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Thesis Summary 

This thesis follows the development of a new stylometric technique which can be used 

to investigate works of literature of questionable authorship. A particular dispute is 

examined concerning the true authorship of three plays commonly credited to William 

Shakespeare. The works are the two historical plays Henry VI parts 2 and 3 and the 

Roman tragedy Titus Andronicus. The three works have been argued to have been 

greatly influenced by the playwright Christopher Marlowe. In a problem which is 

prone to high noise and limited data availability, intelligent feature selection is an 
essential part of the classification process. This should lead to the identification of the 

most promising inputs to use in discriminating between the two authors. The use of 
both linear classifier and non-linear Neural Network based classifier models are 
investigated and their results compared. 

Keywords: stylometry, principal components analysis, neural networks, Marlowe, 

literary detection.
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1. Introduction 

A popular area of research in the field of literary studies is the question of 

authorship of disputed works. Described by Matthews & Merriam (1994b) as the 

quantitative analysis of literary style, stylometry takes a statistical approach to the 

problem of disputed authorship. This thesis concentrates on the development of a new 

stylometric technique. Whilst a particular authorship problem is investigated, the 

technique can be applied to any authorship dispute. 

With stylometry, a comparison is made between disputed texts and those 

known to have been produced by candidate authors. The textual features selected for 

the comparison are called discriminators and should reflect the style of writing. By 

taking discriminator measurements for a large number of texts produced throughout 

an author's career it is possible to build a statistical model of that author's style. 

Measurements for a disputed text can then be examined to see which model they most 

closely match and the text can be credited to the corresponding author. 

Stylometry dates back to the middle of the 19th century (Matthews & 

Merriam, 1994a) when Augustus De Morgan first suggested the use of mathematics 

in resolving authorship disputes. It was only in the early 20th century, with the 

development of new statistical techniques, that the field of stylometry was pushed 

forward significantly. Two independent scholars, G. Udny Yule and George Zipf, 

being considered responsible for the breakthrough. Up until the introduction of 

computers in the early 1960s, stylometric research entailed a great deal of physical 

and mental labour. Texts of great length had to be processed manually and 

calculations performed by hand. 

The application of computers to the field of Stylometry has led to the 

examination of several key and controversial authorship disputes. Mosteller & 

Wallace (1964) investigate the authorship of the Federalist Papers, a set of political 

texts written in the 18th century to persuade the citizens of New York to ratify the



Constitution. Holmes (1992) examines the book of Mormon concluding that it is in 

fact the work of only one author, supporting the views of sceptics of the Mormon 

religion. However, perhaps unsurprisingly, the largest number of authorship disputes 

surround the works of arguably the greatest playwright to have ever lived, William 

Shakespeare. Numerous claimants have been suggested as the true authors of some of 

Shakespeare's works ranging from Francis Bacon to Queen Elizabeth I (Myers, 1990). 

Previous stylometric work relating to Shakespeare will be examined in Section 1.3. 

The development of neural network techniques has led to a recent revival in 

stylometric investigations. Their main advantage is the ability to easily model non- 

linear relationships in the data. Tweedie et al. (1994) use such techniques, previously 

unavailable to Mosteller and Wallace, to revisit the problem of the authorship of the 

Federalist papers. 

1.1 Major Issues 

One of the largest areas of uncertainty in the field of stylometry is the question 

of purity of texts. The texts used throughout this thesis were obtained via the internet. 

They could have been copied from published editions dating from the 19th to the 20th 

century, brought together from several original versions by the respective editor. 

Although the author's characteristic style should still be preserved in edited versions, 

there is a great deal of external noise introduced into the data. No uniform convention 

for the English language existed at the time of the writing of the texts. The lack of 

standard spelling conventions resulted in certain letters occurring at a much higher 

frequency than they do in present day texts and vice versa. The manner in which these 

spellings are interpreted by an editor together with the editorial protocols used 

constitute the main sources of the noise. The high noise content is one of the reasons 

for investigating Neural Network techniques which are widely known to perform well 

with such problems. 

The authorship dispute investigated in this thesis is considered particularly 

troublesome due to a relative shortage of author characteristic data. This problem is 

examined in greater detail in Section 1.2. Intelligent feature extraction therefore plays 

an important part in the classification process. Discriminators should be chosen so that



their use will allow the generation of as many samples as possible of the works of 

each author. However, it is also important that the discriminators contain enough 

information so as to reflect the characteristic style of the respective authors. 

Finally, the stylometric technique selected for this thesis does make the 

problem one of very high dimensionality as identified in Section 1.4. This 

dimensionality must be reduced if a realistic model is to be constructed. This is a 

problem of feature selection. Only discriminators which best describe the differences 

between the authors should be used and the others discarded. Indeed, a significant 

part of this thesis is concerned with issues of how the large number of potential 

features can be reduced down to a small but characteristic set suitable for the specific 

problem under investigation. 

1.2 Shakespeare and Marlowe 

William Shakespeare and Christopher Marlowe were both born in the year 

1564. Although it is believed that the two authors never met, a popular theory is that 

Marlowe had a strong influence on the young Shakespeare who paid tribute to him in 

the play As You Like It as the 'dead shepherd’ (Dear, 1986). An alternately held view 

is that the works of Shakespeare are totally independent of those of Marlowe and 

that any similarity is coincidental. 

The works that are considered to have the greatest Marlovian characteristics 

are the earliest works of Shakespeare. In particular the two historical plays, Henry VI 

part 2 and Henry VI part 3 and the Roman tragedy, Titus Andronicus. A strong 

literary relationship is believed to exist between the final two parts of Henry VI and 

two shorter anonymous works entitled The Contention and The True Tragedy 

(Matthews & Merriam, 1994b). A number of theories exist to explain this relationship 

and one actually credits the anonymous plays to Marlowe and suggests that 

Shakespeare adapted these to produce Henry VI parts 2 and 3. 

Canons exist for both authors. These are sets of undisputed works attested by 

scholars to have been undoubtedly produced by an author. Matthews & Merriam 

(1994b) identify the contents of each canon. By analysing these plays, discriminators 

can be extracted which can be used to distinguish between the works of the two



authors. Whilst there are a large number of core canon plays for Shakespeare this is 

not the case for Marlowe. There are only three plays in the Marlowe core canon, 

Tamburlaine I, Tamburlaine II and Edward II. Doubts have been cast over the 

remaining plays credited to Marlowe. 

Dido, full title The Tragedie of Dido Queene of Carthage, is believed to have 

been written whilst Marlowe was still at Cambridge University in collaboration with 

Thomas Nashe (Dear, 1986). Merriam (1995) argues that The Jew of Malta has been 

falsely credited to Marlowe and may have been written by Thomas Kydd. Doctor 

Faustus is thought to have been written towards the end of Marlowe's career and is 

commonly believed to contain a great deal of non Marlowe material added after the 

author's death. Several versions of the play actually exist and for this thesis the version 

first published in 1604 was used as this is now believed to contain fewer external 

additions although this is a questionable area itself (Ule, 1982). Ironically, the most 

accepted Marlowe play of the three is a fragmentary text, Massacre at Paris. 

Marlowe also produced some narrative poems including the erotic poem, Hero and 

Leander. 

The uncertainty surrounding the true authorship of the plays outlined above 

introduces further noise into the data and obviously leads to a reduction in the amount 

of author characteristic data necessary for training a classifier. 

1.3 Previous Work 

Much research has been carried out into authorship questions regarding 

William Shakespeare. Matthews & Merriam (1994b) and Lowe & Matthews (1995) 

investigate the authorship of the play The Two Noble Kinsmen. The frequencies at 

which certain words occur were chosen as discriminators. The results of both 

investigations support the claim that the play was a collaboration between 

Shakespeare and his contemporary John Fletcher. 

In the investigations referenced above, function words were chosen as 

discriminators. The frequency of function words such as 'the'’, 'as' and 'may' would be 

very difficult to imitate deliberately in the case of forgery unlike the frequency of more 
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exotic words. However, Udny Yule (1968) successfully used the frequencies of such 

exotic words as discriminators in a number of investigations. 

Ledger & Merriam (1994) also examine the authorship of The Two Noble 

Kinsmen. They demonstrate that letter frequencies can be used as an alternative to 

word frequencies. As with the use of function words, it would be very difficult to 

consciously influence letter frequency counts whilst attempting to imitate the work of 

another author. Also with an average of 5 - 6 letters per word, any sample of text will 

produce more information when using letter frequencies than when using word 

frequencies. This should lead to a lower volume of text being required to train a 

classifier model or, with higher counts available for a given text length, better 

statistics for the chosen discriminators. Word and letter frequencies are not the only 

measurements used in stylometry. Holmes (1994) examines a number of other 

methods that have been used. 

Regarding discrimination between Shakespeare and Marlowe, Merriam (1996) 

uses the frequencies of both function words and exotic words to show that seven 

historical Shakespeare plays, including the second and third parts of Henry VI, as well 

as the tragedy Titus Andronicus have some Marlovian characteristics. Matthews & 

Merriam (1994b) use function words to support the argument that The Contention 

and The True Tragedy are both works by Marlowe adapted by Shakespeare to 

produce the second and third parts of Henry VI. 

1.4 Approach to be Followed 

For this thesis a new stylometric unit will be introduced called a digram. A 

digram describes a pair of letters occurring consecutively in a word. For example, the 

word 'author' is made up of the five digrams ‘au’, 'ut’, 'th’, ‘ho’ and ‘or’, Punctuation and 

space characters are not used in the formation of digrams. Also, word concatenation, 

where the last letter of one word and the first letter of the following word could form 

a digram, is not employed. The frequencies of selected digrams can be used as 

discriminators in a similar way to those of single letters (Ledger & Merriam, 1994). 

As with single letters, it would be very difficult for an author to consciously affect 

digram counts whilst trying to imitate another author.



Another similarity to single letter frequencies is that a lower text volume is 

necessary to build a classifier model than when using word frequencies. This has 

already been highlighted in Section 1.2 as a characteristic of the particular authorship 

dispute being investigated. Ideally a technique is required which can be used with very 

limited volumes of text. One possible use for such a technique would be in resolving 

claims that police statements have been falsified in criminal cases (Bailey, 1979). In 

such cases the disputed texts may be no longer than half a page in length. Whilst a 

technique which could be used successfully in such circumstances may never be 

developed, the need for a technique based on low volumes of text is indicated. 

A total of 676 digrams are available in the English language ranging from 'AA' 

to 'ZZ'. It would not be feasible to use the frequencies of these to create a 676 

variable input space. Some method of selecting a lesser amount of discriminators must 

be found. The new discriminators should contain as much information as possible so 

that an adequate model can be constructed using them. Principal Components 

Analysis (PCA) is a method of reducing dimensionality whilst still explaining a large 

amount of the variance in a data set (Section 2.1). PCA will be used in two ways. 

Firstly, to identify suitable digrams to act as discriminators in a new feature space. 

Secondly, the results of PCA will be combined with digram frequencies to construct 

totally new discriminator variables. 

Neural Network techniques (Section 2.3) can be used to model non-linear 

relationships in the new feature space. However, if the relationships are simply of a 

linear nature then a linear model (Section 2.2) would be adequate. Therefore, linear 

models will be used to produce benchmark results against which the performance of 

Neural Network based classifiers can be compared. 

In addition to linear models, neural network based models will be applied to 

the authorship problem concerning Shakespeare and Marlowe. The results produced 

by all models will indicate the suitability of digrams as discriminators in authorship 

classification problems. 
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2. Theory 

This section contains an outline of the various statistical techniques used as 

part of the stylometric analysis. 

2.1 Principal Components Analysis 

Alt (1990) provides a good non-mathematical description of Principal 

Components Analysis (PCA) and its uses. PCA attempts to describe the variance in a 

data set using a smaller number of variables called principal components. The 

principal components are actually the eigenvectors derived from the covariance matrix 

generated from the data set. Each eigenvector has a corresponding eigenvalue which 

indicates the importance of the associated principal component in the description of 

the overall variance. The following formula can be used to determine the percentage 

of the total variance in a data set that is described by the first k ordered principal 

components 

k N 

Percentage Variance Described = ¥ A; / = i x 100 % (2.1) 
isl isl 

where A; is the ith eigenvalue and N is the total number of eigenvalues. 

Singular Value Decomposition (SVD) is a simple and effective method of 

performing PCA and was the technique used in this thesis. If the data set A is an (n x 

Pp) matrix of rank r then it can be written as follows 

A=USV' (2.2) 
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where U (n x p) and V (p x p) are column orthonormal matrices and S is a diagonal 

matrix. The columns of U are actually the eigenvectors of AA' and the columns of V 

are the eigenvectors of A'A. It can be shown that the values on the diagonal of S, 

called singular values, are the square roots of the eigenvalues corresponding to the 

derived eigenvectors. A matrix of rank r produces only r significant singular values. 

As eigenvalues simply provide a measure of the contribution of each principal 

component, singular values can be used interchangeably with eigenvalues throughout 

this thesis. 

2.2 Linear Classifiers 

Three different linear classifiers were utilised in the work. One particular 

model consistently produced superior results, the 'Linear Network’ classifier, and the 

outputs produced by this model are the only results quoted for linear classifiers. All 

three models will be described briefly in this section. 

A training data set consists of n patterns of class A and n patterns of class B. 

Each pattern is represented by a vector of d variables and is said to be d-dimensional. 

With a 'Nearest Class Mean' classifier model, two vectors are constructed. One by 

calculating the mean of all vectors representing patterns from class A and the other by 

calculating the mean of all vectors representing patterns from class B. The Euclidean 

distance between each mean vector and a vector representing an unclassed data 

pattern can be measured and the new pattern allocated to the class corresponding to 

the shortest distance. The Euclidean distance, d, between two vectors x and y each 

containing n elements is calculated using the following formula 

d=V ( (x1 yi) + (X= yo)" +. + (Kn Yn)? ) (2.3) 

With a ‘Nearest Neighbour’ classifier model, the Euclidean distances between 

the vector representing an unclassed data pattern and the individual vectors 

representing each of the patterns in the training data set are measured. The pattern 

corresponding to the shortest distance is deemed to be the nearest neighbour of the 

new pattern and the new pattern is allocated to the same class.



A 'Linear Network’ uses a set of weights, W, such that 

AW=T (2.4) 

where A is the training data set and T is a set of binary target value pairs, [0,1] for 

class A and [1,0] for class B. This equation can be rearranged to calculate the values 

for the network weights 

WHAT (2.5) 

where A* is the pseudo-inverse of the matrix A. By multiplying a vector representing 

an unclassified pattern by the generated weights matrix, a pair of outputs will be 

produced. The new pattern can then be allocated to the class corresponding to the 

most similar target pair. 

2.3 Non-Linear Classifiers 

The models described so far are only capable of fully solving problems of a 

linear nature. Neural Networks are classifiers capable of modelling non-linear 

relationships in a data set. Both Haykin (1994) and Bishop (1995) provide a good 

introduction to neural network techniques and their application. Two types of neural 

network were used in the production of this thesis and both are outlined below. 

2.3.1 Multi-Layer Perceptron networks 

Figure 2.1 contains an illustration of a Multi Layer Perceptron (MLP) 

network. It consists of a number of input nodes, hidden nodes and output nodes. Each 

node has several inputs from nodes in the previous layer as well as an additional input 

called the bias which represents the overall contribution of the node. These inputs are 

multiplied by weights associated with the relevant connections and the sum of the 

resulting values is calculated. This sum is calculated for an arbitrary node, q, using the 

following formula



N 

Sq = X WpaXp (2.6) 
p=0 

where x, is the pth input to the node, Wo is the weight associated with the connection 

between input p and node q and the sum runs over all N input nodes. The input xo is 

permanently held at | and the bias is implemented by setting wo, accordingly. 

Input Hidden Output 

Layer Layer Layer 

w, Wi 

Figure 2.1 Structure of a Multilayer Perceptron Network 

This sum is then passed through a transfer function and the node output is 

defined as the value of the transfer function. For a hidden layer node, q, a sigmoidal 

transfer function is used as follows 

O,= 1/1 + exp (-S,) (2.7) 

Although the output of a node, q, in the output layer of an MLP network can 

also be defined using a non-linear transfer function such as the one given above, for 

this work a linear transfer function such as the one below was used. 

Og = 0 when S, <0 
= 1 when S, > 1 

= Sy otherwise



Whereas the training of a Linear Network is a single pass process, the weights 

connecting the hidden layer to the input and output layers in an MLP network are 

modified a number of times as the network is trained. 

During training, a vector representing a pattern from a training data set is 

presented to the network together with a target vector. After the propagation of the 

input vector through the network, the network weights are modified so as to try to 

minimise the error between the actual network output and the target output. One 

algorithm for doing this is the Scaled Conjugate Gradient (SCG) algorithm which is 

described in detail in Bishop (1995). Apart from being faster than some traditional 

methods such as Gradient Descent, this method is particularly effective as it tends to 

avoid termination at local minima on the error surface. The weights of all MLP 

networks used in the production of this thesis were initialised to random values 

between -1 and | and then the networks were trained using the SCG algorithm. 

One important decision is when to terminate the training process. If training is 

terminated too early, the network will not have had the opportunity to model the data 

as closely as it might. Conversely if termination is left too late, the network may be 

modelling the data almost exactly including any noise that will undoubtedly be 

present, a condition known as ‘over-training’. In both situations, the network will not 

be able to generalise well from patterns in the training data to classify previously 

unseen patterns. 

There are several methods available to determine when the training process 

should be terminated. For this thesis a relatively simple method was selected. The 

network is trained on each pattern in the training data set individually. Multiple 

iterations through the training set are used. After each complete iteration, the overall 

network error on a separate validation set is calculated. If this is greater than the 

validation error calculated at the end of the previous iteration then the overall 

generalisation ability of the network has deteriorated and training is terminated. 

2.3.2 Radial Basis Function networks 

The Radial Basis Function (RBF) network has a similar structure to an MLP 

network, consisting of an input, hidden and output layer. As with the MLP network 

outlined previously, the nodes in the output layer utilise linear transfer functions. 

18



However, each hidden node represents a ‘centre’ in the feature space. By placing a 

basis function around each centre, a new pattern vector can be classified according to 

its distance from each centre. 

One major difference between MLP and RBF networks concerns how the first 

layer weights are interpreted. With an MLP network, the products of the inputs and 

first layer weights are calculated, summed and passed through a transfer function. 

However, in an RBF network, the differences between the inputs and weights are 

used. The output of a hidden node, q, is defined as the value of some non-linear 

transfer function. Throughout this work the Gaussian transfer function given below 

was used. 

q(x) = exp [ (IIx ~ fg Hl) D1 (x= pig ll) J (2.8) 

where x is the input vector and [lq is a vector determining the centre of the basis 

function associated with hidden node q. This value can be used to calculate the output 

of a node, r, in the hidden layer using the following formula 

N 

O, == WarPq(X) (2.9) 

where Wg, is the weight associated with the connection between hidden node q and 

output node r. Again the bias is implemented by holding @p at 1 and setting the value 

of Wo, appropriately. 

There are a number of suitable methods for training an RBF network. The 

networks used for this thesis were trained in a two-stage process. In the first stage, 

the basis function centres are placed at vectors corresponding to randomly selected 

patterns in the training set. These centres are then kept fixed while the second layer 

weights are determined in the second stage by following the process detailed in 

Bishop (1995). 

Although similar in function, RBF networks have a number of advantages over 

MLP networks especially when used with problems involving low volumes of sample 

data. A finite size data set has a finite number of degrees of freedom. The optimisation 
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of network parameters (weights and biases) use some of these degrees of freedom. 

Clearly a large MLP network with too many parameters would require more degrees 

of freedom than are actually available in a small data set preventing successful 

optimisation. 

With an RBF network, prior knowledge of the data set is used to initially place 

basis functions in areas of high data density resulting in the distribution of the data 

already being represented. The only optimisation necessary then involves the final 

layer weights. Therefore, fewer parameters need to be optimised than for an 

equivalent size MLP network, requiring a smaller amount of training data. 
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3. Experiments 

3.1 Pre-processing of Data 

Before any form of analysis can take place, data samples must be generated 

for each author. The texts are partitioned according to a selected window size, for 

example a window of 1000 digrams. For each partition the number of every possible 

digram is counted and converted to a frequency. By performing this process for a 

number of partitions, using various Marlowe and Shakespeare plays taken from 

various stages in the authors' careers, a data set is built up containing an equal number 

of samples for both authors. This training set can then be used to train a classifier 

model. Tweedie er al. (1996) suggest using the following formula to determine the 

number of samples required to train a neural network based classifier. 

Nr= 10(Ni + No) (3.1) 

where Nr is the minimum number of training patterns, N) is the number of inputs and 

No is the number of outputs. This formula will be used as a guideline to select the 

necessary number of partitions when using both linear and neural network classifier 

models. 

The core-canon plays from which a training data set is generated are listed in 

Table 3.1. One problem with the plays is that speech headings and stage directions are 

repeated throughout the text, possibly affecting the digram counts. These therefore 

need to be removed during the pre-processing stage. The figures in parentheses in 

Table 3.1 indicate the total number of remaining digrams in each of the plays after 

their removal. 
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Marlowe Training Data_| Shakespeare Training Data 

Tamburlaine I (58165) Much Ado About Nothing (60675) 

Tamburlaine II (58583) | Julius Caesar (57670) 
Edward II (63808) Romeo and Juliet (71175) 

Merchant of Venice (62099) 

Antony and Cleopatra (72645) 
Twelfth Night (56226) 
The Winter's Tale (74109) 
Henry IV part I (72055) 

  

      
  

Table 3.1 List of core canon Marlowe and Shakespeare plays used to generate 

training data 

In addition to the data used for classifier training, a separate data set is 

necessary containing previously unseen samples to test the generalisation performance 

of a classifier. The data samples for this validation set are generated from the core 

canon plays listed in Table 3.2. The Marlowe texts in Table 3.2 are identical to those 

in Table 3.1. This is due to the limited size of the Marlowe canon. It is therefore 

essential that the partitions used to generate the Marlowe samples in the validation set 

are different to those used for the training set. In reality, overlapping windows were 

used to enable the generation of a sufficient number of Marlowe samples to be used in 

both the training and validation data sets. 

  

Marlowe Validation Data_| Shakespeare Validation Data 

Tamburlaine I (58165) Comedy of Errors (41706) 

Tamburlaine II (58583) A Midsummer Night's Dream (48886) 

Edward II (63808) All's Well That Ends Well (67300) 

  

      
  

Table 3.2 List of core canon Marlowe and Shakespeare plays used to generate 

validation data 

During the final stage of pre-processing, the frequencies of all digrams are 

normalised to be of zero mean and unit variance. This ensures that the frequencies of 

all digrams contribute equally during the training process. 

3.2. Most Common Digram Frequency Approach 

As mentioned previously, the English language permits a total of 676 possible 

digrams. This is clearly too large a number to analyse conveniently. By eliminating all 
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digrams which do not occur throughout the play texts used to generate the training 

data, this number can be reduced to 473. Furthermore, by eliminating any digram 

which occurs less than once in every one hundred digrams throughout the training 

data plays, 25 digrams remain. These are listed in Table 3.3. It can be argued that 

digrams which occur at a frequency of less than 1% are more likely to be sensitive to 

a play's context. Noise would also have a greater effect on the frequencies of these 

rarer digrams. 

rae 
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Table 3.3 List of the digrams which occur at a greater frequency than 1% 

throughout the plays from which the training data is generated 

Principal Components Analysis (PCA) can be used to investigate the variance 

in a data set containing the normalised frequencies of each of these 25 digrams for 

equal numbers of Marlowe and Shakespeare samples. Figure 3.1 contains a plot of the 

projection of the normalised frequencies for each sample onto the first two principal 

components using a 3000 digram sample size. The data set used contained 116 

Marlowe and 116 Shakespeare samples generated from the plays listed in Table 3.1. 

Appendix A contains similar plots constructed from data sets generated using 

different sample sizes. It was decided to continue with a sample size of 3000 digrams 

as Figure 3.1 shows a good initial discrimination using just the first two principal 

components. The use of a sample size of 3000 digrams also enables the generation of 

enough samples to satisfy formula 3.1. 

Alt (1990) explains how to interpret the results of a Principal Components 

Analysis. PCA produces one eigenvector and one corresponding eigenvalue (or 

singular value) for each Principal Component. The singular values indicate how much 

of the overall variance in the data is being described by the principal component. 

A common statistical technique can be employed to identify which digram 

frequencies contribute greatest to the underlying variance in the data. The singular 

value spectra produced after performing PCA on the training data samples is given in 
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Figure 3.1 Projection of the 25 digram data set onto the first two principal 

components using a 3000 digram sample size 

Figure 3.2. A closer examination reveals that the singular values appear to decline 

smoothly and exponentially for the first five principal components. After this, kinks 

appear in the spectrum. One interpretation is that the first five principal components 

are mostly describing the variance due to the differences between the two authors. 

The remaining principal components, that is principal components 6 to 25, are 

assumed to be mainly describing the noise in the data. By substituting the squares of 

the singular values for the eigenvalues in formula 2.1 it can be seen that the first five 

principal components are only responsible for approximately 44% of the total 

variance. With the remaining principal components describing the noise in the data, 

this figure supports the statement that the problem is one of high noise content. 

Each eigenvector consists of one ‘loading’ for each variable, or digram, 

indicating how much that variable contributes to the direction of the corresponding 

principal component. The eigenvectors corresponding to the first five principal 

components are given in Appendix B. Digrams with high overall loadings over these 

eigenvectors can be assumed to be the greatest contributors to the construction of 

their corresponding principal components. As all other principal components are 

believed to be simply describing the noise in the data, these digrams must also 

contribute greatest to the underlying variance in the data set. This suggests that these 
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Figure 3.2 Singular Values obtained when PCA is performed on the 25 digram 

data set 
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Table 3.4 List of the 8 digrams which contribute most to the first five principal 

components of the 25 digram data set 

would be the most suitable digrams to use as discriminators when distinguishing 

between the two authors. The eight digrams identified by this process are 

listed in Table 3.4. 

A visual inspection of the normalised frequencies of each of the 25 digrams 

shows that nine digrams provide a strong discrimination between the Marlowe and 

Shakespeare data samples. This is illustrated in Figure 3.3. Each point represents a 

single data sample from the training set. Its position along the y-axis corresponds to 

the normalised frequency at which a particular digram, the digram 'ND' appears in that 

sample. The location along the x-axis simply represents the position of the sample in 
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the total 116 Marlowe or 116 Shakespeare samples in the training data set. It can be 

seen that in general, the normalised frequencies of the digram throughout the 

Marlowe samples are positive. Conversely, the frequencies of the digram throughout 

the Shakespeare samples appear to be mostly negative. The nine digrams identified by 

a visual analysis in this manner are listed in Table 3.5. Five digrams appear both in this 

new list and in Table 3.4. These digrams are listed in Table 3.6. 
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Table 3.5 List of the 9 digrams which provide best discrimination by a visual 

inspection of digram frequency distributions 
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Figure 3.3 Normalised Frequencies of the digram 'ND' over 116 Marlowe and 

116 Shakespeare data samples 
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Table 3.6 List of the 5 digrams which provide best discrimination agreed by 

PCA and a visual analysis 

Table 3.7 contains a combined list of the digrams identified by a visual analysis 

(Table 3.5) together with those derived by performing PCA (Table 3.4). The 

normalised frequencies of the digrams identified in Table 3.6 and Table 3.7 can be 

used as inputs to 5-input and 12-input classifier models respectively. 
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Table 3.7 List of the 12 digrams which provide best discrimination either by 

PCA or by a visual analysis 

The normalised frequencies of the five digrams listed in Table 3.6 were 

presented to a linear network classifier model, as described in Section 2.2. The 

training set consisted of 116 Marlowe and 116 Shakespeare samples from the plays 

listed in Table 3.1. The results of testing the network on a validation set consisting of 

30 Marlowe and 30 Shakespeare samples from the plays listed in Table 3.2 are 

displayed in Table 3.8 in the form of a confusion matrix. This compares the number of 

samples classified correctly to the number misclassified by the network. 
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| Predicted as Shakespeare Predicted as Marlowe 

Actual Shakespeare 20 10 

Actual Marlowe 5 25 

Table 3.8 Confusion Matrix obtained using Linear Network with 5 digram 

inputs on validation set 

The results in Table 3.8 can be interpreted in an alternative way by considering 

the posterior probability. That is, the probability that an author is actually responsible 

for a sample given that the network has credited it to one of the authors. For example, 

the probability that Shakespeare actually produced a sample that the network has 

classified as Marlowe is equal to the number of Shakespeare samples misclassified as 

Marlowe divided by the total number of samples classified as Marlowe. 

P(Shakespeare | Marlowe Predicted) 10/ (10 + 25) 

10/35 
0.29 

Table 3.9 lists the posterior probabilities derived from Table 3.8 using the above 

method. This table can be used to easily visualise the reliability of the classifications of 

the network. The calculation of posterior probabilities is commonly used in medical 

analysis to produce ‘false positive' and ‘false negative' percentages (Campbell & 

Machin, 1993). The classification of any sample as Shakespeare by a network might 

be viewed as a positive event. If so, the false positive percentage is equal to the 

probability that Marlowe produced a sample which the network has credited to 

Shakespeare. Conversely, the false negative percentage is the probability that 

Shakespeare actually produced a sample credited to Marlowe by the network. 

  

P(Shakespeare | Shakespeare Predicted) | 0.8 

P(Shakespeare | Marlowe Predicted) 0.29 

P(Marlowe | Marlowe Predicted) 0.71 

P(Marlowe | Shakespeare Predicted) 0.2 

  

  

          
Table 3.9 Posterior probabilities derived from the results of applying a Linear 

Network with 5 digram inputs to validation set 

Table 3.10 displays the confusion matrix obtained by training a similar linear 

classifier using the frequencies of the twelve digrams listed in Table 3.7. The 
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corresponding posterior probabilities are given in Table 3.11. It can be clearly seen 

that a better performance is produced using twelve inputs. The results in Table 3.8 

suggest that the frequencies of the five digrams used do not contain enough 

information to act alone as discriminators with 25% of the previously unseen patterns 

being misclassified. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 26 4 

Actual Marlowe 1 29 

Table 3.10 Confusion Matrix obtained using Linear Network with 12 digram 

inputs on validation set 

  

  

  

    

P(Shakespeare | Shakespeare Predicted) | 0.96 

P(Shakespeare | Marlowe Predicted) 0.12 

P(Marlowe | Marlowe Predicted) 0.88 

P(Marlowe | Shakespeare Predicted) 0.04       

Table 3.11 Posterior probabilities derived from the results of applying a Linear 

Network with 12 digram inputs to validation set 

The confusion matrices produced using the linear networks suggest that the 

data is not linearly separable into two distinct classes. A neural network model can be 

constructed to investigate whether better discrimination is possible using a non-linear 

technique. The structure of the most suitable network is determined by training MLP 

networks of increasing complexities to completion and plotting the final sum-of- 

squares error over the training and validation sets. The sum-of-squares error describes 

the difference between the target output and the actual output obtained from the 

network. It is calculated using the following formula 

yy 2 

E=Dllyn-till’/N (3.2) 
n=l 

where yy is the network output vector, ty is the target output vector and the sum runs 

over all N patterns in the training set. 
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Figure 3.4 Training Set Error obtained after training MLP networks with 

different numbers of hidden units 
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Figure 3.5 Validation Set Error obtained after training MLP networks with 

different numbers of hidden units 

Figure 3.4 and Figure 3.5 __ illustrate the average error on the training 

and validation sets after training five different MLP networks for each number 

of hidden units. Figure 3.5 shows that generalisation performance deteriorates



when more than two hidden units are used. This indicates that an MLP model with 

two hidden units should produce the best results. The requirement for such a small 

number of hidden units suggests that an MLP network will produce very little 

improvement over a linear network. 

Table 3.12 displays the confusion matrix obtained by applying an MLP 

network (as described in Section 2.3.1) with twelve inputs and two hidden units, 

trained on the samples in the training set, to the samples in the validation set. Table 

3.13 gives the posterior probabilities calculated from the results in the confusion 

matrix. The results in both tables demonstrate that, as expected, the use of an MLP 

network offers very little advantage over a linear network with only one additional 

data sample being classified correctly. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 26 4 

Actual Marlowe 0 30 

Table 3.12 Confusion Matrix obtained using MLP with 12 digram inputs and 2 

hidden units on validation set 

  

  

  

    

P(Shakespeare | Shakespeare Predicted) | 1.0 

P(Shakespeare | Marlowe Predicted) 0.12 

P(Marlowe | Marlowe Predicted) 0.88 

P(Marlowe | Shakespeare Predicted) 0.0       

Table 3.13 Posterior probabilities derived from the results of applying an MLP 

Network with 12 digram inputs and 2 hidden units to validation set 

3.3 Single Letter Frequency Approach 

An alternative to using digrams is to use the frequencies of a subset of the 26 

single letters as inputs to a classifier model. Figure 3.6 shows the projection of a data 

set containing the frequency of all 26 letters onto the first two principal components 

identified by PCA. The data set consists of 92 Marlowe and 92 Shakespeare samples 

generated from the plays in Table 3.1 using a sample size of 2500 letters. 

PCA produces the singular value spectra illustrated in Figure 3.7. The values 

appear to decline smoothly and exponentially for the first three principal components 
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Figure 3.6 Projection of the 26 single letter frequency data set onto the first two 

principal components using a 2500 letters sample size 

only. This would indicate that the remaining principal components are mainly 

describing the noise on the data. The use of single letter frequencies appears to be 

more susceptible to external noise than digram frequencies with only 26% of the 
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Figure 3.7 Singular Values obtained when PCA is performed on the 26 single 

letter data set 
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The eigenvectors corresponding to the first three principal components are 

given in Appendix B. A closer examination of this table identifies the frequencies of 

the letters listed in Table 3.14 as the variables which contribute most to the first three 

principal components. This would indicate that the frequencies of these letters should 

be used as discriminators. A linear network was trained on the 184 sample training set 

using the frequencies of these ten variables as inputs. The results of applying the 

network to a validation set generated from the plays listed in Table 3.2 are given in 

the form of a confusion matrix in Table 3.15 and as a list of posterior probabilities in 

Table 3.16. 
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Table 3.14 List of Single Letters which provide best discrimination by PCA 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 15 15 

Actual Marlowe 10 20 

Table 3.15 Confusion Matrix obtained using a Linear Network with 10 single 

letter inputs on validation set 

  

  

  

  

P(Shakespeare | Shakespeare Predicted) | 0.6 

P(Shakespeare | Marlowe Predicted) 0.43 

P(Marlowe | Marlowe Predicted) 0.57 

P(Marlowe | Shakespeare Predicted) 0.4         

Table 3.16 Posterior probabilities derived from the results of applying a Linear 

Network with 10 single letter inputs to validation set 

By comparing the results in both tables to previous results it can be seen that 

digram frequencies appear to contain more information than the frequencies of single 
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letters. This is particularly visible in Table 3.16 which shows that very little confidence 

can be placed in any network prediction when using single letter frequencies. For this 

reason, single letter frequency based classifiers will not be investigated any further. 

3.4 Principal Component Projection Approach 

The relatively poor performance of classifiers using the frequencies of five 

digrams as inputs is probably due to too much information being discarded in reducing 

the number of variables. A method of maintaining a large amount of information 

whilst limiting the number of input variables needs to be employed. This can be done 

by using the values obtained by projecting a data set onto the first few principal 

components as inputs to a classifier. To ensure that as much information as possible is 

used, PCA is carried out using all possible digrams and not just the most common 

ones. Figure 3.8 contains a plot of the projection of a data set onto the first two 

principal components identified by PCA. The training data set contained the 

normalised frequencies of all 473 occurring digrams for each of 117 Marlowe and 117 

Shakespeare samples generated from the training data plays. Once again a sample size 

of 3000 digrams was used. 
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Figure 3.8 Projection of the 473 digram data set onto the first two principal 

components using a 3000 digram sample size 
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It can be seen that the problem almost appears to be of a linear nature based 

on just the first two principal component projections. It would be expected that a 

linear network classifier should produce very good results. Figure 3.9 shows a plot of 

the singular values corresponding to the first thirty principal components. After the 

fifth value, the values no longer decline smoothly indicating that the majority of the 

underlying variance in the data due to author differences has again been described by 

the first five principal components. The remaining principal components are mainly 

describing the noise in the data. 

The projections of the training set onto the first five principal components 

were used to train a 5-input linear network classifier. The results of applying the 

network to a validation set generated from the validation data plays are illustrated in 

Table 3.17 and Table 3.18. 
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Figure 3.9 First 30 Singular Values obtained when PCA is performed on the 473 

digram data set 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 29 1 

Actual Marlowe 0 30 

Table 3.17 Confusion Matrix obtained using Linear Network trained using core 

canon Shakespeare and Marlowe samples with 5 principal component 

projections as inputs on validation set 
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P(Shakespeare | Shakespeare Predicted) | 1.0 
P(Shakespeare | Marlowe Predicted) 0.03 

P(Marlowe | Marlowe Predicted) 0.97 

P(Marlowe | Shakespeare Predicted) 0.0 

  

  

          

Table 3.18 Posterior probabilities derived from the results of applying a Linear 

Network trained using core canon Shakespeare and Marlowe samples with 5 

principal component projections as inputs to validation set 

As expected, the linear network produces excellent discrimination results, 

misclassifying only one sample. However, a problem arises when the network is 

applied to a new test set generated from plays that are not in the core canons of either 

author. This new test set contains 30 Marlowe and 30 Shakespeare samples generated 

from the plays listed in Table 3.19. 

  

  

    

Marlowe Test Data Shakespeare Test Data 
Massacre at Paris (30527) | Troilus and Cressida (78912) 

Dido (42425) King Lear (77688) 
Doctor Faustus (36200) The Tempest (48779)     

Table 3.19 List of non core canon Marlowe and Shakespeare plays used for test 

data 

The result of applying the linear network to this new test set is illustrated in 

Table 3.20. Performance remains high on the non core canon Shakespeare material. 

However, this is not the case with samples from the non core canon Marlowe plays. 

This is probably due to the questionable nature of these plays as identified in Section 

1225 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 29) 1 

Actual Marlowe 15 15 

Table 3.20 Confusion Matrix obtained using Linear Network trained using core 
canon Shakespeare and Marlowe samples with 5 principal component 

projections as inputs on test set 

By using a large enough sample size, a data set can be constructed containing 

the frequencies of the 473 digrams over each entire play. Table 3.21 shows the result 

of applying the same linear network to each play in the validation and test sets as well 

as to the three disputed plays. Lowe & Matthews (1995) introduce a simple method



of interpreting the outputs of any network based classifier model. A slight adaptation 

of this technique will be used. During training, each Marlowe sample is presented to 

the network with the ordered pair [1,0] as a target output. Conversely, each 

Shakespeare sample is presented with a target output pair of [0,1]. Hence, ideally any 

previously unseen Marlowe sample when presented to the trained network would 

produce the output pair [1,0]. A Characteristic Marlowe Indicator (CMI) value can be 

used to illustrate how close to 'Marlowe-like' the actual network output is. The CMI 

value is calculated using the following formula 

CMI = (O - Ts)’ /( (O - Ts)’ + (O - Tu)” ) (3.3) 

where O is the network output, Ty is the target output pair for a Marlowe play and 

Ts is the target output pair for a Shakespeare play. A CMI value of '1' indicates full 

Marlowe characteristics and a value of '0' indicates full Shakespeare characteristics. 

  

  

          

Author Play : CMI | Prediction 
Marlowe Tamburlaine I 0.9985 | Marlowe 

Marlowe Tamburlaine II 0.9932 | Marlowe 

Marlowe Edward II 0.9759 | Marlowe 

Shakespeare | Comedy of Errors. 0.0069 | Shakespeare 

Shakespeare | A Midsummer Night's Dream | 0.0825 | Shakespeare 

Shakespeare | All's Well That Ends Well 0.0161 | Shakespeare 
Marlowe Massacre at Paris 0.6715 | Marlowe 

Marlowe Dido 0.5907 | Marlowe 

Marlowe Doctor Faustus 0.1783 | Shakespeare 

Shakespeare | Troilus and Cressida 0.1174 | Shakespeare 

Shakespeare | King Lear 0.0629 | Shakespeare 

Shakespeare | The Tempest 0.1341 | Shakespeare 
Disputed Henry VI part 2 0.5214 | Marlowe 

Disputed Henry VI part 3 0.8053 | Marlowe 
Disputed Titus Andronicus 0.3107 _| Shakespeare 
  

Table 3.21 Linear Network Predictions for entire plays in validation, test and 

disputed sets. Network was trained using core canon Shakespeare and Marlowe 

samples 

The CMI values for the plays Massacre at Paris, Dido and Doctor Faustus 

support the argument that these plays may contain external non-Marlovian material. 

Only Massacre at Paris could be argued to have a high enough CMI to suggest true 

Marlowe authorship. Indeed, Doctor Faustus is classified by the network to have been 
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written by Shakespeare. It is interesting to note that the network actually classifies the 

second and third parts of Henry VI as being characteristic of Marlowe with the third 

part having very strong Marlovian characteristics. Titus Andronicus on the other 

hand, is classified to be more characteristic of Shakespeare. 

An MLP classifier model was also constructed which used the same principal 

component projections that were used to train the linear network classifier model. 

Unsurprisingly, this produced no advantages over the linear network, producing 

identical confusion matrices when applied to both the validation and test data sets. 

On closer examination of Figure 3.8 it can be seen that the principal 

component projections for the three Marlowe training plays are divided into two 

distinct groupings. The smaller grouping of Marlowe projections corresponds solely 

to samples from Edward II. The larger grouping consists of principal component 

projections produced from samples of Tamburlaine I and Tamburlaine II. The 

distance between the two groupings, and therefore the apparent difference between 

plays written by the same author, does suggest that three is an insufficient number of 

Marlowe plays to use in training a classifier model. 

A method which might lead to an improvement in the classification of the non 

core canon Marlowe data would be to expand the number of Marlowe plays from 

which the training data is generated. Although these additional plays may contain 

some non Marlowe material, it would be interesting to see what effect their inclusion 

might have. 

A new training set was constructed containing 81 Marlowe samples and 81 

Shakespeare samples generated from the plays listed in Table 3.1 together with the 

two plays Massacre at Paris and Doctor Faustus. Once again, a sample size of 3000 

digrams was used. PCA was performed on the training set and all of the data sets 

were replaced by the projections onto the first five principal components as before. A 

new test set was also generated using the plays listed in Table 3.22 as samples from 

two of the plays in the original test set are now being used during training. 

Figure 3.10 illustrates the projection of the play samples in the new training 

data set onto the first two principal components. It can be seen that although there 

still appears to be a good initial discrimination between samples from both authors, 

there is now some encroachment of Marlowe projections into the Shakespeare 
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Marlowe Test Data Shakespeare Test Data 
Dido (42425) Troilus and Cressida (78912) 

Hero and Leander (21172) | King Lear (77688) 

The Jew of Malta (54282) _| The Tempest (48779) 

  

      
  

Table 3.22 List of non core canon Marlowe and Shakespeare plays used for new 

test data 

grouping and vice versa. However, differences between individual plays written by 

Marlowe are now no longer as evident as those in Figure 3.8. 
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Figure 3.10 Projection of the 473 digram data set onto the first two principal 

components using a 3000 digram sample size and samples from core canon 

Shakespeare and both core canon and non core canon Marlowe plays 

A linear network classifier model was trained on the new training data set and 

the result of testing the network on the original validation set is illustrated as a 

confusion matrix in Table 3.23. The associated posterior probabilities are given in 

Table 3.24. 

Table 3.25 illustrates the result of applying the network to the new test set. 

Performance is degraded slightly when classifying the non core canon Shakespeare 

data. However an improvement is obvious with the classification of the questionable 

Marlowe samples.



| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 27 3 
Actual Marlowe 0 30 

Table 3.23 Confusion Matrix obtained using Linear Network trained using core 

canon Shakespeare and both core canon and non core canon Marlowe samples 
with 5 principal component projections as inputs on validation set 

  

  

  

        

P(Shakespeare | Shakespeare Predicted) | 1.0 

P(Shakespeare | Marlowe Predicted) 0.09 

P(Marlowe | Marlowe Predicted) 0.91 

P(Marlowe | Shakespeare Predicted) 0.0 
  

Table 3.24 Posterior probabilities derived from the results of applying a Linear 

Network trained using core canon Shakespeare and both core canon and non 

core canon Marlowe samples with 5 principal component projections as inputs 

to validation set 

| Predicted as Shakespeare __ Predicted as Marlowe 

Actual Shakespeare 24 6 

Actual Marlowe Vy 19 

Table 3.25 Confusion Matrix obtained using Linear Network trained using core 

canon Shakespeare and both core canon and non core canon Marlowe samples 

with 5 principal component projections as inputs on test set 

Once again, the results in Table 3.23 indicate that whilst a Linear Network 

produces good classification on the validation set, the problem does not appear to be 

completely linearly separable. This is supported by the confusion matrix for the test 

set given in Table 3.25. A neural network classifier may produce better results. An 

MLP Network with 5 principal component projection inputs and 2 hidden units was 

trained on the core canon Shakespeare and both the core canon and non core canon 

Marlowe samples. Table 3.26 and Table 3.27 illustrate the results of applying the 

trained network to the samples contained in the validation set. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 28 2 

Actual Marlowe 0 30 

Table 3.26 Confusion Matrix obtained using an MLP Network trained using 

core canon Shakespeare and both core canon and non core canon Marlowe 

samples with 5 principal component projections as inputs on validation set 
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P(Shakespeare | Shakespeare Predicted) | 1.0 

P(Shakespeare | Marlowe Predicted) 0.06 

P(Marlowe | Marlowe Predicted) 0.94 

P(Marlowe | Shakespeare Predicted) 0.0 
  

Table 3.27 Posterior probabilities derived from the results of applying an MLP 

Network trained using core canon Shakespeare and both core canon and non 

core canon Marlowe samples with 5 principal component projections as inputs 

to validation set 

Two hidden units were once again chosen by training MLP networks of 

increasing complexities to completion and plotting the final sum-of-squares error over 

the training and validation sets. Figure 3.11 and Figure 3.12 as before illustrate the 

average final sum-of-squares error using five different MLP networks for each hidden 

unit count. Figure 3.12 shows that generalisation performance deteriorates when more 

than 2 hidden units are used. 

Table 3.28 gives the results of applying the trained MLP network to the 

samples generated from the plays in Table 3.22. By comparing this table to Table 

3.25, an obvious improvement is evident when using the neural network based 

classifier suggesting that some non-linearity is indeed present. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 26 4 

Actual Marlowe 7 23 

Table 3.28 Confusion Matrix obtained using an MLP Network trained using 

core canon Shakespeare and both core canon and non core canon Marlowe 

samples with 5 principal component projections as inputs on test set 

The MLP Network can also be applied to the Principal Component projections 

of the frequencies of the digrams over the entire plays. The results of this are 

illustrated in Table 3.29. 
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Figure 3.11 Training Set Error obtained after training MLP networks with 

different numbers of hidden units using core canon Shakespeare and both core 

canon and non core canon Marlowe samples 
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Figure 3.12 Validation Set Error obtained after training MLP networks with 

different numbers of hidden units using core canon Shakespeare and both core 

canon and non core canon Marlowe samples 
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Author Play CMI __| Prediction 

Marlowe Tamburlaine I 0.9985 | Marlowe 

Marlowe Tamburlaine II 0.9948 | Marlowe 

Marlowe Edward II 0.9749 | Marlowe 

Shakespeare | Comedy of Errors 0.0437 | Shakespeare 

Shakespeare | A Midsummer Night's Dream | 0.1531 | Shakespeare 
Shakespeare | All's Well That Ends Well 0.0523 | Shakespeare 
Marlowe Dido 0.6732 | Marlowe 

Marlowe Hero and Leander 0.8157 | Marlowe 

Marlowe The Jew of Malta 0.4051 | Shakespeare 

Shakespeare | Troilus and Cressida 0.2111 | Shakespeare 
Shakespeare | King Lear 0.1328 | Shakespeare 

Shakespeare | The Tempest 0.2210 | Shakespeare 

Disputed Henry VI part 2 0.7138 | Marlowe 

Disputed Henry VI part 3 0.8804 | Marlowe 
Disputed Titus Andronicus 0.6024 | Marlowe 
  

Table 3.29 MLP Network Predictions for entire works in validation, test and 

disputed sets. The Network was trained using samples from core canon 

Shakespeare and both core canon and non core canon Marlowe plays 

The advantage of RBF networks over MLP networks for problems involving 

low amounts of training data has been identified in Section 2.3.2. Since the authorship 

dispute concerning Shakespeare and Marlowe falls into this category, the use of an 

RBF network may prove beneficial. 

The appropriate number of basis function centres is chosen using the same 

method that is used to select the number of hidden units for an MLP network. RBF 

networks of increasing complexities were trained to completion and the final sum-of- 

squares error over the training and validation sets were plotted. Figure 3.13 and 

Figure 3.14 illustrate the average final sum-of-squares errors using twenty different 

RBF networks for each hidden unit count. The minimum of the curve in Figure 3.14 

corresponds to 16 hidden units and this was the number of basis function centres 

chosen for the final network. However, any value between 12 and 19 could probably 

be used as there is such a small difference in the final validation errors corresponding 

to basis function counts in this range. 
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Figure 3.13 Training Set Error obtained after training RBF networks with 

different numbers of basis function centres using core canon Shakespeare and 

both core canon and non core canon Marlowe samples 

  0.3 

0.2 

0.15 

Av
er

ag
e 

Va
li
da
ti
on
 

Se
t 

Er
ro
r 

      0.1 
0 5 10 15 20 25 30 

Number of Centres 

Figure 3.14 Validation Set Error obtained after training RBF networks with 
different numbers of basis function centres using core canon Shakespeare and 

both core canon and non core canon Marlowe samples 

An RBF network with five principal component projection inputs and 16 

hidden units was trained on the core canon Shakespeare and both the core canon and 
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non core canon Marlowe samples. Table 3.30 and Table 3.31 illustrate the results of 

applying the trained network to the samples contained in the validation set. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 28 2 

Actual Marlowe 1 29 

Table 3.30 Confusion Matrix obtained using an RBF Network trained using 

core canon Shakespeare and both core canon and non core canon Marlowe 

samples with 5 principal component projections as inputs on validation set 

  

P(Shakespeare | Shakespeare Predicted) | 0.97 

P(Shakespeare | Marlowe Predicted) 0.06 

P(Marlowe | Marlowe Predicted) 0.94 

P(Marlowe | Shakespeare Predicted) 0.03 

  

  

          

Table 3.31 Posterior probabilities derived from the results of applying an RBF 

Network trained using core canon Shakespeare and both core canon and non 

core canon Marlowe samples with 5 principal component projections as inputs 

to validation set 

Table 3.32 illustrates the results obtained when the RBF network is applied to 

the samples contained in the test set. The results of applying the same network to the 

Principal Component projections of the frequencies of the digrams over the entire 

plays is given in Table 3.33. 

| Predicted as Shakespeare _ Predicted as Marlowe 

Actual Shakespeare 26 4 

Actual Marlowe 8 22 

Table 3.32 Confusion Matrix obtained using an RBF Network trained using 

core canon Shakespeare and both core canon and non core canon Marlowe 

samples with 5 principal component projections as inputs on test set 

Although its performance is clearly better than that of a linear network 

classifier, an RBF network appears to offer no advantage over an MLP network. In 

fact, the performance of the RBF network is actually less satisfactory with this 

problem than that of the MLP network used previously. An explanation of why RBF 

functions generally perform better with problems of low data availability is given in 

Section 2.3.2. It states that large MLP networks require a large data set to 

successfully be able to optimise every network parameter and that equivalent size



  

  

          

Author Play CMI __| Prediction 

Marlowe Tamburlaine I 0.9992 | Marlowe 

Marlowe Tamburlaine II 0.9949 | Marlowe 

Marlowe Edward II 0.9959 | Marlowe 

Shakespeare | Comedy of Errors 0.0644 | Shakespeare 

Shakespeare | A Midsummer Night's Dream | 0.1319 | Shakespeare 

Shakespeare | All's Well That Ends Well 0.0556 | Shakespeare 
Marlowe Dido 0.7023 | Marlowe 

Marlowe Hero and Leander 0.7969 | Marlowe 

Marlowe The Jew of Malta 0.3158 | Shakespeare 

Shakespeare | Troilus and Cressida 0.2179 | Shakespeare 

Shakespeare | King Lear 0.1264 | Shakespeare 

Shakespeare | The Tempest 0.2255 | Shakespeare 

Disputed Henry VI part 2 0.6452 | Marlowe 

Disputed Henry VI part 3 0.8986 | Marlowe 
Disputed Titus Andronicus 0.6100 | Marlowe 
  

Table 3.33 RBF Network Predictions for entire works in validation, test and 

disputed sets. The Network was trained using samples from core canon 

Shakespeare and both core canon and non core canon Marlowe plays 

RBF networks have less parameters to optimise. However, it was discovered that an 

MLP network requires only two hidden units to model the data for this problem. With 

such a relatively small network, the total number of parameters is very small. The 

number is in fact comparable to the number of parameters in an RBF network that 

need to be optimised. Thus, the performance of both types of network may be 

expected to be very similar. 

The two neural network models used produce very similar results when 

applied to digram frequencies over entire plays. These results are illustrated in Table 

3.29 and Table 3.33. The core canon plays of both authors produce strong CMI 

values as would be expected. The motivation behind the use of some non core canon 

Marlowe material in the training data was to try to improve the performance on non 

core canon Marlowe plays. This appears to have happened. Both neural network 

models produce a higher, more favourable, CMI value for the only non core canon 

Marlowe play which appears in both test sets, Dido. The original value can be seen in 

Table 3.21. The figures for The Jew of Malta do seem to support the argument, 

outlined in Section 1.2, that the play has possibly been falsely credited to Marlowe. 

This play is also the cause of the largest difference in values produced by the two 
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neural network classifiers with the RBF network making it more 'Shakespeare-like' 

than the MLP network. 

The inclusion of non core canon Marlowe material in the training data does 

however have an adverse effect on the classification of the non core canon 

Shakespeare plays. All three plays in the test set are assigned significantly higher CMI 

values by the two networks than the original network trained using only core canon 

material. The values assigned to The Tempest are particularly noteworthy, suggesting 

that the play is quite uncharacteristic of Shakespeare. This loss of performance is to 

be expected considering the additional noise on the training data. 

Both types of network classify the second and third parts of Henry VI to have 

been produced by Marlowe as before. Again, the third part appears to be the most 

‘Marlowe-like'. However, the use of some non core canon Marlowe material in the 

training data actually leads to a change in the classification of the third of the three 

disputed plays, Titus Andronicus. 

3.5 Comparison of Methods 

A number of different approaches to the investigation of an authorship 

problem have been examined. The majority of methods are based on measures of the 

frequencies of certain digrams occurring throughout a text sample. The thesis actually 

follows the chronological development culminating with the final and apparently most 

successful technique which utilises principal component projections of a number of 

digram frequencies. It has been noted that with this method, once the digram 

frequencies are transferred to the new feature space, a non-linear model initially 

appears to offer little advantage over a linear model. The explanation for this is that a 

great deal of linear processing has already been performed by PCA. The data has 

already been reorganised in the feature space to describe the variance as well as 

possible. As it is probable that a great deal of this variance will correspond to some 

author characteristic differences, the data is positioned in the feature space so that 

patterns characteristic of one author tend to form a vague grouping and those of 

another form a separate grouping. This can be seen in two dimensions in Figure 3.8. A 

classifier presented with data in the feature space then has the relatively easy task of 
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identifying the two previously created groupings. In such circumstances a simple 

linear model should perform equally as well as a more complex model such as a neural 

network. 

The various approaches used could all be combined to form a committee of 

networks. Linear, MLP and RBF networks using both digram frequencies and 

principal component projections of frequencies as discriminators could be applied to 

the same problem. The average of the outputs produced by each of the networks 

could be taken and used as the output of the committee. Committees often offer a 

better performance than individual networks as the errors on the outputs of separate 

component networks can be averaged out. 
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4. Sensitivity Issues 

This section looks in more detail at the accuracy or reliability of the 

performance of a network classifier model. Two different techniques are examined. 

The first is based upon the relative positions of data samples in the feature space. The 

second is based upon a model of the error on the network outputs themselves. 

4.1 Outliers 

So far, no consideration has been given to the possibility that an author other 

than Shakespeare or Marlowe is responsible for a new sample presented to a classifier 

network. Consider the two dimensional 'toy' problem illustrated in Figure 4.1. A 

training data set consists of patterns belonging to two classes. Two clear groupings 

are evident when this data is transferred into a new feature space. It is clear that a new 

pattern corresponding to point A in the feature space should be classified as belonging 

to class 1. However, how should patterns corresponding to points B and C be 

classified? 

The appearance of pattern C is fairly easy to interpret, it can be considered an 

‘outlier’ to the original model of the two classes as it occurs so far from either of the 

class groupings. There could be little argument against stating that pattern C does not 

belong to either class in the model and instead belongs to a third class, class 3. 

The pattern represented by point B falls in an area immediately between the 

two classes. This could indicate that although it belongs to one class, it is not totally 

characteristic of that class and has some characteristics of the other class. A second 

possibility is that it is a member of both classes at the same time. If the two class 

groupings represent the works of two authors then this situation might equate to the 

new pattern representing a sample taken from a collaborative work of both authors. A 

final possibility is that the new pattern belongs to a new class, which has 
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characteristics much closer to class 1 and 2 than class 3 which is responsible for 

pattern C, 

This simple example can be extended for the authorship problem being 

investigated in this thesis. Instead of being two-dimensional the problem is N- 

dimensional where N is the number of inputs to a classifier model. 

The Euclidean distance between a new pattern vector and a pattern vector 

representing the mean of a class grouping can be calculated using formula 2.3. A 

simple approach to deal with outliers in the data would be to eliminate all patterns 

whose distance from both class means is greater than some arbitrary threshold value. 

This approach is not feasible for the current problem due to large spatial differences 

within the Marlowe training samples. Both Figure 3.8 and Figure 3.10 demonstrate 

that even in two dimensions, there is a large distance between a high percentage of the 

Marlowe training data patterns and the position of the Marlowe pattern mean and this 

extends to the third, fourth and fifth dimensions. It would be very difficult to set a 

threshold value based on the Euclidean distance to the mean as a number of core 

canon Marlowe samples would probably fall outside any useful value. 

  

Figure 4.1 Two dimensional toy problem demonstrating problems of confidence 

in classification of a new pattern 

An alternative approach would be to find the nearest neighbour pattern to the 

unclassified pattern. The Euclidean distance between the two vectors can be measured 

and used as an indication of how close the new pattern lies to the two modelled 

classes in the feature space. Recall that Table 3.21 illustrates the results of applying a 

linear network to the first five principal component projections of digrams over entire 
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play texts. It is important that only core canon plays are used during training. If 

samples taken from other plays are used, the distances between a new pattern and 

pattern vectors representing play samples produced by alternative authors may be 

calculated and used unintentionally. The results are repeated in Table 4.2. However, 

each network prediction is now based on both the CMI value and the distance 

between the vectors representing the play and its nearest neighbour in the training set. 

The predictions are produced using the following set of rules. 

  

_Evidence ne Prediction - 
Very strong CMI Author corresponding to CMI 

High nearest neighbour distance and not very strong Alternative author 

CMI 

Low nearest neighbour distance and good CMI Author corresponding to CMI 
Low nearest neighbour distance and poor CMI Characteristic of both authors 

  

Table 4.1 Rules associating CMI values and nearest neighbour distances with 

network prediction 

The appearance of an outlier with a large nearest neighbour distance combined 

with anything but a very strong CMI value (a value of 0 - 0.15 or 0.85 - 1.0, say) is 

interpreted to indicate alternative authorship. A play is classified to be characteristic 

of both authors if it has a relatively poor CMI value (a value of 0.4 - 0.6, say) but lies 

fairly close to at least one other sample vector. In all other cases, the play is predicted 

to have been produced by the appropriate author associated with the CMI value. 

The predictions allocated to the non core canon Marlowe plays in Table 4.2 

appear to support general scholarly belief. Both Dido and Doctor Faustus are 

classified to have the characteristics of an external author and these were suggested in 

Section 1.2 to contain a large amount of non Marlovian material. Only Massacre at 

Paris is predicted to have been written by Marlowe and this is believed to be the most 

Marlovian of the three non core canon plays. Previously the second and third parts of 

Henry VI were predicted to have been produced by Marlowe. Although this is still the 

case for Henry VI part 3, Henry VI part 2 is now classified as having the 

characteristics of both authors. This does not necessarily mean that the play is a 

collaborative work of the two authors. It may be that the author of the play was 

influenced greatly by the style of the other author at the time of its production. 
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Author Play CMI Nearest | Prediction 

Neighbour 

Distance 

Marlowe Tamburlaine I 0.9985 1.3722 | Marlowe 

Marlowe Tamburlaine II 0.9932 1.9367 | Marlowe 

Marlowe Edward II 0.9759 2.1389 | Marlowe 

Shakespeare | Comedy of Errors 0.0069 1.2567 | Shakespeare 

Shakespeare | A Midsummer 0.0825 1.7434 | Shakespeare 

Night's Dream 

Shakespeare | All's Well That Ends | 0.0161 1.6841 | Shakespeare 

Well 

Marlowe Massacre at Paris 0.6715 1.8559 | Marlowe 

Marlowe Dido 0.5907 3.3387 | Other 

Marlowe Doctor Faustus 0.1783 2.2465 | Other / Shakespeare 

Shakespeare | Troilus and Cressida | 0.1174 1.8667 | Shakespeare 

Shakespeare | King Lear 0.0629 1.6819 | Shakespeare 
Shakespeare | The Tempest 0.1341 1.8939 | Shakespeare 

Disputed Henry VI part 2 0.5214 1.6660 | Marlowe / 

Shakespeare 
Disputed Henry VI part 3 0.8053 1.2949 | Marlowe 

Disputed Titus Andronicus 0.3107 1.6506 _| Shakespeare 
  

Table 4.2 Linear Network Predictions for entire plays in validation, test and 

disputed sets including nearest neighbour distances. Network was trained using 

core canon Shakespeare and Marlowe samples. 

4.2 Error Bars 

Error bars are a popular method of illustrating confidence in the output of a 

network classifier model. Lowe & Zapart (1997) suggest a number of methods for 

calculating error bar values. One approach is predictive error bar estimation. This 

technique will be used to produce error bars for the CMI values illustrated in Table 

3.21. Although the use of neural network models are suggested, a linear network 

model can be used to generate the error bars. Whilst some performance may be lost to 

neural network error models, a simple approach is sensible in this case as the CMI 

values were calculated from the outputs of such a network. 

With predictive error bar estimation, the network output produced by the 

original network for each sample in the training data set is used to calculate the local 

variance as follows 
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variance = Il ty - Yq ll? (4.1) 

where t, is the target output vector and y, is the actual output generated for input Xp. 

The variances corresponding to each training data sample form a new target data set. 

A separate network is trained using the original inputs and these new targets. This 

models the squared error values, 6°, on the original network outputs. 

The error network, like the original classifier network, has two output nodes. 

On presentation of a new sample to the error network, the value of each output node 

represents the local confidence interval on the value of the corresponding output of 

the classifier network. As a linear network is used, the error predictions for both 

outputs are identical 

The confidence interval provides a measure of the difference between the ‘true’ 

output pair which would be produced by a perfect model and the potentially 

erroneous output pair produced by the classifier network. The lowest possible ‘true’ 

value for one output of the classifier network can be calculated by subtracting the 

predicted error from the original output value. To compensate, this same error must 

also be added to the remaining output of the classifier network. The CMI value 

corresponding to this new output pair can then be calculated using formula 3.3. 

However, now the vector O' is substituted for O where O! is calculated using the 

following formula 

O'=[(yi - £1), (y2 + 2)] (4.2) 

where the classifier network produces the output vector [y;, y2] and the error network 

produces the output vector [2), 22]. This CMI value describes a lower bound above 

which the 'true' CMI value must lie. Similarly, an upper bound can be implemented by 

substituting the vector O" for O in formula 3.3 where 

O"=[(yi + 21), (y2 - 22)] (4.3) 

Figure 4.2 illustrates the CMI values assigned by a linear network to the plays 

in the validation, test and disputed data sets together with the calculated predictive 

53;



error bars on each value. The 'true' CMI value for each play must lie between the 

upper and lower bounds of the error bars in the diagram. A large error bar would 

suggest a relative lack of confidence in the network prediction. As expected, small 

error bars are associated with the works in the canons of both authors. The three non 

core canon Shakespeare plays also have relatively small error bars. However, this is 

not the case for both the non core canon Marlowe plays and the three disputed works. 

Of all of the non core canon Marlowe plays, it might be expected that the 

prediction of Doctor Faustus as Shakespeare-like should have the largest associated 

error bars. Instead, the error bars associated with the CMI value for Doctor Faustus 

are the smallest of the three non core canon plays. This does not necessarily imply 

some confidence in the statement that Doctor Faustus was produced by Shakespeare. 

An alternative way of interpreting such a low CMI value combined with small error 

bars would be to state that some confidence can be placed in the suggestion that 

Doctor Faustus was not produced by Marlowe. It is suggested in Section 1.2 that 

Doctor Faustus contains a considerable amount of non Marlowe material added after 

the author's death. It may be that the style of whoever adapted the play before it was 

published was influenced by the style of an established William Shakespeare. 

The large error bars associated with the CMI values for the remaining non 

core canon Marlowe plays do suggest considerable doubt in the predictions of the 

network. Again, this can be interpreted as support for the arguments in Section 1.2 

that the majority of the remaining plays credited to Marlowe outside of the author's 

canon may not actually have been written by the author. 

The CMI values for each of the three disputed plays also have large associated 

error bars. This would indicate that little confidence should be placed in the 

authorship prediction produced by the network for these plays. In fact, whereas the 

CMI value for Henry VI part 2 is greater than 0.5, indicating Marlovian authorship, 

the lower bound actually lies at a value below 0.5 (Shakespearean authorship). These 

results do suggest that all three plays are not characteristic of a single author. Their 

closeness to the 0.5 CMI threshold value might also suggest that all contain the 

characteristics of both authors. However, caution must be taken with such 

suggestions as the same argument could be applied to the results for both Massacre at 

Paris and Dido. 
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Whilst the error bar estimation approach used above is a fairly simple one, the 

overall result does illustrate the problems associated with the accuracy of network 

predictions produced when using noisy data. It also demonstrates that the appearance 

of error bars can be interpreted in a number of different ways resulting in very 

different conclusions. 
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Figure 4.2 CMI values and corresponding error bars for entire plays, produced 

by training linear networks using core canon Shakespeare and Marlowe samples 

55



5. Conclusions 

One of the main conclusions of this thesis is the suitability of digram 

frequencies as stylometric discriminators to be used in the investigation of authorship 

disputes. A particularly noisy problem was chosen for investigation and the success of 

the new technique in this environment suggests that it should perform equally well 

when applied to other authorship problems. 

The need for a lower amount of raw data necessary for training a classifier 

model also appears to have been proven. This was identified as a key requirement of 

the new technique in Section 1.4. A 3000 digram sample size corresponds to 

approximately 600 words. Matthews & Merriam (1994b) used the frequencies at 

which certain words occur over entire acts (3000 - 5000 words in length) as 

discriminators. A training set produced from a given number of plays using such a 

method will contain a significantly lower number of individual samples than one 

constructed using the technique outlined in this thesis. 

A slight advantage has also been identified with the use of neural network 

techniques over linear techniques. However it is interesting to note that, in general, 

scholars using alternative discriminators such as word frequencies found a much 

greater improvement when using non-linear methods. This is probably due to the 

overall problem being reduced with the new technique to an, intermediary, almost 

linearly separable problem by projection into the principal component space as 

identified in Section 3.5. 

The greatest potential for a classifier network based on digram frequencies 

would probably be as a component part of a network committee. Networks using 

different types of discriminators as inputs may be able to detect different author 

characteristic patterns in the data. Their knowledge can then be combined to produce 

a more educated prediction as to the true authorship of a given text. 
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All of the approaches used in this thesis do seem to conclude that the three 

disputed plays contain characteristics of both Christopher Marlowe and William 

Shakespeare, with the third part of Henry VI being the most 'Marlowe-like'. This 

agrees with the conclusions of other scholars working in this area. It would also lend 

support to the so called 'Marlovian Theory’ surrounding Henry VI parts 2 and 3 which 

suggests that the two plays were Shakespearean adaptations of original Marlowe 

texts. 

Results throughout the thesis would also suggest that the plays credited to 

Marlowe outside of the author's canon have been greatly affected by noise. This may 

be external noise caused by adaptations to the author's works at a later date as 

proposed in Section 1.2. It may also be internal noise caused by the author's style 

varying considerably over his career. Alternatively the results might support claims 

that Marlowe was not actually responsible for a number of the texts generally credited 

to him. 

There is scope for future work in this area. In this thesis only simple methods 

of expressing confidence in a network's outputs have been investigated. These have, 

however, demonstrated the benefits of such measures in the final interpretation of the 

results. The utilisation of more sophisticated error bar estimation techniques might be 

advantageous, particularly in the investigation of the true authorship of some of the 

plays believed to be falsely credited to Marlowe. 

It is worth noting that any set of network outputs can be interpreted in a 

number of different ways depending upon the hypothesis being investigated. For this 

reason, the network results in this thesis can only be used to either support or 

contradict arguments which have previously been suggested and not to formulate 

them. 
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A. Investigation of Optimum Sample Size 
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Figure A.1 Projection of the 25 digram data set onto the first two principal 

components using a 1000 digram sample size 
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Figure A.2 Projection of the 25 digram data set onto the first two principal 
components using a 2000 digram sample size 
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Figure A.3 Projection of the 25 digram data set onto the first two principal 

components using a 4000 digram sample size 
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B. Determination of Digrams which contribute 

most to PCA 
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Digram | Eigenvector | Eigenvector | Eigenvector | Eigenvector | Eigenvector 
1 2 3. 4 5 

AN 0.1830 -0.1628 0.3073 -0.2329 -0.3952 
AR -0.0579 -0.0813 0.0244 -0.1788 -0.3137 

AT -0.0436 0.1630 0.0000 -0.0280 0.0598 

EA 0.0552 -0.1342 -0.1461 0.0260 -0.0564 

EN 0.0232 -0.1598 -0.0089 0.1148 -0.0696 

ER -0.0542 0.2754 -0.0938 0.3009 -0.2011 

ES 0.0432 -0.1808 -0.2353 0.0028 0.0849 

HA -0.2164 0.3171 0.0592 -0.3015 -0.0348 
HE 0.1542 0.4841 -0.2350 0.3198 -0.5278 
HI -0.1358 -0.0329 -0.3264 -0.1546 -0.0693 

IN -0.1864 -0.0303 -0.3517 -0.1472 0.0977 

Is 0.2505 -0.0149 0.1387 0.3328 0.3567 
Dr -0.0820 0.1023 0.1287 0.0393 0.0420 

LL -0.0973 0.1361 0.0569 -0.2548 -0.1288 

ME -0.1495 0.0204 -0.0125 -0.0989 -0.0881 

ND 0.2812 -0.2854 0.2535 -0.2058 -0.3038 
NO -0.3200 0.1080 -0.0682 -0.0952 0.0661 
ON -0.1328 -0.0067 -0.1175 -0.1216 -0.0292 

OR 0.1168 -0.0746 ~0.2455 -0.2776 0.0550 

OU -0.5563 0.0729 0.4949 0.0319 0.0489 
RE 0.0031 0.0071 -0.1723 -0.1546 -0.0287 

ST 0.0340 -0.0791 -0.1821 -0.1878 0.1654 

TH 0.4355 0.5573 0.1421 -0.4101 0.2784 
TO -0.1074 -0.0227 -0.1189 -0.0938 -0.1652 

VE -0.0573 0.0167 -0.0780 0.0483 0.0533 
  

Table B.1 Values of the loadings on the first five eigenvectors produced by PCA 

on a data set containing the frequencies of the 25 most common digrams 
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Single Letter | Eigenvector 1 | Eigenvector 2 | Eigenvector 3 

A 0.1987 -0.1948 0.1019 

B -0.1380 0.0547 0.2050 

Cc 0.0467 -0.2464 0.1206 

D 0.1424 -0.1063 -0.2468 

E 0.1331 0.4000 -0.2271 
F 0.1760 -0.2536 0.2119 
G 0.0010 0.0219 0.0047 
H 0.0725 0.3652 0.3486 
I -0.1255 0.1180 0.2232 
J 0.1194 -0.0543 0.1735 

K -0.2574 0.2106 -0.0323 

le -0.0816 0.1234 -0.2250 

M -0.0637 0.1114 -0.3481 

N -0.0156 -0.1118 0.1026 

oO -0.4248 -0.2140 0.0007 
FP 0.2080 -0.0050 -0.0570 
Q 0.1163 -0.1254 -0.1246 

R 0.2780 -0.1285 -0.3017 
Ss 0.3462 -0.0398 -0.0280 
ie 0.0156 0.1822 0.4163 

U -0.2359 -0.4575 0.0840 
Vv 0.0846 0.0759 -0.1647 

Ww -0.2804 0.2168 -0.1428 
X -0.0154 0.1468 0.1350 
Y -0.3157 -0.1746 -0.1682 
Z 0.2859 -0.0219 0.0759     

Table B.2 Values of the loadings on the first three eigenvectors produced by 

PCA on a data set containing the frequencies of the 26 single letters 
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