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Summar

A study was performed as an investigation to determine
the dynamic response, natural frequencies and modal shapes
of a spring-supported flexible platform.

Both theoretical and experimental approaches have been
used in the investigation. Finite Element Methods were used
in the theoretical analysis.

The purpose of the study was to ascertain the vibration
characteristics and dynamic responses of the platform in order
to elucidate the conditions which favoured the build-up of
excessive vibration, especially when the rig was excited
by more than one force, i.e. with different speed ratios.

The structure consisted of a platform belt-driven unit
of the frame type, carrying two machines, one with a rigid
base and the other with a more flexible base. It was
necessary to establish the different speed ratios of the motor
and alternator in order to excite the structure at these ratios.

The Finite Element Method was used in the numerical analy-
sis. This method is preferred to classical methods for
determining natural frequencies since reliability is improved
by taking into consideration the flexibility of the platform.
The natural freguencies and related mode shapes were measured
and the experimental results were correlated with results
obtained by a computer in the cases of the three rigid body
modes and the plate mode. A high degree of correlation was
found between these results.

The experimental work included an investigation of the
non-linearity of the springs, the stiffness coefficient of
the structure, and the behaviour of the structure as shown by
the response curves.

Prediction based on the matrices of physical mass, stiff-
ness and damping, defined a model whose responses matched
the response data for the selected locations. The response
analysis provided an estimate for the level of vibration
that could be expected from the rotating machinery.

Some interesting resonances resulting from the non-linearity
of the springs were observed.

An attempt was made at a guantitative comparison of
amplitudes, but this was very difficult because the relative
magnitude of various mode peaks kept going up and down.

It is concluded that a well-constructed spring supported
platform is physically and economically better than the
classical construction.

BOUNDARY : Dynamic Response of Spring Mounted Flexible
Platforms Carrying Rotating Machinery
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CHAPTER 1

Introduction

l.1 General Introduction

The continuous trend in engineerinc development towards
high speed in all forms of machinery, together with the
construction of lighter structures and foundations, has

given rise to more noise and vibration.

Material failure in practice is more generally due to
fatigue than to static overstressing. The cause of the
fatigue failure is often unforeseen vibrations. The
transmission of vibrations can be minimised by mounting the
offending machine resiliently. Equipment can be protected
from vibration by similar means. Many anti-vibration
installations have proved their worth with many years of
satisfactory service, although spurious modes of vibration

do occur occasionally.

An essential feature in the design is the calculation of
the natural frequencies of the resilient installations so
as to ensure that no resonance will occur with any of the

possible exciting forces.

The dynamic behaviour and response of structures continues
to exercise a considerable and often decisive influence on
the analysis or design of man-made and natural systems. The
modes and periods of natural oscillations have to be
determined to study the dynamic response of structures to

periodic loading and shock.



The dynamics of structure will be considered first, since
the prediction cf this behaviour in complex structures
represents a difficult problem, and the elementary theories

are often incapable of providing accurate results.

Naturally, extensive efforts have been expended over the
years in the development of technigques to provide results
of acceptable accuracy. Although empirical formulae for the
fundamental frequency of vibrations of buildings (for example)
existed for many years, there were many structures for which
precedents did not exist. The natural freguency had then
to be determined by experiment or by calculation. Calcu-
lation was preferable, since it was a cheaper process than
experiment. Calculations could be made analytically by
various methods for configurations of relatively simple
geometry. Alternatively, quite complex structures could be
studied by limiting the infinite degree of freedom to a
finite one. Finite elements were a method by which this
could be achieved. A matrix method of structural analysis
is defined as an algebraic approach formulated largely in
terms of matrix operations capable of being programmed as
a completely automatic sequence of computer operations,
commencing with the basic problem data and concluding

with the desired results.

Furthermore, a proviso is appended that the governing
equations be based on an analytical model composed of

discrete structural elements, e.g. bars, plate, segments.

Matrix methods of structure analysis have experienced

their greatest advances in recent years. Developments



have taken place on a wide front and have involved the
contributions of numerous, often isolated, investigations

in many countries.,

Hence, it is not surprisinog that individual developments.
have sometimes suffered from a narrowness of scope not
befitting the potentialities of matrix methods. 2Also there
has been a lack of unification of the multitude of seemingly

different methods which actually have a common basis.

Among the organisations entrusted with the function of
performing analyses in the field of structural mechanics,
there has been a remarkable growth of computer programmes
based on matrix methods for specific purposes. Nevertheless,
very few organisations have undertaken the programming of
any such method in a reasonable general form. General
purpose formulations of matrix structural analysis are
desirable from the standpoint of efficiency, however, and
are even mandatory if investigations beyond the confines of

linear elastic analysis are contemplated.

Interested groups are faced with a difficult choice. They
are uncertain as to whether any one of the available published
references can be depended upon to provide an optimum basis
for a desired general purpose computational programme.If the
choice of a suitable procedure can be made, there still remains
uncertainty as to the method of obtaining maximum accuracy

most efficiently.

If the numerical error is disregarded, the inexactitudes of

the solution in comparison with the behaviour of the real



structure are dependent upon how well the idealised discrete

element system represents the real structure,

The correlation of procedures for the determination of
discrete element force displacement relationships leads to
the conclusion that there are two levels of approximation
in the development of such properties. First, in the
"essential"” behaviour of the element, and secondly in the
definition of the lumped masses and node point displacements
as required by the complete framework of analysis. The
alternative types of elements and the numerous procedures
for the derivation of the properties for a particular type
of element require the analyst to exercise his engineering

judgement.

1.2 Object of the study

There is a great need in heavy industrial, petrochemical
and oil refining plants for a simple, new and economical
approach to the design of mounting rotating machinery with
confidence that the machinery mounted on a flexible platform
supported by springs do not give any disturbance regarding

the transmission of vibration to the surroundings.

There is also no need for any foundation design other
than the ease of manufacture. According to the classical
approach, about 22 tons of concrete cement are reguired as a

foundation for small rotating machinery (the rig).

This method is more economical, efficient and is less
time-consuming than the classical one. Such a design also

seems to be favourable as far as bearings and damping



are concerned.

The springs supportinc the structure must be as soft
as the stability of the structure allows and designed in
such a way as to give the first natural fregquencv of the
structure in the range 4-5 Hz. By this means the first
plate mode will also be in the range of between 4 and 4.2 times

the third rigid body mode.

2As stated, by designing the isolators very scft, the
resonance speed will occur at a very low machine speed.
In the case under consideration the three rigid body modes
will occur at very low machine speeds (4.3, 8.2, 9.1 Hz).
So it may be concluded that benefits obtained by using a
spring -supported structure are very great, both physically
and economically, and one of the main advantages of this
approach is that it is very easy to determine the natural

frequency at the design stage with very great accuracy.

There is no comparison between these two methods of
predicting the vibration characteristics of the structure;
the classical approach with a concrete foundation, and the
new method which uses a flexible platform to carry the

rotating machinery.

Another effect of mounting the machinery resiliently is
to reduce its effective weight by detaching it from the
ground, which would otherwise play an important part in
adding to the machinery's inertia. A conseguence of this

is that the machinery which generates unbalanced forces



will tend to vibrate more when it is mounted resiliently than

when it is attached firmly to the ground.

It is evident that a vibration isolation of 100 percent
with no oscillation of the operating system is impossible.
However, for a freguency ratio 5:1, and with zero damping, the
amplitude of motion will be within 4 percent of the ideal
machinery. And the vibration absorbing efficiency will be
approximately 97 percent. This means that the motion of the

structure would be virtually imperceptible.

A low freqguency ratio with increased damping gives an
increase of vibration transmission so for the low frequency
ratio the phase angle is not 180° but 0°. The phase angle is
less than 90° below the resonances. It increases rapidly and
changes to practically 180° simultaneous with zero damping.
The amplitude of motion is reduced guickly when a structure is
supported on springs. The frame becomes an effective stabi-
lising mass as the phase angle suddenly changes from 0° to
180°. The greater the damping factor the slower the change in
phase angle that takes place.This is an added indication of

the disadvantage of damping.

For the vertical vibratory motions, the deflection of the
springs controls the natural frequency of the supported
structure. Hence it is important that the calculation of
such deflection in the isolator be made on a simple and

reliable basis.



The calculation of steel springs, based on modern practice
employing the "Wahl" coefficient for the determination of
deflection and stress, is very simple indeed. The necessary
deflection for maximum isolating efficiency is easily
obtainable through the choice of the proper physical charac-
teristics, especially with the coil spring, which has a higher
loading capacity per pound of spring material than any other

type of isolator usually used for this purpose.

Therefore, this type of spring would appear to be the

best choice for this isolation problem.

Organic materials do not show the simplicity and the
advantages of the steel spring which does not depend upon
ite méterial, but rather upon its wire diameter, outside
diameter etc., which may be chosen at will, while the former
are restricted in their use as their elasticity depends upon
the material itself, and only to a minor degree upon its
shape. This defect explains why organic materials cannot
provide the necessary large deflections in the isolator for
any reasonable thickness. So it may be said that steel
springs act admirably as isolators because of their shape,

form, and heat treatment possibilities.

One might ask why it is necessary to use fewer degrees of
freedom for the dYnamic analysis stage of a problem. The
answer to this is that the cost per solution is excessive
if the problem is too big to be contained in the core store
of a computer and has to be programmed in terms of partitioned

matrices.
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Looking at the problem from another angle we need to
investigate the vibration characteristics of a flexible
Spring mounted platform carrying machinery in order tolcufé
a case of severe vibrations. The best way to tackle this
problem is to make a theoretical model of the machinery and
its frame structure and to develop this until it agrees with
measurements taken on site. Having proved the theoretical
model to be correct, it will then be necessary to try it
out and make modifications to see if a solution can be found

to avoid the severe vibrations.

The first stage of the work consists of taking site
measurements of the machine's vibration pattern over the
speed range of the machine. Recordings will have to be
taken and analysed of the motion of various points of the
structure in sufficient detail to demonstrate the validity
of the theoretical model's predictions. From the theoretical
model, Finite Element Technigues can be used to model the
whole structure. Considerable detail is required in the
idealisation before the predictions 'will finally agree with
the site test results. When this agreement is Obtained,

any modifications may be put into the theoretical model.
Summarising:

1. Make comprehensive measurements of the machine's

pattern of vibrational behaviour.

2. Convert the theory into a computer programme.
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3. Set up an idealisation of the machine and its
supportigg frame structure and develop it until
a version is formed which, when fed into the
computer programme, would reproduce the results

measured on site.

4. Having proved the basic theoretical model, insert
into it representations of modifications to the
machine until one is found which will reduce the

vibration to an acceptable level.

Fig. (1.1) Main details of the rig

Fig. A. shows a general view of the rig and measuring
instruments.

1.3 Survey of literature:

Vesselowski (1e)

carried out his investigation in an
effort to eliminate the uncertainties which exist in the
design of the foundations of turbogenerators, particularly

where a steel substructure is used.

Hull's **) work was an attempt to clarify the problem
of determining the effects of elastic foundations under

rotating machines on the resonant speeds of those machines.

Ltirenbaum (2°) investigated the unexpected fregquencies of
machine foundation supported by springs with two levels of

symmetry. He used calculations and graphs to arrive at a
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solution for the equation of motion and the position of the
rotating pole and the coupling effect. He discussed a
machine with variable speeds and explained the reason for the

coupling of odd freguencies.

Sch&ff<21) looked at a 50 mw guiet turbogenerator. This
became agitated suddenly when it was under inspection above
the normal running speed. The cause was the coupling between

the rotating shaft and the foundation.

Pﬁst(zzj used the model method for the determination of
dynamic properties of framed foundation. He carried out
theoretical and experimental analysis of forced vibration of
a complex damped mechanical system with several degrees of
freedom and showed that resonance peaks, measured at different
points of the system correspond to various frequencies of

exciting force.

Ramsden (24)

represented a method for reducing the size
of a vibration analysis by generating an inertia matrix
referring to a limited set of master vibrational freedoms.
The transformation from the full set of degrees of freedom
to the master set makes extensive vibration calculations

economically feasible giving solutions in terms of the

amplitudes of the master freedoms.

Gupta (25)

used a general digital computer method based
on a sturm sequence procedure, which is described for
determining the natural frequencies and associated modes

of undamped free vibration of frames and other structures

whose stiffness and mass matrices are of band form.
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(26)

Wilson considered the structure as an assemblage
of beams, columns and plates. The finite element displace-
ment method was used to determine matrices representing

the mass and stiffness of the foundation.

Steel foundations have been used in Germany for many vears
for small and medium sized sets and a number of different
methods of analysis have been applied to them. The first
analytical models consisted of a simple mass-spring system
with the parameters determined empirically. As a refinement
another mass was used for the shaft joined to the first by a

(27

dashpot and a second spring to represent the bearing (Dietz ).

Analytical solutions of the resulting eguations of motion
were used to predict the behaviour of the foundation. By
using the computer this type of analysis was extended to a
model with seven interconnected masses (Kramer ( 2$). With

a similar idealisation of the structure, an analysis was

also carried out using the transfer matrix technique (Pestel

(25} {30))-

and Leckie and Weber

(a1)

More recently, two other methods have been used: Crook

combined a more detailed representation of the bearing with

the structure. Prohl (22 used a variation of Holzer's
method.
Mykelstad (29 used a structure still represented by

a series of springs and masses.

(

In his work, Stoker 34) gerived expressions for the

total potential and Kinetic energies of the shaft and



structure and the resulting Lagrange's equation was solved.

(35)

Continuing with structural analysis, Wiberg used
mixed force and displacement variables as a key to a reliable
solution for many physical problems, since the analysis of
elastic structures with large rigid motion using the
displacement method may fail due to ill-conditioning, but

the use of mixed variables may work owing to the possibility

of using relative displacements within substructures.

(s6)

Ramsden used a method based on matrix algebra for
the dynamic analysis of mixed rotating and non-rotating

vibration systems.

(27)

Raney determined the set of governing different
equations of motion of a complex structure. Numerical

values for mass, stiffness and damping coefficients of the
dynamic eguations associated with a particular input response

or transmission path were computed from data usually obtained

in conventional vibration tests of a structure.

(38)

Thoren used a technique to describe the orthonormal
modal vectors computed from dynamic test response data to
derive mass, stiffness and damping matrices for a discrete

model of the distributed elastic system.

(39)

Young and On represented a survey of activities to
produce logically-based schemes to generate mathematical
models by making use of experimentally derived information.

Emphasis was given to the efforts of Goddard to the recent

studies designed to verify the practical effectiveness of a
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specific modelling scheme.

Andrews: (*0)

in his investigation derived the equation
of motion for a rigid body supported by an arbitrary number
of arbitrarily oriented and located resilient mounts with

damping.

Bapat (4 2)

examined the possibility of applying two
approximate methods for determining the salient features
of the response of undamped non-linear spring mass systems

subject to a step input.

(43)

Mercer used the concept of a variable friction force
as a new form of shock isolator. This is adaptive in its

action but is still composed of entirely passive elements.

(us)

Johnson used analytical and experimental investi-
gations of helical springs subject to vibratory motion. He
showed that an actual spring displays frequency response

characteristics over most of the frequency spectrum that

would render its function useless in many cases.

Vogt (ue)

studied the effect of active coils in helical
springs and explained the effect of inactive coils on each

end of the springs.

(47)

Ancker used the thin-slice method to analyse the
tension and torsion in helical springs with round cross
section. Stresses, deflections, curvature changes, diametral

contractions, and coupling effects were also studied.

wood (*®) in his work explained the need for the correla-

tion of data on mechanical springs and the formulation of
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a standard code of design for helical springs.

Henry (4s) §ealt with the stability of modes at rest
in a free undamped non-linear two degrees of freedom

system governed by equations of motion.

Dooren '5°) studied Duffing's coupled equations in
non-linear mechanical systems with two degrees of freedom

from the computational viewpoint.

Spinivasan (s1) optained an exact expression for the

fregquency of a non-linear cubic spring mass system.

Stern (s2) ,sed a variational technique for the
computation of the steady state response of a rigid jointed

framestructure to harmonically varying load systems.

Rubinstein \%? used the stiffness matrix method com-
bined with an iteration technique to analyse frames in which
the members are non-prismatic and have shapes which are

complex to analyse, or cannot be expressed analytically.

tund ‘%) investigated the accuracy of the conventional

method of field balance.

Ehrich (ss) looked at the case of sum and difference

freguencies in vibration of high speed rotating machinery.

Allaway (se) presented a simplified method for computing
the amplitude of self-induced vibration for a machine which

generates unbalances; unfortunately, his work was summari-

(70) (ge)

sing some of the classical work of Wilson and Crede
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( 59

Warburton made it clear that in order to determine
the response of a structure to vibrations of a given type
it is necessary to appreciate the factor controlling the

transmission of vibration.

Waller (se)

summarised the factors influencing the

decision to incorporate anti-vibration devices, in particular
the effects of vibration on personnel, machines and struc-
tures. This was the only work found which examined the cost
and various forms of anti-vibration mounting were compared and
the cheapest springs for various degrees of isolation were
indicated. It is unusual to find any work relating to the

cost of vibration effects on machines or structures or

personnel.

According to some researchers (”1), the behaviour of an

isolation vibration system possessing even small non-linearity
is likely to be substantially different from that predicted

by a linearised analysis. A significant feature of non-
linear systems is the existence of steady state oscillations
with values of the phase angle other than O or T, even in

the undamped system. Such an effect can only arise when the
degrees of freedom are subject to non-linear coupling and

only then under suitable conditions.

Naturally, the resultant motion at the point of applica-
tion of the exciting force must be either in-phase or anti-
phase to the exciting force, otherwise energy transfer would
occur. This does not, however, prevent each degree of

freedom itself from vibrating out of phase with its own
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generalised components of the exciting force. The first
effect was first found by Tobias and Arnold in experimental

work on disks.,

Both exact and approximate solutions have been developed
for the vibration isolation system with directly coupled

coulomb damping.

(78)

Den Hartog developed an exact solution for the

displacement amplification factor.

An approximate analytical method known as egquivalent

(77)

viscous damping, was developed by Jacobsen and applied

to obtain an approximate for the displacement amplification

(78)

factor. This method was later employed by Ruzicka and

(7%)

Painter to obtain an approximate solution for absolute

and relative displacement transmissibility.

C20) developed

Following Den Hartog's approach, Van Bommel
an exact solution for absolute relative displacement

transmissibility.

(e1)

Finally, Levitan employed a Fourier series analysis
to develop exact solutions for absoclute and relative

displacement transmissibility.

The case of a rigid body supported resiliently

All the steps of investigation in the case of a rigid
body supported resiliently will be explained. Unfortunately,
it has always been assumed that the body is rigid. And this

assumption allows no flexibility in the structure. Another
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point worth mentioning here is that all these analyses
consider the centre of gravity and from there it is assumed
that the structure is permitted to move in six degrees of
freedom. These are the displacement of the centre of
gravity along ox, oy and oz and the rotation of the body
about ox , oy and oz; in other words, vertical, longitudinal

and transverse displacement and yawing, rolling and pitching.

(23)

Grootenhuis indicated that the general case of the
motion of a rigid body supported resiliently has never been
discussed in detail with allowance for the stiffness of each
anti-vibration mounting in three directions and for the
possibility of the centre of gravity (c.g.) not being at

the geometric centre, thus introducing additional products
of inertia terms. Consideration cf an offset centre of
gravity is of considerable practical importance as it is
often inconvenient if not impossible to provide a truly
symmetrical foundation or installation. Many items of
machinery and equipment that have to be mounted resiliently
do not have the centre of gravity positioned symmetrically
with respect to the mountings. Several degrees of asymmetry
may be considered. For a single degree of asymmetry, the
centre of gravity would be situated along one of the axes

of an orthogonal co-ordinate system with its origin at the
geometric centre. With two degrees of asymmetry the centre
of gravity would be situated in a plane containing two axes
of this co-ordinate system. The general case has three
degrees of asymmetry in which case the centre of gravity can

be anywhere within the body.
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He derived the equation of motion for a rigid body
supported on four springs (this was the classical method).
But he considered the general case of the centre of gravity
being anywhere within the body and allowing for the sideways
as well as the longitudinal stiffness of the springs. This
constitutes a six degrees of freedom case with three degrees

of asymmetry.

His work proved that coupling between motions in all
directions occurs even when the centre of gravity is at the
geometric centre with the exception of the vertical
oscillations and rotation about the vertical axis. Any
number of additional springs can be allowed for by adding
terms to the expression for the potential energy stored in the
springs. Allowance is made in the expression for kinetic
energy for the products of inertia which arise with an

offset centre of gravity.

Why is this considered to be the classical method?
Because the real case is simulated for purposes of analysis
by replacing the rigid body by a rectangular box with a light
framework and all the mass concentrated at eight corners.
The matrix solution is changed into dimensionless parameters
and the effect of an offset centre of gravity upon the eigen
value and eigen vector studied. Only the proportions of
the box and the stiffness ratio between sideways and longi-
tudinal stiffness of the springs remain as factors. He also
concluded that small amounts of offset of the centre of
gravity from the geometric centre do not alter the dynamic

behaviour of the system much, but displacing the total mass
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towards either a lower or an upper corner has marked éffects.
Some of the natural frequencies associated with motion in
rotation when the system is symmetric become less than the
freguencies connected with motion in translation for the
centre of gravity being close to the corner connected to a
spring. A large region free from any natural freguency
arises when the centre of gravity is moved towards one of the
corners farthest away from the plane containing the springs.
The asymptotic conditions for the position of the centre of
gravity had also been considered. It is well known that an
offset centre of gravity can lead to coupled oscillations

at frequencies differing from those for the uncoupled modes.

It is rather astonishing therefore to find that a hand~-

(

book on vibration isolation &%) has been restricted to
symmetrical installations without paying any regard to

coupling due to the sideways stiffness of the springs.

(e8)

The more complete analyses are by Crede and more

(69)

recently Crede and Ruzicka for one and two degrees of
asymmetry but with the planes containing the centre of
gravity restricted to those defined by the vertical and

horizontal axes only.

An attempt at a solution of the general case of a body
supported on any spring system has been made by Ker Wilson(7°)
but the product-of-inertia terms were unfortunately omitted.

Some one and two degrees of asymmetry cases are analysed in

detail.
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Many of the observations on practical anti-vibration
installations made by Ker Wilson are of great value, but some
of the equations of motion are not exact, however, owing

to the neglect of the product of inertia terms.

Some interesting experiments with a box mounted on four
springs have been described by Llirenbaum (E°). The motions
of specific points on the box have been shown in photographs
and the strong coupling was easily seen for this single
degree of asymmetry. The necessity to include the product-
of-inertia terms has been realised by Sethna (?’), who has

derived the equations of motion for the sprung mass of a

four-wheeled vehicle but has not solved them.

A detailed analysis of a spring-supported body, symmetric-
in shape and with the centre of gravity always at the
geometric centre has been made by MacDuff (72)  mhe
natural frequencies for a large number of shapes of a body
with bottom mountswere presented graphically and other con-
figurations of springs were also considered. The complete
equations of motion for a rigid body supported on four springs
were derived and a method of solution was outlined. Linear
springs were assumed (there is, however, always some non-
linearity of springs), permitting the superposition of modes.
Some dissipation of energy always occurs in practice, but
has only a very slight effect upon the natural frequencies.

Damping has therefore been neglected.

The first notable instance of using the steel helical
springs in a flexible mounting for large oil engines was

given by Hummell (75}, in which the flexible mounting of
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the main propelling engines of the twin-screw passenger
vessel "Hansestadt K®1n" was described. Each engine, a

Deutz six-cylinder four-stroke cycle type, with cylinders

270 mm bore 360 mm stroke, developing 375 b.h.p. at 500 r.p.m.,
rested upon 16 helical springs each 7.75 inches mean coil
diameter,arranged in two rows, one at each side of the
fabricated steel bed plates. Damping was provided by the
frictional resistance of spring-loaded snubbers and the
propeller shafts were flexibly connected to the engine
crankshaft through "Frost type" flexible couplings. The

total weight supported by the springs was about 8 tons.
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CHAPTER 2

Theoretical consideration of the Dynamic of

structure

2.1 Intreoduction

Solutions to the problems of vibrations of elastic
systems can be explained by the analysis of small harmonic
oscillations of elastic systems having a finite number of

degrees of freedom.

The harmonic oscillations may be induced in an elastic
system by imposing properly selected initial displacements
and then releasing these constraints, thereby causing the
system to go into an oscillatory motion. This oscillatory
motion is a characteristic property of the system, and it
depends on the mass and stiffness distribution. 1In the
absence of any damping forces, e.g. viscous forces propor-
tional to velocities, the oscillatory motion will continue
indefinitely, with the amplitudes of oscillations depending
on the initially imposed displacement; however, if damping
is present, the amplitudes will decay progressively, and if
the amount of damping exceeds a certain critical value,
the oscillatory character of motion will cease altogether.
The oscillatory motion occurs at certain frequencies and
it follows well-defined deformation patterns described as
the "characteristic modes". The study of such free
vibrations is an important prerequisite for all dynamic-

response calculations for elastic systems.
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Whatever the vibration analysis for both the stiffness

and flexibility formulations, a comparison between the

force and displacement methods is needed, because we are
faced with the natural question as to which method is best
for practical applications. To answer this guestion, we
must consider a number of different factors. First, it
should be emphasised that since the same element properties
can be used for either the displacement or force methods,

it is obvious that, theoretically, both methods lead to
identical results. But the computational path leading to
the calculation of stresses and displacements is different in
each method. This means that because of the different
rounding-off errors and possible ill-conditioning of equa-
tions, the actual numerical results may differ slightly.

For some special applications, numerical solutions are ob-
tained using both methods with different assumptions regarding
the element stress or displacement distributions i.e.
compatible but non-equilibrium stress states for the dis-
placement method and statically equivalent (equilibrium)

but non-compatible stress states for the force method. This
leads to the so-called bracketing of the solution. Such
solutions are particularly useful if the bracketing is
small, since they provide meaningful information on the

accuracy of the results.

To examine briefly the matrix operations involved in
the two methods: The displacement method is based on the

solution of a simple eguation
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relating the external forces P to the displacement U

at the node points of the idealised structure.

As will be shown later, the element stiffness matrices
are assembled into the stiffness matrix K for the assembled
structure. The procedure is indeed very simple, and does
not regquire any complicated programming. Once the dis-
placements U have been calculated, they are used to
calculate stresses in individual elements. Some diffi-
culties may occur due to ill-conditioning of Egquation (2.1)
when inverting the stiffness matrix K. Some conditioning

(1)

problems have been discussed by Taig and Kerr However,
constant improvements in computer technology result in
increased accuracy, such as double-precision inversion

programmes, and tend to eliminate ill-conditioning as a

source of error.

In modern computer programmes for the matrix methods, human
mistakes in the basic input data are probably the most
freguent sources of error. So care and attention must be
considered. These errors are the most difficult cnes to

detect automatically.

Special attention must be paid also to the design of
input data in order to reduce the chances of erroneous
entries. One noteworthy innovation in this respect is the

method by Argyris (2)

whereby intermediate node points
are generated automatically by the computer. This means
that some of the idealisation is performed by the computer,

and therefore the amount of input data required from the

analyst is greatly reduced.
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In the force method of analysis the seguence of matrix
operations reguired to obtain stresses and displacement is
considerably more complicated than for the displacement
method. By using the Jordanian elimination technique it is
easy to demonstrate that the self-equilibrating force
systems can be generated automatically from the eguations
of equilibrium. This technique allows us to use the same
input information for the force method as for the displacement
method. When the matrix force methods were first introduced,
considerable difficulty was experienced in formulating the
self-equilibrating force systems. The determination of the
degree of redundancy and the distribution of the self-
equilibrating force system was sometimes an intractable
proposition for exceedingly complex structural systems.
Special programmes have been written for specific structures,

(srurs) force systems were orthogonalised to improve

(3)

conditioning,

(6)

regularisation procedures were used for
cutouts, and so on. The development of the automatic
selection of redundancies and generation of the self-equi-
librating force systems completely changed the approach to

the force method of analysis. Any arbitrary structural

system, no matter how complex, can now be analysed by the

force methods. Furthermore, the selection procedures based

on the Jordanian elimination technique lead invariably to well-

(?).

conditioned eguations

Since the input information is identical in the two methods,
it would appear at first that the choice of one or the other

is largely a matter of taste and the availability of suitable
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computer programmes. There is, however, one important
consideration that has not been discussed. That is the
number of unknown displacements or forces and the number

of structural elements. Computer programmes for the
displacement method have built-in limitations on the number
of displacements and elements, while those for the force
method have limitations on the number of node points,

redundancies and elements.

Since the number of unknowrs in the two methods may be
widely different for the same structure, this alone may be
the deciding criterion for selecting the method of analysis.
Mainly because of the simplicity of matrix operations there
has been a tendency to use the displacement method for complex
structural configurations. For some special structures,
however, particularly if the selection of redundancies and
generation of the self-equilibrating system can be pre-
programmed, the matrix force method can be used very
effectively, and should be simpler than the displacemenf

method.

2.1.1 Methods of analysing structures:

Two methods exist for the analysis of structures: the
analytical and numerical methods. The limitations and
difficulties associated with analytical methods are well-
known and cannot be over-emphasised. Generally, these methods

cannot be applied to complex structures.

Numerical methods are the most practical for complex
structure analysis. This fact has been re-inforced by the

arrival of the digital computer. Numerical methods of
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structural analysis can be divided into two types:

1) A numerical solution of the differential eguations
is based upon the mathematical approximation of
these equations. The process is achieved either
by direct numerical integration or by finite-
difference technigues. Again, practical limitations
exist in the application of this method. Hence,
it is mainly restricted to the analysis of simple
structures. The numerical solution to the
differential eguations usually has eguations which
can be cast into matrix notation. But this is
still not classified as a matrix method since the

original formulations do not entail matrix connotations.

2) In the matrix method of structural analysis, matrix
algebra is used throughout all the stages of the
development of the analysis. First, the structure
is idealized into an assemblage of discrete
structural elements (beams, plates, etc.) The
assumed displacements are then combined into a
matrix equation satisfying the boundary conditions

at the junctions of these elements.

Matrix methods based on structural analysis are suitable
for the automation and programming of digital computers. The
analysis is based on very simple numerical steps. This
method is therefore suitable for the analysis of complex
structures given access to a suitably sized digital computer.

The matrix method of analysis has been found to provide
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a reliable solution to the problem under consideration.

The Finite Element Method of structural analysis falls
into the category of matrix methods of numerical analysis.
In the structural analysis of the flexible platform in
particular, the Finite Element Method is preferable to
other numerical methods because of its versatility and

flexibility of usage.

The application of the Finite Element Method tolplane
frame vibration involves imagining the platform to be
actually split into a number of beam elements and plates of
'finite' length. This concept has given rise to its name.
The plane frame contains both one- and two-dimensional
components (beam and plates). Generally, a structure would
be imagined to be actually broken up into a number of
"elements" of finite dimensions . The structure under
consideration was subdivided into finite elements connected
by nodes as shown in Fig.(2.l. ) These finite elements may be
of egual or unequal length. The versatility of the Finite
Element Method means that variation in the element length

can be easily taken into account.

The next step in this method of analysis is the determina-
tion of the "element stiffness and mass matrices" of the
individual elements describing the structure. These are then
assembled to form the "pverall stiffness and mass matrices"
for the entire "discretized" structure by requiring that the

continuity of displacements and equilibrium of forces prevail
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at all nodes in the finite element model.

The eguation of vibrating motion can then be written

in matrix form:

[M]{a} + [K]{g} = {0} 2.2
where
{Q} = column matrix of exciting force
{a} = displacement column matrix
{g} = acceleration column matrix
k3 = overall stiffness matrix of the structure
and [M] = overall mass matrix of the structure
In free vibration {Q} =0 and
{g} is a harmonic function of time
Then {g¥ = {U} sin(wt + ¢)
(2.3)
{g} = -{u} w? sin(wt + ¢)

substituting equations 2.3 in equation 2.2 yields

I

[k]{u} w2 [M]{u} (2.4)

Eguation 2.4 represents an eigen value problem. The solution
of this eigen value problem will yield the eigen values wi,

2 2
3

2
Wi gt W L

r Wir «sss.. hence wi, Wz, W3, .... which correspond
to the natural fregquencies of vibration of the discretized
structure whilst the corresponding {U},, {U},, {U}s, {U}4....

are its eigen vectors of natural modes of vibration.

To summarize, therefore, the finite element solution to

the free vibration of a given flexible platform requires
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the execution of the following operations in this order:
1) Discretization or subdivision of the structure
into a system of finite elements.

2) Derivation of the element stiffness and mass
matrices for each individual element representing

the platform structure.

3) Construction of the "pverall stiffness and mass

matrices" of the structure.
4) Solving the eigen value problem (eguation 2.4)

5) Plotting of the eigen vectors, when necessary,
as is most often the case, to get the feel of

the modal shape of free vibration of the structure.

2.2 Consistent mass and stiffness matrices of beam

elements.

It has already been shown that the discretization of a
platform structure should produce beam and plate finite
elements. Hence the next step in its vibration analysis
is the derivation of the consistent mass and stiffness
matrices of the beam element and the plate element.

Consider a beam element shown in Fig. (2.1). Its extremi-
ties are identified by the letters M and N, These represent
its points of connection to the nodes of the finite element

discretization of the frame.

The beam element is considered first in three-dimensional
space and its orthogonal axes Xt Yar %o are chosen such
that the xe-axis lies on the beam neutral axis. If the

beam element is subjected to a set of arbitrary external
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forces, then it will give rise to six internal reactive
forces at each extremity of the beam. These will have their
associated displacements. Forces here denote both moment
and forces, and displacements include linear and angular

displacements.

As shown in Fig. (2.2) these forces include:

Axial forces F1 and Fy
Shearing " Fo, F3, Fg and Fg
Twisting moments Fy and Fyq

and Bending H Fs, Fg, F11 and Fi

The corresponding displacements are:

1) Axial displacements U, and U»
ii) Transverse displacements Uz ,Us3,Ugand U,
iii) Twisting angles Uy and U;jg

iv) Bending angles Us Ug Uiy and U; s

The positive directions of these displacements correspond
to the positive directions of the corresponding forces as
shown in Fig. (2.2). The consistent mass and stiffness
matrices of the beam element are of order 12 X 12. 1In this
case, since the element axes are chosen to coincide with the
principal axes of the beam cross-section, it is now possible
to construct the 12 X 12 matrices from sets of 2 X 2 and
4 X 4 submatrices. From the theories of beam bending and
torsion, it is obvious that the axial forces F; and F,; are
functions of their corresponding displacements U; and U; only;
the same is true also for the twisting moments (torgues)

Fy, and F;4 in relation to their twisting angles Uy and U;g.
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For arbitrarily chosen bending planes, the bending
moments and shearing forces in the X¥a plane would depend
on their corresponding displacements as well as on the
displacements corresponding to the forces in the E 7 plane.
But in this case, the choice of axis has been such that the
- and X 2o planes coincide with the principal axes of the
cross-section. Hence the bending and shearing in these
planes can be considered to be independent of each other.
All forces acting on the beam elements can then be separated
into four groups and considered independently of each other.
With a suitable choice of corresponding displacement patterns
within these groups, expressions can be obtained for the
kinetic eneragy (Te) and strain energy (Ue) of the beam in
terms of the displacement. The consistent mass and stiffness
matrix terms will then be derived from these energy expres-

sions.

2.2.1 " Axial Vibration in x_ axis

R

Fig. (2.3 )shows the beam element under consideration. The
beam is undergoing very small axial deformation or vibration.
Elementary mechanics of materials show that the state of
strain varies linearly within the beam element. Here,
vibration is involved, hence the displacement is a function

of time (t) also.
Thus a suitable displacement function is of the form

o

UixpR) = a # aixw= [1 x] . .{21% (2.5)
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Applying the element boundary conditions of U(O,t) = U,

and U(L,t) = U7, we have

Ui [ ]
e 1* " (aOK (2.6)
07| 3 R e
or
{u} = [s] {a}

Solving for {a} in equation (2.5) we have

a, 10 B Sl 1" U,
Jai ~ I % J iu? -1/%1/% U7
Substituting into equation (2.5)
:
1 (0] Uy
: 2.1
Olxgt) = [1 %) Ll/i e UTS (22 10
Ui
so that U(xst) = [(1 - x/8)x/%] i (2.8)
U,
or Ulxst) = [Ni(x) Nz(x)] s (2.9)

Let A be the cross sectional area of the beam. Then the

strain energy of the beam in axial direction is given by

ﬂ, 2
v = %g EA(———-—-—-—BU(X’t)) ax (2.10)
ox

o
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substituting equation @.8) in @.10 ) we have

l'lul

2 {-1/8] C
Vit i ¢ 1 1/
R e j; { L U7] E_l/gj EA [' /% E} Eu?a ydx (2.11)

on integrating this reduces to the form
[ EA _EA {u,\

g L 9 S {2:12)
b e et S ) e
L % Lu?j
This is of the form
U = = &% [x] {uw (2.13)
Thus comparison of eguation (2.12)and(2.13)shows that
Kisi Kis7 1 -1
[K] - = =2 (2.14)
L
K71 K7,7 =1 1

which is the axial stiffness matrix of the beam element.
Similarly, the kinetic energy of the beam in axial motion

is given by

g
2
T =2 () 6 A ( SECHEN " ey (2.15)
o ot

where o is the mass density of the beam.

Substituting from egquation (2.8) into(2.15)and noting that
fu, u;}t is in fact a function of time t , integrating

and simplifying gives

o?i 022 3, .
9 9 t
T = 1 _11_1 ._..u_? 2 (2.16)
ot ot h
pAL oAl Bu7)
i 6 3 ot
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This is again of the form
¥, i r3n ot u
T = 3 {z= 1" [m] {35 (25073

Thus, from equation (2.16) and (2.17), the axial mass matrix

of the beam element may be given by

1 00
my ;1 my,z7 3 %
[m] = = oAl (2.18)
Tl i
mz .1 msy .7 [ g g

2.2,2 Twisting about the xe—axis

The beam element under torsional vibration is as shown

in Fig. (2.4)

As with the axial case, the angle of twist varies

linearly along the beam in the form

8 (xqt) £ &8s 8y %
1.8, a1
6 (xst) = i (2.19)
ail
The appropriate boundary conditions are
8(o,t) = Uy and uiL, ) = Ui
Hence from equation (2.19) we have
Uy 1 o} 819
= (2.20)
Ui o 1 2 aii
or {u} = [s] {a) (2.21)

From equation (2.20), we have
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I3 _l fil \
s 178 Boilt | o Buh

aall LR Ujo “1A 1/% (Ulo

\

Substituting for {a} into equation (2.19)we have

\
6 (xat) = [1 x] 1 0 (Ug (
-1/% =1/% luloj
Thus
i X X u
6 (xgt) = {(l‘f) T ] ; {2525
Ui

Let Ix be the polar second moment of area of the beam

cross section about the xe axis.

Then the torsional strain energy of the beam is given by

L 2
g = f GI (28 (xat), ax (2.23)
e X ox

Substituting eguation (2.22)into (2.23), integrating and

simplifying yields

- -
3 GIx _GI
U = 5 [Ul; uloj L L Uy
(2.24)
__GI.X GI}{ Ui
L g e
which is of the form
U = )t [k] {u) (2.25)
2 .

Hence the torsional stiffness matrix of the beam element is

given by
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Khrh Ku,}g 1 -1
[K] . " 5 (2.26)

=

Kioru Kiosio -1 i1

And the torsional kinetic energy of the beam element is

given by

gt N 96 (%at), *
T = 3 jﬂ pl R} R (2.21

Substituting equation (2.22) into (2.27) ,integrating and

simplifying we have

DIx2 SI}:2 gy
A [ 3us Ui 1 3 6 ot
T = = |- (2.28)
2 2t ot pIx£ oI o |1,
X dUuip
3 ot
which is of the form
T . {iﬂ}t [Ml ! EE} (2.29)
2. -9t ' S5k i

Thus the torsional mass matrix of the beam element is given

by i I
My ¢k Myr1o i X
3A 6A
mM] = = oAl (2.30)
Mio,% Migr10 I, I,
| BE ae

2.2.3 .Shearing and bending in . plane

The beam under consideration is shown in Fig. (2.5)
Engineering theory of bar bending indicates that the
deformation is characterised by the deflection curve taken
up by the centre line of the bar. The element has four

degrees of freedom. Hence a suitable displacement model
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is of the form

u(Xs t)

or
u(xet)

The boundary

G T T Sy

£

conditions are

(ost)

(Le t)

-+ a23x3
azo
az1
=4 (231
az
= uﬁ
= u) 2

the above boundary conditions into equation

ulocsat) = U - 5
U(EA t) - Ug and E“"
7 r BX
Substituting
(2.31) we have
Uz il 0 0]
Usg = 0] g (@]
Us 1 L 22
uj 2 (] 2 28
e, iidy)y = [s]
-1
and {a} = [s] {ul
Now
[s]‘l = 1 0 0
0] 1 (0]
1 ) 22
0] 1 24
i.e.
s} ™ = 1 R
0 - ;é
0 (0] %—2
i
0 0 s

{al

dzo
agzi
253 (2.22)
dzs
(2.33)
(2. 34)
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substituting equations (2.33) and (2.24) into eguation

(2.31) we have

ulxst) = [1 x =x? xg] f- 4 0 —%2 %3 us
) o -% %2 Ug
0 0 %2 %3 Us (2.35)
o 0 "% %2_ u; 2

Let IZ be the second moment of area of the cross section
about the ze-axis. Then, neglecting the effects of shear
deformation, the strain energy of the beam element under
the action of the shearing forces and bending moments in

the X Yo plane is given by

2

2
U --% fzzz (a—-%l-}%%i-‘i)) ax (2.36)

o
Substituting equation (2.31) into eguation (2.32) and

simplifying we have

Uz b 12 EXy 1 u;
%> Syvmmetric
Ug 6 EIz 4 EIz Ug
U = 1 =g L
=% L (275 37)
Ueg o L T — 6 EIZ 12312 Ug
[ o £
2 6 EIz .2 EJz - 6 EIz4EI; ui oz
L e [ L AT

Thus the beam stiffness matrix in flexure in the XN

plane is given by



=~ R0~

Ks»s Symmetric R oA - = I e Y |
[K]= [Kz/6 Ke r 6 5% A4R% -6, DRt
- Elz
K2, Kgi s Kgro CIRE N S G 5 12  =6L
Kzr12 Kesriz2 Kegriz Kizr12 68 21% -8R 4%
L - S -
(2.38)
Also, the kinetic energy of the beam element in x ¥
plane due to shearing forces and bending moment is given
by
E’ ~
e T ] du(xat),”
T g -( oA {——EE—— ) dx (2.39)
o]
Substituting from egquation (2.35) into eguation (2.39) and
simplifying we have
L Buz i :
T = 2 + 13pAf Symmetric
S L
35
dug 11pAL% pAR®
ot 210 105
Bue 9 pAL 13pA27% 13pA2
ot 70 420 35
3ui2 _A3pae> oY | 11leal® " ppl?
ot 420 140 210 105 |
Thus the beam mass matrix in flexure in the fat plane
(neglecting the effects of shear deformation) is given by
- 3 . -
M2r2 Symmetric %% symmetric
[l‘l’l] = Mz, 8 Mg r 6 = pAl 130 ﬁ
210 105
mz, Me ;8 Mp s 6 R 1 T )
70 420 35
m2,12 Mer12 Mag,12 Miz2,12 138 LRTINL v 8R
- 420 140 . 210 71054
e asateis AN . (2.40)

2.2.4

Shearing and bending in

the x z_ plane
e e

Fig. (2.6 )shows the beam under consideration
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Positive directions of forces and displacement are as

illustrated.

Four degrees of freedom are envisaged and a suitable

displacement model is of the form

u(xgt) = aso + a1 X + az,x? + azszx’
a
or i
Alxet) =il x  xtowf] Nag
dzz
dss

The geometric boundary conditions as illustrated in

Fig. (2.6) are as follows

u(ogt) = wus, 3u(Ost)
¢X
u(fsat) = us, du(fyt)

oX

Hence, eguations (2.42) and (2.41) give

Usj -1 @) 0 o | asp
-Us o 0] i @] (o] asi
TP AR TR S i
-u - S (-7 3£3J ass

Thus from equation (2.43) we have

aso hl 0 0 0. el s
a3 0 I 0 0 =~Us
asz SN SRR e us
333 (@] f! 28 38 =iy

and

=139

(2.41)

(2.42)

(2.43)



faso
i
gasa

E-E%)

O O O &

\ass

Substituting eguation

[1

u(xat)

Let I
Yy

about the L axis.

I A

_42_

3 2 5
i 3
_2/2 l/ﬁi =xl's (2 44)
3/422/45]) us ‘
-1/, /42 | \~urs
(2.44) into equation (2.41) we have
2 e 3 2 b
X XEJ 14 0 “72 7B Uus
QUinh Ry St dgeli e £ S e
0] (@] 3/£2 2/2'3 Ug
€ 0 1/2 ‘l/£2 U,

be the second moment of area of the cross-section

Then neglecting the effects of shear

deformation and the strain energy of the beam element under

the action of shearing forces and bending moments in the

X Z

e e

Substituting equation

plane is given by

integrating and simplifying we have

U3

N

£
2 2
f BT (A iixat)) ax (2.46)
[
(2.45) into equation (2.46)
lZE@r Symmetric as
_ B6ERy 4EIy ;.
22 ) S 2l2.47)
12ET 6ET 12
g3 Vg s A us
6ET T
s A RO e i
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From equation (2.47), the flexural beam stiffness matrix

in the plane is given by

x] -

Similarly ,the expression for the kinetic energy of the

(2.45)

beam is given by equation (2.39).
into (2.2%) gives
susy © [ 13pAs Symmetric ]
t 35
dus _ lipns? TV
ot 210 105
dus 9pAL - 13paf% 13pAl
t 70 420 35
31 3 13pA0%2 - pAR®  11pAR?% pagd
W ¥ 420 140 210 105 J

Symmetric 5 i) 3 leI Symmetric 2
Ksis 6EX AEIy
]| S p— 7
¥oelra Ks o5 12EIy 6Ely 12ElIy
.d = = L& 24 E,
: | B : £
1 Ks,11 K!rllKIIHIJ GEEY ZEIY 6§¥Y 4EIY-
. "0 (2-48)

and from equation (2.49)

in the xeye plane

(M =

-

M3, 3 Symmetric

M3,5s Ms, s
mz, s Mg,

M3,11 Ms,113

r

is given by

Mme s ¢

Ms ,11

Mii1,11

(2.49)

Substitution of equation

the flexural beam mass matrix



%% Symmetrical
| M = pAL

-11 12

310 105
G o, e :

75 o 5% oo
138 - 22 114 22

| 226 16 210 7 165

2.2.5 Beam matrices in assembled form

From the above analysis and results, the 12 X 12
consistent mass and stiffness matrices of the beam element

can be obtained.

Assembling equations (2.14), (2.26), (2.38) and (2.48)
we have the complete stiffness matrix [Ke} of the beam

element given by eguation (2.51).

Similarly, assembling eguations (2.18), (2.30), (2.40)
and (2.50) we have the complete mass matrix {Me] of the

beam element given by equation (2.52).



-4 5-

10

11

12

EA

/2

0 mehm

et .

L HmmHz Symmetric -
0 0 N
0 0 0 be
')
6F i,
0 o [ me 0 »FH%
L L
0 ¢FHN 0 0 0 bMHN
[k e

EA Ea
£ 0 0 0 0 0 £
0 ;HmmHN o 0 0 |mpHN 0 HNMHN

i T 5 i

12ET GET 12ET
0 0 - y 0 y 0 0 0 y
23 f o
0 0 0 |0Hx 0 0 0 0 0 on
') [}
o 0 |omH< 0 2E1 0 0 o 6ET 0 bMH%
27 L 22 2
0 mrHN 0 0 0 mmHN 0 |mmHN 0 0 0 bmHm
7z 2 = :

1 2 3 4 5 6 7 8 9 10 14 12

(2.51)



9

10

!
13
35 :
Symmetric
13
35
Huh
9 3A
119 22
0 0 ..FIHOm
m_m
(8] (8] 0 me.
H\o 0 0 0 0y
Bl 3
130 13
0 0 0 420 0 35
9 132
0 M 0 INM,@ (0] 0 0
0 L 0 0 0 0 Tx
3K 3A
134 2?2 112 22
420 4 " T%o 9 0 g 710 0 105
130 92 114 92
4720 4 4 P ~ 150 & 710 4 N 0 105
2 3 4 5 6 7 8 9 10 11 12
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2.3 Beam properties in frame co-ocrdinate system

The mass and stiffness matrices obtained in section
2.2.5 consist of 12 X 12 dimensional arrays. These have
been derived with respect to a convenient set of orthogonal
axes X, Yoo 2, such that X lies on the beam natural
axis while XY and X 2 plane coincides with the principal
axis of the beam cross-section. The choice of this

co-ordinate system has led to a simplified derivation and

results in equations (2.51) and (2.52).

The set of axes X ye, z_ are therefore localised axis
or beam element axes. The beam element considered is one

of many beam elements in the finite element discretization
of the plane frame in guestion. Each element will generally

have a different set of axes such that these axes will not

coincide with each other.

It is therefore necessary to define for the frame a
global system or a set of co-ordinates to which each beam
element's properties will have to be transformed. Fig. (2.7)
shows a typical beam element in three-dimensional space.

The X 1Y 12, axes define the beam element oco-ordinate system
as explained in 2.2 while the X,Y,Z2 axes define the global
or frame coordinate system. A transformation matrix

should exist which relates the beam element properties
(stiffness, mass, force, displacement, etc.) in the element
co-ordinate system Xt Ty 2y to their frame co-ordinate

counterparts.
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2.3.1 Plane axes transformations

Looking at the transformation of the beam element
properties from its local system to the frame system in
a plane frame situation may be helpful, and easier to

derive and understand.

Fig.(2.7)shows a beam element connecting two joints
M and N in a plane finite element discretization. The
Xe™ and N T axes are the element co-ordinate ;xes, while
the X -and Y.axes are the frame co-ordinate axes. Angle «
is the angle of rotation from X-axis to xe—axis, the
position direction being the anti-clockwise rotation shown

in the figure.

The forces (forces and moments) acting at the two joints
M and N are as shown in the figure in both the element

co-ordinate system and the frame co-ordinate system.

The following are the eguilibrium of forces equations

at the two joints

At joint M
FXM + erM cosa - FyeM sina = O
FYH + erM sing = FyeM cosa- = O
W =0
At joint N
FXN + erNcosa = FyeNsina =0
FYN + erNsinu = FyeNcosa =0
M+ M =0

eN

=
-4



In matrix
At joint M
FXM

FYM

M'M o
At joint N

FXN

FYN

"y

notation, we have

-COS o sin a

= «-5Sin « -~C05 0
0 0

-COoS @ Sin o

= =Sin &« =cos &
O

FX

FYeM (2.53)

eM

FXeN

FYeN (2.54)

eN

Thus the transformation for a plane beam element is of

the form

FXM 0 0 0 FXeM

[ Tv]

FYM ] 0 0] FYeM

MM = 0 O @) MeM (2155)

FXN O 0 0 FXeN

FYN 0 (6] 0 FYeN

[T™]
MN I-O 0] 0 : MeN
. /z &

The transformation matrix is, therefore, a 6 X 6 matrix.
The same matrix will transform the stiffness, mass, and

displacement. It should be noted that a plane beam element
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as analysed above has six degrees of freedom. This in

turn requires a 6 X 6 transformation matrix.

2.3.2 Overall transformation matrix

The three step rotation has a final effect of rotation
of the frame co-ordinate system (X,Y,Z) into the beam
element co-ordinate system (Xe, Ye’ ze) for the joint M

as a general case in matrix form

{F} = frou] C4E} (2.56)
or
{F} o Slnfa] [zE]iTy] LT (2.57)
o ~-Cos @ Sin o O | [-Cos B 0 -sin 8] 1 o o©
[T M] =|-Sin a =Cos ¢ © o -1 0 0 -Cosa Sina
0 0 =1 Sin B Q' =Cog B O -Sina Coso

eesee (2.58)

Only sets of three orthogonal forces (excluding moments)
have been considered. But generally with the beam element
under investigation, there is the set of three orthogonal
moments also acting on the beam element. These moments will
act about the orthogonal axis. Considering that a positive
moment is a clockwise moment when viewed along its axis,
the operations described above for transformation of forces
will also be applicable to moment transformations. Thus

the equations (2.5€6) and (2.57) also hold true for moments.

Let Q1, Qz2, Qz;, Qu, Qs Qs be the forces (and moments)
acting on the beam element at the joint M in the frame

co-ordinate system. And Q,, Qs, Qs, Qio, Q11, Q12 be the



-]

forces (and moments) acting on the beam element at the

other point N in the frame co=-ordinate system.

r

- - F -
Also let Fel’F Fee and Pe 7 B F be

F
e: es 7 =8 e12

the other set of forces (and moments) acting on the beam
element at the joints M and N respectively in the beam
element co-ordinate system. Then the 12 equilibrium
equations relating actions on the element in the frame
co-ordinate system and the beam co-ordinate system can be
seen to be similar to the results obtained above. In

fact, the transformation in matrix terms is given by

- -

0: forw) * - fa] () ] F,.
Qs F
[2] [re] (2] [2] &
F93
= (2.59)
[z} <[z} [ma] [3]
e BCO I B I .0 I B L
O 0] (0]
where [z] = O S (2.60)
0 0 6]
and from equation (2.58)
-cosa.cosf  sino,cosy-coso.sinB.siny  -sino.siny-cosa.sinR.cosy ]
[TMI = | =sino.cosB —cosacosy-sina.sinB.siny coso.siny-sino.sinf.cosy
sin B - cos B.siny -cos B. cosy

(2.61)
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Equation (2.59) is of the form

foli = 8] P (2.62)

o] - fe] el Te)
(2] [mv] [z] [z]
[z) [z]) [mv] [z]
[2] [z] [z] [mw]

(2.63)

All force transformations discussed so far also hold
true for displacements. Thus, if the corresponding dis-
placements of the beam element in the frame co-ordinate
system are denoted by g1, g2, .... g12, then equation (2.62)

can be written for the displacement as follows

Tol .= | daliss Do (2.64)

where fu}t = [wi,uz,us, ... u12], represents
the displacement of the beam element in the beam element

co-ordinate system.

Now, the strain energy of the beam element is given by

v o= {wx) i (2.65)

the transformation matrix [R] is an orthogonal one. Thus,
its inverse 1is egqual to its transpose, hence from eguation

(2.64) , we have

{u}

Il

[R]-l {q}

[R]* {q} (2.66)

Il
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And substituting equation (2.66) into eguation (2.65),

the strain energy of the beam element is given by

v = (9% [8] [x.] {r]® @ (2.67)

Equation (2.67) is of the form

uv=1{g" [x] & (2.68)

which is an expression of strain energy of the beam element
in terms of the displacement q; (1=, ..... 12) in the
frame co-ordinate system. The matrix [K] is a 12 X 12
matrix and it is the stiffness matrix of the beam element
in the frame co-ordinate system. From equations (2.67)

and (2.68) it can be deduced that

1= ie] Tk e

where the matrix [K_] is given by equation (2.51).

Similarly, the kinetic energy of the beam element is

given by

¥ du,t du (2.69)
o= {-B_t} [me] {ﬁ}

Substituting equation (2.66) into equation (2.69) we have

the kinetic energy of the beam element which is given by

St
T = {5 [’] (] [R]% (5D (2.70)

again, this is of the form

T o= (39 [0 &b (2.71)
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which is an expression of the kinetic energy of the beam
element in terms of the displacements ay (Y 2,3, cnie L 12)
in the force co-ordinate system. Comparing equations

(2.70) and (2.71) we have

ml = [R] [m.] [®]F (2.72)

e

where the matrix [me] is given by egquation (2.52).
The matrix [m] is a 12 X 12 matrix which represents the
mass matrix of the beam element in the frame co-ordinate

system.

2.4 Assembly of system mass and stiffness matrices

The stiffness and mass matrices obtained after the
co-ordinate transformation, express the beam element
properties in terms of the global co-ordinate system.
These need to be assembled into the overall matrices for
the frame. Thus the contribution of the beam element in
guestion to the frame stiffness and mass matrices is to be
identified and added accordingly. The code number method
is utilised here. The transformed beam element matrices
are each 12 X 12 matrices. The first 6 rows or columns of
these matrices are related to the frame co-ordinates at
the end M of the beam, which the other 6 (7-12) rows or
columns are related to frame co-ordinates at the other
end N of the beam element. Thus, the matrices are such
that the rows and columns 1, 2 and 3 relate to the trans-

lated displacement components in the X-, Y- and Z- directions
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of the frame axis system at the end M. The rows and
columns 4,5 and 6 relate to the rotational displacement
components about the X-Y- and z-axes of the frame axis

system at the end M.

Similarly, the rows and columns 7, 8 and 9 relate to the
translational displacement components in the X- ¥- and Z-
directions of the frame axis system at the end N. And the
rows and columns 10, 11 and 12 relate to rotational dis-
placement components about the X-, Y- and Z- axes of the
frame axis system at the end N. The idea of the code
number method is to assign to each of these 12 beam element
matrix rows and columns, & number which represents the

corresponding frame co-ordinate points.

Each of the 12 beam element co-ordinates should have a
corresponding co-ordinate in the frame co-ordinate system.
Any element co-ordinate which does not contribute to the
frame co-ordinate system is assigned a zero code number.
211 other element co-ordinates are given code numbers equal
to the value of the co-ordinate in the frame co-ordinate
system. Thus the code numbef at any point is a positive -
including zero - integer not greater than the total number
of degrees of freedom of the discretized frame structure.
It is worth noting that the inclusion of the zero code
number makes it possible to analyse 1 - dimensional and
plane frame structures from the general 3 - dimensional

beam finite element discretization model.

2.4.1 Beam Elements

Consider the transverse vibration only of a uniform

beam element as shown in Fig. (2.1l1l) where q; and Qi’
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i=1,2,3,4 are the displacements and end forces respectively.
The gquantities such as U, g, € etc. are referred to their

amplitudes of vibration.

A simple displacement pattern of the beam may be

assumed to be:
U (x) =o0g + 01X + 0 x% + a3x’ {2.%23)

where oy i=0,1,2,3 are constants to be determined. The
displacement vector in this case consists of one component
i.e. the transverse displacement, therefore we may drop
the brackets for vector notation. Where the functions

xi, i=20,1,2,3 were chosen as co-ordinate functions, oy

would have been taken as the generalised co-ordinates.

Now since oy does not have direct physical interpretation,

we prefer to transform it to dyr SO that the conditions of

compatibility between elements camn be applied directly to

form the overall system eguations.

The transformation may proceed as follows:
In order to determine the coefficients ai, i = 0p1.2,3 in

equation (2.73) it is necessary to use the following boundary

conditions:
U (0) = g1, U* (0) = g2, U (R)= gy, U' () = qu

sonee (2.74)

Ssubstituting equation (2.73) into equation (2.74)

we obtain a set of four eguations for ey 1= 0.3.2,3

After solving these equations for oy in terms of q;
i= 1,2,3,4 the equation (2.73) can be rewritten in the

form:

U (x) = |a (x)] {q} (2.75)
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where {g} = [q1 q: g3 qk]T
and 2 s 2 3
[ax)] = [1-3) + 23 &2+
X R 3,
Ip) w2 () -G e ] (2.76)

The strain and displacement relationship for a beam is

5 2
== -yt (2.77)

£ L)y = s

s ox

where v is the longitudinal displacement and y is the
co-ordinate normal to x and in the plane of vibration.
From equations (2.77) and (2.75) we get the strain and

generalised displacement relationship:

€ ) = Bl ] 4q) (2.78)
where
[b(x)]= 2% [—6+12<%)<-4+s(%)}s-1z<§>(-z+e<§a)a] (2.79)

The substitution of eguations (2.79) and (2.76) in the

following eguations

]

[m] =7, [a]® [p) [a] dvol (A)

[x] =7 1T [c][p] avol (8)

gives the mass and stiffness matrices respectively.

156 224 54 =138

Vi 2 ~-342

[m] e %gg 22 4% 1342 32 (2.80)
54 132 156 =224
-13% =382 -22% 442

and



2
12
62

] =35
-12
6k

-58-

62
49,2
-62

2482

=il

-6%

12

-62

6L
242
'-_69,

44%

(2.81)

which is the same as in Eguation (2.51) considering the

rows 2, 6, 8, 12 to give the stiffness matrix [K]as above,

(2e81)s

In the case of [m] it is as in Equation (2.52) , considering

the same rows 2,6,8,12 to give the previous mass matrix

(2.80) .
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CHAPTER 8

Two-dimensional Elements and Numerical

Solution

3.1 Two-Dimensional Elements

A two-dimensional element is one whose displacement at
any point is described by two spatial parameters. The
smallest geometric dimension, i.e. the thickness, of such
an element is much smaller than the other two dimensions
so that the configuration of its middle surface can be
expressed. If this element is a flat one, then it is =z

plate element, otherwise it is a shell element.

A dynamic stiffness of a general two-dimensional element
has not received very much attention in the literature
because of its continuous contour of boundaries and the

coupling effect between the two dimensions.

The only model which may be found is that of a plate
element whose two opposite edges are simply supported(saz
In this case, the governing equation of vibration is de-
generated into that of a beam by choosing a set of distri-
buted generalised co-ordinates on the two other edges which

are not simply suppcrted.

(ee)

An approximation method of finite strip was intro-
duced by Cheung. Again, this method is limited to plate
elements with the boundary condition of two opposite edges

prescribed and therefore the treatment of the plate element

is'degenerated to that of one-dimensional elements.
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Dill and Pister (*°) introduced a rectangular plate
element where the displacements of the four edges are
expressible by Fourier series. However, the coupling
effects between the two spatial co-ordinates give rise
to a large matrix, and the numerical convergency is very

poor.

Section (3.2) discusses a rectangular plate element whose

two opposite edges are simply supported.

In the following, a dynamic stiffness matrix will be
derived for the plate where all the edges are subjected to

prescribed boundary displacements.

Two sets of information are required about the vibrating

plate element to form the dynamic stiffness matrices. One

is the modal information when all the edges of the plate

are clamped and the other is the static deflection patterns

when the plate is subjected to unit boundary displacements.

To demonstrate the method by rectangular members as a

clamped plate.

So far, the most popular method of calculating the
natural freguencies and modes for an individual member is
that of Rayleigh-Ritz. Although the polynomial co-ordinate
functions have been used by many authors (’1), Mikhlin has
proved that the Ritz system for polynomial co-ordinate

(22)

functions is numerically unstable . To eliminate the

effect, beam functions are used as co-ordinate functions.

The natural frequency will be denoted by © and the

Ccorresponding mode by ¢z for the plate member
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where Xi and Yj are beam functions of clamped ends in X

and y directions respectively, and n

i nj are the number

of terms chosen in the corresponding directions. The
. s K p
guantities of W and Aiﬁ may be automatically generated

by computer programme.

For the static analysis of a rectangular element by the

method of energy, reference is made to Przemieniecki {11’

(1?)'

and Zienkiewic:z

The materials of the static analysis can be found (15

and summarised here for the completeness of deriving the

dynamic matrices.,

Consider the rectangular plate element as shown in Figure
(3.1} q; i=1,2 ... 12 are chosen as generalised displace-
ments. A deflection function that ensures both the de-

flection and slope compatibility on adjacent plate elements

is given by:

U(z,n) = [ag] {g} (3.1)
where U(Z,n) is the transverse deflection,

t=x%/a , n=y/b » lal = lgiraasy ssene qzzJT

and [a] 4is a 1 x 12 matrix given by:

[ao} = [Elni Zinab - Zz2Mia Tins = Tinsb-g2nsa

TaNsa = TsNyb Tuyns &L3na CTs3nzb Cu'ﬂ:a] L
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where
g1 = (1+27) (1-g)?2

T2 = [ (1-z)°
zs = (3=2p)¢*

gu = §2(1-F)

substituting equation (3.2)

Nz

T3

] v Sy a Tl e

(1+2n) (1-n)*?
n(l-n)?
(3-2n)n?

n?(l-n)

dvol

we obtain the consistent mass matrix:

(3,3)

into the following egquation



Consistent Mass Matrix

1 2 3 4 5 6 7 8 9 10 11 12
24,336
3,432b 624h* symmetrical
-3,432a|-484ab 624a?
8,424 |[2,028> |-1,188a [24,336
-2,028b |-468b? 286ab |-3,432b | 624b°
-1,188a [-286ab 216a 2 |-3,432a | 484ab 624a*
522 s 4
176, 40
2,916 702b ~702a 8,424 |-1,188b |-2,028a [24,336
mw i S e Do Ca b S i s
! -702b | -162b* 169ab |- 1,188b 216b? 285ab |-3,432b 624b?
702a 169ab -162a? 2,028a | - 286ab | -468a* | 3,432a | -484ab 624a*
8,424 |1,188 [|-2,028a 2,916 -702b -702a 8,424 |[-2,028b [1,188a [24,336
1,188b 216b* | -286ab 702b- | -162b® -169ab |-2,028b [-468b? 286ab | 3,432b 624b?
2,028a 286ab | —468a® 702a ~169ab -162a%? | 1,188a |-286ab 216a* | 3,432a 484ab 624a’

10

11

12

(3.4)



{35)

te

ﬂ

6=
= we den
K21
Kas

o

i
K11
K21

|

ness matrix,

EhS

12 (1-v°)ab

[p]

For the stif
and B = b/a, then

16 @3 +67 )
+ 12
25
_wm B2 + 18872 | (go 8% + 32872
:.+wcLU + .w.w‘uvm Symmetrical
_ B2+ 22872 [-[32(8% + 877) GEp? + 52 67
e S&im + &ﬁ&oc: + va a®
X ab
g 10g7e (22 - e [[SL62+ 56 | 15667 +870)
sele ; 6y 1 145 2 72
56 |.M._W.u +M.wlﬁ+cu“_m +q||
13 ot 78 = 3 9 23 2 r1.. o= = W.NI. 2 78 T | ..m..l 2 52 sk
g 35 P S 55 8% +55 8 ke e B
6 26 572 2 1 6 8 2
+gw ) b +ap B %~ mmb® |- o= S+w<: ab |+ 3z(1+5v) b + o) b
27 22 : - =
(8 + 28 | [-2282+ 287 |26 - 52872 |-[22 6% + 32872 |22+ 872)
+ mmﬁ&i a + .wow (1+5v)] ab | - va a’ + m.m (45v)] a |+ .m.%rmosTu




_ A3 g2 _ 27,-4,27 q2, 13 o2 | 156 ,2 . 345-pr22,2.27 -2 18,2 _ 13 -2
=98 o 358 (35 8%+ 35 8 3 Bt 5x8 T5e8 T 3p B (358 3E B
6 6 72 6 6
T s - z@la = aie + mwAH+mchu + zFla
e BV e 13m0 a2 2250 2V .72 RE sl 8ol r bl A3 g
(g2 &7+ 3% (758 +8 %) [358%- 35 8 (- 35 8%+ 38 *| [-388°+ 35 8
2 2 = 15 6 ‘ k. 8 2 I.Iuh
+ =5 =5]ab + 5z (l+5v)b] sElb 5 (1+5v) ] ab
13,50 073 9.2, 3 .72 e I8 2, 13.=2|rpllaz  13,-=2 2652 3,2
[- 55(8%+8 %) |( 358%+ 35 8% |(- 35 8%+ 338 *| [358°~ 35 (358°- 358
1 2 g 6 1 » Ay .2
+ .wr&.umv + .M.w.vm - Iw.um + M@:;&clmd mvm
_ 2252, 27,-2 | 38,2 13 o-2 |_ 34 g24572 13 g2, 275-2 |27 g2, 13.->
[- 358+ 33 (358°- 35 B s8R ) 135 87+ 35 (32 B+ 5%
s 5, 72 ik B
se{lesv)]b. W zx)a + 5 5E) b Szl A
_ 4. 18 .=aledl. 2 13 —=» S A3e 2Ta~a 3a2.  9.%2 T
(- 328° + 33 B 7|[328%- 35 8 [~ 3P + 3ef CHEe S 5ub [55 (8% +8
(1+59) |b | - z9)b? + z=(1+5v)]ab |+ =o)b + 52)b? - =2jab
CMge, 13,0 26, eI T o i, Sg2y g2
[~3ahte g ool S L e 7585 +8 %) e
1 2 6 1 2
- wt@:+mc:m_u - Mwum + lwlwwm - wd.vm_u + wlw.umv




10

[K22]=
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12

7 8 9 10 11 12
228 (e2a"]
e
TREE
i Symmetzical ‘.
8774 2 2267 |
(1+5v) ]b * Byaa
Toge 23bar L83,
[558°+ 351-[55(6  |(358%+53
R 2 1 8. By b
B o 25 +B )+'§'6' B l_2_5}a
(1+5v) ]a | (1+60v) ]
¥ ab
S4g2_ 156 (13,2 2ln2. 22 2 01
3=8 3z (—5%8 Se87-25 1156 (82+87 1)
=g e 70,=2 s 1B 72
B 2 e B Trye bl
+ ig)b (1+5v) ] a
i
13,2 78 3.2 T3, 11 '
(5B%~5% | (—=B* * |[55B%-5% [122;2.78 | 4.2.52
35° 35 35 70" 35 |lsefteer | (eBieas
= G 26,2 g A 2, 6 -, 8
B "—3g)b | 3% B 7 B "+35)p2
Bty (1+5v) Jab| (1+5v) ] b
25
270022 1 113,093 38,0 4} 78,022 br1d on |52,0,
[558%-35 | [-508°-58 528°-75| (5B*+55 | IS5 i
-2, 6 i D § v 8 IR e e U T T
P eme P el B T ad B e 16 it B i 8
(1+5v) Ja | (1+5v)]an (145v)a | (1+60v) ]
ab
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The constants Gﬂk can be found as

€T <
.t [
G o o1 {¢k} (0] (a; 1 dvol

from assuming that the eigen functions are normalised

and the condition of orthogonality

4 N B e
L 1
58 j=l 2o g
where
Gij = Lyo1 {¢1}T [p] {a;} dvol
Wi
= X B 2
= ph £, 3=1 Aij e ST Yj(y)

where ¢k and ag are scalars and a is the ith element of the
j
matrix [ao] in equation (3.2).

In order to evaluate the integrals of equation (3.6)

integrals must be calculated of the form:

I g (&) 5 (5) 4t me 1,2,3,4 (3.7)

m

where y, represents either X, (x) or Y,(y) and g (z) are
Polynomials of ¢ as given by equation (3.3). Then the
dynamic stiffness matrix of rectanguir pléte is given by
the eguation:

[0] = [og) - wilmg] - w* §  [oHiE ]

k=1
where n = number of terms taken.

It must be noted that since the expression (3.1l) is not

exact and the modal corrections are made in the interior of
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the plate, to satisfy the differential equation, but not
the boundaries; exact results cannot be expected for

the dymamic matrices. The accuracy may be increased by
increasing the number of generalised co-ordinates on the

edges.

3.2 The Interaction between Beams and plates

It is common engineering practice to stiffen a plate
system by beams. The effect of a stiffening beam is

threefold; axial, flexural and torsional.

The flexural and torsional effects are considered

separately in the following analysis.

The governing equation of a beam in flexural vibration

is given by:

34w 32w SR
EI -5-—}?1— B DAO"B"_E-Z' -+ NX -é_XT = W (3. 8)

where N is the axial compressive force, and V the

distributed transverse load per unit length along the beam.

For the harmonic excitation of a simply supported beam:

N .
YE ) Bin GAEE A (3.9)
m a
m=1
. mmx iwt
and wi=J e 8in == g (3.10)

From equations (3.9) ,(3.10) and (3.8) we have:

N : 4 2
. mTX mm s 2y oy (DT v T
A=1 sin 2 [EI(T3) e~ pA_WAN_-N_(T0) w_ vm] 0 (3.11)
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Multiplying the equation by X apa integrating over
x = 0 and x=a we have:
L 2
& mmy R LT (3.12)
Vm [EI( a) il Nx( aJ ] o

which is the stiffness relation required.

The torsional effect is derived as follows:

The differential equation governing the torsional vibration
of a beam, where the shear coincides with the mass centre

of cross sectional area, is

3%8 328
GJ g;f - DIO §§7 + T =0 {3::13)

where

GJ is the torsional rigidity

p is the mass density

I is the polar moment of inertia

T 1is the torsional moment acting on the beams per unit

length.

The harmonic oscillation of a simply supported beam is

obtained by:

N mmTX iwt

T = ) T Bina=e (3.14)
m=1
N mmx iwt ;

6 = ) 6 Sin‘=— e (3.15)
m=1

and equation (3.13) becomes

N . MTX o 2 s
j  Sin [-eo(=) o +pI wie + T ] =0
m=1

Multiplying the equation by Sin §§5 and integrating
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over x = 0 and x = a gives:

!
2 ]:GJ(E;—) - oI _ w?]® (3.16)

which is the required stiffness relation.

When the beam member is on an edge of the folded plate,
then the generalised displacements of the beam W and
Gm will correspond to the generalised displacements of the
plate, either qml and qm2 or qm3 and qmq’ depending on which
edge of the plate the beam is situated.

3.3 Folded Plate Members

A rectangular plate with two opposite edges simply
supported and with the two edges connected to other structures
by prescribed displacement patterns will be discussed.
Distributed co-ordinates on the edges will be used in this

example.

To satisfy the boundary conditions of two opposite edges
being simply supported, the displacement pattern of the

plate may be written as:

N
L . om X
M) - ;=1Ym(y) Sin'ide= (3. 57

where N is the number of terms taken, a and b are the
dimensions of the plate as shown in Fig.(3.2)and Ym(y) are
the functions to be determined to satisfy the governing

equation of vibration.
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Fig.(3.2) shows the plate and its boundary conditions:

¥ =.0 and ¥

The generalised displacements D i ? m=1l,2....N and
G el e are defined by:
N
. mTX
w(x,0) =} g Bin ==
m=1
5 m7mX
w(x,b) = Gpp Sin—
=1
N
ow (x,0) mmx
e g, Sin —/=
oy el m3 a
ow (x,b) _ . sip MTX
oy -1 2mé a

and the generalised forces Qmi are defined by

]

Qy (x,0)

_Qy (x,b)

Mytx,O)

I

-M.Y (x,b)

where QY and My are Kirchoff's shear and the bending

= a, simply supported.

)
Q Sin
ol ml
N
I Q.. &in
m=1
)
Q Sin

el m2
N

mmx

moment of the plate along y = constant

(3.18)

(3.19)
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The generalised forces are related to the displacement

through the conditions of eguilibrium on the edges y = O

and y = b,
ety e Dl iy e ]
g el t9y’ ax“oy-
. = razw . 3 %w
.Ay(XrY) = 'D,_'a_': -+ ) %7 (3.20)

where D = Eh®/12(1-v?) is the flexural rigidity of the

plate.
h = thickness and v = the Poisson's ratio.
Before we can apply equation (3.18) to equation (3.20)

in order to find the dynamic stiffness matrix, we must

find out the functions Ym(y) in egquation (3.17).

If the loadings are harmonic with time, the governing

equation of vibration of the plate with fregquency w is

given by:
D V'w =pchw? W + N 33¥ + N 3ﬁ¥ = P(x,y) (3.21)
X 9X Y oY ’ "

where N, and Ny are the compressive in plane load& in x and
y directions respectively, V* is the biharmonic operator
in (x,y) co-ordinate, P(X,y) is the downward distributed
load intensity and represented bys

n

P(x,y) = ) P_ Sin 9—;1’—“ per unit area (3.22)
m=1
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By substituting equation (3.17) into equation (3.19),

we have:
) sin DX (L0 e ) e gy g
= a a ym a ym m D m
m=1
N m, 2 N s P \
i, 0 o ISR R R R e il s R
D a m D m D m

nmx

Multiplying by sin and integrating over x = 0,a
where n 1is a positive integer, and using the orthogonality

of sine functions, we obtain:
N
RN (4 R I& 2 mm, 4y _ phw X M7, 2
Ym 2{a 7 {ZD} Ym + L a) D a)

Wit SR PR 0= 1,2, (3.23)

The associated boundary conditions for these fourth
order differential equations are obtained from equation

(3.18)

Y (0) Y'm(O) = q

m2

(3.24)

I
+Q

¥_(b) ¥’ fb) =g

mé

The auxiliary roots of equations (3.23) are obtained by

letting Ym = eUY

) 2 . N 2 N 2 " 2
- (et

+ —% :'r;5 (3.25)
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Therefore Ym(y) will have four different forms of

2

sclution depending on whether ¢° is positive, negative

or complex.

We study these four cases as follows:

Case 1

When all four roots are real, which are #0;, *0, then

the general solution has the form:

Q
=

- O2Y . oY
Y. () A Cosh == + B Sinh =~ + C Cosh

+ DSinhZit

!
o’

- Al (3.26)

where A,B,C,D are integration constants and are determined

from the boundary conditions (3.24) as:

o1 =Ey -Fs -F3 Fi
O (g% 3 02) Qg * 90 ch%) bg , + (G:11 = Uz) qm3+(01_02)qu4
Fe 0% -Fu Fs P
"E o} -cf) Imy (Uz Uf)quz D (U o ) In3* § o} - 01)qu4
qu2 " Bo,
C g Ay D = o4 o (3.27)
where F; = -(0, sinh 0,-0; sinh o¢3) (0$-03) /6
F, = -(01 cosh 0; sinh 0,-0, sinh 0; cosh 0,) (c?-0%) /6
F; = -=0,0;(cf - 0%) (Cosh 0; - Cosh 0,)/8
Fyu = 010,[ (0f+03) (Cosh 0, Cosh 03-1)-20,0, sinho,sinho;])8
Fs = 0,0,(0% - 0%) (0;8inh 0;-0,sinh 0;) /8
F¢ = -0:102 (c?-c%)(—czcosh 61 sinho,+0; sinojcosho,) /8
¢ = 20102 (cosh o cosh 0,-1)-(cf+0%) (sinho,sinho,)

A PO
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Case 2

When there are two real and two imaginary roots which

are £ 0:, tio, then the general solution has the form:

+ C Cosh E%E + D Sith%X

r 7 = —tall, i 02Y
&m(}) A Cos 5 +58 54in 5

e e 13228)
where A,B,C,D are integration constants depending on the

boundary conditions (3.24) and they are found as:

-
os-F F -F r
Rim it ) g el Vb g #{=md )Gt (=) b
o403 : cf+0} 2 ogticd 3 o$+0% »
b of bg
-F 9 2+ -F - z
B = ( . 3 ) 1l v (Uz Fn) qmz + 5 ) M3 & Fs) My
o¢+0% o ogf4o02 o gf+0f% 0> ot+0% o,
bg
C=q -A and D=——22 -822 p
mj
(o8 § g1
(3.30)

where the frequency functions are given by:

Fy = -(0, Sinh o3 - 0; Sin 03) (6% + o%) /6§
F» = -(0; cosh 0; Sino; - 0, Sinh o; Sin 03) (6% + 03%) /8
Fs = =010;(0%-0%) (Cosh 0:- Cos 03) /6

Fy, = 010, [+(0cf-3) (Cosh 01Cos 02-1) + 20;0, Sinh 0:Sino;] /8
Fs = 010, (03+40%) (02 Sin 0, + 01 Sinh 01)/8
F¢ = ~010; (0%+0%) (02 Cosh 01 Sin 02 + 03 Sinh 0;Cos 0,) /8

§ = 20103 (Cosh 03 cos 02-1) + (0%-0%) Sinh 0; Sinos

(3.31)
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Case 3

When all four roots are imaginary, which are zioc;,

+ics; then the general solution has the form:

Ym(y) = A cos E%K + B sin E%Z + C cos 2%3 + D sin E%Z

(3532)
where
PN ea el L P U R e SRS L i

c% -of ™ girof T2 8k - el Thgf = gr e
Blmibe b gy, Uy SEBG, e
c( - ot To, cs-0% “o: 0%3-6% "o, o3-0% T o,
Ci=g, =B and D = Py, - B%
01

{3:53)
where the frequency functions are given by:
F; = -(02 sin 01 - 0; sinoz) (0%~ o) /8
F2 = -(01 cos 01 sin 02 -0, sin 03 cos 03) (03-0%) /8
Fs = -010; (0%-0%) (Cos 0; - cos 032) /8
Fiu = 0102[~(0% + 0%) (Cos 03 coso,-1)-20,0, sin 0; sin 02]/8
Fs = 0105 (0%3-0%) (02 sin 02 - 0y sin 0,) /8
Fg¢ = =0105 (0%5-0%) (02 cos 01 sin 02-0; sin 0; cos 03)/$
§ = 2010, (cos 01 cos 02-1) + (¢t + 0%) sin o; sin o3

ciolo it N3uSa)

Case 4

When all four roots are complex and which are o,*io,,

-02%fic;, then the general solution will have the form:
oA z GZY CTIY : O'zY
Ym(x) = A CcOS 01 5 cosh = + B cos 5 sinh e -
: 01Y g,Y : 1 : O2Y
G sin = cosh L + D sin i sinh S {3.38)
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where the integration constants A,B,C,D are found from the

boundary conditions (3.24) as:

A =g
J.ml
B = 'hml (010, sin o, cos 0y + 0% sinh o, cosh 0,) +
b . in? - o sinhos+
qmz(cz sin“o,) qm3u1{01 cos 0, 3
02 sin 0; cosh o0;) + quk(cl sin o, sinh 0,)}/6
c = {-qm (0,0, sinh ¢, cosh 0, + 0% sin o; cos o,;) -
1
g. 0, sinh? 0, + g 0, (0, cos 0; sinh 0,
m2 _ ms
+ 02 sin o0; cosh 0,) - quh(cz sin o, sinh 03)} /8
D = {qnl 010, (sin? o; + sinh® o,) + bg, (01 sinh o, cosh o,
[ 2
- 02 sin 0, cos 01) - q_ (c2+ o02) sin o0, sinh 0.+
3
quH (0, sin o; cosh 0, - 0; cos 0; sinh 0,)}/6
§ = 0 sin® o, - 0% sinh? o,
(3.36)

The frequency functions are given by

Fi1 = 20:0; (02 sin 0, cosh 0; - 01 cos 0 sinh g2)/8

ks
r
I

-2010; (0; sinh o, cosh 0, - 0, sin 0; cos 0;) /8
F3 = 20,0, (0%+0%) (sin o0, sinh 0;)/6
Fy = (X2 0, sin? o, + x; 0; sinh? 0,)/$

Fs = 20,0, (of + o0%) (0, sinh 0, cos 03 + 0, sin o0; cosh 03)/6

Fe = =200, (0% + 03) (0, sinh 0, cosh G, + 0, cos 0; sin 0;) /8
6§ = o% sin? o) - o} sinh? o,
Y 3
X1 = 01 =-30:103 + (2-v) 03
o AN Gl TR
X2 = 0% 30f 03 -(2-v)o;2 (3.37)

The general solution of the differential equations (3.23)

in these forms was not found in the literature.

However, we have not studied the physical implication of

the various natures of the auxiliary roots and therefore,
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these formulae are presented here merely for the complete-

ness of the formulation.

Having determined the functions Ym(y) explicitly in
terms of the generalised displacement g, We can carry out
the differentiation in equations (3.19) and make use of
equation (3.18) and the orthogonality of sine functions to
obtain the relationship between the generalised forces and

generalised displacements.

After some simplification, the dynamic stiffness relations

for all these four cases will have the form:

le Fg =Fab Py Fsb ] oy
D
sz = X -Fub ngz ~Fib F;bz gqm2
Qm3 Fg "'ng Fa F'ub <qm3
2 2
th i Fab F]b Fub sz 5 th
me= 120 N {3438)

where the frequency function Fi has different forms for the
four cases and should be calculated under the individual
headings, i.e. from expressions (3.27) or (3.31) or (3.34)

or (3.37) according to the nature of the auxiliary roots.

The vibration shape for every m 1is given by expressions
(3.26) or (3.29) or (3.32) or (3.35) and the overall shape

of vibration at frequency w 1is obtained from eguation (3.17).

3.4 Numerical Solution

3.4.1 Introduction

Since the method of study is very close to the Finite

Element Methods, a brief discussion of how these methads
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apply to the elastic systems may be worth mentioning.

Finite Element Methods developed from torsional problems
in 1943 ©13)  The term 'Finite Element Method' was not
introduced until the middle of the fifties. At that time
the electronic computers were rapidly entering the field of
technical computations, and the matrix method of structural
analysis was proved to be powerful. An extension of these
methods for use in general structure was a natural progression.

Pioneers in this development were Lagefors (1“), Agris (1)

and Clough (1e)

and this time the approach was based on
simple engineering arguments. Continuous material was
regarded as being split physically into finite elements.
Each element was analyzed as being a separate piece of
material making up the complete structure when joined to the
other elements. For a thorough study of finite element

(17)

methods, text books like the one by Zienkiewicz are

recommended.

Here, only a brief account of the theory may be included.
Elastic problems are governed by three categories of field
eguations:
stress-equilibrium eguations
stress—-strain relations (constitutive material laws)

strain-displacement relations (kinematic relations)

In addition, boundary conditions may be given as:
specified boundary stress
specified boundary displacements
specified relations between boundary stress and boundary

relations.
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For a linear theory of elasticity, these equations are
particularly simple. In terms of rectangular Cartesian
co-ordinates, and by means of standard tensor notation, they

may be written as follows:

1. stress equilibrium

Uij,j + Fi =0 1,3, = 1;2;3
where

Uij = stress tensor components

Fi = components of body forces

2, stress-strain relation

o & L.dekydl = 1,2,3

£9.7 Sgdr1. S

or inversely
Eij = Sijkl okl

where the new notations are
eij = component of strain tensor
Cijkl = elastic stiffness coefficient

Sijkl = elastic flexibility coefficient

3. strain-displacement relations for small displacements

2o, g e WY et

where Ui denotes displacement in the direction 1i.

) irj =1,2,3

For the formulation of stress boundary conditions, internal

stresses must be related to surface tractions.

The surface traction ¥i in direction i at some part

of the boundary S may be written as follows:



-81-

where vﬁ is the direction cosine of the outward unit normal

vector of the surface S.

All energy principles may be used as a basis for

numerical analysis using the Finite Element Method.

The finite element separation implies a division of the
total volume V into sub-volumes or sub-domains denoting

finite elements.

The functions chosen to represent approximate displacement
and stress field are specified within each element, and
conditions imposed on certain parameters at inter-element
boundaries provide the necessary continuity required by the

field functions.

In the case of the standard displacement method, the

displacement field is assumed to be:

{0 (x,v7,2)} = [ (¢ x,5,2)] {a}

where
{¢(x,y,2)} is the vector of chosen nodes of displacement
{a} is a vector of constants to be determined by

the nodal displacements

At any node i, the vector of displacement components is

given by:
{g.} = {U (x,,¥,,20) = [ ¢ (x3,¥,,2;) ] (o)
where (xi,yi,zi) are the co-ordinates of the node.

If all the displacement components of the nodes of the

element are arranged in a vector {g} then:
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{q} = [¢]{al

where the constant matrix [@'] is given by:
r[¢(X3rYIrzl)]
[6(x2,¥2,22)]

o] = ;

-[¢(xn,yn,zn)]

where n number of nodes.

The displacement field is expressed in terms of nodal

displacements:

1
{ulx,y,2)} = [o(x,¥,2)] [¢] {a}= [a(x,¥,2)] {q)

(3.39)
where

[a(x,v,2)] = [6(x,y,2)] [e] 1

The strain field is obtained from the kinematic relation

as

{e(x,y,2)} = [b(x,y,2)] {q} (3.40)

For vibration analysis, if the external force can be
expressed as the potential V, the most convenient energy

principle is the Hamilton's Principle, which states:

"Among all admissible displacements which satisfy

the prescribed geometrical constraints and the
prescribed condition at the limits t = t; and t = t;,the
actual condition makes the functional stationary"

t2
3 [r~10 = ¢ . ¥V avol] dc (3.41)
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Now the Kinetic energy and the strain energy are given by

Ty aeey oy {a1T[p] {4} avol (3.42)
and -

u =%/, {e}” [c] {e} dvol
respectively.
We have

s (x{&)T [m] {&) + % {@}T [k]{q} - {a3T{Q}) = o
(3543)

where the mass matrix [m], and the stiffness matrix [k]

are given by

m] = [a]T [e] [a] (3.44)

and

1]
—
L

=
—
(@]
Sl
r—
i

[x]

respectively, and {Q} is the load vector resulting from the

volume integral of the expression.

The kinetic energy of the system is the summation of
the kinetic energies associated with the individual elements,

therefore:

Svol of ..

T
e ele%ents elementfa JJ [p,] {g }dvol (3.45a)

and so the potential energy is:

U =% 838n8ht  {e_}T[c_]{e }avol (3.45b)

all elements

where the subscript e denotes the quantities relating to

the individual elements.
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Applying the requirement of stationary energies and with

reference to eguations (3.38) and (3.40) this gives:

=D )
é(aél eldments V3! [me]{qe}+a11 %{qe}[Ke]{qe}_
elements
) ey .
e .} }) =0 (3.46)
“all = e
elements

Now, if all the co-ordinate vectors {qe} are transferred

to a common co-ordinate vector base {g} by

(g e [ne] {q}

e

then we have

s[xlg) T gll [m ]) {&}+ %{q}T(;ﬁl (R dad s

elements elements

fa}’ %y {8} =0 (3.47)

elements
where

e |
(@]
(]
—
Il

[nJ* o]
[n]" [x.]In,]

= [ne]T ImeJInel (3.48)

— e |

=1 =

ml_.._l ml_.l
| 1

Comparing the equations (3.47) and (3.48) we have, for

the system

[Q] " all elements I-’Qe-J
[K] = all elements [Ke]
[m] T all’elements [me]

Equations (3.48) are used to assemble the system equations
of motion.

I1f we perform the variation of equation (3.43) we have
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[m] {q} + [K] {g} = {0}

which is the governing equation of motion in the matrix

form.

3.5 Determination of Natural Frequencies

For conservative systems the eguation of motion in

matrix form is

[M] ig} + [K] fq¥ = {0} (3.49)
which can be reduced to either
[8]{q} + {q) = {0} (3.50)
or
‘{g} + [p]{q} = {0} (3.51)
where

[x] "1[v],
[M] 7 [K]

If an oscillatory solution of the form

(2]

and [D]

{gq} = {¢} sin (wt+V¥) (3.52)
is assumed, substituting (3.52) into (3.50) leads to

(trwy[1] - [B]) {6} = {0} (3.53)
and substituting (3.52) into (3.50) yields

(w* [1] - [D]) {¢} = {0} (3.54)

Eguations (3.53) and (3.54) define two separate eigen

value problems, which can be written in the forms:

7 1

[B]{¢}i = 7 {¢}, (3.55)
and

[DJ{¢}i = wy? {¢}; 1=1,2,...n (3.56)

respectively.
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The iteration technique will be discussed with reference
to equation (3.55), for reasons which will become clear in

the ensuing derivation.

In starting the iteration, a trial column is selected
which is premultiplied by the matrix [P] to yield a new
column matrix. Next the newly obtained column matrix is
normalised by dividing all the elements, by the first for
example, in order to reduce the first element to unity.
This normalised matrix is then used as the second trial
column to obtain & second column matrix to be normalised.
This same process goes on until the new column matrix
obtained differs very slightly from the last trial modal
column. Then convergence has been effected. The last
column matrix is the modal column corresponding to the
lowest mode, and the factor used to normalise the column
matrix is the lowest eigen value. If the eguation (3.56)
is used to set up the iteration process, the result will
be the modal column appropriate to the highest mode and

its frequency.

The basis of the iteration can be demonstrated in the
following manner. Assuming that all the eigen values are
distinct, we can express an arbitrary column vector in terms
cof the n orthogonal eigen vectors by linear combinations.

Thus the first trial modal column can be expressed as

{¢1} =c1 {6}s + c2 {9}z + Ca{d}s + .... +Cn{¢}n

(3L57)

where C;,C; etc are arbitrary constants and {¢};,{¢}, etc
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are the eigen vectors of the matrix [P]. The trial modal
column can be anything, but if it is reasonably close to the

actual modal column, then the convergence will be hastened.
Premultiplying the trial column by [®] we have

[B] {¢,3= C1[P]{o}1 + Co[®] {632+ .... C_[B]{¢} ~ (3.58)

By virtue of eguation (3.55) the following relations

are true:

[p){¢}1 = (1/w}) {¢ha
[B]{e}. = (1/wh) {¢}:
[plie}, = (1w} fo3, (3.59)

where it is assumed that the eigen values are ordered such

that

wq - Wa < Wa < veeens Wy since
[®] {41} = {02} (3.60)

where {¢.} is the second trial modal column, it follows

from eguations (3.58) and (3.59) that

(02 = S 11 + & (0)a + ... Cnledy (3.61)
W,
n

The second iteration gives:

AR € - C
[®] {42} = G% {6}, + §§ {0}, + ﬁ% {63 (3.62)

Here it is noted that in order to keep the algebra simple,
the normalisation is purposely avoided. However, the
validity of the process is not affected by the absence of

the normalisation.
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After (P - 1) iterations, we obtain
@ ! @ .
I i kg e = G}y =R +
(9] b1 L¢p} =, {6}, w%p{q:}z
2

— 4 o
P
n

- n {d}
?

£

which can also be written as

2P
to ) = ;_";"5 [e: fo)s + Ca(BD) T 1o} + ...
Wi ZP
+ cn(;; {¢}n] (3.63)

If no eigen values are very close to each other, after a few

iterations, it will be valid to claim that

e
{¢p} ~ wip

Ci « 18} (3.64)
One more iteration will yield

{0,,,) = [8] {o ) = —7p+: Ci1{oh (3.65)

p+l

Comparing (3.65) with (3.64) we obtain

g
} = {¢p} (3.66)

wt

{¢p+l

Eguation (3.66) states that the iteration has proceeded to
the point where convergence is evident. One more iteration
will merely produce a multiple of the preceding column. The

constant of multiplication is the value of 1/wi.

‘If the iteration is based on (3.57) it is easy to see

that instead of (3.63) we shall have

2P 2P
{6} = w2P [cy (EY) " {¢}1 + C2(Z2) {¢}2 + ..
P n Wn .n?n

+iC. {¢}n] (3.67)

In this case it is evident that the largest eigen value is

obtained by iteration.
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3.6 Determination of the Higher Modes

The highest eigen value of the problem can be obtained
by iteration using equation (3.56) instead of eguation

{3 +55)

To obtain the intermediate eigen values is the central
problem to be studied in the following section. A method
is available for ohtaining the successive eigen values in
either ascending or descending order, depending on whether
equation (3.55) or eguation (3.56) is used as a basis for

the iteration.

To make this method more clear, let us use eguation
(3.55) to start the iteration and assume that {¢}, has now
been obtained. To proceed to the second mode {¢}. we shall
again take an arhitrary column, but now it is necessary
that this column should be orthogonal to the first modal
column {¢}: . This constraint can be expressed in matrix
form as

O [3] & h = 0 (3.68)

Substituting equation (3.57) into equation (3.68), we
obtain

SRR My NSO T R O SO

c 17 [®] ) =o (3.69)

By virtue of the orthogonality conditions existing between
all modal columns, all the terms except the first one in

equation (3.69) vanish., Hence we have

c, {9}3 {B] {4} =0 (3.70)

which leads to the conclusion that C; = 0. Therefore, with
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the constraints (3,.68) and (3.57) become

&

{01} =C2 {9} + Cs {0}s + ... Cn{¢fn (3:71)

The above equation shows that when a trial column is
subjected to the condition in equation (3.71), then it can
be expressed in a linear combination only of (n-l) modal
coclumns with the first modal column deleted. Following the
same reasoning, it is not hard to see that by using a trial
column with constraints (3.71) to start the iteration, the
second modal column {¢}, will be obtained, when convergence
is achieved. This same principle can be used in the
selection of the trial columns in establishing other modes

by iteration.

Let the elements of the trial column {¢;} be ¢1i where

the index i denotes the row:

6.} = 54 (3.72)

= N =

ni

Expanding the triple matrix product in (3.68) ,we have

(11 (1)
¢11 § dij ¢j + ¢21 § dzj ¢j R vay T ¢niz

Ly
nj ¢j = 0 (3213)

where the superscripts inside each summation denote the

F1)
3
Wy ¢§2) is the second, etc. Expressing the first element

first modal column. Thus ¢ is the first element of

in the first trial column in terms of the rest of the

elements of the column, we obtain:
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(1) (1)
ds . 0. ds.0.
d)ll = ._z 21¢'[ {bﬂl _): 1¢j ¢
] dy ¢§1) j ) d1-¢-(1) T
33 S U
3 (1) :
_ L4y o
T ' i 1
L G oy (3.74)

The trial column with the first element given by (3.74) and

arbitrary elements for the rest of the array may be called

the constrained trial column and is denoted by {¢1}c. Then

{¢1}c can be written as a product of two matrices:

° (1) (1) (5]
d11 0 = Ld’ﬁéj - zd3j¢j ...-Zdnj¢j 611
vdl-d}-(l) Zdl-¢'(1) Zdl.d)-(l) g
e i 159 s S
) \
b21 | 0 1 0 s 0] §i¢21
| B
{¢1) = oy | = 0 0 1 cee 0 ;,¢31
: | { : ;:E
% L c i o o O 1 E ¢ 4
—— (3, 75)
for brevity, (3.75) may be written in the form:
terd, =-ilsly Tl (3.76)

where [S]: is called the sweeping matrix. Thus, the first

iteration is expressed by
[®] {¢1}c = [p] [8]:1 {01} = {92}

For the next iteration the newly obtained second trial
column again has to be modified by the same constraint.
{¢2}c - [511 {02} (3:717)

This process is repeated as many times as convergence

regquires.
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Hence we have

]
I

(p] {621, = [B] [s]1 {92} {93},

[l

~—
&/
'
s |
-
o
I

{¢ } (3178

bote = [8] [s]a {o) 29

Labour can be saved if the matrix [P] is postmultinlied
by [S]: to get [P], which can be taken as the first modified
dynamic matrix to be used over and over in the iteration to

obtain the second eigen value., Thus, in terms of LDJl we have:

[B]1 {91} = {92}
[®]: {92} = {03}
etc (3.79)

To obtain the third eigen value, two orthogonal relations

must be used to constrain the trial column:

6}T [5] {01}

1l
(o]

and {16}3 [B] {01}

Il
O

(3.80)

From equation (3.80) a second sweeping matrix [SJZ can be
constructed and the process of iteration can thus go on,
guided by the routing just developed. The number of
iterations regquired depends on the closeness of the assump-

tion to the actual modal shape.

3.7 Reliability and Accuracy of Solutions

In dynamic analysis, the procedure involves four major

steps:

1) The idealised description of the structural system
by a mathematical model
2) The establishment of a system of governing equations

of motion
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3) The solution of this set of equations

4) The confirmation of the solution by experiments.

The reliability of a dynamic analysis procedure is
determined by the 'completeness' of its results compared
to the solutions of the original system and the accuracy

is determined by their 'closeness'.

In other words, by reliability we mean that every
solution obtained by such a procedure is a solution,
exactly or approximately, of the original system, and there
are no solutions of the original system which are missed

out by the procedure within any domain of interest.

And by accuracy we mean the closeness of a solution by
this procedure to the corresponding actual sclution of the

original system.

The requirements of 'how accurate' and 'how reliable'
are the results within some economic limits of computation

will determine the choice of procedure used for analysis.

3.8 Computer Programme

The numerical technigue incorporated a programme developed

for calculating the natural frequencies and the mode shapes.

Programmes for the solution of each parameter were
developed initially and then combined into one programme.
Using this programme it was possible to study the various
vibration. characteristics of the structure under considera-

tion. Continuous structures have an infinite number of modes
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of vibration, but generally only the lowest few of these
are of importance in low freguency vibrations, so that in

these cases it is necessary to consider these few modes.

The technique employed in this work was the Finite
Element Method to find the solution to the structural
vibration problem. The consistent stiffness and mass matrices
of the structure elements were derived by discretization
of the platform structure which consisted of beams and plates

i.e. finite elements.

The programme read the following data:

A = Area of cross section of the beam mm*

o) = Mass per unit length of beam Kg,/mm

E = Young's Modulus of beam material KN /mm?

G = Rigidity Modulus of beam meterial KN /mm?

S = Polar second moment of area of beam. A
cross section mm

Iy = Second moment of a;z@tgganiguzrzﬁz . !

y axis mm

L = Length of beam mm

mi mass Kg

mz = mass Kg

K = spring constant N/mm?

It was possible to run the programme to change the
iteration procedure from 100 to 500 times. Also worth
mentioning here is that the number of iterations was
significant in the accuracy but not for the speed of

computation.
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Due to the springs supporting the structure, the
potential energy stored in the springs is:
2V = Ki(gy— .55gs~ .2q5)2 + Kz (gu+ .55gs — .2CZ{5)2
+ Ks g% + Kuqg}s o

Then adding values in the consistent stiffness matrix for
the spring's potential energy, (by modification of the main

programme) , the potential energy in the springs is as

follows:

Ky, = (K1 + Kz)
Ks,s5 = .3025 (Ki+ K3)
Ke ;5 = .04 (K1+ K3)
Ku,s = «55 (Kz2- K;)
Ks,6 = 1 (K1- K3)
Ry, 6 = =2 (Ki+ K3)
K77 = Ks

Rigsys = Ky

Fig. (3.3 )shows the theoretical idealisation for the
structure with 15 degrees of freedom. The method used offers
considerable economic advantages in terms of computation,

and can give insight into what is happening in the structure.

In any dynamic analysis a procedure involves four major

steps. They are:

l. The idealised description of the structural system
by a mathematical model

2. The establishment of a system of governing eqguations
of motion

3. The solution of this set of equations.
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4, The confirmation of the solutions by experiments.

Fig. (3.4 )shows an exploded view of an idealised

structure with all the elements.

It was assumed in the computer programme calculations

that the spring stiffness was constant.

These findings indicate that the digital computer has
become an indispensable tool to scientists in general and

engineers in particular,

A proper use of the computer lies in one's ability to
translate a problem into simple repeated steps of operations
in a form which lends itself to the mode of working of the
computer. In order to perform a particular job, the
computer must be fed with the set of numbers to operate upon

(data) and the set of operations required (programme).

The theories and processes for the solution of our
problems have to be well represented in the form of computer
- programmes and data for the correct results to be obtained.
In the previous sections the theories for obtaining the
consistent stiffness and mass matrices of a beam element and

plate element were developed.

The eventual goal of obtaining a computational dynamic
analysis of a flexible platform structure can then be

achieved through the sensible use of the digital computer.

The first programme was to produce the overall mass and

stiffness matrices of the structure (properties) when
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supplied with the suitable properties of the consistent

beam and plate elements.

Secondly, the main programme solved the eigen value

problem of the form given by equation (2.3) namely

(k] {u} = w2 [M] (U}

The results from this programme include the natural freguen-
cies (eigen-values) and normal modes (eigen-vectors) of the
system under consideration. The eigen-vectors could be
plotted to obtain a pictorial view of the modes of free

vibration of the structure.

It must be said that the discretization of any structure
into finite elements usually leads to large order overall
mass and stiffness matrices. Most modern digital computers
are capable of working with large order matrices. But even
so, the largest computers available have limited capacities.
Hence they have limits on the size of matrices that can

input into them.

It is possible to wuse the useful property of the mass
and stiffness matrices of a real structure which is symmetry.
Thus, no data is lost by storing only the matrices as only
upper or lower triangular matrices. But unfortunately, the
modification in the main programme for the potential energy

in the springs in the stiffness matrix made it impractical.

Another method is to store the consistent mass and
stiffness matrices on a tape and call for them in
the beginning of the main programme. A point to be mentioned

here about the two plate element is that they were calculated
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first then condensed to fit in the normal co-ordinate
representing its parameters.

Using an intelligent numbering of the nodes (and
nodal displacement co-ordinates) the overall mass and
stiffness matrices of the structure can be made to become
band matrices with as small a band width as possible, to
use the computer most efficiently. But owing to the number
of degrees of freedom taken into consideration it was
preferable to use the complete consistent mass and stiffness
metrices. In other words, the inevitable need for large
core storage still exists. This in turn has placed a very
high limitation on the number of degrees of freedom of

structures which can be analysed on the available computer.

All computer programmes described here were written in
Basic language, and run in the University of Aston-

Mechanical Engineering Department model HP 90l1A.

The programme also incorporates the addition of con-
centrated mass and stiffness properties to any co-ordinate
of the frame. Thus joint masses and other masses can be
added to the appropriate elements of the mass matrix while
the effect of spring stiffness can be added to the
corresponding elements of the frame stiffness matrix.

Again, the data which this programme required for processing
included the number of degrees of freedom of the structure,
maximum allowable error in the vector, the coefficient of
consistent mass matrix, the coefficient of stiffness matrix,

and any modifications before starting the iteration.
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The printout included:
print 1/3 = wt , w¢ , wi natural freguency
print U = U; , U, , Uz ... Uismode shapes

print Error in vector after the given number of interations,

The programme included the number of finite elements of
the discretized structure, the Young's and Rigidity
moduluses of each component, the mass per unit length of
beam, the second moments of area of the beam element cross-
section about its x-y and z-axis and the area of cross-

section of the beam elements.

Another computer programme was run with 41 elements.
Finite element discretization of the flexible platform would
vield a total of 20 elements for the two plates and 21
elements for the beams. From these 54 degrees of freedom
would be due to translational displacement and 108 would be

due to rotation.

The estimated computer core necessary to run this
programme to solve the eigen value problem (NAG EIGNVAL) for
a system with 162 degrees of freedom is about 175K. Unfor-
tunately, the ICL 19045 computer currently available at the
University of Aston Computer Centre only provides a maximum
core size of 100K and under special arrangement can be run
at 110 K which is about 0.62 of the size reguired for this

programme.

The alternative computer at the Regional Computer Centre
in Manchester provides a maximum core size of 200 K, which
would be suitable for this work. However, bearing in mind

the cost and time, it was decided not to make use of this
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facility as very little productive outcome was expected
from the results. In other words, the expected increase

in productivity would not have justified the increased cost.

A practical way of avoiding the need for so much computer
core is the reduction in the number of degrees of freedom
of the system studied or alternatively, through some manipu-
lation of the stiffness and mass matrices to obtain reduced
matrices for the dynamic analysis. This usually involves
distinguishing between the translational and rotational

displacement of the structure.

3.8.1 Elimination of rotational displacement

Generally, in the dynamic analysis of structure, not all
the static displacements are considered. The experimental
modal shape measurements involved only the translational
displacement components. For example, in the conventional
dynamic of structure analysis of fighter wing structure only
deflections normal to the wing midplane are held. By the
same reasoning it is useful, in this work, to retain only
the translational displacements and eliminate the rotational
displacements. This will lead to condensed mass and stiffness

matrices for the structure.

The first step in this elimination process is partitioning
of the stiffness matrix [K] and the displacement vector {g}
of the structure in the following form
= -
[KJt,t [K]t,r
[X] = [ 2.51)

Ble v o (Bl 2

r
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and {q}t

lq} = (3.82)
“{qg}

r
The vector {q}r refers to all the rotational displacements
which are to be eliminated for the dynamicsof structure.

The vector {q}t refers to all the translational displacements
which are to be retained as the degrees of freedom of the
structure for the analysis. The stiffness matrix as parti-
tioned in equation (3.81) is such that it is compatible

with the partitional displacement vector.

The static equilibrium is given by

{Q} (3.83)

(k] {q}

and in its partitioned form, it is given by

[K]t,t [K]t,r {q}t {Q}t

(3.84)

(Rl el e T

L %

Assuming that the external forces {Q}r corresponding to
the rotational displacements are equal to zero, we have
from eguation (3.84)

=1

9y = -[K]r,r [Kjr,t {q}t (3.85)
provided ]:K]r , 1s not singular

Substituting equation (3.85) into equation (3.84) we have
= = = ’
toh = d IK] L 4 [K]t'r [K]r,r [R]r!t). {a}, (3.86)

or

Qkg. = X] . : {q}, (3.87)
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l,r ]_-K]r,t (3.88)

[K]c represents the condensed stiffness mass matrix

of the structure.

Let virtual displacement {8g} be applied to the structure
and [M]_ be the corresponding condensed mass matrix of the

structure.

It follows from the eguivalence of the virtual work of
the two equivalent mass representations of the continuous
system that

T .y T T -
{eql, [M]. {g¥, = [{éq} {8q} ] M) (&}, (3.89)

(g},
substituting eguation (3.85) into equation (3.89) we have

{6q}§ M), (@}, = {sq}f [a]Z(M][a]_ (&),

e s (3.90)

where q

k3

[A]c = (3.91)

-['T{]r'; [K] r,A

and [I] is an identity matrix

Thus from equation (3.90), the condensed mass matrix

of the structure is given by

M, = [a]7 ] [a], (3.92)

Equations (3.92) and (3.88) give the condensed mass and

stiffness matrices respectively for any structure.

However, large sized matrices are still to be manipulated
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and still require more computer core. But there are ways
to avoid the complete use of these large matrices during

their manipulation.

Unfortunately, due to shortage of time, only the
theoretical idealisation for the structure with 15 degrees

of freedom was considered.

3.9 Discussion of Results

The computer programme was in good agreement with
measurements within the limits allowed in the structural
analysis. The results of the theoretical and experimental
vibration analysis of the flexible platform are very satis-
factory in relation to the natural fregquency and the mode

shapes.

The theoretical analysis used in this work has produced
a very good agreement of the true modal shapes of vibration
for the first three modes analysed (the rigid body mode) and

the corresponding natural fregquencies.

Also for the plate mode the modal shapes and the natural

fregquencies have been very close.

TABLE 3.1

Natural fregquencies in Hz

MODE S i el L)

l computed | Experimental
' 1 4,55 4,3
2 i | Bia2
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Table 3.1 shows the first three computed and experimental

natural fregquencies of the flexible platform.

As for the platform itself, the following table 3.2

contains the three rigid body modes and the plate mode.

TABLE 3.2
Natural freguencies in Hz
MODE :
computed ; Experimental
1 4.55 | 4.3
2 7.14 _ 8.2
3 8.656 ‘ 9.1
4 42.34 | 37.4
|

The computed frequencies are on average about *5% to 15%;

this is good enough in vibration analysis.

If it is necessary to trace the possible source(s) of
error in the theoretical approach, the most likely sources
of error are the derived stiffness and mass matrices, and
the values of spring stiffness. The spring stiffness values
used in the computer programme which were added to the
structure stiffness coefficient were considered to be linear,
but in actual fact the spring stiffness is not linear but has
a minute amount of non-linearity, and has a stiff type

spring character.

The following Table 3.3 shows the computed natural
frequency for the platform with twice and three times the

spring stiffness for the first 10 modes.
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TABLE 3.3 0
i 1 Computed Natural frequency in Hz
| MODE o
i Computer Calculation
1X spring stiff]| 2X spring stiff} 3X spring
’ A | 4.55 6.09 Feis?
2 ] To LAl 9.258 10359
3 | 8.556 1l.55 13,170
4 | 21.84 17.24 18.160
5 27.60 15.95 21.66
6 33.60 28,91 29.78
7 42,34 31.24 30,31
8 54.26 44,04 33.49
9 96.76 56.32 46.59
10 110,76 10 35 55.30

Errors of up to 15% higher than the computed natural
frequencies would suggest a possible 37.5% over-estimation

of the structure stiffness matrix or the same under-estimation
of the structure mass matrix or some combination of these

factors.

The computed fregquencies, should, theoretically, tend
to the lower limiting values equal to the actual natural
frequencies. If a mass is placed at a nodal point, then it
has negligible influence on the frequency, while if it is
placed at anti-node, its influence on the freguency is a
maximum. Changing the torsional rigidity at an anti node
where the torgque is zero, has negligible effect on the

frequency, while changing it at a node has the maximum effect.
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In other words, by adding a mass at an appropriate position,
the fregquency of a selected mode may be changed without
affecting other modes and also changing the torsional
rigidity at appropriate positions offers an alternative
method of changing the freguency of a selected mode without

affecting other modes.

Moreover, the good agreement in the corresponding modal
shapes did not raise the suspicion of such percentage
estimation. But this line of approach has proved reasonable
upon investigation. Careful consideration and extensive
checks on the programmes and data have not shown any trace

of such errors.

Other sources of error may be the boundary conditions at
the joints of the frame; most of the frame joints are of
welded construction and it seems probable that the welded
joint gives rise to some sort of increasing stiffness in

these parts.

A factor of safety, which we may call a factor of ignorance,
is usually applied to account for the difference in the
theoretical and real deflections of the structure. It seems
there is a need for obtaining more accurate assessment of
the true joint conditions in the vibration analysis of
structure. Unfortunately, this is not usually applied by

the structural engineer at the design stage.

A true measurement of the joint boundary conditions would
be preferred, because this is the main reason for the

discrepancy between the experimental and theoretical results,
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other than the nonlinearity of the spring supporting the

structure.

Rockey (ss)

1977 looked at various processes and
fabrication procedures adopted which affect the residual and
geometric imperfections occurring in the completed structure,
e.g. roller-straightening, gagging (i.e. straightening at
one point), flattening by local bending or pressing, stress

relieving, normalising or hardening and tempering, flame-

cutting, shot blasting, etc.

This gives rise to the need to look briefly at the model
material used, hence some material properties, viz, stress-
strain relationship, notch ductility, etc. are likely to

have an important influence on the results of the test.

In a welded structure (for example) there will be very
great rapid changes from compressive to tensile stress in
the vicinity of the welds. 1In the stiffness, particularly
those having local thick parts, there may be very significant
local stress gradients and these are unpredictable, to the
extent that stress of either sign, i.e. compressive or tensile,

may occur.

Of course, the more practical parameter to be checked in
this structure was the stiffness matrix. This was done by
considering the static of the plane frame. Load deflection
experiments were performed. Also, the corresponding
deflection of the structure was calculated for a given load

from the stiffness matrix and static equation

(k] {q) = {0
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Experimental displacements at the same points were
measured to obtain the average deflections of the frame

structure for a fixed point load.

Finally, with an adequate size of computer the data were
obtained for the real mass and stiffness matrices of the
structure. These were used to obtain the true mass and
stiffness matrices representing the true structure. This
in turn should yield the true vibration characteristics of

the flexible platform.

Rig Description:

The rig consisted of a plain frame with the dimensions (mm)
a,b,h = 1100, 1100, 100 respectively. As shown in Fig.(1l.1l)
the steel frame had I-shape cross section of h = 100 mm.

L L
and Ix = 198 x 10 mm, Iyy = 17.9 X 10 . In every corner of

%
the frame there was a piece of square plate with the
dimensions 200 x 200 x 10 mm. These pieces of plate were used

as a rest base for the springs.

The motor was mounted on the big base. The alternator
was mounted parallel to the motor on another base. The
alternator was used just as an open circuit machine driven
by the motor. The unit which here is called the motor, was
in fact a Heenan-Dynamatic variable speed drives and couplings
which drove a rotor. The Heenan-Dynamatic Air cooled variable
speed coupling consisted basically of two revolving members,
one of which had poles or teeth and carried one or more coils
which were excited by D.C. current. This induced eddy
currents in the adjacent iron face of the other, or armature

member thus effecting a transfer of power from driving to
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driven member by its insertion between a prime mover and
the driven equipment. The outer member was carried by
rotating bells so that it was concentric with the inner
member, both being suitably supported in ball or roller
bearings. The slip rings carrying the D.C. current to

the coil were mounted on the output shaft which also drove

the governor generator when fitted.

This coupling, as with all forms of slip coupling, was
not a torgue converter, and the output torgue could not
exceed that available from the prime mover. The power lost
due to a reduction in output speed had to be dissipated as

heat by the coupling which needed to have adeguate ventilation.

Cooling was effected by means of the fan action of the
outer member which drew air through the end bells and
directed it across the inner surface of the armature member
in which the heat from the induced eddy current was generated.
The heated air was discharged into the surrounding atmosphere
and a suitable air exit had to be provided in any protecting
enclosures. Current to the coupling field coil was obtained
from an excitation unit normally designed to operate from
a 200/250 volts single phase 50 cycles A.C. supply. (This
may consist of a metal rectifier with a transformer or a

thyratron unit depending on the application).

The two more usual characteristics provided are:

Natural : where a fall in speed against an increase in
load is desirable

Constant speed: where despite changes in load the speed
is to be maintained at an adjustable pre-set

value.
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Heenan-Dynamic Governor Generator

The governor generator was of the A.C. type employing
Alinco permanent magnets for field exc%tation. These
magnets maintain their magnetic energy over a period of
years, resulting in a constant output voltage for a given
speed. No commutators were used in the design of this
generator, therefore, no brush replacement is required,
and with the exception of the bearing, in some cases, no

maintenance is needed.

The output voltage rating of the coupling shaft mounted
generator was usually in the wvicinity of 25 volts at 1500
r.p.m. speed rating where the Alnico generator was of the
separately mounted belt driven type and the output voltage
was approximately 45 volts at 3000 r.p.m. In both cases,
the output of the generator was substantially linear, and
thus the voltage was proportional to the speed. The
electronic control used in conjunction with this generator
compensated and standardised this voltage at predetermined

levels.

The wires connecting the generator to the electronic
control had to be shielded or run in separate conduits.
The voltage from the generator was not affected by the
direction of rotation; this generator will operate in either

direction.

The bearing was the separately mounted self-contained
generators which are packed with grease before despatch and
should not require attention for approximately 5,000 hours

of operation in normal ambient conditions.
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3.10 Conventional method and mathematical model

Conventional methods of structural dynamic analysis
involve the mathematical representation of a physical
system in the form of its equations of motion, For
systems having many degrees of freedom, it is convenient to

cast the eguations in matrix form.

This has given rise to extensive use of matrix algebra in
the formulation of dynamic response analyses. The process
of reducing a physical system to a mathematical representation

is a prevalent task mutual to all fields of analysis.

Typically, this reduction of a physical process to
mathematical equations has resulted from exercising a blend
of skill, insight, experience, and good judgement. At least,
in the mechanical/structural field, this has been the past
history. It is possible to generate mathematical models by
making use of experimentally derived information. The
point to be made here is that they all belong to the analyst's
bag of tools and it is his task to best match the particular

job.

The- derivation of mass, stiffness and damping matrices
that correctly represent the physical system is often a
formidable task involving engineering judgement on the part

of the analyst.

The analytical process is usually accompanied by dynamic
testing either to verify the mathematical model or to

point the way to required modifications of the analysis.
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Sometimes the system of equations, or mathematical
models will be modified on a simple trial and error basis
to make the model respond in some predetermined fashion
or react so as to match behavourial data obtained from

the actual physical system.

In the transient case, problems arise because the relative
phase is not generally +90° at resonance as it is in the
steady-state case, although the phase varies around the
structure because of "model overlap" (that is contributions

from neighbouring modes) and "statistical variance error".

The mode shape at a given frequency corresponds to that
which would be obtained when the structure is excited with

a sine wave input at the same frequency.

The modal patterns at resonances do not represent the
normal modes of the structure since they contain small

contributions from the flanks of neighbouring modes.

It is often assumed in dynamic test analysis that the
responses are purely modal. This is a reasonable approXi-
mation in cases where systems damping is low and test
forcing points have been carefully selected. 1In point of
fact, no test responses are purely modal. In a typical
dynamic test the structure is forced at a single point in
several of its modal frequencies. 1Its response is really

a combination of the responses of all its modes.

Completed modal information

First consider the situation where mode shape and modal

mass information for 'N' number of modes has been obtained
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from experimental data prior to any formulation of a

physical model.

If the physical model is to have the same number of
degrees of freedom 'N' as known modes, theoretically the
physical model can be completely identified. This identi-
fication is based simply on assuming orthogonality to exist
between modes with respect to physical mass, stiffness and

damping terms.

The matrix description of the physical model can be

expressed as

[$J-T [HJ [¢]-l "Physical Mass" ¢ 2)

—
=
[ -
[

[¢}_T [w?m) [¢]_1"Physica1 stiffness" ( B)

1
o
|

[¢]7T f2zem] [¢]* "Physical Damping" (C)

| e
AL
I

with the [¢], [m] wy,z4 teImS being the known modal informa-
tion. In general this scheme is admittedly quite idealis-
tic since in practice only a limited number of modes can

be experimentally measured.

It is assumed that a "good" estimate of the physical

mass model with 'P' degrees of freedom can be made initially.

Usually the conceptual physical model will possess a
larger number of degrees of freedom 'P' than normal modes
'N' obtained from test data. What results from this
scheme is an "Incomplete model" that retains 'P' dynamic
co-ordinates but has only 'N' modes. This incomplete
model is derived so as to have the properties of producing

the true response in all 'P' degrees of freedom over the
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fregquency range of the valid test data and having a physical
mass matrix which deviates least from the original estimate.
In addition, the orthogonality relationship is forced to

exist between the measured modes and derived mass matrix.

The stiffness matrix for the incomplete model

|Klnccmp
is developed briefly as follows

fm] = [6]7 [ [o]
[6)7F m) . = ] le]
(<] = (8] letm) [0]7
= [M)  [e] [w?] Im]™" [6]% [u]
P
D B {6,637 [m]

When N = P, there exists a complete model as defined

previously.

IfE N < P, an incomplete model stiffness matrix exists
being expressed as

u.‘l2

i | T
LT, [M] {9, 3{¢,}" [m]

[Klncom.=

e e =

Such a model can predict changes in the normal modes due

to mass changes. Test data are required at each significant
resonance of the system. In addition, the particular
measurement locations to be used must be selected with care.
Experience and common sense have indicated the desirability
of selecting the locations so as to ensure that reasonable
idea of the nature of the mode could be inferred from the
test measurement. In practice, this means selecting
locations on each side of the modal boundaries (neutral

points) in the highest mode.
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There is, in general, a choice of selections. This in
turn means that unigque solutions to Equations (A) through
(C) do not exist, whichever test measurement locations are
selected, however, the set of three matrices will define a
model whose responses match resonance data for the selected
locations. We are forcing the system to match a known

output.
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CHAPTER 4

Some Considerations of Linear and Non-Linear

Restoring Forces

It is essential to consider the factors of non-linearity
in order to explain the unexpected behaviour in the modes
of the response curves. This non-linearity can influence

greatly the unforeseen resonances in the structure.

The stiffnesses of the supports were found experimentally

to be almost linear within the normal workino range.

In practice, however, elastic supports may possess
some non-linear characteristics in the working range,
giving rise to new phenomena which may be completely

different from the linear case.

4,1 Non-linearity in General

In practice, non-linear problems may occur in all types
of engineering works, such as in fluid dynamics the
building up of a discontinuous shock wave from a smooth
wave; in solid mechanics the presence of plasticity and
non-linear elasticity; in mechanics the non-linear vibra-
tions of machine components. Non-linear problems in

mechanical vibration may occur in several ways:

(i) non-linearity of restoring forces in the
vibrational system i.e. the effect of a

softening or hardening spring

(ii) non-linearity in the nature of the damping,

for example, coulomb damping, time-dependent
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damping coefficients, etc.

(iii) non-linearity inherent in the system parts,

such as material damping, hysteresis, etc.

(iv) periodical variation of vibrating mass,
such as in the case of a reciprocating

engine

(v) oscillations in self-sustained systems. These
always occur when a periodic motion is
maintained through absorption of energy from
a constant flow of energy, such as electrical
systems containing vacuum tubes in which the
energy for the oscillation is supplied by a

direct current source, and

(vi) oscillations due to time and amplitude dependent

excitation forces.

In most cases linearisations as an approximating device
may give valuable and sufficient solutions. These approxi-
mations occur mostly when the amplitudes of the vibrations
are small. However, if the amplitudes are large, the
accuracy can be improved by carrying out further approxi-
mations. New phenomena may be found in such non-linear

systems which cannot in principle occur in linear systems.

In non-linear vibrations the occurrence of subharmonics
and ultraharmonics, jump phenomena and combination tones

will be formulated mathematically.
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Various methods such as the Ritz averaging method

iteration are illustrated.

The above methods are valid only if the non-linearity
is small, i.e. if the oscillation is in the neighbourhood
of the linear oscillation. However, the cases in which
the departure from linearity is large will regquire the
use of more sophisticated mathematics. Even so, in some
cases such as the presence of small divisors in the problem
of combination tones, mathematical results fail to describe

the actual phenomena.

The effect of non-linear elastic restoring forces on
the flexible platform will be discussed. That is, the
restoring force which is obtained by either a softening or

a hardening spring.

Thus to start with, the solution of Duffing's eguation

is assumed.

Damping is assumed to be linear in all cases. However,
this is not applicable especially if the system has marked
non-linearity. For systems of more than one degree-of-
freedom, it is difficult to obtain an equivalent wvalue of

the damping coefficient for each mode.

The effect of beating in a non-linear system is quite
significant, especially if the system has more than one
degree-of-freedom. In these systems one instability
occurs, that is the amplitude of vibration at each mode

varies periodically.



=119~

4,2 Ultraharmonics and Sub-harmonics in Forced Non-linear

Oscillations

Consider the equation

~

¥ + 2vpkx + p?’x + ux® = H Cos (2t + §) (413

Since the forcing function is periodic, equation (4.1)
can be solved by Fourier Series, i.e.

o

A Cosn Ot + ] B_ Sinm Ot
i m=1

Xi= R
n

Il <318

In practice, it can be shown that ultrasonic oscillations
predominate if p = n 2, where n is a positive integer other
than 1. If p = 3 @, then we can try a solution of the

form:
X = A cos Ot + U Cos (30t + ¥v) § #0
Substituting into eguation (4.l1) and equating separately to

zero the coefficients of Cos Qt, Sin Qt, Cos (30t + y) gives:

3

6 QU+ 6vp QUS= u% Sin ¥ (4.2)
.._ 2 2 3 2 3 3 2
62Uy = (p*-9w*)U + u(5 A0 + U + 7 Cosy) (4.3)
2 2 3 a3 3 5 3 g8l .
(p* - 2%)A + U(I A° + 7 A®U Cosy + > AU ) = H'Cos'6 (4.4)
2v pQA + u% A%U Sin y = H Sin § (4.5)

By squaring equations (4.4) and (4.5), and adding them

together:
H? = A?{[(p? - Q%) + u % (A% + AU Cos y + 20%)]2%+
(2vpQ + p3 A U sin v) 2} (4.6)

4
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If y is a very small guantity compared with p, and

if v is of the same order as u, then from equation (4.6):

If H is of order u then:

Bt + 0 (n?)
(B% ~ui#)

A:_H_
(p? - Q%)

Steady State Solutions

U=y =0
From equations (4.2) and (4.3):

A 3

vaQUO = 9 i Sin Yo - (4.7)

and

3
i B e e
Uo(p 90%) + u(z A U2 U, ) ="H 7 Cosy

veoes (4.8)

By squaring equations (4.7) and (4.8) and adding them

together we get:

(o’ ) 2
4

= (6wpR)* ©_* + [(p® ~90°%) T
3 2 2 3y12
AUz A 20+ 51 ) ] (4.9)

From equation (4.2) we get:

Sin v, = +6vpf | (4.10)

.r{ 3 3
b{{vaQ)z + {92 -902% 4+ u(z Aoz+ EUoz}]z}
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From eqguation (4.9) the loc's of vertical tangency of UO
is

o 2 2 _ 9.2 L T 2
(6vpR) 2 + [p 902 + (5 Bty WS ) ] %

a?+2U0H)]=0 (4.11)

Approximations of the loci are given by:

S 2 Y R I R S
P 9Q< + u(2 AO + 7 UO ) (@]
B2 - lgnE 4 iR a2 4 g 2y =6 (4.11a)
4 g 5 4 “o )
Stability at steady state
Let U = U_ + E
o
Substituting into eguations (4.2) and (4.3) :
- U3
60E + 6vpRE = u O cos Y n
and . 4 3 9 A03
o ZA . & - 2 i & -l
6QU _n (p 9Rf % viz b P a U )] € u— Sinyn

. AL y ; ;
Assuming solutions of the form e £ , and substituting into

equations (4.7) and (4.8) for Cos Y and Sin Tt

= 2 _ 2 5 3 2. 3 2
(622 + 6vpR)z = [(99 p?) U -u U (3 A%+ 7 U %) ]n

[(pz— 998)+u(% AOZ - % UOZ)]: = Uo(sﬁk + 6vpR)n (4.12)

From equation (4.12) ,the characteristic solution is:

(602) 2 + (18vpR2%)x + {(6vpR) 2 + [p?- an? + u(% AZ +% v )]

% [p®* < on* + u(% A02 + % UOZ)]} =0
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For stability X € 0, hence
2. pv = 0,
(6vp@) * + [6p% - 90%) + u(Z A_? 4 -2-02)-]

2 3

x [(p? - 90%) + w322 +3U.5] 3> 0

o]

ro]

The first condition implies that v must be positive.
The second condition requires Uo to be lying outside the
region enclosed by the loci of vertical tangency. If the
damping ratio is small, from equation (4.11a) the
system cannot have vertical tangents unless

Q2 B'% (p? + u% %)
This shows that marked ultraharmonic behaviour cannot occur
unless the fregquency of the exciting force is slightly above
1/3 of the natural frequency of the system. Fig. (4.1)
shows a typical amplitude/frequency response curve for an
ultraharmonic of order 3. 1In the region close to 1/3 of
the linear natural frequency the amplitude becomes triple-
valued, two being stable and one unstable. In this region

ultraharmonics predominate. Jump phenomena occur at the

points P and Q.

Subharmonic motion

Under suitable conditions subharmonic motion may predomi-
nate in a non-linear system. In the case of cubic non-
linearity, marked subharmonic behaviour of order 3 has been
observed experimentally, if the frequency of the forcing

function is about 3 times the natural frequency of the system.
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The solution may be assumed to be of the form:

vk

X = A cos it + S cos(

Proceeding in the same way as in the ultraharmonic solution,

G A % (322 + 68%)]7% + u % S® Cos 3 y[p?- Q°?

[l

+ & (322 + 6s%)] + (2vpQA)? + uvpl AS® sin 3y)

-3
= g2 - (E%~)2 (4.13)

and the equation of the steady state solution is:

3 2 e 2 2 2k Ei
(g v s, a)? = [(p +% U A 5
A S L L B
4 0 3 P o :

The logcue of vertical tangency of SO s -;

e e 2t At 3 g 2 z 3 e B
So{[p + 5 A, s +u 8 51X [p* = un_ . + u
9 2 P e
8.2 + (5 vee] 2(3 w8 A, %)} = 0  (4.15)

Using equations (4.14) and (4.15), then either

or (%vpg)2+(P2+%uA2__)2_(u_52)2=0

co (4.16)

If the damping ratio is small, the second locus is

approximated by:

o w

3 R ‘- I 2
7 S = (= P U AO )
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Stability of steady-state solutions

For stability v 2 0O

(% S L L. % R )t (% vpR) * 2 0

2]

This condition reguires SO to be lying outside the region
enclosed by the locus of vertical tangency as defined by

equation (4.16).

From equation (4.14), if SO # 0, and taking AO as constant:

2
3 2 i L S :
3 23850 5 L) 20 g2 2
S o (4.1
5 i SO is real, eguation (4.17) regquires that:
% p* + u 2% Ao2
_9_ >/' l i ﬁ \)‘D‘ (4-18)
By = Aoz

If the damping ratio is small, the lower boundary is:

Q2 3 9(p? + u 3% A_?) (4.18a)

As the frequency increases beyond the value given by
(4.18a) the denominator of the equation (4.18) decreases
due to the reduction of AO arising both from the increase
in SO and from the rise of frequency, until a point is
reached at which the equation cannot be satisfied. At this
point S0 enters the unstable region and a vertical jump
downward occurs. From Fig. (4.2), for frequencies between

points A and B, three solutions of the amplitude exist;
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one equal to zero, the other (point N) is stable, and the
remaining (point M)is unstable. Jump phenomena occur at

the points A and B, both being downward.

If the frequency is outside the region p"p' , sub-
harmonic motion cannot exist. Inside this region, sub-
harmonic motion may exist at point N, if the initial
conditions are favourable. If the initial conditions are
unfavourable, subharmonic motion may not exist, as shown

by point L.

Harmonic motions

In the case of predominantly harmonic motion, we may

assume a solution of :

X = A Cos (0t + v) § =0

The steady state solution is found by the same procedure

to be the same as the solution obtained by the iteration

method :
IS U e T 3 i R
(2vp?) * A% +-[(p*- @%) A  + T u A_°] H
Sin vy, = *2VpLA
e 2 2 2. 02 3 372
(2vpR) 2 A% + [(p*-0%)A_+7u A%]

coee (4.19)

The loci of vertical tangency are:

U A %)y =0 (@.20)

(2vpR) 2 + (p? - 9% + 3 y A% (p? - 2 + -

2
2 Z

Stability of steady state solutions requires v > 0

3 9
(2vp) * + [(p*~0%) + 7 u A %] [(p*-0%) + 7 ua?] > O
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This condition reguires AO to be lying outside the region
enclosed by the loci of vertical tangency as defined by
equation (4.20). Jump phenomena occur at points of vertical

tangency in the same way as ultraharmonic motions.

From the above we can conclude that:
l) By simple approximate solutions new phenomena occur in
non-linear systems.
2) For cubic non-linearity considered above the following
conclusions can be made;
(a) close to linear natural freguency harmonic
motion predominates
(b) elightly above 1/3 of the linear natural
frequency ultraharmonics of order 3 will
predominate
(c) under suitable conditions at fregquencies
slightly greater than 3 times the natural

frequency, subharmonics of order 1/3 may exist.

4,3 Solution of Non-linear Vibration by Taylor's Series .

Consider the equation of motion:

mX+c %X + ux® = H Cos Ot

T-F

c¢c/m=c¢c', uy/m=2B8B, H/m =F
then

X +c'%k+ B x*=F Cos RNt (4.21)
Let

=g alt + a

2
o e L ant

2
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when
t =0, X = a, X = a
= 1
x = 2:5 - 6a3t - + (n+2)(n+1)an+2t
t‘_ n
X = a; + 2a2t e el - (n+l)an+lt el
e 3 & 2 - 2 2
= ao -~ 3<:.1a0 t + B{GO a, ~ a1 ao) ka1
k n-2i-1
v £ RN e QAL 0 e
j—-_-o ji:j - 3 S
n n =
3""1(}((-3-' neE 2
If n = 3K then the coefficient of tn e
k-1 e=2g=] :
= {3 ) B ) 8y Bnaqy T8 k},

fs0 4 i=9
k,n being both positive integers.
Substituting into equation (4.21):
+B (coff of tn)

(n + 2) (n+l) a + C'(n+l) a

n+2 n+1l
F(-l)n/2 QE , 1f n is even
= nl
Dy it n is odd.
If T =0, then :
' B
2a2 e al + B aO F
= ' = 3
g F C al B ao
2 2
If n =1, we get aq and so on. Therefore all the
may be found in terms of F, ¢', B,a, and ao. For

state solutions, aj and ag

x(t) = x (£ + 20
2(E) = & (¢ + 2

coefficients

steady

may be found by the equations

(4.22)

(4.23)
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If the series diverges fairly guickly, numerical solutions
may be possible by substituting F, c¢' and B. By taking
sufficient terms of the series ag and a, may be found
from eguations (4.22) and (4.23).

Solution of Free Oscillation

If ¢' = 0 and F = 0, the equation becomes

X +ux =0

The period T is

1 o
4 xm_iz ( —BEL e 75 2
ua,

S "
1-x uao
(o]

I

Fregquency 0.86 a0¢ U

By Taylor's series

= = 2 1 a2
X =a [l -3 t)? u+gat) v
SIS T e ISR T
80> o 1120 (o}
i

I Yy s
L R L 23

1if =% = ao, %¥ = 0 when t =0
— < 2
X = a X [(aot) n

Solution of Forced Vibration (Free Oscillatory Motion)

If the forcing function is:

E(t) = FX® [(ant)zu]
the equation of motion becomes :
% + ux? = FXx?® (4.,24)
then

X = aoi[(ﬁaot)zu]
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Substituting into eguation (4.24) gives:

(1=0%) aof%u §3 = FX?

[l
Il

i £ A ISR S th§n

a =

or
o

p(1-02) ua

y
=
1
|,_|
|
Irq
-
o
w

T G > 1, then

!/___EL__ I;K F :
B = W a2-1) or Q= 1 +f-—§—- (4.26)

IJBO

Forcing freguency Qf = Qxﬁo

]

where QO natural freguency

& = 0.86 aO Qv

0.86 a_ v F
o gg;r)

In order to find the point T, from equation (4.26) we get
another equation by differentiating Rf with respect to ag

and equating to zero:

g3 F ; by 3
2ao = 3 1.8, ao = r F

1/6

Q = 0.86 a0/3'u 1.18 (upe)

FT
The slope cof the curve when B is found as

dQF
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The free vibration is excited if the forcing function is
chosen appropriately. In this case, from the diagram the
motion looks like that of the Duffings egquation. Jumping

occurs at the point T,

From Fig. (4.4) the x,t diagram, we find that the motion

% does not vary significantly from the sinusoidal curve,

If the forcing function is not the one given above, we
may calculate the amplitude approximately by considering
the energy En of the forcing function produced during one
guarter of a cycle. If that energy is equal to the energy
produced by F X° then the amplitude produced will be the

same in both cases if their frequencies are equal.

1 Fa
The energy produced by F X° =J’ Fa %%aE% = —2
o

If the arbitrary forcing function is sinusoidal, assuming

x to be sinusoidal, we find that the energy produced is:

1

Hao
Jﬁ H B Cos Qt d(Cos ft) = a5y

(o]

Equating the two energies we get F = 2H

4.4 Response of the Linear System

A, The Single Forcing Case
Qn = natural frequency

" B
i.e. Qn = K/m

=
)
b
I
g|d

Equation of motion: x + sin Ot (4.27)
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In the normal way, the general sclution for all Q

except Q=ﬂn is as follows:

X = A sin ﬂqt + B Cos Ent + Cos sin Ot (4.28)
\___,.-—-\..—\_/ P
(i B0 (BT

The complementary function (C.F.) included in the
solution eguation (4.28) describes the natural vibrations
of the system and this function is important because
when the force coincides with the natural frequency (i.e.

1l = Qn) a resonance is produced.

In considering forced vibrations, a steady-state solution
is usually sought which ignores the natural vibrations. In
any real system, these die away due to inherent damping and
so only the Particular Integral (P.I.) part of the solution

is considered.

The Particular Integral gives a response whose freguency
is the same as the forcing frequency, and whose magnitude

is independent of the initial conditions.
B. The Double Forcing Case

Equation of motion:

P

£ +0 %2 x = El cos .t + —2 cos §l. .t (4.29)
n m 1 m 2 #

In the normal way, we obtain the steady-state solution

for all Q0 except Ql = Qn and Qz = Qn,

i.e. x = A Cos Qlt + B Cos Q2t (4.,30)
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It may be seen that the solution, again, is independent
of the initial conditions, and that it has components at
both the forcing freguencies. Since the system is linear,

the same result could be obtained by considering the system

excited in turn by the two forcing functions and then adding

the response obtained, using the "Super-Position Principle"

By the same Principle, a resonance will occur whenever
the freguency of either of the forcing functions coincides
with the natural frequency, that is when Ql = Qn' or Qz =0

This occurs in the single forcing case.

4.5 General Note on Duffings Equations

The equation of motion is:

%+ anx + hx® = P cos ft (4.31)

This equation is a particular case of the non-linear
vibration system so far discussed. It is a standard case
in the non-linear 'literature' and as such it has been

studied extensively.

Solutions to the eguation show that as well as having
harmonics in its solution (as in the above case), it is

(4u)

possible to have subharmonics, (Magnus )ie

The response to forcing at the resonant condition shows

the well known 'jump phenomenon', Fig. (4.3).

Double Forcing

The equation of motion is

= 2 2 8 —
r + Qn X + u(hlx = h2x + ete ) = Pl cos Qlt - chos ta

seoveee (4.32)

n
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It will again be assumed that u is a small numerical
parameter and the 'Perturbation Method' will be used,

neglecting powers of x above x°.

Following this method:

X =y (£) + 25 (2)

(4.33)
92292
n

and substituting these into equation (4.32), while retaining
terms leading to a first order approximation produces:

e i 02 12 2 3

X, o+ ux, + XS ull %, + u{hlxo + hzxo )

= Pl cos Qlt + P2 cos ta (4,34)

Generating a solution (equating powers of uo) gives:

(@] L P! . 2 =
M o RRRNC 2R % 9! Pl cos Qlt + P2 cos ta (4.35)

and neglecting transients, produces:

Pl P

2
X = cos 0.t + =———— ccos 0.t
7L, - (92-0,2) 4
. xo = Ql cos Qlt - Q2 cos th (4,36

First order correction (equating powers of u!) gives:

pul :-)
L Y = s (L
xl + 0 xl + hl Xo + h.x =0

3
xg (4.37)

and substituting a generating solution produces:

I g = 5
Xy + 9] X, = hl(Ql cosﬂlt + chosﬂzt)

-h, (Q; cosf;t + Q,cosQ £)2 (4.38)

A 2
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Expanding the brackets and using trigonometric identities

(only considering the first bracket) produces:

2 2 2
i, > Rfx, = (hlil + h§Q2 ) ihlil cos 20t
- h222£ cos 292t
-h, QlQZ cos (2,+0,) t -hl Q,Q, cos(Ql-ﬁz}t
+ the extra terms from the second bracket. (4.39)

And neglecting the transients produces:

e R.0.* hal #
e 9 15 272 il
X, = sz 5 - 5 ) +2T§7:EQIZ)COE ZQlt

h.Q.* h.0.0

+ 2 f ) cosZta - —%ékﬁg— 9 cos(ﬂl+92)t
2(9 -492 ) (Q -(Ql+92) )
h,0,0,

—_—_— cos(ﬁl—Qz)t + extra terms (4,40)

2 5 2
(82 (Ql Q2) )
The total solution is found by adding equations (4.36)

and (4.40) i.e.

X = Hg - xl
X = Ql cosQlt - Q2 cosﬁzt = Kl - K2c05291t
— K3 cos Zta - K4 cos(91+92)t
+ K5 cos{Ql-Qz)t + Extra terms (4.41)

The extra terms mentioned would contain Cos BQlt, 392,

(Ql+ 292), (92— 291) etc,, and in general if all the non-

linear powers of x are considered, the frequencies an,mﬂzr
nfl, £ mQ, would be obtained where m and n are whole numbers.

i 2
This fact is shown using a different analysis (recursion
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eguation

This analysis shows that in a non-linear system under
double forcing, 'combination frequencies' arise quite

naturally (ss)

It does not, however, show what the
relative magnitudes of the various components of the
response will be. Neither does it show what the effect
would be if one of the combination frequencies happened

to coincide with the natural freguency of the system or

its harmonics.

Nevertheless, the difference between this analysis and
the one performed for the linear case of double forcing

is guite marked.

It may be concluded that if the system is excited by a
single oscillator the discrepancy between the experimental
and theoretical results may be due to miscalculations of

all the input data.

For linear systems the damping force may not be linear,
but it is practical to ignore the damping coefficient, as it
is small compared with the stiffness of the spring. However,
the assumption still holds that harmonic solutions can be

found.

If the system is excited by two forces (i.e. the motor
and an alternator) the results agree in general with the
experimental observations. If the system is excited by more

than one force, then both experimental and theoretical
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solutions will be difficult to obtain. The difficulty
in obtaining the experimental results is due to the fact
that the system is unstable and varying in amplitude

with time.

The effect of beating is marked if it coincides with
the natural frequency of the system. If the beating
frequency is a multiple of the natural fregquency it can
be found that the components have the same frequency as
the natural frequency, even if the output has greater
value. This may be explained by the fact that the natural

frequency is excited by beating.

If the system has a marked non-linearity this jumping
occurs when it is excited by a single vibrator and the
beating effect is more significant. The structure studied
had many subharmonics, ultra-harmonics, and combination fre-

quencies, especially when it was excited by two forces.

Finally, it seems that resonance systems containing
non-linear stiffness show a bend in their resonance curves.
This bend is, of course, only theoretical as the vibrating

system cannot "force" the frequency of the driving force.

In actual physical systems the bend therefore produces
a region of instability. When the fregquency response
curve of such a system is measured by slowly sweeping
the frequency of the driving force past resonance, certain
jumps in the response amplitude occur, the freguency
location of the jump being dependent both upon the magni-
tude of the driving force and upon the direction of the

fregquency sweep.
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A main property of non-linear systems is that they
distort the wave shape of the response signal, i.e. even
if the force driving the system is purely sinuscidal, the
wave-shape of the response will not be sinusoidal. Normally
the response wave-shape will contain a number of frequency
components harmonically related to the frequency of the
driving force. This can be confirmed mathematically for
instance, by approximating the solution to the non-linear
differential equation by means of a series expansion, and
experimentally by analyzing the response wave shape by

means of an analogue freguency analyser.
- y
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CHAPTER 5

Experimental Technique

5.1 «Introduction

Both static and dynamic experimentations were involved
in this work. But the main one was the dynamic experimentaion
where the vibration characteristics were measured when the
Structure was excited by either a single force (the vibrator
excitation) or two exciting forces, that is, when the unit

was running at different speed ratios.

The relevant static experiments were concerned with
measuring the spring behaviour, also the measurement and
Verification of the structure stiffness matrix used in the
analytical work. The static experiments were restricted to
simple measurements in force displacement experiments. The
requirement included a suitable arrangement for applying
the load at a point of the structure and some dial gauges
for measuring the corresponding displacement at various
points of the structure. Average values of the force per
unit displacement at the various points could then be

calculated together with the eguivalent stiffness coefficient.

The dynamic experimentation was more involved. Basically,
what was required was the means of setting the structure
under forced vibration and measuring the response at various
points. When the forcing frequency coincided with the
natural frequency of vibration of the structure resonance
occurred when the forcing freguency was a single force. 1In

the case of double forcing, the occurrence of a beat
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frequency was predominant. Such periodic pulsation in
vibration amplitude is generally due to simultaneous
generation of two base freguency excitations. These give
an apparent vibration signal in the mean frecquency and a

pulsation amplitude at the difference freguency.

By passing the measuring transducer round the various
points of the structure, the pick resonances at these points
can be obtained to produce the modal shape of vibration of the

structure at that natural freguency.

For a complicated structure the measurement of the
resonant frequencies and the corresponding modal shapes is
not an easy task. An arbitrary choice of the point of
excitation could lead to difficulties in producing the
resonance at certain natural freguencies of the structure.
For example, exciting the structure at a nodal point, (i.e.
a8 point of zero amplitude of vibration) of a certain
natural frequency would result in missing out the resonance
at that natural frequency. In particular, it is very useful
to excite the structure at the point of maximum amplitude of
vibration of a given modal natural fregquency. Hence, it
is customary to change the point of excitation of a structure

to obtain the different modes of vibration.

Each beam member of a frame structure is actually a
continuum. As such, measurement of its amplitudes of
vibration have to be made at many closed points in order to
produce a true fofm of the modal shape. In the theoretical

analysis, both linear and angular displacements can be
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calculated. But experimental measurements are restricted
to linear displacement only. This was an added difficulty

in the experimentation.

5.2 Vibration Instrumentation

Modern vibration data analysis egquipment was used in
order to investigate the rig and its vibration characteristics.
An extensive investigation was carried out into instrumentation,
the techniques of frequency analysis, and method of excitation

position.

The Eguipment

The equipment used was:

l. Accelerometer Brllel and Kjaer
Type No. 4333

2. Vibration meter Model D.V.A.

3. Voltometers B & K Random Noise

Voltmeter VM 78

4. Oscilloscope Téléme€chanique D33R

5. Vibrator Detriton VP5

6. Dynamic Analyser S.D. 101-2a

7. Sweep Oscillator S.D. 1l04-1

8. Tracking Filter Spectral Dynamics Corporation

9. Fiberoptic Tachometer

System Model SD43 GPT
10. Spectrascope R.T.A. S.D. 335
1l. Frequency Counter Advance Type Tc 2A

12. Tunable Band Pass Filter Type B & K 1621
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The following block diagrams show the instruments used:

l. Spectral Dynamic S.D. 1001-2A system (Pig.5. 1)

2. Spectral Dynamic Tracking Filter Facilities (Fig.5. 2)

3. Vibration meter model D.V.A. (Fig.5. 3)
4. Concept of operation for Tachometer (Fig.5. 4)
5. Fiberoptic T.M. System (Fig.5. 5)

6. Set up for Spectrascope/oscilldscope/plotter&ig.5.6)
7. Simplified block diagram spectrascope II (Fig.5. 7)

8. Data classification {Fig.5. 8)

Block diagrams of the vibration instrumentation used in

this work are shown in Figs. (5,1) to (5.8).

The accelerometer picked up the various response points
on the structure. It should be noted that the accelerometer
was an acceleration measuring transducer, not a displacement
transducer as the vibration response was supposed to be
measured. However, it was known that the amplitude of
vibration is proportional to the pick value of the corres-
ponding acceleration at that point, and acceleration trans-
ducers are more convenient than displacement transducers.
Moreover, the modal shape of vibration required represents
the relative shape of oscillation of the structure and not
the absolute magnitude of its amplitude of vibration. Thus
the use of the accelerometer met all the requirements to give
the results expected from the experiment. By passing the

signal through an integrator and by double integration in
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the D.V.A., the output gave the displacement.

The sweep oscillator was the basic input instrument,
while the accelerometer was the basic output instrument.
The sweep oscillator is basically a wave signal generator.
For the purpose of this work on vibration analysis,

(as vibration excitation by one force only) the sweep
oscillator was used to generate sine wave signals at any

required frequency.

The frequency was either set at a fixed value or varied

(swept) automatically or manually between any set freguency

limits.

The signal from the signal generator was a weak one,
and the power amplifier amplified it to a reasonable level
as required by the vibrator. The vibrator then applied
the amplified signal to the structure in the form of an
oscillatory force to set the structure vibrating at a

reasonable level.

Again, the response signal picked up by the accelerometer
was amplified by the charge amplifier (D.V.A.) and double.
integrated. Owing to some degree of non-linearity in the
Structure and/or other external interference, the response
signal obtained could be anything except a pure sine wave.
The dynamic analyser received this impure sine signal and
essentially acted as an inherently freguency-tuned bandpass

filter.
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The impure sine signal represented the signal input
to the analygzer while the original signal from the sweep
oscillator was fed in as the tuning freguency input.
output from the analyzer was represented by the filtered
output signal which was a pure sine signal at the tuning

frequency.

The valve voltmeter measured the R.M.S. value of the
signal whose values for various points on the structure
provided the modal shape of vibration of the structure at a
particular frequency. The ¥ Yrecorder could also be used
to plot a graph of the response over a fregquency range in
the form of response (on the Y-axis) vs frequency (on the
X-axis). The sweep oscillator provided the fregquency input
to the plotter on a D.C. scale proportional to log freguency
or linear frequency. Points of relatively high response
on the plot constituted possible resonance (or natural)

fregquencies of vibration of the structure.

The C.R.O0. (Cathode Ray Oscilloscope) gave a more
immediate view of the response. In addition, a comparison
of the response signal and the original signal from the
oscillator gave an instant relative phase shift of the
response signals on the C.R.O0. In fact, the in-phase and
out-of-phase positions of the two signals have been used to
designate positive and negative signs respectively to the

response of the structure at any particular point.

A phase meter could have been used for the above purpose

but this was considered to be too sophisticated and
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unnecessary for this simple case of in and out phase

measurement.

A frequency counter is usually connected to the instru-
mentation to give a more reliable reading of the freguency
of the signal generated by the oscillator. The freqguency
counter was also used to check the actual freguency of the
output signal from the analyzer. Both freguencies should

have read the same.

5.3 Experimental Freguencies and Modes

In the experimental vibration work on the flexible
platform, the basic node system used in the theoretical

finite element analysis was followed.

The structure was vibrated at a convenient point and the

response was measured at different points in the platform.

The experimentally measured natural frequencies and
corresponding nodal responses for the first three medes are
shown in Figs. (5.9), (5.10) and (5.1l1).Therotational displacements
are not considered in the model measurement. A direct
comparison may be made between the listed values-of the

responses Fig. (5.13).

The responses may be compared with each other from
various points on the same mode. This is because the absolute
value of these responses depends on the magnitude and the

point of application of the exciting force. To obtain the
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best results, a structure should be excited at a point

of maximum possible vibration response.

In the first place, the magnitude of the exciting force
was kept constant during the response measurement only for
individual mode experimentations. The point of excitation
was fixed for all the mode measurements. Plots of the
theoretical modes of vibration and the corresponding plots
of the experimental modes are shown in Figs.(5.9) to (5.12).
Fig.(5.13) indicates the measured values for the four mode
shapes. In all these cases, the theoretical and experimental

modal shapes are similar.

Generally, the correlation between computed and experi-
mental natural fregquencies is very good. Figs.(5.1l4) and
(5.15) show pictorial representation of patches of displaced
surface covered by motor and Alternator bases for plates

modes.

Fig. B shows a view of the rig excited by the vibrator.

The frequency of oscillation of the rig was increased
until it reached the first mode, then the vibrator was held
at this frequency whilst the 'mode shape' was monitored
using the two accelerometers. One accelerometer was kept
in its 'reference' position on the frame while the other
was moved around the frame registering positive or negative
readings (phase or anti-phase) with respect to the reference,
initially moving the accelerometer 200 mm at a time. Then

the procedure was repeated to obtain more accurate results
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by only moving 100 mm at a time. This gave a number of
point readings on the frame which could be translated
into a picture of the modal shape. This same procedure

was then carried out for the second and third modes.

For the plate modes, or to find the 'flexural', special
arrangements were made. The frame with the motor and
alternator in position was suspended by 'elastics' which
were flexible enough to ensure that the 'rigid body'
frequencies were far enough away from the 'plate' frequencies
to have little effect. The vibrator was used to force the
system, and the two accelerometers were used to measure the
response. Higher modes were not tested because they were
found to be well outside the fregquency range of the motor's
maximum speed, and hence would not show up in the response
tests. It is worth noting here that the vibrator was then
set in a different position (which had the smallest stiffness)
to check if this altered the results. It made very little

difference.

5.4 Response Analysis

Free vibration analysis can be used to give an estimate
of the distribution of peaks in the displacement as the
frequency of excitation is varied. However, it is generally
very difficult to predict the relative importance of the
different natural frequencies. 2 better estimate of this
can be found by using a method which calculates the response
of the structure. Since the main excitation of the rig

arises from shaft eccentricity and from other forces which
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vary as the shaft rotates,

excitation may be considered.

If the structure is subjected

forces p eth

Mi + Ch + Ku = p e*VW*

where M, C and K are the mass,
and u, % and U give respectively
and accelerations at the nodes.

matrices are the same as used in
Since the structure is of steel,

be expected to be very low.

varying at a freguency w,

The

However,

the special case of sinusoidal

to a set of sinusoidal

then we have

(5.1)

damping and stiffness matrices

the displacements, velocities
mass and stiffness
the forced vibration case.

the structural damping may

in the present analysis,

it may be represented by a damping matrix proportional to

the stiffness matrix.

For the steady state response
W= eiwt

where

u* gives the amplitude and phase
(5+2)

Substituting equation into

(~w?M + iwC + K) u*

This set of complex simultaneous

of the structure

(5:2)

of the displacements.

equation (5.1), we have
(5.3)

equations may be solved to

give the complex vector u*, the components of which represent

in amplitude and phase,

Node.

the steady state displacement at the

The forcing function chosen, P, may be determined

by shaft eccentricity, and, thus, it will vary as the sqguare

of the shaft frequency.

It may also be expected to vary

with different operating conditions, which may also change

appreciably during the lifetime of a machine.
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In order that the response to a large number of sets
of forces can be obtained, equation (5.3) may be solved
with p as a unit force, applied in turn to each of the
m nodes at which excitation is expected. By using Gaussian

elimination, and replacing p by P in eguation (5.3) where

P = (pl; Pz’ pa P pm) (5.4)
with 1= the ith unit vector, the response U* is obtained

Ux = (uy*, up¥*, 0s* .. um*) {(5.5)

where u*; is the response to Py

Any set of forces can be expressed as

m
p= 7 @, P,
s R

where the coefficients o, are complex constants, each
respectively giving the magnitude and relative phase of the

ith component. Thus the response u is given by

m
- *
u Z oy Uy
i=1

Coefficients for the damping and stiffness of the
bearings can be estimated and these additional terms can be

added to the overall matrices.

In the idealisation used for the response analysis, the
complete structure must be considered if the response has
contributions from both symmetric and anti-symmetric modes.

Fig.(5.16) shows measured amplitude vibrations at point 1

as the frequency of excitation increases from 0 to 50 Hz.

The amount of out-of-balance that may be used is as

suggested in German standard DIN 4042. The damping and
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eccentricity are assumed not to vary with fregquency and
the structural damping is presented by having the damping
matrix C proportional to the stiffness matrix K with a
constant of proportionality 0.0002; for these results,
the stiffness and damping of the bearings have been

neglected.

At the higher fregquencies, there will be contributions
to the response from excitation of 50 Hz caused by auxiliary
equipment, the characteristics of the structure and its
springs. The analysis can clearly be extended to include
the effect of these additional forces but no allowance has

been made for this in the results presented here.

From the results outlined above, a method was presented
for checking designs of flexible platforms by means of free

vibration and response analysis programmes.

If a particular mode of vibration gives unacceptable
amplitudes, the free vibration analysis can be used to
estimate the effect of a structural modification of the
resonance. In this way, any proposed alteration can be

checked.

The response analysis provides, at the design stage, an
estimate of the level of vibration that can be expected from
the rotating machinery (for a given shaft eccentricity,

and known out of balance).

5.5 Response Curves:

To measure the response curves it was important to have
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a narrow band width filter. The filter used was a tunable
pass frequency with frequency range 0.2 Hz to 20 Hz in

5 sub-ranges and the selected band with 3% (1/3 oct.)

The vibration meter was calibrated as was all the

eguipment used and adjusted to measure the displacement.

The signal from the vibration meter was fed to the
Spectral Dynamic input. It was possible to use the
output from the spectral Dynamic as values to draw the
response.curves. The output was also connected to the

voltmeter for check.

The vibration frequency of the structure was increased

from 1 to 50 Hz in steps of 1 Hz.

The above procedure was used for the response curves

when the structure was excited by the vibrator.

In the case of response curves with the units running
at different speed ratios, (such as with two exciting
forces), it was necessary to know the exact motor speed
ratio. This was estimated by using the Fiberoptic Tachometer
system and the vibration counter. The Fiberoptic Tacho-
metgr system was used to detect the reflected light from
the motor pulley which was divided radially into ten equal
sections, with a piece of 5mm x 5mm reflective tape
attached to the circumference of each section. This was
arranged in such a way that the sensor could not detect
more than one piece of the tape at any one time. A case of
one of the resbonse curves for the structure excited by

the vibrator is shown in Fig. (5.16).
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The response curves at different speeds are shown in

Figs. (5.17) to (5.3€) for the respomnse curve drawn with

Bruel & Kjaer narrow band width filter.

These speed ratios are Case 1 a5
Case 2 533
Case 3 3l

Case 4 5:2
Case 5 just the motor running without the alternator.

The fibre optic tachometer system was verified by the

freguency counter.

5.5.1 Response curve in the case of vibrator excitation

The most important modes in this curve are the three
rigid body modes and the plate mode, although there are
many other modes. The modes may be classified as the
classical approach, Longitudinal, Transverse, Vertical,
Yawing, Pitching, Rolling, the first plate mode and other
unexpected modes. The main reason for these modes may be
the secondary effectand the non-linearity in the spring

which gives rise to the coupling between the modes.

Another reason may be the effect of the non-linearity

in the damping coefficient.

In the system used, the instability of one degree of
freedom at rest is due to periodic fluctuations in the
spring rate resulting from the oscillation of another degree
of freedom; this almost happened in the case of the

vibration isolation system with directly coupled coulomb

(k1)

damping .
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The parallel combination of coulomb damper and a
spring, which is known as Coulomb-Hook model, was used
to represent the non-linear dynamic elasticity of vilbrating

mechanical systems with dry friction damping.

The damping force in these mechanisms, which is of
constant magnitude, acts in phase with the relative
velocity across the damping element but is independent of
its magnitude. For certain magnitudes of the coulomb
damping force it is possible for infinite resonance to
exist. However: Den Hortog (=3 places the emphasis

on the values of the damping force that results in finite

responses at resonance.

Also it may be easy to conclude that the coulomb
damping which was used was a non-linear-damping phenomenon,
since discontinuities existed in the damping force time
history when changes in direction of relative velocity
occurred. This resulted in a non-linear equation of
motion. The coulomb dampiﬁg force Ff is of constant

magnitude and is independent of the displacement.

In a physical sense, coulomb damping is obtainable
from the relative motion of two surfaces arranged to slide

against each other with a constant normal force F such

N
that Ff = U FN where the coefficient of friction between
the two surfaces uis a function primarily of the nature
of the surfaces sliding on each other. The energy DO
dissipated per cycle by a coulomb damper experiencing

a harmonic relative displacement z = z sin Qt, is inde-

pendent of the frequency of vibration, but depends on

the vibration amplitude. The hysteresis loop is rectangular
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having major and minor semi axes of Ff and z,

In very low damping conditions (under certain circum-
stances) the phenomenon of non-linear resonance systems
occurs. This is the phenomenon of 'subharmonics'. A
subharmonic is a response vibration occurring at 1/2,

1/3, 1/4, 1/5 etc. of the fregquency of the driving force.
The physical explanation for the occurrence of subharmonics
which may be given is that the driving force supplies
energy to one of the harmonics of the non-linear system

and when energy is supplied it will start to oscillate.

The higher harmonic then pulls all the other harmonics with
it, as the specifically excited harmonic is an integral
part of the whole motion. There are instances where a
non-linear spring element in a multi-degree of freedom

system produces a third harmonic of the order 1%.

If the freguency of this harmonic by chance coincides
with the resonant fregquency of another resonance in the
system which happens to have a resonance amplification
factor Q = 100, this specific resonance will respond with
the same amplitude as the actually excited resonance, even
though its frequency did not exist in the wave-shape of

the driving force (1°°){

5.5.2 Response curve with Fixed Frequency filter .

For every speed ratio the filter was fixed at one of
the main frequencies, 4.3, 8.2, 9.1, 37.4 Hz in total
there are 20 curves. These are shown in Figs. (5.17)

to (5.36) .
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By fixing the frequency filter at 4.3 Hz, which is
the first natural freguency, it is possible to find the
main freguency and the higher components of it. 1In fact
every mode in this curve is a 4.3 mode even though the

motor speed is different. (In other words, frequency

component harmonically related).

In such a system , because of its low damping condition,
it is possible that the phenomenon of a non-linear resonance

system may occur.

It is also possible that the rigid body modes can be
excited by the motor speed or by % the motor speed, or the
2nd Rigid body mode can be excited by twice the beat

frequency.

The lst Rigid body mode can also be excited by the beat

freguency.

Finally, the response wave-shape will contain a number of
frequency components harmonically related to the freguency

of the driving force.

5.5.3 Response curves by computer

The modern high speed computer should be taken into
account when investigating this point. The response curves
are in the following order. Four speed ratio settings were

measured. They are

Case 1 $. v IEs
Case 2 - 523
Case 3 - 3l

and Case 4 : B2
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Every speed setting follows the same pattern.

—
1

2 -

W
1

Starting the motor to maximum speed (3:5030504)

Shutting down the motor to zero speed (1,9,0,0)

Motor at maximum speed 50 Hz (1,2,3,4)
G2 s 35 Hz (1,2,3,4)
¥ " 25 Bz (1,2,3,4)
- 2 15 Hez £l,2,3,4)
"o 8.2 Hz 1852, 3,4)

(1,2,3,4) means the position of the measuring points from

the corners. The pick-up signal was considered as in the
drawing.

4Ef—jl

F——2
For example (1;3;3) denotes

the

are

Speed setting Bt
Motor speed at maximum speed 50 Hz.

pick-up signal position 3

following cases 1;1;1; & 1:;2;1; & 1;3;1 & 1.4.1

Ly 5L & 2,4,4 and 2:4;:2

shown in figs. (5.37)to(5.43).

From the above procedure, for every pick-up

position, a response curve and a wave form were drawn

by the computer.

This made for each speed setting a total of 44 curves,

and a number of these curves will be in the Appendix.
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The high speed computer makes it possible not only to
reduce the processing time, but also to increase the
accuracy of the processing. From this mass of data and
curves, it may be concluded that in the general case where
there is a single degree of freedom system with non-linear
spring characteristics and excited by two harmonic forces

~only, the equation of motion is given by

% ok Eifst) = P cos (ﬂlt + o )

1 ) + P cos(ta + o

i 2 2

where f (x) represents the spring force and may be written

in the form of a Taylor series thus:

£(xX) =a x + a.x* + a.x® +

l 2 3 R

The constant term aq is eliminated by a suitable choice of

origin.

Magnus (44) (1965) = discussed the solution of this
equation and shows that in the general case the solution

will contain the frequencies nQ mﬁz, an t mﬂz (where

l!
n and m are whole numbers ). He also showed that an oscilla-
tor with a cubic restoring force and harmonic excitation
will, under certain circumstances, perform harmonic

oscillations whose frequency is one third of the exciting

frequency.

So it may be concluded that a relatively small non-
linear effect can result in vibrations not directly related
fregquency-wise to primary exciting forces. This may be

one reason why the vibration characteristics of the flexible
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platform show displacement responses at practically all the
harmonics of rotational speed up to 2 or 3 or 4 times the
passage frequency. This often occurs with significantly

high, 2nd, 3rd and 4th, harmonics of rotational speed.

It seems that, using the accelerometer to pick up the
signals, the effects due to acoustical excitation were

unavoidable.

The accelerometer's main application was general vibration
measurements and it was found that the response was obscured
by 'noise' (probably from the motor and alternator bearings

in such electrical machines).

This signal was put through an integrator to cut this
down, double integration (in the D.V.A.) was used, which
means that the output from the integrator is the displacement
after being amplified, and then taken to the computer to

give the response curve.

Unfortunately, the vibration meter (D.V.A.) was a high
gquality measuring instrument, and used 17 linear integrated
circuits to ensure reliability and accuracy. But for the
low frequencies, unexpected peaks came into view with some
amplification factors. The accelerometers were connected to
the frame by permanent magnets to allow for the possibility
of removing them when necessary. The accelerometer cable
was firmly clamped to the frame in order to avoid any micro-
phonic noise. This had a disturbing effect at the lower
frequencies, due to local capacity and charge changes, owing
to dynamic bending, or compression and tension of the cable

when not clamped.
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The physical model can be expressed as

[M} = [¢1'T Em] [¢]_l "Physical Mass" ....(R)
[X] = [¢]°T [2%m) [m]_l "Physical stiffness" (B)
[C} = [¢J_T fzgﬂmj [¢Tl "Physical Damping" . {(C)

with [¢] [m] 2, and z, terms being the known modal informa-
tion. Experience and commonsense have indicated the desira-
bility of selecting the location that ensures that a reason-
able idea of the nature of the response curves could have
been inferred from the test measurement. In practice, this
meant selecting locations on each side of the modal bounda-

ries.

There is, in general, a choice of selections. This in
turn means that unique solutions to eguations (A) through
(C) do not exist, whichever test measurement locations are
selected. The set of the three matrices will define a model
whose responses match resonance data from the selected

location.

It may be that this last statement looks too simple, but
in point of fact it is not at all. The reason for this is
the non-linearity of ﬁhe damping coefficient, and the stiff-
ness coefficient of the springs which play an important part
in the vibration characteristics of any structure and give
rise to many new phenomena in the non-linear resonance

system.

In a linear multi-degree of freedom system, the classical

vibration theory would indicate that the response may be
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defined exactly for vibration characteristics (resonant and
non-resonant excitation) in terms of its mass, damping and

spring characteristics.

When more than one force is applied to the system the
resultant vibration can be obtained by applying the
principle of superposition - which means that the resultant
is the sum of the individual vibrations excited by each

force acting alone.

Unfortunately, complications arise when non-linearities
occur in the dynamic system. When a number of exciting
forces act at different frequencies on a non-linear system,
the system vibrates at frequencies equal to the exciting
frequencies as in the linear case, but also at frequencies
which may be multiples or submultiples of the frequencies

or the difference between any two (1o1)

5.6 The Use of the Spectrascope (Real Time Analyser)

By using the spectrascope real time analyser, after
calibration and using a harmonic cursor, we can locate the
specific spectral components. When it comes to spectral
description, a periodic signal may well be described in
terms of the R.M.S. values of its various frequency components
(its frequency spectrum), while random vibration signals
are best described in terms of mean sguare spectral density
functions. This is due to the fact that random signals
produce continuous frequency spectra and R.M.S. values
are measured within a certain frequency band width, and will
therefore depend upon the width of the band. A calibrated

signal comes from the vibration meter connected to the input
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of the calibrated spectrascope (R.T.A.). And this picture
has been taken for the spectrum information after it has

been stored in the memory.

5 different cases were studied, each having 4 Polaroid

pictures taken, making a total of 20 pictures.

& 7

A shows position 1 on the rig 0 A

B shows position 2 on the rig

C shows position 3 on the rig C B
3 2

D shows position 4 on the rig.

Case 1 as shown in Fig.(5.44)A,B,C, and D.

[l

Speed ratio 7:5. The relationship between the modes and

their spectral components are presented in Table (5.1).

Case 2 as shown in Fig.(5.45)A,B, C and D.
Speed ratio = 5:3., See Table (5.2)

Case 3 as shown in Fig.(5.46)24,B,C and D.
Speed ratio = 3:1. See Table (5.3)

Case 4 as shown in Fig.(5.47)A,B,C and D.

Speed ration = 5:2. See Table (5.4)

Case 5 as shown in Fig.(5.48)A,B,C and D.

Just the motor running at maximum speed. See Table (5.5).

In all these cases the motor was running at its maximum

speed, approximately 50 Hz.

A guantitative comparison was however very difficult
because the relative magnitude of various frequency peaks

went up and down.
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This feature was masked, especially when the Real Time
Analyser (spectrascope), and the spectrum information

from all 500 filter locations were used.

The way to make this comparison was simply to keep
the sampled spectrum information for all 500 filter
locations after being converted into digital form. This
digital information was processed for averaging or peak
hold, and stored into averaging memory. By using the 'peak'’
hold button and storing this information, it could be recalled
to make a comparison between the peaks in the spectrum
information, by using the harmonic cursor for locating the

specific spectral components.

From Table (5.6), it is clear that the modes of vibration
of the structure have a variety of variables. This may look
slightly ambiguous. It seems that the non-linearity in the
springs supporting the structure gave rise to many resonances
subharmonic, ultraharmonic, subultraharmonic, internal or
even non-periodic combination resonance. There were also

combination resonances as well as the main resonance.

In the case of structural dynamic analysis, the main
factor governing these analyses is the assumption of the
orthogonality of the modes with respect to the mass,
stiffness. and damping terms and the form of the exciting
forces.

Table (5.6) classifies the types of resonance which can

be expected in such a structure.

The internal resonance, non-periodic combination

resonance and periodic combination resonance, are just the
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resonances which distinguish systems with several degrees

of freedom from those having a single degree of freedom.

Internal resonance represents a special case, where
the main resonance coincides with the subharmonic, ultra-
harmonic or subultraharmonic resonance. The periodic
combination resonance is again a special case, where the
combination resonance coincides with the aforesaid resonances

(vamamoto (*5) Hayashi (*¢) Benz (*7)),

5.7 Beat fregquency in rotating machinery

It is fairly straightforward to explain the occasional
occurrence of a "beat frequency" vibration signal from

rotating machinery (5%)

Such a periodic pulsation in
vibration amplitude is generally due to the simultaneous

generation of two base freguency excitations (Q and {92)

)
l!
These give an apparent vibration signal in the mean freguency
(Ql + 92)/2, and a pulsation in amplitude at the difference

frequency (92 - Ql).

One of the base freguencies is usually synchronous with
rotor speed (i.e. attributable to rotorumbalance and the
second might be associated with one of a number of other
vibration sources - unbalance of another shaft rotating
at a different speed; rotor whipping, or journal bearing

instability, or hysteretic whirl ... etec.

K. Magnus (44)

was the first to indicate theoretically
that where two frequencies are generated, the sum and

difference frequencies are also possible.
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Downham (1°1)indicated that when a number of exciting

forces act at different freguencies on a non-linear system

the sgétem vibrates at frequency equal to the exciting fregquen-
Cies as in the lineal case, but also at frequencies which

may be multiples or submultiples of the frequencies or the

difference between any two.

A spectral analysis of the wave form from the running unit
showed that a synchronous vibration signal was indeed present
and also a synchronous component associated with vibration

due to unbalance.

But there are alsc large, unexpected components of a low
frequency at a frequency equal to the difference between the

two base frequencies.

It seems reasonable to conclude that the source ocf sum
and difference frequency components was truncation of the
"BEAT FREQUENCY" wave-form. It is clear from the response
curve that it contains not only the two hase excitation

freguencies hut als~ a component at the difference frequency.

In other words, the frequency components in truncated
beat freguency wave form. The principal of centre freguencies
and harmonic zone number and side band frequencies left and

side band frequency right.

The vibration displayed the tendencies shown in Table

(5T

Fourier analysis of the excitation wave form indicates

that components at differemnce frequencies are indeed generated
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and also at sum fregquency and spectrum of higher harmonics

and side band frequencies.

The measured wave forms of spectral analysis are
remarkably similar as expected, except that low freguencies
appear to have been greatly amplified in the experimental
Case, and high frequencies attenuated-the computer response
curves. The latter fact is attributed to the transmission
characteristics of the rotating machinery under considera-

tion and electrical stator system.

5.8 Measurement of stiffness coefficients for the frame

It was decided to measure the stiffness coefficients of
the frame and to make a comparison between the values
predicted by the computer programme and those obtained

experimentally.

The symbol Kij is used to denote a stiffness coefficient
and is defined as the force required to be applied at
point j to produce a deflection equal to unity in the
direction of the force, while point i is a restraint

against translation.

o ki Klly1 i Kl2y2 AR i
By, = K2lyl = K22y2 LR S
P =R i - L S

n nlyl n2y2 nny

in matrix form

{p} = [N] ({y}
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The measurements for the rig were carried out. The
frame was supported by four knife edges, one in each

cormer.,

Five dial gauges were used and were zero adjusted before
the reading. The applied load was varied between 40.028

and 336.41 Kp.

Fig. (5.49) shows one case in which the applied load
was 218,499 Kp. applied at point 1, This case was for

decreasing the load from maximum to minimum.

The graph Fig. (5.50) indicates the load deflection
relation for the frame structure. The dial gauges were
positioned as in Fig. (5.49) under the rig. Then the load
was applied at point 1 and readings were taken for the five
dial gauges. Table (5.9) shows the data when the load

was increased and decreased.

In actual fact it was found that the frame deflected
slightly under the load. This means that the readings on

the five gauges differed considerably.

The load was applied in the downward direction while the
spring balance was in the opposite direction. Also the
load had to be increased fairly quickly. In this sense the
term 'static reflection' is misleading, but it was used in
order to distinguish the stiffness obtained from the 'dynamic

stiffness' used in vibration work.

It should be noted that the graph would form a continuous
loop known as an 'hysteresis loop', if the loading had

itself been continuous.
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5.9 Measuring the spring stiffness

It was possible to measure (K) the spring stiffness by
adding weights to the machine and measuring the corresponding
deflection, particularly if the springs were concentrated
between the machine and the floor which was the case in the
unit under consideration. Since the object of installing
flexible mounting units was to place all significant resonance
below the operating speed range, it was desirable that the
mounting arrangement should be soft for the modes of vibration
which were likely to be strongly excited, and the limitation
of this procedure was only the stability of the structure as
a2 whole which had to be carefully considered. By making the
isolator very soft, resonance speed will occur at a very low
motor speed, and could therefore be passed through so guickly
that the small increase in movement due to resonance was
hardly noticeable. The benefits obtainable with a spring
supported structure were so great, both physically and
economically, that slight oscillation, hardly exceeding a few
hundredths of an inch, was immaterial. These operating
amplitudes were negligible and the amplitudes varied from
the time the machinery started, passed through resonance,

and attained operating speed.

This measurement was attempted; however, owing to the
unexpected behaviour of the readings of the dial gauges
corresponding to the spring deflection, it was not easy to carry
out the experiment. Thus it was decided to measure the
behaviour of one spring only. So one of the springs was
removed from beneath the rig and the following measurements

were carried out.
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Four tests were carried out to estimate the load
deflection curves. Case 1 Vertical stiffness, Case 2
Longitudinal stiffness, Case 3 Measuring the total
deflection between the first and second coil 180° from
the end of the coil, Case 4 as Case 3 except decreasing

the load.

Case 1. Measuring the Vertical stiffness

In order to determine the static deflection applied
loads were varied from 22.4 to 448 1lbf Table (5.10)
shows the applied load and the affected deflection. Dial
gauges were used to measure the displacement. The results

are shown in Fig. (5.51).

Case 2. Measuring the Longitudinal stiffness

Special arrangements were necessary to measure this
stiffness. The four springs were in their position carrying
the structure. The load was applied by pulling the frame
in the load direction and two dial gauges were used at
200 mm either side of the pulling point. The pulling point
had a hook which was connected to steel wire across a small
pulley which lay horizontally and the wire was then connected
to another hook. The load was applied vertically on a base
connected by a lever to this second hook. The two dial
gauges were adjusted to zero. The load was applied, varying
between 30 and 140 1lb£f. Fig. (5.52) shows the load deflection

relation and Table (5.11) shows the applied load and deflection.

Case 3. Measuring the ‘total deflection = ‘Increasing load

Measurement of the total deflection between the first ang
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second coils was taken 180° from the end of the coil as shown
by distance A in Fig. (5.53). The total deflection egquals
distance 8§, The applied load was varied between 28.92 and

254.3 1bf Table (5.12) shows the applied load and deflection.

Case 4 Measuring the total deflection - decreasing load

This test was the same as the previous one except that
the load varied from 254.48 to 28.92 1bf Fig. (5.54)
shows the load deflection curve,. and also the load deflection
from the first and second coils, distance A, 180O from the
end of the coil. Table (5.13) shows the applied load and
deflection. Fig. C. shows a view of the rig with the

equipment to measure the sidewavs stiffness of the spring.
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117D WAVE FORM
Starting the motor to
Picking signal position 1.
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FIC 5.38 RESPONSE CURVE AND WAVE FORM
Speed ratio 7:5. Shutting down the motor
10 zero speed. Picking signal position 1l.
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FIG 5.39 Response curve and wave form.
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FIG 5.40 RESPONSE CURVE AND WAVE FORM
Speed ratio T:5. Motor running at 35 Hz.
Picking signal position 1l.
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@. 132 FIG 5.41. Response curve and wave form.
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FIG 5.42 Response curve and wave form .
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2. 704 . Fig5+43 Response curve and wave form.
" Speed ratio 5:2 . Motor running at 35Hz.
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The Relation between the Modes and its

harmonics Tables 5.1 to 5.5
Table 5.1
Case 1 Modes, Hz Range of higher harmonics
! Hz
!
Photograph A G 46.69
| ¢ B 36.4 12.6
: Y £ 1.8 36, Bl.2,563
‘ i D 3.6 60.8
Table 5.2
Case 2 Modes, Hz |  Range of higher harmonics
! Hz
iPhotograph A 2516 i 15.8, 33.8
8.2 ; 6.4, 24.4
‘ 120 ' 48
E 176 | 52.8
| . B 2.4 | 26.4
5 6.6 | 26.4, 66.0
. c 1.8 : 9.2, 34,4, 41.4
4.6 ‘ 9.2, (4104
8.2 | 16.4, 74
‘ * D 15.8 ; 47.4, 63.2
. |
Table 5.3
Case 3 Modes, Hz Range of higher harmonics
| Hz
Photograph A 4.2 8.4
5.4 10.8
8.2 49.2
S 36.8
i8.2 36.8-.
_ 22.8 45
s B 1850 20,; 50
12.4 24.8,49.8
31.4 . 62.0
i C 8.8 i 7.8
31.4 1 62.8
E D 28.8 ' 57.6

314 | 62.8




Table 5.4

!Case 4 Modes, Hz Range of higher harmonics,Hz
rr—"-'-'
Photograph A 0.4 8.4
. 4.0 8.0
% Bk 1.2 B.d; 26,2
? 1.4 ‘ Bl b A
| 3.0 9.0
) 15.4
7.4 29.4
3 & 5.2 15.6
6.8 47.6
8.6 17:2:25:8; 34,4
; 9.4 37.4
i 16.4 33.0
" D | 2.4 26.2,36
5.0 15.0,20.0, 30.0
7.8 38.4
8.0 24
9.0 36
12.0 24, 36
Table 5.5
Case 5 Modes, Hz Range of higher harmonics,Hz
Photograph A 8.2 50
" B 2.2 9.2
» C 2.8 8.4
i D % Oy [ IS
1.8 9, 10.8
2L 8.2
2.0 8.0




Table 5.6

Classification of possible resonances

Type of Resonance Exciting |Ratio of the Natural ] Notation
Frequency w | Frequencies ﬁl/ﬁz }
is close to
differs |is close
sufficiently| to ;
fram i
a) Pure main . j=1,2
Resonance -
b) Sub-harmonic N m,k=1,2,3
Resonance
¢) Ultra-harmonic 1 m/k D) ek
Resonance n
d) Sub-ultra-harmonic| N 0 n,N=2,3
Resonance n'Yy
e) Internal . _ ok for a)%’%
R :
g J w1, Gy
f) Non-pericdic N, MG, m/k - j=1,2
Rescm‘bmacme ; n N, M=£1,%2..,
O m,k=1,2,3
g) Periodic 4—_9-]' o - n/k
Combination mEk
Resonance
‘Table 5.7 The Vibrations displayed the following tendencies
Side band Centre Side band Harmonic
frequencies frequencies frequencies Zone No.
e 0 (wz - wl) 0
(2wy - w2) w1 w2 (2wz= wy) 1
(Bwy = wz) 2w (W + wz) 2wz (3wz= w;) 2
(dwy = wz) 3w (2wi+wz) (wWi+2w2) 3wz (4ws= wi) >
etc




Tables5.8 Measuring the stiffness coefficient of the structure
& 5.9
Table 5.8
o (8T ? L i
|
Applied Load Deflection ;
(Kg£) mm |
!
|
Point 1 218. 499 0.132 '
2 - 0.022
3 - 0.013
4 - =0.0055
o - 0.106 .
Table 5.9
Applied Reading Position in mm.
Reading Yo W :
Ho. Kot 1 2 R 5
o (o LN R A P S C 2 0 e
0 0 o] 0 0 I 0 0
1 40.028 0.023 0.003 0.004 | 0.002 | =0.021
2 80.014 0.045 0.005 0.005 | 0.004 | -0.070
3 120.00 0.069 0.008 0.009 § 0.005 | -=0.075
E 159.772 0.092 0.010 0.013 | 0.006 | -0.072
5 188.636 0.118 0.012 0.013 | 0.008 | -0.105
6 218,499 0,127 0.014 0.013 | 0.009 | -0.102
7 247.419 0.145 0.016 0.0135; 0.005 | =0.101
8 277.092 0.160 @385 0.0120 0.001 | -0.095
9 306.75 a.175 0.023 0.015 |-0.001 | -0.095
10 336.41 0,193 0.0285 0.016 [=0.002 | =-0.095
Reversing the load' fram maximim to minimuam
31t 50 306.751 0.179 0.0285 0.0160| =0.002 0.095
12 8 277.092 0.165 0.0250 0.0150| -0.004 0.100
13 7 247.419 0.148 0.0240 0.0150| -0.005 0. 105
*14 6 | '218.499 00,132 - 0.0220 0.0130!-0.0055| 0.106
15 ) 188.636 2, dEn 0.0195 0.0l'?O'[ +0.002 0. 105
IS ) 159.772 0.100 0.0180 0.0150; +0.001 0. 110
i s S 120.000 0.079 0.0150 0.0170| +0.003 0.115
18 2 80.014 0.055 0.0120 0.0150| +0.006 0.116
19 1 40.028 0.32 0.010 0.0150| +0.008 0.119
20 (@] 0.00 0.008 0.008 0.0120| +0.010 ©.12%




TABLES 5.10 to 5.13

Table 5.10 MEASURING SPRING STIFFNESS
£ | appurs |DEFIECTION EFFECTED TOTAL EFFECTED
T 9 Ty DEFLECTION IN| STIFFNESS | STIFFNESS IN
8 EVERY STEP EVERY STEP
1 22.4 0.060 0.060 373.333 373.333
2 44.8 0.110 0.050 407.272 448
3 67.2 0.174 0.064 386.206 350
4 89.6 0.234 0.060 382.905 373.333
5 112 0.286 0.052 391.608 430.769
6 134.4 0, 352 0.066 381.818 339.393
7 156.8 0.412 0.060 380.582 3. 333
8 179.2 0.465 0.053 385.376 422.641
9 201.5 0.5185 0.0545 387.872 411.009
10 224 0.5695 0.050 293.327 448.00
11 246.4 0.6195 0.050 397.740 448.00
12 268.8 0.6680 0.0485 402.395 461.855
13 291.2 0.7125 0.0445 408.701 503.370
14 213.6 0.7615 0.049 411.818 457,142
15 336.0 0.8166 0.0551 411.432 406.533
16 358.4 0.8749 0.0583 409,647 384.219
A7 380.8 0.9249 0.050 411.720 448,00
18 403.2 0.9729 0.048 414,431 446.666
19 425.6 1.0239 0.051 415.666 439.215
20 448 1.0744 0.0505 416.977 443.564
Table 5.11 MEASURING LONGITUDINAL STIFFNESS (Case 2)
Read No Applied Load Deflection
(1bg) in
& 20 0. 290
2 40 0.413
3 60 0. 640
- 80 0.861
5 100 1.086
6 120 1.20
7 140 1.41




Table 5.12

INCREASING THE LOAD (Case 3)

No of Ioad in A in mm ¢ in mm |
Loading (Kgf) i '

1 f 28.920 4.60 ! 10.00

2 ; 58. 480 4.18 ; 13. 49

3 ; 87.340 3.57 ! 15.16

4 : 116.970 3.45 ; 15.55

5 I 145.830 2.56 ; 21.70

6 174.690 2.00 i 25.50 :

7 214,718 1.13 31.80 |

8 | 245.580 0.38 | 36.10 |
Table 5.13 DECREASING THE LOAD (Case 4)
No of Load in A in mm ¢ in mm
Loading (Kgf)

X 28.920 4.58 10.50

2 58.480 4.16 15.40

3 87.340 3.50 16.30

4 116.970 3.16 18.20

5 145.830 2.42 19.70

‘ 174.690 1.88 22.20

7 214.718 1.18 26.50

8 354,480 0.44 33.00
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In this study, the results of both theoretical and
experimental investigations carried out on a spring
supported flexible platform carrying rotating machinery,
indicate the vibration characteristics, dynamic response
and elucidating conditions which favour the building up
of excessive vibration when the unit is in operation with

different speed ratios.

Many classical methods for determining the natural
frequency exist but these do not give reliable or accurate

results.

A new method of approach is needed to study the natural
frequencies and the mode shapes. One of the main differences
between the classical approach and the new one is that the
new one takes into consideration the flexibility of the

platform.

The structure studied was a platform belt driven unit
of the frame type. The unit consisted of two machines, one
of them with a very rigid base whilst the second machine had

a more flexible base., Both were fixed on a frame.

The numerical techniques incorporated a computer programme
developed for calculating the natural frequencies and the

mode shapes.
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A single programme for the solution of each parameter was
developed initially and then combined into one programme.
Using this programme, it is possible to study various
vibration characteristics of the structure under considera-
tion. Continuous structures have an infinite number of
modes of vibration, but generally only the lowest of these

are of importance in low frequency vibrations.

The techniques employed in this work were the Finite
Element Method for the solution of the structural vibration
problem, the derivation of consistent stiffness and mass

matrices of structural elements.

Although our analytical capability has vastly improved,
response time is still inadequate for design purposes,
and there is a requirement for a simplified numerical
technigue. The present need would appear to be to develop
an integrated design system based on these improved analy-
tical capabilities. It is hoped that the experiences
described here may be of some value to those who are

involved in such design tasks.

The three rigid body modes and the plate mode are shown
in Figs.(5.9), (5.10), (5.11) and (5.12) respectively to enable
a comparison to be made between these and the theoretical
results derived from the computer programme. These were
found to be in good agreement. The values of these

measurements are given in Fig.(5. 13)

The first 'plate' modal shape Fig.(5.14) is built up
of a bending motion between the motor and alternator, and

a 'torsion' motion between the motor and alternator ends
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of the frame. When the vibration in the first mode was
viewed in the light of a stroboscope, the main apparent
motion between the motor and the alternator was the 'bending'

mentioned.

The second plate modal shape is mainly due to a torsion
motion between the motor and the alternator Fig. (5.15).
This was also apparent using the stroboscope. From the
figure there is also evidence of a bending motion between

the frame 'corner' shown and the opposite 'corner',

This bending motion in the second mode then becomes the

main motion in the third mode.

The phenomena listed below were caused by the presence

of non-linearity in the system.

In this phenomenon a rigid body frequency was being
excited when the forcing frequency was a harmonic of the

Rigid Body Frequency.

With single forc¢ing it was easy to show that the above
was probably due to the fact that the transient of a non-
linear system contained harmonics of its fundamental
frequency, and that it was these harmonics which were being
forced. The analogy would necessitate there being non-
linearity in the flexible supports of the model, and
in the static deflection test. This did indeed appear to

be the case.

In this phenomenon a Rigid Body Frequency was being
excited by the beat frequency of the forcing functions, and

also by a harmonic of this beat.
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With double forcing, it was shown that the combination
frequencies occur naturally in a non-linear system, and
to explain the first phenomenon above it was assumed that
a resonance occurred when these frequencies coincided with

the natural frequency.

The second phenomenon arose from the presence of harmonics
of the natural frequency already present in the transient
vibration of the plate mode which was being excited by the
beat. Again, the analogy would necessitate there being non-

linearity in the flexible supports, which was present.

In this phenomenon, the resonances due to the plate modes
showed the characteristic jump effect, and there was also

excitation of a plate mode by subharmonic forcing.

In the case of single forcing, Duffing's equations gave
the jump effect as a common occurrence in systems with non-
linear stiffness. It also stated that it was possible for

subharmonics to occur in the transient of such a system.

This would explain the above phenomena by analogy, if
the plate stiffness itself were non-linear and if the 'trans-

ient wvibration of the plate' contained subharmonics of its

natural frequencies which could be excited.

Non-linearity of the base of the alternator on the frame
stiffness seems likely, and therefore it can be assumed that
the base of the alternator is being affected by both its
non-linearity and the stiffness of the supports. This would
give a coupling effect between the frame and the supports

which may show up in this case. 1In response curves, the
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difference between the plate freqguencies and Rigid Body

Frequencies seems to suggest that coupling would take place.

From the curves in Fig. (5.51) it was evident that there
was a minute amount of non-linearity in the spring behaviour.
This was clearly shown in Figs. (5.53)and (5.54) especially
when the load direction was changed. The coil ends used had
plain ends without any sort of groundings, so special care

was needed in determining the deflection.

The seating and decrease in the number of active coils
with an increase in load agreed fairly well. 1In the case of
decreasing the load to zero (Fig. 5.54) the curve looked
more agreeable than in the case of increasing the load,

(Fig. 5.53) in which the erratic effect was more clear.

Hence, it may be concluded that the seating was not
uniformly progressive but proceeded erratically. This was

mostly due to the irregularities in the helix.

The seating represented the accumulation of non-linearity
at each end from the tip contact of the dead ends of the
coils. The initial irregularities in the helix, the pitch
angle, coil diameter, slope of the end seats etc. were not
uniform and the actual seating necessarily hit only the
high spots as it proceeded, thus contributing to this non-

linearity.

Furthermore, there was probably some frictional resistance

to the twist of the wire in the seated portion of the coil
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and this may release itself suddenly when it acquires
sufficient magnitude. Finally, the effect of non-linearity
plays an important part in curving the load deflection

graph.

Although there are many other modes in the response
curve, the main reasons for these modes were the secondary
unbalance effect and the non-linearity in the springs

which gave rise to the coupling between the modes.

For the secondary unbalance effect, the resultant is
either a vertical force tending to cause vertical vibration
of the machinery on its mountings, or a couple tending to
cause pitching vibrations about a transverse. If the
vertical force does not act through the centre of gravity,
it can produce pitching as well as vertical vibration, while
if there is coupling hetween the modes, this excitation can

(70)

also produce longitudinal vibration. Another reason

was the effect of non-linearity in the damping coefficients.

A practical method was used for checking the designs of
flexible platforms by means of free vibration and response
analysis programmes. If a particular mode of vibration
gives unacceptable amplitudes, the free vibration analysis
can be used to estimate the effect of a structural modi-
fication of the resonance. In this way, any proposed

alteration can be checked.

The response analysis provides, at the design stage, an
estimate of the level of vibration that can be expected

from the rotating machinery.
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It can be concluded that the modes of the structure
have a variety of variables. This may look slightly
ambiguous. It seems that the non-linearity in the spring
supported structure gave rise to many sub-harmonic
resonances, ultra-harmonic resonance, sub-ultra-harmonic
resonance, or internal resonance. It also gave rise to
non-periodic combination resonance, periodic combination

resonance and the main resonance.

In the case of structural dynamic analysis, the main
factor governing these analyses was the assumption of the
orthogonality of the modes with respect to the mass,
stiffness and damping terms. i.e. the identification
parameter. In point of fact, no test responses are purely
modal. By a suitable selection of the measuring points
maximum response in the mode under investigation may be
obtained with negligible interference from some of the other

modes.

It must be borne in mind also, that the recorded motion
may contain a rolling component of appreciable amplitude in

addition to the twist component.

This indicates that sometimes in measuring the mode
under investigation an interference from other modes may

occur.

The type of resonances obtained from such a structure
are classified in Table (5.6). The internal resonance, non-

periodic combination resonance and the periodic combination
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resonance, are the resonances which distinguish systems

with several degrees of freedom from those having a single
degree of freedom. Internal resonance becomes.a_special

case, where the main resonance coincides with the sub-harmonic,

ultra-harmonic or sub-ultra-harmonic resonance.

The periodic combination resonance is again a special
case, where the combination resonance coincides with the
aforesaid resonances (’5}. It can be concluded that the
coulomb damping which was used was a non-linear damping
phenomenon, since discontinuities existed in the damping
force time history, when changes in direction of relative

velocity occurred. This resulted in a non-linear equation

of motion.

The results obtained during the work can be classified

into two sections:
" Section 1

By the Finite Element Method the vibration characteristics
of flexible platforms could be predicted at the design stage.
The increasing size of modern rotating machinery was the main
reason for bringing about a change from the traditional
massive concrete foundation to a more flexible steel structure
which is an assemblage of beams and plates. Because of its
flexibility, it was important to be able to predict the
dynamic behaviour of such a structure at the design stage by
determining matrices corresponding to the mass and stiffness
of the structure. The natural frequencies and corresponding
mode shapes of the structure may be found by solving anleigen

value problem. The response of the structure to sinusoidal
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excitation was estimated by solving a set of simultaneous

equations.

Although damping was not considered here, the structure
damping may be represented by a matrix proportional to the

stiffness matrix.

The results for the natural frequencies and the mode shape
of the flexible platform theoretically and experimentally

showed a high degree of correlation.

The stiffness coefficients measured compared favourably

with the computer programme calculation.

The stiffnesses of the supports were found experimentally
to be almost linear within the normal working range. However,
elastic supports possess some non-linear characteristics in
the working range, giving rise to a new phenomenon which

may be completely different from the linear case.

There was an effect due to the end turns of the spring
when the applied load was increased. There was always some
progressive seating of the end turns, so that the number of
completely free coils decreased with the load, and this
increased the number of inactive turns. It was also noted
that the total deflection of the dead or inactive coils on
each end of the spring was greater than that which corres-

ponded to the deflection of the free coils.

Any slight variation in spring wire or coil diameter had
an effect on the load deflection characteristics of helical
springs. A 1% change in the mean coil diameter meant a 3%

change in the load deflection characteristic, while a 1%



-178-

change in the wire diameter resulted in a 4% change in the

deflection characteristic (ss)

It may be shown mathematically that the number of coils
active at a given load is equal to the slope of the curve
for one average coil at a given load over the slope of the

curve for the whole spring coils at the same load.

If the system is excited by a single oscillator, the
discrepancy between the experimental and theoretical results

may be due to the miscalculation of all the input data.

Section II

Conclusions drawn from the linear and non-linear

aspects:

In a linear system a resonance was produced when the

forcing fregquencywas equal to the natural frequency.

In a non-linear system a resonance was produced when the
forcing frequency was equal to the natural frequency or any

of its harmonics.

The natural vibrations of a non-linear system contained
harmonics of its fundamental frequency and this fundamental
frequency differed from the linear case by only a small

amount.

The force transmitted to the foundation was directly

proportional to the spring deflection.

.

In forced vibration of an undamped single degree of

freedom system, the motion response, the force transmissibility
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and the motion transmissibility are all numerically equal.

The displacemeht response is defined by three freguency
conditions, and the vibrating system is sometimes described
as spring-controlled, damper-contrclled or mass-controlled,
depending on which element is primarily responsible for the

system's behaviour,

The rigid body mode could be excited by the beat freguency

of the forcing function, and also by harmonics of this beat.

With a double forcing function the combination frequencies
occur naturally in a non-linear system. To explain the
phenomenon that a rigid body mode was being excited when the
forcing frequency was a harmonic of the rigid body mode, it
must be assumed that a resonance occurs when these frequencies

coincide with the natural fregquency.

The effect of beating in a non-linear system is quite
significant, especially if the system has more than one degree
of freedom. With such systems, instability occurs, that is,

the amplitude of vibration at each mode varies periodically.

Beating frequency may excite the system's natural fre-
gquency if the natural frequency is equal to (naw), where

n is a positive integer.

Marked ultra-harmonic behaviour cannot occur unless the
frequency of the exciting force is slightly above 1/3 of

the natural frequency of the system.

Marked sub-harmonic behaviour was observed experimentally

when the freguency of the forcing function was about 3 times
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the natural frequency of the system.

For non-linear systems, other than with a cubic restoring
force, it was shown that the stable ultra-harmonics of
orders (2r + 1), r =1,2,3 .... exist and that sub-harmonics

of order 1/(2r + 1) also exist.

If the system was excited by more than one force, then
the solution would have been difficult to obtain. The
difficulty in obtaining the experimental results was due to
the fact that the system was unstable and varying in ampli-

tude with time.

Points arising from the computer programme used:

The idealisation of the structure must go to great lengths
to achieve a true and adequate theoretical model given an

adequate maximum core size.

Since it was out of the question to represent the motor
and its base in the computer programme, the tactic adopted

was to increase the stiffness of the motor base.

Minor modification was necessary concerning the fixing
of the motor base in the frame. A special arrangement was

built to fix the motor base to the frame firmly.

It seems there is a need for obtaining more accurate
assessment of the true joints condition in the vibration

analysis of structures,
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Suggestions for Further Work

In the model there were two separate areas of interest,
i.e. the structure characteristics, and the non-linearity of
the support. Further work can be carried out and studied

in detail in the following aspects:

Idealisation of the structure with more degrees of
freedom, especially the effect of the unknown journal
bearings dynamic characteristics. Also the damping effect
and the effect of coupling in it, and the solution for the

isothermal form of Reynold's equation with variable viscosity.

More accurate representation of the rotating machinery

with its components.

Study of the non-linearity of the damping coefficient.
In the dynamics of structure every case has its own solution
according to its characteristic behaviour, but there is

still the need for more correct idealisation of such cases.

There is a continuing requirement for skilfully produced

mathematical models.

Study of the gyroscopic effect for more rotating machinery

coupled together with different speed ratios.

Study of the coupling between the modes with a non-linear
spring system, treating the case as a multi-degree of
freedom system (i.e. one with more than 6 degrees of

freedom).

Optimum excitation analysis may be extended to the
situation where transient vibration response of structures

is a parameter for assessment of the structure condition.
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APPENDIX A

Response of Discrete Systems by Modal Analysis

It is always easy to adopt the following method
referred to as modal analysis. The procedure is analogous
to the Fourier analysis and can easily be applied to obtain
the responses to initial conditions, harmonic excitations

and periodic excitation.

The following is derived for the general expression

covering all the cases just mentioned.

To start with the equation of motion
[m] {8} + [k]{q} = {0} (1)

where the excitation functions Qj(t) are arbitrary functions
of time (periodic excitations are special cases). To use
the modal analysis it is necessary first to solve the eigen

value problem
[m] [0] [w?] = [K] [u] (2)

associated with the system described by (l1l). The solution
of the eigen value problem (2) yields the modal matrix [u]

and the diagonal matrix of the eigen values [wzj.

Using the expansion theorem the response may be described

as a superposition of the normal modes in the form
{q(t)} = [u] {n(t)} (3)

where {n(t)} is a column matrix consisting of a set of

time~dependent generalized co-ordinates. From equation (1)



it follows that
—~ {g}- = ilu]di8)} (4)

so that introducing Equations (3) and (4) into Equation (1)

we obtain
[m] [w] {H} + [K] [u] {n} = {0} (5)
Premultiply both sides of Equation (5) by [u}T giving

(W] [m] [w] 5} + [u]T [k] [u] {n} = |u|T {Q} (6)

But the normal modes are such that
(@) ) (o] = (1) » [u]® [x] [w] =[w (D

where [I] is the identity matrix. In addition, we can
introduce a column matrix of generalized force Nr(t) which
is associated with the generalized co-ordinates nr(t) and

related to the forces Qj(t) by
T
{N} = [u]l® {0} (8)

In view of Equations (6) ad (7), Equation (5) can be

rewritten

i+ [w?2] {n} = (N} (9)

which represents a set of n uncoupled differential

equations of the type

M ke) & w 2m (E) = N.(£) r=1,2,,..n

(10)



This differential equation describes the motion of an
undamped single-degree-of-freedom system. Hence the modal
analysis consists of uncoupling the equations of motion

by means of linear co-ordinate transformations; the
transformation matrix is just the modal matrix [u]. Of
course, the solution of the uncoupled equations of motion
(Equation (10)) is considerzhly easier to obtain than the

solution of the coupled equation (1).

The solution of Equation (10) may be obtained by means
of the Laplace transform method. Transforming both sides

of Equation (10) we obtain

8 3 ol Y 2 = PR
S nr(S) Snr(O) nr(O)+w rﬁ(S) = Nr(S)

£11)
where

ﬁr(S) and ﬁr(S) are the Laplace transforms of nr(t)
and Nr(t)’ respectively, and nr(O) and ﬁr(o) are the initial
values associated with the generalized co-ordinate nr(t).

The subsidiary equation is:

- N_(S) :
n(8) = —E— 4+ —2——n (0) +
S24 wr2 S & wr2

1

82 4+ w_? ﬁr(O)
r

(12)

By using Borel's theorem the rth generalized co-ordinate

becomes
1 t
nr(t} = ;;— ‘fb Nr(T) sin wr(t-r)dr - nr(O) coswrt
o)
sinwrt
0 L 0)
r W

r=1p2 ssss 1IN (13)



The integral in Equation(13) is known as the convolution

integral.

The initial generalized displacement nr(O} and initial

generalized velocity ﬁr(O) are obtained from the expressions

(n@} = [u]? [m] {g@} , {(A©@}= [u]T [m]{&()}

(14)
where {g(0)} and {§(0)} are column matrices of initial

displacement and velocities, respectively.

Introducing Equation (13) together with the initial
conditions of Equation (14) into Equation (3), the response
{g(t)} may be obtained. The above formulation holds true
regardless of whether the excitations Qj(t) are harmonic,

periodic, or non-periodic.



APPENDIX B

From the analysis of vibrations measured at discrete
points on the structure it can be concluded that the
frequencies of the characteristic components of the
vibration are related in some way to forces generated in
defined ways within the rotating system. The system
vibrates at frequencies equal to the exciting frequencies
and also at frequencies which may be multiples of, sub-

multiples of or differences between any two fregquencies.

In other words, the system vibrates at frequencies equal
to the exciting frequencies and also at fregquencies which
may be sum and difference frequencies according to the

harmonic zone number.

Figs. (1l2) to (30A) show some of the response curves
and wave forms for the motor running at different speeds,
with different speed ratios and different signal picking
positions. 1In these response curves the x-axis indicates
the frequency in Hz and the y-axis gives the amplitude in
volts. 1In the wave forms the x-axis gives the time in

milliseconds and the y-axis shows the amplitude in volts.



*1 uoratsod *z uotjtsod

1eudrs dn Buryord zg pg e vz -bB1d 1eudis dn Buryoid zy g B VD +BT
Suruuna zojow ‘g:/ orjea pasdg Butuuna lojow ‘g:/ orjEa paads 4
‘WIO} 9ABM puB aAind asuodsay *WI0J IABM PUB 2AINnD asuodsey
AR W A L LT R T
i i ; i i £ o ! § g
1 2o TIZ
[ f
i : _
Wty | b ‘ ,
4 .n_m. .___ soe = & r w .
P L ity 3 _} Zos T3
AT A, : U
¥ __T__ { 1
Grea -2

=14 Acuvanbe .y
2 Acuvenbe. g

8 - E
: : : ! . ; 3 !
ﬁ.\ll}ﬁ..f]—.-_.l L Bes 8 e - = v = vr - due 8
EED 8 ﬂ‘ :
2 eig-a
[
5
S48 8 i Scaa
it
C
3 o
Bl e ] €50 B
| <
[}
EEIl "B ]
it i@ '8
]
agl e

BuB @

Toa @B Triwy

()

ez (o) epnaiube



*1 uotratsod

1eudts dn Suryord zg ¢g e
Sutuuna xojow ‘giy/ OfjeI paadg
‘Wi0j 9ABM PUB 2AIND dsuodsay

e R TR

"5

AP0 AARE
ARD PEDE
e CBan.

BEF "BPRY

ROt

ane

2 Acuenbeoy

B 8

- B0
B

PRl

¥v *bra
§
‘
zee "z £
! :
Bis X
=
)
1 vee B
vSe @
4
0
(i1}
al 8 m
I
4
o
TR |
<
[}
)
Lz g
i

*z uotrjrsod

1eud8ts dn Buryord zy ¢¢ 3Ie
Sutuuni 1ojow ‘g:/ orlea peads
*WI0J 2ABM puUB aAIND asuodsay

Casspille Sl

§ g p g
L e S

=p Acuvenbe gy

i B

S

L
Ber
Ll -3

[l

e

| BB "B

568 '8

wEl '@

See @

BBE "B

Cir '@

E3TO8 BN T

oo, epraiuBey



*1 uotrjisod

1eudis dn Suryord zy ¢z e
Sutuuni 1ojow ‘g:/ orjel peadg
*Wi0J IABM PuB aAiInd asuodsay

e L1 R

£
1

T BOr pens
| @O pasr
1 AOM PORC

e

= Acvenbeuy

; 5 B

e —

=
|

_\ fa}

1 anr vpans

V9 *bta
s
g
ZES B
A B
i, | :
vee ‘e &
{ g
f
ZEQ "B
B =
(] -
g, ] Bee e
Lze-a
z
0
un
¥S8 8 m
i
L
0
vea 8
<
o
-
T
[]

vEl "B

*z uotjtsod

1eu8ts dn Zurord zg ¢z je
uTuuni 1ojom G:/ Oorje1 pasdg
"WI0] 9ABM pUB 3AIND asuodsay

TEARINIIY mwja

P

s ASTI, DO SN
F

S

w
n
In
0

DEE "

&
4
n
]

Sz8 8

1 ESB "2

6.8

1TOs BDN31TEWY

epma T ubBoy

LR VN



reus8ts dn Suryotd zg Gz 3IE :
Futuuni 1ojou .m"h.omumu peadg vg BT
‘W10 2ABM pUB DAIND 9suodsay

1 eoe ‘S0

‘¢ uotjrsod :

TaAITIIN said

& g 3 &
g E g i .
[ 73 ti [ [
g g g g E
T B2l 2
ﬂ >
¢
poz 2 §
3
g2l "=
xp Acuenbed
& i i i - ®
- = ) - - -
= v v | B28 B
BllR
z
0
9
LEETB i
i
¢
o
8SE R []
<
(/]
v
SivB g
'
EGS @

*yp uorjisod je

" 1eu8ts dn 3uryord zy Gz IE
gutuuni lojow G:/ OTIjeI paadg
*u10J YABM PUB BAIND Isuodsay VL

R TR

Rr BRRs
“Bad

_BN" “PORE

@00 ‘pans

AOC “RnG 1
&

=H \An.r..l:.J»U'rnu

£ B B

L
e

*bra

Grd 2

¥il e

868 "8

E2l @

LR

LAY

miles =prs TuBoy



*1 uotr3jtsod [euldrs dn
Buryord ‘posds wnwixew 03 1030w

- lm
a4y Buijaeys ‘g:¢ orjea pasdg VOt k&
*Wl0J 9ABM puUB aAInd asuodsay
i S
w m.. M =
| £ B m H @
13 E: L [ 13
g g i g g E
— . — = NR s - - T 28 “1—
S\/>\v< <i§</\ v
BeE "1
£py Aowenbeoy
# & F # F #
© = - = = = -
s 1._rwcrc||l|.{ - 4 BB 8
Sl B
£
1]
{11]
udl e W
(U
C
o
<9l e ]
<
0
gize
L]

‘1 uworjisod yeudis

dn Sumjo1d ‘pesds oasz 03 103qQu
oyg Burjanys ‘g:¢ orjea pasdg
‘wi0j SABM PUB 9AIND asuodssy

m w Ctl-m—-i llm-._.
§ § £ g

v6°bta

L
enr e

= Aovenbs oy

i aes6 "a-

Bbaa "a

LR

Bes "o

EEl B

g9l '8

epra T oWy

TuBey

-n (o, epm



guruuni 1030}

1 BT "BRRE

r'es

L

*1 uotrjtsod
Teudts «dn Buryotrd ‘zy ¢ IE
*g:¢ orjea paadg
*wi0j IABM PUB 2A1ND asuodsey

g
8
8
g

2y Acuenbey

B

H

Boe

ew

.

"

¥

ﬂ—

j Al

Y

YZ1

BeE "B

BBy "o

(e ]

ﬁ Bidg e

Eve e

Soe '8

sie'a

*brd

es e, epraiubBoy

*¢ uorjisod

TeuBts dn Buryoid ‘zyg g 3e
Sutuuna Iojow ¢:g OT3BI poadg
*WI0J 9ABM PUB 2A1ND asuodsay

AR NNLS =2

g
:

7 eer "eadE
PO “BPEY
PAP PERE

VTIT

z ASuwenbe .y

e
eer
B
8t

*b1a

BEL "B—

BEL "B

2

:"'}:
-2

Bbe "8

EED @

L9882

Bal '8

g1 '8

O S — T

-

L0 g



*y uotrjrsod

1eudts dn Buryotrd ‘zy g I
Guruuni 1030
*WI0J DABM puB 2Al1nd asuodseay

] a0 ‘mpaz

Tl“?;

BRC DOy

&
=

——————

‘g:¢ orjea poadg

4
|

BE pRan
1 eeo ‘oppz

EH Aousrba. o

8 g

ﬁ%j{}

T moP Eeg:

Wi,

YpT°brd

R ——

BEE @

ac1 v

iry @

148 @

566 @

GLI"

TITOA eprazubBeg

*¢ uotrjtrsod
1eudts dn Buryoid ‘zy ¢g I

fcs d
Buruuna 1030l *g:g Oorjel paedg VET BTa

‘u10jy 2AEBM puB 3AIND asuodsay

TR

T PRC BERE
Bar BeRy

i
.

imm

=y Asvenbe oy

agE a2

BASE "2

o

=
{5 |l— Boe ‘o

6218

L5278

QBE ‘B

vis’'a

epma By

L



*1 uotr3ytsod *7 uotrjisod

Teudis dn SBuryotrd ‘zy ¢z 3e 1eudts dn Buryord ‘zy ¢z je
3uruuni 1030l *g:¢ o13ea paadg V9T *btd dutuuni zoj0om ‘gi¢ orjea paedg ¥ST *brj
‘WI0J 9AEM pUB 2AIND asuodsay ‘Wwioj SABM puUB 9AIND asuodssy
g 5 g £ B ] ¢ B 5
{ o et e e ey By R R
R BN e LA 0 A RN SN
e L ST - e WS ||‘— Ov e B= By “1—
§
_. T |
z% \t/ ooe ‘@ - Gl
|

—
R

ave @ Bye 1

e Acwenbe.ay

# E

= Asvenbey

" : £ #
“ “ m m = - = [
e SR SRR S e, BOB 0 |<I pae "8
—Ew- Boe B
z
o
1]
copa ) SEL "B
L
i
C
o )
t6ba i €02 ‘8
: L
a —
- e
REIB ¢ Bz e
]
HEE B

291 'a

epma T uBe

-y



*1 uotrltsod

teudts dn Buryord ‘zy ¢1 3IB
Sutuuna 1ojow ‘g:g OrjEa paads
‘WIOJ 9ABM PUB 9AIND dsuodsay

*z uorjrsod
1eu8is dn Suiyord ‘zy Gy 3e
V8T “bTa Sutuuni 1030 *¢:¢ OI3B1 peeds ¥LT *bTa
‘Wwi0j 9ABM pPUB 2AIND Isuodsay

TN A

“ W. ’ 2 . 3 - w m -
g i : i : i i i :
= = ™ o
§ k § § ] g : g § § g
v : i 3 1 eBs “© e A e L G S IS i 226 ‘@G-
! J
| |
]
i i
i |
ooe "8 § BEG @
i |
|
|
!
— BHeg "a BE6 O
= RAevenbea y =y Ancenbe oy
g & E g p 8 ~
- [ L () () L -
e - 208 B = —ses \“« 008 B
grp g 11 oee s
g I
0
o
£68 B w 1 er e
I3
(4
o
El'® & Ble e
[ <
' 0
o
SBEB g pEZ ‘B
]

epma subBoy

i 4l

-a Te



*¢ uvotrjtrsod
1eudts dn Buryord ‘zy ¢E 3E

Sutuuna iojow ‘[ig Orjex paedg vozZ
‘wi0j 2AEM puB 3aInd asuodsay
L 1 1 1 s ¥
u , " u
. g # # m .
] g H # g M
i d =]
| f
L
ﬁ
. v 1)
._
" EE8 "6
[ f.
Y
azZe "E
= Anvenbe.o gy
- < : - -
) ....fﬁ v |||<..|r11¢1{..4_; s Bos e
ak Lse e
_: ris'a
_.— BiL 8
I Led’l
_ ez "l

"bra

epms T uBogy

LA S FN

*y uorjrsod

Teudts dn Buryord ‘zy ¢¢ 3e
duruuni iojow ‘y:g Orjel peads <ma.m..n.m

*WI0J] 2ABM PUB BAIND asuodsay

: i : £ ¢ .
g e § i g
Bs8 "1 -
f
|
% geEd @
/ *
Bs8 "1
= Aovenbeuy
. : : - : :
= = e ¥, |_ ©woo e
8§ f 5
i [CTER ]
|
_
_ Baz ‘o
1 e
— eor o

BaS "8

eprmatuboy

LS W



*z uoraisod
1eudis dn Buryo1d ‘zy g7 e

Surtuuni 1030w ‘yig¢ orjea poaadg Ve
*WI0J 9ALM puUB 23a1nD asuodsay
: % . 2 ; - : ESS "E-
h
h
g i
) —_ 1 3 m.— f ‘...
ﬂ_y —» __\‘»‘w- *. | J ﬁh_
| ..__ W -—m ‘ ___ ﬁ ..,__. BEo "o
# ’ i 4 f n__;___
11 P | |
n |y i
¥ H
r .
‘* Lo T
< Asvenbe oy
N A T G L
= Jﬁ i ) 00 @
—\ LEB B
— vib @
|
ﬁ L a
i ail B
LHl B

*btrd

= 1o, espmniubegy

+1 uotjisod

reudts dn Buryord ‘zyH Gz IE
Suiuuni i1ojow ‘y:¢ OTjel peads
.ahOH aABM pug aaInd asuodsay

Seniign g

[t
BOF "BODY
oo “eRRE
A “poet

Viz-bta

-
W

=y Acuvenbe sy

E g

ooes
e

QG0 "o

(Ll i C

BBl

5
&

- ﬁﬁ -

LG "0
\ i vy ae
i

_" 1 IE Ry ]
el e

T B

Gic'B

BEg "a-

Avnny

s (s epmniubBoy



*1 uorjtsod

Teudts dn Suryord ‘zy o¢ 3IE

Buruuni 1ojow ‘z:g¢ orjex paadg

Vye

‘WI0J 9AEBM puUB 2AINnD asuodsay

ano ‘poe:

REr eopr

oo ‘peet

TSR
E—

LG T3

=

BEeG "3
vrd 0
HHU "0
“ iera

_4 G418

[54 '

*bra

epma 1 Bey

*z uorjisod
1eudis dn Buryotrd ‘zg g 3E
Buiuuna 1ojow ‘z:G orjea ppadg

1 BEBC “PI0E

‘wIoj IABM pue aalind asuodsay VEZ “bTd
i i i i .
§ & § g §
it G.m.w "B
x‘h
&, E f
W eoe o
iy |
DES "B
2y Aowvenke oy
AT T B N
lﬁ = J...‘ uj Bue o
._ :
_ . B6S@ B
|
[{era
: _” LL1 B
" fcEe B

v6C ‘B

TR TR L

epma twboeyy

=s1e4



*z uorjrsod *1 uotrjtsod
1eusis dn Buryord ‘zyg ¢¢ e teudts dn Buryord ‘zy gg e
Butuuni iojow ‘z:g OIjEI peadg w9z *bTa Butuuna iojow ‘zig orjea peads ygz BT
*Wi0J VABM pUB A1ND asuodsay *UI0J 9ABM PUB 2AIND asuodsay
PR =l ER T T T
: ; ‘ ; : i i g -
: : : § o0t i i g : §
.1 Gay "=- sl Tt SN S i 1 BRE 2=
__,
k H A g
_ * H |
ppe e , Bee "2
|
|
| :
o8y "2 2BE "=
» - =il -.‘-arr‘-.‘l_Arlbluu =4 *U-I-‘jrulllnh_
: : : : : : : : g -
o = 1 voe B = San ol
el '@
z ol "a
']
{01}
coco ) g1z 8
it
¢
) i
eer B L] __ L2E'D
o
E9S B “ SEr '8
vl e SFS B

Trine o

epma tuBey

s ey



*y uotjtsod *g uorjisod

teudts dn SBuiyoid ‘zg ¢g e 1eudts dn Bumjord ‘zy ¢¢ e
Sutuuna aojow ‘z:ig or3E1 paadg Vgz °“bra Butuuni 1030w ‘zig OTIBI PARds L .pog
‘uWi0j aABM PUB 8A1NnD 9suodsay ‘Wi0J |ABM pUB 3AIND @suodssy \
o . g : ..___z el ‘ b Y ...r:_.uw.__ :
g i 2 g g » g H g 3 g .
B : 3 5 5 i) @ : ‘

; Bos 2 ass ‘e

1
\ _
(ETeTE ] BPOG "B
| |
pOs "2 Bss "2
=y ADumnbeoy =i Acusniae.y
& @ 8 ] 3 - g # |3 & &
= = - s & & 5 ot - b L
e e e 'V~ >=Yar~u e " 2 " Sy = BBEG A
< }‘AJ,
L1108 2o '8
£
0
: i}
vEZ D m EBY @
_ "
C
i
1ISE'® 8 SBg "B
' <
# u
B9F B g 108D
[l
565 8 608 °1

aman

SR ET

epra T=Boy

=a1e,



*1 uorjrsod

reudrs dn Buryord ‘zy ¢z je
Surtuuni 1ojow ‘z:¢ orjel pasdg
‘Wi10j 2AEM pue aAiInd asuodsay

‘eEDE

£ar ‘pon:

pas ‘pee
| sar ‘pons

1 en,
——
1
1

AP N R ARV
Ty f\f IR __f__,,._ i
R ;n_ o
S i

“14 Aaiwenib e .nh.—
& & 8 &
w0 ()

8 ;
CHN MR e i T
%ﬁf
H

| cea

v

B

BEE

By

=<3
i)
(7]

VOE “bTd

‘o

= 1By

sps

1

r:'

*z uorarsod
1eudis dn Buryord ‘zy ¢z e

Suruuni 1o0jow ‘gz:g orjea poadg V6Z bty
‘w103 SABM pueB 2AInd asuodsay
st LR R ISR B
g E g @ £ .
g & < é g g
BB 1
f |
BAEG "D
B@s "1
=2 Aouwenbe. g
- & s B & 5
=) L & L = =
. ; ] eea e
9670
15178
Lee'n
EBE '@
GLE B

LS SN eprma 1 =Boy



APPENDIX C

Why Spring Steel acts admirably as an isolator

Steel springs have a damping coefficient of less than
one-half of one per cent, a fact which contributes greatly
to the excellent results obtainable using them as shock
absorbers. Absorbing vibrations by means of damping implies
a dissipation of energy in the form of heat. This is energy

irretrievably lost to the machine.

This leads to a most important conclusion. When the
operation of a machine sets up a vibratory motion in an
adjoining structure, the energy used is spent for an entirely
different purpose from that for which the machine was built.
This energy is subtracted from the productive output of the
machine. It is therefore profitable to regain as much as

possible of this energy.

A correctly designed spring supporting the structure with
a minimum of damping will save a considerable amount of

this otherwise dissipated energy.

This effect, for example, can be demonstrated most
strikingly on large motors, where it appears as an appreciable
increase in speed when motors are correctly isolated. No
definite figures about actual savings are available; some

claim an increase in power of up to ten per cent.

Damping, to prevent excessive movements, is advantageous

only when the machine is operated near resonance speed, but



better means than damping are available for this purpose

to the designer of a spring-supported structure.

The benefits obtainable with a spring-supported structure
are so great, physically and economically, that slight
oscillation, hardly exceeding a few hundredths of an inch,
is immaterial. A record taken from an actual rig shows
the amplitudes vary from the time the set starts, passes
through resonance, and attains operating speed. By making
the springs very soft, main resonance will occur at a very
low running speed and therefore be passed through so guickly
that the small increase in movement due to resonance is

hardly noticeable.

It is evident that a vibration isolation of 100 per cent

with no oscillation of the operating system is impossible.

However, for a frequency ratio of 5:1 and with zero
damping, the amplitude of motion will be within 4 per cent
of the ideal machinery and vibration-absorbing efficiency
of approximately 97 per cent. This means that the motion
of the mass would be virtually imperceptible and the slight
vibration transmission would be well beyond the human

sensitivity range, detectable only by the finest instruments.

Actually, at low frequency ratios and with increased
damping an increase of vibration transmission takes place;
and for the low frequency ratio the phase angle is not 180
deg. but 0 deg. In other words, the stabilizing mass (the

frame) is moving in the same direction as the disturbing



mass instead of against it and there is an increase in the
vibration transmission. The phase angle is less than 90 deg.
below resonance. It increases rapidly, a practically
instantaneous change to 180 deg. with zero damping. That is
why with a structure supported on springs, the amplitude

of motion is reduced so quickly. The frame becomes an
effective stabilizing mass as the phase angle suddenly changes
from zero to 180 deg. The greater the damping factor, however,
the slower the change in phase angle takes place, an added

indication of the disadvantage of damping.

For the vertical vibratory motions the deflection
of the spring controls the natural frequency of the isolator,
and therefore must have a definite value regardless of the

weight it has to support.

Hence it is important that the calculation of such a
deflection in the isolator be made on a simple and reliable
basis. The calculation of steel springs, based on modern
practice employing the "Wahl" coefficient for the determina-

tion of deflection and stress, is very simple indeed.

The large deflections necessary for maximum isolating
efficiency are easily obtainable through the choice of the
proper physical characteristics, expecially with a coil
spring which has a higher loading capacity per pound of
spring material than any other type of Isolator used for this

purpose.

Therefore it is the writer's belief that this type of

spring is the best choice for the most important and



difficult isclation problem.

Organic materials do not show the simplicity and advan-
tages of the steel spring which does not depend upon its
material, but rather, upon its wire diameter, outside
diameter, etc. which may be chosen at will, while the
former are restricted in their use as their elasticity
depends upon the material itself and only to a minor degree

upon shape.

This defect explains why organic materials cannot
provide the necessary large deflections in the isolator for
any reasonable thickness. So we can say that steel springs
act admirably as isolators because of their shape, form, and

heat-treatment possibilities.



APPENDIX D

The effect of an anti-vibration mounting on the

Machinery

A crucial aspect of vibration effects is the use of

an anti-vibration mounting on the machinery. Apart from

the reduction of transmitted vibration, the provision of

an anti-vibration mounting has a number of important

effects which influence the decision.

1)

3)

4)

5)

6)

The fundamental frequency of vibration of machinery
and its mounting is low and must be run through

when the machine is speeded up.

A critical frequency of the shaft is increased by
(s3)

the presence of an anti-vibration mounting

The behaviour of a machine can be more easily
and accurately monitored when it is on an anti-
vibration mounting, as the amplitudes will be

independent of the mounting stiffness.

Contrary to what is often expected, the forces on
the bearing, due to the out-of-balance forces,
are reduced under normal running conditions by the

presence of an anti-vibration mounting.

When a machine is on a mounting, all equipment
and the parts of the machinery other than those
generating the out-of-balance forces must be able

to withstand the movements.

All connections need to accommodate the movement

of the mounting.



APPENDIX E

Why the change from traditional massive concrete to a

more flexible steel structure

Unwanted effects arise because of the transmission of
vibration and structure failures. Considerable financial
outlay and loss of production may result while substantial

repairs or complete rebuilding are put in hand.

One of the main problems confronting the vibration
engineer is the lack of positive and practical information
on general anti-vibration products on the market. The
average machinery installation design did not permit time,
nor indeed the money, for research into the individual
problem, and engineers were thus often forced to select a
machine mounting device from a number of commercial products
and relied entirely on the published literature for the
necessary technical data and it was important to make sure
that one did not follow too blindly, other people's

experience.

Noble (ss) in his investigation of the foundations for
large turbo block generators, came across some gquestions.
He indicated that there appeared to be little English work
(or foreign translations into English) dealing with large

turbo block generators.

Whitman (ss) succeeded in producing results to 10 per

cent within the theory but in the case of large blocks with



circulating water pipes and steam pipes, an error margin
of 15 to 20 per cent would cause a very serious condition,
with the sort of freguencies which should be avoided.

Whitman evaluated the structural form of foundation blocks.

In the C.E.G.B. Research Establishment, theoretical
calculations of a block, actual measurements were carried
out while the block was in use. The results were found to
have an error margin of up to 100 per cent. The fact that
large variances were possible brought into guestion whether
it was worth doing any calculations at all. A small-scale
analysis block was also used. No correlation was found
between the theoretical, the actual and the model. This
confirmed the view that it is extremely difficult to predict

characteristics of a turbo-block.

The author's opinion is that the increasing size of the
modern rotating machinery gives the main reason for bringing
about a change from the traditional massive concrete
foundation to a more flexible steel structure which is an
assemblage of beams and plates. Because of its flexibility,
it is important to be able to predict the dynamic behaviour

of such structures at the design stage.

The Finite Element displacement method may be used to
determine matrices representing the mass and stiffness of
the structure. The natural frequencies and corresponding
mode shapes of the structure are found by solving an eigen

value eguation.



The response of the structure to sinusoidal excitation
is estimated by solving a set of complex simultaneous
equations. The structure damping may be represented by a
matrix proportional to the stiffness matrix. Results for
a typical theoretical case flexible platform are than

compared with experimental measurements.



APPENDIX F

This Appendix gives two computer programmes. The

first was a programme to calculate the mass and stiffness

parameters.

The main programme then used the two matrices found
by the first programme to calculate the natural frequencies
and the mode shapes. This Appendix shows also the output
of the main programme for the 4 main natural fregquencies

and the mode shapes.



b =(9'9)2=(8 710 =1y '6)3 (€ °£)I=(2'902 =11 "'4)D 0S¢
¥3iZ = JIUVW 09€

(82°S1)D"(S1'S1) ¥ WIOIY OEE

g INI¥d VW 02

I*V =8 IVN 0LE

VINIHD IV 00F

I1X3IN 062

(10172 =z *T'9*OV=(3+7'2+(N 082
LI TV == LE A+ IW=LATE+ IV 02
(I)1/7 =02+ 2+0V=2+ 2+ 1V 092

EV UL/ = (EXE+V=(*["4+IV 0SZ
AL OV-= (0 [E+IV=IE+ "9+ [y 072
ZH0VHOIWV-=(2+E+NWV=(E+1'C+ 1)V 0fZ
ZVICDT/9 =L+ 2+0=(9+[ "L+ [V pez
VLI 9 =1+ 'z lv=12* " L+r)V  oiZ
(t-Ihky =1 00C

L 0L =] 404 061

7 0vIy tvW 081

D UNIHd IYW  0L1

550=1(5'6) 091

S1°0 =(E4L)I= (EEID 0§

: sl 1 005 SL0-=(E'WI= (€1 041
. anzuﬁamﬁw me SLZ'0 =(Z'UD= (ZUD OFL
5 R N g §L2°0-=12°€1) = (2'LD) 02

20=1(9'6) =(9'5)) = (9°1)] OL4

§50=(6'5D 097

SU0 = (U'ED=ELE 05y §S0-=(5°1)3 001

b= (91'82D= (E122D=(1'920)= (01'seh) 06

O Rt L= (111207 (0E2)3= (8 '220= ( L'1202=(SK0ZD= (€461 08

S0 =(Lie)d= 2y 08 L= (£°91D= (1'LD= (21'943= (04°'SID= (€94D= (L'EWI 0 £

o SRVl cDcél) v L= (€'0= (1'1UD= (9°0D= (7'6)3=(€'8)I=(1'L)3 0 9
s _E..a HIR b= (9°9= (2°S13=(6'9)3= (L'€)2=(9'2)3=(%"1)] 0§

~ . 550-= (1’5 007 S G

L= (82" WI=1LZ €11I=92"1L)I2 01))  06E ST B!

=92 " W2 01)D=2'8) =02 'L)I-0e'SHI=61'EI)D  0BE
L=(BL°E)IALL ) D=(94°21)D = (5170012 = (70 "ED =(EL'1)D  OLE
L=(ZUEDDL 1)I=001"9)D= (6" 9)I=8"€E)I=(L"1)) 09

(£)7°(51°82)2"'(82'82) vV WiO 0¢
(51°'82) 8 WO 0 I




N 04 | =X 404 09
M *(3/1) =M IVHW 0SE
INIM = 3 07F

N+ 0= MIVW OEE

0ot 01 b= [ 404 OCF
(N} NOD= N IVN 0IE

N 0l =1 404 00
V8 =01IVN 062

(BIANT = 8 1YW 082

H INT¥d LVW 042

INTHd 092

_H XIYIVKW  INIHd 052

I IX3N 092

[ 1X3IN 0€Z

(r'rnna=('r)a oz

ON3 045 (r'1) @.4ndnNi oiz

N3 095 ; t(r'r) 8 4402 dSs1q o0z

I 1XIN 055 N 01 L= 404 061

J-0 =a4iVW 05 N 01 V=1 404 081

J+(3) = IIVH 0FS VINIYd IVIW 041

V8= IvW 025 ANIHd 091

ANl =8 IV 0I§ ¥ XIYIVW  ANI¥d 05)

09S NIH1 N=I 41 00§ I LX3IN 071

N ANIdd IVW 067 : [ 1XIN 0l
A1) DHOS /1= ALVW 087 (r'n v =(1'r)v ozi
N¥L° L) 9450S 7 1)7 NAVW 0Ly _ (r'1)v 1ndNI 011
MeA = DLV 097 YL rciy 3403, dSHQ.0061
Nav = MAVW 057 N 0L [ =[804 06

((INHL= ALVW 0717 N 01 | =1 404 08

3/ 4 Fvaanvi/i  INIHd 0E7 INB)AINIMIINNIQIN'NIDIN'NIGIN'N) VY WIO3H 0 £
NOLIVYILT 004 4314V 13 <HOLIIA NI HOM4I INIID 027 _ 13 1NdNI 0 9
[ AXAN 01Y f H0LDIA NITYOHYI FT18VMOTITIV XVIW_ dSIO 0§

M =N AV 007 N INdNI 0%

0€y7 0409 os¢ ' WOO3344 40 $334930 40 ON_ dSIQ 0 €

MIXIN 08€ (02°4)A " (02)M “(02)0 WIO 02

007N3IHL 1I<UNIN-(NIM) S8V T 0L€ (4°4) 9 ' (02°02) O "102°02)2 '102'02)8'(02'02)v WIO 0 |

WHYHO04d WIVW




* sodeys epow ayj Jo senjea eyj ¥ ssjousunbesy TeIn}eY ULBW QY]

CRA-HEPSL b __ Bbpadaan] "1 PLESPSITIATG

A
)

Hefnuik [y i

i
ﬁmfﬁ_agwﬁ.:

e by Lot O

RS TS 500 "0

- B ey i M
G e S P & e S 6 i - Lmis s "8
b w_
y ' -
¥ A 5 i BElalEenl bri Ll
&4 R e b e | [2lEea] "8 I
(e 1 R Th e T I AR e e B 1 Ml v ﬁfw:_TT,ﬂvL:
_ .y
b [Sae AelB i

ﬁ!ﬁmﬁdrﬁﬁ;%

—

R o 5 PR B




APPENDIX G

Conversion Tables for Units

Length
1 fk = 0.3048 m
b < - 25.4 mm
0.001 in = 25.4 um
Mass
1 ton = 1016.05 Kg
: B - = 0.4536 Kg
Area
1 sq.in = 6.4516 X 10~ ¢ sq.m
l sq.ft = 9.2903 X 10-2 sg.m
" Volume
1 cu.in = 1.000 X 10™° cu.m
= 16.387 cu.cm
Force
1 dbt - 4,448 N = 0.453 Kp
(Mnemonic : 1 apple weight roughly 1 Newton)
'Tbrgue
1 1bf.in = 0.11298 N.m
Stress
1 1bf/in®=" 6894.76 N/m® = 0.0703 Kp/cm>
Work «
1 hph = 2,684 MJ
1Kwh = 3.6 MJ
1 Tt Ibf = 125580
Stiffness

1 1bf/in = 175.127 N/m = 17.858 Kp/m



