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Thesis Summary 

High Throughput Screening (HTS) is an efficient way of assessing the biological activity of 
a large number of compounds in order to determine the few compounds that could lead to 
the development of a pharmaceutical product of commercial value. The process consists of 
screening a large number of mixtures using the standard 96-well plate featuring amongst 
others six specific control wells whose expected value is known. Because the measurement 
technique is subject to variation and because of the large number of plates involved, the 
quality assessment of the data is difficult and therefore automation appears to be a necessity. 
We propose a three-step procedure for the quality control of the data. It first consists of 
a study based on control wells, where a Gaussian mixture, trained with the EM algorithm, 
models the distribution of the control values to determine general variations on a whole screen 
together with any errors that would affect the control wells. The second step relies on normal 
wells and is based on a plate to plate comparison and an intra-plate variation detection that 
aims at spotting general effects such as handling mistakes or blocked jets. The Kolmogorov- 
Smirnov procedure was chosen to perform inter-plate comparisons whereas Siegel-Tukey and 
Wilcoxon tests investigate differences in spread and location in the data within a plate. The 
Analysis of Variance techniques complete the quality control of the screening process by 
focusing on the detection of systematic edge and corner effects. 

Keywords: Gaussian Mixture Model, EM algorithm, Statistical tests, 

Analysis of Variance, High Throughput Screening.



Acknowledgements 

I am grateful to Pfizer Research for funding the work described in this thesis 

I would also like to thank Dr Ian Nabney for his help, the advice and useful comments 

he provided me with. 

I must express my thanks to Wilma Keighley for the time spent in introducing me to the 

main issues of the project. 

And eventually, I am very indebted to Bruce Williams for his help with the practical 

aspects of the project. I would like to thank him not only for collecting the data and spending 

time to show me how the whole HTS process was conducted, but most of all for answering 

all my questions with so much kindness.



Contents 

1 Introduction 

mie se, LPOURRDUL DCreenine ae ee 

Ld. 2) Tie Protege Ste0 RUN or. ee We ee es Ge 

S125 Comments On Che Oise ee ee 

1.2 Quality control of High Throughput Screening ................. 

1.2.1 The analysis of the data on asimple example .............. 

Orig ae Signe OF The PrOlett ree ek eye 2 

eS ath CSISFOVETVIEW. «hoch ci ee Oe er sR ig Soy i tee 

2 Novelty detection 

deed POPU aE EK. A ae a ee ee ee PE ee 

2c Ly Dy welvne On conrrol wend. 

2.1.2 Outliers : the limitations of the traditional approach.......... 

me. Apew aporoame ane misture model 9) es it ee 

20-14 ee en presentation of Mitture models 5. 2 ek 

2.2.2 The Ezpectation-Mazimisation (EM) algorithm ............. 

2.3 (Mixture models in the quality control context’.°..........0.0.4... 

2.0.4): eromine and Validating the model: 2 3 os. es 

a:0:o2 Bie DNR DEOSHOID ee ee eee. a el aS 

2.4 Reliability of the novelty detection algorithm .................. 

a4. eae semcom sce ACW) eee 

2.4.2 Seed factor in the training set Versus EM seed ............. 

2.4.3" Influences of the sizeof the traming set 257 oe fe Pa ee, 

2.4.4 The same ranking according to the likelihood? ............. 

24:0) CONGIMUSIONS i ee a ee eee ee a 

3 Inter- and intra-plate variation 

SLA plate 10 plate COmparisgn oe 55. ee ee ee, 

drink CLG, KONNOPOLOY-oMIN OY, tests 3. See eS eG 

Otay (ate MR LeChiOnn ss. 8. Gh re ee ee ee 

10 

13 

13 

14 

18 

19 

20 

20 

21 

21 

22 

23 

25 

2G 

27 

29 

29 

29 

31 

33 

35 

35



CONTENTS 

Dimi eA CUMREMA LG: VATIB DIO ees ee cic up Ao Re: gh, 

Bo Dodi: DOR ROG se ag a ee ies a Wh AR ap Mee Ghd, Ssh ee 

Uae ee beste MPO Cer ures 2 ee, ne ee 

4 Edge and Corner effects 

as). PGGen SAMO MIIONA. Gioia ee eee ved as we gee 

all oivornrality of the data oh ee ey ee 

AL, MOY OF VARIA CGN ek he ep tee ee pee ee 

4.2 The Analysis of Variance (ANOVA) procedure). 2. 70 ee 

4.2.1 Mrs MOGLOr AIGA ue ie a ee es ed 

tee WAAR COTROBYIGON Go i yl ee oa eke 

5 Application to Screens 

sd yc COIS SRR 2h Re a cee sc eet ve Gat oe 

Dubs] Gnomes ameity detection: scrceh 2.5. oS ee ee 3 

Me eee et ee ek 

eee ee Gr SCCULALY Co i ee es a 

Deo 2 eee Naa CATIONS eh es ae RR ee et rr en we 

DO meer Aeete MEAION ee ae ee a ee ea re, 

D-0cns 2 wecommuementary PLOCECUIES 9g ks Se ce eee ee 

Pies RETR sass: sa tei gd Goa nets Cee BI eta oe Oe 

Pee ee I CGT OHCCLE 55 ge Bie oh phn ste ks cM ss 

5.4.1 Results of the detection of any systematic effect. ............ 

Dima eUNnaliniiCgg Sanipios so foe oo es ba sa oe ie 

6 Conclusions 

el Pu RCO-SLOTE DEOCCUUIC Oi ee os wae ony vaecd s was o ee 

6.1.1 A novelty detection method based on control values .......... 

O.t2 “inter- and intra-piate variations = 2. 2 a ee a 

Orig meme Ae eorner Meek 6 ya ee es Re 

Oi COMING a re os a a a ee 

O24" AGRIC veRIONGe ess se ee le ee 

Ore  DIMOONS hea: vce Pe ee dee a 

6.3 Quality control applied on real life processes... . . ae ee. ci 

6.3.1 Analysing the control wells under the existing system ......... 

O02 Atany sutemated procemine oa ko ee ee ae 

A Reference screens 

ml  SGreen Wc hy ee a eee eS a 

50 

51 

52 

59 

60 

60 

63 

64 

64 

65 

69 

69 

71 

73 

74 

Tl 

77 

78 

78 

82 

82 

82 

83 

85 

85 

85 

86 

88 

88 

90



CONTENTS 

tem LTO Dlabee ges s e  Poae eo? OP 93 

2 CHOON ANN. leh a hss <a gh eC ae ss a nt pete ee 94 

Ps 2 ERO: TOC Ge Ore a ene Pe i, 94 

We LOND DUNLGS co ee a 94 

Ped -CrOOR me er ee re a a oe Se coh ek Sg 95 

eRe PEG UCR ee ea tty eR ogee 95 

Pei, MIMIC OS te ee ee ge a a ee 95 

Pi eee A ek 96 

Dict Se Dineen ee ea ey a 96 

Peak A OMMPOL DIALER gh eg gg ee, ee ee 96 

ie eC ee en er Ge Ce a es 97 

ek Be RL Pera i mina He a ee eg a fe ee uk un 97 

Oe ie een ee a Re a ee se 97 

B Tests of Normality 98 

Pil. Prenminmee Wensureneiien te. se eee Bg 98 

BT se eee, aes oO ae 98 

Tee POUMORE ct oe eee ee er. OS eae ae 99 

ne ee tet TODECREEURIM a A oe er es eee, 99 

Po ArcoumessGremn procemites 7a, fos. ee ee 99 

Te ROO a a ee ek 101 

C Harmonic interpolation 102 

Je ote Ob Wiereoist a ey ee 102 

ie See emeolig interiminnye eee ge er 103



List of Figures 

teal 

122 

1.3 

1.4 

1.5 

2% 

2:2 

2.3 

2.4 

2.5 

2.6 

3.1 

3.2 

3.3 

3.4 

4.1 

4.2 

4.3 

5.1 

5.2 

5.3 

5.4 

5.0 

5.6 

6.1 

6.2 

B.1 

Process How fora typical HUS operation 9790 ye 10 

DG Well ihe se re ek 14 

Quality control: visualisation of the control wells ................ 16 

Enzyme activity versus compound concentration ................ 17 

Potala 82 NSE Pana Tee Dinter ee a i oe dn St 1% 

arate Ate Pacation Protenmr@ en oa a 28 

Proportion of rejected plates per day (screen 2) ..............00.% 30 

Distribution of the minimum control values.) 6% os es oe eo 32 

Effects of the seed factor on the number of novel plates for screen2...... Sd 

Effects of the seed factor on the training and validation error (screen 2) ... 33 

Size of the Training set versus novel points and log-likelihood ......... 34 

Distribution of the number of outliers per plate in an ‘ideal’ case ....... 40 

Whole population versus populations purged of outliers (screen 1) ...... 41 

Distribution of the number of outliers per plate for screen 1b ......... 45 

Distribution of the variances per row (screen 9) ...............04 46 

Cormer,-eage and middle populations. 2) 0.3 6 ee a RSS 51 

Distribution of corner, edge and middle populations for screen 1b....... 54 

Corner, edge and middle populations without outliers (screen lb)... ... . 56 

Noverty cetemon: piates 10 a7 (etree 2) 2. eG oa 66 

Novelty detection: plates 53°to 104 (screen 2). 9. oe ee 67 

Novelty detectiuin: plates 165 40°350:(sereby 2) 67 

Novelty detection: pintes 1G7:to 206 (streen 2) 50 os et Oe 68 

Visualisation of suspicious plates (screen 9 and 12) ............... CL. 

Multiple comparison procedure (result of a 100 computations)......... 81 

Determination of the complexity of the Gaussian Mixture model ....... 89 

nter-piste variation detection. 3405. oe ee te ee as 91 

Normal quantile plots: corner, edge and middle populations of screen 12... 100



List of Tables 

2.1 

2.2 

3.1 

4.1 

4.2 

4.3 

5.1 

5.2 

5.3 

5.4 

5.9 

5.6 

5.7 

5.8 

5.9 

Bil 

B.2 

B.3 

Proportion of rejected plates per assay for five different seeds (screen 2) ... 31 / 

Screenl, Plate 74 : Ranking for four different random seed. .......... 35 

Kibler Gebethiot son ae ha tp ie a OR 45 

Skewness and Kurtosis to test for Normality (screen 1b) ............ 53 

tiliiefors goodness-of-fit test for Normality 2... 005 oe ee 58 

2 epee re COUAItY OF Varinntes (eS, ee Oe 61 

Novelty detection applied to the tested screens ................. 64 

Proportion of novel plates per assay (screen 2) ...............-. 65 

Kolmogorov-Smirnov procedure to detect suspicious plates. .......... 70 

Testing the sensitivity of the Kolmogorov-Smirnoy procedure ......... 72 

Kolmogorov-Smirnov procedure: time versus accuracy ............. 73 

Prebiinory mesa pukeyaumocranre yk eae Ey 74 

Testing the accuracy of the methods investigating intra plate variations ... 75 

ORIN ee eg tee 79 

Multiple comparison based on Tukey’s method ................. 80 

Testing Normality: measure of Skewness applied to screen 12 ......... 99 

Testing Normality: measure of Kurtosis applied to screen 12.......... 99 

Lilliefors goodness-of-fit test for Normality applied to screen12 ........ 101



Chapter 1 

Introduction 

Recent advances in molecular biology have resulted in a large number of new biological tar- 

gets. This offers exciting opportunities for drug discovery in so far as the success of such a 

process mainly relies on its capacity to detect some new entities or simply to spot new pro- 

perties of the existing chemical compounds. High Throughput Screening (HTS) technologies 

can be used to identify those entities that chemically react with a given therapeutic target. 

This chapter provides the minimum background to understand what High Throughput Screen- 

ing actually is. For further details, see (Bojanic et al., 1997). It also gives an overall presen- 

tation of the quality control of HTS, before introducing the aims of the project: the detection 

of any general source of errors that could alter the quality assessment of the data. The final 

section then consists of an overview of the thesis where some indication is given about the 

procedure we propose to follow to tackle the problem. 

1.1 High Throughput Screening 

The three elements: biological target, compound library and assay method constitute the cor- 

nerstone of screening for therapeutic drugs. Recent progress in Genomics research together 

with Combinatorial chemistry have provided a variety of new compounds for screening. Ad- 

vances have also been made in assay technologies, robotics and computation which now 

enables experiments to be carried out involving a large number of mixtures featuring millions 

of molecules. 

High Throughput Screening has absorbed these new techniques and technologies to a large 

extent so that a vast range of compounds can now be screened. This aims at determining



CHAPTER 1. INTRODUCTION 

the few compounds, called ‘lead compounds’, whose biological activity is relevant and that 

could be developed into a product of commercial value. The method is all the more efficient 

in that a huge volume of data is examined and more importantly, the relevant information is 

found, as quickly as possible. 

1.1.1 The process step by step 

The HTS process can be described as the succession of the five following steps: compounds 

supply, assay, data capture, data analysis and sample follow-up: Figure 1.1 depicts the basic 

process flow of a generic HTS operation. It should be noted that a typical screen only features 

one of the four following measures: luminometric, fluorimetric, radiometric and colorimetric 

measure. 

Compound Data Data 
Assay ; 

Supply Capture Analysis 

“ * 
| = 

: =] (ea | 

fluorimetric measure luminometric measure 

  
  

        Sample 

Follow-up 

     
     

colorimetric measure radiometric measure Database 

Figure 1.1: Process flow of a HTS operation 

step 1: supplying the compounds 

The starting point of the HTS process is the supply of the compounds and the storage of 

the samples. First, an important consideration is to define what kind of device will be used 

to convey the liquid samples through the whole process. The most common format is the 

96-well plate also called ‘microtitre plate’ because of the small volume of liquid each well 

contains: it features test-tubes having a volume capacity of up to 2 ml. But microplates of 

384 wells or even higher formats are also available. 

Compounds are supplied from dry samples which require specific care since they are dis- 

pensed in individual tubes, weighed, formatted to fit to the microtitre plate and designed 

to occupy a specific position. Usually the new compounds come from large libraries held by 

pharmaceutical companies. 

10
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The next stage is then to dissolve the dry samples, using the adequate solvent, before putting 

them for storage into a liquid sample. Once again, special care is required for the storage 

conditions (such as temperature, atmosphere) so as to avoid any deterioration. 

step 2: constructing the assay 

As HTS assays are applied to thousands of mixtures, they have specific requirements — 

a limited number of handling steps or an automated process so as to increase throughput 

— which are not necessary for those experiments involving only a few samples. There is 

also a potential problem with HTS assays: because a typical screen features a large number 

of plates, it is impossible to prepare them simultaneously. Thus, a screen is divided into 

several assays each constituting a certain number of plates. Due to the fact that each assay 

(within a screen) is constructed at different periods of time, they are not subject to the same 

experimental conditions (as explained in Section 5.1.1), which could result in a difference in 

the incubation time, that is the period of time during which the compound remains active. 

A means of estimating this phenomenon is required, such as control wells on each plates. 

Moreover, constructing the assay implies the use of various hardwares. First, the liquid 

handling and assay assembly consist of 96-well pipetting devices. Robotic sample processors 

with disposable tips fully computer programmable are also used for their accuracy, being 

provided in single or multiple probe formats each of which can be independently controlled 

with respect to volume dispensing. However, the price to pay for flexibility is that these 

devices are much slower than the 96-well dispensers. 

Finally, the washing steps (or ‘separation’ steps) involve some filtration equipment as well 

as plate washers. The trouble is that they are mainly manual, therefore the procedure faces 

some possible handling errors. 

step 3: collecting the data 

Typically, each well on a plate features 20 compounds, an enzyme and a substrate. Let us 

consider the following simple theoretical example. An assay determines for example whether 

the enzyme is being inhibited by the test compounds. The enzyme catalyses the breakdown 

of the substrate to a coloured product. The assay measures the amount of coloured substrate. 

If the compounds stops the enzyme functioning then little of the coloured product is formed: 

this corresponds to a minimum activity well (minimum control). On the other hand, if 

the compounds do not affect the enzyme’s function, a lot of coloured product is formed, p 

11
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which corresponds to a maximum activity well (maximum control). This is an example of 

colorimetric measures. 

Thus, in most of the cases, HTS makes use of signal detection instruments or ‘counters’ 

subject to potential errors (mechanical errors due to a programming mistake for instance) 

to measure the colorimetric but also radiometric, fluometric or luminometric activity of the 

wells, so as to have an estimation of the biological activity of the mixtures. All these measures 

constitute the data this study is based on. 

step 4: analysing the data 

The data analysis is the key step of the HTS process and for this reason will be given a more 

detailed description in Section 1.2.1. Software handling of the whole process flow described 

in Figure 1.1 is crucial for data to be effectively handled: all the elements that are part of the 

analysis (details of the samples, parameters describing a screen and data from the detection 

instruments) must be integrated into the system and combined so as to display information 

as clear as possible. Basically, the data analysis follows two goals: 

1. assay validation to ensure the validity of the experiment 

2. decision making, to determine ‘hits’ i.e. mixtures whose biological activity is considered 

relevant. 

The assay validation relies on control wells on each plate, dedicated to the assessment of 

the experimental conditions, whereas some graphical representations help the operator locate 

the wells whose activity is greater than a fixed threshold. 

step 5: follow-up of active samples 

One of the purposes of HTS data analysis is to define the active samples on a given target. 

Once identified, these samples are the raw material of further screening investigations so as 

to define as accurately as possible a mixture of biological efficiency (by testing the effects of 

different mixture concentrations for instance). | 

On the final stage, the samples are submitted to lead optimisation to improve the potency of 

the compounds and selectivity of the mixtures. These final experiments, contrary to HTS, 

rely on an existing knowledge and are usually performed on a small number of samples. If 

their activity is relevant enough, the lead compounds are then released to the company library 

and database, labelled active towards the specified target. 

12
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1.1.2 Comments on the process 

Despite being an accurate means of detecting the compounds that could be developed into a 

product of commercial value in the general context of drug discovery, the HTS process faces 

some difficulties. The first and most obvious one is that the procedures involved in HTS are 

often time-consuming. It is therefore crucial to concentrate on improving their efficiency, for 

instance by focusing on the detection of false hits induced by the inherent variation of the 

measurement techniques. 

Moreover, however successful this method is to detect the lead compounds, it is limited by 

the chemical diversity of the laboratory’s own library, as the success of HTS procedures is 

entirely subject to the selected mixtures to be screened. 

Finally, due to recent advances in molecular biology, HTS has to deal with more and more 

screens, which results in the necessity of automation. Besides, the increasing pressure to 

find some more new therapeutics makes effectiveness become all the more crucial. From this 

viewpoint, the development of a computerised system may help HTS gain in efficiency. Thus 

computer controls are present throughout the HTS process, ranging from integrated softwares 

for robots to external computers for liquid handling. But the contribution of computerisation 

in data management, probably the keystone of HTS for obvious reasons, is undoubtedly the 

more significant: not only powerful databases are needed to cope with the massive quantity of 

information generated by the the screening, but it is also vital that the system allows access 

control to data, flexible programming tools and the possibility to query the data. 

On the other hand, HTS offers some advantages. In addition to effectiveness, the HTS 

process possesses this improvement compared to traditional chemical schemes: very little 

information on the biological structure of the compounds is needed to run a screen. 

Especially, one of the reasons why HTS is more and more popular is that a negative result 

is also a result in the sense that, if successes in HTS can lead to the development of a com- 

mercial product, the records of failures in data bases give also some information about how 

to design further experiments. 

1.2 Quality control of High Throughput Screening 

This section concentrates on the quality control of HTS by focusing on the data analysis. 

To start with, an example of a typical data analysis gives us a better understanding of the 

13
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kind of problems operators have to deal with in term of quality control. This is followed 

by a presentation of the different plate formats involved in the HTS process, part of which 

constitutes the raw material for this study. The last part presents the aims of this project. 

1.2.1. The analysis of the data on a simple example 

Although simplified, the example of data analysis that follows gives an idea of what it consists 

of together with the kind of problems that could occur in the real life HTS procedures. 

yi 

the standard 96-well plate 

The standard 96-well plate typically constitutes the basis of the HTS process. Each plate 

features 90 different mixtures, a mixture being composed of 20 compounds (or ‘dry samples’), 

a substrate and an enzyme, and 6 control wells. Figure 1.2 gives a representation of the 

standard 96-well plate. 

1 Z 5 - 5 6 8 oi 10 Te al2 

Normal well 

  

  

Minimum control well 

      

Standard control well 

Maximum control well    
Figure 1.2: 96-well plate 

Data analysis usually features a first stage that consists of checking the control wells to 

ensure the quality of the data. This first step is crucial since it helps the operator assess 

the validity of the assay. To help him in his task, a graphical visualisation of the control 

wells enables him to detect major potential mistakes (such as handling mistakes) that affect 

a plate. These control values are then de-selected giving an end to the assay assessment. 

To make things clearer, suppose one wishes to detect a novel enzyme inhibitor (i.e. a 

compound that stops an enzyme functioning). As mentioned in the previous section, in the 

context of colorimetric measures for instance, the enzyme catalyses the breakdown of a sub- 

14
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strate to a coloured product. The six control wells on a plate have the following composition 

and are the same on each plate of a given screen. 

e Position D1 & D7: 

the enzyme’s functions are not affected in any manner. A lot of coloured product is 

formed; this corresponds to a mazimum activity well. 

e Position D2 & D8: 

the enzyme is fully inhibited. Little coloured product is formed: it corresponds to a 

minimum activity well. 

e Position D3 & D9: 

the enzyme is partially inhibited by a compound known to have an ‘average’ effect. 

This corresponds to an average activity well or standard control well. 

For an ideal screen, all the maximum (respectively minimum and standard) controls on 

all the plates of the screen should be the same (since they contain the same mixtures). In 

practice however, the activity boundaries (0% and 100%) that evaluate the actual inhibition 

of the enzyme are taken as an average of the maximum and minimum controls of the assay, 

as an assay’ is subject to great variation (the role of standard controls is restricted to the 

quality control of the normal wells). 

The control wells involved in this computation are selected or de-selected by the operator 

who relies on a graphical visualisation similar to Figure 1.3, the de-selection being conducted 

on the wells that differ by more than a standard deviation from the mean. The mean of the 

data is then re-computed (without the removed controls). All the controls are checked again 

and de-selected if necessary, with regards to the new data and so on, until all the values are 

considered as satisfying, which gives an end to the assay assessment. 

The activity boundaries (0% and 100%) are then computed as an average of the maximum and 

minimum control values. The operator then sets a threshold above which a well is considered 

as a ‘hit’. Each plate is then manually checked and all the wells whose activity are upon the 

threshold are kept for further studies, in order to determine the lead compounds. 

Note: the de-selection of a maximum or minimum control well only affects the computa- 

tion of the activity boundaries. In practice, no action is taken over other values of the plate 

even if this may indicate that some errors have taken place. It is only if the 6 control wells 

are suspicious that the corresponding plate is de-selected. 
  

‘an assay features a set of plates screened on the same date as stated in Section 1.1.1. 

15
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Figure 1.3: Quality control 

the other plate formats used for this project 

Other kinds of format apart from the 96-well plate are involved in HTS. Here is a brief 

presentation of the [C59 plates and the Totals & NSB’s (where Totals stands for totally 

inhibited referring to the maximum controls and NSB for Non Specific Binding i.e. the 

minimum controls. 

ICs is defined as the concentration of compound causing a 50% reduction in the effect of 

the enzyme under study (see Figure 1.4). The more potent the compound, the less is required 

to produce the 50% inhibition. Thus, the [C59 plates are generally used as the last step of 

the screening procedure. One specific compound is under investigation at different concentra- 

tions (close to the [C50 concentration) so as to determine its optimum concentration before 

it is registered as active towards the given therapeutic target (the enzyme). Indeed an ICs 9 

plate features 12 columns: the same compound is disposed bn 2 successive columns, each 

paired column being at a different concentration, and the first two are respectively dedicated 

to maximum and minimum controls. 

The data analysis is conducted in a similar way as described previously, a hit being this time 

characterised by a specific compound together with the most efficient concentration. 
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% Activity 

100 

   SO a ee ee erg oe 

  

  
  

IC59 Concentration 

Figure 1.4: Enzyme activity versus compound concentration 

The Totals & NSB’s plates have been generated especially for this study, since they are 

a specific requirement of the model that was built up last year and which constitutes the first 

step of our procedures. It basically consists of a 96-well plate, half of which is dedicated to 

minimum control wells, the other half featuring maximum controls. Therefore, the designa- 

tion control plates will be used in the rest of the thesis to mention Totals & NSB’s plates, 

whereas a typical 96-well will be called normal plate. Figure 1.5 gives a representation of all 

the different plate formats mentioned above. 

Totals & NSB plate (‘control plates’) IC50s 

Lear. 4520277 89 101112 be? 235455, O07 78:9 10 1b12 

4)
 

1 
th
 
O
G
)
 

   HANMOAWw
>
D
 

  

  

(C=i): Concentration i 

Normal well 

Cl Minimum control well 

fa Maximum control well       

Figure 1.5: Totals & NSB’s and ICs 9 plates 
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1.2.2 The aims of the project 

Because the variations in the measurement techniques are not well understood, it is difficult 

to assess the quality of the data. As emphasised previously, currently the assessment of the 

plates is manual and greatly subjective. Besides, a typical screen features several hundreds 

of plates. These are the reasons why the quality assessment of HTS appears as a necessity. 

The study carried out aims at assessing the quality of the HTS process as objectively as 

possible. Its aim is not to provide a fully automated quality assessment method, but should 

help the operator in his task by pointing out a few numbers of plates on which we suspect 

some errors have taken place. By doing this, the quality assessment of the data, conducted 

manually up to now, would not require to check every single plate on a screen (that can 

feature several hundreds plates in practice), which is a rather tedious task. 

The study especially concentrates on the detection of any kind of mistakes or effects that 

could alter the data. This implies a twofold aspect: not only is this work based on control 

wells (that help the operator validate an assay as stated in Section 1.2.1) but it also considers 

the normal wells so as to detect some potential handling mistakes or hits, by thoroughly 

examining plate to plate variations. In addition, mechanical errors like blocked jets are also 

subject to investigation, for instance through an intra-plate variation detection. 

Finally, the detection of edge and corner effects, with the goal of taking any action to improve 

the design of the experiments involved in the HTS process if necessary, completes the aims 

of this study and the quality control procedures. 

It is to be noted that the method to assess the quality of the data should respect a dou- 

ble constraint: 

1. The built-up procedures should not be too time-consuming, so as to enable some ‘on- 

line’ quality assessment of the data. 

2. The procedures should be flexible enough to adapt quite easily to the different kind 

of situations they will have to cope with. They should take into account the various 

devices used to construct the assay (and that represent potential sources of errors), but 

also offer some possibility of automation without preventing any manual intervention. 
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CHAPTER 1. INTRODUCTION 

1.3. Thesis overview 

This thesis consists of six parts that follow the different steps we propose for the quality 

control of HTS. The second chapter presents the first step: the novelty detection, a study 

exclusively based on control values. The first three sections give a brief summary of the work 

that was done last year. A preliminary study justifies why we can rely on control values to 

assess the quality of the data. Then the reasons why a Gaussian Mixture Model was chosen to 

achieve the quality control are presented. It is followed by an explanation of what Gaussian 

mixtures are together with some details about the Ezpectation-Mazimisation algorithm used 

to train the model. The final section investigates some sources of variations in last year’s 

model. | 

The third chapter presents the statistical approach we propose to tackle the detection of 

effects altering the data values of normal wells. A first section details the plate to plate com- 

parison that is used to detect any general effects (like handling mistakes) or hits. It introduces 

the general statistical procedure we followed to achieve that (the Kolmogorov-Smirnov test), 

together with the method computed. Some other methods dealing with outlier detection are 

also presented: we explain in particular why we did not follow the standard approach and 

chose a method based on an empirical definition of outliers. 

The second section focuses on blocked jets detection. The testing procedures investigate both 

a difference in spread and a difference in location, through statistical methods such as the 

Siegel-Tukey and Wilcoxon tests. 

Chapter 4 concentrates on the detection of edge and corner effects. We first present a study 

investigating whether the assumptions hidden behind the procedure applied, the Analysis of 

Variance, held. This study is based on some visual representations, numerical evaluations 

(with some measurements such as the Skewness and the Kurtosis), and some statistical tests. 

Then the two-step method itself is described: a single factor analysis to determine whether 

there is any evidence for edge or corner effects and a multiple comparison to point out which 

effect is predominant. 

The results of these different steps are presented in Chapter 5, where the difficulties encoun- 

tered are discussed. The final chapter gives a summary of the study, some comments about 

the method used. The results achieved and the main limitations of the built-up procedures 

are summed up. The last sections discuss some possible ways of implementing the procedures 

so as to apply them on real life processes. 
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Chapter 2 

Novelty detection 

In any industrial task, novelty detection is used to determine an unusual output; in the con- 

text of quality control of HTS, novel observations can be defined as data points whose value 

significantly differ from other data taken under the same experimental conditions. 

This chapter presents the first step of the quality control procedure. It is based on the 

model that was built up last year whose main characteristic is that it only relies on control 

wells to assess the HTS process. The first section explains why we can concentrate only 

on the control values to assess the data quality. It also puts forward the limitations of the 

standard approach dealing with outliers. 

The second part gives a general presentation of the model. In particular, it explains what 

motivated the choice for a Gaussian mixture model but also describes the main algorithm 

used to train the Gaussian mixture: the Expectation-Mazimisation (EM) algorithm. 

Mixture models are then presented in the quality control context. This section gives a tech- 

nical presentation of the model implemented for HTS: how to use it in practice, in particular 

how to train it on the data set to achieve the novelty detection and what its parameters are. 

The final section presents the work carried out at the beginning of this year: an investiga- 

tion on the reliability of the novelty algorithm by studying some sources of variation in the 

mixture model. 

2.1 Preliminary work 

The point is not to explain in detail the testing procedure carried out last year but just 

to explain what motivated the choice of a method based on density inference to tackle the 
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CHAPTER 2. NOVELTY DETECTION 

detection of abnormal plates. 

2.1.1 Why relying on control values? 

To start with, some statistical procedures such as the y? and Kolmogorov-Smirnov tests were 

carried out to investigate the goodness-of-fit on a Gaussian distribution. These experiments 

focused on a comparison between the observed! and expected distribution, comparison based 

both on a visual and numerical analysis. 

The results obtained were rather mixed : for a given screen, whereas the y? statistical test 

rejected the normality of the data, the Kolmogorov-Smirnov procedure gave some evidence 

for Normality at the same time. But even if the Kolmogorov-Smirnov test is said to be the 

right test? to apply in such a situation as it is mentioned in (Neave and Worthington, 1988), 

Normality was subject to uncertainty and the hypothesis was rejected. 

A second statistical procedure tested the correlation between the various control wells. The 

tests were carried out using the Pearson’s sample correlation coefficient and gave positive 

results : all the controls of the 96-well plate were mutually correlated with a strong correla- 

tion between maximum and standard controls. Given that there’s no difference between the 

standard controls and the normal wells on a normal plate®, this strong correlation tends to 

validate, from a statistical point of view, a study based on control values only to assess the 

quality of the data. And such a correlation also allows a detection of unusual variations on a 

specific plate in so far as an unusual control well gives evidence that something went wrong 

for the whole studied plate. To tackle the detection of unusual values, a first and natural 

idea was to use the techniques proposed by the traditional approach. 

2.1.2 Outliers : the limitations of the traditional approach 

As mentioned in (Barnett and Lewis, 1978), the detection of outliers is far from being an 

easy task. A standard approach proposes the following two steps to detect outliers: 

1. Use visual techniques to spot extreme observations. 
  

‘the samples tested consist of different screens, each of which features three control plates : 144 minimum 
and 144 maximum wells 

? applied to unbinned distributions, it is more reliable than the x” test since it does not require any arbitrary 
categories. 

3the only difference between a standard control and a normal well is that the activity of the former is 
known. 
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CHAPTER 2. NOVELTY DETECTION 

2. Apply some ‘discordancy tests’ e.g. tests for outliers to determine whether the points 

selected in the first step significantly differ from the rest of the sample (with regard to 

the chosen significance level). 

The literature gives a plethora of tests to detect outliers ((Barnett and Lewis, 1978) gives 

a quick overview of more than 20 just for the Gaussian case): it is however to be noted that 

most of the techniques these tests refer to assume an underlying Gaussian density. 

Besides, even if this two-step procedure seems at first sight quite efficient and relevant, it is 

weakened by some drawbacks. First, the procedure is greatly subjective since a set of outliers 

to be tested has to be chosen at first hand, according to some graphical visualisation that 

does not necessarily show a good accuracy. Besides, this graphical inspection hardly enables 

an automated process that seems to be a necessity in the context of HTS, given the increasing 

number of data involved in the process. 

In addition, (Barnett and Lewis, 1978) underlines that many of the discordancy statistics 

have to deal with the problem of ‘masking’, which alters the discordancy of some extreme 

observations under investigation as outliers, because of the presence of some other less ez- 

treme observations that were not considered as outliers. 

Finally and this is surely the most frustrating aspect of the traditional approach, the method 

is not based on a density estimation. This means that no description of the data is provided 

in terms of probability (contrary to the novelty detection) and therefore it is impossible to 

determine which extreme value is more likely to be an outlier, e. g. it is impossible to obtain 

a ranking of the extreme observations. 

All these reasons explain why we chose an alternative and simple method rather than fol- 

lowing the standard approach that is far too complicated, time-consuming and too inaccurate 

to satisfy our needs. 

2.2 A new approach : the mixture model 

This section introduces the theory behind last year’s model. First we shall recall why mixture 

models have been chosen to detect novel plates. 
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CHAPTER 2. NOVELTY DETECTION 

2.2.1 <A brief presentation of mixture models 

Why mixture models? 

Many arguments motivate the choice of mixture models to infer the density of the HTS 

control values. First, the mixture models have a kind of universal approximation property, 

since they can fit any probability density. Besides, from a practical point of view, an advantage 

of mixture models lies in their speed of evaluating the density at a new data point, which is 

undoubtedly an asset in a quality control procedure. 

What are mixture models? 

Mixture models represent the density function p(x) of the data as a linear combination of M 

basis functions in the form : 

M 

P(x) = >> p(xls)P() , (2.1) 
j=l 

where p(x|j) is the probability density or likelihood that x is from component j and 

P(j) the mizing parameters or prior probability of the data point being generated from the 

component 7 of the mixture. 

e The priors are chosen to satisfy the constraints 

Pa) Sh 

(2.2) 

jai P(j) = 1 

e Similarly, the component densities p(x|j) of the mixture are : 

— normalised : 

[rcl)dx=1, 9,741, 0, M- (2.3) 
— chosen to be Gaussian density functions : 

(hi) = ae fF 0e— MBP e—w)7}, a) P\*I (2m)(472)/ 5,172 9 Py Bireg 4 

where yp; is the mean and 4 the covariance matrix of the component j. 
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The covariance matrix © = [0;,4]; ,-) 4 of the Gaussian mixture models the covariance* 

of the underlying random variables X;, X;. Usually the covariance matrix used in mixture 

models can be of three different types : 

1. Full covariance matrix 

2. Diagonal matrix : Diag(o?,... Oa) where the o; are not necessary equal 

3. Covariance matrix o?J where I is the Identity matrix _ 
/ 

with the following properties : 

e Full covariance matrix 

— no constraint is made about the model 

— the inversion of © in Equation 2.4 is computationally expensive 

— the curves of equal density are ellipses without constraint on their axes 

e Diagonal matrix 

— the model ignores potential correlations between the variables® 

— the inversion of ¥ is easy since there are only d parameters 

— the curves of equal density are ellipses whose axes are directed by the vectors 

defining the axes of the graph 

e The o?I covariance matrix 

— the model imposes that the elements on the diagonal are all equal the other ones 

being equal to zero 

— the inversion of 5% is trivial since there is no more than 1 parameter 

— the curves of equal density are circles 

This type of model is generally known as a Gaussian Mizture model. 

The density estimation therefore consists of determining the parameters of the model : 

{P(j),u;,Ej, 7 = 1,... ,M}, especially to choose M, the number of basis functions in 

the model and the structure of the covariance matrix D. 
  

“cou(Xi, Xx) = E[(Xi — E[Xi])(Xe — E[X])] where €[X] represents the expectation of X. 
Scou(Xi, Xk) = i,n =0 fori#k 
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2.2.2 The Expectation-Mazimisation (EM) algorithm 

The Expectation Mazimisation algorithm (or EM algorithm) is the answer to the question of 

how to define the parameters of our model as it provides a simple method for estimating the 

mixture parameters. 

e The estimation of the parameters 

Many procedures have been developed for determining the parameters of a Gaussian Mixture 

Model, given a set of data. Most of them are maximum likelihood techniques and consist of 
N 

maximising the likelihood L = Il p(x”) of the parameters, which is equivalent to minimising 
n=1 

the negative log-likelihood given by 

N M 

B=-InL=-) in{ p(x") PC} ; (2.5) 
nl: tgs 

that can be considered as an error function. 

The EM algorithm then alternates two steps starting from a preliminary initialisation : 

E-step or Expectation step : Determine Q(0,0°%), where Q(0,0%4¢) = E[InL|9%4] The 

expectation is computed using the current, fixed values of the parameters. 

M-step or Mazimisation step: Define 6" so as to maximise Q(6, 0%). 

O=—{P(>); H;,45, j =1,... ,M} represents the set of parameters to be determined, and 

Q(0, 6’) = E[ln L|6’], a function of the observed data {Xn}n=1,...,v- It consists of choosing 

g”*” for minimising the expectation €[E|0%4] and this leads to a new error E"*”. 

For Gaussian mixtures, the new error E”*” admits® an upper bound such that 

NSE ‘ vn) im § Pee )BY x") mew _ prold <— _ old n : 2. 

BSS DP Gn arn a) a 
If we let Q be the the right-hand side in (2.6) then we have E"*’ < E%4 + Q and so 

we can seek to minimise the upper bound E°4 + Q with respect to the new values of the 

parameters. Minimising Q (£4 is fixed) will necessarily lead to a decrease in the value of 
  

®Jensen’s inequality : In D5 As2;) > 0; As In(z;) if A; > 0 and >; 47 = 1 combined to the Equation 

(2.5) lead to the relation (Details are given in(Bishop, 1995)). 
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E”™ unless it is already a local minimum. 

For © = Diag(o?,... ,o02) ( the choice of such a covariance matrix is explained at the end 

of this section), the minimum of Q is obtained after differentiating E with respect to the 

parameters P(j), 4; and o;, which leads to the relations: 

Tn PHM j|x)x” 

  

Bi a Lin Pe( 9 |x) z 1) 

(J) new\2 = Dn P%4(j|x") (2 ae po Ye (2 8) 
(og i= Dn P45 |x") ’ 5 

: 1 ; 
ON Pe ie (2.9) 

n 

fork =1,...,d and j = 1,...M. Details and proof are available in (Bishop, 1995). 

e The initialisations 

The initialisation procedure that sets the starting values of the updating relations (2.7), 

(2.8) and (2.9) is not to be neglected in so far as it can alter the performance of the 

EM algorithm when minimising the negative log-likelihood error (2.5). For the training 

procedure, the parameters take the following initialisations : 

Priors P(j) : 34 for all j 

Centres ; : they are randomly chosen in the interval [min(7) max(7)] where 

T= ast. ow with ey (x”),... a") a d-dimensional vector representing the 

data set. 

The variance is set to 

min || 45 — Hj a 

Besides, as far as the implementation is concerned, the components os (for j= 1,-.: ,dpoe 

the covariance matrix © are checked at each step of the EM algorithm and re-initialised if 

needed so as to avoid ill-conditioned matrices (if variance collapses to zero). 

Now that the parameters of the Gaussian mixture are defined, it is to be added that some 

testing procedures carried out last year showed that the diagonal matrix, as a structure for 

the covariance matrix, is the best compromise when applied to novelty detection on HTS. 

And finally, some empirical studies based on the performance of the trained mixture model 

set the number of basis functions to two. So our mixture model is now completely defined. 
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2.3. Mixture models in the quality control context 

Since there is no difference between the standard controls and the normal wells, the correlation 

tests mentioned in Section 2.1.1 validated an approach based on control values only to assess 

the quality of the data, which is obviously convenient since the studied data points are far 

less numerous (6 controls on a normal plates) than normal wells (90 on a normal plate). Thus 

the new approach focuses on the control values rather than the normal wells. 

In addition, if we know what the distribution of ‘normal’ values looks like, from a probabilistic 

point of view, the points considered as novel are the ones that are unlikely for this distribution. 

So the novelty criterion is only a matter of defining properly a certain threshold. 

This section briefly explains how the distribution of the control wells is modelled (it especially 

describes the technique used) and also how the novelty threshold is defined. 

2.3.1 Training and validating the model 

The approach basically consists of ‘learning’ the distribution of control values. To do that 

three control plates (featuring only maximum and minimum control values as stated in Section 

1.2.1) are added at the beginning of each screen. The Gaussian Mixture model is then trained 

and validated on these data as explained in the following sections. 

Cross-validation 

The Gaussian mixture model is trained by minimisation of the error function (2.5) with 

respect to a set of data. But we can not be sure that the minimisation of this error function 

for a single data set gives a good performance of the model when applied on new screens. 

It is the reason why we proceed by cross-validation to determine the model with the best 

performance. 

What does cross-validation consist of? Basically the three additional control plates, that 

appears to be references with regard to the distribution of control values, are used to generate 

two independent sets of data, as explained in Figure 2.1: a training set and a validation set. 

From the initial 2-dimension vector featuring the 144 control values added at the beginning 

of each screen, a random selection is first made to split it into two independent 2-dimension 

vectors Viraining ANd Vyalidation- Each of these vectors Viraining 2nd Vyalidation are then used to 

generate a 4—tuple, where each maximum column (respectively minimum column) represents 

a random selection of maximum values in Viraining (respectively minimum value in Vesiidation); 

that constitute the training set TJ and the validation set V. 
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(based on the same principle as above)                   

  

Figure 2.1: Generation of the training and validation set. 

The procedure is then repeated several times. More complex cross-validations are mentioned 

in (Bishop, 1995) but give similar results, referring to the work that was carried out last year. 

Note: a 4-tuple is a 4-dimension vector. It features 4 columns of control values (2 columns 

of minima, 2 of maxima) that are used to train and validate the model, with regards to the 

control wells (D,, D2, D3, D4) on a normal plate, whose validity is tested. 

The selection criterion 

To choose which one is the best model, we first have to define a selection criterion. Thus, it 

is usually the best fit with regard to the error function that is kept. Indeed, the performance 

of the different models is compared by evaluating the error (2.5) on the validation set VY. The 

model that has the smallest error with respect to the validation set V is then considered as 

the best model. This approach is known as the hold out method. 

Note: (Bishop, 1995) emphasises that sometimes, another set of data is chosen as a test set 

to confirm the performance of the selected model, so as to avoid over-fitting the data of the 

validation set. 

Last year’s approach also considered a second means of selecting a model: the model is chosen 

with regards to the number of novel points detected in the validation set. The smaller this 
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number, the better the model. In practice, these two strategies gave similar results on the 

tested screens, hence our decision to keep the first criterion for our procedure. 

2.3.2 The novelty threshold 

The novelty threshold is chosen to be the minimum value of the density function or likeli- 

hood" of the validation set. This means in practice that all the controls (on a normal plate) 

that have a smaller probability than the smallest probability of the control plates values are 

considered as abnormal. 

Another possibility to define this threshold, rather than using the validation set, is to subsam- 

ple from the Mixture model density function. The likelihood for this sample is then computed 

and a threshold is set to a certain percentile, which corresponds in fact to the definition of a 

new novelty threshold. This definition takes advantage of the probabilistic definition of the 

data provided by the density function. 

2.4 Reliability of the novelty detection algorithm 

Last year’s results showed variations after several runs of the main program: the number of 

plates flagged as abnormal according to the chosen criterion (the novelty threshold is defined 

as the minimum value of the density function of the validation set) did not have a constant 

value, this phenomenon is investigated by focusing on the random seed factor. 

The first part of this section explains what the random seed factor is, where it appears 

and to what extent it influences the results. It then presents how the study led us to consider 

three different aspects of the problem : the influence of the seed in the generation of the 

training set versus the seed factor in the Expectation-Mazimisation algorithm (EM), the 

influence of the size of the training set, and finally an investigation to see whether plates had 

the same ranking according to their likelihood, despite the sources of variation. 

2.4.1 The random seed factor 

What is a seed factor ? 

Last year’s study is based on Gaussian mixture models to infer the density of the HTS control 

values. The training procedure was described, focusing especially on how the training set is 

generated as a random selection of the control values featured by the added control plates. 
  

"the value p(x) taken by the density function p at a point z is generally called the ‘likelihood’ of this point 
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What is called random seed factor is the starting point of the number generator that specifies 

a random sequence. This means that for a given seed factor, the randomly generated sequence 

of numbers will always be the same. So all the procedures using a random sequence depend 

on this seed factor. In particular, both the generation of the training set and the initialisation 

for the EM algorithm feature a random process. 

The influence of the seed factor on the novelty detection 

Last year’s study focused on the control values to determine the number of plates declared 

‘novel’. The tests carried out mainly concerned Screen 2: the results are summarised in 

Figure 2.2. The same screen has been used this year to compare the results by using five 

different random seeds (see Table 2.1). 

  

28/11/96: assay1 (40 plates) 
06/11/96: assay2 (40 plates) 
13/11/96: assay3 (11 plates) 
07/11/96: assay4 (40 plates) 
12/11/96: assay5 (40 plates) 
13/11/96: assay6 (35 plates) 

6 novel 2 valid   

  

    

  

   

  

29 valid 

38 novel      
17 novel 

36 valid 

23 valid 

    

   

4 novel 

6 novel 

9 valid 

2 novel 
34 valid 

Figure 2.2: Totals & NSBs 

Last year’s results : Proportion of rejected plates per day or assay (screen 2). 

Even if the number of rejected plates is more or less the same as far as the average is 

compared to last year’s, one can notice that for a given screen and several runs of the program, 

results show big variations: the number of rejected plates for 13/11/96 for instance ranges 

from 3 to 13 out of 35 that is a difference of 10 (30%). This phenomenon is due to the seed 

factor. However, since a random process appears both in the generation of the training set 
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Date Number of plates | Number of rejected plates | Average | Proportion 

28/11/96 40 38-38-38-38-38 38 95% 

06/11/96 40 3-2-8-6-3 4 10% 

13/11/96 ll 0-2-3-5-0 2 18% 

07/11/96 40 4-3-9-8-3 5 13% 

12/11/96 40 19-13-20-21-16 18 45% 

13/11/96 35 11-3-13-12-7 9 26% 

Table 2.1: Totals & NSBs 

Proportion of rejected plates per day (assay) for five different seeds (screen 2) 

and the EM algorithm, it is important to understand which one has the greatest effect. 

2.4.2 Seed factor in the training set Versus EM seed 

The first aspect considered in this investigation deals with the effects of a fixed random seed 

in the generation of the training set versus a fixed random seed in the EM algorithm. 

A first problem arose that had to deal with the zeros in the minimum control values in the 

control plates. Since plotting the distribution of the minimum values hardly allows us to 

determine whether the zeros should be considered as outliers or not (as shown in Figure 2.3), 

the experiments are carried out both with the zeros and without them. 

The starting point of our study concerns the influence of the random seed factor in the 

generation of the test set. First the novelty detection procedure is computed with a fixed 

seed in the initial conditions of the EM algorithm, the training set being each time generated 

with different seeds. A second experiment then consists of fixing a seed for the generation 

of the training set and initialising the EM algorithm with different seeds for each run of the 

novelty detection. 

All the tests carried out on the different screens lead to the same results : when the seed 

varies in the generation of the training set, the number of plates declared ‘novel’ for a given 

screen show big fluctuations. On the contrary, when it is fixed, the number of abnormal 

plates only takes two different values (close to each other) as shown in Figure 2.4. 

The tests lead to the same conclusion as far as both the training and validation error per 

point, used as indicators to see the performance of the mixture model, are considered (as 

Figure 2.5 proves it). 

31



CHAPTER 2. NOVELTY DETECTION 

  

  

            

  

25 r Y . , 1200 + r 

1000+ 

800+ 

600+ 

400+ 4 

200+ | 

0 100 200 300 400 500 °% 50 100 150 

Figure 2.3: Distribution of the minimum control values 

25 
  

Plates declared novel Plates declared novel 

T T r r 

20+    
   

   

va
lu

es
 
nu
mb
er
 a T 

3 T 

        
  

1. 1 , 
90 120 54 54.5 55 55.5 56 56.5 57 

rejected points 
70 

  

80 
rejected points 

(a) Fixed EM seed (b) Fixed seed in the Training set 

Figure 2.4: Effects of the seed factor on the number of novel plates for screen 2 

Thus the results obtained for the first part of this investigation clearly prove that the random 

seed factor has an influence on the number of plates declared novel that should not be 

neglected, when it varies in the generation of the training set, whereas it does not influence 

anything when intervening in the initialisations of the centres in the EM algorithm. Such 

variations are obviously undesirable as the results should not depend on the chosen seed 

value. Further investigation therefore appears to be necessary. 
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Figure 2.5: Effects of the seed factor the training and validation error per point for screen 2. 

2.4.3 Influence of the size of the training set 

The variation in the results can be due to a training set that was not big enough. We therefore 

investigate this issue. Indeed it is expected that the number of rejected plates will be less 

affected by the random seed factor, or at least not in such a large way, if the mixture model 

is trained with a larger data set, bearing in mind that the training procedure should not be 

too computationally expensive. 

As seen before, it is the random generation of the training set that influences the results. 

Therefore, to concentrate only on its effects, the random seed factor is fixed in the EM 

algorithm. We then study both the number of plates declared ‘novel’ and the negative log- 

likelihood (validation error per point), for varying random seed factors in the generation of 

the training set, as a function of the size of the training set. The results expected are smaller 

and smaller error-bars together with a decreasing curve (while the size of the training set is 

increasing), which would clearly prove that the influence of the random seed in the training 

set can be neglected for a training set that is large enough. 

The first step of this investigation considers a reasonable size for the training set: the mixture 

model is trained with data sets whose size ranges from 144 to 1000 as shown in the top row 

of Figure 2.6. Since no general trend arises from these curves, the investigation is carried 

out on larger training sets (see the bottom row of Figure 2.6). The results do not show any 

improvement. Even if the use of a larger training set would have led to better results (as far 

as the validation error per point is considered), it would have been rather unrealistic to keep 

on training the mixture model with such large sets of data since the learning procedure took 
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Figure 2.6: Size of the Training set versus novel points and log-likelihood : for 
each size of the training set, both the number of abnormal plates and the validation error are 
computed 60 times. The solid line joins the median of the values which range over the error 
bars. 

no less than several hours. 

The results obtained are far from our expectation in the sense that there is no ideal size 

for the training set that improves the results, since the curves do not follow any general 
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trend that is easy to interpret. Therefore, a size is chosen so as to avoid a time consuming 

algorithm, as time is a crucial issue in term of quality control in the HTS process. 

2.4.4 The same ranking according to the likelihood ? 

It is now clear that the number of plates flagged as ‘novel’ depends on the random seed factor 

in the generation of the training set, whatever its size. We investigate the novelty order of 

the standard plates according to their likelihood, for different random seeds in the generation 

of the training set : this is the measurement used to flag a plate as ‘novel’ since the novelty 

threshold has been defined as the minimum value of the validation set density function. 

Experiments are carried out on each screen, for different random seeds while generating the 

training set. 

  

  

  

  

  

  

Random seed |) With the zeros in the distribution of the minima | Without the zeros 

20 5 4 

100 3 2 

350 Zz 5 

500 2 5             

Table 2.2: Screenl, Plate 74 : Ranking for four different random seed 

The results are rather satisfying, since the ranking of the plates according to their like- 

lihood do not show huge differences for various random seeds (as shown in Table 2.2). But 

also, plates known to be invalid have a high novelty value i.e. a low likelihood in all the 

tested cases. Indeed, let’s consider the example of plate 74 in screen 1. It contains a zero as 

a maximum control value (maximum activity) whereas the corresponding minimum activity 

shows a positive value. This plate should be highly considered as highly abnormal, since one 

of its minimum values is higher than the corresponding maximum value. For each of four 

different random seeds, plate 74 has a ranking lower than 5 (out of 115) (see Table 2.2), which 

clearly shows a really low likelihood and hence a high probability of being abnormal. 

2.4.5 Conclusions 

While investigating some sources of variation in the novelty detection algorithm, we made 

clear that the random seed factor, that is the starting point of the number generator that 
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specifies a random sequence, in the generation of the training set is the cause for these 

unexpected variations. 

Moreover, since our expectations that a bigger training set would undermine the variations 

were not fulfilled, the size for the training set was chosen so as to avoid a time consuming 

training procedure for the Gaussian mixture model. 

Finally, we came to the conclusion that, although the random seed factor in the generation 

of the training set influences the number of plates declared ‘novel’ with the chosen criterion, 

this phenomenon is not worrying since the ranking of the plates according to their likelihood 

does not show significant differences (in particular, plates that are most likely to be flagged 

as abnormal have the same low likelihood whatever the random seed factor and hence a high 

probability of being considered as novel). 
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Chapter 3 

Inter- and intra-plate variation 

This chapter presents the second step of the quality control procedure. Whilst the novelty 

detection (introduced in the previous chapter) only relies on control values to assess the qua- 

lity of the data, this second stage of the procedure focuses on normal wells. 

The aim here is to detect any general effect that could affect a plate. Not only does this con- 

cern some potential problems occurring during the physical preparation of the experiment, 

such as handling mistakes where, for instance, an inaccurate volume was dispensed or a con- 

tamination between plates or wells, due to a failure in the washing step occurred, but also 

some potential problems in robots: it can be a blocked tip affecting all the wells in a given 

row or column on a plate (depending on the kind of devices used), or an electronic mistake 

in the measurement devices. More generally, this step aims to determine any potential errors 

inducing wrong values in the data. 

It first consists of a plate to plate comparison where a general statistical method such as 

the Kolmogorov-Smirnov test is used to detect any general difference, together with some 

other methods dealing with the presence of extreme values (or outliers). This procedure 

aims to spot some suspicious plates by comparing the distribution of values of the plates and 

pointing out the ones that significantly differ from the other ones. The quality control pro- 

cedure is then completed by an intra-plate variation to detect any differences within a plate. 

This part of the procedure is more specially designed to detect blocked jets by investigating 

differences in spread and location between the data coming from different rows, within the 

same plate. 
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3.1 A plate to plate comparison 

Considering the first set of valid plates (determined as a result to the novelty criterion chosen 

in the first step of the quality control method and based on control wells), we wish to detect 

invalid plates where the control values are unaffected. Because we do not know what any 

single value on a plate should be, we are forced to compare the distribution of values on the 

whole plates to detect inter-plate variations. The idea is to find some general procedure that 

is able to deal with any type of particularity that could possibly distinguish one plate from 

another. To do this, wea using a well known statistical procedure: the Kolmogorov-Smirnov 

test. 

3.1.1 The Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test used as a general procedure to investigate differences between 

two population distributions is even considered by (Neave and Worthington, 1988) as the best 

known among several distribution-free procedure to test differences of any kind, in location, 

or spread, or more general differences in shape, between two sample populations. 

Presentation 

Several computations of the Kolmogorov-Smirnov test exist, based on different definitions of 

the cumulative distribution function. The one computed here is given by 

The procedure consists of testing two hypotheses: 

  

Ho: the two samples come from the same distribution 

Hy: the two samples come from different distributions. 

    
  

Given samples of size n; and nz, the Kolmogorov-Smirnoyv statistic then consists of com- 

paring the maximum value of the absolute differences between the two cumulative distribution 

functions of the two populations: 
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with some critical values Dg (where a is the significance level of the test) given by tables!. 

The critical region is of the form D > Dg, which means that in such a region the Null 

hypothesis Hp that the 2 samples come from the same distribution is rejected in favour of 

the alternative hypothesis H. 

Note: as mentioned in (Neave and Worthington, 1988), for large sample sizes (e.g. more or 

equal than 35 as it is the case in the context of HTS), critical values are only the result of 

approximations. 

Method 

The idea behind such a procedure is based on the simple fact that an invalid plate shows 

significant differences when compared to a normal plate. Thus, we expect that an invalid 

plate should differ from quite a large number of plates, which would clearly prove that the 

testing procedure is actually relevant and enables us to spot suspicious plates i.e. plates whose 

distribution of values differs in a significant way from the other plates. Hence this could be 

a good means of detecting general effects such as handling mistakes or mechanical problems 

such as blocked jets, assuming that they affect the distribution of values significantly enough. 

Practically, the implemented procedure randomly chooses a certain number of reference plates 

(among the plates considered as valid by the novelty algorithm) whose distribution of values 

are compared to all the other plates of the subset of ‘valid’ plates, using the Kolmogorov- 

Smirnov test. Referring to the statement mentioned below, a suspicious plate then is a plate 

that differs from an unusual high number of other plates. 

Note: the advantages and limitations of this method will be discussed in Chapter 5. Some 

remarks will especially be made concerning the choice of the number of reference plates. 

3.1.2 Outlier detection 

A second method is investigated whose aim is to spot some suspicious plates. The point is not 

here to focus on the distribution of values any more but to make a study of extreme values 

on each ‘valid’? plate of a screen. To achieve that, rather than. making use of the traditional 

approach to deal with outliers (presented in Section 2.1.2), which is far too inaccurate and 

time-consuming to satisfy our needs, we choose an alternative and simple method. 
  

‘Details of these critical values can be found in (Neave and Worthington, 1988). 
according to the novelty algorithm 
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Procedure applied 

The aim of this procedure is simply to detect suspicious plates by focusing on the number of 

extreme values. Indeed, relying on the simple idea that a suspicious plate is a plate showing a 

significantly high number of extreme values, what is expected here is to find a small number 

of plates that would show an unusual high number of outliers. Figure 3.1 gives a visual 

representation of our expectations. 

Distribution of the number of outliers per plate     
  

  

    
  

elo it i 
10 20 30 

  

nb of Sines per plate 

Figure 3.1: Distribution of the number of outliers per plate in an ‘ideal’ case 

To do that a rather experimental but well-accepted and intuitive process of detecting 

outliers is computed, and this is the method used in the remainder of the thesis to determine 

whether an extreme value can be considered as an outlier: 

  

An outlier is a value that differs by more than 2 standard deviations from the mean 

of the data. 

    
  

It is however to be noted that this definition can be slightly modified : the standard 

deviation and the mean respectively can be replaced by any other measure of spread such as 

the Median Absolute Deviation that will be introduced in the following section (respectively 

any other measure of the mean). 

The built-up procedure exploits the two possible means of detection: 

1. A traditional detection using the mean and the standard deviation of the data 

2. A robust detection using a robust measure of the mean and a robust measure of the 

spread 

Figure 3.2 gives an indication of the differences between the two methods used to detect 

outliers (the graphs are presented here using the quantile-quantile technique which is described 
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Figure 3.2: lst set of valid plates from Screen 1b: the three graphs respectively represent 

the data without the outliers and the whole data population 
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in Section 4.1.1). An examination of these graphs shows that, though similar, the two plots 

representing the two methods of detecting outliers give slightly different results. The reason 

for this is that, when applied, the robust detection is less affected by outliers than the 

traditional detection, as far as the computation of spread is concerned. Therefore the former 

method detects a larger number of outliers as indicated on the previous figures. 

e The traditional detection 

The first method computed removes the extreme values using the traditional outliers 

detection. The definition presented before is applied on the tested screens with the sample 

mean defined by 

  i and : 

n 

where 2},... , 2, denotes n data values, and the standard deviation given by 

  

e A robust detection 

A second possibility to deal with outliers is to make use of the tools developed by robust 

detection methods. As emphasised in (Mason et al., 1989), unlike the traditional summary 

statistics measuring the centre (the sample mean) or the spread (the standard deviation) of a 

set of data, robust statistics do not suffer that much from extreme values. That is why they 

are often preferable to the traditional statistics when analysing real world data. 

The m-estimator is the robust statistics used as an alternative to the sample mean. 

M-estimators are nothing but weighted averages of data values. They are defined by: 

n 

> TW 

11 m= = = 

dw 
i=1 
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where 

—tv oh ifxz;<m-—tv, 

Wi =u 1 ifm—tuv<2j;<m+tv, 

—Y_ ifmt+tu<%7; . zi—m 

t being the tuning constant (usually chosen to be 1.345 or 1.5 depending on how severely 

one wishes to limit the influence of extreme values) and v a robust measure of spread, usually 

the Median Absolute Deviation presented in the following. 

M-estimators serve two crucial purposes. First, as said before, they are a robust alternative 

to averages whose greatest merit is to use, unlike the Sample Median, all the data values. 

Second, the weights w; help to identify when the traditional summary statistics may be in- 

fluenced by outliers. Indeed, if all the observations in a data set are sufficiently well-behaved, 

the weights equal 1 and the m-estimator is equal to the sample mean, whereas extreme data 

values are given weights less than 1. 

In practice, m-estimators are computed iteratively, the Sample Median being usually used as 

an initial estimate of m. 

The Median Absolute Deviation (MAD) is a robust measure of variations in the data va- 

lues. It is defined by 

_ median(|z; — M)) 

ee 0.6745 

where M is the sample median, a number that divides ordered data values into two groups 

of equal size, and determined as follows: 

1. Order the data from the smallest to the largest values 

(1) < X(2) Sat Ln) 

2. Determine the median such as 

a (q) if n is odd, where g = a ; 

n 
Zq) tz . . 
<a) ifn is even, whereg= 2% . 
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The constant 0.6745, used in the definition of the MAD estimator, enables a good estimate 

of the population standard deviation with large samples from so-called ‘well-behaved’ popu- 

lations e.g. populations associated with a Normal probability distribution. 

Results and comments 

Both traditional and robust methods were applied to the tested screens. The first results 

obtained with a traditional detection method were however far from what was expected: 

not only was it impossible to isolate a few plates significantly differing from the other ones 

because of a larger number of outliers, but it was even hard to find a common pattern or to 

classify them according to their number of extreme values. 

One can then think that these results are simply due to the fact that the mean and the 

standard deviation are altered themselves by the possible presence of outliers. It is the 

reason why we then opted for a detection based on robust statistics. It was at least hoped 

that this robust detection of outliers would enable us to determine some similarities between 

the plates and spot some plates among the studied set that would show an unusual high 

numbers of extreme values, with this new robust definition of an outlier. 

Unfortunately, this new attempt failed: the results were even worse than the ones obtained 

with a traditional detection. Not only did the different plates show as many fluctuations as 

previously, but they also showed a larger range of outliers (see Figure 3.3), which made it 

even harder to identify some potentially suspicious plates. Table 3.1 presents an analysis of 

the results for the traditional and the robust detection of outliers : for each screen on which 

the number of outliers per ‘valid’ plate was estimated, the table presents the mean and spread 

of the values obtained (for both methods) together with the minimum and maximum number 

of outliers observed. 

Note: despite the negative results obtained for this attempt, such an investigation is not 

useless, since Section 4.1.1 computes the same method to dispose of the outliers. 

3.2 Intra-plate variation 

The quality control procedure presented in the previous section is completed by an intra-plate 

variation detection. Contrary to the Kolmogorov-Smirnov method, the statistical experiments 

carried out aims more specifically at determining mechanical problems such as blocked jets. 

However, it can also be used as a general procedure to detect any differences in location or 

spread within a plate. 
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Figure 3.3: Distribution of the number of outliers per plate for screen 1b 

  

Analysis of the number of outliers per ‘valid’ plate 
  

  

  
  

  

  

  

  

Screens Mean Spread [min (m), max (M)] 

Td Rb aid Rb ™Td Mra ™MRb Mro 

Screen 1 4.2 4.6 tel 2.5 2 5 0 8 

Screen 1b 4.0 C 1.4 O22 1 7 1 14 

Screen 2 3.9 5.4 1.5 2.9 1 10 0 14 

Screen 9 orl 5.0 1.3 3.0 i 6 0 13 

Screen 12° 4.7 8.4 LEC 4.4 0 11 0 21                               

  

“The analysis has been carried out for all the plates. Since no control plates are available for this screen, it is 
impossible to run the novelty detection and therefore to determine a first set of valid plate. 

Table 3.1: Robust (Rb) and traditional (Td) outlier detection for the ‘valid’ plates of the 
tested screens 

45



CHAPTER 3. INTER- AND INTRA-PLATE VARIATION 

3.2.1 Method 

A rather simple method is computed to achieve the intra-plate variation detection. To start 

with, because most of the 96-well plates are in practice filled column per column with 8 head 

dispensers, we decided to develop a procedure based on the distribution of values of rows. 

Indeed, if one of the tip is blocked, since plates are filled column per column, it affects all the 

wells located on the same row. As a result, the affected row is more likely to show unusual 

low or high values? (at least lower or higher than the values of the other rows on a plate). 

Thus, the idea is to investigate differences in spread between the distributions of rows within 

a plate. Figure 3.4 gives an idea of what the distribution of variances per row looks like, for 

a normal HT'S screen. 
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Figure 3.4: Distribution of the variances per row for all the plates of screen 9 (all the rows 

excepted the row containing the control values) 

As expected, the large majority of the rows have a similar variance, if no specific me- 

chanical problems have occurred. Therefore, the idea is that a row altered by a blocked tip 

should show a smaller variance than the other rows of the plate since the corresponding wells 

would show either a minimum or a maximum activity. 

Besides, to increase the accuracy of the method one might think that it may be worth also 

investigating a difference in location since a row featuring minimum activity wells would 

surely show a difference in mean compared to the other rows. : 

For all these reasons, to complete the inter-plate variation procedure, we propose to detect any 

intra-plate effects by investigating differences in spread together with differences in location 

between the distribution of values of the rows within a plate. As suggested in (Neave and 
  

3In the case of a blocked jet, no concentration of reagent for instance is added. From a chemical point of 

view, this corresponds to either a minimum or a maximum activity well. 
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Worthington, 1988), the Siegel-Tukey and Wilcoxon procedures are used to achieve this. 

It is to be noted that the procedure described in this section remains quite general and requires 

some modifications to be adapted to the different situations. Thus the intra-plate variation 

detection is developed here to be used with plates filled per columns, since such a process is 

the most widespread. But the procedures could as well be adapted to detect potential errors 

occurring with devices filling the plates per rows (12 head dispensers). Besides, two different 

procedures can be designed whether one wishes to investigate more specifically some potential 

errors due to blocked jets or simply some intra-plate variations that are briefly presented in 

Section 6.3.2. 

3.2.2 The testing procedures 

The two procedures we propose to use to investigate differences in location and spread are 

both distribution-free and therefore no specific assumptions have to be verified before applying 

these two methods. Besides, both of them are based on the same principle. Finally, (Neave 

and Worthington, 1988) describes them as “extremely good and widely used”. 

The Wilcoxon test 

The version presented in this section is often referred to as a rank-sum test, because the 

statistic of this two-sample test is computed by adding together certain ranks. But it is in 

fact better known under the name of Mann-Whitney test. 

The procedure consists of testing two hypotheses: 

  

Ho: on average, the two populations A and B are the same. 

H,: on average, the two populations are different.       

Given two samples 74 and Tz of size n4 and ng, the Wilcoxon procedure consists of com- 

puting the statistic 

U = min(U4, Up) 

where 

1 
U; = R; a gnri(ni + 1), +2 {A, B} ’ 

R; = sum of the ranks of the A (or B) 

The ranks are obtained using the following method: the data are first arranged into the 

ascending orders. It is then easy to write down a list of ‘A’s and ‘B’s corresponding to the 
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origins of the numbers in the ordered sequence, thus obtaining a letter sequence. The ranks 

of the observations in the two samples are finally obtained by simply numbering the letters 

in the letter sequence, from 1 to N with N =n,4 + 7g as follows: 

A Aaa Be OA OR aD 

Le ee EO PO ON 

If tied (i.e. equal) observations occur between observations from both samples, the letter 

sequence is no longer uniquely defined and some generalisation of the test statistic needs to 

be defined. Tied observations are simply given the average rank of the positions they cover 

in the letter sequence. 

Thus let us consider the following example where 3 data points (2 ‘A’s and 1 ‘B’) have the 

same value (1.40): 

actual data values 1.24. 1735 71.40), 1-40 . 1.40 2.00 5.20 

letter sequence A A A B A A B 

Position 1 2 3" 4 5 6 7 

Ra =14+2+{(3+4+4+5)/3} + {(3+4+4 5)/3} +6 =17. 

The computed statistic U is then compared to some critical value Ucritic given by tables 

(see (Neave, 1978)). If Ucomputed < Ucritic, the Null hypothesis Hp that the 2 populations are 

equal on average is rejected in favour of the alternative hypothesis Hy. 

The Siegel Tukey test 

The Siegel-Tukey procedure is based on the same principle. It also consists of testing two 

hypotheses: 

  

Ho: there is no difference in spread between the two populations A and B. 

H,: the two populations show differences in spread. 

    
  

The test statistic is the same : U = min(U,,Ug) (with the same notations as before), but 

the test is converted to a test for differences in spread rather than location by reordering the 

ranks of the data so as to reflect the above argument. Indeed, the idea is to emphasise both 

ends of the letter sequence. Thus, the reordering scheme ranks the smallest value as 1, then 

the two largest as 2 and 3, the next two on the left-hand side as 4 and 5, and so on until the 

middle of the sequence. 
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AAA B Ay Ah 2B 

1 47} toe Res, 

— we 

Tied observations are treated in a similar manner as before. 

Even if The Siegel-Tukey procedure has some weaknesses compared to other tests for diffe- 

rences in spread such as Mood’s or Ansari-Bradley’s, for instance it is not exactly symmetric 

with respect to the letter sequence and its power is a little less than Mood’s test, this is 

outweighed by the convenience of being able to use in practice the Mann-Whitney tables to 

compute the critical values. 
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Chapter 4 

Edge and Corner effects 

The third and final step of the quality control procedure is a kind of mix of the first two 

procedures described in this thesis. It is similar to the Novelty detection in the sense that it 

assesses the quality of the experimental conditions by investigating what is happening on the 

edges of the plates that constitutes the raw material of the HTS process. On the other hand, 

like the quality control step that investigates inter- and intra-plate variations, it exclusively 

concentrates on normal wells, without taking into account the controls. 

The procedure focuses on the normal wells located at the edges of the plates to detect potential 

variations with comparison to the inner wells. Since each well features biological mixtures, 

the point is to investigate whether the way the experiments are designed has an influence or 

not on the data values. For instance, it is interesting to investigate if the fact that some wells 

are directly in contact with the air (the ones located on the edges) present different patterns 

from the ones in the middle of a plate or if the number of neighbours induces some specific 

features. Therefore, we consider three different populations: 

1. A population of corner values, the most exposed to the air, and with only 3 neighbours. 

2. A population of edge values (slightly less exposed to the air than the corner wells) but 

with 5 neighbours. 

3. A population of middle values featuring the inner wells that have 8 neighbours. 

Figure 4.1 gives a representation of the different populations considered and their location 

on the 96-well plate. 

To tackle the problem of detecting some significant edge and corner effects, we propose to 

use the Analysis of variance (ANOVA) method. The point is in fact to detect any systematic 

variation in looking at the population means. We therefore eliminate the extreme values due 
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Figure 4.1: A 96-well plate featuring the different populations considered to detect edge and 

corner effects 

to mistakes or hits and apply the ANOVA procedures from standard statistics on the three 

different populations mentioned above. 

This chapter is divided into two parts. We first test the assumptions behind the standard 

method of analysis on the studied data. Indeed all the populations the ANOVA procedure is 

applied to have to be normal with equal variances. The second part describes the procedure 

itself: single factor ANOVA first to determine if the tested populations are different, and 

Tukey’s multiple comparison to investigate which populations significantly differ from the 

other ones (if the first step showed any variation between the populations.) 

4.1 Hidden assumptions 

As mentioned previously, before computing the Analysis of Variance procedure, some strong 

assumptions have to be verified : the J populations or treatment distributions (here J = 3: 

corners, edges and middles) must all be normal with the same variance a”. Let Xj; be the 

random variable that denotes the jth measurement taken from the ith population. It means 
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that X;; has to be normally distributed with 

E(Xij) = wi, 

Var(Xij) =o? . 

Hence, as suggested in (Devore, 1991a), it is highly recommended to first test the nor- 

mality of the data, and then the equality of the variances, to be sure that the pre-requisite 

conditions for ANOVA hold. 

4.1.1 Normality of the data 

Skewness and Kurtosis 

As a preliminary step, before computing any sophisticated procedure, a basic idea to test 

whether a sample comes from a normal distribution or not is to look at the data, especially 

to check the symmetry of the data set, since it is a strong property of the normal distribution. 

To characterise this, rather than simply estimating the percentage of data points higher and 

lower than the mean, as suggested by (Miller and Ruppert, 1986), a more useful measure is 

given by the Skewness defined by : 

El(x — w)*] 
1 (x) a o3 ? 

and the Kurtosis 

E[(x — y)*] 
o4 oe 

a(x) = 

for zero mean data (€[x] is the expectation of x), that give a better idea of what the data 

look like. Indeed, a distribution with a right tail heavier than the left one has a Skewness +1 

positive. Similarly, when the tails of the distribution contain more mass than the Normal dis- 

tribution, the Kurtosis 72 is positive, whereas 7 = y2 = 0 for the Normal distribution. Table 

4.1 presents the values obtained on one of the tested screens (screen 1b, see Appendix A). 

The values of the Skewness and Kurtosis for all the populations give quite poor results, 

that seem to be far from the ideal zero expected in the case of Normal distributions. However, 

since the point of this investigation is to detect any systematic edge or corner effects, extreme 

values (due to mistakes or hits) that are more likely to alter the data are not to be taken into 

account. Therefore, the same measures are applied to the populations without outliers. The 

method used to dispose of the outliers is the one described in Section 3.1.2. This seems to 

work quite well and the improvements are remarkable: the symmetry of all the populations 

is almost perfect. It is confirmed by the following graphical visualisations and goodness-of-fit 

tests. 
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j Number of data points Skewness Kurtosis 
Populations 

with outliers without? || with without with without 

Corners 256 248 -1.68 -0.15 8.78 -0.01 

Edges 1984 1912 -17.29 -1.23 7.78 -0.25 

Middles 3520 3400 -0.48 -0.04 7.85 -0.16                     
  

  

“The outliers represent here all the data that differ by more than 2 standard deviation from the mean. 

Table 4.1: Measure of Skewness and Kurtosis for the different populations involved in the 

ANOVA procedure for Screen 1b. The 2 measures have been applied on the whole popula- 
tions and the populations purged of outliers. 

Graphical visualisation 

To illustrate the results of the investigation carried out previously, some graphical represen- 

tations are used. For obvious reasons, we can not reproduce here all the results obtained 

for the different tested screens. That is why we choose to detail the whole testing procedure 

on one particular screen (screen 1b) for which the hypotheses for ANOVA (Normality and 

equality of variances) seem to hold. 

First, Figure 4.2 presents the distribution of values of all three populations (a population of 

corner, edge, and middle values). The graphs represent the normalised data, i.e. the data 

are set to zero mean and unit variance, together with a Gaussian distribution. As mentioned 

before and suggested by the results obtained with the Skewness and Kurtosis measurements, 

the plots show left skewed tails, which corresponds to a negative Skewness, and also heavy 

tails (as stated by the positive values of the Kurtosis). 

Normal quantile-quantile plots are then used to show how close to a Normal distribution 

the populations without outliers are, justifying at the same time why we disposed of the 

First, we present the philosophy of quantile plots and define a specific extreme values. 

category: the normal quantile-quantile plots. Details can be found in (Mason et al., 1989). 

e Presentation of quantile-quantile plots 

Quantile plots display many distributional features of a set of data. They can in par- 

ticular be used to assess the fidelity of some data to a hypothesised generating probability 

distribution. 

First, a quantile (denoted Q{f}) is a number that divides a population into two groups. 

Thus, a specified fraction f of the data are less than or equal to the value of the quantile. 

To compare two sample distributions using quantile plots, the following procedure can be 
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Figure 4.2: Distribution of corner, edge and middle populations for screen 1b 
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followed. Given two ordered samples {y;},i = 1,...,n and {a;},i = 1,...,m, m>n, for 

each data fraction f; =7/n in the smaller sample, the aim is to find an interpolated quantile 

x'(f;) for the larger sample, defined by: 

U; if 7 — ns 
«'(fi) = 

(l—g)tp + 9%k41 ifn<m. 

k being the integer portion of h = (m+ 1)fi, with g =h—k (if k >m, 2'(fi) = rm). 

The quantile-quantile plot techniques consist of plotting the quantile Q,{fi} = yi versus 

Qe{fi} = 2'(fi),i=1,...,n. All the plotted points lie on or near to the same line if the two 

distributions are identical. 

Quantile-quantile plots can also be used to compare a sample distribution with a theoretical 

reference distribution such as the Normal probability distribution. It therefore consists of 

plotting Qy{fi} = y; versus the standard normal quantile Qsyv{f;} whose approximation! is 

given by Qsn(f) = 4.91(f°"* — (1— f)°"), fi being defined by f; = (i — 3)/(n + }). 

e Quantile-quantile plots applied to screen 1b 

The aim is to give a graphical representation of what was underlined previously: when 

we eliminate the extreme values, the distribution of data is close to a Normal distribution. 

The quantile-quantile plot technique is applied to screen 1b. Figure 4.3 represents the corner, 

edge and middle populations of screen 1b without the extreme values. The line y = z is 

superimposed on the plot because all the plotted points should lie on or near this line if the 

three populations are identical to the Normal distribution. The results are rather satisfying: 

most of the data points are close to this line, which tends to prove that the Normality of the 

three distributions is accepted. 

Goodness-of-fit test 

In order to give a numerical estimation of how close the different populations are to a Normal 

distribution, a statistical procedure has been applied: the Lilliefors goodness-of-fit test. 

  

‘This approximation, often used in statistical software, corresponds to the ‘standard’ normal distribution 
(u = 0, 0 = 1). The quantile Qn(f) for a Normal distribution with any mean p and variance o” is derived 
from Qsn(f) such that Qv(f) =oQsn(f) +p. 
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Figure 4.3: Distribution of Corner, edge and middle populations without outliers for screen 1b 
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e Presentation of the Lilliefors test 

The Kolmogorov-Smirnov procedure to test whether a sample is drawn from an hypothesised 

distribution can not be used unless the hypothesised distribution is completely specified (i.e. 

the exact value of o and wy are required in the case of a Gaussian). The method proposed 

by W. H. Lilliefors to test whether a population has some unspecified Normal distribution is 

therefore to estimate 4. by the sample mean X and a by the classical estimator G defined in 

Section 3.1.2. 

Given a sample of size n, the Lilliefors goodness-of-fit test consists of testing two hypotheses: 

  

Ho: the sample is from a Normal distribution 

H,: the sample is not from a Normal distribution. 

    
  

The statistic compares the maximum value D of the absolute differences between the 

cumulative distribution function F;,(x) of the population and the hypothesised cumulative 

function Fo(zx) defined by 

number of observations < x 
F,(z) es ? 

n 

to 1 eee NS 

Pete) = [ep exn(- YP hay 
—oo 

  

  

with some critical values D,. As with the Kolmogorov-Smirnov test (see Section 3.1.1, 

the critical region is of the form D > Dg. Details can be found in (Neave and Worthington, 

1988). 

e Results of the Lilliefors test 

Table 4.2 presents the results of the Lilliefors goodness-of-fit test on the screens the 

ANOVA procedure is applied to. The corner, edge and middle populations mentioned in this 

table are purged of extreme values, with the method presented in Section 3.1.2. 

If for some screens the populations are undoubtedly Normal, for some others, it seems 

that this hypothesis is not accepted. These results should however be taken with caution. 

First, since the tested screens feature large data populations (4 corner, 31 edge and 55 middle 

values per plate), the critical values are only the results of approximations given by (Neave 

and Worthington, 1988). (Neave and Worthington, 1988) also underlines that Lilliefors’ ta- 

ble of critical values was rather inaccurate and therefore suggests the use of other reference 
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Lilliefors test Corners Edges Middles 

a, 5% 1% 5% 1% 5% 1% 
Critical values* ~ 

0.0571 | 0.0667 0.0206 | 0.0240 0.0154 | 0.0180 

Dscrceny 0.0542 0.0213 0.0108 

Conclusion Ho accepted Some evidence Ho accepted 

be 5% 1% 5% 1% 5% 1% 
Critical values 

0.1440 | 0.1681 0.0526 | 0.0614 0.0392 | 0.0458 

Dion 4, 0.0747 0.0385 0.0410 

Conclusion Ho accepted Ho accepted Some evidence 

oy 5% 1% 5% 1% 5% 1% 
Critical values 

0.0379 | 0.0443 0.0136 | 0.0158 0.0102 | 0.0119 

Domes 0.0698 0.0419 0.0545 

Conclusion Ho rejected Ho rejected Ho rejected 

ae 5% 1% 5% 1% 5% 1% 
Critical values 

0.0585 | 0.0683 0.0210 | 0.0246 0.0158 | 0.0185 

Dante og 0.0645 0.0403 0.0441 

Conclusion Some evidence Ho rejected Ho rejected 
  

  

  
“For large samples (n>50), the critical values D, are approximations : 

for a significance level a of 5%, Da = oe 
fora =1%, Da = ie. 

Details can be found in (Neave and Worthington, 1988), page 103. 

Table 4.2: Lilliefors test on corner, edge and middle populations. It is to be noted that 

the Lilliefors test was applied to the ‘valid’ set of plates obtained after computation of the 
Novelty algorithm. ; 
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values. 

In addition, due to this large number of data points, the possible presence of some outliers 

(even after we disposed of the extreme values by eleminating every data point that differs by 

more than 2 standard deviation from the mean), may alter the results. 

Finally, despite the fact that some screens did not show the expected results, we however ap- 

plied the ANOVA procedure to them for various reasons (excepted for screen 12 that features 

populations showing a too large departure from Normality as we can see in Appendix B). 

First, graphical representations such as Figure 4.3 gave quite satisfying results and did not 

show any striking departure from Normality. But above all, ANOVA is a rather popular, 

efficient and simple method to investigate differences between a given number of populations. 

With more time, non parametric methods could have been investigated. 

4.1.2 Equality of variances 

The second hypothesis that has to be tested before computing the ANOVA procedure is the 

equality of variance. Since the Normality of the data is verified, the procedure chosen to test 

the equality of variances between the different populations on which the ANOVA method is 

applied is the well known F test. 

Fischer test 

Details of this procedure can be found in any statistical book, for example (Devore, 1991a). 

Let X1, Xo, ..., Xm and Yj, Yo, ..., Y, be two independent samples from a Normal dis- 

tribution with variance on, respectively oe. oe and oe denote the corresponding sample 

variances. The method consists of validating one of the hypotheses: 

  

Ho: The 2 samples have equal variances (0% = 02.) 

H,: The variances of the 2 samples are not equal (0% # o?,).       

To do that the F test proposes to compare the statistic value f = Se / SY to some critical 

values. The alternative hypothesis H, that 0% 4 o% is then accepted in both cases (given 

the choice of the significance level a): 

F 2 Fa /2,m-1,n-1 ’ 

FS Ficajam-tnel 
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It is however not necessary to tabulate both critical values since 

1 
Fi aah = F 

O,Y2,V1 

Results 

The results are presented in Table 4.3 for the screens on which the ANOVA procedure is 

applied. In general they are rather satisfying: for most of the populations, the equality of 

variances is verified. However, since the F' test requires that the populations are normal, any 

debastice from Normality affects the results of this statistical test. This could explain why 

Ho is rejected for the edge-middle populations of screen 2 and 9, since the results obtained 

in the previous section shows that the Normality is far from obvious. 

Besides, the same problem as before is encountered: since the populations feature a large 

number of data values, the critical values are only the results of approximations. As suggested 

by (Lindley and Scott, 1984), for »; and v2 not too high, linear interpolation is accurate 

enough to determine the critical values (if the latter are not given by the tables), but for large 

values, harmonic interpolation should be used (it is this method that was used to determine 

the critical values mentioned in Table 4.3). The procedure is detailed in Appendix C. 

4.2 The Analysis of Variance (ANOVA) procedure 

The Analysis of Variance is the procedure we propose to apply to detect any systematic edge 

and corner effects and to complete the quality control of HTS. This method was chosen for 

many reasons. First, the Analysis of variance is a popular method that proved its relevance 

over the years, and it is probably the reason why every single statistical book mentions it. 

In addition, the method is consistent and powerful: more than being a common statistical 

test, it features a twofold analysis, taking into account both mean and variance of the data. 

Above all, the strength of this method is its simplicity. 

As mentioned above, any statistical literature describes this well-known method: (Devore, 

1991b) was used as a reference to compute this procedure. 

4.2.1 Single-Factor analysis 

The simplest problem is referred to single-factor or single-classification. For this study, 

it involves the analysis of samples from three populations: corners, edges and middles as 

explained in the beginning of this chapter. 
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F test Corners-Edges Corners-Middles Edges-Middles 

10% 2% 10% 2% 10% 2% 

Critical values* |} 1.1289 | 1.1937 | 1.1265 | 1.1819 | 1.0195 | 1.0294 

0.9388 | 0.9096 0.9446 | 0.9178 0.9848 | 0.9772 

dergats th 1.0711 1.0943 1.0216 

Conclusion Ho accepted Ho accepted Some evidence 

10% 2% 10% 2% 10% 2% 

Critical values |} 1.5473 | 1.8754 | 1.5369 | 1.8577 | 1.1253 | 1.1891 

0.7200 | 0.6254 0.7347 | 0.6432 0.9110 | 0.8709 

Teton) 0.4869 0.5589 1.1477 

Conclusion Ho rejected Ho rejected Some evidence 

10% 2% 10% 2% 10% 2% 

Critical values |} 1.0583 | 1.0876 | 1.0572 | 1.0858 | 1.0088 | 1.0133 

0.9712 | 0.9568 0.9741 | 0.9610 0.9931 | 0.9895 

D Screen 2 1.0032 1.0302 1.0269 

Conclusion Ho accepted Ho accepted Ho rejected 

10% 2% 10% 2% 10% 2% 

Critical values |} 1.1354 | 1.2035 | 1.1329] 1.1996 | 1.0205 | 1.0308 

0.9360 | 0.9055 0.9420 | 0.9140 0.9841 | 0.9761 

Dscreén'9 1.1320 1.0911 0.9639 

Conclusion H accepted Ho accepted Ho rejected           

  

  
“the first line gives Fy/2,m—1,n-1, the second one Fy_o/2,m—1,n—-1 

Table 4.3: F test, equality of variances tested on corner-edge, corner-middle and edge-middle 

populations for the different screens 
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Single-Factor ANOVA consists of comparing the two hypotheses: 

  

Ho: Lcorner = Hedge = L-middle 

H,: at least two of the p;’s are different. 

    
  

where the ji;’s, i € {corner, edge, middle}, refers to the corresponding population means. 

The test statistic computed to perform this comparison is given by: 

MSTr 

MSE 
  — 

Let’s denote J the number of treatments (or populations) under investigation (I = 3 in this 

study) and Jj, i € {corner, edge, middle}, the number of observations in each sample. f is 

the ratio of two quantities called mean squares that are simply the sum of squares divided 

by their number of degrees of freedom: 

I SSTr SSE 
at MSE=——, with 1 Nia   HVS lady == 

aae 

The total sum of squares (SST), treatment sum of squares (SSTr), and error sum of 

squares (SSE) are defined for samples of unequal sizes? by: 

ld; Leo di 

SST =) > (Xe -X. = DD XG 
i—1 gt i=l j=1 

Lee I 1 

colt ye A) = x, x! 
t=1 j=l i=1 “? 

Eade 

SSB= >.> (X,—-X.:) = SST = S8Tr 
t= 109—1 

where 

de es 

X= Xi X= DD Xi 
j=l i=l j=1 

The Null hypothesis Ho is then rejected if f > Fa,r-1n-1, where Fo, I-1,n-1 is some critical 

values’ tabulated from an F distribution. 
  

Since each plate features 4 corner, 31 edge and 55 middle values, the three populations ANOVA is applied 

to have unequal sizes. 

’The critical values for this method are computed with the same method as in Section 4.1.2. For large 

samples, harmonic interpolation is required. 
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4.2.2 Multiple comparison 

When single-factor analysis accepts the Null hypothesis Ho, the analysis is terminated, be- 

cause no significant differences were found between the populations under investigation. 

However, in the case where Hp is rejected, one usually wishes to know which sample popula- 

tion differs from the other ones. Multiple comparison procedures aim to carry out this further 

investigation. 

As stated in (Devore, 1991b), the statistics literature present a large variety of such pro- 

cedures. When sample sizes are equal, most statisticians recommend the method based on 

Tukey’s procedure to determine whether 4; = uj. However, there is more controversy among 

them when deciding which method should be applied when sample sizes are different. The 

procedure presented here for unequal sample sizes is a variation of Tukey’s method, recom- 

mended in (Miller and Ruppert, 1986). 

The multiple comparison procedure we chose has the advantage of being quite straight for- 

ward and rather easy to compute. It is based on the Studentized Range Distribution to 

obtain confidence intervals for the considered pairwise differences under investigation. Thus, 

the procedure can be implemented as follows: 

e Given a significance level a, a critical value Qo,1,n—1 is determined‘, using some tables 

featuring Studentized range distribution values. 

e The second step consists of calculating the w;;’s whose aim is to determine whether two 

sample means are different or not. The method to compute the w;;’s is recommended 

in (Miller and Ruppert, 1986). Two cases are distinguished: 

Qa,t,1(J—-1) * VMSE/J for samples of equal sizes , 

Wij = 

Qa,I,n—I * Ae (+ + +) for unequal sample sizes . 
t a 

e Pairs whose sample means differ by more than w;; are then considered as significantly 

different. 

Note: a more detailed description of this procedure can be found in (Devore, 1991b). 

  

“Because of the large sizes of the data involved, harmonic interpolation is often used to obtain the critical 
values 
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Chapter 5 

Application to Screens 

This chapter presents the main results obtained for the different steps we propose to follow 

to achieve the quality control of HTS which were presented in the previous chapters. For 

each procedure applied, some comments are made emphasising the interesting aspects of the 

chosen methods together with the problems encountered and the limitations of the approach. 

5.1 Novelty detection 

This first section presents the results obtained for the novelty detection that constitutes the 

first step of our procedure. Table 5.1 gives an overview of the general results after testing the 

algorithm on the available screens (for further details see (Fouquart, 1997)). It is to be noted 

that this procedure was not applied to screen 12 for the simple reason that no additional 

control plates had been generated for this screen. It was therefore impossible to train and 

validate the Gaussian mixture model. 

  

  
  

  

  

  

Screens || Number of plates | Number of novel plates | Proportion 

Screen 1b 263 199 76% 

Screen 1 115 105 91% 

Screen 2 206 63 31% 

Screen 9 206 140 68%             
  

Table 5.1: Proportion of plates declared novel for all the tested screens for a given random 
seed. 

As mentioned in Section 2.3.2, two thresholds are possible for the novelty algorithm that 

give similar results according to (Fouquart, 1997). As a reminder, we chose to define the 
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novelty threshold as the minimum value of the density function of the validation set. The 

results in Table 5.1 are obtained for a fixed random seed (randomly chosen). Section 2.4 

discussed in detail the variations in the results due to the initial parameters (and especially 

the random seed factor). Nothing a priori justifies the choice of any particular random seed 

factor since it does not have a specific meaning or interpretation. The only reason why a 

choice is made is to provide some fixed results that can be used for further studies. But as 

explained in Section 2.4, the variation in the data likelihood is not worrying since the revised 

version of the novelty detection algorithm generates a stable ranking of the plate according 

to their SicGualiey Indeed, fixing a random seed gives an indication of the number of 

invalid plates (for different random seeds, the results vary within a limited range of values) 

so that the operator can consider all the ‘invalid plates’ to which he can add the next n% 

most invalid ones to be sure that his selection features the plates that are more likely to show 

some anomalies. 

5.1.1 Specific novelty detection: screen 2 

Results 

A more specific analysis, assay by assay, of the revised novelty detection is proposed in this 

section. The results presented in Table 5.2 concern screen 2, chosen because it features the 

smallest daily variation (see Appendix A.3), and therefore is quite close to the type of data 

generated by an automated screening device. 

  

  

  

  

  

  

  

    

Date Number of plates | Number of novel plates | Proportion 

28/11/96 40 34 85% 

06/11/96 40 3 8% 

13/11/96 11 0 0% 

07/11/96 40 6 15% 

12/11/96 40 16 40% 

13/11/96 35 4 11%             

Table 5.2: Proportion of rejected plates per day (or assay) 

These results are also illustrated by the following four groups of graphs presenting the 

variations for the different assays (separated by the vertical dashed lines): the top two graphs 

of each series are dedicated to the maximum and minimum values, whereas the third plot 
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is the negative log-likelihood of the corresponding 4-tuples (the 2 minima D1 — D7, the 2 

maxima D2 — D8). 

For the graphs representing maximum and minimum control values, the symbols: 

e O and o denote the accepted values 

e ’*’ and ’+’ denote the suspicious controls 

These results are given by the Decision graph that features the novelty threshold correspond- 

ing to the minimum value of the likelihood function of the validation set. Therefore, all the 

points that are above this threshold are declared novel.!. In practice, it is the Decision graph 

that is proposed to the operator and on which his decision is based. The advantage of such a 

graph is obviously its simplicity but also the fact that it presents the information in a clear 

  

      

  

  

  

      

manner. 

Accepted controls (ras D2 -min 01 
2 g g Accepted controls (max D8, ee 

Maxima Relected contrels (max Ba ~ min B 

: : oo : Be : Toe ; Be sate d : : 
1400 Feo yi ES nace ge Pg eget bc pyle obit eM abe) hoe Soe cua e oa 

Tree eee ao e* tx FO WG iy Pog ahs : : 
: : 5 a : : cr: : : : 

1200 F->-:-- °°: epee Sie > ethane <a names Rie sean ese S Fe aife wie os ailee genne® Pieces Oo stan de Eas wie Re sie oes 228 Phar hee eer lk eee els Bes” 
ders. Ota vid meen ea et ee ae ae age ee ee 4 o5on08 a6 

ee he or or an ee ee ee OOO. _ 6g, 
1000} ; LSU oy SPU hg : she dloreheees geass : es at ; PO EG RED : Bie a Ne ay ; Babies arava 0 x Me emer : Pe Se Oe Be Sls ak he 

‘t 6 14 16 21 26 31 36 41 46 54 
plate number Minima 

SS fee wits Wa eer ree ea ae a Sapte rane Free ao Bite tre ria acetic fie ie Spe aie nea Eee pees O65 

++ : + ° 
s 60 Jt, assests epee Fe ee a a a “acy es a. Ts. pA ee TF OF =. -O-. er 

gS oe ee O ea Mee ee GC ae! eal spicy °o 
s 55+-:* * OK, ae eh Ole mye: as iy POT gee Pe es ae eetat «9 080. 
= * * a Oxx*x*O : - ae yee a Ho oO 
(a4 ; Oo o : aes o 50- Odo be. 8)'g ele 6 6.0. \e be ere. ewe ko 0. a: pe 8 oi 8s °F oe ee ee ee ae ee ek es w 0s 6 be a oO Aas tee 6 TGs oe a oo ofp. 

RD imei, ee ear a Mian ee eee ae ane auaker beryg homes Brean m= reap yin econ Normans caer aon | ger ett oo pte ga err: Rae Seri os, 

Se an ae ia ee cas ys al U8 sie Vey oes sek a gin MACH e Ed Oma Uris ote 
1 1 1 1 1 1 r | 1 1 

A 6 A 16 21 26 31 36 41 46 51 
plate number Decision graph 

50 (7 T T T T T T T fs T T 

s 3 og . : Peele : 
So 5 ° ‘i = $ 3° ‘ a xg : : T { 
= 30T: CS 6b mig atten aL bares W eee Suda a “ere RaLiae Grad cue, ak we eg ts we tet Bit peligro" 8 ales pitel'e 61Le) Siipyee eta aa A ain a) "oi oe 
2 a ° . a, e ae ce ° . e ss e * e aie | . 3 ce 

=. Fhe Vee MeN eer ie Pg dees Rees IR oe ER i aA econ Re sae Thr OS, Sama Sena 
> x novelty threshold a : | 8 KX x ye KE 
STO a niet sens Veeck re a siasenecs eae beens (cg ts te ey Py aha) 

out 1 1 1 i be 1 1 el 1 hs 

Ria! 16 21 26 31 36 41 46 51 6 
plate number 

Figure 5.1: Novelty detection on HTS screen: plates 1 to 52 

  

‘Novel points are the ones whose probability is lower than the minimum probability of the validation set 

with the chosen definition of the threshold. Since the Decision graph represents the negative log-likelihood 

—log(p(x)) that can be interpreted as an error function, the lower the probability, or likelihood as stated in 

2.3.2, at the point xz, the greater the error and hence the more likely the point is to be abnormal 
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Figure 5.2: Novelty detection on HTS screen: plates 53 to 104 

Maxima 

Pr are een sie Seas SoM Std eee Gace IS Mg BAS Mah copie a ee ee ry see nae 

| ; : 5 : 3 
ett es Chui ene ge pA a os eee een CTs LS yas tae or de Se ee Pe aes tal . > : EI oO 

-o + ap_ g@8556, 62855045 * 08058q eee eos eof. So at 
lee oe aD 6.19: tna 6 Oo oe. 6,0 ube 6 ee nD oO es Cyt hind ne aie: : oe Re oe es} ati ere eo ec a. ee ee ee a ee gents 

oh +O ct 
1 1 i 1 oA 1 of 1 1 1 1 

105 110 115 120 125 130 135 140 145 150 155 
plate number Minima 

: ; : t ' ‘ ; Pitre dese eset Pecte ese deseeeeeeehe poccttbsstsssses Petes seeks sees ede e eee eee dace: 

: | : 

Sn: por, A = ts 9 SOS COs wp pO AO — Ee Oe 

Siealiiie ics kaacxc niniakalaladsh tech an icra eter 
esiG le bie k eretwiid Puiviscs cot ete Sb eee Fee Che he Sopp Dinice, Werke tee Pee Fae eh Pouce tend bi eke ses: ie Dee sy eee * * 

l Ll L L ae 1 L Lom 1 1! 

105 110 TIS 120 125 130 135 140 145 150 155 
plate number Decision graph 

Ea eee Le gene Se ah ae ee PS see sr cs Stee Sse nee ae Oe al 

: 1 ; 
: | ee 3 » i ee ee ae ie a pts vnoveltyinreshos 2002 Ee 

eX RK KX tee “KX X xX wo =e KX se + pena x 

ERR te aece ce Sern OMe ee eee sie oeitchenecs era Pate pee nip: See se. ea ne eat ten ca 

1 1 ! L 1 Ll 1 1 ! 1 4 

105 110 IS 120 125 130 135 140 145 150 155 
plate number 

Figure 5.3: Novelty detection on HTS screen: plates 105 to 156 
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Figure 5.4: Novelty detection on HTS screen: plates 157 to 206 

Comments 

The novelty detection points out 63 abnormal plates out of 206 on screen number 2, as re- 

flected by Table 5.2. 

First, as mentioned in Section 1.2.1, it is to be noted that the rejection of a plate i.e. a 

plate considered as abnormal does not imply that some anomalies have been detected on all 

four control wells of this plate (and would therefore have to be de-selected for the computa- 

tion of the activity boundaries of the mixture, as explained in Section 1.2.1), but simply that 

either at least one of the controls is suspicious or that the combination of the four values is 

unusual. Further investigations are then necessary to determine the kind of problems that 

occurred. 

Concerning the results themselves, Table 5.2 clearly shows that an unusually high proportion 

of plates are rejected in the first assay (85%). Figure 5.1 indicates that it is the values of the 

maximum controls that are much higher for this assay than any other. In fact, this is typi- 

cally the kind of problem these graphs aim to detect. Indeed, such a variation reflects some 

differences in the experimental conditions: the plates prepared for the first assay have been 
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left to incubate? longer than for the others. The mixtures feature therefore a more advanced 

reaction and the maximum control values are higher than any other maxima prepared in the 

usual experimental conditions. 

Finally, some values such as the ones featured by plates 204 and 206 are rather close to each 

other and one of them is considered as valid whereas the other one is flagged as suspicious. 

Such a case, when the corresponding values are close to the novelty threshold, typically re- 

flects the kind of situation when the operator’s judgement could be required to choose whether 

the decision taken by the software is appropriate or whether both plates should be kept or 

rejected. His judgement is based on the Decision graph presented at the beginning of this 

section. 

5.2 Inter-plate variation 

The second step of our procedure, based on the normal wells on a plate, first features an 

inter-plate variation detection relying on a well known general procedure: the Kolmogorov- 

Smirnov test. Results obtained for this statistical procedure are presented in the following 

section together with its limitations. 

5.2.1 <A lack of accuracy? 

We first briefly recall the method that was applied in practice to realise the inter-plate 

variation detection. As stated in Section 3.1.1, a random number of reference plates are 

chosen among the ‘valid’ plates detected by the novelty algorithm. Their distribution of 

values are then compared to the distribution of values of all the other ‘valid’ plates, using 

the Kolmogorov-Smirnov test. 

Two means of detecting invalid plates can then be applied. Since a suspicious plate should 

differ from quite a large number of plates, the idea is to both examine the number of plates a 

reference plate differs from (so as to determine which ones can be considered as suspicious e.g. 

the ones that differ with an unusually large number of plates) and also how many reference 

plates each plate differs from, given that a suspicious plate shows significant differences from 

a large number of reference plates. 

Table 5.3 presents the results obtained. The number of suspicious plates are obtained with 

the following method: the plates differing (at a a% significance level) from more than a% of 
  

The incubation period is the time during which the interaction of enzyme, substrate and test compound 
takes place. 
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the chosen reference plates are considered as suspicious. Such a threshold can obviously be 

modified depending on how severely one wishes to assess the quality of a plate. 

  

  

  
  

  

  

  

  

: Number of suspicious plates 
Screens Nb of valid? plates | Nb of reference plates 

a = 20% |a=10% | a=5% 

Screen 1 10 6 0 0 0 

Screen 1b 64 50 0 0 0 

Screen 2 143 100 0 0 0 

Screen 9 66 50 2 0 0 

Screen 12 796 790 65 58 109°                   

  

“‘Valid’ refers here to a study exclusively based on the control values. Hence the valid plates are not necessarily 
‘valid’ in the sense that all the normal wells do not show any suspicious value 

109 plates are declared suspicious in the sense that they differ from more than a% i.e. 40 reference plates 
(referring to the chosen definition for the threshold). This result should be undermined by the fact that only 40 
plates out of 796 are suspicious, with the same threshold as for a 10% significance level, i.e. only 5% of the plates 

differ from more than 79 reference plates. 

Table 5.3: Kolmogorov-Smirnov test applied on the different tested screens so as to detect 

any suspicious screens 

Note: since no control plates are available for screen 12, the novelty detection was not 

applied to the screen and therefore all the plates are taken into account in the inter-plate 

variation detection. 

The following graphs (see Figure 5.5) give a visual representation of the results obtained 

for Screen 9 and Screen 12 with a significance level a = 20 %. The vertical dashed line 

represents the threshold defined in the previous paragraph: all plates above this threshold 

are considered as suspicious. 

The results presented in Table 5.3 are quite surprising. If for some screens the procedure 

applied seems to point out some abnormal plates, for most of the tested screens the distribu- 

tion of values of the different plates do not seem to show any significant differences. However, 

this is not worrying. First the plates on which the procedure was tested were already selected 

by the novelty detection algorithm (obviously the selection Gaiters only concerns the control 

wells, but plates showing differences in the experimental conditions are already rejected as 

explained in the previous section); as a result the remaining plates should not show many 

anomalies, unless some mechanical problems such as blocked jets or the presence of a large 

number of ‘hits’ consequently alter the distribution of data, which does not seem to be the 

case. 
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Figure 5.5: Each bar represents the number of times y plates (y given by the y-axis differ from 

a given number z of reference plates. Thus, for screen 9 for instance, 18 plates significantly 

differ from 1 reference plate 

In addition, the testing procedure seems to be quite relevant. Not only does the statistical 

literature agree on the fact that the best results are obtained when the samples are sufficiently 

large (see (Kanji, 1993)), which is the case in our study as all of our samples feature 96 data 

points, but (Neave and Worthington, 1988) also underlines that it is one of the best known 

distribution-free procedure in order to test for general differences between two sets of data. 

Finally, on a screen on which no data pre-processing was performed (Screen 12 for instance), 

the Kolmogorov-Smirnov tests detects many differences between the plates and it points out 

some suspicious plates. However, the small number of invalid plates detected by the procedure 

(except for screen 12, a = 1% where the threshold defined before needs to be reconsidered) 

seems to suggest that, applied to this specific context, the Kolmogorov-Smirnov method could 

suffer from a lack of sensitivity that needs to be investigated. 

5.2.2 Limitations 

Procedure requires a threshold 

A simple procedure was carried out to test the viability of our procedure and assess it. In 

the randomly selected reference plates, some wrong values? were progressively artificially 

generated. The same method as before is then applied: for each wrong data point generated, 

the distribution of values of the reference plate is compared to the distribution of values 
  

3In the case of a blocked jet or any other major robot failures, wrong values are more likely to be either 

maximum or minimum values. 
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of all the other plates. Table 5.4 presents the result obtained when the wrong values are 

respectively maxima and minima. It is to be noted that concerning screen 12, to avoid a 

time-consuming procedure the method has been applied on a subset of 50 reference plates. 

  

  

  

  

  

  

  

Screens Number® of minimum values | Number of maximum values 

added before detection added before detection 

Screen 1 10 96 

Screen 1b 10 93 

Screen 2 9 96 

Screen 9 11 78 

Screen 12 9 96           
  

  

“on average, out of 96 values 

Table 5.4: Testing the sensitivity of the Kolmogorov-Smirnov procedure 

Note: these results have been obtained for a 20% significance level. For a lower value, 

they are slightly higher, but remain in the same range of value. 

The Kolmogorov-Smirnov test is supposedly a powerful catch-all test according to (Neave 

and Worthington, 1988) and the right test to apply when it is unclear what kind of differen- 

ces to expect between the populations, these results clearly illustrate some of the limitations 

of the procedure. The first obvious conclusion that can be drawn from this table is that 

the Kolmogoroy-Smirnov procedure does not seem to work efficiently with maximum values: 

hardly any outliers being maxima (whether they are hits or due to a mistake) would be 

detected by this general method. The second limitations concern the number of extreme 

values that can be detected by the test: the Kolmogorov-Smirnov procedure requires a mini- 

mum threshold of 10% of unusual values on a plate to detect that something suspicious has 

occurred. 

Time-accuracy trade-off 

Another limitation is inherent to the method applied to carry out the Kolmogorov-Smirnov 

procedure. Because of the large number of plates involved in the HTS process, a method 

that consists of randomly choosing some reference plates whose distribution of values are 

then compared to the distribution of values of the other plates can present some limitations. 

First, the larger the number of reference plates chosen, the more accurate the method. Indeed, 
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even if the statistical test compares the distribution of values of a given reference plate to 

all the other plates, hence limiting the risks of leaving aside an invalid plate, idealistically 

all the plates should be taken as a reference. By doing this, the results are undoubtedly 

more accurate. The drawback to using this procedure, however, is that it is time consuming. 

Table 5.5 gives an idea of how long the procedure takes for screen number 12, chosen because 

it contains the greatest number of plates (796). 

  

  

  

  

  

  

  

Number of reference plates Time 

50 20s 

100 40s 

200 Imin 10s 

500 3min 00s 

790 4min 40s         

  

Table 5.5: Timing of the Kolmogorov-Smirnov procedure for screen number 12 for different 

numbers of reference plates. 

Note: the procedure was performed on a Sparc (Sun 5). 

First, these results are quite reasonable, given that the Kolmogorov-Smirnov procedure is 

applied nref +796 times where nref is the number of reference plates that was chosen. In 

addition, it is not worrying since the procedure is not in general applied to a whole screen, 

but as explained in Section 6.3.2 rather to a subset of plates which passed the mixture model 

based novelty detection test. Finally, if such a procedure has however to be applied on a 

whole screen featuring more than 500 plates, the difficulty would lie in finding a trade-off 

between a computationaly expensive method and an accurate procedure. 

5.3. Intra-plate variation 

Intra-plate variation detection completes the second step of the quality control procedure. It 

was originally more specifically aiming at determining blocked jets, but in practice can be 

applied as a general procedure to detect any differences in location or spread. The method 

applied was carried out on the different ‘valid’ plates obtained after computation of the 

novelty algorithm. 
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5.3.1 Two complementary procedures 

A preliminary investigation 

As stated in Section 3.2, the procedures applied for the detection of intra-plate variation 

focus on the distribution of values per row, as most of the devices used to fill the plates are 

8 head dispensers i.e. dispense the mixtures in the wells column after column. 

A preliminary investigation has been carried out. A priori, no plates among the tested plates 

were affected by blocked jets, and no mechanical problems were reported whilst collecting 

the data. This was confirmed by a simple experiment. A row was randomly picked up whose 

variance was compared to the variance of all the other rows on the plate (excepted the row 

featuring the control values). This was carried out for each plate among the ‘valid’ plates 

and repeated several times with each time a different reference row, the idea being that, if 

some errors such as a blocked jet had occurred whilst collecting the data, the same row on 

each plate would show differences with the other rows of the plate. 

Not only did this experiment enable us to conclude that no jets were blocked, since the same 

given row chosen as a reference on all the other plates did not show differences with the other 

rows of the plate, but it also helped us spot some plates on which the procedure detected 

some anomalies as underlined by Table 5.6. 

  

  
  

  

  

  

  

Screens Number of plates | Proportion of plates | Proportion® of rows 

Screen 1 10 20% 9% 

Screen 1b 64 40% 9% 

Screen 2 143 30% 8% 

Screen 9 66 31% 10% 

Screen 12 731 50% 12%               

  

“percentage over the total number of rows of the ‘valid’ set of plates. 

Table 5.6: Proportion of rows and plates on which the Siegel-Tukey procedure detected some 

difference in spread with a 10% significance level. 

Note: despite the fact that quite a large number of plates bocmh to show some anomalies 

according to this preliminary detection, the low percentages of rows tend to raise a certain 

number of questions. Since most of the plates only feature a single row with an unusual 

spread, one can wonder whether it is not simply due to some variation inherent to the testing 

procedure rather than the presence of some unusual values. 
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Presentation of the results 

Since no specific mechanical problems were detected by this preliminary investigation, to test 

the accuracy of the statistical procedures applied, a row was randomly chosen on each plate 

and artificially filled with wrong values (either minimum or maximum values subsampled from 

the control plates, or directly from the control wells on the plates for screen 12.). Then both 

the Siegel-Tukey and the Wilcoxon procedures were applied between the artificially generated 

reference row and the other rows on a plate to investigate differences in location and spread. 

By doing this, we should hopefully have a better idea of what the Ac itial limitations of our 

procedures are. 

Table 5.7 summarises the results obtained. 

  

Proportion of non detected artificial row 
  

Screens QWilcoxon ASiegel QNone of the procedures” 

10% | 5% 1% 10% | 5% 1% 10% | 5% 1% 
  

  
  

  

  

  

Screen 1 68% 85% 90% 30% 63% 85% 15% 14% 60% 

Screen 1b 40% 48% 61% 64% 73% 92% 16% 25% 53% 

Screen 2 46% 52% 65% 90% 96% 99% 37% 49% 64% 

Screen 9 22% | 28% | 42% 94% | 96% | 99% 19% | 25% | 41% 
  

Screen 12 26% 31% 43% 64% 71% 80% 14% 20% 37%                               

  

“These three columns indicate the proportion of artificially generated wrong rows that are not detected by 
any of the procedures computed, for three different significance level. 

Table 5.7: Proportion of the artificially generated rows that are not detected by the statistical 
methods applied for different significance levels, when the wrong added values are maxima. 

Analysis of the results 

First, it is to be noted that this table presents the results obtained when the wrong values 

added on the chosen reference row are maximum values. The reason why we did not men- 

tion the experiment featuring wrong minima is that, the Wilkovau test that investigates for 

differences in location happened to give perfect results as expected: 100% of the artificial 

wrong minimum rows were detected, the reason being that for all the tested screens, the 

distributions of values are in general closer to a maximum than a minimum activity well. 

Therefore minimum values generated by any kind of mistakes or hits are most likely to be 

detected by a procedure seeking differences in location. 
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In addition, it is quite obvious from Table 5.7 that when applied separately, both proce- 

dures do not perform very well on the different tested screens. If the results are not too bad 

as far as screens 9 and 12 are concerned for the Wilcoxon procedure (investigating differences 

in location), the results are however rather poor for the other screens. Besides, however 

surprising that may seem, contrary to our expectations, the Siegel-Tukey procedure does not 

work very well or at least it is far less efficient than an investigation for differences in location 

(excepted for screen 1) and the results obtained with the Siegel-Tukey procedure for screen 

2 and 9 are even dramatic. 

However, this is not worrying since the method that consists of combining both procedures to 

investigate differences in spread together with a difference in location gives rather satisfying 

results, at least much better results than any method taken alone. Indeed, for a significance 

level of 10%, on average 18% of the wrong rows are not detected by any of the two methods 

and 24% for a = 5%, with a screen presenting ‘extreme’ results (screen 2 features more than 

30% of invalid rows that are not detected). Even if the results vary from one screen to another 

it is to be noticed that the results are quite similar and acceptable for a significance level of 

10% and 5%, but definitely unsatisfying for a = 1%. 

These results clearly show that, in fact both procedures are complementary. As underlined 

by (Neave and Worthington, 1988), both of these testing procedures are designed to be fully 

efficient to detect whether the two populations are different solely in the specified manner, 

i.e. either in location or in spread. If the populations differ in any other manner (or both 

in spread and location), the tests suffer a severe reduction in power. This can be one of the 

reasons why, when considering screens 9 and 2 for instance, the results are quite satisfying 

with the Wilcoxon method and so poor with the Siegel-Tukey procedure: the Siegel-Tukey 

test gives awful results simply because there is not any difference in spread in the data. In 

fact while in most of the comparisons between an artificial invalid row and a normal row, the 

main feature is a difference in location, a situation in which the Siegel-Tukey procedure is 

known to be very inefficient. 
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5.3.2 Limitations 

The procedures described in Section 3.2 do not show the expected accuracy. Despite the 

fact that the results are quite satisfying, as shown previously the statistical procedures we 

propose to apply seem to be limited to a certain threshold (on average 20% of the artificially 

generated wrong rows featuring maxima for a 10% significance level). 

First, these limitations are inherent to the procedures themselves. Indeed, both the Siegel- 

Tukey and Wicoxon methods are only fully efficient when applied in their own specialities, i.e. 

either to detect differences in spread only (for the Siegel-Tukey test) or differences in location 

only (for the Wilcoxon procedure). Any other kind of differences (especially differences in 

both spread and location) are less likely to be spotted. 

In addition, because of the nature of the procedures (investigating differences in location or 

spread by comparing the data populations of the rows on a plate), the method can become 

rather time consuming, especially when applied to a typical HTS screen featuring hundreds 

of plates. However, this should not be too worrying if the statistical tests are integrated in a 

automated procedure such as the one described in Section 6.3.2, where an ‘on-line’ intra-plate 

detection is carried out, which means that it would only concern a set of plates in practice, 

not a whole screen. 

Finally, one the fundamental reasons why the procedures show the threshold mentioned above 

concerns the data values themselves. One can argue that, in most of the cases, the artificial 

rows featuring maxima are not detected because the statistical methods computed suffer from 

a lack of accuracy whilst detecting the pattern under study (the variability of the data or a 

difference in the mean). But in fact, the invalid rows are not detected because the artificial 

values added before detection do not introduce enough spread in the data. But also they 

do not affect the mean of the data significantly enough. For this reason, there is no way in 

which such values can be detected (even by any other procedure). 

5.4 Edge and corner effects 

The last part of the quality control procedures investigates what is happening at the edges 

of the plates, in order to spot some systematic alteration, due to the surrounding air for 

instance, so as to improve, if necessary, the design of HTS experiments. This section presents 

the results of this investigation. 
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5.4.1 Results of the detection of any systematic effect 

The Analysis of Variance procedure was applied to cells on the set of ‘valid plates’ obtained 

so far, divided into three different populations: edge, corner and middle values. As stated in 

the previous chapter, because we are only interested in systematic effects, all three popula- 

tions have been purged of extreme values, all the values that differ by more than 2 standard 

deviations from the mean in fact. 

Table 5.8 presents the results obtained for the preliminary investigation, single-factor ana- 

lysis. The first observation that can be made on these results is that all the tested screens 

excepted screen 9 show differences in at least two of the populations for which the method 

was applied, which suggests that there are some edge or corner effects. 

The second observation concerns screen 2. The value obtained for the statistic f seems to be 

rather high. And if we recall that the Normality of edge and middle populations was subject 

to uncertainty (see Section 4.1.1), this result should be interpreted with caution. 

On the screens showing some differences, we apply the multiple comparison procedure 

described in Section 4.2.2 to investigate which populations significantly differ from the other 

ones. The results obtained are presented in Table 5.9. 

All three pairs of populations for screens 1 and 2 seem to be significantly different, which 

suggests that there are both edge and corner effects. The results obtained for screen 1b lead 

to slightly different conclusions. Edge and middle values clearly show significant differences, 

whereas corner and edge populations don’t show any. However, if corner and edge populations 

show similarities with a 5% significance level, a further investigation carried out with a = 1% 

might suggest to consider this result with caution. 

In addition, (Devore, 1991a) underlines that the multiple comparison procedure described in 

Section 4.2.2 should be computed on samples whose sizes are reasonably close to one another. 

5.4.2 Unbalanced samples 

The samples under investigation are unbalanced (4 corner, 31 edge and 55 middle values per 

plate). And the multiple comparison method applied is only based on approximations which 

are valid for samples that are not too badly unbalanced, as recommended in (Miller and 

Ruppert, 1986). An intuitive idea is thus to randomly subsample from the larger populations 

(edge and middle values) so as to apply the multiple comparisons procedure on samples of 

equal sizes. Such a process is then computed 100 times so as to give a representation as close 
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10% 5% 1% 
  Critical values?   

2.3039 | 2.9976 | 4.6089 

Ff screen 1b 25.5391 

      
  

Conclusion Ho rejected at every level 

10% 5% 1% 

2.3092 | 3.0067 | 4.6306 

screen 1 20.7339 

  

  

  Critical values   

      

  

Conclusion Ho rejected at every level 

10% 5% 1% 

2.3034 | 2 .9967 | 4.6068 

F Screen 2 169.16 

Conclusion Ho rejected at every level 

10% 5% 1% 

2.3040 | 2 .9977 | 4.6091 

F screen 9 1.4011 

Conclusion Ho accepted at every level 

  

  

  

  Critical values 

      

  

  

  

Critical values   

      

            

  

“obtained after computing a harmonic interpolation of tabulated values 

Table 5.8: Single factor ANOVA applied to the different screens 

as possible of the whole data set. 

The results obtained are presented in Figure 5.6, where the missing parts of the pie charts 

represent some irrelevant results (for instance, when the Null hypothesis that all the popula- 

tions do not show any significant differences is rejected and the multiple comparison procedure 

leads to conclude that all the three populations are the same) that constitute a low percen- 

tage. Obviously, subsampling from the larger populations has its limitations, in particular a 

lack of accuracy inherent to the method itself, even if it is computed a hundred times, but it 

gives quite a reasonable idea of the phenomenon under investigation: edge and corner effects 

detection. 

The main conclusion that we can draw from this experiment is that the results obtained 

for unbalanced samples are confirmed. The procedure computed on subsamples of equal sizes 

gives evidence of a similarity between corner and edge values for screen 1b. It is first to 
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Corner-Edge Corner-Middle Edge-Middle 
  

  

5% 1% 5% 1% 5% 1% 
  

  61.6593 | 76.7553 

  

  60.0902 | 74.8020   26.1148 | 32.5085 
  

Xi. REF 5 Iscrden 1b 6.6036 70.8391 77.4427 
  

  

  

  

        

Conclusion No differences Some similarities Significant differences 

Wis 5% 1% 5% 1% 5% 1% 

138.9047 | 173.0011 135.2241 | 168.4171 59.4794 | 74.0796 

|X3. — Xj.|screen 1 190.3048 303.9476 113.6428 
  

  

  

        

Conclusion Significant differences | Significant differences | Significant differences 

Wes 5% 1% 5% 1% 5% 1% 

6.9544 | 8.6566 6.7795 | 8.4389 2.9468 | 3.6681 

|Xi, — Xj. screen 2 19.5577 38.1306 18.5729 
    Conclusion     Significant differences   Significant differences   Significant differences 
    

Table 5.9: Multiple comparison ANOVA applied to the different screens 

be noted that the large majority of the sampled populations have no significant differences. 

Nevertheless, for each result that did not feature 3 similar populations, edge and corner values 

show similarities (61% of the cases where 3 similar subsamples have not been detected for a 

5% significance level) and there are also some similarities between corner and middle values 

as the procedure performed on unbalanced samples seemed to suggest. 

Earlier results showed three different populations as far as screen 1 is concerned. The results 

obtained after subsampling tend to be slightly different as 46% of the subsamples with a 5% 

significance level and 75% with a 1% significance level show this particular feature: simila- 

rities between corner-edge populations on the one hand and edge-middle populations on the 

other hand. So, maybe the fact that there are both corner and edge effects could be subject 

to uncertainties, the results obtained seem however to prove that populations on the corner 

of a plate show differences with the middle populations. 
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1%1% 

46% 

  

  

  

corner — edge 

edge - middie 

corner — edge / edge - middle 

same populations 

3 different populations 

  

corner - edge 
edge - middle 
corner - edge / edge - middle 
same populations 

  

      

  

  
    

(a) screen 1: a = 0.05 (b) screen 1: a = 0.01 

9% 

41%      
5% 

    

corner - edge 
edge - corner / corner - middle 

corner — edge / edge - middle 
same populations 

comer — edge 

edge - corner / corner - middle 

corner — edge / edge — middle 

same populations                 

(c) screen 1b: a = 0.05 (d) screen 1b: a = 0.01 

Figure 5.6: result of 100 computations of the multiple comparisons procedure. 

Note: the results obtained for screen 2 are not depicted on Figure 5.6 for the simple reason 

that 100% of the subsamples show significant differences. This confirms the result obtained 

for unbalanced samples and clearly suggests that screen 2 features both edge and corner 

effects, bearing in mind however that the Normality of the data was subject to uncertainty. 
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Chapter 6 

Conclusions 

This chapter presents the conclusions of the thesis. It first recalls the three step procedure we 

propose to follow to tackle the quality assessment of the data involved in High Throughput 

Screening. 

The novelty detection based on control values to spot potential variations between the control 

and the normal plates is the first step. Quality control is then completed by an inter- and 

intra-plate variation detection to highlight potential general mechanical errors or experimen- 

tal mistakes. The final step especially focuses on the detection of corner and edge effects. 

Some comments are then made about the different procedures: discussions about their ad- 

vantages and particularities together with their weak points and limitations. 

The last section deals with some possible ways of presenting the results to users. It introduces 

the practical context in which the implemented procedures are more likely to exist. 

6.1 A Three-step procedure 

Three different steps have been proposed to carry out the quality control of HTS. The first 

one concentrates on control values only and consists of pointing out the unusual control wells 

on a plate. 

6.1.1 A novelty detection method based on control values 

First, a preliminary study validated the procedure based solely upon the control wells to 

assess the quality of the data. The traditional approach to deal with outliers suffered from 

some severe limitations: a lack of robustness while testing the hypothesis whether an extreme 

value is suspicious or not, no possibility of automation, and an assumption of normally dis- 
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tributed data. 

The novelty detection method, the first step of our procedure, is based on density inference. 

Three plates are added at the beginning of each screen, featuring only control values (mi- 

nimum and maximum controls)!. Since these additional plates feature wells that are filled 

with the same mixture as the control wells on a normal plate, they can be used to assess the 

quality of the controls on normal plates. 

A Gaussian Mixture model was chosen (because of some practical constraints such as compu- 

tational efficiency) to model the unconditional probability density of the control values. The 

data of control plates are separated into 2 sets: a training set to train the Gaussian mixtures 

and a validation set that determines the different parameters of the model, its complexity 

and the structure of the covariance matrix, using cross-validation techniques. A threshold is 

then set to decide whether a value is novel or not in terms of density estimation. It is chosen 

as the minimum value of the density function of the validation set. 

The final stage of the method is the novelty detection: the control wells on a normal plate 

that show a lower probability than the lowest probability of the validation set, the novelty 

threshold, are declared novel and the plate is flagged as abnormal. 

6.1.2 Inter- and intra-plate variations 

The second step of the implemented method focuses on the normal wells only. It aims at 

determining any general effect (such as handling mistakes or problems in a robot) that could 

alter the HTS data. The procedures implemented are carried out on the first set of ‘valid’ 

plates that the novelty detection has determined. 

Inter plate variation 

We wish to detect invalid plates where the control values are unaffected. But since we do 

not know what any single value on a plate should be — because of the inherent nature of 

the data (biological mixtures) — we are forced to compare the distribution of values on the 

whole plate to detect any inter-plate variation. 

The procedure randomly chooses among the set of plates considered valid by the procedure 

outlined in Section 6.1.1 a certain number of plates as a reference. We can then compare 

their distribution of values with the distribution of values of all the other plates from the 

set, each plate being taken one after another. To see how significantly the distribution of 
  

These three additional plates are called ‘control plates’. 
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values from the plates taken as a reference differ from each plate, a general significance test 

— the Kolmogorov-Smirnov test, said to be the right test to use for detecting any difference 

(especially of a more general nature than a difference in location only or in spread only) 

between two samples — is used. 

How is the determination of invalid plates achieved? The idea behind such a procedure is that 

an invalid plate shows significant differences with quite a large number of reference plates. 

Thus, two ways of detecting invalid plates are considered: in an automated procedure the 

invalid plates would be determined by setting a threshold, for instance the plates differing 

by more than a per cent from the reference plates, a being the significance level of the 

statistical test, are suspicious. As far as a manually conducted or half automated procedure 

is concerned, by inspecting the number of reference plates a plate differs from, the operator 

can decide whether the plate is suspicious or not and hence is worth being investigated further. 

Intra-plate variation 

The quality control procedure is completed by the detection of variations within a plate. This 

investigation was performed with the particular aim of detecting mechanical problems like 

blocked jets. 

Since this study depends on the kind of robots that are used to fill the HTS plates, we 

developed a method to be applied to 8 head dispensers i.e. robots that fill a plate column 

per column, since they are the most commonly used in the HTS process. It can be easily 

adapted to other robots by changing the subset of values that are considered as a group. 

The underlying idea is that a blocked jet induces values that should be close to one another: 

indeed, a lack of reagent (i.e. the added compounds to be tested on the biological target) 

in a well corresponds to either a minimum or a maximum activity mixture, depending on 

the nature of the target. Since a blocked tip affects a given row (8 head dispensers fill the 

plates column per column so that a given row is associated to a specific tip), the method we 

developed is based on a comparison between the rows of a plate: a row is taken as a reference 

and compared to the other rows of the plate. The procedure is all the more reliable since 

many reference rows on the plate are chosen, but also more time -consuming. 

The procedure relies on statistical methods to investigate both a difference in spread and 

a difference in location. Since a blocked jet generates values quite close to one another, 

the wells that are not affected by the faulty tip show a larger dispersion per row, hence an 

investigation for differences in spread. Moreover, as the wrong values are either minimum 
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or maximum values, a detection of differences in location can also be powerful in spotting 

mechanical problem. 

6.1.3. Edge and corner effects 

The final step of the quality control procedures, like the novelty detection, assesses the 

experimental conditions in the sense that it investigates what is happening to the wells 

located on the edges of the HTS plates. In particular, a distinction is made between corner 

and edge values so as to detect any specific alteration of the data due to the the exposure to 

the surrounding air or the number of neighbours (a well located on the corner of a plate has 

less neighbours than the wells on an edge or the middle wells). 

The procedure is based on the Analysis of Variance method. Three populations are under 

investigation: a population of corner, edge and middle values. To start with, Single Factor 

Analysis aims at detecting whether the populations are similar or not. Then if any significant 

difference is detected, multiple comparisons procedures are computed so as to give a better 

idea of which population differs from the other populations under investigation. 

By seeking any systematic edge and corner effects, the procedure gives indications about how 

to improve the results of HTS, for instance by redesigning the experiments or recalibrating 

values. Indeed the detection of significant differences between edge, corner and middle values 

on many screens might suggest that the exposure to the air for instance has an influence that 

should be further investigated or that the activity of a well is more likely to be altered if 

there are many neighbours. 

6.2 Comments 

6.2.1 Achievements 

First, the procedures developed in the general context of quality control encompass different 

techniques and procedures whose result is a rather complete assessment of the HTS process. 

The experimental conditions are subject to investigation, which is all the more vital since 

plates aren’t screened the same day due to the large number of data a typical HTS experiment 

involves. Thus, the role of novelty detection is to spot any anomalies in the experimental 

conditions, such as the variations detected on screen 2 (see Section 5.1.1) most probably due 

to the fact that the plates of the first assay were incubating much longer than the other plates 

of the screen. In addition, edge and corner effects detection aims at assessing the design of the 
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experiment itself by investigating whether the specific location of some wells (on the edges of 

a plate) induces some systematic effects. The results obtained tend to prove that a majority 

of the screens feature wells whose activity might be influenced to some degree by the position 

they occupy on the plate. 

Moreover, both the control positions on a plate and the normal wells are examined by 

the different steps we propose to follow. First, novelty detection assesses the control wells, 

which is crucial for the HTS process for the reason mentioned above. In addition, a general 

procedure such as the Kolmogorov-Smirnov test to investigate differences of any kind between 

the plates, added to procedures seeking differences in spread and location between the rows 

(so as to detect any intra-plate variations) complete the quality control task by detecting 

suspect values on normal wells. If the Kolmogorov-Smirnov method does not seem to be 

accurate enough to determine suspicious values or hits when they are close to a maximum, 

the work carried out to detect variations within a plate gives satisfying results as stated 

in Section 5.3.1. Indeed when rows are artificially filled with minimum values the procedure 

gives a perfect result as it spots 100% of the wrong rows; when the wrong values are maximum 

values, an average of 20% of the artificial rows are not detected by any of the two procedures 

investigating differences in location and spread. 

6.2.2 Discussions 

The procedures however suffer from some drawbacks. First, as far as the novelty detection 

is concerned, the main limitation is inherent to the method applied to carry out this detec- 

tion. Indeed, the cornerstones in this procedure are the three control plates added to the 

beginning of each screen. Since they are taken as a reference, it is crucial that the screening 

of these plates is conducted with maximum care and accuracy. Even if the outlier detection 

techniques can cope with some insignificant extreme values, if a major problem occurs during 

the screening of the control plates, the whole novelty detection would fail and spot a high 

number of invalid plates, because the references the method relies on are wrong. 

Besides, the screening process is conducted assay by assay (i.e. day per day). Therefore, 

if the experimental conditions are not steady enough, the distributions of the data of each 

assay could display significant differences. This could lead to a high number of novel plates 

since the control plates can not capture the entire variation on the whole screen unless they 

are generated for each assay. But this is rather idealistic and not really achievable in practice 

since it would be too time- consuming and most of all it would involve extra costs. It is 
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therefore up to the operator to decide whether the systematic variations between the control 

and the normal HTS plates are acceptable or not. 

Several limitations prevent the inter- and intra-plate variation detection from being fully 

efficient. The first problem encountered concerns a lack of sensitivity. As mentioned in Sec- 

tion 5.2.2, despite being the right test to use to detect differences of any kind between the 

distribution of values of normal plates, the Kolmogorov-Smirnov procedure first turns out 

to be unable to spot invalid maximum values, and requires a minimum threshold of 10% 

suspicious values to detect an anomaly. 

However, the problem of invalid maximum values is partly solved by the intra-plate varia- 

tion detection that can be considered as an extension of the general Kolmogorov-Smirnov 

procedure, in the sense that it features a more detailed investigation, focusing on differences 

within a plate. Indeed, suspicious maximum values are detected by a combination of two 

statistical procedures that investigate both differences in spread and location. Nevertheless, 

as before, the methods applied do not seem to be fully efficient: an experiment was designed 

where a randomly chosen row on each plate is filled with artificial wrong values. On average 

over the tested screens, 20% of the invalid rows were not be spotted by any of the procedures. 

In most of the cases, the artificial rows featuring maxima are not detected, not because of 

a lack of accuracy of the computed statistical methods, but simply because the invalid data 

points generated neither introduce enough variability nor enough weight to alter the mean 

of the data. In other words the values in the artificial rows are completly indistinguishable 

from real data. For this reason, there is no way to detect them in principle. 

Finally, the methods applied involve a comparison between the data populations of the rows 

on a plate or a comparison of the distribution of values of two different plates. It can therefore 

become rather time consuming (especially when applied to a typical HTS screen featuring 

hundreds of plates): obviously, the more comparisons, the more accurate the procedure is. 

However, this should not be too worrying when the procedure is integrated in a automated 

procedure (such as the one described in Section 6.3.2, where an ‘on-line’ intra-plate detection 

is carried out) as it only concerns a set of plates in practice and not a whole screen. 

The final step of our method seems to give rather satisfying results. However, the main 

difficulty lies in validating the hypotheses hidden behind the ANOVA procedure. Indeed, for 

some of the tested screens, the Normality of the data was rejected. Is that due to the fact that 
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there are too many outliers, or does it come from an inaccuracy of the computed goodness- 

of-fit test? Despite this, the ANOVA procedure was performed on such a ‘suspicious’ screen, 

but because of this uncertainty while validating the hypotheses, the results obtained should 

be considered with caution. 

Another problem encountered concerns the second step of the ANOVA procedure. Indeed, 

some statistics literature mention that the multiple comparisons procedure that was computed 

to detect potential edge or corner effects should not be run on badly unbalanced samples. 

The three sample populations under investigation (corner, edge and middle yalues) are not 

balanced since an HTS plate features 4 corner, 31 edge and 55 middle values. Therefore the 

procedure was carried out a second time, subsampling from the larger populations so as to 

run the multiple comparisons on balanced samples. The results obtained with unbalanced 

samples were slightly modified but their main pattern remained: values on the edges of a 

plate (corners and edges) seem to show differences with the middle population. 

It is to be noted that an alternative to the ANOVA procedure could have been to investigate 

some non-parametric methods. The main drawbacks of such methods are that they are much 

more complicated to manipulate than parametric methods such as the ANOVA procedure, 

and most of all, they do not allow for interpretability. 

6.3. Quality control applied on real life processes 

This section gives some ideas about how the procedures that were built up could be adapted 

to be applied on two different processes Pfizer is currently working on (or plans to use) to 

perform the quality control of High Throughput Screening. 

6.3.1 Analysing the control wells under the existing system 

The system Pfizer is currently using to validate a screen features an assay by assay analysis 

and concentrates on control wells. This means that variations from one assay to another, 

because the screening was conducted under unsteady experimental conditions for instance, are 

not detected. Indeed, the high number of novel plates detected for screen 2 (see Section 5.1.1) 

is probably due to a significant difference during the incubation period, and it would not have 

been detected by an assay by assay analysis, since most of the plates flagged as ‘abnormal’ 

are not suspicious when compared to the other plates of the same assay. The first step of 

our procedure aims at assessing the experimental conditions so as to validate the different 

assays. Thus, the novelty detection is advisable to carry out the analysis of the results on a 
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whole screen. 

A preliminary stage can be considered, which consists of defining the parameters of the 

mixture models for each screen e.g. mainly the number of Gaussian mixtures the model 

should feature to fit the data. Figure 6.1 depicts the kind of graphs that can be used to 

achieve this selection. Since each plot represents the error of the model as a function of the 

complexity, the complexity chosen should correspond to the lowest error, all graphs being 

taken into account. 
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Figure 6.1: Determination of the complexity of the Gaussian Mixture model for screen 2. 

For each degree of complexity, the likelihood of the model is computed 10 times. The 2 plots 

representing respectively the training and validation errors joins the average of all the values 

computed that range over the error bars. 

Once the parameters of the model are defined, the novelty detection procedure can be 
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used to assess the control values of the whole screen. Graphs such as Figures 5.1 to 5.4 in 

Section 5.1.1 point out the plates featuring suspicious control values. 

6.3.2 <A fully automated procedure 

The Robolab procedure is a fully automated screening system. When programmed appro- 

priately, it undertakes the whole assay from the very beginning of the HTS process through 

to data capture. A copy of the data is then sent to the existing system for analysis. 

The advantages of automation are considerable. Such a robot can operate 24 hours a day, 

and achieve greater throughputs than that achievable by any operator. The second advantage 

is that the variations between the different samples are minimised, since the procedures are 

controlled by a robot. It is therefore a necessity to make sure that the Robolab functions 

are fully efficient. In this respect, any kind of mechanical errors like blocked jets should be 

detected as early as possible so as to avoid conducting the whole HTS process a second time. 

Besides, the aim is also to screen all the plates in a row, without interrupting the robot’s 

work, so as to avoid the necessity of reprogramming its functions. Thus, plates on which 

some errors are detected can be put at the end of the screen and go through a second run 

(featuring wells with different mixtures for instance so as to carry out further experiments), 

all this without stopping the robot. Therefore, an ‘on-line’ detection is advisable. This 

method could be carried out as follows: 

e Plate selection 

The first step consists of selecting a set of plates on which the different quality control 

treatments are applied. However, a trade-off must be found between a sufficient and a 

reasonable number of plates: sufficient so as it makes sense to run the procedures (especially 

as far as the inter-plate variation detection is concerned) and reasonable so as to avoid time- 

consuming methods. 

e Novelty detection 

The novelty detection is conducted on the same principle as in the previous section. The 

number of times cross-validation is run to select the best model (as explained in Section 2.3) 

can be adapted so as to reduce the learning time of the novelty detection. Besides, the model 

only needs to be trained once (on the control plates), it then can be used on any single plate 

of the screen. 

Novelty detection rejects some plates. From now on, we only consider the ‘valid’ plates. 
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e Inter-plate variation detection 

The Kolmogorov-Smirnoy procedure can then be used as a general method to detect suspi- 

cious plates. To do that, each plate is respectively taken as a reference and its distribution 

of values is compared to the distribution of values of the other plates. Since the method is 

computed on a small number of plates, it should not be too time consuming. Then graphs 

like Figure 6.2 help the operator to detect the suspicious plates. The suspicious plates are 

for instance the plates that show differences with more than a% of the total number of refe- 

rence plates, a being the significance level of the Kolmogorov-Smirnov test. It’s then up to 

the operator to determine whether or not this threshold (depicted by the horizontal line) is 

acceptable. 
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Figure 6.2: Determination of the plates presenting suspicious distribution of values, based on 

the Kolmogorov-Smirnov procedure. The graph on the left hand side represents the first 20 

plates of screen 12. Each bar indicates how many plates the corresponding reference plate 

differs from, whereas the one on the right hand side depicts the plate numbers each reference 

plate differs from (the figure represents the first 20 plates (taken as references) and the plates 
among the first 50 plates, they differ from. 

e Intra-plate detection 

Both Wilcoxon and Siegel-Tukey procedures are then computed so as to complete the detec- 

tion of unusual values, by focusing on intra-plate variations. Two slightly different methods 

can be considered, one focusing on the detection of intra-plate variations in general, the other 

one on the detection of blocked jets only. It is to be noted that the former method is more 

likely to be used. 
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The first method consists of investigating differences in spread and location between all the 

rows of a plate, each row being respectively taken as a reference and compared to the distri- 

bution of the other rows of the plate. The process is then repeated for the other plates of the 

‘valid’ set of plates. The results are then available per plate. On a small set of plates, such 

a procedure should not take too long. 

The second method concentrates on the detection of a blocked jet only. The principle is to 

take the same row as a reference on each plate and to compare its distribution of values with 

the distribution of values of the other rows of the plate. If such a row, taken as a reference, 

appears to differ from many other rows on the plate and if such a phenomenon appears to be 

a trend all over the plates of the set, it might suggest that the corresponding tip is blocked. 

Even if these procedures can be time consuming when applied on a large number of plates, it 

should not be worrying in the context of the Robolab procedure. First they are only applied 

to a subset of plates, and most of all, one should bear in mind that some plates are incubating 

while the intra-plate variation detection procedure is applied on another subset of plates, so 

that time is not such a crucial issue any more in practice. 

e Corner and edge effects detection 

The final stage could be an edge and corner effects detection, so as to see whether or not 

wells on the edges of the plates are significantly affected by their location on the plate. The 

procedure can be applied on a specific set of plates or on the whole screen, provided the 

assumptions of Normality and equality of variances are verified. 

A summary of all the different problems encountered can be made as a report at the end of 

the screen. 

All the procedures described in this thesis are implemented under Matlab. Due to the lack 

of time and the variety of problems that can occur in the HTS process some procedures such 

as the ones involved in intra-plate variation detection were built up so as to test their efficiency 

and accuracy on artificial invalid data. Thus, they need some more testing and adaptation 

before being used as real life procedures. 
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Reference screens 

A.1 Screen 1 

A.1.1 HTA plates 
  

  

Screen number 1 

Number of plates 115 

Counter used Packard 9912V Microplate Topcount 

Normal plate HTA: 1-115 

Invalid plates 35 & 57 : Double ligand 

77 & 78: No assay window 
  

Date/s of Assay/s 1: 1-16 = 01/07/96 

2: 17-46 = 10/07/96 
3: 47-86 = 17/07/96 
4: 87-106 = 18/07/96 

5: 107-114 = 17/09/96 
6 : 115 = 03/10/96 

A.1.2 Control plates 
  

Screen number 1 

Number of plates 3 
  

Counter used Packard 9912V Microplate Topcount 

Control plate Totals & NSBs: 1-3 
  

Date/s of Assay/s 1: 1-3 = 13/02/97 
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A.2* Screen Ib 

A.2.1 HTA plates 
  

Screen number 10 

Number of plates 263 
  

Counter used Packard 9912V Microplate Topcount 

Normal plates cHrA: 231 

HAL 32 
  

Date/s of Assay/s 1: 1-10 = 30/07/96 

2: 11-16 = 14/08/96 
3: 17-26 = 15/08/96 
4: 27-56 = 21/08/96 
5: 57-93 = 28/08/96 
6: 94-95 = 1/11/96 
7: 96-155 = 5/11/96 
8: 156-209 = 6/11/96 
9: 210-224 = 11/11/96 
10: 240-263 = 21/11/96 

A.2.2 Control plates 

The plates of this screen have the same controls as Screen 1. 

  

Screen number 1 

Number of plates 3 
  

Counter used Packard 9912V Microplate Topcount 

Control plate Totals & NSBs: 1-3 
  

Date/s of Assay/s 1: 1-3 = 13/02/97 
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A.3 Screen 2 

A.3.1 HTA plates 
  

  

  

Screen number 2 

Number of plates 206 

Counter used Anthos HTII 

Normal plate cHTA: 1-206 

Date/s of Assay/s 1: 1-40 = 28/11/96 

2: 41-80 = 06/11/96 

3: 81-91 = 13/11/96 

4: 92-131 = 07/11/96 

5: 132-171 = 12/11/96 

6: 172-206 = 13/11/96 

A.3.2 Control plates 
  

Screen number 

Number of plates 

2 

3 
  

Counter used 

Control plate 

Anthos HTII 

Totals & NSBs: 1-3 

Standards Only: 5+6 

Max/Min/Standards: 4 
  

Date/s of Assay/s Ls 1-3 = 19/11/96 

2: 4-6 = 14/05/97 
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A.4 Screen 9 

A.4.1 HTA plates 
  

  

Screen number 9 

Number of plates 206 

Counter used Wallac LKB 1205-001 Beta Plate LSC 

Normal plate HTA: 1-206 

Invalid plates 173-299 : A6 ALL ACTIVE (not relevant) 
  

Date/s of Assay/s 1: 9/1/97 = 1-20 

2:..15/1/97 = 21-50 

3: 16/1/97 = 51-74 

4: 22/1/97 = 75-108 
5: 23/1/97 = 109-134 
6: 24/1/97 = 135-142 
7: 05/2/97 = 143-172 
8: 06/2/97 = 173-206 

A.4.2 Control plates 
  

Screen number 9 

Number of plates 3 

Counter used Wallac LKB 1205-001 Beta Plate LSC 

Control plate Totals & NSBs: 3 

Date/s of Assay/s 1: not provided = 1-3 
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A.5 Screen 12 

A.5.1. HTA plates 
  

Screen number 12 

Number of plates 796 
  

Counter used 

Normal plate 

Anthos 

cHTA: 1-1602 
  

Date/s of Assay/s : 15/04/96 = 1-160 
: 16/04/96 = 161-320 

: 19/04/96 = 321-476 

: 29/04/96 = 477-516 

: 22/05/96 = 677-684 

: 30/05/96 = 685-692 

: 18/06/96 = 693-696 

: 01/07/96 = 697-844 

10: 09/07/96 = 845-1244 

11: 15/07/96 = 1245-1256 

12: 16/07/96 = 1257-1276 

13: 24/07/96 = 1277-1280 

14: 08/08/96 = 1281-1532 
15: 16/08/96 = 1533-1540 

16: 19/08/96 = 1541-1602 

1 
2 
3 
4 
5: 01/05/96 = 676-676 
6 
7 
8 
9 

  

Blank plates (time zero reading): 

1-40 

467-486 

687-723 

1155-1174 

1271-1284 

1395-1404 

1531-1560 

Note: Blank plates are a base line reading. They are read before the assay starts (or 

just after it starts) to give a reference reading, which is subtracted from the final reading to 

81-120 

507-546 

761-797 

1195-1214 

1299-1312 

1415-1423 

1591-1596 

161-200 

587-626 

835-864 

1235-1240 

1327-1329 

1433-1441 

241-250 

667-668 

895-924 

1247-1248 

1333-1335 

1451-1482 

261-280 

671-672 

955-974 

1251-1254 

1339-1347 

1515-1516 

give a true response: this process is called blank subtraction. 

A.5.2 Control plates 

No control plates were provided for this screen. 
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311-349 

675-678 

995-1014 

1259-1262 

1357-1365 

1519-1520 

389-427 

683-684 

1095-1124 

1267-1268 

1375-1384 

1523-1526



Appendix B 

Tests of Normality 

This chapter displays the results obtained for screen 12, to test the Normality of the data. 

Different methods are carried out to test the Normality of the 3 distributions under investi- 

gation (corner, edge and middle populations). 

First, some preliminary measurements evaluate the symmetry of the populations. In addition, 

some graphical representations give an indication of how close the distribution of the data 

is from a Normal distribution. Finally the Lilliefors goodness-of-fit test displays a numerical 

evaluation of the Normality of the distributions under investigation. The theory behind these 

different ways of estimating the Normality of the data is presented in Section 4.1.1. There- 

fore, we are just displaying the results obtained for screen 12 that justifiy why the ANOVA 

procedure was not applied to this screen. 

B.1 Preliminary measurements 

We briefly recall in this section that the Skewness and the Kurtosis give an indication of the 

behaviour of a population in comparison to the Normal distribution. Indeed, the Skewness is 

positive for a distribution with a right tail heavier than the left one. Similarly, the Kurtosis 

is positive when the tails of a distribution contain more mass than the Normal distribution. 

Both Skewness and Kurtosis are equal to zero for the Normal distribution. 

B.1.1 Skewness 

One particular feature is to be noted here: despite the fact that the populations are purged 

of extreme values, the edge distribution seems to show a heavy left tail. Besides, the results 

are apparently quite satisfying for both corner and middle populations. One should however 
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Populations Corners Edges Middles 
  

  

-7.4237 -0.2699 Whole populations -0.6669 
  

            Populations purged of outliers || -0.2259 | -3.3819 | -0.1827 
  

Table B.1: Measure of Skewness 

bear in mind that all the populations display a large number of data points (more than 20000 

data points for the edge population, more than 35000 for the middle population), therefore 

the values obtained for the Skewness are to be taken with caution. Indeed, as shown by the 

graphical representations (see Figure B.1), even if the results seem to be quite good for the 

middle population for instance, due to the large number of data points, a small departure 

from the ideal zero (obtained for a Gaussian distribution) can lead to quite a large departure 

from Normality. 

B.1.2 Kurtosis 

  

Populations Corners | Edges | Middles 
  

  

Whole populations 0.8019 | 0.9521 | 0.5885 

Populations purged of outliers |} -0.2234 | -0.1117 | -0.1497 

  

              

Table B.2: Measure of Kurtosis 

The Kurtosis displays rather good results close to the ideal zero of a Normal distribution. 

However, as mentioned in the previous section, the large number of data points might hide a 

significant departure from Normality. 

B.2 Graphical representations 

To illustrate our point, Figure B.1 represents the populations under investigation using the 

Normal quantile-quantile plot techniques and gives evidence of a departure from Normality 

(in particular, as far as edge and middle populations are concerned). 

B.3 Goodness-of-fit procedures 

The Lilliefors goodness-of-fit test whose results are displayed in Table B.3 confirms the general 

impression that we had after the preliminary’'measurements. It gives a numerical evaluation 
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Figure B.1: Normal quantile-quantile plots: corner, edge and middle populations 
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of how close (or actually how far) from a Normal distribution, the populations under inves- 

tigation are. 

  

  

  

  

        

              

Lilliefors test Corners Edges Middles 

pe 5% 1% 5% 1% 5% 1% 
Critical values 

0.0172 | 0.0201 0.0072 | 0.0062 0.0054 | 0.0046 

DD career 12 0.0270 0.0629 0.0880 

Conclusion Normality rejected | Normality rejected | Normality rejected 
  

Table B.3: Lilliefors goodness-of-fit test for Normality applied to corner, edge and middle 

populations 

B.4 Conclusion 

All the methods carried out lead to the same conclusion: they all display some strong evidence 

for non-Normality. 
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Appendix C 

Harmonic interpolation 

C.1 A note on interpolation 

The following figure gives part of the tabulation of the function f(z) with a step h: This 

Zo fo 

/ 

1/2 

%q Sh oy 

51 1/2 by'1/2 

Ja oy 

59 1/2 

x3 f3 

means that fj = f(x;) with 244; = 2; +h. 

Interpolation of f(x) at values other than those tabulated are given by the entries in the last 

three columns obtained by differences between the elements in the column just before. Thus, 

51/2 =. fi—To 

by ie O14 1/2 =F S1/2 

ie = 8 

Linear interpolation between x; and x2 approximates therefore the function f by 

f(z=fi + p54 1/2 

with p = (x—2,)/h. This is the most commonly used form of interpolation. But occasionally 

harmonic interpolation is advisable. 
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C.2 Harmonic interpolation 

Harmonic interpolation is nothing but a variant of the general linear interpolation described 

previously, where the argument z is replaced by 1/z. 

Let’s consider a practical example. In Section 4.1.2 for instance, one of the problems is 

to determine the critical value F of the F-distribution for a = 0.01, 1, = 524, vp = 291 

(which corresponds to the edge-middle population for screen 1). Since both 1; and v2 are too 

large to be given by tables, a double harmonic interpolation has to be performed. 

First, an harmonic interpolation is conducted in v2 (for 1; fixed, 1; = 24): 

vz 1/1 ES 

oo 0 1.791 

120 1/120 1.950 0.159 

60 2/120 2.115 0.165 0.006 

40 3/120 2.288 0.173 0.008 0.002 

  

*obtained from tables for v; = 24 

Then we compute an harmonic interpolation between v2 = oo and 12 = 120. 

For v2 = 291, p = (1/2 — 0)/(2/120 — 1/120), i.e. p= 0.4124. 

Then F'(0.01, 24,291) = 1.791 + p(1.950 — 1.791), i.e. F'(0.01, 24,291) = 1.8566. 

The same computation is conducted for 1; = co, 12, 8. The results obtained are respectively, 

1.1571, 2.2473, 2.5737. The second step consists of conducting an harmonic interpolation in 

V; (for v2 fixed, v2 = 291 ): 

wy Lfvl ise 

we. 0 1.1571 

24 1/24 1.8566 0.6995 

12 2/24 2.2473 0.3907 -0.3088 

8 3/24 2.5737 0.3264 -0.0643 0.2445 
  

“obtained from the previous harmonic interpolation: v2 = 291 

Then we compute an harmonic interpolation between 1; = oo and 1, = 24. 

For 1, = 524, p = (1/v1 — 0)/(2/24 — 1/24), t.e. p = 0.0458. 

Then F'(0.01, 524, 291) = 1.1571 + p(1.8566 — 1.1571). 

We finally obtain: F'(0.01, 524,291) = 1.1891. 
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