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Thesis Summary 

The present control methods for combustion parameters in engine management 

systems, such as ignition timing or desired air-to-fuel ratio, are based on “look-up” 

tables. Optimised engine parameters are accessed only for specific input values. In the 

intermediate points the output parameters are linearly interpolated, which results in 

the engine running in sub-optimal conditions. 
This thesis discusses the feasibility of replacing these look-up tables with non-linear 

mappings produced by artificial neural networks. 

The thesis reports the experiments for two data sets collected from two Rover 

internal combustion engines. 

The preliminary experiments carried out for the air-to-fuel ratio and the ignition 

timing data show that non-linear models, such as the Radial Basis Function Networks, 
of these networks, can be used to produce 

  

Multilayer Perceptron and the committe 

smooth and accurate mappings of the engine parameters. 

The neural network approach is feasible and provides a new and more efficient way 

to handle the problem of controlling the engine parameters. 
The thesis also reports on the C++ neural network library created for use in this 

project. 

Keywords: artificial neural networks, internal combustion engines, automatic 

calibration of the engine parameters
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1. Introduction 

1.1 Background 

The problem of maintaining the optimal control of engine parameters has large im- 

plications in such diverse areas as environmental concerns and personal satisfaction of 

customers driving the cars. 

While an internal combustion engine, widely used in vehicles, is running in non- 

optimal conditions it is producing an excessive amount of pollutants and may be achiev- 

ing an inferior performance in terms of the output power and fuel consumption. This 

suggests that there is a strong need for a better calibration and control of the engine 

parameters, which can also help to improve the comfort of driving a vehicle. 

The task of calibrating the engine management system can be divided into the 

following parts: fuelling, ignition, air management and emission (fuel vapour purge 

control and exhaust gas recirculation). 

This thesis tries to address the problem of the ignition timing calibration and also 

to consider the issue of improving the fuelling section (controlling the air-to-fuel ratio). 

The traditional way of controlling the engine parameters is to map the desired 

ignition timing and air/fuel ratio values as a function of speed, load and some other 

inputs (e.g. throttle change rate or coolant temperature). Because of the high cost of 

obtaining the data points on the test bed and the problem of the curse of dimensionality 

[1], one cannot fully span the whole input space. A large number of measurements 

would be required to accomplish this task. The large number of points measured 

implies that the mappings, which would contain these points, would need much more 
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1. INTRODUCTION 

memory to store in the EEPROM of electronic control system. This restricts their use in 

the engine management system, which is governed by very tight memory requirements. 

Because of the above-mentioned problems, the mappings contain a number of gaps 

and uncovered regions. These “blank” spaces are next filled in manually by engineers 

who make judgements based on their experience and engineering intuition. 

When an engine is operating the mappings are transformed from discrete to a 

continuous form using a linear interpolation between points in the tables. 

This is hence a “table look-up” approach with local linear interpolation, which 

effectively tries to approximate the real smooth control surface. 

Such a method introduces differential discontinuities to the mappings. As the result, 

the engine is not running in an optimal, smooth and efficient way. 

Artificial neural networks are naturally suited to perform complex non-linear map- 

pings [1] and therefore, it would be interesting to replace the tables currently in use 

with smooth mappings provided by neural networks. 

This thesis forms a preliminary work carried out to test the feasibility of replacing 

linearly interpolated tables with neural networks. 

1.2 Previous work 

Recently there has been some interest in the use of neural networks in the domain of 

calibration and control of internal combustion engines, which resulted in a number of 

successful applications. 

In [9] Stevens e¢ al., working in collaboration with the Ford Motor Company, have 

mapped the precatalysts, such as NOx, CO, and HC rate, against an engine speed, 

load, air-to-fuel ratio, exhaust gas recirculation and a coolant temperature. 

Having these interpolating maps, one can construct improved “look-up” tables for 

the air-to-fuel ratio and the ignition timing. The neural network can predict the pol- 

lution levels as a function of the A/F ratio and ignition timing at any given values 

of load, speed and other parameters. It is therefore possible to fill in the gaps in the
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“look-up” tables. This approach also allows the engineers to use less measurements 

and to compensate for the insufficient quantity of data. 

Another approach to the problem of automatic calibration has been proposed by 

Morita in [5). 

In his recent work he considered making the neural mappings adapt over time to 

slight changes due to engine aging and to individual differences of characteristics among 

engines of the same type. 

The mappings realised by neural models were the air-to-fuel ratio and ignition 

timing, based on the engine intake air mass flow and speed. 

There were two generic types of those mappings: off-line and on-line. 

In the off-line case, after training the pre-optimised networks were fixed and used 

as improved look-up tables. The on-line case is the most interesting one. These are 

the networks designed to change over time. 

In general, it is difficult to realise systems that adapt itself to engine aging because 

the mass-market vehicles do not contain sensors able to detect such changes. It is also 

hard to evaluate in which direction and how the control surfaces should be modified in 

such cases. 

The goal is to keep the objective performance index J optimum by the feedback 

control. The index J includes such parameters as the degree of thermal efficiency or 

the degree of variation of an engine speed. 

If for a given operating point the performance index significantly decreases, the 

back-propagation algorithm is used to slightly alter the neural mapping. 

Yet there is a major obstacle in practically implementing this method. The on-line 

adaptation of the networks with a back-propagation algorithm is not fast enough and 

therefore cannot be implemented in the engine management system. 
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1. INTRODUCTION 

1.3. Data issues 

The preliminary aim of work was to demonstrate feasibility of producing smooth non- 

linear mappings of the ignition timing and the air-to-fuel ratio versus an engine load 

and speed, using neural networks. 

The proper techniques have been developed on two data sets. The first one was 

for a Rover 4.6 litre engine. It consisted of two “look-up” tables, one for the air- 

to-fuel ratio and the other one for ignition timing. The tables were defined on a 

16x16 grid of inputs load and speed. The range of input values was following: load € 

(0, 100] [%], speed € [500,5000] [rpm]. It was sparse, under-sampled and contained 

many “blank” regions, not only in the boundaries but at the centre of the input space 

as well, which is illustrated in the Table 1. Thus the first problem was the missing 

data. If the statistical distribution of data is poor, one cannot expect to achieve good 

generalisation. The models are only as good as the data provided. 

Also, one of the inputs to the models, the engine load, cannot be directly measured; 

it is instead calculated from the other measurable quantities such as the air flow mass. 

Another problem faced was the data acquisition. The first data set was provided 

in two batches, one for the air-to-fuel ratio and another one for the ignition timing. 

They both comprised of a number of various engine characteristics such as load, speed, 

torque, engine power, coolant temperatures, exhaust gas emission level etc., taken for 

a range of values of the ignition timing and the air-to-fuel ratio. 

From these characteristics, the previously-mentioned tables of optimum mappings 

were extracted by an experienced engineer. One extra problem was to transfer the data 

from provided hard-copy materials to the electronic form - some parts had to be typed 

in manually, other had to be scanned, recognised by an optical character recognition 

system, which used neural networks, and then revised and manually corrected. 

It is also worth mentioning that the target mappings to realise are likely to be 

sub-optimum since they have been generated by a human expert in a non-principled 

way. 

Le
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‘Sagem mapping ~ Air/Fuel Ratio 

  

load 

Figure 1.1: The current control surface for the air-to-fuel ratio based on a look-up table. 

This task of creating optimum tables could be automated by optimising a cost 

function incorporating information about the emission level and the torque output, 

but this is not in the scope of this project. 

The second set of data contained the A/F ratio and ignition timing mappings for 

the Rover 4.0 litre engine. The maps were completely defined on the same discrete 

grid of 16x16 as for the first data set, without any gaps which were pre-filled by Sagem 

engineers. (compare table 1 Figures 2 and 3). For these mappings, the crosses in the 

Table 1 were filled in with values. 

The models trained on the latter data set were tested on the third data set gathered 

while driving a car with the Rover 4.0 litre engine. The set consisted of time-series 

with both steady and transient states of an engine. In the steady state the engine 

parameters, such as load, speed and throttle, remain near constant. The transient 

state is characterised by a variable throttle and therefore variable speed and/or load. 

There were ten parameters gathered: air temperature, engine load, speed, air-to-fuel 

ratio, manifold pressure, throttle position, coolant temperature, base ignition advance 

angle and ignition advance. The Figure 3 show the example time-series of the engine 

throttle while the Figure 4 present the example series of the base ignition timing.
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5000 |x| x x 15.0} x LIS ul axe Hel2sun x TL,9} |! =x V2 1410: x 

5500 |x| x x x | 138 | sc 12:6} x] 11.7 | [10-95] 10.9 | x x 
  

Table 1.1: The look-up table for the air-fuel ratio as defined on a 16x16 grid. Crosses 

indicate missing data points. The analogous table is provided for the ignition timing. 
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‘Sagem mapping — Ignition Timing 
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Figure 1.2: The current control surface for the ignition timing based on a look-up table. 
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Figure 1.3: An example time-series of an engine throttle.
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Figure 1.4: An example time-series of an engine air-to-fuel ratio. 
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Figure 1.5: An example time-series of an engine base ignition timing. 8! 8 8.



2. Theory 

This chapter briefly describes theoretical foundations of models used throughout the 

project. This include standard linear regression, which is used for benchmarking neural 

networks, the Gaussian Processes and a range of neural models such as the RBF, MLP 

and committees of them. 

Also, a brief description of confidence intervals (error bars) and cross-validation 

techniques is provided. 

2.1 Models 

2.1.1 Linear models 

A linear model with & inputs and / outputs is given in the form 

y = Wx+b, (2.1) 

where x is an input vector, y - output vector, W - a matrix of linear coefficients and 

b is a bias vector compensating for the mean in the data. The bias vector can be 

incorporated into the weights matrix; an additional input equal to unity has to be 

assumed then. 

Given a training data matrix X with N examples and the associated target output 

matrix T, where 

X = fq, eo kn 1} T= (yan) (2.2) 

the weights matrix can be calculated using a pseudo-inverse of the matrix X: 

w=Tx', (2.3) 

Ny
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where 

me (xtx) x? (2.4) 

The data (or design) matrix X has dimension N x (f+ 1) and contains successive 

examples arranged in rows. 

2.1.2 Non-linear models 

Radial Basis Function Networks 

The Radial Basis Functions Networks [1,4] perform a non-linear transformation of the 

k — dimensional input space into / — dimensional output space. Given an input vector 

x, the kth output is given by 

M 

Ye = D2 we; Oj (x) + de. (2.5) 
j=l 

Any arbitrary function f(x) can be approximated as a linear superposition of basis 

functions ®;(x). 

Such a system is a feed-forward neural network [1] since the information flows in 

the forward direction - from inputs to outputs - without internal feedbacks. 

As mentioned in the section about software tools, there two common choices for 

the basis functions: 

e Gaussians - (x) = exp (-Bsg) 
i 

e and cubic splines of the form ©;(x) = 2? log(z), where z = ||x — p1;|| and pj is a 

centre of the jth basis function. 

There are two paradigms to training these models. One is to use a full optimisation 

of the system. That is, to apply gradient-based techniques such as the steepest descent, 

conjugate gradients or BFGS to all centres and weights in order to minimise the error 

function (e.g. sum of the squares). 

This is, however, a lengthy process and can be avoided by using another learning 

procedure.
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‘The semi-supervised approach first sets the centres of the basis functions either to 

a random subset of input space or to clusters resulting from an unsupervised learning 

technique performed on input samples. Any clustering procedure can be applied, among 

many of them Kohonen network and K — means clustering together with fuzzy methods 

are worth mentioning. 

After that the centres are fixed. In the next stage the linear coefficients (weights) 

are calculated using a pseudo-inverse of the design matrix ®. This matrix contains 

activations of basis functions for each training example which are arranged in rows. 

Hence it has N rows and k +1 columns (one additional column equal to unity - for a 

bias value). The formal solution for the weights is given by 

W = @'T, (2.6) 

where T is a target output matrix. 

One of the crucial issues in the RBF models is choosing an optimum number of 

basis functions. To avoid over-fitting this number is usually much smaller than the 

number of training examples NV. Indeed, as it could be observed in the cross-validation 

Figures 7 and 8, RBF networks with a large number of hidden nodes were giving large 

errors on input vectors deliberately excluded from the training set. 

Multilayer Perceptron 

The multilayer perceptron [1,3,4] is another example of a feed-forward neural network. 

Its architecture comprises of three main components: an input layer, a number of 

hidden layers with so-called hidden neurons and finally the output layer. 

The input layer contains buffer neurons which pass input information forward to 

the non-linear hidden neurons. In the most function approximation problems only 

one hidden layer is considered. Each neuron is an elementary unit that performs a 

simple weighted summation of its inputs and transfers it through a non-linear transfer 

(activation) function.
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Hyperbolic tangent or logistic sigmoid (equation 3) are common choices for the 

activation functions of these neurons. In the output layer there are linear neurons 

since we are trying to approximate unbounded functions. 

Thus the whole network represents a non-linear transformation of inputs into out- 

puts according to the equation 

m d 
ve=f* 3 wry tf (x ve) . (2.7) 

=0 i=0 

where f(-) is a transfer function, w is a set of hidden neurons weights and w* is a set 

of weights connecting hidden nodes to output neurons. In the case of linear outputs 

fr(z) = 2. 

Training procedures for multilayer perceptrons employ gradient-based methods such 

as conjugate gradients or BFGS. Also, other methods like simulated annealing or ge- 

netic algorithms may be used for learning in non-linear perceptrons. Nevertheless, 

gradient methods are much faster than the latter techniques. The price that is paid 

for gains in speed is frequently getting stuck in local minima of an error function. 

Committee of Networks 

The concept of a committee of networks can be introduced following the Bayesian 

approach [1]. 

Any neural network model can be represented by a vector of parameters (weights) 

4. Such a single solution is sub-optimal because it corresponds to one of many local 

minima (which is a peak in the posterior distribution of 8). Thus there is a number 

of different vectors @ dominating the posterior weight space. The Bayesian method 

provides an easy tool to integrating the solution over many competing weight sets. 

By integrating over all possible model configuration the output is given by 

y(x) = |, ¥Cx\6)p(0(D)a0. (2.8) 

Assuming that the posterior distribution of weights has m strong peaks around 

w on
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local minima this integral can be approximated by 

y¥(x) = So p(m|D)y(x|8n), (2.9) 

or equivalently 

y(x) = Yo ay. (2.10) 
4=1 

Hence, a committee of networks is formed by a linear combination of different 

models. The linear coefficients can either be explicitly set to values 2 (plain average) 

or evaluated using Monte Carlo methods or other optimisation techniques. It seems, 

however, that these weights should rather be fixed to equal values since then we do not 

deepen the problem of over-fitting to training examples. 

Also, a very interesting result can be obtained for the committee fitting error. 

Following [1], under strong assumptions that component models are independent, the 

committee error is smaller than the average error of the individual models: 

Le 
Ecom = Ty PAVED (2.11) 

where m is the number of individual models. 

It must be stressed that in practice the models are not fully independent and such 

a dramatic error reduction is not observed. Nevertheless, typically a certain decrease 

in error is achieved. 

Gaussian Processes 

The Gaussian Processes model, proposed by Chris Williams in [10], is another tool for 

  

non-linear modelling the data. 

From the Bayesian perspective, this model is a limit of a neural network with 

an infinite number of hidden neurons, assuming the Gaussian process priors over the 

functions. Given a collection of random variables {Y(x)|x € X}, the Gaussian pro- 

cess is a stochastic process with a mean j(x) = H [Y(x)] and a covariance function 

C(x, x’) = E[(¥ (x) — w(x)) (¥(x') — a(x’))]- 

26
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Given the training pairs {x1,...,xw}, {t;},7 = 1..N, the target distribution for an 

input point x is given by a Gaussian with the following mean and variance [10]: 

y(x) =k" (x)Kot (2.12) 

o} (x) = C(x, x) — k"(x)K~"k(x), (2.13) 

where k(x) = (C(x,x1),... ,C(x,xw))" , KX is the covariance matrix for the training 

data K,; = C(xi,x;) and t = (t1,...,tw)?. 

Chris Williams suggests the following choice for the covariance function C(x;,x;) 

although in the general case there may be other choices. 

1 i d 
Cs, 5) = vo exp{—5 » wl (2 - ai) }taot y ast + 0,6(%,7), (2.14) 

where d is the input dimension. 

Any particular choice of the function has to generate a non-negative definite covari- 

ance matrix for any set of inputs. 

The model is very suitable for automatic input relevance determination as the 

weights w; can express a relative strength of each input. 

The last term in equation (17) is a noise term. 

Hence the positive-scale parameters to optimise are the following: 

O = log (v0, v1, W1,..., Wa, do,---, da) - (2.15) 

By taking the logarithm it is ensured that the parameters on the right-hand side have 

only positive real values while 6 can take any real values. 

Training of the Gaussian Processes models is carried out by maximising the log 

likelihood of the training data, given by 

past op leet Np ee 
i — 9 log det K- at Kt - > les Qn. (2.16) 

This task can be accomplished by using either integration via Hybrid Monte Carlo 

or gradient-based methods (e.g. conjugate gradients). In this work the second approach 

nN
 
a
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has been chosen, which is much faster than multi-dimensional integration and produces 

comparable results. 

The derivation gradients of the likelihood function with respect to the parameters 

vector @ is following: 

    

  

  

  

  

Obes ROK Ly ie OL a : 
30 7 5 Trace (« 4) 5t a K 30 K t (221%) 

OKy — OKs wa in 
3 = Ou expe = epi-5 ou 1 (ce! —2z iy } (2.18) 

OK; _ OKi; remy ons 9 Ber) Oa, exp 0 = 6(7,7) (2.19) 

OK; OK: se ta at\? Lash a k\P\ Fe age on exp 6! = Met 5 oe Ww] (x! = o!) } (- 5 (x! -—2 ) *)2.20) 

where k = l..d (2.21) 

OK; _ ol; d42 7 
aou2 = Dao exp 6°t? =1 (2.22) 

OK; _ OK | pagaak _ > 
OO4+2+k Bay, a 22) 

wherek = ld (2.24) 

There is one major disadvantage of a gradient-based method used to train Gaussian 

Processes: this model, unlike the MLP, is very prone to getting stuck in high-error local 

minima. 

2.2 Confidence Intervals 

When given a prediction from a neural network, it is always useful to know the “con- 

fidence” interval, or the error bar associated with that model answer. 

There are many treatments of this problem. In this thesis we distinguish two types 

of error bars: Bayesian and predictive. 

  

In the Bayesian approach [1,2] network errors arise from two sources: the intrinsic 

noise in the data and the posterior weights uncertainty. These two terms are indepen- 

dent and can be expressed by 

a(x) = o%,(x) + o2(x), (2.25)
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where o? 4(X) is the variance of the output due to weights uncertainty, o3(x) is the 

variance of the data noise and o3(x) is the overall output variance. 

The first term in the equation 28 can be evaluated using the Gaussian approximation 

to the posterior weights distribution as follows 

oi,(x) = 8" (x)Hg(x), (2.26) 

where g(x) = Oy(x|9)/00 and H is the Hessian matrix of the model. 

The noise variance is given by 

ay eas ‘ onT= aS (2.27) 

and even though in principle depends on an input value x, it is usually assumed to be 

constant and approximated by [1] 

1 2B 
- = -= 
4) = B — (Nay (2.28) 

where N is the number of training examples, 7 number of well-determined parameters 

in the model (e.g. weights in a neural network) and Ep is the error measured on the 

training set. At the moment 7 is approximated by a number of weights & in the models. 

According to the full Bayesian treatment of the error bars, it should be set to 

4 = k—aTrace(H“!). (2.29) 

Also, when implementing the full Bayesian approach, the training should be iterated 

until the values of a and # converge. This, however, significantly slows down training 

of the RBF networks since, at each iteration, the Hessian matrix needs to be evaluated 

and inverted, and the training is repeated with pseudo-inverting the design matrix each 

time. 

In the case of Radial Basis Function networks with centres set in the first stage 

and weights obtained from minimising the desired error function, the Hessian matrix 

is given by an exact formula [2] 

H = 66" + al, (2.30) 
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where 

x q = 2.31 CTA nye G31) 

ie 
Ew = at w, (2.32) 

w is the weight vector. 

The network outputs can be interpreted as y(x) + 20,. However, Bayesian error 

bars provide us only with information concerning the input data density. Although 

they also depend on the global training error, this relation is not localised. In some 

regions both the training error and generalisation error may be low (hence the network 

should be very confident), but still the error bars may be unreasonably high. 

Nevertheless they can indicate that in the regions where the input data is scarce 

the network predictions may have a larger error. This is only a qualitative information 

which can be used for gathering further data points in these high-error regions. 

The second type of bars is called “predictive error bars” and is closely related to 

the error on the targets. 

In the implementation of the second approach there are two neural networks. One 

produces required mapping whereas the second one (the error network) approximates 

the residual error surface of the first model. This surface is extracted from the first 

network by measuring the residual error on the training set (target values are known). 

Thus the second network predicts the noise variance (y(x") — ¢")’ of the main neural 

model. 

When compared with Bayesian error bars, the level of the predictive errors is much 

lower while the Bayesian error bars tend to be very large on the data provided. 

2.3 Cross-validation - leave-one out method 

During the design of neural network models one question always arises: how to choose 

an appropriate model order complexity. The goal is to find an optimum network 

30
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that would perform with the smallest possible error on unseen data. Thus a natural 

approach is to have two independent sets of data - one for training and another one 

for validating the models. The networks performances are compared with respect to 

the validation set. This process is called the “hold out” method. 

Unfortunately, the above method may often lead to over-fitting to the validation 

set. Hence the third - test set should used to confirm that the best possible network 

has been chosen. 

When applying neural networks to many real-world problems, a designer often 

faces a problem of insufficient quantity of data. If the data set is split into three parts 

- training, validating and testing - there is risk of losing a vital information during 

training. 

The solution to this problem is provided by the cross-validation procedure [1]. The 

initial data set is randomly divided into S segments. The networks are trained using 

data from S — 1 segments and validated on the remaining segment. The procedure is 

carried out S times, each time with a different validation set. The network errors are 

averaged over all validation sets. In this way a large proportion of data if preserved 

for training and the method becomes more reliable. On the other hand, the overall 

validating process is much longer than with a single confirmation set. 

In the special case, if we have N data points and take S = N then the method is 

known as the “leave-one out” [1]. 
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3. Experiments 

In this chapter, results of experiments made on the data sets previously described are 

  

presented. Design and development issues are discussed, together with a comparison 

of models and test results. 

3.1 Data Preprocessing 

Input data have been scaled to lie in the interval [0,1]. The load input was therefore 

divided by 99.6 (a maximum possible value of load in the mappings) and the speed input 

was scaled by 5500 (a maximum speed). As to the target data, it was pre-whitened so 

that the output data had zero mean and unit variance. 

Such a preprocessing helps neural networks during the training procedure. If inputs 

represent different physical quantities and are of different order of magnitudes then it 

is very difficult for the training algorithm to find an appropriate set of weights. The 

same reasoning follows for rescaling the outputs. Indeed, in the initial experiments with 

neural networks, neural models could not learn the data if there was no such prepro- 

cessing. Also, in case of linear models and radial basis function networks, conditioning 

of design matrices (described in the Theory section) was greatly improved. 

When producing final predictions, the network outputs had to be processed back 

to their original range by multiplying by the previous standard deviations and adding 

the means. 

The final number of training examples was 56 for both mappings from the first data 

set_ and 256 for mappings from the second set. Thus all the data provided was used for 

training.
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3.2 Prior Assumptions 

There has been a number of assumptions made that affect both the design and devel- 

opment of neural networks used in the project. 

First, the prior knowledge that the mappings should be smooth suggests restricting 

the neural models to small yet without compromising on the accuracy. Small changes 

in the inputs should result in small changes in the outputs. 

There is a number of different ways to restrict the complexity of neural networks 

and to impose smoothness on mappings produced by them. 

First, a number of hidden neurons can be deliberately limited. Special care has to 

be taken, however, to ensure that smaller networks do not have larger training and test 

errors. 

During the development of regression models, the usual swm-of-squares error func- 

tion is used: 

B==>., (3.1) 

  

where N is a number of examples. 

There exists another method that tries to restrict the model complexity; it intro- 

duces the following regularisation term [1] to this error function: 

2 | 
E=3 ae

 4 K 

(yx!) — 0)? +as ow, (3.2) 
t=1 dest 

where a is a regularisation coefficient and K - a number of weights. This additional 

term pushes all the weights in the networks towards small values. This helps to prevent 

models from over-fitting while maintaining high level of flexibility, since a model does 

not necessarily have to restricted to a small number of hidden neurons. However, 

one has to be cautious with setting unreasonably high values of a for then this may 

negatively influence the accuracy of neural mappings. With large a’s the regularisation 

term will dominate over the main sum-of-squares error function to minimise. As a 

result, the training procedure will concentrate too much on penalising large weights 

and not optimising the model fits to the data. 
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Recently, the following modification to the regularisation term in the equation 3.1 

has been introduced: 

w’ 

  

1 N 2 K a 

E=5)) (u(x) = “) tay — 3. (3.3) 
“i=l isi 1+ me 

The resulting regulariser acts as a selective weight pruner. 

Large weights (compared to either a pre-fixed threshold wo or to other weights in 

a given neuron) are kept unchanged while small ones are being pruned out. 

4 4 < ¢ 2 
If, for a given weight w; it happens that w? > w} then it follows that 5 > land 

: 

  24 = 1, (3.4) vi 14% 

which results in no change being made to that weight. Otherwise, the weight is de- 

creased accordingly. 

There are also other, more complicated techniques available, such as weight sharing, 

the Optimal Brain Damage and the Optimal Brain Surgeon [4], which are best used 

when simple weight regularisation does not produce satisfactory results. 

In this project, a regularisation term may be used to impose smoothness on the 

solutions, if it proves necessary. This may possibly prove inevitable when moving to 

high-dimensional mappings. 

Next, the collected data sets are assumed to be stationary. The conditions under 

which the data was collected ideally should be stable. This holds only approximately 

since during the data collection on the test bed it is difficult to keep all the parameters 

constant (e.g. load was varying to a large extent). The speed is not so problematic on 

the test bed. 

However, these issues have a great influence on the test data recorded while an 

experimental car was being driven. The driver had problems with maintaining the 

speed and, in particular, load constant. Thus there are some fluctuations present in 

the test data. 

After identifying steady states from this data, the mean values over a steady period 

were used in the experiments. This has reduced the fluctuations to a large extent. 
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It has also be stressed that the optimum mappings itself should be made adaptive 

to changes as an engine is aging. As briefly mentioned in the first chapter, this requires 

having proper means to track changes in engine characteristics and being able to follow 

these changes while modifying the optimum control surfaces. 

In the following preliminary experiments the whole input space is treated as equally 

important for the solution. In practice, however, there are some regions in the input 

space which are almost never visited during normal operational conditions. Therefore, 

in the next stage, a distribution of inputs should be estimated (e.g. using a mixture of 

Gaussians trained by the EM algorithm [1]) and used to give a proper weight for each 

training sample in the error function. 

By using such a weighted error function, the most of the “efforts” during training 

will be spent on the most significant input regions. For instance, the effective emission 

level should be mostly reduced in the regions within which the operational point is 

located for most of the time. 

3.3. Design Issues 

The model based approach is considered in the project. The current system in operation 

also uses models since it is very difficult to design proper algorithms to deal with highly 

non-linear engine characteristics. 

Artificial neural networks have been proved to be universal approximators, more- 

over, they are very flexible and easy to design. Also, to some extent, they can deal 

with uncertain and missing non-linear data. They are very well-suited to model highly 

dimensional and non-linear mappings [1]. Their use to an engine calibration mappings 

is therefore well-justified. 

When approaching real-world problems it is always advisable to apply linear re- 

gression models to check whether they are suitable for a specific task before moving to 

more sophisticated methods, such as neural networks. This provides a benchmark for 

assessing minimum expectation of a neural system performance. It can be expected
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that neural systems will perform at least as well as linear regression models. 

In the following preliminary experiments, two inputs have been used: engine load 

[%] and speed [rpm]. The air-to-fuel ratio and ignition timing have been used as out- 

puts. 

A variety of models is considered in the project. At first standard linear regression, 

which is followed by Radial Basis Function networks and Multilayer Perceptron. Next, 

a more complex model is used: a committee of RBF and MLP networks. The Gaussian 

Processes model is also tested if suitable for implementing. 

The aim of using committees of networks is to reduce the error bars and improve a 

generalisation capability of the system. 

Two separate networks with linear output nodes (target values are continuous) were 

used to realise two separate mappings: one for the air-to-fuel ratio and another one for 

the ignition timing. 

  

Because the number of points in both data sets is very small, all the data is used for 

training the models. There has been a test data gathered from driving an experimental 

car that is used as an independent test set. No proper data for testing the emission 

level is available at this stage. 

As the mean to assess the network operational performance and to get a level of 

confidence in the network predictions, two kinds of error bars are used: approximated 

Bayesian error bars and predictive error bars (appendix .3). 

3.4 Development Issues 

The standard use of the sum-of-squares error function is being optimised: 

1 i i\2 
B=5>0(ue')-**), (3.5) 

i=l 

where N is the total number of training cases. 

The error performance of all models is measured using a Root Mean Square error 

  

Epos = (3.6) 
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and is used in the comparison tables included in the sections Comparison. The same 

measure is used for comparing both training and cross-validation errors. 

The conjugate gradients [1] procedure was used to optimise the parameters in the 

MLP and Gaussian Processes models. In the committees, the MLP components were 

separately trained using the conjugate gradients, too. 

‘The minimum number of iterations used was 100 and did not exceed 200. After the 

first 100 iterations the training errors were reaching convergence. 

The weights in the MLP networks were randomly drawn from a uniform distribution 

defined on the interval [—1, 1]. 

The RBF networks were trained in two stages: first the centres were randomly 

chosen as a subset of the training inputs set, next the second-layer weights were deter- 

mined using a pseudo-inverse of the design matrix (see appendix .2) using a singular 

value decomposition method [12]. 

Special care has been taken to ensure that the resulting models do not over-fit. Since 

there was a small quantity of data available, a proper testing set could not have been 

constructed as a subset of the training data. Instead, the leave-one out cross-validation 

method (see appendix .4) was used for the first data set (the one with 56 samples). 

The second data set (256 examples) was randomly divided into sixteen segments and 

each segment was used for cross-validating. Hence it was a cross-validation technique 

with S = 16. The leave-one out method is not suitable for large data sets and could 

not have been used for the second data set. 

For each model complexity, the experiments were repeated ten times and the average 

values were used in further analysis and for making plots. 

   
When choosing the optimum model complexity, one question ar naturally: the 

bias/variance dilemma [2]. As the number of hidden nodes increases, the models get 

very flexible and the bias is being reduced. On the other hand, the variance of the 

models is also increasing, and the over-fitting is present. 
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Linear Model ~ Air/Fuel Ratio 
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Figure 3.1: Linear model: a plot of the predicted air/fuel ratio versus the actual A/F ratio. 
The desired solution should be distributed close to the diagonal shown in the diagram. 

The model selection within the same model type (e.g. RBF) is based on three 

criteria: the training set error, the cross-validation error and the decisive - a proper test 

set. error. Among the different types of models, the choice depends on the operational 

speed and memory storage requirements. The smaller and faster the model is, the more 

likely it is to be selected. 

3.5 Preliminary Results on the 1st Data 

3.5.1 Linear Models 

Linear regression models are described in detail in the appendix (section B.1). 

Figures 3.1 and 3.2 show performance of linear models on air/fuel and ignition 

timing problems. Plots of target versus predicted values from the training set ideally 

should be close to a diagonal line beginning at the origin. As it can be seen, these 

models are not capable of correctly capturing the required mappings. Because of 

presumed non-linearity of the data, neural networks techniques have to be applied.
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Linear Model - Ign. Timing 
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Figure 3.2: Linear model: a plot of the predicted ignition timing versus the actual values. 
The desired solution should be distributed close to the diagonal shown in the diagram. 
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3.5.2 Radial Basis Function Networks 

An introduction to Radial Basis Function Networks is given in appendix B.2.1.   

Spline basis functions instead of Gaussians have been used for this application since 

then the issue of appropriately setting the widths in Gaussians is avoided. Apart from 

this, spline functions have better interpolation capabilities. 

First, an appropriate model complexity has to be found such that the models are 

neither poor nor over-fitting. Figures 5 and 6 show training errors and figures 7 and 

8 present cross-validations of the RBF network with a “leave-one out” method (see 

appendix B.4). Plots are made for both air-to-fuel ratio and ignition timing. 

Second, two radial basis function networks with 20 and 25 hidden nodes have been 

used for air-to-fuel ratio and ignition timing respectively. 

Such a specific choice has been made based on plots of both training complexities 

(Figures 5 and 6) and leave-one out cross-validation (Figures 7 and 8 respectively). 

It can be observed that when the number of basis functions exceeds forty five, the 

models start to over-fit to the training set. Hence the mappings become very sharp 

and do not pass smoothly between training points. Such over-fitting networks cannot 

be used for interpolating the smooth air-to-fuel ratio and the ignition timing mappings. 

Also, when increasing the number of hidden nodes to after twenty for the A/F ratio 

and twenty five for the ignition timing, the cross-validation error stops decreasing and 

maintains a steady level. 

Therefore, the number of hidden nodes was limited to twenty for the A/F ratio and 

twenty five for the ignition timing. 

The target/predicted plots are presented in Figures 9 and 10. By comparing these 

figures with Figures 1 and 2 for linear models, it is observed that radial basis function 

networks produce more accurate fits than simple linear models. 

It is noticed that with RBF networks the data can be more accurately fitted to 

produce smooth mappings, which are shown in Figures 13 and 14. 

Artificial neural networks are not only capable of learning required mappings but 
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Training error for different model complexities ~ RBF ~ Air/Fuel Ratio 
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Figure 3.3: The training set error obtained as a function of increasing model order measured 
by the number of basis functions used. Error bars indicate maximum and minimum values 
obtained during ten different runs. The solid line is the mean performance. 

as well can assess their performance by producing confidence intervals (appendix B.3) 

around the predicted values. Figures 15 and 16 show predictive error bars for both the 

air-to-fuel ratio and the ignition timing. 

In the regions where there is not a sufficient quantity of data (e.g. boundaries), 

the networks tend to give rather larger error bars compared to other areas. Hence the 

networks are fairly confident about their predictions in the regions where there is a 

large number of training examples. 

For comparison, in the RBF case approximate Bayesian error bars were calculated. 

They are presented in the Figures 17 and 18. This approach, however, gives much 

larger values than the observed residual error as given by predictive error bars. 

There are many possible causes for this. Mainly, the Bayesian method works well 

only with a large quantity of data, of which there is shortage in this case. 

Nevertheless, the Bayesian method is too slow to be practically implemented in the 

engine management system since it involves evaluating the gradient vector each time 

  

and multiplication by an inverse of a large He:
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Training error for different model complexities — RBF - ign. Timing 
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Figure 3.4: The training set error obtained as a function of increasing model order measured 
by the number of basis functions used. Error bars indicate maximum and minimum values 

obtained during ten different runs. The solid line is the mean performance. 
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Figure 3.5: Cross-validation of the radial basis function network with a leave-one out method 

- air to fuel ratio. 
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Validation curve for different model complexities ~ RBF ~ ign. Timing 
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Figure 3.6: Cross-validation of the radial basis function network with a leave-one out method 
- ignition timing. 
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Figure 3.7: RBF: a plot of the predicted air/fuel ratio versus the actual A/F ratio. The 
desired solution should be distributed close to the diagonal shown in the diagram. Number 

of radial basis functions used: 20. 
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Radial Basis Function Network ~ ign. Timing 
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Figure 3.8: RBF: a plot of the predicted ignition timing ratio versus the actual timing. The 

desired solution should be distributed close to the diagonal shown in the diagram. Number 
of radial basis functions used: 25. 
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Figure 3.9: Full mapping surface for the predicted air to fuel ratio as obtained by the RBF 
model with 20 centers, determined as a simultaneous function of both load and speed. 
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Figure 3.10: Full mapping surface for the predicted ignition timing as obtained by the RBF 

model with 25 centres, determined as a simultaneous function of both load and speed. 

Bayesian error bars for RBF — Air/Fuel Ratio 

  

Figure 3.11: RBF Bayesian error bars with 20 hidden nodes for the air to fuel ratio. 
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Bayesian error bars for RBF ~ Ign. Timing Ratio 

  

load 

Figure 3.12: RBF Bayesian error bars with 20 hidden nodes for the air to fuel ratio. 

Predictive error for RBF ~ Air/Fuel Ratio 

air
-fu

el 
err

or 
s 

8 

   

    

4000 
20 

80 100” 6000 speed 

load 

Figure 3.13: RBF predictive error surface with 20 nodes for the air to fuel ratio. Note that 
the error increases drastically where there is little or no data. 
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Predictive error for RBF — Ign. Timing 
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Figure 3.14: RBF predictive error surface with 25 nodes for ignition timing. Note that the 
error increases drastically where there is little or no data.
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3.5.3 Multilayer Perceptron 

In this section results obtained from multilayer perceptrons are presented. A brief 

introduction to this kind of network is included in the appendix (section B.2.2). 

Figures 17 and 18 show target/predicted plots for multilayer perceptrons with six 

and four sigmoidal hidden neurons for the air-to-fuel ratio and ignition timing mappings 

respectively. 

The number of hidden neurons has been chosen to be six for the air to fuel ratio 

and four for the ignition timing. Such a specific choice has been made based on plots 

of both training complexities (Figures 21 and 22) and leave-one out cross-validation 

(Figures 23 and 24 respectively). After exceeding five neurons in the hidden layer, there 

is little, if any, gain in the fitting accuracy for the A/F ratio and after four neurons for 

ignition timing. Also, flat regions (plateaus) can be observed in the cross-validation 

curves after that number of hidden nodes. Thus there is no reason to significantly 

increase the network complexity over six neurons for the air-to-fuel ratio and four for 

the ignition timing. 

The smooth and accurate mappings produced by the MLP networks are presented 

in the Figures 25 and 26. 

By comparing analogous plots from linear models, radial basis function networks 

and multilayer perceptrons, it can be concluded that the both latter models produce 

the most accurate fits to the training data. 

However, because the original mappings provided by Sagem contain a certain level 

of “human” noise, the models should not nessesarily produce exact fits to all data 

points. 

The predictive error bars can also be easily evaluated for the MLP model. Figures 

27 and 28 present these error bars for two modelled surfaces. It can be observed that 

they are much lower than analogous error bars obtained from the RBF networks. 

48



3. EXPERIMENTS 

Multilayer Perceptron ~ Air/Fuel Ratio 
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Figure 3.15: MLP: a plot of the predicted air/fuel ratio versus the actual A/F ratio. The 
desired solution should be distributed close to the diagonal shown in the diagram. Number 

of hidden neurons used: 6. 
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Figure 3.16: MLP: a plot of the predicted ignition timing versus the actual timing. The 

desired solution should be distributed close to the diagonal shown in the diagram. Number 

of hidden neurons used: 4. 
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Training error for different model complexities - MLP ~ Air/Fuel Ratio 
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Figure 3.17: The training set error obtained as a function of increasing model order measured 

by the number of hidden neurons used. Error bars indicate maximum and minimum values 

obtained during fifty different runs. The solid line is the mean performance. 
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Figure 3.18: The training set error obtained as a function of increasing model order measured 
by the number of hidden neurons used. Error bars indicate maximum and minimum values 

obtained during fifty different runs. The solid line is the mean performance.
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Validation curve for different model complexities - MLP ~ Air/Fuel Ratio 
  0.25 

02 

val
ida

tio
n 

err
or 2 

2 

0.05     
  2 4 Ge) 285 tO ee, 14 6) | 18) 20 

model order 

Figure 3.19: Cross-validation of the multilayer perceptron with a leave-one out method - air 

to fuel ratio. 

Validation curve for different model complexities ~ MLP ~ Ign. Timing 
025 

02 

val
ida

tio
n 

err
or ° 

2 

0.05   
2 4 fi a8 mie wei | 116 (8 18: 20 

model order 

Figure 3.20: Cross-validation of the multilayer perceptron with a leave-one out method - 

on timing. 

  

igni



  

PERIMENTS 

MLP mapping - Air/Fuel Ratio 

  

Figure 3.21: Mapping surface for the air to fuel ratio produced by the MLP with 7 hidden 

units determined as a simultaneos function of both load and speed. 

MLP mapping ~ Ign. Timing 

    

Figure 3 Mapping surface for the ignition timing produced by the MLP with 12 hidden 
units determined as a simultaneous function of both load and speed.
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Predictive error for MLP ~ Air/Fuel Ratio 
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Figure 3.23: MLP predictive error surface with 7 hidden neurons for the air to fuel ratio. 
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Figure 3.24: MLP predictive error surface with 7 hidden neurons for the ignition timing. 
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3.5.4 Committee of Networks 

After applying Multilayer Perceptrons and Radial Basis Functions separately, the focus 

can be moved on to form a committee of networks. A detailed description of these 

systems can be found in the appendix (section B.2.3). 

There are two committee networks. One is for the air to fuel ratio and consists of 

five Multilayer Perceptrons with the following number of hidden neurons: 

{3,5,7,9, 11} and six Radial Basis Function models with {15,17,19,21,24} centres. 

The second structure is used for modelling the ignition timing, and has the following 

architecture: five Multilayer Perceptrons with {7,9,11,13,15} hidden nodes and six 

Radial Basis Function Networks with {19, 21,22, 24,26, 27} centres. 

In theory (see theoretical section 2.3) such a committee network should significantly 

outperform single models, but when dealing with this topic researchers often find only a 

slight improvement. This is due to the fact that, component models are not independent. 

Thus in the worst case it can be expected that on average the committee will not 

perform worse than a single MLP or RBF. 

Figures 27 and 28 show target/predicted plots for the A/F ratio and ignition timing 

respectively. 

As it can be observed, these fits are only slightly better than the best Multilayer 

Perceptron. The result was achieved without adapting the weighting coefficients. Later 

they can be adjusted according to the generalisation capability of each component 

model. This should give a gain in the overall performance of the committee. Hence, 

when applied to a good quality data, committee networks should be able to outperform 

other neural models. 

The predictive error bars (Figures 29 and 30) appear to have values between the 

lowest bound from the MLP and the highest one given by the RBF components. 
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Figure 3.25: Committee: a plot of the predicted air/fuel ratio versus the actual A/F ratio. 
The desired solution should be distributed close to the diagonal shown in the diagram. 
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Figure 3.26: Committee: a plot of the predicted ignition timing versus the actual timing. 
The desired solution should be distributed close to the diagonal shown in the diagram. 
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Committee mapping - Air/Fuel Ratio 

    70 80 gq” 6000 speed 

load 

Figure 3.27: Mapping surface for the air to fuel ratio produced by the Committee determined 

as a simultaneos function of both load and speed. 
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Figure 3.28: Committe predictive error surface for the air to fuel ratio.
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Predictive error for Committee ~ Ign. Timing 

  

Figure 3.29: Committe predictive error surface for the ignition timing. 

3.5.5 Gaussian Processes 

This section presents the results obtained using the Gaussian Processes models. A 

brief introduction to these models is included in the section 2.4. 

The comparison of Gaussian Processes and other models is given in the next section. 

Figures 17 and 18 show target/predicted plots for the air-fuel ratio and ignition 

timing, which are not very different from the RBF and MLP models. 

The mappings (Figures 25 and 26) produced by these models are very similar to 

the MLP ones. 

The error bars produced by the Gaussian Processes models are low in the centre 

of the mappings and, when moving towards the edges, rapidly increase (see Figures 

36 and 37). This is a “proper” behaviour since there is little data available at the 

boundaries and the models become less confident. 

3.5.6 Comparison of Models 

The table 2.1 presents the comparison of training errors for different models on the 

  

air-to-fuel ratio and the ignition timing data. 

The committees of RBF and MLP networks have the lowest error on the both 

an
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   Figure 3.30: Gaussian Processes: a plot of the predicted air/fuel ratio versus the actual A/F 
ratio. The desired solution should be distributed close to the diagonal shown in the diagram. 
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Figure 3.31: Gaussian Processes: a plot of the predicted ignition timing versus the actual 
timing. The desired solution should be distributed close to the diagonal shown in the diagram. 

  

Model RBF | MLP | Committee | Gaussian Processes | Linear 
  

RMS error 

for air-to-fuel ratio | 0.2018 | 0.1973 0.1793 0.1909 0.5352 
  

RMS error 

for ign. timing | 0.1722 | 0.1890 0.1512 0.1711 0.4268               
  

Table 3.1: The average training error for the air-fuel ratio and ignition timing for the 

first data set.
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GP mapping - Air/Fuel Ratio 
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Figure 3.32: Mapping surface for the air to fuel ratio produced by the Gaussian Processes 

determined as a simultaneous function of both load and speed. 

GP mapping Ign. Timing 

  

speed load 

Figure 3.33: Mapping surface for the ignition timing produced by the Gaussian Processes 
determined as a simultaneous function of both load and speed.
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Figure 3.34: Gaussian Processes predictive error surface for the air to fuel ratio. Note that 

the error increases drastically where there is little or no data. 
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Figure 3.35: Gaussian Processes predictive error surface for the ignition timing. Note that 

the error increases drastically where there is little or no data. 
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Model RBF | MLP | Committee 
  

Cross-validation 

error - A/F ratio | 0.2018 | 0.1909 0.1701 
  

Cross-validation 

error - ign. timing | 0.1813 | 0.2104 0.1936           
  

Table 3.2: Leave-one out cross-validation error for the first data set - RMS error. 

training sets, next is the MLP models followed by the RBF network. The Gaussian 

Processes model is slightly better than the RBF and MLP. At the far end is the standard 

linear model, which is only used for benchmarking. Its fits (a three-dimensional planes) 

seem to be inadequate to model non-linear surfaces, which is not surprising. 

When comparing the cross-validation errors, the committee appears to exhibit the 

lowest error for the air-to-fuel ratio, whereas on the ignition timing data the RBF 

network has the lowest error. 

The Gaussian Processes have not been included for the cross-validating since this 

procedure requires a large number of model retraining, which for this model results in 

getting stuck in many bad local minima. 

3.6 Preliminary Results on the 2nd Data 

This section presents results from the analogous procedure as in the previous section, 

carried out for the second set of A/F ratio and ignition timing mappings. 

The investigated models include: the linear regression, RBF, MLP and the com- 

mittee of networks. The Gaussian Processes models have not been included for the 

technical reasons: on this data the covariance matrix inversion procedure, used in 

training, could not converge. 

The same general procedure as for the first data set is used. The complexity of a 

model is selected based on cross-validation and training error curves. 
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Figure 3.36: Linear model: a plot of the predicted air/fuel ratio versus the actual A/F ratio. 
The desired solution should be distributed close to the diagonal shown in the diagram. 

3.6.1 Linear Models 

Figures 3.1 and 3.2 show performance of linear models on air/fuel and ignition timing 

problems. Plots of target versus predicted values from the training set ideally should 

be close to a diagonal line beginning at the origin. Again, as for the first data set, 

these models are not capable of correctly capturing the required mappings. 
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3.6.2 Radial Basis Function Networks 

Also for this data set spline basis functions are used. 

Figures 5 and 6 show training errors and figures 7 and 8 present cross-validations 

of the RBF network with a “leave-one out” method (see appendix B.4). 

The number of basis functions has been set to 50 for the air-to-fuel ratio and 30 for 

ignition timing. 

Such a choice has been made based on plots of training complexities (Figures 5 and 

6) and cross-validation (Figures 7 and 8 respectively). 

The target /predicted plots are presented in Figures 9 and 10. 

The RBF networks better fits the data than the linear model and smoothes out 

large differential discontinuities present in the air-to-fuel mapping (see Figures 13 and 

14). 

Figures 15 and 16 show predictive error bars for both the air-to-fuel ratio and the 

ignition timing. 

In the regions where there is not a sufficient quantity of data (e.g. boundaries), the 

networks tend to give rather larger error bars compared to other areas. On the other 

hand, the networks are fairly confident about their predictions in the regions with a 

large number of training examples. 
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Figure 3.38: The training set error obtained as a function of increasing model order measured 
by the number of basis functions used. Error bars indicate maximum and minimum values 

obtained during ten different runs. The solid line is the mean performance. 
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Figure 3.39: The training set error obtained as a function of increasing model order measured 
by the number of basis functions used. Error bars indicate maximum and minimum values 

obtained during ten different runs. The solid line is the mean performance.
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Full validation curve for different model complexities ~ RBF ~ Air/Fuel Ratio 
  

val
ida

tio
n 

err
or 

e
s
 

» 
o 

»     
  

5 10 15 20 2 90 95 40 45 50 55 
model order 

Figure 3.40: Cross-validation of the radial basis function network with 16x16 segments - air 
to fuel ratio. 
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Radial Basis Function Network ~ Air/Fuel Ratio 
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Figure 3.42: RBF: a plot of the predicted air/fuel ratio versus the actual A/F ratio. The 
desired solution should be distributed close to the diagonal shown in the diagram. Number 

of radial basis functions used: 20. 
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Figure 3.43: RBF: a plot of the predicted ignition timing ratio versus the actual timing. The 

desired solution should be distributed close to the diagonal shown in the diagram. Number 
of radial basis functions used: 25. 
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Figure 3.44: Full mapping surface for the predicted air to fuel ratio as obtained by the RBF 
model with 20 centres, determined as a simultaneous function of both load and speed. 
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Figure 3.45: Full mapping surface for the predicted ignition timing as obtained by the RBF 
model with 25 centres, determined as a simultaneous function of both load and speed. 
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Figure 3.46: RBF Bayesian error bars with 20 hidden nodes for the air to fuel ratio. 
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Figure 3.47: RBF Bayesian error bars with 20 hidden nodes for the air to fuel ratio. 
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Predictive error for RBF ~ Air/Fuel Ratio 
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Figure 3.48: RBF predictive error surface with 20 nodes for the air to fuel ratio. Note that 

the error increases drastically where there is little or no data. 
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Figure 3.49: RBF predictive error surface with 25 nodes for ignition timing. Note that the 

error increases drastically where there is little or no data.
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Multilayer Perceptron Air/Fuel Ratio 
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Figure 3.50: MLP: a plot of the predicted air/fuel ratio versus the actual A/F ratio. The 
desired solution should be distributed close to the diagonal shown in the diagram. Number 
of hidden neurons used: 6. 

3.6.3 Multilayer Perceptron 

Figures 17 and 18 show target/predicted plots for multilayer perceptrons with 10 and 

five sigmoidal hidden neurons respectively. 

The number of hidden neurons has been chosen to be six for the air to fuel ratio 

and four for the ignition timing. 

Such a choice has been made based on plots of both training complexities (Figures 

21 and 22) and leave-one out cross-validation (Figures 23 and 24 respectively). There 

is no reason to significantly increase the network complexity beyond those sizes since 

there is no gain in performance achieved by doing so. 

The smooth and accurate mappings produced by the MLP networks are presented 

in the Figures 25 and 26. 

By comparing analogous plots from linear models, radial basis function networks 

and multilayer perceptrons, it can be concluded that the both latter models produce 

the most accurate fits to the training data. 

The Figures 27 and 28 show predictive error bars that are significantly lower of 

analogous ones given by the RBF models.
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Figure 3.51: MLP: a plot of the predicted ignition timing versus the actual timing. The 

desired solution should be distributed close to the diagonal shown in the diagram. Number 

of hidden neurons used: 4. 
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Figure 3.52: The training set error obtained as a function of increasing model order measured 

by the number of hidden neurons used. Error bars indicate maximum and minimum values 

obtained during fifty different runs. The solid line is the mean performance. 
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Figure 3.53: The training set error obtained as a function of increasing model order measured 
by the number of hidden neurons used. Error bars indicate maximum and minimum values 

obtained during fifty different runs. The solid line is the mean performance. 
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Figure 3.54: Cross-validation of the multilayer perceptron with a leave-one out method - air 

to fuel ratio. 

ar



1X PERIMENTS 

  

Full validation curve for different model complexities - MLP - Ign. Timing 
Bn 

09 

val
ida

tio
n 

err
or 

s 
9 

9) 
p
o
 

° 

    
  

  

02 

ot 

° Zig dt cgGre Beg NO 1 1es athe ian (Screed 
model order 

Figure 3.55: Cross-validation of the multilayer perceptron with a leave-one out method -      

ignition timing. 
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Figure 3.56: Mapping surface for the air to fuel ratio produced by the MLP with 7 hidden 
units determined as a simultaneos function of both load and speed.
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Figure 3.57: Mapping surface for the ignition timing produced by the MLP with 12 hidden 8 gs 8) 8 
units determined as a simultaneous function of both load and speed. 
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Figure 3.58: MLP predictive error surface with 7 hidden neurons for the air to fuel ratio.
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Figure 3.59: MLP predictive error surface with 7 hidden neurons for the ignition timing. 

3.6.4 Committee of Networks 

As previously, there are two committee networks. One is for the air to fuel ratio and 

consists of five Multilayer Perceptrons with a following number of hidden neurons: 

{7,9, 11, 12,13} and five Radial Basis Function models with {40, 45,50, 55,60} centres. 

The second structure is used for modelling the ignition timing, and has the follow- 

ing architecture: five Multilayer Perceptrons with {3,4,5,6,7} hidden nodes and five 

Radial Basis Function Networks with {20, 25, 30,35, 40} centres. 

Figures 27 and 28 show target/predicted plots whereas in the Figures 29 and 30 

mapping outputs versus sample index are shown. 

The predictive error bars, presented in the Figures 31 and 32, are in-between the 

ones from MLP (a lower bound) and RBF (a higher bound). 

3.6.5 Comparison of Models 

The table 3.3 presents the comparison of training errors for different models on the 

air/fuel ratio and the ignition timing data. 

The Radial Basis Function network has the lowest average error on the A/F training 

76



3. EXPERIMENTS 

Committee ~ Air/Fuel Ratio 

pre
dic

ted
 v

alu
es 

  

2 45 OT ~0.5 05 1 15 2 0 
target values 

Figure 3.60: Committee: a plot of the predicted air/fuel ratio versus the actual A/F ratio. 
The desired solution should be distributed close to the diagonal shown in the diagram. 
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Figure 3.61: Committee: a plot of the predicted ignition timing versus the actual timing. 
The desired solution should be distributed close to the diagonal shown in the diagram. 

  

Model RBF | MLP | Committee | Linear 
  

RMS error 

for air-to-fuel ratio | 0.1521 | 0.2710 0.1936 0.7946 
  

RMS error 

  for ign. timing 0.1156 | 0.1176 0.1115 0.3767           
  

Table 3.3: Training error for the air-to-fuel ratio and ignition timing. 
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Figure 3.62: Mapping surface for the air to fuel ratio produced by the Committee determined 
as a simultaneous function of both load and speed. 
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Figure Committe predictive error surface for the air to fuel ratio. 
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Figure 3.64: Committe predictive error surface for the ignition timing. 

  

Model RBF | MLP | Committee 
  

Cross-validation 

error - A/F ratio | 0.1346 | 0.2262 0.1517 
  

Cross-validation 

error - ign. timing | 0.0864 | 0.0929 0.0820             

Table 3.4: Leave-one out cross-validation error for the second data set. 

set, next is the committee of RBF and MLP models followed by the MLP network. 

Again, the linear regression models, used for benchmarking, give large training errors. 

For the ignition timing, the committee of networks is the best, which is followed by the 

RBF and MLP respectively. 

Exactly the same order of models is reflected in the cross-validation error, shown 

in the table 3.4. 

3.7 Test set results 

This section presents results on the test set set for the ignition timing. The test set for 

the air-to-fuel ratio could not be obtained because of serious technical problems with 
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processing the raw air-to-fuel data from the third data set. 

The models trained on the ignition timing table from the second data set were tested 

on the third set - gathered from driving a car. Tests were carried out for both steady 

and transient states, although the models were trained only for the steady states. 

As a comparison, the current linear interpolation method was also used for this 

data. 

The Figures 36-38 show target-predicted plots for all considered models: RBF, 

MLP, committee and linear interpolation. 

For all models, including linear, outliers can be noticed for the target ignition value 

of 10. The further inspection revealed that all these points occurred for small values 

of load and speed, which corresponded for an idle state of the engine (e.g. waiting at 

traffic lights or changing gears). In these cases a special a rule must have been applied 

to reduce the ignition timing to 10. 

The table 3.5 presents RMS errors for all steady and transient states, excluding the 

outliers. 

For the steady state, the linear interpolation model appears to give the lowest RMS 

error, which is followed by the RBF, committee and MLP networks. 

It should not be surprising, however, that the linear model gives the lowest fit 

since the data itself was generated using the same interpolating model. The aim of 

the project is to replace the interpolating tables with neural networks, which produce 

smoother control surfaces. 

On the transient data, the linear model is again the best, and among neural models 

the committee provides the best fit. It is followed by the MP and RBF network. 

The fact that models trained for the steady state are capable of controlling the 

transient ignition timing equally well proves that this mappings does not heavily depend 

on the throttle change rate, which is near zero for the steady state. 

On the other hand, the desired air-to-fuel ratio is very sensitive to changes in the 

throttle. 
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Model RBF | MLP | Committee | Linear 
  

RMS error 

for steady state | 0.7155 | 0.9718 0.7783 0.4970 
  

RMS error 

            for transient state | 1.0467 | 0.9985 0.8346 0.7201 
  

Table 3.5: The RMS errors for both steady and transient states. 
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Figure 3.65: The target/predicted plot for linear interpolation . 
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Figure 3.66: Committe predictive error surface for the ignition timing. 
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Figure 3.67: Committe predictive error surface for the ignition timing. 
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Figure 3.68: Committe predictive error surface for the ignition timing.
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Figure 3.69: Committe predictive error surface for the ignition timing. 
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Figure 3.70: Committe predictive error surface for the ignition timing.
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Figure 3.71: Committe predictive error surface for the ignition timing. 
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Figure 3.72: Committe predictive error surface for the ignition timing. 
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3.8 Identified problems 

One major problem has been faced so far - data availability. 

The data provided was very sparse. Moreover, there are some regions in the map- 

pings which are accessed more often than the others. This can be examined by mod- 

elling the input data density. The prior knowledge about the input data density can 

be incorporated in the error function during training. Next, one could use this prior 

knowledge and gather more data in regions where the input data density is higher. Ob- 

taining a lot of data in more “important” regions could lower the error bars associated 

with those input areas [2]. 

There is one more problem that will occur later - the curse of dimensionality. After 

moving to higher dimensions the models will require a very large quantity of data in 

order to adequately cover the input space. 

Another problem that is closely related to the above-mentioned ones is a lack of a 

proper test set. Since the number of training examples was very small, proper testing 

the neural networks on an independent set could not be done. Therefore, only one 

method - the leave-one out cross-validation (appendix D) was used to estimate the 

proper model order complexity and model performance. 

3.9 Future directions 

The further work will be going in two parallel directions. 

First, developed software components will be applied to high-dimensional data that 

is going to be collected from the prototype engines. 

The work will therefore be very useful for the collaborating industry - Sagem Ltd., 

since they will be able to replace existing system with neural networks, which will 

result in producing better mappings. 

Second, the optimum air to fuel ratios and ignition timings can possibly be further 

optimised using a custom-designed cost function, e.g. a linear combination of the 
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engine characteristics. 

This will possibly improve the mappings by eliminating possible human errors and 

and help to achieve the following long-term objectives: 

e reduce of the on-chip memory consumption 

¢ maximise torque output 

e minimise fuel consumption 

¢ maintaining low level of exhaust gas emissions 

© optimise a car drive-ability. 

Third, when applying mathematical models to industrial problems, the system de- 

signer rarely has enough data points for a variety of reasons (e.g. high cost of obtaining 

data). Without having a sufficient number of data points, networks cannot generalise 

and extrapolate well on the domain boundaries. 

In such cases it is necessary to incorporate prior knowledge into a neural network. 

This can be done by manually imposing some boundary conditions on the network 

solutions. One way of resolving this problem may be to incorporate the first-derivative 

conditions within selected points that lie on the edges of a data set. 

The above-described experiments were conducted for a fully warmed up engine 

running in a steady state. The inputs were the engine load and speed. 

In the next stages the following mappings will be realized: 

e steady state - warming 

inputs: 

— speed 

— load 

— coolant temperature



4. Conclusions 

The preliminary experiments carried out for the air to fuel ratio and ignition tim- 

ing data show that non-linear models, such as the Radial Basis Function Networks, 

Multilayer Perceptrons and the committees of these networks significantly outperform 

standard linear regression methods. 

The models used in the experiments had two inputs: the engine load and speed. 

The outputs were the optimum air to fuel ratio and ignition timing. 

Among the non-linear models, the committee of networks has a low training error 

(comparable with other models) but the associated error bars are the lowest. Its 

generalisation capabilities are comparable, in some regions even better, than those of 

the single RBF and MLP. 

These initial studies were very useful in testing the software tools and neural net- 

works developed so far on real data provided by Sagem Ltd. 

The neural network approach is feasible and provides a new and more efficient way 

to construct non-linear mappings of engine parameters. 

The literature survey conducted also confirms the feasibility of using neural net- 

works in replacing the current look-up tables. 
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e transient state - warmed up 

inputs: 

— speed 

— load 

— coolant temperature 

throttle change rate 

e transient state - warming 

inputs: 

— speed 

— load 

coolant temperature 

throttle change rate.
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A. Software tools 

In the first. phase of the project, software tools were created that have successfully 

served as bases for a further project development. 

The language selected for the work was the object-oriented C++ in a 64-bit SGI 

IRIX 6.02 environment. Figure 33 shows the main class hierarchy. 

At the top there is a generic base class “Model” which describes basic properties 

of any given multiple-input, multiple-output (MIMO) system. Also, it has capabilities 

of storing a data set consisting of input and/or output vector pairs, which can be used 

either for training or for evaluating in derived systems. 

Apart from this, the class “model” contains such useful functions as 

e training the models with steepest gradient descent, conjugate gradients and a 

modified genetic algorithm 

e checking training complexities 

e cross-validating with leave-one out method 

¢ preparing a detailed cross-validation profile for a given model complexity 

e saving and restoring models from a disk file. 

All these functions are virtual and can easily be overridden in derived classes, which 

allows the entire class hierarchy to be very flexible and modified without spending too 

much time on this task. Another advantage of such an approach is extensive code 

reuse. 
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From the base class “Model” we can derive a class “Linear”, which is a standard 

linear regression model, “Fuzzy Model” and two further base classes: “RBF” and 

“MLP”. 

The class “RBF” contains a generic two-stage tuning procedure for all radial basis 

function networks: first centres of the basis functions are randomly chosen from an 

input space, next linear mixing coefficients are calculated using pseudo-inverse of the 

design matrix. 

Actual instances of RBF networks are created using two derived classes: “Gauss” 

and “Spline”. In the first class, Gaussian basis functions in the form of 

eter a 

(x) = exp (er (A.1) 

are being used. In the latter case, spline functions 

©;(x) = z* log(z), where z = ||x — p,|| (A.2) 

have been applied. 

The next branch in the class hierarchy starts at the “MLP” class. This class contains 

training and support functions for feed-forward multilayer perceptron networks. From 

“MLP” two instances of MLP networks can be derived: back-propagation networks 

with both linear (“LinMLP”) and non-linear (“NonlinMLP”) outputs. The first one is 

used for function approximation problems and creating multi-dimensional mappings, 

whereas the latter can be applied to a variety o fealssification tasks. 

Non-linearity i sintroduced to the models by using sigmoidal hidden and output 

nodes; activation of neurons is defined to be 

1 
NBN een omy Renner (A.3) 

Next, the class encapsulating the Gaussian Processes models has been implemented. 

The class is derived from the “Model” and the realised model is trained using gradient- 

descent based methods. 

The “Fuzzy Model” class, derived from a generic model, is another tool that can 

be applied to solving non-linear problems (e.g. fuzzy control). It uses a fast one-pass 
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“table look-up” method to infer fuzzy logic rules from the training data. Triangular 

membership functions (a class “Fuzzy”) are used for both inputs and outputs. The 

centre of gravity defuzzyfier is being used to obtain crisp outputs from fuzzy sets. 

Fuzzy logic models are widely used in fuzzy control - modelling highly non-linear 

control surfaces. Their advanteges are speed of learning and linguistic interpretation 

of the fuzzy rules. 

There have been made some analogies between neural systems and fuzzy models 

which enable further training the models using neural networks techniques. These 

structures are called “neuro-fuzzy” and such hybrid approach allows the production 

of fine-tuned controllers. Also, genetic algorithms have been recently used to find 

optimum sets of fuzzy rules and membership functions [11]. 

Design of all above classes used “generalisation-specialisation” method for designing 

objects and inheritance links between them. 

Further procedure that can be used is called “whole-part”, according to Coad/Yourdon 

object-oriented methodology [12]. 

The “whole-part” method has been applied to designing a class “Expert Net” - a 

committee of linear, RBF and MPL models. 

In the figure 33 we can see that the committee network has three major components: 

one linear model a number of different RBF and MLP neural networks. 

The training procedure i scarried out independently for each component. The outputs 

of the expert network are taken as the weighted average of outputs from component 

models. At the moment all weights are equal but later on they can be adjusted ac- 

cording to different model characteristics (e.g. validation set error). 
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Figure A.1: C++ class hierarchy 
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