration are -1l and 1 in both integrals

in equation (2.41).

Hence element strains are obtained, and the stresses

too, since

{a} = [Dp] fe} (2251)

where [D] is the elasticity matrix.

“wate



CHAPTER 3

NUMERICAL EXAMPLES FOR THE APPLICATION OF

PLANE STRESS:/STRAIN PROBLEMS

3.1 INTRODUCTION

Although the computer use for the application of the

finite element method has provided the engineer with a

powerful means to analyse problems of a considerable

complexity, there is still the tedious preparation and

checking of the Iarge number of input data. needed for the

computer in order to solve the problems at hand which is

time consuming and more liable to produce human error

when feeding this information into the computer prior to

solving the problem.

(02,90) pave attempted to improveResearch students

upon data input routine when solving a problem, but still

there was no single complete package to define the mesh

(15)generation for different types of problems. Wood adopted

the technique outlined by Zienkiewicz and Phillips ‘©) ,

where a computer orientated method is presented which

generates meshes of triangular elements in plane and

curved surfaces. [In addition wWooa ‘+9) also used the

quadrilateral isoparametric element as well as the

(69)original triangular element suggested by Zienkiewicz et al

Depending on the geometrical and material variations, the

a



region to be discretised is divided into a number of four

sided zones. By using curvi-linear co-ordinate systems,

nodes within and on the boundary of each zone are

automatically positioned and referred to global cartesian

co-ordinate system. Elements are automatically assembled

from these nodes. Input data is required to specify the

positions and material properties of each zone and how they

are connected.

The program has been developed by wood ‘+? to deal

with different types of problems using the finite element

method. The programs were written in ALGOL Language. It

was run at Aston University and Manchester University

computer centres.

It was decided to run the mesh generation program

coupled with different finite element programs on the .

HP-9845 Desk-Top computer available in the department. So

the mesh generation program together with the plane

stress/strain and the axisymmetric programs were transferred

to BASIC from ALGOL, by the department. Crack problem

programs were still in ALGOL Language and needed to be

translated to BASIC to implement them on the HP-9845

computer. Chapter 7 deals with crack problems.

3.2 BASIS OF THE SCHEME

This scheme is fully described by Reference (15). The

basis of the scheme is the use of the "isoparametric"

ota
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FIGURE (3.1) ISOPARAMETRIC QUADRILATERAL ELEMENT.
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curvilinear mapping of quadrilaterals. This allows a

unique co-ordinate mapping of curvilinear and cartesian

co-ordinates. Having discretised the whole structure into

a number of four sided zones, curvilinear co-ordinate

system can be used to position nodes on the boundary and

within each zone, and reference them to a global cartesian

co-ordinate system. Elements are automatically assembled

from these nodes. The term "isoparametric" is derived from

using the same interpolation functions to define the

element shape and displacements within the elements.

Considering the particular case of a two-dimensional

isoparametric quadrilateral with 8 nodes as shown in

Fig. (3.1), in which X and Y co-ordinates of eight nodes are

known and can be written as

} (3.1)

where Ny is the shape function associated with each node i,

and defined in terms of curvi-linear co-ordinate system

(§ and n) which has values ranging from +1 to -1 on opposite

sides of the quadrilateral,

For this particular element, the shape functions for

corner nodes are:



1 fd
Ny an (lo + 5) itn) (eG ree 1)

and mid-side nodes

Me Lys ee

4 ee
Ne 0, Ny = 5(1+é,) (1 nN)

Usa)

Ge oo,

Ny = Ty:

Typical shape functions are given in general form

for a variety of elements in reference (70).

If the co-ordinates of the nodal points are known,

the cartesian co-ordinates of any specified point &,n

can be simply found by equation (3.1).

A mesh of any refinement could be automatically generated

inside a region if the later could be described adequately

by a quadrilateral.of the shape in Fig. (3.1) by specifying:-+

(1) Co-ordinates of eight "nodal" points.

G2;) The number of required subdivisions in € and

n directions.

In the scheme the nodal points of the mesh are created

and numbered from the lower left-hand corner, vertically

and from column to column, in equal € and n increments.

The element nodal connections can be established using an

ee
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appropriate rule. Figure (3.1) shows how the elementary

quadrilaterals are formed, and the shaded area shows how

this region is divided. By selecting the shorter diagonal

in the quadrilateral, two triangular elements are obtained.

In choosing the shorter diagonal in the quadrilateral a

better shape conditioning is obtained.

3.3 THE GENERAL PROGRAM
 

For complete generality the scheme is extended by

dividing the whole region into a 'chequer board" pattern

of quadrilateral elements used as the basis of the mapping

scheme which is termed a "Zone". Each of these may define

a material with a single property, and if such property

is specified zero, a void is achieved, allowing multiply

connected zones to be mapped.

In this program, for simplicity the full rectangular

"chequer board" pattern is always established using, when

necessary, void zones as seen from Fig. (3.2).

The zones are usually described by an 8=-nodal co-ordinates

called "super nodes". If the zone boundaries are straight,

then the co-ordinates of the mid-side nodes can be omitted

from the input data, and this information can be

determined by interpolation.

A proper node numbering scheme is used to minimize

the "bandwidth" of the stiffness matrix as already been

described in section (2.1.5), where the matrix bandwidth
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is proportional to the difference in adjacent element node

numbers. If an inadequate node numbering system is chosen

then one would expect the storage space of the stiffness

Matrix in the computer to increase. In this scheme the

element nodal points are numbered from left-hand corner of

the zone array, moving vertically and from column to column

in equal € and n increments as can be seen in Fig. (3.2).

The final stage of the mesh generation scheme is to

determine the element modal co-ordinates. This is achieved

by using zone subdivision, and in order to distinguish between

zone "super nodes" and element nodes, it is preferable to

construct two zone arrays. One containing the "super nodes"

numbering and zone numbers, and the second containing the

element numbers and element node numbers. The first is

required to generate the mesh and the second would be useful

as a means to check the total number of elements and total

number of nodes in the whole mesh.

Materialproperties, geometric boundary conditions and

load conditions can be applied using the element node

numbers concerned.

The above described mesh generation scheme is implemented

on the HP 9845 Desk-Top Computer using the BASIC language.

All the numerical examples described in this chapter are

implemented on the HP 9845 Desk-Top Computer, using the

above mentioned program to obtain the structural idealization

of the problem and then using the finite element program to

ania



find out the displacements, stresses and strains throughout

the body under consideration.

A user guide for the mesh generation program is

in Appendix (A).

3.4 EXAMPLE (1) - A CANTILEVER UNDER AN END LOAD

Considering the simple problem of a cantilever under

an end load of (1000). The problem is of plane stress. An

8-node quadrilateral element is chosen to describe the

structure. (Figure: (3..3):):.

Material properties are:

B= 32x 10/7

Ve =, 0.3

G =*).2.x 10’

The loading is in a parabolic manner as shown in

Ps, SO) s

The first step is to establish a zone pattern. The

structure is represented by one single zone as a rectangle.

Zone node numbering - super nodes - starts from the bottom

left-hand corner and working upwards, and then column by

column. In this particular problem, no need for mid-side

Super nodes, because there are no curved boundaries. The

zone array is. shown in Pig. (3.3b).

=35—
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Having established the zone array, a mesh pattern of

any refinement can be chosen. In this particular example

two meshes are selected, one of an 8-element mesh and the

second is a l6é-element mesh.

Data input for the two meshes are given in the same

order as that described in the user guide,for mesh generation

program (see Appendix (A)). The first mesh has 37 nodes, and

the second mesh has 69 nodes.

Nodal numbering for the element array start from the

bottom left-hand corner working upwards, and from column

to column, (this way a minimum band-width for the K matrix

is achieved).

Boundary conditions and loading are imposed on the

structure. At the fixed end of the cantilever, the middle

node is considered fixed, while the other nodes are only

fixed in the X-direction. The loading at the free end is

in a parabolic manner. From the theory of elasticity ‘?):

Ox == = (3.3€a)

where p is the point load

tos ba?

=)
(3% 3b)

oy

eeao oF ee yD (3, 3c}
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It was shown from equation (3.3)

 a
g

<
a
—

s
a
g

.

that the load

distribution applied at the free end of the cantilever

for both meshes are as follows:

 

 

  

Load Node Number. Node Number

(Mesh (1)) (Mesh (2))

O of 65

-1125 34 66

-1500 35 67

-1125 36 68

O 37 69   

=—338-



 

 

 

MESH NO 1 MESH NO.2

NODE NO. SHEAR STRESS NODE NO. SHEAR STRESS

(-ve) (—ve)

3 3421.2 3 2684.6

- 1440.7

of 708.33 11 2079.4

15 1609.6

11 5450.7 19 2029.7

235 1525.5

15 995.94 ae 2107.7

31 1921.2

19 3268.4 35 2114.5

3g 1521.2

25 898.535 45 2118.2

47 1520

27 5295.9 51 2118.9

55 1521.0

31 966.64 59 2120.2

63 1517.9

35 5221.35 67 2117.4     
 

THEORETICAL VALUE OF STRESS : —1500

TABLE (1) : COMPARISON OF THE VALUES OF SHEAR STRESS ALONG

THE NUETRAL AXIS OF THE CANTILEVER , CALCULATED

THEORETICALLY , & BY MEANS OF F. E. M . EMPLOYING

TWO MESHES.
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DATA INPUT FOR MESH NUMBER 1.
 

DATAFILE #1 =: CANTD1

DATAFILE #2  : CANTD2

A) Initial control variables

B)

C)

D)

E)

F)

G)

1,1,.1,. 8; O/, 1,. 5, 0, 0, 1, 1,1

Control variables

79, 4,51,.1

Standard geometries

G..0

Specific points, super nodes

oe Or 1, Oe

7: 5, 0.8 18, 1:8

Zone specification

Ie Ye 4, 264

Closing faces

0

Boundary conditions, material properties

4, 1; 0, 0, 1; a. 4, 5

Ont, ty 1 .ee/, Sols of

Distributed loading

2, 30; 0, 0, 34, 0, ~1125,. 35, 0,..— 1900

35, 0, —1500, 36, 0, —1125, 357, 0, 0

-4)]-
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DATA INPUT FOR MESH NUMBER 2.
 

DATAFILE #1 : CANTR1

DATAFILE #2 : CANTR2

A) 1, 1, 1, 16, 69, 1, 3, 0, 0, 1, 1, 1

B) 4.141; 1.1

C) 0, 0

by 1-0. 01 Oa

1: 3,..0,. 6 44..3. 8

Bt 4). 8.0251

F)0

G) 5

404, 0,.0. T,: 2) 4°36

1,9, 0,. 0

Pa © Poa |

lek eee Cel, 0

Distributed loading

2, 65, 0, 0,.66,;.0, —1125, $7, .0,:—1500,: 67, 0, ~1500

67,0, .--1500, 68, 0, 0, —1125, 69, .0,.0

-42—



The stresses obtained by running the plane stress

program, is compared with that calculated by means of

equations (3.3). .It is found. that the values: of o

obtained by the F.E. method using Mesh (2) is more close

to the theoretical values than that obtained by using

Mesh (1), and the maximum error is of the order of 0.753,

i.e., there is a convergence as the number of nodes

increases. In other words, a finer mesh produces better

results. oF has a negligible small value compared to the

zero theoretical value, again Mesh (2) gives better

approximation.

It is when the values of’ the shear stress are considered

that the discrepancies happen. The values taken across

the neutral axis of the beam at the nodes along this axis

is found to be erratic in manner. Comparing mesh (1) and

mesh (2), the values obtained generating mesh (2) which is

the finer mesh, are better than values from mesh (1).

Better values could be obtained for the shear stress using

the smoothing technique. This will be discussed in

section (3.8). Graphs of the values of the shear stress for

both mesh (1) and mesh (2) are seen in Fig. (3.4), together

with the theoretical values.

3.5 EXAMPLE 2 - THICK CYLINDER UNDER INTERNAL PRESSURE

Figure (3.5) shows a thick cylinder under internal

pressure. The problem is of plane strain. Only one quarter

of the cylinder is used in the analysis due to symmetry.

oniLee



Quadrilateral element is used in the mesh. The internal

pressureis Py = 200... Material properties are:

E = 3x lo’ IbS|in

ul 0.3

1.2 x 107. Ibf]in

Vv

G

As in example 1, the first step is to establish a

zone pattern. The structure is represented by one single

zone as a rectangle. In this example upper and lower sides

of the zone, require mid-side nodes because they represent

curved boundaries. Having established the zone array, a

mesh of 9 elements is constructed (Figs. (3.6) and (3.7)).

Data input for this mesh is written down. For guidance

see Appendix (A).

Nodal numbering is arranged in the same manner as that

of example l.

As a check for the stress values obtained using the

F.E.M., values of the radial and tangential stresses are

calculatea ‘?) across the thickness of the cylinder through

the vertical axis.

Theoretically

Dee 2 2

ieS Pa es
eeee

b-a ie b -a
(3.4a)

ee aN 2 2
5, oe Pe L Eo Fee

pone r noone

oat O

mdd—



where (see Fig. (3.5a))

a is the inner radius of cylinder

b is the outer radius of cylinder

Py is the internal pressure

Po is the external pressure

r is the distance from the vertical axis through the

centre.

Lt Pp, is zero then:

2

p 2a! beiC: = : -— oie

14 benae r?

anv. b?
o, = (1 + =5) (3.4b)

b-a ac

a 0

These values are compared with values obtained by

the F.E.M., and a graph of these values is shown-in

Figures (3.23a) and (3.23b). Where the values of the

smoothed stresses are also shown on the same figures.

The latter are discussed in section (3.8) of this chapter.

Table 5 shows the theoretical values of the tangential

and radial stress, and that obtained by means of the F.E.M.

with % error in comparison with the theoretical values.
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FIGURE (3.5) THICK CYLINDER UNDER INTERNAL PRESSURE.
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FIGURE (3.6) FINAL STRUCTURE FOR MESH OF THICK CYLINDER .
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FIGURE (3.7) ELEMENT ARRAY SHOWING ELEMENT, AND NODAL NUMBERING

FOR MESH OF THICK CYLINDER.
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DATA INPUT FOR EXAMPLE NUMBER 2.
 

DATAFILE #1 ; 1ACYLS

DATAFILE #2 =: THCYL6

A) t. 1. 1, 9, 40,1, 3, 0, 0,1, 1, 1

8) G,. 1, 1; 1,41

C) 0, 0

BD) 45.0.1,.1 io Os 143:4,.0..6 <>) G8

1, .7071067, .7071067, 4 1, 1.4142135, 1.4142135, 5

B01, 3, 5.1

F) 0

De A al Up Va. Be Ov i Oe Oy. 7

7, 2, 0,0, 34,. 35,. 36; 37, 58,. 59, 40

Ge, ae lols ella se

Distributed loading

3

1, 200, 0; 8, 200, 0; 12, 200,::0,. 12, 200, 0, 19, 260, 0

20,200, 0, 23, 200,..0,:.50, 200, 0,54, 200,.0

nahin



3.6 EXAMPLE 3 - A PLATE WITH A SMALL CIRCULAR HOLE IN ITS

MIDDLE UNDER TENSION

The tensile load applied is of the value p = 1200/unit

langth, the problem is one of plane stress. The element

used in the mesh is the 8-node quadrilateral element.

(Figs. (3.6) to. (3.43))... Thickness. of plate = 1.

Material properties are:-

Ea 3 x io"

Vy =.0.3

Gel 2 x to”

In this example the symmetry is exploited and only

one quadrant of the plate is used in the solution. The

mesh is generated automatically round the core (circular

hole) without putting extra data input for standard

generated zones. The structure is divided into 6 four-sided

regions, Fig. (3.10a). No voids are required to complete

the key diagrams. Zonesl and 2 are generated by means of

a sub-program "STDGEN", (see Figure (3.10b)). Super nodes

belonging to these zones are omitted and will not be

considered, (Figures (3.11a) and (3, 1ib)). Figure: (3.11¢)

shows the element array chosen with element and nodal

numbering. The structural idealization by the F.E.M.. is

shown in Figures (3.12a) and (3.12b).

In this example, where the quadrilateral isoparametric

element is used, the value of the stress concentration factor

at the edge of the cicular hole its found to be 3.0247. The
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FIGURE (3.9) THE QUADRANT OF THE PLATE ABOVE.
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  b)THE STANDARD GENERATED SECTION FOR ZONE 1 2 SHOWING

ZONES SUB-DIVISION & ELEMENT NO.

 

FIGURE (3.10) DISTORTED ZONE DIAGRAM AND STANDARD GENERATED

SECTION FOR PLATE EXAMPLE.
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c) ELEMENT ARRAY DIAGRAM SHOWING ELEMENT NUMBERING,

AND NODAL NUMBERING.
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FIGURE (3.11) KEY DIAGRAMS FOR ZONE AND ELEMENT ARRAYS.
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FIGURE (3.12a) FINAL STRUCTURE OF PLATE EXAMPLE.

 

 

79

O
U

Q

A
s 

600

V 

i“
 

ce
 

 0990099
0
0
0

La
eee

2400

1200

2400

600   V Q0000

29 38 43
VITO
 

FIGURE (3.12b) FINAL STRUCTERE OF PLATE SHOWING BOUNDARY

aks Tin

CONSTRAINTS AT THE NODES &, LOADING

 

 



de

1
.
0

(r
/b
) 0
.
0

+
Ox

=
3P

E
X
A
C
T
M
E
T
H
O
D
.

F.
E.

M.

P
=

1
2
0
0

 

>

—————

~<

P
=

1
2
0
0

 

——

 
 

 Pot Valet

 

 

Y  
L

1
j

 0
1

2
3

a
i
r
e
,

a
s

F
I
G
U
R
E

(
3
.
1
3
)
G
R
A
P
H

O
F

N
O
D
A
L

S
T
R
E
S
S
A
L
O
N
G

X
=

O

 



DATA INPUT FOR EXAMPLE NUMBER 53.
 

DATAFILE #1 - PLATE.

DATAFILE #2 : PLATE2

A) 1, 1, 1, 24, 93, 1, 3, 0, 0, 1, 1, 1

B) 6, 4, 2, 3, 1 |

Cc) 0, 1

17 S50, Ot 1) S220 225,02. 2

D) 1, 6,0, 17 1, 6,35, 19 t, 0, 3, 21

7125.0..25 4;. 12,. 6; 27 1, 0, 6, 29

cE) #1, 2, 2, 3,.4, 36

G) 30

13;-1,.0, 0:.9; 14, 23, 28, 37. 42, 51,. 56, 86; 70, 79,384,953

The. Oe Os Oe tg 1p Vy ate Bey ee Pay eyee et, OU

1,2, #600, 0, 8S 1, 0, +600, 0,89

1:0, +1200; 0,87 2, 0, +2400; 0; 36, 88

Co. ,.2

OE75 pl oeedy Bes, wy 0

Section C above deals with the generated section and input

parameters for this section are as follows :

Note:— See also user guide in appendix A .

I OoNumber of crack tips Ntip

Super number of generated section Ngm = |
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Super node number starting the core Nstart

Zone number starting the core Zns = |

Number of super nodes on the core face N1 = 5

Co-ordinates of centre of semi circle are mt = 0,0

Radii .  R1,. R2,. RSe: 1,::1.5,2.0

Start angle | A =o

Incremental angle Al = 22.5

Zone s subdivisions in X and Y direction are Dx, Dy = 2, 2

5h



oo)
infinite plate solution given by Timoshenko and Goodier

gives a value of 3.0, i.e. an error of 0.82% is present

in the F.E.M. solution compared to the exact method.

(73)
Mirza and Olson used the mixed finite element

formulation, employing the 6-node triangular element,

for a square plate with a circular hole in the middle,

loaded by a uniform uniaxial stress. They calculated the

stress concentration factor at the edge of the hole to be

3.263 i.e. an error of 8.76%. is. present in their solution.

They have used a total of 106 elements compared to the

24 elements used in the present method which proves beyond

doubt that the present method is far superior to theirs.

3.7 EXAMPLE 4

In this example, the problem is to find the relationship

between the displacement at the point of load application

and the crack length extending through the groove at the

centre of the component which is shown in Fig. (3.14).

The load applied is 1000 Kg, and the ids of the

component is considered to be one unit.

A structural idealization by finite element method

is prepared (see Figs. (3.19) and (3.20))}..Only halt of

the component is considered since it is symmetrical about

the Horizontal central, fine (Pigs (3.414)). The structural

idealization is obtained by discretising the component into

sub-regions. The element employed is the quadrilateral

nlyFan



isoparametric element. Void regions are used in this

example (Figs. (3.19) and (3.20)).

Preparing the necessary data and using the mesh

generation program, a new file is compiled with the

necessary information to solve the problem. F.E.M. computer

program l,which deals with plane problems with the help

of the file compiled, is used on the 9845 HP Computer and

results of displacements at the nodes of the elements are

obtained, including that at the point of load application

S
which is found to be 63.8105 x 10 mm in the first run

where there is no crack extending from the groove.

To verify the results obtained by the finite element

method, a solution of the problem by means of analytical

method is carried out using the super-position method

as shown in Figs. (3.15) to (3.18)... .The valuey of: the

displacement at the point of the load application is found

to be 46.5025 x (one mm. The difference between the

two results is 27%, which is acceptable since there is an

approximation in using the super-position method.

Once it was clear that the results were verified,

further runs were carried out increasing the crack length

in each case and the corresponding displacement at the

point of load application is obtained. Table 2 displays

the values of these displacements corresponding to crack

length. Figures (3.20a) and (3.20b) show location of

these constraints. One can deduce from them the crack

-58-



length starting at the groove.

A graph of displacement at the point of load application

versus crack length is plotted as shown in Figure (3.21).

The values of dC/dA are calculated from this graph.

Values of stress intensity factor (Kr) are obtained

3/2
in N/(cm) , using the following formula.

Where N is Newton

w
w

te dK, = Q . ] (3.5)

where

Ky = stress intensity factor, mode I.

Q = Applied load

E = Young's Modulus of elasticity

ES = Rate of change of compliance to rate of change

of crack area.

Table 3 shows the corresponding values of dC/dA and Ky

related to crack length. A sample calculation for the value

OL Ky is shown below:

Calculation of Ky

Fora crack of: length 3.75: cm

From Graph 3.22,

0.0095 x lo+

300: %: 9ELO
x = 1729 x40"

=O
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, P = 1000

a) ORIGINAL STRUCTURE. B) SIDE VIEW.

P = 1000

 

 

  

 
 

  
 

C) HALF THE STRUCTURE ABOVE.

SYMMETRY IS EXPLOITED. D) THE ENCIRCLED GROOVE

IN FIGURE a.
 

FIGURE (3.14) DETAILS OF COMPONENT CONSIDERED.
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E = 2.07x7 N/em~ |
G = 0.796x7 N/com”
v= 0.3 26
P = 1000 KG. 30 |

= 9810 N. 16
     
 THICKNESS= 1 cm.  fe Ly =20 | 6 L

‘< &q

\
FIGURE (3.15) EXAMPLE NUMBER 4. . P

SIMPLIFY PROBLEM — BY MEANS OF SUPERPOSITION.

 

EAA —
Pp

= | ' - 20

L, - Lo. 2H

PL, 
FIGURE (3.16) EQUIVALENT OF PROBLEM ABOVE.

TOTAL DISPLACEMENT AT POINT OF LOADING = TS

TS=PLY/ 3H +L 1@ +e

TS DUE TO: CANTILEVER + COUPLE + DIRECT EXTENSION.

FOR THE FIRST TERM DUE TO CANTILEVER —INCLUDING NOTCH
3

2= PL, /3é!
f 3

I

>

2(C)/3 = 2x(8)/3 = 341.333
3 77

$, = (1000x9.81x20 ) /(3x2.07x10x341.333)

4 5 = 370140" min

~6l<



FOR THE SECOND TERM :
 

 

 

 
 

  
  

L, = 15
o 3

I = 2(C)/3 = 2x(15)/3 /
a

I = 2250 : PL ,

© = 9810x(15)/(2x2.07x10x2250)
: C

CO = 2.3696x10 > Caen

OL, = 2.3696x10x20~>
t Lg

me= ATS0N10 on ——— ——  -

-3
= 4.739x10 mm ;

——

PL,

FIGURE (3.17)

30

THIRD TERM DUE TO EXTENSION :
 

E = (P/A)/(e/L)

 

 

7

E = (1000x9.81/30)/(30x2.07x10)

e = 4.739x107* om

= = 4.739x10 — mm

30

   
FIGURE (3.18).

—3 —3

a
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o
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ASEOERIO? ae
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37.024x10 + 4.7359x10 + 4.739x10

 



To compare results of displacements ct point of load application

using theoretical calculation and the finite element method :

-3s

Displacement at node 71 = 63.8105x10 mm.

3 -3 -3

% Error = (63.8105x10 —46.5025x10 )/(63.8105x10 )

= 27.1

-6§3-
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FIGURE (3.19) KEY DIAGRAMS FOR ZONE ARRAYS.
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FIGURE (3.20) KEY DIAGRAMS FOR ELEMENT ARRAYS.
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DATA INPUT FOR EXAMPLE NUMBER 4.
 

DATAFILE #1 : vJOB11

DATAFILE #2 : JOBI2

A) 11, 1,. 48; 177, 1,. 3,.0;. 0, -1,. 1. 1

B) 23, 12, 4, 4, 1

C00

D) 12020, -1 102653 1, 0, 30, 5

1, 15, 0, 15 #15, 8 17 1, 15, 30; 19

1, 30, 0, 29 1, 30, 6, 31 1; 30, 30;. 33

1, 326,45, 43 1, 32.6, 6, 45 1 32.8 25: 47

1, 34, 1.5, 57 1, 34, 6, 59 1, 34.7612, 9.826, 60

1, 36.929, 13.071, 61 1, 40.174, 15.239, 62. 1, 44, 16, 63

1, 44, 23, 49 1, 44, 30, 35 1, 56, 30, 37

1, 56, 23, 51 1, 56, 16, 65

Ey a2, 2? 41 2. 5.60510. 14. 1253) 14 16,16

F) 0

6) 10

1 3, 0, 0.4

8, 2, 0;-0, 10,° 15, 24,28, 38, 43,92, 57

ily Gy Sees 7

oy

AWIED, sas) sfOme meloly ss: @
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NUMBER CRACK VALUE OF DIFFERENCE DIFFERENCE
OF LENGTH DISPLACEMENT AT WITH PREVIOUS WITH FIRST

CONSTRAINTS cm THE NODE OF LOAD |CONDITION CONDITION
APPLICATION imm IN % IN %

-3
10 0 63.810x10

-3
9 ao 67.487x10 +6.94 + 6.94

-3

8 7.00 77.520x10 +14.86 +22.84

-3
a 17 Ze 85.915x10 +13.23 +36.14

-3
6 15.00 101.750x10 +18.43 +60.3 
 

TABLE (2) :VALUES OF DISPLACEMENTS CORRESPONDING TO CRACK LENGTH.

 

 

CRACK LENGTH dC/dA K]

cm. 1/(N.cm) N/(em) 3/2

aaa 1.729x10 4150

-8
2:D0 ZFox 10 5212

-8
tiizo 3.276x10 Orig

~§
70.00 4.096x10 6387    

TABLE (3) : VALUES OF COMPLIANCE & STRESS INTENSITY FACTOR KI.
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. EB -dc
K, = 0 a

Q = 9810N

E = 2.07 x 10’ N/cm*

c 2.07x10/ - %
K_ = 9810 x 1.729x107 7
I

5
cos 98101 0.423] =. 4150.

3.8 SMOOTHING OF STRESSES

Finite element analysis generally involves the

minimization of some functional defined in terms of piecewise

functions. These functions are generally required to have

a certain degree of inter-element continuity depending on

terms in the functional.

In many finite element problems, the quantities of

primary engineering interest involve the function derivatives,

and in many cases, especially with lower order elements.

These derivatives do not possess inter-element continuitv.

In the displacement method, the stresses are

discontinuous between elements because of the nature of

the assumed displacement variation. In analysis involving

numerically integrated elements such as isoparametric elements,

the integration points are the best stress sampling points.

The nodes, which are the most useful output locations for

me



stresses, appear to be the worst sampling points. Reasons

for this phenomenon are not immediately apparent; however

it is well known that interpolation functions tend to

behave badly hear the extremities of the interpolation region.

It is therefore reascnable to expect that shape function

derivatives (and hence stresses) sampled in the interior

of elements would be more accurate than those sampled at

the element periphery.

'. The least square smoothing procedure may be carried

out over the whole of the finite element domain and this

is referred to as "global smoothing". Or it may be

performed over each individual element separately in the

finite element domain, and this method is called the Local

Function Smoothing ‘/1) ,

Hinton and Ricketts \/2? formed a readily usable form

method, for locally smoothing stresses, using quadrilateral

isoparametric elements. Stresses sampled at the 4-point

Gaussian integration sampling locations are multiplied by

a smoothing matrix to give smoothed values at the nodes of

the element. Smoothed values from adjacent elements

are then averaged at the same element nodes.

Local Smoothing Matrices
 

Consider a typical stress o(€) which varies parabolically

Over the i-D element as shown. in Fig.: (3.24). The straight
nN

line representing the smoothed stresses o(£&)= atag is defined
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uniquely by the values of the stress o(§) at the two

Gaussian points. The smoothed stresses may be written as

a
“aw 1

a(&) = é}t,} (3. 6a)

5 = [p]{al (3. 6b)

Since o(€) = 5 (E) at the two Gaussian points

: 1
og o(- —) 1-— a

= = (3.7)
ul: af

o ot) l1+— a
TE J3 /3 2

Hence

aopil

{a} = [Ip] fo} (3.8)

The smoothed nodal values at the corners of the element

may now be calculated by substituting equation (3.8)

BntO..(3.0).. Laus

e 1 Zz
o o (-L). teed, = pa Oo

i . - a a : (3.9)
ete 3 3
C4 o (+1) al! dd: . x Orr

Or

{o} = [a] {o} (3. 10)
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where

  

 

1473 1/3
2 2

a} = . (3.11)
Al 1-73 1+/43

2 2

For two-dimensional problems, the smoothed stresses

are assumed to have a bilinear variation over the element

as given by the expression

@
~

Cf 4) Si ene

©

le

2 (e212)

]

|

Using the same procedure as for one-dimensional

element, the smoothed stresses at the nodes may be

calculated from the expression

 

O71 a eb .C eb

55 2 Dea bee (3.13)

53 Co. De ab

Ty dsc biaa

OG

{o} = [a]{o} (3.14)

where
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Smoothed stresses at mid-side nodes can be found

simply by averaging between corner node values.

This method can be extended to three-dimensional

problems by considering the 8-Gaussian points in the

Slanent |<.

The smoothing technique has been included in the

present plane stress/strain finite element computer program

and examples 1 and 3 are presented to illustrate the

application of this technique.

Example 1, a cantilever under an end load have been

considered. In mesh (1), the number of elements used are

8, and the total number of degrees of freedom are 74 (refer

to Fig. (3.3))... Results of the values of the shear stress

along the neutral axis of the cantilever are calculated

using the smoothing technique and without using the smoothing

technique. It is found that the values of the shear stress

when not using the smoothing technique to be erratic and

,inconsistent, and errors of more than 100% are present in

the solution. While those obtained using the smoothing

technique are more stable and much more accurate, their

errors do not exceed 208. Figure (3.22), illustrates

these facts where graphs of the theoretical, smoothed and

unsmoothed shear stress values are shown.

Example 2 of the thick cylinder under internal pressure

(Fig. (3.5))."° A mesh o£: 9 Glements is. constructed with a

ca



total number of 80 degrees of freedom. Stresses are

calculated by the computer program using the finite element

method, with and without smoothing. Values of the radial

stresses and tangential stresses at the nodes at X=0, are

plotted for both the smoothed and unsmoothed conditions.

These values are compared with the theoretical values

obtained using equation (3,4), as shown in Figures (3.23a)

and (3.23hb).

It is found that the values of the smoothed stresses

are far superior than those which are not smoothed.

Table 5 shows these values together with the percentage

error in comparison to values calculated by means of the

theory of elasticity.

Merits of the Technique

(1) The use of the smoothing technique improves the values

of the stresses output in situations in which averaged

conventional stresses are poor as it has been demonstrated

in the last two examples.

(2) Implementation is extremely easy involving only a small

subroutine for matrix multiplication.

(3) For the same accuracy of results obtained without

smoothing, a smaller mesh can be used when implementing

this technique, hence saving time and money.
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NODE NO. VALUES OF VALUES OF

SMOOTHED STRESSES. UNSMOOTHED STRESSES.

(-ve) (-ve)

3 1788.6 3421.2

f 1810.1 708.59

14 1831.5 3450.7

15 175130 993.94

19 1672.2 3268.4

23 1694.1 898.53

27 1716.4 3295.9

On 1682.1 966.64

55 1648.1 O2245    
 

THEORETICAL VALUE OF STRESS: —1500

TABLE (4) : COMPARISON OF THE VALUES OF SHEAR STRESS ALONG

THE NUETRAL AXIS OF THE CANTILEVER , CALCULATED

THEORETICALLY , & BY MEANS OF F. E. M , SMOOTHED

& UNSMOOTHED FOR MESH NO.1.
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FIGURE (3.24) SMOOTHED AND UNSMOOTHED STRESS DISTRIBUTIONS FOR

1—D ISOPARAMETRIC ELEMENT.

 



CHAPTER 4

REVIEW OF STUDIES IN FRACTURE MECHANICS

4,1 INTRODUCTION

The essence of fracture is that it is a failure

mechanism which involves the unstable propagation of a

crack in a structure. Once the crack has started to move,

the loading system is such that it produces accelerating

growth ‘+) , Fracture occurs when failure happens at a stress

below that of a yield stress for that particular material.

It could happen in thick sections as well as thin plates.

The process involved in the fracture of solids are

so complicated and varied that no single formula or

criterion can be expected realistically to describe all of

the observed fracture phenomena‘? , Despite this, a

sizeable body of useful knowledge concerning certain aspects

of fracture does currently exist, having been obtained

from extensive theoretical and experimental research efforts.

The objective of this chapter is to present a somewhat

technical review of fracture mechanics, highlighting its

strengths as well as its current limitations. The lack of

a cadechertoe understanding of the failure process in

structural materials has resulted in the catastrophic

failure, over the past sixty years, of a variety of

(3,47.
engineering structures

Sha



Analysis of the failed components of such structures

as pressure vessels, storage tanks, welded ship structures,

aircraft parts, bridges, pipelines, turbine blades and housing,

rocket motor casings and various heavy machine parts have

shown that cracks or flow induced brittle fracture has

often been responsible for the failures.

The trend towards use of exceptionally high yield

strength materials, such as is available in certain steel,

aluminium and titanium alloys, present the designer with

an unfortunate dilema. The advantages of higher strength

materials that the designer now has at his disposal for

structural applications are offset by a significant reduction

in ductility, a factor that tends to enhance the possibility

of failure by unstable fracture.

The effects of the stress concentrations due to holes

or cutouts in otherwise continuous structural members were

first recognised during the latter part of the nineteenth

century. Figures 4.1 and 4.2 illustrate the variation

of the stress components parallel to the direction of the

uniform tension applied to an infinite sheet containing

a circular or elliptical hole, according to the theory of

elasticity‘), The presence of a circular hole raises the

stress level at the edge of the hole to three times the

applied stress level in a large plate. While for an

elliptic hole, the stress level at the edge with the

smaller radius of curvature increases with the slenderness

pe



ratio of the ellipse, i.e. to the ratio of the major to

minor axes. When the major axis is twice the minor axis,

the stress concentration is five. These results approximate

quite. accurately the situation for finite sheets with

holes when similarly loaded, provided that the major

dimension of the hole is very much smaller than the

dimensions of the sheet. Hence their practical significance

is immediately apparent.

A crack or flaw of finite proportion, can be thought

of as the limiting case of an elliptic hole as the ratio

b/a approaches zero, as illustrated in Fig. 4.3. According

to the theory of elasticity, the maximum stress parallel

to the direction of the applied load at the edge of the

crack increases in this case without limit. This behaviour

explains why cracks oriented transversely to the direction

of the applied tensile loads tend to grow or spread.

However, the material at the edge of a sharp crack obviously

cannot support infinitely large stresses. In real metals

a state of pastic yield develops over a small region

bordering the edge of the crack, Fig. 4.4. The plastic

enclaves which develop at the borders of a stationary

crack, however small, tend to inhibit potential crack

growth through blunting of the curvature of the crack -Cip.

Hence any set of circumstances which inhibits the free

development of plastic yi@ld at the crack borders, e.g.,

low temperature, fast rate of load application, high

degree of triaxiality in the crack region, tends to promote

-83-—
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easy crack expansion, or brittle fracture. For any given

enclave development generally requires greater net section

stresses for initiating crack extension. .

In thedesign of engineering structures there are

two important items to be considered:

The first to be considered is a stress analysis of the

problem so that the magnitude and direction of the stresses

and strains at various points of the structure are known.

The second item is to select a criterion of failure

which determine the type of material to be used for each

component in the structure. We now consider criteria for

fracture type failures.

4.2. GRIFFITH tHEory‘7?

The traditional method is to design the cross-sectional

area of the structure such that the applied stresses are

kept below the yield strength of the ductile material.

Such an approach is adequate for low and medium strength

material. But for high strength materials which are

particularly sensitive to the presence of flaws or

defects, this approach is inadequate.

The first attempt to put forth a rational theory of

fracture mechanics was put by Griffith in 1921, who laid

down the conditions under which a small crack in a solid

=S6~



becomes unstable. This analytical model is based on

elasticity solution of an elongated cavity in the form of

an ellipse, the idea is to focus attention on the

redistributionof stresses around such a cavity.

Referring to. Fig. 4.2,the maximum stress J CCcurs

at the apex of the major axis of the cavity and is given

by:

g = c(t + 2a/5) | (40 1}

where

co is the applied stress.

a and b are the semi-major and semi-minor axis of the

ellipse.

Equation (4.1) shows that the magnitude of the stress

at the loading edge of the cavity becomes increasingly large

as the ellipse is flattened out.

For a marrow crack having a very small radius of
2

curvature p at..the: tip p= 7 equation (4.1) becomes,

=o(l + 28 js 2ev= since o<<a (43)

o
loO

m

As 9 becomes very small on. becomes exceedingly large

and in the limit as p+ zero, o,, becomes infinite and this

Cannot be a suitable criteria of fracture.

The basic concept of Griffith theory is to evaluate

phFos



the decrease of elastic’ energy when a crack of length 2a

is formed.

Referring to Fig, 4.3, let v. represent the total

elastic strain energy in an uncracked infinite sheet of

unit thickness loaded as shown. Suppose that a crack of

length 2a = C is introduced slowly enough such that all

dynamic effects are negligibly small, while the load

boundary is held fixed. Since the plane dimensions of

the sheet are infinite while the crack size is finite,

the applied stress will remain at the same level o as the

crack is inserted, Let U designate the strain energy of

the cracked sheet. With the loaded boundary held fixed,

the applied load can do no work as the crack appears.

Consequently, the strain energy in the body can only

decrease by virtue of the relaxation of the stresses over

the surface, which define the crack. Thus U<U,- The

creation of new surfaces which total area 2C, assuming

the crack’ to extend through the unit thickness of the

sheet, requires an expenditure of energy which Griffith

assumed to be linearly proportional to the crack surface

area, 5:20: Where ae is a fracture surface energy density.

The surface energy density is presumed to be determinable

by experiment for any given solid at any given temperature.

The quantity 2y5-C can be interpreted as the work done by

the relaxing stress as the new internal surface (crack) is

introduced, i.e. 2y5C represents the energy expended in

overcoming the inherent cohesion of the solid across the

plane crack surface.

-838—



Using the plane strain. linear elastic solution for

the. ellintic hole of Fig. 4.2...In the. limit as 2b. approaches

zero, Griffith deduced that insertion of a crack 2a, subject

to the given circumstances, changes the elastic strain

energy by mo-C? (1-v*)AE, 67), where C = 2a , E being Young's

modulus and v Poisson's ratio.

The strain energy of the cracked body with a

stationary crack C is thus

ae? 2
— USCyflew): (4,3)

° 4

while the total energy is

Y= Ur eye

Lon hae
= Uy = negtbo) + 25C (4.4)

Griffith postulated that the crack is in a state of

unstable or critical equilibrium, that is, at a point of

incipient growth, when the free energy attains a stationary

(in this case maximum) value, Analytically this means

the parameters which determine the critical crack

equilibrium state are ohtained from the condition

S$ / fixed boundary = 0 (4,5)

which from equation (4.4) leads to the requirement that

a
ee: ee (4:,.6)
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“or

4EY
o*c —_s,- (4.7)

tT (1l-v~)

’

For a given applied load a the critical equilibrium crack

size is thus;

4Ey
C= 2a = —S-- a (4.8)

w(l-v') o

Alternatively, for a given crack size 2a =C,

equation (4.8) can be viewed as determining the applied

stress level which is necessary to bring on a state of

incipient crack growth or

EY
Ssa (4.9)

¢ nc tie")

where O5 is.the critical tensile stress.

This is Griffith's formula. It can be interpreted

as a brittle fracture criterion for the plane infinite

sheet described in Fig. 4.1. (for condition of plane

stress, the factor (lee) is replaced by unity.) i.e.

4EY

ee (4310) 

Since ve is the specific energy which is constant

for a material and E is material constant

VoraCateTa o = constant (40 Li)
T
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The applied critical stress T. and flaw size C can

be measured experimentally, and by introducing line cracks

of different length 2a in a given material, Griffith has

shown that in a given material ave remained essentially

constant ‘27? ,

4.3 ROLE OF PLASTICITY

Erwin and Orowan tl? +t4) proposed independently that a

plastic work term Yp be added to the fracture surface

energy Y, in equation (4,10), in order to account for

any plastic deformation associated with the separation

process. .Tmus:

4B (y.ty,,)a. / s. 2 (4.12)
me (l-v*)

was proposed as a possible generalisation of Griffith's

formula to instances of semi-brittle fracture. For

structural metals, experimental data requires that the

plastic work factor Yp be 10? to 10° times larger than the

surface energy vos

It should be pointed out that for equation (4.12) it

is necessary to assume that the plastic enclaves be confined

to very narrow strip-like regions on each side of the

t21)crack plane as the crack extends. [In practice ; tt oe

more common to find plastic regions which extend away from

=Oi~



the crack plane, as in Fig. 4.4. Thus it appears that

the Irwin-Orowan modification of-the Griffith formula is

inadequate to deal with fracture in circumstances in which

front plasticity is readily observable.

Griffith's formulaapplies vigorously only to the

artificial case of an elastic solution for a plane infinite

body. Thus, apart from the error associated with the

omission of possihle plasticity effects, additional error

will arise when the theory is applied to cracked bodies of

finite size.

4,4 STRESS INTENSITY FACTOR AND FRACTURE TOUGHNESS

in Grirtiith*s theory of: brittie fracture: a critical

stgese<crack size relation is derived from an energy

postulate, while the treatment by Irwin leads to pies:

crack size relations by focusing attention on the elastic

stresses :very close to the tip of the crack ‘42) , For

analytical purposes imagine an existing flaw or opening

in a body to be, ideally, a plane sharp-ended crack. The

solid is assumed to be homogeneous and isotropic, with the

crack extending through the thickness of the body. Referring

to Fig. 4.5, a local coordinate system is chosen so that

the Z-axis is collinear with the leading edge of the crack,

assumed to have a straight front, the Y direction is

perpendicular to the plane of the crack while the X direction

points in the direction of expected crack extension.

inn



Loadings on the boundaries of the solid are taken to be

applied symmetrically with respect to either the Xx-y plane

or the X-Z plane. If the Z-dimension of the body is

large a condition of plane strain will exist throughout

the body. At the other extreme, if the Z-dimension of

the solid is small relative to the X and Y dimension, as

in a thin plate, a plane stress situation will exist. Both

of these situations are idealised cases. More realistically,

in all but very thin plate-like specimens a mixed state of

plane stress, plane strain will exist across the Z-dimension,

varying from plane stress at and very near the x-y plane

surfaces to plane strain over the central portion. Any

plastic deformation which may occur at the crack borders

is neglected in a first approximation. Plasticity effects,

provided they are small, are subsequently treated as a

minor correction to the elastic anlaysis.

Three basic modes of crack surface displacements which

can lead to crack extension are shown in Pid. 4.6. inthe

opening mode the crack surfaces move apart symmetrically

with respect to the X-Z plane. In the sliding mode, when

a shear stress is applied and the crack is said to be under

the action of in-plane shear. The final mode is the

tearing mode which is known as the antiplane shear mode.

Corresponding to the opening conditions outlined above,

the stresses and displacements at points close to the crack

border can be shown to have the form'->?,
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a cos@/2[1-sin@/2 sin30/2]+ ... (4.13)
X. AV3r

K+ : (4.14)¢ = cos 0/2[1+ sine/2 sin3s6/2|+...
i Y2Tr

aT , (4.15)
ty, = sin0/2 cos@/2 cos30/2 + :: :

v27xr :

O plane stress

oS, = (4.16)
. V(dytoy) plane strain

Oye Ove #0 (4.17)

Ky 5
Sak /yr .Uy = 36/5¢ {c0s0/2[K-1+2sin“6/2]}+ ... (4,18)

Ky tS 2Uy = 55 /se[sind/2 [K+1-2cos“6/2]] +... (4.19)

where

K = 3-4v for plane strain

2 £ l teo or plane stress

oe E

oO otto

Uy = 0 (plane strain)

In these expressions only the first term of a series

expansion is shown. The omitted terms involve increasing

half powers of the ratio of r divided by the crack length,

and consequently, are important only at large distances from

=QG=



the crack ‘in’. Very near the crack tip the first

term in each of these series dominates especially for the

stresses, since they are porportional to fa Thus over

a region for which r is very small compared to the plane

dimension of the body, e.g., the crack length or the

specimen width, the above expressions specify the tip

region elastic stresses and displacements to an acceptable

degree of accuracy. The K term in these equations is

independent of r and 9, and serves only as a positive

multiplying factor which can be shown to depend on the

applied boundary, load and the crack size. Its explicit

functional form in any given situation depends on the

geometry of the cracked body and the location of the crack.

In fracture mechanics terminology, K is referred to as the

"stress intensity factor".

The significance of the above expressions (4.13 - 4.19)

is due to their generality, since they hold for all

stationary plane cracks, regardless of the configuration

of the body or the location of the crack. What changes

in these equations, in going from one configuration to

another, is only the functional form of K. Thus the state

of elastic stress and displacement in the immediate region

bordering a plane crack is, in effect, entirely characterized

by the stress intensity factor K.

Expressions similar to (4.13-4.19) have been developed

for the sliding and the tearing modes of crack surface

separation ‘t3),
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The general expression for equations (4,13 - 4.19)

which were developed by Irwin and corresponds to the first

terms in a series expansion and describe the situation in

the near tip field, could be interpreted in the following

form ‘©9) |

-%
mij = Kn r mi (9) (4.20)

-
se SZ mdi (v,8) (4.21)

where

1432 @ 2,2

m =U, LL, Lil, L.e. the mode

Kn = stress intensity factor of the mth mode

mf; 5 (8) and mg, (v,6) are known functions.

4.5 RELATION BETWEEN THE GRIFFITH AND IRWIN APPROACHES
 

Irwing has shown by use of equations (4.13 - 4.19),

that the work done per unit area by the stress field in

slowly extending both ends of a crack in a sheet of unit

thickness (in plane strain), while the outer boundary is

held fixed, is simply 2K*(1-v*)/E. It follows that this

work represents twice the rate at which energy disappears

from the strain energy field as the crack extends, i.e.,

the elastic strain energy release rate traditionally

designated by the symbol G. Thus:

ORs



auac (4.22)G=-

and for opening mode crack surface displacements in plane

strain.

2 2
Ry. (ew) (4.23)

Gy =
E

For plane stress a similar calculation yields

G= KSa (4.24)

Ky and Gy represent the stress intensity factor and

the elastic strain energy release rate in plane strain,

while K and G denote these same quantities for plane stress.

At the onset of fast crack propagation a subscript (¢)

is used to designate critical values.

Thus Kio and Gro represent critical’ values in. plane

strain and Ka and Ka specify critical values for plane

stress.

Experiments conducted on a variety of high strength

structural metals indicate that each material has a

characteristic Kio value which is basically the same

regardless of the design of the specimens used for the

tests. It is possible to interpret the K value as a
rc

fracture resistance material property which, under certain

conditions can be used to estimate the load that a

structural member containing a crack of specified dimensions
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can be expected to sustain without fracture. For a plane

infinite sheet loaded as shown in Fig. 4.3, the stress

intensity factor

K = 0vTA (4.25)

At the onset of crack propagation

2 2
K (1-V~) Z 2
I _ ICGV) (4.26)

ic. - 2E

where it is understood that 9 and C are the load, and crack

size which are ohserved at the critical condition.

In Griffith's theory the state of critical and

unstable equilibrium is attained when equation (4.3) or

equation (4.4) is satisfied, From equations (4.3) and

(4.6) this leads to the requirement that

na*c(1-v2)
aE = 2Y 5 (4.27)

From equations (4.24) and (4.25), it is seen that the

onset of crack propagation in Irwin's theory corresponds

to unstable equilibrium in Griffith's theory when the

elastic strain energy release rate has the critical value

Gro = 2Y 5 (4.28)

or when

o = ts (4 229)

mc (l=v")



The surface energy in the Griffith theory must be

determined by experiment for any given material. Irwin's

theory likewise must rely on experimental determination

of the critical value of Gro or Rio for a given material.

Criteria for the onset of a fracture mode of failure

are thus available for design so that critical sizes may

be estimated for given loading, etc.

4.6 PLASTICITY CORRECTION
 

From equations (4.22 - 4.28), it is seen that K is

related to the rate of change with crack size of the

total elastic strain energy in the body. If the crack tip

region over which plastic deformation takes place is

relatively small, then the contribution of such a region to

the total elastic strain energy rate of the body will also

be comparatively small. Thus elastically calculated K

formulas will be substantially correct, i.e. will be

affected only to a minor degree by the existence of small

crack front yield zones.

A somewhat rational method for correcting for small

scale plastic yield effects at the crack border has been

(33) based on the following argument.proposed by Irwin

The presence of a plastic zone at the crack front tends

to elevate the elastic stress level in the elastic region

between the boundary of the plastic enclave and the free

edge of the cracked body as a consequence of the
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redistribution of stress caused by the plastic deformation.

To compensate for this increase, the actual. half crack

length can be imagined to be increased by an amount lyr

which represents a measure of the plastic enclave dimension

along the plane of the crack under conditions of small-scale

yielding, as in Fig. 4.7., i.e., the actual stress in the

elastic-plastic solid corresponding to a half crack length,

a, is imagined to be equivalent to the stress that would

arise from an "effective" half crack length.

A = 2 ee (4.30)

ina perfectly elastic material.

A precise, realistic calculation of the shape (and

therefore the size) of the crack-tip plastic enclave is

currently not possible because of the mathematical

difficulties associated with the required elastic-strain

hardening plastic analysis ‘°®) , However, elastic-perfectly

plastic analyis for the tearing mode problem (mode IIT)

indicates a circular plastic zone with radius proportional

to x2 divided by the square of the yield stress in simple

ee A result similar in form, mathematically, isshear

obtained for the opening mode from equation (4.14). If,

along the plane of the crack, 9=0, the Y-direction stress

is set equal to the uniaxial yield stress of the material

oy at some distance r = ry from the crack tip. These

considerations prompted Irwin to propose as a rough measure
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of the plastic zone size

4. Ke 2r= Fe) (4.31)

for plane stress

and

r. = 5 (ke
Y 6T Jy (4.32)

for plane strain.

The plane strain plastic zone size measure is reduced

by a factor of one-third in order to account for the

constraining effect of the lateral o, stress, which is
Z

zero in plane stress.

If the K formulas are. corrected for small scale

plastic yield effects according to equations (4.30 - 4.32)

for centre cracked sheets in plane stress, equation (4.25)

becomes

R= o* [rat $A) J | (4.33)
x

4.7 THE STRAIN-ENERGY-DENSITY FACTOR
 

The critical stress intensity factor approach in

fracture mechanics is analogous to the maximum stress

criterion applied to a simple tension specimen and cannot

ee Ad? and sincebe used in combined loading situations

in most of the structural components the cracks are seldom

aligned perpendicular to the direction of loading, the
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criterion of fracture requires a combination of Kr and

Kit and or Kort reaching some critical value, i.e.

£(Kr, K =f (4.34)rr’ Xrrr?} C

An alternative interpretation of fracture phenomena

was presented hy gin (819) | His basic concept is that the

material in the immediate vicinity of the crack tip,

marked as the core region in Fig. 4.8, is free from defects

of the same order of magnitude as the crack tip radius.

Otherwise the crack tip would have advanced to and

connected up with the nearest defect. These defects are

assumed to be uniformly distributed outside the core region

of radius ro:

The amount of energy stored in one of these defects '?”) ,

occupying an incremental area of AA = rA@Ar as could be

shown in Fig. 4.9, and can be computed from

aw 1 2 2 2
ae eeriePerrt3282733htre ae

in which the coefficients for plane strain are given by

a 2 f(3-4v-cos8) (1+cos6) |
Le Lele

a,, = <5 ((28in?) (cos9-(1-2v))
12 Lou

(4.36)
4a2 = pez [4(1-») (1-cos®) +(1+c0s@) (3cos8-1)]

ao oe
35 4u
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where

v being the Poisson's ratio

u is the shear modulus of elasticity

ait is the local strain-energy-density function and
dA

is inversely proportional to the radial distance

r measured from the crack tip.

This factor describes the variation of the local energy

density around the region since it depends on 98, marking

the position of AA, through the coefficients Aiqr 4127 499

and 233

the Sih theory

(1)

(2)

The fundamental hypotheses on unstable crack growth in

ee} are as follows:

The initial crack growth takes place in the direction

along which the strain-energy-density factor possesses

a stationary (minimum) value, i.e.

as : a
See O* at which 6.— Pe

where 84 is between -7 and t , i.e. “150 (<0.

Crack extension occurs when the strain-energy-density

factor reaches a critical value i.e.

§, = §(Ky, Ky, Kypyyz) for 8 = 6,

where a is the angle of crack extension,

The difference between ¢ and ¢, is analogous to the

difference between K and K,,and so o is also a measure

of the resistance of a material against fracture,
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where

v being the Poisson's ratio

u is the shear modulus of elasticity

oat is the local strain-energy-density function and
dA

is inversely proportional to the radial distance

r measured from the crack tip.

This factor describes the variation of the local energy

density around the region since it depends on 9, marking

the position of AA, through the coefficients Airis A127 492

and 233-

The fundamental hypotheses on unstable crack growth in

(3,957)
the Sih theory are as follows:

(1) The initial crack growth takes place in the direction

along which the strain-energy-density factor possesses

a stationary (minimum) value, i.e.

Ses ‘ ss
= O° -at- which 6: = as

where By is between -7T and, i.e. “E50ts

(2) Crack extension occurs when the strain-energy-density

factor reaches a critical value i.e.

S. cd §(K,, Kir Kitz) for 9 = a

where ae is the angle of crack extension,

The difference between § and 4, is analogous to the

difference between K and Ky,and so oe is also a measure

of the resistance of a material against fracture,
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The validity of the theory can be checked by imposing

different loading conditions on the cracked specimens made

of the same material <?'>’? and show that 8. indeed remain

constant and to be independent of the crack geometry and

loading and hence it can be used as a material parameter

for measuring the resistance against $racture.

4.8 THE STRESS INTENSITY FACTOR AND FRACTURE MECHANICS

Fracture mechanics technology is based on an analytical

procedure that relates the stress-field magnitude and

distribution in the vicinity of a crack tip to the nominal

stress applied to the structure, to the shape, size and

orientation of the crack discontinuity, and to material

properties.

The fundamental principle of fracture mechanics is

that the stress field ahead of a sharp crack ina

structural member can be characterised in terms of a single

parameter, K, the stress intensity factor, that has units

of stress x YLength. This parameter, K, is related to

both the nominal stress level in the member and the size

of the crack present. Thus all structural members, or

test specimens, that have flaws can be loaded to various

levels of K.

A number of authors have collected solutions of crack

problems into compendiums, Rooke and Cartwright (37) have

classified solutions in their compendium into five structural
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groups: flat sheets, stiffened sheets, discs, tubes and

bars; also three dimensions where the cracks have curved

boundaries and the stress intensity factors can vary with

position on the crack front. Also in the same compendium,

solutions of plates and shells are classified too.

In the next chapter, methods for the determination

of the stress intensity factor is explained, some briefly,

others in detail, Method employing the finite element is

of particular interest to find the K values.
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CHAPTER 5

METHODS FOR THE DETERMINATION OF

STRESS INTENSITY FACTORS

5.1 INTRODUCTION

A parameter which can be used to distinguish between

different cracks and measure the severity of a crack can be

obtained from an examination of the stress field near the

crack tip... The stress O45 at a small distance r ahead of

the crack tip is given by:

K

re = (5.1)
J V27r

ir  

that is, as r approaches zero, the stress near the tip of

-k
a crack approaches infinity as r *. The constant of

proportionality a which is different for different cracks

is called the 'stress intensity factor' and can be written as

Ke = YovtTa (ae 2a

where m = I, II or III indicates the relative movement of

the crack faces, i.e. the mode of crack.

Oo is a stress determined by the loading.

a is a crack length.

Mi is a geometrical factor which accounts for such

things as proximity effect of boundary surfaces

or other cracks, orientation of the crack and

the shape of the crack.
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For the simple case of a crack of length 2a in a

large sheet subjected to a uniform stress o remote from

and perpendicular to the crack, Y = 1, and the stress

intensity factor is given hy

K. = ovta (5...3)

The power of the stress intensity factor method of

analysis lies in the assumption that the behaviour of a sharp

crack is determined by the stress field at the tip; it is

thus necessary to determine the stress intensity factor only.

Some of the more useful methods of evaluating stress

intensity factors are presented in the next section ‘+?) ,

5.2 METHODS OF EVALUATION OF STRESS INTENSITY FACTORS
 

The methods for determining the stress intensity factors

may be divided broadly into the following ‘+7?

(a) Experimental Methods

(b) Analytical Methods

(c) Numerical Methods.

5.2.1 Experimental Methods
 

In this section some experimental methods of determining

stress intensity factors are described. Experimental methods

may either use a known relationship between a measurable
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quantity (e.g. compliance or fatigue crack. growth: rate) and

the stress intensity factor, or involve direct measurements

on a model (e.g. by photoelasticity).

¥1) Compliance

(16) showed that the strain energy releaseIrwin and Kies

rate G could be written in terms of the applied load Q and

the change in compliance C with respect to crack area A

in the form

qg=#@2@ ac
(5...4)

2° dA

From which the stress intensity factor for plane stress

is given by

2

kK, = 015 S$] (5.5)

The determination of K, from equation (5.5) involves

measuring the compliance C for a range of crack lengths.

Calculating the derivative of the compliance vs. crack

length curve then enables K, to be found. The experimental
al:

method needs considerable care if satisfactory results are

to be obtained‘??? , The method has been used for many

problems, more details of the technique can be found in

reviews by Cartwright and Rooke (63) |

This method is applied when a body is subjected only

to a single point load. It is most useful for relatively

small test specimens which can have precise measurements
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made on them in the laboratory under constant load. It

cannot be used for the large structures.

(2) Photoelasticity

Of the optical methods for determining stress intensity

factors’, photoelasticity has been most used. The technique

has several advantages. It is a well-known method for which

experimental equipment and birefringent materials are

readily available. By using the frozen stress technique

photoelastic analysis may be extended to three-dimensional

configuration; an assessment of this technique in relation

to crack tip stress fields has been made in reference (19).

Two methods, which involve measurements of the stress

near to a simulated crack, are based on the equation for

the maximum shear stress Cent given by:

*
~ eos6)* + (K,,sin) 7| (5.6)T= |(Kpsine+2K

Mm 5am +t It
 

where (r,9) are polar co-ordinates centred at the crack

20
( es thetip. In the first method used by Emery et al.

stress intensity factors were evaluated from the maximum

shear stress Ti On lines perpendicular to and through the

crack tip given by:

(RIK)on C5277")
2v¥27r
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and on a line outside and. collinear with the crack given by

T= (3...6) 

Evaluation of TH close to the tip at points above (or

below) and ahead of the notch allows bath Ky and Kir to

be determined from equations (5.7) and (5.8).

In the second method, used by Smith and smith '21) ,

equation (5.6) is used together with the condition
oT

a = 9, that. is: the condition

K 2 Ka. a, t2 ae
= ie cot2¢ 2 7.0 (o-9)

The angle a7 is that at which a tangent to the

isochromatic fringes is perpendicular to the radius r. The

angle is measured from the isochromatic fringe pattern
K

near the tip, the ratio == is determined from equation
I

(5.9) and hence Ky and Kitz can be found using a known

value of Tes in equation (5.6)...

Both of these methods have the advantage that Ti may

be obtained directly from the isochromatic fringe pattern,

and so avoid the need for stress separation.

The advantage of these methods is that it is well

established methods in stress analysis, the equipments and

materials used are readily available. Its disadvantage
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is that the analysis is tedious. Difficult and careful

preparation of specimens are necessary.

(3) Fatigue Crack Growth Rate

paris ‘?2) proposed that the growth rate of a crack

extending under fatigue loading could be characterised by

the stress intensity range

da . (5.10)Sy £ (AR) |

where sa is the crack growth rate with respect to number

of cyéles, and AK is the stress intensity factor range, i.e.

ARs Koo ha, cB

To determine the stress intensity factor for a new

configuration, it is necessary to conduct a-.fatigue test

on that configuration and record both the length and the

rate of growth of the crack over the range of crack

lengths required. A fatigue test must then be performed

under identical conditions on a specimen of the same

material, for which the stress intensity factor is known

as a function of stress and crack length. The data from

the two tests are then compared on the basis of equivalent

(crack growth rates. James et al. — have applied this

method to the case of a thick walled, internally

pressurized cylinder containing a longitudinal crack.

It is easy to conduct the fatigue test on the specimen
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in question and record the crack growth rate. But, it

should be noted that, ideally, the same thickness of

material should be used in the tests to generate the

da
dN

there appears to be some effect of thickhess on the crack

vs. AK data as will be used in the specimen since

growth rate,

(4) Interferometry and: Holography

Two optical methods based on measurements of

interference fringes in transparent materials have been

(24)proposed. The method of Dudderar and Gorman involves

determining the opening mode stress intensity factor from

measurements of the magnitude of the sum of the normal

stresses at a series of points outside and collinear with

the crack. A thin perspex sheet, containing a sharp notch

is subjected to a tensile stress. The magnitude of (0,+0.)

is obtained for several loads from a series of interferograms.

The magnitude of Ky is calculated from the slope of a plot

(58)-:
of Co.+o) vs. xr * in a similar way to that used by Wilson

for photoelastic results.

The method, proposed by Sommer '29) involves measuring

the relative displacement of the crack faces, by an interference

technique in glass sheets under load. The relative

displacement of the crack faces is determined at several

positions along the crack and the opening modé stress

intensity factor obtained using the known relationship
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between the displacements and Kr:

For. plane. strain conditions

4k —
2 2 2x
2V = ae (Lom ve) Ae

E

where v is the crack opening displacement.

r is the distance from the crack tip along the

crack opening

Vp, and Kr are poisson ratio, Young's modulus of

elasticity and the mode one stress intensity factor.

5.2.2 Analytical Methods
 

The methods considered here are those which satisfy

the differential equations and all the boundary conditions

exactly. Such methods have the advantage of leading to

explicit expressions for stress intensity factors; but

only certain classes of problems can be solved.where the

shape of the component considered is not too complex. In

deriving the stress intensity factor, use is made of the

formal definition

K, = him oo, vanr ($.12)
50

where Od, 1S appropriate to the mode of cracking. For

Simplicity, all the methods are described for a crack of

length 2a along the X-axis with the origin of the (x,y)

co-ordinates at the crack centre.
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(1) ‘Westergaard. Stress Function
 

(26)
Westergaard formulated an Airy stress function F,

which for mode I, with self-equilibriated forces on the

crack, takes the form

F, = Re [Z,] + Yam [47] : (5.13)

where a5 is the Westergaard stress function.

Z. and z. are defined by

 

I I

dz dzi Be
ac = Zr and az. ar G51 4))

where

Ze XS te ey

The Cartesian components of stress, in terms of For are

ar, a*F, oF
oe eu See a (5.15)dy ~ ‘x me x

The simplest crack configuration studied by Westergaard

was that of a crack in an infinite sheet subjected «to

uniform biaxial tension .o, at. infinity; the. stress

function is

Pelt (5.16)

Westergaard also studied a crack opened by wedge forces

and an infinite series of collinear cracks under various

loading conditions. The method can be extended to modes II
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and III and comparison of the stress field in terms of

the Westergaard stress function Zn with equation (5.12)

shows that the stress intensity factor is given by

kK. = Jan Lim {Yz-a ZS (3.17)

27a

where

m = I, II,-IIZ, relating to the mode,

Several workers (2) have used Westergaards's method

for solving crack problems.

 

(2) Complex Stress Functions

Mushkelishvillis complex stress function appreach **"?

enables the Airy stress function F to be written in terms

of two complex functions $(z) and wy(z), as

F = Re | Zo(z) + fv(z) az| (5.18)

which yields, from equation (5.15) with Fr replaced by F

c= are [$ (z) | (5.19)

and

C2 oy > 2k, o 2[Zzo"(z) + ¥t(z) | (5.20)

From equation (5.19) and the known properties of

o'(z) it can he shown that
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K, - ik, = 2Y27TLim {¥z=2z,$' (z) } ($.21)
Z7>Z

1

This method of determining stress intensity factors

has an advantage over the Westergaard method since conformal

mapping can be used to map cracks into holes.

This is important from a practical view point as many

cracks initiate from areas of rapid stress change.

For a mapping function

Zo ws (EG) (52,22)

and a crack tip at § in the -plane, equation (5.21) becomes

Ky - ik,, = 272m Lim Ya(Ey=a(&) is) (5.23)
E>E)

where

G(E)° SO (WCE))« and. 6' (€) m= de (E) fae

A comparison of equations (5.17) and (5.23) shows that

the Westergaard stress functions and the complex stress

function are related by

Zz iz. = 29! (3234)

For practical components, this technique is limited

to certain idealised situations.
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5.2.3 Approximate Methods

Several approximate numerical methods are available

for calculating stress intensity factors. Suitable

approximations have been applied in order to solve problems

having more complex shapes than would be possible by

analytical methods. The finite element method forms the

basis of investigations described in this thesis, and its

application to the determination of stress intensity factors

is described here. Other methods are described briefly here.

(1) Boundary. Coliocation

In this method of boundary collocation the stress

function is represented in series form and the determination

of the stress intensity factor is reduced to the solution

of a set of linear algebraic equations. The boundary

conditions on the crack surface are built into the series

chosen to represent the stress function and any remaining

conditions around finite boundaries are then fitted

approximately. The boundary points may be matched

(collocated) exactly or fitted in a least square sense.

Whilst convergence is not guaranteed, the boundary

collocation method has contributed a considerable number

of stress intensity factor solutions; accuracy of these

solutions is assessed when possible by comparison with

alternative solutions determined by analytical method.

Application of boundary collocation to crack problems start

either from the William's stress function or from series.
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representation of complex stress functions.

(i) William's Stress Function

(14) arises as a special

(17)

The William's stress function

case of the stress function for an infinite sector rt

is an Airy stress function which also satisfies the

conditions that the normal and shearing stresses be zero

along the crack surface. Considerable use has been made of

boundary collocation of the William's stress function by

Gross et al (+) for condtions of geometry and loading

which are symmetrical with respect to the plane of the

crack. Boundary collocation of the William's stress

function is suitable for singly connected configurations

in two-dimensional problems.

The William's stress function as modified by Sih and

Rice ‘39) has been used with boundary collocation to

obtain stress intensity factors for finite bi-material

plates. The method was used to analyse a centrally cracked

bi-material plate and a partially debonded composite

laminate.

(ii) Complex Stress Functions
 

Stress intensity factors in multiply connected two-

dimensional bodies subjected to in-plane loading may be

determined from a series representation of the complex

ELunCeions ¢0(z). and wvU(2) of Mushkelitshvali.
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The procedure has been employed extensively by

(17) ‘for edge cracks and in a modified form

1(28)

Gross et al.

by Kobayashi et a for internal crack problems. There

is no guarantee of numerical convergence, and accuracy is

judged largely by insensitivity of result to the inclusion

of more terms in the series. The selection of the

number and distribution of the boundary points also plays

an important role in the accuracy of the final solution (29) ,

(2¥ .Conformal Mapping-~-:
 

Conformal mapping has been mentioned in Section 5.2.3

for complicated boundaries, e.g. radial cracks emanating

Li}
from a circular hole , the exact form of mapping

function equation (5.22), becomes multivalued and

(30) hassubsequent stress analysis is difficult. Bowie

developed a technique for avoiding these difficulties by

representing the mapping function as a polynomial, the

coefficients of which are determined by comparison with

the exact mapping function. This method is applicable

to configurations for which an exact mapping is available;

it has been applied by several workers to singly connected

regions ‘17), A method in which conformal mapping is combined

with boundary collocation has been developed by Bowie and

Neal‘?+? . This method avoids the difficulty of finding

accurate polynomial mapping functions of the complete

physical region. A simple form of mapping function is used

to transform a crack and its exterior in the physical plane
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into a circle and its exterior in the auxiliary plane.

The remainder of the boundary in the physical plane

corresponded to a directly calculable curve in the auxiliary

plane. Collocation methods are used to satisfy conditions

(32)around this boundary. Bowie and Freese have applied

the modified mapping collocation technique to doubly

connected regions in both isotropic and orthotropic sheets.

q (33)Recently the method has been extende to improve

convergence in certain complicated configurations.

C32) Stress Concentration Factors
 

With reference to Figure (4.2) the stress at the apex

of the major axis of the ellipse On is given by:

a 2a
Go ttl te) (5.24)

The crack configuration may be approximated to a

Narrow elliptical cavity having a radius of curvature

e2
C= iy p<<a (5.25)

Equation (5.24) may be rewritten as:

Shoe} 3/3 2av = (3.26)

or

Sak
ge * 5 co vp (3527)

The stress intensity factors may be obtained from the

limiting values of maximum stresses at the base of a notch
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whose radius of curvature is allowed to vanish

fT

K. = —5 Li (o_y/p) (5.28)I 2 ae m

If tT. is the maximum value of T then:
m xy

K = ¥7f Lim. ¢t /9} (5..29)
IT m

Q70

and if - is the maximum value of Toy then:

K = /7 Lim (t'vp) (5.90)
ait eee m

Although the relationship between Ky and Oa or Cea?

Or Cee is exact the actual expressions for the maximum

stresses may be known only approximately. The values of

Oo. for a variety of notches can be found in the work of
m

Neuber =").

(4) Green's Functions
 

a are particularly useful in thatCertainsolutions

they may be used to construct Green's functions for

determining stress intensity factors for cracks in arbitrary

stress fields ‘13) , The stress intensity factor, for the

tip at x = a due to a pair of point forces Q perpendicular

to the crack surface (-a<x<a, Y=o), where the crack length

is 2a, and at a distance x from the origin, is given by

&
Ke iL (atx|? 5331=o [Fee] ce
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[ae] is a Green's function for this situation.

_- Gy (X70) is the stress along the crack site in the

absence of the crack, then writing Q = oy (%,0) dx and

integrating over the crack length gives the contribution

of all the forces distributed along the crack line, i.e.

ls — anX

+a *

ee | [=] 0, (x, 0) dx (5.32)
VT a

O, (x, 0) may be measured experimentally in the uncracked

solid or determined theoretically. Equation (5.32) then

enables the stress intensity factor to be determined;

equivalent forms exist for modes II and ter seeor Graphical

and analytical Green's functions have been determined by

oe) and applications to several problems

bL72

several workers

of practical interest can be found in the work of Chell

In order to apply the method, it is necessary to know

the appropriate Green's function and the distribution of

stress along the crack site in the uncracked solid. The

technique will give exact results providing that the exact

Green's function is used. Often this may not be available

and it is then necessary to make an approximation ‘°°) ,

(5) Integral Transforms and Dislocation Models
 

In this method the elastic problem is considered as a

mixed boundary value problem and solved using standard

transform techniques. Many solutions using various transforms
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ptt?) | Thesehave been collected by Sneddon and Lowengru

methods usually reduce to the solution of an integral

equation which takes the form

a

[ K(s,x)q(s)ds = L(x) (5.33)
-a

where L(x) is a function of the known stress along the

crack site in the uncracked body, K(s,x) is the known

kernel, and q(s) is the unknown function. The function

q(x) is proportional to the derivative of the relative

displacement v(x,0o). of the crack faces, i.e.

E dv (x,0O)a L = q(x) (5.34)
2(1-v*) Ox

where E is Young's modulus, and

v is Poisson's ratio.

A knowledge of q enables the stress intensity factor

to be determined from the relationship.

Lim E dV (x,0)
K_ = ew See 2x0)| (Si 0)
: x7a 2(l-v") ox

A method based on continuous dislocation arrays also leads

to integral equation similar to (5.33) for references see

reference (17).

(6) Force-Displacement Matching
 

This method is applicable to configurations in which

there are boundaries between different materials; it involves
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matching the forces and displacements in the region over

which the materials are joined. The method has been used

mainly for determining stress intensity factors for cracks

(39)in stiffened sheets where the stiffener is represented

as a distribution of point forces. The distribution is

determined by satisfying compatibility of displacements

and equilibrium of forces at each attachment point between

the sheet and the stiffener,

(7) Alternating Methods
 

This method has been useful in determining stress

intensity factors for a number of two-dimensional and-

three-dimensional crack problems and many applications

n'38,Ch. 4) nishave been viewed by Hortranft and Si

method uses existing solutions of simple crack problems

to construct approximate ones to a more complicated range.

This is done by superimposing the known solutions of component

problems, each satisfying boundary conditions on a portion

of the boundary. Its application to three-dimensional

problems has been made in reference (40).

(8) Finite Element Methods
 

The use of finite element methods to analyse fracture

problems is complicated by the stress field singularity

which exists at the crack tip, The methods for determining

(17)stress intensity factors using finite elements SALE

into three categories. The first of these three methods
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allow stress intensity factors to be determined directly,

this method requires small elements in the vicinity of the

crack tip. The other two methods are the most successful

methods of approach and wotld appear to be the so-called

energy technique, and the singularity function formulation.

In the latter the necessity for extremely fine meshes in

the crack tip region can be overcome by the use of special

elements which incorporate the required stress singularity

in their formulation. These elements are based on the eight

node quadrilateral isoparametric element; this being the

most popular element in general use. Such crack tip elements

may be readily incorporated into a mesh of standard

isoparametric elements permitting numerical fracture studies

to be undertaken without extensive mesh generation or

refinement. In particular elements based on the use of

distorted shape functions, standard shape functions,

analytic soluctions, a superposition process and a hybrid

technique are considered.

(i) Crack Tip Stress and Displacement Methods (direct methods)

(a) Crack Tip Stress

The stress method correlates the stresses at the nodal

points of the finite element mesh with those at the crack

tip which are given by equation (4.20)

Moss. = Re te me 8) (5:36)
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where m= 1, Il. or III, i.e. the mode.

For the opening mode (m=I) equation (5.36) can be

written as

= Fan 9g acy,Ky ayen/e ) ( )

Hence Ky may be determined from oy at some small

distance r from the crack tip, This method has been used

by Chan et ar (41), It was concluded that the results were

not as accurate as those obtained by correlating the

displacements of the finite element nodal points as described

next.

(6b) Crack Tip Displacement
 

In this method the displacements are the primary

unknowns to be determined. This method has been used by

many workers (42743) for a variety of problems. It seemed

that better results may be achieved by using the displacements

obtained from the finite elements method. The relevant stréss

intensityfactor may be obtained by substituting the appropriate

displacement components *(u,) and angle § in equation (4.21):

. 5,
mu, = K(f /G) mf, 5 (v,8) (5. 3a)

Since no provision is made for the crack tip singularity,

several values of the stress intensity factors are evaluated

at a number of points close to the crack tip and are plotted
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versus their distance from the tip of the crack. Such a

curve becomes linear some distance away from the crack tip,

and by extrapolating the linear portion to the tip point,

a better estimate of the stress intensity factor is obtained.

(ii) Energy Methods

These methods do not need such small elements in the

vicinity of the crack tip. Since they do not rely on the

accuracy of the localised crack tip stresses, strains, or

displacements obtained from a finite element program.

Consequently, for the same accuracy, the energy methods

allow coarser grids to be used than were admissable for

the first method.

There are three main energy methods:

(a) The Strain Energy Method
 

The crack tip stress intensity factor can be related

to the strain energy release rate G, by the following

relations ‘13), For plane strain,

eo0ey ee ys Uy) 2 5)
E aL ak E LT a

and plane stress

2 Z 2
) (5.40)

and for mode I loading condition as in equations (4.23) and

(4.24)
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2
aT

G= (1-¥0") Er (for plane strain) (5.41)

G = = (for plane stress) (5.42)

The strain energy release rate is the amount of energy

made available at the crack tip for the crack extension

process per unit area extension of the crack. As shown in

equation (4.22)

G=- ge for a fixed displacement condition (5.43)
dA

where U is the elastic strain energy of the body containing

the crack.

A is the crack area.

By obtaining finite element solutions for the cracked

structure of interest at two or more slightly different

crack lengths, G and subsequently the crack tip stress

intensity factor, can be estimated by means of equation (5.43).

The strain energy stored in the body for each solution is

determined by summing over the elements and G is calculated

by a finite difference representation of equation (5.43).

The above method has been developed and used by

watwooa ‘4! , and Anderson et gutne).

(ts) that the energyIt was shown by Paris and Sih

release rate can also be related to the rate of change of

compliance C, the inverse spring constant, with crack
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extension by the equation

(5.44)Q ll

i
e

BI
g

where Q is the applied load.

Dixon and Pook (49) calculated the compliance of a cracked

structure for a number of different Cracklengths by the

finite element technique and then, by means of equation

(5.44), calculated the energy release rate.

(b) Line Integral Methdd
 

Rice ‘46) has shown that the value of the line integral

y= f (way - 7.22 as) (5.45)- x

is proportional to the square of the crack tip stress

intensity factor for plane linear elastic bodies free from

body forces; [ is an arbitrary contour surrounding the

crack tip. U is the strain energy density, along ae

is the traction vector along the outward normal to ¢he

contour. u is the displacement vector on an arc element

ds’ along the arc s.

    

 
Pat. Coe (Path of integration for determining the J-integral)
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The crack surface must also be traction free between

the crack tip and the contour intercepts.

For a mode I condition the relationship is

2, TX
J = (lev) = (plane strain) (5.46)

mKe ;

J = = (plane stress) (5.47)

The line integral is evaluated in a counter-clockwise

sense starting from the lower crack surface and continuing

along the path [ to the upper flat surface and ds is an

element of arc length along I.

By numerically evaluating the J-integral for the finite

element solution over a path surrounding the crack tip,

an estimate of the crack tip stress intensity factor can

be made by use of equations (5.46) and (5.47).

For a crack tip subject to combined modes I and II

loading the relation between J and the stress intensity

factors is

r(lavey 62 2...I[Ky + Ki (plane strain) (5,48)

2 2J = LRT Ke (plane stress) (5.49)

An estimate of the sum of the squares of the stress

intensity factors can be made, The magnitude of the

separate intensity factors cannot be made.
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In general, the J-integral method is somewhat more

accurate than the displacement and stress method for the

same mesh. Its accuracy is not as dependent on mesh

refinement at the crack tip as are the other two methods.

(c) Crack Closure Method

This method calculates the amount of work required to

Close successive nodal intervals along a crack 47) | The

displacement of the first nodal point along the crack face

from the tip is calculated with all the boundary -conditions

applied. By applying unit loads to this node, the work

required to close the crack over nodal intervals can be

calculated. A graph of the closure work done versus crack

area is plotted and the strain energy release rate (G) is

determined from its slope. The (Ky) value is then determined

from (G) as in the method described in section (a).

(iii) The Singularity Function Formulation

The formulation is based on the isoparametric element.

Singularity elements can be either coupled to, or replaced,

standard elements in a structural mesh to represent the

appearance of the crack.

(a) Elements Employing Distorted Shape Functions

Element shape functions can be modified to produce

displacements proportional to the crack tip singularity

SUNGEon, Tracy 49) employed this technique which is hased
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on isoparametric quadrilateral elements, for the calculation

of mode. I stress: intensity factors. Two types of elements

were employed, the crack tip is surrounded by triangular

elements (Fig. (5.2)) which are basically quadrilaterat

elements with two of the nodes made to coincide at the

crack tip, so to form a triangular element. The second

type of elements employed in the mesh are the conventional

quadrilateral isoparametric elements which surrounds the

spectal elements.

The isoparametric type of elements in the form of a

general quadrilateral ABCD, Figure (5.3), has the

displacement function specified in the form:

u(é,n) = o. + 56 + azn + a45n (5.50)

v(é,n) = 5 + aes Faon + agén (5.81)

Such tsoparametric elements can be joined with the

singular elements in such a way that there is no displacement

incompatibility along the element boundary.

In an application of the technique, values for the

element stresses and nodal point displacements are obtained

from a finite element program adopted to include these

elements. Stress intensity factors may be computed from

these stresses and displacements using the direct methods

previously described.
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FIGURE(5.2) CRACK TIP ENCLOSED BY TRIANGULAR CRACK TIP ELEMENT.
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FIGURE (5.3) NEAR CRACK TIP TRIANGULAR ELEMENT MAPPED INTO A SQUARE.
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The problem of a douhle notched'edge plate under

(48)tension was solved by Tracey using this method. He

arranged the values obtainedfor (Ky) from the displacements

Of the first ring of nodes surrounding the crack tip, and

the results were within (4%) of the exact value for

(248) degrees of freedom and (2.9%) for (548) degrees of

freedom.

(61) eliminated the requirement for mappingBlackburn

a rectangular into a triangular element by developing

additional triangular functions proportional to Yr for

both linear and parabolic edge displacements.

(b,6+b3n)
u(&,n) = by + Ts: (3,52)

which is equivalent to a constant strain triangular element

and

Cyten Stegntcyén

u(¢,n) = —_—_——— (5539)

VvEtH

which is equivalent to a linear strain one where € and n

are area snbrdigates and simplified the procedure by

moving the mid-side nodes in a parabolic isoparametric element

to positions one quarter of the side length away from the

corner node representing the crack tip. This automatically

produces a stress singularity proportional to 1//rwithout

any special shape functions or numerical integration formulae.
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The element formulations evolved by Blackburn and

(62) forHenshell and Shaw were tested by Fawkes et al.

several load and geometric conditions. The stress

intensity factor, K, could be calculated by extrapolating

either the stresses or displacements back to the crack tip

region, where the singuiarity effect was not accurately

modelled. This SIF values based on displacements were far

more consistent than those based on stresses.

; 61
A test computation was run for size-edge-crack plate

for a crack running from a=0.1 to 0,9W, where a is the crack

length and W is the plate width... The stress intensity

factor obtained by use of both the Blackburn ahd Henshell

and Shaw elements were in excellent agreement with the

A.S.T.M. results over the range of published a/w ratios

0.1: = O.6.. The. two andbe element solutions were also in

good agreement even at a/w = 0.9. The tests were then

repeated for the case of pure bending and again excellent

comparison with the A.S.T.M. was evident (61) , The case of

pure shear was also considered by Fawkes et al. in which

both stress and displacement fi€ld are Skew-symmetric.

The only non-zero stress intensity factor, Ky, was

calculated. Values obtained by Blackburn and Henshell

(22)elements consistently underestimate the Wilson result

by 10%.

While these tests show that both the Blackburn and

Henshell elements perform equally well in single mode fracture,
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it is found that for mixed mode problems and at the higher

range of a/w, the results diverge dramatically from

Wilson's results, and that the results of the Blackburn

and Henshell elements no longer coincide but give widely

“@ifferine results in some cases. It was also found that ‘61)

the Henshell and Shaw element was more accurate than ‘

Blackburn's, but both were capable of yielding highly

significant differences from analytical results for

particular loadings.

(b) -Elements Employing Standard Shape Functions

This method employs the development of a general,

arbitrary quadrilateral finite element (Fig. 5.4) with a

singular corner node. The element formulation is generalised

such that any singularity may betreated by including the

(51)
proper near-field terms, Benzley was the first to use

this modelling technique. He employed Linear rectangular

elements to model the crack tip geometry and introduced

a ve singularity by superposition, utilising the normal

element shape functions for the purpose. Benzley obtained

good results for certain simple test problems and therefore

it was decided to extend this technique to the case of

parabolic isoparametric elements. If the elements containing

the singularity function are connected to standard elements,

as is the case at the boundary of the chosen singularity

zone of the influence, the two types of elements no longer

conform. This incompatibility can be corrected by
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specifying that the singularity displacement function must

have zero contribution at the boundary of its zone of

influence which can be achieved by the introduction of an

appropriate product function.

(s1) represented the arbitrary quadrilateralBenzley

element with a singular point at node i' as shown in

Fig. (5.4). The effects of the singularity are included

in the element by enriching a bilinear element displacement

assumption with terms that give the proper singularity

at: node: i! ,. i.e:

u, = MitaaLeeea (0,9) (5.54)

where

Loom 1,2

u, = displacement in1 and 2 directions

‘a> unknown coefficients

a,b= local, non-dimensional oblique co-ordinates

0,9= polar co-ordinates with origin at the crack tip

K K = intensities (unknown coefficients) of singular
2) ke

terms

Qy = specific singular assumptions.
=

Solving equation (5.54) for the unknown coefficients

eea in terms of the nodal displacements, Uy where Kk = 1,2,

3,4, the displacement assumption may be written as
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4 - 4 =

ee ie ) +K7 (Qo47 it 2541) (3.29)
4

uw. = 2. £ sO),
= k=1 ts lik k=1 K

Kix*®y (O757

= the value of Qi evaluated at node k

£, = g(l-aa,) (1-bb,,)
k

a. ,b..= the coordinates of node k(+l).

The terms in the parentheses in equation (5.55) account for

the singularity.

To remove the incompatibility mentioned earlier

Benzley altered the displacement assumption of equation (5.55)

to

4 —4
u, = é £5,+R (a,b) {K; (Q);- E £Q14,)pz (O05 7

. k=1 k i
M
&

i

(3756)

Here, R(a,b) is set equal to a function of $(1-aa,)

and/or 5 (1-bb ), such that it equals 1 on boundaries adjacent
k

to 'enriched' elements (i.e. type A elements) and equals

zero on boundaries adjacent to 'bilinear' elements (i.e.

type C elements). Elements with the displacement assumption

given in equation (5.56) are referred to as type B elements

(see Fig. (5.5)).

The most interesting feature of this type of element

is that the stress intensity factors are treated as unknowns

in the same way as nodal displacements. Therefore on
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FIGURE (5.4) A QUADRILATERAL FINITE ELEMENT WITH
A SINGULAR POINT AT NODE (i).
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FIGURE (5.5) FINITE ELEMENT DEFINITION OF SIDE CRACKED PANEL.
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solution the K values are printed out directly and no

supplementary calculations and extrapolations are required.

(c) Elements Based on Analytical Solutions

In this approach the element is formulated so that the

full crack field is represented and not just the crack tip

Singularity. This one element could then be used to model the

crack affected zone in place of refined meshes at the crack

tip. If this type of element truly represented the complete

cracking field, it should be possible to specify the crack

to anywhere within the element boundary. Crack extension

could be permitted by merely redefining the crack tip position,

so avoiding the generation of a new finite element mesh ‘61) |

The element stiffness matrix is formulated using

normal energy theorems but with the stress and dispiacement

fields expressed in terms of mode I and II cracking

coefficients which in turn can be related to the nodal

displacements.

One obvious advantage of such an approach is that it

combines the analytical solution, which is accurate near

the crack tip but not remote from it, with the finite

element solution, which is accurate remote from the crack

Cip Bue not, Close to 1c.

The method was developed by Hilton and Hutchinson ‘°°

to evaluate the elastic plastic stress intensity factors

(84)for mode I and III, and by Wilson for elastic plastic
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mode III. For the case of centrally cracked infinite plate

under uniform applied tension, elastic mode I stress

intensity factors were obtained with an accuracy of

within 1% of the theoretical one.

Essentially the procedure involves the embedding of

the singular solution into a finite element grid.

-

As: an

example of the-procedure, consider a centrally notched

plate under axial mode I loading (Fig. (5.6)). By symmetry,

only one quadrant of this plate is analysed, (Fig... (5.7).)..

A circular core of radius Ro is constructed around the

crack tip together with the first ring of triangular or

quadrilateral elements in position around the core.

The displacements within the core region are defined

from equation

Ke ag *
Lees Te (3) [ (2k-1) cosé/2 - cos36/2] + 6x

(S57)

Ke 1G *wu, = eG) [(2k+1) sin 8/2 - sin 36/2]

6x is the rigid body displacement of the core in the

x-direction and constitutes one of the parameters to be

determined from the solution of the problem.

In addition to specifying the displacement pattern

within the core, equation (5.57) also represents constraints

on those nodal points of the first ring of elements that

fall on the circumference Tye
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The potential energy of the quadrant is

= - : B56PE Ure + 2 SE f T.u ds ( )

el Ss

where

U is the strain energy stored in the core
core

2 SE is the total strain energy stored in all the
el

elements outside the core.

[T.uds the work done by the surface traction vector

T on the surface displacement vector u.

The strain energy stored in the core

 

=. .
Uae 3 %q5 45 dvol (5.59)

core

KERGT
= (5.60)

32G

The. stress intensity factor K.. and. the rigid: body
aE

displacement component éx therefore become generalised

coordinates of the problem together with the nodal

displacement u; (at node i). The governing linear algebraic

equations to be solved for Uy, Ky and 6x are obtained by

minimising the potential energy equation (5.58)
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 OPE 6 (5.61)

  
where N is the total number of unconstrained degrees of

freedom. The nodes on the interface between the core and

the first ring of elements are constrained by equation (5.57).

The continuity of displacement at the interface

between the core and the neighbouring elements is not

fully satisfied, compatibility is assumed only at the nodes,

and hence monosonic convergence, to the exact solution cannot

be expected. However, the number of nodes on the core-ring

interface can be increased to reduce the discontinuity of

displacements to an acceptable level.

The above procedure can be incorporated into a standard

finite element program ‘15 762,68) | Modification of such

program consists essentially of constraining the nodes on

the first ring of elements surrounding the crack tip and

adding equations which couple the stress intensity factors

and rigid body modes of the core to the displacements of

the second ring of elements, and thus through the remainder

of the elements, The stress intensity factors are obtained
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directly, together with the nodal displacements, as output

from the program.

Richards and Robertson °°?) developed this approach

by using a ‘circular core' region, surrounding the crack

tip, embedded in an ordinary six node isoparametric triangle

finite element mesh. Eight-node isoparametrix quadrilateral

element was later used by wood ‘+9? , Within the core a

displacement pattern, incorporating a rigid body mode

and the usual near crack tip field, is assumed. Only

minor changes to a standard finite element program are

necessary. The values of the stress intensity factor are

obtained directly along with the other finite element results.

The stress and displacement fields in the immediate

neighbourhood of the crack tip are described by expressions

of the tye 7!

ee wee me 6NG 4 4 a mf,= (0)

it. 23],..2

Mee es oe els
(5.62)

5
mu; = kK = mg. (V,9)

MMT, aay ie

where the mf, 5 (8) and mg, (V,9) are known functions and K,

is the stress intensity factors for the mth mode.
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The functions £,. (9) and mg; (v,9) for mode I are:
j

If4, = z cos6/2(1l-sin0/2 - sin 36/2) (5.63)
2

Ig, = = | (2k-1) (cos9/2 - cos 36/2) | (5.64)

where 2

kK = 3-4 for plane strain

k = 3-v/l+v for plane stress.

These equations correspond to the first termina

series expansion and describe the situation in the near

tip field. Adequately to describe the situation further

removed from this zone, it is necessary to retain more

ae A mixed mode situation may beterms in the series

described by a superposition of expressions of the form of

equations (5.62).

The advantages of this method could be stated as the

following

(1) The simplicity of incorporating the core element within

a standard finite element program.

(2) The stress intensity factors Ky and Kir and Kyrz are

obtained directly.

(3) Separation of K. and K for combined modé analysis.- Lo

(4) Possibilities of extending this method to elastic-plastic,

plastic cases, and other material properties.
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(d) Superposition Method

This is one of the methods used to solve a problem

with a singularity, by the linear combination of a classical

solution for the singular fields, and a non-singular finite

element analysis. In this case a solution for a crack in

an infinite plate is chosen to represent a crack ina

finite specimen. This analytic solution will not satisfy

the boundary conditions existing on the periphery of finite

region. These boundary ‘discrepancies can be calculated from

the correct boundary values, as given by the non-singular

finite element anaitysis, and then applied as nodal forces

in the reverse direction on the analytic solution to produce

the final solution.

Since the elements formulated in the last method

produce good results, and were formulated using analytical

solutions, they are also used here as a superposition scheme.

The zone of the singular function to be used in the

superposition method can vary from one element only up to

the entire finite element mesh. Further details of this

method are found in reference (53).

The present formulation is limited to cracks occurring

along the edge of elements, since standard isoparametric

elements are incapable of representing cracks through their

interior.

The superposition method is one of the most common
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and simplest techniques in use for obtaining stress intensity

factors. Complex configurations are considered to a

combination of a number of separate simpler configurations

with separate boundary conditions and which have known

stress intensity factors. The stress intensity factors for

the simple configuration are then added together to obtain

the required solution °>’ .

(e) Mixed and Hybrid Elements

Most of the finite elements developed in the field of

structural and solid mechanics are those which are based on

the assumed displacement fields and the principle of

minimum potential energy. In this formulation, the field

variables are the element displacements. Similarly, the

principle of minimum complementary energy based on the assumed

stresses as field variables instead of the displacements

in the minimum potential energy. In the equilibrium element

models, the nodal values of stresses or forces are treated

as the primary unknowns of the discretised structure. The

stress field is selected such that internal equilibrium is

satisfied with continuous stress transmission between

elements. In the principle of stationary Reissner energy ‘>*),

both displacements and. stresses are treated as field

variables. The application of this principle results in

finite element formulations known as 'mixed finite element

models!.
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The three basic variational principles mentioned above

can be modified to derive additional finite element

formulations with the aim of improving the accuracy and

efficiency of the finite element discretisation. "Hybrid

finite element models" ..are. obtained if an addition to one

field variable like displacements or stresses, Other

variable like stress or displacement are introduced and

the parameters that correspond to the additional variables

are eliminated at the element stage before assembling the

element equations °*)

RAO et aa, $18) suggested a possibility to overcome

difficulties of convergence by developing a hybrid technique

combining continuum and finite element concepts. In such

techniques, each region of stress concentration is covered

by one large "primary element" whose description includes

term(s) identifying the type and order of concentration,

while the remaining structure is split into a few "secondary

elements" which are conventional finite elements.

A special super-element was used by Pin Tong et alee

which was used jointly with conventional finite elements

for the analysis of elastic stress intensity factors for

plane cracks. This super-element has been developed for

the crack tip region based on the assumed stress hybrid

model. The singular: terms included in such a development

involve only these stress terms which are proportional to

. The results obtained shows that by the use of such a

A
l
e
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super-element, an accurate assessment of the stress -

intensity factor can he achieved by using much smaller

number of degrees of freedom than using only conventional

finite elements. Using conventional elements like that

used by anderson ${2) , with 1500 degrees of freedom, the

error of their solutions for Ky is of the order of 5 per cent.

(85) (48) employed special elements at theByskov and Tracey

crack tip to include the effect of the stress singularity.

Yet, by using around 500 degrees of freedom, the errors

of. théir: solutions: for Ky are still around 3 per cent. By

using the assumed stress hybrid approach 5 per cent error

was obtained using only 70 degrees of freedom, and when 194

degrees of freedom were used the error reduced to 0.5 per cent.

(9) The Boundary Element Method
 

The term 'Boundary Element' originated within the

department of Civil Engineering at Southampton University.

It is used to indicate the method whereby the external

surface of a domain is divided into a series of elements

over which the. functions under consideration can vary in

different ways, in much: the same manner as in finite

elements ‘°°? , One of the interesting features of the

method is the smaller system of equations and considerable

reduction in the data required to run a problem, particularly

in, two- and three-dimensional problems. This is because

the n-dimensional mesh is used for (n+l) dimensional

problems ‘>7? ,
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In the boundary element mehod, a trial function is chosen

in such a manner, that the differential equations are

satisfied throughout the domain. Only the boundary

conditions have to be approximated ‘/”) ,

Rudulphi {78} have used the method for crack problems

where equations of the boundary element method and of

a stressed semi-infinite crack in an infinite plane are

combined to formulate the solution to the finite edge

cracked plate. The coupled integral equations are solved

numerically by the form of the boundary. element method

and by Gaussian quadrature.

Value for Mode I Stress Intensity Factor for a doubly

edge cracked rectangular plate in tension, where the length

of the edge crack is half the plate width, was 1.12% less

than that obtained by Tada et eles using the expression

,F(a/b) = (140.22 cos* $8) / 2B tan 38

where F(a/b) = Kigg/7a

where

a is the edge crack length

b is half the plate width.

Drawbacks of this method is its greater mathematical

complexity and the necessity of having an analytical solution

as a starting point >),

-157~



5.3 FINAL REMARKS

The methods described in this chapter have been

developed over the last thirty-five years. They contributed

to the solutions of a large number of problems. Providing

that a computer is available, the numerical methods for

evaluating stress intensity factors are sufficiently well

developed to enable most problems to be solved in two-

dimensions. The finite element method shows the greatest

potential for solving three-dimensional problems. It has

the highest growth rate.

The choice of a means of evaluating the stress intensity

factors will often depend on the following ‘®>);

(1) The time available.

(2) The required accuracy.

(3): The: Cost.

(4) The use (once or many times).

(5) How simply the real structure can be modelled.

For simple geometrical solutions, or where a complex

structure can be simply modelled, it may be possible to use

($7,37,64)
one of the reference books - Many other

solutions are available, for instance, in the series of

special technical publications, published by A.S.T.M., in

the series entitled'fracture} edited by Liebowitz (3) , and

the series entitled'Mechanics for fracture'edited by sin ‘®) |

The methods both experimental and theoretical have also been
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reviewed by Cartwright and Rooke (17), Liebowitz, Vol. II

of Reference (36), Sih, Vol. I of Reference (66).

Generally, the experimental techniques are less

accurate. The finite element method may contain errors

of up to 6% depending on the computational effort employed.

These errors are obtained compared with analytical solutions

available °-) .
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CHAPTER 6

THE FINITE ELEMENT METHOD

RELATED TO FRACTURE MECHANICS

Fracture mechanics is concerned with the phenomenon

of structural failure by catastrophic crack propagation

at average stresses well below the yield strength.

One approach to the prediction, and hence prevention

of such failures is based on stress intensity factors

which define the magnitude of the singularities in the

stress field which occur in a linear elastic analysis of

a structural component with an infinitely sharp notch.

Methods for the determination of the stress intensity

factors are numerous as described in Chapter 5. The finite

element method is among these methods, its use in fracture

mechanics has been quite extensive both in the elastic and

elastic-plastic range.

The finite element method of interest here is the

Hilton and Hutchinson method '°°) as it has been described

in Chapter 5, was originally applied to the calculation

of Mode I and Mode III plastic stress intensity factors

and by Wilson ‘/®) for problems of out of plane shear, Mode

alesis

Essentially the procedure involves the embedding of

the singular solution into a finite element mesh. A 'core'
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element is used, surrounding the crack tip region. The

core is constrained to match the finite nodal displacements

on its boundary. The method of Lagrange multipliers, as

(60)
used by Richards , is employed to formulate the stiffness

equations.

The purpose of this chapter is to illustrate the

63
Richards /Robertson ( a arudaction to accommodate the Hilton

Hutchinson core, in the general finite element program

devehoped by Robertson ‘°7? | This program has been

adopted in solving crack problems during this work. The

program, including the modification, was done originally

in Algol Language... ._It has been translated to Basic

Language during the course of this work, to suit the

HP9845 Desk-Top Computer available in the department.

A complete detail of the necessary modification and

reconstruction of the stiffness matrix xi, is to be

found in Reference (15). It is felt that it is necessary

to outline the important procedures in the formulation of

this method as it has been executed by Richards/Robertson /°?)

In the stiffness finite element analysis of structural

problems, a displacement field local to an element is

assumed in the form

fu}":= [Nox,)] fu}§ (6.1)
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where

Ov (x,)] is an interpolation matrix, and

ful? is a vector of nodal displacement.

Using the strain displacement relation equation

becomes

{e}© = [a] [ny] {u}® = BB] {ule

The strain energy of an element may be written as

u, = 3 f {o}"{e} avol

where

{o} is the stress vector

{e} is the strain vector.

Using the stress-strain relation {o} = [D]{e}

equation (6.3) becomes

te

v. = 3 ful? (f (8) * fp] [B] dvol) {fu}?

which yields

cc

{u} [x] tu&ca iH}

N
i
k
e

{[B]* [pb] [B]avo1w 5 @

I

is the element stiffness matrix.
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Summing up the contribution of all the elements

surrounding the core in the discretised structure, the

total strain energy becomes

u = 5 {a}* [k]{q} (6.8)

{q} is the generalised coordinates replaces the local

coordinates (ule, and [K] is the stiffness matrix for the

whole structure, except the core region.

In a cracked configuration such as that in Fig. (6.1)

where a core region is identified surrounding the crack

tip. The near tip displacement components can be described

in the form

% ae
Bi z Ky Gs /G) 19; (v,8) tu,tuh, (r,8) (6...9°)

where the displacements are augmented by rigid body

translations and rotations Us, wh, (r,9).

The above may be expressed in a matrix form

{ul}, = [N] {a} (6.10)

where

tes comprises a shape function for the core and {a}

is a vector of core generalised coordinates .which include

the stress intensity factors explicitly together with the

rigid body modes.
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FIGURE (6.1) A PLATE WITH A 90 SINGLE—EDGE-CRACK, IN TENSION, WHERE

A CORE REGION IS IDENTIFIED SURROUNDING THE CRACK TIP.
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The strain energy of the core region may be written

as
N
i
r

UL = 5) fo}® {e} avol
core

again using the core stress-strain relation

{a} + [p] fe}

U. = 3 te}* [DJ] fe} avol

from equation (6.10)

fe} = [B] fa}

equation (6.12) becomes

U_:= $to}*(f BIE Dl [B], dvol) fa}

U. = z{a}"[k] fa}

where

x], = (It), avo1

The total potential energy of the plate i.e.

V = 5fa}" [kK](fa}+ 5a)” [Kk](a}-(a}*(03

(6.11)

(6.12)

(6.13)

(6.14)

(6.25}

(6.16)

where [K] is the stiffness matrix of the mesh surrounding

the core, {q} is the nodal displacement and {Q} is the force

vector.
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The displacements of nodes on the mesh-core interface

boundary can be expressed as a function of the unknown as

{uy}, [NoJ.- fa}

fusty Ino], {al :

fu}. = ‘ = . = [a] to} (6.174)

where

{uj}, refers to interface node l, and

{ugt, refers to. interface node 2-7 cc cons e ete,

Partitioning {q} into {q,} and {qo} corresponding to

nodes on and outside the interface resnectivelv, then for

compatibility at the interface: nodes

lla [A] fo} = [Syce tay? | (6.17b)

(q,} = [e}j., [A] {a} = fa] fat (6.18),

Using the Lagrange multiplier method to enforce

continuity of displacement at the core and the finite

elements, the modified potential energy V is given by

¥ = 3{a}" [K]{o}+ Siq}" ik] fql-{q}"fo}+ (fq,+A fo) 0} (6.19)
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Partitioning {Q} and [kK] to correspond to q, and q,

 

{Q,3

{Q} =

{a5}

(6.20)

Ki] (Rj,
[x] =

[Kp 4] [Ky]

For equilibrium

evVe=eo

a + te 2 t6% = 0 = {éa}"[K] {a} +{6q}* [K] {q}-{8q}* {Qh

+ ({6q,}- fA] (6a})* 0} (6.21)

The above equation may be written as:

0 = (6a}"([k] {a0}-[a] {4}

+{8q,}° (Ik, ,] (a, }+[K, 5] fa, }-f0,} +00 (6.22)

+{4q,}({K5,] fa, }+[K,,] fa, }-{0,})

since {6a}, {641} and {§45} are arbitrary, equation

(6.22) yields three simultaneous matrix equations of

equilibrium
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[kK] fa} - [A]“2a} = 0 (6.

[K,,]{4,} + [K,,] {a5} - LQ “Tae ta) = 0 (6.

i} oO[K,,]{a,} + [K,.]{a,} - {a5}

€ ee ;
multiplying equation (6.24) by [a] and combining with

equation (6.23), yields:

fa)“ (k,j] @,PJ,la} Ik] fol-fa]*fa,} = 0 6.

Replacing vector {qj}, results in the final expressions

C(x] ,+fa] © (ky, y] (Al) fo} +fAT “Ek, 5] (a5 }-[al*io,} = 0

(6,

23)

24)

25)

26)

(6.27)

[Koji]. tet +({K,5J{a5} = 105} = 0

The above equations can be represented in one

modified form

*

[K] tq} = {0} (6.28)

where

ot z

[Ki 4] [Ki 2]

[kK] = (6.29)

el al |
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{q,}

tq} =
* 7tq. ?

£Q,}
{go} =

*

{Q5}

with ,

[Ky] = &2J

eo!

c
S A

nN nN t
4 |

— O
+
*

H

i
) ll {Q,}

(6,3: = [fA]*{o,}

So, thac

[kK2]
*

[x] =
fal“ ik,5]

Ki] eee

= kJ, +l,J

-16%

 

Ki teKe |

(6.30)

(6.31)

(6,32)

(6.35)



and the generalised coordinates:

ay}
{q} = (6.34)

{a}

and the force vector:

{Q5}

{O} = 7 (6.35)

[AJ {01}

The partitioning of the original matrix equation and

the construction of the modified stiffness equations are

shown in Fig. (6.2) and Fig. (6.3) for Mode I case, give

an indication of the manipulations required in combining

the core and finite element system.

Once the modified stiffness matrix and load vector

have been obtained, the solution of the simultaneous

equations is carried out in the normal manner to give the

values of {qo} throughout the mesh and the core variables

{a}.
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CHAPTER 7

NUMERICAL EXAMPLES FOR THE CRACK PROBLEMS

7.L  XINTRODUCTION

This chapter deals with the numerical examples

regarding fracture mechanics. Applying different programs

which fall under two categories. The first consists of

programs concerned with Mode I and mixed-mode plane

stress/strain fracture BetpiGhee which were originally

(67)developed by Robertson , and have been augmented by

Wood (19) | The second consists of a program which deals

with Mode I axisymmetric fracture problems, which has been

developed by Al-sharqi (°°) , All these programs with their

relevant procedures were written originally in ALGOL Language

and run in the Computer Centre at Aston University by the

forementioned research students,

The plane stress/strain Mode I and mixed-mode fracture

programs employ the Hilton and Hutchinson element ‘°° , and

the crack tip as it has been described in Chapter 6, and

Section 5.2.3 with a choice of either triangular or

quadrilateral isoparametric element around the core element

throughout the mesh. These programs with all the necessary

procedures have been implemented on the HP 9845 Desk~Top

Computer during the preparation of this thesis.
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All the programs with the relevant procedures, for

Mode I and mixed-mode fracture problems, are fully

explained, and listed with their flow charts in

references (15) and (67).

(67)
The mesh design adopted by Robertson was forming

a finely graded element distribution around the core, so

that the rapid stress changes, in this region, can be

accurately interpreted. A series of tests were carried

(67) to find out the influence, of coreout hy Robertson

radius/crack length ratio, and that of the number of nodes

on the mesh/core interface, on the values of the stress

intensity factors. He found that the core radius Ro within

thee limites a/30<R,<a/50 gave the best results, also that

a minimum number of core/mesh interface nodes to be 17 or 19

produced accurate results.

a substituted using the finely graded elementWoo

around the core by using one ring of special isoparametric

elements, which is constructed to sense the crack tip

singularity. These elements have been termed 'Transition'

elements. They are described in Section 7.2.

Example 1 illustrates the application of Mode I

fracture program 'FMODIA', by considering a plate with a

90° single-edge-crack in uniform tension. In this example

only half the plate is used due to symmetry. The value

is found and compared with a known value for theof K,

same problem found in the literature.

-173-



Because of the problem of Integer Precision Overflow

by the HP 9845 Desk-Top Computer during. the execution. of

the mixed-mode program 'PCPOY' for example 3, which

consists of a plate with a central crack inclined at 45",

no solution was obtained. As a result, the sample problem

used in example 1 is repeatéd in example 2, as a mixed-mode

fracture problem, to demonstrate the working order of the

mixed-mode fracture program 'PCPOY' and to check the

accuracy of the value of Kt and Kit:

The axisymmetric Mode I fracture program, 'AXYMD1'

with its procedures, were developed by Al-Sharqi ‘°9) , and

have been translated to BASIC from ALGOL Language during

the preparation of this thesis. In this case, the mesh

generated by a semi-automatic data input as was originally

developed. Example 4 of a round bar with circumferential

crack was chosen to illustrate the application of the

program 'AXYMD1', using two meshes. Values of calculated

Ky compared to that of values available in the literature

for the same configuration.

7.2 TRANSITION ELEMENTS
 

The 'transition' element has been adopted from the

method proposed by Lynn and Ingraffea ‘89) , where they

have shown that, by variable placement of the side-node

between quarter- and mid-point in an isoparametric element,

the point of singularity sensed by the element can he

controlled.
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Considering a one-dimensional element which may form

a side of an 8-noded isoparametric element, as shown in

the diagram below:

 

sS=0 S=P S=2 X ORS = X/h

eeae 

SINGULARITY POINT

w
y

 & * “+ ae

1 0 1

ELEMENT CO—ORDINATE MAPPING.

The three nodes of this element shown above, designated

by the non-dimensional variable s = 0, p and 2, have been

mapped to € = -l, O and +l on the & scale respectively.

The transformation is accomplished in general by the

following quadratic equation

= 2
os = Cy + CoE + C36 key ods)

substitution of s and € nodal values into equation (7.1)

gives three simultaneous equations from which Cyr Co and

C3 could be derived to be Cc; = Pr co) = 1 and C3 = l=-p.

Referring to equation (7.1) and solving for € then

~ _ ~1+/[1-4(1-p) (p-s)]
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and

dé 1
Od (7. 3)

ds /TI=ti=p)(p= s)]

In the isoparametric element the displacement is

represented in an analogous manner, using the form of

(47) that the vanishingequation (7.1) it has been shown

of the quantity under the radical sign of equation (7.3)

is responsible for the stress singularity. So the desired

singularity occurs when

on i
Si @(i-p) ea)

The singularity point may be located outside of the

element, this depends on the position of the mid-side node.

On setting s = -q in equation (7.4) and solving for p, we

find

>=

-q) +PoSo (7.5)

Equation (7,5) relates the location, p, of the element

side node to the point, q, outside the element domain,

at which the singularity is sensed,

63) have found that the 'transition'Lynn and Ingraffea

elements produce an acceptable error bound of +4 per cent

whereas without these elements a larger error may be

introduced.
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7.3 EXAMPLE 1 - A PLATE WITH A 90° SINGLE-EDGE-CRACK IN

TENSION

Dimensions of plate: As shown in Fig. (7.1)

L= 10, we= 5, a = 2.5, .a/w = 0.5

Thickness of plate = l

12000 ‘1b£/in*Applied Load o

Core Radius R, = 0.083

Number of nodes on the finite element mesh/core

interface Ny = 9

Material Properties:

B= 3 x 10°

@ = 1.2% 10!

Vo = ©. 3

This is the simplest example of crack configuration,

of a plate with a 90° single-edge-crack in uniform tension,

Fig. (7.1). From symmetry, only one half of the plate is

considered. A zone pattern is established as seen in

Fig. (7.2) and Fig. (7.4a), also element sub-division is

shown in Fig. (7.3) and Fig. (7.4b). The mesh is generated

according to the user guide for mesh generation program

in Appendix (A). As this program involves Mode I fracture,

the program code used in the mesh generation is 2. Total

number of zones used, not including the two void zones 9

and 12, and the standard generated zones around the core

element, 1, 2, 3 and 4, are 6. In this example, the
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procedure 'COREGEN' in the mesh generation program has been

used, to construct the special 'Transition' elements around

the core element. DATAFILE/2 is generated as an output

from the mesh generation program. This is used in the

Mode I Fracture Program, 'FMODIA'. Full details of this

program are found in Reference (67).

Because of symmetry, and since only one half of the

plate is used, a core region configuration is used as that

shown in Figs. (7.5a) and (7.6a).

The problem is of plane strain. In the first run, the

element used is the 8-node isoparametric quadrilateral

element with semi-circular core element surrounded by half

a band of 'Transition' elements, as shown in Fig. (7.5a).

The final structural idealization diagram of half the plate

considered is shown in Fig. (7.8).as a graphic output using

the 9872A x-y plotter in conjunction with the HP 9845 Resk-Top

Computer, employing the mesh generation program.

In the second run for this problem, a different mesh

is employed using the 6-node isoparametric triangular

element. Although the structure is divided into the same

number of zones, the element mesh is different to that of

the first run. Core region construction is shown in Fig.

(7.6a) and the final structural idealization diagram is

shown in Fig. (7.9).

The total number of nodes used in run one using the

8-node quadrilateral element is 59, and the value of the
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FIGURE (7.1) A PLATE WITH A 90 SINGLE-ED
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NODES OF HALF THE PLATE CONTAINING A 90 SINGLE-EDGE—

CRACK,(SYMMETRY EXPLOITED).
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b) ELEMENT ARRAY SHOWING ELEMENT AND NODAL NUMBERING.

TOTAL NUMBER OF ELEMENTS = 14

TOTAL NUMBER OF NODES = 59

 

FIGURE (7.4) KEY DIAGRAMS FOR ZONE AND ELEMENT ARRAYS .
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a) CORE REGION FOR MODE ! SHOWING ELEMENT AND NODAL NUMBERING.

SYMMETRY IS EXPLOITED, ONLY HALF THE CORE IS USED.

39

 

 
31

b) CORE REGION FOR MIXED MODE CONFIGURATION, IN THIS CASE THE

FULL CORE IS USED, SHOWING A RING OF TRANSITION ELEMENTS.

 

FIGURE (7.5) CRACK TIP CORE REGION ARRANGEMENT.

(USING ISOPARAMETRIC QUADRILATERAL TRANSITION ELEMENTS).
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a) CORE REGION FOR MODE | SHOWING ELEMENT AND NODAL NUMBERING.

SYMMETRY IS EXPLOITED,ONLY HALF THE CORE IS USED.

 

 
b) CORE REGION FOR MIXED MODE CONFIGURATION, IN THIS CASE THE

FULL CORE IS USED, SHOWING A RING OF TRANSITION ELEMENTS.

 

FIGURE (7.6) CRACK TIP CORE REGION ARRANGEMENT.

(USING ISOPARAMETRIC TRIANGULAR TRANSITION ELEMENTS).
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NUMBERING OF HALF THE PLATE CONTAINING A 90 SINGLE-

EDGE-—CRACK, USING TRIANGULAR ELEMENT.
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STRUCTURAL IDERLISATION BY
FINITE ELEMENTS
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FIGURE (7.8) FINAL STRUCTURAL IDEALISATION DIAGRAM FOR MODE ! CRACK

PROBLEM IN EXAMPLE 1, OF A PLATE IN TENSION WITH A 90

SINGLE-EDGE—CRACK, EMPLOYING THE ISOPARAMETRIC

QUADRILATERAL ELEMENT AROUND THE CORE.
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FIGURE (7.9) FINAL STRUCTURAL IDEALISATION DIAGRAM FOR MODE | CRACK ;

PROBLEM IN EXAMPLE 1, OF A PLATE IN TENSION WITH A 90

SINGLE—EDGE—CRACK, EMPLOYING THE ISOPARAMETRIC

TRIANGULAR ELEMENT AROUND THE CORE.
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DATA INPUT FOR EXAMPLE 1.
 

QUADRILATERAL ELEMENT.

DATAFILE#1 ; DATA1B

DATAFILE#2 :  DATA2B

A) Initial control variables

Oe 15a 19, eeed

B) Control variables

8, 6, 4, 3, 1

C) Standard geometries

1s 4 8, 25,.0,.,083,:.0. 22,5, -1,, 15.0

D) Specified super—nodes.

1... Di We ae le Sites a1 1. 2a fo Se 170, 2.9% So

1.0; G37 1, 5,. 3, 45 1at Oe? 4; 0, 5, 48

E) Zone specification

S15 ae 1 mh Oe oe

Mee 1 10, 4

F) Closing faces

0

G) Boundary conditions, material properties

12

mn 2 0, Ot, 10, 15,24, 28. oe

1, 3 0, 0, 43 2 0,. G,.S60, 55, 59 1, G0, tee O7

2, 0, 0,. 2E4, 56, 58

Case : 1

Dry dy ese ede we 1 0
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DATA INPUT FOR EXAMPLE 1.
 

TRIANGULAR ELEMENT.

DATAFILE# 1 : DATA1T

DATAFILE#2 > DATA2T

A) Initial contro! variables

2, 0, 1,. 20, Jo, 1, T1

B) Control variables

8 6, 4, 3, 1

C) Standard ee

1 4 1, Soe 0, 08S. 0, 225. :1,:1,.0

D) Specified super—nodes.

1, 9,0, 29 Ay sap. Sorta | A aes Coy oe

1,0): O. Ge. 1 S48 tS ae tee

E) Zone specification

ipa, ly oy 678

MeAgate

F) Closing faces

0

G) Boundary conditions, material properties

Ae

6. 2.0, O41, 10. 19; 28. 37, 46

1, 3. G-0,:99 eo, 0; Gj St, 68, fo

fe Oi Oy Bs fy re

aE? 3, 1,967,367; 3; 10
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non-dimensional Ky is found to be 2.861, while the total

number of nodes used in run two using the 6—-node triangular

element is 73, and the value of the non-dimensional Ky is

found to be 2.604.

Paris and Sih, in Reference (13), stated a value of

Kr for this problem to be 2.86. So that the result of

run one using the 8-node isoparametric quadrilateral element

shows no difference if the value obtained is rounded to

two decimal places. While there is a difference of 9.1%

for Ky if the 6—-node isoparametric triangular element is

used compared to that of reference (13). This proves

that the isoparametric quadrilateral element is more

superior to that of the isoparametric triangular element.

Data input for the two meshes used, are given in the

same order as that described in Appendix (A).

7.4 EXAMPLE 2 - A PLATE WITH A 90° SINGLE-EDGE-CRACK IN

TENSION

Number of nodes on finite element mesh/core interface

Ny ell.

The configuration is the same as that of Example l.

In this example the whole plate is considered as shown

in Fig. (7.1), and the mixed-mode fracture program 'PCPOY'

is used to solve the problem. So program code input is

3. The full circular core element is used, surrounded by

a band of 'Transition' elements, as shown in Fig. (7.5b).
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a) ZONE ARRAY DIAGRAM SHOWING

ZONE, AND SUPER-NODE NUMBERS.

ZONES 17, 20, 21, AND 24 ARE

VOID ZONES.

STANDARD GENERATED ZONES ARE :

12. & 4S) 8, 78
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(EXCLUDING VOIDS AND GENERATED ZONES = 12

NUMBER OF SUPER—NODES =14

©      
 

17

1

26 43. 69 95
 

101
 

 

  
99

 87

98
 

 

  
96     

16. 27 OS. 78

b) ELEMENT ARRAY DIAGRAM,

SHOWING ELEMENT AND

NODAL NUMBERING.

NUMBER OF ELEMENTS = 28
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FIGURE (7.10) KEY DIAGRAMS FOR ZONE AND ELEMENT ARRAYS, FOR THE

MIXED—MODE FRACTURE PROBLEM OF EXAMPLE 2.
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11.75

18.58-

$.25-

8.88

|

8.75

5.58

4.25

3.88

1.75

58

-.75-

so Re eee ee   
FIGURE (7.11) FINAL STRUCTURAL IDEALISATION DIAGRAM FOR MIXED— MODE

CRACK PROBLEM IN EXAMPLE 2, OF A PLATE IN TENSION WITH

A 90 SINGLE—EDGE—CRACK, EMPLOYING THE ISOPARAMETRIC

QUADRILATERAL ELEMENT AROUND THE CORE.
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DATA INPUT FOR EXAMPLE 2.
 

QUADRILATERAL ELEMENT.

DATAFILE#1 :  DATAI7

DATAFILE#2 : DATA18

A) Initial control variables

Dey oer ep ees

B) Control variables

4, 12, 8, 3, 1

C) Standard geometries

Tet 17 ee Osa,wi eee le!

D) Specified super—nodes.

4; 0, Se Oa, 89 1, 0, 2,5,. SO 1, 20; Soest 1,5, 2.5,. 58

1, Dude ty Seto ew To: thsi. Leds OO 1, QO, 7.05 67

1, 0,0, 8) 1, 2a) OG. -oe 1, 9,0, 60 T. 5S; 10, oe

1; body ay 1.0.10) 20

E) Zone specification

Bye a ee 1G Th 12 TS, ee es

1 te 16, 78, 22. 25

F) Closing faces

0

G) Boundary conditions, material properties

hy 1, a ee Ce

Ze Ve Ge Gees. 107,171 2 0;ee tee, 110 1,0, 0, 1&4, 109

Zz, 0, 0, —2E4, TOS, 105 1, 0, O, -1E4, 104 10, Ge G, 102

Cee 2 Ty. Oisek lobe’: Oelence tae OU
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A zone pattern is established together with element

sub-division. The total number of zones being used

excluding voids and generated zones are 12. Four void

zones are used in generating the mesh, these zones are

numbered 17, 20, 21 and 24, The total number of elements

are 28, with a total of lll nodes.

The above problem is treated as a mixed-mode fracture

problem in order to verify the values of Ky and Kitz obtained

using the program 'PCPOY'. Normalized values of K, and

Kit are computed, Ky is found to be 2.861, as was expected

and has no error in comparison to that found in references

(13) and (37). The value of normalized K which ought
Tc

to be zero is found to be of a very small value of no

Significance, namely 4.6 x tort?)

Data input for this example is given in the same

manner as that of the instruction of the user guide in

Appendix (A).

7.5 EXAMPLE 3 - A SQUARE PLATE IN UNIFORM TENSION

CONTAINING A 45° CENTRAL CRACK.

Dimensions of Plate:

Length L = Width w= 15 a = 2.8

Thickness of plate = l

Applied Load o 120 lb£/in

Core radius Ro =O.l1

Number of nodes on the finite element mesh/core

interface Ny = 17
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Material properties;

E=3x 10’

G =1.2 x 10/

Vv = 0.3.

This is a mixed-mode fracture probed involving two

crack tips, so program code 3 is used. Two cores are

used, one around each crack tip, and each core element is

surrouned by a band of 'Transition' elements. Figure (7.5b)

shows this configuration. Zones 1-8 and 41-48 are automatically

generated by the procedure 'COREGEN' in the mesh generation

program.

The total number of zones used excluding voids and

generated zones are 42 and the total number of elements

in the mesh is 74 with a total number of 262 nodes.

This mesh has been generated using the mesh generation

program. A diagram of the structural idealization of the

plate with the 45° central crack is shown in Pigs: (7.22)

The mixed-mode fracture program 'PCPOY' failed during

execution due to the large number of elements in the K

matrix array. An error of INTEGER PRECISION OVERFLOW was

given by the HP 9845 Desk=TopComputer during the execution

of the program. No values of Ki or Kir were found, and

this is one of the reasons why example 2 has been used in

order to verify the program 'PCPoyY'.

Data input for this example is given in the next two
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DATA INPUT FOR EXAMPLE 3.
 

DATAFILE# 1 : DATAS

DATAFILEZ2 =:  DATA4

A) 3, 1, 1, 74, 262, 1, 1, 0, 0, 1, 1

B) 39, 42, 8, 9, 1

C) 2.4,. 1,17, 8.5, :5.5,.0.1,. 45, 22.5,51,-1,. 131,: 41, 47,:9:5, 9.5,, 0.1,

—~1355, 22.5, 1,. 139, 0

D) 4, 7.5, 7.5, 53, 199, 69, 183

2, 0, 15, 107, 249 Zi. Gods, O10, 01, 225 Zo. Dice: [Rae Davee

2, Gis. 1,15, Sos lon. 2:98.50, 0, So, 211 Be: 15,0, 1195. 237.

T, 4.5, 6.5,..97 1, 4, 5.5, 59 1, 4.4, 4.4, 61

1). ees, My. OO 1, 6.5, 4.5, 65 1... Foti. Ooukys OF

1, 3.25,: 7.5,. 85 1”, 25, 6.0,-85 4, 33 87

1, 5.3, 2.5, 89 1,. 7.5, 35.25, 91 1, 0,, 10, 109

1, 0, Go 474 1, 0. a; te 1,: 5.0, 118

1,30, e307 1, 10.5, 8.5, 187 1, 117, 9.5, 189

1,. 10.6, 10.6,. 191 1, 95,..71,. 185 1, 8.5, 10.5, 195

1, 7.76, 9.5, 197 1) 770, 7.5, 215 1, 12.5, 9.7, 216

1 (2aes 1,05: 12.8, 219 17.8) 75, 221

1. 18, 5,. 269 1,::18,: 10,. 241 1, 15, 15,245

1, 10, 15, 245 1, 5, 15,247

E) 16° (42 2, 1,9, 10,.11,.42) 16. 14, 15, 16,00, Se; 51, $2, 53,04, Sa,

56

26.1 4.1.4.1. 18, 19, 20, 21, 22; 25,, 29, 20: 214 oes. ote Oe ee es oe

-196-



60, 61, 62, 65, 64, 66, 67, 68, 69, 70, 71

F) 6,

9, 3, 18, 4, 24, 2, 24, 3, 26, 4, 31, 2,

2, 79, 2335, 95, 217

G) 14,

1, 2,4, 0, 752

1, 0, 0, 400, 262

1, 3cG,: G,. 135

1, 0).0, 200 258

1, 0, 0, —100, 138

Case : 1

RFI.ie AWAOe |Se

0
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100, 126

—200, 154

400, 260

—400, 137

100,257

1, 0, 0, —400, 133

1, 0, 0, 200, 261

1, 0, 0, -200, 136

1, 0, 0, 400, 258
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pages according to instructions given in the user guide

in Appendix (A).

7.6 EXAMPLE 4 - A ROUND BAR WITH A CIRCUMFERENTIAL NORMAL-

EDGE-CRACK IN TENSION (FIGURE 7.13).

H/R = 1.4, a/R = 0.5

Core Radius Ro = OvL

Number of nodes on the finite element mesh /core

interface a 9

Total number of elements = 56

Total number of nodes = 135

ae : : is (82)
The normalised stress intensity factor is: as follows :

ok
kK, =—— (7.6)

*o, (2R)

where R is the radius of the round bar

oe is the stress in the neck section and equal to

1666 psi in this particular example.

Ge = 0.6 ,
° D-2a? (7)

where D is the diameter of the bar

o is the applied tensile stress

a is the crack depth.

The above example is a case of an axisymmetric Mode I

- LS AxXYMDU! 5

The mesh is constructed in a similar manner to that of

fracture problem. The program used to find K

—199—



Al-Shargi in Reference (68). Two semi-circular bands of

elements surround the core as shown in Fig. (7.14).

Two meshes are constructed in a similar manner to

that of aAl-Shargi °°?) , where the mesh generation is not

fully automatic like that used in the other examples. For

instruction of data input procedure refer to Appendix (B).

Data input for the first mesh is presented as a sample

for similar meshes.

Due to symmetry, only half the bar need be considered

and hence the core's shape is a semi-circle. An isoparametric

triangular ring element is used throughout the mesh around

the core region. The mesh is generated for one quarter of

the longitudinal section of the bar.

Al-Shargi, using the same program 'AXYMD1' has generated

a mesh of a total number of nodes of 285. The number of

nodes employed on the finite element mesh core interface

(N,) was 19. He found the value of the normalised Ky equal

hi 94) Value ofto: 0.22774 as, compared to: Hilton and Si

0.235 using 297 nodes and (Ny = 21), i.e. a difference of

3.1%. The 285 node mesh has failed on the HP 9845 Computer

during execution of the program, giving an error of

INTEGER PRECISION OVERFLOW, due to the large number of

elements in the overall stiffness matrix.

The two meshes used here are within the Computer

capacity. The: first mesh of.a total number of 135 nodes

-200-



with (Ny = 9), and the second mesh with a total number of

255 nodes and (Ny = 17).

Values of the normalised K. are shown in Table (7.1)
iE

for the two runs. These are ccmpared with those calculated

by Hilton and sin (8) and by Bueckner (81) ,

The K, value calculated using the first mesh of a total

number of 255 nodes and (Ny = 17) is closer to Hilton and

sin (82) solution, using a similar configuration of a total

number of 297 nodes and (Ny = 21),than that calculated using

135 nodes and (Ny = 9). This means that there is a

convergence of K.. as the total number of nodes increases.
ak

The total number of nodes which could be used depends

on (Nj) and is limited by the computer storage capacity.

-~201-
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b) ONE QUARTER OF THE ABOVE BAR IS USED IN SOLVING THE PROBLEM.

SYMMETRY IS EXPLOITED. ;  
 FIGURE (7.13) ROUND BAR WITH A CIRCUMFERENTIAL NORMAL EDGE—CRACK 1N

TENSION, OF EXAMPLE 4 FOR AXISYMMETRIC MODE | FRACTURE PROBLEM.
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FIGURE (7.15) FINAL STRUCTURAL IDEALISATION OF A ROUND BAR WITH

A CIRCUMFERENTIAL NORMAL EDGE-—CRACK, OF EXAMPLE 4.
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DATA INPUT FOR EXAMPLE 4
 

DATAFILE #1

* NOTE :-

AXYC4

REFER TO APPENDIX (B)

DATA INPUT MANUALLY USING AXISYMMETRIC MODE | FRACTURE PROBLEM

PROGRAM (AXYMD1).

A) 1, 56, 135, 1, 1; 9,.10;°-44; 5; 4,1, 1

 

 

B) 21

Node r—Coord z—Coord Type |r—Disp or Load|z—Disp or Load

J Xx(J) Yy(uJ) Kode Ulx Vly

1 4.90 0 2 0 0

10 4.85 0 2 0 0

19 4.80 0 2 0 0

28 4.75 0 2 0 0

37 4.70 0 2 0 0

46 4.65 0 z 0 0

55 4.60 0 2 0 0
64 4.20 0 a 0 0

73 3.80 0 2 0 0

82 3.30 0 2 0 0

91 2.80 0 2 0 0

100 2.15 0 2 0 0

109 1.50 0 2 0 0

118 0.75 0 2 0 0

127 0 0 3 0 0

128 0 7 1 0 0

129 0 14 1 0 0

130 2.50 14 0 0 21816

131 5.00 14 0 0 21816

132 7.50 14 0 0 65449

133 10.00 14 0 0 21816       
eetcody ARE, ObTui

Hnd : 1
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CHAPTER 8

8.1 DISCUSSION

The application of the finite element method, as one

of the most powerful methods of numerical analysis has

been widely used in the second half of this century due

to the rapid development of digital computers.

The finite element method has been applied to the

solution of problems of cracked bodies, and values for

the stress intensity factors within an acceptable engineering

accuracy can be calculated.

The programs used in this thesis fall into three major

parts. The first is the automatic mesh generation program

(MGENUP), which has been written by wood ‘+9) | generates

the mesh of any structure under consideration, It divides

the domain into sub-regions of quadrilateral or triangular

isoparametric element. This program was already in 'BASIC'

to suit the HP 9845 desk-top computer. It has been used

successfully during the preparation of this thesis. It -

is necessary to read the instructions in the user guide

in Appendix (A) in order to be able to use this program

efficiently, The program is not difficult to use, and a

minimum number of datas are required to generate the mesh.
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The second part of the programs:usedhere are that of

the plane stress/strain finite element program 'PLST'. This

C67) using the isoparametric

(25)
was written by Robertson

triangular element. It was updated by Woo to suit the

automatic mesh generation program, and added the isoparametric

quadrilateral element as another choice of element used in

the sub-division of the domain. The program was written

in Algol language, but has heen translated to Basic by a

third research student to suit the HP 9845 desk-top computer.

Many problems were solved successfully using this program,

and samples of the numerical examples to these problems

are described in Chapter 3. Fairly accurate results of

stresses are calculated and compared with theoretical values

available, however, it was found during the course of

application of this program on some numerical examples,

that values of shear stress specially on stress free

boundaries to be spurious, and sometimes values of stresses

throughout the domain to be erratic in manner. A method

Ole using a technique to smoothproposed by Hinton et al.

stresses has been adopted and included in the present plane

stress/strain finite element program 'PLST' during the course ~

of this.work. In this technique the stresses are sampled

at the 4 point Gaussian integration sampling locations to

give smoothed stresses at the nodes of the elements. This

method is described in Chapter 3, where two examples are

given; one of a canitlever with an end load, and the second

of a thick cylinder under uniform internal pressure. These
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two examples illustrate the validity of this technique.

Graphs of calculated stresses with the smoothing technique

and without it, show a considerable improvement when using

the smoothing technique. Details of the method is described

in Section 3.8.

The third part of the programs deals with fracture

mechanics problems. All these programs were written in

"Algol’ language. They have been translated to 'Basic'

to suit the HP 9845 desk-top computer available at the

Department of Mechanical Engineering at the University of

Aston, as part of the work carried out during the preparation

of this thesis.

Two of these programs deal with mode I and mixed-mode

I and II plane crack problems, written down originally

by Robertson ‘°7) , These are essentially a plane stress/strain

program with some modification to include the singularity

at the crack tip region. The element used to cater for

(50)this singularity is the Hilton and Hutchinson element

which has been developed by Richard/Robertson ‘®?) , this has

already been explained in Chapter 6.

(15)
Wood updated the above programs to suit the automatic

mesh generation program, and employed the 'transition'

element which was introduced by Lynn and Ingraffea ‘89) , The

use of the 'transition!' element around the core element allows

the number of elements in the crack tip region to be reduced
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significantly. This is important in order to reduce the

number of degrees of freedom in the idealised component.

This has been described fully in section 7.2.

An example of a plate containing a 90° single-edge-crack

is used to verify the translated Mode I fracture program

(FMODIA). Results of the calcualted stress intensity

facotr, Ky, using the isoparametric quadrilateral element,

is found to be very accurate compared to that of Paris

and sint*s?. While there was a discrepancy of 9% for the

value of K when the isoparametric triangular element isTe

used in the same problem. This is due to the higher order

of the quadrilateral element, where it possesses 8 nodes

rather than the 6-node triangular element.

For the verification of the translated mixed-mode

crack problem program 'pcpoy', an example of a square

plate, containing a slanted central crack, was chosen.

The program failed during the execution while solving

the problem on the computer, due to the size of the

overall stiffness matrix. An ‘integer precision overflow'

error was given by the HP 9845 computer, and no results

were obtained. So in order to check the mixed-mode crack

program '‘pcopy' a simpler example was chosen, which is

one of a plate containing a 90° single-edge-crack. Values

ope Ky and Kit were obtained, Kr is found to be identical

to that found by using the single mode crack program

(FMODTA), while K has the value of approximately zero as
a2

is ‘expected.
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The axisymmetric mode I fracture program (AXYMD1) was

originally written by Al-sShargqi °°) in Algol language.

Again in this program the same core element is used around

the crack tip as that for the Mode I and mixed-mode plane

fracture problems. This program has been translated to

Basic to suit the HP 9845 computer and was run after a

minor modification to its input data routine in order to

generate the mesh chosen for the idealised problem of a

bar with a normal circunferential crack. The mesh employed

by Al-Sharqi ‘©8) using 285 nodes could not be executed on

the HP 9845 computer, due to 'memory overflow' and ‘integer

precision overflow'. That happened due to the fact that the

overall stiffness matrix has a very large number of elements

in it. So, two smaller meshes are develped, one with 135

nodes and the second with 255 nodes. Both of these meshes

are used successfully running the (AXYMD1i) program and

results of K. is calculated, and compared with that ofI
y (82)

Hilton and Si , who have used 297 nodes for the mesh of

the same problem. The first mesh of 135 nodes gave a

difference in the value of Ky of 4.7% and the second mesh

of 255 nodes gave a difference in the value of K. of 3.2%.
I

The mesh employed by Al-Shargi using 285 nodes gave a

difference of 3.1% to that of Hilton and sih (82) |

A review is given also for the most well known methods

used for the determination of the stress intensity factors.

It categorises these methods into three main classes,
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experimental, analytical and approximate methods, The

experimental methods are the least accurate of the three,

and the approximate methods are the most widely used

methods, in particular the finite element method for

reasons given in the beginning og the discussion.

8.2 POSSIBLE IMPROVEMENTS AND SUGGESTED FUTURE WORK

(1) The mesh generation program proved to be a very

useful package where a minimum number of data input

is required in order to generate the desired mesh of

the structure. This has been used in conjunction with

all the programs mentioned in this thesis, except the

axisymmetric program that deals with Mode I crack

problems. This needs to be updated in order to he

able to use the automatic mesh generation program to

generate the mesh rather than using the semi-automatic

mesh generation employed in this particular case.

(2) To extend the program mentioned above, from two-

dimensional to three-dimensional mesh generation.

(3) To develop the finite element programs from its

present two-dimensional to three-dimensional analysis.

(4) To include Mode III stress intensity factor,

(5) To include the plastic effect in the plastic region

around the crack tip area, This has been tackled by

(50)Hilton and Hutchinson , by evaluating elastic-plastic
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(7)

(3)

stress intensity factors for Mode I and III, and also

(84)by Wilson for elastic plastic Mode III.

Implementing the existing fracture programs and the

proposed one, on a higher capacity version of the

desk-top computer, which caters for larger stiffness

matrix and have a bigger memory.

Re-organise the program so that it is more compact

and more efficient regarding memory available in

the computer.

To adopt a more effective solving routine. The frontal

solution method could be used where an element by

element frontal assembly and elimination procedure

is used. Such procedure can utilise a relatively

small memory. The advantages of this method is that,

at any time only the equations that are currently needed

are assembled in the high speed storage ‘/4) ,

Using the boundary element method in evaluating the

stress intensity factors. This method, which is

relatively new compared to the finite element method,

has been used recently by Rudulphi ‘78) , One of the

features of this method is the reduction in the data

input required to solve a problem, particularly in

two and three-dimensional problems. This is because

the n-dimensional mesh is used for (n+l) dimensional

problems ‘°>) ,
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(10) To formulate and analyse non-axisymmetric

loading to axisymmetric bodies containing cracks.

Here the loading as well as the nodal displacements

will be expanded by the standard fourier series. Also

the near crack tip displacement function must be

expressed as fourier series.

8.3 CONCLUSIONS

The plane stress/strain programs 'PLST' has been

implemented successfully on the HP 9845 desk-top computer,

a smoothing technique is introduced and improvement on

values of the calculated stresses is achieved.

The plane fracture problems have been translated

from its original Algol format to Basic successfully.

It has been verified through running some numerical

examples.

Although the HP 9845 desk-top computer proved to be

an excellent choice in solving plane stress/strain problems

using the finite element method, it has its limitations

alial dealing with mixed-mode fracture problems due to firstly,

its limited memory,which could be overcome by a suitable

organisation of the program structure, so as to use as little

memory as possible. Secondly, due to invalid bound on array

dimension, where an array is limited by memory size to no

more thatn 32767 items, and because of the structure of the

stiffness matrix, its size in the mixed mode exceeds this
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figure and the program will fail during the execution.

The axisymmetric Mode I fracture problem is translated

to Basic and is implemented successfully on this computer,

but still the program has to be updated to accept the

mesh generation program.

It is found that the finite element method is the most

promising method. It has the highest growth rate and

with the introduction of special crack tip elements,

it will be used more extensively in the future.
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CHAPTER 9

9.1. APPENDIX (A)

USER GUIDE FOR THE MESH GENERATION PROGRAM.
 

The program description, including flow charts and listing in ALGOL

is to be found in reference (15), also the program itself is available in

BASIC in the department of mechanical engineering stored on a disk.

Here is a step by step user guide of the mesh generation for

the following finite element programs.

1) Plane stress/strain.

2) Plane stress/strain modified to accommodate mode | fracture problems.

3) Plane stress/strain modified to accommodate mixed mode | and |l fracture

problems.

4) Axisymmetric finite element program using axisymmetric loading.

5) Plane stress/strain program—dynamic version.

6) Axisymmetric finite element program modified to accommodate mode | fracture

problems.
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INPUT DATA PREPARATION.
 

Input data is required for each individual problem at hand , this

data is the minimum amount of information fed into the computer in order

to create the mesh required.Care must be taken before the start of running

the mesh generation program in order to eliminate any possible error prior

to running the program . These data are usually stored in a file on a tape

cartridge or a floppy disk , so that information is available if,and when ,the

necessary data are called during the excution of the program . When the

program is run sucessfully , a second file is created and the output is

again stored on the storage medium to be called again when running a

finite element program .

One of the merits of this mesh generation program , beside

being versatile , is the graphic plot of the mesh generated ,and that plot

could be on the HP 9845 screen or on the Benson plotter if a large plot

is required ,or on the 9872A x-—y plotter to be fit on any regular paper

size.

Numerical examplesillustrate the use of the mesh generation

program in chapters 3 and 7. It shows how to prepare the input data

necessary to create the mesh. But in all problems , the structure is divided

into zones , and this could be just a single zone or a multiple zones.Each

zone is defined by "super nodes".The minimum number of "super node" are

4 if the sides are straight . A mid—side “super node" is required if any of

the sides of the zone is made to fit a curved Boundary , sO @ maximum of

8 "super nodes" is necessary if the four sides of the zone represent curved

-217-



1)

2)

5)

4)

8)

6)

boundaries.

Each zone is divided into a number of elements depending on

the stress gradient in the actual body when external forces are applied .

Areas of steep gradient are fit with more condensly populated number of

elements , and those which are not , are fitted with sparsly populated

elements. Number of nodes are found and located in their respective

places.

The program operates by considering each zone in turn , starting

from the left-hand corner of the zone array , and moving vertically up

a column and from column to column . the following steps are to be

followed:

The zone array data is read .

The eight super node co—ordinates for the first zone ,are determined ,either

from the input data or by direct interpolation.

From the zones specified sub—divisions , the element data is generated ,

determining the node co-ordinates .

The element nodal connections are found using the same information as in

step 5.

Step 2-4 are repeated for the remaining zones , until the whole array has

been scanned .

The finite element data is stored in a specified file and the element mesh

is plotted .
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INPUT DATA PROCEDURE : (for notation see the following section)*
 

The input data procedure is as follows :

A) PROGRAM CODE.

This consist of a column of input parameters depending on the

class of problem decait with :

 

 

 

PLANE FRACTURE AXISYM FRACURE PLANE
STRESS / MODE| MODE Il MODE | DYNAMICS
STRAIN AX! SYM

Code (1) Code (2) Code (3)} Code (4)} Code (6)| Code (5)

Qort Qort Qort Qort Qort Qort

Njob Njob Njob Njob Njob Njob

Nelemt Nelemt Nelemt Nelemt Nelemt Nelemt

Nnode Nnode Nnode Nnode Nnode Neconf

Nsetfs Thick Thick Nsetfs Nsetfs Dystrss

Prnt Nsetfs Nsetfs Prnt Solid Prnt

Princ Nsetc Nskew Solid Nmat Prince

Nskew Surno Nmat Nsetc Nskew.

Nmat Nsetc Nsetc Nsetf Nmat

Nsetc Nsetf Nsetf

Nsetf      
 

B) CONTROL VARIABLES

 
Parameters regarding information about the number of zones

and number of super nodes used .
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Tnspds :

Number of declared super nodes i.e not including standard generated nodes.

lf straight sided zones , only corner nodes are considered .If curved, mid—side

nodes should also be included . Also if 2 super nodes coincide , only one is

considered .

Pzone :

Number of zones being used , i.e, not including voids or generated zones .

Vzone :

Number of zones along the y-direction .

Hzone :

Number of zones along the x-direction .

Gh:

Graphical output — (1/Yes , 0/No)

C) STANDARD GEOMETRIES”

Information is needed if there is standard geometris , i.e , whether

there is a crack or not , or if there is a generated section round a core .

Ntip :

Number of crack tips

Nstart

Zns

N1

X1—Y1

. If > O then input the following core parameters :

Super node number starting the core .

Zone number starting the core .

Number of super nodes on the core face .

Cordinates of the crack tip .
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Re — Core radius .

A — Starting angle .

Al — Incremental angle .

Dy — Zone sub-division in the Y-axis .

Ns — Node number starting the core .

Ngm :

Number of generated sections . If > 0 then input the following parameters :

Nstart — As before.

Zns_ As before.

N14 — As before.

X1-Y1 — As before.

R1,R2,R3 — Radii for the inner core , grading node and outer node respectively.

A — As before.

Al — As before.

Dx ,Dy — Zones sub-division .

D) X AND Y CO—ORDINATES OF SPECIFIED SUPER NODES :

( R AND Z FOR AXISYMMETRIC SOLIDS )

Data sequence entered for each node .

Q — Number of super nodes occupying the position .

Xcod,Ycod — X and Y co-ordinates .

W — String of super nodes occupying the position .

E) DEFINING ZONES

This is information regarding X and Y co-ordinates of the

super nodes used in preparing the mesh .
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Zone — Number of like zones .

Mn — Materiai number .

DivX,DivY — Zone sub—divisions in X and Y directions .

P — String of like zone numbers .

F) IDENTIFYING CLOSING SIDES .

Nd — Number of closing faces . If > 0 then input the following

parameters for each zone face .

Zn — Zone number.

Side — Side of face to be joined (1, 2, 3, or 4).

Extra parameters in cases where multiple zone faces are joined .

Coin — Number of coinciding nodes . If > 0 then input the following

parameters for each pair of nodes .

Nd — Node number retained .

Cnd  — Corresponding node number .

G) BOUNDARY CONDITIONS — MATERIAL PROPERTIES .

Nspec — Number of specified nodes for the first set of constraints.

i.e.,(Nodes where displacements and / or nodal forces are prescribed).

—> Q  -— Number of like nodes .

Kode — Prescription for load or displacement or both .
Loop

(a) Ulx — Value of prescibed load or displacement in X—direction .

Vly — Value of prescribed load or displacement in Y—direction . Ls String of like nodes — The numbers of nodes mentioned in Q .

Sequence of data for each material and depending on the code as
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Loop

prescribed in (A) .

 

 

      
 

Code

1 Pd a 4 5 6

7 7

Case Case Case Case Case Case

Ang & e e Ang E

Thick V V V Thick V

E G G G Dens G

V E E E E

G V V v v V

E G

V E

V

Hnd Hnd

Again depending on the Code .

—> Data sequence for each skewed node (if Nskew = O , pass this section)

 

 

      
  

-223-

Code :

1 2 3 4 2 6

Nosk Nosk Nosk

Angsk Angsk Angsk

re

 

 



 

ise Data sequence for each set of forces .

Nspec — If <> 0 then input as in Loop (a)

Nedges — If <> 0 then input :

—

 

Data sequence for each element edge

Node (I) , Nprees (I) , Zpress (I) ,

—>

Loop (c) for AXISYM becomes:

Node (I) , Rpress (Il) , Zpress (I) ,

if Nsetc > 1 then repeat loop (b)

Nsetf — Number of set of forces for the new constraints.

Loop

(b)

Loop

(c)

—

NOTE ;

Loo

(d) Repeat Loop (b)

NOTES for G ;

1)

2)

If aproblem has Nsetc = Nsetf = 1 then in Loop (b) nput

only the value for Nedges and forget about Nspec.

lf the loading already has not been considered in loop (a) then

input O for Nedges.
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NOTATION FOR VARIABLES USED IN PROGRAM .
 

Code -— Finite Element program classification number :

1 — Plane stress / strain .

2 — Fracture mode | .

5 — fracture mode Il .

4 — Axisymmetric .

5 — Plane stress / strain free vibration .

6 — Fracture (Axisymmetric) Mode | .

Njob — Number of jobs .

Nelemt — Number of elements .

Nnode — Number of nodes .

Nsetfs — Number of sets of forces.

Nsetf — Number of forces for each set of force input .

Prnt — Type of output :

1 — Stress / Strain at nodes only .

2 — Strees / Strain at element centroids .

3 — Stress / Strain at both locations .

Princ — Principal stresses and strains . (1 / Yes ,0 / No).

Dystrss — Dynamic stresses and strains .( 1 / Yes ,0/ No).

Nskew — Number of nodes where skewed boundary conditions are applied .

Nmat — Number of materials .

nsetc — Number of sets of constraints .

Thick — Thickness of plate .

Solid — 0 for hollow axisymmetric structure .

1 for solid axisymmetric structure .
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Surno. — Number of nodes along the crack .

Nspec — Number of points where boundary conditions are prescribed .

ie .,( point loads and displacements ).

Kode — For prescribed loads and displacements .

O — for prescribed load in X and Y directions .

1 — For prescribed displacement in X , load in Y directions .

2 — For prescribed load in X , and displacement in Y directions .

5 — For prescribed displacement in both X and Y directions :

NOTE : (R and Z for AXISYM instead of X and Y ).

UIx — Value of prescribed load or displacement in X—direction.

Vly — Value of prescribed load or displacement in Y—direction.

Case — Type of problem .

Q — For plane stress .

1 — For plane strain .

Cee: — Type of problem .

O — For isotropic materia! .

1 — For orthotropic material .

Ang — Angle of orthotropy .

. — Youngs modulus .

Vv — Poison ratio .

G — Shear modulus .

Hnd — Direction of crack .

Nosk. — Node number where skewed boundary conditions are applied .

Angsk — Corresponding angle of skew .
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Qort — Type of element used .

OQ — For triangular .

1 — For quadriicteral .

Dens — Material density .

Nod — Node number.

Npress — Normal pressure / unit length .

Tpress — Tangential pressure / unit length .

Neconf — Number of constrained degrees of freedom .

Nedges — Totol number of elements edges under distributed loading.
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NOTES REGARDING INPUT DATA PROCEDURE
 

1) In some problems , zone faces are joined , hence it is

possible for super nodes to have the same co-ordinates . To reduce the

data input , the number of super nodes occupying the same co-ordinates

is given , followed by the X and Y co-ordinates und the corresponding

super node numbers .

2) A similar situation exists with the zone data , to reduce input the

number of like zones is entered , followed by its material type and sub—

division , and finally by a string of corresponding zone numbers .

3) The zone faces are numbered :

Side 1 — The left-hand vertical face .

Side 2 — The top horizontal face .

Side 3 — The right-hand vertical! face .

Side 4 — The bottom horizontal face .

Nd — Is the number of closing faces — when two sides of two different

zones meet each other , one closing face is formed .

Zn — Zone number , from two zones whose sides are going tobe closed

together , Zn indicates the zone number which is smoller than

the other one .

  

 

       

Side — Side number of the face to be joined . It can either be 1,2,5 or 4.

2

ey Sides marked by (=) Number of

rt are to be joined . 1 (2) 5 zone faces .

ae Zn = 2, Side = 3

4
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4) PARAMETERS FOR DISTRIBUTED LOADING

When element edges cre under distributed loading in a normal

and / or tangential direction , the following parameters should be input in

order to be able to calculate a set of equivalent point forces to substitute

the distributed loading .

The point loads equivalent to the constant distributed loading

cre calculated manually , using the following equation :

P14 PL 1
P2> =——- <4 For plain stress / strain problems .
P3 ee

Wher P1 and P3 are the equivalent loads at corner nodes .

P2 is the equivalent load at mid—side nodes .

P is the load / unit length .

L is the element length .

For Axisymmetric problems the above equation becomes :

P1 2xPIxLxrxP 1

Po 4
PS 6 1

Where P1 , P2 , P3 ,P =, and L as above .

And r is the core radius .

A
me

‘ +
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Negdes — Total number of element edges under distributed loading in the

discretized structure .

For each edge , there are 3 nodes , and for each node three

porameters should be input., Node number , normal pressure , and tangential

pressure . Therefore each element

for the distributed loading on that edge .

edge needs 9 input values to account

21
 

 

9

20? ——— P= 190

  
So thet for

of P = 100 :—

19

the element shown above with the distributed load

 

NODE NORMAL PRESSURE TANGENTIAL PRESSURE

 

19

20

 21  
100

100

100   
 

When loading acts on an element edge shared between two

elements , depending on which element is considered under loading ,

numbering sequence and sign conversion differs . Consider the following

examples :—
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y 28

17

o
16

x 22 26
15

bees
p

For above element , the nodal numbering sequence is (15 ,22 , 26)

 

    

17 23 28 34 39

>

fy os
164 1 | 27 2 os

ae

14 ee

15 22 26 33 a

For element (1) nodal numbering is ( 26 , 27 , 28 ) , and tangential

loading is positive , whereas for element ( 2 ) , nodal numbering is

( 28 , 27 , 26 ) and the tangential loading is negative .

As for the normal pressure , it is positive for element (2) and

negative for element (1) . Tangential pressure is positive if it acts in

an anti-clockwise direction with respect to the loaded element .
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5) The core radius is usually 1/300f the crack length .

6) The starting angle (A) can be defined as the angle between the

first zone or crack face , and the positive X—axis .i.e.,

By: > 

oS  
The incremental angle refers to half the angle taken by the zone.

7) If the crack tip faces to the right , then Hnd = 1 If the crack

tip faces to the left then Hnd = 2.

The core element numbering. convention for the Mode | fracture

problem , is :

      
\ Crack tip . Crack tip /

Hnd = 1 Hnd = 2
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9.2 APPENDIX (B)

MANUAL INPUT DATA PREPARATION FOR AXISYMMETRIC CRACK PROBLEMS
 

The following input data are for axisymmetric crack problems

fed manually without using the automatic mesh generation program.

A) Program code andinitial parameters:

For the first job input the following :—

Njob

Nelemt

Nnode

Nsetf

Nmat

N1 — Number of nodes on core face.

R — Radius of the specimen—Width—r direction.

a — Crack length.

H — Half the length of specimen—Length— z direction.

Re — Crack tip core radius.

Nsetc — Number of sets of constraints.

Case — 1 in all cases.

B) For first set of constraints:

Nspec — Number of specified nodes.

For each node input :—

J — Node number.

Xx(J) — The r—coordinates.

Yy(J) — The z—coordinates.
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Kode(U,1)— Kode ,O , 1, 2, or 3

UIx(J,1)— Value of prescribed load or displacement in r—direction

Vly(J,1)— Value of prescribed load or displacement in z—direction

C) IF Nmat>1 THEN :-

For each Nmat input:

Nstel — The number of elements with different material properties for each

. different material.

Stel — The element numbers of these elements.

*Note :— Bypass section C if Nmat = 1.

For each Matno input :—

D) E... v, GC, E.v

E) IF Nsetf>1 THEN

For each Nsetf :—

Nspec

For each Nspec (Number of specified nodes) :—

K — Node number.

Kode(K,|): Kode 0, 1, 2, or 3

UIx(K,l): Value of prescribed load or displacement in r—direction

Vly(K,l): Value of prescribed load or displacement in z—direction

F) Hnd : Direction of crack

1 : For circumferential crack.

2 : For penny shaped crack.

G) Boundary conditions

IF Nsete>1 THEN :—
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ee .

Nnewc — Number of new set of constraints.

For each number of constraints input:—

—Nsetf — Number of set of forces for this constraints.

= For each Number of Nsetf input:—

Nspec — Numberof specified nodes.

J — Node number.

Kode(U,1)— Kode 0, 1, 2, or 3

Ulx(J,1)— Value of prescribed load or displacement in r—direction  » Viy(J,1)— Value of prescribed load or displacement in z—direction
—

* Note: Bypass G if Nsetc = 1
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