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SUMMARY 

II 

'Ihe work presented in this 'Ihesis aims at producill:J a canputer 
method that uses mathematical prcgranming to obtain q;>timum design of 
different types of structures. '!he optimisation of elastic structures 
usually turn out to be that of non-linear i:,rcgramming, thus the 
formulation of such problens is done in the fom of sequentially 
approximating linear prcgranmill:J. 'lhe two-phase simplex method is then 
employed to obtain the solutions. '!he matrix displacement methcd is 
used in formulating the design problems. 'lhe method for q;>timum design 
is general arrl can be applied to minimise the weight or the total oost 
of the structure. 'lhe total cost is assessed realistically, am this 
includes the material arrl the oonstruction oosts of the members, plus 
the cost of constructing the foundations. '!he reduction of the weight 
does not include any variation in the oonf iguration of the structure. 
But, on the other harrl, minimising the total cost is a::::hieved by 
al terin:; the topolcgy of the structure, depeooing on econanical and 
structural requirements. '!his rrethod of q;>timisation is applied for 
the design of three distinct types of large structures. 

'Ihe first type inclooes plane rigidly jointed multi-storey steel 
sway frames. 'Ihe method is applied to obtain minimum weight or minimtJn 
cost topolcgical design that satisfies the stiffness, the 9,1ay 
deflection am the practical constraints. '!he stress constraints are 
not included in this case. 

'!he secom tTie is described as canplete structures consistil'l:J of 
arbitrary parallel systems of reinforced concrete shear walls am floor 
slabs, with additional restrainin:; frames made fran steel or reinforced 
concrete. '!he structures are assurred to be subjected to the effect of 
static wioo loads only. '!he optimisation method is employed to obtain 
a topolcgical design of minimum cost that satisfies the stiffness, the 
differential sway deflection arrl the practical oonstraints. 

'!he third type is represented by reinforced ooncrete h::>rizontal 
grillages made fran straight orthcgonal rectangular beams, with or 
without supp:,rting oolumns. 'Ihe q;>timisation rreth::>d is applied to 
obtain a minimum weight or a minimum cost topolcgical design that 
satisfies stiffness, stress am deflection oonstraints. '!he stress 
constraints include that of bending nanent arrl that of canbined shear 
am tors ion. 

Key Words: OPI'IMUM roror.o:;y ':MAY FRAME CCl-1PLETE STROC'IURE GRILIAGE 
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CHAPTER 1 

INTRODUCTION AND REVIEW OF PUBLISHED WORK 

1.1 INTRODUCTION 

A general design of structures can be regarded as a decision 

making process in which a certain goal has to be achieved while some 

design requirements have to be satisfied. The first decision, in 

general, concerns establishing the functional requirements which 

determine the shape of the structure. Then, the sectional properties 

of the members are determined so that the structure can safely 

withstand the external loads. Iterative methods for reanalysis are 

traditionally employed for this purpose amd reasonably feasible designs 

are obtained. 

After World War II, a relatively new mathematical science known as 

operational research was developed. A particular part of this science 

called mathematical programming made it possible to obtain a feasible 

design which is also optimal. 

Structural optimisation seeks the selection of "design variables" 

to achieve, within the limits (constraints) placed on the behaviour of 

the structure, on its shape and on other factors the goal of optimality 

defined by the "objective function". The aim of the optimisation is to 

obtain the lowest weight or cost for the structure. This used to be 

achieved, for a structure of pre-selected shape, by determining the 

sectional properties of the members. However, it was later found 

possible to obtain greater weight or cost reduction with changes in the 

shape than with changes only in the member properties. Therefore, 

optimising the shape of a structure, which is very significant, has 

attracted much attention in recent years. 

This thesis deals with three distinct types of optimisation 

problem:



(1) Optimum design of plane multi-storey steel sway frames. 

(2) Minimum cost topological design of laterally loaded complete 

structures consisting of reinforced concrete shear walls amd floor 

slabs, and additional restraining steel or reinforced concrete 

frames. 

(3) Optimum design of reinforced concrete horizontal grillages made 

out of in-plane straight orthogonal beams with or without 

supporting columns 

The review given in this Chapter is generally divided into two 

Main parts. In the first part a review is given of the algorithms for 

mathematical programming which are utilised in the formulation am the 

solution of the design problems in this thesis. This part also 

includes a brief review of other practical optimisation algorithms. 

The second part deals with the published work on structural design and 

optimisation, considering the three different structures mentioned 

above. 

1.2 FEATURES OF STRUCTURAL OPTIMISATION 
  

Each problen of optimum design contains three basic features. 

These are the design variables, the objective function, and the design 

constraints which contrive to form the geometry of the design space. 

Each of these features will be described briefly below. 

(a) The Design Variables 
  

These may consist of the member sizes, the configuration of the 

structure, and the mechanical or physical properties of the 

material. Optimisation of the member sizes is widely used because 

of the relative simplicity of the problem, and because many 

practical structures have fixed shape and material properties. 

Configuration (shape) variables, often represented by the



(b) 

(c) 

geometry, i.e. coordinate of element joints, amd by the topology 

which is usually the number and the position of the members. 

Optimising the configuration is a difficult matter am is often 

treated to a limited extent. The full set of design variables in 

a problem is listed as vector tx, }, Fe 1... n, were:n is the 

total number of design variables. Each design variable represents 

an axis in the "design space" which can be described as an n- 

dimensional cartesian space. A surface in the design space 

represents a constraint, whereas a point in the design space 

represents a particular design. A point which does not violate 

any of the constraints is called a feasible design; the space for 

such points is known as the "feasible region". 

The Objective Function 
  

This function constitutes a basis for the selection of one of 

several alternative feasible designs. The function is scalar with 

n design variables, and it can be of a linear or non-linear form. 

The weight of the structure is most frequently used as_ the 

objective function to be minimised in spite of the fact that the 

cost of the structure includes many other aspects other than the 

material weight. These aspects are often difficult to be usefully 

quantified. In most mathematical programming methods, the 

objective function is maximised. In such cases a minimum is 

obtained by multiplying the objective function by -l am 

maximising its negative. 

The Design Constraints 
  

A constraint, in any class of problem is a restriction to be 

satisfied in order to obtain a feasible design. It may take the 

form of an explicit limitation imposed directly on a variable or a 

group of variables. On the other hand, it may represent a



limitation on quantities whose dependence on the design variables 

cannot be stated directly; such a constraint is an implicit one. 

The main types of design constraints are the equality constraints, 

such as the stiffness equations, and the inequality constraints of 

the form 2 or §$, such as the sway deflection or the stress 

limitation. Other important types of constraints are the 

practical and the behaviour constraints. A practical constraint 

is a specified limitation on a design variable, such as lower and 

upper bound on a sectional variable of a member, am it is 

therefore explicit in form. A behaviour constraint is usually a 

limitation on a joint displacement or a member stress. This can 

be an explicit or an implicit constraint. 

1.3 LINEAR PROGRAMMING 

In linear programming, the objective function and all the 

constraints are linear of the fom: 

n 
Mate *2..* 8. Oye, i a 5% (1.1) 

subjected to the constraints: 

n 
< = > Ke as; x; {$5 or = or 2} b. tla 

wnere C, a and bare constant coefficients, n is the number 

J ij x 
of variables and m is the number of constraints. 

Fron computational considerations, all the variables x are 

J 
required to be limited to the non-negative range, and the coefficients 

j are also required to be non-negative. The last requirement can



always be satisfied since in case of bo < 0, the corresponding 

constraint may be multiplied by -l so oa b becomes positive. In 

such a case it is also necessary to change ces inequality sign fram & 

to 2 and vice versa. 

To solve a linear programming problem by the simplex method, 

(Dantzig, 1963) and (Hadley, 1962), the inequality constraints of the 

form $ are transformed to equalities by adding new non-negative unknown 

"slack" variables. Inequality constraints of the form 2 can be 

converted into equalities by subtracting "surplus" variables. However, 

unlike slack variables, these surplus variables are treated in the same 

Manner as the actual variables Xr and are also added to the 

objective function with zero poet ecient. In this way the actual 

value of the objective function is not affected by the presence of any 

surplus variable in the final solution. 

Equality constraints must be fully satisfied, otherwise the 

solution is infeasible, thus slack variables cannot be added to these 

constraints. For this reason, artificial variables are added to all 

equalities and also to the inequality constraints of 2 form. 

The reason for adding the slack and the artificial variables is to 

obtain an initial (basic) feasible solution for the problem. However, 

the final solution cannot contain an artificial variable because such a 

solution violates the equality requirement of the problem. Thus effort 

is directed towards eliminating these artificial variables fram the 

final solution. 

1.4 THE SIMPLEX METHOD 

This is a well known systematic method of solving a general linear 

programming problem. It is also known to be an efficient method used 

for structural design problems. The method manipulates the constant



coefficients of the design variables. These coefficients should be 

arranged in matrix form. Thus, for a general linear programming 

problem, such as that expressed by function (1.1) amd formula (1.2), 

the elements c_ and a can be written as a two-dimensional matrix 

D. While the right-hand side elements b can be written as a one- 

dimensional matrix B. ‘These matrices oneene to form the "simplex 

table" which can be written as: 

lu
 

Cote (123) 

where C is the vector that contains all the variables, including the 

surplus variables. 

To begin with, all the design variables | (x, } amd the value of 

the objective function (Z) are equal to zero. While the elements of 

matrix B are set equal to the values of the slack amd the artificial 

variables, which represent the basic feasible solution. 

Once any basic feasible solution is determined, the simplex method 

can be used to obtain a minimum feasible solution in a finite number of 

iterations. At each iteration, a pivot element is selected which is on 

the row of the variables to be removed, and it is on the column of the 

variable to be entered in the solution. nce a pivot is selected, a 

new table, belonging to a new solution, is obtained. 

Selection of the pivotal column in matrix D can be difficult, amd 

in this thesis the algorithm "two-phase technique", (Garvin, 1960), is 

used. 

1.4.1 The Two-Phase Technique 
  

Using this technique, the linear programming problem is solved in 

two phases. The first phase derives all the artificial variables out,



and the second phase minimises the actual objective function starting 

from a basic feasible solution which either contains no artificial 

variables or some with zero values. 

In this two phased method, the removal of the artificial variables 

is accomplished not by considering the original objective function, but 

by minimising the infeasibility using a secondary function Z' defined 

by: 

Z's 

r
u
m
p
 

Qu
 

x (1.4) 

where n is the total number of variables, qo is the sum of the 

elements at the rows with artificial variables in column j of matrix D; 

qo is also known as the relative cost coefficient, and Z' is the sum 

of the elements at these rows in the right-hand side matrix B. 

The simple method can now be applied to minimise 2Z', wh is 

Phase I. This is accomplished if, for each iteration, a pivot is 

selected according to the "6" rule on a column with the largest 

positive element in the Z' row. The calculations are then carried out 

to remove the artificial variables. After achieving this, in Phase II 

the actual objective function is minimised similarly without having 

artificial variables or having some of them at zero level. 

Phase I is terminated if one of three situations is reached. 

(1) The value of Z' is zero, and all the artificiaal variables are 

non-basic, i.e. removed fram the solution. In this case a basic 

feasible solution has been obtained with all d 2 oQ, The 

2 
variables whose d > 0 are in fact dropped fren further 

J 
consideraton. Fhase II then proceeds normally.



(2) The value of Z' is zero, and one or more artificial variables are 

basic, i.e. not removed, with a value of zero. This means that a 

degenerate basic feasible solution has been obtained which 

probably causes the problem to enter into cycling. 

(3) The value of Z' is greater than zero amd one or more artificial 

variables are basic. This shows that there is no feasible 

solution to the original problem. 

There are some disadvantages in using this method. me of these 

lies in that many numbers are unnecessarily camputed am recorded, 

which slow down the operation. To speed up the calculations, a 

modified method known as the "Revised Simplex Method" can be used. 

This method was developed by Dantzig (1953), using the same principles 

as the two-phase simplex method. In each of its iterations only one 

basic variable changes, amd as a result only the essential quantities 

are computed which saves canputer time and storage. The revised 

simplex method also requires fewer arithmetic operations when the 

original problem contains a large number of zeros such as in structural 

optimisation. Another disadvantage of the two-phase technique is that 

it cannot solve degenerate problems. However, it is rare for 

structural design problems to be degenerate or to end up in cycling, 

especially if they are fomulated correctly. To prevent cycling some 

procedures described by Garvin (1960), Hadley (1962) and others can be 

used. 

When using the simplex method, it is assumed that the variables in 

the programming problems can have continuous values between specific 

limits. In practice, however, variables can only have discrete values. 

For instance, in the case of steel structures, the designer has to 

select available discrete sections for the members. Such a problem can 

be solved using integer programming. This type of programming can be



applied only when both the constraints and the objective function are 

linear, and the variables in the final solution are required to be 

integers. An integer programming problem can also be solved using the 

simplex method, and to do this the concept of Gomory's cut (1958) was 

introduced. This makes use of the fractional part of the numbers in 

Simplex table, as illustrated by Majid (1974a). 

1.5 METHODS OF OPTIMISING NON-LINEAR PROBLEMS 

Most of the structural design problems are mathematically non- 

linear, as they involve the product, the reciprocal or the higher 

powers of some or all the variables appearing either in the constraints 

or in the objective function or in both. The design problems thus turn 

out to be non-linear programming problems, particularly if the elastic 

theory is used for the formulation. 

There are several different non-linear programming (NP) methods 

available. zoutendijk (1966) has made an interesting coamnparison 

between some of the most popular methods which may be classified in 

three groups: 

(1) Methods where the NP problem is solved by means of transformations 

to linearised problems. Most well known is Kelley's (1960) 

cutting plane methods and approximating programming methods 

developed by Griffith and Stewart (1961). Moses (1964) 

demonstrated the use of the cutting plane method, and Cornell, et 

al (1966a, b) applied a technique closely related to the method of 

approximating programming for structural optimisation. 

(2) Methods of feasible directions. These methods solve the 

optimisation problems by directly considering the linear and the 

non-linear constraints as the limiting surfaces. The process is 

to start at some feasible point and then find a direction along
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Which the objective function can be improved while all the 

constraints are satisfied. Zoutendijk (1960) has described 

several variants of the method. Rosen's (1960) gradient 

projection method, and a method by Goldfarb and Lapidus (1968) 

belong to this group. Brown and Ang (1966) applied the gradient 

projection method to find optimum designs of frames amd trusses. 

(3) The Penalty-Function Method. The ideal behind this method is to 

transform the constrained non-linear problem into an unconstrained 

one by multiplying the constraints by a factor amd adding them 

together to the objective function. By this means, a new 

unconstrained function is formed which may be minimised by one of 

the unconstrained minimisation techniques, such as the Direct 

Search, the Gradient and the Newtonlike techniques. The use of a 

penalty function was suggested first by Courant (1943), and then 

developed considerably by Carroll (1961).  Fiacco am McCormick 

(1964) introduced the term "Sequential unconstrained minimisation 

technique" SUMT, which is now widely used. Kavlie, et al (1966) 

applied this method for the optimisation of ship structures, and 

Kavlie and Moe (1969) applied it for the optimisation of grillage 

structures. 

Generally methods of types (1) am (2) are most attractive for 

problems in which the constraints may be approximated closely by means 

of linearisations, while type (3) is of special interest when the 

objective function as well as the constraints are strongly non-linear. 

The amount of numerical work involved may, however, be considerably 

higher for methods of types (2) and (3). This makes methods of type 

(1) which depend on the idea of approximating non-linear programming 

problems by a sequence of linear programming problems attractive. 

After a finite number of design iterations such a procedure converges
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to an optimum solution. The simplex method is used for solving the 

linear programming problem during each design iteration. 

eeoad Sequence of Linear Programs 

Sequential linear programming methods are based on successive 

linearisation of the constraints and the objective function. There are 

two methods of linearisation. The first makes — of Taylor's series 

and takes the first order terms to approximate a non-linear function 

into a linear form. The second method is to approximate through 

replacing a non-linear function by a series of linear segments. This 

is known as the piecewise linearisation, and it is thoroughly explained 

by Hadley (1964). 

The first method of linearisation is widely utilised, and because 

it is adopted in this thesis it will be briefly described here. A 

general non-linear programming problem which has a number of n 

variables and m constraints can be expressed as: 

Min. 2 = f(x ) (135) 

j 

subject to: 

D5 (x,) ion = Or 210 (1.6) 

x. Oss = elites. oe le ly ois «In, 

This problem can be linearised at any arbitrary point { x, }5 by using 

Taylor's series to become: 

Min. Z=f (x5), + VE (x5), ‘. {x5}, - {x31 (259)
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where: 

fF; £ VE(x.). = i ete oe ie tt j (1.9) 
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amd: 
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are known as the gradient vectors. The value of every function is 

known at the initial point { x, is - The problem in now linear with 

(x, }, being the unknowns. 

This method of linearisation was used by Kelley (1960) to develop 

an algorithm known as the cutting plane method. This was based on the 

useful property that the linearised constraints of the problems were 

convex. The method was widely applied, but some undesirable points of 

it were outlined by many researchers, (Moses, 1964), and others. Such 

as, the method is not applicable to every non-linear problem especially 

when the solution happens to be a non-vertex. Furthermore, this method 

cannot guarantee convergence for non-convex practical problems, amd it 

cannot deal with the oscillation of the solution. 

Griffith and Stewart (1961) also used Taylor's series to linearise 

the non-linear problem. Their approach, which is known as either the 

approximating programming method or the move limit method, does not 

suffer from the difficulties which arise in the cutting plane method.
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This method is used to approximate all the non-linear structural 

problems in this thesis, and for this reason it will be described in 

some 

move 

move 

(1) 

(2) 

made 

detail in the next sub-section. 

¥.5.4.1 The Approximating Programming — Move Limit — Method 

A complete relinearisation is applied at each design iteration amd 

limits are imposed on the variables which do not allow them to 

very far. This method proceeds as follows: 

The objective function and the constraints are linearised at any 

arbitrary point {xa}, , aS in equations (1.7) and (1.8). ‘Then, 

additional constraints are imposed by applying move limits, such 

ass 

(t=). tx, s tx Ss (1:4 Muy. {x5 (1.11) 

where ML is the move limit. 

By solving the linear problem, the resulting unknowns {xs are 

taken as the optimum solution. The process is repeated until 

convergence is obtained. 

The approximating programming method has several properties which 

its application in structural design popular. Some of these 

properties are: 

(a) 

(b) 

(c) 

(da) 

The constraints do not have to be convex. 

There is no restriction on the initial design point which can be 

feasible or infeasible. 

The number of constraints which are linearised at each iteration 

does not increase as is the case with the cutting plane method. 

In some problems the solution may oscillate. This is overcame by
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terminating the procedure with the predetermined value of the move 

limit, i.e. the value just before the current one. 

The move limit is a positive constant factor less than one, e.g. 

ML = 0.6. It can be arrangd arbitrarily, but usually it can be 

based on a certain preselected percentage of the current values of the 

design variables. Saka (1975) showed that, in the optimum design of 

rigidly connected frames, it is only necessary to impose move limits on 

the main design variables. These were the section areas of the members 

in a frame. He also suggested that the convenient value of the move 

limit can be chosen as ML = 0.9 amd then reduced by 0.1 at each 

design iteration. Although this arrangement may require a great number 

of iterations, it provides large move limits during the first 

iterations and small move limits during the last ones. Thus: 

(1) If the initial design point is chosen far from the true optimum, 

then it is necessary to employ large move limits in orer to 

reduce the number of iterations to reach the optimum point. 

(2) Tight move limits are required to achieve convergence in case the 

optimum point is not fully obtained. In case the convergence is 

not achieved when the value of ML becomes 0.1, then the design 

aces are continued with this particular value of the move limits 

until convergence is achieved. 

Another point which also should be taken into consideration, is 

that the bounds of move limits should not be less than the lower, or 

exceed the upper, practical design bounds specified by the engineer or 

by the code of practice. Otherwise, the practical bounds are 

emphasised to be used for the optimum design.
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In the design of complete structures for minimum cost, (Chapter 

4), it was found that move limits are unnecessary because the degree of 

the non-linearity is not high. Because of this, the use of lower and 

upper practical bounds on the main design variables is found 

sufficient. 

1.6 SWAY FRAMES 

A rigidly jointed sway frame is defined as one that resists 

lateral deflections in its own plane through the bending stiffness of 

its members. Such a frame has no other bracing to limit these 

deflections. Consequently, the combined vertical and wind load action 

is the determining factor which causes failure by overall lateral sway 

instability. The design of these frames is therefore difficult by any 

theory. This is particularly so because, unless limited, the 

deflections can become the only cause of failure. 

Several methods have been used in an attempt to design these 

frames so that the strength and the stability requirements are 

satisfied. For instance, Horne and Majid (1966) ard Majid and Anderson 

(1968b) used the elastic-plastic theory to ensure that the successive 

effects of gradual plasticity and instability do not leal to a 

premature failure. Having succeeded in fulfilling this aim, it was 

discovered that the elastic sway deflections of the resulting frames 

were unacceptable from various constructional points of view. It was 

thus established that the sway deflections, not strength or 

instability, dominated the design of these frames. 

It follows that, if the sway criterion is satisfied first, the 

sections selected will then be large enough to satisfy instability and 

strength criteria. A final analysis will either confirm this claim or 

reveal the necessity of some minor alterations in the member sizes.
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1.6.1 Design Methods of Sway Frames 
  

Most of these design methods utilise the matrix displacement 

method for structural analysis. In this method, the unknown joint 

displacements represented by vector X, are obtained by solving the 

matrix equation: 

[n
x ae (1.12) 

where L is the external load vector, and K is the overall stiffness 

matrix. Member forces are then calculated using the joint 

displacements. 

The tendency for deflection to dominate the design is necessarily 

increased by the introduction of more refined design methods, ard the 

introduction of higher=-strength building material. High-yield steel 

provides the frame with more strength than mild steel, and with less 

expense. Needham (1977) has demonstrated that, if buckling or 

deflection are not the design criteria, then Grade 50 steel is more 

economical to use in multi-storey structures than Grade 43 steel. 

However, Okdeh (1980) claimed that the deflection becomes more critical 

when a higher grade steel is used. 

In the design of concrete elements, when the permissible stress 

design was being used with traditional conservative design methods, 

problems due to excessive deflection were practically unknown. 

However, cracking in service has recently become more common. 

Up to now few methods exist for the design of sway frames subject 

to deflection limitations. One of these methods is due to Stevens 

(1964) who suggested that the real basis for the design of sway frames 

should be the prevention of unacceptable deformations under the working 

loads. A design to satisfy such a criterion was obtained by selecting
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curvature pattern that would produce specified deformations, and was 

compatible with a bending moment distribution in equilibrium with the 

external loads. Sections were then selected by using moment-curvature 

charts. 

Later Moy (1974 and 1976) proposed a design method used for sway 

frames in which an initial design with adequate strength but inadequate 

stiffness was corrected to satisfy permissible limits on horizontal 

deflections. The frame was divided into sub-assemblages on the basis 

of the portal method. In this method points of inflection were 

considered to develop at the mid-lengths of the members. Expression 

for the storey stiffnesses were obtained in terms of the member second 

moments of area of the storey, amd in terms of the permissible sway 

deflections at working load. ‘Two assumptions were made: 

(1) The vertical loads were assumed to have a negligible effect on 

horizontal deflection. 

(2) A point of contraflexure was taken to exist under horizontal 

loading at the mid-height of each column (except in the bottom 

storey), and at the mid-span of each beam. Thus, the frame was 

made statically determinate above the bottom storey, am each 

storey was considered in isolation. 

The method is based on hand calculation, but it requires a preliminary 

design and repeated calculation to arrive at a feasible solution. 

Anderson and Islam (1979), and Islam (1978) suggested a method for 

the design of multi-storey frames to sway deflection limitations. The 

assumptions used are those adopted by Moy, stated previously. 

Expressions relating the sway deflection over a storey height to the 

second moments of area of the corresponding columns and the surrounding 

beams were derived. These expressions were linked to a cost function 

and used to obtain an economical solution. Restrictions on section
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size and change of section, and the lack of continuous range of 

available sections were taken into consideration. Extra expressions 

were derived to deal with boundary regions of the frame, such as the 

top-most storey, the bottom storey and the external columns. However, 

they suggested that a quick design could be obtained if the design of 

the top storey was considered as the storey below it, and the design of 

the bottom storey was taken as the one above it. Furthermore, as the 

sway in each storey was assumed to be equal to a specified value, 

Anderson and Islam took it as being equal to the maximum allowable 

deflection of h/300, where h is the height of the storey under 

consideration. However, such ratio is difficult to be maintained for 

the ground floor columns, because these are connected to the 

foundations and therefore deflect less than the others. 

The methods of Moy and Anderson and Islam are approximate, as 

hinges were assumed in the mid-length of each member to avoid designing 

the frame in its entirety. Majid and Okdeh (1982) and Okdeh (1980) 

proposed a direct design method for multi-storey plane frames subjected 

to sway limitations. The stiffness equations were modified so that the 

sway in each storey became equal to some specified values. The method 

starts by selecting initial values for the beam sections and the sway 

limitations. The modified stiffness equations are then solved by an 

iteration technique to calculate the cross-sectional properties of the 

columns as well as the other joint displacements. After selecting the 

initial beam sections, the method alters them in an attempt to reduce 

the total material cost of the frame. In this design, stability 

functions were used to include the effect of axial loads in the 

members. The final design of reduced cost was checked for strength 

requirements and the members were altered accordingly. The method was 

extended to design reinforced concrete frames in which the sway in the
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columns played an active part in the design criteria. Computer econany 

was achieved by avoiding the solution of the stiffness equations 

simultaneously. 

1.6.2 Optimisation of Fixed Shape Frames 
  

In the elastic design of structures, the design criteria which are 

commonly used are that the stresses in the members amd the deflections 

at the joints should not exceed certain specified permissible values. 

It then becomes necessary to express the deflections and the stresses 

in the structure in terms of the design variables. Using the matrix 

displacement method, the optimum design problems becomes one of finding 

the sectional properties of the members so that three main constraints 

are satisfied. These are the stiffness equalities, the deflection and 

the stress inequalities. 

Moses (1964) was one of the first researchers who applied the 

linearisation technique to the structural design problem. This was 

done by transforming the non-linear problem into a sequence of linear 

programming problems. The optimal design of a three bar truss and a 

one storey rigid frame, each subjected to two distinct load conditions, 

was obtained using the cutting plane method. Substantial savings were 

achieved in the weight of the structure with only a single iteration of 

linearisation.
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Cornell, et al (1966a) formulated the design problem by the matrix 

displacement method. The sequential linear programming method was 

used. Stress and deflection constraints were both considered. Various 

convergence aids have been employed, such as move limits, constraint 

accumulation and second order corrections. The application of each of 

these has been done in several ways. Adoptive move limits were 

utilised to prevent oscillation. The method of constraint accumulation 

was found successful when the problem was strictly convex. It was 

stated that the best compromise of all would always remain dependent on 

the type of problem. In their later work (1966b) detailed explanation 

and comparison between a structural optimisation amd an iterative 

design was given. The iterative design imposed no limitation on 

displacements and assumed that the best structure is a fully stress 

one. They have also shown that the use of reciprocal areas as a design 

variable reduces linearisation errors because the stresses in the 

members are linearly related to their reciprocal areas. 

Toakley (1968) used the piecewise linearisation technique to solve 

the minimum weight design problem of statically determinate pin-jointed 

frames subjected to deflection and stress limitations. The unit load 

method was employed to formulate the design problem. The reciprocals 

of the member areas were introduced as the design variables. As a 

result the deflection constraints were in linear form and the objective 

function was non-linear but strictly convex. Hence this procedure gave 

the globally optimum solution. 

Majid and Anderson (1972) used the matrix force method to 

formulate the design problem of statically indeterminate elastic 

structure subject to non-linear deflection and stress constraints. The 

piecewise linearisation technique was employed in conjunction with the 

simplex method. Due to the fact that the members in pin-jointed
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structures were subject to axial forces, the design variables 

considered were only the areas of the members and the axial forces in 

the redundants. In sway frames, the design variables considered were 

the second moments of area of the members but the axial deformations 

were neglected. The design problem turned out to be normconvex amd 

gave local optima only. Furthermore, it was found that this procedure 

was only applicable to small bare frames. The reason for this was that 

piecewise linearisation required considerable computer storage and time 

to obtain an optimum solution. 

Later, Majid (1974a) proposed a linear elastic, minimum weight 

method. A non-linear programming algorithm was adopted in which either 

the force or the displacement method was employed to formulate the 

problem which was then linearised by Taylor's series. The optimum 

solution was obtained using the simplex method. This method imposed an 

upper bound limitation on the absolute values of the joint deflections. 

It also imposed limit-state stress constraints obtained by combining 

the axial and the bending stresses in each member of the structure. 

The constraints take the form: 

< oO e t2Pe jn £M,/ 2,59 or 6. CT 513) 

where P is the axial force, M is the bending moment at the ern of 
i i 

member i, A and Z are the area and the section modulus of member 
i i 

i, 0, and Oo, are the permissible design stress in tension and 

compression. Majid examined all the possible cambinations of stresses 

in a member, am revealed that, for a section with two axes of 

symmetry, there are in fact eight stress constraints; four at each 

end. 

The structural design problem could be enlarged unnecessarily if
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the non-linear inequalities in equation (1.13) are included in the 

design exercise. This is particularly so because most of these 

constraints are inactive, and not involved in deciding the properties 

of the members of a sway frame. 

Saka (1975) used the above method to present a general camputer 

program for the automatic optimum design of rigidly jointed steel plane 

frames. He employed the approximating programming-move limit-—method 

for the minimum weight design of structures. The matrix displacement 

method was used to formulate the design problem. He found that the 

choice of the sections was governed by deflection requirements and not 

by the stress criteria given by equation (1.13). Saka also arranged 

the move limits so that the number of design iterations required to 

obtain the final solution was kept to a minimum. Although this method 

achieved a design in which all the design criteria were satisfied, it 

was not applicable to large frames, as it was essentially a procedure 

that required extensive storage space amd consumed a_ considerable 

amount of computer time. This method will be extended in this thesis 

to cover the design of multi-storey steel sway frames, and it will be 

further discussed in Chapter 2. 

A comprehensive review of developments in frame optimisation, 

including the application of the plastic theory or different 

mathematical methods of optimisation, is given by Sheu and Prager 

(1968), Majid (1973), Gallaghar and Zienkiewicz (1974), Saka (1975), 

Krishnamoorthy and Mosi (1979), Kirsch (1981) and others. 

1.6.3 Shape Optimisation of Frames 

The shape of a structure, both its geometry and topology, is of 

major significance. However, its determination is difficult, involving 

all the design requirements. In an optimum geometrical design, the
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joint coordinates are treated as independent design variables. Lengths 

and direction cosines of the members are expressed in terms of these 

variables. In general, the geometrical design procedure varies the 

joint coordinates, thus altering the lengths and the directions of the 

members. The design requirements are represented mainly by stress ard 

buckling constraints, as in the case of trusses, but complications are 

encountered in the design of rigidly jointed frames, (Pedersen, 1973). 

In an optimum topological design, the number and the position of 

the members are considered as the design variables. The aim of such a 

design is to reduce the number of the members, to minimise the 

objective function. The members to be removed are selected by the 

adopted design method which considers structural and economical factors 

for such a selection. 

Dorn, Gomory and Greenberg (1964) were probably the first who 

introduced a method of shape optimisation which made use of the concept 

of "ground structures". The design space was covered by a set of 

admissible joints from which the joints of the final design were 

selected. The ground structure was obtained by linking each admissible 

joint to others in the design space. The minimum weight design of this 

ground structure was formulated as: 

m™m 

ee Min.W = < 2 [By | L, (1.14) 
i=1 

subject to: 

m 

De a oR aoe. (algalsy)) 

i oa J
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where n is the number of admissible joints, m is the number of 

admissible bars, P is the force in bar i; this force was taken as a 

design variable, peace Oo denote the density and the yield stress of the 

given material respectively, L is the length of the bar, a is its 

direction cosines, and e is te component of the external Soe at 
J 

joint j. This linear programming problem was solved for P and bars 

with zero forces were removed. The removal of these feibsie and the 

unloaded joints made it possible to obtain a structure which had a new 

topology as well as a new geometry. Included in the examples were 

planar trusses under one loading condition, which were optimised and 

found to be statically determinate and therefore fully stressed. 

Dobbs and Felton (1969) extended this approach to deal with 

multiple loading conditions. This made the design problem non-linear 

and the steepest descent alternate algorithm was utilised for its 

solution. They also made the approach iterative so that the process 

might be repeated until no further topological changes were possible. 

The method was proved successful and promising. However, it covered 

only stress constraints and gave no justification for the deletion of 

the members. 

Lipson and Agrawall (1974) optimised the shape (topology as well 

aS geometry) of indeterminate trusses subject to multiple load 

conditions. The independent variables, which were taken as the joint 

coordinates and the sectional areas, were selected fram discrete member 

spectrum. In the examples solved, only the stress constraints were 

considered. During the design process members which had zero areas and 

joints which had zero coordinates were deleted amd the relevant stress 

constraints were onitted automatically. The examples illustrated showed 

that a non-convex feasible space only increased the number of iterations 

but presented no difficulty.
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Majid and Elliott (1973a) stated the theorems of structural 

variation which made it possible to predict exactly how the forces and 

the deflections throughout the structure changed when some of its 

members were either altered or totally removed. Later (1973b) this was 

used in conjunction with the topological design of pin jointed 

structures. The matrix displacement method was used to formulate the 

design problem where stress and deflection requirements were 

considered. The problem turned out to be one of non-convex, non-linear 

programming. The feasible direction method was used to obtain its 

local optima. A ground structure was initially developed and then the 

members were removed until no further topological changes were 

possible. The self weight of the members were also included as design 

variables and it was found that this changed the shape of the final 

design and speeded up the search for the optimum shape. 

Majid and Saka (1977) and Saka (1975) extended the above theorems 

to cover rigidly jointed frames. The approximating programming-move 

limit-method was used to obtain an optimum set of sections for the 

structure. The theorems were then used to remove members fran the 

ground structure until the final shape, with minimum weight or cost, of 

the frame was obtained. Both stress and deflection limitations were 

considered. 

Recently, Majid, Stojanovski and Saka (1980) proposed a method for 

the minimum cost design of rigidly jointed steel sway frames in which 

the final topology was determined by some economical and architectural 

requirements. Appropriate “aif ferential" deflection constraints were 

imposed to control the sway in each storey. The stress constraints, 

equation (1.13) were excluded. The aim was to minimise the total cost, 

including material and any other handling (or construction) costs. The 

latter was expressed as a "fixed charge" to penalise a member retained
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in the final topology, (Hadley, 1964). The problem turned out to be 

that of non-linear programming with mixed integer-continuous variables. 

Suggestions were made to simplify the mathematical approach am to 

reduce the computation. Examples were given to demonstrate the 

flexibility of the method in varying the topology of the structure 

while minimising the cost. However, this method had some deficiencies 

which will be dealt with in part of the work presented in this thesis. 

The main deficiencies were (a) the method was only applied on small to 

medium frames where the sway does not play its full part, (b) the fixed 

charge on the member was assumed rather than assessed amd this might 

have affected the member removal. Other improvements on this method 

will be discussed in Chapters 2 and 3 of this thesis. 

1.7 COMPLETE STRUCTURES 

A complete building structure consists of a number of parallel 

shear walls and intermediate frames connected by floor slabs. The 

horizontal components (floor slabs) serve not only to collect and 

distribute the lateral forces to the walls and frames, but by 

structural interaction with them, increase the lateral stiffness of the 

building. 

In the field of analysing the behaviour of camplete structures, 

significant progress has been made since the early 1960's, mainly 

because of matrix and computer techniques. These facilitated the 

development of general analysis methods applicable to quite ccmplex 

problems. The problem has been the object of considerable research 

during the last two decades and a number of reviews have been 

published, (Coull and Stafford, 1967, 1973), (Fintel, et al, 1971) and 

others.
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Optimisation of complete structures has not had the necessary 

attention that it requires. However, optimising individual elements 

like shear walls, floor slabs, columns, beams and frames alone have 

been extensively investigated. Therefore, more research needs to be 

directed towards optimising structures, created fram the interaction of 

such elements, and their overall behaviour. The review given below is 

Mainly on the methods of analysing camplete structures of the type 

considered in this thesis, Figure 1.1. 

Theoretically, the finite element method, such as that suggested 

by Majid and Williamson (1967), was considered as a good tool to 

investigate the overall behaviour of a complete structure of any shape. 

However, this method is computationally expensive. To reduce the cost, 

some simplified methods have also been proposed for various specific 

types of structures. 

Clough, King and Wilson (1964) used the wide-column frame analogy 

for structures consisting of skeletal frames and wall-frame systems. 

In the wide=-column frame analogy, the finite width of the wall is 

simulated by connecting the joints on the centre line of the wall to 

the ends of the beams by rigid arms which rotate with the joints. 

However, this precludes the determination of stresses in these regions. 

This method ignored the in-plane bending of the slabs and the overall 

rotational stiffness of a structure. The stiffness matrix of each 

frame was reduced to a condensed form to cater for lateral 

displacements only. These condensed stiffness matrices were then 

superposed to form the overall stiffness matrix of the structure. The 

load vector consisted of the applied wind forces amd the lateral 

equivalent of the vertical and rotational forces. Having calculated 

the common lateral displacements, the vertical and the rotational 

displacements of the frames were obtained by back substitution. An
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analysis of a 20 storey structure showed that neglecting axial 

deformations led to errors of about 20 per cent in some of the columns. 

Because the overall rotation of the structure was ignored, this method 

was only applicable to symmetrical structures under symmetrical loads. 

Goldberg (1966) proposed a method for the analysis of a type of 

complete structure consisting of parallel shear walls and frames. The 

floor slabs were assumed to behave as deep beams subject to shear 

distortion as well as in-plane flexture. Out of-plane bending was 

ignored. Axial deformations in the beams and columns of the frames 

were neglected and no provision was made for the inclusion of wide 

column effects. The equilibrium of the lateral forces at the slab- 

frame and the slab-shear walls was assumed, but moment equilibrium 

between the vertical bracing components and the slabs was ignored. The 

latter assumption can be simulated as the slabs pinned to the shear 

walls and the frames. This is a reasonable assumption as it has been 

shown that the torsional stiffness of walls and frames about their own 

vertical axes is relatively unimportant. Two symmetrical ten storey 

and 20 storey structures, with side walls and seven intermediate 

frames, were analysed by Goldberg. These showed that the bending of 

the slabs had an insignificant effect on the lateral deflections. It 

was found that shear in the bottom storey of the centre frame was about 

50 per cent greater than that of the outer frame, while at the top the 

shear was almost the same. The effect of shear distortions in the 

walls and the slabs was shown to be significant amd had to be taken 

into consideration. 

Majid and Williamson (1967) used a sparse matrix method (Jennings 

and Majid, 1966) to develop a finite element analysis for structures 

consisting of prismatic members and plate elements subject to in-plane 

and out of-plane forces. The effects of bending and torsion were taken
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into consideration. A series of experiments were carried out on two 

and three storey frames with shear wall cladding to study the effect of 

shear walls on the stiffness of bare frames. 

Majid and Croxton (1970) developed a method for the elastic 

analysis of complete structures consisting of a grillage of solid walls 

and floor slabs, stiffened against the horizontal displacements by the 

action of parallel frames, Figure 1.1. The structures were subjected 

to the effect of static wind forces and imposed vertical loads. The 

effects on the sidesways resulting from the action of eccentric 

vertical loads or non-symmetrical configuration of frames am walls 

were considered. The grillage and the frames were analysed separately 

under the action of a system of unit horizontal forces, amd their 

influence coefficients were determined using the matrix displacement 

method. These components were then reassembled and, by using the 

matrix force method, horizontal equilibrium amd campatibility 

conditions were satisfied at the slab-frame junctions. The parts of 

the horizontal forces transmitted to the slabs of the grillage and to 

the frames were thus calculated. By using the matrix displacement 

method again, each frame and the grillage were then analysed under 

their own share of the loads, and the forces and the deflections of 

each sub-structure were determined. In this approach the shear walls 

and the slabs were assumed to be deep beams under the effect of in- 

plane shear and in-plane bending. The stiffness coefficients of such 

beams were modified to take into account the effect of shear 

distortion. Each grillage joint was assumed to have three degrees of 

freedom. These were the sway in the wind direction and rotations about 

the vertical amd the horizontal axes normal to the direction of the 

wind. The results of the investigation of the effects of various 

factors on the behaviour of a ten storey structure was reported. One
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purpose of the investigation was to study the variation of the bending 

moments and the deflections due to treating the slabs as rigid 

diaphragms. This was found to be leading to ill conditioned equations 

for large structures. 

Croxton (1974) later modified this method am considered the 

complete structure as a grillage, laterally restrained by the frames. 

Matrix displacement method was used to determine the lateral stiffness 

of the individual frames for partitioning and condensation of their 

overall stiffness matrices. The stiffness matrix of the camplete 

structure was then formed by superimposing the lateral frame 

stiffnesses on the stiffness matrix of the grillage. The stiffness 

matrices, of the shear walls and the floor slabs, produced by this 

method will be used for optimising the camplete structures in this 

thesis. 

Majid and Onen (1973), Onen (1973) and Majid (1974b) developed the 

approach of Majid and Croxton to analyse complete structures up to and 

including failure. The elastic-plastic analysis method of Majid amd 

Anderson (1968b) was used in the individual analysis of oe steel 

frame. The grillage system was assumed to be sufficiently strong to 

maintain its initial stiffness throughout the loading procedure. The 

effect of composite action between the floors and the beams of the 

frames was considered.
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Majid and Celik (1979) and Celik (1977) continued the above method 

of analysis to include structures which may be made out of reinforced 

concrete or steel frames together with shear walls and slabs made out 

of reinforced concrete or any homogenous material. Lateral buckling 

prior to failure amd cracking of panels were taken into consideration. 

Plastic hinges in the steel frames and critical stiffness changes in 

the reinforced concrete frames were also included. A method was given 

for calculating the failure load of reinforced concrete panels under 

the combined effects of bending shear and torsion. 

1.8 HORIZONTAL GRILLAGE STRUCTURES 
  

A horizontal grillage is identified as a class of structure in 

which the members all lie in one plane, but the loads are applied 

normal to this plane. This type of structure is frequently used in 

roofs, floors, foundations, bridges, and in ship building. The members 

of the grillage are usually beams spanned in two orthogonal directions. 

The torsional stresses developed by the twisting action help transfer 

an additional part of the load from one direction system to the other 

and increase the stiffness of the two-way system. This increase in the 

stiffness is virtually negligible for I-beams, but not entirely 

unimportant for beams of rectangular cross-section. 

The horizontal grillage may either be simply supported or fixed at 

its ends. It may also be supported by columns connected to the 

intersection of the beams. 

The horizontal grillage with its supporting boundary can be dealt 

with as a whole, amd designed as a camplete structure without 

separating it into individual systems or units.
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1.8.1 Analysis of Grillages 
  

Clarkson (1965) discussed different methods to analyse grillages. 

The elastic method of analysis was advocated and used to ensure that 

the range of stress due to the load was kept to some fraction of the 

yield stress, and in that way all noticeable plastic deformation was 

prevented. 

With the availability of camnputers, the matrix methods for elastic 

analysis of flat grillages have been widely utilised. These methods 

could be either the matrix force or the matrix displacement method. 

The force method requires only one redundant force for each point of 

intersection between beams, while the displacement method leads to 

three degrees of freedan (two rotations amd one deflection) for each 

intersection. Thus, the number of numerical operations during the 

analysis are higher in the displacement method than the force method. 

However, for more general problems, including skew amd non-orthogonal 

grillage, the torsional stiffness and stepwise-varying cross-sections 

of members etc, the displacement method would be the obvious choice. 

Lazarides (1952) was probably the first one who set up the slope 

deflection equations for compatibility at the grillage intersection 

points, and thus obtained the solution for the grillage. Lightfoot and 

Sawko (1959) demonstrated how a computer can be utilised to set up and 

solve the stiffness equations to produce a solution that gives the 

deflected profile, the forces amd the moments in each member of the 

grillage. The effect of torsion in the members was included in the 

stiffness equations, and this meant that the method was applicable to 

the analysis of slabs amd similar structures. Indeed, Sawko (1965) 

successfully employed this grillage approach to the analysis of bridge 

deck slabs. This was done by analysing an equivalent grillage created 

from dividing the slab into strips in the longitudinal and transverse
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directions, and an equivalent grillage member was taken in the centre 

of each strip. The member properties of the equivalent grillage were 

established. Later Sawko and Willcock (1967) considered the analysis 

of bridges with box girders of varying sectional properties. 

The above approach was then used by Sawko amd Mosley (1969) to 

investigate the lateral distribution of live load in simply supported 

span of composite trapezoidal box girder bridge decks. The box girder 

was wide and possessed two shear carrying webs. Two types of 

idealising the equivalent member properties were investigated. These 

were (a) a single equivalent member along the box centre line, or (b) 

equivalent grillage member at each web/slab intersection. The 

agreement between experimental results and grillage analysis was 

demonstrated to be remarkably good. 

Chang and Pilkey (1971) developed a method for the analysis of 

grillages under general conditions. The method was exact within the 

framework of the classical theory of bending and torsion of bars. The 

technique, which was applied on ship structures, accepted arbitrary 

loading, nonprismatic beams, arbitrary spacing, inspan conditions such 

as support and releases, am arbitrary boundary coritions. The 

special features in ship structures such as deck openings, stanchion 

support, and various brackets were also handled. 

Harris (1972) presented a method for static analysis of elastic 

orthogonal beam grillages. The method was particularly suited to the 

analysis and design of regular two-way concrete joist floors. 

Hambly and Fennells (1975) used the grillage analysis approach in 

the design of cellular bridge decks. Differences between the physical 

behaviour of cellular decks and beams were identified, leading to the 

evaluation of stiffness parameters for an idealised grillage. Some
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guidance was given on the " interpretation of results for design 

calculations. 

Evans and Shanmugam (1979) idealised a continuous plated structure 

by discrete, skeletal grillage members, and they used the simplified 

grillage technique for the elastic analysis of multi-cellular 

structures. The results were then compared with finite element results 

and proved accurate. 

1.8.2 Optimisation of Grillages 
  

The optimisation of grillage structures has also had a good share 

of research work. Both the elastic and the plastic theories were 

employed by many researchers to create the features of the grillage 

design problems. Moses and Onoda (1969) used the matrix displacement 

method to formulate the minimum weight design of elastic grillages made 

of straight orthogonal steel beams normally loaded. Section properties 

of the beams were related by an empirical relationship which expressed 

the design variables in terms of the areas of each beam. Only stress 

constraints were considered. The optimisation results were obtained by 

employing three algorithms. These were the stress-ratio, the cutting 

plane and the useable-feasible gradient directions. A detailed 

comparison of these algorithms showed that the cutting plane method 

required fewer structural analysis cycles for convergence than others. 

In order to reduce the analysis cycles in the use of the useable- 

feasible method, a technique was utilised which first found a fully 

stressed design by the stress ratio and then began moving in the 

useable-feasible vector direction. It was stated that the stress-ratio 

method could be useful to find a good initial design point if the 

constraints were non-convex. 

Kavlie and Moe (1969) have described the application of SUMT
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(sequential unconstrained minimisation technique) to the design of 

elastic grillages loaded laterally and in-plane. The matrix force 

method was used to formulate the design problems. Both deflection and 

stress constraints were considered. A comparison between two different 

search methods was given. It was found that SUMT could be used for 

non-convex sets of design variables. It was also shown that the 

initial design point and initial response factor had decisive influence 

on the results. It was verified that a fully stressed design may not 

necessarily correspond to the minimum weight design. 

Rozvany and Adidam (1972) proposed a methcd to obtain the least 

weight of rectangular and square grillages by assuming that the depths 

of the beams were limited. Sufficient bracing was provided to avoid 

instability. The grillages had nom-preassigned beam directions. It 

was shown that the minimum weight of both perfectly plastic amd elastic 

grillages of given strength, as well as elastic grillages of given 

stiffness, can be determined by considering the maments and 

displacements of a perfectly plastic-rigid plate having a square 

locking surface. The beams of the grillages were placed in the 

direction of the principal moments to give the absolute minimum volume. 

The method made use of the Prager-Shield theory of optimal plastic 

design, (Prager and Shield, 1967). 

Faulkner, et al (1973) described procedures which were used in a 

minimum weight grillage synthesis program based on the SUMT. All 

anticipated ductile failure modes for typical welded ship type deck and 

bottom grillages under uniform nommal and biaxial in-plane loading were 

considered. Emphasis was specifically placed on compression modes of 

failure. General instability or grillage collapse was considered. In 

contrast to the more usual "stress" analysis, emphasis was on 

"strength" or the inability of the structure to carry further load.
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Rozvany (1973) has applied the optimal plastic design for 

partially preassigned strength distribution to an idealised grillage. 

The design of this grillage was defined by two variables, and these are 

the plastic moments. The cost of the grillage was assumed to be 

proportional to the variables. 

Reinschmidt and Norabhoompipat (1975) developed a technique for 

the preliminary structural design based upon the logic used by 

practicing designers. A linear structural problem was constructed by 

considering only the conditions of static equilibrium am stress 

admissibility, while the elastic compatibility was ignored. The 

resulting linear programming problem was then solved in the dual fom 

by the revised simplex method. The solution to this problem gave an 

initial design that was generally close to the final optimum solution. 

Computer results presented for steel grillage design problems, 

previously solved by Moses amd Onoda (1969), imicated that the 

proposed method can give the global optimum. 

Rozvany, et al (1975) used extensions of Prager's theories of 

optimal plastic design to optimise grillages and slabs within various 

geometrical constraints ensuring simplicity amd practicality. The two 

classes of problems considered were, (1) grillages consisting of 

prismatic beams of preassigned directions amd length but variable 

spacing, and (2) slabs with curtailed negative reinforcement of 

preassigned length. The optimal grillages am slabs of constrained 

geometry were obtained, when the positive amd negative bending moment 

capacities were equal and were required to be constant over the length 

in a given sub-damain. The most economic length of negative 

reinforcement was calculated for rectangular slabs.
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Later, Prager and Rozvany (1977) dealt with the minimum weight 

design of elastic grillages in which the absolute value of the axial 

stresses did not exceed a prescribed value. After the optimality 

conditions for this problem were discussed, a geometrical method for 

obtaining the optimal beam directions was presented. Furthermore, 

Rozvany (1979) extended the theory of optimal grillages to include 

specific cost functions which were dependent on both bending moments 

and shear forces. A computer algorithm for driving analytically and 

plotting optimal structural layout for grillages was described by 

Rozvany and Hill (1979). 

1.9 THE SCOPE OF THE PRESENT WORK 
  

The aim of the work presented in this thesis is to obtain 

structural optimisation methods for three different types of large amd 

practical structures. These are plane multi-storey steel sway frames, 

complete structures amd horizontal grillages. The optimum design 

problems turn out to be that of non-linear programming. These are 

formulated in the form of sequential approximating linear programming 

problems, and then solved by using the two-phase simplex technique. 

The matrix displacement method is employed. 

The methods can be applied to problems of either a minimum weight 

design, or a minimum cost topological design in which econamic and some 

structural requirements determine the final topology of the structure. 

For problems of minimum cost topological design, the variables are a 

mixture of integer and continuous values. This requires some 

assumptions to be made for simplifying the mathematical approach. 

Apart from the weight, the total cost of the structure is assessed 

realistically. This cost includes the material cost, am the 

construction cost such as formwork, material provision, placing, etc,
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for the members, plus the costs of constructing the foundations for the 

columns and the walls. 

Chapter 2 contains a method for an optimum design of plane multi- 

storey steel sway frames. The effect of the sway on optimising tall 

and slender frames was not considered previously. Therefore, this 

optimisation method is intended to be for either a minimum weight or a 

minimum cost topological design that satisfies the stiffness, the sway 

deflection and the practical constraints. The stress constraints are 

not considered. The move limits are imposed on the section variables 

only. The examples solved by this method are given in Chapter 3. For 

a minimum weight design, an investigation is carried out on the effect 

of the move limit arrangements, the selection of initial design point, 

and the design under different loading cases. For a minimum cost 

design, the effects of realistic cost assessment on the topology of the 

frames are examined. 

The method presented in Chapter 4 is for a minimum cost 

topological design of laterally loaded camplete structures. In this 

method, the complete structure is treated as a grillage of shear walls 

and floor slabs which act as deep beams, bending in their own planes, 

and braced against lateral displacement by the frames. The grillage is 

built from reinforced concrete, and the frames are made out of either 

fabricated steel or reinforced concrete. The method alters the 

topology of the structure by allowing the removal of some of the shear 

walls and the intermediate frames fran the ground structure. This is 

obtained while the stiffness of the structure is maintained to 

withstand the action of the static wind loads and to satisfy the 

lateral sway deflection and the practical constraints. The move limits 

and the stress constraints are not considered. Chapter 5 contains 

design examples of the laterally loaded complete structures. Several
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design cases are investigated and the verification of one of them is 

given. 

Chapter 6 contains a method for an optimum design of a reinforced 

concrete horizontal grillage structure, with or without the supporting 

columns. This is considered as a camnplete structure made out of a 

network of in-plane straight orthogonal beams, with the supporting 

columns amd the applied loading being normal to this plane. Fram the 

review previously given, it was concluded that a method is required to 

optimise realistic reinforced concrete grillages when both the stress 

and the deflection limitations are considered at the same time. 

Therefore, this optimisation method is meant to be for either a minimum 

weight or a minimum cost topological design that satisfies the 

stiffness, the stress, the deflection and the practical constraints. 

The stress constraints include bending stress, and also combined shear 

and torsional stresses. The topology of the grillage is altered by 

removing beams selected by the design method as uneconomical or 

structurally insignificant. The move limits are imposed on the section 

variables only. The design examples on the flat grillages are given in 

Chapter 7. The loads are either applied at the intersection of the 

beams, or uniformly distributed on the whole grillage. The self weight 

of the grillage is included in the design, and the effect of 

considering such a weight as a variable is examined. 

The procedure of formulating the design problem for each of the 

three types of structures was computerised. Furthermore, a program was 

written for solving the design problems by the simplex method. The 

explanation of the computer programs with the data preparation is given 

in detail in Chapter 8. All the programs were designed to use the 

direct access disc backing storage of the computer, so that large 

structures can be solved by using a small camputer core.
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CHAPTER 2 

OPTIMUM DESIGN OF MULTI-STOREY STEEL SWAY FRAMES 

2-1 INTRODUCTION 

In this Chapter, a method is proposed for an optimum design of 

plane, rigidly jointed, multi-storey, steel sway frames. The main 

feature of the frames designed is that they are large amd practical. 

They therefore demonstrate that the optimisation procedure is 

generalised to cover not only simple frames, but also those encountered 

by practical engineers. 

Almost all previous optimisation methods either neglected the 

deflection limit state or imposed an upper bound on the joint 

deflections of the frames. None of them included the actual sway in 

each storey as a design criterion. However, Majid, Stojanovski amd 

Saka (1980) used such a criterion in their proposed method for minimum 

cost topological design of steel frames. In their method, the frames 

designed were small and short, and consequently the sway in each storey 

did not play its full part in deciding the sections of the members. 

The main feature of the frames to be designed in the next Chapter, is 

that they are tall and slemer. 

Many attempts have been made to produce economic designs, but the 

actual cost of the frames has in fact either been excluded fram the 

design objective, or assessed in a complicated or unrealistic way. 

Here, it is simply pointed out that, apart from the mterial cost, 

there are a large number of other construction costs which must be 

included in the economic objective of the design. These costs will be 

listed and quantified realistically. A simple way of including the 

construction costs is by treating them as a "fixed charge" imposed on 

the inclusion of any member in the final design. The value of this 

fixed charge varies from one member to another and fram one frame to
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another. It may also be assessed differently by different engineers. 

The matrix displacement method is used to formulate the optimum 

design problems of the frames. The problems are all non-linear and are 

linearised by means of the approximating programming method, and then 

solved using the two-phase simplex method. The objective is to 

minimise either the weight or the cost of the frames while the 

stiffness, deflection, strength amd practical requirements are 

satisfied. For a minimum weight the main design variables are assumed 

to be available in a continuous range, while for a minimum cost design 

the topology of the frame is included as an extra unknown in the 

process, cauSing some variables to be of integer and some of continuous 

nature. Suggestions are made to simplify the mathematical approach. 

An economical computer program for the optimum design of frames will be 

described in detail in Chapter 8. 

2.2 THE STIFFNESS MATRIX OF A FRAME 
  

The optimum design problems of many elastic structures can be 

formulated by employing two main matrix methods that are well 

established. These are the force (flexibility) method and the 

displacement (stiffness) method. In the force method, the redundant 

forces are the unknowns and the number of equations to be solved is 

therefore equal to the number of redundancies. It is not so easily 

generalised for computer solutions as the displacement method because a 

degree of intuition is required in the selection of redundancies. 

In multi-storey, multi-bay frames, if compatibility of horizontal 

displacements at storey levels is assumed, the number of redundancies 

can exceed the number of degrees of freedom; in which case the force 

method has no advantage. It also leads to ill-conditioned equations
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unless the redundancies are carefully chosen, (Bray, Croxton ard 

Martin, 1976). 

In the matrix displacement method, the member eres (vector P) 

are related to its deformations (vector U). The corresponding 

relationship for the whole structure is given in terms of the local 

member coordinates as: 

Eek 3.3) 

where k is a two-dimensional matrix that represents a diagonal 

assemblage of member stiffnesses. In general system coordinates, the 

unknown joint displacements (vector X) of the structure are related to 

the unknown external loads (vector L) by the equation: 

2 (2.2) 

where K = x - k_. A, amd known as the overall stiffness matrix of 

the structure; A is known as the displacement transformation matrix 

and ik is its transpose. 

For a general frame member connected to joint i at end 1 and joint 

j at end 2, the stiffness equation (2.2) can be partitioned as: 

bi Kia: Bag oes 

: K; Ke: x (2.3) 
Ly 44 3) 53 

where the submatrices yp ne) kK and K represent the 

ae ot 3 
contributions of a single member to the overall stiffness matrix of the 

frame. These contributions, and the vectors in equation (2.3), are 

expressed as:
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in which A is the section area, I is the second moment of area for the 

section, E is the Young's modulus of elasticity, L is the length of 

that member, %) and m, are the direction cosines for the longitudinal 

local axis P which is indicated by an arrow pointing to the second end 

of the member, Figure 2.1. It is noticed here that the axial stiffness
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(EA/L) is included in the coefficients of (2.4). However, the 

stability functions are excluded which means that the effects of axial 

forces in the members are not taken into consideration. 

The .. symbols Hy Ve, Ms oe BH, v5, >. in equation 

i i i 2 3 5 
(2.4) are the external horizontal, vertical and moment loads applied at 

joints i and j respectively. These loads are vectorially equivalent to 

the joint displacements x,y , Oo; and x,y, 9.. 
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FIGURE 2.1: MEMBER COORDINATES AND POSITIVE SIGN CONVENTION 
  

2.3 DESIGN ASSUMPTIONS 

The approach adopted in this thesis to the optimum design of steel 

frames makes two assumptions. The first is that there is a continuous 

set of sections available from which to select. This is necessary for 

the application of the approximating programming method and does not 

cause serious errors. If a discrete set of sections is required to be
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used, then the Integer or the Dynamic programming can be employed, 

(Toakley, 1968) and (Bellman, 1957). However, these methods can 

complicate the design process and optimality cannot always be 

guaranteed. 

The area (A) and the second moment of area (I) of the section are 

considered as the main unknown variables in the design of rigid frames. 

It is preferred to employ only one of these variables to derive the 

objective function and the constraints. Therefore, a second assumption 

is made by relating A and I to each other. Although these sectional 

properties do not have any direct linear relationship with each other, 

it is possible by fitting a curve to the discrete points to obtain 

reasonable relationships. Clarkson (1965) gave such relationships for 

British Standard joists. However, throughout this study the 

relationship given by Templeman (1971) for the "Universal" Beams are 

used 

- fe 
Liem oak A ie: . Ao. 0.559 (2) (2.5) 

This equation is employed only for the beams of the frame. No similar 

equation can be found for the columns. MThis is overcome herein by 

plotting log I against log A for all the "Universal" Columns available, 

as shown in Figure 2.2, and from this an equation can be found. The 

nearest linear curve that fits the discrete points in the Figure has 

the formula: 

og to * Le (log A) Fe (2.6)



     
         

    
  

      

   

47 

  

>A 

ue UC 356x406x634 : 

log I 

32 OT 

@ /e<— UC 305x305x283 

UC 356x368x129 ——>® 

4. Sh 6 

@<—- UC 254x254x167 
@ 

UC 305x305x97 ——>® 

4.04 
UC 203x203x86 

log I = ¢ (log A) +q 

3.54 Gq = “Constant = 0.62 

3.4 O--= Slop Angle = 1-7 

@<—— UC 152x152x37 
Bes 

3.2 

Sl 

log A 
a0) + + + + + + + + as i" one 

ae Se Vee cl: Si leg oO) 255 2°59 

ny
 

4
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with. ->...#. 1.7 and: @° = 2062, Thus, after simple mathematical 

calculations, the following relationships between A and I of the 

columns can be deduced: 

1.7 0.59 
I = 4.17 (A) i.e. A = 0.24 (T) (2.7) 

2.4 THE DESIGN PROBLEM 

The design problem described here is the optimisation of multi- 

storey, rigidly jointed, steel sway frames. The problem is divided 

into two types. The first type is minimisation of the total weight of 

a fixed shape frame. The second is minimisation of the total cost of 

the frame in which the number amd the position of the columns are 

considered as variables. The objective function represents either the 

total weight or the total cost of the frame. The total cost includes 

that of the material and other handling costs. The latter are treated 

as a lump sum against each member. 

The main design variables are the cross-sectional properties of 

the members which are determined by the design requirements, not by the 

designer. Using the matrix displacement method, there are three sets 

of design requirements which should be satisfied to obtain an optimum 

design. These are: 

(1) The stiffness constraints which ensure that the frame is strong 

enough to carry the applied external loads. 

(2) The sway deflection constraints which keep the relative deflection 

between the storeys below their specified allowable values. 

(3) The practical constraints which ensure that the sections obtained 

can be supplied from the universal beams or columns.
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In the design of rigidly jointed steel sway frames, the 

deflections are more critical than the strength requirements. This 

conclusion was confirmed by Saka (1975) who found that the choice of 

sections was governed by the deflection requirements, not by the stress 

criteria given by equation (1.13). Therefore, to save camputer time 

and storage, no stress constraints will be considered here as they were 

proven to be inactive. Furthermore, the design herein assumes lateral 

support for beams and columns against buckling about minor axes. 

Therefore, buckling constraints are not considered. 

2.5 THE OBJECTIVE FUNCTION 
  

For minimum weight design, the objective function is calculated 

from: 

Vici Sh eeeA. sel a VE (2.8) 

where M is the total number of members, and for member i: 

A is its section area, 

be is its length, and 

Y; is its density. 

Equation (2.8) allows for variation in density fran one member to 

another. However, for simplicity, Y is assumed constant in the present 

design problem. Furthermore, the members are often grouped together 

for practical reasons, thus the objective function (2.8) becames: 

Sf Ee A, Go (2.9) 

where g is a typical group of members, amd NOG is the total nunber of 

groups.
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In order to minimise the total cost, then, for a typical member i, 

let z be the total cost, c be the cost per unit weight of the 
i i 

material and R_ be all the other costs involved in constructing 
i 

member i, such as fabrication, erection, surface treatment, etc. ‘The 

total cost can then be expressed as: 

2 eo De Fee (2.10) 

In this equation, when A > 0, z exceeds R. The value of c 
| i . : 

is allowed to vary fran one member to another. In fact, by sub- 

division and insertion of extra joints along a member, it is possible 

for c to be varied even along each member. Equation (2.10) can cope 

with this variation. However, c is considered to have two different 

constant values, one for the beams and another for the columns (Section 

2.11). In general, the total cost of a frame is minimum when: 

Z = 

M 
zr 

c : Ae ie cy): Ce R,) (2.11) 
sae 43 

i=1 

is minimum. 

The objective weight and cost functions, equations (2.9) and 

(2.11) respectively, are linearly related to the design variable A. 

outtis.4:- in R indicates that the non-material costs vary fran one 

member to er A method is proposed for the assessment of Ry 

and this will be explained in Section 2.11. ;
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2.6 THE STIFFNESS CONSTRAINTS 

It is necessary to select a set of sections for the members of a 

frame so that it becomes sufficiently stiff to carry the applied loads 

while the design requirements are satisfied. This necessitates the 

inclusion of the stiffness constraints which are in the form: 

Boek & = EL = 0 (2.12) 

where H represents these constraints. 

If the sectional properties are known am specified, then the 

overall stiffness matrix K will contain three rows am three colums 

for each joint of the frame. This matrix can be constructed by finding 

the members connected to each joint amd adding their contributions 

together at the locations corresponding to that joint. The process is 

repeated for all the joints in the frame. The matrix produced is 

symmetric. 

However, during the design of a frame, this symmetry is lost 

because the sectional properties of the members are the design 

variables. In particular, the section areas of the members are 

considered to be the main design variables for the programming problem. 

Since the stiffness matrix contain both the area and the second moment 

of area of a member, it becomes necessary to separate the elements of 

expression (2.4). 

Saka (1975) has shown that the submatrices Rey KY = and 
BS ij at 

K can be separated as follows: 
a
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where 

« ie a 2 
Di, © EB &, 1 te By = Bo dy ty fee, = Em 7 

are the coefficients of the area variables (A), and 

s 2 S a Z 3 ee 2 
Dj. = 12Em /L, Bo =2E&m,/L, C=-6Em,/L 

het 7, ee 4 8 | Bee 2 Ee / 1 

are the coefficients of the second moment of area (I). The 

relationships (2.5) and (2.7) can now be used to express the second 

moments of area of the sections in terms of the areas alone. In this 

way, the first and the third columns of the sub-matrices in (2.13) are 

linear functions of the member area, while the rest are norlinear. 

This approach of separating the sub-matrices is adopted in the present 

design problem. 

To construct the design stiffness matrix K for the constraints in 

(2.12), it is necessary to keep the contribution of each member 

separate. This means that the stiffness matrix will have three rows 

for each joint but five columns for each member connected to that 

joint. Generally, for a total of pia in a frame, the overall 

stiffness matrix has 3N rows amd 5 Je M,) columns. . other words, 
aes 

the matrix is not symmetrical and its order is [3N, 5 (2 M,)] . 
j=1 

Here M is the total number of members connected to a typical joint 

alts 1, for practical reasons, members are grouped, then M will be 

defined as the total number of different groups connected to Fatt je 

Using Saka's (1975) approach, Figure 2.3 shows a layout of the 

overall stiffness matrix for a portal frame of two joints. The order 

of this matrix is as given above. It is assumed that each member 

belongs to a single group so that its coefficients have their own 

columns in the matrix. It is also noticed that member 3 does not 

contribute to rows of joint 1, and member 1 does not contribute to rows
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of joint 2. The last: line in Figure 2.3 specifies the properties of 

the members and the manner they contribute to the joints. 

DeOed Linearisation of the Stiffness Constraints 
  

As shown in the previous Section, the formulation of the stiffness 

constraints by the matrix displacement method reduces the structural 

design problem to a non-linear programming problem. The approximating 

programming method has been found by many research workers to be 

effective for linearising many problems, (Cornell, et al, 1966), (Saka, 

1975) and others. 

The vector for the design variables has the form: 

Vi ON. } (2.14) 
ae {v Dr ee. m Ml ery Vin+3N 1 

where the first m variables represent the areas of the groups and the 

rest represent the displacements of the joints. Here, N is the number 

of joints in the frame. Vector V can be partitioned in the following 

Manner 

\ oaogae aurea (2.15) 

{A .... A } contains the areas and 
1 m 

x = 282 ys 8 ii ew Bees contains the joint 
a ee N NN 
displacements. The stiffness constraints are functions of A and X, ard 

where the sub-matrix A 

therefore they have the form: 

B ay kX) RA) ee ee 0 (2.16) 

The linearisation by Taylor's series requires the gradient vector
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VH, which consists of the derivatives of a single constraint with 

respect to each design variable at given values of these variables, 

such as: 

op Pe ee 
3A, A, 3A, 8x, BY, 30, (2.17) 

Thus, the derivatives of the stiffness constraints with respect to the 

member areas are: 

oH OK(A 

Te ane) (2.18) 
zy 3) 

qi e= ees TM 

The relationship between the area A, and the second moment of area I is 

in the form: 

, ee ee ok. (2.19) 

where p and r are constants given by the relationships (2.5) amd (2.7). 

When the computer is used to carry out the calculations, the derivative 

of I with respect to A is done in the form: 

see RT (2.20) SI
E 

The derivatives of the stiffness constraints with respect to the 

displacement variables are: 

oH es 
ee K (A) (2.21) 

5 = ali eee 3N
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2.7 THE DEFLECTION CONSTRAINTS 
  

In frame optimisation, two types of deflection constraints are 

commonly specified. These are the sway deflection amd the joint 

deflection constraints, which will be explained in some detail below. 

waleu The Sway Deflections 
  

The sway deflection constraints are often confused with those of 

the joint deflections, (Majid, 1974a) and (Saka, 1975). The BSI B/20 

document 77/13908 DC(1977)imposes an upper bound not on the joint 

deflections but on the actual sway in a member. For instance, in the 

frame shown in Figure 2.4a, the sway in each storey should not exceed 

an upper bound of h/ 2% where h is the storey's height, amd & is a 

constant chosen by the designer such as 300, 350, 400 or any other 

value. In this manner, the sway deflection constraints that cover all 

the possibilities of the sway deflections for this frame became: 

< Pe 

Kee $ hy foe 

a es < hy eae, 

fo s h, To 

Hy 7 ee $ h, Lies 

(2222) 

In the general case, if x amd x are the horizontal deflections 
i itl 

at floors i and i+l respectively, then the deflection constraints for 

the connecting columns are: 

i Xia Roa fs * 1 WA
 

Be (2.23) nw ! * A D 

i+1 1: i+1
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These two sway constraints are specified for each storey to cover the 

possibilities shown in Figure 2.4. 

It is noticed that the sway requirement for the ground floor 

columns limits the actual deflection x. For each leeward colum, 

above this floor, only the relative eee are controlled. If the 

extension of the beams is neglected, sway constraints similar to 

equation (2.23) need not be specified elsewhere. 

Reverse column taper is often avoided by structural engineers 

through making the section of a column larger than the one it supports. 

For instance, in Figure 2.45 column AB is made larger than BC which 

itself is made larger than CD. This requirement is not specified in 

any code and need not be implemented. However, if required by the 

engineer, it can be achieved by specifying deflection constraints of 

the type: 

os ge ee ee 

| x, | | X= > | 

with A, 2 A, 2 A, (2.24) 

and in general: 

| x 7 Xi y eee es Ka gg My (2.25) 

where i is the floor number, and x is the deflection at the bottom 

of the lower column. These Sect ensure that whatever the 

magnitude of these deflections, the relative sway in the upper column 

will not be less than that in the column below. In this manner the 

upper is prevented from being stiffer than the one below it. The 

deflection profiles shown in Figure 2.4d and e, can still occur because
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the upper beams may be larger than required by the sway criterion. ‘To 

avoid this, the last of the equation (2.24) is introduced, where A , 
’. 

A and A are the area of the beams as shown in Figure 2.4a. 
a 2 

Zs hee The Joint Deflections 
  

Since the joint displacements are introduced as the design 

variables, the actual value of the deflection x at a joint j may be 

7 
limited by an upper bound U. The deflection constraint is then: 

5 

XS U (2.26) 

Mathematical programming problems are formulated subject to the 

condition that all the variables appearing in the solution are non- 

negative. However, in an actual structure it is difficult to predict 

the direction of each joint deflection as this is dependent on the 

unknown sectional properties of the members. ‘To cater for negative 

deflections, it is necessary to alter inequality (2.26) by 

substituting: 

where X iS a new nonnegative unknown variable and e is a 

J 
constant. When X is not in the optimum solution, i.e. X = O, 

equation (2.27) ae - oe and thus - e is selected oe the 

most negative value “es x can Soeeibiy take. 46; in addition, the 

permissible value of + : is limited to Ur then the deflection 

constraint for x becomes: ; : 

J
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i ae en ae OS et 

3 J 5 J 
1.€. 

KS Ue ete (2.28) 

J 5 J 

toe 2 eo 

3 

Equation (2.27) amd inequality (2.28) ensure that - e & x s 

3 
U. In the case where the most negative and positive values x can 

3 j 
take are equal, inequality (2.28) becomes: 

Ro ke UU = 

j j j j 
1eCe 

he aoe (2.29) 

j j 

This is the type of deflection constraint which is used herein for the 

design of frames. Thus, whenever x appears in the design 

J 
formulation, it must be replaced by Mery and further the 2 

deflection constraint (2.26) must be replaced by constraint (2.29). 

Each joint of a plane frame introduces three variables to the 

design problem. These are the horizontal displacement Xr the 

vertical displacement y and the rotation of that joint Sy : The 

bounds on these variables meu ee respectively, and 

since the sway deflection st ee aes the ae significant for the 

design of multi-storey frames, these bounds are taken considerably 

large so that they do not play an important part in the design problem. 

However, there are some exceptions. For instance, BS 449 considers a 

structure safe when midspan deflection of its beams does not exceed 

L/360, where L is the length of a beam. In addition to that the sway 

deflection should be satisfied.
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There are many points where the displacements are not restricted 

by the design requirements. For instance, the rotation, such as 85 at 

joint D in Figure 2.4b, is not limited by any design code, except that 

it should be small. In this case, the value of U6s = 0.08 radians is 

convenient, because linear structural theories are only applicable for 

small deflections with | 8 | < 0.08 radians, (Majid, 1974a, p. 174). 

In the design of sway frames, the joint displacements are not as 

significant as the sway deflections. However, these displacements must 

all be limited by some boundaries, otherwise, the linear programming 

process reduces them to zeros and excludes them fran the solution 

process. 

2.8 THE PRACTICAL CONSTRAINTS 
  

The cross-section of any member should not be less than that 

dictated by the strength criteria. In a steel sway frame, the beams 

under dead load and vertical super load should not collapse by a beamn- 

type mechanism, below a load factor Ay = 1.75, according to many codes 

of practice. The plastic hinge moment of any beam j can be calculated 

in advance using the simple plastic theory, amd a section is assigned 

to it. The area of this section A : is then considered to be a lower 

bound for beam j. ‘The upper bound ae given by the largest available 

section in the "Universal" beams. For a column the upper amd the lower 

bounds are decided by the largest and the smallest available sections 

in the "Universal" columns.
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When the members are grouped together, the group areas are 

considered as the variables in the programming problem. Hence, it is 

necessary to impose a limitation of the form: 

A. Ss hoe Ss Cl 
PJ J AL max 

< < 
Amin a ‘ ee Amax (2.30) 

j= a eeee NOGB nh ete e@eee NOGC 

where NOGB is the number of beam groups, NOG is the number of column 

groups, i.e. NOG = NOGB + NOGC, A_ is given by the beam mechanism 

Pj 
for beam group j, A is the largest beam section available, 

bmax 
A and A are the smallest and the largest column sections 
cmin cmax 
available. 

Through the design operation, the section areas are bounded by 

applying the move limits (ML) in the following way: 

ie) A SOR. St). A (25315 

The values of these boundaries should not be less than, and should not 

exceed, the boundaries described by (2.30), such as: 

(1 — ML) A, 2 Bog ees Soe pease: 

(1 - ML) . Ay 2 Ana eo for Columns; 

(1 + ML) -A,& bees tn for Beams; 

(1+ ML) . A, s Amax ‘17° for Columns 

(2.32)
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2.9 TOPOLOGICAL DESIGN OF MINIMUM COST 
  

A significant feature of the design problem is that in equation 

(2.11) the handling cost R_ should ke included only when it is 
i 

economically advantageous to keep member i in the final topology of the 

frame. If not, then A should reduce to zero, as should R. Thus, 
i i 

there is a discrete problem of an either/or nature. In mathematical 

programming this gives rise to integer programming (Hadley, 1964). 

The objective cost function (2.11) does not, as yet, cater for the 

fact that the cost R has a value only when member i is retained in 

the design. It is there tire necessary to define another new variable 

Oy to be associated with each member. This must explicitly express two 

facts: 

(1) Each 6; must be equal to unity when member i is retained in the 

final design. : 

(2) Each 5 must be equal to zero when it is econamical to remove 

member i. 

The objective cost function (2.11) is thus altered to became: 

M 
a er é (Aves oy oO 2 R56, ) (2.33) 

AS eh he ie 

Here for each i, 85 = 0 if A = 0, or else when A > O, then 65 = 1 
‘ i 

It is to be noticed that when 65 = 0, R O5 vanishes and the 
i 

handling cost of member i is saved because the member is excluded. 

To guarantee that 65 can take only the values of zero or one, 

(Hadley, 1964), a new constraint should be introduced, such as: 

So
) 

WA
 

OQ WA
 

=
 i (2.34) 

4) = Ne oe 6 M!
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where M' is the total number of the members required to be removed. 

Notice that a value of 5; = 1 is given for all the members required to 

be kept. It is also necessary to specify an upper bound A on 

each area A. This can simply be selected by the engineer ms the 

largest Seatiabie section. However, through the design operation, 

A is decided by applying the move limit value on the section 

saat and this should not exceed the selected largest available 

section. 

The mathematical programming problem now becomes that of 

minimising the objective cost function (2.33), subject to the design 

contraints stated earlier in Sections 2.6 and 2.7, amd also subject to 

constraints of the type (2.34) and: 

A, - A. Onn S230 (2635) 

6. is integer 

dim Ly vee MM 

Constraints (2.34) and (2.35) ensure that the area of member i cannot 

be positive unless 6, = 1. This is because the only other value 6; can 

take is zero and in this case A = 0, and the member is removed fron 

the final design. a 65 : 1, then A s A which is 
i imax 

permissible. Furthermore, an optimal solution will not have 65 me AGE 

A = 0, because the simplex method produces a cheaper design simply 

ty reducing 5 also to zero. This reduces the total cost specified in 

formula (2.33). 

It was stated earlier that before using the simplex method, it is 

necessary to linearise the constraints. To encourage the convergence 

of the original non-linear problem, "move limits" may be needed to 

narrow the feasible region for each linearised substitute. The design
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problem presented here aims at altering the topology of the sway frame 

by removing column members fran the original structure. Thus, for 

members allowed to be removed, there are no lower bounds imposed on 

their section areas. the other hand, some members, e.g. the beams 

and the outer columns, have to be retained in the final topology. ‘To 

keep these, lower bounds are imposed on their section areas, using move 

limits. The upper bounds imposed on all the members are also decided 

by using move limits, as described in Section 2.8. 

It is an acceptable engineering opinion that the cost of a 

structure is reduced by grouping the members together, so that members 

in one group are manufactured out of the same section. The objective 

function (2.33) is therefore modified to became: 

NOG 
ee AL + Be Z, z, (A, a 5 g) (2.36) 

Thus, a single 5 decides the existence or the removal of a whole group. 

This saves cost and simplifies the problem. 

2.91 Computational Economy 
  

In the sort of problem formulated in the previous Section, there 

are two distinct types of variables. These are the areas, each of 

Which has an associated fixed charge, amd other free variables. These 

two types make the problem that of mixed integer-continuous case 

(Hadley, 1964). It is possible to use the integer programming 

algorithm to solve a general problem either for the all integer case or 

for the mixed integer-continuous variable case. 

As it stands the integer programming problem is costly fran the 

computation point of view. Toakley (1968) carried out an investigation 

into the minimum weight design with discrete sections which also gave
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rise to integer programming. His conclusion, also confirmed by Hadley 

(1964), was that integer programming enlarged the problem to the extent 

that it overshadowed its advantages. To avoid it in the present work, 

therefore, the following decisions are taken: 

(a) At the end of each simplex solution, if any 5 is reduced to zero, 

member i is removed fram the problem. Thus, the problen itself is 

reduced before the next round of linearisation. 

(6) Tf ary 5 is very small compared to the others, or it is smaller 

than a specified tolerance, it indicates that member i is not 

really significant from the structural engineer's point of view. 

Therefore, this member can be removed, provided that feasibility 

can be restored in the next design iteration. 

In this manner, no attempt is made to use an integer programming 

algorithm. The simple steps which will be listed in the design 

procedure are thus adopted instead. Designing a large number of frames 

showed that this simplification always gave acceptable results. 

2.10 COST ASSESSMENT OF A STEEL FRAME 
  

In this Section, an investigation is carried out into the manner 

in which the cost of a plane rigidly connected steel frame is assessed. 

This assessment depends on the costs of the material and on other 

construction costs. 

In a report written by Davis, Belfield am Everest (1980), 

sufficient information was presented about the rates for labour, 

materials and measured items of construction which were intended to be 

an indication of the pricing levels, at that time, for reasonable 

quantities of work. MThe hourly labour rate, on which the measured 

rates of construction have generally been based, was £2. This depended 

on the authorised rates plus certain allowances. Therefore, according
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to the report, the cost of a frame can be computed, using Appendix A, 

as follows: 

(I) 

(II) 

Material Cost 

Market prices for structural steel materials are given below. 

They include delivery charges; they do not include any allowance 

for overheads and profit and they exclude any payments in respect 

of VAT. 

- Universal Beams (Average) £225 / ton 

- Universal Columns (Average) £235 / ton 

Construction Costs 

The measured rates, given below, have been prepared on the basis 

of the labour rates and material prices indicated above or on sub- 

contractors' quotations. The rates include ten per cent for 

overhead charges and profit; they exclude any allowance for VAT. 

The items presented are generally in accordance with the Civil 

Engineering Standard Method of Measurement issued in 1976 by the 

Institution of Civil Engineers and the Federation of Civil 

Engineering Contractors. Some adjustments to this have inevitably 

been made to meet the needs of a price feature. The items 

considered are: 

(a) Fabrication of members 

—- Columns for frames £500 / ton 

- Beams for frames £470 / ton 

(b) Erection of members 

- For rigidly connected frames £° 70: / ton 

(c) Surface treatment 

- Shot blast and one coat primer at work 6135 /. ton
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(d) Construction cost of an independent foundation for each 

ground column. (This will be discussed in the next Section.) 

The main conclusion achieved here is that it is possible to 

express the construction cost in terms of member area, i.e. per 

unit weight. Thus, for a typical member i with cross-sectional 

area A and length L , the construction cost R is expressed 
1 t 1 

as: 

Roe A ie ¥ (2.37) 

where Y is the steel density, amd D_ represents the total cost 

of the construction items pentioned! above. For beam i, the 

numerical value of D = £470 + £70 + £135 = £675/ton = £68.8 / 

KN. ‘The cost of pe the foundation, which is item (d) of the 

construction rates, is only included in assessing the cost of the 

ground columns of a frame. 

2016.1 Construction Cost of an Independent Reinforced Concrete 
  

Foundation 

The estimate of the total cost of a structure should include the 

cost of its foundation. This fact has been ignored by many engineers 

who have tried to obtain minimum cost design. It is well known that 

for a particular structure there are different types of foundation that 

could be used, and choosing a suitable one depends on certain factors 

which were mentioned in many books, such as (Astill and Martin, 1975), 

and others. However, the type of foundation for all steel frames 

considered in this thesis is specified as an independent or "pad" 

foundation. In particular, a reinforced concrete pad foundation is 

considered where each pad carries one steel column only.
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The measured items of construction presented by Davis, Belfield 

and Everest (1980) are used to assess the cost of these foundations. 

For the purposes of illustration, a typical simple example of a pad 

foundation is considered. This was designed to withstand the effect of 

the imposed loading shown in Figure 2.5a. The design methods used have 

been described by Allwood, et al, (1972), Allen (1974), Faber and 

Johnson (1976) and many others. The steel column, which transfers the 

loads, sits on a square steel slab with dimensions of 0.35 x 0.35 m, 

and is supported by a reinforced concrete base. The size of the base 

was determined by the design method used. It would have been possible 

to choose a different shape for the base but, for simplicity, it was 

decided to use a square base, as shown in Figure 2.5b. The allowable 

concrete compression was taken as 6100 a and the soil bearing 

capacity was considered to be 300 a Grade 25 concrete was used 

for the base. The reinforcement required was supplied by high yield 

bars of 16 mm diameter, the total mass of which was 0.11 ton/base. 

The items of construction, Figure 2.5c, and the measured rates are 

all shown in the self explanatory Table 2.1. Amount means the price of 

an item, and is calculated as: 

Amount = Quantity of units x Rate of one unit (2.38) 

The measured rates are used under the same conditions mentioned in the 

previous Section. The main items of construction are earth work, in- 

situ concrete work, and concrete ancillaries. The costs of these are 

summarised at the bottom of Table 2.1, and the total construction cost 

of the pad footing is estimated to be £175.



485 KN . 
0.35 

m 

16 
130 KN.m 7 _ tak 

50 KN - 

oe J n 

0.6 0335 4m 

m Lo 

71 

The cost of the foundation, as assessed above, excludes the cost 

of all materials in the permanent work. This is because the material 

cost is considered to be irrelevant, and does not really effect the 

overall cost of the frame. 

  

            

  

  

1°56 mex’) 6en 

(a) (b) 

(a), (b) Dimension and loading. 

    

  

  

  

      
        

          

G.L. 
~ ieee oe a ———— er 

i eee a Co St ' . Fe : 

0.5 es * ee = Piegmeeersiiieicneinbigheninn Material for re-use 

Oe See ee 1.6 x 1.6 x 0.5 = 1.28 m’ 

1.15 a ba Bhat 0? ee = sary 
m 0.6 ° uy ee it neg En o 9g 

se gst . eS ee Material for disposal 
onic ogee © cee 1:6 x 1.6% 0.65 = 1.664 m? 

Wes eee ye” ie Ml ; os : 

N 0.05 Mie ETE TEST — 

Blinding concrete (50 mm) 

: aoe 126 x 70205. =(0.128  m-: 
< 1.6m x 1.6°m 

Square Base   
Preparation of Surface 

LeGexsli60> .2-560m* 

  Volume of the Reinforced Concrete Base 

1-6 x 1.6 x10060=4 54 m: 

    
Vertical formwork for (0.4 - 1.22 m) width, rough finish, 

area = 4 x 116 x 0.6 = 3.84 m: 

(c) Construction items. 

PIGURE 235 > AN INDEPENDENT CONCRETE FOUNDATION FOR A STEEL COLUMN
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Number Item Description Unit Quantity 
Rate 

E's 

Amount 

E's 

  

(1) Earth Work: (In firm soil) 

(a) Excavation, Maximum 
Depth (1 - 2 m). 
- Material for re-use 
- Material for disposal 

(b) Excavation Ancillaries- 
- Preparation of sur- 

face for natural 
materials 

(c) Filling and Compaction. 
- To structures 

selected excavated 
material 

Total Earth Work Cost 

m? 

m? 

1.20 
1.664 

2.00 

1.28 

6.11 

0.65 

0.28 

0.83 
  

T59 
  

  
(2) 

  
In-Situ Concrete Work: 
  

(a) Provision of concrete. 
- Design mixture Grade 

10 cement to BS4027, 
Sulphate resisting, 
20 mm aggregate, for 
blinding the bottom 
of the base 

- Design mixture Grade 
25 cement for the 
base 

(b) Placing of mass 
concrete. 
- Blinding thickness 

not exceeding 150 mm 

(c) Placing of reinforced 
concrete. 

- Bases thickness over 
500 mm 

Total In-Situ Work Cost   
0.128 

1.54 

0.128 

1.54     
28.41 

i a 

os 

4.00 

3.64 

51.00 

0.73 

6.16 
    61.53 

  

TABLE 2.1: 
CARRIES A STEEL COLUMN 

CONSTRUCTION COST OF A CONCRETE PAD FOOTING THAT 

(CONTINUED) / 
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Number Item Description Unit | Quantity a > oe 

(3) Concrete Ancillaries: 

(a) Formwork rough finish. 

- Plane vertical width 

(0.4 - 1.22 m) m? 3.84 8.99 34.52 

(b) High yield bar 
reinforcement. 

- Bars to BS 449, 
16 mm diameter ton 0.11 394.17 43.36 

(c) Form pockets and grout. 

- In holding down 
bolts Nr* 4 6.0 24.00 

Total cost of Concrete 

Ancillaries 101.88 

Summary: 
(1) Earth Work 11.59 

(2) In-Situ Concrete Work 6153 

(3) Concrete Ancillaries 101.88 

.. The total construction cost of a 175.00 

| pad footing foundation ‘ 

* Nr Number 

TABLE 2.1: (CONTINUED) 
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CHAPTER 3 

EXAMPLES ON THE OPTIMUM DESIGN OF FRAMES 
  

3.1 THE PRINCIPLE OF DESIGN 
  

A multi-storey or a high-rise building is defined as one affected 

structurally by the lateral forces, such as wind, earthquake and blast 

forces. This type of building usually resists the lateral forces by 

using stiff core, shear walls, or specially designed bracing frames. 

If traditional beam-columns are included in such buildings, they may be 

designed to carry vertical loads only. However, such a construction 

may, in some cases, be found undesirable in order to satisfy other 

functional requirements of the building. In these cases. the 

traditional frames are designed separately as plane sway frames that, 

by their beam-column combinations, resist some of the overall lateral 

forces applied to the building. The multi-storey frames designed here 

belong to this type of building, and the lateral forces are assumed to 

be only that of the wind. 

3.2 THE DESIGN CRITERIA 

As specified in British Standard B/20, document 77/13908 (1977), 

the design method controls the actual sway in the columns as opposed to 

the joint deflections. Only multi-storey, rigidly jointed steel 

frames, in which the sway of the columns governs the selection of the 

member sections, are considered here. The resulting design can then be 

checked, by an analysis, to ensure that the strength requirements are 

satisfied. 

The design criteria adopted here are: 

(a) Under dead load amd vertical super load, the beams should not 

collapse by a beam-type mechanism below a load factor A4 :
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(b) Under specified unfactored combined dead, super, and wind loads, 

the elastic sway in any column should not exceed h/X where h is 

the column height, and & is a constant, such as 300, 350, or 

whatever value is required by the engineer. 

(c) Under the combined dead, super, and wind loads, no plastic hinge 

should develop in a column below a load factor of Ay + 

In this chapter the factor 4, and A, are taken as 1.75 and 1.4, 

respectively. Any other values can be given to these, depending on the 

code of practice used. 

All the members of the frames are made out of fabricated steel 

material, with density 77 ae Young's Modulus 207 eee and 

Yield Stress 0.25 eae Steel Grade 43 is used where the 

permissible stress in compression due to bending is 0.165 on for 

2 

web thickness up to 40 mm, and 0.15 KN/mm for over 40 mn. 

3.3 MINIMUM WEIGHT DESIGN 

The examples solved for the minimum weight design of rigidly 

jointed multi-storey steel sway frames are related to the first part of 

this Chapter. Generally, the frames designed are practically large and 

tall, with realistic wind and vertical dead and live loadings. The 

frames can be governed by the limitations specified by the codes on the 

permissible horizontal sway of each storey. 

By solving the design examples, an investigation is carried out on 

the effect of the move limits on obtaining the final design. ‘The 

importance of selecting the initial design point, and whether this 

point could be found by using other methods, are also discussed. The 

reliability of the optimum design under different loading cases is also 

examined.
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Sesenk An Outline of the Design Procedure 
  

The minimum weight design procedure of frames consists of the 

following steps: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Develop the ground structure fran a network of nodes or joints, 

and give a number to each joint and each member starting from the 

first floor. 

Group the members together, if required. This approach not only 

reduces the computation, but also can make use of engineering 

experience to advantage. 

Calculate the dead loads which are assumed as concentrated loads 

applied vertically on the joints. Each of these loads is taken as 

equal to half the weight of all the members connected to the 

joint. Introduce the life super loads, and specify whether they 

are concentrated or uniform or the combination of both. 

Furthermore, calculate the horizontal wind loads according to the 

code of practice (CP3, 1972). Allocate the values of the computed 

external loads on the joints of the frame. 

Select lower bound and upper bound areas for the columns. These 

bounds should not be exceeded by the ones imposed by the move 

limits. 

Select the upper bound areas for the beams, amd also do the 

necessary computation to select the lower bounds so that criterion 

(a) is satisfied. Similarly to the columns, these bounds must not 

be exceeded by those imposed by the move limits. 

Select a set of initial section areas for the members. An 

arbitrary infeasible set, with no calculation, will suffice. 

However, engineering judgement in selecting these may reduce the 

computer time. Other iterative techniques may be used here to 

compute a better set of initial sections which may be nearer to



(7) 

(8) 

(9) 

(10) 

(12) 

(12) 

i 

the optimum design and thus save camputer time, as will be shown 

later. Notice that the dead load, in step (3) above, can be 

computed now. 

Use the section areas given to convert (I), by employing 

relationships (2.5) and (2.7), and analyse the structure by 

solving the stiffness equations (K X = L), and find the exact 

displacements. Then use the area amd the displacement variables 

as the starting point for the next design iteration. 

Formulate the objective function as the weight of the frame, amd 

send the coefficients to the backing store, (Chapter 8). 

One row at a time, construct the linear forms of the design 

constraints and transfer them to the computer backing store. In 

this way all the coefficients of the design problem are stored on 

a disk, (Chapter 8). 

Use the simplex method to minimise the weight function. 

Use the areas obtained and repeat the process fram step (7) until 

convergence is achieved and the optimum solution is determined. 

The convergence limit utilised is that the change of the objective 

function (Z) on two successive design iterations will be less than 

a+1 Z*) i Z) S €, where ¢€ is € of its current value, i.e. ((Z 

a selected tolerance and i represents the present design 

iteration. In this thesis it is found reasonable to take the 

value of € as about 0.1%. The flow diagram of the design 

procedure up to this step is shown in Figure 3.1. 

The above results are for unfactored cambined loads and criterion 

(ob) is fully satisfied. If required, analyse the structure, by 

solving the stiffness equations separately using the program 

written by Celik (1977). The section area (A) and the value of 

(I) for the universal sections, which are equivalent to the
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? 
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FIGURE 3.1: THE FLOW DIAGRAM OF THE MINIMUM WEIGHT DESIGN PROCEDURE 
FOR THE FRAMES
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optimum sections obtained, are used in this analysis. Find the 

exact values of the bending moments, the shearing forces, the 

axial forces and the deflections. Multiply the maximum bending 

moment in each column by 45, . If the result is less than the 

reduced plastic hinge moment M, (Majid, 1978), the strength 

criterion (c) is satisfied for that column. If not, increase the 

column sections so that M is more than the factored maximum 

bending moment. 

(13) Check if all the stress requirements are satisfied and carry out 

minor changes to the sections where these are violated. As stated 

the stress constraints were excluded for simplicity and speed of 

operation. In the case of sway frames, the wisdom of this 

decision was confirmed by the numerous examples solved. 

3.3.2 The Effects of the Move Limits 
  

When the non-linear programming problem of a steel sway frame is 

transferred to a linear programming one, it is obvious that this 

linearisation will introduce errors in the solution of the problem. 

These may be controlled by imposing some bounds on the design variables 

which are known as move limits (Chapter 1, Section 1.5.1.1). Saka 

(1975) found that it is only necessary to impose move limits on the 

main design variables. These are the areas of the members. The move 

limit is a positive constant factor less than one, e.g. ML = 0.6, and 

it is preselected but gradually reduced after each design iteration in 

steps of 0.1. 

When the value of ML becomes 0.1 and convergence is not achieved, 

then the iterations are continued with these particular values of move 

limits until the optimum design point is reached. As was stated
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earlier, the boundaries of the move limits should not exceed the upper 

or lower bounds imposed on the variables. 

Beside li An 11-Storey Frame with Four Equal Bays 
  

This frame belongs to a structure consisting of parallel frames 

which are 5 m apart. The details of numbering the joints am the 

members of this frame are shown in Figure 3.2, while Figure 3.3 shows 

the way the members are grouped. The grouping of the columns in this 

frame was chosen to be symmetrical. This was because the horizontal 

wind load might act from either side. Figure 3.3 also shows the total 

amount of the horizontal wind load acting at each floor level. This is 

calculated according to CP3, Part 2. The wind load was divided equally 

on the joints of the floor to represent the horizontal load on each of 

them. The external moment and the vertical load applied on each joint 

was computed by assuming the intensity of the uniform vertical super 

load (w) as 30 KN/m on the roof and 35 KN/m on each floor. 

As the relative sway deflections between storeys are considered to 

be the main governing limit-states for the design of this frame, the 

upper bound on the relative sway in a storey was taken as h/350, where 

h is the height of the storey. When solving a linear programming 

problem, it is necessary to put upper bounds on all the joint 

deflections and rotations. For this reason, the upper bounds on the 

horizontal deflections were chosen arbitrarily but larger than the sway 

limitations. The upper bound imposed on each vertical deflection was 

60 mm, and on each joint rotation it was 0.08 radian.
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The lower bound on the section areas of the columns was chosen to 

be the area of the smallest universal column section available, and the 

upper bound was that of the largest section. ‘The lower bound on a beam 

was selected fran a beam type mechanism, while the upper bound was 

chosen to be that of the largest available universal beam section. 

The frame had a total of 55 joints, and 99 members grouped into 24 

area groups. ‘The first six were beams and the rest were columns, as 

shown in Figure 3.3. The design problem had 189 variables, 24 of which 

were areas amd the rest were displacements with three variables for 

each joint. The problem had 388 constraints, 165 of which were 

stiffness constraints and 48 were constraints due to the application of 

move limits on the areas. There were also 165 deflection constraints 

and ten relative sway deflection constraints of the form: 

= ee S hy, / 350 (3.1) 

where x is the horizontal deflection at floor i, amd x is that 

at eects i+l. 

The purpose of choosing this example is to demonstrate the use of 

the move limits. It is shown here that by choosing suitable values for 

the move limits, convergence can be obtained regardless of the position 

of the starting design point. Three design cases were considered, and 

they are reported below. 

Figure 3.4 shows the values of the weight function of the frame 

for two design Cases, 1 and 2. The initial design point for Case 1 was 

infeasible and the member sections were chosen as the smallest ones 

available for beams and columns. The beam sections were selected to 

withstand a beam-type mechanism. The infeasibility occurred due to the 

fact that when the frame was analysed using these areas, the deflection
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and stress requirements were not satisfied. The total weight of the 

structure at the starting point was equal to 110.3 KN. The initial 

move limit was ML = 0.9 and the first design increased the weight to 

137 KN. That completed one iteration toward the optimum design which 

was achieved in ten iterations. Point P in Figure 3.4 represents the 

optimum design with a weight of 299.8 KN. 

In Case 2 of the optimum design, Figure 3.4, the starting point 

was chosen to be feasible. The initial design areas were given the 

largest sections available. The weight of the structure at the 

starting point was 1077 KN, amd at the optimum design the weight became 

299.6 KN. 

The results of the two design cases are shown in Table 3.1, where 

the second and the fourth columns contain the initial sections. The 

third and the fifth columns are the optimum design achieved for each 

Case. It is noticed that, although the weight is the same in both 

cases, the areas of the groups in one design are slightly different 

from those in the other. The main conclusion obtained fram this 

example is that the optimum design is independent of the starting 

point. 

In Case 3, two design processes were considered. The starting 

point for the first process was chosen arbitrarily, am this is 

represented by point A in Figure 3.5 The initial sections for this 

point are shown in Table 3.2, where the weight of the frame was equal 

to 649 KN. The initial move limit was 90%, i.e. ML = 0.9, and then 

reduced by 0.1 at each iteration until convergence was achieved at 

point B with a total weight of 299 KN. The section areas are shown in 

Table 3.2. The process was repeated for a second design with the 

initial sections corresponding to point B. The optimal solution was 

achieved at point C with a total weight of 298.7 KN. This is virtually
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Design Case 1 Design Case 2 

Group 

Number Initial Optimum Initial Optimum 
Design Areas Design Areas Design Areas Design Areas 

X 10? mm? X 10? mm? X 10? mm? X 10? mm? 

1 38.00 121.56 303.5 125.71 
. 38.00 97.21 303.5 109.63 

i 3 38.00 91.75 303.5 102.74 
4 38.00 83.82 303.5 74.99 
5 38.00 48.14 303.5 52.32 
6 38.00 38.00 303.5 38.00 
7 38.20 127.37 432.7 116.64 
8 38.20 212.55 432.7 202.60 
9 38.20 247.54 432.9 275.31 

10 38.20 101.36 432.7 95.66 
rf 38.20 163.56 432.7 153.94 
12 38.20 176.07 432.7 163.98 
13 38.20 68.81 432.7 86.14 
14 38.20 165.92 432.7 141.07 

m | 15 38.20 177.26 432.7 144.02 
5 16 38.20 53.32 432.7 46.11 
S477 38.20 125.44 432.7 132.73 

18 38.20 148.83 432.7 150.73 
19 38.20 43.97 432.7 38.28 
20 38.20 111.72 432.7 101.02 
21 38.20 76.82 432.7 111.20 
22 38.20 38.20 432.7 38.20 
23 38.20 38.20 432.7 38.20 
24 38.20 38.20 432.7 38.20 

ee 110.3 KN 299.8 KN 1077.0 KN 299.6 KN 

TABLE 3.1: OPTIMUM SECTION AREAS OBTAINED AT DESIGN 
CASES 1 AND 2 FOR THE 11-STOREY 4 BAY 
FRAME 
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a. Initial The Optimum Design 

ier Design Areas 
X 10? mm? For first process | For second process 

at B x 10° mnt 7 at ¢C X 10? mm? 

1 303.50 120.24 121.10 

2 303.50 107.91 108.76 

2 3 212.70 90.94 95.91 

rt 4 212.70 82.86 76.18 

5 155.60 49.31 45.37 

6 138.40 38.00 38.00 

7 305.60 125.33 138.18 

8 305.60 225.55 211.28 

9 432.70 227.44 234.65 

10 252.30 102.45 104.29 

11 252.30 152.63 148.70 

12 305.60 165.29 165.90 

13 201.20 72.15 77.85 

14 201.20 159.92 144.29 

m | 15 252.30 160.16 158.45 

E 16 174.60 56.17 54.15 

G47 174.60 121.03 131.00 

18 201.20 156.61 143.82 

19 136.60 41.24 44.27 

20 136.60 93.47 101.27 

21 167.70 109.77 118.08 

22 114.00 38.20 38.20 

23 114.00 38.20 38.20 

24 136.60 38.20 38.20 

ae 649 KN 299 KN 298.7 KN 

TABLE 3.2: OPTIMUM SECTION AREAS OBTAINED AT DESIGN 
CASE 3 FOR THE 11-STOREY 4 BAY FRAME 
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the same as point B but with a slightly different value for the area of 

each individual group. This confirms the conclusion that for this 

frame there is only one global optimum design. It is noticed that in 

the design tables 3.1 and 3.2, some of the group areas obtained, at the 

optimum design points, are at their lower bounds. 

By analysing the optimum solutions of the three design cases 

above, as in step (12) of the design procedure, it was found that the 

member stresses were within the permissible stress limits specified in 

section 3.2. 

3.3.3 The Significance of the Initial Design Point 
  

In the previous Section, the initial trial areas for the members 

of the ll-storey frame were selected arbitrarily. The move limits were 

decided to be ML = 0.9, to start with, and then reduced by steps of 

On: This approach used a considerable amount of computer time. 

However, engineering conception in choosing the set of initial trial 

sections for the structural members can reduce the number of design 

iterations and thus less camputer time is needed. A method, presented 

by Okdeh (1980), can be used here to initiate an economical process 

that leads to an optimum design. 

Okdeh proposed a direct procedure for designing plane steel frames 

subject to sway limitations. The stiffness equations were modified so 

that the sway in each storey was equal to some specified values. The 

modified equations were then solved by iteration to calculate the 

cross-sectional properties of the columns as well as the other joint 

displacements. The beam sections were selected initially and then 

altered in an effort to reduce the weight and the material cost of the 

frame. Okdeh employed stability functions to take the effect of axial
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loads in the members into consideration. The final design was checked 

for strength requirements and the members were altered accordingly. 

The resulting sections for the members of a frame, obtained by 

using Okdeh's method, were claimed to be feasible and very near the 

optimum design. Using these sections at the starting point here can 

therefore reduce the number of iterations required to reach an optimum 

design. ‘Two examples are given to demonstrate this. 

Bole Clerk A 5-Storey Frame with three Unequal Bays 
  

This frame was designed by Okdeh using a canputer program which 

employs the method described in the last Section. The details of 

member grouping, dimension and loading used for such a design are shown 

on the ground structure in Figure 3.6. The frame had 35 joints and 50 

members grouped together into 25 groups. The final design obtained by 

Okdeh is shown in Table 3.3. The area and the second moments of area 

of the sections selected are shown in the table. The total weight of 

this design was 120.5 KN. The design was achieved by considering the 

axial load, but it should be emphasised here that the stability 

function effects were small in this frame and including them increased 

the weight by four per cent only. 

The 5-storey, three unequal-bay frame was considered for an 

optimum weight design. As stated in Chapter 2, the axial stiffness 

FA/L of the member was included in the stiffness equations, but the 

stability functions were not. The loading and member groups were 

slightly altered. For instance, a vertically imposed joint load P at 

the midspan of a beam, was changed to a uniformly distributed load of 

an intensity equal to P/L where L, here, is the beam span. In this
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Final Design, Axial Load 
Okdeh's Effect is considered 

Group 

number (I) x 10° wenn Areas from Design Table 

(A) X 10? mm? 

1 47363 104.3 

2 47363 104.3 

E 3 21345 66.5 

& 4 21345 66.5 

5 18576 68.3 

6 11360 92.9 

7 17510 136.6 

8 14307 114.0 

o 7647 ole 

10 11360 92.9 

11 17510 136.6 - 

12 14307 114.0 

a3 6088 Vac8 

14 6088 75.8 

2 1S 14307 114.0 

E 16 6088 . 75.8 

3 17 6088 75.8 

18 6088 JD 8 

19 7647 91.1 

20 6088 13.0 

at 5263 66.4 

a2 5263 66.4 

Ao 5263 66.4 

24 5263 66.4 

25 5263 66.4 

Total Exact Weight 120.5 KN 

TABLE 3.3: OKDEH'S DESIGN OF THE 5-STOREY 

3 UNEQUAL BAY FRAME 
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manner a joint was amitted from the midspan of each beam. The grouping 

of the members was arranged so that more structural members were made 

out of the same section, and less groups were used. By making the two 

alterations, of loading and grouping, a considerable amount of saving 

in the size of the design problem was achieved. The effect of these 

alterations, on the results of a design, was trivial because here we 

are considering that the lateral sway in the columns decides the design 

outcome. 

After the slight alterations mentioned above, the frame then had 

20 joints and 35 members which were collected together into 165 area 

groups, three for beams and 12 for columns, as shown in Figure 3.7. 

The dimensions and loadings are also shown in the Figure. The 

intensity of the uniform vertical load on the 9 m beams was a 14.7 

KN/m, and on the 6 m beams was a = 15 KN/n. The upper bound on the 

relative sway was h/300. The limitation on the horizontal deflections 

of the joints were taken arbitrarily, but larger than the sway bounds. 

The upper bound on the vertical deflections of the beams was 25 mm, 

which was equal to 9000/360, and for all the joints it was 40 mm. The 

joint rotations were not allowed to exceed 0.08 radian. The upper 

bounds on the section areas of the beams and the columns was chosen to 

be the largest universal section available. The lower bounds on the 

areas were selected to satisfy criteria (a) and (c).
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Four design cases were considered. They were started with Okdeh's 

results as the initial design point. The exact weight of the frame at 

this point was 121 KN due to the regrouping of the members. ‘The first 

design case was started with a move limit value of ML = 0.1 which kept 

unchanged for all the iterations until convergence was achieved. For 

the other three design cases, each one began with a certain value of 

move limit which was then reduced by 0.1 at each iteration wntil 

convergence was obtained. Figure 3.8 shows four curves which represent 

the design cases. Each curve gives the weight function for a certain 

case. This weight was calculated after the member sections were 

selected from a list of available sections. 

It was noticed that the case which used an intial value of ML = 

0.3 required only three iterations to reach the optimum. While the two 

cases with ML = 0.1 and ML = 0.2 required four iterations, and one with 

ML = 0.4 needed five iterations. This concluded that if a suitable 

starting point was selected with ML = 0.3 then a minimum number of 

iterations was required to reach convergence. Point P in Figure 3.8 

represents the optimum design with an exact minimum weight of the frame 

equal to 107 KN. This was 11.6% less than that obtained by Okdeh. 

The section properties at the initial and the optimum design are 

shown in Table 3.4. The second and the third columns are the values of 

the universal I and A selected by Okdeh. The section areas A are the 

values of the variables that were taken into consideration as a 

starting point. Notice that the initial values of some groups in this 

table were taken as the average of two different groups chosen by 

Okdeh, and these are marked with asterisks in the second column of 

Table 3.4. For instance, the initial values of the section properties 

for group 7 were taken as the average of groups 9 and 13 of Okdeh's 

design. The fourth column, in Table 3.4, represents the optimum
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FIGURE 3.8: THE 5-STOREY 3 UNEQUAL BAY FRAME - VARIATION OF 
WEIGHT WITH DIFFERENT STARTING MOVE LIMITS



 
 

aWVadI 
A
V
A
 
T
W
N
O
A
N
N
 

€ 
A
H
H
O
L
S
-
S
 

F
H
L
 

Y
O
I
 

S
I
N
T
O
d
 

N
O
I
S
H
C
 
W
O
W
I
I
d
O
 

A
H
L
 

G
N
Y
 
T
W
I
L
I
N
I
 

S
H
L
 

LV 
S
H
L
T
a
e
d
O
d
d
 

N
O
L
I
O
g
S
 

*yepyo 
Aq 

UseSOYO 
SUOTIOSS 

jUSTEFJTP 
OM} 

WOAJ 
peqOSTSs 

sT 
uoTIOes 

aehereAe 
ue 

s
u
e
a
 

x 

*p°e 
T
I
a
w
L
 

 
 

 
 

 
 

  
 
 

  
    

  
 
 

  

NM 
O°LOL 

NM 
9°80L 

NY 
LZL 

qUuPTEM 
3OeEXA 

TeIOL 

Z°8e 
ZpLl 

O°ZPLL 
Z°ee 

7°99 
£925 

Sl 
Z*8€ 

ZbLt 
O°ZbLL 

Z°8e 
7°99 

£975 
rl 

Z°8e 
Zbl 

O°ZPLL 
Z°8e 

¥°99 
£925 

EL 
Z°8e 

Zbl 
O°ZPLL 

Z°8e 
#799 

£975 
ZL 

O°OLL 
2906 

0°zp98 
62°68 

LL 
LL 

*5°SL9S 
LL 

6°26 
O9ELL 

b° PESOL 
Z€°00L 

8°SL 
8809 

a
y
e
r
 

O'PLL 
LOEPL 

L*YP9El 
Lg" OLL 

SS*Z0L 
s0°LLG0E 

|
 

6 
s 

Z*8€ 
Zbl 

O°ZPLL 
Z°8e 

8°SL 
8809 

g 
O°PLL 

LOEPL 
O° S99LL 

ZS*90L 
ches 

45° L989 
L 

9°PLL 
gesze 

9° Lp98z 
89°08L 

O° PLL 
Loch, 

=| 
(9 

6rz6 
O9ELL 

€*ZPEOL 
12°66 

9°9€L 
Oia 

fos 
Z*8€ 

Zbl 
O°ZPLL 

Z°8E 
6°26 

o9elL 
| 

€°89 
9LS8L 

0°9Z581 
6L°9L 

€°89 
bree, 

| 
€ 

: 
8°8s 

1266 
0° 266 

OL"Ss 
5°99 

eciz 
| 

z 
4 

6°SL 
p9VSZ 

b°SLEZZ 
Z9°€8 

E*POL 
eserp 

| 
1 

A
T
u
n
.
 

ome 
Ol 

XA 
ee 

or 
Cet) 

e
e
)
 

| 
we 

cof 
x 

8) 
ama 

sere 
eTqeL, 

ubtseq 
peasTyoe 

sveay 
o
e
 

wored 
wt 

OL 
X 

I 
cerrado 

woxy 
I 

(Cys 
= Sr | 

voroes 
uruz3do 

ee 
ha, 

S
c
 

Ip 
TO 

rp 
oO 

5) 

(d 
qutod 

32) 
ubtseq 

umurr3do 
e
e
e
 
a
e
 

  
  

 
 

 



98 

section areas A achieved, assuming that continuous sections were 

Op 
available. These areas were then used to compute the second moments of 

area I, using the relationships (2.5) amd (2.7), am the results 

are ae in the fifth column. The real sections were selected, from 

the universal sections available (I ) and shown in the sixth 

column. The corresponding values of areas (A ) are listed in the 

seventh column, and these made the optimum queer of the frame with a 

minimum weight of 107 KN. It should be emphasised here, that the 

values of the second moments of area were used to decide the selection 

of the sections. This was because these, not the areas, dominate the 

stiffness equations. 

8.8.62 A 24-Storey Frame with three Equal Bays 
  

This frame was also designed by Okdeh (1980) according to his 

method which was briefly described in Section 3.3.3. This rectangular 

frame belonged to a multi-storey structure consisting of parallel 

frames. Some of these frames assumed to have special bracing 

components. The frames were 4.5 m apart from each other. The vertical 

and the wind loads were calculated according to CP3 Parts 1 and 2. The 

wind loads were calculated for a frame to be built on a surface with a 

large and frequent obstruction. Each frame was symmetrical and loaded 

symmetrically. 

The vertical load and the grouping of members, originally arranged 

by Okdeh, are altered for the sake of minimising the size of the design 

problem. The alteration is similar to the one which took place on the 

5-storey frame. Figure 3.9 shows the details of member grouping, 

loading and dimension for the frame. The groups number for the 

internal and the external columns of the frame are listed on the right 

of the Figure. The vertical load is shown after uniformly distributing
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the midspan pointed load. The intensity of the new load is 14.7 KN/n. 

The frame contained 96 joints and 168 members which were collected 

together into 34 area groups, ten for beams and 24 for columns. The 

upper bound on the relative sway was h/300. All the other bounds on the 

joint deflections and the section areas are taken as those given for 

the 5-storey frame. The optimum design problem for this frame 

consisted of 322 variables, 34 of which were areas and the rest were 

displacements; three for each joint. The problem also consisted of a 

total of 667 constraints, 288 of which were for the frame overall 

stiffness equations. A further 288 constraints were upper bounds for 

joint deflections. The move limits introduced 34 upper amd 34 lower 

bound constraints. The application of inequality (3.2), of Section 

3.3.2.1, introduced 23 sway deflection contraints. 

Four design cases were taken into consideration. These are shown 

in Figure 3.10, where each case is represented by a curve which is the 

function of the exact weight, i.e. the weight after selecting universal 

members, of the frame. All these cases started with areas taken fran 

Okdeh's design. Each case began with a different value of move limits, 

similar to the 5-storey frame. 

It is noticed in Figure 3.10 that initial tight move limits are 

not necessarily useful to achieve convergence. This was proved in the 

design case where ML = 0.1 was taken as fixed value for all the design 

iterations. This case required six iterations to reach the optimum, 

and was clearly not an economical procedure. The exact weight at the 

starting point was 1096 KN, which represented Okdeh's design. The 

optimum design was at point C, Figure 3.10, with an exact weight of 891 

KN which was less by 19% from the initial design. Point C was chosen 

because it required the least number of iterations, which was only
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Total 

Exact 

Weight 

(KN) 

   

  

    

   

    

Initial Design Point 

   
    

1100 (1096 KN) 

ML = The Initial Value of 

the Move Limits 

1000 3 

Optimum Design Point 

(891 KN) 

L 

900 + 

880 J 

860 { D 

840 + 4 + + ‘ + pote 
1 2 3 4 5 6 Design 

Iteration 

Number 

FIGURE 3.10: THE 24-STOREY 3 EQUAL BAY FRAME - VARIATION OF WEIGHT 

WITH DIFFERENT STARTING MOVE LIMITS
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three. Thus less computations are needed and a great saving is 

obtained in the computer time. 

Table 3.5 shows the section properties, i.e. I amd A, for the 

groups of the members at the starting point, taken from Okdeh, and at 

the optimum design. Okdeh's design included the axial stiffness and 

the axial load effect, i.e. stability function. If those two effects 

were excluded, then the total weight of Okdeh's design would have been 

reduced by approximately 11%. However, in the optimum design here, 

only the axial stiffness was included, and the weight was reduced by 

19% from the original design, as mentioned before. 

To examine the efficiency of the optimum design, the frame was 

analysed using an independent existing computer program (Celik, 1977). 

The values of I and A _ were used for the analysis. These 

univ univ 
values were selected fran several design points, such as B, D and C in 

Figure 3.10. The differential sway between the storeys of the frame, 

obtained by the analysis at each design point, is shown in Figure 3.11. 

The vertical line represents the limit h/300 on differential sway. 

Curve 1 shows the sway at each storey level for the optimum design at 

point C in Figure 3.10. None of the points of this curve are to the 

right of the vertical line. Curves 2 and 3 show the differential sway 

for the design obtained at points B and D respectively. Both violate 

the sway criterion. 

The optimum design shown in Table 3.5 was obtained by applying the 

deflection reguirements only. However, the design was checked for 

strength requirements, and this showed that all the sections were 

satisfactory. It is worth stating here that reverse column taper 

occurred in the lower five groups of the internal columns. This was 

because the deflection constraints of the type specified by equation 

(2.25), Chapter 2, was not included in this design. The reverse column
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taper also occurred in the 5-storey frame for the same reason. In the 

next design example, an attempt will be made to avoid the reverse 

column taper. 

3.3.4 Minimum Weight Design under Different Load Conditions 

It is unrealistic to design a structure under the effect of one 

load condition. This is because the vertical and the horizontal design 

loads might be altered continuously. However, in order to ensure that 

the section of a structural member is designed for the worst condition 

which can be reasonably expected, a number of different load conditions 

must be considered for such a structure. 

As stated before, the sway deflection constraints are considered 

as the governing limit-states for the design of tall sway frames. 

Thus, any changes in the direction or the value of the horizontal load 

might cause a considerable effect on the optimum design. The variation 

of the vertical load does play a small part in such a design, when this 

load or the frame itself is eccentric. An investigation will be 

carried out in the next Section on the design of an irregular multi- 

storey sway frame subjected to two different horizontal load 

conditions. 

Bo Sede A 15-Storey, Irregular Frame 

This frame was selected fron a_ structure which was after 

encountered in practice. The structure, shown in Figure 3.12, consists 

of two non-similar shear walls amd three irregular frames of which 

frame 1 is considered here. The vertical loads for this frame were 

calculated according to CP110, assuming one of the most critical 

loading arrangements where all the spans were carrying maximum uniform 

load. The horizontal wind load was calculated, using CP3 Part 2, fora



& 

A
e
 

1
S
'
€
 

O vl 
\ 

A
T
W
 

M4 
ANY 

Ns ach 
O
E
:
 

Z\Z\ZZZN 
V
e
 

\ 
a
e
 

   
 
 
 

 
 

 
 

\ 
A
A
A
 

v
y
 

 
 

 
 
 
 

 



108 

structure to be built in an open country with scattered wind breaks. 

Figure 3.13 shows the way the members of the frame were grouped. 

The dimensions, the horizontal and the vertical loads are oo shown. 

The different values of intensity for the uniform vertical loads are 

listed at the top right of the Figure. The frame has 53 joints am 91 

members which were grouped into six for beams and 18 for columns. 

There were a total of 394 constraints and 183 design variables in the 

design problem. Since it was only necessary to apply move limits on 

areas, there were consequently 48 constraints. The rest consist of 159 

stiffness, 159 deflection, and 15 sway limitation constraints. Another 

14 deflection constraints were included, using the inequality (2.25), 

to prevent reverse column taper. The relative sway limitation was 

h/350. All the joints had an upper bound on vertical deflections of 40 

mm, and on rotations it was 0.08 radian. The boundaries on the section 

areas were selected similar to the previous examples. 

Two optimum design cases were considered. Both of them started 

with the same initial design point. The first design case was carried 

under load condition one, where the wind load was acting fran the left 

side, as shown in Figure 3.13. In the second design case the wind load 

was assumed to be acting reversely, but with the same values, fran the 

right side.
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Figure 3.14 shows two curves which represent the design cases. 

The points on the curves are equal to the weight of the frame. The 

initial design was selected arbitrarily. Following the investigation 

which was carried out earlier, on the effects of move limits and 

initial design points, it was decided that the move limit should start 

‘with ML = 0.5. This was then reduced by 0.1 at each design iteration 

until convergence was achieved. The initial weight of the frame was 

424 KN. The optimum design weight for Case 1 was 528 KN and for Case 2 

it was 540 KEN. Both cases reached the optimum within six design 

iterations. 

In Table 3.6, the second column shows the initial section areas 

used for both design cases. The third column contains the areas 

obtained at the optimum design of Case 1. Notice that column groups 

10, 14, 15, 17 and 20 have reached their upper bounds, while group 22 

was at the lower bound. The fourth column of Table 3.6 contains the 

areas obtained at the optimum design of Case 2. Beam groups 3 and 4, 

and column groups 8, 13, 14, 16, 17 and 19 have reached their upper 

bounds. The section areas were obtained by the design process assuming 

continuous sections were available. 

The values of the areas in the fifth column of Table 3.6 were 

selected as the largest areas obtained from either of the two designs. 

The collection of these areas meant that this design was reliable and 

that the structure was sufficiently stiff to withstand either of the 

two load cases. This caused the weight of the frame to be 600 KN which 

was larger than the optimum weight obtained by either of the two design 

cases. 

The main conclusion achieved from this example is that the optimum 

design should be carried out under more than one load condition, and 

the maximum area for each group of members, obtained under the effect
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Group Initial Degman .Deeton Average 

Number poe oa A Dante 
A X 10? mm? |Load Condition 1|Load Condition 2 | A X 10? m? 

AX 102. X Ime A X 10? mm? 

1 113.8 140.6 143.3 143.3 

3 113.8 185.6 204.5 204.5 

3 113.8 214.8 250.5 250.5 

5 4 113.8 216.7 250.5 250.5 

5 113.8 137.0 175.4 175.4 

6 113.8 58.5 54.4 58.5 

7 174.6 170.8 253.8 253.8 

8 252.3 232 52 305.6 305.6 

9 252.3 260.0 134.0 260.0 

10 252.3 305.6 228.7 305.6 

11 136.6 275.0 301.9 301.9 

12 136.6 70.4 38.2 70.4 

13 174.6 230-7 252.3 252.3 

14 174.6 252.3 252.3 252.3 

: 15 174.6 252.3 169.9 252.3 

E 16 167.7 181.3 252.3 252.3 

3 17 167.7 252.3 252.3 252.3 

18 167.7 205.7 71,0 205.7 

19 136.6 147.7 201.3 201.3 

20 136.6 201.3 198.5 201.3 

21 136.6 180.5 68.0 180.5 

22 114.0 38.2 136.2 136.2 

23 114.0 176.7 72.8 176.7 

24 114.0 48.7 60.5 60.5 

Weight 424 KN 528 KN 540 KN 600 KN 

TABLE 3.6: SECTION AREAS OBTAINED FROM DESIGNING THE 
15-STOREY FRAME UNDER TWO DIFFERENT LOAD 
CONDITIONS 
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of any of these load conditions, should be used at the end. Another 

thing to be noticed is the disappearance of the reverse column taper. 

This is due to the inclusion of constraints of the type (2.25) in the 

design problem. 

3.4 TOPOLOGICAL DESIGN OF MINIMUM COST 
  

The topology is defined as the number and the position of the 

members relative to each other and the manner in which these are linked 

together to form a stable structure. The topology of a frame is a 

significant matter which needs to be included as an extra unknown in 

the design problem. Such topology is decided upon during the design 

process, purely by structural and economic factors. It should ke 

pointed out that the functional requirements of a multi-storey frame 

often decide the number and the position of the beams and the external 

columns. The engineer, however, is left to decide the number and the 

position of the internal columns which are economical problems. 

Indeed, architects frequently require to minimise the number of these 

columns. 

The minimum cost topological design method can be applied on a 

frame with a fixed topology, but the two examples selected both can 

have variable topologies. 

3.4.1 An Outline of the Design Procedure 
  

The design problem introduced intends to alter the topology of the 

sway frame, and at the same time tries to minimise its cost. The 

alteration could be done by removing members and joints from the 

original structure. The members required to be removed are mainly the 

internal columns. This is because the number and the position of the
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external columns and the beams are decided beforehand by the function 

of the frame. 

To improve the ability of arriving at a globally optimum design, 

it is advised not to remove members at the early stages because the 

areas of the members may bear false relationships to each other. 

Instead attention is directed to reduce the weight without altering the 

shape of the structure, thus improving the relationships between the 

member areas. For this reason the design procedure is decided to 

consist of the following steps: 

(1) Carry out a minimum weight design fran step 1 to step 11 as 

described in Section 3.3.1. 

(2) For the frame design achieved, calculate the fixed charge R as 

the cost of retaining each member, or each group of members. * the 

way the fixed charge is computed was explained in Chapter 2. 

(3) The lower bounds on the sections of the beams are selected so that 

criterion (a), Section 3.2, is satisfied. These lower bounds also 

retain the beams in the final topology. Since the topology of the 

frame is continuously changing during the design process, amd as 

columns are removed, the lengths of the beams are changing am 

consequently the lower bounds on the beams may alter continuously. 

(4) The section areas obtained at the end of the mimimum weight design 

are used to solve the stiffness equations of the frame. These 

areas and the resulting displacements are used as an initial 

design point for the minimum cost topological design. 

(5) Derive the objective cost function and the linear forms of the 

design constraints, and transfer them, one row at a time, to the 

backing store. Since the topology of the frame is continuously 

changing during the design process, the constraints and the cost 

function are also changing.
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(6) Use the simplex method and minimise the objective cost function. 

(7) Remove all members or groups with 6 = O and, if desired, remove 

members with 6 = 0. If members with 5 = 0 are not removed at this 

stage, their 6 value may change later, during the design process. 

This will improve the outcome but may increase the camputer time. 

(8) Repeat the process from step 2 until no further topological change 

is obtained. Notice that the steps are somewhat similar to those 

of the minimum weight design. 

(9) Carry out the minimum cost design of the frame with its final 

topology until an optimum cost is achieved. The feasible frame 

obtained before this step was for the linearised problem am may 

not be feasible when the non-linear constraints are checked. 

(10) At the end of the last step, criteria (b) amd (c) should ke 

satisfied. The way to achieve this is by using step 12 amd step 

13 of the minimum weight design procedure. 

Se4.2 A 4-Storey Frame with Thirteen Equal Bays 
  

This frame is to cover a span of 26 m amd to have four storeys 

that make the total height of 17m. It consists of 56 joints and 108 

members. These members are gathered together into 18 groups, four for 

beams and 14 for columns. The details of dimension, grouping of 

members and loading are all shown on the ground structure in Figure 

3.15. The large number of columns presented may reduce the sway in 

this ground structure to the extent that this initial frame may be 

disqualified from being classified as a sway frame. The beams of each 

storey belong to one group, and the columns are grouped symmetrically. 

It is required to retain the outer columns. Beams can have any span 

but, for structural reasons, it is considered (but not strictly 

specified) that in this example the beam should not exceed a clear span 

of 10 m. This means some inner columns should be retained as well.
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The vertical live load is chosen to be wnifommly distributed with 

intensities of 30 KN/m on the roof and 36 KN/m on the other floors. 

The upper bound on the relative sway between the storeys was 

h/400. The upper bounds on the joint deflections were taken as in the 

previous examples. To retain the beams and the outer columns, a lower 

bound was imposed on their areas. For the beams, the lower bound was 

considered to satisfy criterion (a), am this was 28.4 x a a 

The lower bound for the columns was chosen to be the smallest column 

section available, and that was 38.2 x a ae The upper bound on 

the beams was chosen to be 113.8 x & ae and for the columns of 

the first two storeys it was 167.7 x iD ae While for the columns 

of the third and the fourth storeys it was 122.0 x 10 aa 

The design procedure started with an arbitrary set of sections, 

these are listed in the second column of Table 3.7. The frame was 

analysed using these sections, and the loads applied on foundation were 

computed. Each of the independent foundations (i.e. pad footing) was 

then designed individually and its construction cost was assessed. 

Such cost was kept constant throughout the entire design operation. 

The total weight of the frame at the starting point is 368 KN 

which is represented by point A in Figure 3.16. The assessment method 

described before was used to obtain point A' in the Figure. This point 

represents the total cost which includes the construction cost of 

foundation, the cost of the material and the erection of the frame. 

The overall value of the cost at the starting point was £29,200. 

Figure 3.16 also shows the manner in which the total weight am the 

corresponding total cost of the frame varied during the entire 

operation. Both of them were canputed automatically at each iteration. 

During the minimum weight design, lower bounds were imposed on all the 

sections to prevent the removal of any member. ‘The design with an
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optimum weight of 147 KN was obtained at point B in Figure 3.16. ‘The 

total cost at this point was £13,380 which is represented by point B'. 

The initial value of the move limits was 0.5 and then reduced by 0.1 at 

each design iteration. 

The minimum cost design was then started with the set of sections 

achieved at point B. Because it was not recommended to exceed a span 

of 10 m, columns in groups 5, 9, 12 and 16 had lower bounds imposed on 

them and on the beams so that they could be retained. The move limit 

was arranged similar to that in the minimum weight design. 

Various topologies, obtained during the minimum cost design, are 

shown in Figure 3.17. The shape of the structure shown in Figure 3.17a 

was obtained at iteration six of the design. At this iteration, 

members belonging to column groups 6, 7, 8, 15, 17 and 18 are all 

removed. The total cost was decreased due to the elimination of the 

costs of foundation, material and construction of some columns. But 

the decrease was small because the erection cost of other members was 

increased. The overall weight of this shape of the frame was 

increased. This was due to the fact that new large lower bounds on the 

beams were used to satisfy criterion (a). 

The shape of the frame shown in Figure 3.17b was obtained at 

iteration seven. Here, group 13 was removed and the cost reduced, but 

the weight slightly increased. The process continued at iteration 

eight with a decrease in both the weight and the cost when groups 10 

and 14 were removed, Figure 3.17c. The deflection requirements here 

were not all satisfied. The topology of the frame did not change after 

this iteration. The minimum cost design was continued until an optimum 

cost of £11,900 was obtained after two more iterations. The value of 

this cost is represented by point C' in Figure 3.16, and the weight 

here was 171 KN at point C. The final shape derived is shown in Figure
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Group Initial Optimum Weight Optimum Cost 
Number Design at (A) Design at Design at (C) 

AD Xe10e nme DX 1082 rane A X 10? mm? 

1 189.9 71.69 105.10 
F 2 159.4 39.77 95.20 

Bo 4 144.3 36.00 104.40 
4 129.1 28.4 94.9 
5 92.9 38.2 137.70 
6 136.6 38.2 
7 167.9 38.2 os 
8 174.6 38.2 4 
9 201.2 38.2 137.70 

10 212.4 148.00 % 
m 111 225.7 167.7 167.7 
E 12 58.8 38.2 122.0 
O. 43 66.4 42.00 Hy 

14 75.8 52.10 ss 
15 91.1 65.80 om 
16 91.1 59.00 122.0 
17 114.0 38.2 a 
18 114.0 39.77 . 

pata 368 KN |£29,200 147 KN | £13,380 171 KN | £11,900 

TABLE 3.7: OPTIMUM SECTION AREAS OBTAINED AT THE DESIGN 
OPERATION SHOWN IN FIGURE 3.16, FOR THE 
4-STOREY 13 EQUAL BAY FRAME 
  

 



d22 

By Cre The values of the section areas obtained are listed in the 

fourth column of Table 3.7. All the deflection requirements and the 

design criteria were satisfied. 

3.4.3 A 9-Storey, Irregular Frame 

This frame is selected for the purpose of investigating two design 

aspects. The first one is a topological design of minimum cost, and 

the second aspect is a topological design of minimum weight. For the 

latter one, the topology of the frame is allowed to be altered, by 

removing columns, for the sake of minimising the total weight. 

The details of loading and dimension of the ground structure are 

shown in Figure 3.18, while the members grouping is illustrated in 

Figure 3.19. The frame consists of 56 joints and 103 members which 

collected together into 22 GECuDe: four for beams and 18 for colums. 

In addition to the beams, six column groups are required to be retained 

in the final shape, and these are groups 5, 6, 7, 8, 9 and 10. 

The design problem of this frame consists of 202 variables, 22 of 

which are areas, 168 of which are displacements and the last 12 of 

which represent the 6 variables for the 12 removable column groups. 

The problem also contains a total of 388 constraints, 168 of which are 

for stiffness and another 168 are for deflection. The application of 

move limits on the retained groups, i.e. four beams amd six columns, 

creates ten upper bound and another ten lower bound constraints. There 

are eight relative sway deflection constraints. The removable groups 

have 12 constraints of type (2.34), Section 2.9; and another 12 

constraints represent type (2.35). 

The upper bound on the relative sway was h/350. The limitations 

on the joint deflections were taken similar to the previous examples. 

Lower bounds on the group areas were represented by the smallest
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available section that satisfies the design criteria (a) for beams, or 

(c) for columns. For either types of members, the largest available 

sections were taken as the upper bounds. 

Three design cases were considered, all of them started with the 

same set of sections. This set was chosen arbitrarily, amd it was 

listed in the second column of Table 3.8. In the first case, no fixed 

charge was involved, the frame was designed for a minimum weight ard 

its topology was taken as a variable. In other words, the topology of 

the frame was permitted to change during the design operation. This 

was done by removing the member which had an area less than the 

declared lower bounds. Such a procedure applied in all the design 

‘iterations. All the areas of the member groups were bounded, except 

the removable column groups, i.e. 12 groups, where there were no lower 

bounds imposed on them. ‘Thus, only these groups were allowed to be 

removed. It was true, in this design case, that some of the members 

were removed at the early stages of the operation, but there was almost 

always a non-feasible solution obtained later. Although different 

initial values of move limits were used, the problem never converged 

into a feasible design. This indicates that a minimum weight 

philosophy is unrealistic when the topology of the frame is a design 

variable. This case also disappoints advocates of topological design 

(Majid, Saka, 1977) and (Dorn, et al, 1964) who expected that the 

minimum weight topological design of the ground structure should by 

itself eliminate some members and obtain an optimum solution. 

In Case 2, a minimum cost topological design of the frame was 

investigated. The first part of the operation is a minimum weight 

design where there is no member allowed to be removed. The initial 

section areas, shown in Table 3.8, were used to assess the cost of 

foundation. The weight of the frame at the starting point was 349 KN
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and the assessed total cost is £28,718. At the end of the minimum 

weight design, the optimum section areas obtained are listed in the 

third column of Table 3.8. The weight here was 345 KN and the cost was 

£28,341. After that, the minimum cost design was started. Some of the 

member groups were forced to be retained by imposing lower bounds on 

their section areas. These groups were classified in the beginning of 

this Section. Different topologies of the frame were obtained during 

this part of the operation. The final one, shown in Figure 3.20a, was 

derived when the total cost converged to a minimum value of £26,600. 

The last topology was obtained by computer, using the design 

specifications mentioned before. This shape of the frame was obviously 

unacceptable to the engineers, because column group 15 should have been 

retained if column group 21 was kept. 

In Case 3, the frame was also designed for a minimum cost. The 

first part of the operation, which was a minimum weight design, was 

exactly the same as Case 2; the values obtained were all plotted in 

Figure 3.21. The minimum cost design started from point B in the 

Figure. Group 15 was decided to be retained, amd this was done by 

imposing a lower bound on its area. This design case gave the frame in 

Figure 3.19b by the end of the operation. Such a shape is considered 

to be logical and acceptable to engineers. The optimum cost design was 

obtained at point C', Figure 3.21, where the cost was £27,601, and the 

weight of 363 KN is represented by point C. The section areas obtained 

are listed in the fourth column of Table 3.8. The cost of the material 

and the construction of each group of members is listed at the fifth 

column of the Table. The section areas of beam group two and column 

group seven have reached their upper bounds. All the deflection am 

strength requirements were satisfied.
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Group Initial Design Optimum Weight ee ete oo 
Nun at point (A) |Design at (B) 

A X 10? mm? A X 10? mm? 
A X 10? mm? Cost (£) 

1 1D). © Onc 97 114.72 3,495 

2 138.4 140.85 30375 2,942 

; 3 Zoi 135.65 199.41 2,485 

4 114.6 81.46 163.54 2,038 

> O22 9 34.8 95.00 647 

6 ZO. 2 es s0 211.09 1,806 

7 201 <2 354.72 432.7 37216 

8 114.0 34.8 68.92 756 

2 136.6 158.38 250.99 2, 00> 

10 114.0 70.56 192.59 2,240 

11 92.9 34.8 ia mas 

12 92.9 223 Jot 60.20 483 

Y nS O29 432.7 169.00 796 

E 14 Z0Mez 34.8 = ea 

8 ‘> 201.2 34.8 274.20 1,023 

16 114.0 343.55 pa es 

Ad 114.0 34.8 es peas 

18 114.0 34.8 al ae 

19 136.6 186.52 ue ce 

20 136.6 281.39 211.03 eed. 

21 114.0 166.22 ao a 

22 114.0 254.77 102,95 599 

eee 349 KN|£28,718 | 345 KN [£28,341 363 KN £27,601 

TABLE 3.8: OPTIMUM SECTION AREAS OBTAINED AT THE DESIGN 

OPERATION SHOWN IN FIGURE 3.21, FOR THE 
9-STOREY IRREGULAR FRAME 
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3.4.4 Discussion on the Minimum Cost Design 

The method proposed in the previous Sections for the topological 

design of minimum cost of steel sway frames appears to be similar to 

the method proposed by Majid, Stojanovski and Saka (1980). 

Nevertheless, fundamental differences exist between the two methods. 

These are: 

(1) The costs of the material, foundation, erection, etc., were 

assessed more realistically and correctly, while Majid, et al, 

assumed an arbitrary lump sum cost which can affect the topology 

of the structure. 

(2) Majid, et al, suggested that higher charges speed up member 

removals, and higher initial areas for the beams were also 

encouraging the removal of the columns. Instead the author 

started his topological design by first obtaining a minimum weight 

design and then proceeded to obtain the minimum cost frame. The 

consideration of a minimum weight design as the first part of the 

whole operation was proved to be essential for a better 

relationship between the member areas. By following such a 

policy, the minimum cost topological design will not depend on an 

arbitrary set of initial section areas. 

(3) Majid, et al, did not impose move limits during the solution of 

the linearised problem. The author found that in many cases this 

gave infeasible solutions. For this reason the author imposed 

upper bound move limits on all the members, even on those required 

to be removed from the final design. The lower bounds were 

imposed only on the members required to he retained.
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CHAPTER 4 

TOPOLOGICAL DESIGN OF MINIMUM COST FOR 
  

LATERALLY LOADED COMPLETE STRUCTURES 
  

4.1 INTRODUCTION 

In this Chapter a method is proposed for a minimum cost design of 

complete building structures consisting of skeletal frames, together 

with a grillage of shear walls amd floor slabs. The efforts are 

focused on minimising the material and the construction costs of such 

structures. This could be achieved, for instance, by reducing the 

number of the intermediate bracing frames and the shear walls required 

for a given grillage system. 

The structures are designed to resist the separate action of wind 

loads. The horizontal equilibrium and deflection requirements should 

be satisfied at the junctions of the floors with the vertical 

components. The lateral deformation of a camplete structure is not 

affected by the vertical loading unless this loading is eccentric. The 

desian method presented here does not include the effect of eccentric 

walls and frames and eccentric vertical loading. The vertical loading 

is not considered in this design method. 

The matrix displacement method is employed to form the overall 

stiffness matrix of the structure. It is assumed that the grillage 

members act as deep beams under the action of bending moments and shear 

forces in their own plane. For the frames, only the lateral "shear" 

stiffness coefficients are considered, which are added to those of the 

grillage to form the overall stiffness matrix. The effect of axial 

strains in the columns of the frames is excluded. 

The sequential approximating linear programming is used to 

construct the mathematical model for the design problem. In this model 

the objective function, which is minimised, represents the total cost
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of the structure. The design requirements are expressed by stiffness, 

deflection and other practical constraints. For a symmetrical 

structure, use is made of symmetry to reduce camputer time amd storage. 

4.2 THE EFFECT OF SHEAR STRESS ON THE STIFFNESS OF A RIGIDLY CONNECTED 
  

MEMBER 
The displacements of a rigidly connected member are the result of 

the combined action of bending and shear stresses. When the member is 

relatively slender the effect of the shear stress can be assumed to be 

insignificant amd may be neglected. The member stiffnesses of 

equation (2.4), Chapter 2, are based on this assumption. It is well 

established that in the case of a deep member such as a shear wall 

panel, however, the distortion caused by the action of the shear stress 

may be important. 

For a deep member rigidly connected at ends 1 and 2, the forces 

and the displacements at the ends of the member are related by the 

equation: 

a oe (4.1) 

where P is the vector of member forces (S M M T), U is the 
ae 

corresponding vector of member displacements (v6, 6, on) and k is the 

matrix of member stiffnesses. The elements of the vectors are defined 

in Figure 4.1, where S is the shear force, M and M are the 
4, 2 

moments at ends 1 and 2 respectively, T is the torque, v is the lateral 

deformation, 8, and 8, are the rotations, am On is the angle of twist 

for the member.



  

  
  

Y-axis 

  
  

FIGURE 4.1: SIGN CONVENTION FOR GRILLAGE 
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Croxton (1974) has shown that if shear distortion is taken into 

account, the stiffness coefficients contributed by a deep member of 

rectangular section is given as: 

  

  

S = b d d oO Vv 

M = d e ° o, 
al: 

‘ = d if e ° 6, 

aT = oO ° O q On (4.2) 

where: 

ia SA eT 1 
2 a (+ oy 

aes ae 1 
aoe E2 Ser 

oe Vea ae le + OW 
oe L a se 

2 et 1-v 
— L (5 + 20) 

ee 
q 3L 

in which E is the Young's Mcdulus, L is the length of the member, I is 

the second moment of area, t is the thickness of the rectangular 

section and W is its width. The values in brackets are shear 

distortion factors based on a parabolic shear stress distribution. The 

value of the constant ~ (Psi), in equation (4.2), depends on the 

geometrical proportions of the member (Majid and Croxton, 1970), and is 

given as: 

2 
ay SE. f/f Loans (4.3) 

where A is the section area, and G is the shear modulus which can he 

expressed in terms of the Young's Modulus as:
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Game 7 ae (1 eee) (4.4) 

where Vis Poisson's ratio. 

In the design method proposed in this Chapter, the thickness (t) 

of a concrete grillage panel is considered as one of the main design 

variables. Therefore it is preferred to formulate the coefficients of 

equation (4.2) in terms of (t). 

The panels of the grillage, i.e. the shear walls amd the floor 

slabs, are considered as deep beams of rectangular sections with 

thickness t, width W and area A=W t. The secom moment of area (I) 

of the cross section about the centroidal axis, for any of these panels 

ise 

ceo eH / 42 (4.5) 

Using this, equation (4.3) becomes: 

2 oe ee tg (4.6) 

which shows that when the span L becames large camnpared with the width 

of the member, ~ becomes very small and can be neglected. This reduces 

the stiffness equation (4.2) to that of a slender or prismatic member. 

It is noticed that ~ is not a function of t, i.e. does not depend on 

the thickness of the grillage panel. Using equation (4.5), the 

stiffness coefficients of equation (4.2), can be rewritten as: 

  

ae fe ay) 
L 

d oer G5) 

215 

sae e Et w (L+ 0.5) 
3L ee 2) 

; . Bee we 
6L Veet 20 

G tw 

as 3L (295
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In which the coefficients are functions of a single design variable, 

and that is the thickness (t) of the grillage panel. 

4.2.1 Stiffness Matrix of a Grillage 
  

The floor slabs and the solid shear wall panels of the camplete 

structure are considered to act as the horizontal amd vertical members 

of a grillage loaded by the wird forces. It is assumed that the 

members are rigidly connected deep beams bending in their own plane ard 

subjected to torsion about their longitudinal axes. The effect of 

shear distortion in these members is taken into account. 

The walls in a grillage are assumed to be fixed (encastre') at 

their bases, amd the junction of a wall am a floor constitutes a 

joint. The positive sign convention adopted for the forces amd the 

displacements of grillage members is in accordance with the right-hamd 

screw rule and is shown diagramatically in Figure 4.1. The axes of the 

members lie in the XY plane and the joints have degrees of freedom in 

the 2, Oy and ae directions. The out of plane bending, i.e. 0, 

direction, under wind loading can ke neglected, together with the 

deflection in X and Y directions. 

Since the grillage members represent the floor slabs and walls of 

a building they are either horizontal or vertical. It is convenient 

therefore to construct two sets of the overall stiffness matrix K using 

the sign convention and notation of Figure 4.1. The local positive 

axis P for each structural member is directed fram left to right for 

horizontal members and downward for vertical members. The axis is 

indicated by an arrow which points to the second end of the member. 

Matrix K represents the contributions of the member to the overall 

stiffness matrix of the complete structure. These contributions are 

Ri Sig | i 43" where subscript i amd j refer to the



  

137 

joints at ends 1 and 2 respectively of the member. Tus; 2 for. a 

horizontal member (parallel to X-axis), the contributions are, 

(Croxton, 1974): 

Zz ‘ 

Ta seks ye es 
: ; ‘ 

een 5 b 0 ad | -b 0 d 
ii | a2 , 

a Ca a ee 0 
| 

Ke | = 

eda eee 
-b 0 -a! b 0 -d 

| 

0 -q 0 0 q 0 
t 

d 0 a (0 e (4.8a)     
while for a vertical member (parallel to Y-axis), they are: 

Z; Oi Od 4, oe bs 

l ne eo ee - : . 

Ki, ! Rij = b d 0 | b d 0 

Fetes 0.0. @ te. f 0 
| 
| 

2 leer Be 
-b a co 45 a 0 

was ea. e 0 
| 

0 0 ete 0 q | (4.8b)     
General expressions for the determination of member forces P fran 

the joint displacements X may also be obtained, (Croxton, 1974), using 

the following equation: 

Poe BS (4.9) 

where A is the displacement transformation matrix. Thus, for a 

horizontal member (parallel to X-axis):
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4 

Ss = b 0 d -b 0 d Z, 

M, d e -d 0 if 3 pounte 4: 

a= 0 M, d = | d e o., 

Tr 0 -q 0 0 q 0 

Z 

a joint 3 

8 
Y; 

(4.10a) 

and for a vertical member (parallel to Y-axis): 

FOIntc. 1 AOC 4 

pee Ge fe ts | 
| ee : 

M, -—d.e 0 d if 0 ne gon glen pi 

| 
M, dst 0 ! d e 0 8, 

Jk 0 0 “1G ; 0 0 q eee 

z 

8 joint j 
x 

e., (4.10b)     
The coefficients of equations (4.8) and (4.10) are the same as that of 

equation (4.7). 

4.3 STIFFNESS MATRIX OF A RESTRAINING FRAME 
  

Skeletal plane frames are used as parts of a camplete structure to 

assist in restraining the grillage against lateral deformations caused 

by horizontal wind loading, Figure 4.2a. ‘These frames are made up fran 

prismatic slender members. The positive sign convention adopted for 

loads and deformations of each frame follows the same rule as that of 

the grillage. The axes of the members lie in the XZ plane, as shown in 

Figure 4.2.
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The matrix displacement method is used to determine the lateral 

stiffnesses of the individual frames. To reduce the number of unknown 

in the optimisation, each frame can be regarded as having one degree of 

freedom only. For purposes of illustration, consider the frame shown 

in Figure 4.2b in which each colum has a stiffness b'. The beam is 

constructed on the basis of composite action with the floor slab of the 

grillage. Therefore such a beam is assumed to be infinitely stiff to 

the extent that it can move horizontally without end rotations, (Majid, 

1980). Thus, ®,=9 > = 0 and the shear force S' in each colum is: 

5 
Se ie es es Oe. (4.11) 

where b' = 12 EI1/ oe the lateral shear stiffness of the colum; 

Z is the horizontal movement of the beam. 

The total lateral stiffness k' of this frame is therefore equal to 

the stiffness of the columns in the storey, that is, for Figure 4.2b: 

k' =b' + »b’ (4.12) 
AB CD 

In general, for a frame with several columns, say n, in each storey, 

the total lateral stiffness in that storey becomes: 

3 

(ie 8 yo). (4.13) a
 Ul 

H
e
t
 

c=1 

It is assumed that the columns in a storey are connected, for 

instance, to joint i at the top end and joint j at the bottam end. The 

overall lateral stiffness matrix K' for the storey can therefore ke 

derived, similar to equation ( 2.3), to relate the lateral stiffness of 

the column with the horizontal movements of the beams at the top ard
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bottom ends of the storey. ‘Thus: 

Z a. 

= Z 

k! er 

K! = 
eit k! 

(4.14) 

where z and 2 are the horizontal movements of the beams. 

the overall stiffness matrix of a complete structure, such as that 

in Figure 4.2a, is formed by superimposing the lateral stiffness of the 

frame, equation (4.14) for each storey, on the stiffness matrix formed 

by the shear wall ard floor slab fpanels. Solution of the load 

displacement equations for this restrained grillage yields the 

displacements at all the wall am frame junctions in the camplete 

structure. 
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FIGURE 4.2: SIGN CONVENTION FOR A FRAME



  

141 

4.4 ANALYSIS FOR WIND LOADING 
  

It is assumed that the wind load can be expressed as a system of 

concentrated loads acting at the junctions of the floors with the walls 

and the frames. Each of these junctions constitutes a joint in the 

grillage. Unsupported points in the floor slabs, such as on a vertical 

line of symmetry or at the free ends of cantilevered slabs, are also 

considered as joints. It is assumed however that all the joints have 

the same degrees of freedan which are in the Z, 0 and 0, directions. 

The matrix displacement method is used to analyse the restrained 

grillage structures. It is necessary to employ a system of joint 

numbering and member grouping. Figure 4.3 shows a simple one storey 

complete structure which has three joints (junctions) amd is subjected 

to horizontal wind loads. The shear walls are numbered first, followed 

by the slabs and then the column members. The two shear walls are 

identical and thus belong to one group. The slabs also belong to one 

group. Since the shear stiffness of all the columns is the sum of the 

shear stiffnesses of the individual columns, it is possible to give one 

number to represent all the columns in a storey. 

Figure 4.3 also shows the matrices required to analyse the 

complete structure. The overall stiffness matrix K is symmetrical and 

sparse. The subscript numbers, of the coefficients, refer to the 
2 

members. The lateral stiffness coefficient (k', = uz 12 E I, if i) 
=1 

of the two columns, in the storey, is added to the horizontal stiffness 

of joint 2. The one-dimensional deflection matrix X contains all the 

unknown displacement variables of the joints. These joints are located 

in the central planes of the structure. Matrix L is the load vector in 

which the horizontal wind loads are the only non-zero elements.
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The load displacement equations, which are also known as_ the 

stiffness equations, such as: 

Ko Xo my (4.15) 

are then solved using the sub-routine described in Chapter 1. After 

finding the unknowns X, the forces in the grillage panels can ke 

computed by using equations (4.10a,b). The shear and the bending 

moments in each column of the frame are computed by using equations 

derived similar to equations (4.10a,b), such as: 

* 
Sh = -b' b* Z, 

L 
M! -d' ait Zz. 

1 5 
' ay ' M, d a’ 

(4.16) 

3 2 

Where D @ 1 28 1/7, da' ==6 8 I'/ L am the subscripts i and 

j vefer to the joints at the respective ends 1 and 2 of the colum. 

4.5 THE DESIGN PROBLEM 

The problem dealt with here is that of designing camplete 

structures that can withstand lateral wind loading. The shape 

(topology) of the structure is included in the design problem as an 

additional variable. This is decided by structural and economical 

requirements. The problem turns out to ke that of non-linear 

programming which is linearised, using the approximating programming 

method, and then solved by the simplex method. 

The aim is to obtain an acceptable shape structure, which has a 

minimum cost and satisfies the design requirements. The objective 

function represents the material and the other construction costs. The 

latter are treated as fixed prices assessed for each of the restraining 

frames and the grillage members. The design requirements are set as
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stiffness, deflection and other practical constraints which should ke 

satisfied to achieve a laterally stable structure. 

When the wind load is considered in isolation, the total cost of 

the complete structure is reduced mainly by removing frames or shear 

walls from the original topology of the structure. The number, the 

position amd the sectional properties of the restraining frames are all 

design variables. Other variables are the thicknesses for the 

rectangular deep beam panels. The width of these panels is considered 

to be constant as decided by the functional requirements of the 

structure. 

An economical computer program was written by the author to assess 

the cost of the structural members, and to construct the linear fom of 

the design problem. The program was designed to make use of the 

backing storage, so that it can solve large problems with a moderate 

computer core store. The program and the data preparation will ke 

given in Chapter 8. 

4.6 THE OBJECTIVE FUNCTION 

The main variables in a grillage are the thicknesses of the shear 

walls and the floor slabs. To compute the total cost b LOG -a 

typical grillage member i, let t be its thickness, Ww and width, 

L its length, Y its density Sod’ Cc be the cost per ous weight of 

the material. In addition let R : represent all the construction 

costs of member i. ‘The total cost es then: 

De ee UW)... Line aver Care. 
i eae a ede at 

(4.17) 

The function is linearly related to the variable t. 
i 

Sometimes t becomes equal to zero, i.e. t = 0, to -indicate 
i i 

that member i does not exist, or removed, but when t > 0 rb, 
al
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exceeds R. The constants We and L are known dimensions of the 

member nd the value of R is a ere for member i. The values 

Oey “and c can vary ae one member to another in the structure, 

and camtinn (0%) can deal with this variation. However, all the 

grillage panels are in reinforced concrete with constant density Y = 
3 

24.5 KN/n . The cost per unit weight (c) has two values, one for the 

shear walls and the other for the slabs. For a general member, of 

either type, it could be considered as a constant. Thus, equation 

(4.17) becomes: 

b, = a Wy L,Y c+ Ri (4.18) 

The total cost (B) of a grillage structure, with M members (wall 

and slab panels), is then expressed as: 

M 

Bo = = (t, Wi L; Va Coat R,) (4.19) 

However, when these M members are grouped together into a number of NGR 

groups, equation (4.19) becomes: 

NGR 
pee 2 (te Cr R 3 Se (t, ee g) (4.20) 

where suffix g refers to a group of grillage members. Equation (4.20) 

is used as the objective cost function of the grillage, amd it is 

linearly related to the variable tg: 

The objective cost function for a single skeletal prismatic frame, 

identified as j and consists of a total of m members (beams ard 

columns), is expressed as: 

m 
Gy wt De Ae Se ae 

a4 Lie aL (4.21)
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where the suffix i refers to member if, A is the member area, u 

its length and R is its construction Bate. - The constants Y ard : 

are for the ie frame and they are respectively the density amd the 

cost per unit weight. The frames, as parts of a camplete structure, 

have beams with known cross section areas. These are built campositely 

with the slabs of the grillage. Thus, function (4.21) is minimm 

when: 

(A; L,Y c+ R,) o ul 

r
u
s
 

i=1 
(4.22) 

is minimum. Here, n is the total number of the column members only; 

all the beams are excluded from this formula. 

It is occasionally assumed, by the designer, that all the columns 

in a frame are made out of the same section amd belong to one group, 

which is referred to as j. Thus, function (4.22) becames: 

be. = New Aye eles . ; R. 5 ( ¥ cs - j 

(4523}) 

where A, L, and c are properties of any of the column members in 

frame j; the value of R is computed independently and it includes 

the construction cost of eaone and column in a frame. If the total 

cost of such a frame is calculated on the basis of one storey at a 

time, then n will be taken as the number of the columns in that storey. 

The second moments of area (I) for the columns of the frames are 

adopted to be the design variables. The objective function (4.23) 

relates A and I through an exponential relationship. This causes a 

non-linear function. However, in order to avoid such non-linearity, 

the problem is considerably simplified, (Majid, 1974a),if function 

(4.23) is replaced by: 

J J j (4.24)
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By summing equation (4.24) for all the frames amd combining it 

with equation (4.20), the objective cost function for the whole 

structure can then be expressed as: 

GC. Waser y CR +> 
Se ag gS 

ini ay. Cc). + Re] 
1 j= 2 

NGR NF 
xz 
= J 

(4.25) 

where NGR is the total number of panel groups am NF is the total 

number of frames in the structure. This function is linearly related 

to the variables t andI. 

g J 
The objective function (4.25) does not, so far, explain the fact 

that the non-material cost R (or R) has a value only when the 

g J 
grillage members group g (or frame j) is included in the design. 

Therefore, new variables 84 or ir need to ke cefined avd to ke 

associated with each of the structural member concerned. Such that 

84 = 1 when group g is kept in the final design while es = 0 when it is 

economical to remove members of group g. The objective function (4.25) 

is thus altered to become: 

R NF 

(GW eave Cat Osc), aka 
Cragg 9 ag 

Piigd Le¥0), + 6, 
1 a1 : 

Re 
a 5! 

(4.26) 

This function is used for the topological design of minimum cost for 

the complete structures. 

4.7 THE STIFFNESS CONSTRAINTS 
  

Using the matrix displacement method, it is necessary to select 

the stiffness matrix K so that the complete structure is capable of 

withstanding the lateral wind loads, represented by vector L, amd at 

the same time satisfies the deflection requirements. The stiffness 

constraints are equalities of the form:
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|
 MT 

Ip
 

I>
< 1 

It
c I cS
 (4.27) 

where X is vector of the joint displacements. 

It is noticed that in the analysis of a camplete structure, such 

as that shown in Figure 4.3, the section properties are known and 

specified while the displacements are unknown. This caused the overall 

stiffness matrix K to be symmetrical. 

In the design of a complete structure, the symmetry of the 

stiffness matrix is lost because the sectional properties of the 

members are the unknown design variables. Therefore, it becomes 

necessary to keep the contribution of each member separate. This means 

that the stiffness matrix will have three rows for each joint, amd 

three columns for each grillage member connected to that joint. In 

addition to that, if there is a frame linked to this joint, then an 

extra column will be added to the matrix. 

Generally, for a total of N joints in a complete structure, the 

overall stiffness design matrix has 3N rows and (3 U5, M,) + i F.) 

columns. Here M is the total number of grillage members connected 

to a typical oi j- The constant F is usually set equal to unity, 

i.e. e = 1, to represent a single fans at joint j, and if there is 

no ae at this joint then Fo is set equal to zero, i.e. . 0. 

If the grillage wikbemet are grouped, then M will os defined as 

J 
the total number of different groups connected to joint j. Moreover, 

if it is assumed that each frame belongs to a single group then F = 1 

4 
at joint j, but if the columns of a frame belong to more than one 

group, then e = 2 at joint j where two different groups meet. 

J
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The design stiffness matrix of the structure shown in Figure 4.3 

is displayed in Figure 4.4. The order of this matrix is 

N N 

[oN 43. 2 he r 

sat 3 ie 

Where N is the total number of joints. It is assumed that each 

grillage member belongs to a single group, so that its coefficients 

have their own columns in the matrix. The bracing frame is considered 

as one member, and therefore it has one column in the matrix. The 

stiffness coefficients in each column of this matrix are functions of 

the unknown sectional properties of the members. For instance, 

bi eet, w/b is] ) = £(t,) and q, GE W/ 30 = (6) etc. 

The last line in Figure 4.4 shows these properties amd the way they 

contribute to the joints. 

The overall stiffness matrix K of the form similar to the one in 

Figure 4.4 is used in equation (4.27) to formulate the constraints. 

The stiffness coefficients of the grillage are all linear functions of 

the panel thickness (t) except for q, as shown in equation (4.7). The 

lateral stiffness coefficients of the bracing frames, equation (4.13), 

are linearly related to the second moment of area (I) of the colum. 

Nevertheless, the stiffness constraints turn out to be mathematically 

non-linear because they involve the product zt, z I, aa es Cte 

The linearisation of these constraints will be explained in the next 

sub-section. 

(VST eae Linearisation of the Stiffness Constraints 

As specified earlier, the main design variables for the 

optimisation of laterally loaded ccamplete structures are the 

thicknesses of the grillage panels, the second moments of area for the 

columns of the restraining frames, and the displacements of the joints.
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These variables can be arranged in a vector form, such as: 

¥ ao(vv  s.. 9 Vv tvs V aaa } (4.28) 
4 2 g g+1 gtr g+r+3N 

where the first g variables represent the thicknesses of the grillage 

members (or groups), r variables represent the second moments of area 

for the columns of the frames, amd 3N variables represent the 

displacements of all the N joints; three at each joint. Vector V can 

be partitioned in a matrix form: 

GO 4 Bt tee} (4.29) 

oe 

9 ++: I}, and X = fz, 6, O04 +8 ZN Sey Oy 

With the above design variables, the stiffness constraints can be 

where the contents of the sub-matrix t = {t, t, ... tj} 

I={I,1 

expressed as: 

Wilh ty Be! kk Ae 2) ee 0 

(4.30) 

The approximating programming method is used to linearise these 

constraints. This requires the gradient vector VH, i.e. Vh (x ), for 

J 
each of these constraints, such vector has the form: 

oH oH oH 
VH = [<= = OOS 

av. dV OV o+r43N Aa 

which is the same as: 

a Oe dH 9H dH 9H dH 
VH = se .o. Se ee ae Be So ta) eed 

1 g 1 r 1 yN (4.32) 

at the known variables {x, ae 

The derivatives of the stiffness constraints with respect to’ the 

thicknesses of the grillage members are:
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dH Once, hE oo 

Oke ee ee (4.33) 
a J 

Jal ee O 

Similarly, with respect to the second moments of area, thus: 

ol. Odes 5 = 
J J 

= a clts is ele, a0, 

and with resepct to the joint displacements, the derivatives are: 

4.8 

(1) 

on 4.35 at K(t,I) ( ) 
3 

5 = vy SON 

THE DEFLECTION CONSTRAINTS   

Two types of deflection constraints are considered. These are: 

The sway deflection constraints which are used to govern the 

differential horizontal deflection between the storeys. For 

instance, in the structure shown in Figure 4.5a, the sway in each 

storey may be limited to an upper bourd of h/% where h is the 

storey's height, and 2 is a constant such as 350, 400, or any 

other value specified by the engineer. In Figure 4.5b, a side 

view of one of the bracing frames is shown. Each junction is 

considered as a joint and given a number. The different possible 

horizontal deflections in the Z - direction are demonstrated by 

Figures 4.5c and d. For these the sway deflection constraints 

become:
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(a) A typical complete structure. 

(b) Side view of Frame 1. 

(c) (ad) Modes of sway deflections in Frame 1. 

FIGURE 4.5: HORIZONTAL DEFLECTION IN A BRACING FRAME
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a S$ h, Je 

x - as < h, Ek 

. - es $< hy Pes 

2, ag ees $ h, pag 

og ae eee 
(4.36) 

In the general case, if at floor i the horizontal deflection is 

¢, and at floor itl it is 2. , . then the deflection 

eae in equation (4.36) will ae the form: 

N ! N WA
 

i+ i Ay, [2G 

WA
 

Z, - Zz neat [2 

(4.37) 

These two constraints are specified for each storey of the frame 

to cover all the possible modes of deformation. Furthermore, such 

constraints are imposed on all the vertical components including 

the shear walls. However, the engineer can select not all but 

some of the suitable components on which such sway constraints are 

imposed. 

The joint deflection constraints. Each junction of a camplete 

structure introduces three variables to the design problem. These 

are the horizontal displacement (z), the rotation of the joint 

about X-axis (8 .) and the rotation of the joint about Y-axis i 

These displacements are considered as design variables which must 

all be bound by an upper limit, otherwise the linear programming 

process excludes them fran the solution. The actual value of the 

deflection x at a joint j may be limited by an upper bound 
zo 

G..  oe deflection constraint is then: 

J
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* WA
 

Gc
 

J 5 (4.38) 

Since the sway deflection constraints are the most important for 

the design of laterally loaded complete structures, the upper 

bounds on the deflections are taken to be large so that they do 

not play a significant part in the design problem. Furthermore, 

when solving the linear programming problem by the simplex methcd, 

all the design variables should be non-negative. ‘Thus, because of 

the difficulty in predicting the direction of each joint 

deflection, especially the rotations, it is necessary to modify 

the inequality (4.38) as explained in Chapter 2. 

4.9 OTHER PRACTICAL CONSTRAINTS 

In a mathematical programming problem all the design variables 

should be bounded so that they can be included in the solution. The 

way the joint displacements are bounded was shown in the previous 

Section. The boundaries of the other design variables, such as the 

thicknesses of the grillage members and the second moments of area for 

the columns of the frames, are decided by the engineer or by the code 

of practice used. 

The design problem presented here aims at altering the topology of 

the complete structure by removing shear walls amd frames fran it. 

Certain members, however, often have to be retained in the final 

topology, e.g. the floor slabs and any other member chosen by the 

engineer. To retain such members, lower bounds are imposed on their 

sections. Upper bounds are also specified on these variables. 

Therefore, the constraints created are in the form:



  

156 

min BE max 

min 5 max 

(4.39) 

where t is the thickness of grillage panel i, t and t are 
dl: min max 

the smallest and the largest thicknesses allowed for this panel. The 

variable I is the second moment of area for the columns of frame j 

j 
and: = and I are specified as the smallest amd the largest 

min max 
available sections. Subscripts i and j here represent the retained 

components. 

For components allowed to be removed, there are no lower bounds 

imposed on their sections. It is only necessary to specify upper 

bounds for these. Fach one of these camponents is associated with its 

own variable 6 which was included in the objective function (4.26). 

These types of constraints have the form: 

ce S tc SOs 
a! max al 

ir S iE 6 
5 max j 

Te. 

ty - Beas 6, $ On; 

T; eo tas Ss s 0 

(4.40) 

Subscripts i amd j here refer to the removable components of the 

structure. Each variable 6; or 6. can be either zero or unity, i.e.: 

On anid 65 are integers (4.41)
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The constraints (4.40) and (4.41) guarantee that t cannot ke 
i 

positive unless 6, = 1. This is because the only other value 6, can 

take is zero, in which case t = 0 and the panel i is removed fran 
i 

the structure. Similarly for member j. 

4.10 COST ASSESSMENT OF COMPLETE STRUCTURES 
  

A method of assessing the cost of a camplete structure is to be 

discussed in this Section. As previously stated, such cost includes 

that of the material and the construction. The assessment is carried 

out according to the information presented in a report by [Davis, 

Belfield and Everest (1980). The report which gives details about the 

rates of labour, materials and measured items of constructions was 

discussed in Chapter 2. 

It has been decided that all the examples of camplete structures, 

which will be discussed in the next Chapter, are built fran two 

different materials. These are reinforced concrete for the grillage, 

and fabricated steel or reinforced concrete for the frames. Figure 4.6 

shows some details that are used to assess the cost of a camplete 

structure consisting of steel frames. It is assumed that minimum 

percentages of reinforcement are specified for all the reinforced 

concrete grillage panels of the design examples. 

Estimating the cost of the bracing fabricated steel frames was 

described in Chapter 2 and need not be repeated here. In this Section 

it is only required to demonstrate the cost assessment of the grillage 

structure. Thus, according to the report mentioned above, the cost of 

a grillage can be computed as follows:
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(I) The Material Cost 

The cost of reinforced concrete material is camputed after 

assuming a minimum reinforcement for the grillage members. Table 4.1 

shows the amount of the minimum specified reinforcements amd the costs 

of material obtained. For a shear wall panel of thickness to width 

W and height H, the area of the vertical reinforcement (9) used is 1 3, 

iee. 0.01 ao W, amd the area of the horizontal reinforcement is 

0.25%, i.e. 0.0025 oe H. For a floor slab panel of thickness . 

width W and span L, the area of the main reinforcement used is 0.25%, 

i.e. 0.0025 YS W, and that of secondary reinforcement is 0.15%, i.e. 

0.0015 t L. By considering one cubic meter of reinforced concrete, 

the cost of material is calculated as explained in Appendix B, thus: 

£2.20/KN Shear walls, c 

Floor slabs, c £1.62/KN 

  

Min. specified 
Shear Walls Floor slabs 

Reinforcement 

  

Main 

Reinforcement (0) 13 0.253% 

  

Secondary 

Reinforcement 0.25% 0.15% 

  

Cost per unit 

Weight (c) £2./20KN £1.62/KN           
Table 4.1: Cost per unit weight depending on the minimum 

specified reinforcement.
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(II) The Construction Cost 
  

The cost of erecting a grillage panel is done by using the 

measured rates of constructing items given in Appendix D The 

construction cost of a shear wall includes the cost of its continuous 

strip foundation. ‘The design of this type of foundation is carried out 

per meter run, as described by Faber (1976) and many others, am its 

whole cost was assessed as demonstrated in Chapter 2. 

For purposes of illustration, the methed of assessing the 

construction cost of a typical grillage member is explained by 

considering an example of a shear wall and a floor slab. Thus, using 

the specifications shown in Figure 4.6, consider a single reinforced 

concrete shear wall member constructed to link two consecutive floor 

slabs. 

The dimensions of this member are t = 0.2m, H=5m amd W= 4 

m. Assuming minimum reinforcement, of a ee Y= 77 oe is used. 

The calculations proceed as follows: 

(1) Area of vertical reinforcement 

0.01 X¥ 0.2mxX 4m 
2 

0.008 m 

2 3 

Volume = 0.008 m X5m 0.04 m 

3 3 

0.04 m X 77 KN/n - Weight 3.08 KN/one storey 

0.314 ton/one storey 

(2) Area of horizontal reinforcement 

0.0025 X 0.2mX 5m 
2 

= 0.0025 m 
2 3 

- Volume = 0.0025m X 4m = 0.0lm 

3 2 
- Weight = 0.01 m X 77 KN/n = 0.77 KN/one storey 

0.078 ton/one storey
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Volume of concrete used for the shear wall member 

=0O.2mxX 4mxX5mM toute 

The surface area of the member which needs a fair finish formwork 

=W(2H-t,) +2, 8 

Assume re = 0.2 m, thus: 

4mX (10m-0.2m) +2mxX0.2mX 5m 

41.2 ae 

If this shear wall is indicated as i, then the value of 

the construction cost for it is assessed to be R = £744.63, as 

shown in the self-explanatory Table 4.2. This as value of 

R is used in the objective function, Section 4.6. 

: Similarly, for a single bay of a floor slab, the 

construction cost is assessed as shown in Table 4.3. The 

dimensions of this member are assumed to be t, = 0.2m, L=4m 

and W= 4m. It is worth mentioning that the surface areas of the 

panel which need a fair finish formwork are: 

2XLXW Area of soffits 

Area of edges 2xLxXt, 

The cost of erecting this member is found to be R= £491.93. 

The above method of assessing the construction costs of 

the grillage members is organised amd written as part of the main 

computer program, which will be described in Chapter 8.
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Number Item Description Unit | Quantity ae . ce P 

(1) In-Situ Concrete Work: 

(a) Provision of concrete. 
- Design mixture Grade | m’* 4 Sa0 11 132.44 

28 cement, (30N/mm?). 

(b) Placing of reinforced 
concrete. 
- Walls thickness m? 4 12.87 51.48 

150 — 300 mm. 

183.92 

(2) Concrete Ancillaries: 

(a) Formwork, fair finish. 
- Vertical width over m? 41.2 10.03 413.24 

To2e Mes 

(b) High yield bar steel 
reinforcement to 
BS 449, 

- 20 mm diameter bars ton 0.314 363.47 114.412 
- 12 mm diameter bars ton 0.078 424.88 85.35 

560.71 

Summary : 

(1) The In-Situ cost 183.92 

(2) Concrete Ancillaries cost 560.71 

.. The total construction cost of the shear 744.63 
wall member 

TABLE 4.2: CONSTRUCTION COST (R) OF A TYPICAL 

SHEAR WALL MEMBER 
  

 



163 

  

Rate Amount 
Number Item Description Unit | Quantity E's E's 

  

(15) In-Situ Concrete Work: 
  

(a) Provision of concrete. 

- Design mixture Grade | m 322 S310 105.95 
28 cement, (30N/mm?). 

(b) Placing of reinforced 
concrete. 
- Slabs thickness m? Biz 4.29 3.073 

150 -— 300 mm. 

  

119.68 
  

(2) Concrete Ancillaries: 
  

(a) Formwork, fair finish. 

- Horizontal width m? BZ 9.87 315.84 
over 1.22 m. 

- Vertical width m? 1.6 WORE, 17.58 
0.2 - 0.4 m. 

(b) High yield bar steel 
reinforcement to 
BS 449, 

- 20 mm diameter bars ton 0.0621 363.47 22-82 

- 12 mm diameter bars ton 0.0372 424.88 165031 

                      
372.25 

Summary : 
(1) In-Situ cost 119.68 

(2) Concrete Ancillaries cost Si2eZo 

.. The total construction cost of the floor 491.93 
slab member ' 

TABLE 4.3: CONSTRUCTION COST (R) OF A TYPICAL 

FLOOR SLAB MEMBER 
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CHAPTER 5 

EXAMPLES ON THE DESIGN: OF 
  

LATERALLY LOADED COMPLETE STRUCTURES 
  

5.1 THE PRINCIPLES OF DESIGN 
  

The design method described in the previous Chapter is applied 

here to obtain a minimum total cost design for complete structures 

subjected to wind loads. This can be achieved, for instance, by 

reducing the number of vertical components that restrain the structure. 

The design method removes unwanted camponents automatically. 

The main design criterion adopted here is that under the effect of 

specified unfactored wind loads, the elastic sway at any storey level 

should not exceed h/%, where h is the storey height, and 2 is a 

constant, such as 350 or 500 etc, specified by the engineer or by the 

code of practice used. The design method controls the differential 

sway between the storeys as opposed to the horizontal deflection of the 

junctions. The sway of the storey level governs the selection of the 

column sections of the frames amd the thicknesses of the grillage 

panels. 

The sections obtained from the final deflection limitation design 

are checked to ensure that the lateral strength requirements are 

satisfied. However, if it is required to produce a design which 

satisfies the wind and the vertical load cases, the sections obtained, 

when designing for the wind loading case, are used as lower bounds for 

the vertical dead and imposed live loading case. It is also possible 

that a column, of a frame, is removed during the design process because 

it is more epost to sustain the wind loads by other components. 

If, however, this column is needed to carry the vertical load, then it 

is constructed as a prop and treated as a pin ended compression member.
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5.2 THE DESIGN PROCEDURE 
  

The procedure for a topological design of minimum cost for 

laterally loaded complete structures consists of the following steps: 

Ch) 

(2) 

(3) 

(4) 

(5) 

(6) 

Select a "ground complete structure". This is done by deciding 

the number and the position of the floor slabs and the shear 

walls. While the ground structure can be asymmetrical, the 

examples given are all symmetrical. 

Cover the structure area by a large number of bracing frames 

parallel to the shear walls, and specify the number of columns in 

each frame. In the design examples solved, it was decided that 

all the frames have the same number of columns. 

Give a joint number to each junction of the ground complete 

structure. Free ends of the floor slabs are also considered as 

joints. Usually the numbering starts from the first floor. 

Give a number to each member of the ground structure. The way to 

identify each single member will be clarified when dealing with 

the examples. The numbering starts with the members of the shear 

walls followed by the floor slabs then the frames. 

Group the members together. The grouping is carried out in the 

same sequence as the previous step. Usually, the parts of a shear 

wall spanning from the floor to another are identical and thus 

belong to one group. The members of a floor slab, at ome or 

sometimes more storeys, are built out of the same section amd 

belong to the same group. Furthermore, in this design method, it 

is assumed that each bracing frame belongs to one or more groups. 

Calculate the amount of wind loads according to the code of 

practice CP3. These are considered as concentrated lateral loads 

acting at the junctions of the floor slabs with the vertical 

components.
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(9) 

(10) 

(11) 

(12) 
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Select upper bounds on the design variables. These variables are 

the thicknesses of the grillage members or groups, the second 

moments of area for the colums of the frames am. the 

displacements of the joints. Also select lower bounds which will 

be imposed on members required to be retained. 

Select initial sectional properties for the members. Then analyse 

the structure to obtain the displacements of the joints. ‘Thus, 

the set of starting design variables is now introduced. 

Use the sectional properties to calculate the material ard the 

construction costs for each member or group of members. 

Therefore, the total cost of the structure can be assessed. 

Derive the objective cost function which is, as shown before, 

linearly related with the member properties. Send the constant 

coefficients of the cost function to the backing store, (Chapter 

8). 

Use the row-by-row technique to construct and transfer all the 

linearised design constraints to the backing store. In this 

manner, all the coefficients of the design problem are stored on a 

computer disk, (Chapter 8). 

Use the simplex method to minimise the objective cost function. 

Remove all members, or groups, with 5 = 0. However, it is 

recommended, as it will be shown in the design examples, that 

these members should not be removed at the early stages. This is 

because the properties of the members may have unreal 

relationships to each other. Therefore, it was decided that, 

after about three iterations, if a member still has its 6 equal to 

zero then it must be removed from the design. Members with 6 = 0 

can be removed only if feasibility is restored in the next 

iteration.
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(14) Use the sectional properties obtained to repeat the process from 

step (9) until a final topology of the structure is obtained. 

(15) Continue the minimum cost design of the structure with its final 

topology until an optimum cost is reached. 

(16) If required, check the lateral shear strength in the vertical 

components, examine the lateral stability of the frame and test if 

the sway deflection is within the specified limit. 

It is worth mentioning that the operations fram step (8) to the end 

were done automatically by using the camnputer program which will be 

described in Chapter 8. 

5.3 A 5-STOREY, 21-BAY SYMMETRICAL STRUCTURE 
  

An investigation is to be carried out on the optimum cost design 

of a hypothetical 5-storey complete building structure. This 

structure, which is illustrated in Figure 5.1, consists of reinforced 

concrete walls and slabs for which Young's Modulus (E) is 28 a 

and Poisson's ratio (v) is 0.2. The frames are of steel sections with 

Young's Modulus equal to 207 pve The structure is restrained 

laterally by two eine at the ends and 20 intermediate frames. The 

parallel vertical restraining components are 4m apart. Each frame was 

considered as a one bay frame that contains two columns at any 

particular floor. The width of the building was assumed to be 4 m. 

The first floor is 5m high, while the rest are 3.5 m. 

The lateral sway at each storey was limited to the value h/350. 

The upper bound imposed on the horizontal deflection of each joint 

(junction) was chosen to be 20 mm x f, where f is the floor number. 

Also, the joint rotations were limited by 0.08 radians. The upper 

bounds on the thicknesses of the grillage members were decided to be 

200 mm for floor slabs and 300 mm for shear walls. The lower bounds
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were selected according to the code of practice CPl10, which specifies 

in clause 3.3.8.1 that the minimum thickness of a continuous slab, with 

a span L between two supports, is L/25. Thus, for a slab with a span 

of L = 4m, the minimum thickness would be 160 mm. A smaller value of 

the allowable thickness is specified by CP114, in clause 309, but this 

is not used here. The smallest allowable thickness of a shear wall was 

assumed as 120 mm. 

The lower and the upper bounds imposed on the second moments of 

area (I) for the columns of the frames were selected as the smallest 

and the largest I in the available universal colum sections. A steel 

beam, in a frame, was assumed to have canplete interaction with the 

concrete slab. Thus, a composite beam was formed by a concrete slab 

supported on, amd connected to, the top flange of an wumcased beam, 

(Davies, 1975). The sectional properties (I) of all the steel beams 

were assumed to have a single known value. This was given as data ard 

was kept unchanged throughout the design process. 

The structure is symmetrical about the vertical central line, as 

shown in Figure 5.1. Thus, only the left hand half was considered. 

This is shown in Figure 5.2 in which the joint numbers are circled. 

The unsupported points in the floor slabs on the vertical line of 

symmetry were also considered as joints. The displacements represented 

by the rotations about Y-axis (8), for all the joints at the line of 

symmetry, were suppressed. This is because, at this line, the floor 

slabs do not rotate about the Y-axis. 

Figure 5.2 also shows the numbering of the members. Each member 

has an arrow, which indicates the direction of the local axis. In each 

floor the numbering starts with the shear walls followed by the floor 

slabs, and then the frames. Grouping of the members is given by the 

number in squares. The members of the shear wall are built identical,
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i.e. one thickness, therefore they belong to a single group. Also, it 

was decided that slabs of more than one floor can be built out of the 

same group, e.g. the slabs in group 2 .. Furthermore, the columns of 

each whole frame were assumed to be built fram a uniform section 

belonging to one group. 

The left hand half of the structure consists of 60 joints and 110 

members which include five members for the shear wall, 55 for the floor 

slabs and 50 for the frames, Figure 5.2. All the members were 

collected into 14 groups one of which is for the shear wall, three for 

the slabs and ten for the frames. The design problem has 200 

variables, four of which are the thicknesses of the grillage groups, 

and ten represent the second moments of area of the columns. There are 

also 175 displacements with three variables for each joint at the 

junctions of vertical and horizontal components, and with two variables 

(z, 0.) for each joint at the line of symmetry. The last 11 variables, 

from the total, represent the 6 variables for the 11 removable groups 

of shear walls and frames. The problem has a total of 422 constraints, 

of which 175 are stiffness constraints, 175 are deflections and 44 are 

relative sway deflection constraints. There are six boundary 

constraints imposed on the thicknesses of the floor slabs, i.e. the 

first part of the inequality (4.39). Also the removable groups have 11 

constraints of the type (4.40) and another 11 of the type (4.41). 

The wind loading shown in Figure 5.2, was applied on the junctions 

of the central frame. The same values imposed similarly on all the 

intermediate junctions created from the horizontal and the vertical 

components. The only exceptions are the junctions of the shear wall 

where the loading values shown in the Figure were halved.
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Desir: The Design Cases 

To begin with, the foundations of the shear walls and the frames 

are designed and costed. This was done by assuming that a uniformly 

distributed vertical live load of 5 Sie and S615 ve are 

applied on the floors am the roof respectively. These loads were 

added to the self weight of the structure, which was computed assuming 

the largest possible section are used. With the same assumed sections 

and under the effect of wind loading only, the structure was analysed 

to find the displacements and to campute the shear forces am the 

bending moments which were acting on the foundations. The foundations 

were then designed and costed. It was assumed that the shear walls are 

supported by strip footing which was costed at £350. The cost of an 

independent footing for each steel column came to £360. ‘Therefore, the 

foundation cost of each frame is £760. These costs were kept constant. 

Because of symmetry, only the left hand half of the structure was 

designed. The procedure started with all grillage members having a 

thickness of 160 mm, and all steel frames having a second moment of 

area Of 17510 X 10° ae for their column sections. A value of I = 

29337 xX ee a was specified for all the beams, and was kept 

unaltered. With these known starting values of the variables, the cost 

| of the complete structure can therefore be assessed as explained in the 

previous Chapter . The mass per unit length of the universal steel 

members were used in calculating the material and the construction 

costs of the frames. 

To demonstrate the versatility and the flexibility of the method, 

five design cases are now reported. 

Die Sodio Design Case 1 

In this case, the shear walls and all the frames were allowed to
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be removed. Thus, no lower bounds were imposed on them. ‘The outputs 

of the design cycles are displayed in Table 5.1. At each cycle, the 

sectional properties of each group, their construction costs, i.e. R 

in objective function (4.26), and their 6 variables were obtained. the 

last column in the Table gives the total cost calculated at each cycle. 

This includes the material and the construction costs of all the 

members. The costs of the foundation were included in the construction 

costs of the vertical components. 

At some early stages of the design some member groups were 

obtained with 6 = 0 and their sectional properties were also reduced to 

zero. However, these were retained at this stage at their lower values 

Of t€ and. i. Such groups are marked by asterisks in Table 5.1. 

Nevertheless, if these groups persist to give zero values after two or 

three design iterations, then they must be removed fram the design and 

a zero value should be given to their variables, as can be seen in the 

Table. The slab groups had no’'6 variables because they are the 

original retained member groups of the camplete structure. 

When the value of I for a column was obtained at the em of each 

design iteration, the mass per unit length of the nearest am the 

lightest "universal" column section available was used to assess its 

cost. 

The topological design of minimum cost for the 5-storey 

symmetrical complete structure was obtained at the sixth design 

iteration, as shown in Table 5.1. The final shape achieved for the 

whole structure is shown in Figure 5.3. The Table in the Figure shows 

the optimum section variables which were required to restrain the 

structure against the lateral wind loading. The width W given in 

brackets for each group are constants selected before the design 

procedure was started. The I values in the Table were obtained by the
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computer. However, the values of I in the brackets are the nearest 

available "universal" column sections which were selected to be used. 

The material and the construction costs, shown in the Table with 

Figure 5.3, were computed for the whole structure, i.e. for both 

halves. The optimum total cost obtained is £205,288, which is double 

that obtained at the sixth design iteration, in Table 5.1 Frame groups 

11 and 13 remained with their 6 variables at 0.9 and 0.51 respectively. 

The removable shear wall (group one) also remained amd its thickness 

reached the upper bound. This caused its 6 variable to be exactly one. 

De Selene Design Case 2 

In this case, it was required that frame group 11 must be retained 

in the final topology of the structure. Thus, a lower boumMd was 

imposed on the columns of this frame. The bound was chosen to be the 

smallest universal column section available with I = 1263 x ae 

All the other frames and shear walls were allowed to be removed. 

Similar to Case 1, the optimum cost design was obtained after six 

design iterations. The final topology achieved is shown in Figure 5.4, 

where it is noticed that group 12 is also retained at its upper bound 

with I = 275140 x ice a The group had 6 = 1. The thickness of 

the shear walls (group one) had reached its maximum at t = 300 mm and 

6= 1. The results prove that this case is very much similar to Design 

Case 1. The optimum total cost of the complete structure was £200067 

Which is only 2.5% less than that for the design in Case l. 

So Seles Design Case 3 

In this case, it was decided to reduce the width of the shear
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walls from 4m to 2m. The width of the slabs was kept unchanged at 4 

m. The foundation cost of the new wall was reduced to £190. These 

edge shear walls and all the frames were allowed to be removed. After 

seven design iteration, the optimum cost design was obtained, am the 

final topology achieved for the complete structure is shown in Figure 

5.5, where it is noticed that the number of frames retained has 

increased to eight. The frames adjacent to the walls were retained 

which indicate that the slender walls are insufficient to transmit the 

wind loads to the foundations. Therefore, more restraining frames were 

needed. 

The sectional properties of the shear walls amd those of the 

frames in group ten reached their upper bounds. The value of 6 for 

these reached unity, i.e. 6 = 1. The thickness of the slabs in group 

two reached the upper bound, while that of group four was reached to 

its lower bound, Figure 5.5. Frames in groups five, 11 and 14 were all 

retained, but their 5 values became small, nearer zero than one. It 

was therefore considered that there was a possibility of removing some 

or all of these frames. However, further designs without these frames 

proved infeasible. 

The optimum total cost achieved in this case was £214079, which is 

4.1% more than that for the design in Case 1. This increase is the 

result of increasing the number of frames. 

So elee Design Case 4 

In this case, it was decided to insert another pair of shear walls 

into the structure. These replaced the frames in group 1l. The width 

of all the walls and the slabs was set as 4m. The foundation cost of 

each of the new walls was £430, while that of the edge walls was £350 

each. The shear walls and all the frames were allowed to be removed.
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After five design iterations, only the shear walls and the central 

frame were retained. At this stage, shear wall in group two had a 

thickness of 270 mm, and floor slabs in group four had a thickness of 

160 mm. It was decided to remove the central frame because its 6 = 0. 

As a result, after two more design iterations, the optimum design was 

obtained with the final topology shown in Figure 5.6. 

The optimum values of the section variables are shown in the Table 

of Figure 5.6. The shear walls, with their maximum thicknesses, proved 

to be stiff and well capable of restraining the structure against the 

lateral wind loading. 

The material costs of the shear walls in groups one amd two were 

the same, but the construction costs were slightly different because of 

the variation in the foundation and the formwork costs. The optimum 

total cost achieved was £130140, which is 36.6% less than that for Case 

1. This design indicated that it is by far more economical to use 

shear walls in place of the frames in group ll. 

edie ds Design Case 5 

In this case, the width of the shear walls, described in Design 

Case 4, reduced to 2 m. ‘The optimum design was obtained after six 

design iterations with the final topology shown in Figure 5.7. It can 

be seen from the results that frame groups six, 11 and 12 were retained 

particularly to strengthen the shear walls against the wind loading. A 

non-feasible solution was always recorded whenever a frame was removed. 

The optimum total cost obtained is £168580 which is 17.8% less than 

that for Case 1. The foundation cost for the edge wall was £190, ard 

for the inner wall was £240.
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5.4 A 9-STOREY, 11-BAY SYMMETRICAL STRUCTURE 
  

Further investigation is to be carried out on the optimum cost 

topological design of a 9-storey structure of a type canmonly 

encountered in practice. The investigation was extended to consider 

the effect of using restraining frames made out of reinforced concrete 

instead of steel, and the effect of using shear walls as the only 

restraining components. The ground structure, which is illustrated in 

Figure 5.8, consists of reinforced concrete walls amd slabs for which 

Young's Modulus (E) is 28 me and Poisson's ratio (V) is 0.2. The 

intermediate frames can be built of steel sections for which E = 207 

ae or of concrete sections for which E am Vv values are as 

above. 

Originally the structure was restrained laterally by two walls at 

the ends and ten intermediate frames. Each single bay frame consisted 

of two columns at any particular level. However, other possible 

topologies of the structure will be examined, amd these demand slight 

alterations in numbering and grouping of the members. The restraining 

components were parallel and were 4m apart. The width of the building 

was assumed to be 5m. The height of the first storey was set as 5m, 

while each of the other eight storeys was at 3.5 height, as shown in 

Figure 5.8. 

The lateral sway at each storey, of height h, was limited to 

h/500. The horizontal deflection of each joint had an upper bound of 

20 mm x f, where f is the storey number. The joint rotations were 

limited by an upper bound of 0.08 radians. The upper bounds imposed on 

the thicknesses of the grillage members were taken as 300 mm for the 

walls, and 200 mm for the slabs. While the lower bounds imposed were 

120 mm and 160 mm on the walls and the slabs respectively. The value 

of I for the largest and the smallest universal column sections
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available were set as bounds for the steel columns of the restraining 

frames. For concrete frames, the bounds on the section variables will 

be explained when dealing with Design Case 5. 

The structure is symmetrical about the vertical central line, as 

shown in Figure 5.8. As a result, the rotations in the e direction of 

all the joints at the line of symmetry vanish. Also, only the left 

hand half was considered for the design. This had 63 joints amd 108 

members which were originally collected together into nine groups, 

three for the slabs and six for the vertical components. 

Figure 5.8 also shows the wind loads imposed on all the junctions 

except those of the edge walls where such loads became half the 

original values. 

In all the design cases given below, the procedure started with 

the grillage members having a thickness of 160 mm, amd all the steel 

columns having a second moment of area of I = 17510 x me ear The 
Aaa 

beams had a fixed value of I = 29337 Xx 10 mm. 

5.4.1 Design Case 1 

In this design case, the shear walls and all the frames were 

allowed to be removed. Thus, no lower bounds were imposed on them. 

The shear walls were built from a uniform section, thus they belonged 

to a single group, e.g. group one. The slabs of every three 

consecutive storeys were assumed to belong to one group. Also, the 

columns of each steel frame were assumed to be built from one section, 

thus they belonged to a single group. 

After six design iterations, for the left hand half of the 

structure, the optimum cost topological design was obtained. The final 

shape achieved for the whole structure is shown in Figure 5.9. The 

Table in this Figure shows the optimum section, for the member groups,
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Group ; é Material |Constructionr eau Section Variables (mm) a eg ee (J 6 
ell 

1 t = 300 (Ww = 5000) 5,336 15,038 1 

2 t = 200 (W = 5000) 5,174 ZO 147 - 

3 t = 200 (W = 5000) 5,174 20,147 - 

4 t = 200 (W = 5000) Sa 207147 ~ 

6 I = 90114x10"(use99994x10°)| 10,113 32,700 0.34 

9 = 275 A0 x 10° 20,662 64,305 1 

Total Cost = £224,117 

= Thickness of Panel 

W = Width of Panel 

FIGURE 5.9: THE 9-STOREY STRUCTURE - 

OPTIMUM DESIGN IN CASE i 
  

Second Moment of Area for the Steel Columns of Frame
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which were required to stiffen the structure against wind loading. All 

the grillage members have reached their upper bounds. Frames in groups 

six and nine were retained with their 6 variables at 0.34 and 1 

respectively. The optimum total cost obtained is £224117 which 

includes the material and the construction costs of all the members in 

the complete structure, plus the foundation costs of the vertical 

components retained in the final topology. 

5.4.1.1 Verification of the Design 

Using the computer programme which will be described in Chapter 8, 

an investigation was carried out to examine the efficiency of the 

optimum design achieved in Case 1. The final design was checked to 

ensure that the lateral equilibrium and strength requirements were 

satisfied. 

(a) The Sway Deflection 

The final shape of the structure was analysed and the sway 

deflection profile of the end shear wall, i.e. group one, and of 

the central frame, i.e. group nine, were plotted as shown in 

Figure 5.10. The Figure also shows the allowable linear sway 

deflection profile in which the sway in a storey is restricted to 

h/500. It is noticed that the sway deflection at the first floor 

of the central frame has almost reached its limit. This showed 

that the sway deflection constraints dominated the design and it 

is apparent that the optimum result obtained without considering 

them will yield an unsafe solution. The sway deflection at all 

other storey levels were satisfied. The deflections at the first 

and the top level are plotted in Figure 5.11 for the left hand 

half of the structure.
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A 28:52 (35.2 mm) 
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FIGURE 5.10: THE 9-STOREY STRUCTURE-SWAY DEFLECTION PROFILES FOR 

THE END WALL AND THE CENTRAL FRAME OBTAINED AT THE 

OPTIMUM DESIGN IN CASE 1 
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Shear Forces 

Figure 5.12 shows the distribution of lateral shear forces at the 

end wall and the central frame, obtained at the optimum design for 

Case 1. By following the sign convention, which was described in 

Figure 4.1, the direction of the lateral shear forces is 

designated as negative. The diagrams in Figure 5.12 show that the 

maximum shear force at the base of the em wall was about double 

that at the base of the central frame. This force reduced 

gradually for the first seven storeys of the wall, amd then 

reverse in direction for the top two storeys. 

The lateral shear force in the central frame was almost uniform 

throughout the first four storeys, and then it decreased steadily 

for the rest of the storeys. The shear force in the other frame 

(group six) was small and approximately uniform throughout its 

height. 

As it was mentioned before, this design method does not include 

any vertical loading. Thus, the axial deformation in the columns 

of the frames is neglected. Because of this, am according to 

Croxton (1974), the shear forces in the frames are over-estimated 

by approximately 10% in all storeys. Nevertheless, to justify the 

design, the lateral shear strengths of the columns in the central 

frame, and of the end wall are checked below. 

Shear Stresses 

According to BS 449 (1969), the average shear stress in a steel 

column, of web thickness greater than 40 mm, should not exceed 105 

: 
N/mm for grade 43 steel. The universal column section used for 

4 4 
the central frame had I = 275140 X 10 mm which has a web 

thickness of 47.6 mm, amd section depth of 474.7 mm. The largest 

value of shear force carried by the two columns of the frame is 

90
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538 KN, and thus each column carries 269 KN which is half the 

largest value. The shear stress is expressed as: 

  

< Shear Force 
Sheps eee © Section Depth x Web Thickness (5.1) 

Therefore, 

e 269 x 1000 N ss iz 

SY eT ee ae 1 N/a (5.2) 

2 
which is much less than the allowable 105 N/mm. The maximum 

shear force at the base of the concrete end walls is 1220 KN. 

Each wall had a width W = 5000 mm, am a thickness t = 300 mm. 

According to CP114: Part 2 (1969), clause 316, the shear stress 

which is calculated from: 

Shear Stress = Shear Force (5.3) 

2 
should not exceed the allowable 0.9 N/m, (Table 6, CP114). 

However, the maximum shear stress at the base of the rectangular 

section of the wall is: 

tae ‘aed Seon 2 
Max.Shear Stress = 300 mm x 5000 nm = 1.215 N/mm C5o4)) 

which is greater than the allowable. This means that the whole 

shearing force should be provided by shear reinforcement. As a 

result, the horizontal reinforcement must be increased by an 

amount slightly more than the minimum value of 0.25% specified in 

Section 4.10. However, as long as the maximum shear stress, 

equation (5.4), is less than four times the allowable, i.e.



  

(a) 

(e) 
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2 
3.6 N/mm, the dimensions obtained for the wall section are 

acceptable and need not to be changed. 

Bending Moments 

Figure 5.13 shows the bending moment diagrams for the end wall and 

the central frame obtained at the optimum design. The sum of the 

bending moments at both ends of the columns in a storey of the 

frame is equal, (equation 4.16). Nevertheless, the moments at the 

second, i.e. lower, em of each storey, of the frame am of the 

shear wall, were used for plotting the diagrams. It is noticed in 

Figure 5.12 that the maximum bending moment at the base of the 

central frame is about 1/10 of that at the base of the wall. This 

moment depended only on the differential sway, which was at its 

highest value at the first storey, Figure 5.10. The bending 

moment at the base of the wall, Figure 5.13, decreased gradually 

throughout the first five storeys, then it became negative for the 

rest of the four storeys, and ended up as zero value at the top of 

the ninth storey. 

Torsion 

Torsion can be induced in the walls when the floor slabs bem in 

their own plane. The torques in the em wall of the 9-storey 

structure were found to be insignificant, amounting to a maximum 

of 1/250 of the bending moment at the base of the wall. A diagram 

representing the torques in the end wall is shown in Figure 5.14. 

The directions of torque in the Figure were plotted following the 

sign convention of Figure 4.1. Torques in the restraining frames 

were so small that they were ignored. 

The maximum torque in the slabs was found to be only 1/500,000 of 

the bending moment at the base of the wall. It is evident 

therefore that the cumulative effect of the torques in the slabs,
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on the bending moment at the base of the walls, is almost unlikely 

to become significant in this structure. The same conclusion has 

been reached by Croxton (1974). This strengthens the assumption, 

made in Section 4.3, that the torsion of the floor slabs about 

their longitudinal axes should be ignored. Thus, by setting the 

torsional rotation of the slab to zero at the frame junctions, the 

column ends do not rotate. This causes the fact that these 

columns do not transfer the moments between the storeys of the 

frame. Therefore, such moments are created only from the 

differential sway between two consecutive storeys. 

Sas Design Case 2 

The above arrangement of column grouping in Case 1 could be 

costly, from the designer's point of view. Therefore, in design Case 

2, it was decided to construct each frame fran two groups of columns. 

The advantage is to provide flexibility in removing unnecessary columns 

from the final topology. 

The columns at the ground level belonged to a different group fram 

the rest, and altogether there were ten groups of columns in the 

structure. This arrangement proved to be more economical as large 

column sections might be needed only at the ground floor. 

After seven design iterations, for the left hand half of the 

structure, the optimum cost topological design was obtained and the 

final shape is shown in Figure 5.15. The grillage members reached 

their upper bounds. The columns at the ground level of the frame in 

position two, Figure 5.8, were retained. These columns belong to group 

six.



  

  
  

  

  

  

  

  

  

  

              

Group : . Material onstruction 
ides Section Variables (mm) chee 12) | koe saath) 6 

1 t = 300 (W = 5000) 5,336 E5036 1 

2 t = 200 (W = 5000) 574 20,147 - 

3 t = 200 (W = S000) Se: ZO 47. - 

4 t = 200 (W = 5000) So 20,147 - 

4 4 
6 I = 23913x10 (Use27601x10 ) 698 8,189 0.16 

9 ies 275140 x 10° 3,074 1533 LO ik 

14 | r=150358x104 (use183118x10")| 7,257 40,251 0.55 

Total Cost = S15/4, 54616     

FIGURE, 5.15% THE 9-STOREY STRUCTURE - 

OPTIMUM DESIGN IN CASE 2 
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The central frame, in position six, was also retained. The 

columns in this frame belong to group nine at the ground level, and 

group 14 at the other storeys. Columns in group nine reached their 

upper bound with 6 = 1, while those in group 14 settled at a lesser 

value of the second moment of area with 6 = 0.55. Although the 5 value 

for columns in group six is small (6 = 0.16), no feasible solution was 

obtained when this group was removed. ‘The optimum total cost achieved 

was £171116 which is 23.6% less than Case l. 

The sway deflection profiles for the em wall am the central 

frame, at the optimum design, are plotted in Figure 5.16. By comparing 

the deflection in this case and that in Case 1, Figure 5.10, it is 

noticed that the structure here is less rigid, although it satisfies 

the specified deflection. In this case, the deflection at the top 

storey of the central frame is 49.7 mm, while in Case 1 it is 28.2 m. 

The deflection at the top storey of the end wall is 58.5 mm in this 

case, while it is 35.2 mm in Case 1. Notice that the allowable 

deflection at the top storey should not exceed 66 mm. 

5.4.3 Design Case 3 

In this design case, it was decided to replace the middle two 

frames by shear walls as shown in Figure 5.17. The width of all the 

walls and the slabs was kept at 5 m. The frames were steel and each 

pair belongs to a single group. The cost of foundation for each of the 

new walls was £680, while for each of the end walls it was £560. 

The walls and all the frames were allowed to be removed. After 

six design iterations, for the left ham half of the structure, the 

optimum design was obtained. The walls and frames in group eight were 

retained in the final topology, which is shown in Figure 5.17. The 

Table in the Figure shows the section values. The optimum total cost



  
  

  
  

  

  

  

  

                  

  

Group E 3 Material onstruction Hanis Section Variables (mm) eee. (hi | bo (£) 6 

1 t = 300 (W = 5000) 57336 15,038 1 

2 t = 300 (W = 5000) 5,336 15,302 1 

3 t = 200 (W = 5000) 5 72 207 L47 = 

4 t = 160 (W = 5000) 4,139 18,724 - 

5 t = 200 (W = 5000) 5 lye 20 147 - 

8 I = 60776x10" (Use66307x104)| 7,529 24,959 | 0.25 

Notal Cost = 147,005 

FIGURE 5.17: THE 9-STOREY STRUCTURE - 

OPTIMUM DESIGN IN CASE 3 
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achieved is £147005 which is 34.4% less than that for Case 1. The sway 

deflection profiles for the central and the em walls are plotted in 

Figure 5.18. The lateral strength and stability requirements were 

checked and found satisfactory. 

5.4.4 Design Case 4 

In this case, it was decided to put all the vertical components as 

shear walls, i.e. no skeletal frames were used. The walls were placed 

in the same positions of the frames. The distances between the walls, 

and hence the wind loads at the junctions were kept at their original 

values. The aim of the design here was to find out the walls that are 

not effective in resisting the lateral wind loading. The widths of all 

the walls and the slabs were kept at 5 m. The upper am the lower 

bounds imposed on the thicknesses of the grillage members were taken as 

originally specified. The cost of the foundation for the end walls was 

£560 each, and for each of the other intermediate walls was £680. 

The vertical components, of the 9-storey structure, were 

originally divided into six iets (Section 5.4). Therefore, in this 

design case, the six groups represent the walls only. An additional 

three groups were specified for the slabs. 

The design procedure was started with all the groups having a 

thickness of 160 mm. The policy of removing walls which were not 

required in the design is explained in Section 5.3.1.1, amd need not be 

repeated here. Following such a policy, am after seven design 

iterations for the left hand half of the structure, the optimum design 

was obtained. The final topology achieved is shown in Figure 5.19. 

The final thicknesses of the walls are given in the Table below the 

Figure. It is shown that wall groups one am five were removed fram 

the final topology while groups four and six have reached their upper
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  Group 
Material Construction 

  

  

  

  

  

  

          
    

Number| Se¢tion Variables (mm) Cee by ena: () 6 

2 Co 151 (Ww. = 5000) 2,686 11,965 0.50 

3 t' = 285 (W = 5000) 5,069 14,961 0.95 

4 t = 300 (W = 5000) 5,336 15,302 1 

6 t = 300 (W = 5000) 37336 rs, S02 1 

i ct = 160 (Ww = S000) 4,139 18,724 - 

8 ft = 160 (W = 5000) 4,139 18,724 - 

9 tt = 160 (W = 5000) 4,139 18,724 - 

mOGal Cost = £144,546     

FIGURE 5.19: THE 9-STOREY STRUCTURE - 
OPTIMUM DESIGN IN CASE 4
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bounds. The thicknesses of all the slab groups have settled on their 

lower bounds. The optimum total cost achieved is £144546 which is 

35.5% less than Case l. 

The sway deflection profiles for wall groups two and six are 

plotted in Figure 5.20. It is noticed in this Figure that the sway in 

these two walls are very close. This gives the impression that the 

effect of bending of the floor slabs in their own plane is very small, 

and such slabs can be considered as rigid diaphragms. 

by. 4.5 Design Case 5 

In this case, it was decided to use frames made out of reinforced 

concrete. The serviceability limit state method was used in the design 

of reinforced concrete columns of the frames. This method ensures 

satisfactory behaviour of the structure under service, i.e. working, 

loads. The principle criterion relating to serviceability is the 

prevention of excessive deflection. 

The CP110 Code of Practice for the structural use of concrete 

outlines serviceability limit state calculations to ensure the 

avoidance of excessive deflection or cracking. As it stands, the code 

does not impose any limit on sway deflection of frames, but it suggests 

in clause 3.5.8 that if the depth of the cross section of a concrete 

column is more than its effective height/30 then the sway requirements 

may be satisfied without further calculation. However, the author 

found that this underestimates the column depth needed for the concrete 

restraining frames. A similar conclusion has been achieved by Okdeh 

(1980). Therefore, in the absence of a better limit, and as a large 

sway might produce excessive cracks, the limit of height/500 is adopted 

for the design of concrete columns of the sway frames, (Allen, 1974).
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Representation of Concrete Column Sections 
  

One of the purposes of this design is to obtain the values of I 

for the columns so that the sway deflections are satisfied. The 

overall depth of each column is then obtained. 

For a rectangular concrete column section, the second moment of 

area may be based on the assumption of using the gross uncracked 

section, where the entire cross-section, including’ the 

reinforcement on the basis of modular ratio, is considered. 

For a rectangular section shown in Figure 5.21, the wncracked 

second moment of area is given by Reynolds and Steedman (1976) as: 

ba 
_— —_ qd — 

qo. = “12 oe A (« 1) (F r) 2 (5.5) 

This is assuming that the compression reinforcement is equal to 

the tensile reinforcement, amd the distance of the neutral axis 

below the top edge is equal to d/2. Here d is the overall depth 

of the section, b is its width, r is the reinforcement cover, A 

is the area of tensile or compression reinforcements and < is the 

modular ratio which can be expressed as: 

aoe By E, (5.6) 
Ss 

where E is the Young's Modulus of steel, amd E is the 
s e 

Young's Modulus of concrete. 

  

  

      

FIGURE) 5:21 A TYPICAL SECTION OF A REINFORCED 
CONCRETE COLUMN
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Design Assumptions 

If equation (5.5) is required to be written only in tems of 

thickness (b) and overall depth (d) of the section, then certain 

assumptions must be made. ‘These are: 

(i) 

(ii) 

(iii) 

Requirements regarding areas of reinforcement in the 

columns are defined in clauses 3.11.4.1 and 3.11.5 of 

CP110. The minimum area of main longitudinal bars is 1%, 

and the maximum should not exceed 6% of the gross cross- 

section area of the column. In this design problem, it was 

assumed that the percentage of reinforcement (9) is equal 

to 3%, 1.€. p “= 2A, /bd = O00S" 4 thus: 

2A, = 0.03bd (5.7) 

The link reinforcement was assumed to be 0.15%. 

It was assumed that: 

E 2 
«< = = = 200 _KN/mm_ KN/mm Seen a (5.8) 

Cc 28 KN/mm 

Different values of reinforcement cover (r) are given in 

clause 3.11.2 of CP110 code. However, this code always 

used fixed values of r to prepare its various design 

charts. One of these values, which was used here, is given 

as: 

© s= 5 OF (529) 

All the above assumptions were used in the design method described 

in this section, but other values can also be used by a designer.
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These can be arranged as data given to the computer program which 

will be described in Chapter 8. 

By substituting equations (5.7), (5.8) amd (5.9) into equation 

(5.5), we obtain: 

b d> 2 Le ast «(0.08 ba (7.14 - 1) (0.5 a - 0.1 a) (5.10) 

Thus: 

3 3 a a 6.354 bd 
he ee as ett 

and: 

et ae 3 Le 7 ep = oe ba (5.12) 

Thus by initially specifying the values of b and d, the second 

moment of area for an umcracked rectangular concrete colum 

section can be computed from equation (5.12). 

Section Boundaries 

The lower bound imposed on the second moments of area for the 

concrete columns was taken as I = 18240 X i ae this is 

when b = d = 200 mm. The upper bound was taken as I = 738720 X 

10 un when b = 300 mm and d = 600 mm. These bounds wre 

computed using equation (5.12). 

It is worth stating that the values of b and d were not involved 

whatsoever in the design process. This was because, only the 

second moment of area (I) for the column section was needed, but 

when an I value was obtained at the end of a design iteration, 

only the thickness (b) was reguired to be specified by the
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designer, and by using equation (5.12) the overall depth (d) can 

be computed. The assumed b and the calculated d were only used in 

assessing the material and the construction costs of the colums. 

The cost was calculated automatically by the computer program. 

It was decided to make d 2 b with d parallel to the Z-axis (Figure 

4.1). As a result, a value of i oor 92340 X i a for b = 

d = 300 mm, was used as an (altace: If any value of I fora 

column section, obtained from a design iteration, with I § oo 

then b was given the value of b = 200 mm, and if I > I then oe 

300 mm. This was done to ensure that the lower oa ae upper 

bounds on the column section were not violated. The bounds on the 

thickness of the grillage members were taken as originally 

specified in Section 5.4. 

Cost Assessment 

In this design method the beam sections were specified before 

hand. One section was assumed for all the beams, and was kept 

unaltered during the design process. This hypothetical section 

was only used in the process of assessing the total cost of the 

structure. Thus, a beam section of thickness b = 200 mm ard 

overall depth d = 450 mm was assumed. The percentage of the 

longitudinal reinforcement (9) was specified as 1.85%, amd the 

link reinforcement was 0.15% of the longitudinal section. 

Using the methods described in Appendix B amd Section 4.10, the 

material cost for all the beams of a single 9-storey frame was 

found to be £263. While the construction cost was assessed as 

£1081. The material cost for the columns was found to be £3.4/KN. 

The foundation costs were estimated as £1400 per frame, i.e. £700 

per footing. The cost of the end wall foundation was taken as 

£560, as in Case l.
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The Design Results 

The two edge shear walls and all the concrete frames were allowed 

to be removed. The design in Case 1 showed that the sway in the 

ground floor columns may decide the design outcome, it was 

therefore decided to group the members in the manner adopted in 

Case 2. 

The design procedure started with the grillage members having a 

thickness of 160 mm. All the colum groups had an initial second 

moment of area of I = 92340 X he oe which is the indicating 

value mentioned earlier in Section (c). The method that was used 

in removing members from the ground structure was explained in 

Section 5.3.1.1. 

After eight design iterations, the optimum cost topological design 

was obtained, and the final shape achieved for the 9-storey 

structure is shown in Figure 5.22. The section variables of the 

grillage panels have reached their upper bounds. 

The optimum second moments of area for the rectangular concrete 

sections of the retained columns are shown in the Table in Figure 

5.22. The thickness (b) of each section was previously assumed by 

the designer, and the overall depth (d) of the section was 

computed using equation (5.12) 

The frame in position two, which contains column groups five and 

ten, and the frame in position three, which contains groups six 

and 11, were removed. The columns in group 13 were also removed. 

The column groups eight and nine have reached their upper bound. 

The optimum total cost achieved is £137138 which is 38.8% less 

than that for Case 1. One of the reasons for this substantial 

economical achievement is that the cost of concrete frames is much
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oe 1 2 3 4 5 6 
Concrete Frames 

Group ‘ i Material onstruction 
Bian Section Variables (mm) | eg ae A (E 6 

| == SS 

| i t = 300 (WwW = 5000) 5,336 15,038 1 

| 2 t = 200 (W = 5000) 5,174 20,147 - 

3 t = 200 (W = 5000) 5), 1374 20,147 - 

4 t = 200 (W = 5000) Bel LA: 20:14] - 

7 f=ba1550x10 th 300, 6 -* 543) 797 6 396 | 0:74 

8 I=738720x10- (b = 300, @ = 600) 826 6,481 1 

9 |1=738720x10° (b = 300, a = 600) 826 6,481 1 

12 |1=660404x10° (b = 300, d = 578)| 2,144 7,925 | 0.89 

14° |re366526810° th m 300, a = 475)) 4,856 7,069 | 0.49 

Total Cost = £1:37 7138 

I = Second moment of area for a rectangular concrete column 

section 

b = Thickness of section 

d = Overall depth of section 

FIGURE 5.22: THE 9-STOREY STRUCTURE - OPTIMUM DESIGN IN CASE >, 

WHERE REINFORCED CONCRETE FRAMES ARE USED 
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smaller than that for steel, although more concrete restraining 

frames were needed. 

The lateral strength and stability requirements were checked as 

previously explained in design Case 1, amd found to be 

satisfactory. The sway deflection profiles for the em wall amd 

the central frame are plotted in Figure 5.23. It is shown in the 

Figure that the deflections at the first four storeys are very 

much near the limit. 

h (50.8 mm) 
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Concrete 

Frame 
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(—-~ x = Storey No.) 
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PIGURE. 5 2 3k THE 9-STOREY STRUCTURE-SWAY DEFLECTION PROFILES AT 
THE OPTIMUM DESIGN IN CASE 5,WHERE REINFORCED 
CONCRETE FRAMES ARE USED 

v



  

212 

CHAPTER 6 

OPTIMUM DESIGN OF REINFORCED CONCRETE 
  

FLAT GRILLAGES WITH SUPPORTING COLUMNS 
  

6.1 INTRODUCTION 

In this Chapter a method is proposed for a minimum weight or a 

minimum cost topological design of reinforced concrete flat grillages 

made of straight orthogonal members and subjected to normal dead ard 

live loads. The members are considered as rigidly connected monolithic 

beams of rectangular sections. The minimisation is carried out subject 

to restrictions on structural behaviour, including stiffness, stress 

and deflection. The object of the optimisation is to find the concrete 

cross-sectional dimensions and the corresponding amount of reinforcing 

steel. 

In each of the grillage structures considered here, the beams lie 

in one plane and they are free or rigidly connected at their ends. The 

grillage can be carried freely by a number of columns, or by columns 

and fixed end supports. The columns are built normal to the planes of 

the grillages as is the case of roof, foundation amd bridge deck 

systems. 

The matrix displacement method is used to construct the overall 

stiffness matrix of the grillage structures, including the supporting 

columns. The effect of shear distortion is included in the stiffness 

coefficients of the beams. 

The approximating programming method is used to linearise the non- 

linear design problem by employing the first two terms of Taylor's 

series. This is then solved by the simplex method. An economical 

program, using the backing store, was written by the author to 

formulate the design problems. This program and the data preparation 

will be described in Chapter 8. For symmetrical structures, use is
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made of symmetry about one or two axes to reduce computer time and 

storage. 

6.2 REPRESENTATION OF GRILLAGE SYSTEMS 
  

The grillage structural configuration is represented by discrete 

elements of beams, and supported, if required, by columns. The 

positive sign convention adopted for forces and displacements is in 

accordance with the right-hand screw rule. This was used in Chapter 4 

for the design of deep beam vertical grillages. The same sign 

convention is adopted for the horizontal (flat) grillages, as 

illustrated in Figure 6.1. The axes of the beams lie in the XY plane, 

and if supporting columns are existing, then they will be erected in 

the Z-direction. 

Joints are placed at all points where longitudinal and transverse 

beams intersect. Joints are also placed where there are more than one 

concentrated load or a discontinuity in the magnitude of the uniform 

load between intersection points. No joints are placed at the end 

points where the beams are fixedly supported (encastre'). Each joint 

has three degrees of freedom in Zz, a and ey directions. The axial 

beam deformations, i.e. in-plane loads, are neglected here. 

The external loads are applied in the vertical Z-direction. These 

loads are either concentrated, as pointed loads on the joints, or 

uniformly distributed on the beams. 

6.2.1 The Stiffness Matrix of a Flat Grillage 
  

The thickness (t) and the overall depth (w) of the rectangular 

section of each concrete beam in the grillage are considered to be the 

main design variables. Since the grillage members are either 

transverse or longitudinal, it is convenient to construct two separate
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Et GURE 6.1: SIGN CONVENTION FOR HORIZONTAL GRILLAGES
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stiffness matrices. These were obtained in Chapter 4, Section 4.2.1. 

The contributions of a transverse (parallel to X-axis) member to the 

overall stiffness matrix are given by equation (4.8a), while the 

contributions of a longitudinal (parallel to Y-axis) member are given 

by equation (4.8b) The forces in a transverse member are expressed by 

equation (4.10a), and in a longitudinal member these forces are 

determined by equation (4.10b). 

The only difference between the matrices used in this Chapter and 

that of Chapter 4 is that the stiffness coefficients here are functions 

of both t and w. Thus, by substituting the factor ~ , which was 

identified by equation (4.6) as a function of the variable w, into 

equation (4.7), the stiffness coefficients b, d, e and f will become: 

B, te we 
be = ee (6.la) 

B, + B3 Ww 

3 

where B = GE, B = GL and B = 1.2EL are constants, 

i 2 3 

D, ie we 

Ge? Soe ee (6.153) 

Dd, + D3 WwW 

2 

where D = GE, D = 2GL and D = 2.4E are constants, 
li 2 3 

E, tc ~ + E, is we 

e =o 
2 (6216) 

E, ar E, WwW 

2 2 3 

where E =" EGL, E See (et ay. hee = 3GL and E = "3.6 EE 

il 2 Ss 4 

are also constants, and 

FP, ic w - Py c 

er 6-1d 
Be + v ( 

S =
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Z 2 3 

where F = hGhapoe he = + O.6E foe = 6GL and F = /.2EL.. are 

aL. 2 3 4 

constants. All the constants above are functions of the concrete 

elastic modulus E, the shear modulus G and the length L of the member. 

The member torsional stiffness is expressed by the coefficient q 

in equation (4.7) for a deep member with w >> t, i.e. the ratio w/t > 

10. However, due to the fact that the cross sectional dimensions (t 

and w) of the flat grillage member always vary, q is expressed here as; 

3 
G s= =CWet. 7 cL (6.le) 

2 

where c is a constant factor depending upon the ratio of w/t, 

2 
(Timoshenko, 1955) and (Shigley, 1976). Some of the values of c_ are 

2 

given in Table 6.1. In the design method used here, the member 

thickness (t) is always less than or equal to the overall depth (w), 

1.e@3 € Sow. 

  

w/t 1.0 1.2 tome b2e0 3.) oe 4 350 4 5 10 >10 

  

c Tit + 6.024 96.10 | 4.377: 4:02) 3.80} 3.56; 3.44} 3.20} 3.00                           
TABLE 6.1: DIFFERENT VALUES OF TORSIONAL STIFFNESS 

CONSTANT c FOR RECTANGULAR SECTIONS 
2 
  

62e2 The Stiffness Matrix of a Supporting Column 
  

A concrete flat grillage can be built either with or without 

column supports. The numbers and the positions of the columns are 

decided upon by the designer to stabilise the whole structure. These 

columns have rectangular concrete sections in which the thickness
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(t ) amd the overall depth (h ) of each section are the wnknown 

ane required to be arinke, see Figure 6.2. 

The columns are only connected to the joints of the grillage where 

two horizontal orthogonal members intersect. In general, for a column 

rigidly connected at ends 1 and 2, Figure 6.2, the member forces 

p' = CoP ee M M M } are related to member 
2 Craki M2. es oe 
displacements U' = {u 6, 6 ee on 82 } by the standard equation: 

oe Bou (6.2) 

where P is the colum axial force, M and M are the moments 

about one at ends 1 and 2 receceively, M - and M are the 

moments about Y-axis, u is the axial distortion, oe and o are the 

rotations of the member ends about X-axis, and oo and 2 are the 

rotations about Y-axis. The, k' matrix represents the member 

stiffnesses. Thus, equation (6.2) can be written in full as: 

4 r 

      

ee ae 8 u 

M4 0 e f.. 0 0 O 

M i 6 oe ., 

M, Te) ey ey 8 

M9 0? ee ee (6.3)       wheres: + . - " 

a=EA/L, oe es ae 2b ty L 

oF fe f/f iy Toe 28 
Y c 2 c 4 vy 

in which E is the concrete Elastic Modulus, A = t h is the cross 
Cale 

sectional area, L is the length, I and I are the second 
GC x y 

moments of area of the section about the axes X and Y respectively.
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These can be expressed as: 

a 3 
I, = te ne sr |2. (6.4a) 

oe eo nh SF 2 (6.4b) 
y Co-2c 

The local positive axis P for the column shown in Figure 6.2 is 

indicated by an arrow pointing downward to the second end. For a 

column member connected to joint i at end 1 and joint j at end 2, the 

end displacements U' may be related to the joint displacements X by the 

            

relationship: 

Ue AS 

i.e. 

ee eee To a Ee 

0.4 0 1 0 0 0 0 io joint i 

8 ee 0 0 0 0 1 0 ey 

Oo 0 0 1 0 0 0) Zz 

9 ay 
y2| 0 0 0 0 0 1 os joint j 

a (6.5) 
where A is the displacement transformation matrix. The overall 

stiffness matrix K' is thus given by: 

Be 

P= Aes (6.6) 

where A is the transpose of A. Matrix K' represents © the 

contributions of the column member to the overall stiffness matrix of 

the grillage, and it can be written as:
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z 6 Z. 
Se yi 5 x yj 

Rca Sa 2 2 Ce 0 0 
| 

Sa nas oo ae Be ek OG: 6. oS 0 
! 

eee Bee ee 0 £ 
ok we ee | iy, 

m0 Pa oe OO 0 
| 

hs So oe 0 
x ; x 

eee et Po, es 0 & 
y y     

(6.7) 

In the design method described in this Chapter, it is assumed that 

the columns are rigidly connected to the grillage at their top ends, 

i.e. at joint i, and they are fixed at their bases, i.e. at joint j. 

Therefore, only the stiffness contributions relating to the 

displacements of joint i are considered. The K' matrix then becomes: 

a 0 0 

Kis 0 e 0 
_ <x 

0 0 e é y (6.8) 

which is the matrix used in the present work to represent the 

supporting column in the design of flat grillage structures. The 

coefficients of this matrix are identified in equations (6.3) amd 

(6.4). 

The thickness of a column section is taken equal to that of the 

deepest grillage member meeting at the column head, i.e. t = t. 

Therefore, the supporting column will be represented in the pote 

problem by its sectional overall depth (h ) only. This is done to 

reduce the total number of the design nee As a result, the 

stiffness coefficients of equation (6.8) will be functions of the 

thickness (t), of the deepest beam connected to the column, and h 
Gu
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The beam-column connections are shown in Figures 6.3 and 6.4, 

where the flexural stiffness coefficients (e and e) of the 

x x 
columns are formulated in terms of the design variables t and h. 

q 
Such formulation depends mainly on the direction of the grillage member 

to which the column is connected. 

6.3 ANALYSIS OF FLAT GRILLAGE STRUCTURES 
  

The matrix displacement method is used to analyse flat grillage 

structures which might contain column supports. The overall stiffness 

matrix of a structure is formed by superimposing the colum 

stiffnesses, equation (6.8), on the stiffness matrix formed by the 

transverse and longitudinal grillage members. The displacements, Z, oe 

and ey of all the joints are then found by solving the stiffness 

equations of the whole structure. An example is used to illustrate the 

formulation of the overall stiffness matrix. 

Figure 6.5 shows a simple flat grillage made from eight members, 

which constitutes three joints, and supported by a column. The main 

topology is assumed to be known, including the number of beams, span 

lengths, loads, and supporting conditions. A system of joint numbering 

and member grouping is employed. The joints are numbered starting with 

the point where the column is connected to the grillage. The members 

of the structure are numbered starting with the column, which is given 

number 1, followed by the longitudinal and then the transverse grillage 

members. If there is any grouping of members, then it should follow 

the same order of the numbering. However, to distinguish the member 

stiffness coefficients from each other, it is assumed that each member 

is built from a single uniform section i.e. belong to one group.



224 

  

    

es = 

  

  

  

  

  

  
    

  

  

      
          

    
      

Y-axis 

(a) Three Dimensional View-Loading 

Encastre' end 

4 = = ZY > X-axis 
% 4 5 W 
4 24 e 
4 Y j qf q > a 4 
ee F 7 

4 6 1 UB 5 | Z SZ wee ce Wy oy ie a m2 Ta ae 
7 Caen feont y ar y » > vad 

oes y . it ay A . k— 7—a 

Sec. A-A | Sec. B-B 

Y-axis 

(b) Top View-Numbering of Joints and Members 

FIGURE 6.5: AN EXAMPLE OF A NORMALLY LOADED FLAT GRILLAGE 

WITH A COLUMN SUPPORT 
   



225 

 
 

th 

 
 

€x 

 
 

 
 

 
 

 
 

 
 

 
 

CA 

 
 

 
 

CM 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 
 

                            
 
 

$°9 
GHNDId 

NI 
AOWTIIND 

LVTd 
3HL 

dO 
(7 

= 
X 

WY) 
SNOILWNOa 

SSANAAILS 
79°9 

F
U
N
D
A
 

Sy 
“| 

gh, 
P
e
e
:
 

Boe 
oe 

ex, 
Sp, 

Vb, 
So 

Db 
bs 

Cp 

C+ 

f
 

Spe 
i
e
 

oo. 
Vas 

a+ 
Cp. 

Cg. 

z
k
 

6
,
,
 

9 
G
a
 

ce 
28 

€ 
a+ 

~b 
P+ 

“p- 
b- 

zx 
6p, 

8 
G
e
e
 

E. 
f5 

f
o
 

6 
Cy 

“a 

Ppp 
op 

fD 
oa 

a 
ED 

eae 

“by 
b+ 

C
s
 

b
y
 

h
y
 

C
E
L
 

P
e
e
 

T
A
,
 

M
5
4
 

a
4
 

H
p
 

A
i
 

i
.
 

e5, 
C5 

e,- 
tp 

>4 
oe 

p- 
s 

Ep 
ue 

Be 
tap 

as 
L ‘ 

Pee 
tg. 

Fa: 
c 

€ 
€ 

1 
P 

q- 
p- 

g- 
2 

i 
£K 

€x 
ZK 

zx 
Z 

1K 
1x 

I 
6 

8 
4 

8 
8 

z 
6 

Q 
2 

 
 

€ quUTOL Z Autor I 3uTor



  

226 

Figure 6.6 shows the stiffness equations of the flat grillage in 

Figure 6.5. The overall stiffness matrix K is symmetrical, in which 

the subscripts refer to the members. The stiffness coefficients of the 

column equation (6.8), are added to those of the grillage members at 

joint 1. All the unknown displacement variables of the joints are 

represented by the one-dimensional matrix X. Matrix L represents the 

load vector. The vertically applied loads are either concentrated or 

uniformly distributed, and they include the live load am the dead 

weight of the structure. 

The stiffness equations can be solved by using the sub-routine 

described in Chapter 8, and the unknowns X can be found. Therefore, 

the forces and the stresses in the grillage members can be computed by 

using equations (4.9a, b), in Chapter 4. ‘The axial force am the 

bending moments at the top end of the column can be computed from: 

P = -a 0 0 Z 
iS 

M 0 e 0 6 
x x x 

M 0 0 e 8 : vy y y (6.9) 

6.4 THE DESIGN PROBLEM 

The problem dealt with here is that of designing practical 

reinforced concrete flat grillage structures with column supports. The 

aim of the design is to produce optimum cross-sectional dimensions for 

the members. This is done to obtain a minimum weight or a minimum cost 

design for the structure. The cost includes that of the material, and 

of the construction such as provision, formwork, placing, etc. The 

topology of the flat grillage is included as a variable in the design 

problem. The design constraints used are the stiffness, the stress, 

the deflection, and the practical constraints such as the section size
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of the members. The stress constraints include that of the bending 

moment, and the combined action of shear and torsion. 

The permissible stress method (CP114: Part 2: 1969) for the design 

of structural concrete members is used. In this method the moments and 

forces acting on a structure were calculated fram the actual values of 

the applied loads, but the limiting permissible stresses in the 

concrete and the reinforcement were restricted to only a fraction of 

their true strengths, in order to provide an adequate safety factor. 

The method assumed a linear stress-strain relationship, a constant 

modular ratio of steel to concrete, and an uncracked concrete section. 

The limiting stresses considered, are the permissible compressive 

stress for concrete in bending and the permissible concrete shear 

stress. The thickness (t) and the overall depth (w) of each concrete 

section alter continuously until the stresses are satisfied in each 

grillage member. The corresponding amount of tensile reinforcement is 

computed exactly to keep the member section elastically uncracked. 

6.5 THE OBJECTIVE FUNCTION 

Gre Sint The Weight Function 

The objective weight function for the simple grillage structure 

shown in Figure 6.3 is given as: 

2 weight = ty Wo Ly y + th Wa L y + ty hy Ly Y (6.10) 

where Y is the constant reinforced concrete density; L , Land 
. m 

L are constants representing the lengths of members & , m and the 
c 

column respectively. 

Formula (6.10) is a non-linear function which can be linearised by 

employing the first two terms of Taylor's series.
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Thus: 

Fe cine = % (x5), +V Z(x5), ; (tx, }, - {x5 3] (6.11) 

where tx, }, is a vector of initially known section variables, i.e. 

oO --8 S08 56 
{x}, oy. ., We ee } i {x5}, is a new vector of the 

1 1 1 1 1 
unknown section variables, i.e. tx}, = {to we Mn ho} i Z(x.) 

is the original function, equation (6.10), at the known variables, and 

VZ(x ) is the gradient vector at the known variables. 
j 0 
The linear function (6.11) can be expressed in terms of the 

section variables as: 

LO o.. 6 o <0 
Zveight LP) my a ee th Wn Th toe ey he T as 

oO ° ° oO ° ° hi ae 
bey ye ey ee ot, BLY)" |b, ~ tp 

w! -w 
Q ‘ 

t! - 4° 
m m 
1 Oo 

Ww. -wWw 
m m 
1 ° 

he Be 

(6.12) 

which can be expressed in terms of the unknown variables, txt, , as: 

el ae, ° 1 0 le 
G atigiie =t, Wolyth vy) +w, (t) Ly y) + ts (we Lo +) 

1 ° 1 Oo ' 
a (to L y) + he (to Ly y) W (6513) 

where the symbols in brackets are constants. The symbol W' is a 

constant that repesents the weight of the grillage structure at the
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initial design point tx, : > ’ and it can be expressed as: 

pie OR (ey Ve ° 
W Gecw Ly+tiw& 7 ee 

° 
2 We e h Pt (6.14) 

The general linear objective weight function used for a flat 

grillage made from NL longitudinal amd NT transverse members, ard 

supported by NC columns can be expressed as: 

NL 
“ + pctt oO 1 

Pech. = 4 [ty (wo Ly ¥ * ho Ly ¥) + Wo (t) Ly ¥ )] 

NT 
1 O° 1 O° 

+ met [th (we La y) + ¥ (th Ls Y)] 

ee | ° 
+ ont fh, (tp Ly YJ} + We (6.15) 

If the grillage members are grouped, then NL and NT above 

represent the longitudinal and the transverse groups respectively. It 

is assumed that each supporting column belongs to a single group, i.e. 

built from one uniform section, therefore NC represents the number of 

the columns only. 

6.5.2 The Cost Function 

For a minimum cost design, the objective function represents the 

total material and construction costs of the structure. In this design 

method, the reinforcement always varies as it is computed to resist 

various bending moments occurred at the ends and at the middle of the 

grillage members, and as a result the cost per unit weight of the 

material (c i ) can be varied even along a single member. However, 
mat. 

this variation is found to be small and does not greatly affect the 

assessment of cost. Therefore, to simplify the problem, it is assumed
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chat. -c is constant throughout the whole grillage structure. 
mat. 

Sometimes a Slightly different value of c can be used for the 
mat. 

columns. Nonetheless, the material cost of a grillage structure is 

generally computed, using equation (6.15), as: 

Z = 2% — (6.16) 
mat.cos weight mat. 

In addition to the material cost, let R, be all the cost involved 

in constructing member &, R is the construction cost of member m, 

and R is the construction heey of the column, (Figure 6.3). The 

iene of assessing these costs will be discussed later in Section 

6.10. Thus, the total cost of a grillage structure made from NL 

longitudinal and NT transverse members, amd supported by NC columns 

will be formulated as: 

NL NT NC 
2 Root ie, + (6.17) cost — Zmat «cos . get 

To explain the fact that the construction cost Re (or R,) has a 

value only when the grillage member group & (or m) is included in the 

design, a new variable 8) (or a) is defined; such that, 6, = 1 when 
Q 

group £2 is kept in the final design while 7) = 0 when it is cheaper to 

remove this group. The objective cost function (6.17) therefore 

becomes : 

NL NT NC 

Zsost : Znat.cos ‘ ge Se Ry : me oT RB, : okt Ss (6.18) 

As each grillage member is represented by its two unknown 

sectional dimensions (t and w), new 6 variables should be defined to be
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associated with each of these dimensions. Such variables are 8, and b 

where: 

5 - om 

i.e. 

ay 765 = 0 (6.19) 

and when b = 0 then e = 0, am when 6, = 1 then 6, =z 1. ~The 

construction cost (R) for each member should also be associated with 

the unknown sectional dimensions. The way to do that is by dividing R 

into two halves, one half linked with the t variable, and the other 

half with the w variable. Thus, function (6.18) is modified to became: 

Zcost . Znat.cos : cc, e.5 + oy Cay, (6, 5 + 6 7 + ty y 

(6.20) 

This is the linear objective function which is used for the topological 

design of minimum cost for the flat grillage structures. Notice that 

there are no 6 variables for the supporting columns. 

6.6 THE STIFFNESS CONSTRAINTS 

It is necessary to select the overall stiffness matrix K so that 

the grillage structure is capable of resisting the applied loads while 

the design requirements are satisfied. Thus, the stiffness 

constraints, matrix H, are once again formulated as: 

ne} ee Le 8 (6.21)
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As the sectional dimensions of the members are considered as the 

unknown design variables, it is necessary to keep the stiffness 

contributions of each member separate from the other, (Section 4.7, 

Chapter 4). Therefore, for a total of N joints in a grillage 

structure, the overall domiege matrix K used in equation (6.21) will 

have an order of [3 .* N, 3 * 421 M3] , Where M is the total number 

of the grillage members (or groups of members) ectet to a typical 

jfonbeie aNe 

The design variables required to be camputed in the design process 

can be arranged in a vector of the form: , 

v= ty ae , (6.22) ors g Vg+1 eos V 
g+2r+3N 1 Vg+2r 

where the first g variables represent the section overall depths (h ) 
s 

for a number of g columns, 2r variables represent the sectional 

dimensions (t and w) for a total of r grillage members (or groups), and 

3N variables represent the displacements of all the N joints. Vector 

V can be partitioned to: 

a. eo x} (6.23) 

where the contents of sub-matrix C = tho, hoo 8 ho} ; 

M = eae = M {t, w, t, Wy t. w J, and X {z, 4, en vee Zu By ON 

With the design variables specified above, the stiffness 

constraints (6.21) can be expressed as: 

H (h ’ t, Wr x) = K (h ' ty, w) oe = 0 (6.24) 

Cc Cc 

}
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These constraints are non-linear which can be linearised as explained 

in Section 4.7.1 of Chapter 4. 

The stiffness coefficients (b, d, e, f£), defined by equations 

(6.la, b, c and a), for the grillage members are linear functions of t, 

while they are non-linear functions of w. But, the torsional stiffness 

coefficient q, equation (6.le), is linearly related with w, and non- 

linearly related with t. The relationships of the column flexural 

coefficients, Figures 6.3 and 6.4, with the variables h amd t depend 

on the direction of the grillage member with which ‘the column is 

connected. 

Using the computer, the derivation of the stiffness coefficients 

with respect to the sectional design variables is carried out in the 

manner: 

u 
Yo e (6.25) 

da v(du/dx) - u(dv/dx) 
= 2 (6.26) 

Vv 

or in the manner: 

s Vo wx (6.27) 

a s~-1 4 = sx (6.28) 

Thus, using equations (6.la, b, c, d, e), the derivatives of the 

stiffness coefficients for the grillage members will be as follows:
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b e (6.29) 

2.5, Rok w +B, Btw 
ee ‘les 

5 5 Se (6.30) 

B, + 2B, Bu w + By w 

a kes ol z (6.31) 

53D. twe+D D oye 
lee2 eS - 5 5 5a (6.32) 

D, + 2D, D3 w + D3 w 

e 

ee ta ee tw + 58 RE twe'+ 3 BE tw 
ee. cea DES 2: gh 

2 5 a (6.34) 

3 +25, E,w + E, w 

fi 
. (6-35) 

2 4 4 6 
3 F, FF, tw +P, 8, tw - 3 FoF, tw 3 FL F, tw 

2 2 4 (6.36 
Fu +2F,F,wW + Fw 

Z 
3Gwt (6.37) 

Ca 
2 

5 
ac 
ae (6.38)
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The derivatives of the stiffness coefficients of the supporting columns 

can be obtained similarly. 

6.7 THE STRESS CONSTRAINTS 
  

Gavel! Shear and Torsion Stresses 
  

The tangential distribution of the shearing stress across a 

rectangular section is known to be parabolic. In the design method 

proposed in this Chapter, only the maximum shear stress (T ag) at an 

uncracked section of a reinforced concrete grillage member is required 

to be considered. For a grillage member j, this is calculated fram: 

Te = elo 6S. ECW. : 4s ea 5% (6.39) 

where S is the total shearing force across the section, amd it can 

J 
be computed by using equations (4.10a, b); me is the thickness, and 

we is the overall depth of the uncracked Ben. 

: The torsion in a member, also creates shearing stress across the 

transverse plane of the rectangular concrete section. The torsional 

shearing stress varies along the sides of the cross section reaching a 

maximum value (Th) at the middle of the long edge w, and a value (T') 

at the middle of the short edge t, as shown in Figure 6.7, 

ee 
ee.” 
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FIGURE 6.7: TORSIONAL SHEARING STRESS DISTRIBUTION IN A 

>       

RECTANGULAR SECTION
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where: 

T'/T te / wi (6.40) 

In this design method, only the maximum torsional shearing stress 

(Tr) is considered. For a grillage member j, this can be calculated 

with satisfactory accuracy (Timoshenko, 1955) from: 

Ge mic Gen cys Wer ste 
ae Ly 3 / (6.41) 

where T is the twisting moment which can be computed by using equation 

(4710a;, bye <c is a constant factor depending upon the ratio t/w, 

1j 
and it can be computed from: 

Cs 3.84 /w (6.42) 
1j 5 3 

| Equations (6.41) and (6.42) are used only when t is less than or 

equal to We : 

The ten shearing stress augments or diminishes the shearing 

stress associated with the lateral force. In other words, at any 

rectangular section there must be a point where the shear stress, 

caused by the torque and the lateral force, is at a maximum value. An 

examination of all the possible combinations of shear stresses in a 

rectangular section is shown in Figure 6.8. This shows that there is 

always a point in the section where a maximum shear stress develops 

irrespective of the direction of the shear force or the torsion. Thus, 

the critical shear stress, which is at the middle of the long edge, is 
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obtained by combining the stresses of the lateral force and the 

twisting moment in the following way: 

Eee eee foreach 

  

ymax Js aL 

= is) | Ir, | Teale Ges Te 
= J 13 J 

jmax eto Ww. 2 (6-43) 

J 8 

where the values of S and T are absolute, i.e. they do not depend 

3 j 
on signs or directions. 

The general formula of the combined shear and torsional stress 

constraint imposed on the grillage members can be expressed as: 

< 

"Ss e Top Sea 

i.e. 

1:5 S34 c). |T. | 
3 + a): aes < oe (6.44) 

t Ws o +2 u 

34 
5 -_ I> pninsie ae bh 

where r is the number of the grillage members, amd io is a constant 

representing the maximum allowed shear stress in concrete. Clause 316 

in CP114 (Part 2: 1969) specifies mY to be equal to four times the 

permissible shear stress of concrete Bre given in Clause 303, i.e. 

S* 4 tas oe total value of the cambined shear stresses is 

greater than Te then t and w change until formula (6.44) will be 

satisfied. 

The design problem could be enlarged unnecessarily if the 

inequality constraints (6.44) are imposed on each grillage member. In 

practice, the grillage members are usually grouped together. 

Therefore, it was decided that the shearing stress constraints should 

be imposed on each group. The critical section in each group was 

obtained by an analysis in which the location of the member with a
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maximum combined shear stresses was determined. By using the 

dimensions and the joint displacements of this member, the constraint 

which is imposed on the group will then be constructed. 

During the course of redesign and optimisation, the located 

members of maximum combined stresses may change, and in the present 

approach this change is considered. 

667 <2 Bending Moment Stress 
  

The bending moment (flexural) stresses in an uncracked reinforced 

concrete member may conveniently be calculated by the conventional 

bending formula, using the entire concrete cross section and ignoring 

the reinforcement. Thus, the maximum bending moment stress Osrnere) ina 

reinforced concrete grillage member, referred to as j, can be computed 

ass 

Gr = Mz. : ; 
jmax jmax / 5 (6.45) 

where M is the maximum bending moment in the member calculated 

jjmax 
fron the analysis results; 2Z is the member section modulus which is 

3 
expressed in terms of the section thickness (t ) and the overall 

3 
depth (w ) as: 

Roe We ee (6.46) 

Hence, equation (6.45) can be written in terms of the design variables 

(t and w) as: 

M. 

Oo. ee ee (6.47) 

— twee 0 

N
O
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The bending moment stress constraint imposed on the reinforced 

concrete grillage members can generally be formulated as: 

6 | M. | 
ae i (6.48) 

ee Me 

3 eee. 

where r represents the total number of the grillage members, and %, is 

HA
 

Q 

w
o
u
 

a constant representing the permissible campressive stress in concrete 

in bending. It should be emphasised that the absolute value of the 

maximum bending moment in the member is used in this constraint. 

To reduce the size of the design problem the bending stress 

constraints are imposed on the groups of members amd not on the 

individual members. By analysing the grillage structure, it is 

possible to locate the member with a critical bending stress in the 

group. The constraint, imposed on the group, is then formulated using 

the dimensions and the joint displacements of this member. The change 

in the location of such a member, during the design process, is also 

considered. 

To assure finding a member's maximum bending stress the moment is 

computed at both ends of the member under concentrated load, using 

equation (4.10a, b), and at the maximum of a parabolic moment equation 

due to the uniform load. The largest moment is then employed to 

formulate constraint (6.48). 

For a uniformly loaded member, a moment expression is required to 

compute the value and the location of the maximum moment. Using the 

positive sign convention for the grillage, Figure 4.1, the expression 

for a maximum moment in a uniformly loaded transverse (parallel to X- 

axis) member, shown in Figure 6.9, is determined as follows:
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2 

pe Seah ix +. xo fone (6.49) 

1 
Sate Wx = 7 Oe (6.50) 

- S / w < Length of Member (6.51) 

2 
ne /- 26s (6752) 

where S is the shear force and ™ is the uniform load intensity per unit 

length. Similarly, for a uniformly loaded longitudinal (parallel to Y- 

axis) member, the maximum moment expression is obtained as follows: 

    

  

  
  

    

M, oO 
w/U.L. 

po: 2 a Fs} End 1 
Y-axis of eS 

S v y 

2 eet 53 
Y Z-axis 
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M(y) = M, tS. Vw y” Pz (6.53) 

eM/ey = S-wy = 0 (6.54) 

Oy ical S / w < Length of Member (6.55) 

KM SMe Be 2 “y (6.56) - max. 1 

Oni. 3 Linearisation of the Stress Constraints 
  

The design variables that usually associate with the stress 

constraints are the sectional dimensions (t amd w), amd the joint 

displacements (2, a and ey ) at ends 1 and 2 of the grillage member 

with critical stress. These variables can be arranged in a vector form 

ee: ME We SO 8 ae) oy } (6.57) 

pT Ve 

where r is the total number of the grillage groups. 

The stress constraints, described earlier, are mathematically non- 

linear. They can be expressed as: 

= - < T, (&,) TS. + Tan ts Oh 

oO. (X = On - 6 =. -0 3! - 4max = (6.58) 

Jnl, el 

The first two terms of Taylor's series are used to linearise the non- 

linear stress constraints. The linearisation process requires the  
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gradient vector which, for instance for the combined _ stress 

constraints, is formulated as follows: 

  

  

OG 20 On oT Vt. (x) {] = ~—.... } (6.59) 
ns) ot dw 0Z., 08,0 

The derivatives of T, (x) with respect to any of the associated 

design variables x can be computed as follows: 

j 

oT. at oe 
Bd is ue. JT (6.60) 

OX. OX. : : x, 4 ox, 

Similar expressions can be obtained for 05 a} : 

The terms S, T amd M used in the stress constraints 

ae jmax 
are obtained by collecting the elements of the rows in the product 

matrix k A which correspond to the shear force, torsion and bending 

moments respectively. The derivatives of these terms with respect to 

6, 0a 7 OM,, Oty / ak, end) a, ox. x, i.e / gr oT . : Binet / x, ; are found by 

J 
taking the derivatives of equation (4.9), as follows: 

  

ate 0X 0(k A) 
(ee. oa -l) 

J J J 

For a uniformly loaded member the derivative aM. i ox, is obtained 

by using equation (6.52) or (6.56). For instance, for a transverse 

member, such derivative is given as: 

ax Sts 
ae Ox. OX. Ww (6.62) 

J 

6.8 THE DEFLECTION CONSTRAINTS 
  

Since the joint displacements of the grillage are introduced as 

design variables, the actual deflection z i144 the rotations 6. amd 
x)
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84 of joint j should be limited by upper bounds. In this Chapter, 

the deflection Zz and the permissible stresses of a member are 

considered as eee limit-state for the design of horizontal 

grillages. Therefore, a practical upper bound on z is required to 

be specified. ; 

None of the existing codes of practice specify an exact limit on 

the deflection of a reinforced concrete flat grillage. Therefore, in 

the absence of such a limit, and as a large deflection might produce 

excessive cracks, a value of ee —& is used as an upper bound on 

deflection Zz Here, Lo va a constant which represents the 

shortest ewes of Binks from the nearest fixed end or colum 

support. The value of Lo can easily be calculated by using the 

coordinates of joint j. the symbol € is a constant which can be chosen 

by the designer, such as 300, 400, 500, etc. The upper bounds on the 

rotations 84 and °4 are once again taken as 0.08. ‘Thus, the 

deflection constraints imposed on a typical joint j are: 

Ze ae F 4-28 

6. S$ 6.08 (6.63) 

where N represents the total number of joints. 

The above bounds on Zz are specified only for joints where the 

deflections are known to a oeTei aad while less restricted bounds can 

be specified for the rest of the joints. This will be clarified when 

solving the design examples in the next Chapter.
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6.9 THE PRACTICAL CONSTRAINTS 
  

The practical constraints used here are meant to be the limitation 

on the cross-section dimensions t and w of the grillage members, amd on 

the overall depth h of the columns. It was shown previously that 

the objective fin the stiffness and the stress constraints are 

all highly non-linear. These necessitate the use of move limits to be 

imposed on t, wandh. 
c 

For a minimum weight design of horizontal grillages, the practical 

constraints are: 

= (o) (1) iors 
(1 - ML) ho < he <s (1 + ML) ho : 

(1 = ML) < oe ¢ (1+ MD) oe : 

(1 — ML) ws?) < he < (1 + ML) wn (6.64) 

OW et ee oe ty ees -F 

(1) (1) (1) (o) 
In. these. +o £4 and w. are the unknowns while h Z 

) (0) e c a 
ts and Ws are known variables; ML is the move limit, NC is the 

number of supporting columns and r is the total number of grillage 

groups. The bounds specified in (6.64) should not exceed the maximum, 

or be less than the minimum, bounds specified by the engineer or by the 

code of practice used. 

For a minimum cost design, the topology of the grillage structure 

could be altered to reduce the total cost. This alteration is done by 

removing grillage members that are proven by the design process to be 

structurally ineffective or uneconomical. However, some members, such 

as the edge grillage member and the columns, are often required to be 

retained in the final topology. To retain these members, lower amd 

upper bounds are imposed. These are similar to (6.64).
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It should be pointed out that members allowed to be removed have 

no lower bounds imposed on them. Each one of these members is 

associated with its own variables 6, and 6, which are included in the 

objective cost function (6.20). Thus, the constraints imposed on a 

number of r' removable grillage members are: 

ec (0) 
ne = (1 + ML) 2 : 6.5 ; 

o 2 Ws $ (1 + ML) My Sw ; 

Te. 

is a: (o) 
t (1 + ML) ‘5 a < (0 

yi a ee EO (6.65) 
j j wi 

Jec= Lae 

Fach of the associated variables 54 and ows can be either zero or 

unity, thus: 

& OFS 844 oe 

roo oe ee (6.66) 
wi 

and they must be equal to each other: 

6 ae 
a) wi 

Lee 

Co oO . ‘4 6 (6.67) 

where 54 and On j are integers.
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6.10 COST ASSESSMENT 

The total cost of a reinforced concrete flat grillage includes the 

material, and the construction costs. The cost of a column includes 

the construction cost of its foundation. The assessment in this 

Section is based on the information presented in a report by Davis, 

Belfield and Everest (1980). The report includes details about 

measured rates, as described in Chapter 2 and Appendix A. The costs 

are camputed automatically by using sub-routine COST which is part of 

the main computer program. This sub-routine will be described in 

Chapter 8. 

6.10.1 The Material Cost 

As mentioned in Section 6.5.2, the reinforced concrete cost per 

unit weight c used in the objective cost function depends on the 

reinforcement e ‘that unit. This may vary fran one member to another, 

but to simplify the problem, it is assumed that a fixed percentage of 

reinforcement is specified for all the grillage members amd the 

columns. In this manner, a single constant value of c can ke 

computed and used in the design problem. ee 

The specified fixed percentage of reinforcement, which includes 

the main and the secondary reinforcements, and the computed values of 

S for the grillage members and the columns are arranged in Table 

mat. 

6.2; the computation of c is done according to Appendix B. 

mat.
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Specified Reinforcement Grillage Members Supporting Columns 

  

Main Reinforcement 1.85% 1% 

Percentage ( (0) 

  

Secondary Reinforce= 0.153% 0.15% 

ment Percentage 

  

        
  

Cost per unit weight £2.65 / KN £2.00 / KN 

(c ) 
mat. 

TABLE 6.2 COST PER UNIT WEIGHT DEPENDING ON THE ASSUMED 
  

PERCENTAGE OF REINFORCEMENT 
  

6ntO7 2 The Construction Cost 
  

The construction cost is assessed separately for each member and 

each column in the grillage. This depends on the measured rates of 

construction items given in Appendix A. The costs of the joints are 

difficult to assess amd are excluded. It is assumed that each grillage 

member contains tensile and shear reinforcements only. Since these 

reinforcements vary, the methods of computing them will be described 

here. The columns are assumed to have one per cent compression 

reinforcement together with 0.15% stirrups. Figures 6.11 amd 6.12 

illustrate these specifications. 

The stirrups in a grillage member are required to resist the shear 

force. These depend on the value of the maximum combined shear and 

torsion stress Cea ) computed by equation (6.43). Thus, (Clause 316, 

CP114: Part 2: 1969):
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(a) If thax s 1, 7 then the area of stirrups needed is equal to a 

minimum percentage of 0.15% of the horizontal section of the 

grillage member, i.e. 2(0.0015 x t x L). 

(b) On the other hand, if To < ta S Tip at then the whole shearing 

force at that cross-section should be provided for by the tensile 

resistance of the shear reinforcement acting in proper combination 

with canpression in the concrete. 

The reinforcement for torsional shear is ignored, while’ the 

reinforcement for the shearing force is calculated for the whole member 

as: 

ALY oh / f ge (6.68) 

where... App. is Ge cross-sectional area of the stirrups; 

Ss is the shearing force across the reinforced concrete 

section; 

L is the length of the member (Figure 6.11); 

fs is the permissible tensile stress in the shear 

reinforcement; 

& is the arm of resisting moment (Figure 6.13), which is 

assumed to be equal to the spacing of the stirrups. 

The cross-sectional area of the main tension reinforcement in a 

grillage member is computed to resist the bending moment. The length 

of the computed tensile steel bar is assumed to extend for 3/4 of the 

member length as shown in Figure 6.11. On the other hand, if tension 

occurs within the beam length, the tensile steel is assumed to cover 

its whole length. 

The permissible stress elastic method is used to compute the 

amounts of the tensile reinforcement in the grillage members. The
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method is based on the following assumptions, (CPl14: Part 2: 1969): 

(1) The steel and the concrete are elastic within the range of the 

permissible stresses. 

(2) The stress is proportional to the strain. 

(3) The variation of the strain over the section depth is linear. 

(4) The whole of the tension is taken by the reinforcement. 

(5) The modulus ratio E / E is assumed to be constant. 

The following ae can be deduced, assuming a balanced 

section in which both the concrete and the steel are stressed to the 

permissible limits. 

    

  
  Neutral axis q, 

A 
s ~ q 

“ a ¢ Ymemt fue Ge 3               

  

  

e ® vee a 
AE 
ss 

FIGURE 6.13: CROSS-SECTION OF A TYPICAL GRILLAGE MEMBER 

t, 
n = unr -aanEEETEEERIEREEE aan (6.69) 

(E, + f/*) 

a8 mod (6.70) 
n 1 

. n 
ee (6.71) 

8 x a, (6.72)
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The effective depth (d ) of the tensile reinforcement is assumed to 

1 
be: 

qd = — 0.9 w (6.73) 

2%
 Wt y (0.9w) = 0.9 yw (6.74) 

The section moment of resistance = the applied bending moment = A_ f_ & 

  

Sins va 

(6.75) 

BM, = AS, f. Le (6.76) 

BM, BM, 

A ae) =) Teo (6.77) 
s1 fe Qe O59 (f, Sys WwW) 

A = a = ge oes (6.78) 

's2 tf. ke 0.9 (f 5 Sai aw) 

where A is the tensile reinforcement required to resist the 

sl 
calculated applied bending moment (BM) at erm l. Similarly for 

1 

A at end 2. In these equations f is the permissible compressive 

s2 c 

stress for concrete in bending and f£ is the permissible tensile 
Ss 

stress for the steel. Notice that the minimum tensile reinforcement 

reguired is equal to 0.15%, i.e. 0.0015 x t x 0.9 x we 

As an illustration, the method of assessing the construction cost 

is explained by considering the grillage member shown in Figure 6.11 as 

an example. The dimensions of this member are t = 0.2m, w = 0.3 m and 

L= 4m. The shear reinforcement is assumed to be at its minimum value 

of 0.0015 x 2 x t x L. The following symbols are assumed to be known 

so that they could be used in the cost assessment.



  

Assume BM 

follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

ana 

= 10 Nim’ =< 40 = 10° RN/ar 

= 225.5 N/mm? = 225.5 x 10° KN/m- 

* 1.29 KN/mm = Young's Modulus for Concrete 

=~ 200 KN/mmn? = Young's Modulus for Steel Reinforcement 

= Density of steel reinforcement = 77 KN/m> 

wee 250 KN.m, BM, = 400 KN.m. The calculations proceed as 

  

  

  

E 
Se ee «e = gS = 2) = 7.143 

Cc 

3 
noe n x 10 s- = «(0.24 

(10 x 10° + 225.5 x 10°) 
aaa 

ne ae pea ice 
voce I 2 1 — 0.92 

2, = 0.9 y w = 0.2484 

BM 
Ne, ote — = ar = 4.463 x 10> m° 

a a 225.5 x 10° x 0.2484 

Wee Ge x 10 ee 4 S139 10 

- Weight = 13.39 x 10° x77 = 4.03. ex 

= 2 0.105 ton 

Ms 400 , = 7.141% 10> m° 
225.5 x 10° x 0.2484 

= Volume =. 72141 x 107° x 0.75 24> = 921642 x 107° we 

~ Weight = 21.42x 10°x77 = 1.649 KN 

= 0.168 ton 
  

Total tensile reinforcement = 0.105 + 0.168 = 0.273 ton
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(7) Aso = Area of stirrups 

= 0.0015 xt x-b x 2 

= 0.0015 x 0.2x4x2=2.4x 10° m 

- Volume = AL, xw =2.4x% 10> x 0.3 

= 2.4x 10° x 0.3 =0.72x 10° m 

- Weight = 0.72 x 10° x77 = 0.05544 KN 

= 0.0056 ton 

(8) Volume of concrete = txwxL 

02-0544 = 0.24 mn 

(9) Horizontal area which needs fair finish 

Oe tee = 20.2 x4 = 1.6 me 

(10) Vertical area which needs fair finish 

=s2xwxbL =2x%0.3 x4 = 2.4m 

Using the values underlined the construction cost of the grillage 

member is computed as shown in the self-explanatory Table 6.3.



ane 

  

  

  

  

  

  

          

  

      

Number Item Description Unit | Quantity ne . fe a 

(4))) In-Situ Concrete Work: 

(a) Provision of concrete. 

- Design mixture Grade 
28 cement, 2 
(£, = 30 N/mm”) m? 0.24 Sorel 195 

(b) Placing of reinforced 
concrete. 

- Slabs thickness 

150 - 300 mm m? 0.24 4.29 1.03 

8.98 

(2) Concrete Ancillaries: 

(a) Fommwork fair finish. 

- Horizontal width 

0.2 -0.4m m? eo 10.83 liso 

- Vertical width 

0.2 -0.4m m? 2.4 10.99 26.38 

(b) High-yield bar steel 
reinforcement to BS 449 

- 20 mm diameter bars ton 02273 363.47 99.23 

- 6 mm diameter bars ton 0.0045 Si. 1:9 2.43 

145.37 

Sumary: 
(1) In-Situ cost 8.98 

(2) Concrete Ancillaries cost 1.452377 

22 Total Cost (Rk) 154.35     

TABLE 6.3: CONSTRUCTION COST (R) OF A TYPICAL GRILLAGE MEMBER 
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CHAPTER 7 

EXAMPLES ON THE DESIGN OF HORIZONTAL GRILLAGES 
  

7.1 THE DESIGN SPECIFICATIONS 
  

The optimum design method described in the previous Chapter is 

applied here to obtain a minimum weight or a minimum cost topological 

design of normally loaded reinforced concrete grillages. The method 

aims at obtaining the optimum cross-sectional dimensions of the 

concrete members and the corresponding amount of reinforcement needed. 

The design specifications concerning the stresses in the members of the 

grillage are taken from the CP114 code of practice. This code depends 

on the permissible stress method which is used here for the design of 

uncracked concrete members of the grillage. 0 the other hand, no 

design code of practice has specified clear limits on the joint 

deflections of the grillage. Therefore, such limits are left to the 

designer to decide, am this might affect the results. 

Each grillage member is considered as a reinforced concrete member 

subjected to bending combined with shear and torsion. The effects of 

these forces on the strength of the member are mostly general and 

practical problems. There is a dearth of information on the 

theoretical development of this problem, primarily because of its 

extreme complexity. The design of a reinforced concrete member under 

the effect of combined bending amd shear was tackled successfully by 

many design methods. For the effect of torsion, however, it was 

generally agreed (Zia, 1968) that in a reinforced concrete member 

subject to torsion the reinforcement has no appreciable effect on the 

stiffness before cracking. Therefore, as the grillage members are 

assumed to be uncracked, the elastic theory, which considers the 

concrete to be linearly elastic, is adopted for constructing the 

combined shear and torsional stress constraints. For this reason also,
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the reinforcement which might be needed for torsion is ignored in the 

grillage members. 

The design specifications which are required to be satisfied are 

the following: 

(1) The combined shear and torsional stress ( Rae ) in any grillage 

member should not exceed the maximum allowed shear stress 

Ty om see a The — shear stress of concrete is 

taken here as 1 0.9 N/m . As explained in the previous 

Chapter, T, governs the alteration of the sectional dimensions t 

and w, while t. decides the amount of stirrups required, (Clauses 

303 and 316, CP114: Part 2, 1969). 

(2) The bending moment compressive stress in any grillage member 

should not exceed f = 10 pes (Table 6, CP114). 

(3) The direct cee stress in any supporting column must not be 

greater than f = 7.6 aa (Table 6, CP114). 

(4) The Selection of any point in the grillage should be within the 

limit of L /Er (Section 6.8). 

The ee Meatvie concrete stresses, specified above, are for 

nominal concrete of mix proportion 1:1:2, (Table 6, CPl14). Other 

limiting stress values can be specified depending on the mix 

proportion, or on the code of practice used. The concrete used is 

Grade 30 for which the Young's Modulus of Elasticity (E) is 28 
Z ie 

KNAm ,; and poisson's ation’ .(v) is. 0.2°. For the steel 
2 

reinforcement, the Young's Modulus (E ) is taken as 200 KN/mm_=§ and 
Ss 2 

the permissible tensile stress (f ) is 225.5 N/mm . 
Ss 

7.2 THE DESIGN PROCEDURE 
  

The procedure for the optimum design of a reinforced concrete 

grillage is to some extent similar to that of the frame and the
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complete structure, previously described. However, for a minimum 

weight design of a grillage, the procedure is as follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

Develop the ground grillage structure. This is done by defining 

the main topology of the structure which includes the length, the 

width and if necessary the height of the grillage. The number and 

the position of beams, and the boundary (support) conditions are 

predetermined and are not subject to variations during the search 

for an optimum design. 

Give a joint number to each point where transverse and 

longitudinal beams intersect. Joints are also placed where there 

is more than one concentrated load or a discontinuity in the 

magnitude of the uniform load between intersection points. 

Give numbers to the members of the structure, and if required 

group the members together. The numbering and the grouping start 

from the columns. In here, it is assumed that each column belongs 

to a single group. 

Specify the design load, which can be either concentrated or 

uniform, and allocate it on the joints of the grillage. This load 

includes the self-weight and the external load. The method of 

computing the grillage self-weight will be described in Section 

Tvaede 

Select the upper and the lower bounds on the section variables 

which are the thickness (t) and the width (w) of each beam and the 

overall depth (h ) of each column. For all the design examples 

in this aniten) Pe upper bounds on t and w were taken as 800 mm 

and 1000 mm respectively, while the lower bound for them was taken 

as 200 mm. The upper bound on h was 1000 mm, while the lower 
S 

bound was 200 mm. These bounds should not be exceeded by those of 

the move limits.



  

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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Select initial sectional properties for the members, amd then 

analyse the structure to obtain the joint displacements am the 

member forces. 

Use the member forces to compute the reinforcement required for 

each of the grillage members, Section 6.10, amd calculate the 

material and the construction costs. 

Construct the linear form of the objective function am transfer 

its coefficients to the backing store. 

Use the row-by-row technique to construct the linear form of the 

design constraints, and transfer their coefficients to the backing 

store. 

Apply the Simplex Method to minimise the weight function. 

Use the section properties obtained to repeat the process from 

step (6) until convergence is achieved and the optimum design is 

determined. 

Occasionally some of the stress and the deflection requirements 

are satisfied at the optimum design, but are violated when the 

structure is finally analysed. This is because the optimisation 

is carried out on the linear model of a highly non-linear problem. 

Therefore, carry out minor changes to the sections where such 

violations occur. 

For a minimum cost topological design, the aim is to reduce the 

total cost of the grillage structure. ne way of achieving this is by 

trying to remove some of the beams from the original structure. The 

removable beams are selected automatically by the optimisation method 

which considers structural and economical factors for such selection. 

The procedure for the minimum cost design is as follows:



  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Starts by minimising the weight, as described by the procedure 

above. The reason for such a start is to improve the 

relationships between the members before the process of removal 

begins. 

Calculate the fixed charge R as the cost of retaining each 

grillage member or group of nancy: Section 6.10, and introduce 

the associate variables 5, and One 

Repeat the process of the minimum weight design fran step 6 to 

step 10. 

Remove all members, or groups, with 6, = 6, = 0 or with 

6, = by = 0. If members with 6, = 6, = 0 are not removed at 

this stage, their 6 values may change later during the design 

procedure. Notice that members are removed on the condition that 

feasibility is maintained in the next design iteration. 

Repeat this procedure fron step 2 until no further topological 

change is obtained. 

Continue the minimum cost design of the structure with its final 

topology until convergence is achieved and the optimum design 

determined. 

DESIGN LOAD FOR GRILLAGE 
  

In the grillage design, the total vertical load P imposed on a 

joint in the Z-direction is calculated as: 

P= P+ <p C72) 

where P is the dead load (self-weight) and P is the live load 
D L 

imposed on the joint.



  

261 

It is necessary to include an estimated self-weight of the 

grillage in the total load when calculating the dimensions of the 

sections. The self-weight constitutes a relatively greater proportion 

of the load as the member spans and sectional dimensions increase. In 

the present study, such weight is taken as a concentrated dead load 

which is estimated, for a typical joint j in a grillage, as equal to 

the sum of half the weight of each member connected to the joint. Such 

as: 

Mj 

where P is the dead load imposed on joint j, 
Dj 

M is the total number of members meeting at joint j, 

J 
iY. is the density of reinforced concrete, 

L, t amw are the dimensions of member i. 

> 3 i 
As an example, consider the grillage in Figure 7.1. The parts of the 

members included in estimating the dead load imposed on joint j are 

shown shaded. 
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Figure 7.1: PARTS OF THE MEMBERS INCLUDED IN ESTIMATING THE DEAD LOAD 

IMPOSED ON JOINT j.
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The live load P is usually specified as either concentrated or 

uniformly Heir over the face of the grillage. The method of 

apportioning the uniform load to the joints of a grillage is shown in 

Figure 7.2. By using the contributing areas of the uniform load, the 

imposed load and the moments acting on the joints can be calculated. 

As an illustration, assume that the uniform load imposed on the 

grillage of Figure 7.2 has an intensity of 2 ne. Thus, the load 

apportioned to joint j is 4mx4mx 2 aout = 32 KN. Similarly the 

load carried by joint d is 16 KN ard by joint n is 8 KEN. 
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Figure 7.2: METHOD OF APPORTIONING UNIFORM LOAD TO THE JOINTS OF A 

GRILLAGE 

The moments acting on a joint, usually known as the fixed end 

moments (M ), can be calculated by dividing the uniform load into 

strips. Ae eau of each strip is considered to be of unit length. 

For instance, from Figure 7.2, consider the uniform load between joints 

dad and j, as shown in Figure 7.3. The fixed end moments about X-axis 

acting on each of these two joints is calculated from the following 

equation: 

Mes oy eee (7.3)
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where wW is the intensity of the uniform load strip, and here it is 
2 

edual “to, 3) mak 4 mo x (2 Wim =. 8° ENAmit. length. Thus, 

2 
M fafa - 8 (4) = 10.67 KN.m. ‘The fixed end 
F.E.X.d PebiX. 4s 12 

moments, about X and Y-axes, acting on all the grillage joints can be 

calculated similarly. 
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Figure 7.3: A STRIP OF A UNIFORM LOAD USED IN CALCULATING THE FIXED 

END MOMENTS (M ). 
F.E. 

In the topological design of a grillage, some members, and 

consequently some joints, are removed. The load carried by one of 

these joints is allocated to the neighbouring joints. In the present 

work such allocation is done in an approximate way. As an 

illustration, assume that in the uniformly loaded grillage, shown in 

Figure 7.2, the member between joints d am b, and that between 

joints a and c are removed. Thus, joint j is also removed which 

means that a new uniform load apportioning is required to joints a, b, 

c and d. This is shown in Figure 7.4, where the new acting moments on 

joints d and b about X-axis will be calculated as M yh (L/2)eu L772, es, 

where L is the distance of joint d (or b) from joint j; the moments 

about Y-axis for joints a and c can be computed similarly. Notice that 

each of such moments is calculated assuming that the uniform load
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apportioned to the joint is acting in a cantilever manner. It is also 

noticed that the contributing areas of the uniform load in Figure 7.4 

overlap each other in the centre, i.e. at joint j. The effect of such 

overlapping on overestimating the new acting moments is ignored here. 

The imposed live load on the removed joint j, i.e. P _1 is divided 

between joints a, b, c and d. Such division depends - the distance 

between joint j and the other joints. For instance, in Figure 7.4, 

Be: is divided into four equal parts and added to the live loads of 

oe other four joints. 

Area contributing 
to joints d and b 
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Figure 7.4 METHOD OF APPORTIONING UNIFORM LOAD AFTER JOINT j IS 

REMOVED.
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Us Seal The Effect of Considering the Self-Weight as a Variable 
  

As shown by equation (7.2) in the previous section, the self- 

weight of the grillage depends upon the section variables t amd w of 

the members. In the analysis of a grillage, these variables are 

already known and the self-weight is taken as a constant added to the 

live load, the total of which constitutes the design load, equation 

(7.1). On the other hand, in the optimisation process, the values of t 

and w are unknown and require calculation. Consequently in this 

process the self-weight is considered as a variable. This variable is 

included in the rows of the stiffness constraints which correspomd to 

the displacements in the Z-direction. Thus, if the stiffness equations 

that correspond to such displacements can be expressed in a matrix form 

ass 

Rates 2 oP (7.3) 
D L 

then the stiffness constraints for these rows become: 

H (ho, PW; x)= K (h,, t, w) x - Py (t, w) - PB = 0 (C704) 

The derivatives of the stiffness constraints with respect to the 

design variables are required for the Mlinearisation process. 

Therefore, the derivatives of (7.4) with respect to the variable t are 

expressed as: 

ee 0K (h,, t, w) oo o Py (t, w) 

and similarly with respect to w: 

0H r 3 K (ho, ce, w) . * 0 Py r, w) (7:56) 

ow ow ‘= ow
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In the present optimisation process, the self-weight can ke 

considered as a constant or variable depending on the choice of the 

designer. However, it is proven here that there is an advantage in 

considering the self-weight as a variable, and this will be 

demonstrated when dealing with the example in the next section. 

7.4 EXAMPLES ON THE MINIMUM WEIGHT DESIGN 
  

Tie Med: An Ellipse Shaped Grillage 
  

This is the type of structure which is usually encountered by the 

engineer to cover a space between buildings or to be used as part of a 

roof system. The grillage is considered to be fixed at ten points, as 

shown in Figure 7.5. The figure also shows the assumed dimensions of 

the grillage and the external loading, which consists of concentrated 

loads at the intersection points. The numerical values of the external 

loading are given for only one quarter of the grillage. The loading 

values on the other three quarters are just the same because the 

grillage is symmetrical about its central axes which are parallel to 

the X and the Y-axes. 

Figure 7.6 shows the way in which the joints and the members of 

the grillage were numbered. Overall, there are 36 joints amd 69 

members which are gathered into seven groups. The members which are on 

one straight line between two supports are all considered to be built 

from one section, i.e. belong to a single group. The first four groups 

are for the transverse members, and the other three groups are for the 

longitudinal members. Notice that the grouping is_ symmetrical. 

However, the advantage of symmetry will not be demonstrated in this 

section, as this will be shown when dealing with the example in Section 

7.56
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The design problem has 122 variables, 14 of which are the section 

variables t and w of the seven grillage groups, amd the rest are the 

displacement variables; three for each joint. The problem also has a 

total of 258 constraints, 108 of which are stiffnesses and another 108 

are deflections. There are also 14 stress constraints which include 

the bending moment stress and the combined shear and torsional stress 

for each group of members. Furthermore, there are 14 upper amd 14 

lower bound constraints imposed on the section variables of the 

grillage groups. 

The permissible stresses for the grillage concrete members were 

specified in Section 7.1. The limit on the joint deflection was taken 

as L /500, where Lo is the distance of joint j fram the nearest 

J J 
fixed support. For instance, the limit on the vertical deflection of 

joint number 1, see Figure 7.6, was taken as L, /500 = 3600mm/500 = 7.2mm, 

while for joint 8 it was Lg / 500 = 4270 mm / 500 = 8.5 mm. 

However, it should be emphasised here that such a deflection limitation 

was only specified for the joints where deflection was known to be 

critical. In this example, these joints with their deflection 

limitations are given in Table 7.1 

  

  

                                  
  

Seine No. 14 1314. 811141 15 | 16 1174-20 121 |22 I26 |29 | 33 | 34 | 36 

Def.Limit =| 7 5/7.918.5/8.5115.0112.0/18.0/12.0/12.0118.0/12.015.0/8.5| 8.517.2|7.2 
oa 200) am 

Table 7.1: THE DEFLECTION LIMITATIONS ON THE CRITICAL JOINTS OF THE 

SYMMETRICAL ELLIPSE SHAPED GRILLAGE. 

The limitations on the deflection of the other joints can be specified 

arbitrarily, but here it was taken as 20 mm for each joint. The limit 

on the rotations of the joints was once again taken as 0.08 radian. 
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There are two purposes for choosing this design example. The 

first one is to investigate the effect of considering the self-weight 

of the grillage as a variable included in the optimisation process. 

The second purpose is to examine the verification and the reliability 

of the optimum weight design achieved. For the first purpose, two 

design cases are reported here. In Case 1, the self-weight was 

calculated for each joint and was added as a constant to the live load 

to constitute the total imposed load. While in Case 2, the self-weight 

was considered as a constant when analysing the grillage, but it was 

included as a variable in the stiffness constraints when the grillage 

was optimised. 

Both cases of the design started with equal sectional dimensions 

of t = w = 500 mm for all the groups of the grillage members. The 

initial weight was therefore equal to 1408 KN. The variation of the 

weight in the two design cases is shown in Figure 7.7. The initial 

move limit was taken as ML = 0.5 which was then reduced by steps of 0.1 

at each design iteration until convergence was achieved. In the two 

cases each required seven design iterations to reach the optimum, and 

each of these iterations required an average number of about 200 

simplex iterations.
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(1408 KN) 274 
(£14,138) 

1300 \ 

Design Case i 

1200} \ Self-Weight is Constant 

1100 Design Case 2 

Self-Weight is Variable. 

Optimum Designs 

1000} \ (988 KN) 
\ Fae (£10,424) 

eee 

| Only ecto 

\ are satisfied. y 

x (924 KN) 900t \ (£9 ,903) 

800¢ 

700 

Move Limit 

O75 0.4 Ons OR 2 Orn 0.4 @aa 
60 + + + t - msn 

1 2 3 4 5 6 7 Iteration 
No. 

PIGURE S/o: ELLIPSE SHAPED GRILLAGE - VARIATION OF WEIGHT IN TWO 

DESIGN CASES
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The initial and the optimum sectional dimensions obtained at the 

two design cases are shown in Table 7.2. The optimum weight obtained 

for Case 1 is 988 KN, while for Case 2 it is 924 KN which is about 6.5% 

less than that for Case 1. Although this percentage is small, it 

proves the advantage of considering the self-weight as a variable for 

further reduction in the optimum weight of the grillage. By examining 

the optimum results in Table 7.2, it may be noticed that the grillage 

members tend to become thinner and deeper. This behaviour continues 

until the sectional overall depth w reaches its upper bound, arm by 

then the sectional thickness t starts to increase. The lower bound of 

a sectional dimension is marked by an asterisk, while the upper bound 

is marked by two asterisks in the Table. 

The computer program which was written for the purpose of 

optimising flat grillages is designed to compute the total cost of the 

structure at each design iteration. This cost, which includes the 

material and the construction costs of the members, is shown in Figure 

7.7 and Table 7.2 at the initial and the optimum designs of the two 

cases. 

As Case 2 of the optimum design has given a better result than 

that of Case 1, the steel reinforcements for the grillage members will 

be given below only for Design Case 2. This case is also used to 

examine the verification and the reliability of the design. The final 

steel areas obtained in Design Case 2 for uncracked sections of some 

grillage members are shown in Table 7.3. The steel areas for the rest 

of the members can be obtained due to symmetry. The area of stirrups, 

amd the tensile steel areas at the two ends of each member were 

computed as explained in Section 6.10.2. Some of these steel areas are 

not required in some members, so a minimum amount of reinforcement had 

to be specified in their places. These are marked by an asterisk in



“to 

  

  

  

  

      
  

          
  

  

Optimum Designs 

Initial 
Group Design Design Case 1 Design Case 2 
Number Self-Weight is Self-Weight is 

Constant Variable 

t (mm) w (mm) t (mm) w (mm) t (mm) w (mm) 

1: 500 500 200 * 466 200 * 358 

2 500 500 200 * 200 * 200 * 361 

3 500 500 319 1000 ** 522 1000 ** 

4 500 500 341 1000 ** 200 * 892 

5 500 500 200 * 522 200 * 552 

6 500 500 200 * 342 200 * 200 * 

7 500 500 261 1000 ** 200 * 1000 ** 

Total 
Weight 1408 KN 988 KN 924 KN 

Total 
Cost £14,138 £10,424 £9,886 

* Indicates the sectional dimension is at the lower bound. 

** Indicates the sectional dimension is at the upper bound. 

TABLE 7.2: ELLIPSE SHAPED GRILLAGE - OPTIMUM SECTIONAL 
DIMENSIONS OBTAINED AT THE TWO DESIGN CASES. 
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Areas of Tensile 
Area be aa for 3 

Masisex’ cited ae meu ieee. — 

Lesage for shear Oe S £ ir 

go al ected tet) 
al Ast Aso 

1 900* 96* 639 13.93 Zone 69.65 

3 900* Fd 410 14.05 54.58 68.64 

4 900* 412 644 14.05 5a. 3 72-16 

7 2564 4663 2024 50.86 134.92 185.79 

8 2350* 2011 1168 404.73 223.85 325 «58 

9 2350* 1161 3026 1473 230.32 332.05 

a 900* 1825 119 34.74 143.04 dod, 

14 900* 241* 719 34.74 111.78 146.51 

15 900* 719 638 34.74 114.33 149.07 

af 1468 1785 306 25.97 94.19 120.16 

38 1200* 54* 103 10.39 47.00 56.99 

39 1200* 304 724 51.94 164.60 216.54 

41 1200* 149% 986 28.68 103.51 132.20 

42 1200* 92 147 10.39 47.70 58.09 

43 1200* 689 604 51.94 166.88 218.82 

46 1200* 495 246 28.68 100.14 128.82 

47 1200* lel 54* 10.39 46.78 wrels 

48 1200* 931 w35 51.94 170.06 222.00 

aT 1200* 210 210 28.68 97.38 126.06 

52 1200* 54* 54* 10.39 46.58 56.97 

a3 1200* ia 737, 51.94 168.43 220.37     
    * Means Minimum Area of Steel Reinforcement is Specified. 

TABLE 7.3: ELLIPSE SHAPE GRILLAGE - STEEL REINFORCEMENT 
AND COSTS OF SOME MEMBERS OBTAINED AT THE 
OPTIMUM DESIGN OF CASE 2
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Table 7.3. The material and the construction costs are also given in 

the Table. The results in the Table show that most of the grillage 

members required the minimum amount of stirrups. The members that 

required additional stirrups are 7, 8 and 9, which belong to the 

shortest group, and members 13 and 37 which are connected to the fixed 

end supports. Notice that the tensile steel areas at both ends of 

members 51, 52 and 53 are equal due to symmetry. 

The optimum designs in Case 1 and Case 2 satisfy all the design 

requirements which include the stiffness, the stress and the 

deflection. This will be verified for Design Case 2 in the next sub- 

section. 

7.4.1 Verification of the Optimum Design 
  

The computer program which was written for the purpose of 

optimising horizontal grillages has a sub-routine that analyses the 

structure at each design iteration. By employing this sub-routine, an 

analysis was carried out for the Ellipse Shaped Grillage using the 

sections obtained at the optimum design of Case 2. The forces amd the 

stresses in all the members, and the deflections of the joints were 

calculated. However, due to symmetry the analysis results for only 

some of the members and the joints will be shown here. Table 7.4 shows 

the forces and the stresses for these members. In this Table the 

bending moments, at both ends of the members, the shear forces and the 

torques are given in their real directions depending on the sign 

convention shown in Figures 6.9 and 6.10 in Chapter 6, and Figure 4.1 

in Chapter 4. The stresses, however, are given in the Table as 

absolute values.
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It may be noticed in Table 7.4 that the maximum bending moment 

occurred at the first end of member 7 which belongs to Group 3. The 

“bending stress at this end reached to the permissible value, i.e. 10 

ae This value is marked, for this member and some others, by two 

asterisks in the Table. By examining the bending stresses in the other 

members in Group 3, i.e. 8 and 9, it is obvious that member 7 is the 

one with the critical stress and was therefore used for constructing 

the bending stress constraint for this group. Member 7 was also used 

to construct the combined shear and torsional stress constraint for 

Group 3, because this member had the highest combined shear stress 

compared with members 8 and 9. 

It may be further noticed that the bending moment stress at the 

first end of member 13, marked by brackets in Table 7.4, has exceeded 

the limit. The reason for this is that the optimisation was carried 

out on a linear model of highly non-linear problem. Therefore, while 

all the stresses were satisfied at the optimum design, some might not 

be when the structure was analysed. 

It is also proved that the interaction of the two orthogonal 

systems of members helps in stiffening the structure and retain joint 

equilibrium. For instance, the bending moment at the first end of 

member 3 is equal to the torque in member 41. 

Fron the analysis results in Table 7.4, it is shown that the 

combined shear and torsional stresses in the members are well below the 

permissible value of 3.6 Nine This shows that these stress 

constraints were non-effective in optimising the Ellipse Shaped 

Grillage. Notice also that the torques and the torsional stresses in 

members 37, 39, 43, 48, 51, 52 and 53 are equal to zero, while the 

shear forces and stresses in members 51, 52 and 53 are also equal to 

zero. This is due to symmetry.
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Table 7.5 shows that, for each group, there is a member which has 

the critical stress. This member was used for constructing the stress 

constraint for the group. Both the critical bending stress am the 

critical combined shear and torsional stress do not necessarily occur 

at the same member in the group. This is proven in Group 5, where 

member 41 was used for constructing the bending stress constraint while 

member 46 was used for constructing the combined shear stress 

constraint for the group. 

  

  

Group Member used for construct- | Member used for constructing 
Nenner: ing the B.M. stress the combined shear and tor- 

constraint sional stress constraints 

1 1 1 

: 4 4 

3 7 7 

4 13 13 

5 41 46 

6 42 42 

7 37 a           
Table 7.5: ELLIPSE SHAPED GRILLAGE - MEMBERS USED FOR CONSTRUCTING 

THE STRESS CONSTRAINTS FOR THEIR GROUPS AT THE FINAL 

DESIGN ITERATION. 

The bending moment diagrams for the longitudinal members are shown 

in Figure 7.8, while for the transverse members the diagrams are shown 

in Figure 7.9. These diagrams are drawn on the tension side of the 

member. Notice that the diagrams are not continuous at_ the 

intersection point of the members. This is due to the fact that there
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are two different value of bending moments at each of these points, the 

difference between such values being equal to the torques in the 

orthogonal members. 

The vertical deflection profiles for the longitudinal members are 

shown in Figure 7.10a, while for the transverse members the deflection 

profiles are shown in Figure 7.10b. The values in brackets in Figure 

7.10a are the allowable deflection limits for the joints. Although all 

the deflections are satisfied, it is noticed that none of them had 

reached the limit. The closest ones are joints 1 and 4. Fram 

observing the weight variation of Design Case 2 in Figure 7.7, it is 

shown that at iteration number 4 all the deflection requirements are 

satisfied but some stresses are not. Fram this it is concluded that 

the specified deflection requirements helped in converging the problem 

but they did not decide the final sections for the Ellipse Shaped 

Grillage, as this decision was left to the stress requirements, 

particularly those of the bending stress. 

724.2 An Irregular Circular Flat Grillage Supported by Four 
  

Columns 

This type of structure, shown in Figure 7.11, is commonly used as 

an independent roof system. The grillage, which was assumed to be 

uniformly loaded, is supported by four columns. The positions of these 

columns were chosen by the designer, as shown in the figure. Each 

column was assumed to be 4m high, and to be fixed at both ends. The 

dimensions, and the numbering of joints, members and groups are shown 

in Figure 7.12. Notice that the numbering is started from the colums. 

As a whole, there are 47 joints and 73 members in this structure. Each 

column was assumed to be built from a single section, i.e. belong to a 

Single group. Thus, there are four column groups. The grillage itself
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was made from 69 orthogonal members which belonged to 14 groups; seven 

as longitudinal and another seven as transverse groups. 

The limit on the joint deflection was taken as L /400, where 

J 
L is defined here as the distance of joint j from the nearest 

Bite Such a limit was only specified for the joints where 

deflection was known to be critical. Other relaxed limits were 

specified for joints with non-critical deflection. The deflection 

limits specified for all the joints are given in the second column of 

Table 7.6. Each value of the relaxed deflection limit is marked by an 

asterisk in the Table. The joint rotations were limited once again to 

0.08 radian. 

As mentioned above, the grillage was assumed to be uniformly 

loaded, and the load intensity was taken as 8 = 10 KN/m = 0.01 KN/mn. 

The live load and the moments acting on each joint, due to the uniform 

load, are given in Table 7.6. These were calculated as explained in 

Section 7.3. For some joints in the grillage, one of the acting 

moments was found to be equal to zero. The stiffness constraint that 

corresponds to this moment was also found to have a zero right-hand 

side. This in turn caused the optimisation problem to degenerate and 

to enter into cycling. To avoid such a problem, a small value of 

moment was assumed to act instead of the zero moment. This value of 

moment is marked by brackets in Table 7.6. 

The design problem has a total of 173 variables, four of which 

represent the section overall depth (h ) of the four columns, and 

another 28 variables represent the Bei dimensions t and w of the 

14 grillage groups. The rest of the variables are joint displacements. 

The problem also has a total of 374 constraints, 141 of which are 

stiffnesses and another 141 are deflections. There are also 28 stress 

constraints, and 32 upper and another 32 lower bound constraints
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Imposed Live Load and Moments Caused by a 
Joint Specified Uniform Load of w = 0.01 KN/nm 
Number Deflection Limit 

j 1, /400 in (mm) P, (KN) Ma op x, (KN-mm) Ma py, (XN-mm) 

1 das * 15.0 -1670.0 -1670.0 

2 no ¥ 15.0 1670.0 -1670.0 

3 i 15.0) 1670.0 1670.0 

* tt tou -1670.0 1670.0 

5 12.8 3.0 (10.0) - 600.0 

6 8.8 4.5 (15.0) = Sio.d 

7 ae 5.0 1670.0 -1670.0 

8 SiO 5.0 1670.0 ~1670.0 

9 8.8 4.5 675.0 (10.0) 

10 12,8 6.0 1200.0 (15,0) 

11 8.8 4.5 675.0 (10.0) 

12 5:0 5.0 1670.0 1670.0 

13 a0 aU 1670.0 1670.0 

14 8.8 4.5 (10.0) 670.0 

15 12.8 6.0 (15.0) 1200.0 

16 8.8 4.5 (10.0) 670.0 

17 5.0 5.0 -1670.0 1670.0 

18 5.0 0 -1670.0 1670.0 

S| 8.8 4.5 “675.0 (10.0) 

20 12.8 3:0 -600.0 (10.0) 

21 Tid 8.0 -1070.0 -3340.0 

22 10.0 10.0 0.0 -3340.0 

23 5<0 10.0 0.0 -3340.0 

24 5.0 10.0 -3340.0 0.0 

  

* Means Relaxed Deflection Limit is specified. 

TABLE 7.6: IRREGULAR CIRCULAR GRILLAGE - DEFLECTION LIMIT AND 
IMPOSED LIVE LOADS SPECIFIED FOR THE JOINTS 

(Continued) 
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Imposed Live Load and Moments Caused by 
Joint Specified a Uniform Load of w = 0.01 KN/nm 
Number Deflection Limit 

5 L,/400 in (mm) P, (KN) Ma op x, (KN-mm) Ma poy, (XN-mm) 

25 10.0 10.0 -3340.0 0.0 

26 Wc 8.0 -3340.0 -1070.0 

27 a0; 0>:* 14.5 1670.0 -2670.0 

28 30.07 * Z0.0 0.0 0.0 

29 UA 20.0 0.0 0.0 

30 30.05. = 20.0 0.0 0.0 

31 Pet 20.0 0.0 0.0 

S32 S0C0 x 2020 0.0 0.0 

33 30,0 * 14.5 -1670.0 2670.0 

34 3070. * 20.0 0.0 O@ 

BD 10.0 20.0 0.0 0.0 

36 30.0 * 20.0 0.0 Ceo 

37 8020) = 14.5 2670.0 -1670.0 

38 B00. * 16.0 2140.0 0.0 

29 S050) * 14.5 2670.0 1670.0 

40 30.50 .* 20.0 0.0 0.0 

41 10.0 20.0 0.0 0.0 

42 S050). * 16.0 0.0 2140.0 

43 ce 20.0 0.0 0.0 

44 au.0 = * 20.0 0.0 0.0 

45 S050 * 14.5 -1670.0 2670.0 

46 30.0. * 20.0 0.0 0.0 

47 30.0 * 14.5 -2670.0 1670.0           

* Means Relaxed Deflection Limit is specified. 

TABLE 7.6: (CONTINUED) 
  

 



  

288 

imposed on the section variables of the column and the grillage groups. 

The advantage of considering the self-weight of the grillage as a 

variable is demonstrated in Design Case 2 of the previous example. 

Therefore, the present design problem also considers the self-weight as 

a variable. The problem started with an arbitrary set of sectional 

dimensions, which made the total weight of the structure equal to 747 

KN and its total cost became £7288. The weight variation accanpanied 

by the cost, which was calculated at each design iteration, are shown 

in Figure 7.13. The initial move limit was taken as ML = 0.5. ‘The 

optimum design was obtained after six design iterations. Each of these 

iterations required an average number of about 370 simplex iterations. 

The optimum weight otained for the structure is equal to 324 KN and the 

total cost at this point is £3944. The initial amd the optimum 

sectional dimensions are shown in Table 7.7. It can be observed that 

the thicknesses of the grillage members always tend to decrease until 

they reach the lower bound, which is 200 mm. Furthermore, the overall 

section widths vary until the design requirements are satisfied. 

Notice that at each column = grillage connecting point, the column 

is in fact connected to the deepest grillage member. Therefore, the 

thicknesses of the columns and the member are equal. In Table 7.7, the 

group of each of these members is marked by brackets near the column 

dimensions. In the initial design, the groups of the grillage members 

that are connected to the columns were chosen arbitrarily. However, 

during the design process these groups may change because at each 

design iteration the depths of the groups, amd consequently the 

directions of the column sections, vary; see Figures 6.3 and 6.4 in 

Chapter 6. Notice that at the optimum design some of the grillage 

groups that are connected to the columns are different fran those at 

the initial design.
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Initial Design Optimum Design 
  

  

  

            

            

Group 

Number he (mm) t (mm) w (mm) hy (mm) t (mm) w (mm) 

eal 800 400(Gr. 8) 280 200 (Gr. 15) 
E | 2 800 400(Gr. 6) 230 200(Gr. 6) 
S13 800 400 (Gr. 10) 250 200(Gr. 13) 

4 800 400 (Gr. 10) 220 200 (Gr. 17) 
5 300 600 200 200 
6 400 600 200 487 
7 300 600 200 200 
8 400 600 200 935 
9 300 600 200 200 

10 400 600 200 470 
j 11 300 600 200 474 
@ | 12 300 600 200 447 
a 113 300 600 200 483 
R 14 300 600 200 200 

15 300 600 200 943 
16 300 600 200 200 
17 300 600 200 514 
18 300 600 200 200 

ea 747 KN 324 KN 

preg £7288 £3944 

TABLE 7.7: IRREGULAR CIRCULAR GRILLAGE - 
SECTIONAL DIMENSIONS AT THE 
INITIAL AND THE OPTIMUM DESIGN 
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The areas of eile steel for all the grillage members are shown 

in Table 7.8. Some members only required a minimum area of steel, 

given as 0.0015 x t x 0.9 x w, to be specified at one or both of their 

ends. Each of these areas of steel is marked by an asterisk in the 

table. It is noticed here that the computation of the tensile steel 

areas depended only upon the moments at the ends of the member; 

thereby ignoring the moments caused by the uniform load. MThis is 

because, in each grillage member of this structure, the moment at one 

of the ends is always greater than the moment between the ends. The 

shear reinforcement in all members was not required at the optimum 

design. However, a minimum stirrup area Of 0.0015 x 2 xt x LG was 

specified. Furthermore, throughout the design process, the columns 

were assumed to have fixed values of 1%, i.e. 0.01 x t xh, 

compressive steel together with 0.15% stirrups. 

To verify the optimum design, the deflection profiles for all the 

grillage members are plotted in Figures 7.14 and 7.15. It can be 

noticed that all the joint aaeiections are satisfied; in other words, 

they are within the limits specified in Table 7.6. Fram observing the 

weight variation in Figure 7.13, it can be seen that at the fourth 

design iteration, only the deflections became satisfied. However, the 

sectional dimensions continued to alter and the weight increased 

slightly so that the stress requirements were met. This leads to the 

same conclusion as for the previous structure in that the stress 

requirements seem to dominate the optimum design. One of the possible 

reasons for such domination is that the deflection limit L/400 might 

not be sufficient to involve the deflection requirements as an active 

part in the design.
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To prove the stress domination, Table 7.9 shows the members with 

maximum stresses used for constructing the stress constraints for their 

groups at the final design iteration. The stress values give clear 

evidence that the bending moment stresses are more effective than the 

combined shear and torsional stresses in the structure considered. 

This is true as many grillage members reached the permissible bending 

stress which is marked by an asterisk in the Table. 

In the present design problem, there are no specific design 

requirements which can be imposed on the column sections. These 

sections seem to be decided when the grillage members satisfy their 

reguirements. The thickness of the column section is equal to the 

thickness of the grillage member connected to it. Therefore, only the 

overall depth (h ) of the column needs to vary. However, the 

validity of the final column sections obtained at the otpimum design 

can be checked. This can be done according to Clause 322 (CP1l14: Part 

2: 1969), or Clause 3.5.7.3 (CP110: 1972). For instance, consider 

column number one where t = 200 mm and h = 280 mm. Fran the final 

analysis results, the displacements of ge joints at the top of this 

column, i.e. joint 1, are found to be z = 0.71 mn, o = 0.137 x on 

rad. and 8 = QO ol132x a rad. . Using equation (6.9), Chapter 6, 

the axial load and the moments are computed to give P = 280 WN, 
c 

M = 716 KN.mm and M = 1157 KN.mm. The permissible combinations 

x 7 
of direct load and bending moments, to which this colum may be 

subjected, and the maximum stresses in the column were checked 

according to the clauses, mentioned above, and were found to ke 

Satisfactory. This was also found for the other three columns in this 

structure.
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oe Naximm B.M.Stress aan a 
vee | Menor rember | S255 Vel | weater mnber | Stress Valve 

2 13° Ende 10.0 * Je 2.5 

6 8 - End 2 9.4 14 2e3 

7 22 -— End 2 7.4 15 1.4 

8 23 - End 2 10,0.:* 31 ies 

9 36 — Ena oat 17 iio 

10 12 + End 2 410,0.* 12 2.8 

11 30 = End 1 lao 19 13 

12 p2 = End 2 7.1 66 1.4 

1S 71 - Ex 1 10,0 * in 2.8 

14 43 - End 2 9.6 46 1.6 

15 a0 = End 1 1020s 45 oe 

16 SD = End 1 1¢o 62 eS 

17 67 — End 1 ea 61 2.4 

18 60 - End 2 Oe OR 60 2.4 

  

* Means the stress 

TABLE 7.9: 

is at its permissible value. 

IRREGULAR CIRCULAR GRILLAGE - MEMBERS WITH MAXIMUM 
STRESSES USED FOR CONSTRUCTING THE STRESS CONSTRAINTS 
FOR THEIR GROUPS AT THE FINAL DESIGN ITERATION 
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7.5 EXAMPLE ON THE MINIMUM COST DESIGN 

Ted A Symmetrical Rectangular Grillage Supported by Four 
  

Columns 

Similarly to the structure in the previous Section, this one can 

also be used as an independent roof system. The grillage, shown in 

Figure 7.16a, is symmetrical and it is supported by four columns, each 

is 4m high. The positions of the columns were chosen by the designer. 

The grillage was assumed to be uniformly loaded with a load intensity 

equal to W = 5 KN/m. The purpose of choosing this example is to 

investigate the effect of topological alteration on the minimum cost 

design. Some members were allowed to be removed for the sake of 

reducing the total cost. This might decrease or increase the total 

weight as will be shown later. The removable members were selected by 

the design process which depends on economic and structural factors for 

such selections. 

The structure is symmetrical about both of its central lines. 

Therefore, only the top-left-quarter of it will be considered for the 

design. The numbering of joints and members for this quarter is shown 

in Figure 7.16b. Notice that the ends of members which are on the 

central lines are considered as joints. Each of these joints has two 

degrees of freedom; the deflection in the Z-direction and the rotation 

about the axis which is parallel to the member local axis. This 

quarter of the rectangular grillage consists of a total of 39 joints 

and 57 members. The grouping of members is shown in Figure 7.17a. The 

column belongs to a single group, while the grillage members gathered 

into 18 groups; 12 longitudinal and 6 transverse groups. In the 

minimum cost topological design, some groups were required to ke 

retained in the final design. These are the groups that represent the 

members on the edges, i.e. groups 2 and 4, and the members on the lines
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that pass through the column's top, i.e. groups 9 and 17. All the 

other groups were allowed to be removed. 

The design problem for a minimum cost has a total of 171 

variables, one of which is h of the colum amd another 36 variables 

are t and w of the esti groups. There are also 106 joint 

displacement variables and 28 variables representing 6, and o. of the 

removable groups. The problem also has a total number of 336 

constraints, 106 of which are stiffnesses, 106 deflections, 36 

stresses, 9 lower bounds and another 9 upper bounds for the sectional 

dimensions of the retained groups. There are also 14 constraints 

representing type (6.67), 28 constraints representing type (6.66) and 

another 28 representing type (6.65). 

The limit on the joint deflection was taken as L /400, where 

L is once again defined as the shortest distance of spine j fran the 

Blige: Such limit was specified for all the joints of the structure 

except the joint on the top of the column where a relaxed limit was 

given. The exact deflection limit, amd the acting live load am 

moments, which were specified for all the joints, are given in Table 

7.10. Notice that there are no loads acting on the joints of the 

central lines. 

Similar to the previous problem, the present design problem also 

includes the self-weight of grillage as a variable. The initial set of 

sections ee chosen arbitrarily, as shown in Table 7.11. The thickness 

of the column section is equal to the thickness of grillage group 17. 

These sections made the weight of the symmetrical quarter of the 

grillage equal to 1184 KN and the cost equal to £10,800. As explained 

in Section 7.2, the first stage of the design process is to minimise 

the total weight without topological alterations. This in fact gives a 

better relationship between the members before anyone of them can be
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Specified imposed Live Load and Moments Caused by 
Joint : a Uniform Load of w = 0.005 KN/mm 

peer ee 
(3) bane P,, (KN) Mp px, (XNemm)| Ma, py, (KN.mm) 

1 +0:* 15.00 0.0 0.0 

2 sau” Bula 1875.0 -835.0 

3 Ales 1.20 3750.0 0.0 

4 18.0 7.50 3750.0 0.0 

5 15.8 7.50 3750.0 0.0 

6 19.0 7.50 3750.0 0.0 

7 83 1.30 3750.0 0.0 

8 18.0 eeu Sfaace 0.0 

9 21.4 100 0.0 -1670.0 

10 16.8 15.00 0.0 0.0 

11 2<3 15.00 0.0 0.0 

12 7.0 15.00 0.0 0.0 

13 7.9 15.00 0.0 0.0 

14 9.0 15.00 0.0 0.0 

15 team 15.00 0.0 0.0 

16 20.0 7.50 0.0 -1670.0 

17 15.0 15.00 Oa0:»: 0.0 

18 10.0 15.00 0.0 0.0 

19 *.0 15.00 0.0 0.0 

20 420 15.00 0.0 0.0 

21 10.0 15.00 0.0 0.0 

22 21.4 +.a0 0.0 -1670.0 

23 16.8 15.00 0.0 0.0               

* Relaxed Deflection Limit is Specified. 

TABLE 7.10: THE SYMMETRICAL QUARTER OF THE 
RECTANGULAR GRILLAGE — DEFLECTION 
LIMIT AND IMPOSED LIVE LOADS 
SPECIFIED FOR THE JOINTS 

(Continued)
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Imposed Live Load and Moments Caused by a 

  

  

          
  

  

Joint pec Uniform Load of w = 0.005 KN/mn 
nue aici ian 

(3) an) P. (KN) Ma EX. (KN.mm) Ma Ry. (KN.mm) 

24 12.5 15.00 0.0 0.0 
25 9.0 15.00 0.0 0.0 
26 ok 15.00 0.0 0.0 
27 9.0 15.00 0.0 0.0 
28 12.5 15.00 0.0 0.0 
29 23.0 0.0 0.0 0.0 
30 18.7 0.0 0.0 0.0 
31 15.0 0.0 0.0 0.0 
32 12.3 0.0 0.0 0.0 
33 11.3 0.0 0.0 0.0 
34 12.3 0.0 0.0 0.0 
35 15.0 0.0 0.0 0.0 
36 19.5 0.0 0.0 0.0 
37 14.6 0.0 0.0 0.0 
38 12.5 0.0 0.0 0.0 
39 14.6 0.0 0.0 0.0 

TABLE 7.10: (CONTINUED) 
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removed. In the second stage, the total cost, which represents the 

Material and the construction costs, is minimised. Topological 

alterations are allowed in this stage. 

The objective function at Stage 1 represents the total weight 

only. At each design iteration, the computer program calculates the 

total cost of the structure. The variations of the weight and the cost 

for Stage 1 are shown in Figure 7.18. The initial move limit was taken 

as ML = 0.5 and the optimum weight design was obtained after five 

design iterations. Each of these iterations required an average number 

of about 350 simplex iterations. The sections obtained at the optimum 

weight design are shown in Table 7.11. These sections made the weight 

equal to 866 KN and the cost equal to £7,930. At this design, the 

bending moment stress in groups 9 and 17 has reached to the permissible 

value, while the deflection at joints 2, 3, 9 and 10 has reached the 

limit. This gives the conclusion that a combined effect of deflection 

and stress constraints decided the optimum weight sections for Stage l 

of the design. 

The design process continued into the second stage where the total 

cost, represented by the objective function, is minimised. The set of 

sections obtained at the optimum weight design in Stage 1 was used as 

the initial set in this stage. Once again the move limit was started 

with ML = 0.5. As shown in Figure 7.18, the process at Stage 2 

required six iterations to reach the optimum cost design. At the first 

design iteration, which is numbered as 6 in Figure 7.18, groups 4, 5, 

10, 11, 12 and 13 were removed. At the end of this iteration, the cost 

was reduced by about 9% while the weight decreased by about 2% only. 

At the second iteration, number 7 in the Figure, groups 15 and 16 were 

removed, while at the third iteration, number 8 in the Figure, groups 

6, 18 and 19 were removed. The groups removed when their 5, = o = 0
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Initial Design 
Optimum Weight 

Optimum Cost Design 

  

  

  

            

          

Grillage Design 
Group 

Number t (mm) w (mm) t (mm) w (mm) t (mm) w (mm) 5,6, 

2 400 900 200 ©. |. 200% | 300% | Soo . 
3 400 900 200 * | 509 200 * 839 0.87 
4 400 900 200 * | 200 * 0 
5 400 900 mg & ge 0 
6 400 900 200 * | 334 0 
7 400 900 265 852 254 600 0.59 
8 400 900 200 * 815 334 1000 **| 1 
9 400 900 goo ** | 1000 **| 800 ** | 1000 **| - 

10 400 900 200 * | 244 0 0 0 
11 400 900 200 * | 531 0 0 0 
12 400 900 200 * | 200 * 0 0 0 
13 400 900 200 * | 531 0 0 0 
14 400 900 200 * | 1000 **} 275 1000 **} 
15 400 900 200 * | 1000 ** 0 0 0 
16 400 900 257 1000 **1 0 0 0 
17 500 900 666 1000 **] 618 1000 **| 
18 400 900 200 * |1000 **}| 0 0 0 
19 400 900 525 1000 ** 

Col. Group} +t (mm) h, (am) t (mm) h, (mm) t (mm) h, (am) 

1 500(Gr. 17) 1000 |800**(Gr.9)| 1000**}800**(Gr.9)| 900 = 

re 1,184 KN 866 KN 670 KN 

oe £10,800 £7 ,930 £5,861 
    Indicates that the sectional dimension is at the lower bound. 

** 

TABLE Vs 

Indicates that the sectional dimension is at the upper bound. 

THE SYMMETRICAL QUARTER OF THE RECTANGULAR 
GRILLAGE - SECTIONAL DIMENSIONS AT THE INITIAL 
AND THE OPTIMUM WEIGHT AND COST DESIGNS 
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or 6, = 6, = 0, ine. O S$ 6 < 0.5. After the third iteration in Stage 

2, no groups were allowed to be removed so that the feasibility of the 

solution could be maintained. The only groups left in the final design 

are numbers 3, 7 and 8 in addition to the originally specified groups 

2,9, 14> and ls The groups of members retained in the optimum 

topological design of minimum cost, i.e. the final shape, are shown in 

Figure 7.17b. The sectional dimensions and the 6 variables obtained 

for these groups are given in Table 7.11. The total weight at this 

design is 670 KN which is about 23% less than the optimum weight design 

of Stage 1, while the total cost is £5861 which is about 26% less than 

the cost of the optimum weight design. 

The areas of stirrups and tensile steel obtained for the grillage 

members at the optimum cost design are given in Table 7.12. The 

material and the construction costs for these members are also given in 

the Table. All the members required the minimum area of stirrups. 

Some members also required the minimum area of tensile steel to be 

specified at one or both of their ends. Each value of minimum area of 

steel is marked by an asterisk in Table 7.12. Throughout the whole 

design process, the columns were assumed to have a fixed value of 

compressive steel area, which is 1%, and a minimum area of stirrups, 

which is 0.15%. 

To verify the optimum cost design, Figure 7.19 shows’ the 

deflection profiles for the grillage members which were retained in the 

final shape shown in Figure 7.17b. The specified deflection limits are 

given in brackets underneath the exact deflection values. It can be 

noticed that many joint deflections have reached to their limits. 

However, due to non-linearity of the design problem, the analysis 

results show that some of these deflections have slightly exceeded the 

leva,
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Areas of Tensile Steel 
  

  

  

  

  

  

  

                    

  

Area of Material | Construc-| Total 

ae SS oo rece Mem.End 1 |Mem.End 2 | Cost tion Cost| Cost 
Ay, (rm? ) A,, (mm ) A,» (mm ) (£) (£) (E) 

2, 2 900 * 135) * 135.* 19.48 67.84 OY oe 

9 900 * 135. * 356 19.48 69.27 Boe 5 

16 900 * 650 148 19.48 Wt. 24 90.72 

25 450 * 178 178 9.74 34.20 43.94 

5 5 900 * 226 * 226 * 32.68 103.04 WS) oiZ 

10 900 * 226 * 873 32.68 107.19 139.87 

Ti 5 1143 * 205 * 205 * 29.66 87.99 Tel s65 

2 1143 * 205 * 1156 29.66 94.10 123576 

8 19 1503 * 858 450 * 64.98 161.14 226-12 

26 ol x 450 * 450 * 32.49 79.26 111375 

9 6 3600 * 1080 * 2598 155502 301.66 457.48 

13 3600 * 2598 6884 t5562 338.96 494.78 
20 3600 * 1700 1080 * 155.82 295.89 AD a 
27 1800 * 1080 * 1080 * 77.91 145.95 223.86 

14 30 825 * S7\. = SWAl ts B50 94.49 130.19 
34 825 * Si = Sie, 35.70 95.37 131.07 
38 825 * 577 1218 8557.0 99.00 134.70 
42 825 * 1242 2085 85.70 105.56 141.26 
46 825 * 1375 838 65.70 100.79 136.49 
50 825 * 838 554 35.70 97.27 132.97 
54 412 * 547 547 Aio> 48.00 65.85 

17 32 1853 * 834 * 834 * 80.20 159.83 240.03 
36 1853 * 834 * 2291 80.20 166.07 246.27 
40 1853 * 2291 4607 80.20 182.23 262.43 
44 1853 * 4730 8669 80.20 210.09 290.29 

48 1853: * 2145 914 80.20 165.79 245.99 

52 1853 * 914 834 * 80.20 160.17 240.37 

56 926 * 834 * 834 * 40.10 79.91 120.01 

* Means Minimum Reinforcement is Specified. 

TABLE 7.12: THE SYMMETRICAL QUARTER OF THE RECTANGULAR 
GRILLAGE - STEEL REINFORCEMENTS AND COSTS 
OF MEMBERS OBTAINED AT THE OPTIMUM COST 
DESIGN 
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FIGURE 7.19: THE SYMMETRICAL QUARTER OF THE RECTANGULAR 

GRILLAGE - DEFLECTION PROFILES OBTAINED AT 

THE OPTIMUM COST DESIGN
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Another verification of the optimum cost design is to check the 

stresses in the retained members. Table 7.13 shows the members with 

maximum stresses which were used for constructing the stress 

constraints for their groups at the final design iteration. The Table 

shows that the stresses in all the members are satisfied. However, it 

is noticed that the stresses in some members have reached the 

pemissible values. Each of these stresses is marked by an asterisk in 

  

  

  

Table 7.13. 

Maximum B.M. Stress Maximum Combined Shear and 

Group Torsion Stress 

Number 

Member No. Stress Value Member No. Stress Value 

(N/mm? ) (N/mm? ) 

2 16 - End 1 eS 16 3.6 * 

3 10 - End 2 bis 10 Onn 

7 12 - End 2 855 12 Gs7/ 

8 19 - End 1 2.9 19 0.9 

9 13 - End 2 9.6 6 123 

14 42 - End 2 Se5 46 233) 

le 44 - End 2 10.0 * 36 120           

* Means the stress is at the permissible value. 

TABLE 7.13: THE SYMMETRICAL QUARTER OF THE RECTANGULAR GRILLAGE - 
MEMBERS WITH MAXIMUM STRESSES USED FOR CONSTRUCTING 
THE STRESS CONSTRAINTS FOR THEIR GROUPS AT THE FINAL 
DESIGN ITERATION      
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The main conclusion that can be obtained from Figure 7.19 ard 

Table 7.13 is that the deflection and the stress constraints are both 

involved in deciding the optimum sections of the final grillage shape 

shown in Figure 7.17b. However, in this structure it seems that the 

deflection requirements dominated the optimum design more than the 

stress requirements. This is true as many joint deflections have 

almost reached their limiting values, while only two member stresses 

have nearly reached the permissible values. Another point to be 

noticed here, is that the logic of including a design constraint that 

represents the torsional stress combined with the lateral shear stress 

is demonstrated in Leia 16 of group 2. ‘The torsional stress in this 

member is 3.23 N/mm, while the lateral shear stress is only 0.37 
2 

N/mm .
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CHAPTER 8 

THE COMPUTER PROGRAMS 
  

8.1 INTRODUCTION 

The previous chapters contain all the essential features for the 

design problems of a sway frame, a complete structure and a horizontal 

grillage structure. The computer programs which were written for the 

automatic formulation of the design problems for these types of 

structure will be described in this Chapter. The three master 

programs, which make use of the design procedures, were written to 

utilise the computer backing store so that large structures can be 

designed within a small computer core. Each program constructs the 

problem one-row at a time which is then transferred to the backing 

store to make a space for the construction of the next row. However, 

as similar technioues were used in a number of instances, a full 

description of each program would involve undue repetition. Therefore, 

after describing : subroutine dealing with the general method of 

constructing the stiffness constraints, the description of each master 

program will be limited to brief discussions of the main features 

within the program. A fourth program was written for the purpose of 

solving the design problems by the simplex method. This program can be 

used independently or can be included as a subroutine in the master 

program. The backing store of the computer was also used in this 

program. Furthermore, a subroutine that solves the overall stiffness 

equations for analytical purposes is used in this thesis. This 

subroutine was developed by previous researchers, and thus only a brief 

description of it will be given. 

All the programs were written in FORTRAN IV and run on the ICL 

1904S computer at the University of Aston, and also on the CDC 7600 

computer at the University of Manchester Regional Computer Centre. A
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set of subroutines, that may be incorporated in the FORTRAN of these 

computers, enable files on discs to be used for backing storage. 

8.2 THE DISPLAY OF A TYPICAL DESIGN PROBLEM 
  

In Figure 8.1, a layout of the design problem, for minimum weight, 

is given for a portal frame having two joints, and three members of 

different grouping. Matrix D shown in the Figure, includes the 

coefficients of the objective function and all the constraints. The 

dimension of this matrix is [KB+1,NV], where KB+l is the total number 

of the constraints and the objective function, and NV is the total 

number of the design variables which can be in the form: 

NV = NOG + 3*NOJ (8.1) 

where NOG is the total number of groups, and NOJ is the number of 

joints. 

In this Figure, the objective function has constant coefficients, 

see equation - (2.14), where G #.L .<¥: for .¢ =.1,..:.. NG. The 

g g 
faCtors= (i455; &; WG, Ve WwW) toe 1) 1, -. 2 NV, Mare «the stiffness 

coefficients and they are cite: constants or zeros, depending upon the 

linearisation process. The constant 1, in matrix D, represents the 

coefficient of any one of the variables listed at the top of the 

Figure, and it relates each variable to its lower or upper bound. The 

blank spaces in matrix D are all zeros. 

The one dimensional matrix B, in Figure 8.1, contains constant 

values, such as zero as the initial value of the objective function ard 

the Right-Hand-Side (RHS) values of an NR number of linearised 

stiffness constraints. Matrix B also contains the upper bound values 

on the displacements of the two joints such as UB, and UB.’ oe
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SA {ay | Age ae OL Ro): aig Se 

"Td 2 S| ee ee 0 fF OO TSF 6 | . Géjective Row 

1 ry ro aS x4 Tr. re ro re ry = RES, 44 

2 s, s, Ss, Sy S. S¢ Ss. Se So = RHS., +2 

3 te ke t3 t, t. t. t. te ty = RES. +3 

NR 

4 a Uy u, u, us Ue us U, Ug = RHS , +4 

5 v4 v5 v3 Vv, ve V6 v5 Ve Vo = RHS . ED 

6 Wy Wo Ww. MG We We wo We Wo = RES & +6 

* 
7 1 S UBx, 0 

< 8 i = UBy, UB, 0 

Q 
9 1 S UBE, mM 0 

- 
10 1 S UBx., 0 

eds < 1 < juBy, UB, 0 

12 1 S UBE., 0 

* 
13 1 2 LBA, -13 

14 1 = LBA, LBA -14 

as 1 2 LBA. -15 

> 
16 1 Ss UBA 0 

ey, 1 =< UBA, UBA 0 

18 1 s DBA. | 0 

gongs                                 

The number of the 

constraints 

ju
 

|w
 Is 

FIGURE 8.1: A LAYOUT OF A TYPICAL DESIGN PROBLEM 
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lower and upper bounds on the areas of the members, such as LBA and 

UBA. The dimension of B is KB+l. 

The simplex method is used to solve the problem by first adding 

artificial, surplus and slack variables to the rows of matrix D. All 

the unknowns of vector C are then calculated to give a design which is 

one step nearer to the optimum solution, see equation (1.3). 

To identify the rows with artificial variables from those with 

slack variables, a new one-dimensional array was employed. This is 

shown as RA, in Figure 8.1, and it contains constants that specify the 

type of each constraint. A zero indicates that the constraint has a 

slack variable. An equality constraint is identified by a positive 

number in RA and requires an artificial variable. Finally a negative 

number in RA indicates that the constraint requires a surplus as well 

as an artificial variable. The construction of array RA is done 

automatically, and its constant numbers correspond to the number of the 

rows. The dimension of RA is equal to KB. 

8.3 THE CONSTRUCTION OF LINEAR STIFFNESS CONSTRAINTS 

As shown in the previous chapters, the matrix displacement method 

was used in formulating the design problems for the three types of 

structure. Using this method, it was found that each structural 

member, whether it was a prismatic or a deep beam, required four 

submatrices, res Sr a ad. he tO ._ represent its 
all 5} ay 

contribution to the overall stiffness matrix of the structure. 

Furthermore, there were often three displacement variables 

(Re, -y and 6; or. z, c. and te at each joint in a structure. Such 

common factors between the structures examined in the thesis made it 

possible to write a general subroutine that can be applied easily to 

construct the stiffness constraints for any of these structures. The
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subroutine which is called STFDRVRHS can also be applied to any other 

similar structure. 

8.3.1 Sub-Routine STFDRVRHS 
  

The construction of the stiffness constraints is done in a 

continuous joint-by-joint sequence. The major program for each type of 

structure uses two major nested loops for such construction. The outer 

loop takes each joint of the structure in turn. The inner loop cycles 

through the rows of the stiffness coefficients corresponding to the 

displacements at this joint. For each row, subroutine STFDRVRHS is 

called to construct a linear form of the constraint at this row. This 

subroutine consists of three parts. The first formulates the stiffness 

coefficients in the row. The second part computes the gradient vector 

and the third linearises the constraint. The flow diagrams for these 

parts will be discussed below, after considering one row, known as I, 

that corresponds to a displacement at a joint, called J. 

Sota Part 1 - Formulating the Stiffness Coefficients 

The first part of subroutine STFDRVRHS consists of two nested 

loops, as shown in Figure 8.2. In the first loop the total number of 

different member geeks at joint J are cycled. Such number is stored 

in an array called NG, when dealing with a frame, and in arrays called 

NGl and NG2, when dealing with a camplete structure or a grillage. 

These arrays are constructed in the master program of each type of 

structure, aS will be shown later. In the second loop each of the 

members connected to that joint are taken and checked as to whether the 

aroup number of the member coincides with the group number of the first 

loop. If so, the contribution of it made to the submatrices Res 

a7 

2, K,, and K.. is computed. 
Lin) e 33



  

Consider a row (I) of the stiffness matrix that corresponds to a 
displacement at a joint (J). 

<< Cycle the total numbensof groups at joint 0, IM = 1, NG . > 

  

    
  

Y 
Cycle the total number of members connected to joint J. > 
  

  

    
  

  

  

  

  

  

  

      
  

    
  

  

  

  

  

  

  

        
  

    

  

  

  

     
  

    
      

Find the group number (IG) of the member. 

NO 
> 

Compute elements of K.,, K,., K,, and K,.. 
aii 1) ji 33 

coed ; NO 
Is joint J the first end of the member > 

2 

YES 

AA Compute addresses of elements of row I in Ky and insert in SMS. 

YES x Y y —~< Is the second end of the member rigidly supported 

Compute addresses of elements of row I in Kis and insert in SMS. Tp) 

Compute addresses of elements of row I in Lae and insert in SMS. _ 

< YES Is the first end of the member rigidly supported 

? 

Compute addresses of elements of row I in ay and insert in SMS. 

So) 
~<< —<   

  Last member     
FIGURE 8.2: CONSTRUCTION OF 

ONE ROW OF THE 

DESIGN STIFFNESS 

MATRIX 

NO     
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The subroutine then proceeds to determine whether the joint taken 

in the first loop is the first end of the member. If so, array NI, in 

the case of a frame, or arrays NIl1 and NI2, in the case of a complete 

structure or a grillage, are used to determine the addresses of the 

coefficients of row I in the submatrix xu These coefficients are 

then inserted, according to the ee a one-dimensional array 

known as SMS, which represents row I of the design stiffness matrix. 

The addresses of the submatrix E. are found by using the array NIG. 

This array contains the number ofc groups at each joint. The 

function of this array is to compute the number of groups, before the 

member group, at the joint corresponding to the second em of the 

member. This number is used to find the addresses of the coefficients 

of row I in submatrix Soy and these coefficients are then inserted 

in array SMS. In the hee when the second end of the member is 

supported by a fixed connection, the member will have no contribution 

from that end. 

If joint J is the second end of the member, then the same 

procedure is applied to compute the addresses of the coefficients of 

row I in submatrices K and K , amd inserting these coefficients 

in array SMS. The size a this ae is the number of columns NC which 

should be computed in advance by the master program. It should ke 

noticed here that the SMS array contains only the constant 

coefficients, at row I, of submatrices ag eo; x and K - 

1 1j a. 3). 
In other words, no unknown sectional properties are involved as they 

are considered as design variables. The SMS array is then used for 

constructing the elements of row I of the symmetrical overall stiffness 

matrix K, which is employed in analysing a_ structure. Such 

construction does not introduce any difficulty as the only necessary 

computation is to multiply the coefficients of SMS array by the
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selected values of the sectional properties and add them together at 

each joint to obtain row I of matrix K. The elements of this row are 

stored in a one-dimensional array named as CM; the size of CM is 

3*NOJ where NOJ is the total number of joints. 

The SMS array is then used to calculate the gradient vector and to 

linearise the stiffness constraint at row I, as will be shown next. 

8.3.1.2 Part 2 = Computing the Gradient Vector 
  

The second part of subroutine STFDRVRHS deals with the derivatives 

of row I, of the design stiffness matrix, with respect to the design 

variables. These derivatives are computed amd stored in a one- 

dimensional array called DK. The size of this array is NV, where 

NV = NOG+3*NOJ, as defined by equation (8.1). The first NOG elements 

of the DK array contain the derivatives with respect to the section 

variables. The rest, contain the derivatives with respect to the 

displacement variables. This part of the subroutine uses the array 

SMS. It cycles the group numbers, and at each joint determines whether 

there is an element corresponding to this group in row I of the design 

stiffness matrix. If there is, then the derivatives with respect to 

the design variables, are computed at this joint. The camputation of 

the derivatives is explained by the flow diagram shown in Figure 8.3, 

which is the continuation of the flow diagram shown in Figure 8.2.
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-—>—< Cycle the total groups, IK = 1, NOG. > 

p>—>—<_ cycle the joints; 0 == 1, 

Sane Cycle the groups at joint J, IM = 1, NG S 

NO 

NOJ. 

  > 

  

  

Compute the addresses of the required elements in SMS array. 

  be . { 
Use SMS to compute the derivatives of row I of the design stiffness 

matrix with respect to section variables and insert in DK. 

No Y 

  

      

          

        

<G Last group at joint J “4 
Fs 

NO YES 

4 Last joint       
NO 

<+- Last group 
? 

    
  

  

  

> Cycle the joints, J. = 1, NOoJ. > 

Compute the addresses of the required elements in SMS. 

4 Y 
Use SMS to compute the derivatives of row I of the design stiffness 

matrix with respect to displacement variables and insert in DK. 

NO Y 
Last joint 

  

  

  

    
    
      

FIGURE 8.3: COMPUTATION OF THE GRADIENT VECTOR - CONTINUED FROM 

FIGURE 8.2
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pt Cycle the joints; J =. 1,5. Nog. 
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853.103 Part 3 -— Linearising the Stiffness Constraints 
  

The linearisation of the stiffness constraint at row I is carried 

out by the third part of subroutine STFDRVRHS. It can be seen from the 

flow diagram given in Figure 8.4 that, firstly the value of a stiffness 

constraint is computed at the current design point. Then using the 

gradient vector DK, constructed by the second part of the subroutine, 

the Right-Hand-Side of the constraint, FHS(I), is computed. ina 

linear programming problem, the Right-Hand-Side of a constraint should 

always be a non-negative. Hence, if RHS(I) is found to be negative, 

then both sides of the stiffness equality is multiplied by -1 to ensure 

that RHS(I) is positive. 

8.4 THE FRAME PROGRAM 

The computer program for an optimum design of a multi-storey, 

multi-bay frame requires simple data preparation. A format has been 

adopted which facilitates rapid transference of data from a frame 

diagram to the program. The data format is general and does not depend 

on the nature of the structure. Furthermore, with the introduction of 

random numbering of the joints and the members, the data format can 

deal with a frame of any shape and under any type of loading. 

The input data for the program is generally divided into two 

parts. The first part is the data concerning the structural properties 

which include preliminary data about the frame, and detailed data about 

the members and the joints. The second part is the data which is 

relevant to the mathematical programming. This part contains’ the 

preselected area variables, the move limits, and the upper amd lower 

bound values. It also contains integer constants which are the values 

of variables used by the program to define the type of the design 

problem. These variables are ID and ANLYS. ID=l means a minimum
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weight design is required while ID=-0 means a minimum cost topological 

design is required. Om the other hand, ANLYS=0 means that the frame 

should be analysed with the current values of the member areas so that 

a new feasible starting point is established. ANLYS=l means that an 

analysis is not required and the present values of areas amd 

displacements are used to set the design problem for the next 

iteration. 

The second part of the data also contains the information required 

for a topological design. This includes the total number of groups 

“required to be retained in the final topology, the number of each of 

these groups and the lower bound imposed on its section area. It also 

includes the total number of the removable groups and the number of 

each one of them. A more detailed data format for the frame program 

will be given in Appendix C. 

After entering the data, the program starts by constructing the 

objective function, and then begins the calculation of: 

(i) The total number of members connecting to each joint; 

(ii) The member, and the group, numbers of these members. 

Joint number of the first and the second ends of each member are also 

checked at each joint, against the joint number, to determine whether 

that particular joint is the first end of the member. If so, the 

member number is multiplied by -1, so that the program will be able to 

identify which of the submatrices, K , K , K and K , are 
11 1) ji 2 

to be used at that particular joint. 

It is possible that some of the members connected to a joint 

belong to the same group. As a result their contributions to the 

design stiffness matrix can be added together at the rows and columns 

corresponding to that particular joint. It is therefore necessary to 

find the total number of different groups at each joint. MThis is



  

323 

carried out by checking the group numbers of members connected to that 

joint and storing the different ones in the array NG. The Jth element 

of this array gives the number of different groups at joint J. This is 

utilised in Sub-Section 8.3.1.1. As shown in Chapter 2, the 

contribution of each group is stored separately at each joint in the 

design stiffness matrix. The total number of "different groups at each 

joint" for the structure is obtained by adding the elements of array NG 

together, for all the joints, in array NI. The Jth element of this 

array gives the total number of "different groups at each joint" up to 

joint J. 

The program then proceeds to compute the number of columns NC in 

the design stiffness matrix, amd the total number of constraints KB. 

It also calculates the size NGC required for the lower half, including 

the diagonal elements, of the overall stiffness matrix K which is used 

to analyse the frame. After that it calculates the dead load at each 

joint and adds it to the vertical live load which is already imposed on 

that joint. 

A flow diagram of the master program for the optimum design method 

of frames is given in Figure 8.5. The diagram is self-explanatory and 

will not be discussed in detail. However, the diagram shows that after 

the linear forms of the stiffness constraints are constructed amd 

transferred in a row-by-row sequence to the backing store, the program 

proceeds to construct all the other constraints and transfers them in 

the same sequence, to the backing store. The program then uses the 

simplex subroutine until convergence is achieved. For each iteration 

the feasible values of areas for the selected groups are printed out 

with the displacements of the joints.
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8.5 ‘THE COMPLETE STRUCTURE PROGRAM 

The main program for a minimum cost topological design of 

laterally loaded complete structures is similar to the frame program. 

The data format is flexible and can easily deal with symmetrical or 

non-symmetrical structures which contain arbitrary arrangements of 

parallel frames and walls amd have fixed or different widths of slabs 

and walls. The format can also include steel or reinforced concrete 

frames with a constant or a variable number of columns in each frame. 

Furthermore, since the problem is for a minimum cost design, the format 

contains a substantial amount of data about the cost assessment of the 

structure. However, a detailed data format for the complete structure 

program will be given in Appendix D. 

After entering the data, the program begins by formulating the 

objective function. This involves calculating the material ami the 

construction costs for the components of the structure. The program 

then proceeds to compute the total number of members meeting at each 

joint, plus the member, and the group, numbers of these members. It 

also calculates the different groups that meet at each joint, and 

stores them in arrays NG] and NG2. The Jth element of array NGl 

represents the different grillage groups which connect to joint J, 

while that of NG2 represents the different column groups, of a frame, 

that meet at joint J. Consequently, two arrays, NIl and NI2, are 

produced where the Jth element of either gives the total number of 

"different groups at each joint" up to joint J. These arrays are used 

for identifying the addresses of the coefficients which will be 

inserted in array SMS. The program continues to calculate the number 

of the design variables NV, the number of the design constraints KB and 

the number of columns N in the design stiffness matrix. It also 

calculates the size NGC required for the lower half, including the
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diagonal elements, of the overall stiffness matrix K which is used in 

analysing the structure. 

After such computations the program then starts to construct the 

stiffness constraints in a row-by-row sequence. This is done by 

calling subroutine STFDRVRHS for each row of the constraints. The 

construction of the other constraints, described in Chapter 4, are then 

followed. The flow diagram for the master program of camplete 

structures is similar to that of frames shown in Figure 8.5. Thus, it 

is not necessary to plot such a diagram here. 

8.6 THE HORIZONTAL GRILLAGE PROGRAM 
  

The master program for an optimum design of reinforced concrete 

horizontal grillages is similar to those of the frames and the complete 

structures. The data format is versatile, general amd able to deal 

with symmetrical or non=symmetrical grillages that can be supported by 

columns and fixed ends. A detailed data format for the grillage 

program will be described in Appendix E. Similar to the previous 

programs, the entry of data is followed by the calculation of the 

number of members that connect to each joint, plus the member number 

and the group number of each of these members. The program also 

calculates the different groups that meet at each joint and stores them 

in arrays NGl and NG2 which are then used to produce arrays NIl and 

NI2. The Jth element of array NGl represents the number of the 

different groups of longitudinal members which connect to joint J, 

while that of NG2 represents the different groups of transverse members 

that meet at joint J. The program then continues in calculatig the 

number of the design variables, the number of the design constraints,
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the number of columns in the design stiffness matrix, amd the size of 

the lower half including the diagonal elements of the overall stiffness 

matrix K which is required for analysing the grillage structure. 

The master program then calls subroutine SELF-WEIGHT. This 

subroutine consists of two major loops, as shown by the flow diagram 

given in Figure 8.6. In the first loop, the elements of a two 

dimensional array, called BETA1(IK,J), are computed. Each element is a 

constant that represents the sum of the product (y.L/2) of all the 

members that belong to group IK and meet at joint J, where, y is the 

density of material and L is the length of member. The elements of 

array BETA1(IK,J) will later be used in the computation of the gradient 

vectors of the stiffness constraints. For instance, as shown by 

equation (7.5), the derivation of the dead load value at joint J, i.e. 

P (t,w) of equation (7.2), with respect to t can be expresed as 

aD, Bye BETA (IK,J) Wy It should be ees here, however, that 

the elements of array BETA] have values only when the dead load of the 

grillage is considered as a variable, otherwise these elements will be 

zero. In the second major loop of the subroutine, the total weight of 

half the grillage members that meet at each joint is camputed and 

stored as constant values in a one-dimensional array BETA2(J). Each 

element in this array is equal to the dead load, i.e. P of equation 

(7.2), imposed on joint J. This value will be added ne vertical 

live load already imposed on joint J to form the total vertical load.
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After calling subroutine SELF-WEIGHT, the program proceeds to 

analyse the grillage structure and calculates the joint displacements. 

Following that, subroutine COST is called. The responsibility of this 

subroutine is to assess the total cost of each member of the structure. 

It starts by calculating the construction and the material cost of the 

supporting columns. ‘Then it uses the joint displacements to compute 

the member forces and hence determines the amount of reinforcements for 

each member. Following that, subroutine COST continues in calculating 

the material and the construction costs for each member, as explained 

in Section 6.10. It then formulates either the objective weight on the 

objective cost function for the structure, depending on the type of 

problem. 

After the formulation of the objective function, the master 

program then proceeds to construct the stiffness constraints, one row 

at a time, by using subroutine STFDRVRHS for each row. The 

construction of the stress, the deflection and the practical 

constraints, described in Chapter 6, are then followed. The stress 

constraints are also constructed in a sequence of one row at a time as 

will be shown in the next sub-section. It should be mentioned here, 

however, that in subroutine STFDRVRHS, array SMS contains constant 

values which are the derivatives of the stiffness coefficients with 

respect to the section thickness (t). On the other hand, the constants 

which represent the derivatives of the stiffness coefficients with 

respect to the section overall depth (w) are stored in another array 

named WSMS. Notice that these derivatives are given by equations 

(6.29) to (6.38). 

The flow diagram for the master program of the horizontal 

grillagaes is almost similar to that of the frames given in Figure 8.5. 

The only differences, however, are the existence of a subroutine which
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deals with the self-weight, called before the analysis, and another 

subroutine for computing the cost, called after the analysis. 

SiO. The Construction of Linear Stress Constraints for a 
  

Grillage 

In the optimum design of a reinforced concrete grillage, two 

stress constraints are imposed on each group of members. The first one 

represents the combined shear amd torsional stress, while the secom 

constraint expresses the bending moment stress. Each constraint is 

constructed by using the joint displacements and the sectional 

properties of a single member in the group. This member is located and 

identified as to have the maximum stress among the rest of the members 

in the group. Sometimes, the combined shear amd the bending moment 

stresses simultaneously reach their maximum values in the same member, 

in which case this member is used for constructing the two constraints. 

The construction of a linear stress constraint is accomplished by 

using two subroutines. The first one, which is called STRESMEM, is 

used to locate the member which has the maximum stress in each group. 

This subroutine consists of two major nested loops, see the flow 

diagram in Figure 8.7. The outer loop takes each grillage group in 

turn. The inner loop cycles through all the grillage members, but 

considers only the members that belong to the group taken by the outer 

loop. The analysis results are utilised by the inner loop, where the 

joint displacements are used to calculate the member forces amd hence 

the member stresses. After that, the stresses of each member are 

compared with those of the previous members in the group. The 

comparison process continues for all the members, and by the end of the 

inner loop the member with the maximum stress is located in the group. 

At this stage, the second subroutine, which actually constructs the
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stress constraint, is called. Two versions of this subroutine are 

developed. These are known as STRESSL when dealing with a group of 

longitudinal members, and STRESST when dealing with a group of 

transverse members. The reason for developing two versions of the same 

subroutine is that the positions, i.e. the addresses, of the stiffness 

coefficients of a longitudinal member are different fran those of a 

transverse member. | 

The construction procedure of a linear stress constraint, used by 

subroutines STRESSL and STRESST, is fairly straightforward. It starts 

by formulating the combined shear and torsional stress constraint, 

which is expressed by (6.44), amd then the bending moment stress 

constraint which is given by (6.48). The flow diagram for the 

procedure is shown in Figure 8.8. The construction of the gradient 

vector for a constraint requires the derivativation of each item in the 

constraint with respect to the design variables. Such derivation can 

be done according to equations (6.25), (6.26), (6.60) amd (6.61). ‘The 

linear form of each stress constraint will then be sent to the backing 

store. 

8.7 THE SIMPLEX PROGRAM 

Two different simplex programs. were employed to solve the 

structural linear programming problems which were discussed in the 

previous chapters. The first program was written by the author using 

The Regular Two-Phase Method described in Section 1.4.1. This program 

can be employed independently to solve a linear programming problem 

constructed by another program. On the other hand, it can also be 

included as a subroutine in the master program, in which case the 

entire operation of constructing the design problem amd solving it is 

done automatically. This subroutine proved to be successful with a
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number of relatively large design problems, where very large two- 

dimensional matrix D, similar to that shown in Figure 8.1, is stored in 

the computer backing store. The subroutine is written so that any 

column of matrix D envisaged for pivot selection is brought to the 

computer core at any time during the solution of the linear programming 

problem. Figures 8.9 gives a self-explanatory flow diagram of the 

simplex subroutine. The diagram depends on the information given in 

Sections 1.3, 1.4 and 1.4.1 in Chapter 1, and in Figure 8.1. The data 

parameters for the subroutine will be explained in Appendix F. 

The second simplex program employed to solve the structural linear 

programming problem was written for ICL(LPMK2,1970) as a routine 

package kept in the computer centre. This routine uses The Revised 

Simplex Method which also depends on the principles of The Two-fhase 

Technique. The whole simplex table is stored as a data file in the 

backing store, and the routine package operates on such a file to give 

a new feasible solution. By then, one design iteration towards the 

optimum solution is accomplished. This method of producing a design 

iteration is found to consume a great amount of computer time. 

Consequently, because of the time limitation, each iteration requires a 

new job to be sent to the computer for operation, and manual 

intervention during such a process is inevitable. The procedure of 

obtaining the final solution by using this routine is very slow, 

although The Revised Simplex Method itself is powerful am requires 

less computation than The Regular Two-Phase Simplex Method. It should 

be mentioned here, however, that the routine package is only used for 

the problems of topological design of minimum cost. This is due to the 

fact that the Right-Hand-Side values of some constraints in these 

problems are equal to zero, which give rise to degenerate problems and 

CYC Ling: The procedures of treating degeneracy and cycling are
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included in the routine package which proved to be efficient in dealing 

with such problems. 

8.8 THE USE OF THE COMPUTER BACKING STORE 
  

For both computers, the ICL1904S and the CDC7600, the backing 

store was used in a similar way. ‘This was done in two stages. In the 

first stage, matrix D, Section 8.2, is constructed and transferred to a 

temporary backing store disc file one row at a time. This matrix is 

stored as a one dimensional array of file elements. However, as 

explained in the previous Section, the simplex program needs to operate 

on matrix D by selecting one column of coefficients at a time. 

Therefore, in the second stage, matrix D is reorganised and transferred 

columnby-column to another temporary backing store disc file. Fram 

this file, the simplex program brings a column of coefficients to 

operate on, and then either returns it to the same position where it is 

brought from, or discards it campletely. The latter case is considered 

when a pivot colum is brought and an artificial variable is removed. 

On the other hand, if a routine package of the simplex program 

(LPMK2,1970) is employed, then in the second stage of using the backing 

store, matrix D will be transferred column-by-column not to a temporary 

backing store file, but to a separate permanent data file. The RHS 

matrix B is also transferred to this file. A special organisation of 

the two matrices is required which will prepare such a file to be 

operated on by the routine package of the simplex program.
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l= File Specifying Subroutines 

  

  

  

ICL 1904S WORKF ILE Specifies that a scratch file is to be 
Computer used aS a temporary backing store file 

for both input and output. The file is 
closed amd discarded automatically by 
the end of the master program. 

CDC 7600 OPENWE Similar to WORKFILE above, but the file 
Computer does not close automatically. 

CLOSMS Close the temporary backing store file.     
  

2- Array Handling Subroutines 

  

  

  

      
ICL 1904S PUTPART Transfers a specific part of an array 

to a backing store file. 

GETPART Brings a specific part of an array from 
the backing store file to the canputer} 
core. 

CDC 7600 PUIWF Transfer an array to a backing store 
file. 

GETWE Brings an array fram a backing store 
file to the computer core. 

GETCOL Rearranges matrix D fram a row-by-row   wise to a colum-by-colum.     

TABLE 8.1: SUBROUTINES WHICH ENABLE THE USE OF THE COMPUTER BACKING 
STORAGE
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A general description of the subroutines which enable files on 

discs to be used for backing storage is given in Table 8.1, (ICL 

FORTRAN, 1976) and (CDC FORTRAN, 1978). 

8.9 THE ANALYSIS METHOD 

In this method, the unknown joint displacements X are obtained by 

solving the matrix equation K X = L. The member forces are then 

calculated using the joint displacements. This method was developed 

by, amongst others, Livesley (1956), and Jennings and Majid (1965) who 

prepared a computer program which can be used for elastic-plastic 

analysis of frames. The full matrix operation was used in order to 

solve the stiffness equations and obtain resulting joint displacements. 

However, because of the large storage required for their matrix, 

Jennings (1966) developed a campact storage scheme for storing the 

stiffness equations and solving them by using Gaussian elimination. 

This scheme was then used by Majid and Anderson (1968b) to develop a 

program that constructs the overall stiffness matrix in compact form, 

and a subroutine that solves it. The program amd the subroutine were 

written in Atlas Autocode, which were then translated to FORTRAN and 

used by Celik (1977). 

In this thesis, the structural analysis is used as part of the 

optimum design procedure to adjust the joint displacements at each 

iteration. The overall stiffness matrices for all the structures 

designed are large, sparse and symmetrical, but in which the elements 

do not usually form a uniform band width. For this reason the "compact 

storage scheme" (Jennings, 1966) was used. In this scheme, two 

"sequences" were introduced. The "main sequence" stored the elements 

Which appeared between the first non-zero element and that on the 

leading diagonal, inclusive, in each row within the half band-width of
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the overall stiffness matrix. The second seguence was called the 

"address sequence" and was used to locate the positions of the leading 

diagonal elements within the main sequence. The zero elements existing 

within the irregular half band-width were also stored. In this way a 

large number of zeros were left outside the storage which resulted in a 

considerable reduction in the storage requirements. 

The two sequences were used by all the master programs of the 

previously discussed structures. The irregular half band of the 

overall stiffness matrix was constructed row-by-row and stored as a one 

dimensional array in the computer core. Then, by using subroutine 

ANLYSIS (Celik, 1977), this array and the Right-Hand-Side array, which 

contains the applied loads, were solved by Gaussian elimination and 

back substituted to produce the joint displacements. The data 

parameters for subroutine ANLYSIS will be briefly described in Appendix 

G.
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CHAPTER 9 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 
  

9.1 THE DESIGN METHOD 

The methods for optimum elastic design of rigid frames, complete 

structures and flat grillages, all used the matrix displacement 

technique for formulating the design problems. Such formulation was 

found effective and made it possible to produce general canputer 

programs for automatic optimum design of realistic structures. 

Optimisation can be carried out using linear programming without need 

for an analysis. This was not the case with the problems solved in 

this thesis because all the programming problems turned out to be non- 

linear and repeated modifications were needed to obtain a set of linear 

constraints and a linear objective function. As a result of this, it 

was found that at the end of each linear solution, an analysis was 

necessary to ensure that errors introduced by the linearisation were 

excluded. This did not introduce significant difficulties as both 

computer time and storage were plentiful. The sequential approximating 

programming was proved to be very effective for obtaining the solution 

of a non-linear design problem. For the solution of each linearised 

problem, The Two-Phase Simplex Technique was found powerful. 

The criteria defining the optimum design was either a minimum 

weight or a minimum cost of the structure. In this thesis, the 

topological designs were directed towards minimising the cost. 

However, topological designs for minimum weight were also investigated 

but found to be discouraging. The basic features of a topological 

design were that, once members in a structure were removed, the number 

of design variables and stress constraints were reduced. This caused 

the initial programming problem to be changed basically. In addition 

to that, due to the members removal, some joints may also be removed
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and hence reducing the number of stiffness and deflection constraints. 

The formation of the remaining constraints also changed during this 

operation. These factors contributed to modifying the objective 

function, the number of variables and the boundary of the feasible 

region. 

The method of minimum cost topological design of a structure was 

not restricted by the limits of conventional techniques. It allowed 

the final shape of a structure to be decided not by intuition but by 

design requirements and economic factors. The total cost, which 

includes the material and the construction costs, was assessed 

realistically by using the rates of labour and measured items, amd also 

by using the known sectional dimensions of members. Such method of 

cost assessment made the differences between the fixed charges of the 

removable members to be very small. This in turn caused the structural 

factors to be more dominant than the economic factors in selecting the 

members which should be removed. Such claim was proved in almost all 

the examples solved for minimum cost topological design in this thesis. 

Furthermore, it was found that, before starting topological changes, it 

is better to carry out a minimum weight design of the initial trial 

structure, so that the sectional dimensions given to the members are 

better related to each other. In the case of complete structures, a 

minimum weight design was avoided. It was therefore found necessary 

not to remove members in the first few iterations. This was to avoid 

the removal of vital structural components at an early stage. 

In this thesis, all the design problems were constructed one row 

at a time. The computer programs which were written for constructing 

the problems in such manner, and then solving them, were designed to 

make use of the computer backing store facilities. This improved the 

economical use of the computer core. Furthermore, by writing the
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simplex program and including it as a subroutine in the master program, 

it was found unnecessary to use the routine package which belongs to 

the computer centre. Therefore, an economy in the computer time was 

achieved when the consecutive design iterations were carried out 

continuously without any interruption. The fact that an efficient 

simplex subroutine was produced, made the optimisation problem 

independent of library routines amd also independent of the machine 

used for this purpose. 

9.2 THE SWAY FRAMES 

In a rigidly jointed steel frame, expressing the second moment of 

area in terms of the sectional area by approximating relationships made 

it possible to express all the main design variables by continuous 

functions of the variable areas. During the design process, the 

section areas were therefore assumed to be available in a continuous 

range. However, as shown in some design examples, the calculated areas 

were first converted to second moments of area which were then used in 

selecting the sections from a table for universal beams and columns. 

In the design of multi-storey steel sway frames, the sections 

obtained were found to be governed by the limitations imposed on the 

relative sway deflection of the storeys. Frames designed in this 

manner were checked by an independent analysis and proved to satisfy 

the strength requirements. This made the stress constraints 

superfluous and were thus excluded from the design problem for 

simplicity, speed of operation and economy in computer time and 

storage. The wisdom of such an exclusion was confirmed by numerous 

examples. 

The design of a number of frames for minimum weight or minimum 

cost, produced the following conclusions:
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The solution of the non-linear design problem always ended with 

the same design. This was verified by cammencing with the 

solution of a particular problem from several widely different 

initial design points. Another verification was done by repeating 

the design process after considering the optimum solution of one 

stage as an initial design point for the secom stage. This 

indicates that the design obtained was at least a local optimum 

design and may be even the global. 

A suitable starting value for the move limit can be taken as 

ML = 0.5 rather than ML = 0.9 which was used by previous 

researchers. The latter value of ML required unnecessary design 

iterations in the beginning of the process. 

The number of design iterations was further reduced considerably 

when it was decided to take the frames designed by Okdeh as the 

starting point for the optimisation. 

For irregular and asymmetrical frames, the optimum design should 

be carried out at least under two reversed wind loading 

conditions. In this way, each group of members will have two 

sections to select from, one from each condition. The largest of 

these may be used which consequently increases the weight or the 

cost obtained at the optimum design of the frame. 

The actual cost of foundation was found to be small compared with 

the cost of the columns it carried. Taie.«in- -tarn:. did:..not 

significantly increase the "fixed charges" imposed on the 

inclusion of these columns in the final design. Colums were 

therefore removed for other reasons. 

A minimum weight design of a frame, excluding fixed charges, 

proved to be ineffective to be used to change the shape of a 

structure. A 9-storey irregular frame designed in Chapter 3,
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Section 3.4.3, for minimum weight, while allowing member removals, 

by not imposing a lower bound on the sections, proved to give an 

infeasible result. 

9.3 THE COMPLETE STRUCTURE 
  

The optimisation method for a minimum cost topological design of 

laterally loaded complete structures was found to be flexible and 

versatile. The lateral loads were considered as the static wind 

forces. The vertical loads were not taken into account. The aim of 

the method was to reduce the total cost of the structure while 

satisfying the design requirements. One way of achieving such 

reduction was by trying to remove some of the vertical camponents which 

were selected by the method to be structurally and economically 

unimportant to keep. 

For simplicity, the main design variables were taken as_ the 

thicknesses of the plate components and the second moments of area for 

the columns of the frames. In addition to that, the displacements (z, 

& and oF of each joint were also considered as variables. The 

widths of the plates and the second moments of area for the beams of 

the frames were assumed as constants and their values were chosen prior 

to the beginning of the design. The number of columns in each frame 

was also assumed. Such simplification of the problem was found 

effective in decreasing the number of the unknowns amd thus reducing 

the level of non-linearity. As a result, it was proved that 

convergence can be achieved without the use of move limits. However, 

the only necessary limits required for the section variables were found 

to be the upper and the lower bounds taken fram the available sections. 

From the several design cases which were tried on two symmetrical 

complete structures, the following conclusions were drawn:
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In the examples designed, the limits on the lateral differential 

sway deflection between the storeys were taken as h/350 and h/500. 

For these, the sway was the governing limit state which decided 

the sections of the retained structural components. The strength 

requirements for these components were checked am found 

satisfactory. This might not be the case if the sway in a storey 

was restricted to h/300 or h/250. 

It was found that using shear walls reduced the need for 

intermediate frames, and the removal of these frames reduced the 

cost of the structure. Slender walls, however, were found 

insufficient to transmit the wind loads to the foundation. Such 

walls required more intermediate frames which consequently 

increased the cost of the structure. Furthermore, the actual 

costs of foundations were once again found to be small compared 

with the costs of the vertical camponents, and their effects in 

the components removal were negligible. 

Increasing the number of groups in each frame meant more columns 

could be removed and a further reduction in the cost could be 

achieved. Beams were not allowed to be removed unless the whole 

frame was to be removed. 

In Design Case 5 of the 9-storey structure, it was found that a 

more economical design was obtained when reinforced concrete 

frames were used, although the required number of such frames was 

greater than that of steel frames. This was because the cost of a 

reinforced concrete frame was found to be less than that of a 

fabricated steel frame.



  

346 

(5) The design of laterally loaded complete structures can be taken as 

a preliminary design which should be followed by a design that 

considers a general load condition, i.e. lateral am vertical 

loading. However, the vertical components which were removed when 

designing under the case of lateral loading only, could ke 

replaced by props if these were needed to carry the vertical 

loads. 

The complete structures designed in Chapter 5 were symmetrical and 

the sidesways produced in the frames and the grillages were the result 

of the lateral wind loads only. It is well known, however, that 

sidesways also results from the action of vertical loads when they are 

asymmetrical applied, or when the shape of the frames or the walls are 

asymmetrical. It is desirable therefore to extend the present 

optimisation method to deal with generally loaded complete structures 

consisting of parallel vertical camponents that are of symmetrical or 

non-symmetrical shape. Further extension to the method can include 

complete structures of non-parallel bracing components, or structures 

consisting of shear walls with openings. These problems can be 

tackled, for instance, by either considering the grillage as a space 

frame with 6-degrees of freedom at each junction, or use the finite 

element approach. 

It should be also pointed out that for the structures considered, 

the stress constraints can be more significant than the sway 

constraints. The method presented in Chapters 4 and 5 was limited to 

design structures for sway, but it is necessary to generalise the case 

to cover strength requirements. This is in spite of the fact that each 

member requires a large number of stress constraints which camplicate 

the problem. One way of overcoming this difficulty is to impose stress
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constraints on critical members only when a trial analysis reveals that 

the stresses in these members are significant. 

9.4 THE HORIZONTAL GRILLAGES 
  

The unknown sectional dimensions for the horizontal grillages were 

assumed to be the thickness amd the overall depth of each beam, and the 

overall depth of each column. The thickness of each column was taken 

as equal to the thickness of the beam connected to it. These sectional 

dimensions caused the design problem to be highly non-linear. 

Therefore, it was found necessary to use move limits to help to 

converge the approximated problem. It was found suitable to take the 

initial value of the move limits as ML =0.5, amd then reduce it by 

steps of 0.1 at each design iteration until the optimum solution was 

obtained. 

The design requirements were represented by the stiffness, the 

stress, the deflection and the practical constraints. The use of the 

stress and the deflection constraints together gave the design method a 

wide range of applications. In other words, the method is general amd 

it could be applied on many types of horizontal grillages made from 

either reinforced concrete or fabricated steel where the deflection or 

the stress, or the combination of both, requirements dominate the 

design. Furthermore, a great reduction in the size of the problem, and 

consequently in the computer time and storage, was achieved when a 

particular stress constraint was applied only on one selected member in 

each group. The reason for such application was that, fram the 

analysis results, the member concerned was found to have the critical 

stress among all the other members in the group. This meant that the 

number of stress constraints was in correspondence with the number of 

member groups in the grillage. Previous research workers applied a
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stress constraint on every member in a structure which obviously 

increased the size of the problem unnecessarily. 

The design of a number of a grillages for minimum weight or 

minimum cost produced the following conclusions: 

(1) 

(2) 

(3) 

The inclusion of the grillage self-weight as a variable in the 

design problem encouraged a further reduction in the total weight 

of structure. This was proved in the design of The Ellipse Shaped 

Grillage where the minimum weight obtained was reduced by about 

6.5% when the self-weight was considered as a variable. Such 

percentage of weight reduction could have been more significant in 

a larger structure. 

In the design of The Ellipse Shaped Grillage and the Irregular 

Circular Grillage, the optimum sections obtained at the emd of the 

process were decided mainly to satisfy the stress requirements. 

The deflection requirements, on the other hand, only helped in 

coverging the problem. However, in the topological design of the 

Symmetrical Rectangular Grillage, both the stress and the 

deflection requirements were involved in deciding the optimum 

sections of the final shape of the grillage. This showed that the 

domination of the stress or the deflection constraints depended 

mainly on the configuration of the grillage. 

It is possible that mo design code of practice has clearly 

specified the limits that should be imposed on the joint 

deflections of a grillage. In this thesis, however, such limits 

were chosen by the designer as either L /400 or L /500, where 

L is the shortest distance between Sint jar nen support. 

thererore. it was concluded that the effectiveness of the 

deflection constraints depended entirely on the values of the 

deflection limits chosen by the designer.
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(4) From the design results it was shown that the grillage members 

tended to be thinner but deeper which gave a chance to the effects 

of shear distortions to play an important part in the design. 

Such behaviour continued until the sectional overall depth of a 

member reached its upper bound, amd by then the sectional 

thickness started to increase. 

(5) It was shown that in the Ellipse Shaped and the Irregular Circular 

Grillages, the bending moment stress has almost reached to the 

permissible limit, while the combined shear amd torsional stress 

did not reach such limit. On the other hand, in the Symmetrical 

Rectangular Grillage, the topological alteration caused both 

stresses to reach the limit in some of the retained members. From 

this it can be concluded that the bending moment’ stress 

constraints were the more effective ones in deciding the optimum 

sections for the grillages considered. 

(6) The minimum cost topological design applied on the Rectangular 

Symmetrical Grillage was successful. This was proved when the 

member removal from the original structure caused the weight and 

the cost of the optimum topological design to be about 24.5% less 

than those of the optimum non-topological design. However, the 

reallocation of the live load after a member or a joint removal 

was approximately tackled and might be overestimated. 

The optimum design method of reinforced concrete grillage 

structures has a wide range of application. It can easily be used for 

the design of bridge decks which is simply supported at the columns and 

at some of the member ends, while tension and_ compression 

reinforcements are specified. The method can also be slightly modified 

to include beams of T or Lesection, where the main variables in this 

case are the thicknesses of the web and the flange, while the overall
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depth of the section varies or can be kept as a constant. With the 

inclusion of the effect of torsion in the members, the method can be 

extended to cover the optimum design of building slabs or bridge slabs. 

In this case the design is carried out on equivalent grillage created 

from dividing the slabs into strips in the longitudinal arm the 

transverse directions and an equivalent grillage member is taken in the 

centre of each strip. The method can also be extended to cover the 

design of bridges with box girders of varying sectional properties. 

Furthermore, the finite element approach can be utilised for 

formulating the design problems of plate components. These components 

can be assembled together to form a slab that covers a deck which is 

built as a fixed depth grillage.
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APPENDIX A 

MEASURED RATES OF MATERIALS 
  

AND CONSTRUCTING ITEMS 
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Market prices for the more important items of material and 
construction were presented in a report by Davis, Belfield and Everest 

The items required are given below. 

I 

> 
W
N
 

FH 
ol
 

I
o
 

II 

Z 

(a) 

(b) 

(c) 

(a) 

(b) 

Item Description 

MATERIAL: 

- Ready mixed concrete (21NAnm) 
- Ready mixed concrete (30N/mm™) 

Mild steel bar reinforcement 
(20mm) 

High yield steel bar 
reinforcement (20 mm) 

- High yield steel bar 
reinforcement (12 mm) 

Universal beams (average) 
Universal columns (average) 

CONSTRUCTION 

Earthworks, (in firm soil): 
Excavation of foundations for 

maximum depth (1 - 2 m) 

- Material for re-use 
- Material for disposal 

(500 m to tip) 
- Material for disposal 

(3 km to tip) 
Excavation ancillaries 
- Preparation of surfaces 
Filling and compaction 
- To structures selected 

excavated material 
- General selected excavated 

material 

In-Situ Concrete Work 
Provision of goncrete 
- (11.50 N/mm”) ready mixed 

(for blinding) 
- (21 N/mm) ready mixed 
- (30 N/mm”) ready mixed 
Placing of mass concrete 
- Blinding thickness not 

exceeding 150 mm 

A brief description about this report was given in Chapter 2. 

Measuring Unit Cost per unit (£) 
  

28.24 
32.14 

231.24 

239.24 

249.90 
225.00 
235.00 

2.88 

3.94 

4.08 

0.11 

0.65 

0.68 

28.41 
31.85 
SSea4 

5.72
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Item Description Measuring Unit Cost per unit (£) 

(c) Placing of reinforced concrete 
- Basses amd slabs thickness not 3 

exceeding 150 mm m oe40 
- Basses amd slabs thickness 3 

150 -— 300 mm m 4.29 
- Basses am slabs thickness 3 

300 -— 500 mm m 3.96 

- Basses am slabs thickness 3 
over 500 mm m 3.50 

- Walls thickness not exceeding 3 
150 mm m3 S/O 

- Wall thickness 150 -— 300 mm m 12.87 

- Columns cross sectional area 3 
0.03 -0.lm m Seo 

- Columns cross sectional area 3 
0.1 - 0.25 m m 26.51 

- Beams cross segtional area 3 
0.03 - 0.lm m 26.07 

- Beams cross segtional area 3 
0.1 - 0.25 m m 2261) 

3 — Concrete Ancillaries 
(a) Formwork rough finish 

- Horizontal width 0.1 - 0.2m ny) 1.87 
- Horizontal width 0.2 - 0.4m mo 9.30 
- Horizontal width 0.4 - 1.22 m m5 8.82 
- Horizontal width over 1.22 m m 8.34 

- Vertical width 0.1 - 0.2m Mo 1.95 

- Vertical width 0.2 - 0.4m Mo 9.46 

- Vertical width 0.4 - 1.22m mM 8.99 

- Vertical width over 1.22 m m 8.50 

(b) Formwork fair finish 
- Horizontal width 0.1 - 0.2m m5 2510 
- Horizontal width 0.2 - 0.4m M5 10.83 
- Horizontal width 0.4 - 1.22 m mM 10355 
- Horizontal width over 1.22 m m 9.87 
- Vertical width 0.1 -0.2m Mm. 2.18 
- Vertical width 0.2 - 0.4m m5 10.99 
- Vertical width 0.4 - 1.22 m m> 10.52 
- Vertical width over 1.22 m m 10.03 

(c) Mild steel bar reinforcement 
- 6 mm diameter ton 528.39 
- 12 mm diameter ton 416 .08 
- 20 mm diameter ton 354.67 
- 25 mm diameter ton B47 2235 

(d) High yield bar reinforcement 
- 6 mm diameter ton DS isto 
- 12 mm diameter ton 424.88 
- 16 mm diameter ton 394.17 
- 20 mm diameter ton 363.47 
- 25 mm diameter ton 356.03
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Item Description Measuring Unit Cost per unit (£) 
  

4 — Structural Steelwork 

(a) Fabrication of members 
- Columns for frames ton 500.00 

- Beams for frames ton 470.00 

- Roof trusses ton 710.00 

(b) Erection of members 
- Frames ton 70.00 

- Roof trusses ton 140.00 
(c) Surface treatment 

- Shot blast and one coat 

primer at works ton 135.00 

APPENDIX B 

COSTING REINFORCED CONCRETE MATERIALS 

Assume 1 m> of reinforced concrete 
1 ton = 9.81 KN 

Density of steel reinforcement = 7.85 ton/n3 = 77 RN/m3 
Density of concrete = 2.5 ton/n = 24.5 KN/n 

Use Appendix A 
Percentage of vertical reinforcement = 1% 
HYS, 20 mm, cost = £239.24/ton = £24.39/KN 

Percentage of horizontal reinforcement = 25% 
HYS, 12 mm; cost = £249.90/ton = £25.47/KN 

Ready mixed concrete (30N/mm”) , cost = £32.14/m> 

Volume of reinforcements = 0.01 m* + 0.0025 m3 = 0.0125 mj 
Weight of the 20 mm reinforcements = 0.01 m % 77 KNAn 5 0.770 KN 

Weight of the 16 mm reinforcements = 0.0025 m X 77 KNfn” =0.192 KN 
Total weight of reinforcements = 0.77 + 0.1925 = 0 

Volume of concrete only = 1 m3 - 0.0125 m°, = 
Weight of concrete = 0.9875 m X 24.5 KN/n = 24.19 KN 

Total weight = 0.9625 KN + 24.19 KN = 25.15 KN 

Cost of 1 mn of reinforced concrete with 1.25% of reinforcement: 

0.9875 m? x £32.14/m> 
0.77 KN X £24.39/KN 
0.1925 KN X £25.47/KN 

£31.74 Cost of concrete 

£18.78 Cost of 20 mm reinf. 

£ 4.90 Cost of 12 mm reinf. 

Total cost = £55.42 

Cost of reinforced concrete material per unit weight 
£55.42/25.15 KN 
£ 2.20/KN
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APPENDIX C 

DATA FORMAT FOR THE FRAME PROGRAM 
  

The data for the frame shown in Figure Cl are given below as an 
example: Y-axis 

\ 

@,/U.L.=30KN/m 

12KN 
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FIGURE C1: AN EXAMPLE USED FOR DATA PREPARATION 

OF THE FRAME PROGRAM 

(a) Preliminary Data (2 Cards) 
These are given in the following order: 
(1) 

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

(8-11) The 

(12) 

(13) 
(14) 
(15) 

(b) 

The total number of frame joints excluding the fixed supports. 
(For the frame shown in Figure Cl, this is equal to 6). 
The total number of members (10). 
The total number of supports (3). 
The total number of member groups (8). 
The joint number of the first support (7). 
The maximum number of members connecting to a joint (4). 
The total number of storeys (2). 

constants that provide the relationship between the 
section second moment of area I and the section area A. ‘These 
are 43,20)7. (4.17) 7 (230) and (1:7). 
Modules of Elasticity for fabricated 
(20700). 3 
Steel Density in KN/cm™ (0.000077). 
Average construction cost for a frame member in £/KN (70.4). 
Average material cost for a frame member in £/KN (23.5). 

steel in KN/om” 

Member Data (1 Card per member) 
For each member of the frame, for instance member 1 in the frame of 
Figure Cl, the following data is required: 
(1) 

(2) 
(3) 
(4) 

(c) 

The member number (1). 

The joint. number at the first end (1). 
The joint number at the second end (7). 
The group number of the member (3). Notice that the grouping 
of members starts with the beams. 

Joint Data 

They include three types of data, where each type is demonstrated 
on joint 2 in the frame of Figure Cl. 
(1) 

These data are: 
Joint coordinates data - For every joint and support the X and
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(h) 
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Y coordinates are given in cm, such as : 
2 400.0 500.0 (1 Card per joint). 

(2) Joint displacement data - For every joint the allowable limits 
on the x, y and 6 displacements are given in om and radian, 
such as: 
22350. 2 456.:.6,08. <() Gara: per joint). 

(3) Joint loading data - For every joint the applied horizontal 
and vertical loading and the acting moment are given in KN and 
KN.cm, such as: 

22.0 140.0. 0.0 "(1 Card per joint) < 
Sway Deflection Data (1 Card per storey) 
These include the number and the allowable differential sway limit 
in cn for the joints on the leeward columns. For the frame in 
Figure Cl, such data would appear as follows: 
3 Om (first storey) 
6 ae40 (second storey) 
Section Data (1 Card per group of members) 

  

  

For each group of members the following data is given: 
(1) The group number. 2 
(2) The section area of the group in cm’. 
(3) The move limit value. 
(4) The upper bound on the section area; usually a universal 

section is used. 
(5) The foundation cost for the ground column group, such cost is 

given as zero for all the other groups. 
Section Bounds Data 
These are the following: 
(1) One card that contains respectively the total number of beam 

groups, the total number of column groups, and the smallest 
universal column section available that can withstand a 
column-type mechanism in the frame. 

(2) One card per beam group. This includes the number of the beam 
group and the smallest universal beam section that can 
withstand a beam-type mechanism in the frame. 

Type of Problem Data 
  

One card that contains three integer values of the variables ANLYS, 

ID and SIMP, where: 
ANLYS = 1 means analysis is not required. 
ANLYS = 0 means analysis is required. 
ID = 1 means the problem is for minimum weight design. 
ID = 0 means the problem is for minimum cost topological 

design. 
SIMP = 1 means the Simplex subroutine is used. 
SIMP = 0 means the routine package of Simplex (LPMK2, 1970) is 

used. 
Notice that in the case when ANLYS = 1, the joint displacements 
should be provided as data before the design starts. 
Topological Design Data 
  

Such data is required when ID = 0, amd they include the following: 
(1) The total number of member groups to be kept in the final 

design (1 Card). 
(2) For each group to be kept, the group number am the lower 

bound on its section area are given (1 Card per group). 
(3) The total number of member groups to be removed, and the group 

number of each one of them (1 Card only).
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APPENDIX D 

DATA FORMAT FOR THE COMPLETE STRUCTURE PROGRAM 

The data for the left half of the camplete structure shown in 
Figure Dlb is given below as an example. It should be noted that the 
member and the joint data are similar to those of the frame shown in 

  

Appendix C, and thus they will not be repeated here. 
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A 2-stOrey 3 equal bay symmetrical 
complete structure. 

(a) 

(b) The left half of the structure. 

AN EXAMPLE USED FOR DATA PREPARATION OF 
THE COMPLETE STRUCTURE PROGRAM 

FIGURE D1: 

(a) Preliminary Data (2 Cards) 
These should be provided in the following order: 

(1) The total number of joints, excluding the supports. (This is 
equal to 6 for the structure shown in Figure Dlb.) 

(2) The total number of supports (2). 
(3) The joint number of the first support (7). 
(4) The maximum number of members meeting at any joint (4). 
(5) The number of the storeys (2). 
(6) The total number of the grillage groups of members (3). 
(7) The total number of the column groups in the frames (2).



  

(b) 

(c) 

(a) 

(e) 

(f) 
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(8) The total number of the shear wall members (2). 
(9) The total number of the floor slab members (4). 
(10) The total number of the columns in the frames (2). Notice 

that, in a single frame, all the columns in a storey are 
represented by one number. 

(11) The number of shear walls (1). 
(12) The total number of joints excluding the supports am the 

joints on the central line (4). In case of a non-symmetrical 
structure, this number is equal to the total number of joints 
excluding the supports. 

(13) The width of the shear walls in cm (450). 
(14) The width of the floor slabs in cm (450). 
(15) The total number of columns per one storey in each frame (2). 
Material Properties Data (1 Card) 
  

These include the following: 2 
(1) Modulus of Elasticity for concrete in KN/cm (2800) . 
(2) Modulus of Elasticity for steel frames in KN/cm™ (20700). 

In case reinforced concrete frames are used, this valve will 
be equal to (2800). 

(3) Poisson's ratio (0.2)... 
(4) Steel density in KN/cm™ (0.000077). 3 
(5) Reinforced concrete density in KN/cm™ (0.0000245). 
(6) Average material cost for a member of a steel frame in £/KN 

(23.5). This value is equal to (3.4) if reinforced concrete 
frames are used. 

(7) Average material cost for a shear wall member in £/KN (2.2). 
(8) Average material cost for a floor slab member in £/KN (1.6). 
Sway Deflection Data 
  

These include the following data per storey: 
(1) The total number of joints in the storey (1 Card). 

(2) The number of each of these joints and the allowable sway 
deflection limit for it (1 Card). 

Section Data 

These include three types which are as follows: 
(1) For each shear wall group, the group number, the thickness of 

the section in cm, the upper bound on this thickness and the 
foundation cost if any, are given (1 Card per group). 

(2) For each floor slab group, the group number and the thickness 
of the section in cm are given (1 Card per group). 

(3) For each column group in a steel frame, the group nymber , the 
second moment of area for the column section in cm selected 
from the universal columns, the upper boumd on the _ second 
moment of area, the cost of foundation in &£ if any am the 
mass per unit length for the column in kg/m, are given. Ifa 
reinforced concrete frame is used, the lst item of these data 
would instead be the thickness of the column section in an (1 
Card per group). 

Type of. Problem Data 
One Card contains two integer values of the variables ANLYS amd 
SIMP, as explained in Appendix C. 
Cost Assessment Data (2 Cards) 

These depend on the items given in Appendix A. The first Card 
contains the following: 3 

(1) Cost of concrete provision in £/m (33.11). 
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Cost of placing concrete in wall thickness not exceedig 150 mm 
in £/m (17.27). 

Cost of placing concrete in wall thickness 150 mm - 300 m in 
g/m” (12.87). : 
Cost of formwork fair finish in vertical width over 1.22 m in 
g/m” (10.03). 
Percentage of vertical reinforcement in a wall section (1%). 
Cost of high yield bars 20 mm diameter in £/ton (363.47). 
Percentage of horizontal reinforcement in a wall (0.25%). 
Cost of high yield bars 12 mm diameter in £/ton (424.88). 
second Card is included only when reinforced concrete frames 
used, in which case it contains the following: 
Cost,of placing concrete in column cross sectional area 0.03 - 
O.lm” in £/m (31.79). 
Cost of Placing concrete in column cross sectional area 0.1 - 
0.25mn4 in. £/ms (26.51). 
Percentage of vertical reinforcement in a column (3%). 
Cost of high yield bars 6 mm diameter in £/ton (537.19). 
Total cost of material for all the beams of a frame in £ 
(Computed by assuming beam sections and using Appendix B). 
Total cost of construction for all the beams of a frame iné£ 
(Computed by assuming beam sections and using Appendix A). 

Section Bounds Data (1 Card) 

These include the following: 

(1) 

(2) 

(3) 

(4) 
(5) 

The lower bound on the thickness of all the grillage members 
in cm (16.0). 
The upper bound on the thickness of the floor slab members in 
cm (20.0). 
The lower bound on the second moment of area for the columns 
of the frame in cm. 
The mass per unit length for the steel beams in kg/m. 
The total construction cost for all the steel beams of a frame 
in £. Notice that items (4) and (5) will be ignored or given 
as a unit in the case of using reinforced concrete frames. 

Topological Design Data 
  

These include the data for the groups to be kept only, as explained 
for the frame in Appendix C.
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APPENDIX E 

DATA FORMAT FOR THE HORIZONTAL GRILLAGE PROGRAM 

The data preparation for the reinforced concrete horizontal 
grillage shown in Figure El are discussed here as an example. Notice 
that due to symmetry, the data format will be given below only for the 
top left quarter of the grillage shown in Figure Flb. The member and 
the joint data are similar to those of the frame given in Appendix C. 
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view) 

FIGURE El: AN EXAMPLE USED FOR DATA PREPARATION OF 
THE HORIZONTAL GRILLAGE PROGRAM 

(a) Preliminary Data (3 Cards) 
These are given in the following order: 
(1) The total number of joints excluding the fixed supports (8). 
(2) The total number of supports (1). 
(3) The joint number of the first support (9). 
(4) The maximum number of members meeting at a joint (4). 
(5) The total number of longitudinal (parallel to Y-axi) groups 

(2): 
(6) The total number of transverse (parallel to X-axis) groups 

C2ps 
(7) The total number of longitudinal members (4).
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(8) The total number of transverse members (4). 

(9) The total number of joints on top of the columns (1). This 

value will be given as zero if there is no column support. 

(10) The total number of joints excluding the fixed support and the 

joints on the central lines (4). 

(11) The total number of joints on the central line which is 

parallel to the X-axis (2). These are joints 5 and 6. 

(12) The total number of joints on the central line which is 

parallel to the Y-axis (2). These are joints 7 and 8. 

(13) Modulus of Elasticity for concrete in KN/cm” (2800). 

(14) Poisson's ratio (0.2). 2 

(15) The permissible value of shear stress ( <2 ) <in KN/om 

(0.09). 
(16) The maximum allowed value of shear stress ( t. yen N/m” 

(0.36). 
(17) The permissible bending moment compressive stress (f |) in 

KN/om~ (1.0). : 
(18) The permissible tensile stress in the reinforcement in 

KN/om™ (22.55). 3 

(19) Reinforced concrete deysity in KN/em™ (0.0000245). 
(20) Steel density in KN/cm” (0.000077). 2 

(21) Modulus of Elasticity for steel reinforcement in KN/cm 

(20000). 
(22) The intensity of the uniform load in KN/am which is equal to 

(0.0) because the loads on the structure of Figure Elb are 

pointed on the joints. 
Section Data (1 Card per group) 

These include two types of data which are as follows: 

(1) For each column group, the group number, the overall section 

depth in cm, the length of column in cm and the grillage group 

which is connected to the column, are given (1 Card per 

group). 

(2) For each grillage group, the group number, the thickness and 

the overall depth in cm, are given (1 Card per group). 

Type of Problem Data (1 Card) 
  

These are Similar to those of the frame in Appendix C, except that 

there is an additional integer value for the variable BETA, where: 

BETA = 0 means the Self-Weight is included as a constant. 

BETA = 1 means the Self-Weight is included as a variable. 

Cost Assessment Data 
  

These can be arranged using Appendix A, as explained for the 

complete structure in Appendix D. 
Section Bounds Data (1 Card) 

These are the following: 
(1) The lower bound on the thicknesses of the grillage members. 

(2) The lower bound on the overall depths of the grillage members. 

(3) The lower bound on the overall depths of the column sections. 

(4) The upper bound on the thicknesses of the grillage members. 

(5) The upper bound on the overall depths of the grillage members. 

Topological Design Data 
  

These are Similar to those given for the frame in Appendix C, but 

an additional type of data concerning the removal of joints. These 

are as follows: 

(1) The total number of joints removed (1 Card). 

(2) The joint number of each of these joints (1 Card per joint).
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APPENDIX F 
DATA PARAMETERS FOR SUBROUTINE SIMPLEX 
  

The subroutine can be specified as: 

CALL SIMPLEX (NOJ, NOGGI, NV, NRR, KB, RHS, CIM, RA, XX) 

where 

NOU 

NOGGI 
NV 

NRR 
KB 
RHS 

CLM 

XX 

the input parameters denote the following: 
Integer specifies the total number of joints in a structure 
excluding the fixed supports. 
Integer specifies the total number of section variables. 
Integer specifies the total number of columns in the simplex 
table. In other words, it is equal to the number of design 
and surplus variables. 
Integer specifies the total number of design variables. 
Integer specifies the total number of constraints. 
Real array of DIMENSION at least (KB). It contains the Right- 
Hand-Side of the simplex table, see Section 8.2. 
Real array of DIMENSION at least (NV). It contains the 

constant coefficients of the objective function. 
Integer array of DIMENSION at least (KB). It contains 
constant values that indicate the type of the constraint. 
Such as: 
RA(I), for I = 1, 2 ... KN, where: 
RA(I) = Oa “"s" constraint 
RA(I) = +I an "=" constraint 

RA(T) ==- Ia e" constraint 

Real array of DIMENSION at least (NRR). © exist, this array 
contains the optimal values of the design variables obtained 
at the end of a design iteration. 

Notice that the main part of the simplex table, i.e. matrix D described 
in Section 8.2, is stored in the backing store. The simplex subroutine 
operates on the table by bringing one column at a time from the backing 
store to the computer core. 

APPENDIX G 

DATA PARAMETERS FOR SUBROUTINE ANLYSIS 

This subroutine can be specified as: 

CALL ANLYSIS (BA, NR1, AB, S, NGC) 

where the input parameters indicate the following: 
BA 

NR1 

NGC 

Real array of DIMENSION at least (NR1). entry BA contains 
the values of the joint loading, i.e. L of equation K X = L. 
On @ist BA will . contain the values. of the ‘joint 
displacements, i.e. X. 
Integer specifies the number of rows for the symmetrical 
overall stiffness matrix K. 
Real array of DIMENSION at least (NGC). It contains the 
coefficients of matrix K as explained in Section 8.9. 
Integer array of DIMENSION at least (NR1). It contains the 
positions of the leading diagonal elements of matrix K. 
Integer specifies the size of array AB above.
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