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DESIGN OF A MULTI-PROCESSOR CONTROL SYSTEM 
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Master of Philosophy 1979 

Summary 

The aim of the research undertaken is to investigate the 
aspects of multi-processor systems concerned with their performance, 
control and architectural design. 

Various architectural designs are studied in terms of the 
tasks which can be performed in accordance with the objectives and 
goals of the system user, the resulting needs of the system and 
the types and characteristics of the microprocessors. 

The system eventually selected appeared to be architecturally 
feasible, essentially practical in its uses and takes advantage of 
the capabilities and flexibilities of the microprocessors in use, 
This design uses five INTEL 8008 microprocessors, which exécute tasks 
independently or in co-operation, exchanging data and information 
through common access to a shared memory. The shared memory feature 
is an essential part of the performance of the system and is the main 
design characteristic of it. ‘The system was tested and operated in 
isolation and subsequently operated in conjunction with a 9900/4 
Texas Instruments microprocessor system which formed an external 
communication system. Observations, conclusions and recammendations 
for improvement are given. 

The thesis aims to record cbservations of the operations of 
a multi-processor system in order to derive an assessment of its 
potential uses, particularly for automatic localised control of 
systems. 

MULTI-PROCESSOR SYSTEM, MULTI-PROCESSOR COMMUNICATIONS, TASK ALLOCATION, 

MEMORY SHARING, MULTI-PROCESSOR CONTROL
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INTRODUCTION 

Microelectronics is the most influential technology 

of the twentieth century. 

Within this technology the microprocessor is the most 

influential product, as an agent of radical change that is 

bringing new industrial methods, producing an evergrowing 

range of new products, and posing serious questions for 

society and any national economy. 

Dispersion and distribution of information processing 

functions have been given impetus by recent advances in 

semi-conductor technology and reduced hardware costs. 

Integrated circuit technology matured sufficiently 

to permit the realisation of the "microprocessor". A 

microprocessor may be defined as a device which fetches 

and executes instructions, in a predefined sequence, 

assumed to be stored in a memory with which the processor 

interfaces. 

With its present, and in the future, increasing 

capabilities the microprocessor can serve for a system 

designer as a control element and is responsible for data. 

acquisition, processing, display, setpoint control and 

communications 

Since the introduction of microprocessors, multiple 

microprocessor configurations have been the vision of



automatic systems designers as it approaches to higher 

reliability and higher computational bandwidth. 

In particular, multi-processor configurations in 

which a number of identical processors share a common 

memory or common memories, have been the subject of 

intensive study and analysis. 

Until recently, however, implementation of computer 

structures of this type have been limited to special 

purpose military computers. The two primary reasons for 

the slow acceptance of multi-processor configurations 

have been cost and the difficulties associated with the 

interrelated dynamic properties of systems control and 

fault tolerance. Although significant advances have been 

made in the latter two areas, a great deal of effort must 

still be expended in an attempt to develop an integrated 

methodology which combines the findings in each of the 

two areas. On the other hand, the rapidly decreasing 

cost of hardware which is exemplified by the widespread 

acceptance of microprocessors has provided the push for 

multi-processor investigations which are not necessarily 

bound by some of the more difficult problems of control 

and reliability. The relationship between total system 

cost and total system capahility can be described by the 

curves of Fig. 1. Ideally, the relationship between 

cost and capability should be linear, That is a small 

increment in system cost should yield a comparable increase
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in capability. The increase is a function of the slope 

of the curve: a larger slope is indicative of a more 

cost-effective investment. An installation however, of a 

multiprocessor finding itself with a saturated system may 

have to resort to large investments for more mainframe memory 

for more (or a different type) of secondary memory, or 

perhaps to an upgrade to the next more powerful member of 

an upwards compatible family. 

A desirable compromise between these two is one which 

allows system:components to be added.incrementally whilst 

requiring only modest increase in cost. In the past this 

has been the rationale for the study of systems in which 

components processors and memory in particular can be 

added as growth requirements dictated. Anadded feature 

of a system of this type has been the ability of the system 

to withstand failures in a processor, for example, without 

seriously impairing system performance. 

The ever-increasing capabilities of microprocessors 

coupled with their attractive cost performance in parallel 

with the hardware advances which brought lower costs and 

the potential for a variety of physical interconnection 

possibilities have reduced the limitations for the wide 

implementation of a multi-processor system. Systems 

which combine private and shared memories, buses, switches, 

stand-alone processors etc. are the study of many research 

institutions, ,public or private, in an attempt to realize



the problems and stretch the capabilities associated 

with these systems. 

This report tries to examine the problems of designing 

and goneeouin a multiprocessor system. The research was 

conducted here in the Electrical and Electronic Engineering 

Department of the University of Aston in Birmingham, using 

the INTEL's 8008 microprocessor. The Texas Instruments 

latest microprocessor system the 9900/4 was used in the 

final stages of the research as part of an independent 

communication system. 

Details on the operations of the 8008 and 990/4 are 

given in Appendixes A and B.
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CHAPTER 1 

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON OF DIFFERENT 

APPROACHES 

1.1 INTRODUCTION 

Since the announcement of the first commercial micro- 

processor in 1971, integrated CPU's have evolved from 

laboratory curiosities to ubiquitious fundamental system 

building blocks. Moreover, rapid advances in LSI mere 

technology during the early 70's have resulted in ever 

larger RAMS and ROMS. 

The advances made by LSI technology have not been 

applied solely to microprocessors and memories. Complex 

bit general purpose logic blocks are being integrated on 

single chips in increasing numbers. Amongst them the 

development of UART for data communications and single-~ 

chip peripheral interfaces. The ability to introduce 

microprocessor control into many systems currently 

implemented via hard-wired logic will bring to these 

systems all the attendant advantages of stored program 

control. These include greatly improved flexibility, 

reliability, ease of maintenance and lower cost. 

A natural evolution of microprocessor-based system 

architectures is that of distributed processing, i.e.



multi-micro-computer systems. In distributed intelligence 

systems, intelligent subsystems, dedicated to specific 

tasks, communication in an optimal fashion to improve 

system throughput, increase reliability, and add a new 

dimension of flexibility. 

There is currently no established methodology for 

interconnecting sets of processors for the purpose of 

building general-purpose or even special purpose 

computer systems. 

However, there does exist an interesting range of 

possibilities that span this range: computer networks, 

multiprocessors, and multiple arithmetic unit processors. 

1.2 COMPUTER NETWORKS 

Perhaps the most widely known computer network is 

the minicomputer/multiprocessor for ARPA network?. An 

important attribute of this network is the data 

transmission bandwidth between computers. The other 

important attribute of the inter-computer links is the 

access, or latency time for each unit of information 

sent between microcomputers. The system contains an 

expandable number of identical processors, each with 

some 'private' memory, an expandable amount of 'shared' 

memory to which all processors have equal access, 

and an expandable amount of I/O interface



controllable by any processor. The system achieves 

modularity and reliability by making all processors 

equivalent, so that any processor may perform any system task, 

thus systems can be easily configured to meet the through- 

put requirements of a particular job. The scheme for 

interconnecting processors, memories and I/O is also 

modular, permitting interconnection cost to vary smoothly 

with system size. In considering which minicomputer 

might be most easily adaptable to a multiprocessor 

structure, the internal communication between the processor 

and its memory was of primary concern. 

The overall design is represented in Fig. 1.1. 

Processors make access to shared memory via the switching 

arrangement. The shared memory of the multiprocessor 

system is intended to contain a copy of the program as 

well as considerable storage space for message buffering, 

global variables, etc. The ARPA network is an example 

of a loosely coupled network because of the 50 K/bits 

links between computer in the network and the 100-200 ms 

latency times associated with cross-network transmissions 

of packets of information. 

1.3 MULTIPROCESSOR SYSTEMS 

There are different approaches on the basic structure 

of a multiprocessor system. Its distinguishing character— 

istic is that the processors share primary memory.
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Depending on the applications some acquire private memory. 

Main memory and I/O channels are accessible by every CPU. 

Multiprocessor systems can operate in several modes. In 

one, the processor may co-operate in solving a problem 

which requires more computing power than a single 

processor affords. Each processor might control a 

position of an overall process, with the necessary 

co-ordination between the control strategies effected 

through the processor interconnection means. Both 

processors are of equal importance in maintaining control 

of the process, and both must be operating to obtain 

optimum performance. A more common mode of operation in 

industrial control is usually called duplexed operation, and 

its purpose is to increase the reliability of the total 

system. A primary processor normally performs the control 

task. In the event of a failure a second, back up 

processor takes over. 

1.3.1 A distributed multi-processor system 
  

The multi-microprocessor system developed by the 

Central Research Laboratories” is essentially a distributed 

microcomputer system composed of several kinds of sub- 

systems. Each subsystem is given autonomous control 

capabilities to facilitate control problems, securing 

independence between subsystems as well. Instruction 

execution cycles of typical LSI processors are 5 or 10
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times slower than the main memory cycle. Thus it is 

expected that the main memory can be shared in time and 

space with several processors to improve memory utilisation. 

The virtual memory was chosen in order to allow each 

user to use more memory capacity than it could if it 

were restricted by the actual main memory. Furthermore, 

to avoid operating system complexity, a page detector 

was developed which notifies a multiprocessor communication 

adaptor of a page being unused for a long time. Asynchronous 

ambiters were also used, which handle the simultaneous 

access to the main memory and I/O devices. 

Several advantages are claimed for distributed processing. 

They offer division of labour, as remove mace off-load 

the processor at the next higher level for enhanced 

performance of the total system. Although the central 

operating system must still be a multiprogramming system, 

the degree of multiprogramming is reduced, since some 

functions will be handled directly by remove computing 

units. They also offer a degree of modularity which is 

difficult to achieve with single centralized computer 

system. 

1.3.2 A single communication bus multi-processor system 

In an article on interprocessor communication scheme for 

: ; 3 
iuultiple microcomputer systems~,L.Eaton and E. Page advocate 

the single communication bus as a method of linking several
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devices together to allow sharing data with advantages on 

flexibility, universitality and economy. Despite the 

advantages of the single bus, it can accommodate only one 

message at a time, thereby restricting the rate at which 

transmission may occur. 

Alternative concepts for achieving communications 

between processors have made use of multiple buses, multi- 

part memories, or cross-bar switches. Typically, the 

problems of bus arbitration and synchronisation have 

become increasingly more cumbersome as the number of 

processors in the system increased. In order to exploit 

the advantages of the single bus concept and at the same 

time, minimize its disadvantages, the Pierce loop4 is 

being used as a communication bus. Conceptually, a 

Pierce loop is a set of registers connected in a circular 

manner that moves a packet of information in a fixed 

direction from one register to an adjacent register in 

each unit of time. Each processor has its own memory 

as well as ancillary circuits for bus interfacing and 

monitoring. Each processor has a unique name, p or v, 

and communication between processors takes place by 

tagging information to be transmitted with either the 

Pp or v name of the desired destination and placing it on 

a loop.
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1.3.3 Multi-processor systems with global and local 
  

memories 

In their article on a Multiple Microprocessor Network, 

J.E. May and L.J. Krakaver” chose a memory system allowing 

a limited amount of local memory for each processor, with 

a high bandwidth global memory system accessible by all 

processors. All global memory accesses as well as inter- 

processor and I/O controller communications are done over 

the system bus. Ths bus allows transfer rates of 1 byte 

every 167 nsec. It was estimated that each Motorola 6800 

or Intel 8080 made a memory/bus access on the average of 

once every 1.5 ms. Thus, the bus access requirements of 

8 microprocessors are roughly balance with the bus band- 

width. They also used a bus contention priority system, 

task dispatching and interrupts. A master controller 

was also used to perform clock generation, memory refresh, 

memory control, control panel logic and the I/O controller, 

and task dispatcher for the processors. 

Service requests can be from external sources or from 

queued internal requests. There are eight priority levels 

at which these service requests may be present. 

The distributed microprocessor system for Avionics by 

M. Moore® consists of identical processing elements inter- 

connected by a network of serial buses. A global bus 

interconnects all processorsin the network and provides a 

channel for network control and system data. Separate
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I/O ports are provided to eliminate the need for real- 

time command-response interaction on the network buses. 

The memory unit serves for both program and data 

storage. It is asychronous and can therefore be realized 

with a mixture of technologies. Total size required was 

4K and 8K bit words. The processor I/O unit is intended 

to be the interface between the network and aircraft 

devices. The device is a single channel that can be set 

up for autonomous or program controlled transfers. A 

16 bit parallel I/O path is used to multiplex command and 

data information. One interrupt line is provided to the 

device. 

The general configuration of a multiple processor 

system advocated by C. Reyling’, uses a common data bus 

as many microprocessors are able to time-share such system 

resources as memory, I/O, and peripherals. In this 

asymmetric structure individual processors have fixed 

specialized processing functions. It could be used in 

dedicated applications where type, frequency of occurrence 

and relative importance of tasks are known in advance. 

Processors may be specialized to carry out one particular 

type of task. Once processor, for instance may perform 

all I/O operations, another perform memory accessing, 

another provide file maintenance and so on. Specialisation 

May occur via the software programs executed (local 

memories), and hardware architectural features (number
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of registers, interrupt capabilities, stock processing). 

Often a side benefit of this partitioning is simplification 

of programming, since each task can now be treated as an 

independent module, with no provisions required for 

execution of other tasks by a given microprocessor. 

1.4 MULTIPLE ARITHMETIC-UNIT PROCESSOR SYSTEMS 
  

The third form of computer organisation that 

incorporates multiple processing elements is the multi- 

arithmetic and logic unit processor. The fundamental 

difference between this type of structure and multi- 

processors is that all the ALU's in the multi-ALU 

processor support a single instruction stream, while 

each of the processors in the multiprocessor supports 

its own instruction stream®, 

If we define a processor to be a unit capable of both 

decoding and executing instructions, then the multi-ALU 

processor is not really a multiple processor system. 

However, multi-ALU organisations are often considered as 

alternatives to multiprocessors and derive the same 

benefits from advances in LSI technology as multiprocessors. 

1.5 CONCLUSIONS 

Networks, multiprocessors, and multi-ALU computers, 

have been presented as three methods of organizing processors 

to build highly parallel computer systems. The three classes
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can be thought of as as varying along a single dimension, 

the degree of coupling between processors in the system. 

In the computer network the minimum access time for a 

processor is the access time to local memory. Ina 

multiprocessor, each processor has direct access to global 

data stored in primary memory. Since interprocessor 

communication occurs by sharing primary memory, the inter- 

action times are on the order of 1-50 us. In a multi-ALU 

computer, the analog of interprocessor communication is the 

transfer of control information that occurs between the 

control unit and its associated processing elements. The 

position of multiple processor organisations has a strong 

influence on its suitability to a particular application. 

An application consisting of a set of parallel processes 

that need to interact or share data only every 10-100 s 

can run on a loosely coupled computer network. At the 

other end, algorithms that require the parallel execution 

of arithmetic operations within single expressions force 

the interaction times between processing elements to 

occur almost every instruction cycle. Thus the average 

time between interprocess interaction becomes a critical 

time constant of an application, and proyides a good 

indication of the type of multiple processor organisation 

that will be most suitable. 

Several advantages may be realised with multiprocessor 

systems in general. Througput often increases almost
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directly with the number of processors while system 

cost increases by only a small amount. Shared system 

resources offer an economic adyantage by eliminating 

devices which would need to be duplicated in separate 

stand-alone systems. Shared resources also provide direct 

access to data which might otherwise require transmission 

from one system to another. 

The characteristics of LSI processors strongly suggest 

the multiprocess system as a practical alternative to a 

multi-task monoprocessor system, since the cost performance 

will be improved as a consequence of sharing expensive 

memory and I/O units.
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CHAPTER 2 

ARCHITECTURE OF MULTIPLE MULT-PROCESSOR SYSTEMS 
  

2.1 INTRODUCTION 

Current low cost-scale integrated me eroncncessore 

offer the potential of cost-effective multiple microprocessor 

systems. Advantages that can be gained by these systems 

ianclude high throughput, improved real-time response, 

better availability/reliability and modular expansion. 

Unfortunately, the design techniques, structures and 

organisations of multi-processor systems are not well 

defined. A host of problems including process partitioning 

into parallel tasks, allocating tasks, sequencing and 

interaction between processors, controlling system 

resources and overcoming the physical and architectural 

limits of microprocessors must be thoroughly researched 

before implementation progress can be made. To provide 

solutions and design guidelines for multi-processor and 

distributed processor systems incorporating available 

large-scale integrated microprocessors, ,existing 

microprocessor architectures, organisations and strategies 

have been analysed to derive those characteristics which 

are mandatory for workable multiple microprocessor systems. 

2.2 DESIGN ISSUES 

There are a number of factors that influence the design 

of a multi-processor system. Emphasis to each one of them
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would be given according to the goals, and objectives of 

the system designer, although these factors are interrelated. 

These factors are important in making a multiple processor 

system an effective computing machine and are involved in 

optimising the architecture to the particular application. 

2.2.1 Task Distribution 

The logical distribution of tasks is the relationships 

between the various tasks that the system is expected to 

perform. In a traditional computer system where the 

hardware is fixed, the logical distribution of these tasks 

affects only the structure of the software. In multi- 

processor systems however, it is possible to allocate 

processes to different processors. These networks,in 

effect, replace the multi-processing software of earlier 

computer systems with hardware. The fact that the jobs 

can be now done concurrently compensates for the lower 

performance characteristics of the components. One 

interrupt free method of dispatching processors to the 

data communication tasks could be done similarly to the 

mailbox approach used in Pluribus multi-processor system?) 

In this case processors are allocated to tasks on the 

basis of pending task priority, with all tasks running to 

completion on the allocated processor without interruption. 

At completion, the processor is re-allocated to the highest 

priority task requiring service. This, of course, eliminates 

context switching overhead but also puts constraints on



the hardware/software. All tasks must be executed in 

a time shorter than the overrun. time of those tasks 

requiring service. 

The degree of interactionbetween tasks also defines 

the organisation of the network. A network can be 

absolutely represented by a ngraph and if one associates 

an control flow with the graph certain logical 

relationships emerge ‘10,11,12). 

There is a distinction between the meaning of a graph 

in this context and its meaning in connection with 

traditional networks. In the latter case, various 

organisations are postulated in the hope of improving the 

mechanism for transmitting messages and the graph is used 

to describe the mechanism for routing messages. Since each_ 

processor executes its programs independently of the 

other tasks being executed, no attempt is made to associate 

any statement of program control with the graph. For 

multi-processor networks however, the graph is used to 

indicate the relationships between processors and hence 

provides a tool for identifying an isomorphic hardware 

structure. It is therefore more of a flow graph of 

program control. For example, the graph of a microprocessor 

ring network implies a sequential process where completion of 

a task in one processor initiates the execution of another 

processor. Alternatively a tree network implies the 

presence of a hierarchy or processes, where the completion



OT 

of several tasks in the terminal processors activates a 

process in the junction processor. 

2.2.2 Relative Bandwidth Between Tasks 

The relative bandwidth of the interfaces between 

these tasks:related to logical distribution of tasks,is 

the issue of bandwidth. Bandwidth is an important factor 

in deciding the physical distribution of processors. 

There are three common ways of handling interprocess 

communication: 

(a) Serial Communication 

(b) Parallel Data Bus 

(c) Multiport Shared Memory. 

Only serial communication allows any degree of physical 

separation. The other approaches imply the use of several 

processors combined in a single chasis. A recently advocated 

approach is a system in which several program processors 

are clustered around a central service facility. The cluster 

acts as a contemporary multi-programming system in hardware. 

The microprocessors in a service centre handle system 

processes while the program processors handle user requests. 

The service centre performs four functions: memory 

management, process management, file management and monitoring 

and protection. Each of these tasks could be maintained 

by a separate processor Oy et tage lel
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2.2.3 Real Time Response 

The specified response time associated with each task 

is the third issue. There are two components to this: 

(a) The maximum amount of time allowed to recognise 

a condition (latency) ,and 

(b) the total time allowed for a response. 

The real time response of a mutli-processor system depends 

on the computational power of the individual microprocessor 

and specifically on their instruction speed and I/O 

capability. In the microprocessor used in this research, 

the 8-bit Intel 8008, there were limitations on both counts. 

The particular 8-bit microprocessor provides one interrupt 

to the CPU and,in this case,was not used for reasons 

explained later in the thesis. Although this may be 

extended by using additional peripheral chips, the cost of 

these chips must be weighed against the use of an 

additional microprocessor module. Moreover, the relatively 

slow execution times of these units caused by their 8-bit 

data path, limits their total response for multiple 

interrupts. Accordingly, a common mechanism for many 

high speed applications is to allocate one processor to 

each real time process, 

It must be pointed out that newly introduced 16-bit 

microprocessors (TI 9900) would change the scope, approach 

and capabilities of these systems. However, we are 

concentrating on the 8-bit processors mainly and although
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the design issues would remain the same for the advanced 

16-bit processors, the system response would alter‘? aS 

17, 18) 

2.2.4 Reliability 

The reliability of a network depends on the reliability 

of the nodes and the reliability of the communication system. 

In larger networks, work on reliability has centred on 

insuring the integrity of the network even in the event of 

a failure of one of the processors. This work was focused 

on hardware mechanisms that minimise the coupling between 

a processor and the network,and on the design of software 

which detects improper transmission by a faulty processor. 

In addition these networks should incorporate a number of 

encoding rules and network protocols which are intended 

to insure the validity of the data. The reliability of the 

nodes is generally a separate issue and is usually not 

considered in the design of the network. On the other 

hand, on a multi-processor system one would like to ensure 

the reliability of the total system. The most obvious 

solution to that (given the low cost of microprocessors) 

is to provide a "backup" microprocessor to every 

microprocessor in the system, This backup monitors the 

operation of the primary unit and in the case of failure 

either replaces it in the system or reports the failure. 

If that sounds suspicious as the backup can cause the 

system to fail, another approach associates a monitoring
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function with one (or several) of the regular checks on 

the status of the other processor in the network and 

automatically detects nodes that are functioning 

improperly and removes them from the system. These nodes 

are then replaced with previously inactive nodes which 

have been included in the system with the specific purpose 

of acting as spares. A combination of the two above 

mentioned approaches can be also considered. 

The security and reliability of the system is very 

important as in current practice in microprocessor 

environments long down-times cannot be toleratea!”) , 

2.2.5 Cost 

Cost is clearly a significant issue in any design. 

Multi-processor systems differ from traditional networks 

not only in the total cost being dropped, but also in 

that the relative cost of the processor vs communications 

has shifted dramatically. This affects not only the range 

of applications but also the configuration of the network 

since we are dealing in an environment where in most cases 

the interface to any network will be a significant portion 

of module cost. In most cases though, it is felt that 

there will be a tendency to localise the network; to avoid 

any long distance method of communications and to reduce 

the bandwidth of any remove communication.
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2.3 ANALYSIS OF THE ORGANISATIONAL STRUCTURE OF 
  

MULTI-PROCESSOR SYSTEMS 

In the previous section we examined the design factors 

that influence the architecture of a Mule er eteaaon system. 

It was stressed that the flexibility, simplicity and 

capability of the microprocessors can provide almost any 

architectural design (within the limitations of microprocessors) 

to suit the objectives and goals of the system designer. In 

this section we examine some of the existing conventional 

architectures of multi-processor systems. 

Distributed, parallel and pipeline architectures have 

been recognised as feasible approaches to provide high 

throughput systems ‘15, uy 

2.3.1 Distributed Processor Architecture 

Distributed processing refers to a specific technique 

for interconnecting a number of processors. It utilises 

a Bus Interface Unit (BIU) to connect each processor to 

a single bus. There is little CPU involvement in the 

communication function. Addition of a processor will 

not affect the interface of those processors already 

in the system (Fig. 2.1). The primary advantage of this 

architecture is thought to be physical distribution and 

incremental expandability. An additional potential 

advantage of microprocessors in a distributed system is 

improved cost/performance (Fig. 2.2). The most obvious 

critical design issue is to determine whether or not a
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given application can be partitioned and executed 

concurrently. Tasks and their actions must be known in 

advance so that the system functions can be subdivided 

among the individual processing elements. This includes 

segmentation of software into dedicated program segments 

for each processor and assignment to controlled variables 

and devices to each processor. Such static allocation 

of tasks minimises program interaction which permits 

simplified development and debugging of individual program 

segments. Interprocessor communication is usually restricted 

to passing messages or data blocks through shared peripherals 

or serial communication links as opposed to a shared main 

memory. Failure though,of any processing element (CPU 

or I/O channels), may seriously degrade system performance 

as the system cannot dynamically shift tasks that have 

been assigned to the defective element. 

A myriad of possible distributed intelligence 

microprocessor systems (DIMS) structures exists. The 

master-slave organisation 29) (Pig. 2.3), offers many 

advantages to multi-microprocessor systems. This system 

employs a single integrated operating system to dynamically 

allocate tasks as they are received. A resource allocation 

processor (master) can allocate tasks to processing modules 

(slaves) through a resource request table. PMs may be 

identical and capable of executing any task (symmetric) 

or may be pre-assigned to handle special functions 

(asymmetric). The symmetric multi-processor is used in
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a general purpose environment where processing requirements 

are constantly changing. Since PMs are equivalent, a given 

task can be re-assigned in the event of PM failure. By 

contrast the asymmetric multi-processor is compesed of 

PMs specially configured for a set number of tasks. Incoming 

tasks must be queued to assigned PMs even though other PMs 

may be idle. Although this may decrease throughput it 

simplifies the operating system, which becomes a task 

scheduler and is relieved from the identification and 

allocation of parallel tasks. As a system becomes more 

asymmetric more tasks must be allocated to specific PMs 

and portions of the operating system becomes more 

individualistic. 

Another possible formation is illustrated in Fig. 2.4. 

of a mastermmaster structure in which any CPU can communicate 

with any other CPU. In this organisation all the CPU's 

must support compatible interprocessor interfaces and I/O 

instructions. This organisation may well be effective for 

large communication networks. However, it may not be 

suitable for multi-microprocessor systems where the tasks 

to be performed by specific CPU's may vary drastically. 

Yet another possible organisation is the ring structure 

illustrated in Fig. 2.5, In this organisation though,if 

the information bus is also needed by the individual cpu's 

for their own processing, severe contention problems will 

occur with a resulting degradation in the performance of
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the overall system. 

Distributed multi-processor organisations could be 

applicable to avionics slip-board control command and 

control and weapon control functions as have been 

considered as being amenable to partitioning. 

2.3.2 Parallel Processor Architecture 

Parallel processing is the concurrent processing of 

two or more portions of the same system algorithm by two 

or more processing units. This can occur at the task, 

sub task, instruction stream or data set level. Two 

organisations of parallel multiple processors can be 

identified; the single instruction multiple data (SIMD) 

and the multiple instruction multiple data (MIMD). 

In SIMD architectures, a single control unit fetches 

and decodes instructions. The instruction is executed 

in the control unit itself or its broadcast to other 

processing elements (Fig. 2.6). One subclass of the SIMD 

architecture the ‘array processors', where instructions 

manipulate vectors of data simultaneously and the control 

unit has limited capability ,appears to be cost-effective 

for very specific applications(Fig.2.7). Rationale 

for this organisation is the high throughput obtained by 

simultaneous (parallel) operations of processors on 

different data streams. Computations must be describable 

by vector instructions with many identical operations in
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action simultaneously on different data; high speed data 

routing between processors is necessary; and operands 

that are manipulated simultaneously must be fetched 

simultaneousiy. Applications can be in weather predication, 

air traffic control, radar signal processing or any high 

speed vector computation. 

The MIMD architecture achieves parallelism by performing 

independent tasks on separate data sets concurrently and 

combining results of the execution of the independent tasks. 

To attain high efficiency, proper synchronisation of processors 

and allocation of tasks is necessary to balance the processing 

load. 

2.3.3 Miscellaneous Architectures 

The pipeline architecture consists of a number of 

ALUs, cascaded and inter-connected based on a specific 

algorithm. The architecture is discussed because it 

demonstrates one of the primary advantages of microprocessors: 

simplification of the design process itself. The application 

for which the pipeline was designed is signal processing. 

The real advantage found in this architecture is the ease 

of the design, because of the use of assembly language. 

Multi-processor,systems could be further classified 

according to the degree of interaction between processing 

modules (CPU's or I/O channels), often called coupling ‘4°" 

gn). We should add at this point that processors passing
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data through shared memory are sometimes considered to 

be tightly coupled, although some designers disagree with 

this classification. Usually there is no program interaction 

between loosely coupled processors although they may share 

read/write memory to pass information. When the system 

is to consist of numerous small modules for general purpose 

applications, the connections are necessarily of the loose 

type. In this case the processors should be able to access 

memory with:as much sharing as possible, communicate with 

one another through shared resources with minimum 

contention problems, and be capable of dynamic configuration 

in the eventof PM failure. This type of system requires 

high throughput and/or high availability. The author feels 

that these systems will eventually replace many minicomputers 

in data based inquiry/response and in real time control 

applications. 

This production is adyocated by reasoning that: 

(a) Inherent flexibility permits small increments of 

growth with minimum system redesign (extensibility). 

(b) Ability to dynamically allocate tasks to balance 

the processing load improves throughput and real-time 

response. 

(c) Ability to dynamically reconfigure PMs in the event 

of failure. 

(d) LSI is cost-effective and a multi-processor system 

can overcome the ultimate physical limits of LSI
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for high performance applications (15/21/22) | 

One or more of these items must be chosen as design 

goals for a microprocessor based multi-processor system. 

2.4 CONCLUSIONS 

The -microprocessor revolution has made possible the 

economical de-centralisation of computing power. This 

has been achieved not necessarily by making systems with 

improved cost/performance, but by making microprocessor 

control of many functions economical and practical. The 

microprocessor has made it economically possible to 

introduce processor control to a host of new applications, 

and thus to the diversity of architectural designs. 

Multi-microprocessor structures are largely effective in 

situations where the tasks to be performed can be 

effectively and efficiently partitioned. This would give 

rise to further diversity of architectural designs as I/O 

processing capability is improved coupled with improved 

reliability and fail-safe features. An additional benefit 

resulting from the effective partitioning of tasks in a 

multi-CPU system is that the softwane, by being partitioned 

into several relatively independent packages, is much 

simpler and runs more efficiently. This is especially 

effective in a system supporting many interrupting devices.
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CHAPTER 3 

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR 
  

SYSTEM 

Bye ls INTRODUCTION 

Allocation of tasks and sychronisation of micro- 

processors are the most serious problems in the design 

and operation of multiple-microprocessor systems. They 

involve identification of a parallel process, partitioning 

the process into subprocesses or tasks, establishing a 

priority scheme for the tasks, assigning tasks among 

various microprocessors, sychronising them, and providing 

some means to dynamically reassign a task in the event 

of PM failure. Although solutions to these problems have 

been proposed the implementation is very difficult. One 

of them is by expressing potential parallelism in the 

coding via a WAIT-SIGNAL. This approach was used in this 

research project. It is obvious that the smaller the 

number of microprocessors, the easier the process. 

Processes or tasks operating in a micro-multi-processor 

system share a number of resources to improve performance. 

Resources include hardware (processors, memory, I/O channels, 

registers, buses) and software (programs, data files, buffers, 

variables). The more shared resources that are available, 

the greater the control required for the allocation and 

resolution of tasks. Too much sharing results in complex 

control structures and task conflicts. This can produce
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low throughput or deadlock as two or more tasks are 

waiting for resources that have already been assigned to 

each other. 

3.2 HARDWARE RESOURCE CONTROL 

Arbitration, flag test and set and interrupts are 

the most common methods of hardware resource control. 

Arbiters 

An arbiter accepts requests from PMs (active 

elements), resolves contention and alerts the elements 

of its decision. 

A centralized arbiter consists of a single self- 

contained hardware unit. Intel has designed a custom 'bus 

controller' chip for this function on the SBC 80/CO micro- 

computer poard?, Widdows has developed a 'lBus arbiter' 

for the MINERVA system=* and Reyling has proposed a 

resource allocation microprocessor’. 

A decentralized aribter is one in which control logic 

is distributed throughout the active elements connected to 

a shared resource. The arbitration method includes daisy 

chaining, priority encoding, and polling asynchronous 

requests, (flags and interrupts). Choice of method depends 

on simplicity, device servicing requirements, expandability, 

susceptibility to failure control line limitations and 

controller speed’>. Arbiter speed should be such that the



overhead to access a device is only a fraction of the 

time spent using the deyice. For example, a high speed 

cycle-shared memory requires a hardware arbiter, while a 

bleck of shared memory can be allocated by a microprocessor 

arbiter. 

Status Flags 

Conflicts over shared memory and I/O can be resolved 

via the flag-and-set procedure. The requesting processor 

tests the states of the flag, which is a resource busy 

indicator. If busy, the microprocessor must wait before 

obtaining the resource. If not busy, the flag is set to 

busy during resource access, and then reset when the 

microprocessor is finished with the resource. Simultaneous 

requests for a resource must result in only one processor 

gaining access. Since requests for a shared resource occur 

asynchronously, care must be taken that more than one 

processor does not gain control of the resource. For this 

reason the test and set operation must be indivisible. 

If memory is used for the status flag, it must be 

capable of a read-modify-write cycle before permitting 

further accesses. This requires a lock on the memory 

address. Although it is easier to lock a block of 

a3 in that case the memory than a specific address 

remainder of the module is unavailable to other processors. 

For this reason status bits are sometimes implemented 

as a set of dedicated external registers that perform the



read-modify-write cycle themselves. 

Interrupts 

Interrupts can be used to service internal processor 

errors, clock signals, external devices or to sychronise 

interprocessor communications (shared memory). Servicing 

interrupts in a micro-multi-processor system is usually 

assigned to the originating microprocessor. External 

devices may be preassigned to individual processors or 

dynamically directed to whatever processor is best 

equipped for service. This real-time assignment can be 

done through a centralized hardware arbiter, a dedicated 

high speed processor or by individual microprocessors. 

Assignment is made on the basis of servicing capability, 

availability, task allocations, and software priorities 

of each processor. Interprocessor communications can be 

sychronised by passing an interrupt request signal from 

one processor to another, such that requests for each 

can be wire-ORed onto one interrupt level dedicated to 

interprocessor communications. A prioritized vector, 

corresponding to the highest priority processor requesting 

the bus, can be placed on the data bus when the interrupt 

has been acknowledged. Handling external device interrupts 

is perhaps the most critical decision in implementing the 

device interface to the micro-multi-processor systems. 

Microprocessors with highly advanced interrupts facilities 

and priority levels are requested.
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The ability of the microprocessor to do useful work 

while waiting for availability of system resources is very 

valuable. The microprocessor could then perform background 

processing of tasks not requiring system resources. This 

is particularly important in applications where the micro- 

processor must be able to respond in real time to local 

interrupts. 

3.3 CHARACTERISTICS OF PROCESSING MODULES 

The composition of Processing Modules (PMs) depends 

to a large extent on system bus structure (interconnection 

topology), interprocessor communications, and the number 

and type of shared resources. In general, the PM includes 

a CPU (microprocessor chip, clock, bus control, buffers,) 

local or private memory for instructions and data storage, 

system bus interface circuitry, memory map hardware, 

interrupt handling logic, and I/O device controllers for 

private I/O. It is also possible for each PM to share 

Memory with other PMs. In cases where system bus width 

is significantly greater than microprocessor word length, 

an instruction stack can be used to lighten system bus 

loading?*. One critical area of PM is the system bus 

interface logic. Flexibility and performance of the 

interconnection topology are directly proportional to 

the complexity and expense of this interface logic. If 

heterogeneous microprocessors are used, interface logic
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will be unique for each processor. In particular 8 and 

16-bit processors may communicate over the same bus, 

requiring distinct interfaces for each microprocessor. 

Memory map hardware is used to translate addresses 

provided by the microprocessor into addresses in physical 

memory (both prive and shared). In a parallel computation 

environment, precise memory requirements for a group of 

concurrently executing programs cannot be predicted ahead 

of time. As a result, programs and data must be moved and/ 

or compacted to make room for additional items. The memory 

map facilitates dynamic variation of physical locations 

during program execution without actually moving the 

locations. If data are to be moved, the map function is 

changed to reflect a new physical address assignment. The 

memory map also provides a convenient means for two or 

more programs to share data. References to shared data 

are mapped onto the same physical addresses, while references 

to private data are mapped into distinct locations for each 

PM. It is sometimes possible to use software to achieve 

the memory map function. To do this, extensive use is made 

of indirect addressing through indirect pointers.in micro- 

processor register or in read/write memory, and indexed 

addressing. 

3.4 INTERCONNECTION OF FUNCTIONAL MODULES 
  

Some organisations for interconnection of PMs, shared 

memory, and shared I/O are the time-shared common bus, multi-
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bus/multiport memory and crossbar switch2?1/26 | 

The single time-shared system bus shown in Fig. 3.1 

is a shared resource, therefore a means must be provided to 

resolve contention (fixed priorities, first-in, first-out, 

queues). Interference between PMs requesting the bus 

depends on the length and frequency of PM bus cycles, memory 

and I/O cycle times and the number of PMs that share the 

busy (system capacity). The lower the ratio of bus cycles 

required by an individual PM to the total number of cycles 

available, the higher the system throughput. For this 

reason, private memory and private I/O are highly advantageous. 

Total system capacity is limited by the bus transfer rate. 

Disadvantages of this bus structure are that system 

expansion increases contention which degrades throughput 

and increases logic. 

Multiported systems (Fig. 3.2) employ multiple 

dedicated buses that are connected between PMs, shared 

memory and shared I/O. Each of the latter two (passive) 

elements have multiple ports which provide excellent 

throughput, bus contention logic must be built into each 

passive element to acknowledge or hold PMs competing 

for the resource. 

In the crossbar switch organisation any passive 

element can be connected to any PM for the complete 

duration of a data transfer through the crossbar matrix. 

(Fig. 3.3). This scheme can produce high system throughput.
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Other bus structures are possible, either as a 

combination of the above mentioned, or others depending 

on the tasks.the system performs. 

3.5 INTERPROCESSOR COMMUNICATIONS 

In the multiple instruction multiple data organisations, 

a major interprocessor communication media is the mailbox 

memory (Fig. 3.4). Processors in this context are central 

processing units (CPUs), or I/O direct memory access (DMA) 

channels. Mailbox memory is a shared resource consisting 

of messages, data files, request blocks or queues. The 

sending processor structures information and places it in 

the mailbox. The receiving processor 'looks' in the 

mailbox, to indicate that there is something in the mail- 

box for the recipient processor@°, Flags, jump conditions, 

interrupts or special instructions can be used to alert 

the receiving processor of information to be taken. A 

status bit, residing in memory or external hardware, is 

generally used to indicate the condition of the mailbox. 

Fora?’ has proposed PUT and GET instructions for a 

mailbox controller with BLOCK and WAKEUP signals from 

the controller to processors on the system bus. This 

controller can process only one PUT or GET signal at 

any time, This competition for mailbox memory must be 

resolved by arbitration.
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3.6 CONCLUSIONS 

Ability to identify and isolate failures to achieve 

fail-safe capabilities is often a prime motivation for a 

multiprocessor design. The degree of fault detection, 

task reassignment, and duplexing of functional units 

depends on the applications requirements. Failures can 

be detected using either parity on the system bus for 

both address and data, or local diagnosis for each PM in 

private read-only (ROM) or PROM memories, or by protected 

memory to detect address out of range, or by invalid op 

code, or other invalid condition detection. 

The architecture most likely to be employed in the 

very near future will consist of asymmetric PMs, a single 

bus with a centralized arbiter, or a multiport bus, 

dedicated assignment of interrupts, interprocessor 

communication through shared memories, hardware flags, 

and limited failure recovery. The operating system will 

structure tasks into request blocks and queue them to a 

preassigned Processing Module. Two to four microprocessors 

with the same number of I/O channels are, one feels, a 

reasonable number for prototype multi-processor system.
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CHAPTER 4 

PERFORMANCE AND COST OF MULTI-PROCESSOR SYSTEMS 

4.1 SYSTEM THROUGHPUT 

Determination of multi-processor systems throughput 

as a function of the number of microprocessors required, 

is a primary concern. In the general configuration of a 

multiprocessor system (Fig. 4.1)system throughput (tT) 

is defined as the number of instructions executed per 

second by the system. Maximum value of qT. would be 

equal to the number of processors times the maximum 

throughput per processor, if not for bus interference 

(all memories and peripheral devices are accessed over 

a single bus). System throughput is determined by 

the number of processors (N) in the system, throughput 

of an individual processor when there is no bus inter- 

ference (Tt) and the amount of bus interference that 

actually exists in the system. (The effects of inter- 

ference only when the bus is usedfor making single-word 

transfers are considered here, contention for multiple- 

word transfer units or I/O devices that effect throughput 

may be considered in a analogous to the following manner). 

When bus interferencence occurs, one or more 

processors must wait for the bus to become free, reducing
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throughput of individual processors and therefore of the 

entire system. The amount of bus interference in a system 

is a function of the bus utilization requirements of 

individual processors. Bus utilization (8)is defined as 

the fraction of available bus cycles required by an 

individual processor. The value of 8 for a given system 

is determined primarily by uP instruction execution time 

and memory read cycle time. For the system used in the 

research and memories, 8 is likely to be in the range 

of O.1 to Oe5) 

For given values of N, tT, and 8 the max., average 

and min. values of system throughput T may be found. 

Consider p = 1/3 and three (N=3) processors in the system, 

then max. throughput will occur if each processor uses only 

every third cycle. This can occur only if the probability 

distribution of bus reference intervals is Por 1, 250, P.=1, 
3 

Poe =0O (R; is the probability of a bus reference every i 

bus cycles). The average bus utilization is determined 

from the probability distribution by the formula’’3714 

For the case of P3=1 N=3, the processors will sychronize 

with each other and no interference will occur. If N 

is greater than 3, throughput will be limited by
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the bus capacity to oT For N less than or equal to 3 

there will be no interference (after sychronization) and TS 

will equal NID: (Fig. 4.2a). By extending this reasoning 

it may be said that if 8 = 1/I, max. TS occurs for Pi=l, 

P, (i#I) =0. 

The min. value of T. can be considered also. The worst 

case possible would be if all processors accessing the 

bus always had to wait for N-1 other processors before 

gaining access to the bus (assuming the processor waiting 

longest has highest priority). In this case all bus 

reference intervals would be increased in length by N-1 

bus cycle intervals. The decrease in throughput could be 

derived as 

Ratio = R = ration of throughput with maximum interference 

to throughput with no interference. 

  

es 
} api 

i=l a 1/8 zs aE 
= ol 1/78+N=1 1+8 (N=T) 

y (44N-1)P, 

minimum TS = (throughput with no interference) x R. 

= pe ee 
HEPES ee (N=) 

This minimum value of throughput may be used to determine 

the range of possible throughputs and is shown in Fig. 4.2a 

for B= 1/3 and 4.2b for B= 1/10. It could be noticed that



=a56 

even in the case of maximum interference there is an 

increase in TS with N. It should be said that the 

throughput data in Fig. 4.2a and b are not necessarily a 

direct indication of the useful work throughput for a 

system. Expanding the number of microprocessors in a 

system will increase its processing overhead if partitioning 

of that system into a larger number of functions augments 

the supervisory problems of indicial function co-ordination, 

or if the individual microprocessors are not efficiently 

utilized and therefore load down the bus when not performing 

useful tasks. In other cases overheads per processor may 

decrease as N increases, when the number of microprocessors 

available allows a more natural partitioning of work 

functions. 

4.2 SYSTEM COST 

Having examined the potential increase in multiprocessor 

systems throughput, it is now possible to find out how much 

this added throughput will cost. This is a strong function 

of the ratio of the cost of system resources, designated Cpr 

which includes memory and peripheral devices, to the cost of 

an individual microprocessor, designated Cpr which includes 

CPUs, data bus interface circuitry, power supply cost, buffers. 

Total cost is then C, + NC: Let us consider two systems, one R 

with Cp = CRys and the other Cp = Cp/30. eS assumed to be 

the same in both cases). Considering costs vs throughput 

(Fig. 4.3) it is clear the advantage of a high ratio of Cp 

to cD as well as low value for 8. As N approaches 1/8
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system cost increases rapidly. The minimum value of 

c./T, can be calculated in order to determine the optimum 

number of microprocessors in a system. For microprocessors 

the ratio of Cp to Ce is typically low since the current 

cost of a complete microprocessor is low, compared with 

memory, mass storage, peripherals’. A means of decreasing 

the apparent value of 8 is to provide some memory local to 

each microprocessor. This memory is accessible without 

utilizing the system data bus and contains data utilized 

only by that particular microprocessor. 

4.3 SYSTEM CONTROL 

The use of microprocessors in a multi-processor system 

organisation requires the provision of special control 

functions in addition to those of a stand-alone system. 

Control mechenisms are required for interprocessor 

communication and resource allocation. One way to handle 

resource allocation is to provide a flag which indicates 

whether a resource is available or in use by a microprocessor. 

A microprocessor requiring the use of a resource checks 

the status flag. If the flag is in the ‘not busy' state 

the microprocessor sets it to the 'busy' state and uses the 

resource resetting the status flag when done; if the flag 

is 'busy' the microprocessor waits until the 'not busy' 

state is indicated. 

The status flag approach thus requires a test and set
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(ras) 28 and a reset operation. One restriction on TAS 

is that it be indivisible with respect to other micro- 

processors; that is, if two microprocessor simultaneously 

execute TAS, only one should gain access to the resource. 

If the system data bus allows only read or write trans- 

actions with memory, and sequence of successive bus cycles 

eannot be dedicated to a single microprocessor, it will 

not be possible to provide an indivisible TAS routine. If 

the system bus allows a read/modify/write operation in a 

single bus cycle, TAS will be indivisible if implemented 

in a single bus cycle. For most microprocessors a standard 

instruction with this capability is not supplied. An 

additional property highly desirable for the TAS operation 

is a 'non-busy wait' capability, which allows the micro- 

processor to go into an idle state that is interrupted 

when a requested resource becomes available. This prevents 

the system data bus from becoming overloaded when several 

microprocessors are repeatedly testing a bus status flag. 

Often features may be desired for TAS operation. If a 

microprocessor has several different tasks it could work on, 

and each task requires a different set of resources, the 

ability to request one of several groups is useful. Also 

valuable in some applications is the ability of the micro- 

processor to perform background processing while waiting 

for availability of system resources. This is particularly 

important in applications where the microprocessor must



be able to respond in real time to local interrupts. 

When a microprocessor is initialized it executes the first 

instruction from a fixed location in memory. If this 

location is in system memory, all microprocessors execute 

the same instruction, and a method to direct each processor 

to its appropriate task must be devised. This problem is 

golved if local memories containing these addresses are 

used. 

4.4 CONCLUSIONS 

Multi-microprocessor networks can be configured economically 

to boost the service capabilities and reduce resource over- 

heads of a system. However, it is clear that there is a 

limit to the number of microprocessors that can be connected 

to share a resource, without degenerating individual through- 

put and response. An assessment has been given on the 

system's behaviour. This should provide sufficient inform- 

ation to predetermine the relationship between resource 

utilization, the processor throughput and system's control.
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CHAPTER 5 

A_MULTI-PROCESSOR SYSTEM USING THE 
  

INTEL 8008 MICROPROCESSOR 

5.1 INTRODUCTION 

The prime objective in this research ts to study the 

effect of a processor to memory performance and in 

particular a number of microprocessors accessing a shared 

memory through a common bus. The microprocessors used 

were the INTEL 8008. The 8008 is characterised by a 

five state processor cycle, with each state requiring 

2.8 us. When the 8008 reads from memory to get the next 

instruction, it presents on its data bus during state Tl 

the lower eight bits of the desired address. It proceeds 

to state T2, where the upper six address bits and an 

indication that the 8008 wants to read appears on the bus. 

If by the end of T2 memory has not responded READY, 

indicating that the desired byte is being presented on 

the bus, the 8008 goes into the WAIT state, where it 

remains for as many four usec periods as are necessary 

for memory to respond READY. In the event that memory 

responds READY before the end of T2, T3 is entered and 

the byte.is brought into the CPU. If necessary states 

T4 and possibly T5 are used to execute the instructions. 

The maximum memory bandwidth capable of being utilised 

by the processor is eight bits every twelve usecs,
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5.2 DESIGN CONSIDERATIONS 

In the design stage the capabilities, advantages 

and disadvantages of the 8008 were considered, as at the 

time of the research more advanced microprocessors were 

developed thus changing and improving the design 

constraints posed by the 8008 and offering greater design 

flexibility. Expandability of I/O features was 

considered in the design as it was desirable in a multi- 

processor system to permit connections with computers 

and terminals. Expandability of memory was another design 

feature that was considered as the requirements of the 

whole system could demand expansion of memory to provide 

greater buffer storage for any future additional links 

to the system. The question of local or global memories 

was also considered. In order for multiple microprocessors 

to operate effectively together it appeared at least two 

pre-requisites has to be met: 

(1) minimal interference and dependence among the 

processors, and 

(2) a convenient low overhead interprocessor 

communications facility. 

If a global memory was to be used it would require a 

large bandwidth to support simultaneous accesses by the 

2,3, 4 or more microprocessors ‘t/120) |
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Eventually, the design shown in Fig. 5.1 was 

prevailed. Every two processors to share a common 

memory. Each processor had its own I/O facilities and 

the memory system chosen allowed a considerable amount 

of local memory for each processor with a common memory 

shared by every other two microprocessors. The concept 

was to keep the core software programs (those executed 

most frequently) in the local memory to reduce the amount 

of common memory access contention among the processors. 

It was thought that the common memory should be used as 

a storage of information common to both processors. 

The processor buses were designed to support the 

communication of the two processors through the common 

memory and the I/O buses were independent for the two 

processors. When both processors are trying to access 

the common memory, one has access to it and the other is 

forced to a WAIT state, until the bus is cleared for 

access. The microprocessors are identical and could 

perform any task. If 4 or 6 microprocessors were to be 

used with 2 or 3 common memories respectively, the 

distribution of tasks and software should be considered 

to improve reliability of the system and compensate for 

any break down of any of the microprocessors within the 

system. 

One important factor that influenced this particular 

design was the concept of the priority resolution and
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interrupt priority levels. Since the performance of 

the 8008 interrupts was not reliable, interrupts were 

not used and the priority logic in the common memory 

configuration was designed as explained in a latter 

section. 

Thus the design with two processors sharing the 

common memory was preferred and in the case of a 

simultaneous access of the shared memory there is an 

arbitrary priority order. In the case that three 

processors were using tthe common memory without priority 

level accessing, the design would have been more 

complicated and the hardware connections would have 

caused considerable problems. 

5.3 DESIGN AND CONSTRUCTION OF THE 8008 CPU SYSTEM 

The CPU module is the Central Processor for the 

system. In this capacity the following control 

requirements are performed, 

(a) The execution of program instruction, the control 

signal to RAM, PROM and I/O modules. 

(b) All the necessary arithmetic, logical and data 

manipulation operations needed for program operation. 

(c) Overall system timing. 

The module itself contains an INTEL 8008 CPU chip, 

logic that supports the chip, 2K bytes of PROM and 1K bytes
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of RAM memory. In addition to the processor chip, the 

module contains the following logical blocks. 

(a) Timing generator 

(b) Cycle decoder 

(c) State decoder 

(ad) Bus logic 

(e) Address latches 

(£) I/O latches 

(g) Read/Write control. 

Figures 5.2, 5.3 and 5.4 show the functional 

relationships between these blocks. Complete control 

over the rest of the logic on the module, according to 

the instruction it received from memory, are exercised 

by the 8008 CPU chip. The timing generator consists of 

a crystal controlled clock oscillator, a state decoder, 

logic on the CPU chip itself and auxilliary timing logic. 

The complete circuit diagram of the CPU module is 

shown in Fig. 5.5. 

The non-overlapping 500 KHz clock phases oy and o> 

which drive the CPU chip as well as other timing 

circuitry on the board are generated from the clock 

generator. 

The 3MHz quartz crystal is the basis frequency 

reference. A portion of the crystal's signal output is 

developed across a capacitor and applied to the clock
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Circuit Diagram of the 8008 cpu Module
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generator to which the two signals at 500 KHz frequency 

are produced. The oy and oo clock phases are applied to 

the clock inputs of the CPU chip. The SYNC and clock 

signals are then fed to the auxilliary timing logic. 

In the auxilliary logic system the SYNC is applied 

to a D-type flip-flop (74L74N) which is clocked by the 

low-to-high transition of oo This produces the SYNCA 

signal which is shown with relation to clock signals 

oye b> in Fig. 5.6. SYNCA is used to derive other timing 

singals on the modules (Fig. 5.3). SYNCA and oy produce 

a half frequency clock oi2 an intermediate signal, applied 

to a 8205 decoder. Outputs from the state 

decoder include Tl, T1I, T2, T3, T4, T5, WAIT and STOP 
  

The T2 and S50 signals connected to a D-type produce T2L 

signal which is used to generate T3A and T3A signals. The 

T3A signal gated is used during I/O operations. 

The first part of every machine cycle is an instruction 

ferch cycle (PCI). Memory address requires 14 bits, two 

passes are needed to output memory address. The lower 

eight bits of the referenced location are transmitted 

during Tl. This byte is sent out on the eight lines of 

the main data bus and presented to the low order address 

latch. During T2 the CPU sends out the six 

high order bits of the referenced address, plus the two 

cycle bits, in similar fashion. The high order address 

latch (Intel 8212) is strobed by T2 output of the state
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decoder. The fourteen low order bits held in the address 

latches indicate the location of the instruction that the 

processor intends to fetch. The two remaining bits indicate 

that a PCI sub-cycle is in progress. 

The PCC, PCW, PCI outputs are furnished to circuitry 

on the CPU module.itself permitting the modules control 

logic to generate R/W and DBIN control signals. The 8212 

latches are also used to multiplex the data from memory 

used as a memory buffer. During T3 the CPU reads this 

bus and the information on this bus is transferred to 

the CPU's instruction register. 

A PCR or a PCW signal will be broadcasted by the 

CPU chip during T2,. If a PCR sub-cycle is indicated, 

external conditions are exactly the same as for an 

instruction fetch from memory. If a PCW is indicated 

the cycle decoder activates the PCW line.which, with 

T3 generates the R/W command line. The write signal 

indicates to the memory that data are to be stored in 

an address location. 

If the instruction that the processor fetches from 

memory is an I/O instruction. That instruction contains 

a five bit field which specifies one of the 32 peripherals. 

In order to distinguish an input from an output 

instruction, the lower eight addresses are reserved for 

input devices and the upper 24 for outputs. The address
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of the object I/0 device is sent in the SELECT inputs 

of a 8205 decoder.and the two signals produced in the 

outputs of the decoder. PORTO and PORT1 are used to 

strobe the Input/Output and control »ort latches. 

A ‘bus driver' latch 8212 was used as a 'follower' 

between the CPU data and bus and the i/p's of io and 

Hl address latches. For reasons explained in another 

section INTERRUPTS were not used. One input and two 

output ports were used. 

One part of the memory included on the CPU module 

is made up of eight Intel C8702A erasable programmable 

lead-only-memory chips, each having a capacity of 256 

eight-bit words. The outputs of the PROMS are connected 

to the DATA OUT lines of the RAM memory module to the 

DATA bus of the memory latch on through that to the 8008 

data bus. An 8205 decoder is used to enable the selected 

block of the PROM addressed by the CPU. 

In order to obtain data from a memory location, it 

is necessary to perform a Memory Read Operation. This 

Operation includes two phases. The Address phase in 

which the desired memory address is sent tothe PROM section, 

where it is decoded and used to enable the specific memory 

location which is accessed. The Data phase, where the data 

is sent out from the PROM. A memory (PROM-RAM) read 

Operation is initiated by the CPU chip which sends 14 bit
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memory address to the address decoding circuits to select 

one particular memory location. The contents of the 

specific memory location are then available to the memory 

data latch whence sent on the CPU chip. 

A memory module functional diagram is shown in Fig. 

Sed 

The other part of the memory consists of eight INTEL 

P2102 chips having a capacity of 1024 one bit words. The 

DATA IN lines on the RAM memory are connected to the inputs 

of the LO and Hl order address latches. 

RAM's DATA OUT lines connected to the PROM's outputs 

lines and to the bus driver data bus to be processed to 

the CPU data bus. The RAM memory is selected by one 

output of an 8205 decoder. The addressing for the PROMs 

module is designed to have an order address which starts 

from the location 00:000 up to 07:256 (decimal - 2K) or 

00:000 to 07:377 (octal - 2K). The RAM module starts 

from location 08:000 up to 11:256 (decimal - 1K) or 

10:000 up to 13:377 (octal - 1K). 

The processor also sends signal R/W to the RAm memory. 

In its false states this signal dictates a write operation, 

therefore, during a read operation it will be true. If 

the signal is a write operation signal, data available 

on the input lines will be written into the selected 

memory location by the write pulse. If the signal is
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read operation signal, data of the selected location will 

be appeared on the data output lines. 

The timing diagram for the Read/Write operations is 

shown in Fig. 5.8. 

The operation and decoding for an I/O instruction has 

been explained earlier in this section. An input operation 

after the selection of the input port has been obtained, is 

performed in order to get data from an external source 

and to present it back to the CPU. In an output operation 

data from memory and the CPU are sent for use by an 

external device. 

After the construction of the two CPU boards checking 

on its operations, I/O memory, was performed with different 

peripheral devices. Peripheral devices may differ in 

transmission characteristics. The VDU and téletype 

asynchronous semial bit stream, consist of data bits that 

are preceded by a start bit and followed by one stop bit. 

The start and stop elements do not contain information, 

but they do establish bit and character synchronisation 

at the receiving device, 

In the transmission of data, a clock signal is not 

transmitted along with the data, and gaps (idling) between 

the characters may result. Therefore, the receiving device 

must generate a clock that is synchronised to the data 

for the purpose of data sampling.
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The interface board between the microprocessors and 

the VDU used, a MOS/LSI data communication device, the 

UART (Universal Asynchronous Receiver/Transmitter) which 

performs serial/parallel data conversions, timing and 

synchronising circuitry. 

Different programs used for checking the operations 

of the CPU boards are given in APPENDIX C . 

The PROM chips were programmed on the INTELLECT 8 

development system. 

The microprocessor CPUs board, the separate memory 

board, the VDU interface and power supplies were housed 

in a rack. Layouts of the two CPU boards and the separate 

shared memory board are given in APPENDIX E. Microprocessors 

are shared memory back connections on the rack are given 

in APPENDIX F. 

5.4 DESIGN AND CONSTRUCTION OF THE SHARED MEMORY 
  

The shared memory board module consists of 1K RAM 

memory, accessible by both microprocessors and all the 

necessary control circuitry for both microprocessors to 

ensure equal accessibility and servicing. The design is 

a symmetrical one as each processor uses its own control 

circuitry to access the memory. An important design 

issue was to ensure accessibility to the memory of one
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processor at a time on the first requested first 

served basis. If one of the processors is requesting 

access to the shared memory while the second processor 

is using it, the first goes to a WAIT state (idles) until 

the second one has been served and then the first one 

can access it. A WAIT state signal may be of indefinite 

length but the actual WAIT interval is always an even 

multiple of the processors clock period. In order to 

guarantee an exit from the WAIT state the processors 

READY line must go high at least 350 ns prior to the 

trailing edge of %o0° When this condition is fulfilled 

the processor proceeds to the T3 state, begining with the 

next oy clock pulse. 

The complete circuit diagram of the shared memory 

module is shown in Fig. 5.9. 

In the previous section we mentioned that output of 

the 8205 Hl address decoder can decode 1K of RAM. Thus 

the 0, output of this decoder from both processor is 
3 

connected to the CE of the shared memory. The R/W signal 

of the memory is connected to the PCW. T3 siynal for both 

processors. 

The RAM addresses As eee Ay are connected with the output 

of the low address latches (8212) of each processor. 

through a low address latch (8212) one for each.processor 

and when enabled it accesses memory. The DATA IN signals
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of the RAM, memory are connected to each processor's 

BUS DRIVER through a BUS DRIVER LATCH (8212). The RAM 

DATA OUT are connected through memory buffer latches to 

the outputs of the corresponding memory buffers for each 

processor. The Agr Ay addresses of the RAM eo connected 

to the Ag, Ag high latch addresses of the two processors. 

The enable signal for the low address latches in that 

separate board is the same with the enable of the BUS 

DRIVER latch. In fact signals from each processor PO3, 

PCW. T3, PCI.PCR, DBIN the last two enabling the memory 
  

buffer latch, and Agr Ag address lines, pass through a 

three-state buffer (74125). The output of this gate is 

disabled when the enable of the buffer is high. The 

enables of all the above mentioned signals are connected 

to the output of a NAND gate with inputs the WAIT of 

the individual processor, trying to access the shared 

memory and the PO3 signal. If the WAIT signal is high 

the processor is not waiting, and when PO3 goes high, 

that particular low processor requests access to the 

memory. Thus when both go Hl the output of the NAND 

goes LOW and all the signals are then enabled allowing 

the processor to access memory. If at the time that 

the first processor is requesting access to the shared 

memory, the other processor is accessing it, then the 

first processors WAIT line goes LOW thus disabling access. 

A D-type flip-flop was used to produce the WAIT
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signal for the processor that is trying to access memory, 

while the other one is already accessing. 

The D input of the flip-flop is connected to the PO3 

signals of the’-processors. The clock input is connected 

to the PO, signal of the other processor (D input P103, 

CLK input P203). 

The output Q of the flip-flop will follow the data 

input D while the clock is high. lLatching will occur 

when the clock returns to low. Thus the Q output is 

connected to the WAIT line of the other processor. The 

PR line for each flip-flop is connected to the Tl signal 

of each processor. This logic provides the idling of one 

of the two processors when they both try to access memory 

at the same time. 

The timing diagram is given in Fig. 5.10. 

The layout of the shared memory board is given in 

APPENDIX E . 

Programs on the operation of the two microprocessors 

with the shared memory are written in INTEL 8008 

microprocessor language. Debugging the programs was made 

easier by presenting and programming the language instructions 

set in HEXADECIMAL machine codes. 

Two sets of different programs for both microprocessors 

examine the capabilities of communication between the two



 
 

  

OT*S 
*bta 

weqyshgs 
z
r
o
s
s
e
s
0
r
1
d
-
t
3
T
n
W
 

ey} 
FO 

w
e
r
b
e
t
q
 

H
u
t
u
t
y
 

 
 

T
I
I
B
W
N
D
 

 
 

 
 

 
 

 
 

   
 

 
 

| 
VY 

279vNnN9 

 
 

  
Te 
U
y
 

 
 

  
1
)
 

L
i
a
 

 
 

 
 

 
 

 
   

  
 
 

Sotg 

Can 
ve 

  
 
  
 

 
 

 
 

 
 

  
  
 
 

 
 

  

nn 
  

 
 

c
o
f
 

Wad 
ven 

  
 



= 86 = 

microprocessors through the shared memory. 

These programs produce a slow and a fast count with 

very fast access from both microprocessors to a common 

location in the shared memory. The purpose is to establish 

the performance of the two microprocessors, when executing 

individual tasks, both attempt to access memory 

simultaneously, APPENDIX C. 

As new components such as memory devices and 

microprocessor support chips are continuously appearing 

on the market, no detailed circuit specifications of 

such items will be given in this report. For information 

on such devices one epodia consult the latest microprocessor 

support components literature, and new devices 

specifications.
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CHAPTER 6 

OPERATION OF THE INTEL 8008 MULTI-PROCESSOR 

SYSTEM WITH EXTERNAL COMPUTING DEVICES 
  

6.1 INTRODUCTION 

Typical multi-processor architectures implement a 

parallel or symmetric multi-processor architecture in 

which every processor is equally capable of picking up 

any task. The advantage of this approach is that. any 

number of processors from 1 to a maximum physical limit 

can be used, thus yielding a nodular machine whose power 

can be tailored to nodal requirements. We chose instead 

a multi-processor architecture which dedicates each 

processor to a certain subset of the tasks that have to 

be performed. By logical distribution of tasks we mean 

the relationships between the various tasks that the 

processor system is expected to perofrm. In our case 

where the hardware is fixed, the distribution of these 

tasks affects only the structure of the software. 

Specifically it affects the execution sequence of the 

various processes. In this system, in effect, we replace 

the multi-processing software of earlier computer systems 

with hardware. The fact that the tasks now can be done 

at the same time compensates for the lower performance 

characteristics of the components.



6.2 TASK ALLOCATION 

Several approaches have been suggested for allocating 

processors to processes, On one hand, the low cost of 

microprocessors makes it feasible to assign a processor 

to each task, For example, a multi-processor network 

for machine tool control.has been proposed ‘29? consisting 

of three microprocessors, Two of the processors control 

for axes of the machine tool while the third acts as an 

executive. In addition to this an alternative approach 

allocates processors dynamically. This requires that 

the processors are in close proximity and that they have 

common mode of access to I/O signals (30) | 

The nature of these tasks in our approach is that 

they are short or at least divisible into short segments 

and they are mostly independent of one another. our 

system is mainly dedicated to localised monitoring control. 

In that capacity local memory for each processor was 

essential to keep the programs executed more frequently 

and since the processor configuration was on a master- 

master basis the concept of the shared memory was 

extremely useful on interprocessor communication and data 

exchange, 

6.3 | COMMUNICATION FUNCTIONS 

The existence of separate I/O facilities by each 

processor offers flexibility to our approach as it maintains



the independence of each processor to communicate with 

external devices and at the same time offers a rigid 

modularity to the whole system. Each processor controls 

a portion of the overall process, with the necessary 

co-ordination between the control strategies effected 

through the processor intercommunication means. Both 

processors are of equal importance in maintaining control 

of the process and both must be operating to obtain 

optimum performance. 

The reliability of the network depends on the 

reliability of the nodes and the reliability of the 

communications system. 

Thus the use of local memories to each processor as 

well as shared memory, although not unique in conception, 

we felt that it is superior in our system from the 

concept of global memory as many memory accesses could 

be serviced by the local memories and thus accesses to 

shared memory could be reduced and bus bandwidth 

requirements could be eased. 

All interprocessor communications via the shared 

memory are done over the system bus, The bus operates 

synchronously with processors, memories and I/O, There 

is no priority system on accessing the shared memory 

and when one processor is trying to access and the other 

one is accessing,the first processor goes to a WAIT state
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until the job of the second one terminates. In case of 

a tie, there is an arbitrary priority order. We found 

that this non-sophisticated approach for our applications 

guarantees independence and flexibility of the processor 

and there is no bus contention problems as well as speed. 

Qur system could easily be used as an ON-LINE control 

or as a REAL-TIME system, Fig. 6.1. 

6.4 INTEL 8008 MULTI-PROCESSOR SYSTEM AND 9900/4 
  

MICROPROCESSOR INTERFACE: DESIGN AND CONSTRUCTION 
  

The system designed and constructed, as described 

in the previous chapter, was tested and operated on its 

own using the VDU terminal to verify the results of the 

simulation and operation of different programs applied 

to the system. 

The sysetm was then connected to the new T.I. 9900 

microprocessor available in the department to perform 

a particular operational task. 

An interface between the 8008 system and the T.I. 

microprocessor system was designed and built. 

The circuit diagram for that interface is shown 

in Fig. 6.2. 

The design of that interface was concentrated on 

the communication of the 8-bit 8008 with the 16-bit
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T. I. Microprocessor. 

Four LSI38 memory decoders were used to decode the 16 

memory address lines of the 9900 and to ensure data 

transfers via the CRU. 

Octal buffers and line drivers SL-241 were connected 

to. memory address lines M9 to M14 of the 9900 and to the 

RESET and CRU OUT signals. A tri-state quad bus driver 

"8 TO 9" was used to buffer the CRU IN signal. The Yor 

Yj, outputs of one decoder were used to enable two 8-bit 

addressable latches (LS259). The DATA IN inputs of these 

latches were connected to the CRU OUT signal from the 9900. 

Inputs of these latches were connected to the Memory 

Address of the 9900,. The 8-bit outputs of these two 

latches were connected to the two output ports of the 

8008 system (port 8 - port 9), Specific address locations 

for these two latches with respect to the 9900 were 

designed and handwired at 1000, and 1010. The DATA 

SELECT inputs of the DATA selector SL251 chip were 

connected to the 9900 memory address lines. The strobe 

of the same chip was connected to the decoded CRU or 

signal. The 8-bit output of this chip were connected to 

the INPUT port of the 8008 system. 

6.5 MULTI-TASK SYSTEM: OPERATIONAL SIMULATION 

Having established and tested the communication 

between the 8008 system and the 9900 a problem task was
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implemented. The task has a military application. The 

idea of this particular problem was presented to the 

author when he was doing his military service in the Navy. 

The problem is to compute quickly and accurately 

the 'RANGE' and 'ELEVATION' settings of a gun, given the 

distance of a particular target. 

Different values of distances between targets are fed 

by an operator via the key board of a VDU to the T.I. 

9900 microprocessor system. The 9900 transfers the data 

to the 8008 system which analyses it, with intercommunications 

between the two 8008 microprocessors and their shared 

memory and transfer back to the 9900 the values for the 

‘RANGE' and 'ELEVATION' and from there to the screen of 

the VDU. 

The I/O facilities of the 8008 microprocessor l, 

were connected to the 9900 system and the task of this 

particular microprocessor was to compute the 'RANGE' given 

the distance value, transferred from the CRU OUT of the 

9900. When the 'RANGE' is computed it is stored in a 

location in the shared memory. The 8008 microprocessor 2 

is accessing this particular memory location fetches the 

"RANGE' value and from that computes the corresponding 

value for 'ELEVATION'., Elevation values is the task 

allocated to microprocessor 2. When the appropriate 

'ELEVATION' value is calculated it is being stored in
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another location in the shared memory. Microprocessor 1 

fetches the 'ELEVATION' value and outputs both the 

"RANGE' and 'ELEVATION' values to the 9900 and from there 

to the VDU screen. 

The execution programs of the 8008 microprocessors 

were in PROMs and the different values of 'RANGE' and 

‘ELEVATION' were stored in the private RAM memories of 

these microprocessors. 

The programs are written in INTEL 8008 microprocessor 

language and the other one in T.I. 9900 microprocessor 

language. The 8008 programs were programmed in PROM on 

the INTELLEC 8 system available in the department. The 

mnemonics code was presented in HEXADECIMAL instruction 

machine code. Board connections between the two systems 

are given in APPENDIX @ . 

In this particular application the I/O facilities 

of one of the 8008 microprocessors.wwere used, but I/O 

facilities of both 8008 microprocessors could be 

connected to one terminal and a machine to complete the 

purpose of the localised control system we built. Other 

peripheral devices could also be connected as well as 

facility for scanning memory banks from a disc or floppy 

disc. The system also could be expanded by connecting 

to it another set(s) of microprocessor system identical 

to the one we built for different control purposes and 

applications.
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In this example, the message paths are direct. In 

a more complex application the message paths need not be 

sequential. As more processors or functions are added 

to the system, the number of routing paths increases,but 

does not become more complex for any given processor, in 

the system. Therefore, each processing module may be 

viewed as a distinct building block, and modular 

development of the system is practical. 

Basic flow diagrams of the multi-processor 

communication are given in Figs. 6.3, 6.4.and 6.5.
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CHAPTER 7 

SYSTEM PERFORMANCE 

7.1 SYSTEM FEASIBILITY ASSESSMENT 

Based on our investigative study, in order to evaluate 

the feasibility of a multi-processor system the most 

important parameters that we studied were: 

(a) 

(b) 

(ce) 

(d) 

(e) 

(£) 

Bus utilisation as a function of the number of 

processors in the system and the average processor 

task time. 

Independent I/O facilities. 

The probability of simultaneous conflicting actions 

(concurrent access of shared memory). 

Synchronising the actions of the various controllers 

in the system. 

The impact of interrupt control, and 

The problem of deadlocks or infinite cycles within 

the system. 

Having studied these parameters we designed and 

constructed the system as already explained. Processors 

are given equal fixed tasks. Upon completion of the task, 

the processor transmits a single data item to the shared 

memory, for the other processor to select. Each processor 

monitors the shared memory for each data that has been 

assigned for.
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Each processor makes sure that data assigned for 

the other processor have been selected before producing 

new ones. Thus the microprocessor chip is desirable for 

microprocessor control should provide machine cycle states 

information, a READY control unit which allows the 

microprocessor to enter a WAIT state, a HOLD input, good 

I/O facilities and interrupt facilities. The 8008 is 

characterised by a five state processor cycle, with each 

state requiring 2.8 us. When the 8008 reads from memory, 

to get the next instruction, it presents on its data bus 

during state Tl the lower eight bits of the desired address. 

Tt proceeds to state T2 where the upper six address bits 

an indication that the 8008 wants to read appear on the 

bus. If by the end of T2, the memory has not responded 

READY, indicating that the desired byte lis being presented 

on the bus, the 8008 goes into the WAIT state, where it 

remains for as many as four microsecond periods as are 

needed for memory to respond: READY. In the event that 

memory responds READY before the end of T2, T3 is entered 

and the byte brought into the CPU. If necessary states 

T4 and possibly T5 are used to execute the instructions. 

The maximum memory bandwidth capable of being utilised 

by the processor is eight bits every twelve (12)usecs . 

The cycle time of the memory is about 700 n.s. that is 

one fourth of the time required for a single processor 

state.
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7.2 SYSTEM COMMUNICATION AND TASK EXECUTION PERFORMANCE 
  

The communication and program execution between the 

8008's system and the T,I, 9900 was satisfactory. The 

program execution in particular of the task orientated 

8008's with the more powerful 9900 was good. The only 

problem appeared in the switching on the 8008's which 

caused jamming of the programs and the breakdown of the 

systems operation. On the otherhand I/O operations, 

private memory accessing, program execution, logic 

operations were quite satisfactory. Operations for 

accessing the shared memory were as expected. It appears 

for this particular application, that the waiting of 

one processor, when the other one was accessing the shared 

was negligible. The processor's request for shared memory 

access is completed in one memory cycle, The processor 

remained in the same processor state for one more memory 

time during which the other processor can access the 

shared memory. 

Generally the system operated as it was predicted 

from the design stages. 

Analysing the performance of our approach, that is 

every other two processors per common memory, we feel 

is ideal for localised control systems with efficient 

I/O facilities, task decentralisation becomes easy, 

utilisation of individual processor performance is fully
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exploited, and an easy monitor system for central control. 

Our approach also provide system expandability as an 

addition of 1 or 2 more processors to share the same 

memory is feasible. We must though stress at this point 

the hardware problems associated with it. At the same 

time it must be realised that in a design of that form 

some form of priority level to processors accessing the 

shared memory is required. 

Clearly our system provides the mechanism whereby 

programs (the specialised application programs or any of 

the stand-alone programming support aids) can be loaded 

and run on the actual microprocessor hardware. Object 

programs are normally written onto PROM, loaded and run 

into RAM and the shared. memory serves for inter-processor 

communications of common data and information for 

individual processor task completion. 

The system also provides small physical size and power 

consumption, as well as reliability.
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CHAPTER 8 

CONCLUSIONS 

8.1 GENERAL 

The microprocessor revolution has made possible the 

economical decentralization of computing power. This has 

been achieved not necessarily by making system with improved 

price/performance, but by making computer control of many 

functions economical and practical, relative to their 

previous implementations. Multi-microprocessor structures, 

we feel, are effective in situations where the tasks to be 

performed can be effectively and efficiently partitioned. 

This will give rise to improved I/O processing capability, 

improyed reliability, and a fail-soft feature where the 

bulk of the system can keep operating, should any subsystem 

fail. An additional benefit resulting from the effective 

partitioning of tasks in a multi-CPU system is that the 

software by being partitioned into several independent 

packages, is much simpler and runs more efficiently. 

Thus a step forward, we feel, in the direction of 

releasing more of the potential capability of the micro- 

processor is to provide processors with distributed 

multiple tasks. When the control area of the microprocessor 

increases, the engineer at present turns to the greater 

sophistication of the minicomputer with its real time,
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multi-programming executive. The difficulty in using a 

microprocessor is that the single program may not have 

sufficient processor time constraints when it has wasted 

most of it in completing one part before proceeding to the 

next. A multi-processor multi-task system, like the one 

we advocate simplifies the problem considerably by 

allowing the total job to be broken down into separately 

identifiable activities. The non-time critical I/O can 

then be placed under task control rather than interrupt 

control, obviating the need for a priority interrupt 

structure in many cases. 

One of the fundamental design decisions in a multi- 

tank system, we found, is the determination of the 

distribution of tasks. Generally there are two ways: 

le Task distribution is determined by external 

interrupts, and 

25 Task distribution is determined only by the tasks 

themselves. 

We adopted the second method, as it is suitable for 

localised control in the manner in which it handles data 

structure relationships, simplicity on interprocessor 

communications, and I/O processing flexibility. 

Our design was based on the application task that 

some parts of a program are run more frequently than other 

parts that run less frequently. This fact allows a



Loe 

significant advantage to be gained by the use of private 

memory. With this configuration the ratio of accesses 

to local versus shared memory, could be as high as 3-4 

to 1. This not only reduces contention delays for access 

to the shared memory, but also cuts the number of 

accesses which suffer the delays. We designed all 

processors to be identical and equal. As a consequence, 

no single processor is of vital importance and a 

processor could be changed easily in case of failure. 

Apart from system flexibility an additional advantage 

of multiple copies is reliability. 

Until the processors interact, a multi-processor 

is a number of independent single processor system. It 

is the interaction wich poses the conceptual as well 

as the practical challenge. If the various processors 

spend their time waiting for each other, the system 

degrades to a single processor equivalent. If they 

can usefully run concurrently, maximizing at the same 

time shared memory utilization, then the system's power 

is being multiplied. 

In any practical application of a multi-processor 

system, we feel that we must keep the system running 

in the case of module failure. The first problem in 

doing this is making the processors run independently



= 6 

by allocation of runnable task to processors, so that the 

full requisite power can be quickly brought to bear on 

high priority tasks. We propose four ways of doing this 

to help manage tasks queues: 

(a) Break the job into small tasks 

(b) Make the processors identical 

(c) Keep a priority on tasks and 

(d) Use interrupts where necessary 

Critical to our approach is the fact that the private 

memory of its processor could be used as a retreat to 

local operation in the face of systems' problems. 

Our system has a great application in localized 

system control. The author visited the British Leyland 

Longbridge plant, where they are trying to design a 

similar system on localized monitor control on the 

production lines, with each multiprocessor unit communicating 

with a central control terminal, and they express great 

interest in the possibilities of using our approach. 

Our system offers flexibility of I/O processing, it 

is easy to expand, easy to install and offers a reliable 

localized control. A set of identical processors sharing 

every other two a common memory, executing individually 

an identified task, intercommunicating and at the same 

time communicating with a central control terminal, would 

have great industrial control applications.
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it is also feasible to expand the system by connecting 

a third or fourth processor to the System still accessing 

the same common memory. It must be realized that ina 

design of that form some form of priority level to 

processor accessing memory is required. On that basis 

the processor would wait for access after the completion of 

access by the microprocessor with higher priority. The 

microprocessor with the higher priority does not wait for 

memory access. Thus the number of memory cycles that a 

microprocess could have to wait to get hold of the memory 

access bus, depends on the number of priority that particular 

processor has, and the total number of microprocessors in 

the system. 

It is thought that the incremental growth objective 

is realizable at least in terms of minimizing the effects 

of memory contention in a network of microprocessors 

sharing a memory. 

8.2 SUGGESTIONS FOR FUTURE DEVELOPMENT 

It is apparent that there is a need for further 

research and development to be performed to assess and 

develop a multi-processor, multi-task control system. 

At this point we must stress the role of interrupts 

in a multi-control system. It was explained in a previous 

Chapter why we did not use interrupts in our particular 

system.
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The problem here exists if any particular task, 

event or data from external deyice has to be handled by 

the system. This event or data could require attention 

by the system at unpredictable times (asynchronous). 

The problem is that, unless the system 'looks for' the 

event that requires attention (our approach), then it 

could quite easily 'miss' the event, particularly if it 

only lasted for a short time. Interrupts is the answer 

to this problem and could be either hardware or software. 

Manufacturers of latest designs of microprocessors 

have provided their micros with extended interrupts 

facilities and that helps greatly the system designer 

and user. 

This is an area which must be investigated further 

in the different applications of our system. 

It must be mid, without underestimating the capabilities 

and flexibility of the 8008, and having realized its weak 

points, a system with more powerful microprocessor 

(Motorola 6800, Intel 8080), would be more suitable for 

complicated applications, as tasks and problems in practical 

industrial applications, tend to be more demanding. 

As we have already pointed out, the problems to be 

considered in the design of multiprocessor systems, would 

depend on the applications, designer and user. For 

example should the individual processors be dedicated to 

totally independent programs or should they work
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co-operatively on a single large problem to reduce 

execution time and promote reliability. In the former 

case considerations are not limited to production 

environments. One can visualize a situation in which 

program development is performed by a user accessing a 

set(s) of multiprocessors from a dedicated terminal. In 

either case the problem of executive control to implement 

inter-processor communication, memory protection, memory 

mapping and shared data memories and buses are significant. 

Should a single executive, control the total system, or 

should the executive be partitioned in to global and 

local executives ? 

We feel that in less dynamic systems, in which the 

same sets of code are executed repeatedly, private 

memories should be dedicated to each processor to contain 

procedure segments and the shared memory can be used to 

contain data of both private and shared nature. 

8.3 FINAL REMARKS 

At present multiprocessor systems have started 

appearing in all areas of applications in industrial and 

organizational fields. Different specialized multi-user 

systems and high bandwidth signal processing are being 

used. 

As improvements in integrated circuit technology 

continue and processors and memories become cheaper, and 

smaller multi-processor systems designs offer a
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revolutionary challenge to the foundations of industrial 

production and organizational change, structure and 

innovation, and to society as a whole. 

I trust that the system we have designed and the 

approach we have followed will be given the opportunity 

to demonstrate its uses, and that it will contribute 

to the future and further development and understanding 

of multi-processor control systems.
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LIST OF SYMBOLS 

System throughput 

Bus interference 

Number of processors 

Bus utilization 

Distribution probability of bus reference 

every i bus cycles 

Ratio of throughput with maximum interference 

to throughput with no interference 

Ratio of the cost of the system 

Cost of an individual microprocessor
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APPENDIX A 

INTELS 8008 MICROPROCESSOR 

Intel is a USA-based component manufacturer and 

the 8008 processor is the central component of the MCS-8 

Microprocessor Set. The 8008 can include up to 16K 8-bit 

words of RAM or ROM and its a parallel processor with an 

8-bit external bus for communication with memories and 

I/O devices. It is manufactured using Silicon Gate MOS 

technology. 

The 8008 processor is shown in Fig. Al. Two independent 

dynamic memories are used to implement a stack of 8 14-bit 

address registers and 7 8-bit scratch pad registers. The 

address stack consists of the program counter and 7 address 

registers for subroutine nesting to 7 levels. The CALL 

instruction is used to store automatically the program 

counter in the stack, and RETURN is used to restore the 

program counter. The 14-bit program counter allows 

direct addressing of 16K words of memory for program 

instructions. Each 14-bit address is transmitted over 

the I/O bus in two cycles, consisting of the 8 lower order 

bits followed by the 6 higher order bits. 

The scratch pad memory containsthe accumulator used 

for mathematical and logical operations and used as the 

destination for data operations and neverto store data.



124 

The next 4 registers are used for temporary storage and 

to transfer data between program modules. The last two 

registers (H , and L) are normally dedicated to addressing 

external memory for data. 

The arithmetic/logic unit performs full-parallel 

8-bit operations. Four single bit indicators are set as 

a result of each operation. These are carry, zero, sign, 

and parity. 

When the processor supply (Vpp) and clocks are started, 

a HALT instruction is automatically stored in the instruction 

register and the system registersare reset in the following 

16 clcock periods. Normal operation commences when the 

INTERRUPT line is set from a source external to the 

processor chip. 

All communication between functional units in the 

8008 processor occurs via a single-8-bit internal bus. 

The processor controls the bus and sets the 3 status lines, 

S, 0:2, according to the action occurring on the bus. The 

status lines are ayailable as o/p's to peripheral circuitry. 

A typical cycle of processor operation consists of 5 states: 

2 for addressing memor; 1 for fetching an instruction or 

data, and 2 for instructing execution. For multiple cycle 

instructions, which do not require the 2 execution states, 

the processor operates asynchronously. One instruction 

cycle takes 12.5 us to be executed. (See Fig.A2).
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The 8008 uses, 1, 2, and 3 byte formats for its 

instructions. The 2 byte instructions perform the 

operation specified by the first byte on the data specified 

in the second byte (immediate mode). The 3-byte instructions 

use 2 bytes to specify a 14-bit memory address for jumps 

and calls. There are 5 basic groups of instructions, the 

index register group, the accumulator group, the instruction 

program counter and stack control group, I/O group and 2 

HALT instructions. 

The 8008 communicates with external memories and I/O 

device controllers via its 8-bit data bus, the 3 status 

line, the SYNC line and the READY and INTERRUPT lines. The 

READY line allows the processor to operate with any speed 

of semiconductor memory. This is achieved by the processor 

waiting on the READY line during an instruction cycle. 

The I/O data buffer on the 8008 chip is bi-directional 

with low power TTL compatibility on the o/p and TTL 

compatibility on the input. 

General purpose software had been developed for the 

8008 by Intel including loaders, teletype input, different 

routines and FORTRAN IV assembler and simulator which 

allowed the generation and testing of 8008 programs on 

a large off-line computer. 

As has been stressed before the 8008 belongs to 

the first generation microprocessors and since then in 

the last three years, the technology and capabilities 

of the 3rd generation microprocessor have overpowered
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APPENDIX B 

THR TMS 9900 MICROPROCESSOR 

The TMS 9900 microprocessor is a single-chip 16-bit 

central processing unit (CPU), produced using N-channel 

silicon-gate MOS technology. The CPU comes in a 64 pin 

chip, and is driven by a 3 MHz four-phase clock. 

The processor employs a memory-to-memory form of 

architecture, whereby blocks of memory designated as 

workspace registers, replace the more common internal 

hardware registers. A total of 32 K words of memory 

can be addressed by the processors 15-bit address bus, 

which is separate from the 16-bit data bus, thus 

simplifying the system design. 

Within the processor there are three registers 

which are accessible by the user. These are the program 

counter (PC) which contains the address of the instruction 

following the current instruction being executed, the 

status register (ST) which contains the interrupt mask level 

and status information relating to the instruction operation. 

The third and final register is the workspace point (WP), 

which contains the address of the first word in the current 

active workspace area. A workspace area consists of 16 

consecutive memory words in the general memory area. 

Input and output data transfers to and from the 

processor are performed by a direct command-driven I/0



=p 130 e— 

interface designated as the communications-register unit 

(CRU). The CRU provides up to 4096 directly addressable 

input and output bits. Both input and output bits can 

be addressed individually or in fields of 1 to 16 bits. The 

TMS 9900 uses four clock cycles ($,-%4) each of typical 

duration of 83 ns. 

The TMS 9900 microprocessor instruction set provides 

the same capabilities as those offered by full minicomputers. 

The instruction set provides 69 different instructions, which 

includes unsigned multiply and divide instructions. 

With a clock frequency of 3 MHz the average instruction 

execution time is approximately 10 us.
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eraoniven  \Cumur wane Xno erat (enone Xuma esteem 

/svone assumine THs \ 
CYCLE IS AN INSTRUCTION 
ACQUISITION CYCLE 

  

  

  

MEMORY READ CYCLE WITH NO WAITS * MEMORY WRITE CYCLE WITH ONE WAIT 
RD = READ DATA 

B.5 TMS 9900 Memory Bus Timing
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APPENDIX C 

MULTI-PROCESSOR SHARED MEMORY TEST PROGRAMS 

‘SLOW COUNT' PROGRAM 

MICROPROCESSOR 1 

XRA 

LBA 

LOOP INB 

LAB 

LHI 14B 

LLI 100B 

ite = 

Lcr 377B 

LDI 100B 

KEY DCC 

JFZ KEY 

DCD 

OFZ KEY 

JMP LOOP



oe) 

"SLOW COUNT' PROGRAM 

MICROPROCESSOR 2 

XRA 

LAA 

LHI 14B 

LLI 100B 

LAM 

OUT 10B 

XRI 377B 

out 11B 

RST °



eee SOF 

MULTI-PROCESSOR SHARE MEMORY TEST PROGRAM 

"PAST COUNT" PROGRAM 

MICROPROCESSOR 1 

XRA 

LAA 

LHI 14B 

LLI 200B 

LCA 

LAA 

TOP LAM 

NDA 

JFZ TOP 

INC 

LAC 

out 10B 

XRI 377B 

ouT 11B 

LMI 1
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"FAST COUNT" PROGRAM 

MICROPROCESSOR 2 

=RA 

LHI 14B 

LLI 200B 

LMA 

LBA 

TOP LAM 

NDA 

JTZ TOP 

LMB 

ouT 10B 

XRI 377B 

out 11B 

RST 2
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TEST PROGRAM FOR DECODING RAM AND PROM MEMORIES 
  

TOP XRA 

LAA 

LCA 

LDA 

LHA 

LLA 

LAA!LAA 

LOCK LCI 100B 

KEY DCC 

JFZ KEY 

INL 

out 10B 

CPI 377B 

JFZ LOCK 

INH 

ouT 10B 

LAH 

CPL 20B 

JFZ LOCK



214i = 

TEST VDU PROGRAM 

XRA 
LCA 
LDA 
LBA 

LOOP LAB 
our 118 
LAI 60B 
our 10B 
XRA 
our 10B 
INB 
LCI 300B 
LDI 100B 

KEY pec 
JF2Z KEY 
pep 
JEZ KEY 
JMP LOOP



A 

TEST PROGRAM - I/O BUSES AND VDU 

XRA 

LAA 

LBA 

LCA 

TOP DCB 

LAB 

out 11B 

LAT 50B 

ouT 10B 

LOOP INP 3B 

NDI 100 

oTZ LOOP 

LAI 60B 

out 10B 

XRA 

ouT 10B 

JMP TOP
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APPENDIX D 

PROGRAM ASSEMBLY 

ASSEMBLER - 8008 MICROPROCESSORS 

MICROPROCESSOR 1 

Program in HEX 

ol 

o2 
08 
40 

64 
08 
48 

96 
08 
50 

cs 
68 
58 

FA 
08 
60 

00 

00 
2B 
08 
40 

3D 
- 6D 

08 
48 

49 
6D 
08 
50 

=) 00 
= 100. 

-00 
-00
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55 
6D 
08 
58 

61 
6D 
08 

=760) 

6D 
6D 

00 

oc 
40 

AO 

80 

00 
AO 
00 
81 

oO 

oc 
80 

2B 
BF 

AO 

= 100 

= 500 

-00 

= 100:



os > 

MICROPROCESSOR 2 

HEX Address Program in HEX 

00:00 A8 
ol csé 
02 DO 

03 Ds 
04 26 - Ol 
06 06 - 46 
08 2E - 08 
OA 36 - 40 
oc F8 
oD 06 - 46 
OF 2E - 08 
il 36 - 48 
13 F8 
14 06 - 28 
16 2E - 08 
18 36 - 50 
1A F8 
1B 06 - 1E 
1D 2E - 08 
iF 36 = 58 
21 F8 
22 06 - 14 
24 2E - 08 
26 36 = 60 
28 F8 
29 06 = 00 
2B 2E - oc 
2D 36 = 40 
au C7 
30 3C = 00 
32 6A = 9D - 00 
35 3C - 00 
37 68 ~.2B = 00 
3A EO 
3B G8, 
3c 06 - 00 
3E 2E - 0c 
40 36 - 40 
42 F8 
43 cr 
44 c4 
45 30% =" 32 
47 68. =. 5E -00 
4A aC = 32 
4c 68 =. 69 - 00 
4F 3C - 96 
5: 68 - 74 - 00 
54 3c - C8 
56 68



00:59 
5B 
5E 

62 
63 

69 
6B 
6D 
6E 
a 
74 
76 
78 
ie} 
7S 
7F 
81 
83 
84 
87 
8A 
8C 
8E 
8F 
92 
oS 
97 
O°: 
9A 
9B 

9D 
AO 
Al 
A4 

eelaG ls 

36 
68 
2E 
36 
C7 
46 
44 
2E 
36 
C7 
46 
44 
2E 
36 
Co? 
46 
44 
2E 
36 
ef 
46 
44 
2E 
36 
Ci 

44 
2E 
36 
F8 

co 
o7 
1E 
19 

O7 

FA 
8A 
08 
40 

95 
2B 
08 
48 

95 
2B 
08 
50 

95: 
2B 
08 
58 

25 
2B 
08 
60 

95 
2B 
oc 
80 

BF 

9D 

00 

00 
00 

00 
00 

00 

00



    

  

   MIS 

TILT 
LIFT 

EL 

RESTO Fou 
BL 

DATA 
TEXT 

Oe Oe 
1ooo 

  

   

     oad.   
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14:15:42 THURS TAY s RLS 165 1o7o, 

  

PAE 

* 14:15:42 THURSDAY, gLG 165. 13 

PAGE 
CTRaS 
WS 

PINIVOU TNITIALISE UART 
rs 

BOUTET 

>ODoR 
“DISTANCES- 

* “480 
@RERDNO TMPUT NUMBER 

Fl@s>i1000 § OUTPUT 

5 DISTANCE 
Seal Cf Os 

IT 
   
   

  

FOR READY 
AL FROM    

DELAY 

RANGE FROM & 

    

ELEVATION From ao 

 



  

SY UGE 
TEXT “RBHGE="  _ agg _ 

DISPLAY RANGE 

  

A} O00R 
T “ELEVATION=- 

    

3 THURSDAY: ALG 16,     
PAGE 

    

BYTE - 
Mow 

EL DISPLAY ELEVATION 

JhP  NEXTO ENDL LooPr + 
PHF P oe eeeseseocescssesee 
+ 

   

  

* ROUTINE TO INITIAL 
+ 

INIVOU LI 

  

oor og      
   
  

   

HO TIMER 
SPEED= 

  

Flisrig SAVE RET. 
t *F i+. RS GET CHAR 
SOUTCHR OP 

Po.PSo 

Bu 
Fig 
FilQs>FFFE     
Flo 3 AIRE: 
eF1t 5 RETURH 

 



> 

* ROUTINE 
+ 

INCHFE LI 

THCHF 1 

* 

+ 
DUTCHR LI 

SEG 
OUTCH1 TE 

JHE 

  

AD 
TATE ALLOCATION 

PEADNO Moy 

  

PEAT LI 

CLR 
READ1 EL 

C1 

FFDO 
1100 

READG   

TO 

  

    
* ROUTINE TO IMPLUT 
+ 
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INPUT OME CHAR 

  

Ros 30000 

CRU BASE 

CHAR RECSD ? 
NOs LOOP 
VEE. PUT IN RS 

CHAR 

CRU BASE 

      

ié 
ee * BUFFER EMPTY? 
OUTCH1 NO. LOOP 

+ I4t15:43 THURSDAY. AUG 16, 1945 

PAGE 

ORs Ss YESs LOAD 
16 
*R11 

NUMEER 

FliskS E RETURN 
Fes1t E 

RP 
Ss INCHR INPUT CHAP 

ENT IF cr 
MOVE TO RHE 

TOO SMALL 

TOO BIG 

UMe1 6 

  

OVERFLOW 

   DIGIT 
In F    ANSWER 

RETURN



  

“ERPOFs TRY 

    
   BYTE > 0D: 

JMP FEADO 

* 

WRITHO LI 

    

       

      
  

   

   BUF CRS 

Rrske 
WRITHL 
Ras3 

Fé. BUF 

    

NESTCH MOWE 

EL SIDUTCHF 

DEC 
AE 

E 
- 

+ DATA AREA 
* 

We 

BUF 

  

END START 
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HBAIN” § 

    

} THRN LOGP 

* ROUTINE TO GUTFUT HUMBER 

MA 

  

DIGITS 

Ut 
O10E 

SDSM 2.1 + 14f15:43 THURSDAY. BUG 16s ALLOCATION “DISTANCE” 

WRITH! DEC FS 
ALT AEWER 

RP 
Res Pr DIY BY 10 

AE IT 
  

STORE IN BUFFER 

REMAINDER 
LOOP 

POINT TO BUFFER 

GET CHAR 
ore 

    

if 3 i a 

PAGE
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APPENDIX E 

BOARD LAYOUTS 

MICROPROCESSOR 1 

  

  

                
  

  

            
  

  

  

                
    

  

  

Ceystae NAND INVERTER NAND 

. cep Pp conve —|elp port Yp pack eck eae, ceiptfcs p P 
LSE RF cenceaven abel: PY} Laren ANEW decd 

S212 Gaz 8212 

Hick STATE Memory Bus Gow canes} nace 
Decopen $008 buffer Priver nponess ren 

S205 S22 Saiz Brin 82z                         

  

  Bam Ram RAM aA ha ean Baa =| nae 

                                  

  

  

  

Rom P P Peto D Pp ROM Rom Prom se ot 

P PecopeR Decoee Rom Prom Peom Prom gras i                         
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MICROPROCESSOR 2 

  

  

  

            
  

  

                

                

  

                  
  

  

                        
  

  

          
  

  

NAND NAND Crystad 

eerie] | SYST pete Jornal (Boo) (ees Cm] [hey (erty [en 
B2or Gros 

op Cnet] [ofp pot Yp peck] ftttmery | [Bes 

parece inal ae a te Belfer | | river 
Szes Baz Bz2z Sz 

Pam] [Bam] |Ram| Ram! [Am] |[pAm) [RAM [eam 
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Appness bet 

PROM PRom PRom PRom EATEN ae 

P22 

HIGH 
DECODER! 

PRom| |Peom| |PRom| |PRom fae 8205 
ir4                         

  

  

  

 



    

SHARED MEMORY BOARD LAYOUT 

S153 

  

  

      

Fay25 
    bv flees 

Momo sva Puy 

      

  

      
  

                
  

  

                            
  

  
  

Buy awtey bus fiver 

yee fPe 2 = Fre] 
= Mite NAN eStock Barz Ste coe. 

RAM [Ram] [Ram RAM [RAM [RAM 

emery bf fer] emery buften] [low Ap pees: LON AbpRess] 
Pe 4 wv. 2 LATCH 

x yey 2 tis 
B22 Bzr ear Sx fers                 
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APPENDIX F 

SHARED MEMORY BOARD CONNECTIONS WITH THE 

Connections 

TWO PROCESSORS 

MICROPROCESSOR 1 

4 to ll 

12 

13 

14 to 21 

23 

24 

25 

44 

59 

60 

61 

62 to 69 

Memory buffer o/p's 

WAIT 1 

Ag address line from the high 

address latch 

Bus driver o/p's 

P103 line 

T3A line 

Tr 

Ag address line from the high 

address latch 

PCI.PCR line 

DBIN 

PCW.T3 line 

Low address latch o/p's



Connections 

= 55-= 

SHARED MEMORY BOARD CONNECTIONS WITH THE 
  

27 £0 

BO tO 

58 to 

TWO PROCESSORS 

MICROPROCESSOR 2 

34 

43 

26 

42 

22 

45 

46 

47 

48 

Si: 

49 

50 

Bus driver o/p's 

Ag address line 

Ag addres line 

Memory buffer o/p's 

WAIT 2 

P203 line 

T3A 

Th. 

PCW. T3 

Low address latch o/p's 

DBIN 

 



CONNECTIONS 
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WITH THE TWO PROCESSORS 

SHARED MEMORY BOARD PIN   

B
o
w
 

w
o
w
 

B 
2
 

2% 
2 

30 
yt 

£ 
3
h
 

34 
40 

as 
ag 

47 
4
0
S
 

§3 
SS 

sr 
A
o
r
 

GP 
CS 

CF 
CR 

° 
vz 

fists 
fig] 

zo 
faz 

[xa] 
es | 

zo 
[se] 

3a 
[34 

36130) 
4* | az] 

24} 
46/48] 

50] 
s2| 

$a] 
$e] 

sa/ 
ce) 

62] 
sal 

ce 
fica 

. 
els 

|
e
 

° 
° 

2 

 
 

fl 
ol?’s 

; 
4 

Lew 
low 

Memmery 
Bus 

B
u
s
 

M
e
m
o
r
y
 

4 
. 

a
b
 

é 
bFfer 

Deivew 
o
e
s
 
S
 

Be 
ffer 

Latch 
i
a
 

p
e
d
 

of e’s 
F 

3 
lps 

ofp’s 
| 

of ps 
\Pe 

A 
Fe 2, 

tPr2 
pee 

[
P
e
d
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APPENDIX 6 

INTERFACE CONNECTIONS BETWEEN THE 8008 AND THE 9900 PROCESSORS 

9900 Connections 

51 : Memory Address O 

50 : Memory Address 1 

49 : Memory Address 2 

48 :; Memory Address 3 

47: Memory Address 4 

46 : Memory Address 5 

45 : Memory Address 6 

44 :, Memory Address 7 

43: Memory Address 8 

42 : Memory Address 9 

41 :. Memory Address 10 

40 : Memory Address 11 

39 ; Memory Address 12 

38 : Memory Address 13 

37: Memory Address 14 

58 “3 "SCRU CLK line 

53: RESET line 

56 9 CRU OUT line 

By? “acCRU. IN Line 

8008 Connections 

62 to 69 : Data o/p port 8. 

14 tO 217 <> Data o/p port 9. 

4 to 112) Data L/p port 3.



a om 

REFERENCES 

F. Heart, S. Ornstein, W. Crawther and W. Barker. 

"A new minicomputer/multiprocessor for the ARPA 

network". Newnam Inc. Cambridge, Massachusetts, NCC 

Proceedings, June 1973, 

K,. Ohmori, N. Koike, K. Nezu and S. Susuki. 

"A multi-microprocessor system", COMPCON, September 

1974, 

L. Eaton and E. Page. 

"An interprocessor communication scheme for multiple- 

microprocessor systems", Clemson Univeristy, South 

Carolina. 

Wie) Re Perce. 

“How far can data loops go?", IEEE Transactions, 

Comm - 20, June 1972. 

J. May and L. Krakawer. 

"The architecture of a multiple-microprocessor network 

processor", Codex Corporation, Newton, Massachusetts. 

M. Moore, Wright and Patterson, 

"A distributed microprocessor system for avionics", 

AFB, Ohio. 

G. Reyling, 

"Performance and control of multiple microprocessor 

systems", Computer Design, March 1974.



10. 

ll. 

12° 

137 

14, 

= 159 = 

S.Fuller, J. Ousterhort, L. Raskin, P. Rubinfield 

and R. Swan. 

“Multi-microprocessors: An overview and working example", 

IEEE Proceedings, Vol. 66, February 1978. 

S. Crowther, S. Ornstein, M. Kraley, R. Bressler and 

F. Heart, 

"Pluribus - A reliable multiprocessor", AFIDS Conference 

Proceedings, Vol. 4, 1975. 

J. E. Wirshing. 

"Computer of the 80's - Is it a network of microprocessors?", 

IEEE Proceedings, Compcon, 1975. 

V. Ravindran.and T. Thomas, 

"Characterisation of multiple-microprocessor networks", 

Stanford University, California, IEEE Comp. Soc. 

Int'l Conference, 1973. 

C. W. Wiatrowski and C. R. Teeple. 

"add flexibility to your control system with distributed 

data processing", Instruments and Control Systems, 

March 1976. 

R. Nilsen. 

"Distributed computer architectures", Hughes Aircraft 

Company, California. 

T. Burton. 

"Multi-microprocessor systems comsine the efficiency", 

Electronic Design, August 1977.



15. 

16. 

17. 

18. 

Lge 

20. 

21. 

226 

=—1l605> 

A. Weissberger. 

"Analysis of multiple-microprocessor system 

architecture", Computer Design, June, 1977. 

A. J. Nichols. 

"An overview of microprocessor applications", IEEE 

Proceedings, Vol. 64, June 1976. 

V. May and G. Forney. 

"Application of LSI microprocessors in data network 

hardware", Codex Corporation, Newton, Massachusetts. 

M, Lewin. 

"Integrated microprocessors", Transactions on Circuits 

and Systems, No. 7, July, 1975. 

M. Johnson. 

"Microprocessors in unconventional architectures", 

Honeywell Systems - Minneapolis, Minnesota. 

P. Russo, 

"“Interprocessor communication for multi-microprocessor 

systems", Computer, April 1977. 

A. Weissberger. 

"Distributed function microprocessor architectures", 

Computer Design, November 1974. 

B. Parasuraman. 

“High performance microprocessor architectures", IEEE 

Proceedings, Vol. 64, No. 6, June 1976..



23, 

24, 

25. 

26. 

27. 

28. 

29% 

30% 

= 164 = 

Intel Corporation, SBC 80/20 Hardware Reference 

Manual, 1976. 

Widdows. 

"The minerva multi-microprocessor", Stanford Digital 

Systems Lab., July 1975, 

B. C. Searle and D. E, Freberg. 

"Microprocessor application in multiple processor 

systems", Computer, October 1975. Yy 

D. McAuliffe and K. Hagstrom. 

"Multi-processor application in communications 

switching", North Electric.Company, Ohio. 

Ford. 

"Harware support for inter-process communication 

and processor sharing", COMPCON Proceedings, 1976. 

H. Lorin. 

"Parallelism in hardware and software; real and 

apparent concurrency", Prentice-Hall, 1972. 

L. Anderson, 

"The microcomputer as distributed intelligence", IEEE 

International Symposium on Circuits and Systems, 

April 1975. 

D. Forney and J. V. May. 

"8-bit microprocessors can control data networks", 

Electronics, Vol, 49, No. 13, June 1975.



31. 

32. 

33. 

34. 

85. 

36. 

Sh) 

Tole = 

A, Anden and A. Berenbourn,. 

"A multi-microprocessor computer system architecture", 

Operating systems Review, Vol. 9, No. 5.. 

J. Harrison. 

"Micros-minis and multiprocessing", Instrumentation 

Technology, February 1978. 

K. Hagstrom and B. Beizer. 

"Communications processor system study", North Electric 

Company, Ohio. 

P. Jessel. 

"Localised Microcomputer-processor based networks", 

Massachusetts Institute of Technology, Cambridge, 

Massachusetts. 

K,. Kerorbian. 

"Microprocessors and LSI in stored program controlled 

systems", Le Materiel Telephonique, France. 

Baer. 

"Multiprocessing systems", IEEE transactions on 

Computers, December 1976. 

J. W. Bowra and H. C. Torng. 

"The modelling and design of multiple function unit 

processors", IEEE Transactions on Computers, March 1976.



38. 

Boe 

40. 

41. 

42. 

43. 

44, 

45. 

— 163) = 

B. N. Jordan and M. Gonzalez. 

"Operation and control of multiple microcomputer 

systems", Northmester University, Evanston, Illinois. 

J. Bass. 

"A peripheral-oriented microcomputer system", IEEE 

Proceedings, Vol. 64, June 1976. 

C. Ogden. 

"Pundamentals of microcomputer systems", Mini-Micro 

Systems, November 1977, 

J. Nicoud, 

"Peripheral interface standards for microprocessors", 

IEEE Proceedings , Vol. 64, No. 6, June 1976, 

R. Pond. 

"Let microprocessors communicate", Electronic Design, 

November 1977. 

D. Larson. 

“Microprocessor intertie and communication system", 

Signal, April 1977. 

D. Waddington. 

"Microprocessors", Wireless World, 1974. 

M. Helsig, D. Schueffler and C, Rose. 

"Microprocessor based communication and instrument 

control for distributed control systems", Systems 

Research Center - Case Western Reserve University, 

Cleveland.



46. 

47. 

48, 

49, 

50. 

51Le 

DZ 

a6 oe 

Be RLTK. 

‘Interrupts -- the tender trap", New Electronics, 1976. 

B. Cook. 

"Give flexibility to memory systems", Electronic 

Design, September 1974, 

H. Falk. 

"Linking microprocessors to the real world", IEEE 

Spectrum, September 1974, 

G,. Fisher. 

"Speed microprocessor responses", Electronic Design, 

November 1975. 

M. Gerla and L. Kleinrock. 

"On the topological design of distributed computer 

networks", IEEE Transactions on Communications, Vol. 

CoM-25, No. 1, January 1977. 

J. Wakevly. 

“Microcomputer reliability improvement using triple- 

modular redundancy", IEEE Proceedings, Vol. 64, No. 6, 

June 1976. 

P. Enslow. 

"What is distributed data processing systems", 

Computer, Yol. 11, January 1978.



53. 

54. 

ao. 

56. 

S75 

58. 

59. 

60. 

61. 

Le S— 

G. Reyling. 

"Extend LSI-processor capabilities", Electronic 

Design, October 1974, 

C. Torrero. 

"Focus on microprocessors", Electronic Design, 

September 1974, 

W. Farnback. 

“Bring up your microprocessor bit-by-bit", Electronic 

Design, July 1976. 

C. Bass and D. Brown. 

"A perspective on microcomputer software", IEEE 

Proceedings, Vol. 64, No. 6, June 1976. 

"Microcomputer may answer a need in your next design 

project", Article. Product Engineering, 1976. 

"Designers need and are getting plenty of help - 

microprocessors", Article. Electronics, April 1976. 

"Microprocessors - Designers gain new freedom on 

options multiple", Article. Electronics, April 1976. 

Intel MC8-8 User's Manual. 

Texas Instruments - Assembly Language Programmer's 

Guide.



62. 

63. 

64, 

65. 

=" 166) = 

A. Jones, R. Chansler, I. Duram and P, Feiler. 

"Programming issues raised by a multiprocessor", 

IEEE Proceedings, February 1978. 

D. Melvin, 

"Microcomputer applications in Telephony", IEEE 

Proceedings, Vol. 66, No. 2, February 1978. 

D. Stanzione, 

"Microprocessors in Telecommunication Systems", IEEE 

Proceedings,Vol. 66, February 1978. 

Y. Klig. 

"Biomedical applications of microprocessors", IEEE 

Proceedings, February 1978.


