
DYNAMIC RESPONSE OF SPRING MOUNTED 

FLEXIBLE PLATFORMS CARRYING ROTATING MACHINERY 

by 

WAGDY BAKR SADIK OSMAN B.Sc. , M.Sc. 

A Thesis Submitted in Fulfilment of the 

Requirement for the degree of 

Doctor of Philosophy 

Faculty of Engineering 

The University of Aston in Birmingham 

AWARDED THE DEGREE OF M.Phil. 

JUNE 1979



 



DEDICATED TO THE MEMORY 

OF MY PARENTS



Summary 

A study was performed as an investigation to determine 
the dynamic response, natural frequencies and modal shapes 
of a spring-supported flexible platform. 

Both theoretical and experimental approaches have been 
used in the investigation. Finite Element Methods were used 
in the theoretical analysis. 

The purpose of the study was to ascertain the vibration 
characteristics and dynamic responses of the platform in order 
to elucidate the conditions which favoured the build-up of 
excessive vibration, especially when the rig was excited 
by more than one force, i.e. with different speed ratios. 

The structure consisted of a platform belt-driven unit 
of the frame type, carrying two machines, one with a rigid 
base and the other with a more flexible base. It was 
necessary to establish the different speed ratios of the motor 
and alternator in order to excite the structure at these ratios. 

The Finite Element Method was used in the numerical analy- 
sis. This method is preferred to classical methods for 
determining natural frequencies since reliability is improved 
by taking into consideration the flexibility of the platform. 
The natural frequencies and related mode shapes were measured 
and the experimental results were correlated with results 
obtained by a computer in the cases of the three rigid body 
modes and the plate mode. A high degree of correlation was 
found between these results. 

The experimental work included an investigation of the 
non-linearity of the springs, the stiffness coefficient of 
the structure, and the behaviour of the structure as shown by 
the response curves. 

Prediction based on the matrices of physical mass, stiff- 
ness and damping, defined a model whose responses matched 
the response data for the selected locations. The response 
analysis provided an estimate for the level of vibration 
that could be expected from the rotating machinery. 

Some interesting resonances resulting from the non-linearity 
of the springs were observed. 

An attempt was made at a quantitative comparison of 
amplitudes, but this was very difficult because the relative 
magnitude of various mode peaks kept going up and down. 

It is concluded that a well-constructed spring supported 
platform is physically and economically better than the 
classical construction. 

BOUNDARY : Dynamic Response of Spring Mounted Flexible 
Platforms Carrying Rotating Machinery
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CHAPTER 1 

Introduction 

1.1 General Introduction 

The continuous trend in engineering development towards 

high speed in all forms of machinery, together with the 

Construction of lighter structures and foundations, has 

given rise to more noise and vibration. 

Material failure in practice is more generally due to 

fatigue than to static overstressing. The cause of the 

fatigue failure is often unforeseen vibrations. The 

transmission of vibrations can be minimised by mounting the 

offending machine resiliently. Equipment can be protected 

from vibration by similar means. Many anti-vibration 

installations have proved their worth with many years of 

Satisfactory service, although spurious modes of vibration 

do occur occasionally. 

An essential feature in the design is the calculation of 

the natural frequencies of the resilient installations so 

as to ensure that no resonance will occur with any of the 

possible exciting forces. 

The dynamic behaviour and response of structures continues 

to exercise a considerable and often decisive influence on 

the analysis or design of man-made and natural systems. The 

modes and periods of natural oscillations have to be 

determined to study the dynamic response of structures to 

periodic loading and shock.



The dynamics of structure will be considered first, since 

the prediction of this behaviour in complex structures 

represents a difficult problem, and the elementary theories 

are often incapable of providing accurate results. 

Naturally, extensive efforts have been expended over the 

years in the development of techniques to provide results 

of acceptable accuracy. Although empirical formulae for the 

fundamental frequency of vibrations of buildings (for example) 

existed for many years, there were many structures for which 

precedents did not exist. The natural frequency had then 

to be determined by experiment or by calculation. Calcu- 

lation was preferable, since it was a cheaper process than 

experiment. Calculations could be made analytically by 

various methods for configurations of relatively simple 

geometry. Alternatively, quite complex structures could be 

studied by limiting the infinite degree of freedom to a 

finite one. Finite elements were a method by which this 

could be achieved. A matrix method of structural analysis 

is defined as an algebraic approach formulated largely in 

terms of matrix operations capable of being programmed as 

a completely automatic sequence of computer operations, 

commencing with the basic problem data and concluding 

with the desired results. 

Furthermore, a proviso is appended that the governing 

equations be based on an analytical model composed of 

discrete structural elements, e.g. bars, plate, segments. 

Matrix methods of structure analysis have experienced 

their greatest advances in recent years. Developments



have taken place on a wide front and have involved the 

contributions of numerous, often isolated, investigations 

in many countries. 

Hence, it is not surprising that individual developments 

have sometimes suffered from a narrowness of scope not 

befitting the potentialities of matrix methods. Also there 

has been a lack of unification of the multitude of seemingly 

different methods which actually have a common basis. 

Among the organisations entrusted with the function of 

performing analyses in the field of structural mechanics, 

there has been a remarkable growth of computer programmes 

based on matrix methods for specific purposes. Nevertheless, 

very few organisations have undertaken the programming of 

any such method in a reasonable general form. General 

purpose formulations of matrix structural analysis are 

desirable from the standpoint of efficiency, however, and 

are even mandatory if investigations beyond the confines of 

linear elastic analysis are contemplated. 

Interested groups are faced with a difficult choice. They 

are uncertain as to whether any one of the available published 

references can be depended upon to provide an optimum basis 

for a desired general purpose computational programme. If the 

choice of a suitable procedure can be made, there still remains 

uncertainty as to the method of obtaining maximum accuracy 

most efficiently. 

If the numerical error is disregarded, the inexactitudes of 

the solution in comparison with the behaviour of the real



structure are dependent upon how well the idealised discrete 

element system represents the real structure. 

The correlation of procedures for the determination of 

discrete element force displacement relationships leads to 

the conclusion that there are two levels of approximation 

in the development of such properties. First, in the 

"essential" behaviour of the element, and secondly in the 

definition of the lumped masses and node point displacements 

as required by the complete framework of analysis. The 

alternative types of elements and the numerous procedures 

for the derivation of the properties for a particular type 

of element require the analyst to exercise his engineering 

judgement. 

1.2 Object of the study 

There is a great need in heavy industrial, petrochemical 

and oil refining plants for a simple, new and economical 

approach to the design of mounting rotating machinery with 

confidence that the machinery mounted on a flexible platform 

supported by springs do not give any disturbance regarding 

the transmission of vibration to the surroundings. 

There is also no need for any foundation design other 

than the ease of manufacture. According to the classical 

approach, about 22 tons of concrete cement are required as a 

foundation for small rotating machinery (the rig). 

This method is more economical, efficient and is less 

time-consuming than the classical one. Such a design also 

seems to be favourable as far as bearings and damping



are concerned. 

The springs supporting the structure must be as soft 

as the stability of the structure allows and designed in 

such a way as to give the first natural frequency of the 

structure in the range 4-5 Hz. By this means the first 

plate mode will also be in the range of between 4 and 4.2 times 

the third rigid body mode. 

As stated, by designing the isolators very soft, the 

resonance speed will occur at a very low machine speed. 

In the case under consideration the three rigid body modes 

will occur at very low machine speeds (4.3, 8.2, 9.1 Hz). 

So it may be concluded that benefits obtained by using a 

spring -supported structure are very great, both physically 

and economically, and one of the main advantages of this 

approach is that it is very easy to determine the natural 

frequency at the design stage with very great accuracy. 

There is no comparison between these two methods of 

predicting the vibration characteristics of the structure; 

the classical approach with a concrete foundation, and the 

new method which uses a flexible platform to carry the 

rotating machinery. 

Another effect of mounting the machinery resiliently is 

to reduce its effective weight by detaching it from the 

ground, which would otherwise play an important part in 

adding to the machinery's inertia. A& consequence of this 

is that the machinery which generates unbalanced forces



will tend to vibrate more when it is mounted resiliently than 

when it is attached firmly to the ground. 

It is evident that a vibration isolation of 100 percent 

with no oscillation of the operating system is impossible. 

However, for a frequency ratio 5:1, and with zero damping, the 

amplitude of motion will be within 4 percent of the ideal 

machinery. And the vibration absorbing efficiency will be 

approximately 97 percent. This means that the motion of the 

structure would be virtually imperceptible. 

A low frequency ratio with increased damping gives an 

increase of vibration transmission so for the low frequency 

ratio the phase angle is not 180° but 0°. The phase angle is 

less than 90° below the resonances. It increases rapidly and 

changes to practically 180° simultaneous with zero damping. 

The amplitude of motion is reduced quickly when a structure is 

supported on springs. The frame becomes an effective stabi- 

lising mass as the phase angle suddenly changes from 0° to 

180°, The greater the damping factor the slower the change in 

phase angle that takes place.This is an added indication of 

the disadvantage of damping. 

For the vertical vibratory motions, the deflection of the 

springs controls the natural frequency of the supported 

structure. Hence it is important that the calculation of 

such deflection in the isolator be made on a simple and 

reliable basis.



The calculation of steel springs, based on modern practice 

employing the "Wahl" coefficient for the determination of 

deflection and stress, is very simple indeed. The necessary 

deflection for maximum isolating efficiency is easily 

obtainable through the choice of the proper physical charac- 

teristics, especially with the coil spring, which has a higher 

loading capacity per pound of spring material than any other 

type of isolator usually used for this purpose. 

Therefore, this type of spring would appear to be the 

best choice for this isolation problem. 

Organic materials do not show the simplicity and the 

advantages of the steel spring which does not depend upon 

its patents but rather upon its wire diameter, outside 

diameter etc., which may be chosen at will, while the former 

are restricted in their use as their elasticity depends upon 

the material itself, and only to a minor degree upon its 

shape. This defect explains why organic materials cannot 

provide the necessary large deflections in the isolator for 

any reasonable thickness. So it may be said that steel 

springs act admirably as isolators because of their shape, 

form, and heat treatment possibilities. 

One might ask why it is necessary to use fewer degrees of 

freedom for the dynamic analysis stage of a problem. The 

answer to this is that the cost per solution is excessive 

if the problem is too big to be contained in the core store 

of a computer and has to be programmed in terms of partitioned 

matrices.
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Looking at the problem from another angle we need to 

investigate the vibration characteristics of a flexible 

Spring mounted platform carrying machinery in order to cure 

a case of severe vibrations. The best way to tackle this 

problem is to make a theoretical model of the machinery and 

its frame structure and to develop this until it agrees with 

Measurements taken on site. Having proved the theoretical 

model to be correct, it will then be necessary to try it 

Out and make modifications to see if a solution can be found 

to avoid the severe vibrations. 

The first stage of the work consists of taking site 

Measurements of the machine's vibration pattern over the 

Speed range of the machine. Recordings will have to be 

taken and analysed of the motion of various points of the 

structure in sufficient detail to demonstrate the validity 

of the theoretical model's predictions. From the theoretical 

model, Finite Element Techniques can be used to model the 

whole structure. Considerable detail is required in the 

idealisation before the predictions will finally agree with 

the site test results. When this agreement is obtained, 

any modifications may be put into the theoretical model. 

Summarising: 

1. Make comprehensive measurements of the machine's 

pattern of vibrational behaviour. 

2. Convert the theory into a computer programme.
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3. Set up an idealisation of the machine and its 

supporting frame structure and develop it until 

a version is formed which, 'when fed into the 

computer programme, would reproduce the results 

measured on site. 

4, Having proved the basic theoretical model, insert 

into it representations of modifications to the 

machine until one is found which will reduce the 

vibration to an acceptable level. 

Fig. (1.1) Main details of the rig 

Fig. A. shows a general view of the rig and measuring 

instruments. 

1.3 Survey of literature: 

Vesselowski (re) carried out his investigation in an 

effort to eliminate the uncertainties which exist in the 

design of the foundations of turbogenerators, particularly 

where a steel substructure is used. 

Hull's '1*) work was an attempt to clarify the problem 

of determining the effects of elastic foundations under 

rotating machines on the resonant speeds of those machines. 

Litrenbaum '2°) investigated the unexpected frequencies of 

machine foundation supported by springs with two levels of 

Symmetry. He used calculations and graphs to arrive at a
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solution for the equation of motion and the position of the 

rotating pole and the coupling effect. He discussed a 

machine with variable speeds and explained the reason for the 

coupling of odd frequencies. 

schaes! 2») looked at a 50 mw quiet turbogenerator. This 

became agitated suddenly when it was under inspection above 

the normal running speed. The cause was the coupling between 

the rotating shaft and the foundation. 

) pust {22 used the model method for the determination of 

dynamic properties of framed foundation. He carried out 

theoretical and experimental analysis of forced vibration of 

@ complex damped mechanical system with several degrees of 

freedom and showed that resonance peaks, measured at different 

points of the system correspond to various frequencies of 

exciting force. 

Ramsden '24) represented a method for reducing the size 

of a vibration analysis by generating an inertia matrix 

referring to a limited set of master vibrational freedoms. 

The transformation from the full set of degrees of freedom 

to the master set makes extensive vibration calculations 

economically feasible giving solutions in terms of the 

amplitudes of the master freedoms. 

Gupta (25) used a general digital computer method based 

on a sturm sequence procedure, which is described for 

determining the natural frequencies and associated modes 

of undamped free vibration of frames and other structures 

whose stiffness and mass matrices are of band form.
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Wilson C20) considered the structure as an assemblage 

of beams, columns and plates. The finite element displace- 

ment method was used to determine matrices representing 

the mass and stiffness of the foundation. 

Steel foundations have been used in Germany for many years 

for small and medium sized sets and a number of different 

methods of analysis have been applied to them. The first 

analytical models consisted of a simple mass-spring system 

with the parameters determined empirically. As a refinement 

another mass was used for the shaft joined to the first by a 

(27 dashpot and a second spring to represent the bearing (Dietz ). 

Analytical solutions of the resulting equations of motion 

were used to predict the behaviour of the foundation. By 

using the computer this type of analysis was extended to a 

(2908 model with seven interconnected masses (Kramer With 

a similar idealisation of the structure, an analysis was 

also carried out using the transfer matrix technique (Pestel 

(29) (s0)), and Leckie and Weber 

More recently, two other methods have been used: crook &1 ) 

combined a more detailed representation of the bearing with 

the structure. Prohl (3 used a variation of Holzer's 

method. 

Mykelstad (39) used a structure still represented by 

a series of springs and masses. 

In his work, Stoker (34) derived expressions for the 

total potential and Kinetic energies of the shaft and



structure and the resulting Lagrange's equation was solved. 

(35) Continuing with structural analysis, Wiberg used 

mixed force and displacement variables as a key to a reliable 

solution for many physical problems, since the analysis of 

elastic structures with large rigid motion using the 

displacement method may fail due to ill-conditioning, but 

the use of mixed variables may work owing to the possibility 

of using relative displacements within substructures. 

(36) 
Ramsden used a method based on matrix algebra for 

the dynamic analysis of mixed rotating and non-rotating 

vibration systems. 

Raney M52) determined the set of governing different 

equations of motion of a complex structure. Numerical 

values for mass, stiffness and damping coefficients of the 

dynamic equations associated with a particular input response 

or transmission path were computed from data usually obtained 

in conventional vibration tests of a structure. 

Thoren NAP) used a technique to describe the orthonormal 

modal vectors computed from dynamic test response data to 

derive mass, stiffness and damping matrices for a discrete 

model of the distributed elastic system. 

Young and On Bes) represented a survey of activities to 

produce logically-based schemes to generate mathematical 

models by making use of experimentally derived information. 

Emphasis was given to the efforts of Goddard to the recent 

studies designed to verify the practical effectiveness of a
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specific modelling scheme. 

andrews ‘*° in his investigation derived the equation 

of motion for a rigid body supported by an arbitrary number 

of arbitrarily oriented and located resilient mounts with 

damping. 

Bapat (4 2) 
examined the possibility of applying two 

approximate methods for determining the salient features 

of the response of undamped non-linear spring mass systems 

subject to a step input. 

Mercer ‘«2) used the concept of a variable friction force 

as a new form of shock isolator. This is adaptive in its 

action but is still composed of entirely passive elements. 

Johnson ‘*®) used analytical and experimental investi- 

gations of helical springs subject to vibratory motion. He 

showed that an actual spring displays frequency response 

characteristics over most of the frequency spectrum that 

would render its function useless in many cases. 

Vogt (ue) studied the effect of active coils in helical 

springs and explained the effect of inactive coils on each 

end of the springs. 

ancker (47) used the thin-slice method to analyse the 

tension and torsion in helical springs with round cross 

section. Stresses, deflections, curvature changes, diametral 

contractions, and coupling effects were also studied. 

wood '*8) in his work explained the need for the correla- 

tion of data on mechanical springs and the formulation of
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a standard code of design for helical springs. 

Henry Cus) dealt with the stability of modes at rest 

in a free undamped non-linear two degrees of freedom 

system governed by equations of motion. 

pooren ‘®°) studied Duffing's coupled equations in 

non-linear mechanical systems with two degrees of freedom 

from the computational viewpoint. 

Spinivasan (s1) optainea an exact expression for the 

frequency of a non-linear cubic spring mass system. 

Stern (s2) used a variational technique for the 

computation of the steady state response of a rigid jointed 

framestructure to harmonically varying load systems. 

Rubinstein (53) usea the stiffness matrix method com- 

bined with an iteration technique to analyse frames in which 

the members are non-prismatic and have shapes which are 

complex to analyse, or cannot be expressed analytically. 

Lund (ss) investigated the accuracy of the conventional 

method of field balance. 

Ehrich (ss) looked at the case of sum and difference 

frequencies in vibration of high speed rotating machinery. 

Allaway (se) presented a simplified method for computing 

the amplitude of self-induced vibration for a machine which 

generates unbalances; unfortunately, his work was summari- 

(70) 
sing some of the classical work of Wilson and Crede (ee)
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(s2) made it clear that in order to determine Warburton 

the response of a structure to vibrations of a given type 

it is necessary to appreciate the factor controlling the 

transmission of vibration. 

Waller se) summarised the factors influencing the 

decision to incorporate anti-vibration devices, in particular 

the effects of vibration on personnel, machines and struc- 

tures. This was the only work found which examined the cost 

and various forms of anti-vibration mounting were compared and 

the cheapest springs for various degrees of isolation were 

indicated. It is unusual to find any work relating to the 

cost of vibration effects on machines or structures or 

personnel. 

(ua) the behaviour of an According to some researchers 

isolation vibration system possessing even small non-linearity 

is likely to be substantially different from that predicted 

by a linearised analysis. A significant feature of non- 

linear systems is the existence of steady state oscillations 

with values of the phase angle other than O ort, even in 

the undamped system. Such an effect can only arise when the 

degrees of freedom are subject to non-linear coupling and 

only then under suitable conditions. 

Naturally, the resultant motion at the point of applica- 

tion of the exciting force must be either in-phase or anti- 

phase to the exciting force, otherwise energy transfer would 

occur. This does not, however, prevent each degree of 

freedom itself from vibrating out of phase with its own
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generalised components of the exciting force. The first 

effect was first found by Tobias and Arnold in experimental 

work on disks. 

Both exact and approximate solutions have been developed 

for the vibration isolation system with directly coupled 

coulomb damping. 

( Den Hartog 7*) developed an exact solution for the 

displacement amplification factor. 

An approximate analytical method known as equivalent 

(77) viscous damping, was developed by Jacobsen and applied 

to obtain an approximate for the displacement amplification 

(78) factor. This method was later employed by Ruzicka and 

(78) Painter to obtain an approximate solution for absolute 

and relative displacement transmissibility. 

0) developed Following Den Hartog's approach, Van Bommel 

an exact solution for absolute relative displacement 

transmissibility. 

Finally, Levitan (33) employed a Fourier series analysis 

to develop exact solutions for absolute and relative 

displacement transmissibility. 

The case of a rigid body supported resiliently 

All the steps of investigation in the case of a rigid 

body supported resiliently will be explained. Unfortunately, 

it has always been assumed that the body is rigid. And this 

assumption allows no flexibility in the structure. Another



Ny 

point worth mentioning here is that all these analyses 

consider the centre of gravity and from there it is assumed 

that the structure is permitted to move in six degrees of 

freedom. These are the displacement of the centre of 

gravity along ox, oy and oz and the rotation of the body 

about ox, oy and oz; in other words, vertical, longitudinal 

and transverse displacement and yawing, rolling and pitching. 

Grootenhuis N28) indicated that the general case of the 

motion of a rigid body supported resiliently has never been 

discussed in detail with allowance for the stiffness of each 

anti-vibration mounting in three directions and for the 

possibility of the centre of gravity (c.g.) not being at 

the geometric centre, thus introducing additional products 

of inertia terms. Consideration cf an offset centre of 

gravity is of considerable practical importance as it is 

often inconvenient if not impossible to provide a truly 

symmetrical foundation or installation. Many items of 

machinery and equipment that have to be mounted resiliently 

do not have the centre of gravity positioned symmetrically 

with respect to the mountings. Several degrees of asymmetry 

may be considered. For a single degree of asymmetry, the 

centre of gravity would be situated along one of the axes 

of an orthogonal co-ordinate system with its origin at the 

geometric centre. With two degrees of asymmetry the centre 

of gravity would be situated in a plane containing two axes 

of this co-ordinate system. The general case has three 

degrees of asymmetry in which case the centre of gravity can 

be anywhere within the body.
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He derived the equation of motion for a rigid body 

supported on four springs (this was the classical method). 

But he considered the general case of the centre of gravity 

being anywhere within the body and allowing for the sideways 

as well as the longitudinal stiffness of the springs. This 

constitutes a six degrees of freedom case with three degrees 

of asymmetry. 

His work proved that coupling between motions in all 

directions occurs even when the centre of gravity is at the 

geometric centre with the exception of the vertical 

oscillations and rotation about the vertical axis. Any 

number of additional springs can be allowed for by adding 

terms to the expression for the potential energy stored in the 

springs. Allowance is made in the expression for kinetic 

energy for the products of inertia which arise with an 

offset centre of gravity. 

Why is this considered to be the classical method? 

Because the real case is simulated for purposes of analysis 

by replacing the rigid body by a rectangular box with a light 

framework and all the mass concentrated at eight corners. 

The matrix solution is changed into dimensionless parameters 

and the effect of an offset centre of gravity upon the eigen 

value and eigen vector studied. Only the proportions of 

the box and the stiffness ratio between sideways and longi- 

tudinal stiffness of the springs remain as factors. He also 

concluded that small amounts of offset of the centre of 

gravity from the geometric centre do not alter the dynamic 

behaviour of the system much, but displacing the total mass
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towards either a lower or an upper corner has marked effects. 

Some of the natural frequencies associated with motion in 

rotation when the system is symmetric become less than the 

frequencies connected with motion in translation for the 

centre of gravity being close to the corner connected to a 

spring. A large region free from any natural frequency 

arises when the centre of gravity is moved towards one of the 

corners farthest away from the plane containing the springs. 

The asymptotic conditions for the position of the centre of 

gravity had also been considered. It is well known that an 

offset centre of gravity can lead to coupled oscillations 

at frequencies differing from those for the uncoupled modes, 

It is rather astonishing therefore to find that a hand- 

book on vibration isolation eo) has been restricted to 

symmetrical installations without paying any regard to 

coupling due to the sideways stiffness of the springs. 

(es) The more complete analyses are by Crede and more 

recently Crede and Ruzicka ise for one and two degrees of 

asymmetry but with the planes containing the centre of 

gravity restricted to those defined by the vertical and 

horizontal axes only. 

An attempt at a solution of the general case of a body 

supported on any spring system has been made by Ker Wilson ‘70) 

but the product-of-inertia terms were unfortunately omitted. 

Some one and two degrees of asymmetry cases are analysed in 

detail.
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Many of the observations on practical anti-vibration 

installations made by Ker Wilson are of great value, but some 

of the equations of motion are not exact, however, owing 

to the neglect of the product of inertia terms. 

Some interesting experiments with a box mounted on four 

(20), springs have been described by Lirenbaum The motions 

of specific points on the box have been shown in photographs 

and the strong coupling was easily seen for this single 

degree of asymmetry. The necessity to include the product- 

of-inertia terms has been realised by Sethna (72) , who has 

derived the equations of motion for the sprung mass of a 

four-wheeled vehicle but has not solved them. 

A detailed analysis of a spring-supported body, symmetric 

in shape and with the centre of gravity always at the 

geometric centre has been made by MacDuff (72) the 

natural frequencies for a large number of shapes of a body 

with bottom mountswere presented graphically and other con- 

figurations of springs were also considered. The complete 

equations of motion for a rigid body supported on four springs 

were derived and a method of solution was outlined. Linear 

springs were assumed (there is, however, always some non- 

linearity of springs), permitting the superposition of modes. 

Some dissipation of energy always occurs in practice, but 

has only a very slight effect upon the natural frequencies. 

Damping has therefore been neglected. 

The first notable instance of using the steel helical 

springs in a flexible mounting for large oil engines was 

1 (75) given by Hummel in which the flexible mounting of
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the main propelling engines of the twin-screw passenger 

vessel "Hansestadt K&ln" was described. Each engine, a 

Deutz six-cylinder four-stroke cycle type, with cylinders 

270 mm bore 360 mm stroke, developing 375 b-h.p. at 500 r.p.m., 

rested upon 16 helical springs each 7.75 inches mean coil 

diameter,arranged in two rows, one at each side of the 

fabricated steel bed plates. Damping was provided by the 

frictional resistance of spring-loaded snubbers and the 

propeller shafts were flexibly connected to the engine 

crankshaft through "Frost type" flexible couplings. The 

total weight supported by the springs was about 8 tons.
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CHAPTER 2 

Theoretical consideration of the Dynamic of 

structure 

2.1 Introduction 

Solutions to the problems of vibrations of elastic 

systems can be explained by the analysis of small harmonic 

oscillations of elastic systems having a finite number of 

degrees of freedom. 

The harmonic oscillations may be induced in an elastic 

system by imposing properly selected initial displacements 

and then releasing these constraints, thereby causing the 

system to go into an oscillatory motion. This oscillatory 

motion is a characteristic property of the system, and it 

depends on the mass and stiffness distribution. In the 

absence of any damping forces, e.g. viscous forces propor- 

tional to velocities, the oscillatory motion will continue 

indefinitely, with the amplitudes of oscillations depending 

on the initially imposed displacement; however, if damping 

is present, the amplitudes will decay progressively, and if 

the amount of damping exceeds a certain critical value, 

the oscillatory character of motion will cease altogether. 

The oscillatory motion occurs at certain frequencies and 

it follows well-defined deformation patterns described as 

the "characteristic modes". The study of such free 

vibrations is an important prerequisite for all dynamic- 

response calculations for elastic systems.
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Whatever the vibration analysis for both the stiffness 

and flexibility formulations, a comparison between the 

force and displacement methods is needed, because we are 

faced with the natural question as to which method is best 

for practical applications. To answer this question, we 

must consider a number of different factors. First, it 

should be emphasised that since the same element properties 

can be used for either the displacement or force methods, 

it is obvious that, theoretically, both methods lead to 

identical results. But the computational path leading to 

the calculation of stresses and displacements is different in 

each method. This means that because of the different 

rounding-off errors and possible ill-conditioning of equa- 

tions, the actual numerical results may differ slightly. 

For some special applications, numerical solutions are ob- 

tained using both methods with different assumptions regarding 

the element stress or displacement distributions i.e. 

compatible but non-equilibrium stress states for the dis- 

placement method and statically equivalent (equilibrium) 

but non-compatible stress states for the force method. This 

leads to the so-called bracketing of the solution. Such 

solutions are particularly useful if the bracketing is 

small, since they provide meaningful information on the 

accuracy of the results. 

To examine briefly the matrix operations involved in 

the two methods: The displacement method is based on the 

solution of a simple equation
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relating the external forces P to the displacement U 

at the node points of the idealised structure. 

As will be shown later, the element stiffness matrices 

are assembled into the stiffness matrix kK for the assembled 

structure. The procedure is indeed very simple, and does 

not require any complicated programming. Once the dis- 

placements U have been calculated, they are used to 

calculate stresses in individual elements. Some diffi- 

culties may occur due to ill-conditioning of Equation (2.1) 

when inverting the stiffness matrix K. Some conditioning 

problems have been discussed by Taig and Kerr Ly However, 

constant improvements in computer technology result in 

increased accuracy, such as double-precision inversion 

programmes, and tend to eliminate ill-conditioning as a 

source of error. 

In modern computer programmes for the matrix methods, human 

mistakes in the basic input data are probably the most 

frequent sources of error. So care and attention must be 

considered. These errors are the most difficult ones to 

detect automatically. 

Special attention must be paid also to the design of 

input data in order to reduce the chances of erroneous 

entries. One noteworthy innovation in this respect is the 

method by Argyris (2) whereby intermediate node points 

are generated automatically by the computer. This means 

that some of the idealisation is performed by the computer, 

and therefore the amount of input data required from the 

analyst is greatly reduced.
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In the force method of analysis the sequence of matrix 

Operations required to obtain stresses and displacement is 

considerably more complicated than for the displacement 

method. By using the Jordanian elimination technique it is 

easy to demonstrate that the self~equilibrating force 

systems can be generated automatically from the equations 

of equilibrium. This technique allows us to use the same 

input information for the force method as for the displacement 

method. When the matrix force methods were first introduced, 

considerable difficulty was experienced in formulating the 

self-equilibrating force systems. The determination of the 

degree of redundancy and the distribution of the self- 

equilibrating force system was sometimes an intractable 

proposition for exceedingly complex structural systems. 

Special programmes have been written for specific structures, 

(srhes)  sorce systems were orthogonalised to improve 

conditioning, ‘?) 

(6) 

regularisation procedures were used for 

cutouts, and so on. The development of the automatic 

selection of redundancies and generation of the self-equi- 

librating force systems completely changed the approach to 

the force method of analysis. Any arbitrary structural 

system, no matter how complex, can now be analysed by the 

force methods. Furthermore, the selection procedures based 

on the Jordanian elimination technique lead invariably to well- 

conditioned equations (), 

Since the input information is identical in the two methods, 

it would appear at first that the choice of one or the other 

is largely a matter of taste and the availability of suitable
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computer programmes. There is, however, one important 

consideration that has not been discussed. That is the 

number of unknown displacements or forces and the number 

of structural elements. Computer programmes for the 

displacement method have built-in limitations on the number 

of displacements and elements, while those for the force 

method have limitations on the number of node points, 

redundancies and elements. 

Since the number of unknowns in the two methods may be 

widely different for the same structure, this alone may be 

the deciding criterion for selecting the method of analysis. 

Mainly because of the simplicity of matrix operations there 

has been a tendency to use the displacement method for complex 

structural configurations. For some special structures, 

however, particularly if the selection of redundancies and 

generation of the self-equilibrating system can be pre- 

programmed, the matrix force method can be used very 

effectively, and should be simpler than the displacement 

method. 

2.1.1 Methods of analysing structures: 

Two methods exist for the analysis of structures: the 

analytical and numerical methods. The limitations and 

difficulties associated with analytical methods are well- 

known and cannot be over-emphasised. Generally, these methods 

cannot be applied to complex structures. 

Numerical methods are the most practical for complex 

structure analysis. This fact has been re-inforced by the 

arrival of the digital computer. Numerical methods of
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structural analysis can be divided into two types: 

1) A numerical solution of the differential equations 

is based upon the mathematical approximation of 

these equations. The process is achieved either 

by direct numerical integration or by finite- 

difference techniques. Again, practical limitations 

exist in the application of this method. Hence, 

it is mainly restricted to the analysis of simple 

structures. The numerical solution to the 

differential equations usually has equations which 

can be cast into matrix notation. But this is 

still not classified as a matrix method since the 

original formulations do not entail matrix connotations. 

2) In the matrix method of structural analysis, matrix 

algebra is used throughout all the stages of the 

development of the analysis. First, the structure 

is idealized into an assemblage of discrete 

structural elements (beams, plates, etc.) The 

assumed displacements are then combined into a 

matrix equation satisfying the boundary conditions 

at the junctions of these elements. 

Matrix methods based on structural analysis are suitable 

for the automation and programming of digital computers. The 

analysis is based on very simple numerical steps. This 

method is therefore suitable for the analysis of complex 

structures given access to a suitably sized digital computer. 

The matrix method of analysis has been found to provide
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a reliable solution to the problem under consideration. 

The Finite Element Method of structural analysis falls 

into the category of matrix methods of numerical analysis. 

In the structural analysis of the flexible platform in 

particular, the Finite Element Method is preferable to 

other numerical methods because of its versatility and 

flexibility of usage. 

The application of the Finite Element Method to plane 

frame vibration involves imagining the platform to be 

actually split into a number of beam elements and plates of 

'finite' length. This concept has given rise to its name. 

The plane frame contains both one- and two-dimensional 

components (beam and plates). Generally, a structure would 

be imagined to be actually broken up into a number of 

"elements" of finite dimensions . The structure under 

consideration was subdivided into finite elements connected 

by nodes as shown in Fig.(2.1.) These finite elements may be 

of equal or unequal length. The versatility of the Finite 

Element Method means that variation in the element length 

can be easily taken into account. 

The next step in this method of analysis is the determina- 

tion of the "element stiffness and mass matrices" of the 

individual elements describing the structure. These are then 

assembled to form the "Qverall stiffness and mass matrices" 

for the entire "discretized" structure by requiring that the 

continuity of displacements and equilibrium of forces prevail
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at all nodes in the finite element model. 

The equation of vibrating motion can then be written 

in matrix form: 

(mJ{a} + [RK]{o} = {Q} (2.2 

where 

{Q} = column matrix of exciting force 

{q = displacement column matrix 

{q} = acceleration column matrix 

[kK] = overall stiffness matrix of the structure 

and (mJ = overall mass matrix of the structure 

In free vibration {Q} =0 and 

{q} is a harmonic function of time 

Then {fo} = {U} sin(wt + ¢) 
; (2.3) 

{q} = -{u} w? sin(wt + 6) 

substituting equations 2.3 in equation 2.2 yields 

[kK] {u} = w? [m]{u} (2.4) 

Equation 2.4 represents an eigen value problem. The solution 

of this eigen value problem will yield the eigen values wi, 

Wepiwe, Wiriecscce NENCe Wily Wer Wa, «ss. whien correspond 

to the natural frequencies of vibration of the discretized 

structure whilst the corresponding {U},, {U}2, {U}3, {U}y.... 

are its eigen vectors of natural modes of vibration. 

To summarize, therefore, the finite element solution to 

the free vibration of a given flexible platform requires
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the execution of the following operations in this order: 

1) Discretization or subdivision of the structure 

into a system of finite elements. 

2) Derivation of the element stiffness and mass 

matrices for each individual element representing 

the platform structure. 

3) Construction of the "Overall stiffness and mass 

matrices" of the structure. 

4) Solving the eigen value problem (equation 2.4 

5) Plotting of the eigen vectors, when necessary, 

as is most often the case, to get the feel of 

the modal shape of free vibration of the structure. 

2.2 Consistent mass and stiffness matrices of beam 

elements. 

It has already been shown that the discretization of a 

platform structure should produce beam and plate finite 

elements. Hence the next step in its vibration analysis 

is the derivation of the consistent mass and stiffness 

matrices of the beam element and the plate element. 

Consider a beam element shown in Fig. (2.1). Its extremi- 

ties are identified by the letters M and N. These represent 

its points of connection to the nodes of the finite element 

discretization of the frame. 

The beam element is considered first in three-dimensional 

space and its orthogonal axes Xor Yer Z, are chosen such 

that the x, 7axis lies on the beam neutral axis. If the 

beam element is subjected to a set of arbitrary external
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forces, then it will give rise to six internal reactive 

forces at each extremity of the beam. These will have their 

associated displacements. Forces here denote both moment 

and forces, and displacements include linear and angular 

displacements. 

As shown in Fig. (2.2) these forces include: 

Axial forces Fy -and $7 

Shearing " Fo, Fs, Fe and Fe 

Twisting moments Fy, and Fio 

and Bending ie Fs, Fe, Fii and Fig 

The corresponding displacements are: 

Be) Axial displacements U; and U7 

ii) Transverse displacements Uz ,U3;,Usand U, 

iii) Twisting angles Uy, and Uio 

iv) Bending angles Us Us Uii and Uie 

The positive directions of these displacements correspond 

to the positive directions of the corresponding forces as 

shown in Fig. (2.2). The consistent mass and stiffness 

matrices of the beam element are of order 12 X 12. In this 

case, since the element axes are chosen to coincide with the 

principal axes of the beam cross-section, it is now possible 

to construct the 12 X 12 matrices from sets of 2 X 2 and 

4 X 4 submatrices. From the theories of beam bending and 

torsion, it is obvious that the axial forces F; and F7 are 

functions of their corresponding displacements U; and U7 only; 

the same is true also for the twisting moments (torques 

F, and Fio in relation to their twisting angles U, and Uio-.
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For arbitrarily chosen bending planes, the bending 

moments and shearing forces in the xavo plane would depend 

on their corresponding displacements as well as on the 

displacements corresponding to the forces in the xv plane. 

But in this case, the choice of axis has been such that the 

weve and XeZ— planes coincide with the principal axes of the 

cross-section. Hence the bending and shearing in these 

planes can be considered to be independent of each other. 

All forces acting on the beam elements can then be separated 

into four groups and considered independently of each other. 

With a suitable choice of corresponding displacement patterns 

within these groups, expressions can be obtained for the 

kinetic energy (T,) and strain energy (U,) of the beam in 

terms of the displacement. The consistent mass and stiffness 

matrix terms will then be derived from these energy expres- 

sions. 

2.2ou ' Axial Vibration in x axis 
a 

Fig. (2.3)shows the beam element under consideration. The 

beam is undergoing very small axial deformation or vibration. 

Elementary mechanics of materials show that the state of 

strain varies linearly within the beam element. Here, 

vibration is involved, hence the displacement is a function 

of time (t) also. 

Thus a suitable displacement function is of the form 

° 
U(x,;t) = aj + aix= [1 x] {20} (255)



-33- 

Applying the element boundary conditions of U(O,t) = Ui 

and U(2,t) = U7, we have 

  

vs} i [ © {a,] (2.6) 
By Lee ) a 

or 

{u} = [s] fa} 

Solving for {a} in equation (2.5) we have 

      

(a, 1 Gules \0;) 1G Ui 
jaa( > |2 2 to = [-1/21/2] Jur 

Substituting into equation (2.5 

i O° Uy a Ulxicy =" (2) x] i a wf (2) 

Ui 

so that U(xst) = [(1 - x/%)x/2] A (2.8) 

Ui 
or Ulxst) = [Ni(x) No (x)) yy, (2.9) 

Let A be the cross sectional area of the beam. Then the 

strain energy of the beam in axial direction is given by 

QR 2 

vu = es 29 (oe ax (2.10) 
ox 

°
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substituting equation @.8)in @.10) we have 

(ove {-1/2 2 
ae rt ( u oS . (fur uz] }-172) EA £ 

{ (- 
fur 

fe Atay | ydx S20) 
(47) 

on integrating this reduces to the form 
f EA EA ( as ae UW 

ona a £ (2,12) 
C= 5 [ur Uy ] _EA EA 

L , {U7 

This is of the form 

Uo = = Gi" [x] tu (2.13) 

Thus comparison of equation (2.12)and(2.13)shows that 

Kiya Kir? z eis 

[x] = ay Be (2.14) 
K7ni K777 . =t MM 

which is the axial stiffness matrix of the beam element. 

Similarly, the kinetic energy of the beam in axial motion 

is given by 

£ 
2 

Uiniaa a Dp ne 2308), ax (2.15) 
° ot 

where o is the mass density of the beam. 

Substituting from equation (2.8) into(2.15)and noting that 

fur uy)” is in fact a function of time t , integrating 

and simplifying gives 

ORs a2: aur, 

3 at 
=e ee (2.16) 

ot at 

pAL OaL Buz }
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This is again of the form 

7, = 

ni
e le we
 ct 

Vis
ews

 

as
 2 o { (2.17) 

ee
 

cf 

Thus, from equation (2.16) and (2.17), the axial mass matrix 

of the beam element may be given by 

a 
M171 M17 Si z 

[m] = eo) pad (2.18) 

te aL 
M771 M777 | S = 

2.2.2 Twisting about the x, Taxis 

The beam element under torsional vibration is as shown 

in Fig. 2.4) 

As with the axial case, the angle of twist varies 

linearly along the beam in the form 

8 (x9 t) = aio + aii X 
i.e. 

Bio 
8 (xs t) = [1 x] (2.19) 

411 

The appropriate boundary conditions are 

8(0,t) = Uy and u(2,t) = Vio 

Hence from equation (2.19) we have 

uy ah ° Bio 
= (2.20) 

10 1 & @ii 

or fu} = Is] {a} (2525 

From equation (2.20), we have
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eral get] emo |e oie (can fe |e d jus 
(a i uid “1A 1/% [me 

\ 4   

Substituting for {a} into equation (2.19)we have 

i 
6 (xa t) = {1 x] 1 ° (u. ( 

“1/2 -1/2 ha 

Thus 

= a = Uy 
oes) = [a q) z | (2522) 

uio 

Let I, be the polar second moment of area of the beam 

cross section about the Xe axis. 

Then the torsional strain energy of the beam is given by 
& 2 

= GI (PEE) ax (2.23) 
S x ox 

Substituting equation (2.22)into (2.23), integrating and 

simplifying yields 

1 eS ence 
U =F {us a0] g LR uy 

(2.24) 
_ Gly GI, Uio0 

ae . 

which is of the form 

ts ‘= 
Ue) sia” [k) piu) (2.25) 

Hence the torsional stiffness matrix of the beam element is 

given by
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Kurs Ky yr0 2 Sik 

(2.26) 
  Pala es 

2 

Kiors Kior10 —1 2 

And the torsional kinetic energy of the beam element is 

given by 

- 2 
me 7 08 (x- t) uy ais i el, a ) ax (2.27) 

° 

Substituting equation (2.22) into (2.27); ,integrating and 

simplifying we have 

  

ore ork sue 

Ba [ Bu, 8t10 ] 3 6 Bt Gh ee (2.28) 2 at at oT Lk or2it. 
—_ x dU o 

S ot 

which is of the form 

ey wees (viene) (2.29) 
"2 3t *8t ; 

Thus the torsional mass matrix of the beam element is given 

By I r 
My hy Myr10 as Xt 

3A 6A 
[mM] = = par (2.30) 

Miors Miorvio I, qT, 

6A 3A 

2.2.3 Shearing and bending in XV plane 
  

The beam under consideration is shown in Fig. (2.5) 

Engineering theory of bar bending indicates that the 

deformation is characterised by the deflection curve taken 

up by the centre line of the bar. The element has four 

degrees of freedom. Hence a suitable displacement model
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is of the form 

ulxst) = ‘aco + anix + Aoox? + aogx® 

or B20 

= 3 2 ayes u(xt) i ag x xe ee. (25395 

ae 

The boundary conditions are 

3 
u(ost) = wUz ' = (ost) = Us 

lest) = ue , and 2 Uist) = wie 

Substituting the above boundary conditions into equation 

(2.31) we have 

U2 z ° ° Oo G20 

Uenf Oo 1 O° ° a2i 
estan cle ue eae S28 eed 
Ui2 ° i Qe oka ars 

ive. tty) c= {s] fa} 

ands {a} = {s] >: tut (2.33) 

Now 

ts] 7+ = . ° O O 
° ne ° ° 

2 & eek: 
° Tee eee 

i.e. 

[s] 7+ = 2 Cua 
9 iy eo a 
ace 2, 2, (2.34) 

i 1 
CARE OT opiieur?



=39- 

substituting equations (2.33) and (2.24) into equation 

(2.31) we have 

tsa Ce en te x) a oO a 2, Uz 

0 ey 2 te Us 

6 0 2 2 ie (2035) 

° ° + te Uie2 

Let I, be the second moment of area of the cross section 

about the z-axis. Then, neglecting the effects of shear 

deformation, the strain energy of the beam element under 

the action of the shearing forces and bending moments in 

the XeYeo plane is given by 

L 
2 2 

cS (=, (2B Gt)” ax (2.36) 
° 

Substituting equation (2.31) into equation (2.32) and 

simplifying we have 

  

U2 LecEIz U2 

ze Symmetric 

Us 6. EI 4 Elz Us 
i — L 

U= 5 L (2737) 

ue -12 Elz _ 651 E2EL Ue 
sn ryt tera: 

ui2 6 Elz 2 EJz - 6 El, 4EIZ Uie2 
R & £ QR 

Thus the beam stiffness matrix in flexure in the Ye 

plane is given by



=4O= 

co Symmetric In oui ounne 

[R]=|K2r6 Keres 6 Ag? ~62 © 20? 

= Ele 
Kare Kere Keres Patol Ze amor. 2 ee 

K2712 Keri2 Keriz2 Kizrie2 6& 22% 62 42? 

(2.38) 

Also, the kinetic energy of the beam element in xe 

plane due to shearing forces and bending moment is given 

by 

pes Ne eee) 
T Sm { oA ( BE ) dx (2.539) 

Substituting from equation (2.35) into equation (2.39) and 

simplifying we have 

3u 
  

      

    

  

  

T = 2. t 13paL Symmetric 
3s = 

35 
due 110A? oar? 
ét 210 105 

Ouse 9pAL 13pA22 130ALR 
3t 70 420 35 

dure DUS paul eepae | Tlone? pas? 
38t 420 140 210 105 

Thus the beam mass matrix in flexure in the xy. plane 

(neglecting the effects of shear deformation) is given by 

M272 Symmetric a symmetric 

[m] = | mre = Mev = pad lig 22 
210" 105 

M278 M78 Meré eo AS Ue ee 
70 420 35 

M2,12 Megr12 Meri2 Mi2+12 13 2 
420 14 210 105 

eievelee Witla (2.40) 

2.2.4 Shearing and bending in the Xe%— plane 
  

Fig. (2.6)shows the beam under consideration
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Positive directions of forces and displacement are as 

illustrated. 

Four degrees of freedom are envisaged and a suitable 

displacement model is of the form 

u(x,t) = @30 + as: X + ag2x? + asx? 

or a30 
2 2 3 a (xa t) [ey ere aay (2.41) 

a32 

ass 

The geometric boundary conditions as illustrated in 

Fig. (2.6) are as follows 

ulOst) 9 = Pug cust) = —us 

a (2.42 

u(t) = Us, Bu(lst) = -uii 
ox 

Hence, equations (2.42) and (2.41) give 

U3 1 Oo ° 0 &30 

Be Oe iy ea, = (2.43) 
Us ne 2 pee ase 

-ui1 Ceol y2iusn: aaa 

Thus from equation (2.43) we have 

aso SG Oi ie, Duy as 

fasil _| 0 mi ° ° “us 

asa IS Rus Be? us 

A323 Oleic? tase * =U) y 

and
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(aso 1 ° “T 2, 3 

J o28 me o 1-2/5 A/o2| \-us ati 

) ase 0 eo) 3/22/93 Us 

\aes O 9 =f, I/p2}\rui1 

Substituting equation (2.44) into equation (2.41) we have 

u(xat) = [2 x x? xe] tl fo} 4. z u3 

oO ' Pr
 

269 TA Ugt lS MS 0 i(ai45) 
3/y2 2/93 Us 

1/y “1/y2 Vid 

oO oO 

° Oo 

Let ty be the second moment of area of the cross-section 

about the Ye axis. Then neglecting the effects of shear 

deformation and the strain energy of the beam element under 

the action of shearing forces and bending moments in the 

Xe26 plane is given by 

: 2 2 

v= 2{ Eee te) aaa (2.46) 
eS y ox 

Substituting equation (2.45) into equation (2.46) 

integrating and simplifying we have 

ne wey Symmetric ue 

pina _ GEL 4Ely 
MS eee ae 52.47) 

2EI i oi BLY sey i2Eqy i 

U11 a Ss 2Ely Ss =e Wii 
z
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From equation (2.47), the flexural beam stiffness matrix 

in the plane is given by 

Kars Symmetric al oe Symmetric 

[x] a* Ksrs5 Ksis a a oy 

Kars Ksrs Kars EY sey —— 

Ke7i1 K5,11 Keri1Kiiyia| Ey ay ao —- 

eee eeee (2.48) 

Similarly ,the expression for the kinetic energy of the 

beam is given by equation (2.39). Substitution of equation 

(2.45) into (2.29) gives 

  

  

  

  

dus t 130AR Symmetric Bias ‘ 

“St 35 “Ot 

Ous ee 1lpALr? oa? | dus 
T & ot 210 105 28 | 

aus QoAL - 130AL7 13paL dus | 
ot 70 420 35 ot 

our 130a2? - par? ipa? pve? || dura 
ot 420 140 210 105 ot 

cities (2.49) 

and from equation (2.49), the flexural beam mass matrix 

in the XeYe plane is given by 

[y= M273 Symmetric 

M375 M575 

™m379 Ms,9 M79 

™M3r11 Ms5,13 Msy711 Miiv11



[ml 

  

# Symmetrical 
= pAL 

-11 g2 

210 TOs 

Gm Wat sets : = iS = (2:50) 

18R. ee Az ie 
420 140 210°) 105 

2.2.5 Beam matrices in assembled form 

From the above analysis and results, the 12 X 12 

consistent mass and stiffness matrices of the beam element 

can be obtained. 

Assembling equations (2.14), (2.26), (2.38) and (2.48) 

we have the complete stiffness matrix Ik.) of the beam 

element given by equation (2.51). 

Similarly, assembling equations (2.18), (2.30), (2.40) 

and (2.50) we have the complete mass matrix [M,] of the 

beam element given by equation (2.52).
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2.3 Beam properties in frame co-ordinate system 
  

The mass and stiffness matrices obtained in section 

2.2.5 consist of 12 X 12 dimensional arrays. These have 

been derived with respect to a convenient set of orthogonal 

axes Xo, Yor 2, such that Xe lies on the beam natural 

axis while weve and X26 plane coincides with the principal 

axis of the beam cross-section. The choice of this 

co-ordinate system has led to a simplified derivation and 

results in equations (2.51) and (2.52). 

The set of axes Xor vor z, are therefore localised axis 

or beam element axes. The beam element considered is one 

of many beam elements in the finite element discretization 

of the plane frame in question. Each element will generally 

have a different set of axes such that these axes will not 

coincide with each other. 

It is therefore necessary to define for the frame a 

global system or a set of co-ordinates to which each beam 

element's properties will have to be transformed. Fig. (2.7) 

shows a typical beam element in three-dimensional space. 

The XerYorZ, axes define the beam element co-ordinate system 

as explained in 2.2 while the X,Y,Z axes define the global 

or frame coordinate system. A transformation matrix 

should exist which relates the beam element properties 

(stiffness, mass, force, displacement, etc.) in the element 

co-ordinate system %or Ven 2a to their frame co-ordinate 
e 

counterparts.



Am 

2.3.1 Plane axes transformations 

Looking at the transformation of the beam element 

properties from its local system to the frame system in 

a plane frame situation may be helpful, and easier to 

derive and understand. 

Fig.(2.7)shows a beam element connecting two joints 

M and N in a plane finite element discretization. The 

ten and Yeo 7 axes are the element co-ordinate axes, while 

the X-and Y-axes are the frame co-ordinate axes. Angle a 

is the angle of rotation from X-axis to x Taxis, the 

position direction being the anti-clockwise rotation shown 

in the figure. 

The forces (forces and moments) acting at the two joints 

M and N are as shown in the figure in both the element 

co-ordinate system and the frame co-ordinate system. 

The following are the equilibrium of forces equations 

at the two joints 

At joint M 

PXy as Peo cosa - FY om sina =O 

FY, T PX oy sing 7 FY om cosa. = 0 

My * Mey ae 

At joint N 

FXy ts FX yCose ee FY (Sine =0O 

FY) Es FX .ySine - PY gyCose =o 

M +M =o 
en zm
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In matrix notation, we have 

At joint M 

PXy -cos a sin a oO FX on 

FYy = -Sin a “cos a ° FY ow (2.53 

My Oo ° al Mow 

At joint N 

ox -cos a Sin a 0 FX 
N eN 

FY, = =Sin @ =cos a ° FY ony (2.54 

My Oo 0 = Mon   
Thus the transformation for a plane beam element is of 

the form 

FXy ° ° Oo FXow 

[2m] 
FYy oO oO ° FY om 

My F Oo) 6 0 Mou (2.55) 

FXy ° ° 0 FXon 

FY, oO ° ° FY oy 

[om] 
My 0 ° 0 Mon 

The transformation matrix is, therefore, a 6 X 6 matrix. 

The same matrix will transform the stiffness, mass, and 

displacement. It should be noted that a plane beam element
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as analysed above has six degrees of freedom. This in 

turn requires a 6 X 6 transformation matrix. 

2.3.2 Overall transformation matrix 

The three step rotation has a final effect of rotation 

of the frame co-ordinate system (X,Y,Z) into the beam 

element co-ordinate system (Xe. Yor 2.) for the joint M 

as a general case in matrix form 

{F} = foe) ees (2.56) 

or 

{F} = [ro] [vB] [ty] i.) (2.57) 

OE -Cos a Sina Oo =-Cos 8 0 -Sin 8] [-l 0 0 
[tM] =] -Sin a -cos a oO Oo =1 ° 0 -Cosa Sina 

° ° ail Sin 8 0’ =-Cos 6 O -Sina Cosa 

valorem (2258) 

Only sets of three orthogonal forces (excluding moments) 

have been considered. But generally with the beam element 

under investigation, there is the set of three orthogonal 

moments also acting on the beam element. These moments will 

act about the orthogonal axis. Considering that a positive 

moment is a clockwise moment when viewed along its axis, 

the operations described above for transformation of forces 

will also be applicable to moment transformations. Thus 

the equations (2.56) and (2.57) also hold true for moments. 

Let Qi, Q2, Qs, Qu, Qs Qe be the forces (and moments) 

acting on the beam element at the joint M in the frame 

co-ordinate system. And Q,, Qe, Qs, Qi0r, Qi1, Qiz2 be the



ae 

forces (and moments) acting on the beam element at the 

other point N in the frame co-ordinate system. 

F ---- Fg) mae Also let Pet 7 Hee and Bee F F be 
e200 es ee 12 

the other set of forces (and moments) acting on the beam 

element at the joints M and N respectively in the beam 

element co-ordinate system. Then the 12 equilibrium 

equations relating actions on the element in the frame 

co-ordinate system and the beam co-ordinate system can be 

seen to be similar to the results obtained above. In 

fact, the transformation in matrix terms is given by 

ay fim [2 [2] &l Fe, 

: [2] [em] te] 2] 2 
Fe, 

= (2.59) 

[z] [2] [rm] [2] 

Qi2 [z] [z] [2] [rs] Fo, 2 

°O O° °O 

where [2] = On, Oreo, (2.60) 
oO ° ° 

and from equation (2.58) 

-cosa.cos8 sina.cosy-cosa.sin§.siny -sino.siny-cosa.sin8.cosy | 

[rm] =| -sina.cosB -cosacosy-sina.sin8.siny cosa.siny-sina.sin8.cosy 

sin 8 - cos §.siny -cos 8. cosy 

(2.61)
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Equation (2.59) is of the form 

fohe= Gy [Rbe tro! (2.62) 

[mm] [2] [2] [2] 

[2] [em] [2] [2] 

Iz] [z) [m™] [2] 

[2] [2] [2] [rm] 

(2.63) 

All force transformations discussed so far also hold 

true for displacements. Thus, if the corresponding dis- 

placements of the beam element in the frame co-ordinate 

system are denoted by qi, q2, «+--+ giz, then equation (2.62) 

can be written for the displacement as follows 

crt ate == eR] {u} (2.64) 

where fu}* cS [wi,u2,Us, Biers ial, represents 

the displacement of the beam element in the beam element 

co-ordinate system. 

Now, the strain energy of the beam element is given by 

boo {u}* [x,j fu} (2.65) 

the transformation matrix [R] is an orthogonal one. Thus, 

its inverse is equal to its transpose, hence from equation 

(2.64), we have 

{ul = [R]7? tq} 

= [el* {a} (2.66)
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And substituting equation (2.66) into equation (2.65), 

the strain energy of the beam element is given by 

u = fg)" [rR] [x] {R]* st (2.67) 

Equation (2.67) is of the form 

U = {g)° [x] 4) (2.68) 

which is an expression of strain energy of the beam element 

in terms of the displacement oy Gealp oc. es) be) inkene 

frame co-ordinate system. The matrix [x] isica) 12 xe 

matrix and it is the stiffness matrix of the beam element 

in the frame co-ordinate system. From equations (2.67 

and (2.68) it can be deduced that 

[x] = Ir] [x,] [r]* 

where the matrix [K,] is given by equation (2.51). 

Similarly, the kinetic energy of the beam element is 

given by 

= duyt du (2.69) 
te cS [m,] ie 

Substituting equation (2.66) into equation (2.69) we have 

the kinetic energy of the beam element which is given by 

3 t 

t = {5%} [R] [m] [r]* 2 (2.70) 

again, this is of the form 

t= (* fm) (2.721)
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which is an expression of the kinetic energy of the beam 

element in terms of the displacements ay (EEL 2) 35 vee ee) 

in the force co-ordinate system. Comparing equations 

(2.70) and (2.71) we have 

[m™] = [R] [m,] [R]* (2.72) 
e 

where the matrix [m,] is given by equation (2.52). 

The matrix [=] is a 12 X 12 matrix which represents the 

mass matrix of the beam element in the frame co-ordinate 

system. 

2.4 Assembly of system mass and stiffness matrices 
  

The stiffness and mass matrices obtained after the 

co-ordinate transformation, express the beam element 

properties in terms of the global co-ordinate system. 

These need to be assembled into the overall matrices for 

the frame. Thus the contribution of the beam element in 

question to the frame stiffness and mass matrices is to be 

identified and added accordingly. The code number method 

is utilised here. The transformed beam element matrices 

are each 12 X 12 matrices. The first 6 rows or columns of 

these matrices are related to the frame co-ordinates at 

the end M of the beam, which the other 6 (7-12) rows or 

columns are related to frame co-ordinates at the other 

end N of the beam element. Thus, the matrices are such 

that the rows and columns 1, 2 and 3 relate to the trans- 

lated displacement components in the X-, Y- and Z- directions
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of the frame axis system at the end M. The rows and 

columns 4,5 and 6 relate to the rotational displacement 

components about the X-Y- and z-axes of the frame axis 

system at the end M. 

Similarly, the rows and columns 7, 8 and 9 relate to the 

translational displacement components in the X- Y- and Z- 

directions of the frame axis system at the end N, And the 

rows and columns 10, 11 and 12 relate to rotational dis- 

placement components about the X-, Y- and Z- axes of the 

frame axis system at the end N. The idea of the code 

number method is to assign to each of these 12 beam element 

matrix rows and columns, a number which represents the 

corresponding frame co-ordinate points. 

Each of the 12 beam element co-ordinates should have a 

corresponding co-ordinate in the frame co-ordinate system. 

Any element co-ordinate which does not contribute to the 

frame co-ordinate system is assigned a zero code number. 

All other element co-ordinates are given code numbers equal 

to the value of the co-ordinate in the frame co-ordinate 

system. Thus the code number at any point is a positive - 

including zero - integer not greater than the total number 

of degrees of freedom of the discretized frame structure. 

It is worth noting that the inclusion of the zero code 

number makes it possible to analyse 1 - dimensional and 

plane frame structures from the general 3 - dimensional 

beam finite element discretization model. 

2.4.1 Beam Elements 

Consider the transverse vibration only of a uniform 

beam element as shown in Fig. (2.11) where ay and Q.,
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i=1,2,3,4 are the displacements and end forces respectively. 

The quantities such as U, q, € etc. are referred to their 

amplitudes of vibration. 

A simple displacement pattern of the beam may be 

assumed to be: 

U (x) = a5 +.a1x% + a x? + wax? (273 

where Ope i = 0,1,2,3 are constants to be determined. The 

displacement vector in this case consists of one component 

i.e. the transverse displacement, therefore we may drop 

the brackets for vector notation. Where the functions 

i 
x”, i = 0,1,2,3 were chosen as co-ordinate functions, Os 

would have been taken as the generalised co-ordinates. 

Now since Os does not have direct physical interpretation, 

we prefer to transform it to Gyr SO that the conditions of. 

compatibility between elements can be applied directly to 

form the overall system equations. 

The transformation may proceed as follows: 

In order to determine the coefficients Oe i: HO, Lye, Ss an 

equation (2.73) it is necessary to use the following boundary 

conditions: 

U (QO) = qi, U' (0) = qe, U (£)= qa, U' (2) = qy 

sence (2.74) 

substituting equation (2.73) into equation (2.74 

we obtain a set of four equations for Os t=O] 253% 

After solving these equations for oy in terms of Gyr 

i= 1,2,3,4 the equation (2.73) can be rewritten in the 

form: 

U (x) = Ja (x)| {a} (2.75)



ot 

where {g} = [q: qe aa an 

and 2 BG, 2 3 

fate] = [1-3 +20 B28 +H 2 

x Be) sees noe! Beara) Mo eal) 02] (2.76) 

The strain and displacement relationship for a beam is 

Peat caine 37u e, (x) = SF = -yeor (2277) 

where v is the longitudinal displacement and y is the 

co-ordinate normal to x and in the plane of vibration. 

From equations (2.77) and (2.75) we get the strain and 

generalised displacement relationship: 

e, (x) = [b (x)] {a} (2.78) 

where 

[b(x) ]= [-6422@) (-a+6 6-12. (-246 G4 (2.79 

The substitution of equations (2.79) and (2.76) in the 

following equations 

[m] =S [a]™ [e] [a] avo1 (A) 
vol 

W — [x] i [c] [b] avo (B) 

gives the mass and stiffness matrices respectively. 

US60 n22 54-132 
[m] = 2b 224 42? 13h pro 8 (2.80 

ac 54 4gt 156 =228 
-132 -322 -222 42? 

and
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12 62 -12 62 

62 AG ERs Bu 
Ez [x] =< = (2.81) 

-12 -6h 12-62 

6L BRE Tahiti Age 

which is the same as in Equation (2.51) considering the 

rows 2, 6, 8, 12 to give the stiffness matrix [Klas above, 

(2.81). 

In the case of [m] it is as in Equation (2.52), considering 

the same rows 2,6,8,12 to give the previous mass matrix 

(2.80).
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CHAPTER 3 

Two-dimensional Elements and Numerical 
  

Solution 

3.1 Two-Dimensional Elements 

A two-dimensional element is one whose displacement at 

any point is described by two spatial parameters. The 

smallest geometric dimension, i.e. the thickness, of such 

an element is much smaller than the other two dimensions 

so that the configuration of its middle surface can be 

expressed. If this element is a flat one, then it is ea 

plate element, otherwise it is a shell element. 

A dynamic stiffness of a general two-dimensional element 

has not received very much attention in the literature 

because of its continuous contour of boundaries and the 

coupling effect between the two dimensions. 

The only model which may be found is that of a plate 

element whose two opposite edges are simply supportea ‘**) 

In this case, the governing equation of vibration is de- 

generated into that of a beam by choosing a set of distri- 

buted generalised co-ordinates on the two other edges which 

are not simply supported. 

An approximation method of finite strip (es) was intro- 

duced by Cheung. Again, this method is limited to plate 

elements with the boundary condition of two opposite edges 

prescribed and therefore the treatment of the plate element 

is degenerated to that of one-dimensional elements.
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Dill and Pister ‘?0) introduced a rectangular plate 

element where the displacements of the four edges are 

expressible by Fourier series. However, the coupling 

effects between the two spatial co-ordinates give rise 

to a large matrix, and the numerical convergency is very 

poor. 

Section (3.2) discusses a rectangular plate element whose 

two opposite edges are simply supported. 

In the following, a dynamic stiffness matrix will be 

derived for the plate where all the edges are subjected to 

prescribed boundary displacements. 

Two sets of information are required about the vibrating 

plate element to form the dynamic stiffness matrices. One 

is the modal information when all the edges of the plate 

are clamped and the other is the static deflection patterns 

when the plate is subjected to unit boundary displacements. 

To demonstrate the method by rectangular members as a 

clamped plate. 

So far, the most popular method of calculating the 

natural frequencies and modes for an individual member is 

that of Rayleigh-Ritz. Although the polynomial co-ordinate 

(91) functions have been used by many authors Mikhlin has 

proved that the Ritz system for polynomial co-ordinate 

(22). functions is numerically unstable To eliminate the 

effect, beam functions are used as co-ordinate functions. 

The natural frequency will be denoted by ®, and the 

corresponding mode by o, for the plate member



lee ea 
Pee) ei Os ity) 

1 3 

where xy and ¥5 are beam functions of clamped ends in x 

and y directions respectively, and ny ny are the number 

of terms chosen in the corresponding directions. The 

quantities of w and an, may be automatically generated 

by computer programme. 

For the static analysis of a rectangular element by the 

method of energy, reference is made to Przemienteaki yt!) 

and Zienkiewicz '?7), 

The materials of the static analysis can be found ‘1 5) 

and summarised here for the completeness of deriving the 

dynamic matrices. 

Consider the rectangular plate element as shown in Figure 

(rE, qi i=l,2 ... 12 are chosen as generalised displace- 

ments. A deflection function that ensures both the de- 

flection and slope compatibility on adjacent plate elements 

is given by: 

U(trn) = [ao] {gq} (3.1) 
where U(€,n) is the transverse deflection, 

t=x/a, n=y/b , {ah = [aism, «s--- aval 

and [a] is a 1x12 matrix given by: 

[ag] = [tini Gineb - ania bins - Sinab-Censa 

Sasa - Tanub Cons Tani Sanzb tania] az
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where 

Cys s2ci(ier)* ni = (1+2n) (1-n)? 

Se = ¢ (1-2)? Ne = n(l-n)? 
(3.3) 

Ss = (3-22)c? Ns = (3-2n)n? 

Ca= CaCl se) nu = n?(1-n) 

substituting equation (3.2) into the following equation 

Au 
Im] = Sug, fal” [ella]  avo1 

we obtain the consistent mass matrix:
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The constants Soy can be found as 

fi . 
cS Loy fo} fo] { } tap} dvol 

from assuming that the eigen functions are normalised 

and the condition of orthogonality 

a, = ) G,.{¢,} E v i 1 dS 

where 

S45 = ar {o,)7 [] {a,} avol 

eo SS k 5) 2 ST ey = Aa £6 um ¥5@) 

ay (x,y) d x dy (3.6) 

where oy and a, are scalars anda is the {th element of the 
& 

matrix [a] in equation (3.2). 

In order to evaluate the integrals of equation (3.6) 

integrals must be calculated of the form: 

Jeg (e) eo Ce) de m= 1,2,3,4 (3S) 
m 

where y, represents either X,(x) or Y¥,(y) and o,(c) are 

polynomials of ¢ as given by equation (3.3). Then the 

dynamic stiffness matrix of rectanguir plate is given by 

the equation: 

k=1 

where n = number of terms taken. 

It must be noted that since the expression (3.1) is not 

exact and the modal corrections are made in the interior of
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the plate, to satisfy the differential equation, but not 

the boundaries; exact results cannot be expected for 

the dynamic matrices. The accuracy may be increased by 

increasing the number of generalised co-ordinates on the 

edges. 

3.2 The Interaction between Beams and plates 

It is common engineering practice to stiffen a plate 

system by beams. The effect of a stiffening beam is 

threefold; axial, flexural and torsional. 

The flexural and torsional effects are considered 

separately in the following analysis. 

The governing equation of a beam in flexural vibration 

is given by: 

otw 32w 32w 
EI ax7 ae ASSET ON ee Vv (3.8) 

where N.. is the axial compressive force, and V the 

distributed transverse load per unit length along the beam. 

For the harmonic excitation of a simply supported beam: 

a mmx iwt Mee)) ive “Sin eae (3.9) 
m=1 

mmx iwt and w=) wo Sin e (3.10) 
m=1 m a 

From equations (3.9) ,(3.10) and (3.8) we have: 

N 4 2 a mmx mm Sule 2 yee ey ae } Sin === [EIC=) G- paws =) wiv J=0 (3.11) 
m=1
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Multiplying the equation by a and integrating over 

x = O and x=a we have: 

u 2 Ss, TOT Se mT w (3%02) 
AS [ex @) ~ paw NOt) | m 

which is the stiffness relation required. 

The torsional effect is derived as follows: 

The differential equation governing the torsional vibration 

of a beam, where the shear coincides with the mass centre 

of cross sectional area, is 

2 92 

orto - ot, 22 +2=0 (Buns) 

where 

GJ is the torsional rigidity 

p is the mass density 

I_ is the polar moment of inertia 

T is the torsional moment acting on the beams per unit 

length. 

The harmonic oscillation of a simply supported beam is 

obtained by: 

A mmx iwt an ee oe (3.14) 
m=1 

x mmx iwt Dee) ects se (3205) 
m=1 

and equation (3.13) becomes 

  

2 

MIX [-co (BZ) 6, + pig wee +7) = 0 N : 
y Sin o 

m=1 

Multiplying the equation by Sin a and integrating
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over x = O and x =a _ gives: 

2 

Tt, = [6534 - ot, we (3.16) 

which is the required stiffness relation. 

When the beam member is on an edge of the folded plate, 

then the generalised displacements of the beam wy and 

8a will correspond to the generalised displacements of the 

plate, either ee and qo or Gas and Ting? depending on which 

edge of the plate the beam is situated. 

3.3 Folded Plate Members 

A rectangular plate with two opposite edges simply 

supported and with the two edges connected to other structures 

by prescribed displacement patterns will be discussed. 

Distributed co-ordinates on the edges will be used in this 

example. 

To satisfy the boundary conditions of two opposite edges 

being simply supported, the displacement pattern of the 

plate may be written as: 

N 

=] vi (y) Sin BE Wee) 2m A (Sk7} 

where N is the number of terms taken, a and b are the 

dimensions of the plate as shown in Fig.(3.2)and ¥, fy) are 

the functions to be determined to satisfy the governing 

equation of vibration.
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Fig.(3.2) shows the plate and its boundary conditions: 

x = O and x = a, simply supported. 

The generalised displacements Gini! m=1,2....N and 

i=1,2,3,4 are defined by: 

.. ImTx 
w(x,0) = ) a1 oo 

m=1 

N ner 

w(x,b) = } Cae oo 

m=1 

N 
dw (x,0) _ , mTx 

oy Ce. Gra aa 

N aw (x,b) _ re TUEK 
Samay Lo Gmg Sin “T (3.18) 

and the generalised forces On are defined by 

N 
= eo ATX 

Q,, (#0) = Yom Sed 

N 
2 mrx 

~Q, (x1) Seok ci 

m=1 

uN mrx 
My (x,0) = eon 

-M_ (x,b) oA Sin = (3.19) SS eee cay a4 a S 

where Qy and My are Kirchoff's shear and the bending 

moment of the plate along y = constant (s)
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The generalised forces are related to the displacement 

through the conditions of equilibrium on the edges y = 0 

and y =b, 

O (ey) = ple” + (2-0) aiw y EY lay xz ay! 

& a 2. 

MGtry) = 1 vo (3.20) 

where D = Eh*/12(1-v?) is the flexural rigidity of the 

plate. 

h = thickness and v = the Poisson's ratio. 

Before we can apply equation (3.18) to equation (3.20) 

in order to find the dynamic stiffness matrix, we must 

find out the functions ¥ bY) in equation (3.17). 

If the loadings are harmonic with time, the governing 

equation of vibration of the plate with frequency w is 

given by: 

Divorce WN Ne, Sey) (3.21) 
a Os y oy ’ i. 

where Ny and Ny are the compressive in plane loadin x and 

y directions respectively, V* is the biharmonic operator 

in (x,y) co-ordinate, P(x,y) is the downward distributed 

load intensity and represented by: 

n 
P(x,y) = } P,, Sin = per unit area (3.22) 

m=1
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By substituting equation (3.17) into equation (3.19), 

we have: 

} sin BEE (@y" y 2G? yz 4 ys - Sow 
aa a a Ym a Yn Ym D m 

m=1 

N mr, * N A 
ieee) Veep Xe ge = ey) crea D a m D- m™m D m 

Multiplying by sin i and integrating over x = 0,a 

where n is a positive integer, and using the orthogonality 

of sine functions, we obtain: 

N 
ya = owt 4 (@hy = Phe. Sx a? m 2D m a _ D a 

Pn 
TAo } aon = 0 Ink = diy 2s oe (3.23 

The associated boundary conditions for these fourth 

order differential equations are obtained from equation 

(3.18) 

¥,, (0) vi(o) =4 
m2 

¥, (5) ve = Sa (3.24) i] 1Q
 

a tw
 

The auxiliary roots of equations (3.23) are obtained by 

letting a = et” 

2 N 2 N. 4 2 

ee err ae 

Seman? , Pm 4% (3.25) 
Da me .



=Fd— 

Therefore yy) will have four different forms of 

solution depending on whether o* is positive, negative 

or complex. 

We study these four cases as follows: 

Case 1 

When all four roots are real, which are +0,, +0, then 

the general solution has the form: 

S24 B sinh Se +c cosh S24 psinn® Yay?) = A Cosh 

aaea (3.26) 

where A,B,C,D are integration constants and are determined 

from the boundary conditions (3.24) as: 

  

    

Cw rks, -F2 meg Fy 

es F - a Sab st ou of ao or - oF Iim3* ( of Gieop ims 

Fe o3 -Fy ES P3 
Bea 3 oT et oa an eno m3" Ga a ant 

ba Bo» 

Ca qa Ag D= ot Se (3527) 

where F; = -(o2 sinh o1-0; sinh 02) (of-03)/6 

Fo = -(01 cosh o, sinh. o2-o2 sinh o: cosh oz) (o?-03) /6 

Fs = -0102 (co? - 03) (Cosh o1 - Cosh o2)/6 

Fy = 0102[ (of+o%) (Cosh 01 Cosh o2-1)-2010, sinhoisinhoe])é 

Fs = 0102(0% - 0%) (o1Sinh oi1-o2sinh o2)/6 

Fe = -0102 (o$-0%) (-o,cosh o; sinho.+0; sino;cosho.) /é 

& = 20102 (cosh oicosh o2-1)-(c%+03) (sinho, sinho2) 

2 mene, 4 3je 28)
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Case 2 

When there are two real and two imaginary roots which 

are + 6;, tio, then the general solution has the form: 

F Oy O2Y eed Or ¥ 8 jenep Yn (Y) A Cos === + 8B Sin -—= + C Cosh a + D sinh 

Sesst (owen) 

where A,B,C,D are integration constants depending on the 

boundary conditions (3.24) and they are found as: 

    

  

  

2 
O3-F = cr 2 Pa Ce) eet) eo) Dat 
of+03 ™ oftod 2 of4oe ™ a taad : 

bi q bg -F on ae =F a J Be ( - &_) Ly as (2 aay Sm ef 5) Ms 4 Fs) My 

Of+0% 2 of+o% o2 of+o8 o2 of+o3 oe 

bg 
C=q -A and p= —%% ..92 = 

m1 
O1 O01 

(3.30) 

where the frequency functions are given by: 

F, = -(o2 Sinh o1 - 6; Sin o2) (ot + 03) /6 

F2 = -(¢; cosh 6; Sino. - o2 Sinh o; Sin o2) (of + 0%) /6 

F3 = -0102 (o¢-0%) (Cosh o1- Cos o2)/6 

Fy = 6102[+(o%-53) (Cosh o1Cos g2-1) + 20102 Sinh o1Sino2] /é 

Fs = 0102 (o2+0f) (o2 Sin o2 + 61 Sinh o1)/6 

Fe = -0102 (o$+o%) (2 Cosh o1 Sin G2 + 61 Sinh o1Cos o2)/6 

6 = 20102 (Cosh o; cos g2-1) + (o$-0%) Sinh o1 Sino2 

(35329
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Case 3 

When all four roots are imaginary, which are +io;, 

tio2 then the general solution has the form: 

7 = O2y .. O2y o1y ee OOy, y,) A cos +" +B sin + + C cos =* + D sin 5 

  

      

  

(3532) 

where 

De SB ing ee) gen See 
Siccttee).  gi-ot 2 Bat ot Sg? = ct age 

B= (—t—) Sm + (GFE Po (ES ety OES oa 
of - ot “Ge ob-of “G2 of-cf “G2 of-ocf ~ a2 

C=a,, =A and p= ?%m, - 8B ae 
o1 : 

(3533) 

where the frequency functions are given by: 

Fi = -(o2 sin o1 - 0; sino2) (o3- of) /6 

Fe = -(01 cos oi sin 62 -o2 sin 6: cos 52) (03-07%) /6 

F3 = -0102 (03-0) (Cos o1 - cos o2)/6 

Fy = 0102[-(o% + 03) (Cos 61 coso2-1)-20102 sin o; sin o2]/6 

Fs = 0102 (03-0%) (02 sin o2 - 61 sin o;)/6 

Fe = -0102(0%-0f) (2 cos 061 Sin 62-0; sin 6; cos o2)/6 

6 = 20102 (cos o1 cos o2-1) + (of + of) sin o; sin o% 

See eles (SeS4) 

Case 4 

When all four roots are complex and which are o,+io:, 

-O2tid;, then the general solution will have the form: 

o2¥ o2¥ = x sens CNT anes YO) =A cos 01 5 cosh Barat B cos b sinh ian 

no (01 O2¥ lore ges o2¥ 
Crsin = cosh any D sin Sal sinh ie a Sn a5)
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where the integration constants A,B,C,D are found from the 

boundary conditions (3.24) as: 

Ae ain 

B= Cy (6:0 sin 6; cos 0; + 6% sinh G2 cosh a2) + 

in? ~ co in res bq,,, (G2 sin‘o)) Fm 302 (02 cos 6; sinhos 

G2 sino; cosh o2) + ba, (2 sin o,; sinh 02)}/6 

ele G5 (0:02 sinh o2 cosh o2 + of sin o; cos oj) - 
1 

bq_ 6; sinh* o2 + q oO» (0; Cos 6; Sinh o2 
“M2 “ms 

+ O62 sin 0; cosh o2) - bq, (G2 sin 6, sinh o2)}/6 

D= cn, 0102 (sin? o, + sinh? o2) + bq,,, (61 sinh o2 cosh 62 
m 2 

- 02 sin 6: cos 01) - G.. (03+ of) sin o, sinh oot 

ba, (o2 sin o; cosh 02 - 6; cos 6; sinh o2)}/6 

6 = 0% sin? o; - of sinh? o2 

(3.36) 

The frequency functions are given by 

Fi = 20102 (d2 Sin 06, cosh 62 - 01 cos cg; sinh o2)/6 

tj v w" F -20102 (6; sinh o2 cosh 62 - o2 sin o1 cos o1)/6 

F3 = 20102 (of+o3) (sin o, sinh o2)/6 

Fy, = (X2 02 Sin? o; + x1 0; Sinh? o2)/6 

Fs = 20:02 (of + 0%) (01 sinh o2 cos o1 + o2 sin o; cosh o2)/6 

Fe = -20102 (of + 0%) (0: sinh o2 cosh o2 + G2 cos 6; sin 6})/6 

2 6 = 0% sin® o1 - of sinh? o2 

x. = of -30103 + (2-v) «3 

X2 = 03 - 30% of -(2-v) a2 (3.37) 

The general solution of the differential equations (3.23) 

in these forms was not found in the literature. 

However, we have not studied the physical implication of 

the various natures of the auxiliary roots and therefore,
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these formulae are presented here merely for the complete- 

ness of the formulation. 

Having determined the functions Yi fy) explicitly in 

terms of the generalised displacement Gqir We Can carry out 

the differentiation in equations (3.19) and make use of 

equation (3.18) and the orthogonality of sine functions to 

obtain the relationship between the generalised forces and 

generalised displacements. 

After some simplification, the dynamic stiffness relations 

for all these four cases will have the form: 

Fe “Fibs FFs Fab oa 

Qn. ) = Bs =Fub Fb? -Fab = Fib? (en, 

Orne Fs -Fab FE Fab a. 

Qn F3b F,b? Fyb F2b? Be 

Moma 205cN (3.38) 

where the frequency function Fy has different forms for the 

four cases and should be calculated under the individual 

headings, i.e. from expressions (3.27) or (3.31) or (3.34) 

or (3.37) according to the nature of the auxiliary roots. 

The vibration shape for every m is given by expressions 

(3.26) or (3.29) or (3.32) or (3.35) and the overall shape 

of vibration at frequency w is obtained from equation (3.17). 

3.4 Numerical Solution 

3.4.1 Introduction 

Since the method of study is very close to the Finite 

Element Methods, a brief discussion of how these methods
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apply to the elastic systems may be worth mentioning. 

Finite Element Methods developed from torsional problems 

in 1943 (23) he term 'Finite Element Method’ was not 

introduced until the middle of the fifties. At that time 

the electronic computers were rapidly entering the field of 

technical computations, and the matrix method of structural 

analysis was proved to be powerful. An extension of these 

methods for use in general structure was a natural progression. 

Pioneers in this development were Lagefors Ga), Gs) 

(16) 

Agris 

and Clough and this time the approach was based on 

simple engineering arguments. Continuous material was 

regarded as being split physically into finite elements. 

Each element was analyzed as being a separate piece of 

material making up the complete structure when joined to the 

other elements. For a thorough study of finite element 

(7) methods, text books like the one by Zienkiewicz are 

recommended. 

Here, only a brief account of the theory may be included. 

Elastic problems are governed by three categories of field 

equations: 

stress-equilibrium equations 

stress-strain relations (constitutive material laws) 

strain-displacement relations (kinematic relations) 

In addition, boundary conditions may be given as: 

specified boundary stress 

specified boundary displacements 

specified relations between boundary stress and boundary 

relations.
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For a linear theory of elasticity, these equations are 

particularly simple. In terms of rectangular Cartesian 

co-ordinates, and by means of standard tensor notation, they 

may be written as follows: 

1. _stress equilibrium 

°45,5 + Fi =0 Lj = L203 

where 

O45 = stress tensor components 

Py = components of body forces 

2. stress-strain relation 

| = Ca 52 Ey Adi Le eb, 2,3 

or inversely 

fa = Sisk okl 

where the new notations are 

€.,. = component of strain tensor 
13 

Cask = elastic stiffness coefficient 

Sigx1 = elastic flexibility coefficient 

3. strain-displacement relations for small displacements 

= 4 (0, eee ele ne Sapa reas 
7a) 372i 

where U, denotes displacement in the direction i. 

vy 
ij 

For the formulation of stress boundary conditions, internal 

stresses must be related to surface tractions. 

The surface traction oF in direction i at some part 

of the boundary S may be written as follows:
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where BS is the direction cosine of the outward’ unit normal 

vector of the surface S. 

All energy principles may be used as a basis for 

numerical analysis using the Finite Element Method. 

The finite element separation implies a division of the 

total volume V into sub-volumes or sub-domains denoting 

finite elements. 

The functions chosen to represent approximate displacement 

and stress field are specified within each element, and 

conditions imposed on certain parameters at inter-element 

boundaries provide the necessary continuity required by the 

field functions. 

In the case of the standard displacement method, the 

displacement field is assumed to be: 

{0 (x,y,z)} = [@ x:y,z)] {a} 

where 

{o(x,y,z)} is the vector of chosen nodes of displacement 

{a} is a vector of constants to be determined by 

the nodal displacements 

At any node i, the vector of displacement components is 

given by: 

{aj} = {0 (xy,¥y/2,)} = [ @ (xyryyrz,) ] {0} 

where (575724) are the co-ordinates of the node. 

If all the displacement components of the nodes of the 

element are arranged in a vector {q} then:
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{q} = [¢@] {a} 

where the constant matrix [e J is given by: 

[6 (x1 ,y1,21)] 

[¢ (x2,¥2,22)] 

—
 or
 

o
s
 

" 

[oC ry ,72,)] 

where n = number of nodes. 

The displacement field is expressed in terms of nodal 

displacements: 

1 
{u(x,y,z)} = [¢(x,y,z)] [¢] {at= [alx,y,z)] fq} 

(35,39) 

where 

[a(x,y,z)] = [o(x,y,2)] [e]7? 

The strain field is obtained from the kinematic relation 

as 

fe(x,y,z)} = [b(a,y,z)] {q} (3.40) 

For vibration analysis, if the external force can be 

expressed as the potential V, the most convenient energy 

principle is the Hamilton's Principle, which states: 

“Among all admissible displacements which satisfy 

the prescribed geometrical constraints and the 

prescribed condition at the limits t = t; and t = tz2,the 

actual condition makes the functional stationary" 

te 
ee [meq 0 1 Vy dvoijpdt (3.41)
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Now the Kinetic energy and the strain energy are given by 

Tas 8 fy {a}T[p] {8} avol (3.42) 

and ~ 
Us 4 {-, fe) [ce] te} dvoi 

respectively. 

We have 

6({4}7 [m] {4} + % {aq}™ [K]{q} - ta}T{o}) = 0 

(3.43) 

where the mass matrix [m], and the stiffness matrix [k] 

are given by 

[m) = [a]” [o) [al (3.44) 
and 

in ea
 

Ade
 4 

ze
 ° Sy
 

pa
 

ie
s [x] 

respectively, and {Q} is the load vector resulting from the 

volume integral of the expression. 

The kinetic energy of the system is the summation of 

the kinetic energies associated with the individual elements, 

therefore: 

iC epea or 
wie may augaiiey "Sfemeae ts) [p,] {g,}avor (C-352) 

and so the potential energy is: 

u=% sStdmBit {6,37 [c,] fe }avol (3.45b) 
all elements 

where the subscript e denotes the quantities relating to 

the individual elements.
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Applying the requirement of stationary energies and with 

reference to equations (3.39) and (3.40) this gives: 

rail 

bahay eléments {4 [mg] (40a e x{a,}[,] fa,} 
elements 

t fq} 10,3) = I Q.}) =0 (3.46 
Tall snl 
elements 

Now, if all the co-ordinate vectors fa} are transferred 

to a common co-ordinate vector base {ql} by 

iq,} = [n,] {al 

then we have 

stead 7 2, [m)otaye eter), [8] et - 
elements elements 

{a}? _} {a,.}] =0 (3.47) 
a all “e 
elements 

where 

=
 Lol
} 

o —
 " [n,}” [o,] 

[ng]7 [kx] [nQ] 

[nJ™ [m] In] (3.48) 

=
 zl
 

oO 1
 " 

‘aI
 

Q
,
 M 

Comparing the equations (3.47) and (3.48) we have, for 

the system 

[9] “all elements [9] 

[x] * all elements [K] 

[m] ~ all‘elements {m,} 

Equations (3.48) are used to assemble the system equations 

of motion. 

If we perform the variation of equation (3.43) we have
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[m] {q} + [x] {aq} = {0} 

which is the governing equation of motion in the matrix 

form. 

3.5 Determination of Natural Frequencies 
  

For conservative systems the equation of motion in 

matrix form is 

IM} ig} + [x] fg} = {0) (3.49) 

which can be reduced to either 

[p]{q} + {a} ear} (3.50) 

ox 

{a} + [D]{q} = {0} (3.51) 

where 

[s} = [x)"*h, 

and [p) = 7 [x] 

If an oscillatory solution of the form 

{qi = {o} sin (wt+w) (3.52) 

is assumed, substituting (3.52) into (3.50) leads to 

(yw?) [z] - [p]) {6} = {0} (3.53) 

and substituting (3.52) into (3.50) yields 

(w? [zr] - [D]) {9} = {o} (3.54) 

Equations (3.53) and (3.54) define two separate eigen 

value problems, which can be written in the forms: 

1 [p] {o}, a7 fol, (3.85) 

and 
[p] to), Wi? 941615 9141; 2,-0.0 (3-56) 

respectively.
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The iteration technique will be discussed with reference 

to equation (3.55), for reasons which will become clear in 

the ensuing derivation. 

In starting the iteration, a trial column is selected 

which is premultiplied by the matrix [p] to yield a new 

column matrix. Next the newly obtained column matrix is 

normalised by dividing all the elements, by the first for 

example, in order to reduce the first element to unity. 

This normalised matrix is then used as the second trial 

column to obtain a second column matrix to be normalised. 

This same process goes on until the new column matrix 

obtained differs very slightly from the last trial modal 

column. Then convergence has been effected. The last 

column matrix is the modal column corresponding to the 

lowest mode, and the factor used to normalise the column 

matrix is the lowest eigen value. If the equation (3.56) 

is used to set up the iteration process, the result will 

be the modal column appropriate to the highest mode and 

its frequency. 

The basis of the iteration can be demonstrated in the 

following manner. Assuming that all the eigen values are 

distinct, we can express an arbitrary column vector in terms 

of the n orthogonal eigen vectors by linear combinations. 

Thus the first trial modal column can be expressed as 

{oi1} = Ci {o}1 + Co {o}2 + Caf{o}s + .... +c toh, 

(3.57) 

where Ci,C2 etc are arbitrary constants and {¢}1,{¢}2 etc
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are the eigen vectors of the matrix [p]. The trial modal 

column can be anything, but if it is reasonably close to the 

actual modal column, then the convergence will be hastened. 

Premultiplying the trial column by [»] we have 

[>] {¢,3= Ci [p]{o}: + Co[p]f{odo+ .... c,[p]{¢}, (3.58) 

By virtue of equation (3.55) the following relations 

are true: 

[p]{o}1 = (1/wh)  {oha 

(Bligh, = (1/wE) tote 

[p]ter, = (/wi) fo), (3.59) 

where it is assumed that the eigen values are ordered such 

that 

Wy XW < w3 <oceeeee Woe since 

{p] {o1} = {$2} (3.60) 

where {¢2} is the second trial modal column, it follows 

from equations (3.58) and (3.59) that 

{oo} = & fohi + & fob + ree ont Oy (3.61) 
n 

The second iteration gives: 

=a o 5 ec 
[p] foc} = Sh {bhi + SH fo}. + {oh}, (3.62) 

n 

Here it is noted that in order to keep the algebra simple, 

the normalisation is purposely avoided. However, the 

validity of the process is not affected by the absence of 

the normalisation,
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After (P - 1) iterations, we obtain 

Q = = ‘ ¢c [B] 1p) > te} ie Seth) + Sfplolet os 

a 
€ 

+ ened) 
2p n g 

n 

which can also be written as 

2P 
{o,} - <5 [e. fo}: + C24)” {oe + oe. 

wa 2P 
ON {o},] (3.63) 

If no eigen values are very close to each other, after a few 

iterations, it will be valid to claim that 

22 {6,3 Sip Ci ies 7 (3.64) 

One more iteration will yield 

1 
{G2 7) teats) (Coe on Cifohi (3.65) pti 

Comparing (3.65) with (3.64) we obtain 

a pu? “SP Mp} (3.66) {¢ 

Equation (3.66) states that the iteration has proceeded to 

the point where convergence is evident. One more iteration 

will merely produce a multiple of the preceding column. The 

constant of multiplication is the value of 1L/wi. 

If the iteration is based on (3.57) it is easy to see 

that instead of (3.63) we shall have 

2p 2p 
Lge wee aly e {o}. + Co Ge {oe +... 

#10. oie] (3.67) 

In this case it is evident that the largest eigen value is 

obtained by iteration.
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3.6 Determination of the Higher Modes 

The highest eigen value of the problem can be obtained 

by iteration using equation (3.56) instead of equation 

(3955)) 5 

To obtain the intermediate eigen values is the central 

problem to be studied in the following section. A method 

is available for obtaining the successive eigen values in 

either ascending or descending order, depending on whether 

equation (3.55) or equation (3.56) is used as a basis for 

the iteration. 

To make this method more clear, let us use equation 

(3.55) to start the iteration and assume that {¢}, has now 

been obtained. To proceed to the second mode {¢}2 we shall 

again take an arbitrary column, but now it is necessary 

that this column should be orthogonal to the first modal 

column {¢}: . This constraint can be expressed in matrix 

form as 

hi [Slo@ ie =o (3.68) 

Substituting equation (3.57) into equation (3.68), we 

obtain 

Cc: {6}7 [pb] fol: + cz tT [p] fo}. +... 

c,@}i [p] #1, =0 (3.69) 

By virtue of the orthogonality conditions existing between 

all modal columns, all the terms except the first one in 

equation (3.69) vanish. Hence we have 

c: }T [p] f}: =0 (3.70) 

which leads to the conclusion that C; = 0. Therefore, with
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the constraints (3.68) and (3.57) become 

fo.) = Co {o}2 + Cs {o}5 +... (3.72) 

  

The above equation shows that when a trial column is 

subjected to the condition in equation (3.71), then it can 

be expressed in a linear combination only of (n-1) modal 

columns with the first modal column deleted. Following the 

same reasoning, it is not hard to see that by using a trial 

column with constraints (3.71) to start the iteration, the 

second modal column {¢}2, will be obtained, when convergence 

is achieved. This same principle can be used in the 

selection of the trial columns in establishing other modes 

by iteration. 

Let the elements of the trial column {¢,} be big where 

the index i denotes the row: 

fo.} = 21 (327.2) 

oe
s 

ee
ie
ee
 

ni 

Expanding the triple matrix product in (3.68) ,we have 

(1) (1) My) dees gon) do Gs Ge iG) 
Ai D ee nis 

(Me os $5 =0O (32978) 

where the superscripts inside each summation denote the 

first modal column. Thus o5” is the first element of 

fo}. , 65°) is the second, etc. Expressing the first element 

in the first trial column in terms of the rest of the 

elements of the column, we obtain:
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(1) (1) 
do.o. d3.0. 

poo ee MeO ’ 
i 41.90) y a6. P= yee 

Sains Bd 

pe! ge) 
ne i Oe 

} ai , 01) 3 (3.74) 

The trial column with the first element given by (3.74) and 

arbitrary elements for the rest of the array may be called 

the constrained trial column and is denoted by ford. Then 

fork, can be written as a product of two matrices: 

  

y (1) (1) (1) dan me Me esate, on Ci 
ce 1) (1) (1) 
per? bar 5s tar 55 

{ \ { 
oor | ° 1 ° aes ° 

| 
{oi} = Se3° ) = | oO ° 1 eres ° 

5) | : 
Os | = ° 0 ° 1 

a (3575) 

for brevity, (3.75) may be written in the form: 

(oe Sa Sl ater (3.76 

where [S]: is called the sweeping matrix. Thus, the first 

iteration is expressed by 

[P] fort, = [p] [S]i {01} = {42} 

For the next iteration the newly obtained second trial 

column again has to be modified by the same constraint. 

{oo}, = [Ss]: {¢2) (Ba77 

This process is repeated as many times as convergence 

requires.



=G0— 

Hence we have 

[2] ol o= (p] [Ss]: {¢2} = {os}, 

[pj {oto = [eB] [s]i to.) = to.) (3.78) 

Labour can be saved if the matrix [p] is postmultiplied 

by [S]i to get [p]a which can be taken as the first modified 

dynamic matrix to be used over and over in the iteration to 

obtain the second eigen value. Thus, in terms of [Da we have: 

[P]1 {1} = {62} 

[pb]: {o2} = {63} 

etc (2579) 

To obtain the third eigen value, two orthogonal relations 

must be used to constrain the trial column: 

{e}7 [p] {61} " ° 

ana {o}3 [p] {61} W Oo (3.80) 

From equation (3.80) a second sweeping matrix {s]2 can be 

constructed and the process of iteration can thus go on, 

guided by the routing just developed. The number of 

iterations required depends on the closeness of the assump- 

tion to the actual modal shape. 

3.7 Reliability and Accuracy of Solutions 

In dynamic analysis, the procedure involves four major 

steps: 

1) The idealised description of the structural system 

by a mathematical model 

2.) The establishment of a system of governing equations 

of motion
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3) The solution of this set of equations 

4) The confirmation of the solution by experiments. 

The reliability of a dynamic analysis procedure is 

determined by the 'completeness' of its results compared 

to the solutions of the original system and the accuracy 

is determined by their 'closeness'. 

In other words, by reliability we mean that every 

solution obtained by such a procedure is a solution, 

exactly or approximately, of the original system, and there 

are no solutions of the original system which are missed 

out by the procedure within any domainof interest. 

And by accuracy we mean the closeness of a solution by 

this procedure to the corresponding actual solution of the 

original system. 

The requirements of 'how accurate' and 'how reliable' 

are the results within some economic limits of computation 

will determine the choice of procedure used for analysis. 

3.8 Computer Programme 

The numerical technique incorporated a programme developed 

for calculating the natural frequencies and the mode shapes. 

Programmes for the solution of each parameter were 

developed initially and then combined into one programme. 

Using this programme it was possible to study the various 

vibration characteristics of the structure under considera- 

tion. Continuous structures have an infinite number of modes
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of vibration, but generally only the lowest few of these 

are of importance in low frequency vibrations, so that in 

these cases it is necessary to consider these few modes. 

The technique employed in this work was the Finite 

Element Method to find the solution to the structural 

vibration problem. The consistent stiffness and mass matrices 

of the structure elements were derived by discretization 

of the platform structure which consisted of beams and plates 

i.e. finite elements. 

The programme read the following data: 

A = Area of cross section of the beam mm? 

° = Mass per unit length of beam Kg/mm 

E = Young's Modulus of beam material KN/mm? 

G = Rigidity Modulus of beam meterial KN /mm? 

I, = Polar second moment of area of beam i 
cross section mm 

a = Second moment of area of beam cross 
Y section about the y,axis mm* 

L = Length of beam mm 

mi mass Kg 

M2 = mass Kg 

K = spring constant N/mm? 

It was possible to run the programme to change the 

iteration procedure from 100 to 500 times. Also worth 

mentioning here is that the number of iterations was 

significant in the accuracy but not for the speed of 

computation.
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Due to the springs supporting the structure, the 

potential energy stored in the springs is: 

2V0 = Kil(qu- .55qs- .2q5)* + K2(qut+ .55qs — .2aq¢)? 

+ Kg a} + Kig?s . 

Then adding values in the consistent stiffness matrix for 

the spring's potential energy, (by modification of the main 

programme), the potential energy in the springs is as 

follows: 

Ku yy = (Ki + Ko) 

Ks,5 = +3025 (Kit Kz) 

Ke v6 = 04 (Kit+ Ke) 

Kuys a woo (hom Ka) 

Ks yé = oui (Ki- Ke) 

Kaye ae (Kit Ke) 

K717 = Ks 

Rispis = Ky 

FPig.(3.3 )shows the theoretical idealisation for the 

structure with 15 degrees of freedom. The method used offers 

considerable economic advantages in terms of computation, 

and can give insight into what is happening in the structure. 

In any dynamic analysis a procedure involves four major 

steps. They are: 

1. The idealised description of the structural system 

by a mathematical model 

2. The establishment of a system of governing equations 

of motion 

3. The solution of this set of equations.
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4, The confirmation of the solutions by experiments. 

Fig.(3.4 )shows an exploded view of an idealised 

structure with all the elements. 

It was assumed in the computer programme calculations 

that the spring stiffness was constant. 

These findings indicate that the digital computer has 

become an indispensable tool to scientists in general and 

engineers in particular. 

A proper use of the computer lies in one's ability to 

translate a problem into simple repeated steps of operations 

in a form which lends itself to the mode of working of the 

computer. In order to perform a particular job, the 

computer must be fed with the set of numbers to operate upon 

(data) and the set of operations required (programme). 

The theories and processes for the solution of our 

problems have to be well represented in the form of computer 

* programmes and data for the correct results to be obtained. 

In the previous sections the theories for obtaining the 

consistent stiffness and mass matrices of a beam element and 

plate element were developed. 

The eventual goal of obtaining a computational dynamic 

analysis of a flexible platform structure can then be 

achieved through the sensible use of the digital computer. 

The first programme was to produce the overall mass and 

stiffness matrices of the structure (properties) when
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supplied with the suitable properties of the consistent 

beam and plate elements. 

Secondly, the main programme solved the eigen value 

problem of the form given by equation (2.3) namely 

[kK] {vu} = w? (mj {vu} 

The results from this programme include the natural frequen- 

cies (eigen-values) and normal modes (eigen-vectors) of the 

system under consideration. The eigen-vectors could be 

plotted to obtain a pictorial view of the modes of free 

vibration of the structure. 

It must be said that the discretization of any structure 

into finite elements usually leads to large order overall 

mass and stiffness matrices. Most modern digital computers 

are capable of working with large order matrices. But even 

so, the largest computers available have limited capacities. 

Hence they have limits on the size of matrices that can 

input into them. 

It is possible to use the useful property of the mass 

and stiffness matrices of a real structure which is symmetry. 

Thus, no data is lost by storing only the matrices as only 

upper or lower triangular matrices. But unfortunately, the 

modification in the main programme for the potential energy 

in the springs in the stiffness matrix made it impractical. 

Another method is to store the consistent mass and 

stiffness matrices on a tape and call for them in 

the beginning of the main programme. A point to be mentioned 

here about the two plate element is that they were calculated
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first then condensed to fit in the normal co-ordinate 

representing its parameters. 

Using an intelligent numbering of the nodes (and 

nodal displacement co-ordinates) the overall mass and 

stiffness matrices of the structure can be made to become 

band matrices with as small a band width as possible, to 

use the computer most efficiently. But owing to the number 

of degrees of freedom taken into consideration it was 

preferable to use the complete consistent mass and stiffness 

matrices. In other words, the inevitable need for large 

core storage still exists. This in turn has placed a very 

high limitation on the number of degrees of freedom of 

structures which can be analysed on the available computer. 

All computer programmes described here were written in 

Basic language, and run in the University of Aston- 

Mechanical Engineering Department model HP 901A. 

The programme also incorporates the addition of con- 

centrated mass and stiffness properties to any co-ordinate 

of the frame. Thus joint masses and other masses can be 

added to the appropriate elements of the mass matrix while 

the effect of spring stiffness can be added to the 

corresponding elements of the frame stiffness matrix. 

Again, the data which this programme required for processing 

included the number of degrees of freedom of the structure, 

maximum allowable error in the vector, the coefficient of 

consistent mass matrix, the coefficient of stiffness matrix, 

and any modifications before starting the iteration.
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The printout included: 

print 1/, = wit , wt , wi natural frequency 

print U = Ui , U2 , Us ... Uismode shapes 

print Error in vector after the given number of interations, 

The programme included the number of finite elements of 

the discretized structure, the Young's and Rigidity 

moduluses of each component, the mass per unit length of 

beam, the second moments of area of the beam element cross- 

section about its x-y and z-axis and the area of cross- 

section of the beam elements. 

Another computer programme was run with 41 elements. 

Finite element discretization of the flexible platform would 

yield a total of 20 elements for the two plates and 21 

elements for the beams. From these 54 degrees of freedom 

would be due to translational displacement and 108 would be 

due to rotation. 

The estimated computer core necessary to run this 

programme to solve the eigen value problem (NAG EIGNVAL) for 

a system with 162 degrees of freedom is about 175K. Unfor- 

tunately, the ICL 19045 computer currently available at the 

University of Aston Computer Centre only provides a maximum 

core size of 100K and under special arrangement can be run 

at 110 K which is about 0.62 of the size required for this 

programme. 

The alternative computer at the Regional Computer Centre 

in Manchester provides a maximum core size of 200 K, which 

would be suitable for this work. However, bearing in mind 

the cost and time, it was decided not to make use of this
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facility as very little productive outcome was expected 

from the results. In other words, the expected increase 

in productivity would not have justified the increased cost. 

A practical way of avoiding the need for so much computer 

core is the reduction in the number of degrees of freedom 

of the system studied or alternatively, through some manipu- 

lation of the stiffness and mass matrices to obtain reduced 

matrices for the dynamic analysis. This usually involves 

distinguishing between the translational and rotational 

displacement of the structure. 

3.8.1 Elimination of rotational displacement 
  

Generally, in the dynamic analysis of structure, not all 

the static displacements are considered. The experimental 

modal shape measurements involved only the translational 

displacement components. For example, in the conventional 

dynamic of structure analysis of fighter wing structure only 

deflections normal to the wing midplane are held. By the 

same reasoning it is useful, in this work, to retain only 

the translational displacements and eliminate the rotational 

displacements. This will lead to condensed mass and stiffness 

matrices for the structure. 

The first step in this elimination process is partitioning 

of the stiffness matrix [kK] and the displacement vector {q} 

of the structure in the following form 

lie lee 

Co
n 

is
 " (3.81)
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and {tq}, 

(oe (3.82) 
‘{q} r 

The vector {a}, refers to all the rotational displacements 

which are to be eliminated for the dynamicsof structure. 

The vector {qh}, refers to all the translational displacements 

which are to be retained as the degrees of freedom of the 

structure for the analysis. The stiffness matrix as parti- 

tioned in equation (3.81) is such that it is compatible 

with the partitional displacement vector. 

The static equilibrium is given by 

[kK] {a} {Qh} (3.83) 

and in its partitioned form, it is given by 

IK). [Kee {qh fo}, 

(3.84) 
[x] plone ‘tah, {0}, 

Assuming that the external forces {0}. corresponding to 

the rotational displacements are equal to zero, we have 

from equation (3.84) 

= 

ce 7a be fa}, (3.85) 

provided [Kk] is not singular no 

Substituting equation (3.85) into equation (3.84) we have 

eS = “1 - tO lia LR eee ae Se ee ue Sey) ade (3.86) 

or 

0 = [Kis = tal, (3.87)
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where [kK], = [k] - [x] [Re [K],,_ (3-88) =r 

[x] represents the condensed stiffness mass matrix 
ic 

of the structure. 

Let virtual displacement {Sq} be applied to the structure 

and IM], be the corresponding condensed mass matrix of the 

structure. 

It follows from the equivalence of the virtual work of 

the two equivalent mass representations of the continuous 

system that 

{éqht (M], (a7, = [(eahi{eaht] DM) ta}, (3.89) 
{a}, 

substituting equation (3.85) into equation (3.89) we have 

x a TT Aa feag Ow], (4, = fends [alcl lal fH, 
«+s (3590) 

where 

[7] 

(eee (3.91) 

“12 Oy 
and [I] is an identity matrix 

Thus from equation (3.90), the condensed mass matrix 

of the structure is given by 

IM], = [al ™ al, (3.92) 

Equations (3.92) and (3.88) give the condensed mass and 

stiffness matrices respectively for any structure. 

However, large sized matrices are still to be manipulated
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and still require more computer core. But there are ways 

to avoid the complete use of these large matrices during 

their manipulation. 

Unfortunately, due to shortage of time, only the 

theoretical idealisation for the structure with 15 degrees 

of freedom was considered. 

3.9 Discussion of Results 

The computer programme was in good agreement with 

measurements within the limits allowed in the structural 

analysis. The results of the theoretical and experimental 

vibration analysis of the flexible platform are very satis- 

factory in relation to the natural frequency and the mode 

shapes. 

The theoretical analysis used in this work has produced 

a very good agreement of the true modal shapes of vibration 

for the first three modes analysed (the rigid body mode) and 

the corresponding natural frequencies. 

Also for the plate mode the modal shapes and the natural 

frequencies have been very close. 

TABLE 3.1 

  

Natural frequencies in Hz 

MODE eee ve 
    

  

| computed | Experimental 

2 7.141 8. 

| 

| 1 4.55 | 4. 4 

3 | 8.656 9 oa:
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Table 3.1 shows the first three computed and experimental 

natural frequencies of the flexible platform. 

As for the platform itself, the following table 3.2 

contains the three rigid body modes and the plate mode. 

  

  

  

TABLE 3.2 

Natural frequencies in Hz 
MODE A 

computed | Experimental 

Z 4.55 | 4.3 

2 7.14 8.2 

3 8.656 | 9.1 

4 42.34 37.4 

|         

The computed frequencies are on average about +5% to 15%; 

this is good enough in vibration analysis. 

If it is necessary to trace the possible source(s) of 

error in the theoretical approach, the most likely sources 

of error are the derived stiffness and mass matrices, and 

the values of spring stiffness. The spring stiffness values 

used in the computer programme which were added to the 

structure stiffness coefficient were considered to be linear, 

but in actual fact the spring stiffness is not linear but has 

a minute amount of non-linearity, and has a stiff type 

Spring character. 

The following Table 3.3 shows the computed natural 

frequency for the platform with twice and three times the 

spring stiffness for the first 10 modes.
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TABLE 3.3 ye He 

| Computed Natural frequency in Hz 
MODE —_— 

| | Computer Calculation 

1x spring stiff] 2X spring stiff} 3x spring 

| 2 4.55 6.09 Til22 

2 | 7.141 9.258 10.359 

3 | 8.556 11-55 13.170 

4 | 21.84 17.24 18.160 

5 2760: 19595 21.66 

6 33.60 28.91 29.78 

7 42.34 31.24 30.31 

8 54.26 44.04 33.49 

9 96.76 56.32 46.59 

10 110.76 TOGSS 55.30           
Errors of up to 15% higher than the computed natural 

frequencies would suggest a possible 37.5% over-estimation 

of the structure stiffness matrix or the same under-estimation 

of the structure mass matrix or some combination of these 

factors. 

The computed frequencies, should, theoretically, tend 

to the lower limiting values equal to the actual natural 

frequencies. If a mass is placed at a nodal point, then it 

has negligible influence on the frequency, while if it is 

placed at anti-node, its influence on the frequency is a 

maximum. Changing the torsional rigidity at an anti node 

where the torgue is zero, has negligible effect on the 

frequency, while changing it at a node has the maximum effect.
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In other words, by adding a mass at an appropriate position, 

the frequency of a selected Mode may be changed without 

affecting other modes and also changing the torsional 

rigidity at appropriate positions offers an alternative 

method of changing the frequency of a selected mode without 

affecting other modes. 

Moreover, the good agreement in the corresponding modal 

shapes did not raise the suspicion of such percentage 

estimation. But this line of approach has proved reasonable 

upon investigation. Careful consideration and extensive 

checks on the programmes and data have not shown any trace 

of such errors. 

Other sources of error may be the boundary conditions at 

the joints of the frame; most of the frame joints are of 

welded construction and it seems probable that the welded 

joint gives rise to some sort of increasing stiffness in 

these parts. 

A factor of safety, which we may call a factor of ignorance, 

is usually applied to account for the difference in the 

theoretical and real deflections of the structure. It seems 

there is a need for obtaining more accurate assessment of 

the true joint conditions in the vibration analysis of 

structure. Unfortunately, this is not usually applied by 

the structural engineer at the design stage. 

A true measurement of the joint boundary conditions would 

be preferred, because this is the main reason for the 

discrepancy between the experimental and theoretical results,



-107- 

other than the nonlinearity of the spring supporting the 

structure. 

Rockey (98) 1977 looked at various processes and 

fabrication procedures adopted which affect the residual and 

geometric imperfections occurring in the completed structure, 

e.g. roller-straightening, gagging (i.e. straightening at 

one point), flattening by local bending or pressing, stress 

relieving, normalising or hardening and tempering, flame- 

cutting, shot blasting, etc. 

This gives rise to the need to look briefly at the model 

material used, hence some material properties, viz, stress- 

strain relationship, notch ductility, etc. are likely to 

have an important influence on the results of the test. 

In a welded structure (for example) there will be very 

great rapid changes from compressive to tensile stress in 

the vicinity of the welds. In the stiffness, particularly 

those having local thick parts, there may be very significant 

local stress gradients and these are unpredictable, to the 

extent that stress of either sign, i.e. compressive or tensile, 

may occur. 

Of course, the more practical parameter to be checked in 

this structure was the stiffness matrix. This was done by 

considering the static of the plane frame. Load deflection 

experiments were performed. Also, the corresponding 

deflection of the structure was calculated for a given load 

from the stiffness matrix and static equation 

[k] {a} = {9}



=10e> 

Experimental displacements at the same points were 

measured to obtain the average deflections of the frame 

structure for a fixed point load. 

Finally, with an adequate size of computer the data were 

obtained for the real mass and stiffness matrices of the 

structure. These were used to obtain the true mass and 

stiffness matrices representing the true structure. This 

in turn should yield the true vibration characteristics of 

the flexible platform. 

Rig Description: 

The rig consisted of a plain frame with the dimensions (mn) 

a,b,h = 1100, 1100, 100 respectively. As shown in Fig.(1.1) 

the steel frame had I-shape cross section of h = 100 mn. 
& 4 

and ee = 198 x 1o mi, Tyy = 17.9 X10. In every corner of 

the frame there was a piece of square plate’ with the 

dimensions 200 x 200 x 10 mm. These pieces of plate were used 

as a rest base for the springs. 

The motor was mounted on the big base. The alternator 

was mounted parallel to the motor on another base. The 

alternator was used just as an open circuit machine driven 

by the motor. The unit which here is called the motor, was 

in fact a Heenan-Dynamatic variable speed drives and couplings 

which drove a rotor. The Heenan-Dynamatic Air cooled variable 

speed coupling consisted basically of two revolving members, 

one of which had poles or teeth and carried one or more coils 

which were excited by D.C. current. This induced eddy 

currents in the adjacent iron face of the other, or armature 

member thus effecting a transfer of power from driving to
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driven member by its insertion between a prime mover and 

the driven equipment. The outer member was carried by 

rotating bells so that it was concentric with the inner 

member, both being suitably supported in ball or roller 

bearings. The slip rings carrying the D.C. current to 

the coil were mounted on the output shaft which also drove 

the governor generator when fitted. 

This coupling, as with all forms of slip coupling, was 

not a torque converter, and the output torque could not 

exceed that available from the prime mover. The power lost 

due to a reduction in output speed had to be dissipated as 

heat by the coupling which needed to have adequate ventilation. 

Cooling was effected by means of the fan action of the 

outer member which drew air through the end bells and 

directed it across the inner surface of the armature member 

in which the heat from the induced eddy current was generated. 

The heated air was discharged into the surrounding atmosphere 

and a suitable air exit had to be provided in any protecting 

enclosures. Current to the coupling field coil was obtained 

from an excitation unit normally designed to operate from 

a 200/250 volts single phase 50 cycles A.C. supply. (This 

may consist of a metal rectifier with a transformer or a 

thyratron unit depending on the application). 

The two more usual characteristics provided are: 

Natural : where a fall in speed against an increase in 

load is desirable 

Constant speed: where despite changes in load the speed 

is to be maintained at an adjustable pre-set 

value.
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Heenan-Dynamic Governor Generator 

The governor generator was of the A.C. type employing 

Alinco permanent magnets for field excitation. These 

magnets maintain their magnetic energy over a period of 

years, resulting in a constant output voltage for a given 

speed. No commutators were used in the design of this 

generator, therefore, no brush replacement is required, 

and with the exception of the bearing, in some cases, no 

maintenance is needed. 

The output voltage rating of the coupling shaft mounted 

generator was usually in the vicinity of 25 volts at 1500 

r.p.m. speed rating where the Alnico generator was of the 

separately mounted belt driven type and the output voltage 

was approximately 45 volts at 3000 r.p.m. In both cases, 

the output of the generator was substantially linear, and 

thus the voltage was proportional to the speed. The 

electronic control used in conjunction with this generator 

compensated and standardised this voltage at predetermined 

levels. 

The wires connecting the generator to the electronic 

control had to be shielded or run in separate conduits. 

The voltage from the generator was not affected by the 

direction of rotation; this generator will operate in either 

direction. 

The bearing was the separately mounted self-contained 

generators which are packed with grease before despatch and 

should not require attention for approximately 5,000 hours 

of operation in normal ambient conditions.
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3.10 Conventional method and mathematical model 
  

Conventional methods of structural dynamic analysis 

involve the mathematical representation of a physical 

system in the form of its equations of motion, For 

systems having many degrees of freedom, it is convenient to 

cast the equations in matrix form. 

This has given rise to extensive use of matrix algebra in 

the formulation of dynamic response analyses. The process 

of reducing a physical system to a mathematical representation 

is a prevalent task mutual to all fields of analysis. 

Typically, this reduction of a physical process to 

mathematical equations has resulted from exercising a blend 

of skill, insight, experience, and good judgement. At least, 

in the mechanical/structural field, this has been the past 

history. It is possible to generate mathematical models by 

making use of experimentally derived information. The 

point to be made here is that they all belong to the analyst's 

bag of tools and it is his task to best match the particular 

job. 

The- derivation of mass, stiffness and damping matrices 

that correctly represent the physical system is often a 

formidable task involving engineering judgement on the part 

of the analyst. 

The analytical process is usually accompanied by dynamic 

testing either to verify the mathematical model or to 

point the way to required modifications of the analysis.
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Sometimes the system of equations, or mathematical 

models will be modified on a simple trial and error basis 

to make the model respond in some predetermined fashion 

or react so as to match behavourial data obtained from 

the actual physical system. 

In the transient case, problems arise because the relative 

phase is not generally +90° at resonance as it is in the 

steady-state case, although the phase varies around the 

structure because of "model overlap" (that is contributions 

from neighbouring modes) and "Statistical variance error". 

The mode shape at a given frequency corresponds to that 

which would be obtained when the structure is excited with 

a sine wave input at the same frequency. 

The modal patterns at resonances do not represent the 

normal modes of the structure since they contain small 

contributions from the flanks of neighbouring modes. 

It is often assumed in dynamic test analysis that the 

responses are purely modal. This is a reasonable approxi- 

mation in cases where systems damping is low and test 

forcing points have been carefully selected. In point of 

fact, no test responses are purely modal. In a typical 

dynamic test the structure is forced at a single point in 

several of its modal frequencies. Its response is really 

a combination of the responses of all its modes. 

Completed modal information 

First consider the situation where mode shape and modal 

mass information for 'N' number of modes has been obtained
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from experimental data prior to any formulation of a 

physical model. 

If the physical model is to have the same number of 

degrees of freedom 'N' as known modes, theoretically the 

physical model can be completely identified. This identi- 

fication is based simply on assuming orthogonality to exist 

between modes with respect to physical mass, stiffness and 

damping terms. 

The matrix description of the physical model can be 

expressed as 

(™] 
[x] = [e]77 [w?m] [¢] “t*Physical stiffness" ( B) 

{(c] 

[eo]? [m] (eles "Physical Mass" ( A} W 

[eo] [2zum] teyt "Physical Damping" (C) 

with the [¢], [m] 4,2, terms being the known modal informa- 

tion. In general this scheme is admittedly quite idealis- 

tic since in practice only a limited number of modes can 

be experimentally measured. 

It is assumed that a "good" estimate of the physical 

mass model with 'P' degrees of freedom can be made initially. 

Usually the conceptual physical model will possess a 

larger number of degrees of freedom 'P' than normal modes 

'N' obtained from test data. What results from this 

scheme is an "Incomplete model" that retains 'P' dynamic 

co-ordinates but has only 'N' modes. This incomplete 

model is derived so as to have the properties of producing 

the true response in all 'P' degrees of freedom over the
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frequency range of the valid test data and having a physical 

mass matrix which deviates least from the original estimate. 

In addition, the orthogonality relationship is forced to 

exist between the measured modes and derived mass matrix. 

The stiffness matrix for the incomplete model 
[5] jeomp 

is developed briefly as follows 

fr] == [6]7 IM) [oe] 

[e]" [fm . = IM] [6] 
[Kk] = [¢]""fw2m) [¢]7? ; 

= [mM] [é] [w2] [m]-> [eo]? [m] 
Pp 

stat ae {6,}(0,)7 [mJ 

When N = P, there exists a complete model as defined 

previously. 

If N < P, an incomplete model stiffness matrix exists 

being expressed as 

2 N wo, 

cons ws = [m] {6,}46,)7 [mM] 

Such a model can predict changes in the normal modes due 

to mass changes. Test data are required at each significant 

resonance of the system. In addition, the particular 

measurement locations to be used must be selected with care. 

Experience and common sense have indicated the desirability 

of selecting the locations so as to ensure that reasonable 

idea of the nature of the mode could be inferred from the 

test measurement. In practice, this means selecting 

locations on each side of the modal boundaries (neutral 

points) in the highest mode.
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There is, in general, a choice of selections. This in 

turn means that unique solutions to Equations (A) through 

(C) do not exist, whichever test measurement locations are 

selected, however, the set of three matrices will define a 

model whose responses match resonance data for the selected 

locations. We are forcing the system to match a known 

output.



  

Fig.2 3512 Rectangular plate element . 

  

  

  

  
PIG aaar 2s A rectangular plate with two opposite edges 

simply supported and with the two edges 

connected to other structures.
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CHAPTER 4 

Some Considerations of Linear and Non-Linear 

Restoring Forces 

It is essential to consider the factors of non-linearity 

in order to explain the unexpected behaviour in the modes 

of the response curves. This non-linearity can influence 

greatly the unforeseen resonances in the structure. 

The stiffnesses of the supports were found experimentally 

to be almost linear within the normal working range. 

In practice, however, elastic supports may possess 

some non-linear characteristics in the working range, 

giving rise to new phenomena which may be completely 

different from the linear case. 

4,1 Non-linearity in General 

In practice, non-linear problems may occur in all types 

of engineering works, such as in fluid dynamics the 

building up of a discontinuous shock wave from a smooth 

wave; in solid mechanics the presence of plasticity and 

non-linear elasticity; in mechanics the non-linear vibra- 

tions of machine components. Non-linear problems in 

mechanical vibration may occur in several ways: 

(i) non-linearity of restoring forces in the 

vibrational system i.e. the effect of a 

softening or hardening spring 

(ii) non-linearity in the nature of the damping, 

for example, coulomb damping, time-dependent
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damping coefficients, etc. 

(iii) non-linearity inherent in the system parts, 

such as material damping, hysteresis, etc. 

(iv) periodical variation of vibrating mass, 

such as in the case of a reciprocating 

engine 

(v) oscillations in self-sustained systems. These 

always occur when a periodic motion is 

maintained through absorption of energy from 

a constant flow of energy, such as electrical 

systems containing vacuum tubes in which the 

energy for the oscillation is supplied by a 

direct current source, and 

(vi) oscillations due to time and amplitude dependent 

excitation forces. 

In most cases linearisations as an approximating device 

may give valuable and sufficient solutions. These approxi- 

mations occur mostly when the amplitudes of the vibrations 

are small. However, if the amplitudes are large, the 

accuracy can be improved by carrying out further approxi- 

mations. New phenomena may be found in such non-linear 

systems which cannot in principle occur in linear systems. 

In non-linear vibrations the occurrence of subharmonics 

and ultraharmonics, jump phenomena and combination tones 

will be formulated mathematically.
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Various methods such as the Ritz averaging method 

iteration are illustrated. 

The above methods are valid only if the non-linearity 

is small, i.e. if the oscillation is in the neighbourhood 

of the linear oscillation. However, the cases in which 

the departure from linearity is large will require the 

use of more sophisticated mathematics. Even so, in some 

cases such as the presence of small divisors in the problem 

of combination tones, mathematical results fail to describe 

the actual phenomena. 

The effect of non-linear elastic restoring forces on 

the flexible platform will be discussed. That is, the 

restoring force which is obtained by either a softening or 

a hardening spring. 

Thus to start with, the solution of Duffing's equation 

is assumed. 

Damping is assumed to be linear in all cases. However, 

this is not applicable especially if the system has marked 

non-linearity. For systems of more than one degree-of- 

freedom, it is difficult to obtain an equivalent value of 

the damping coefficient for each mode. 

The effect of beating in a non-linear system is quite 

significant, especially if the system has more than one 

degree-of-freedom. In these systems one instability 

occurs, that is the amplitude of vibration at each mode 

varies periodically.
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4.2 Ultraharmonics and Sub-harmonics in Forced Non-linear 

Oscillations 

Consider the equation 

% + 2vpk + p*x + ux® = H Cos (Rt + 6) (4.1) 

Since the forcing function is periodic, equation (4.1) 

can be solved by Fourier Series, i.e. 

© 

A, Cosn 8 +] B Sin m Mt 
He m=1 

xi At 
n N

e
s
 8 

In practice, it can be shown that ultrasonic oscillations 

predominate if p =n, where n is a positive integer other 

than 1. If p = 3 2, then we can try a solution of the 

form: 

x = A cos Qt + U Cos (3Nt + y) 6 #0 

Substituting into equation (4.1) amd equating separately to 

zero the coefficients of Cos Nt, Sin Nt, Cos (3Nt + y) gives: 

6Q2U+6vpHu= vB Sin y (4.2) 

69 Uy = (p?- owt) U + ud atu + 3 uP +e Cosy) (4.3) 

(p? - 9 )a + (Pats # atu cosy + 3 aU?) = H Cos 6 (4.4) 

2v pA + uz a?u Sin y = H Sin 6 (es 

By squaring equations (4.4) and (4.5), and adding them 

together: 

H? = a?{[(p? - 97) + u 2 (a? + aU Cos y + 207) ] 7+ 

(2vpQ + uZ A U Sin y)?} (4.6)
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If u is a very small quantity compared with p, and 

if v is of the same order as yu, then from equation (4.6): 

H? = a?[(p? -2?) +0 (y)]? 

If H is of order »p then: 

  A= a +0 (n?) 
(p* 287) 

nee 
(p? - 9?) 

Steady State Solutions 

U=y=oO 

From equations (4.2) and (4.3): 

a’ 
6vpQu, = po Sin Ve ' (4.7) 

and 
3 

a 2 ate Sy Pia 2 Uy (pe 907) + ule a, Ul +7 YU, } aH Cosy, 

sees (4.8) 

By squaring equations (4.7) and (4.8) and adding them 

together we get: 

An3, 2 
(yoo ) a 2 2 Soe 2 Se = (6vp2)* u,? + [(p 997) Uy 

a 2 Boe Bye FS Bae Ueda Uae), (4.9) 

From equation (4.2) we get: 

Sin y, = +6vpn (4.10) 

f 

Vi (6vpn)? + {p? - 99? + LG a 3y eye
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From equation (4.9) the locits of vertical tangency of us 

is 

(6vpa)? + [p? - 997 + wid alt Z 0,7) ]x 
ps Q Big AS 4 oO 

(p? -902 +p(a2+2u%)]20 (4,11) £ 3 2) 6, 4-53 

Approximations of the loci are given by: 

a 2 3 2 S) Cae Pp 92° + US AG re 7 ae ) ° 

2 /o9? 4 wie a? +202) = 0 (4.12a) 
P a 2°O 4 *o ? 

Stability at steady state 

Let U = v. te 

Y=Wo+ 0 

Substituting into equations (4.2) and (4.3): 

. vu? 

6NE + SvpNE = yp “oO cos yon 

and 6 E 3 9 ae 
ae 2 2 2 2 2 2 ae enusn = [p SO Aeeets UE ys ug Sinyon 

i : r y 
Assuming solutions of the form e E , and substituting into 

equations (4.7) and (4.8) for Cos Xe and Sin Yor 

(602 + 6vpQ)z = [(92? - p?) Uj,-u US AL?+ S US2)]n 

3 9 : [@?= 9N*)tu(s AQ? + 7 UQ7)]e = UL (6M + 6vpa)n (4.12) 

From equation (4.12) ,the characteristic solution is: 

(624)? + (18vpR?2)r + {(6vp2)? + [p?- 99? + ue a2 + uz, )] 

x [p? = 99? + ug Bee + Z057))3 =0
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For stability 4 < 0, hence 

2pv 20, 

(6vp2)? + [6p? - 99?) 

  

w N x (ee OR) ane +207) » 0 

vi
 

° 

The first condition implies that v must be positive. 

The second condition requires ae to be lying outside the 

region enclosed by the loci of vertical tangency. If the 

damping ratio is small, from equation (4,lla) the 

system cannot have vertical tangents unless 

1 3 
OS 25 (po +S ao) 

This shows that marked ultraharmonic behaviour cannot occur 

unless the frequency of the exciting force is slightly above 

1/3 of the natural frequency of the system. Fig. (4.1) 

shows a typical amplitude/frequency response curve for an 

ultraharmonic of order 3. In the region close to 1/3 of 

the linear natural frequency the amplitude becomes triple- 

valued, two being stable and one unstable. In this region 

ultraharmonics predominate. Jump phenomena occur at the 

points P and Q. 

Subharmonic motion 

Under suitable conditions subharmonic motion may predomi- 

nate in a non-linear system. In the case of cubic non- 

linearity, marked subharmonic behaviour of order 3 has been 

observed experimentally, if the frequency of the forcing 

function is about 3 times the natural frequency of the system.
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The solution may be assumed to be of the form: 

x = A cos it +S cos (st + y) 

Proceeding in the same way as in the ultraharmonic solution, 

we get: 

(a? [ip Ge 5 (3a? + 687)]? + u = s? cos 3 y[p?- 9? 

+ F (3A? + 6s*)] + (2vpQa)? + uvp? aS® sin 3y} = 

3 

=H? - (HE)? (4.13) 

and the equation of the steady state solution is: 

So 2 ne 2 3 2a (Ga SheeR Oe eo lita ea. aso 

3 a +uzS,° |? + (3 vpas,)? (4.14 

The locus of vertical tangency of So ist: 

2 2) 2 3 2 2 3 2_n? stp +5 UA, ee eee ae + 5 A, oc ae 

2 2 3 2 = So7] + [Swen]? —.2(5 n S.A *)) = "0 | (4-15) W
O
 

Using equations (4.14) and (4.15), then either 

2 

or & vp2)? + (p? + 3 ent yt ; Secs =6 

eee (4.16) 

If the damping ratio is small, the second locus is 

approximated by: 

s 2 
» 

y w 3 a <— ~ 8. 2 
uzs =(—-p x uA")
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Stability of steady-state solutions 

For stability v 20 

  

Pv sit)? - wp? -£ + 3 u ayy? - G vpn? 20 

This condition requires So to be lying outside the region 

enclosed by the locus of vertical tangency as defined by 

equation (4.16). 

From equation (4.14), if Sy # O, and taking AG as constant: 

2 
2 2 i Le Sls zust = ( 5 Pp 

2 
7 HAL") a

]
.
 

p?-22 ua?) - (Zvpa)*} 
2 

s/o ate 

ees (4527) 

Tt S, is real, equation (4.17) requires that: 

2? pth & ao! 
ay 2 TL omoep (4.18) 

on Ree 

If the damping ratio is small, the lower boundary is: 

2? > Ap? + u oa ag?) (4.18a) 

As the frequency increases beyond the value given by 

(4.18a) the denominator of the equation (4.18) decreases 

due to the reduction of AG arising both from the increase 

in So and from the rise of frequency, until a point is 

reached at which the equation cannot be satisfied. At this 

point S, enters the unstable region and a vertical jump 

downward occurs. From Fig. (4.2), for frequencies between 

points A and B, three solutions of the amplitude exist;
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one equal to zero, the other (point N) is stable, and the 

remaining (point M)is unstable. Jump phenomena occur at 

the points A and B, both being downward. 

If the frequency is outside the region p"p' , sub- 

harmonic motion cannot exist. Inside this region, sub- 

harmonic motion may exist at point N, if the initial 

conditions are favourable. If the initial conditions are 

unfavourable, subharmonic motion may not exist, as shown 

by point L. 

Harmonic motions 

In the case of predominantly harmonic motion, we may 

assume a solution of : 

x = A Cos (Nt + y) é=0 

The steady state solution is found by the same procedure 

to be the same as the solution obtained by the iteration 

methods: 

(2vp@)? aj? +-[(p?- 97) al + fu alt)? = HP 

Sin Ye S2vpQa,, 
  

  

v 2 2 2.02 e 372 (2v pa)? a? + [(p?-a Ast AS d 

cows (4.19) 

The loci of vertical tangency are: 

(2vpQ)? + (p? - 9? +Fu Boe: - 9? 7 A 2) =O (aa20)
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This condition requires AS to be lying outside the region 

enclosed by the loci of vertical tangency as defined by 

equation (4.20). Jump phenomena occur at points of vertical 

tangency in the same way as ultraharmonic motions. 

From the above we can conclude that: 

1) By simple approximate solutions new phenomena occur in 

non-linear systems. 

2) For cubic non-linearity considered above the following 

conclusions can be made; 

(a) close to linear natural frequency harmonic 

motion predominates 

(b) slightly above 1/3 of the linear natural 

frequency ultraharmonics of order 3 will 

predominate 

(c) under suitable conditions at frequencies 

slightly greater than 3 times the natural 

frequency, subharmonics of order 1/3 may exist. 

4.3 Solution of Non-linear Vibration by Taylor's Series. 

Consider the equation of motion: 

mx +c x + ux? =H Cos Nt 

Ef 

c/m=c', wu/m = B, H/m =F 

then 

X + clk + B x? = Fi Cos Mt (4.21) 

Let 

si= Hast tcast? 400. e 
B L ay
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when 

t=0, xe ao x=a 

se n 
x= 2a t bat + + (n+2) (ntl)al ot acts 

oe n 
x= a, + aot eer a (ntl)aliit ets 

ae. 3 - 2 < 2 a 2 et 3448, t+ 3a, a, + ay a.) seer tli ee 

k Qe 2i= 1 a 
+ 3{ a. Qi Neen staat aar 

is j is i n-jce 

n Se aces ne 2, 

If n = 3K then the coefficient of t™ is: 

k-1 n-25-1 
= {3} (wr ak fea ky, 

f=o 9 i=} pelea 

k,n being both positive integers. 

Substituting into equation (4.21): 

(n + 2) (n+l) a. jo+ C'(nt1) ai, +B(coff of t”) 
n+2 +1 

F(-1)7/2 ae , if n is even 
i= n 

O;, 4= n “ds odd. 

If n = 0, then : 

st <5 2a, 206 ay +B ae e 

If n =1, we get a3 and so on. Therefore all the coefficients 

may be found in terms of F, c', B,a, and ao: For steady 

state solutions, ay and a, may be found by the equations 

x(t) = x (t+ 2%) (4.22 

a(t) = & (t+ 20) (4.23)
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If the series diverges fairly quickly, numerical solutions 

may be possible by substituting F, c' and B. By taking 

sufficient terms of the series ay and a, may be found 
us 

from equations (4.22) and (4.23). 

Solution of Free Oscillation 

If c' =O and F = 0, the equation becomes 

¥+ux? = 0 

The period T is 

1 gare 
4 V—, ( aa 

ua, ¥ I-x was 
° 

" Frequency 0.86 aay v 

By Taylor's series 

x 2 u 

1 ¢ = Agli - Blagt)? w+ gat)" uv 

3 - iL 6 8 4 Bol@gt)® u* +yIz5 (ayt)® u 
a 
120 

eke 10 45 se56 (aot) ie at eye 

if x=a_, x =O when t =0 

X_ = ak [(agt)?u] 

Solution of Forced Vibration (Free Oscillatory Motion) 
  

If the forcing function is: 

Blt) = sre [ (9a t)*u) 

the equation of motion becomes : 

% + ux? = Fx® (4.24) 

then 

x= aX[ (a,t) 74]
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Substituting into equation (4.24) gives: 

(1507) a5 oon Bape EX 

» w 

i or 9 =//1-=- (4.25) 

Tf 2 > 1, then 

SV / EF 
a= W(Q@e1) or Qe 1 ae (4.26) 

° 

Forcing frequency Qe = 2x2 | 

where Q, = natural frequency 

2 = 0.86 ay QV yw 

= 0.86 av iF 
© utie Taz? 

In order to find the point T, from equation (4.26) we get 

another equation by differentiating Qe with respect to ay 

and equating to zero; 

ts = : Me 3 
2a, = ; i.e. a. ™ if is   

zr 
2. 1.18 (uF?) 76 i °o

 

© OV
 

oo 
oO 

wy}
 

= W 

ers 

The slope of the curve when Bee is found as 

an, 

a arto 
aes ° 

0.86 YP wt 

  

1.16/ vu 

oe
 i
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The free vibration is excited if the forcing function is 

chosen appropriately. In this case, from the diagram the 

motion looks like that of the Duffings equation. Jumping 

occurs at the point T. 

From Fig. (4.4) the x,t diagram, we find that the motion 

x does not vary significantly from the sinusoidal curve. 

If the forcing function is not the one given above, we 

may calculate the amplitude approximately by considering 

the energy EL of the forcing function produced during one 

quarter of a cycle. If that energy is equal to the energy 

produced by F xX? then the amplitude produced will be the 

same in both cases if their frequencies are equal. 

Fa 
oO 

1 
The energy produced by F x? -( Boa. Slax ria 

lo 

If the arbitrary forcing function is sinusoidal, assuming 

x to be sinusoidal, we find that the energy produced is: 

i. Ha, 

4: Ha, Cos 2 da(Cos 2t) = ogi 

° 

Equating the two energies we get F = 2H 

4.4 Response of the Linear System 

A The Single Forcing Case 

a = natural frequency 

Be 
i.e. oF = K/m 

Equation of motion: % + 9,7 x == sin t (4.27)
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In the normal way, the general solution for all 2 

except 2=Q, is as follows: 

x = A sin aot + B Cos at + Cos sin 2t (4.28) 

WS eer 

(C.F) (Pers) 

The complementary function (C.F.) included in the 

solution equation (4.28) describes the natural vibrations 

of the system and this function is important because 

when the force coincides with the natural frequency (i.e. 

Q= a) a resonance is produced. 

In considering forced vibrations, a steady-state solution 

is usually sought which ignores the natural vibrations. In 

any real system, these die away due to inherent damping and 

so only the Particular Integral (P.I.) part of the solution 

is considered. 

The Particular Integral gives a response whose frequency 

is the same as the forcing frequency, and whose magnitude 

is independent of the initial conditions. 

B. The Dowle Forcing Case 

Equation of motion: 

Ao rea ee ze cos 2.t + P2 cos ,t (4.29 n m a m 2 s 

In the normal way, we obtain the steady-state solution 

  

for all 2 except 2 and Q, =O, 
n 

ie. x =A. Cos Q)t + BCos 2,t (4.30)
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It may be seen that the solution, again, is independent 

of the initial conditions, and that it has components at 

both the forcing frequencies. Since the system is linear, 

the same result could be obtained by considering the system 

excited in turn by the two forcing functions and then adding 

the response obtained, using the "Super-Position Principle". 

By the same Principle, a resonance will occur whenever 

the frequency of either of the forcing functions coincides 

with the natural frequency, that is when Qy = Que or 25 = a 

This occurs in the single forcing case. 

4.5 General Note on Duffings Equations 

The equation of motion is: 

R o+ Px + hx? = P cos 2t (4.31) 

This equation is a particular case of the non-linear 

vibration system so far discussed. It is a standard case 

in the non-linear 'literature' and as such it has been 

studied extensively. 

Solutions to the equation show that as well as having 

harmonics in its solution (as in the above case), it is 

(yu) possible to have subharmonics, (Magnus Ne 

The response to forcing at the resonant condition shows 

the well known 'jump phenomenon', Fig. (4.3). 

Double Forcing 

The equation of motion is 

e+ QF x + u (hy x? 4+ °hox® + ete ) =P. cos Nyt + Pcos Qt 
2 dt 2 2 

seeeee (4.32)
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It will again be assumed that » is a small numerical 

parameter and the 'Perturbation Method' will be used, 

neglecting powers of x above x°. 

Following this method: 

S7=s5 (te) + x, (t) 

(4.33) ? = 0.2 
n 

and substituting these into equation (4.32), while retaining 

terms leading to a first order approximation produces: 

ses) % + uk, + x 2? + uQ?x 
oe ‘ ue 20 

2 1 a i+ B(RYxS +h 

= PL cos Qj > Po cos ot (4.34) 

Generating a solution (equating powers of u®) gives: 

cea mle 
Paes eee ear XS 2 Py cos Qyt + Po cos Q5t (4.35) 

and neglecting transients, produces: 

  

Py Po 
ci cos Q5t + — cos Qot 

(27-257) (27-2,7) 

= xe Q) cos Qt + Q5 cos Not (4.36 

First order correction (equating powers of yu!) gives: 

ul :-) 
s 2 2 ae x, + 2 xy oS hy x + hax, = 9 

3 x5 (4.37) 

and substituting a generating solution produces: 

re: 2 ae 2 
x, + 2 x, = hy (Q) cos2yt + Q,cos2,t) 

3 “hy (Q) cos2,t + Q,c0s,t) (4.38)
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Expanding the brackets and using trigonometric identities 

(only considering the first bracket) produces: 

      

  

2 2 2 

%, + 2? x, = an + ae ) itd cos 29,t 

+ oe cos 225% 

why 2125 Cos (2, +25) t “hy Q325 cos (25-25) t 

+ the extra terms from the second bracket. (4.39) 

And neglecting the transients produces: 

2 2 2 
is hy) A525 AiQ) 

  

x = 52 ad aoe ) *2TF=an, 7) 008 20it 

beO- h,0,0 
z “ é cos2a,t - a ‘ cos (25425) t 

2 (2 -42, a} (Q ~ (2, +2.) ) 

es hi Q,2, 
cos (Q)-Q5)t + extra terms (4.40) 

(2?= (25-95) ?) 

The total solution is found by adding equations (4.36) 

and (4.40) i.e. 

x= OF) cosayt + Q5 cosfyt +k, + K,cos2a,t 

- K3 cos 205% + Ky 

+ Kz cos(Q,-2,)t + Extra terms (4.41) 

cos (2,425) t 

The extra terms mentioned would contain Cos 32%, 3254 

(Q5+ 225) 1 (Q5- 204) etc., and in general if all the non- 

linear powers of x are considered, the frequencies nQ,,mQyr 

n2, + m2. would be obtained where m and n are whole numbers. 
1 2 

This fact is shown using a different analysis (recursion
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equation) ‘**), 

This analysis shows that in a non-linear system under 

double forcing, ‘combination frequencies' arise quite 

naturally (ss) It does not, however, show what the 

relative magnitudes of the various components of the 

response will be. Neither does it show what the effect 

would be if one of the combination frequencies happened 

to coincide with the natural frequency of the system or 

its harmonics. 

Nevertheless, the difference between this analysis and 

the one performed for the linear case of double forcing 

is quite marked. 

It may be concluded that if the system is excited by a 

single oscillator the discrepancy between the experimental 

and theoretical results may be due to miscalculations of 

all the input data. 

For linear systems the damping force may not be linear, 

but it is practical to ignore the damping coefficient, as it 

is small compared with the stiffness of the spring. However, 

the assumption still holds that harmonic solutions can be 

found. 

If the system is excited by two forces (i.e. the motor 

and an alternator) the results agree in general with the 

experimental observations. If the system is excited by more 

than one force, then both experimental and theoretical
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solutions will be difficult to obtain. The difficulty 

in obtaining the experimental results is due to the fact 

that the system is unstable and varying in amplitude 

with time. 

The effect of beating is marked if it coincides with 

the natural frequency of the system. If the beating 

frequency is a multiple of the natural frequency it can 

be found that the components have the same frequency as 

the natural frequency, even if the output has greater 

value. This may be explained by the fact that the natural 

frequency is excited by beating. 

If the system has a marked non-linearity this jumping 

occurs when it is excited by a single vibrator and the 

beating effect is more significant. The structure studied 

had many subharmonics, ultra-harmonics, and combination £re- 

quencies, especially when it was excited by two forces. 

Finally, it seems that resonance systems containing 

non-linear stiffness show a bend in their resonance curves. 

This bend is, of course, only theoretical as the vibrating 

system cannot "force" the frequency of the driving force. 

In actual physical systems the bend therefore produces 

a region of instability. When the frequency response 

curve of such a system is measured by slowly sweeping 

the frequency of the driving force past resonance, certain 

jumps in the response amplitude occur, the frequency 

location of the jump being dependent both upon the magni- 

tude of the driving force and upon the direction of the 

frequency sweep.
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A main property of non-linear systems is that they 

distort the wave shape of the response signal, i.e. even 

if the force driving the system is purely sinusoidal, the 

wave-shape of the response will not be sinusoidal. Normally 

the response wave-shape will contain a number of frequency 

components harmonically related to the frequency of the 

driving force. This can be confirmed mathematically for 

instance, by approximating the solution to the non-linear 

aifferential equation by means of a series expansion, and 

experimentally by analyzing the response wave shape by 

means of an analogue frequency analyser.
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CHAPTER 5 

Experimental Technique 

5.1 Introduction 
  

Both static and dynamic experimentations were involved 

in this work. But the main one was the dynamic experimentaio 

where the vibration characteristics were measured when the 

structure was excited by either a single force (the vibrator 

excitation) or two exciting forces, that is, when the unit 

was running at different speed ratios. 

The relevant static experiments were concerned with 

measuring the spring behaviour, also the measurement and 

verification of the structure stiffness matrix used in the 

analytical work. The static experiments were restricted to 

simple measurements in force displacement experiments. The 

requirement included a suitable arrangement for applying 

the load at a point of the structure and some dial gauges 

for measuring the corresponding displacement at various 

points of the structure. Average values of the force per 

unit displacement at the various points could then be 

calculated together with the equivalent stiffness coefficient. 

The dynamic experimentation was more involved. Basically, 

what was required was the means of setting the structure 

under forced vibration and measuring the response at various 

points. When the forcing frequency coincided with the 

natural frequency of vibration of the structure resonance 

occurred when the forcing frequency was a single force. In 

the case of double forcing, the occurrence of a beat
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frequency was predominant. Such periodic pulsation in 

vibration amplitude is generally due to simultaneous 

generation of two base frequency excitations. These give 

an apparent vibration signal in the mean frequency and a 

pulsation amplitude at the difference frequency. 

By passing the measuring transducer round the various 

points of the structure, the pick resonances at these points 

can be obtained to produce the modal shape of vibration of the 

structure at that natural frequency. 

For a complicated structure the measurement of the 

resonant frequencies and the corresponding modal shapes is 

not an easy task. An arbitrary choice of the point of 

excitation could lead to difficulties in producing the. 

resonance at certain natural frequencies of the structure. 

For example, exciting the structure at a nodal point, (i.e. 

@ point of zero amplitude of vibration) of a certain 

natural frequency would result in missing out the resonance 

at that natural frequency. In particular, it is very useful 

to excite the structure at the point of maximum amplitude of 

vibration of a given modal natural frequency. Hence, it 

is customary to change the point of excitation of a structure 

to obtain the different modes of vibration. 

Each beam member of a frame structure is actually a 

continuum. As such, measurement of its amplitudes of 

vibration have to be made at many closed points in order to 

produce a true form of the modal shape. In the theoretical 

analysis, both linear and angular displacements can be
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calculated, 

to linear displacement only. 

in the experimentation. 

5.2 Vibration Instrumentation 

But experimental measurements are restricted 

This was an added difficulty 

Modern vibration data analysis equipment was used in 

order to investigate the rig and its vibration characteristics. 

An extensive investigation was carried out into instrumentation, 

the techniques of frequency analysis, and method of excitation 

position. 

The Equipment 

The equipment used was: 

1. Accelerometer 

2. Vibration meter 

3. Voltometers 

4, Oscilloscope 

5. Vibrator 

6. Dynamic Analyser 

7. Sweep Oscillator 

8. Tracking Filter 

9. Fiberoptic Tachometer 
System 

10. Spectrascope R.T.A. 

11. Frequency Counter 

12. Tunable Band Pass Filter 

Briel and Kjaer 
Type No. 4333 
Model D.V.A. 

B & K Random Noise 
Voltmeter VM 78 

Téléméchanique D33R 

Detriton VP5 

S.D. 101-A 

S.D. 104-1 

Spectral Dynamics Corporation 

Model SD43 GPT 

Seb. . 335 

Advance Type Tc 2A 

Type B & K 1621
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The following block diagrams show the instruments used: 

1. Spectral Dynamic $.D. 1001-2A system (Fig.5. 1) 

2. Spectral Dynamic Tracking Filter Facilities (Fig.5. 2) 

3. Vibration meter model D.V.A. (Pig.5. 3) 

4. Concept of operation for Tachometer (Fig.5. 4) 

5. Fiberoptic T.M. System (Fig.5..5) 

6. Set up for Spectrascope/oscilloscope/plotter fig.5. 6) 

7. Simplified block diagram spectrascope II (Fig.5.7) 

8. Data classification (Pig.5. 8) 

Block diagrams of the vibration instrumentation used in 

this work are shown in Figs. (5,1) to (5.8). 

The accelerometer picked up the various response points 

on the structure. It should be noted that the accelerometer 

was an acceleration measuring transducer, not a displacement 

transducer as the vibration response was supposed to be 

Measured. However, it was known that the amplitude of 

vibration is proportional to the pick value of the corres- 

ponding acceleration at that point, and acceleration trans- 

ducers are more convenient than displacement transducers. 

Moreover, the modal shape of vibration required represents 

the relative shape of oscillation of the structure and not 

the absolute magnitude of its amplitude of vibration. Thus 

the use of the accelerometer met all the requirements to give 

the results expected from the experiment. By passing the 

signal through an integrator and by double integration in
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the D.V.A., the output gave the displacement. 

The sweep oscillator was the basic input instrument, 

while the accelerometer was the basic output instrument. 

The sweep oscillator is basically a wave signal generator. 

For the purpose of this work on vibration analysis, 

(as vibration excitation by one force only) the sweep 

oscillator was used to generate sine wave signals at any 

required frequency. 

The frequency was either set at a fixed value or varied 

(swept) automatically or manually between any set frequency 

limits. 

The signal from the signal generator was a weak one, 

and the power amplifier amplified it to a reasonable level 

as required by the vibrator. The vibrator then applied 

the amplified signal to the structure in the form of an 

oscillatory force to set the structure vibrating at a 

reasonable level. 

Again, the response signal picked up by the accelerometer 

was amplified by the charge amplifier (D.V.A.) and double 

integrated. Owing to some degree of non-linearity in the 

structure and/or other external interference, the response 

signal obtained could be anything except a pure sine wave. 

The dynamic analyser received this impure sine signal and 

essentially acted as an inherently frequency-tuned bandpass 

filter.
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The impure sine signal represented the signal input 

to the analyzer while the original signal from the sweep 

oscillator was fed in as the tuning frequency input. 

Output from the analyzer was represented by the filtered 

output signal which was a pure sine signal at the tuning 

frequency. 

The valve voltmeter measured the R.M.S. value of the 

signal whose values for various points on the structure 

provided the modal shape of vibration of the structure at a 

particular frequency. The * Yrecorder could also be used 

to plot a graph of the response over a frequency range in 

the form of response (on the Y-axis) vs frequency (on the 

X-axis). The sweep oscillator provided the frequency input 

to the plotter on a D.C. scale proportional to log frequency 

or linear frequency. Points of relatively high response 

on the plot constituted possible resonance (or natural) 

frequencies of vibration of the structure. 

The C.R.O. (Cathode Ray Oscilloscope) gave a more 

immediate view of the response. In addition, a comparison 

of the response signal and the original signal from the 

oscillator gave an instant relative phase shift of the 

response signals on the C.R.O. In fact, the in-phase and 

out-of-phase positions of the two signals have been used to 

designate positive and negative signs respectively to the 

response of the structure at any particular point. 

A phase meter could have been used for the above purpose 

but this was considered to be too sophisticated and
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unnecessary for this simple case of in and out phase 

measurement. 

A frequency counter is usually connected to the instru- 

mentation to give a more reliable reading of the frequency 

of the signal generated by the oscillator. The frequency 

counter was also used to check the actual frequency of the 

output signal from the analyzer. Both frequencies should 

have read the same. 

5.3 Experimental Frequencies and Modes 
  

In the experimental vibration work on the flexible 

platform, the basic node system used in the theoretical 

finite element analysis was followed. 

The structure was vibrated at a convenient point and the 

response was measured at different points in the platform. 

The experimentally measured natural frequencies and 

corresponding nodal responses for the first three modes are 

Shown in Figs. (5.9), (5.10) and (5(11).tre rotational displacements 

are not considered in the model measurement. A direct 

comparison may be made between the listed values:of the 

responses Fig. (5.13). 

The responses may be compared with each other from 

various points on the same mode. This is because the absolute 

value of these responses depends on the magnitude and the 

point of application of the exciting force. To obtain the
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best results, a structure should be excited at a point 

of maximum possible vibration response. 

In the first place, the magnitude of the exciting force 

was kept constant during the response measurement only for 

individual mode experimentations. The point of excitation 

was fixed for all the mode measurements. Plots of the 

theoretical modes of vibration and the corresponding plots 

of the experimental modes are shown in Figs.(5.9) to (5.12). 

Fig.(5.13) indicates the measured values for the four mode 

shapes. In all these cases, the theoretical and experimental 

modal shapes are similar. 

Generally, the correlation between computed and experi- 

mental natural frequencies is very good. Figs.(5.14) and 

(5.15) show pictorial representation of patches of displaced 

surface covered by motor and Alternator bases for plates 

modes. 

Fig. B shows a view of the rig excited by the vibrator. 

The frequency of oscillation of the rig was increased 

until it reached the first mode, then the vibrator was held 

at this frequency whilst the 'mode shape' was monitored 

using the two accelerometers. One accelerometer was kept 

in its 'reference' position on the frame while the other 

was moved around the frame registering positive or negative 

readings (phase or anti-phase) with respect to the reference, 

initially moving the accelerometer 200 mm at a time. Then 

the procedure was repeated to obtain more accurate results
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by only moving 100 mm at a time. This gave a number of 

point readings on the frame which could be translated 

into a picture of the modal shape. This same procedure 

was then carried out for the second and third modes. 

For the plate modes, or to find the 'flexural', special 

arrangements were made. The frame with the motor and 

alternator in position was suspended by ‘elastics' which 

were flexible enough to ensure that the ‘rigid body' 

frequencies were far enough away from the 'plate' frequencies 

to have little effect. The vibrator was used to force the 

system, and the two accelerometers were used to measure the 

response. Higher modes were not tested because they were 

found to be well outside the frequency range of the motor's 

maximum speed, and hence would not show up in the response 

tests. It is worth noting here that the vibrator was then 

set in a different position (which had the smallest stiffness) 

to check if this altered the results. It made very little 

difference. 

5.4 Response Analysis 

Free vibration analysis can be used to give an estimate 

of the distribution of peaks in the displacement as the 

frequency of excitation is varied. However, it is generally 

very difficult to predict the relative importance of the 

different natural frequencies. A better estimate of this 

can be found by using a method which calculates the response 

of the structure. Since the main excitation of the rig 

arises from shaft eccentricity and from other forces which
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vary as the shaft rotates, the special case of sinusoidal 

excitation may be considered. 

If the structure is subjected to a set of sinusoidal 

forces et var ing at a frequency w, then we have Pp ying 

Mi + Cu + Ku = p etW® (5.1) 

where M, C and K are the mass, damping and stiffness matrices 

and u, 0 and ti give respectively the displacements, velocities 

and accelerations at the nodes. The mass and stiffness 

matrices are the same as used in the forced vibration case. 

Since the structure is of steel, the structural damping may 

be expected to be very low. However, in the present analysis, 

it may be represented by a damping matrix proportional to 

the stiffness matrix. 

For the steady state response 

u = u* eae 

where 

u* gives the amplitude and phase 

into Substituting equation (5.2) 

(-w?M + iwc + K) u* 

This set of complex simultaneous 

of the structure 

(5.2) 

of the displacements. 

equation (5.1), we have 

(5'..3) 

equations may be solved to 

give the complex vector u*, the components of which represent 

in amplitude and phase, the steady state displacement at the 

Node. The forcing function chosen, P, may be determined 

by shaft eccentricity, and, thus, it will vary as the square 

of the shaft frequency. It may also be expected to vary 

with different operating conditions, which may also change 

appreciably during the lifetime of a machine.
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In order that the response to a large number of sets 

of forces can be obtained, equation (5.3) may be solved 

with p as a unit force, applied in turn to each of the 

m nodes at which excitation is expected. By using Gaussian 

elimination, and replacing p by P in equation (5.3) where 

P= (pry Poy Ps eae Py) (5.4) 

th 
with Py the i unit vector, the response U* is obtained 

U* = (ui*, ug*, Us* wes a) (S25 

where u*, is the response to Pie 

Any set of forces can be expressed as 
m 

Pis ba a, Py 

where the coefficients a, are complex constants, each 

respectively giving the magnitude and relative phase of the 

oo component. Thus the response u is given by 

} ue GAUL 
jt 

Coefficients for the damping and stiffness of the 

bearings can be estimated and these additional terms can be 

added to the overall matrices. 

In the idealisation used for the response analysis, the 

complete structure must be considered if the response has 

contributions from both symmetric and anti-symmetric modes. 

Fig. (5.16) shows measured amplitude vibrations at point 1 

as the frequency of excitation increases from 0 to 50 Hz. 

The amount of out-of-balance that may be used is as 

suggested in German standard DIN 4042. The damping and
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eccentricity are assumed not to vary with frequency and 

the structural damping is presented by having the damping 

matrix C proportional to the stiffness matrix K with a 

constant of proportionality 0.0002; for these results, 

the stiffness and damping of the bearings have been 

neglected. 

At the higher frequencies, there will be contributions 

to the response from excitation of 50 Hz caused by auxiliary 

equipment, the characteristics of the structure and its 

springs. The analysis can clearly be extended to include 

the effect of these additional forces but no allowance has 

been made for this in the results presented here. 

From the results outlined above, a method was presented 

for checking designs of flexible platforms by means of free 

vibration and response analysis programmes. 

If a particular mode of vibration gives unacceptable 

amplitudes, the free vibration analysis can be used to 

estimate the effect of a structural modification of the 

resonance. In this way, any proposed alteration can be 

checked. 

The response analysis provides, at the design stage, an 

estimate of the level of vibration that can be expected from 

the rotating machinery (for a given shaft eccentricity, 

and known out of balance). 

5.5 Response Curves: 

To measure the response curves it was important to have
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a narrow band width filter. The filter used was a tunable 

pass frequency with frequency range 0.2 Hz to 20 Hz in 

5 sub-ranges and the selected band with 3% (1/3 oct.) 

The vibration meter was calibrated as was all the 

equipment used and adjusted to measure the displacement. 

The signal from the vibration meter was fed to the 

Spectral Dynamic input. It was possible to use the 

output from the spectral Dynamic as values to draw the 

response curves. The output was also connected to the 

voltmeter for check. 

The vibration frequency of the structure was increased 

from 1 to 50 Hz in steps of 1 Hz. 

The above procedure was used for the response curves 

when the structure was excited by the vibrator. 

In the case of response curves with the units running 

at different speed ratios, (such as with two exciting 

forces), it was necessary to know the exact motor speed 

ratio. This was estimated by using the Fiberoptic Tachometer 

system and the vibration counter. The Fiberoptic Tacho- 

meter system was used to detect the reflected light from 

the motor pulley which was divided radially into ten equal 

sections, with a piece of 5mm x 5mm reflective tape 

attached to the circumference of each section. This was 

arranged in such a way that the sensor could not detect 

more than one piece of the tape at any one time. A case of 

one of the response curves for the structure excited by 

the vibrator is shown in Fig. (5.16).
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The response curves at different speeds are shown in 

Figs.(5.17) to (5.36) for the response curve drawn with 

Bruel & Kjaer narrow hand width filter. 

These speed ratios are Case l pos 

Case 2 S53) 

Case 3 3a. 

Case 4 532 

Case 5 just the motor running without the alternator. 

The fibre optic tachometer system was verified by the 

frequency counter. 

5.5.1 Response curve in the case of vibrator excitation 

The most important modes in this curve are the three 

rigid body modes and the plate mode, although there are 

many other Modes. The modes may be classified as the 

classical approach, Longitudinal, Transverse, Vertical, 

Yawing, Pitching, Rolling, the first plate mode and other 

unexpected modes. The main reason for these modes may be 

the secondary effectand the non-linearity in the spring 

which gives rise to the coupling between the modes. 

Another reason may be the effect of the non-linearity 

in the damping coefficient. 

In the system used, the instability of one degree of 

freedom at rest is due to periodic fluctuations in the 

spring rate resulting from the oscillation of another degree 

of freedom; this almost happened in the case of the 

vibration isolation system with directly coupled coulomb 

; (ui) 
damping °
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The parallel combination of coulomb damper and a 

spring, which is known as Coulomb-Hook model, was used 

to represent the non-linear dynamic elasticity of vibrating 

mechanical systems with dry friction damping. 

The damping force in these mechanisms, which is of 

constant magnitude, acts in phase with the relative 

velocity across the damping element but is independent of 

its magnitude. For certain magnitudes of the coulomb 

damping force it is possible for infinite resonance to 

exist. However, Den Hortog (7%) places the emphasis 

on the values of the damping force that results in finite 

responses at resonance. 

Also it may be easy to conclude that the coulomb 

damping which was used was a non-linear-damping phenomenon, 

since discontinuities existed in the damping force time 

history when changes in direction of relative velocity 

occurred. This resulted in a non-linear equation of 

motion. The coulomb damping force Fe is of constant 

magnitude and is independent of the displacement. 

In a physical sense, coulomb damping is obtainable 

from the relative motion of two surfaces arranged to slide 

against each other with a constant normal force Pye such 

that Fe = Fy where the coefficient of friction between 

the two surfaces wis a function primarily of the nature 

of the surfaces sliding on each other. The energy Do 

dissipated per cycle by a coulomb damper experiencing 

a harmonic relative displacement z = z sin Nt, is inde- 

pendent of the frequency of vibration, but depends on 

the vibration amplitude. The hysteresis loop is rectangular
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having major and minor semi axes of F, and Zo: 
= 

In very low damping conditions (under certain circum- 

stances) the phenomenon of non-linear resonance systems 

occurs. This is the phenomenon of 'subharmonics'. A 

subharmonic is a response vibration occurring at 1/2, 

1/3, 1/4, 1/5 ete. of the frequency of the driving force. 

The physical explanation for the occurrence of subharmonics 

which may be given is that the driving force supplies 

energy to one of the harmonics of the non-linear system 

and when energy is supplied it will start to oscillate. 

The higher harmonic then pulls all the other harmonics with 

it, as the specifically excited harmonic is an integral 

part of the whole motion. There are instances where a 

non-linear spring element in a multi-degree of freedom 

system produces a third harmonic of the order 1%. 

If the frequency of this harmonic by chance coincides 

with the resonant frequency of another resonance in the 

system which happens to have a resonance amplification 

factor Q = 100, this specific resonance will respond with 

the same amplitude as the actually excited resonance, even 

though its frequency did not exist in the wave-shape of 

the driving force (100), 

5.5.2 Response curve with Fixed Frequency filter. 

For every speed ratio the filter was fixed at one of 

the main frequencies, 4.3, 8.2, 9.1, 37.4 Hz in total 

there are 20 curves. These are shown in Figs. (5.17 

to (5.36)...
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By fixing the frequency filter at 4.3 Hz, which is 

the first natural frequency, it is possible to find the 

main frequency and the higher components of it. In fact 

every mode in this curve is a 4.3 mode even though the 

motor speed is different. (In other words, frequency 

component harmonically related). 

In such a system , because of its low damping condition, 

it is possible that the phenomenon of a non-linear resonance 

system may occur. 

It is also possible that the rigid body modes can be 

excited by the motor speed or by 5 the motor speed, or the 

2nd Rigid body mode can be excited by twice the beat 

frequency. 

The lst Rigid body mode can also be excited by the beat 

frequency. 

Finally, the response wave-shape will contain a number of 

frequency components harmonically related to the frequency 

of the driving force. 

5.5.3 Response curves by computer 

The modern high speed computer should be taken into 

account when investigating this point. The response curves 

are in the following order. Four speed ratio settings were 

measured. They are 

Case 1 $ 735 

Case 2 : Ses 

Case 3 : Se: 

and Case 4 : 5e2
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Every speed setting follows the same pattern. 

1 - Starting the motor to maximum speed (1,0,0,0 

2 - Shutting down the motor to zero speed (170,00 

3 - Motor at maximum speed 50 Hz (2) 34) 

Aim eaves 35° Hz (1,2,3,4) 

Sane . re 25 °H2 (1,2,3,4) 

Coa s . US Hz (1,2,3,4) 

ai Y * 8.2 Hz (1,2,3,4) 

(1,2,3,4) means the position of the measuring points from 

the corners. The pick-up signal was considered as in the 

drawing. 

  

For example (1;3;3) denotes 

1. Speed setting WS 

3. Motor speed at maximum speed 50 Hz. 

3. pick-up signal position 3 

the following cases 1;1;1; & 1;2;1; & 1;33;1 & 1.4.1 

1,5,1 & 2,4,4 and 2;34;2 

are shown in figs. (5.37) to(5.43). 

From the above procedure, for every pick-up 

position, a response curve and a wave form were drawn 

by the computer. 

This made for each speed setting a total of 44 curves, 

and a number of these curves will be in the Appendix.
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The high speed computer makes it possible not only to 

reduce the processing time, but also to increase the 

accuracy of the processing. From this mass of data and 

curves, it may be concluded that in the general case where 

there is a single degree of freedom system with non-linear 

spring characteristics and excited by two harmonic forces 

only, the equation of motion is given by 

% + £(x) = P, cos (Q)t +a l eae Cos (25% +a 1 2 a 

where £(x) represents the spring force and may be written 

in the form of a Taylor series thus: 

= 2 3 £(x) = a;x + a,x” + a,x Tenis 

The constant term ay is eliminated by a suitable choice of 

origin. 

Magnus (4) (1965) =e discussed the solution of this 

equation and shows that in the general case the solution 

will contain the frequencies nQ m2, , nQ, + m2. (where 
a ™ 2 

n and m are whole numbers ). He also showed that an oscilla- 

tor with a cubic restoring force and harmonic excitation 

will, under certain circumstances, perform harmonic 

oscillations whose frequency is one third of the exciting 

frequency. 

So it may be concluded that a relatively small non- 

linear effect can result in vibrations not directly related 

frequency-wise to primary exciting forces. This may be 

one reason why the vibration characteristics of the flexible
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platform show displacement responses at practically all the 

harmonics of rotational speed up to 2 or 3 or 4 times the 

passage frequency. This often occurs with significantly 

high, 2nd, 3rd and 4th, harmonics of rotational speed. 

It seems that, using the accelerometer to pick up the 

signals, the effects due to acoustical excitation were 

unavoidable. 

The accelerometer's main application was general vibration 

measurements and it was found that the response was obscured 

by 'noise' (probably from the motor and alternator bearings 

in such electrical machines) . 

This signal was put through an integrator to cut this 

down, double integration (in the D.V.A.) was used, which 

means that the output from the integrator is the displacement 

after being amplified, and then taken to the computer to 

give the response curve. 

Unfortunately, the vibration meter (D.V.A.) was a high 

quality measuring instrument, and used 17 linear integrated 

circuits to ensure reliability and accuracy. But for the 

low frequencies, unexpected peaks came into view with some 

amplification factors. The accelerometers were connected to 

the frame by permanent magnets to allow for the possibility 

of removing them when necessary. The accelerometer cable 

was firmly clamped to the frame in order to avoid any micro- 

phonic noise. This had a disturbing effect at the lower 

frequencies, due to local capacity and charge changes, owing 

to dynamic bending, or compression and tension of the cable 

when not clamped.
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The physical model can be expressed as 

IM] = [o]7? fe) [e]7? "Physical Mass” .... (A) 

[x] =  [6]7? [22m] (ole "Physical stiffness" (3) 

[ce] = fo)? [2com] foe "Physical Damping" . {C) 

with [o]  [m] a and oe terms being the known modal informa- 

tion. Experience and commonsense have indicated the desira- 

bility of selecting the location that ensures that a reason- 

able idea of the nature of the response curves could have 

been inferred from the test measurement. In practice, this 

meant selecting locations on each side of the modal bounda- 

ries. 

There is, in general, a choice of selections. This in 

turn means that unique solutions to equations (A) through 

(C) do not exist, whichever test measurement locations are 

selected. The set of the three matrices will define a model 

whose responses match resonance data from the selected 

location. 

It may be that this last statement looks too simple, but 

in point of fact it is not at all. The reason for this is 

the non-linearity of the damping coefficient, and the stiff- 

ness coefficient of the springs which play an important part 

in the vibration characteristics of any structure and give 

rise to many new phenomena in the non-linear resonance 

system. 

In a linear multi-degree of freedom system, the classical 

vibration theory would indicate that the response may be
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defined exactly for vibration characteristics (resonant and 

non-resonant excitation) in terms of its mass, damping and 

spring characteristics. 

When more than one force is applied to the system the 

resultant vibration can be obtained by applying the 

principle of superposition - which means that the resultant 

is the sum of the individual vibrations excited by each 

force acting alone. 

Unfortunately, complications arise when non-linearities 

occur in the dynamic system. When a number of exciting 

forces act at different frequencies on a non-linear system, 

the system vibrates at frequencies equal to the exciting 

frequencies as in the linear case, but also at frequencies 

which may be multiples or submultiples of the frequencies 

or the difference between any two (res) 

5.6 The Use of the Spectrascope (Real Time Analyser) 
  

By using the spectrascope real time analyser, after 

calibration and using a harmonic cursor, we can locate the 

specific spectral components. When it comes to spectral 

description, a periodic signal may well be described in 

terms of the R.M.S. values of its various frequency components 

(its frequency spectrum), while random vibration signals 

are best described in terms of mean square spectral density 

functions. This is due to the fact that random signals 

produce continuous frequency spectra and R.M.S. values 

are measured within a certain frequency band width, and will 

therefore depend upon the width of the band. A calibrated 

signal comes from the vibration meter connected to the input
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of the calibrated spectrascope (R.T.A.). And this picture 

has been taken for the spectrum information after it has 

been stored in the memory. 

5 different cases were studied, each having 4 Polaroid 

pictures taken, making a total of 20 pictures. 

S 

  

A shows position 1 on the rig D A 

B shows position 2 on the rig 

C shows position 3 on the rig C B 

D shows position 4 on the rig. 

Case 1 as shown in Fig.(5.44) A,B,C, and D. 

Speed ratio = 7:5. The relationship between the modes and 

their spectral components are presented in Table (5.1). 

Case 2 as shown in Fig.(5.45)A,B, C and D. 

S23 Speed ratio 

Case 3 as shown in 

Speed ratio = 3:1. 

Case 4 as shown in 

Speed ration = 5:2. 

See Table (5.2) 

Fig.(5.46)A,B,C and D. 

See Table (5.3) 

Fig.(5.47) A,B,C and D. 

See Table (5.4) 

Case 5 as shown in Fig.(5.48) A,B,C and D. 

Just the motor running at maximum speed. See Table (5.5). 

In all these cases the motor was running at its maximum 

speed, approximately 50 Hz. 

A quantitative comparison was however very difficult 

because the relative magnitude of various frequency peaks 

went up and down.
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This feature was masked, especially when the Real Time 

Analyser (spectrascope), and the spectrum information 

from all 500 filter locations were used. 

The way to make this comparison was simply to keep 

the sampled spectrum information for all 500 filter 

locations after being converted into digital form. This 

digital information was processed for averaging or peak 

hold, and stored into averaging memory. By using the 'peak' 

hold button and storing this information, it could be recalled 

to make a comparison between the peaks in the spectrum 

information, by using the harmonic cursor for locating the 

specific spectral components. 

From Table (5.6), it is clear that the modes of vibration 

of the structure have a variety of variables. This may look 

slightly ambiguous. It seems that the non-linearity in the 

springs supporting the structure gave rise to many resonances 

subharmonic, ultraharmonic, subultraharmonic, internal or 

even non-periodic combination resonance. There were also 

combination resonances as well as the main resonance, 

In the case of structural dynamic analysis, the main 

factor governing these analyses is the assumption of the 

orthogonality of the modes with respect to the mass, 

stiffness. and damping terms and the form of the exciting 

forces. 

Table (5.6) classifies the types of resonance which can 

be expected in such a structure. 

The internal resonance, non-periodic combination 

resonance and periodic combination resonance, are just the
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resonances which distinguish systems with several degrees 

of freedom from those having a single degree of freedom. 

Internal resonance represents a special case, where 

the main resonance coincides with the subharmonic, ultra- 

harmonic or subultraharmonic resonance. The periodic 

combination resonance is again a special case, where the 

combination resonance coincides with the aforesaid resonances 

(ss) (s6) (s7)) 
’ , : (Yamamoto Hayashi Benz 

5.7 Beat frequency in rotating machinery 

It is fairly straightforward to explain the occasional 

occurrence of a "beat frequency" vibration signal from 

rotating machinery (ss) Such a periodic pulsation in 

vibration amplitude is generally due to the simultaneous 

generation of two base frequency excitations (2) and (Q5) 

These give an apparent vibration signal in the mean frequency 

(Q) + 2) /24 and a pulsation in amplitude at the difference 

frequency (25 - 04). 

One of the base frequencies is usually synchronous with 

rotor speed (i.e. attributable to rotorumbalance and the 

second might be associated with one of a number of other 

vibration sources - unbalance of another shaft rotating 

at a different speed; rotor whipping, or journal bearing 

instability, or hysteretic whirl ... etc. 

K. Magnus (ym) was the first to indicate theoretically 

that where two frequencies are generated, the sum and 

difference frequencies are also possible.
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(5a) 
Downham indicated that when a number of exciting 

forces act at different frequencies on a non-linear system 

the system vibrates at frequency equal to the exciting frequen- 

cies as in the lineal case, but also at frequencies which 

may be multiples or submultiples of the frequencies or the 

difference between any two. 

A spectral analysis of the wave form from the running unit 

showed that a synchronous vibration signal was indeed present 

and also a synchronous component associated with vibration 

due to unbalance. 

But there are also large, unexpected components of a low 

frequency at a frequency equal to the difference between the 

two base frequencies. 

It seems reasonable to conclude that the source of sum 

and difference frequency components was truncation of the 

"BEAT FREQUENCY" wave-form. It is clear from the response 

curve that it contains not only the two hase excitation 

frequencies but also a component at the difference frequency. 

In other words, the frequency components in truncated 

beat frequency wave form. The principal of centre frequencies 

and harmonic zone number and side band frequencies left and 

side band frequency right. 

The vibration displayed the tendencies shown in Table 

lI 

Fourier analysis of the excitation wave form indicates 

that components at differeme frequencies are indeed generated
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and also at sum frequency and spectrum of higher harmonics 

and side band frequencies. 

The measured wave forms of spectral analysis are 

remarkably similar as expected, except that low frequencies 

appear to have been greatly amplified in the experimental 

case, and high frequencies attenuated-the computer response 

curves. The latter fact is attributed to the transmission 

characteristics of the rotating machinery under considera- 

tion and electrical stator system. 

5.8 Measurement of stiffness coefficients for the frame 
  

It was decided to measure the stiffness coefficients of 

the frame and to make a comparison between the values 

predicted by the computer programme and those obtained 

experimentally. 

The symbol a is used to denote a stiffness coefficient 

and is defined as the force required to be applied at 

point j to produce a deflection equal to unity in the 

direction of the force, while point i is a restraint 

against translation, 

a= iy, + Klay, + oe. + Ky, 

Sr Koay, a toey, Few. Kooy 

Pe Sk 7K Sra eneeh Le 
n nly) n2y> nny, 

in matrix form 

{p} = [wn] fy}
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The measurements for the rig were carried out. The 

frame was supported by four knife edges, one in each 

corner, 

Five dial gauges were used and were zero adjusted before 

the reading. The applied load was varied between 40.028 

and 336.41 Kp. 

Fig. (5.49) shows one case in which the applied load 

was 218,499 Kp. applied at point l. This case was for 

decreasing the load from maximum to minimum. 

The graph Fig. (5.50) indicates the load deflection 

relation for the frame structure. The dial gauges were 

positioned as in Fig. (5.49) under the rig. Then the load 

was applied at point 1 and readings were taken for the five 

dial gauges. Table (5.9) shows the data when the load 

was increased and decreased. 

In actual fact it was found that the frame deflected 

slightly under the load. This means that the readings on 

the five gauges differed considerably. 

The load was applied in the downward direction while the 

Spring balance was in the opposite direction. Also the 

load had to be increased fairly quickly. In this sense the 

term 'static reflection' is misleading, but it was used in 

order to distinguish the stiffness obtained from the ‘dynamic 

stiffness' used in vibration work. 

It should be noted that the graph would form a continuous 

loop known as an 'hysteresis loop', if the loading had 

itself been continuous.
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5.9 Measuring the spring stiffness 

It was possible to measure (K) the spring stiffness by 

adding weights to the machine and measuring the corresponding 

deflection, particularly if the springs were concentrated 

between the machine and the floor which was the case in the 

unit under consideration. Since the object of installing 

flexible mounting units was to place all significant resonance 

below the operating speed range, it was desirable that the 

mounting arrangement should be soft for the modes of vibration 

which were likely to be strongly excited, and the limitation 

of this procedure was only the stability of the structure as 

a whole which had to be carefully considered. By making the 

isolator very soft, resonance speed will occur at a very low 

motor speed, and could therefore be passed through so quickly 

that the small increase in movement due to resonance was 

hardly noticeable. The benefits obtainable with a spring 

supported structure were so great, both physically and 

economically, that slight oscillation, hardly exceeding a few 

hundredths of an inch, was immaterial. These operating 

amplitudes were negligible and the amplitudes varied from 

the time the machinery started, passed through resonance, 

and attained operating speed. 

This measurement was attempted; however, owing to the 

unexpected behaviour of the readings of the dial gauges 

Corresponding to the spring deflection, it was not easy to carry 

Out the experiment. Thus it was decided to measure the 

behaviour of one spring only. So one of the springs was 

removed from beneath the rig and the following measurements 

were carried out,



-167- 

Four tests were carried out to estimate the load 

deflection curves. Case 1 Vertical stiffness, Case 2 

Longitudinal stiffness, Case 3 Measuring the total 

deflection between the first and second coil 180° from 

the end of the coil, Case 4 as Case 3 except decreasing 

the load, 

Case 1. Measuring the Vertical stiffness 

In order to determine the static deflection applied 

loads were varied from 22.4 to 448 lbf Table (5.10) 

shows the applied load and the affected deflection. Dial 

gauges were used to measure the displacement. The results 

are shown in Fig. (5.51). 

Case 2. Measuring the Longitudinal stiffness 

Special arrangements were necessary to measure this 

stiffness. The four springs were in their position carrying 

the structure. The load was applied by pulling the frame 

in the load direction and two dial gauges were used at 

200 mm either side of the pulling point. The pulling point 

had a hook which was connected to steel wire across a small 

pulley which lay horizontally and the wire was then connected 

to another hook. The load was applied vertically on a base 

connected by a lever to this second hook. The two dial 

gauges were adjusted to zero. The load was applied, varying 

between 30 and 140 lbf. Fig. (5.52) shows the load deflection 

relation and Table (5.11) shows the applied load and deflection. 

Case 3, Measuring the total deflection — ‘Increasing load 

Measurement of the total deflection between the first and



=L6G— 

second coils was taken 180° from the end of the coil as shown 

by distance A in Fig. (5.53). The total deflection equals 

distance 6, The applied load was varied between 28.92 and 

254.3 lbf Table (5.12) shows the applied load and deflection. 

Case 4 Measuring the total deflection -— decreasing load 

This test was the same as the previous one except that 

the load varied from 254.48 to 28.92 lbf Fig. (5.54) 

shows the load deflection curve,. and also the load deflection 

from the first and second coils, distance A, 180° from the 

end of the coil. Table (5.13) shows the applied load and 

deflection. Fig. C. shows a view of the rig with the 

equipment to measure the sideways stiffness of the spring.
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FORM ND WAVE BA FIG 5.37 RESPONSE CURV: 
Starting the motor to Speed ratio 7:5 

maximum speed. Picking signal position l. 
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FIG 5.38 RESPONSE CURVE AND WAVE FORK 
Speed ratio 7:5. Shutting down the motor 
to zero speed. Picking signal position 1. 
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FIG 5.39 Response curve and wave form. 
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FIG 5.40 RSSPONSE CURVE AND WAVE FORM 

Speed ratio 7:5. Motor running at 3 
Picking signal position 1. 

  

  

  

  

  

Time Millisec. 

® 
a es e07 2 
0 
> | 
0 @. 162 

7 
) 
p 
al ¢ 2.108 
D 
0 

= 
2.254 

. BB thins Dactacstel eae AK aaah 

s 

Frequency Hz 

ta evia Lt 

\ 

i U 2 ¥ | 
i) r 

: » { We 
3 \ | | \ 

| A AY | iG 
g 2.202 1) \ j\ lone \ kh 
3 Lyf Ha A 1 | 

| ' foe Mie) \ pat ay | | 
\ cea ¥ Vt ae 

' Wy is l f y 
TU 4 

y 

erg 

byes 4 - S Ss 

S z = : :



@ 

6 
2 6 a 
0 
> 

0 @ +4 

2 
p 
x 
f 2. 

D 
0 
z 

. 125 

- 879 

. 226 

. 222 i 
. 
3 

t
t
 

- 253 

ie 

. 132 FIG 5.41. Response curve and wave forme 

Speed ratio 7:5 .« Motor running at 25 Hz. 
picking up signal position l. 

  

  

Z. s : "i ri 3 

Frequency H= 

S.S522 _ 

i, i 

Am
pl

it
ud

e 
vo

lt
s 

Q 

, 

        

  

19
98

. 
B0

0 

20
00

. 
so

n 

Time Millisec. 

30
08

. 
ao
 

ag
ag
. 

av
a 

Sa
y.
 
90
0



  
S
o
t
a
 

ecco 

e
e
.
 

|
 

e
e
n
s
 
g
e
n
e
 
s
o
 

e298 

e
e
 

e
e
 

or 
l
S
 

e
e
s
 
i
 

_
—
—
—
 

c
t
 

 
 

 



2. 704 Fig5-43 Resvonse curve and wave form. 
~ Speed ratio 5:2 . Motor running at 35Hz. 

  

Picking up signal position 2 . 
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The Relation between the Modes and its 

harmonics Tables 5.1 to 5.5 

  

  

  

  

  

  

  

  

  

  

Table 5.1 

Case l Modes, Hz Range of higher harmonics 
Hz 

| 

Photograph A 23 46.69 
: B 36.4 72.6 
¥ Sc aS 36, 61.263 
. D | 1.6 60.8 

Table 5.2 

Case 2 | Modes, Hz | Range of higher harmonics 
Hz. 

| Photograph A 2.6 NS Soul Saua 
8.2 | M64, $24.8 

12.0 4g. 
| 27/6 5258 
| * B | 2.4 | 26.4 
| | 6.6 | 26.4, 66.0 

a c 2-8 | 9.2, 34.4, 41.4 
| 4.6 9.2, 41.4 
| Ba2 | 16.4, 74 

: D | 15.8 | 47,4, 6302 
I | 

Table 5.3 

Case 3 Modes, Hz | Range of higher harmonics 
Hz 

Photograph A 4.2 | 8.4 
5.4 10.8 
8.2 49.2 

| Ore 36.8 
| 18:2 36.8., 

| 2258 45 
= BD 10.0 | 20, 50 

| 12.4 | 24.8,49.8 
| 31.4 | 62.0 

z iS 8.8 | 17.8 
31.4 | 62.8 

" D 28.8 | 57.6 
31.4 | 62.8 

  

 



Table 5.4 

Range of higher harmonics ,Hz Ss, Hz 
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Table 5.5 

Range of higher harmonics,Hz 

 
 

Hz , 

 
 

  
Case 5     

 
  



Table 5.6 Classification of possible resonances 
  

  

  

  

  

  

  

  

            

  

    

Type of Resonance Exciting | Ratio of the Natural Notation 
Frequency w | Frequencies 24/25 
is close to 

differs |is close 
sufficiently] to | 

| fron | 

a) Pure main Faas, 3=1,2 
Resonance ] 

b) Sub-harmonic N¢ m,k=1,2,3 
Resonance 

c) Ultra-harmonic a M/k a Tek 
Resonance n°§ 

@) Sub-ultra-harmonic No n,N=2,3 
Resonance y 

e) Internal Q = we for awe R : 

ena 2 Flo; eh 

£) Non-periodic N25 4M m/k - j=1,2 

Soil n N,M=#1,22... 
iene m,k=1,2,3 

g) Periodic $25 _ a mVk 
Combination mk 
Resonance 

Table 5.7 The Vibrations displayed the following tendencies 

Side band Centre Side band Harmonic 
frequencies frequencies frequencies Zone No. 

o ° (we - 1) 

(2w: - we) w1 W2  (2wW2- w1) 

(3w; - wz)  2w (w + we) 2w2  (3W2- 2) 

(401 - w2) — 3wi (2witwe) (wit2W2)3w2 (4w2- Ww) 

etc    



  

  

    
  

  

  

Tables5.8 Measuring the stiffness coefficient of the structure 

& 5.9 

Table 5.8 

Applied Load Deflection | 

(KgE) | mm 
1 i 

| 
Point 1 218.499 0.132 

2 = 0.022 
3 o 0.013 
4 | -0.0055 
e | 0. 106 

wil 

Table 5.9 

Applied Reading Position in mm. Reading toad dn 

Bee Kgf 1 2 Sf site 5 
en eet fe se so ee 

° ° ° ° ° 0 ° 
1 40.028 0.023 0.003 0.004 | 0.002 | -0.021 
2 80.014 0.045 0.005 0.005 0.004 | -0.070 
3 120.00 0.069 0.008 0.009 4 0.005 | -0.075 
4 159.772 0.092 0.010 0.013 | 0.006 | -0.072 
5 188.636 0.118 0.012 0.013 | 0.008 | -0.105 
6 218.499 0.127 0.014 0.013 | 0.009 | -0.102 
a 247.419 0.145 0.016 0.0135, 0.005 | -0.101 
8 277.092 0.160 0.185 0.0120) 0.001 | -0.095 
9 306.75 0.175 0.023 0.015 |-0.001 | -0.095 

lo 336.41 0,193 0.0285 0.016 }-0.002 | -0.095 

Reversing the load’ fran maximum to minimum 

1 79 306.751 0.179 0.0285 0.0160} -0.002 0.095 
12 8 277.092 0.165 0.0250 0.0150} -0.004 0.100 
AST 247.419 0.148 0.0240 0.0150} -0.005 0.105 

*140 6 218.499 0.132 0.0220 ©.0130!-0.0055} 0.106 
15) Poo 188-636 0.115 0.0195 0.0170) +0.002 | 0.105 
16034 T9772 0.100 0.0180 0.0150) +0.001 oO. 110 
ey aes 120.000 0.079 0.0150 0.0170] +0.003 0.115 
185-2) 80.014 0.055 0.0120 0.0150} +0.006 0.116 
19 2 40.028 0.32 0.010 0.0150} +0.008 0.119 
201 10 0.00 0.008 0.008 0.0120) +0.010 0.121                



TABLES 5.10 to 5.13 

  

  

  

              

  

  

  

Table 5.10 MEASURING SPRING STIFFNESS 

1 

2 4 APPLIED | DEFLECTION EFFECTED TOTAL EFFECTED 
oo 2 LOAD DEFLECTION IN| STIFFNESS | STIFFNESS IN 
See EVERY STEP EVERY STEP 

1 22.4 | 0.060 0.060 373.333 373.333 
2 44.8 | 0.110 0.050 407.272 448 
3 67.2 || os7A 0.064 386.206 350 
4 89.6 | 0.234 0.060 382.905 373.333 
5 12 0.286 0.052 391.608 430.769 
6 134.4] 0.352 0.066 381.818 339,393 
7 156.8| 0.412 0.060 380.582 373.333 
8 179.2 | 0.465 0.053 385.376 422.641 
9 201.5} 0.5195 0.0545, 387.872 411.009 

1o 224 0.5695 0.050 393.327 448.00 
ll 246.4| 0.6195 0.050 397.740 448.00 
BR 268.8] 0.6680 0.0485 402.395 461.855 
B 291.2} 0.7125 0.0445, 408.701 503.370 
4 13/6) -o.7eis 0.049 411.818 457.142 
15 336.0] 0.8166 0.0551 411, 432 406.533 16 358.4 | 0.8749 0.0583 409.647 384.219 
17 380.8| 0.9249 0.050 411.720 448.00 
18 403.2 | 0.9729 0.048 414.431 446. 666 
19 425.6| 1.0239 0.051 415.666 439.215 
20 448 1.0744 0.0805 416.977 443.564 

Table 5.11 MEASURING LONGITUDINAL STIFFNESS (Case 2) 

Read No Applied Load Deflection 
(Ib,) in 

1 20 | 0.290 
2 40 0.413 
3 60 | 0.640 
4 80 0.861 
5 100 1.086 
6 120 1.20 
2 140 1.41         

 



Table 5.12 INCREASING THE LOAD (Case 3) 
  

  

  

  

  

  

  

  

No of Load in A in m 6 in mm 
Loading (Kg_) | 

1 28.920 4.60 | 10.00 
2 | 58. 480 4.18 13.49 
3 | 87.340 3.57 | 15.16 
4 | 116.970 3.45 | 15.55 
5 | 145.830 2.56 | 21.70 
6 174.690 | 2.00 | 25.50 
7 214.718 | 1.13 31.80 
8 | 245.580 | 0.38 | 36.10 

t | i 

Table 5.13 DECREASING THE LOAD (Case 4) 

No of Load in A in mm 6 in mm 
Loading (&g,) 

y 28.920 | 4.58 10.50 
2 58.480 4.16 15.40 
3 87.340 3.50 16.30 
4 116.970 3.16 18.20 
5 145.830 2.42 19.70 
6 174.690 1.88 22.20 
7 214.718 1.18 26.50 
8 354.480 0.44 33.00          
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

In this study, the results of both theoretical and 

experimental investigations carried out on a spring 

supported flexible platform carrying rotating machinery, 

indicate the vibration characteristics, dynamic response 

and elucidating conditions which favour the building up 

of excessive vibration when the unit is in operation with 

different speed ratios. 

Many classical methods for determining the natural 

frequency exist but these do not give reliable or accurate 

results. 

A new method of approach is needed to study the natural 

frequencies and the mode shapes. One of the main differences 

between the classical approach and the new one is that the 

new one takes into consideration the flexibility of the 

platform. 

The structure studied was a platform belt driven unit 

of the frame type. The unit consisted of two machines, one 

of them with a very rigid base whilst the second machine had 

a more flexible base. Both were fixed on a frame. 

The numerical techniques incorporated a computer programme 

developed for calculating the natural frequencies and the 

mode shapes.
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A single programme for the solution of each parameter was 

developed initially and then combined into one programme. 

Using this programme, it is possible to study various 

vibration characteristics of the structure under considera- 

tion. Continuous structures have an infinite number of 

modes of vibration, but generally only the lowest of these 

are of importance in low frequency vibrations. 

The techniques employed in this work were the Finite 

Element Method for the solution of the structural vibration 

problem, the derivation of consistent stiffness and mass 

matrices of structural elements. 

Although our analytical capability has vastly improved, 

response time is still inadequate for design purposes, 

and there is a requirement for a simplified numerical 

technique. The present need would appear to be to develop 

an integrated design system based on these improved analy- 

tical capabilities. It is hoped that the experiences 

described here may be of some value to those who are 

involved in such design tasks. 

The three rigid body modes and the plate mode are shown 

in Figs.(5.9), (6.10), (6.11) and (5.12) respectively to enable 

a comparison to be made between these and the theoretical 

results derived from the computer programme. These were 

found to be in good agreement. The values of these 

measurements are given in Fig.(5.13) 

The first 'plate' modal shape Fig.(5.14) is built up 

of a bending motion between the motor and alternator, and 

a 'torsion' motion between the motor and alternator ends
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of the frame. When the vibration in the first mode was 

viewed in the light of a stroboscope, the main apparent 

motion between the motor and the alternator was the 'bending' 

mentioned. 

The second plate modal shape is mainly due to a torsion 

motion between the motor and the alternator Fig. (5.15). 

This was also apparent using the stroboscope. From the 

figure there is also evidence of a bending motion between 

the frame 'corner' shown and the opposite 'corner'. 

This bending motion in the second mode then becomes the 

main motion in the third mode. 

The phenomena listed below were caused by the presence 

of non-linearity in the system. 

In this phenomenon a rigid body frequency was being 

excited when the forcing frequency was a harmonic of the 

Rigid Body Frequency. 

With single forcing it was easy to show that the above 

was probably due to the fact that the transient of a non- 

linear system contained harmonics of its fundamental 

frequency, and that it was these harmonics which were being 

forced. The analogy would necessitate there being non- 

linearity in the flexible supports of the model, and 

in the static deflection test. This did indeed appear to 

be the case. 

In this phenomenon a Rigid Body Frequency was being 

excited by the beat frequency of the forcing functions, and 

also by a harmonic of this beat.
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With double forcing, it was shown that the combination 

frequencies occur naturally in a non-linear system, and 

to explain the first phenomenon above it was assumed that 

a resonance occurred when these frequencies coincided with 

the natural frequency. 

The second phenomenon arose from the presence of harmonics 

of the natural frequency already present in the transient 

vibration of the plate mode which was being excited by the 

beat. Again, the analogy would necessitate there being non- 

linearity in the flexible supports, which was present. 

In this phenomenon, the resonances due to the plate modes 

showed the characteristic jump effect, and there was also 

excitation of a plate mode by subharmonic forcing. 

In the case of single forcing, Duffing's equations gave 

the jump effect as a common occurrence in systems with non- 

linear stiffness. It also stated that it was possible for 

subharmonics to occur in the transient of such a system. 

This would explain the above phenomena by analogy, if 

the plate stiffness itself were non-linear and if the 'trans- 

ient_ vibration of the plate' contained subharmonics of its 

natural frequencies which could be excited. 

Non-linearity of the base of the alternator on the frame 

stiffness seems likely, and therefore it can be assumed that 

the base of the alternator is being affected by both its 

non-linearity and the stiffness of the supports. This would 

give a coupling effect between the frame and the supports 

which may show up in this case. In response curves, the



=173= 

a@ifference between the plate frequencies and Rigid Body 

Frequencies seems to suggest that coupling would take place. 

From the curves in Fig. (5.51) it was evident that there 

was a minute amount of non-linearity in the spring behaviour. 

This was clearly shown in Figs. (5.53)and (5.54) especially 

when the load direction was changed. The coil ends used had 

plain ends without any sort of groundings, so special care 

was needed in determining the deflection. 

The seating and decrease in the number of active coils 

with an increase in load agreed fairly well. In the case of 

decreasing the load to zero (Fig. 5.54) the curve looked 

more agreeable than in the case of increasing the load, 

(Fig. 5.53) in which the erratic effect was more clear. 

Hence, it may be concluded that the seating was not 

uniformly progressive but proceeded erratically. This was 

mostly due to the irregularities in the helix. 

The seating represented the accumulation of non-linearity 

at each end from the tip contact of the dead ends of the 

coils. The initial irregularities in the helix, the pitch 

angle, coil diameter, slope of the end seats etc. were not 

uniform and the actual seating necessarily hit only the 

high spots as it proceeded, thus contributing to this non- 

linearity. 

Furthermore, there was probably some frictional resistance 

to the twist of the wire in the seated portion of the coil
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and this may release itself suddenly when it acquires 

sufficient magnitude. Finally, the effect of non-linearity 

plays an important part in curving the load deflection 

graph. 

Although there are many other modes in the response 

curve, the main reasons for these modes were the secondary 

unbalance effect and the non-linearity in the springs 

which gave rise to the coupling between the modes. 

For the secondary unbalance effect, the resultant is 

either a vertical force tending to cause vertical vibration 

of the machinery on its mountings, or a couple tending to 

cause pitching vibrations about a transverse. If the 

vertical force does not act through the centre of gravity, 

it can produce pitching as well as vertical vibration, while 

if there is coupling between the modes, this excitation can 

(70) also produce longitudinal vibration. Another reason 

was the effect of non-linearity in the damping coefficients. 

A practical method was used for checking the designs of 

flexible platforms by means of free vibration and response 

analysis programmes. If a particular mode of vibration 

gives unacceptable amplitudes, the free vibration analysis 

can be used to estimate the effect of a structural modi- 

fication of the resonance. In this way, any proposed 

alteration can be checked. 

The response analysis provides, at the design stage, an 

estimate of the level of vibration that can be expected 

from the rotating machinery.
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It can be concluded that the modes of the structure 

have a variety of variables. This may look slightly 

ambiguous. It seems that the non-linearity in the spring 

supported structure gave rise to many sub-harmonic 

resonances, ultra-harmonic resonance, sub-ultra-harmonic 

resonance, or internal resonance. It also gave rise to 

non-periodic combination resonance, periodic combination 

resonance and the main resonance. 

In the case of structural dynamic analysis, the main 

factor governing these analyses was the assumption of the 

orthogonality of the modes with respect to the mass, 

stiffness and damping terms. i.e. the identification 

parameter. In point of fact, no test responses are purely 

modal, By a suitable selection of the measuring points 

maximum response in the mode under investigation may be 

obtained with negligible interference from some of the other 

modes. 

It must be borne in mind also, that the recorded motion 

may contain a rolling component of appreciable amplitude in 

addition to the twist component. 

This indicates that sometimes in measuring the mode 

under investigation an interference from other modes may 

occur. 

The type of resonances obtained from such a structure 

are classified in Table (5.6). The internal resonance, non- 

periodic combination resonance and the periodic combination
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resonance, are the resonances which distinguish systems 

with several degrees of freedom from those having a single 

degree of freedom. Internal resonance becomes a special 

case, where the main resonance coincides with the sub-harmonic, 

ultra-harmonic or sub-ultra-harmonic resonance. 

The periodic combination resonance is again a special 

case, where the combination resonance coincides with the 

aforesaid resonances (ss). It can be concluded that the 

coulomb damping which was used was a non-linear damping 

phenomenon, since discontinuities existed in the damping 

force time history, when changes in direction of relative 

velocity occurred. This resulted in a non-linear equation 

of motion. 

The results obtained during the work can be classified 

into two sections: 

Section I 

By the Finite Element Method the vibration characteristics 

of flexible platforms could be predicted at the design stage. 

The increasing size of modern rotating machinery was the main 

reason for bringing about a change from the traditional 

massive concrete foundation to a more flexible steel structure 

which is an assemblage of beams and plates. Because of its 

flexibility, it was important to be able to predict the 

dynamic behaviour of such a structure at the design stage by 

determining matrices corresponding to the mass and stiffness 

of the structure. The natural frequencies and corresponding 

mode shapes of the structure may be found by solving an eigen 

value problem. The response of the structure to sinusoidal
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excitation was estimated by solving a set of simultaneous 

equations. 

Although damping was not considered here, the structure 

damping may be represented by a matrix proportional to the 

stiffness matrix. 

The results for the natural frequencies and the mode shape 

of the flexible platform theoretically and experimentally 

showed a high degree of correlation. 

The stiffness coefficients measured compared favourably 

with the computer programme calculation. 

The stiffnesses of the supports were found experimentally 

to be almost linear within the normal working range. However, 

elastic supports possess some non-linear characteristics in 

the working range, giving rise to a new phenomenon which 

may be completely different from the linear case. 

There was an effect due to the end turns of the spring 

when the applied load was increased. There was always some 

progressive seating of the end turns, so that the number of 

completely free coils decreased with the load, and this 

increased the number of inactive turns. It was also noted 

that the total deflection of the dead or inactive coils on 

each end of the spring was greater than that which corres- 

ponded to the deflection of the free coils. 

Any slight variation in spring wire or coil diameter had 

an effect on the load deflection characteristics of helical 

springs. A 1% change in the mean coil diameter meant a 3% 

change in the load deflection characteristic, while a 1%
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change in the wire diameter resulted in a 4% change in the 

deflection characteristic (8°), 

It may be shown mathematically that the number of coils 

active at a given load is equal to the slope of the curve 

for one average coil at a given load over the slope of the 

curve for the whole spring coils at the same load. 

If the system is excited by a single oscillator, the 

discrepancy between the experimental and theoretical results 

may be due to the miscalculation of all the input data. 

Section II 

Conclusions drawn from the linear and non-linear 

aspects: 

In a linear system a resonance was produced when the 

forcing frequencywas equal to the natural frequency. 

In a non-linear system a resonance was produced when the 

forcing frequency was equal to the natural frequency or any 

of its harmonics. 

The natural vibrations of a non-linear system contained 

harmonics of its fundamental frequency and this fundamental 

frequency differed from the linear case by only a small 

amount. 

The force transmitted to the foundation was directly 

proportional to the spring deflection. 

In forced vibration of an undamped single degree of 

freedom system, the motion response, the force transmissibility
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ana the motion transmissibility are all numerically equal. 

The displacement response is defined by three frequency 

conditions, and the vibrating system is sometimes described 

as spring-controlled, damper-controlled or mass-controlled, 

depending on which element is primarily responsible for the 

system's behaviour. iY 

The rigid body mode could be excited by the beat frequency 

of the forcing function, and also by harmonics of this beat. 

With a double forcing function the combination frequencies 

occur naturally in a non-linear system. To explain the 

phenomenon that a rigid body mode was being excited when the 

forcing frequency was a harmonic of the rigid body mode, it 

must be assumed that a resonance occurs when these frequencies 

coincide with the natural frequency. 

The effect of beating in a non-linear system is quite 

significant, especially if the system has more than one degree 

of freedom. With such systems, instability occurs, that is, 

the amplitude of vibration at each mode varies periodically. 

Beating frequency may excite the system's natural fre- 

quency if the natural frequency is equal to (naw), where , 

n is a positive integer. 

Marked ultra-harmonic behaviour cannot occur unless the 

frequency of the exciting force is slightly above 1/3 of 

the natural frequency of the system. 

Marked sub-harmonic behaviour was observed experimentally 

when the frequency of the forcing function was about 3 times
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the natural frequency of the system. 

For non-linear systems, other than with a cubic restoring 

force, it was shown that the stable ultra-harmonics of 

orders (2r +1), r =1,2,3 .... exist and that sub-harmonics 

of order 1/(2r + 1) also exist. 

If the system was excited by more than one force, then 

the solution would have been difficult to obtain. The 

difficulty in obtaining the experimental results was due to 

the fact that the system was unstable and varying in ampli- 

tude with time. 

Points arising from the computer programme used: 

The idealisation of the structure must go to great lengths 

to achieve a true and adequate theoretical model given an 

adequate maximum core size. 

Since it was out of the question to represent the motor 

and its base in the computer programme, the tactic adopted 

was to increase the stiffness of the motor base. 

Minor modification was necessary concerning the fixing 

of the motor base in the frame. A special arrangement was 

built to fix the motor base to the frame firmly. 

It seems there is a need for obtaining more accurate 

assessment of the true joints condition in the vibration 

analysis of structures.
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Suggestions for Further Work 

In the model there were two separate areas of interest, 

i.e. the structure characteristics, and the non-linearity of 

the support. Further work can be carried out and studied 

in detail in the following aspects: 

Idealisation of the structure with more degrees of 

freedom, especially the effect of the unknown journal 

bearings dynamic characteristics. Also the damping effect 

and the effect of coupling in it, and the solution for the 

isothermal form of Reynold's equation with variable viscosity. 

More accurate representation of the rotating machinery 

with its components. 

Study of the non-linearity of the damping coefficient. 

In the dynamics of structure every case has its own solution 

according to its characteristic behaviour, but there is 

still the need for more correct idealisation of such cases. 

There is a continuing requirement for skilfully produced 

mathematical models. 

Study of the gyroscopic effect for more rotating machinery 

Coupled together with different speed ratios. 

Study of the coupling between the modes with a non-linear 

spring system, treating the case as a multi-degree of 

freedom system (i.e. one with more than 6 degrees of 

freedom). 

Optimum excitation analysis may be extended to the 

situation where transient vibration response of structures 

is a parameter for assessment of the structure condition.
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APPENDIX A 

Response of Discrete Systems by Modal Analysis 

It is always easy to adopt the following method 

referred to as modal analysis. The procedure is analogous 

to the Fourier analysis and can easily be applied to obtain 

the responses to initial conditions, harmonic excitations 

and periodic excitation. 

The following is derived for the general expression 

covering all the cases just mentioned. 

To start with the equation of motion 

{m]) {a} + [K]{q} = {a} (1) 

where the excitation functions Q, (t) are arbitrary functions 

of time (periodic excitations are special cases). To use 

the modal analysis it is necessary first to solve the eigen 

value problem 

[m] [u} [w?] = [x] [¥] (2) 

associated with the system described by (1). The solution 

of the eigen value problem (2) yields the modal matrix [u] 

and the diagonal matrix of the eigen values [w?]. 

Using the expansion theorem the response may be described 

as a superposition of the normal modes in the form 

{q(t)} = [u] {n(t)} (3) 

where {n(t)} is a column matrix consisting of a set of 

time-dependent generalized co-ordinates. From equation (1



it follows that 

= 44) -=eiful {a} (4) 

so that introducing Equations (3) and (4) into Equation (1) 

we obtain 

[m] [u) {#3} + [x] [vu] {n} = {0} (5 

Premultiply both sides of Equation (5) by [u]? giving 

[u]™ [m] [u] (4) + [uw]? [x] [wu] tnd = Jal? 40) 6) 

But the normal modes are such that 

(oJ? fm] fe) = [2]. fe)? [x] fe) = [wy (7) 

where [I] is the identity matrix. In addition, we can 

introduce a column matrix of generalized force Ny (t) which 

is associated with the generalized co-ordinates ny (t) and 

related to the forces Q, (t) by 

T 
{n} ee uy oe (8) 

In view of Equations (6) md (7), Equation (5) can be 

rewritten 

A + [w?] I) = ty} (9) 

which represents a set of n uncoupled differential 

equations of the type 

Mee) Fw Ce) = NL (ths rani 27 en 

(10)



This differential equation describes the motion of an 

undamped single-degree-of-freedom system. Hence the modal 

analysis consists of uncoupling the equations of motion 

by means of linear co-ordinate transformations; the 

transformation matrix is just the modal matrix [u]. Of 

course, the solution of the uncoupled equations of motion 

(Equation (10)) is considerably easier to obtain than the 

solution of the coupled equation (1). 

The solution of Equation (10) may be obtained by means 

of the Laplace transform method. Transforming both sides 

of Equation (10) we obtain 

2 & as 2a on s ny (S) Sn, (0) hy. (0) +w rv (S) = N,(S) 

(11) 
where 

n, (Ss) and N,(S) are the Laplace transforms of n_(t) 

and NY (t), respectively, and n, (0) and h_(0) are the initial 

values associated with the generalized co-ordinate ny (t). 

The subsidiary equation is: 

i N_(S) 
aps) = + 8 — 00) + 

57+ w_? s? + w? s? + w? 
= = oy 

A.(0) 

(12) 

By using Borel's theorem the rth generalized co-ordinate 

becomes 

1 e 

Rett) = aor : N.(t) sin w,(t-t)dt + n, (0) coswt 

° 
sinw_t 

eo 
Set (Jee cerca r We 

ye ly2 ..6. 1 (13)



The integral in Equation(13) is known as the convolution 

integral. 

The initial generalized displacement n, (0) and initial 

generalized velocity fy (0) are obtained from the expressions 

{n(0)} = [ul]? [m] {q(0)} , {A (0)}= [u]™ [m] taro} 

(14) 

where {q(0)} and {4(0)} are column matrices of initial 

displacement and velocities, respectively. 

Introducing Equation (13) together with the initial 

conditions of Equation (14) into Equation (3), the response 

{q(t)} may be obtained. The above formulation holds true 

regardless of whether the excitations Q, (t) are harmonic, 

periodic, or non-periodic.



APPENDIX B 

From the analysis of vibrations measured at discrete 

points on the structure it can be concluded that the 

frequencies of the characteristic components of the 

vibration are related in some way to forces generated in 

defined ways within the rotating system. The system 

vibrates at frequencies equal to the exciting frequencies 

and also at frequencies which may be multiples of, sub- 

multiples of or differences between any two frequencies. 

In other words, the system vibrates at frequencies equal 

to the exciting frequencies and also at frequencies which 

may be sum and difference frequencies according to the 

harmonic zone number. 

Figs. (1A) to (36A) show some of the response curves 

and wave forms for the motor running at different speeds, 

with different speed ratios and different signal picking 

positions. In these response curves the x-axis indicates 

the frequency in Hz and the y-axis gives the amplitude in 

volts. In the wave forms the x-axis gives the time in 

milliseconds and the y-axis shows the amplitude in volts.
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APPENDIX C 

Why Spring Steel acts admirably as an isolator 

Steel springs have a damping coefficient of less than 

one-half of one per cent, a fact which contributes greatly 

to the excellent results obtainable using them as shock 

absorbers. Absorbing vibrations by means of damping implies 

a dissipation of energy in the form of heat. This is energy 

irretrievably lost to the machine. 

This leads to a most important conclusion. When the 

operation of a machine sets up a vibratory motion in an 

adjoining structure, the energy used is spent for an entirely 

different purpose from that for which the machine was built. 

This energy is subtracted from the productive output of the 

machine. It is therefore profitable to regain as much as 

possible of this energy. 

A correctly designed spring supporting the structure with 

a minimum of damping will save a considerable amount of 

this otherwise dissipated energy. 

This effect, for example, can be demonstrated most 

strikingly on large motors, where it appears as an appreciable 

increase in speed when motors are correctly isolated. No 

definite figures about actual savings are available; some 

claim an increase in power of up to ten per cent. 

Damping, to prevent excessive movements, is advantageous 

only when the machine is operated near resonance speed, but



better means than damping are available for this purpose 

to the designer of a spring-supported structure. 

The benefits obtainable with a spring-supported structure 

are so great, physically and economically, that slight 

oscillation, hardly exceeding a few hundredths of an inch, 

is immaterial. A record taken from an actual rig shows 

the amplitudes vary from the time the set starts, passes 

through resonance, and attains operating speed. By making 

the springs very soft, main resonance will occur at a very 

low running speed and therefore be passed through so quickly 

that the small increase in movement due to resonance is 

hardly noticeable. 

It is evident that a vibration isolation of 100 per cent 

with no oscillation of the operating system is impossible. 

However, for a frequency ratio of 5:1 and with zero 

damping, the amplitude of motion will be within 4 per cent 

of the ideal machinery and vibration-absorbing efficiency 

of approximately 97 per cent. This means that the motion 

of the mass would be virtually imperceptible and the slight 

vibration transmission would be well beyond the human 

sensitivity range, detectable only by the finest instruments. 

Actually, at low frequency ratios and with increased 

damping an increase of vibration transmission takes place; 

and for the low frequency ratio the phase angle is not 180 

deg. but O deg. In other words, the stabilizing mass (the 

frame) is moving in the same direction as the disturbing



mass instead of against it and there is an increase in the 

vibration transmission. The phase angle is less than 90 deg. 

below resonance. It increases rapidly, a practically 

instantaneous change to 180 deg. with zero damping. That is 

why with a structure supported on springs, the amplitude 

of motion is reduced so quickly. The frame becomes an 

effective stabilizing mass as the phase angle suddenly changes 

from zero to 180 deg. The greater the damping factor, however, 

the slower the change in phase angle takes place, an added 

indication of the disadvantage of damping. 

For the vertical vibratory motions the deflection 

of the spring controls the natural frequency of the isolator, 

and therefore must have a definite value regardless of the 

weight it has to support. 

Hence it is important that the calculation of such a 

deflection in the isolator be made on a simple and reliable 

basis. The calculation of steel springs, based on modern 

practice employing the "Wahl" coefficient for the determina- 

tion of deflection and stress, is very simple indeed. 

The large deflections necessary for maximum isolating 

efficiency are easily obtainable through the choice of the 

proper physical characteristics, expecially with a coil 

spring which has a higher loading capacity per pound of 

spring material than any other type ofIsolator used for this 

purpose. 

Therefore it is the writer's belief that this type of 

spring is the best choice for the most important and



difficult isolation problem. 

Organic materials do not show the simplicity and advan- 

tages of the steel spring which does not depend upon its 

material, but rather, upon its wire diameter, outside 

diameter, etc. which may be chosen at will, while the 

former are restricted in their use as their elasticity 

depends upon the material itself and only to a minor degree 

upon shape. 

This defect explains why organic materials cannot 

provide the necessary large deflections in the isolator for 

any reasonable thickness. So we can say that steel springs 

act admirably as isolators because of their shape, form, and 

heat-treatment possibilities.



APPENDIX D 

The effect of an anti-vibration mounting on the 
  

Machinery 

A crucial aspect of vibration effects is the use of 

an anti-vibration mounting on the machinery. Apart from 

the reduction of transmitted vibration, the provision of 

an anti-vibration mounting has a number of important 

effects which influence the decision. 

1) The fundamental frequency of vibration of machinery 

and its mounting is low and must be run through 

when the machine is speeded up. 

2) A critical frequency of the shaft is increased by 

the presence of an anti-vibration mounting ‘*#) , 

3) The behaviour of a machine can be more easily 

and accurately monitored when it is on an anti- 

vibration mounting, as the amplitudes will be 

independent of the mounting stiffness. 

4) Contrary to what is often expected, the forces on 

the bearing, due to the out-of-balance forces, 

are reduced under normal running conditions by the 

presence of an anti-vibration mounting. 

5) When a machine is on a mounting, all equipment 

and the parts of the machinery other than those 

generating the out-of-balance forces must be able 

to withstand the movements. 

6) All connections need to accommodate the movement 

of the mounting.



APPENDIX E 

Why the change from traditional massive concrete to a 

more flexible steel structure 

Unwanted effects arise because of the transmission of 

vibration and structure failures. Considerable financial 

outlay and loss of production may result while substantial 

repairs or complete rebuilding are put in hand. 

One of the main problems confronting the vibration 

engineer is the lack of positive and practical information 

on general anti-vibration products on the market. The 

average machinery installation design did not permit time, 

nor indeed the money, for research into the individual 

problem, and engineers were thus often forced to select a 

machine mounting device from a number of commercial products 

and relied entirely on the published literature for the 

necessary technical data and it was important to make sure 

that one did not follow too blindly, other people's 

experience. 

Noble (58) in his investigation of the foundations for 

large turbo block generators, came across some questions. 

He indicated that there appeared to be little English work 

(or foreign translations into English) dealing with large 

turbo block generators. 

(se) 
Whitman succeeded in producing results to 10 per 

cent within the theory but in the case of large blocks with



circulating water pipes and steam pipes, an error margin 

of 15 to 20 per cent would cause a very serious condition, 

with the sort of frequencies which should be avoided. 

Whitman evaluated the structural form of foundation blocks. 

In the C.E.G.B. Research Establishment, theoretical 

calculations of a block, actual measurements were carried 

out while the block was in use. The results were found to 

have an error margin of up to 100 per cent. The fact that 

large variances were possible brought into question whether 

it was worth doing any calculations at all. A small-scale 

analysis block was also used. No correlation was found 

between the theoretical, the actual and the model. This 

confirmed the view that it is extremely difficult to predict 

characteristics of a turbo-block. 

The author's opinion is that the increasing size of the 

modern rotating machinery gives the main reason for bringing 

about a change from the traditional massive concrete 

foundation to a more flexible steel structure which is an 

assemblage of beams and plates. Because of its flexibility, 

it is important to be able to predict the dynamic behaviour 

of such structures at the design stage. 

The Finite Element displacement method may be used to 

determine matrices representing the mass and stiffness of 

the structure. The natural frequencies and corresponding 

mode shapes of the structure are found by solving an eigen 

value equation.



The response of the structure to sinusoidal excitation 

is estimated by solving a set of complex simultaneous 

equations. The structure damping may be represented by a 

matrix proportional to the stiffness matrix. Results for 

a typical theoretical case flexible platform are than 

compared with experimental measurements.



APPENDIX Ee 

This Appendix gives two computer programmes. The 

first was a programme to calculate the mass and stiffness 

parameters. 

The main programme then used the two matrices found 

by the first programme to calculate the natural frequencies 

and the mode shapes. This Appendix shows also the output 

of the main programme for the 4 main natural frequencies 

and the mode shapes.
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APPENDIX G 

Conversion Taples for Units 

Length 

eet 

ean 

0.001 in 

Mass 

ton 

1b 

Area 

1-sq.in 

Lsgq.tt 

Volume 

1 cu.in 

Force 

1 lbf 

(Mnemonic 

Torgue 

1 lbf.in 

Stress 

1 lbf/in? 

Work 

1 hph 

1kKwh 

Loft Ibe 

Stiffness 

1 1bf/in 

il] 
" 

W 
w 

W 
i] 

0.3048 

2524 

25.4 

1016.05 

0.4536 

6.4516 xX 

9.2903 x 

1.000 X 1 

16.387 

4,448 N 

apple wei 

0.11298 

6894.76 

MI 

Mo 

2.684 

3.6 

1.35587 

175.227, 

m 

mm 

um 

Kg 

Kg 

ion sq.m 

107? sq.m 

07? cu.m 

cu.cm 

0.453 Kp 

ght roughly 1 Newton) 

Num 

2 3 
N/m = 0.0703 Kp/cm 

N/m = 17.858 Kp/m


