
DESIGN OF A MULTI-PROCESSOR

CONTROL SYSTEM

by

ELIAS KARAGIORGAS

Submitted for the Degree of

Master of Philosophy

at

The University of Aston in Birmingham

October 1979

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his

supervisor, Professor H. A. Barker for his guidance and

advice throughout his research.

I also wish to thank Mrs. Helen Turner and Miss

N. P. Freeman for typing this thesis.

DESIGN OF A MULTI-PROCESSOR CONTROL SYSTEM

Elias Karagiorgas

Master of Philosophy 1979

Summary

The aim of the research undertaken is to investigate the
aspects of multi-processor systems concerned with their performance,
control and architectural design.

Various architectural designs are studied in terms of the
tasks which can be performed in accordance with the objectives and
goals of the system user, the resulting needs of the system and
the types and characteristics of the microprocessors.

The system eventually selected appeared to be architecturally
feasible, essentially practical in its uses and takes advantage of
the capabilities and flexibilities of the microprocessors in use,
This design uses five INTEL 8008 microprocessors, which exécute tasks
independently or in co-operation, exchanging data and information
through common access to a shared memory. The shared memory feature
is an essential part of the performance of the system and is the main
design characteristic of it. ‘The system was tested and operated in
isolation and subsequently operated in conjunction with a 9900/4
Texas Instruments microprocessor system which formed an external
communication system. Observations, conclusions and recammendations
for improvement are given.

The thesis aims to record cbservations of the operations of
a multi-processor system in order to derive an assessment of its
potential uses, particularly for automatic localised control of
systems.

MULTI-PROCESSOR SYSTEM, MULTI-PROCESSOR COMMUNICATIONS, TASK ALLOCATION,

MEMORY SHARING, MULTI-PROCESSOR CONTROL

oe

CONTENTS

CHAPTER 1

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON

OF DIFFERENT APPROACHES

1.1 Introduction

1.2 Computer Networks

1.3 Multiprocessor Systems

1.3.1 A Distributed Multi-microprocessor

system

1.3.2 A Single Communication Bus Multi-

Processor System

1.3.3 Multi-processor Systems with Global

and Local Memories

1.4 Multiple Arithmetic-unit Processor

Systems

1.5 Conclusions

CHAPTER 2

ARCHITECTURE OF MULTIPLE MICROPROCESSOR SYSTEMS

Zou

Zee

Introduction

Design Issues

2.2.1 Task Distribution

2.2.2 Relative Bandwidth Between Tasks

2.2.3 Real Time Response

Page No.

10

11

13

LS

2S,

18

18

19

2

22

dt ta

2.2.4 Reliability

2.2.5 Cost

2.3 Analysis of the Organizational Structure

of Multiprocessor Systems

2.3.1 Distributed Processor Architecture

2.3.2 Parallel Processor Architecture

2.3.3 Miscellaneous Architectures

2.4 Conclusions

CHAPTER 3

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR

SYSTEM

3.1 Introduction

3.2 Hardware Resource Control

3.3 Characteristics of Processing Modules

3.4 Interconnection of Functional Modules

3.5 Interprocessor Communications

3.6 Conclusions

CHAPTER 4

PERFORMANCE AND COST OF MULTIPROCESSOR SYSTEMS

4.1 System Throughput

4.2 System Cost

4.3 System Control

4.4 Conclusions

Page No.

23

24

25

25

aS

36

38

39

40

43

44

49

51

52

56

59

61

= Aves

Page No.

CHAPTER 5

A MULTIPROCESSOR SYSTEM USING THE INTEL 8008

MICROPROCESSOR

5.1 Introduction 62

5,2 Design Considerations 63

5.3 Design and Construction of the 8008 66

CPU System

5.4 Design and Construction of the Shared 80

Memory Module

CHAPTER 6

OPERATION OF THE INTEL 8008 MULTIPROCESSOR SYSTEM

WITH EXTERNAL COMPUTING DEVICES

6.1 Introduction 87

6.2 Task Allocation 88

6.3 Communication Functions 88

6.4 Intel 8008 Multiprocessor System and 90

9900/4 Microprocessor Interface:

Design and Construction

6.5 Multi-task System : Operational Simulation 93

CHAPTER 7

SYSTEM PERFORMANCE

7.1 System Feasibility Assessment 109

7.2 System Communication and Task Execution LiL

Performance

Page No.

CHAPTER 8

CONCLUSIONS

8.1 General 413

8.2 Suggestions for Further Developments riley)

8.3 Final Remarks 119

List of Symbols d21

APPENDICES

A : Intel's 8008 Microprocessor 123

B : The TMS 9900 Microprocessor 12g

(a! : Multi-processor Shared Memory Test 136

Programs

D : Program Assembly 143

E : CPU System Board Layouts 250

= : Shared Memory Connections with the 154

Two Processors

G : Interface Connections Between the Loy)

8008 and the 9900 Processors

References 158

me ie

LIST OF DIAGRAMS

Approaches to System Growth

ARPA Network

Distributed Multiprocessor System

Distributed Processing Performance

Master-slave Multiprocessor Organization

Master-master Multiprocessor Organization

Multiprocessor Ring Structure

Block diagram of an SIMD Microcomputer

Block Diagram of an Array Processor

Single Time-shared Bus

Multipart System Bus Configuration

Crossbar Switch Organization

Mailbox Memory Organization

General Configuration of Multiple

Processor System

Plot of Min. Max. and Average Multi-

processor System Throughput

Page No.

o

26°

27

29

31

32

34

35

46

47

48

50

53

Oh

Relative System Cost v Number of Processors 58

and System Throughput

A Multiprocessor System Using the

Intel 8008 Microprocessor

65

ad te

Page No.

Sok Basic Hardware Diagram of the Micro- 68

processor System

5.3 Detail Hardware Diagram of the Micro- 69

processor System-signal Decoding

5.4 Detail Hardware Diagram of the Micro- 70

processor System-memory and 1/0 decoding

5e5 Circuit Diagram of the 8008 CPU module 71

5.6 Timing Diagram of the Microprocessor 73

System

Sey Memory Module-functional Diagram we

526 Timing Diagram of the Read/write 79

operations

5.9 Circuit Diagram of the 'Shared Memory' 82

Module

5.10 Timing Diagram of the Multiprocessor 85

System

Bok A Multiprocessor Control System 91

6.2 Circuit Diagram of the 8008 Microprocessors 92

and 990/4 interface

6.3 Basic Flow Diagram of Microprocessor 1 task 97

6.4 Basic Flow Diagram of Microprocessor 2 task 98

6.5 Basic Flow Diagram of TMS 9900 task 99

INTRODUCTION

Microelectronics is the most influential technology

of the twentieth century.

Within this technology the microprocessor is the most

influential product, as an agent of radical change that is

bringing new industrial methods, producing an evergrowing

range of new products, and posing serious questions for

society and any national economy.

Dispersion and distribution of information processing

functions have been given impetus by recent advances in

semi-conductor technology and reduced hardware costs.

Integrated circuit technology matured sufficiently

to permit the realisation of the "microprocessor". A

microprocessor may be defined as a device which fetches

and executes instructions, in a predefined sequence,

assumed to be stored in a memory with which the processor

interfaces.

With its present, and in the future, increasing

capabilities the microprocessor can serve for a system

designer as a control element and is responsible for data.

acquisition, processing, display, setpoint control and

communications

Since the introduction of microprocessors, multiple

microprocessor configurations have been the vision of

automatic systems designers as it approaches to higher

reliability and higher computational bandwidth.

In particular, multi-processor configurations in

which a number of identical processors share a common

memory or common memories, have been the subject of

intensive study and analysis.

Until recently, however, implementation of computer

structures of this type have been limited to special

purpose military computers. The two primary reasons for

the slow acceptance of multi-processor configurations

have been cost and the difficulties associated with the

interrelated dynamic properties of systems control and

fault tolerance. Although significant advances have been

made in the latter two areas, a great deal of effort must

still be expended in an attempt to develop an integrated

methodology which combines the findings in each of the

two areas. On the other hand, the rapidly decreasing

cost of hardware which is exemplified by the widespread

acceptance of microprocessors has provided the push for

multi-processor investigations which are not necessarily

bound by some of the more difficult problems of control

and reliability. The relationship between total system

cost and total system capahility can be described by the

curves of Fig. 1. Ideally, the relationship between

cost and capability should be linear, That is a small

increment in system cost should yield a comparable increase

C
A
P
A
C
I
T
Y

—

TRADITIONAL

 INCREMENTAL

 IDEAL

cost

Fig. 1

Approaches to System Growth

in capability. The increase is a function of the slope

of the curve: a larger slope is indicative of a more

cost-effective investment. An installation however, of a

multiprocessor finding itself with a saturated system may

have to resort to large investments for more mainframe memory

for more (or a different type) of secondary memory, or

perhaps to an upgrade to the next more powerful member of

an upwards compatible family.

A desirable compromise between these two is one which

allows system:components to be added.incrementally whilst

requiring only modest increase in cost. In the past this

has been the rationale for the study of systems in which

components processors and memory in particular can be

added as growth requirements dictated. Anadded feature

of a system of this type has been the ability of the system

to withstand failures in a processor, for example, without

seriously impairing system performance.

The ever-increasing capabilities of microprocessors

coupled with their attractive cost performance in parallel

with the hardware advances which brought lower costs and

the potential for a variety of physical interconnection

possibilities have reduced the limitations for the wide

implementation of a multi-processor system. Systems

which combine private and shared memories, buses, switches,

stand-alone processors etc. are the study of many research

institutions, ,public or private, in an attempt to realize

the problems and stretch the capabilities associated

with these systems.

This report tries to examine the problems of designing

and goneeouin a multiprocessor system. The research was

conducted here in the Electrical and Electronic Engineering

Department of the University of Aston in Birmingham, using

the INTEL's 8008 microprocessor. The Texas Instruments

latest microprocessor system the 9900/4 was used in the

final stages of the research as part of an independent

communication system.

Details on the operations of the 8008 and 990/4 are

given in Appendixes A and B.

CHAPTER 1

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON

OF DIFFERENT APPROACHES

Introduction

Computer Networks

Multiprocessor Systems

1.3.1 A distributed multi-microprocessor system

1.3.2 A single communication bus multi-processor

system

1.3.3 Multi-processor systems with global and

local memories

Multiple Arithmetic-Unit Processor Systems

Conclusions

CHAPTER 1

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON OF DIFFERENT

APPROACHES

1.1 INTRODUCTION

Since the announcement of the first commercial micro-

processor in 1971, integrated CPU's have evolved from

laboratory curiosities to ubiquitious fundamental system

building blocks. Moreover, rapid advances in LSI mere

technology during the early 70's have resulted in ever

larger RAMS and ROMS.

The advances made by LSI technology have not been

applied solely to microprocessors and memories. Complex

bit general purpose logic blocks are being integrated on

single chips in increasing numbers. Amongst them the

development of UART for data communications and single-~

chip peripheral interfaces. The ability to introduce

microprocessor control into many systems currently

implemented via hard-wired logic will bring to these

systems all the attendant advantages of stored program

control. These include greatly improved flexibility,

reliability, ease of maintenance and lower cost.

A natural evolution of microprocessor-based system

architectures is that of distributed processing, i.e.

multi-micro-computer systems. In distributed intelligence

systems, intelligent subsystems, dedicated to specific

tasks, communication in an optimal fashion to improve

system throughput, increase reliability, and add a new

dimension of flexibility.

There is currently no established methodology for

interconnecting sets of processors for the purpose of

building general-purpose or even special purpose

computer systems.

However, there does exist an interesting range of

possibilities that span this range: computer networks,

multiprocessors, and multiple arithmetic unit processors.

1.2 COMPUTER NETWORKS

Perhaps the most widely known computer network is

the minicomputer/multiprocessor for ARPA network?. An

important attribute of this network is the data

transmission bandwidth between computers. The other

important attribute of the inter-computer links is the

access, or latency time for each unit of information

sent between microcomputers. The system contains an

expandable number of identical processors, each with

some 'private' memory, an expandable amount of 'shared'

memory to which all processors have equal access,

and an expandable amount of I/O interface

controllable by any processor. The system achieves

modularity and reliability by making all processors

equivalent, so that any processor may perform any system task,

thus systems can be easily configured to meet the through-

put requirements of a particular job. The scheme for

interconnecting processors, memories and I/O is also

modular, permitting interconnection cost to vary smoothly

with system size. In considering which minicomputer

might be most easily adaptable to a multiprocessor

structure, the internal communication between the processor

and its memory was of primary concern.

The overall design is represented in Fig. 1.1.

Processors make access to shared memory via the switching

arrangement. The shared memory of the multiprocessor

system is intended to contain a copy of the program as

well as considerable storage space for message buffering,

global variables, etc. The ARPA network is an example

of a loosely coupled network because of the 50 K/bits

links between computer in the network and the 100-200 ms

latency times associated with cross-network transmissions

of packets of information.

1.3 MULTIPROCESSOR SYSTEMS

There are different approaches on the basic structure

of a multiprocessor system. Its distinguishing character—

istic is that the processors share primary memory.

PROCESSING AND

AND PRIVATE MEMORY

MODULATOR

SWITCH

SHARED

MEMORY

 I/o

PIGS Le ARPA NETWORK

Depending on the applications some acquire private memory.

Main memory and I/O channels are accessible by every CPU.

Multiprocessor systems can operate in several modes. In

one, the processor may co-operate in solving a problem

which requires more computing power than a single

processor affords. Each processor might control a

position of an overall process, with the necessary

co-ordination between the control strategies effected

through the processor interconnection means. Both

processors are of equal importance in maintaining control

of the process, and both must be operating to obtain

optimum performance. A more common mode of operation in

industrial control is usually called duplexed operation, and

its purpose is to increase the reliability of the total

system. A primary processor normally performs the control

task. In the event of a failure a second, back up

processor takes over.

1.3.1 A distributed multi-processor system

The multi-microprocessor system developed by the

Central Research Laboratories” is essentially a distributed

microcomputer system composed of several kinds of sub-

systems. Each subsystem is given autonomous control

capabilities to facilitate control problems, securing

independence between subsystems as well. Instruction

execution cycles of typical LSI processors are 5 or 10

Sie

times slower than the main memory cycle. Thus it is

expected that the main memory can be shared in time and

space with several processors to improve memory utilisation.

The virtual memory was chosen in order to allow each

user to use more memory capacity than it could if it

were restricted by the actual main memory. Furthermore,

to avoid operating system complexity, a page detector

was developed which notifies a multiprocessor communication

adaptor of a page being unused for a long time. Asynchronous

ambiters were also used, which handle the simultaneous

access to the main memory and I/O devices.

Several advantages are claimed for distributed processing.

They offer division of labour, as remove mace off-load

the processor at the next higher level for enhanced

performance of the total system. Although the central

operating system must still be a multiprogramming system,

the degree of multiprogramming is reduced, since some

functions will be handled directly by remove computing

units. They also offer a degree of modularity which is

difficult to achieve with single centralized computer

system.

1.3.2 A single communication bus multi-processor system

In an article on interprocessor communication scheme for

: ; 3
iuultiple microcomputer systems~,L.Eaton and E. Page advocate

the single communication bus as a method of linking several

a Die

devices together to allow sharing data with advantages on

flexibility, universitality and economy. Despite the

advantages of the single bus, it can accommodate only one

message at a time, thereby restricting the rate at which

transmission may occur.

Alternative concepts for achieving communications

between processors have made use of multiple buses, multi-

part memories, or cross-bar switches. Typically, the

problems of bus arbitration and synchronisation have

become increasingly more cumbersome as the number of

processors in the system increased. In order to exploit

the advantages of the single bus concept and at the same

time, minimize its disadvantages, the Pierce loop4 is

being used as a communication bus. Conceptually, a

Pierce loop is a set of registers connected in a circular

manner that moves a packet of information in a fixed

direction from one register to an adjacent register in

each unit of time. Each processor has its own memory

as well as ancillary circuits for bus interfacing and

monitoring. Each processor has a unique name, p or v,

and communication between processors takes place by

tagging information to be transmitted with either the

Pp or v name of the desired destination and placing it on

a loop.

= 13 -

1.3.3 Multi-processor systems with global and local

memories

In their article on a Multiple Microprocessor Network,

J.E. May and L.J. Krakaver” chose a memory system allowing

a limited amount of local memory for each processor, with

a high bandwidth global memory system accessible by all

processors. All global memory accesses as well as inter-

processor and I/O controller communications are done over

the system bus. Ths bus allows transfer rates of 1 byte

every 167 nsec. It was estimated that each Motorola 6800

or Intel 8080 made a memory/bus access on the average of

once every 1.5 ms. Thus, the bus access requirements of

8 microprocessors are roughly balance with the bus band-

width. They also used a bus contention priority system,

task dispatching and interrupts. A master controller

was also used to perform clock generation, memory refresh,

memory control, control panel logic and the I/O controller,

and task dispatcher for the processors.

Service requests can be from external sources or from

queued internal requests. There are eight priority levels

at which these service requests may be present.

The distributed microprocessor system for Avionics by

M. Moore® consists of identical processing elements inter-

connected by a network of serial buses. A global bus

interconnects all processorsin the network and provides a

channel for network control and system data. Separate

= 1o—

I/O ports are provided to eliminate the need for real-

time command-response interaction on the network buses.

The memory unit serves for both program and data

storage. It is asychronous and can therefore be realized

with a mixture of technologies. Total size required was

4K and 8K bit words. The processor I/O unit is intended

to be the interface between the network and aircraft

devices. The device is a single channel that can be set

up for autonomous or program controlled transfers. A

16 bit parallel I/O path is used to multiplex command and

data information. One interrupt line is provided to the

device.

The general configuration of a multiple processor

system advocated by C. Reyling’, uses a common data bus

as many microprocessors are able to time-share such system

resources as memory, I/O, and peripherals. In this

asymmetric structure individual processors have fixed

specialized processing functions. It could be used in

dedicated applications where type, frequency of occurrence

and relative importance of tasks are known in advance.

Processors may be specialized to carry out one particular

type of task. Once processor, for instance may perform

all I/O operations, another perform memory accessing,

another provide file maintenance and so on. Specialisation

May occur via the software programs executed (local

memories), and hardware architectural features (number

7 Se

of registers, interrupt capabilities, stock processing).

Often a side benefit of this partitioning is simplification

of programming, since each task can now be treated as an

independent module, with no provisions required for

execution of other tasks by a given microprocessor.

1.4 MULTIPLE ARITHMETIC-UNIT PROCESSOR SYSTEMS

The third form of computer organisation that

incorporates multiple processing elements is the multi-

arithmetic and logic unit processor. The fundamental

difference between this type of structure and multi-

processors is that all the ALU's in the multi-ALU

processor support a single instruction stream, while

each of the processors in the multiprocessor supports

its own instruction stream®,

If we define a processor to be a unit capable of both

decoding and executing instructions, then the multi-ALU

processor is not really a multiple processor system.

However, multi-ALU organisations are often considered as

alternatives to multiprocessors and derive the same

benefits from advances in LSI technology as multiprocessors.

1.5 CONCLUSIONS

Networks, multiprocessors, and multi-ALU computers,

have been presented as three methods of organizing processors

to build highly parallel computer systems. The three classes

= Gm

can be thought of as as varying along a single dimension,

the degree of coupling between processors in the system.

In the computer network the minimum access time for a

processor is the access time to local memory. Ina

multiprocessor, each processor has direct access to global

data stored in primary memory. Since interprocessor

communication occurs by sharing primary memory, the inter-

action times are on the order of 1-50 us. In a multi-ALU

computer, the analog of interprocessor communication is the

transfer of control information that occurs between the

control unit and its associated processing elements. The

position of multiple processor organisations has a strong

influence on its suitability to a particular application.

An application consisting of a set of parallel processes

that need to interact or share data only every 10-100 s

can run on a loosely coupled computer network. At the

other end, algorithms that require the parallel execution

of arithmetic operations within single expressions force

the interaction times between processing elements to

occur almost every instruction cycle. Thus the average

time between interprocess interaction becomes a critical

time constant of an application, and proyides a good

indication of the type of multiple processor organisation

that will be most suitable.

Several advantages may be realised with multiprocessor

systems in general. Througput often increases almost

aeajr

directly with the number of processors while system

cost increases by only a small amount. Shared system

resources offer an economic adyantage by eliminating

devices which would need to be duplicated in separate

stand-alone systems. Shared resources also provide direct

access to data which might otherwise require transmission

from one system to another.

The characteristics of LSI processors strongly suggest

the multiprocess system as a practical alternative to a

multi-task monoprocessor system, since the cost performance

will be improved as a consequence of sharing expensive

memory and I/O units.

CHAPTER 2

ARCHITECTURE OF MULTIPLE MICROPROCESSOR SYSTEMS

Introduction

Design Issues

2.2.1 Task Distribution

2.2.2 Relative Bandwidth between Tasks

2.2.3 Real Time Response

2.2.4 Reliability

as2eo Cost

Analysis of the Organisational Structure of

Multi-processor Systems

2.3.1 Distributed Processor Architecture

2.3.2 Parallel Processor Architecture

2.3.3 Miscellaneous Architectures

Conclusions

ioe

CHAPTER 2

ARCHITECTURE OF MULTIPLE MULT-PROCESSOR SYSTEMS

2.1 INTRODUCTION

Current low cost-scale integrated me eroncncessore

offer the potential of cost-effective multiple microprocessor

systems. Advantages that can be gained by these systems

ianclude high throughput, improved real-time response,

better availability/reliability and modular expansion.

Unfortunately, the design techniques, structures and

organisations of multi-processor systems are not well

defined. A host of problems including process partitioning

into parallel tasks, allocating tasks, sequencing and

interaction between processors, controlling system

resources and overcoming the physical and architectural

limits of microprocessors must be thoroughly researched

before implementation progress can be made. To provide

solutions and design guidelines for multi-processor and

distributed processor systems incorporating available

large-scale integrated microprocessors, ,existing

microprocessor architectures, organisations and strategies

have been analysed to derive those characteristics which

are mandatory for workable multiple microprocessor systems.

2.2 DESIGN ISSUES

There are a number of factors that influence the design

of a multi-processor system. Emphasis to each one of them

oe

would be given according to the goals, and objectives of

the system designer, although these factors are interrelated.

These factors are important in making a multiple processor

system an effective computing machine and are involved in

optimising the architecture to the particular application.

2.2.1 Task Distribution

The logical distribution of tasks is the relationships

between the various tasks that the system is expected to

perform. In a traditional computer system where the

hardware is fixed, the logical distribution of these tasks

affects only the structure of the software. In multi-

processor systems however, it is possible to allocate

processes to different processors. These networks,in

effect, replace the multi-processing software of earlier

computer systems with hardware. The fact that the jobs

can be now done concurrently compensates for the lower

performance characteristics of the components. One

interrupt free method of dispatching processors to the

data communication tasks could be done similarly to the

mailbox approach used in Pluribus multi-processor system?)

In this case processors are allocated to tasks on the

basis of pending task priority, with all tasks running to

completion on the allocated processor without interruption.

At completion, the processor is re-allocated to the highest

priority task requiring service. This, of course, eliminates

context switching overhead but also puts constraints on

the hardware/software. All tasks must be executed in

a time shorter than the overrun. time of those tasks

requiring service.

The degree of interactionbetween tasks also defines

the organisation of the network. A network can be

absolutely represented by a ngraph and if one associates

an control flow with the graph certain logical

relationships emerge ‘10,11,12).

There is a distinction between the meaning of a graph

in this context and its meaning in connection with

traditional networks. In the latter case, various

organisations are postulated in the hope of improving the

mechanism for transmitting messages and the graph is used

to describe the mechanism for routing messages. Since each_

processor executes its programs independently of the

other tasks being executed, no attempt is made to associate

any statement of program control with the graph. For

multi-processor networks however, the graph is used to

indicate the relationships between processors and hence

provides a tool for identifying an isomorphic hardware

structure. It is therefore more of a flow graph of

program control. For example, the graph of a microprocessor

ring network implies a sequential process where completion of

a task in one processor initiates the execution of another

processor. Alternatively a tree network implies the

presence of a hierarchy or processes, where the completion

OT

of several tasks in the terminal processors activates a

process in the junction processor.

2.2.2 Relative Bandwidth Between Tasks

The relative bandwidth of the interfaces between

these tasks:related to logical distribution of tasks,is

the issue of bandwidth. Bandwidth is an important factor

in deciding the physical distribution of processors.

There are three common ways of handling interprocess

communication:

(a) Serial Communication

(b) Parallel Data Bus

(c) Multiport Shared Memory.

Only serial communication allows any degree of physical

separation. The other approaches imply the use of several

processors combined in a single chasis. A recently advocated

approach is a system in which several program processors

are clustered around a central service facility. The cluster

acts as a contemporary multi-programming system in hardware.

The microprocessors in a service centre handle system

processes while the program processors handle user requests.

The service centre performs four functions: memory

management, process management, file management and monitoring

and protection. Each of these tasks could be maintained

by a separate processor Oy et tage lel

cae ee

2.2.3 Real Time Response

The specified response time associated with each task

is the third issue. There are two components to this:

(a) The maximum amount of time allowed to recognise

a condition (latency) ,and

(b) the total time allowed for a response.

The real time response of a mutli-processor system depends

on the computational power of the individual microprocessor

and specifically on their instruction speed and I/O

capability. In the microprocessor used in this research,

the 8-bit Intel 8008, there were limitations on both counts.

The particular 8-bit microprocessor provides one interrupt

to the CPU and,in this case,was not used for reasons

explained later in the thesis. Although this may be

extended by using additional peripheral chips, the cost of

these chips must be weighed against the use of an

additional microprocessor module. Moreover, the relatively

slow execution times of these units caused by their 8-bit

data path, limits their total response for multiple

interrupts. Accordingly, a common mechanism for many

high speed applications is to allocate one processor to

each real time process,

It must be pointed out that newly introduced 16-bit

microprocessors (TI 9900) would change the scope, approach

and capabilities of these systems. However, we are

concentrating on the 8-bit processors mainly and although

a2 3

the design issues would remain the same for the advanced

16-bit processors, the system response would alter‘? aS

17, 18)

2.2.4 Reliability

The reliability of a network depends on the reliability

of the nodes and the reliability of the communication system.

In larger networks, work on reliability has centred on

insuring the integrity of the network even in the event of

a failure of one of the processors. This work was focused

on hardware mechanisms that minimise the coupling between

a processor and the network,and on the design of software

which detects improper transmission by a faulty processor.

In addition these networks should incorporate a number of

encoding rules and network protocols which are intended

to insure the validity of the data. The reliability of the

nodes is generally a separate issue and is usually not

considered in the design of the network. On the other

hand, on a multi-processor system one would like to ensure

the reliability of the total system. The most obvious

solution to that (given the low cost of microprocessors)

is to provide a "backup" microprocessor to every

microprocessor in the system, This backup monitors the

operation of the primary unit and in the case of failure

either replaces it in the system or reports the failure.

If that sounds suspicious as the backup can cause the

system to fail, another approach associates a monitoring

ae DA ee

function with one (or several) of the regular checks on

the status of the other processor in the network and

automatically detects nodes that are functioning

improperly and removes them from the system. These nodes

are then replaced with previously inactive nodes which

have been included in the system with the specific purpose

of acting as spares. A combination of the two above

mentioned approaches can be also considered.

The security and reliability of the system is very

important as in current practice in microprocessor

environments long down-times cannot be toleratea!”) ,

2.2.5 Cost

Cost is clearly a significant issue in any design.

Multi-processor systems differ from traditional networks

not only in the total cost being dropped, but also in

that the relative cost of the processor vs communications

has shifted dramatically. This affects not only the range

of applications but also the configuration of the network

since we are dealing in an environment where in most cases

the interface to any network will be a significant portion

of module cost. In most cases though, it is felt that

there will be a tendency to localise the network; to avoid

any long distance method of communications and to reduce

the bandwidth of any remove communication.

=—1950—

2.3 ANALYSIS OF THE ORGANISATIONAL STRUCTURE OF

MULTI-PROCESSOR SYSTEMS

In the previous section we examined the design factors

that influence the architecture of a Mule er eteaaon system.

It was stressed that the flexibility, simplicity and

capability of the microprocessors can provide almost any

architectural design (within the limitations of microprocessors)

to suit the objectives and goals of the system designer. In

this section we examine some of the existing conventional

architectures of multi-processor systems.

Distributed, parallel and pipeline architectures have

been recognised as feasible approaches to provide high

throughput systems ‘15, uy

2.3.1 Distributed Processor Architecture

Distributed processing refers to a specific technique

for interconnecting a number of processors. It utilises

a Bus Interface Unit (BIU) to connect each processor to

a single bus. There is little CPU involvement in the

communication function. Addition of a processor will

not affect the interface of those processors already

in the system (Fig. 2.1). The primary advantage of this

architecture is thought to be physical distribution and

incremental expandability. An additional potential

advantage of microprocessors in a distributed system is

improved cost/performance (Fig. 2.2). The most obvious

critical design issue is to determine whether or not a

26

tec

woe
zsks

T
O
S
s
e
0
0
r
g
-
T
R
T
N
W

p
e
q
n
q
T
s
z
4
s
t
a

“itd

A
Y
O
W
A
N

N
d
o

O/T

A
Y
O
W
I
W

N
d
o

O/I
A
Y
O
W
A
N

ndod

O/1

S
O
V
I
a
a
L
N
I

s
n
d

S
O
W
A
U
A
L
N
I

s
n
d

S
O
V
I
A
A
L
N
I

S
N

E
f
f
e
c
t
i
v
e

t
h
r
o
u
g
h
p
u
t

in

N
u
m
b
e
r

of

1o

P
r
o
c
e
s
s
i
n
g

E
l
e
m
e
n
t
s

— 2g r=

5 10

Actual Number of Processing Elements

Distributed Processing Performance

Fig. 2.2

Eos =

given application can be partitioned and executed

concurrently. Tasks and their actions must be known in

advance so that the system functions can be subdivided

among the individual processing elements. This includes

segmentation of software into dedicated program segments

for each processor and assignment to controlled variables

and devices to each processor. Such static allocation

of tasks minimises program interaction which permits

simplified development and debugging of individual program

segments. Interprocessor communication is usually restricted

to passing messages or data blocks through shared peripherals

or serial communication links as opposed to a shared main

memory. Failure though,of any processing element (CPU

or I/O channels), may seriously degrade system performance

as the system cannot dynamically shift tasks that have

been assigned to the defective element.

A myriad of possible distributed intelligence

microprocessor systems (DIMS) structures exists. The

master-slave organisation 29) (Pig. 2.3), offers many

advantages to multi-microprocessor systems. This system

employs a single integrated operating system to dynamically

allocate tasks as they are received. A resource allocation

processor (master) can allocate tasks to processing modules

(slaves) through a resource request table. PMs may be

identical and capable of executing any task (symmetric)

or may be pre-assigned to handle special functions

(asymmetric). The symmetric multi-processor is used in

= 29 5=

MASTER

CPU

SLAVE SLAVE SLAVE
cpu e@oeee cpu e@coeecee cpu

Master-Slave Multi-Processor Organisation

Fig. 2.3

—aSOne

a general purpose environment where processing requirements

are constantly changing. Since PMs are equivalent, a given

task can be re-assigned in the event of PM failure. By

contrast the asymmetric multi-processor is compesed of

PMs specially configured for a set number of tasks. Incoming

tasks must be queued to assigned PMs even though other PMs

may be idle. Although this may decrease throughput it

simplifies the operating system, which becomes a task

scheduler and is relieved from the identification and

allocation of parallel tasks. As a system becomes more

asymmetric more tasks must be allocated to specific PMs

and portions of the operating system becomes more

individualistic.

Another possible formation is illustrated in Fig. 2.4.

of a mastermmaster structure in which any CPU can communicate

with any other CPU. In this organisation all the CPU's

must support compatible interprocessor interfaces and I/O

instructions. This organisation may well be effective for

large communication networks. However, it may not be

suitable for multi-microprocessor systems where the tasks

to be performed by specific CPU's may vary drastically.

Yet another possible organisation is the ring structure

illustrated in Fig. 2.5, In this organisation though,if

the information bus is also needed by the individual cpu's

for their own processing, severe contention problems will

occur with a resulting degradation in the performance of

= 3 =

 CPU

Master-Master Multi-Processor Organisation

Eig. 2.4

CPU

CPU

CPU

3 es

CPU

CPU

CPU

CPU

Multi-Microprocessor Ring Structure

Fig. 2.5

ao oe

the overall system.

Distributed multi-processor organisations could be

applicable to avionics slip-board control command and

control and weapon control functions as have been

considered as being amenable to partitioning.

2.3.2 Parallel Processor Architecture

Parallel processing is the concurrent processing of

two or more portions of the same system algorithm by two

or more processing units. This can occur at the task,

sub task, instruction stream or data set level. Two

organisations of parallel multiple processors can be

identified; the single instruction multiple data (SIMD)

and the multiple instruction multiple data (MIMD).

In SIMD architectures, a single control unit fetches

and decodes instructions. The instruction is executed

in the control unit itself or its broadcast to other

processing elements (Fig. 2.6). One subclass of the SIMD

architecture the ‘array processors', where instructions

manipulate vectors of data simultaneously and the control

unit has limited capability ,appears to be cost-effective

for very specific applications(Fig.2.7). Rationale

for this organisation is the high throughput obtained by

simultaneous (parallel) operations of processors on

different data streams. Computations must be describable

by vector instructions with many identical operations in

Prot

Memory 1 Processor-to-

Processor

Interconnection

Processor 2 4 Network

Control

Processor

e
©
°
e
e

Proc. N

Memory N e

Memory
Bus

Data and
Instructions To I/O

Block Diagram of an SIMD Micro-computer

Fig. 2.6

Supervisor
Processor

Network Distributor

PE

Pr

Block Diagram of an Array Processor

 Pr

Fig. 2.7

ee

 Px

action simultaneously on different data; high speed data

routing between processors is necessary; and operands

that are manipulated simultaneously must be fetched

simultaneousiy. Applications can be in weather predication,

air traffic control, radar signal processing or any high

speed vector computation.

The MIMD architecture achieves parallelism by performing

independent tasks on separate data sets concurrently and

combining results of the execution of the independent tasks.

To attain high efficiency, proper synchronisation of processors

and allocation of tasks is necessary to balance the processing

load.

2.3.3 Miscellaneous Architectures

The pipeline architecture consists of a number of

ALUs, cascaded and inter-connected based on a specific

algorithm. The architecture is discussed because it

demonstrates one of the primary advantages of microprocessors:

simplification of the design process itself. The application

for which the pipeline was designed is signal processing.

The real advantage found in this architecture is the ease

of the design, because of the use of assembly language.

Multi-processor,systems could be further classified

according to the degree of interaction between processing

modules (CPU's or I/O channels), often called coupling ‘4°"

gn). We should add at this point that processors passing

ey

data through shared memory are sometimes considered to

be tightly coupled, although some designers disagree with

this classification. Usually there is no program interaction

between loosely coupled processors although they may share

read/write memory to pass information. When the system

is to consist of numerous small modules for general purpose

applications, the connections are necessarily of the loose

type. In this case the processors should be able to access

memory with:as much sharing as possible, communicate with

one another through shared resources with minimum

contention problems, and be capable of dynamic configuration

in the eventof PM failure. This type of system requires

high throughput and/or high availability. The author feels

that these systems will eventually replace many minicomputers

in data based inquiry/response and in real time control

applications.

This production is adyocated by reasoning that:

(a) Inherent flexibility permits small increments of

growth with minimum system redesign (extensibility).

(b) Ability to dynamically allocate tasks to balance

the processing load improves throughput and real-time

response.

(c) Ability to dynamically reconfigure PMs in the event

of failure.

(d) LSI is cost-effective and a multi-processor system

can overcome the ultimate physical limits of LSI

= o00—

for high performance applications (15/21/22) |

One or more of these items must be chosen as design

goals for a microprocessor based multi-processor system.

2.4 CONCLUSIONS

The -microprocessor revolution has made possible the

economical de-centralisation of computing power. This

has been achieved not necessarily by making systems with

improved cost/performance, but by making microprocessor

control of many functions economical and practical. The

microprocessor has made it economically possible to

introduce processor control to a host of new applications,

and thus to the diversity of architectural designs.

Multi-microprocessor structures are largely effective in

situations where the tasks to be performed can be

effectively and efficiently partitioned. This would give

rise to further diversity of architectural designs as I/O

processing capability is improved coupled with improved

reliability and fail-safe features. An additional benefit

resulting from the effective partitioning of tasks in a

multi-CPU system is that the softwane, by being partitioned

into several relatively independent packages, is much

simpler and runs more efficiently. This is especially

effective in a system supporting many interrupting devices.

CHAPTER 3

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR

SYSTEM

Introduction

Hardware Resource Control

Characteristics of Processing Modules

Interconnection of Functional Modules

Interprocessor Communications

Conclusions

sO eras

CHAPTER 3

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR

SYSTEM

Bye ls INTRODUCTION

Allocation of tasks and sychronisation of micro-

processors are the most serious problems in the design

and operation of multiple-microprocessor systems. They

involve identification of a parallel process, partitioning

the process into subprocesses or tasks, establishing a

priority scheme for the tasks, assigning tasks among

various microprocessors, sychronising them, and providing

some means to dynamically reassign a task in the event

of PM failure. Although solutions to these problems have

been proposed the implementation is very difficult. One

of them is by expressing potential parallelism in the

coding via a WAIT-SIGNAL. This approach was used in this

research project. It is obvious that the smaller the

number of microprocessors, the easier the process.

Processes or tasks operating in a micro-multi-processor

system share a number of resources to improve performance.

Resources include hardware (processors, memory, I/O channels,

registers, buses) and software (programs, data files, buffers,

variables). The more shared resources that are available,

the greater the control required for the allocation and

resolution of tasks. Too much sharing results in complex

control structures and task conflicts. This can produce

PLO

low throughput or deadlock as two or more tasks are

waiting for resources that have already been assigned to

each other.

3.2 HARDWARE RESOURCE CONTROL

Arbitration, flag test and set and interrupts are

the most common methods of hardware resource control.

Arbiters

An arbiter accepts requests from PMs (active

elements), resolves contention and alerts the elements

of its decision.

A centralized arbiter consists of a single self-

contained hardware unit. Intel has designed a custom 'bus

controller' chip for this function on the SBC 80/CO micro-

computer poard?, Widdows has developed a 'lBus arbiter'

for the MINERVA system=* and Reyling has proposed a

resource allocation microprocessor’.

A decentralized aribter is one in which control logic

is distributed throughout the active elements connected to

a shared resource. The arbitration method includes daisy

chaining, priority encoding, and polling asynchronous

requests, (flags and interrupts). Choice of method depends

on simplicity, device servicing requirements, expandability,

susceptibility to failure control line limitations and

controller speed’>. Arbiter speed should be such that the

overhead to access a device is only a fraction of the

time spent using the deyice. For example, a high speed

cycle-shared memory requires a hardware arbiter, while a

bleck of shared memory can be allocated by a microprocessor

arbiter.

Status Flags

Conflicts over shared memory and I/O can be resolved

via the flag-and-set procedure. The requesting processor

tests the states of the flag, which is a resource busy

indicator. If busy, the microprocessor must wait before

obtaining the resource. If not busy, the flag is set to

busy during resource access, and then reset when the

microprocessor is finished with the resource. Simultaneous

requests for a resource must result in only one processor

gaining access. Since requests for a shared resource occur

asynchronously, care must be taken that more than one

processor does not gain control of the resource. For this

reason the test and set operation must be indivisible.

If memory is used for the status flag, it must be

capable of a read-modify-write cycle before permitting

further accesses. This requires a lock on the memory

address. Although it is easier to lock a block of

a3 in that case the memory than a specific address

remainder of the module is unavailable to other processors.

For this reason status bits are sometimes implemented

as a set of dedicated external registers that perform the

read-modify-write cycle themselves.

Interrupts

Interrupts can be used to service internal processor

errors, clock signals, external devices or to sychronise

interprocessor communications (shared memory). Servicing

interrupts in a micro-multi-processor system is usually

assigned to the originating microprocessor. External

devices may be preassigned to individual processors or

dynamically directed to whatever processor is best

equipped for service. This real-time assignment can be

done through a centralized hardware arbiter, a dedicated

high speed processor or by individual microprocessors.

Assignment is made on the basis of servicing capability,

availability, task allocations, and software priorities

of each processor. Interprocessor communications can be

sychronised by passing an interrupt request signal from

one processor to another, such that requests for each

can be wire-ORed onto one interrupt level dedicated to

interprocessor communications. A prioritized vector,

corresponding to the highest priority processor requesting

the bus, can be placed on the data bus when the interrupt

has been acknowledged. Handling external device interrupts

is perhaps the most critical decision in implementing the

device interface to the micro-multi-processor systems.

Microprocessors with highly advanced interrupts facilities

and priority levels are requested.

= 43

The ability of the microprocessor to do useful work

while waiting for availability of system resources is very

valuable. The microprocessor could then perform background

processing of tasks not requiring system resources. This

is particularly important in applications where the micro-

processor must be able to respond in real time to local

interrupts.

3.3 CHARACTERISTICS OF PROCESSING MODULES

The composition of Processing Modules (PMs) depends

to a large extent on system bus structure (interconnection

topology), interprocessor communications, and the number

and type of shared resources. In general, the PM includes

a CPU (microprocessor chip, clock, bus control, buffers,)

local or private memory for instructions and data storage,

system bus interface circuitry, memory map hardware,

interrupt handling logic, and I/O device controllers for

private I/O. It is also possible for each PM to share

Memory with other PMs. In cases where system bus width

is significantly greater than microprocessor word length,

an instruction stack can be used to lighten system bus

loading?*. One critical area of PM is the system bus

interface logic. Flexibility and performance of the

interconnection topology are directly proportional to

the complexity and expense of this interface logic. If

heterogeneous microprocessors are used, interface logic

= 44. —

will be unique for each processor. In particular 8 and

16-bit processors may communicate over the same bus,

requiring distinct interfaces for each microprocessor.

Memory map hardware is used to translate addresses

provided by the microprocessor into addresses in physical

memory (both prive and shared). In a parallel computation

environment, precise memory requirements for a group of

concurrently executing programs cannot be predicted ahead

of time. As a result, programs and data must be moved and/

or compacted to make room for additional items. The memory

map facilitates dynamic variation of physical locations

during program execution without actually moving the

locations. If data are to be moved, the map function is

changed to reflect a new physical address assignment. The

memory map also provides a convenient means for two or

more programs to share data. References to shared data

are mapped onto the same physical addresses, while references

to private data are mapped into distinct locations for each

PM. It is sometimes possible to use software to achieve

the memory map function. To do this, extensive use is made

of indirect addressing through indirect pointers.in micro-

processor register or in read/write memory, and indexed

addressing.

3.4 INTERCONNECTION OF FUNCTIONAL MODULES

Some organisations for interconnection of PMs, shared

memory, and shared I/O are the time-shared common bus, multi-

Abe

bus/multiport memory and crossbar switch2?1/26 |

The single time-shared system bus shown in Fig. 3.1

is a shared resource, therefore a means must be provided to

resolve contention (fixed priorities, first-in, first-out,

queues). Interference between PMs requesting the bus

depends on the length and frequency of PM bus cycles, memory

and I/O cycle times and the number of PMs that share the

busy (system capacity). The lower the ratio of bus cycles

required by an individual PM to the total number of cycles

available, the higher the system throughput. For this

reason, private memory and private I/O are highly advantageous.

Total system capacity is limited by the bus transfer rate.

Disadvantages of this bus structure are that system

expansion increases contention which degrades throughput

and increases logic.

Multiported systems (Fig. 3.2) employ multiple

dedicated buses that are connected between PMs, shared

memory and shared I/O. Each of the latter two (passive)

elements have multiple ports which provide excellent

throughput, bus contention logic must be built into each

passive element to acknowledge or hold PMs competing

for the resource.

In the crossbar switch organisation any passive

element can be connected to any PM for the complete

duration of a data transfer through the crossbar matrix.

(Fig. 3.3). This scheme can produce high system throughput.

46

O/I

O/T

sng
p
e
r
e
y
s
-
o
u
t
y
,

e
T
b
u
t
s

¢
A
r
o
u
s
w
W

z
A
x
o
u
s
o
w

{
A
z
o
u
s
w

O/1

 &

€

z
o
s
s
a
o
0
r
d
o
r
0

T
W

@
r
T
o
s
s
e
s
0
r
d
o
s
0

TW

L

a
z
o
s
s
o
a
s
0
r
d
o
r
0

T
W

s47 =

ze
*6ta

u
o
t
j
e
a
n
b
t
y
u
o
p

s
n
g

w
e
q
s
k
g

3
2
0
d
T
A
4

[
n
w

€
t
o
s
s
e
c
o
r
d
o

TW
Z
a
o
s
s
e
o
o
r
d
o
s
o

Tw

= AS —

| |
MEMORY MEMORY

a 2
a

2
ae I/O 1

Pr I/O 2

2

5
ha

: x .
“ Switch

’ points .

e

Crossbar Switch Organisation

BLiguros>

eos

Other bus structures are possible, either as a

combination of the above mentioned, or others depending

on the tasks.the system performs.

3.5 INTERPROCESSOR COMMUNICATIONS

In the multiple instruction multiple data organisations,

a major interprocessor communication media is the mailbox

memory (Fig. 3.4). Processors in this context are central

processing units (CPUs), or I/O direct memory access (DMA)

channels. Mailbox memory is a shared resource consisting

of messages, data files, request blocks or queues. The

sending processor structures information and places it in

the mailbox. The receiving processor 'looks' in the

mailbox, to indicate that there is something in the mail-

box for the recipient processor@°, Flags, jump conditions,

interrupts or special instructions can be used to alert

the receiving processor of information to be taken. A

status bit, residing in memory or external hardware, is

generally used to indicate the condition of the mailbox.

Fora?’ has proposed PUT and GET instructions for a

mailbox controller with BLOCK and WAKEUP signals from

the controller to processors on the system bus. This

controller can process only one PUT or GET signal at

any time, This competition for mailbox memory must be

resolved by arbitration.

eS Oe

Mailbox
Memory

Controller

 Memory

CPU -

Slow I/o

Devices

4

CK |)
Vv

I/O

Channel

Mailbox Memory Organisation

Fig. 3.4

Direct
Memory
Access

Fast

Devices

= 95 ior

3.6 CONCLUSIONS

Ability to identify and isolate failures to achieve

fail-safe capabilities is often a prime motivation for a

multiprocessor design. The degree of fault detection,

task reassignment, and duplexing of functional units

depends on the applications requirements. Failures can

be detected using either parity on the system bus for

both address and data, or local diagnosis for each PM in

private read-only (ROM) or PROM memories, or by protected

memory to detect address out of range, or by invalid op

code, or other invalid condition detection.

The architecture most likely to be employed in the

very near future will consist of asymmetric PMs, a single

bus with a centralized arbiter, or a multiport bus,

dedicated assignment of interrupts, interprocessor

communication through shared memories, hardware flags,

and limited failure recovery. The operating system will

structure tasks into request blocks and queue them to a

preassigned Processing Module. Two to four microprocessors

with the same number of I/O channels are, one feels, a

reasonable number for prototype multi-processor system.

CHAPTER 4

PERFORMANCE AND COST OF MULTIPROCESSOR SYSTEMS

System throughput

System cost

System control

Conclusions

= 52 =

CHAPTER 4

PERFORMANCE AND COST OF MULTI-PROCESSOR SYSTEMS

4.1 SYSTEM THROUGHPUT

Determination of multi-processor systems throughput

as a function of the number of microprocessors required,

is a primary concern. In the general configuration of a

multiprocessor system (Fig. 4.1)system throughput (tT)

is defined as the number of instructions executed per

second by the system. Maximum value of qT. would be

equal to the number of processors times the maximum

throughput per processor, if not for bus interference

(all memories and peripheral devices are accessed over

a single bus). System throughput is determined by

the number of processors (N) in the system, throughput

of an individual processor when there is no bus inter-

ference (Tt) and the amount of bus interference that

actually exists in the system. (The effects of inter-

ference only when the bus is usedfor making single-word

transfers are considered here, contention for multiple-

word transfer units or I/O devices that effect throughput

may be considered in a analogous to the following manner).

When bus interferencence occurs, one or more

processors must wait for the bus to become free, reducing

53

“WHLSAS
YOSSAOONd

ATdILINW
JO

N
O
L
L
V
A
N
O
I
A
N
O
D

TWuaNaD
T
p

“bta

Natl
zant

Tan

snd
wivd

WHLSAS

aOVaOLS
AXOWaW

O/1

WALSAS
WALSAS

W
a
L
S
A
S

= 54 =

throughput of individual processors and therefore of the

entire system. The amount of bus interference in a system

is a function of the bus utilization requirements of

individual processors. Bus utilization (8)is defined as

the fraction of available bus cycles required by an

individual processor. The value of 8 for a given system

is determined primarily by uP instruction execution time

and memory read cycle time. For the system used in the

research and memories, 8 is likely to be in the range

of O.1 to Oe5)

For given values of N, tT, and 8 the max., average

and min. values of system throughput T may be found.

Consider p = 1/3 and three (N=3) processors in the system,

then max. throughput will occur if each processor uses only

every third cycle. This can occur only if the probability

distribution of bus reference intervals is Por 1, 250, P.=1,
3

Poe =0O (R; is the probability of a bus reference every i

bus cycles). The average bus utilization is determined

from the probability distribution by the formula’’3714

For the case of P3=1 N=3, the processors will sychronize

with each other and no interference will occur. If N

is greater than 3, throughput will be limited by

- 55 -

the bus capacity to oT For N less than or equal to 3

there will be no interference (after sychronization) and TS

will equal NID: (Fig. 4.2a). By extending this reasoning

it may be said that if 8 = 1/I, max. TS occurs for Pi=l,

P, (i#I) =0.

The min. value of T. can be considered also. The worst

case possible would be if all processors accessing the

bus always had to wait for N-1 other processors before

gaining access to the bus (assuming the processor waiting

longest has highest priority). In this case all bus

reference intervals would be increased in length by N-1

bus cycle intervals. The decrease in throughput could be

derived as

Ratio = R = ration of throughput with maximum interference

to throughput with no interference.

es
} api

i=l a 1/8 zs aE
= ol 1/78+N=1 1+8 (N=T)

y (44N-1)P,

minimum TS = (throughput with no interference) x R.

= pe ee
HEPES ee (N=)

This minimum value of throughput may be used to determine

the range of possible throughputs and is shown in Fig. 4.2a

for B= 1/3 and 4.2b for B= 1/10. It could be noticed that

=a56

even in the case of maximum interference there is an

increase in TS with N. It should be said that the

throughput data in Fig. 4.2a and b are not necessarily a

direct indication of the useful work throughput for a

system. Expanding the number of microprocessors in a

system will increase its processing overhead if partitioning

of that system into a larger number of functions augments

the supervisory problems of indicial function co-ordination,

or if the individual microprocessors are not efficiently

utilized and therefore load down the bus when not performing

useful tasks. In other cases overheads per processor may

decrease as N increases, when the number of microprocessors

available allows a more natural partitioning of work

functions.

4.2 SYSTEM COST

Having examined the potential increase in multiprocessor

systems throughput, it is now possible to find out how much

this added throughput will cost. This is a strong function

of the ratio of the cost of system resources, designated Cpr

which includes memory and peripheral devices, to the cost of

an individual microprocessor, designated Cpr which includes

CPUs, data bus interface circuitry, power supply cost, buffers.

Total cost is then C, + NC: Let us consider two systems, one R

with Cp = CRys and the other Cp = Cp/30. eS assumed to be

the same in both cases). Considering costs vs throughput

(Fig. 4.3) it is clear the advantage of a high ratio of Cp

to cD as well as low value for 8. As N approaches 1/8

oF,

*setToAo
aTqetTTeae

ey}
JO

y
Q
U
e
q
-
e
u
o

ATuO
s
e
a
t
n
b
e
x

z
o
s
s
e
o
0
1
d

yoes
(q)

UT

aTtym
‘setoAo

snq
eTqeT

e
a
e

ey}
JO

patyy
euo

s
e
a
t
n
b
e
x

azosse.01d
yore

(e)
ur

+
(
s
z
o
s
s
e
o
0
a
d

Jo
a
e
q
u
n
u

sa
z
o
s
s
e
s
0
i
d
o
z
o
t
u

e
t
T
h
u
t
s

e
zo

y
n
d
y
f
n
o
z
y
A

=
os)

I
O
N
d
H
O
N
O
U
H
L

W
A
L
S
A
S

Y
O
S
S
A
O
O
U
d
-
I
G
L
I
N
W

A
D
V
A
G
A
W

pue
‘
W
A
W
I
X
W
W

‘
W
O
W
I
N
I
W

dO
L
O
T
d

t
y

“bta

(q)
(e)

s
a
o
s
s
s
s
0
r
1
d
o
r
9

TW
JO

zAequNN
s
z
o
s
s
e
s
0
r
d
o
z
9
T
W

Jo
A
S
q
u
N
N

vt
er

ot
8

9
v

z
O°

o)
S

v
e

c
ay

d ae
c/t=9

v
w

‘a
a

d Lp
o

e
B

m
e

Z
es

g

ot &
1

7
°

4p
/

g
3.

tutu
|
|

a
2

a
2

az
a

a
a
a

4
a

:
a

7

xpul
|

i
d

d
LOT

L
e

mS B=

(4)
GNdHONOUHL

WHLSAS
GNV

(&)
SYOSSHOOUd

JO
UAAWAN

SA
“SOD

WALSAS
TATLWIMa

€°y
“Sta

d
©

o¢/85
=

o
aC

=G
=

a

w
v
t
=

—
—

t
=

—
—

ancuierietia
dle

SES
saosseo0ig

jo
TequNN

d
a

d
e
e

IOt.
ie)

Sone
e
e
e

ot
07g

a

uv.

L
a
t
a

e
n

a

Hei
stat,

&
bs,

7
‘oes

a

:
at

g
te

So
8

Eo
fog

fam

ay,
6
%

De

system cost increases rapidly. The minimum value of

c./T, can be calculated in order to determine the optimum

number of microprocessors in a system. For microprocessors

the ratio of Cp to Ce is typically low since the current

cost of a complete microprocessor is low, compared with

memory, mass storage, peripherals’. A means of decreasing

the apparent value of 8 is to provide some memory local to

each microprocessor. This memory is accessible without

utilizing the system data bus and contains data utilized

only by that particular microprocessor.

4.3 SYSTEM CONTROL

The use of microprocessors in a multi-processor system

organisation requires the provision of special control

functions in addition to those of a stand-alone system.

Control mechenisms are required for interprocessor

communication and resource allocation. One way to handle

resource allocation is to provide a flag which indicates

whether a resource is available or in use by a microprocessor.

A microprocessor requiring the use of a resource checks

the status flag. If the flag is in the ‘not busy' state

the microprocessor sets it to the 'busy' state and uses the

resource resetting the status flag when done; if the flag

is 'busy' the microprocessor waits until the 'not busy'

state is indicated.

The status flag approach thus requires a test and set

- 60 -

(ras) 28 and a reset operation. One restriction on TAS

is that it be indivisible with respect to other micro-

processors; that is, if two microprocessor simultaneously

execute TAS, only one should gain access to the resource.

If the system data bus allows only read or write trans-

actions with memory, and sequence of successive bus cycles

eannot be dedicated to a single microprocessor, it will

not be possible to provide an indivisible TAS routine. If

the system bus allows a read/modify/write operation in a

single bus cycle, TAS will be indivisible if implemented

in a single bus cycle. For most microprocessors a standard

instruction with this capability is not supplied. An

additional property highly desirable for the TAS operation

is a 'non-busy wait' capability, which allows the micro-

processor to go into an idle state that is interrupted

when a requested resource becomes available. This prevents

the system data bus from becoming overloaded when several

microprocessors are repeatedly testing a bus status flag.

Often features may be desired for TAS operation. If a

microprocessor has several different tasks it could work on,

and each task requires a different set of resources, the

ability to request one of several groups is useful. Also

valuable in some applications is the ability of the micro-

processor to perform background processing while waiting

for availability of system resources. This is particularly

important in applications where the microprocessor must

be able to respond in real time to local interrupts.

When a microprocessor is initialized it executes the first

instruction from a fixed location in memory. If this

location is in system memory, all microprocessors execute

the same instruction, and a method to direct each processor

to its appropriate task must be devised. This problem is

golved if local memories containing these addresses are

used.

4.4 CONCLUSIONS

Multi-microprocessor networks can be configured economically

to boost the service capabilities and reduce resource over-

heads of a system. However, it is clear that there is a

limit to the number of microprocessors that can be connected

to share a resource, without degenerating individual through-

put and response. An assessment has been given on the

system's behaviour. This should provide sufficient inform-

ation to predetermine the relationship between resource

utilization, the processor throughput and system's control.

CHAPTER 5

A_MULTI-PROCESSOR SYSTEM USING THE

INTEL 8008 MICROPROCESSOR

Introduction

Design Considerations

Design and Construction of the 8008 CPU System

Design and Contruction of the Shared Memory

=—i6o k=

CHAPTER 5

A_MULTI-PROCESSOR SYSTEM USING THE

INTEL 8008 MICROPROCESSOR

5.1 INTRODUCTION

The prime objective in this research ts to study the

effect of a processor to memory performance and in

particular a number of microprocessors accessing a shared

memory through a common bus. The microprocessors used

were the INTEL 8008. The 8008 is characterised by a

five state processor cycle, with each state requiring

2.8 us. When the 8008 reads from memory to get the next

instruction, it presents on its data bus during state Tl

the lower eight bits of the desired address. It proceeds

to state T2, where the upper six address bits and an

indication that the 8008 wants to read appears on the bus.

If by the end of T2 memory has not responded READY,

indicating that the desired byte is being presented on

the bus, the 8008 goes into the WAIT state, where it

remains for as many four usec periods as are necessary

for memory to respond READY. In the event that memory

responds READY before the end of T2, T3 is entered and

the byte.is brought into the CPU. If necessary states

T4 and possibly T5 are used to execute the instructions.

The maximum memory bandwidth capable of being utilised

by the processor is eight bits every twelve usecs,

- 63 -

5.2 DESIGN CONSIDERATIONS

In the design stage the capabilities, advantages

and disadvantages of the 8008 were considered, as at the

time of the research more advanced microprocessors were

developed thus changing and improving the design

constraints posed by the 8008 and offering greater design

flexibility. Expandability of I/O features was

considered in the design as it was desirable in a multi-

processor system to permit connections with computers

and terminals. Expandability of memory was another design

feature that was considered as the requirements of the

whole system could demand expansion of memory to provide

greater buffer storage for any future additional links

to the system. The question of local or global memories

was also considered. In order for multiple microprocessors

to operate effectively together it appeared at least two

pre-requisites has to be met:

(1) minimal interference and dependence among the

processors, and

(2) a convenient low overhead interprocessor

communications facility.

If a global memory was to be used it would require a

large bandwidth to support simultaneous accesses by the

2,3, 4 or more microprocessors ‘t/120) |

EG 4

Eventually, the design shown in Fig. 5.1 was

prevailed. Every two processors to share a common

memory. Each processor had its own I/O facilities and

the memory system chosen allowed a considerable amount

of local memory for each processor with a common memory

shared by every other two microprocessors. The concept

was to keep the core software programs (those executed

most frequently) in the local memory to reduce the amount

of common memory access contention among the processors.

It was thought that the common memory should be used as

a storage of information common to both processors.

The processor buses were designed to support the

communication of the two processors through the common

memory and the I/O buses were independent for the two

processors. When both processors are trying to access

the common memory, one has access to it and the other is

forced to a WAIT state, until the bus is cleared for

access. The microprocessors are identical and could

perform any task. If 4 or 6 microprocessors were to be

used with 2 or 3 common memories respectively, the

distribution of tasks and software should be considered

to improve reliability of the system and compensate for

any break down of any of the microprocessors within the

system.

One important factor that influenced this particular

design was the concept of the priority resolution and

- 65 -

COMMON

MEMORY
3

[ADDRESS BUS

=.
PATA_BUS

BUFFER BUFFER BUFFER BUFFER

MICROPROCESSOR

&K

PRIVATE

MEMORY A
ap eae abl 23)

MICROPROCESSOR

B

PRIVATE

MEMORY B

+ I/o B
A Multi-processor System using the INTEL

8008 Microprocessor

Fig. 5.1

= 66u=

interrupt priority levels. Since the performance of

the 8008 interrupts was not reliable, interrupts were

not used and the priority logic in the common memory

configuration was designed as explained in a latter

section.

Thus the design with two processors sharing the

common memory was preferred and in the case of a

simultaneous access of the shared memory there is an

arbitrary priority order. In the case that three

processors were using tthe common memory without priority

level accessing, the design would have been more

complicated and the hardware connections would have

caused considerable problems.

5.3 DESIGN AND CONSTRUCTION OF THE 8008 CPU SYSTEM

The CPU module is the Central Processor for the

system. In this capacity the following control

requirements are performed,

(a) The execution of program instruction, the control

signal to RAM, PROM and I/O modules.

(b) All the necessary arithmetic, logical and data

manipulation operations needed for program operation.

(c) Overall system timing.

The module itself contains an INTEL 8008 CPU chip,

logic that supports the chip, 2K bytes of PROM and 1K bytes

eG iio

of RAM memory. In addition to the processor chip, the

module contains the following logical blocks.

(a) Timing generator

(b) Cycle decoder

(c) State decoder

(ad) Bus logic

(e) Address latches

(£) I/O latches

(g) Read/Write control.

Figures 5.2, 5.3 and 5.4 show the functional

relationships between these blocks. Complete control

over the rest of the logic on the module, according to

the instruction it received from memory, are exercised

by the 8008 CPU chip. The timing generator consists of

a crystal controlled clock oscillator, a state decoder,

logic on the CPU chip itself and auxilliary timing logic.

The complete circuit diagram of the CPU module is

shown in Fig. 5.5.

The non-overlapping 500 KHz clock phases oy and o>

which drive the CPU chip as well as other timing

circuitry on the board are generated from the clock

generator.

The 3MHz quartz crystal is the basis frequency

reference. A portion of the crystal's signal output is

developed across a capacitor and applied to the clock

@*s
*bta

we
j
s
i
s

a
o
s
s
e
c
o
r
d
o
z
o
t
y

|y3
JO

w
e
r
b
e
t
q

o
z
e
m
p
r
e
y

o
T
s
e
g

‘ivog
NIGG

¢

L
i
e
d

—
—
—

32q3

ok
NS

i.
O42

.
8
0
0
8

| i

=
n

WV
B
d
7
2
5
g

O
L

S
v

;
|

a2a'Pa
wig

ho
as

I
N

=

|

4
3
4
4
9
9

tad
w
a
a

A
u
g
o
w
a
w

easy
eq

:
$o8,

i
}

|
J

o
b
o

‘i
xs

4
H
o
i
v
y

D
L
U
T

t
v
e
s

|
CITB

titg

-\69
z

 B

I
G
e
o
s
d

D
L
Y
L
S

S
0
8

Ny
ey

Sy
tis Tis SH

m
p

e
l
a

*
b
u
T
p
o
o
e
g

O
s
s
e
0
0
i
r
d
o
x
z
o
T
W

a
y
3

Jo
w
e
r
b
e
t
q

-
.

wid
|

c
°¢

U
s

oy

©

"ita
T
e
u
b
t
s

-
w
a
q
y
s
d
s

e
i
e
M
p
r
z
e
H

T
T
e
I
0
q

+ 7
4

|
OS'S

S
I
M
S

|
xg"

j

NN,
ID

a
a
y

Le
swase]?

vy
OE

0
0
g

;
a
n

<
A
v
o

J
be

é
+

a
z g

Van
S|?

why
}

Z
A
d
0
1
D

>
ie

A
w

AVS
1

v
e
r

9[-
z

Fal
,

=
AGY

AS*

Oe

p's
‘Sta

2
e
M
p
r
l
e
y

T
T
R
?

A
x
o
u
e
p
w

-
w
e
q
y
s
h
s

t
o
s
s
e
s
0
r
d
o
z
o
t
W

|
y
y

JO
w
e
a
b
e
t
q

oazemp
H
u
t
p
o
s
e
q

O
/
T

p
u
e

soa {
P
O

£1
3no/i

7
¥

y

w
a
a
a
y

wey

a

AS}

2
2
d

3

i
t
e
d

_]

02509

"
i
e

&n3]
=

a
t
v

b
o
e
g
s

5
=]

o
w

x
m3

J
o
a
o

~
d
a
y

JH
T

4)
wpamd

5
AD
e
a
e

“
a
e

Wd
ol
a
e

a

2
oh

oy
Sh-——fr0
—
—
—
—
—
—
—

A
s

Eyes

 1

oe e
=

fat
SES =

Circuit Diagram of the 8008 cpu Module

yO

generator to which the two signals at 500 KHz frequency

are produced. The oy and oo clock phases are applied to

the clock inputs of the CPU chip. The SYNC and clock

signals are then fed to the auxilliary timing logic.

In the auxilliary logic system the SYNC is applied

to a D-type flip-flop (74L74N) which is clocked by the

low-to-high transition of oo This produces the SYNCA

signal which is shown with relation to clock signals

oye b> in Fig. 5.6. SYNCA is used to derive other timing

singals on the modules (Fig. 5.3). SYNCA and oy produce

a half frequency clock oi2 an intermediate signal, applied

to a 8205 decoder. Outputs from the state

decoder include Tl, T1I, T2, T3, T4, T5, WAIT and STOP

The T2 and S50 signals connected to a D-type produce T2L

signal which is used to generate T3A and T3A signals. The

T3A signal gated is used during I/O operations.

The first part of every machine cycle is an instruction

ferch cycle (PCI). Memory address requires 14 bits, two

passes are needed to output memory address. The lower

eight bits of the referenced location are transmitted

during Tl. This byte is sent out on the eight lines of

the main data bus and presented to the low order address

latch. During T2 the CPU sends out the six

high order bits of the referenced address, plus the two

cycle bits, in similar fashion. The high order address

latch (Intel 8212) is strobed by T2 output of the state

aaa

Z
a

—

w
e
q
s
k
s

t
o
s
s
s
s
0
a
d
o
x
z
o

T
W

e
u
z

JO
w
e
a
b
e
t
q

b
u
t
u
t
y
,

(ea)

a
a

W
E
L

M
e
y

g
a

WONRS

Z$‘15‘os
|

e
g

800g

v
i
a

N
k

Ke

"
6

a}
*s

A
D
O
N
D

y

i

a
)

¥

— Fir

decoder. The fourteen low order bits held in the address

latches indicate the location of the instruction that the

processor intends to fetch. The two remaining bits indicate

that a PCI sub-cycle is in progress.

The PCC, PCW, PCI outputs are furnished to circuitry

on the CPU module.itself permitting the modules control

logic to generate R/W and DBIN control signals. The 8212

latches are also used to multiplex the data from memory

used as a memory buffer. During T3 the CPU reads this

bus and the information on this bus is transferred to

the CPU's instruction register.

A PCR or a PCW signal will be broadcasted by the

CPU chip during T2,. If a PCR sub-cycle is indicated,

external conditions are exactly the same as for an

instruction fetch from memory. If a PCW is indicated

the cycle decoder activates the PCW line.which, with

T3 generates the R/W command line. The write signal

indicates to the memory that data are to be stored in

an address location.

If the instruction that the processor fetches from

memory is an I/O instruction. That instruction contains

a five bit field which specifies one of the 32 peripherals.

In order to distinguish an input from an output

instruction, the lower eight addresses are reserved for

input devices and the upper 24 for outputs. The address

- 75 -

of the object I/0 device is sent in the SELECT inputs

of a 8205 decoder.and the two signals produced in the

outputs of the decoder. PORTO and PORT1 are used to

strobe the Input/Output and control »ort latches.

A ‘bus driver' latch 8212 was used as a 'follower'

between the CPU data and bus and the i/p's of io and

Hl address latches. For reasons explained in another

section INTERRUPTS were not used. One input and two

output ports were used.

One part of the memory included on the CPU module

is made up of eight Intel C8702A erasable programmable

lead-only-memory chips, each having a capacity of 256

eight-bit words. The outputs of the PROMS are connected

to the DATA OUT lines of the RAM memory module to the

DATA bus of the memory latch on through that to the 8008

data bus. An 8205 decoder is used to enable the selected

block of the PROM addressed by the CPU.

In order to obtain data from a memory location, it

is necessary to perform a Memory Read Operation. This

Operation includes two phases. The Address phase in

which the desired memory address is sent tothe PROM section,

where it is decoded and used to enable the specific memory

location which is accessed. The Data phase, where the data

is sent out from the PROM. A memory (PROM-RAM) read

Operation is initiated by the CPU chip which sends 14 bit

SS

memory address to the address decoding circuits to select

one particular memory location. The contents of the

specific memory location are then available to the memory

data latch whence sent on the CPU chip.

A memory module functional diagram is shown in Fig.

Sed

The other part of the memory consists of eight INTEL

P2102 chips having a capacity of 1024 one bit words. The

DATA IN lines on the RAM memory are connected to the inputs

of the LO and Hl order address latches.

RAM's DATA OUT lines connected to the PROM's outputs

lines and to the bus driver data bus to be processed to

the CPU data bus. The RAM memory is selected by one

output of an 8205 decoder. The addressing for the PROMs

module is designed to have an order address which starts

from the location 00:000 up to 07:256 (decimal - 2K) or

00:000 to 07:377 (octal - 2K). The RAM module starts

from location 08:000 up to 11:256 (decimal - 1K) or

10:000 up to 13:377 (octal - 1K).

The processor also sends signal R/W to the RAm memory.

In its false states this signal dictates a write operation,

therefore, during a read operation it will be true. If

the signal is a write operation signal, data available

on the input lines will be written into the selected

memory location by the write pulse. If the signal is

77

EGS
O
L
S

W
V
Y
O
V
I
d

I
V
N
O
I
T
L
O
N
A
d
A

A
I
N
G
O
W

A
Y
O
W
H
R
W

‘TYNSIS

TIOULNOD WLVd

W
i
d

T
O
U
L
N
O
D

M/
s
s
a
u
d
q
v

A
Y
O
W
a
W

‘
I
O
U
L
N
O
D

N
O
T

L
V
a
a
d
O

|

‘
T
O
U
L
N
O
D

s
s
a
u
q
q
v

a
T
a
V
N
a

y
o
o
'
t
a

s
s
a
u
d
q
v

s
u
a
i
a
n
a

W
L
Y
C

A
Y
O
W
A
N

suaaand

a
L
I
U
M
/
a
v
a
d

 W

v
d

XT

WOuUd
AZ

A
Y
O
W
A
W

TS oe

read operation signal, data of the selected location will

be appeared on the data output lines.

The timing diagram for the Read/Write operations is

shown in Fig. 5.8.

The operation and decoding for an I/O instruction has

been explained earlier in this section. An input operation

after the selection of the input port has been obtained, is

performed in order to get data from an external source

and to present it back to the CPU. In an output operation

data from memory and the CPU are sent for use by an

external device.

After the construction of the two CPU boards checking

on its operations, I/O memory, was performed with different

peripheral devices. Peripheral devices may differ in

transmission characteristics. The VDU and téletype

asynchronous semial bit stream, consist of data bits that

are preceded by a start bit and followed by one stop bit.

The start and stop elements do not contain information,

but they do establish bit and character synchronisation

at the receiving device,

In the transmission of data, a clock signal is not

transmitted along with the data, and gaps (idling) between

the characters may result. Therefore, the receiving device

must generate a clock that is synchronised to the data

for the purpose of data sampling.

— 7S = I
L
S
 avay

Sacee
O
F

S
u
o
T
}
e
t
e
d
Q

e
4
T
I
M
/
p
e
o
y

eu}
FO

w
e
z
b
e
t
q

b
u
t
w
t
y

1
T
7
]

2

7]
E
o
i
n

a
a

e
e
;

B
e
l

L
e
e

ors
“
L
E
S

pear

W
L
S

e
a
e

e
e

LU

S
a
u
d
a
y

we
I
D
o
B
L
S

J1¥15

Wouns

ie i

The interface board between the microprocessors and

the VDU used, a MOS/LSI data communication device, the

UART (Universal Asynchronous Receiver/Transmitter) which

performs serial/parallel data conversions, timing and

synchronising circuitry.

Different programs used for checking the operations

of the CPU boards are given in APPENDIX C .

The PROM chips were programmed on the INTELLECT 8

development system.

The microprocessor CPUs board, the separate memory

board, the VDU interface and power supplies were housed

in a rack. Layouts of the two CPU boards and the separate

shared memory board are given in APPENDIX E. Microprocessors

are shared memory back connections on the rack are given

in APPENDIX F.

5.4 DESIGN AND CONSTRUCTION OF THE SHARED MEMORY

The shared memory board module consists of 1K RAM

memory, accessible by both microprocessors and all the

necessary control circuitry for both microprocessors to

ensure equal accessibility and servicing. The design is

a symmetrical one as each processor uses its own control

circuitry to access the memory. An important design

issue was to ensure accessibility to the memory of one

= 81. =

processor at a time on the first requested first

served basis. If one of the processors is requesting

access to the shared memory while the second processor

is using it, the first goes to a WAIT state (idles) until

the second one has been served and then the first one

can access it. A WAIT state signal may be of indefinite

length but the actual WAIT interval is always an even

multiple of the processors clock period. In order to

guarantee an exit from the WAIT state the processors

READY line must go high at least 350 ns prior to the

trailing edge of %o0° When this condition is fulfilled

the processor proceeds to the T3 state, begining with the

next oy clock pulse.

The complete circuit diagram of the shared memory

module is shown in Fig. 5.9.

In the previous section we mentioned that output of

the 8205 Hl address decoder can decode 1K of RAM. Thus

the 0, output of this decoder from both processor is
3

connected to the CE of the shared memory. The R/W signal

of the memory is connected to the PCW. T3 siynal for both

processors.

The RAM addresses As eee Ay are connected with the output

of the low address latches (8212) of each processor.

through a low address latch (8212) one for each.processor

and when enabled it accesses memory. The DATA IN signals

6°s
“Sta

 P

r
e
t

a
t
n
p
o
w

A
z
o
u
e
y

perzeys
eyR

JO
w
e
a
b
e
t
q

3tNoAzTO
seal

e
a
v
e

use
zty

mm

>
Brg4n8

+5
Hav?

e
g

K
i
o
w
r
w

é
p
e

K
i
o
w
w

Ade
TA]

OP
Rws

|

s
e

u
e

ete
—
—

-

x
3
8

|
m
s
e

z
h

+
t

w
a
v
?

a
u
i

w
o
n
z
e

+
>

rt A
v

ean
Maize

«-
s
a

ead
ne

t
4

ee
a

isa
we |

¢
a

<
KX

=
.

o
e

iS
n
e
e

—

ase
Y
e
w

‘oavl
aa

$39¥00W
t

re
e
a
e

a

]
|

3
$
o
r
i
d
y

T
e
e

ay

Tiwe
J

aot

<
i

ee

|
4

ae

<Avil
Z

|
“
>

N
g
o

a
wa" Ts

 LSS)

e
s

Old
wee

= 83)

of the RAM, memory are connected to each processor's

BUS DRIVER through a BUS DRIVER LATCH (8212). The RAM

DATA OUT are connected through memory buffer latches to

the outputs of the corresponding memory buffers for each

processor. The Agr Ay addresses of the RAM eo connected

to the Ag, Ag high latch addresses of the two processors.

The enable signal for the low address latches in that

separate board is the same with the enable of the BUS

DRIVER latch. In fact signals from each processor PO3,

PCW. T3, PCI.PCR, DBIN the last two enabling the memory

buffer latch, and Agr Ag address lines, pass through a

three-state buffer (74125). The output of this gate is

disabled when the enable of the buffer is high. The

enables of all the above mentioned signals are connected

to the output of a NAND gate with inputs the WAIT of

the individual processor, trying to access the shared

memory and the PO3 signal. If the WAIT signal is high

the processor is not waiting, and when PO3 goes high,

that particular low processor requests access to the

memory. Thus when both go Hl the output of the NAND

goes LOW and all the signals are then enabled allowing

the processor to access memory. If at the time that

the first processor is requesting access to the shared

memory, the other processor is accessing it, then the

first processors WAIT line goes LOW thus disabling access.

A D-type flip-flop was used to produce the WAIT

SIEGE Te

signal for the processor that is trying to access memory,

while the other one is already accessing.

The D input of the flip-flop is connected to the PO3

signals of the’-processors. The clock input is connected

to the PO, signal of the other processor (D input P103,

CLK input P203).

The output Q of the flip-flop will follow the data

input D while the clock is high. lLatching will occur

when the clock returns to low. Thus the Q output is

connected to the WAIT line of the other processor. The

PR line for each flip-flop is connected to the Tl signal

of each processor. This logic provides the idling of one

of the two processors when they both try to access memory

at the same time.

The timing diagram is given in Fig. 5.10.

The layout of the shared memory board is given in

APPENDIX E .

Programs on the operation of the two microprocessors

with the shared memory are written in INTEL 8008

microprocessor language. Debugging the programs was made

easier by presenting and programming the language instructions

set in HEXADECIMAL machine codes.

Two sets of different programs for both microprocessors

examine the capabilities of communication between the two

OT*S
*bta

weqyshgs
z
r
o
s
s
e
s
0
r
1
d
-
t
3
T
n
W

ey}
FO

w
e
r
b
e
t
q

H
u
t
u
t
y

T
I
I
B
W
N
D

|
VY

279vNnN9

Te
U
y

1
)

L
i
a

Sotg

Can
ve

nn

c
o
f

Wad
ven

= 86 =

microprocessors through the shared memory.

These programs produce a slow and a fast count with

very fast access from both microprocessors to a common

location in the shared memory. The purpose is to establish

the performance of the two microprocessors, when executing

individual tasks, both attempt to access memory

simultaneously, APPENDIX C.

As new components such as memory devices and

microprocessor support chips are continuously appearing

on the market, no detailed circuit specifications of

such items will be given in this report. For information

on such devices one epodia consult the latest microprocessor

support components literature, and new devices

specifications.

CHAPTER 6

OPERATION OF THE INTEL 8008 MULTI-PROCESSOR

SYSTEM WITH EXTERNAL COMPUTING DEVICES

Introduction

Task Allocation

Communication Functions

Intel 8008 Multi-Processor System and 9900/4

Microprocessor Interface: Design and Construction

Multi-Task System: Operational Simulation

= 987 —

CHAPTER 6

OPERATION OF THE INTEL 8008 MULTI-PROCESSOR

SYSTEM WITH EXTERNAL COMPUTING DEVICES

6.1 INTRODUCTION

Typical multi-processor architectures implement a

parallel or symmetric multi-processor architecture in

which every processor is equally capable of picking up

any task. The advantage of this approach is that. any

number of processors from 1 to a maximum physical limit

can be used, thus yielding a nodular machine whose power

can be tailored to nodal requirements. We chose instead

a multi-processor architecture which dedicates each

processor to a certain subset of the tasks that have to

be performed. By logical distribution of tasks we mean

the relationships between the various tasks that the

processor system is expected to perofrm. In our case

where the hardware is fixed, the distribution of these

tasks affects only the structure of the software.

Specifically it affects the execution sequence of the

various processes. In this system, in effect, we replace

the multi-processing software of earlier computer systems

with hardware. The fact that the tasks now can be done

at the same time compensates for the lower performance

characteristics of the components.

6.2 TASK ALLOCATION

Several approaches have been suggested for allocating

processors to processes, On one hand, the low cost of

microprocessors makes it feasible to assign a processor

to each task, For example, a multi-processor network

for machine tool control.has been proposed ‘29? consisting

of three microprocessors, Two of the processors control

for axes of the machine tool while the third acts as an

executive. In addition to this an alternative approach

allocates processors dynamically. This requires that

the processors are in close proximity and that they have

common mode of access to I/O signals (30) |

The nature of these tasks in our approach is that

they are short or at least divisible into short segments

and they are mostly independent of one another. our

system is mainly dedicated to localised monitoring control.

In that capacity local memory for each processor was

essential to keep the programs executed more frequently

and since the processor configuration was on a master-

master basis the concept of the shared memory was

extremely useful on interprocessor communication and data

exchange,

6.3 | COMMUNICATION FUNCTIONS

The existence of separate I/O facilities by each

processor offers flexibility to our approach as it maintains

the independence of each processor to communicate with

external devices and at the same time offers a rigid

modularity to the whole system. Each processor controls

a portion of the overall process, with the necessary

co-ordination between the control strategies effected

through the processor intercommunication means. Both

processors are of equal importance in maintaining control

of the process and both must be operating to obtain

optimum performance.

The reliability of the network depends on the

reliability of the nodes and the reliability of the

communications system.

Thus the use of local memories to each processor as

well as shared memory, although not unique in conception,

we felt that it is superior in our system from the

concept of global memory as many memory accesses could

be serviced by the local memories and thus accesses to

shared memory could be reduced and bus bandwidth

requirements could be eased.

All interprocessor communications via the shared

memory are done over the system bus, The bus operates

synchronously with processors, memories and I/O, There

is no priority system on accessing the shared memory

and when one processor is trying to access and the other

one is accessing,the first processor goes to a WAIT state

& cle

until the job of the second one terminates. In case of

a tie, there is an arbitrary priority order. We found

that this non-sophisticated approach for our applications

guarantees independence and flexibility of the processor

and there is no bus contention problems as well as speed.

Qur system could easily be used as an ON-LINE control

or as a REAL-TIME system, Fig. 6.1.

6.4 INTEL 8008 MULTI-PROCESSOR SYSTEM AND 9900/4

MICROPROCESSOR INTERFACE: DESIGN AND CONSTRUCTION

The system designed and constructed, as described

in the previous chapter, was tested and operated on its

own using the VDU terminal to verify the results of the

simulation and operation of different programs applied

to the system.

The sysetm was then connected to the new T.I. 9900

microprocessor available in the department to perform

a particular operational task.

An interface between the 8008 system and the T.I.

microprocessor system was designed and built.

The circuit diagram for that interface is shown

in Fig. 6.2.

The design of that interface was concentrated on

the communication of the 8-bit 8008 with the 16-bit

91

w
e
3
s
h
g

[
o
r
}
U
O
D

A
O
S
s
S
e
D
0
r
d
o
O
I
O
T
W
-
T
I
I
N
W

W

T’9
‘bta

é
a

Y
O
S
S
A
O
O
U
d
O
U
D

I
N

w
O
s
s
a
o
o
u
d
O
U
u
o
I
W

T
O
V
A
M
A
L
N
T

d
a
a
v
H
s

A
O
V
I
U
A
L
N
I

N
O
T
L
Y
O
I
N
O
W
W
O
D

O
/
T

s
o
d

|

A
Y
O
W
S
W

|

S
N

O
/
T

_
N
O
L
L
V
O
T
N
A
W
W
O
S

cw
TW

s
s
a
o
0
u
d

/
A
N
I
H
O
W
W

‘
I
V
N
E
W
U
a
A
L

U
A
L
S
V
W

a°9
*bta

coe
F
A
S
A
U
I

7
/
0
6
6

pue
t
o
s
s
s
s
o
0
r
d
o
s
z
o
t
w

g
0
0
g

e
y
}

JO
w
e
a
b
e
t
q

q
t
m
o
a
t
5

N
1

a
y

ino”
‘wad

4
9
9
9
4

ee

VES be

 v7 oth

Et

O
V

= 93.—

T. I. Microprocessor.

Four LSI38 memory decoders were used to decode the 16

memory address lines of the 9900 and to ensure data

transfers via the CRU.

Octal buffers and line drivers SL-241 were connected

to. memory address lines M9 to M14 of the 9900 and to the

RESET and CRU OUT signals. A tri-state quad bus driver

"8 TO 9" was used to buffer the CRU IN signal. The Yor

Yj, outputs of one decoder were used to enable two 8-bit

addressable latches (LS259). The DATA IN inputs of these

latches were connected to the CRU OUT signal from the 9900.

Inputs of these latches were connected to the Memory

Address of the 9900,. The 8-bit outputs of these two

latches were connected to the two output ports of the

8008 system (port 8 - port 9), Specific address locations

for these two latches with respect to the 9900 were

designed and handwired at 1000, and 1010. The DATA

SELECT inputs of the DATA selector SL251 chip were

connected to the 9900 memory address lines. The strobe

of the same chip was connected to the decoded CRU or

signal. The 8-bit output of this chip were connected to

the INPUT port of the 8008 system.

6.5 MULTI-TASK SYSTEM: OPERATIONAL SIMULATION

Having established and tested the communication

between the 8008 system and the 9900 a problem task was

- 94 -

implemented. The task has a military application. The

idea of this particular problem was presented to the

author when he was doing his military service in the Navy.

The problem is to compute quickly and accurately

the 'RANGE' and 'ELEVATION' settings of a gun, given the

distance of a particular target.

Different values of distances between targets are fed

by an operator via the key board of a VDU to the T.I.

9900 microprocessor system. The 9900 transfers the data

to the 8008 system which analyses it, with intercommunications

between the two 8008 microprocessors and their shared

memory and transfer back to the 9900 the values for the

‘RANGE' and 'ELEVATION' and from there to the screen of

the VDU.

The I/O facilities of the 8008 microprocessor l,

were connected to the 9900 system and the task of this

particular microprocessor was to compute the 'RANGE' given

the distance value, transferred from the CRU OUT of the

9900. When the 'RANGE' is computed it is stored in a

location in the shared memory. The 8008 microprocessor 2

is accessing this particular memory location fetches the

"RANGE' value and from that computes the corresponding

value for 'ELEVATION'., Elevation values is the task

allocated to microprocessor 2. When the appropriate

'ELEVATION' value is calculated it is being stored in

a Gy =

another location in the shared memory. Microprocessor 1

fetches the 'ELEVATION' value and outputs both the

"RANGE' and 'ELEVATION' values to the 9900 and from there

to the VDU screen.

The execution programs of the 8008 microprocessors

were in PROMs and the different values of 'RANGE' and

‘ELEVATION' were stored in the private RAM memories of

these microprocessors.

The programs are written in INTEL 8008 microprocessor

language and the other one in T.I. 9900 microprocessor

language. The 8008 programs were programmed in PROM on

the INTELLEC 8 system available in the department. The

mnemonics code was presented in HEXADECIMAL instruction

machine code. Board connections between the two systems

are given in APPENDIX @ .

In this particular application the I/O facilities

of one of the 8008 microprocessors.wwere used, but I/O

facilities of both 8008 microprocessors could be

connected to one terminal and a machine to complete the

purpose of the localised control system we built. Other

peripheral devices could also be connected as well as

facility for scanning memory banks from a disc or floppy

disc. The system also could be expanded by connecting

to it another set(s) of microprocessor system identical

to the one we built for different control purposes and

applications.

- 96 -

In this example, the message paths are direct. In

a more complex application the message paths need not be

sequential. As more processors or functions are added

to the system, the number of routing paths increases,but

does not become more complex for any given processor, in

the system. Therefore, each processing module may be

viewed as a distinct building block, and modular

development of the system is practical.

Basic flow diagrams of the multi-processor

communication are given in Figs. 6.3, 6.4.and 6.5.

SO Gite

START Ri
PROCESSOR IL

2S a0 a
MESSAGE FROM DELAY

990/4

Y

GET "DISTANCE"

CALCULATE "RANGE

PLACE "RANGE" DUTPUT "RANGE"
IN SHARED TO TMS 990/4
MEMORY

Saeed
N ELEVATION IN Pa

SHARED

‘MO!

IGET "ELEVATION!

L
OUTPUT

"ELEVATION"

TO TMS

990/4

L
RETURN

Pig. 6.3 BASIC FLOW DIAGRAM OF MICROPROCESSOR 1 TASK

= 98 i

Start Micro
rocessor 2

Is

"RANGE" IN SHARE. —>
MEMORY Eee

GET "RANGE"

CALCULATE

CORRESPONDING
"ELEVATION"

PLACE
"ELEVATION"
IN SHARED

MEMORY

RETURN

Fig. 6.4 BASIC FLOW DIAGRAM OF MICROPROCESSOR 2 TASK

tsi

AN OPERATION: N REQUEST —» DELAY

OUTPUT "DISTANCE"

TO MULTIPROCESSOR|

SYSTEM

PERFORM INPUT

OPERATION

DELAY

DISPLAY INPUTS

ON VDU

\
RETURN

Fig. 6.5 BASIC FLOW DIAGRAM OF TMS 990/4 TASK

LOO =

OPERATIONAL SIMULATION PROGRAMS

INTEL 8008 MICROPROCESSOR 1

Task Allocation - RANGE

XRA

LBA

LEI a

LCA

LDA

LAI 50D

LHI 10B

LLI 100B

LMA

LAI 100D

LHI 10B

LLI 110B

LMA

LAI 150D RANGES values

LHI 10B are stored in

LLI 120B RAM

LMA

LAI 200D

LHI 10B

LLI 130B

LMA

LAI 250D

LHI 10B

LLI 140B

LMA

LAI 0

KEY INP 3B Value of the

Cpr ° DISTANCE in

ITZ KEY microprocessor 1

LHI 10B

LLI 100B

ee er

LBM

CPB

JTC

JFC

LHI

LLI

LBM

CPB

JTC

JFC

LHI

LLI

LBM

CPB

JTC

SFC

LHI

LLI

LBM

CPB

gTC

JFC

LHI

LLI

LBM

CPB

JFC

JTC

LEA

ouT

LCB

LBA

LAA! LAA

+2

LET

10B

110B

me

LET Establishment

10B of the corresponding

120B RANGE values

2:

LET

10B

130B

+2

LET

10B

140B

LET

LET

Output the RANGE

10B value to 9900/4

system

STAR

DELAY

a iker ee

out

LHI

LLI

LMC

CALL

LHI

LLI

LAM

CPI

CcTZ

CPI

JTZ

ouT

LAA!LAA

LAA!LAA

out

LHI

LLI

LMA

JMP

LDI

DCD

JFZ

10B

14B

100B

DELAY

14B

200B

DELAY

STAR

10B

10B

14B

200B

300B

DELAY

Value of the

RANGE in shared

memory

Value of ELEVATION

in ACC from the

shared memory

Output the ELEVATION

value to 9900/4

system .

BE tOs =

INTEL 8008 MICROPROCESSOR 2

Task Allocation - ELEVATION

XRA

LBA
LCA

LDA

LEI ip

LAI 70D

LET1 LHI 10B

LLI 100B

LMA

LAI 50D

LET2 LHI 10B

LLI 110B ELEVATION values

LMA are stored in

LAI 40D RAM

LET3 LHI 10B

LLI 120B

LMA

LAI 20D

LET4 LHI 10B

LLI 130B

LMA

LAI 20D

LET5 LHI 10B

LLI 140B

LMA

LAI °

KEY LHI 14B

LLI 100B Value of the RANGE

LAM in Acc. of Micro-

CPI ° processor 2 from

CTZ DELAY shared memory

Cor ° Acc. =Accumulator

ELEV1

ELEV2

ELEV3

ELEV4

= 104 =

JTZ

LEA

LBA

LHI

LLI

LHI

KEY

14B

100B

50

ELEV1

100

ELEV2

150

ELEV3

200

ELEV4

250

ELEV5

10B

100B

SHARE

10B

110B

SHARE

10B

120B

SHARE

KEY

10B

Comparison with

RANGE values

Establishment of

the corresponding

ELEVATION value

SHARE

DELAY

= ey

LLI

LAM

CAL

JMP

LHI

LLI

LAA! LAA

RET

LDI

DCD

JFZ

140B

SHARE

KEY

14B

200B Value of ELEVATION

in shared memory

300B

DELAY

oom

TITL “TASK ALLOCATION “pretence
IDT “TAL?

START LUIFI We
EL #INIVDN INITIALISE WART

NEXT O il &

INPUT NUMEER
i OUTPUT

OP FEADY TO
SMAIT FOR

“EBDWLEGE
sWRIT READY

TGHAL

ELEVATICN FROM sone

DISPLAY FPANGE

DISPLAY ELEVATION
ENDLESS LoOOF

+
PPP PEO HOHE EH HEE OSE OHE
*

* ROUTINE TO INITIALISE UART
+

INIVDU LI rR PsS1E4h BASE
RESET

CTRL
NO TIMER

LO yie=

OUTPUT TERT STRING

 r
o
a

NEG Fit
ANDI Fige>
HEG Rio
E eRig

+
* ROUTINE TO IHPUT OnE CHER
*

THCHFE LI Ples?1Ean CRI
CLR RS

INCHF1 TE CHAR RECO +
i NO. LooP PUT IN RS

+

* ROUTINE TO OUTPUT ONE CHAP
.

BUTCHER LI Ples>1F4n
SBO 1

OUTCH1 TE
NE ou ITC cH1

+

* ROUTINE TO INPUT HUMBER
+

READING MOY F11sR5
READO LI Resi

‘E RETURH CLE R?
READ) Be a IMCHR INPUT CHAR

Cl
JEG ENDOTe CR
SRL MOVE TO RHE
AL

as TOO SMALL
t

JHE TOO BIG

: WM+0TSIT
FFLOW

PEADL 7 Re DIGIT
FERDG MOY RT» RS ANSWER IN RS

EB eR RETURN

OUTST
OTR

+ ROUTINE TO CUTPUT HUMBER
+
WRITHD LI

LI
WRITHL DEC

te

CLE

3 DTSITS

DEY Be Le

STORE IH EBUPFER
REMAINDER
LOOF

POINT TO BUFFER
GET CHAR
O-P
POOP Set TMeS

WORKSPACE

DECIMAL NO. BUFFER
Ent START

CHAPTER 7

SYSTEM PERFORMANCE

7.1 System Feasibility Assessment

7.2 System Communication and Task Execution Performance

= Ooe=

CHAPTER 7

SYSTEM PERFORMANCE

7.1 SYSTEM FEASIBILITY ASSESSMENT

Based on our investigative study, in order to evaluate

the feasibility of a multi-processor system the most

important parameters that we studied were:

(a)

(b)

(ce)

(d)

(e)

(£)

Bus utilisation as a function of the number of

processors in the system and the average processor

task time.

Independent I/O facilities.

The probability of simultaneous conflicting actions

(concurrent access of shared memory).

Synchronising the actions of the various controllers

in the system.

The impact of interrupt control, and

The problem of deadlocks or infinite cycles within

the system.

Having studied these parameters we designed and

constructed the system as already explained. Processors

are given equal fixed tasks. Upon completion of the task,

the processor transmits a single data item to the shared

memory, for the other processor to select. Each processor

monitors the shared memory for each data that has been

assigned for.

ae LO

Each processor makes sure that data assigned for

the other processor have been selected before producing

new ones. Thus the microprocessor chip is desirable for

microprocessor control should provide machine cycle states

information, a READY control unit which allows the

microprocessor to enter a WAIT state, a HOLD input, good

I/O facilities and interrupt facilities. The 8008 is

characterised by a five state processor cycle, with each

state requiring 2.8 us. When the 8008 reads from memory,

to get the next instruction, it presents on its data bus

during state Tl the lower eight bits of the desired address.

Tt proceeds to state T2 where the upper six address bits

an indication that the 8008 wants to read appear on the

bus. If by the end of T2, the memory has not responded

READY, indicating that the desired byte lis being presented

on the bus, the 8008 goes into the WAIT state, where it

remains for as many as four microsecond periods as are

needed for memory to respond: READY. In the event that

memory responds READY before the end of T2, T3 is entered

and the byte brought into the CPU. If necessary states

T4 and possibly T5 are used to execute the instructions.

The maximum memory bandwidth capable of being utilised

by the processor is eight bits every twelve (12)usecs .

The cycle time of the memory is about 700 n.s. that is

one fourth of the time required for a single processor

state.

Sl

7.2 SYSTEM COMMUNICATION AND TASK EXECUTION PERFORMANCE

The communication and program execution between the

8008's system and the T,I, 9900 was satisfactory. The

program execution in particular of the task orientated

8008's with the more powerful 9900 was good. The only

problem appeared in the switching on the 8008's which

caused jamming of the programs and the breakdown of the

systems operation. On the otherhand I/O operations,

private memory accessing, program execution, logic

operations were quite satisfactory. Operations for

accessing the shared memory were as expected. It appears

for this particular application, that the waiting of

one processor, when the other one was accessing the shared

was negligible. The processor's request for shared memory

access is completed in one memory cycle, The processor

remained in the same processor state for one more memory

time during which the other processor can access the

shared memory.

Generally the system operated as it was predicted

from the design stages.

Analysing the performance of our approach, that is

every other two processors per common memory, we feel

is ideal for localised control systems with efficient

I/O facilities, task decentralisation becomes easy,

utilisation of individual processor performance is fully

Sie Ge

exploited, and an easy monitor system for central control.

Our approach also provide system expandability as an

addition of 1 or 2 more processors to share the same

memory is feasible. We must though stress at this point

the hardware problems associated with it. At the same

time it must be realised that in a design of that form

some form of priority level to processors accessing the

shared memory is required.

Clearly our system provides the mechanism whereby

programs (the specialised application programs or any of

the stand-alone programming support aids) can be loaded

and run on the actual microprocessor hardware. Object

programs are normally written onto PROM, loaded and run

into RAM and the shared. memory serves for inter-processor

communications of common data and information for

individual processor task completion.

The system also provides small physical size and power

consumption, as well as reliability.

CHAPTER 8

CONCLUSIONS

General

Suggestions for Future Development

Final Remarks

ae oe

CHAPTER 8

CONCLUSIONS

8.1 GENERAL

The microprocessor revolution has made possible the

economical decentralization of computing power. This has

been achieved not necessarily by making system with improved

price/performance, but by making computer control of many

functions economical and practical, relative to their

previous implementations. Multi-microprocessor structures,

we feel, are effective in situations where the tasks to be

performed can be effectively and efficiently partitioned.

This will give rise to improved I/O processing capability,

improyed reliability, and a fail-soft feature where the

bulk of the system can keep operating, should any subsystem

fail. An additional benefit resulting from the effective

partitioning of tasks in a multi-CPU system is that the

software by being partitioned into several independent

packages, is much simpler and runs more efficiently.

Thus a step forward, we feel, in the direction of

releasing more of the potential capability of the micro-

processor is to provide processors with distributed

multiple tasks. When the control area of the microprocessor

increases, the engineer at present turns to the greater

sophistication of the minicomputer with its real time,

= 114 =

multi-programming executive. The difficulty in using a

microprocessor is that the single program may not have

sufficient processor time constraints when it has wasted

most of it in completing one part before proceeding to the

next. A multi-processor multi-task system, like the one

we advocate simplifies the problem considerably by

allowing the total job to be broken down into separately

identifiable activities. The non-time critical I/O can

then be placed under task control rather than interrupt

control, obviating the need for a priority interrupt

structure in many cases.

One of the fundamental design decisions in a multi-

tank system, we found, is the determination of the

distribution of tasks. Generally there are two ways:

le Task distribution is determined by external

interrupts, and

25 Task distribution is determined only by the tasks

themselves.

We adopted the second method, as it is suitable for

localised control in the manner in which it handles data

structure relationships, simplicity on interprocessor

communications, and I/O processing flexibility.

Our design was based on the application task that

some parts of a program are run more frequently than other

parts that run less frequently. This fact allows a

Loe

significant advantage to be gained by the use of private

memory. With this configuration the ratio of accesses

to local versus shared memory, could be as high as 3-4

to 1. This not only reduces contention delays for access

to the shared memory, but also cuts the number of

accesses which suffer the delays. We designed all

processors to be identical and equal. As a consequence,

no single processor is of vital importance and a

processor could be changed easily in case of failure.

Apart from system flexibility an additional advantage

of multiple copies is reliability.

Until the processors interact, a multi-processor

is a number of independent single processor system. It

is the interaction wich poses the conceptual as well

as the practical challenge. If the various processors

spend their time waiting for each other, the system

degrades to a single processor equivalent. If they

can usefully run concurrently, maximizing at the same

time shared memory utilization, then the system's power

is being multiplied.

In any practical application of a multi-processor

system, we feel that we must keep the system running

in the case of module failure. The first problem in

doing this is making the processors run independently

= 6

by allocation of runnable task to processors, so that the

full requisite power can be quickly brought to bear on

high priority tasks. We propose four ways of doing this

to help manage tasks queues:

(a) Break the job into small tasks

(b) Make the processors identical

(c) Keep a priority on tasks and

(d) Use interrupts where necessary

Critical to our approach is the fact that the private

memory of its processor could be used as a retreat to

local operation in the face of systems' problems.

Our system has a great application in localized

system control. The author visited the British Leyland

Longbridge plant, where they are trying to design a

similar system on localized monitor control on the

production lines, with each multiprocessor unit communicating

with a central control terminal, and they express great

interest in the possibilities of using our approach.

Our system offers flexibility of I/O processing, it

is easy to expand, easy to install and offers a reliable

localized control. A set of identical processors sharing

every other two a common memory, executing individually

an identified task, intercommunicating and at the same

time communicating with a central control terminal, would

have great industrial control applications.

oe LOE

it is also feasible to expand the system by connecting

a third or fourth processor to the System still accessing

the same common memory. It must be realized that ina

design of that form some form of priority level to

processor accessing memory is required. On that basis

the processor would wait for access after the completion of

access by the microprocessor with higher priority. The

microprocessor with the higher priority does not wait for

memory access. Thus the number of memory cycles that a

microprocess could have to wait to get hold of the memory

access bus, depends on the number of priority that particular

processor has, and the total number of microprocessors in

the system.

It is thought that the incremental growth objective

is realizable at least in terms of minimizing the effects

of memory contention in a network of microprocessors

sharing a memory.

8.2 SUGGESTIONS FOR FUTURE DEVELOPMENT

It is apparent that there is a need for further

research and development to be performed to assess and

develop a multi-processor, multi-task control system.

At this point we must stress the role of interrupts

in a multi-control system. It was explained in a previous

Chapter why we did not use interrupts in our particular

system.

= 8s =

The problem here exists if any particular task,

event or data from external deyice has to be handled by

the system. This event or data could require attention

by the system at unpredictable times (asynchronous).

The problem is that, unless the system 'looks for' the

event that requires attention (our approach), then it

could quite easily 'miss' the event, particularly if it

only lasted for a short time. Interrupts is the answer

to this problem and could be either hardware or software.

Manufacturers of latest designs of microprocessors

have provided their micros with extended interrupts

facilities and that helps greatly the system designer

and user.

This is an area which must be investigated further

in the different applications of our system.

It must be mid, without underestimating the capabilities

and flexibility of the 8008, and having realized its weak

points, a system with more powerful microprocessor

(Motorola 6800, Intel 8080), would be more suitable for

complicated applications, as tasks and problems in practical

industrial applications, tend to be more demanding.

As we have already pointed out, the problems to be

considered in the design of multiprocessor systems, would

depend on the applications, designer and user. For

example should the individual processors be dedicated to

totally independent programs or should they work

el OP =

co-operatively on a single large problem to reduce

execution time and promote reliability. In the former

case considerations are not limited to production

environments. One can visualize a situation in which

program development is performed by a user accessing a

set(s) of multiprocessors from a dedicated terminal. In

either case the problem of executive control to implement

inter-processor communication, memory protection, memory

mapping and shared data memories and buses are significant.

Should a single executive, control the total system, or

should the executive be partitioned in to global and

local executives ?

We feel that in less dynamic systems, in which the

same sets of code are executed repeatedly, private

memories should be dedicated to each processor to contain

procedure segments and the shared memory can be used to

contain data of both private and shared nature.

8.3 FINAL REMARKS

At present multiprocessor systems have started

appearing in all areas of applications in industrial and

organizational fields. Different specialized multi-user

systems and high bandwidth signal processing are being

used.

As improvements in integrated circuit technology

continue and processors and memories become cheaper, and

smaller multi-processor systems designs offer a

= 2208

revolutionary challenge to the foundations of industrial

production and organizational change, structure and

innovation, and to society as a whole.

I trust that the system we have designed and the

approach we have followed will be given the opportunity

to demonstrate its uses, and that it will contribute

to the future and further development and understanding

of multi-processor control systems.

— 121 =

LIST OF SYMBOLS

System throughput

Bus interference

Number of processors

Bus utilization

Distribution probability of bus reference

every i bus cycles

Ratio of throughput with maximum interference

to throughput with no interference

Ratio of the cost of the system

Cost of an individual microprocessor

a a

3 N

5
i

ct
Re

1
a

e
#

co
2

+
m

i

es
ie

223 =

APPENDIX A

INTELS 8008 MICROPROCESSOR

Intel is a USA-based component manufacturer and

the 8008 processor is the central component of the MCS-8

Microprocessor Set. The 8008 can include up to 16K 8-bit

words of RAM or ROM and its a parallel processor with an

8-bit external bus for communication with memories and

I/O devices. It is manufactured using Silicon Gate MOS

technology.

The 8008 processor is shown in Fig. Al. Two independent

dynamic memories are used to implement a stack of 8 14-bit

address registers and 7 8-bit scratch pad registers. The

address stack consists of the program counter and 7 address

registers for subroutine nesting to 7 levels. The CALL

instruction is used to store automatically the program

counter in the stack, and RETURN is used to restore the

program counter. The 14-bit program counter allows

direct addressing of 16K words of memory for program

instructions. Each 14-bit address is transmitted over

the I/O bus in two cycles, consisting of the 8 lower order

bits followed by the 6 higher order bits.

The scratch pad memory containsthe accumulator used

for mathematical and logical operations and used as the

destination for data operations and neverto store data.

124

The next 4 registers are used for temporary storage and

to transfer data between program modules. The last two

registers (H , and L) are normally dedicated to addressing

external memory for data.

The arithmetic/logic unit performs full-parallel

8-bit operations. Four single bit indicators are set as

a result of each operation. These are carry, zero, sign,

and parity.

When the processor supply (Vpp) and clocks are started,

a HALT instruction is automatically stored in the instruction

register and the system registersare reset in the following

16 clcock periods. Normal operation commences when the

INTERRUPT line is set from a source external to the

processor chip.

All communication between functional units in the

8008 processor occurs via a single-8-bit internal bus.

The processor controls the bus and sets the 3 status lines,

S, 0:2, according to the action occurring on the bus. The

status lines are ayailable as o/p's to peripheral circuitry.

A typical cycle of processor operation consists of 5 states:

2 for addressing memor; 1 for fetching an instruction or

data, and 2 for instructing execution. For multiple cycle

instructions, which do not require the 2 execution states,

the processor operates asynchronously. One instruction

cycle takes 12.5 us to be executed. (See Fig.A2).

=o: =

The 8008 uses, 1, 2, and 3 byte formats for its

instructions. The 2 byte instructions perform the

operation specified by the first byte on the data specified

in the second byte (immediate mode). The 3-byte instructions

use 2 bytes to specify a 14-bit memory address for jumps

and calls. There are 5 basic groups of instructions, the

index register group, the accumulator group, the instruction

program counter and stack control group, I/O group and 2

HALT instructions.

The 8008 communicates with external memories and I/O

device controllers via its 8-bit data bus, the 3 status

line, the SYNC line and the READY and INTERRUPT lines. The

READY line allows the processor to operate with any speed

of semiconductor memory. This is achieved by the processor

waiting on the READY line during an instruction cycle.

The I/O data buffer on the 8008 chip is bi-directional

with low power TTL compatibility on the o/p and TTL

compatibility on the input.

General purpose software had been developed for the

8008 by Intel including loaders, teletype input, different

routines and FORTRAN IV assembler and simulator which

allowed the generation and testing of 8008 programs on

a large off-line computer.

As has been stressed before the 8008 belongs to

the first generation microprocessors and since then in

the last three years, the technology and capabilities

of the 3rd generation microprocessor have overpowered

- 126 -

ny . ‘- eS
Gale oo 2 », bese 3 ¥ st . ;

8008, but it is still used in some

:
.

w
e
z
b
e
t
q

YOOTa
Ndd

g00g
T
Y

 :
Leruu3int

— Aoyay
:

Os
ete:

i
TET)

i
,

S
e
e

:
<

2
ST¥NOIS

U
O
I
V
U

N
I
D

a
m
e
n

S
n
e
s

'
4

owtrat
atvas

aoe
=

‘
:

eur Nos
Sita

oe
~

i
¥21NNOD

myUDOUE
|

C
N
Y

wO¥VAS
S
S
3
N
O
O
V

;
“4

|
}

!
L
I
N
N

<
r

i

cy
cestinat

DILSNHLIEY
j

i
x

a
i
a

>
=

W
T
y
e
v
s

1
i
g
-
s

}
ad

We3us3u
v
a
s
n
n
o
o
|
_
_
_
|

|
1

ony
w3ea.eqANW

sausay
mOuTNOSLOTF

Z
SatiNes

{
A
v
o
r
n

#
2
0
0
9
3
0

t
ony

ina,
'

4
t

i
c
o

Auonay
NOILONUASNI

S
t
e
e
n

j
{

}
i

I
’

ony
}

i
A

i
S118

8
7
SQNOM

EL
u2isioay

&
L
o

auonan
2 &

t
_
—
—
,

:
Roem

a
TERT

ig
t

NgtMied
(sui9

8)
PRIGOS

OUINDD
(sue

8)
BN

ie
waLsin2y

woronUsSNT
BIOAD

AVORSN
q

v3usioay
it

‘
voiyzanasoy

T
x

ZB
i

L
e
e
n

UW
i

T
s

q
SNS

Vvivd
WNU2INt

o
S
N
9

v
i
v
d

110
6

<
>

she
vivo

Wwiwaint
i
v

if
i

z

:
O
S
O
e

bo
:

®a
1a

%
40

90
50

Pa fy

128 —

eaToAD
uotzoOnIzAsUuL

goog

SL "va “ea “24 “11 S30N79NI
NDAD

YOSS3D0ud
YW3!I4AL

—
—
—
—
—
_
—
_
_
_
_
_
_
_
_
_
-
_
_
_
»

{stig-8)
4n0

nao
ano

viva
|

Qvvouso) |
yournos,

4no
NononuasNt

aga3s303u]
uo

‘vais
|

Aavauton
|

siigoms”|
Ss38dov

| oaianuyaint
40 woNLn3xa

nousnuisni}
yivaus

|
avowaw

|
“ssauocy

side
no)

2WH
| ontonuisnt

|
TWNuaLxa

su1a-9
MEMON:

uaHOIH

C
z

1
aawois |

ck
Livia

a
ry

i
\

af
\

's

Netcom
wee

rv
S's

ft
X
s

‘
o
w

a

L
e

e
e

r
e

U
W
]

U
N

C
a
a
n

a

a
t

B
U
T
T

—— 22h

APPENDIX B

THR TMS 9900 MICROPROCESSOR

The TMS 9900 microprocessor is a single-chip 16-bit

central processing unit (CPU), produced using N-channel

silicon-gate MOS technology. The CPU comes in a 64 pin

chip, and is driven by a 3 MHz four-phase clock.

The processor employs a memory-to-memory form of

architecture, whereby blocks of memory designated as

workspace registers, replace the more common internal

hardware registers. A total of 32 K words of memory

can be addressed by the processors 15-bit address bus,

which is separate from the 16-bit data bus, thus

simplifying the system design.

Within the processor there are three registers

which are accessible by the user. These are the program

counter (PC) which contains the address of the instruction

following the current instruction being executed, the

status register (ST) which contains the interrupt mask level

and status information relating to the instruction operation.

The third and final register is the workspace point (WP),

which contains the address of the first word in the current

active workspace area. A workspace area consists of 16

consecutive memory words in the general memory area.

Input and output data transfers to and from the

processor are performed by a direct command-driven I/0

=p 130 e—

interface designated as the communications-register unit

(CRU). The CRU provides up to 4096 directly addressable

input and output bits. Both input and output bits can

be addressed individually or in fields of 1 to 16 bits. The

TMS 9900 uses four clock cycles ($,-%4) each of typical

duration of 83 ns.

The TMS 9900 microprocessor instruction set provides

the same capabilities as those offered by full minicomputers.

The instruction set provides 69 different instructions, which

includes unsigned multiply and divide instructions.

With a clock frequency of 3 MHz the average instruction

execution time is approximately 10 us.

- 139) -

RUE coves

t Anau
.

©
Wwucriroexen

~ wemoay Inst MucHiC® AooKESS ‘een
Hroicten

Peocnaw contin
ASACE REGATIR

§

i
Lit

| | ie
j » | We exta,

| <4! dah} se
nt

‘ ner source cata.
cision

quer accisren

5

 Ve

cavour g oO + nun

B.l TMS 9900 Architecture

B.

= Ua

2.

MEMORY

TMS 9800

AO-AtL

CRUIN

MULTIPL- ADDRESSABLE ae}
EXERS cock CRUCLK

“DATA INPUT “DATA OUTPUT

CRU Concept I/O Interface Logic

= 133 =

GENERAL <

MEMORY

PROGRAM A TMS S960
NONE ee

fa) Pel)

& = Re EI Se te

i ST (A)

WORKSPACE | olay eres

REGISTER ‘5 |

ae aa

PROGRAM B |

<a : a

NORKSPACE |
[eee co
Bos Relationship between Workspace Pointer and

Corresponding Workspace
«

= 13455

|

A
p
 4 a

aE
 2 ar

 soars “uwewonw _X_enuait avontssn cau apontieary YX XC cau anon
caucex fica (Gor

ou
re
ur

OP
ER
AT
IO
N

 envour “onrnonn _X(endoavaoute env oaTa UTS X XCar X

z
By en SRR ERA RH ET ESEEN MRR ER ENED OO RRR SRO CRE PRR

cry ourpur cru inrur

B.4 TMS 9900 CRU Interface Timing

e

3

miEN

pain

Ao are

READY

wart

0.07

120

~ 135 =

 X vate aponess YX Xo vaio aponess Ne
XXBSST CRE ORY = NRERERDON TERRE RI RRL, XXX PENT CAREER

eraoniven \Cumur wane Xno erat (enone Xuma esteem

/svone assumine THs \
CYCLE IS AN INSTRUCTION
ACQUISITION CYCLE

MEMORY READ CYCLE WITH NO WAITS * MEMORY WRITE CYCLE WITH ONE WAIT
RD = READ DATA

B.5 TMS 9900 Memory Bus Timing

mao Onts

APPENDIX C

MULTI-PROCESSOR SHARED MEMORY TEST PROGRAMS

‘SLOW COUNT' PROGRAM

MICROPROCESSOR 1

XRA

LBA

LOOP INB

LAB

LHI 14B

LLI 100B

ite =

Lcr 377B

LDI 100B

KEY DCC

JFZ KEY

DCD

OFZ KEY

JMP LOOP

oe)

"SLOW COUNT' PROGRAM

MICROPROCESSOR 2

XRA

LAA

LHI 14B

LLI 100B

LAM

OUT 10B

XRI 377B

out 11B

RST °

eee SOF

MULTI-PROCESSOR SHARE MEMORY TEST PROGRAM

"PAST COUNT" PROGRAM

MICROPROCESSOR 1

XRA

LAA

LHI 14B

LLI 200B

LCA

LAA

TOP LAM

NDA

JFZ TOP

INC

LAC

out 10B

XRI 377B

ouT 11B

LMI 1

— 129 5—

"FAST COUNT" PROGRAM

MICROPROCESSOR 2

=RA

LHI 14B

LLI 200B

LMA

LBA

TOP LAM

NDA

JTZ TOP

LMB

ouT 10B

XRI 377B

out 11B

RST 2

- 140 -

TEST PROGRAM FOR DECODING RAM AND PROM MEMORIES

TOP XRA

LAA

LCA

LDA

LHA

LLA

LAA!LAA

LOCK LCI 100B

KEY DCC

JFZ KEY

INL

out 10B

CPI 377B

JFZ LOCK

INH

ouT 10B

LAH

CPL 20B

JFZ LOCK

214i =

TEST VDU PROGRAM

XRA
LCA
LDA
LBA

LOOP LAB
our 118
LAI 60B
our 10B
XRA
our 10B
INB
LCI 300B
LDI 100B

KEY pec
JF2Z KEY
pep
JEZ KEY
JMP LOOP

A

TEST PROGRAM - I/O BUSES AND VDU

XRA

LAA

LBA

LCA

TOP DCB

LAB

out 11B

LAT 50B

ouT 10B

LOOP INP 3B

NDI 100

oTZ LOOP

LAI 60B

out 10B

XRA

ouT 10B

JMP TOP

HEX Address

00:

“sg 43e—

APPENDIX D

PROGRAM ASSEMBLY

ASSEMBLER - 8008 MICROPROCESSORS

MICROPROCESSOR 1

Program in HEX

ol

o2
08
40

64
08
48

96
08
50

cs
68
58

FA
08
60

00

00
2B
08
40

3D
- 6D

08
48

49
6D
08
50

=) 00
= 100.

-00
-00

- 144 -

55
6D
08
58

61
6D
08

=760)

6D
6D

00

oc
40

AO

80

00
AO
00
81

oO

oc
80

2B
BF

AO

= 100

= 500

-00

= 100:

os >

MICROPROCESSOR 2

HEX Address Program in HEX

00:00 A8
ol csé
02 DO

03 Ds
04 26 - Ol
06 06 - 46
08 2E - 08
OA 36 - 40
oc F8
oD 06 - 46
OF 2E - 08
il 36 - 48
13 F8
14 06 - 28
16 2E - 08
18 36 - 50
1A F8
1B 06 - 1E
1D 2E - 08
iF 36 = 58
21 F8
22 06 - 14
24 2E - 08
26 36 = 60
28 F8
29 06 = 00
2B 2E - oc
2D 36 = 40
au C7
30 3C = 00
32 6A = 9D - 00
35 3C - 00
37 68 ~.2B = 00
3A EO
3B G8,
3c 06 - 00
3E 2E - 0c
40 36 - 40
42 F8
43 cr
44 c4
45 30% =" 32
47 68. =. 5E -00
4A aC = 32
4c 68 =. 69 - 00
4F 3C - 96
5: 68 - 74 - 00
54 3c - C8
56 68

00:59
5B
5E

62
63

69
6B
6D
6E
a
74
76
78
ie}
7S
7F
81
83
84
87
8A
8C
8E
8F
92
oS
97
O°:
9A
9B

9D
AO
Al
A4

eelaG ls

36
68
2E
36
C7
46
44
2E
36
C7
46
44
2E
36
Co?
46
44
2E
36
ef
46
44
2E
36
Ci

44
2E
36
F8

co
o7
1E
19

O7

FA
8A
08
40

95
2B
08
48

95
2B
08
50

95:
2B
08
58

25
2B
08
60

95
2B
oc
80

BF

9D

00

00
00

00
00

00

00

 MIS

TILT
LIFT

EL

RESTO Fou
BL

DATA
TEXT

Oe Oe
1ooo

 oad.

- 147 -

14:15:42 THURS TAY s RLS 165 1o7o,

PAE

* 14:15:42 THURSDAY, gLG 165. 13

PAGE
CTRaS
WS

PINIVOU TNITIALISE UART
rs

BOUTET

>ODoR
“DISTANCES-

* “480
@RERDNO TMPUT NUMBER

Fl@s>i1000 § OUTPUT

5 DISTANCE
Seal Cf Os

IT

FOR READY
AL FROM

DELAY

RANGE FROM &

ELEVATION From ao

SY UGE
TEXT “RBHGE=" _ agg _

DISPLAY RANGE

A} O00R
T “ELEVATION=-

3 THURSDAY: ALG 16,
PAGE

BYTE -
Mow

EL DISPLAY ELEVATION

JhP NEXTO ENDL LooPr +
PHF P oe eeeseseocescssesee
+

* ROUTINE TO INITIAL
+

INIVOU LI

oor og

HO TIMER
SPEED=

Flisrig SAVE RET.
t *F i+. RS GET CHAR
SOUTCHR OP

Po.PSo

Bu
Fig
FilQs>FFFE
Flo 3 AIRE:
eF1t 5 RETURH

>

* ROUTINE
+

INCHFE LI

THCHF 1

*

+
DUTCHR LI

SEG
OUTCH1 TE

JHE

AD
TATE ALLOCATION

PEADNO Moy

PEAT LI

CLR
READ1 EL

C1

FFDO
1100

READG

TO

* ROUTINE TO IMPLUT
+

- 149

INPUT OME CHAR

Ros 30000

CRU BASE

CHAR RECSD ?
NOs LOOP
VEE. PUT IN RS

CHAR

CRU BASE

ié
ee * BUFFER EMPTY?
OUTCH1 NO. LOOP

+ I4t15:43 THURSDAY. AUG 16, 1945

PAGE

ORs Ss YESs LOAD
16
*R11

NUMEER

FliskS E RETURN
Fes1t E

RP
Ss INCHR INPUT CHAP

ENT IF cr
MOVE TO RHE

TOO SMALL

TOO BIG

UMe1 6

OVERFLOW

 DIGIT
In F ANSWER

RETURN

“ERPOFs TRY

 BYTE > 0D:

JMP FEADO

*

WRITHO LI

 BUF CRS

Rrske
WRITHL
Ras3

Fé. BUF

NESTCH MOWE

EL SIDUTCHF

DEC
AE

E
-

+ DATA AREA
*

We

BUF

END START

- 150 -

HBAIN” §

} THRN LOGP

* ROUTINE TO GUTFUT HUMBER

MA

DIGITS

Ut
O10E

SDSM 2.1 + 14f15:43 THURSDAY. BUG 16s ALLOCATION “DISTANCE”

WRITH! DEC FS
ALT AEWER

RP
Res Pr DIY BY 10

AE IT

STORE IN BUFFER

REMAINDER
LOOP

POINT TO BUFFER

GET CHAR
ore

if 3 i a

PAGE

= i151 =

APPENDIX E

BOARD LAYOUTS

MICROPROCESSOR 1

Ceystae NAND INVERTER NAND

. cep Pp conve —|elp port Yp pack eck eae, ceiptfcs p P
LSE RF cenceaven abel: PY} Laren ANEW decd

S212 Gaz 8212

Hick STATE Memory Bus Gow canes} nace
Decopen $008 buffer Priver nponess ren

S205 S22 Saiz Brin 82z

 Bam Ram RAM aA ha ean Baa =| nae

Rom P P Peto D Pp ROM Rom Prom se ot

P PecopeR Decoee Rom Prom Peom Prom gras i

Oe se

MICROPROCESSOR 2

NAND NAND Crystad

eerie] | SYST pete Jornal (Boo) (ees Cm] [hey (erty [en
B2or Gros

op Cnet] [ofp pot Yp peck] ftttmery | [Bes

parece inal ae a te Belfer | | river
Szes Baz Bz2z Sz

Pam] [Bam] |Ram| Ram! [Am] |[pAm) [RAM [eam

Low Ape
Appness bet

PROM PRom PRom PRom EATEN ae

P22

HIGH
DECODER!

PRom| |Peom| |PRom| |PRom fae 8205
ir4

SHARED MEMORY BOARD LAYOUT

S153

Fay25
 bv flees

Momo sva Puy

Buy awtey bus fiver

yee fPe 2 = Fre]
= Mite NAN eStock Barz Ste coe.

RAM [Ram] [Ram RAM [RAM [RAM

emery bf fer] emery buften] [low Ap pees: LON AbpRess]
Pe 4 wv. 2 LATCH

x yey 2 tis
B22 Bzr ear Sx fers

SS a

APPENDIX F

SHARED MEMORY BOARD CONNECTIONS WITH THE

Connections

TWO PROCESSORS

MICROPROCESSOR 1

4 to ll

12

13

14 to 21

23

24

25

44

59

60

61

62 to 69

Memory buffer o/p's

WAIT 1

Ag address line from the high

address latch

Bus driver o/p's

P103 line

T3A line

Tr

Ag address line from the high

address latch

PCI.PCR line

DBIN

PCW.T3 line

Low address latch o/p's

Connections

= 55-=

SHARED MEMORY BOARD CONNECTIONS WITH THE

27 £0

BO tO

58 to

TWO PROCESSORS

MICROPROCESSOR 2

34

43

26

42

22

45

46

47

48

Si:

49

50

Bus driver o/p's

Ag address line

Ag addres line

Memory buffer o/p's

WAIT 2

P203 line

T3A

Th.

PCW. T3

Low address latch o/p's

DBIN

CONNECTIONS

- 156

WITH THE TWO PROCESSORS

SHARED MEMORY BOARD PIN

B
o
w

w
o
w

B
2

2%
2

30
yt

£
3
h

34
40

as
ag

47
4
0
S

§3
SS

sr
A
o
r

GP
CS

CF
CR

°
vz

fists
fig]

zo
faz

[xa]
es |

zo
[se]

3a
[34

36130)
4* | az]

24}
46/48]

50]
s2|

$a]
$e]

sa/
ce)

62]
sal

ce
fica

.
els

|
e

°
°

2

fl
ol?’s

;
4

Lew
low

Memmery
Bus

B
u
s

M
e
m
o
r
y

4
.

a
b

é
bFfer

Deivew
o
e
s

S

Be
ffer

Latch
i
a

p
e
d

of e’s
F

3
lps

ofp’s
|

of ps
\Pe

A
Fe 2,

tPr2
pee

[
P
e
d

Sam

APPENDIX 6

INTERFACE CONNECTIONS BETWEEN THE 8008 AND THE 9900 PROCESSORS

9900 Connections

51 : Memory Address O

50 : Memory Address 1

49 : Memory Address 2

48 :; Memory Address 3

47: Memory Address 4

46 : Memory Address 5

45 : Memory Address 6

44 :, Memory Address 7

43: Memory Address 8

42 : Memory Address 9

41 :. Memory Address 10

40 : Memory Address 11

39 ; Memory Address 12

38 : Memory Address 13

37: Memory Address 14

58 “3 "SCRU CLK line

53: RESET line

56 9 CRU OUT line

By? “acCRU. IN Line

8008 Connections

62 to 69 : Data o/p port 8.

14 tO 217 <> Data o/p port 9.

4 to 112) Data L/p port 3.

a om

REFERENCES

F. Heart, S. Ornstein, W. Crawther and W. Barker.

"A new minicomputer/multiprocessor for the ARPA

network". Newnam Inc. Cambridge, Massachusetts, NCC

Proceedings, June 1973,

K,. Ohmori, N. Koike, K. Nezu and S. Susuki.

"A multi-microprocessor system", COMPCON, September

1974,

L. Eaton and E. Page.

"An interprocessor communication scheme for multiple-

microprocessor systems", Clemson Univeristy, South

Carolina.

Wie) Re Perce.

“How far can data loops go?", IEEE Transactions,

Comm - 20, June 1972.

J. May and L. Krakawer.

"The architecture of a multiple-microprocessor network

processor", Codex Corporation, Newton, Massachusetts.

M. Moore, Wright and Patterson,

"A distributed microprocessor system for avionics",

AFB, Ohio.

G. Reyling,

"Performance and control of multiple microprocessor

systems", Computer Design, March 1974.

10.

ll.

12°

137

14,

= 159 =

S.Fuller, J. Ousterhort, L. Raskin, P. Rubinfield

and R. Swan.

“Multi-microprocessors: An overview and working example",

IEEE Proceedings, Vol. 66, February 1978.

S. Crowther, S. Ornstein, M. Kraley, R. Bressler and

F. Heart,

"Pluribus - A reliable multiprocessor", AFIDS Conference

Proceedings, Vol. 4, 1975.

J. E. Wirshing.

"Computer of the 80's - Is it a network of microprocessors?",

IEEE Proceedings, Compcon, 1975.

V. Ravindran.and T. Thomas,

"Characterisation of multiple-microprocessor networks",

Stanford University, California, IEEE Comp. Soc.

Int'l Conference, 1973.

C. W. Wiatrowski and C. R. Teeple.

"add flexibility to your control system with distributed

data processing", Instruments and Control Systems,

March 1976.

R. Nilsen.

"Distributed computer architectures", Hughes Aircraft

Company, California.

T. Burton.

"Multi-microprocessor systems comsine the efficiency",

Electronic Design, August 1977.

15.

16.

17.

18.

Lge

20.

21.

226

=—1l605>

A. Weissberger.

"Analysis of multiple-microprocessor system

architecture", Computer Design, June, 1977.

A. J. Nichols.

"An overview of microprocessor applications", IEEE

Proceedings, Vol. 64, June 1976.

V. May and G. Forney.

"Application of LSI microprocessors in data network

hardware", Codex Corporation, Newton, Massachusetts.

M, Lewin.

"Integrated microprocessors", Transactions on Circuits

and Systems, No. 7, July, 1975.

M. Johnson.

"Microprocessors in unconventional architectures",

Honeywell Systems - Minneapolis, Minnesota.

P. Russo,

"“Interprocessor communication for multi-microprocessor

systems", Computer, April 1977.

A. Weissberger.

"Distributed function microprocessor architectures",

Computer Design, November 1974.

B. Parasuraman.

“High performance microprocessor architectures", IEEE

Proceedings, Vol. 64, No. 6, June 1976..

23,

24,

25.

26.

27.

28.

29%

30%

= 164 =

Intel Corporation, SBC 80/20 Hardware Reference

Manual, 1976.

Widdows.

"The minerva multi-microprocessor", Stanford Digital

Systems Lab., July 1975,

B. C. Searle and D. E, Freberg.

"Microprocessor application in multiple processor

systems", Computer, October 1975. Yy

D. McAuliffe and K. Hagstrom.

"Multi-processor application in communications

switching", North Electric.Company, Ohio.

Ford.

"Harware support for inter-process communication

and processor sharing", COMPCON Proceedings, 1976.

H. Lorin.

"Parallelism in hardware and software; real and

apparent concurrency", Prentice-Hall, 1972.

L. Anderson,

"The microcomputer as distributed intelligence", IEEE

International Symposium on Circuits and Systems,

April 1975.

D. Forney and J. V. May.

"8-bit microprocessors can control data networks",

Electronics, Vol, 49, No. 13, June 1975.

31.

32.

33.

34.

85.

36.

Sh)

Tole =

A, Anden and A. Berenbourn,.

"A multi-microprocessor computer system architecture",

Operating systems Review, Vol. 9, No. 5..

J. Harrison.

"Micros-minis and multiprocessing", Instrumentation

Technology, February 1978.

K. Hagstrom and B. Beizer.

"Communications processor system study", North Electric

Company, Ohio.

P. Jessel.

"Localised Microcomputer-processor based networks",

Massachusetts Institute of Technology, Cambridge,

Massachusetts.

K,. Kerorbian.

"Microprocessors and LSI in stored program controlled

systems", Le Materiel Telephonique, France.

Baer.

"Multiprocessing systems", IEEE transactions on

Computers, December 1976.

J. W. Bowra and H. C. Torng.

"The modelling and design of multiple function unit

processors", IEEE Transactions on Computers, March 1976.

38.

Boe

40.

41.

42.

43.

44,

45.

— 163) =

B. N. Jordan and M. Gonzalez.

"Operation and control of multiple microcomputer

systems", Northmester University, Evanston, Illinois.

J. Bass.

"A peripheral-oriented microcomputer system", IEEE

Proceedings, Vol. 64, June 1976.

C. Ogden.

"Pundamentals of microcomputer systems", Mini-Micro

Systems, November 1977,

J. Nicoud,

"Peripheral interface standards for microprocessors",

IEEE Proceedings , Vol. 64, No. 6, June 1976,

R. Pond.

"Let microprocessors communicate", Electronic Design,

November 1977.

D. Larson.

“Microprocessor intertie and communication system",

Signal, April 1977.

D. Waddington.

"Microprocessors", Wireless World, 1974.

M. Helsig, D. Schueffler and C, Rose.

"Microprocessor based communication and instrument

control for distributed control systems", Systems

Research Center - Case Western Reserve University,

Cleveland.

46.

47.

48,

49,

50.

51Le

DZ

a6 oe

Be RLTK.

‘Interrupts -- the tender trap", New Electronics, 1976.

B. Cook.

"Give flexibility to memory systems", Electronic

Design, September 1974,

H. Falk.

"Linking microprocessors to the real world", IEEE

Spectrum, September 1974,

G,. Fisher.

"Speed microprocessor responses", Electronic Design,

November 1975.

M. Gerla and L. Kleinrock.

"On the topological design of distributed computer

networks", IEEE Transactions on Communications, Vol.

CoM-25, No. 1, January 1977.

J. Wakevly.

“Microcomputer reliability improvement using triple-

modular redundancy", IEEE Proceedings, Vol. 64, No. 6,

June 1976.

P. Enslow.

"What is distributed data processing systems",

Computer, Yol. 11, January 1978.

53.

54.

ao.

56.

S75

58.

59.

60.

61.

Le S—

G. Reyling.

"Extend LSI-processor capabilities", Electronic

Design, October 1974,

C. Torrero.

"Focus on microprocessors", Electronic Design,

September 1974,

W. Farnback.

“Bring up your microprocessor bit-by-bit", Electronic

Design, July 1976.

C. Bass and D. Brown.

"A perspective on microcomputer software", IEEE

Proceedings, Vol. 64, No. 6, June 1976.

"Microcomputer may answer a need in your next design

project", Article. Product Engineering, 1976.

"Designers need and are getting plenty of help -

microprocessors", Article. Electronics, April 1976.

"Microprocessors - Designers gain new freedom on

options multiple", Article. Electronics, April 1976.

Intel MC8-8 User's Manual.

Texas Instruments - Assembly Language Programmer's

Guide.

62.

63.

64,

65.

=" 166) =

A. Jones, R. Chansler, I. Duram and P, Feiler.

"Programming issues raised by a multiprocessor",

IEEE Proceedings, February 1978.

D. Melvin,

"Microcomputer applications in Telephony", IEEE

Proceedings, Vol. 66, No. 2, February 1978.

D. Stanzione,

"Microprocessors in Telecommunication Systems", IEEE

Proceedings,Vol. 66, February 1978.

Y. Klig.

"Biomedical applications of microprocessors", IEEE

Proceedings, February 1978.

