DESIGN OF A MULTI-PROCESSOR

CONTROL SYSTEM

ELIAS KARAGIORGAS

Submitted for the Degree of
Master of Philosophy
at

The University of Aston in Birmingham

October 1979

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his
supervisor, Professor H. A. Barker for his guidance and

advice throughout his research.

I also wish to thank Mrs. Helen Turner and Miss

N. P. Freeman for typing this thesis.

LE 1

DESIGN OF A MULTI-PROCESSOR CONTROL SYSTEM

Elias Karagiorgas

Master of Philosophy 1979

Summary

The aim of the research undertaken is to investigate the
aspects of multi-processor systems concerned with their performance,
control and architectural design.

Various architectural designs are studied in terms of the
tasks which can be performed in accordance with the objectives and
goals of the system user, the resulting needs of the system and
the types and characteristics of the microprocessors.

The system eventually selected appeared to be architecturally
feasible, essentially practical in its uses and takes advantage of
the capabilities and flexibilities of the microprocessors in use.
This design uses five INTEL 8008 microprocessors, which execute tasks
independently or in co-operation, exchanging data and information
through cammon access to a shared memory. The shared memory feature
is an essential part of the performance of the system and is the main
design characteristic of it. The system was tested and operated in
isolation and subsequently operated in conjunction with a 9900/4
Texas Instruments microprocessor system which formed an external
communication system. Observations,conclusions and recammendations

for improvement are given.

The thesis aims to record cbservations of the operations of
a multi-processor system in order to derive an assessment of its
potential uses, particularly for autamatic localised control of
systems.

MULTI-PROCESSOR SYSTEM, MULTI-PROCESSOR COMMUNICATIONS, TASK ALLOCATION,
MEMORY SHARING, MULTI-PROCESSOR CONTROL

B -

CONTENTS

Page No.
CHAPTER 1
MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON
OF DIFFERENT APPROACHES
1.1 Introduction 6
1.2 Computer Networks 4
1.3 Multiprocessor Systems 8
1.3.1 A Distributed Multi-microprocessor
system 10
1.3.2 A Single Communication Bus Multi-
Processor System 11
1.3.3 Multi-processor Systems with Global
and Local Memories 13
1.4 Multiple Arithmetic-unit Processor
Systems 15
1.5 Conclusions 15

CHAPTER 2

ARCHITECTURE OF MULTIPLE MICROPROCESSOR SYSTEMS

2.1 Introduction 18
2.2 Design Issues 18
2.2.1 Task Distribution 19
2.2.2 Relative Bandwidth Between Tasks 21

2.2.3 Real Time Response 22

M

Page No.
2.2.4 Reliability 23
2.2.5 Cost ; 24
2.3 Analysis of the Organizational Structure
of Multiprocessor Systems 25
2.3.1 Distributed Processor Architecture 2o
2.3.2 Parallel Processor Architecture 33
2.3.3 Miscellaneous Architectures 36
2.4 Conclusions 38
CHAPTER 3
CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR
SYSTEM
3.1 Introduction 39
3.2 Hardware Resource Control 40
3.3 Characteristics of Processing Modules 43
3.4 Interconnection of Functional Modules 44
3.5 Interprocessor Communications 49
3.6 Conclusions 51
CHAPTER 4
PERFORMANCE AND COST OF MULTIPROCESSOR SYSTEMS
4.1 System Throughput 52
4.2 System Cost 56
4.3 System Control 59

4.4 Conclusions 61

iv

Page No.

CHAPTER 5
A MULTIPROCESSOR SYSTEM USING THE INTEL 8008
MICROPROCESSOR
5.1 Introduction 62
5,2 Design Considerations 63
5.3 Design and Construction of the 8008 66

CPU System
5.4 Design and Construction of the Shared 80

Memory Module

CHAPTER 6
OPERATION OF THE INTEL 8008 MULTIPROCESSOR SYSTEM

WITH EXTERNAL COMPUTING DEVICES

6.1 Introduction _ 87
6.2 Task Allocation 88
6.3 Communication Functions 88
6.4 Intel 8008 Multiprocessor System and 90

9900/4 Microprocessor Interface:
Design and Construction

6.5 Multi-task System : Operational Simulation 93

CHAPTER 7

SYSTEM PERFORMANCE
7.1 System Feasibility Assessment 109
7.2 System Communication and Task Execution 111

Performance

Page No.
CHAPTER 8
CONCLUSIONS
8.1 General 113
8.2 Suggestions for Further Developments 117
8.3 Final Remarks 119
List of Symbols 121
APPENDICES
A : Intel's 8008 Microprocessor 123
B ¢ The TMS 9900 Microprocessor 129
C : Multi-processor Shared Memory Test 136
Programs
D : Program Assembly 143
E : CPU System Board Layouts a5 1
F : Shared Memory Connections with the 154
Two Processors
G : Interface Connections Between the 157

8008 and the 9900 Processors

References 158

vi.

LIST OF DIAGRAMS

Approaches to System Growth

ARPA Network

Distributed Multiprocessor System
Distributed Processing Performance
Master-slave Multiprocessor Organization
Master-master Multiprocessor Organization
Multiprocessor Ring Structure

Block diagram of an SIMD Microcomputer
Block Diagram of an Array Processor
Sinéle Time-shared Bus

Multipart System Bus Configuration
Crossbar Switch Organization

MailboX Memory Organization

General Configuration of Multiple
Processor System

Plot of Min. Max. and Average Multi-

processor System Throughput

Page No.

(e}

26 -
27

29
31
32
34
35
46
47
48
50

53

o)

Relative System Cost v Number of Processors 58

and System Throughput
A Multiprocessor System Using the

Intel 8008 Microprocessor

65

- vii -

Basic Hardware Diagram of the Micro-
processor System

Detail Hardware Diagram of the Micro-
processor System-signal Decoding
Detail Hardware Diagram of the Micro-
processor System-memory and I/O decoding
Circuit Diagram of the 8008 CPU module
Timing Diagram of the Microprocessor
System

Memory Module-functional Diagram
Timing Diagram of the Read/write
operations

Circuit Diagram of the 'Shared Memory'
Module

Timing Diagram of the Multiprocessor
System

A Multiprocessor Control System

Page No.

68

69

70

g
73

diT

19

82

85

9%

Circuit Diagram of the 8008 Microprocessors 22

and 990/4 interface

Basic Flow Diagram of Microprocessor 1 task 97

Basic Flow Diagram of Microprocessor 2 task 98

Basic Flow Diagram of TMS 9900 task

INTRODUCTION

Microelectronics is the most influential technology

of the twentieth century.

Within this technology the microprocessor is the most
influential product, as an agent of radical change that is
bringing new industrial methods, producing an evergrowing
range of new products, and posing serious questions for

society and any national economy.

Dispersion and distribution of information processing
functions have been given impetus by recent advances in

semi-conductor technology and reduced hardware costs.

Integrated circuit technology matured sufficiently
to permit the realisation of the "microprocessor". A
microprocessor may be defined as a device which fetches
and executes instructions, in a predefined sequence,
assumed to be stored in a memory with which the processor

interfaces.

With its present, and in the future, increasing
capabilities the microprocessor can serve for a system
designer as a control element and is responsible for data.
acquisition, processing, display, setpoint control and

communications.

Since the introduction of microprocessors,multiple

microprocessor configurations have been the vision of

automatic systems designers as it approaches to higher

reliability and higher computational bandwidth.

In particular, multi-processor configurations in
which a number of identical processors share a common
memory or common memories, have been the subject of

intensive study and analysis.

Until recently, however, implementation of computer
structures of this type have been limited to special
purpose military computers. The two primary reasons for
the slow acceptance of multi-processor configurations
have been cost and the difficulties associated with the
interrelated dynamic properties of systems control and
fault tolerance. Although significant advances have been
made in the latter two areas, a great deal of effort must
still be expended in an attempt to develop an integrated
methodology which combines the findings in each of the
two areas. On the other hand, the rapidly decreasing
cost of hardware which is exemplified by the widespread
acceptance of microprocessors has provided the push for
multi-processor investigations which are not necessarily
bound by some of the more difficult problems of control
and reliability. The relationship between total system
cost and total system capahility can be described by the
curves of Fig. l. Ideally, the relationship between
cost and capability should be linear. That is a small

increment in system cost should yield a comparable increase

CAPACITY

—

TRADITIONAL

INCREMENTAL

IDEAL

COST

Big, 1

Approaches to System Growth

in capability. The increase is a function of the slope

of the curve: a larger slope is indicative of a more
cost-effective investment. An installation however, of a
multiprocessor finding itself with a saturated system may
have to resort to large investments for more mainframe memory
for more (or a different type) of secondary memory, or
perhaps to an upgrade to the next more powerful member of

an upwards compatible family.

A desirable compromise between these two is one which
allows system components to be added.incrementally whilst
requiring only modest increase in cost. In the past this
has been the rationale for the study of systems in which
components processors and memory in particular can be
added as growth requirements dictated. Anadded feature
of a system of this type'has been the ability of the system
to withstand failures in a processor, for example, without

seriously impairing system performance.

The ever-increasing capabilities of microprocessors
coupled with their attractive cost performance in parallel
with the hardware advances which brought lower costs and
the potential for a variety of physical interconnection
possibilities have reduced the limitations for the wide
implementation of a multi-processor system. Systems
which combine private and shared memories, buses, switches,
stand-alone processors etc. are the study of many research

institutions, ,public or private, in an attempt to realize

the problems and stretch the capabilities associated

with these systems.

This report tries to examine the problems of designing
and cootrolling a multiprocessor system. The research was
conducted here in the Electrical and Electronic Engineering
Department of the University of Aston in Birmingham, usiﬁg
the INTEL's 8008 microprocessor. The Texas Instruments
latest microprocessor system the 9900/4 was used in the
final stages of the research as part of an independent

communication system.

Details on the operations of the 8008 and 990/4 are

given in Appendices A and B.

1.4

CHAPTER 1

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON

OF DIFFERENT APPROACHES

Introduction

Computer Networks

Multiprocessor Systems

1.3.1 A distributed multi-microprocessor system

1.3.2 A single communication bus multi-processor
system

1.3.3 Multi-processor systems with global and
local memories

Multiple Arithmetic-Unit Processor Systems

Conclusions

CHAPTER 1

MULTIPLE MICROPROCESSOR SYSTEMS - A COMPARISON OF DIFFERENT

APPROACHES

1.1 INTRODUCTION

Since the announcement of the first commercial micro-
processor in 1971, integrated CPU's have evolved from
laboratory curiosities to ubiquitious fundamental system
building blocks. Moreover, rapid advances in LSI mere
technology during the early 70's have resulted in ever

larger RAMS and ROMS.

The advances made by LSI technology have not been
applied solely to microprocessors and memories. Complex
bit general purpose logic blocks are being integrated on
single chips in increasing numbers. Amongst them the
development of UART for data communications and single-
chip peripheral interfaces. The ability to introduce
microprocessor control into many systems currently
implemented via hard-wired logic will bring to these
systems all the attendant advantages of stored program
control. These include greatly improved flexibility,

reliability, ease of maintenance and lower cost.

A natural evolution of microprocessor-based system

architectures is that of distributed processing, i.e.

multi-micro-computer systems. In distributed intelligence
systems, intelligent subsystems, dedicated to specific
tasks, communication in an optimal fashion to improve
system throughput, increase reliability, and add a new

dimension of flexibility.

There is currently no established methodology for
interconnecting sets of processors for the purpose of

building general-purpose or even special purpose

computer systems.

However, there does exist an interesting range of
possibilities that span this range: computer networks,

multiprocessors, and multiple arithmetic unit processors.

1.2 COMPUTER NETWORKS

Perhaps the most widely known computer network is
the minicomputer/multiprocessor for ARPA networkl. An
important attribute of this network is the data
transmission bandwidth between computers. The other
important attribute of the inter-computer links is the
access, or latency time for each unit of information
sent between microcomputers. The system contains an
expandable number of identical processors, each with
some 'private' memory, an expandable amount of 'shared'
memory to which all processors have equal access,

and an expandable amount of I/O interface

controllable by any processor. The system achieves
modularity and reliability by making all processors
equivalent, so that any processor may perform any system task,
thus systems can be easily configured to meet the through-
put requirements of a particular job. The scheme for
interconnecting processors, memories and I/O is also
modular, permitting interconnection cost to vary smoothly
with system size. In considering which minicomputer

might be most easily adaptable to a multiprocessor
structure, the internal communication between the processor

and its memory was of primary concern.

The overall design is represented in Fig. 1l.1l.
Processors make access to shared memory via the switching
arrangement. The shared memory of the multiprocessor
system is intended to contain a copy of the program as
well as considerable storage space for message buffering,
global variables, etc. The ARPA network is an example
of a loosely coupled network because of the 50 K/bits
links between computer in the network and the 100-200 ms
latency times associated with cross-network transmissions

of packets of information.

1.3 MULTIPROCESSOR SYSTEMS

There are different approaches on the basic structure
of a multiprocessor system. Its distinguishing character-

istic is that the processors share primary memory.

PROCESSING AND

AND PRIVATE MEMORY

MODULATOR
SWITCH

SHARED
MEMORY

I/0

PIG. 1.1 ARPA NETWORK

Depending on the applications some acquire private memory.
Main memory and I/O channels are accessible by every CPU.
Multiprocessor systems can operate in several modes. 1In
one, the processor may co-operate in solving a problem
which requires more computing power than a single
processor affords. Each processor might control a
position of an overall process, with the necessary
co-ordination between the control strategies effected
through the processor interconnection means. Both
processors are of equal importance in maintaining control
of the process, and both must be operating to obtain
optimum performance. A more common mode of operation in
industrial control is usually called duplexed operation, and
its purpose is to increase the reliability of the total
system. A primary processor normally performs the control
task. In the event of a failure a second, back up

processor takes over.

1.3.1 A distributed multi~processor system

The multi-microprocessor system developed by the
Central Research Laboratories2 is essentially a distributed
microcomputer system composed of several kinds of sub-
systems. Each subsystem is given autonomous control
capabilities to facilitate control problems, securing
independence between subsystems as well. Instruction

execution cycles of typical LSI processors are 5 or 10

times slower than the main memory cycle. Thus it is
expected that the main memory can be shared in time and

space with several processors to improve memory utilisation.

The virtual memory was chosen in order to allow each
user to use more memory capacity than it could if it
were restricted by the actual main memory. Furthermore,
to avoid operating system complexity, a page detector
was developed which notifies a multiprocessor communication
adaptor of a page being unused for a long time. Asynchronous
ambiters were also used, which handle the simultaneous

access to the main memory and I/O devices.

Several advantages are claimed for distributed processing.
They offer division of labour, as remove units off-load
the processor at the next higher level for enhanced
performance of the total system. Although the central
operating system must still be a multiprogramming system,
the degree of multiprogramming is reduced, since some
functions will be handled directly by remove computing
units. They also offer a degree of modularity which is
difficult to achieve with single centralized computer

system.

1.3.2 A single communication bus multi-processor system

In an article on interprocessor communication scheme for
: : 3
rnultiple microcomputer systems™ ,L.Eaton and E. Page advocate

the single communication bus as a method of linking several

devices together to allow sharing data with advantages on
flexibility, universitality and economy. Despite the
advantages of the single bus, it can accommodate only one
message at a time, thereby restricting the rate at which

transmission may occur.

Alternative concepts for achieving communications
between processors have made use of multiple buses, multi-
part memories, or cross-bar switches. Typically, the
problems of bus arbitration and synchronisation have
become increasingly more cumbersome as the number of
processors in the system increased. 1In order to exploit
the advantages of the single bus concept and at the same
time, minimize its disadvantages, the Pierce loop4 is
being used as a communication bus. Conceptually, a
Pierce loop is a set of registers connected in a circular
manner that moves a packet of information in a fixed
direction from one register to an adjacent register in
each unit of time. Each processor has its own memory
as well as ancillary circuits for bus interfacing and
monitoring. Each processor has a unique name, p or v,
and communication between processors takes place by
tagging information to be transmitted with either the
P or v name of the desired destination and placing it on

a loop.

a1 3D

1.3.3 Multi-processor systems with global and local

memories

In their article on a Multiple Microprocessor Network,
J.E. May and L.J. Krakaver5 chose a memory system allowing
a limited amount of local memory for each processor, with
a high bandwidth global memory system accessible by all
processors. All global memory accesses as well as inter-
processor and I/0 controller communications are done over
the system bus. Ths bus allows transfer rates of 1 byte
every 167 nsec. It was estimated that each Motorola 6800
or Intel 8080 made a memory/bus access on the average of
once every 1.5 ms. Thus, the bus access requirements of
8 microprocessors are roughly balance with the bus band-
width. They also used a bus contention priority system,
task dispatching and interrupts. A master controller
was also used to perform clock generation, memory refresh,
memory contrcl, control panel logic and the I/0O controller,

and task dispatcher for the processors.

Service requests can be from external sources or from
queued internal requests. There are eight priority levels

at which these service requests may be present.

The distributed microprocessor system for Avionics by
M. Moore6 consists of identical processing elements inter-
connected by a network of serial buses. A global bus
interconnects all processorsin the network and provides a

channel for network control and system data. Separate

e PR s

I/0 ports are provided to eliminate the need for real-

time command-response interaction on the network buses.

The memory unit serves for both program and data
storage. It is asychronous and can therefore be realized
with a mixture of technologies. Total size required was
4K and 8K bit words. The processor I/0O unit is intended
to be the interface between the network and aircraft
devices. The device is a single channel that can be set
up for autonomous or program controlled transfers. A
16 bit parallel I/O path is used to multiplex command and
data information. One interrupt line is provided to the

device.

The general configuration of a multiple processor
system adyvocated by C. Reyling?, uses a common data bus
as many microprocessors are able to time-share such system
resources as memory, I/O, and peripherals. In this
asymmetric structure individual processors have fixed
specialized processing functions. It could be used in
dedicated applications where type, frequency of occurrence
and relative importance of tasks are known in advance.
Processors may be specialized to carry out one particular
type of task. Once processor, for instance may perform
all I/O operations, another perform memory accessing,
another provide file maintenance and so on. Specialisation
may occur via the software programs executed (local

memories), and hardware architectural features (number

- 15 =

of registers, interrupt capabilities, stock processing).
Often a side benefit of this partitioning is simplification
of programming, since each task can now be treated as an
independent module, with no provisions required for

execution of other tasks by a given microprocessor.

1.4 MULTIPLE ARITHMETIC-UNIT PROCESSOR SYSTEMS

The third form of computer organisation that
incorporates multiple processing elements is the multi-
arithmetic and logic unit processor. The fundamental
difference between this type of structure and multi-
processors is that all the ALU's in the multi-ALU
processor support a single instruction stream, while
each of the processors in the multiprocessor supports

4 - 3 8
its own instruction stream .

If we define a processor to be a unit capable of both
decoding and executing instructions, then the multi-ALU
processor is not really a multiple processor system.
However, multi-ALU organisations are often considered as
alternatives to multiprocessors and derive the same

benefits from advances in LSI technology as multiprocessors.

1.5 CONCLUSIONS

Networks, multiprocessors, and multi-ALU computers,
have been presented as three methods of organizing processors

to build highly parallel computer systems. The three classes

- 16 =-

can be thought of as as varying along a single dimension,
the degree of coupling between processors in the system.
In the computer network the minimum access time for a
processor is the access time to local memory. 1In a
multiprocessor, each processor has direct access to global
data stored in primary memory. Since interprocessor
communication occurs by sharing primary memory, thé inter-
action times are on the order of 1-50 us. In a multi-ALU
computer, the analog of interprocessor communication is the
transfer of control information that occurs between the
control unit and its associated processing elements. The
position of multiple processor organisations has a strong
influence on its suitability to a particular application.
An application consisting of a set of parallel processes
that need tc interact or share data only every 10-100 s
can run on a loosely coupled computer network. At the
other end, algorithms that reguire the parallel execution
of arithmetic operations within single expressions force
the interaction times between processing elements to
occur almost every instruction cycle. Thus the average
time between interprocess interaction becomes a critical
time constant of an application, and proyvides a good
indication of the type of multiple processor organisation

that will be most suitable.

Several advantages may be realised with multiprocessor

systems in general. Througput often increases almost

s Y

directly with the number of processors while system

cost increases by only a small amount. Shared system
resources offer an economic advantage by eliminating
devices which would need to be duplicated in separate
stand-alone systems. Shared resources also provide direct
access to data which might otherwise require transmission

from one system to another.

The characteristics of LSI processors strongly suggest
the multiprocess system as a practical alternative to a
multi-task monoprocessor system, since the cost performance
will be improved as a consequence of sharing expensive

memory and I/0 units.

CHAPTER 2

ARCHITECTURE OF MULTIPLE MICROPROCESSOR SYSTEMS

Introduction

Design Issues

2.2.1 Task Distribution

2.2.2 Relative Bandwidth between Tasks
2.2.3 Real Time Response

2.2.4 Reliability

d.2.5 Cost

Analysis of the Organisational Structure of
Multi-processor Systems

2.3.1 Distributed Processor Architecture
2.3.2 Parallel Processor Architecture
2.3.3 Miscellaneous Architectures

Conclusions

= 385w

CHAPTER 2

ARCHITECTURE OF MULTIPLE MULT-PROCESSOR SYSTEMS

2.1 INTRODUCTION

Current low cost-scale integrated microproéessors
offer the potential of cost-effective multiple microprocessor
systems. Advantages that can be gained by these systems
include high throughput, improved real-time response,
better availability/reliability and modular expansion.
Unfortunately, the design techniques, structures and
organisations of multi-processor systems are not well
defined. A host of problems including process partitioning
into parallel tasks, allocating tasks, sequencing and
interaction between processors, controlling system
resources and overcoming the physical and architectural
limits of microprocessors must be thoroughly researched
before implementation progress can be made. To provide
solutions and design guidelines for multi-processor and
distributed processor systems incorporating available
large-scale integrated microprocessors, .existing
microprocessor architectures, organisations and strategies
have been analysed to derive those characteristics which

are mandatory for workable multiple microprocessor systems.

2.2 DESIGN ISSUES

There are a number of factors that influence the design

of a multi-processor system. Emphasis to each one of them

B

would be given according to the goals, and objectives of

the system designer, although these factors are interrelated.
These factors are important in making a multiple processor
system an effective computing machine and are involved in

optimising the architecture to the particular application.

2.2.1 Task Distribution

The logical distribution of tasks is the relationships
between the various tasks that the system is expected to
perform. In a traditional computer system where the
hardware is fixed, the logical distribution of these tasks
affects only the structure of the software. 1In multi-
processor systems however, it is possible to allocate
processes to different processors. These networks, in
effect, replace the multi-processing software of earlier
computer systems with hardware. The fact that the jobs
can be now done concurrently compensates for the lower
performance characteristics of the components. One
interrupt free method of dispatching processors to the
data communication tasks could be done similarly to the
mailbox approach used in Pluribus multi-processor system(g).
In this case processors are allocated to tasks on the
basis of pending task priority, with all tasks running to
completion on the allocated processor without interruption.
At completion, the processor is re-allocated to the highest
priority task requiring service. This, of course, eliminates

context switching overhead but also puts constraints on

the hardware/software. All tasks must be executed in
a time shorter than the overrun time of those tasks

requiring service.

The degree of interactionbetween tasks also defines
the organisation of the network. A network can be
absolutely represented by a ngraph and if one associates
a n control flow with the graph certain logical

relationships emerge(lorllrl2).

There is a distinction between the meaning of a graph
in this context and its meaning in connection with
traditional networks. In the latter case, various
organisations are postulated in the hope of improving the
mechanism for transmitting messages and the graph is used
to describe the mechanism for routing messages. Since each
processor executes its programs independently of the
other tasks being executed, no attempt is made to associate
any statement of program control with the graph. For
multi-processor networks however, the graph is used to
indicate the relationships between processors and hence
provides a tool for identifying an isomorphic hardware
structure. It is therefore more of a flow graph of
program control. For example, the graph of a microprocessor
ring network implies a sequential process where completion of
a task in one processor initiates the execution of another
processor. Alternatively a tree network implies the

presence of a hierarchy or processes, where the completion

- 21 -

of several tasks in the terminal processors activates a

process in the junction processor.

2.2.2 Relative Bandwidth Between Tasks

The relative bandwidth of the interfaces between
these tasks:related to logical distribution of tasks,is
the issue of bandwidth. Bandwidth is an important factor
in deciding the physical distribution of processors.
There are three common ways of handling interprocess
communication:

(a) Serial Communication
(b) Parallel Data Bus

(c) Multiport Shared Memory.

Only serial communication allows any degree of physical
separation. The other approaches imply the use of several
processors combined in a single chasis. A recently advocated
approach is a system in which several.program processors
are clustered around a central service facility. The cluster
acts as a contemporary multi-programming system in hardware.
The microprocessors in a service centre handle system
processes while the program processors handle user requests.
The service centre performs four functions: memory
management, process management, file management and monitoring
and protection. Each of these tasks could be maintained

by a separate processor Ly O AipSls, 4,5131.

- D

2.2.3 Real Time Response

The specified response time associated with each task
is the third issue. There are two components to this:

(a) The maximum amount of time allowed to recognise
a condition (latency) ,and

(b) the total time allowed for a response.
The real time response of a mutli-processor system depends
on the computational power of the individual microprocessor
and specifically on their instruction speed and I/O
capability. In the microprocessor used in this research,
the 8-bit Intel 8008, there were limitations on both counts.
The particular 8-bit microprocessor provides one interrupt
to the CPU and,in this case ,was not used for reasons
explained later in the thesis. Although this may be
extended by using additional peripheral chips, the cost of
these chips must be weighed against the use of an
additional microprocessor module. Moreover, the relatively
slow execution times of these units caused by their 8—bit
data path, limits their total response for multiple
interrupts. Accordingly, a common mechanism for many
high speed applications is to allocate one processor to

each real time process,

It must be pointed out that newly introduced 16-bit
microprocessors (TI 9900) would change the scope, approach
and capabilities of these systems. However, we are

concentrating on the 8-bit processors mainly and although

SR

the design issues would remain the same for the advanced

16-bit processors, the system response would alter(3' 1%

17, 48)

2.2.4 Reliability

The reliability of a network depends on the reliability
of the nodes and the reliability of the communication system.
In larger networks, work on reliability has centred on
insuring the integrity of the network even in the event of
a failure of one of the processors. This work was focused
on hardware mechanisms that minimise the coupling between
a processor and the network,and on the design of software
which detects improper transmission by a faulty processor.
In addition these networks should incorporate a number of
encoding rules and network protocols which are intended
to insure the validity of the data. The reliability of the
nodes is generally a separate issue and is usually not
considered in the design of the network. On the other
hand, on a multi-processor system one would like to ensure
the reliability of the total system. The most obvious
solution to that (given the low cost of microprocessors)
is to provide a "backup" microprocessor to every
micropfocessor in the system. This backup monitors the
operation of the primary unit and in the case of failure
either replaces it in the system or reports the failure.

If that sounds suspicious as the backup can cause the

system to fail, another approach associates a monitoring

IR

function with one (or several) of the regular checks on
the status of the other processor in the network and
automatically detects nodes that are functioning
improperly and removes them from the system. These nodes
are then replaced with previously inactive nodes which
have 'been included in the system with the specific purpose
of acting as spares. A combination of the two above

mentioned approaches can be also considered.

The security and reliability of the system is very
important as in current practice in microprocessor

environments long down-times cannot be toleratedﬁ7).
2,2,5 Cost_

Cost is clearly a significant issue in any design.
Multi-processor systems differ from traditional networks
not only in the total cost being dropped, but also in
that the relative cost of the processor vs communications
has shifted dramatically. This affects not only the range
of applications but also the configuration of the network
since we are dealing in an environment where in most cases
the interface to any network will be a significant portion
of module cost. In most cases though, it is felt that
there will be a tendency to localise the network; to avoid
any long distance method of communications and to reduce

the bandwidth of any remove communication.

= DB

2.3 ANALYSIS OF THE ORGANISATIONAL STRUCTURE OF

MULTI-PROCESSOR SYSTEMS

In the previous section we examined the design factors
that influence the architecture of a multi—procéssor system.
It was stressed that the flexibility, simplicity and
capability of the microprocessors can provide almost any
architectural design (within the limitations of microprocessors)
to suit the objectives and goals of the system designer. 1In
this section we examine some of the existing conventional

architectures of multi-processor systems.

Distributed, parallel and pipeline architectures have
been recognised as feasible approaches to provide high

throughput systems(ls' 2

2.3.1 Distributed Processor Architecture

Distributed processing refers to a specific technique
for interconnecting a number of processors, It utilises
a Bus Interface Unit (BIU) to connect each processor to
a single bus. There is little CPU involvement in the
communication function. Addition of a processor will
not affect the interface of those processors already
in the system (Fig. 2.1). The primary advantage of this
architecture is thought to be physical distribution and
incremental expandability. An additional potential
advantage of microprocessors in a distributed system is
improved cost/performance (Fig. 2.2). The most obvious

critical design issue is to determine whether or not a

1%z *b¥a

wo3sAS I0SS900Id-TITNW Pa3InqTIISTd

LIJOWHEW ndo 0/1 AJOWHNW ndo 0/I KIOWHW ndo 0/1

26

HOVAIELNI snd JOVAYIALNI snd HOVAHIHLNI Snd

Effective throughput in Number of

-
(@]

Processing Elements

(@]

o T

5 10
Actual Number of Processing Elements

Distributed Processing Performance

Blg, 22

-y s

given application can be partitioned and executed

concurrently. Tasks and their actions must be known in
advance so that the system functions can be subdivided

among the individual processing elements. This includes
segmentation of software into dedicated program segments

for each processor and assignment to controlled variables

and devices to each processor. Such static allocation

of tasks minimises program interaction which permits
simplified development and debugging of individual program
segments. Interprocessor communication is usually restricted
to passing messages or data blocks through shared peripherals
or serial communication links as opposed to a shared main
memory. Failure though,of any processing element (CPU

or I/0 channels), may seriously degrade system performance

as the system cannot dynamically shift tasks that have

been assigned to the defective element.

A myriad of possible distributed intelligence
microprocessor systems (DIMS) structures exists. The

{20 (Fig. 2.3), offers many

master-slave organisation
advantages to multi-microprocessor systems. This system
employs a single integrated operating system to dynamically
allocate tasks as they are received. A resource allocation
processor (master) can allocate tasks to processing modules
(slaves) through a resource request table. PMs may be
identical and capable of executing any task (symmetric)

or may be pre-assigned to handle special functions

(asymmetric). The symmetric multi-processor is used in

MASTER
CPU,

SLAVE
CPU

SLAVE
CPU

SLAVE
CPU

Master-Slave Multi-Processor Organisation

rage &3

a general purpose environment where processing requirements
are constantly changing. Since PMs are equivalent, a given
task can be re-assigned in the event of PM failure. By
contrast the asymmetric multi-processor is compesed of

PMs specially configured for a set number of tasks. Incoming
tasks must be gueued to assigned PMs even though other PMs
may be idle. Although this may decrease throughput it
simplifies the operating system, which becomes a task
scheduler and is relieved from the identification and
allocation of parallel tasks. As a system becomes more
asymmetric more tasks must be allocated to specific PMs

and portions of the operating system becomes more

individualistic.

Another possible formation is illustrated in Fig. 2.4.
of a masterrmaster structure in which any CPU can communicate
with any other CPU. In this organisation all the CPU's
must support compatible interprocessor interfaces and I/0O
instructions. This organisation may well be effective for
large communication networks. However, it may not be
suitable for multi-microprocessor systems where the tasks

to be performed by specific CPU's may vary drastically.

Yet another possible organisation is the ring structure
illustrated in Fig. 2.5. 1In this organisation though,if
the information bus is also needed by the individual CPU's
for their own processing, severe contention problems will

occur with a resulting degradation in the performance of

CPU

CPU

Master-Master Multi-Processor Organisation

-k

CPU

CPU

CPU

CPU

Ceu

CPU

L .

CPU

CRU

CPU

CPU

Multi-Microprocessor Ring Structure

Fig. 2.5

= 30

the overall system.

Distributed multi-processor organisations could be
applicable to avionics slip-board control command and
control and weapon control functions as have been

considered as being amenable to partitioning.

2.3.2 Parallel Processor Architecture

Parallel processing is the concurrent processing of
two or more portions of the same system algorithm by two
or more processing units. This can occur at the task,
sub task, instruction stream or data set level. Two
organisations of parallel multiple processors can be
idéntified; the single instruction multiple data (SIMD)

and the multiple instruction multiple data (MIMD).

In SIMD architectures, a single control unit fetches

and decodes instructions. The instruction is executed
in the control unit itself or its broadcast to other
processing elements (Fig. 2.6). One subclass of the SIMD
architecture the 'array processors', where instructions
manipulate vectors of data simultaneously and the control
unit has limited capability ,appears to be cost-effective

for very specific applications{Fig.2.7). Rationale
for this organisation is the high throughput obtained by
simultaneous (parallel) operations of processors on
different data streams. Computations must be describable

by wvector instructions with many identical operations in

Memory 1

Control

Processor

Processor 2

Processor-to-

Processor

Interconnection

K

}

Memo

o000 QK—1

2 Network

Proc. N P

|

1}

i

Memory N

Memory
Bus
Data and
Instructions To.I/0
P il

Block Diagram of an SIMD Micro-computer

Fig. 2.6

Supervisor
Processor

Network Distributor

—1 Pr Pr =t
CVe (Y1)
— Pr Pr et BB
®
®
&
o

Block Diagram of an Array Processor

PlG 2.

action simultaneously on different data; high speed data
routing between processors is necessary; and operands

that are manipulated simultaneously must be fetched
simultaneousiy. Applications can be in weather predication,
air traffic control, radar signal processing or any high

speed vector computation.

The MIMD architecture achieves parallelism by performing
independent tasks on separate data sets concurrently and
combining results of the execution of the independent tasks.

To attain high efficiency, proper synchronisation of processors
and allocation of tasks is necessary to balance the processing

load.

2.3.3 Miscellaneous Architectures

The pipeline architecture consists of a number of
ALUs, cascaded and inter-connected based on a specific
algorithm. The architecture is discussed because it
demonstrates one of the primary advantages of microprocessors:
simplification of the design process itself. The application
for which the pipeline was designed is signal processing.
The real advantage found in this architecture is the ease

of the design, because of the use of assembly language.

Multi-processor,systems could be further classified

according to the degree of interaction between processing

modules (CPU's or I/0 channels), often called coupling(ls'

21). We should add at this point that processors passing

-3 -

data through shared memory are sometimes considered to

be tightly coupled, although some designers disagree with
this classification. Usually there is no program interaction
between loosely coupled processors although they may share
read/write memory to pass information. When the system

is to consist of numerous small modules for general purpose
applications, the connections are necessarily of the loose
type. In this case the processors should be able to access
memory with :as much sharing as possible, communicate with

one another through shared resources with minimum
contention problems, and be capable of dynamic configuration
in the eventof PM failure. This type of system requires

high throughput and/or high availability. The author feels
that these systems will eyentually replace many minicomputers
in data based inquiry/response and in real time control

applications.

This production is advocated by reasoning that:

(a) Inherent flexibility permits small increments of
growth with minimum system redesign (extensibility).

(b) Ability to dynamically allocate tasks to balance
the processing load improves throughput and real-time
response.

(c) Ability to dynamically reconfigure PMs in the event
of failure.

(d) LSI is cost-effective and a multi-processor system

can overcome the ultimate physical limits of LSI

- AR

for high performance applications(15r21:22).

One or more of these items must be chosen as design

goals for a microprocessor based multi-processor system.

2.4 CONCLUSIONS

The -microprocessor revolution has made possible the
economical de-centralisation of computing power. This
has been achieved not necessarily by making systems with
improved cost/performance, but by making microprocessor
control of many functions economical and practical. The
microprocessor has made it economically possible to
introduce processor control to a host of new applications,
and thus to the diversity of architectural designs.
Multi-microprocessor structures are largely effective in
situations where the tasks to be performed can be
effectively and efficiently partitioned. This would give
rise to further diversity of architectural designs as I/0
processing capability is improved coupled with improved
reliability and fail-safe features. An additional benefit
resulting from the effective partitioning of tasks in a
multi-CPU system is that the software, by being partitioned
into several relatively independent packages, is much
simpler and runs more efficiently. This is especially

effective in a system supporting many interrupting devices.

CHAPTER 3

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR

SYSTEM

Introduction

Hardware Resource Control
Characteristics of Processing Modules
Interconnection of Functional Modules
Interprocessor Communications

Conclusions

39

CHAPTER 3

CONTROL OF SYSTEM RESOURCES IN A MULTIPROCESSOR

SYSTEM

b | INTRODUCTION

Allocation of taske and sychronisation of micro-
processors are the most serious problems in the design
and operation of multiple-microprocessor systems. They
involve identification of a parallel process, partitioning
the process into subprocesses or tasks, establishing a
priority scheme for the tasks, assigning tasks among
various microprocessors, sychronising them, and providing
some means to dynamically reassign a task in the event
of PM failure. Although solutions to these problems have
been proposed the implementation is very difficult. One
of them is by expressing potential parallelism in the
coding via a WAIT-SIGNAL. This approach was used in this
research project. It is obvious that the smaller the

number of microprocessors, the easier the process.

Processes or tasks operating in a micro-multi-processor
system share a number of resources to improve performance.
Resources include hardware (processors, memory, I/0 channels,
registers, buses) and software (programs, data files, buffers,
variables). The more shared resources that are available,
the greater the control required for the allocation and

resolution of tasks. Too much sharing results in complex

control structures and task conflicts. This can produce

o 40 -

low throughput or deadlock as two or more tasks are
waiting for resources that have already been assigned to

each other.

3.2 HARDWARE RESOURCE CONTROL

Arbitration, flag test and set and interrupts are

the most common methods of hardware resource control.
Arbiters

An arbiter accepts requests from PMs (active
elements), resolves contention and alerts the elements

of its decision.

A centralized arbiter consists of a single self-
contained hardware unit. Intel has designed a custom 'bus
controller' chip for this function on the SBC 80/CO micro-
computer boar623, Widdows has developed a '1Bus arbiter!'

for the MINERVA System24 and Reyling has proposed a

¢ . 7
resource allocation microprocessor .

A decentralized aribter is one in which control logic
is distributed throughout the active elements connected to
a shared resource. The arbitration method includes daisy
chaining, priority encoding, and polling asynchronous
requests, (flags and interrupts). Choice of method depends
on simplicity, device servicing reguirements, expandability,
susceptibility to failure control line limitations and

controller speedzs. Arbiter speed should be such that the

overhead to access a device is only a fraction of the

time spent using the device. For example, a high speed
cycle-shared memory requires a hardware arbiter, while a
blcck of shared memory can be allocated by a microprocessor

arbiter.

Status Flags

Conflicts over shared memory and I/0 can be resolved
via the flag-and-set procedure. The requesting processor
tests the states of the flag, which is a resource busy
indicator. If busy, the microprocessor must wait before
obtaining the resource. If not busy, the flag is set to
busy during resource access, and then reset when the
microprocessor is finished with the resource. Simultaneous
requests for a resource must result in only one processor
gaining access. Since requests for a shared resource occur
asynchronously, care must be taken that more than one
processor does not gain control of the resource. For this

reason the test and set operation must be indivisible.

If memory is used for the status flag, it must be
capable of a read-modify-write cycle before permitting
further accesses. This requires a lock on the memory
address. Although it is easier to lock a blecck of
memory than a specific addreSs25 in that case the
remainder of the module is unavailable to other processors.

For this reason status bits are sometimes implemented

as a set of dedicated external registers that perform the

read-modify-write cycle themselves.

Interrupts

Interrupts can be used to service internal processor
errors, clock signals, external devices or to sychronise
interprocessor communications (shared memory). Servicing
interrupts in a micro-multi-processor system is usually
assigned to the originating microprocessor. External
devices may be preassigned to individual processors or
dynamically directed to whatever processor is best
equipped for service. This real-time assignment can be
done through a centralized hardware arbiter, a dedicated
high speed processor or by individual microprocessors.
Assignment is made on the basis of servicing capability,
availability, task allocations, and software priorities
of each processor. Interprocessor communications can be
sychronised by passing an interrupt request signal from
one processor to another, such that requests for each
can be wire-ORed onto one interrupt level dedicated to
interprocessor communications. A prioritized vector,
corresponding to the highest priority processor requesting
the bus, can be placed on the data bus when the interrupt
has been acknowledged. Handling external device interrupts
is perhaps the most critical decision in implementing the
device interface to the micro-multi-processor systems.
Microprocessors with highly advanced interrupts facilities

and priority levels are requested.

The ability of the microprocessor to do useful work
while waiting for availability of system resources is very
valuable. The microprocessor could then perform background
processing of tasks not reguiring system resources. This
is particularly important in épplications where the micro-
processor must be able to respond in real time to local

interrupts.

3.3 CHARACTERISTICS OF PROCESSING MODULES

The composition of Processing Modules (PMs) depends
to a large extent on system bus structure (interconnection
topology), interprocessor communications, and the number
and type of shared resources. In general, the PM includes
a CPU (microprocessor chip, clock, bus control, buffers,)
local or private memory for instructions and data storage,
system bus interface circuitry, memory map hardware,
interrupt handling logic, and I/O device controllers for
private I/0. It is also possible for each PM to share
memory with other PMs. In cases where system bus width
is significantly greater than microprocessor word length,
an instruction stack can be used to lighten system bus
loadin924. One critical area of PM is the system bus
interface logic. Flexibility and performance of the
interconnection topology are directly proportional to
the complexity and expense of this interface logic. If

heterogeneous microprocessors are used, interface logic

will be unique for each processor. 1In particular 8 and
1l6-bit processors may communicate over the same bus,

requiring distinct interfaces for each microprocessor.

Memory map hardware is used to translate addresses
provided by the microprocessor into addresses in physical
memory (both prive and shared). In a parallel computation
environment, precise memory requirements for a group of
concurrently executing programs cannot be predicted ahead
of time. As a result, programs and data must be moved and/
or compacted to make room for additional items. The memory
map facilitates dynamic variation of physical locations
during program execution without actually moving the
locations. If data are to be moved, the map function is
changed to reflect a new physical address assignment. The
memory map also provides a convenient means for two or
more programs to share data. References to shared data
are mapped onto the same physical addresses, while references
to private data are mapped into distinct locations for each
PM. It is sometimes possible to use software to achieve
the memory map function. To do this, extensive use is made
of indirect addressing through indirect pointers in micro-
processor register or in read/write memory, and indexed

addressing.

3.4 INTERCONNECTION OF FUNCTIONAL MODULES

Some organisations for interconnection of PMs, shared

memory, and shared I/0 are the time-shared common bus, multi-

o ART

bus/multiport memory and crossbar switch2’1’26,

The single time-shared system bus shown in Fig. 3.1

is a shared resource, therefore a means must be provided to
resolve contention (fixed priorities, first-in, first-out,
gueues). Interference between PMs requesting the bus
depends on the length and frequency of PM bus cycles, memory
and I/0 cycle times and the number of PMs that share the
busy (system capacity). The lower the ratio of bus cycles
required by an individual PM to the total number of cycles
available, the higher the system throughput. For this
reason, private memory and private I/0O are highly advantageous.
Total system capacity is limited by the bus transfer rate.
Disadvantages of this bus structure are that system
expansion increases contention which degrades throughput

and increases logic.

Multiported systems (Fig. 3.2) employ multiple
dedicated buses that are connected between PMs, shared
memory and shared I/0. Each of the latter two (passive)
elements have multiple ports which provide excellent
throughput, bus contention logic must be built into each
passive element to acknowledge or hold PMs competing

for the resource.

In the crossbar switch organisation any passive
element can be connected to any PM for the complete
duration of a data transfer through the crossbar matrix.

(Fig. 3.3). This scheme can produce high system throughput.

46

0/1

0o/1

T°¢c bR

sng poaieys-ouT] 9TbUTS

¢ Axowsp

Zz ALxoual

1 Axouspy

S N H

o/1

£ x0ss200xdoIdTH

Zz 10ss900xdoIDTH

E .HomwmeO.HQO.HU._”E

S AT

o/1

Z°c *b1d

uotyeaInbryuo) sng wejzsds jaodriTnw

o/1

¢ Krousy

o/1

z Axowsy

€ J0SS2001dOIOTH

— Z Jossa001daro T

T Aaowsy

T Xossa00xdoIDTIH

&= s

MEMORY MEMORY

4 2
P
ol 1/0 1
uPr L0 2
2

K
0

[\\\ e

i Switch
- points ”
@ e

Crossbar Switch Organisation

0 s I

- 49 -

Other bus structures are possible, either as a
combination of the above mentioned, or others depending

on the tasks. the system performs.

3.5 INTERPROCESSOR COMMUNICATIONS

In the multiple instruction multiple data organisations,
a major interprocessor communication media is the mailbox
memory (Fig. 3.4). Processors in this context are central
processing units (CPUs), or I/O direct memory access (DMA)
channels. Mailbox memory is a shared resource consisting
of messages, data files, request blocks or queues. The
sending processor structures information and places it in
the mailbox. The receiving processor 'looks' in the
mailbox, to indicate that there is something in the mail~-
box for the recipient processorzo. Flags, jump conditions,
interrupts or special instructions can be used to alert
the receiving processor of information to be taken. A
status bit, residing in memory or external hardware, is

generally used to indicate the condition of the mailbox.

Ford27 has proposed PUT and GET instructions for a
mailbox controller with BLOCK and WAKEUP signals from
the controller to processors on the system bus. This
controller can process only one PUT or GET signal at
any time, This competition for mailbox memory must be

resolved by arbitration.

i By -

Mailbox
Memory
Controller
CPU | Memory
AL Direct
Vg Memory
Memory CrPU / Access
| /
’
/
/
/

'I_‘ Nl ' 1/0 Fast
Slow 1/0 e Devices

Devices Channel
£ o B
\V4

Mailbox Memory Organisation

rers 2904

e 7

3.6 CONCLUSIONS

Ability to identify and isolate failures to achieve
fail-safe capabilities is often a prime motivation for a
multiprocessor design. The degree of fault detection,
task reassignment, and duplexing of functional units
depends on the applications requirements. Failures can
be detected using either parity on the system bus for
both address and data, or local diagnosis for each PM in
private read-only (ROM) or PROM memories, or by protected
memory to detect address out of range, or by invalid op

code, or other invalid condition detection.

The architecture most likely to be employed in the
very near future will consist of asymmetric PMs, a single
bus with a centralized arbiter, or a multiport bus,
dedicated assignment of interrupts, interprocessor
communication through shared memories, hardware flags,
and limited failure recovery. The operating system will
structure tasks into request blocks and queue them to a
preassigned Processing Module. Two to four microprocessors
with the same number of I/O channels are, one feels, a

reasonable number for prototype multi-processor system.

CHAPTER 4

PERFORMANCE AND COST OF MULTIPROCESSOR SYSTEMS

System throughput
System cost
System control

Conclusions

- B

CHAPTER 4

PERFORMANCE AND COST OF MULTI-PROCESSOR SYSTEMS

4.1 SYSTEM THROUGHPUT

Determination of multi-processor systems throughput
as a function of the number of microprocessors required,
is a primary concern. In the general configuration of a
multiprocessor system (Fig. 4.1)system throughput (Ts)
is defined as the number of instructions executed per
second by the system. Maximum value of Ts would be
equal to the number of processors times the maximum
throughput per processor, if not for bus interference
(all memories and peripheral devices are accessed over
a single bus). System throughput is determined by
the number of processors (N) in the system, throughput
of an individual processor when there is no bus inter-
ference (Tp) and the amount of bus interference that
actually exists in the system. (The effects of inter-
ference only when the bus is used for making single-word
transfers are considered here, contention for multiple-
word transfer units or I/O devices that effect throughput

may be considered in a analogous to the following manner).

When bus interferencence occurs, one Or more

processors must wait for the bus to become free, reducing

53

‘WALSAS ¥0SSAD0Md FATALLINW A0 NOILVINOIJANOD TVHHANTD Iy bta
Ndrl zdn Tan
snd vavd WALSXS
AOVIOLS XIOWHW 0o/1
WALSAS WALSAS

WH.LSAS

= B

throughput of individual processors and therefore of the
entire system. The amount of bus interference in a system
is a function of the bus utilization requirements of
individual processors. Bus utilization (B8)is defined as
the fraction of available bus cycles required by an
individuai processor. The value of B for a given system
is determined primarily by uP instruction execution time
and memory read cycle time. For the system used in the
research and memories, B is likely to be in the range

of 0.1 to 0.57.

For given values of N, Tp and B the max., average
and min. values of system throughput Tsmay be found.
Consider.B = 1/3 and three (N=3) processors in the systen,
then max. throughput will occur if each processor uses only
every third cycle. This can occur only if the probability

distribution of bus reference intervals is Po’ l, 2=0, P.=1,

3

P4—a =0 (Ri is the probability of a bus reference every i

bus cycles). The average bus utilization is determined

from the probability distribution by the formula’’ 311

For the case of P3=l N=3, the processors will sychronize
with each other and no interference will occur. If N

is greater than 3, throughput will be limited by

_55-—

the bus capacity to 3Tp. For N less than or equal to 3
there will be no interference (after sychronization) and Ts
will equal NTP. (Fig. 4.2a). By extending this reasoning
it may be said that if B = 1/I, max. Ts occurs for PI=1,

Pi(i#I)=O.

The min. value of Ts can be considered also. The worst
case possible would be if all processors accessing the
bus always had to wait for N-1 other processors before
gaining access to the bus (assuming the processor waiting
longest has highest priority). In this case all bus
reference intervals would be increased in length by N-1
bus cycle intervals. The decrease in throughput could be

derived as

Ratio = R = ration of throughput with maximum interference

to throughput with no interference.

) iP%
i=1l- o 1/8 = 1
= © +N-1 +B (N-
Y (1+N-1}Pi
minimum Ts = (throughput with no interference) x R.
" oo NT
TR 1+6 (N-1)

This minimum value of throughput may be used to determine
the range of possible throughputs and is shown in Fig. 4.2a

for B= 1/3 and 4.2b for B= 1/10. It could be noticed that

- 56 -

even in the case of maximum interference there is an
increase in Ts with N. It should be said that the
throughput data in Fig. 4.2a and b are not necessarily a
direct indication of the useful work throughput for a
system. Expanding the number of microprocessors in a
system will increase its processing overhead if partitioning
of that system into a larger number of functions augments
the supervisory problems of indicial function co-ordination,
or if the individual microprocessors are not efficiently
utilized and therefore load down the bus when not performing
useful tasks. 1In other cases overheads per processor may
decrease as N increases, when the number of microprocessors
available allows a more natural partitioning of work

functions.

4.2 SYSTEM COST

Having examined the potential increase in multiprocessor
systems throughput, it is now possible to find out how much
this added throughput will cost. This is a strong function
of the ratio of the cost of system resources, designated CR,
which includes memory and peripheral devices, to the cost of
an individual microprocessor, designated CP, which includes
CPUs, data bus interface circuitry, power supply cost, buffers.

Total cost is then C_ + Ncp. Let us consider two systems, one

R
with CP - CR/S and the other CP = CR/BO. (TP assumed to be
the same in both cases). Considering costs vs throughput

(Fig. 4.3) it is clear the advantage of a high ratio of CR

to CP as well as low value for B. As N approaches 1/B

S

-so1oko oTqelTeAR 9y3l Jjo yjuejz-auo ATuo saartnbax xossedoad yoesa (q) Uurt
STTUM ‘soT10ho snq o[qe[Teae 9y} JO paTyl auo saixtnbsx xossedoxd yoes (e) ur

- (szosseooad jo xaqunu sa xossaooxdoxoTw @(burs e jo jndybnoayly = QBV

INdHONOYHL WALSAS H0SSHIOHd-ILINW HOVIIAY PUe ‘WAWIXVW ‘WAWINIW A0 LO1d Z°% °bYa
(q) ()
sa10ss8001doIDTH JO IoqunpN szossao0xdoIdTW JO Iaqumpy
vl A\ o1 8 9 14 C (0] 9 S 14 £ & 1L
nm_H_N
o1/1 = =
7 g .A%\ “ £/1 g ©
4 d o]
4 L g a &
< H m " 0_
YTt F u_ g 23
& L \\ d o / 8
1 \\
= 7 L9 &] s -
P = el ol] Vi a 5
A d 2 B o ’ &2 g
s 24 \m.E 18 ot L / cf
L €L “gae_ | S
. & uﬁ.E_H_
[— d o d
10T W g

- 58 =

(9) INdHONOYHIL WALSAS ANV (B) SJOSSHOOUd 40 ¥HAWNN SA LSOD WALSAS HAILVIIE

d
o Om\m - O
e = QU
o/1 = ———
CLE s —
Jndybnoayy welsis
d d d d d
JOT A8 L9 Sy £LZ
= =
= \.\)
= “ozl
v g
e
9 O£ 3
i d
=4
P sy

OT

SI0SS800Id JO JoCuUNN

0

9

€"

14

b1/ 0="0

‘bTd

J

54

&)
™
3s00 wa3sis

/=5

[s4

oE

system cost increases rapidly. The minimum value of

CS/Ts can be calculated in order to determine the optimum
number of microprocessors in a system. For microprocessors
the ratio of CP to CR is typically low since the current
cost of a complete microprocessor is low, compared with
memory, mass storadge, peripherals7. A means of decreasing
the apparent value of B is to provide some memory local to
each microprocessor. This memory is accessible without

utilizing the system data bus and contains data utilized

only by that particular microprocessor.

4.3 SYSTEM CONTROL

The use of microprocessors in a multi-processor system
organisation requires the provision of special control
functions in addition to those of a stand-alone system.
Control mecheanisms are required for interprocessor
communication and resource allocation. One way to handle
resource allocation is to provide a flag which indicates
whether a resource is available or in use by a microprocessor.
A microprocessor requiring the use of a resource checks
the status flag. If the flag is in the 'not busy' state
the microprocessor sets it to the 'busy' state and uses the
resource resetting the status flag when done; if the flag
is 'busy' the microprocessor waits until the 'not busy'

state is indicated.

The status flag approach thus requires a test and set

—aen

(TAS)28 and a reset operatipn. One restriction on TAS

is that it be indivisible with respect to other micro-
processors; that is, if two microprocessor simultaneously
execute TAS, only one should gain access to the recource.
If the system data bus allows only read or write trans-
actions with memory, and sequence of successive bus cycles
~annot be dedicated to a single microprocessor, it will

not be possible to provide an indivisible TAS routine. If
the system bus allows a read/modify/write operation in a
single bus cycle, TAS will be indivisible if implemented

in a single bus cycle. For most microprocessors a standard
instruction with this capability is not supplied. An
additional property highly desirable for the TAS operation
is a 'non-busy wait' capability, which allows the micro-
processor to go into an idle state that is interrupted
when a requested resource becomes available. This prevents
the system data bus from becoming overloaded when several
microprocessors are repeatedly testing a bus status flag.
Often features may be desired for TAS operation. If a
microprocessor has several different tasks it could work on,
and each task requires a different set of resources, the
ability to request one of several groups is useful. Also
valuable in some applications is the ability of the micro-
processor to perform background processing while waiting
for availability of system resources. This is particularly

important in applications where the microprocessor must

be able to respond in real time to local interrupts.

When a microprocessor is initialized it executes the first
instruction from a fixed location in memory. If this
location is in system memory, all microprocessors execute
the same instruction, and a method to direct each processor
to its appropriate task must be devised. This problem is
golved if local memories containing these addresses are

used.

4.4 CONCLUSIONS

Multi-microprocessor networks can be configured economically
to boost the service capabilities and reduce resource over-
heads of a system. However, it is clear that there is a
limit to the number of microprocessors that can be connected
to share a resource, without degenerating individual through-
put and response. An assessment has been given on the
system's behaviour. This should provide sufficient inform-
ation to predetermine the relationship between resource

utilization, the processor throughput and system's control.

CHAPTER 5

A MULTI-PROCESSOR SYSTEM USING THE

INTEL 8008 MICROPROCESSOR

Introduction
Design Considerations
Design and Construction of the 8008 CPU System

Design and Contruction of the Shared Memory

- 2 -

CHAPTER 5

A MULTI-PROCESSOR SYSTEM USING THE

INTEL 8008 MICROPROCESSOR

5.1 INTRODUCTION

The prime objective in this research is to study the
effect of a processor to memory performance and in
particular a number of microprocessors accessing a shared
memory through a common bus. The microprocessors used
were the INTEL 8008. The 8008 is characterised by a
five state processor cycle, with each state requiring
2.8 us. When the 8008 reads from memory to get the next
instruction, it presents on its data bus during state T1
the lower eight bits of the desired address. It proceeds
to ztate T2, where the upper six address bits and an
indication that the 8008 wants to read appears on the bus.
If by the end of T2 memory has not responded READY,
indicating that the desired byte is being presented on
the bus, the 8008 goes into the WAIT state, where it
remains for as many four usec periods as are necessary
for memory to respond READY. 1In the event that memory
responds READY before the end of T2, T3 is entered and
the byte.is brought into the CPU. If necessary states
T4 and possibly T5 are used to execute the instructions.
The maximum memory bandwidth capable of being utilised

by the processor is eight bits every twelve usecs,

= 63 =

5.2 DESIGN CONSIDERATIONS

In the design stage the capabilities, advantages
and disadvantages of the 8008 were considered, as at the
time of the research more advanced microprocessors were
developed thus changing and improving the design
constraints posed by the 8008 and offering greater design
flexibility. Expandability of I/O features was
considered in the design as it was desirable in a multi-
processor system to permit connections with computers
and terminals. Expandability of memory was another design
feature that was considered as the requirements of the
whole system could demand expansion of memory to provide
greater buffer storage for any future additional links
to the system. The question of local or global memories
was also éonsidered. In order for multiple microprocessors
to operate effectively together it appeared at least two

pre-requisites has to be met:

(1) minimal interference and dependence among the
processors, and
(2) a convenient low overhead interprocessor

communications facility.

If a global memory was to be used it would require a

large bandwidth to support simultaneous accesses by the

243, 4 or more microprocessors(17'20).

- 64 -

Eventually, the design shown in Fig. 5.1 was
prevailed. Every two processors to share a common
memory. Each processor had its own I/0O facilities and
the memory system chosen allowed a considerable amount
of local memory for each processor with a common memory
shared by every other two microprocessors. The concept
was to keep the core software programs (those executed
most frequently) in the local memory to reduce the amount
of common memory access contention among the processors.
It was thought that the common memory should be used as

a storage of information common to both processors.

The processor buses were designed to support the
communication of the two processors through the common
memory and the I/O buses were independent for the two
processors. When both processors are trying to access
the common memory, one has access to it and the other is
forced to a WAIT state, until the bus is cleared for
access. The microprocessors are identical and could
perform any task. If 4 or 6 microprocessors were to be
used with 2 or 3 common memories respectively, the
distribution of tasks and software should be considered
to improve reliability of the system and compensate for
any break down of any of the microprocessors within the

system.

One important factor that influenced this particular

design was the concept of the priority resolution and

= Gih

COMMON
MEMORY
[ADDRESS BUS
h 4
PATA BUS _I
BUFFER BUFFER BUFFER BUFFER
MICROPROCESSOR k| MICROPROCESSOR
I A B
PRIVATE PRIVATE
MEMORY A MEMORY B

Lo

I/0 B

__4 I/0 A

A Multi-processor System using the INTEL
8008 Microprocessor

Fig. Sk

- 66 -

interrupt priority levels. Since the performance of
the 8008 interrupts was not reliable, interrupts were
not used and the priority logic in the common memory
configuration was designed as explained in a latter

section.

Thus the design with two processors sharing the
common memory was preferred and in the case of a
simultaneous access of the shared memory there is an
arbitrary priority order. In the case that three
processors were using the common memory without priority
level accessing, the design would have been more
complicated and the hardware connections would have

caused considerable problems.

5.3 DESIGN AND CONSTRUCTION OF THE 8008 CPU SYSTEM

The CPU module is the Central Processor for the
system. In this capacity the following control

requirements are performed,

(a) The execution of program instruction, the control
signal to RAM, PROM and I/0 modules.l

(b) All the necessary arithmetic, logical and data
manipulation operations needed for program operation.

(c) Overall system timing.

The module itself contains an INTEL 8008 CPU chip,

logic that supports the chip, 2K bytes of PROM and 1K bytes

N

of RAM memory. In addition to the processor chip, the
module contains the following logical blocks.

(a) Timing generator

(b) Cycle decoder

(c) State decoder

(d) Bus logic

(e) Address latches

(f) I/0 latches

(g) Read/Write control.

Figures 5.2, 5.3 and 5.4 show the functional
relationships between these blocks. Complete control
over the rest of the logic on the module, according to
the instruction it received from memory, are exercised
by the 8008 CPU chip. The timing generator consists of
a crystal controlled clock oscillator, a state decoder,

logic on the CPU chip itself and auxilliary timing logic.

The complete circuit diagram of the CPU module is

ghown in FPig. 5.5.

The non-overlapping 500 KHz clock phases ¢l and ¢2
which drive the CPU chip as well as other timing
circuitry on the board are generated from the clock

generator.

The 3MHz quartz crystal is the basis frequency
reference. A portion of the crystal's signal output is

e~ developed across a capacitor and applied to the clock

N

11404

!
sl Loo _
H..ild..!rnlll.._l[‘
15
1 ;7 1ngQ
— - -
Sem—————— Halve f——— ol
32a3 CATS we3sds zosseooadoaory U3 JO uweabetq siempaey otsegq
L LI
Lo |
w.r. 8) Y] L s
..... -5 e "
g AMM
Loy .wL.._.ur. Q 5
A\n:l!l,l,l.:i_ RoLrwy dod b
SIS £ e ,, .
54 . TYeg
g D 7m .\..‘/
o el
_ NOdD
[o7
aday 1 | 4
20924 oL :uv.a‘.,_ e
W3
—cn . \ AL
L <. &nilw:&srl-ﬁ z—ﬁa FAL
DL iL p¢ AO A§ \/ | .
e A
i : Hd34409
i) Aaowiw
d_ _j¥avoen 1o $ng_ < A HoavT |
BERE [HOLYA . < g
.;\ﬂﬁ O ﬁl.#ﬁc .m.mn._d
=
e
3
__ -

69

£°Gg “bta

g Py &

2]

A

ASY

el | i
== ST | ossenoxdoioT s - usyaks
m = <15 e W 943 JO ureiberq siempiey Tre3ag
b 23
g - -!i-l
2 1L VG 1 5
_ T v ¥
L 10 L i% w U b
—qu_.,.u O=0 w‘.U.A‘_u H.h.« —a o JM..‘.MI nw ..rw .Iwr‘tw“u...n_.lii[rl...u
¥303340 Fet
ILVvlS
SoTQ _f
L1 % Sy 1is Ts G _ I,
I ERYTICGRR
AS+ NJ.H: el
it &
£ o
Q.2 -W .-...m U?-.ﬁw |V
> e .n.Mw:
LN _
mWOOmw Y
\f.u(wﬂ
s
3
Nﬁ v
< s 5|0 wwf
g A>a 1) |
> = 0 4] "
_ww £L 9= % =L uw

(55
=i

J\:\ﬁ'--—'.

Al

70

'S "bra
butpooag 0/1 pue Axously - we3sAg I0Ss900adOIDTW 9yl JO weaberq siempiey TTelaq

T
wEL Loo/nl Ty |

Y
vioa—F—s

el i YEy
ASH

L e 1

IR g e —
MM : i)
'I¢[l ¥i3 owun ..m_ 224 o u30 ow.wo .m..m... fet
Pi¥ T = — 359 1 oy
—ued 4, N == _tom v
01504 0 , W,W.m - !I-I.lll.!_
AS%
—I% 5 :
o = I Ty e —
[l o L R Ho1v &
Ko iy 43¢e3 Ly I3 5
3D 1360330 0 22, (Te, % b dav 1N %
> — mo‘nm ig _‘cc.,.-_ilif o M.QNW oy 43 ﬁ ﬂ _..,.u m
EQM& i hy ~ o T
-l oy £ o0 oy

Al
7G4

A . 3a vil)f |~

—.71_

€O RKYyvr

T Mg z_ma
M 24 = S _ 1— L
5 B ratd m vllllon....\rlil
e T [- o=
T,j I DL o b SO T TR
Ry -.4““[6 h _ﬂ —
d’ — - 1 uﬂ..-..w —
i, Y =%
y 1] | | | !
.._...-_aa»_qh » .—.m., \ &
sag ¥ | e[freerg] u.w
N o—fosen, I = 3L
. #yd ks _.-.IN.& bl ..‘ o...l. == hv i =1 o
4&1!5 _ b 403 O B T i Bt
5 | o N r
“ o)) 1> _ _ P 3 -
. i =111 1NN
: e EP DS A L Y | e LR
SHET e s e e ELTTTY -
Jll. - b »lvly
T T | =
i 1
wauag] P _ Sv i Y v
e i by : B o
— Hil=] s
By | 15 H-__li »yr, =
185 *
Mhmﬂmﬂﬂwl:r.:l\d = ._._:. ; .”.““ pacd |
l.__MW_ﬂustﬁla Wi — _ e.ﬁ et ;
:.._ h.Li.r =y il

[

Circuit Diagram of the 8008 CpU Module

FPlig. s 5

generator to which the two signals at 500 KHz frequency
are produced. The ¢4 and ¢, clock phases are applied to
the clock inputs of the CPU chip. The SYNC and clock

signals are then fed to the auxilliary timing logic.

In the auxilliary logic system the SYNC is applied
to a D-type flip-flop (74L74N) which is clocked by the
low-to-high transition of ¢se This produces the SYNCA
signal which is shown with relation to clock signals
¢ ¢, in Fig. 5.6. SYNCA is used to derive other timing
singals on the modules (Fig. 5.3). TSYNCA and EZ produce
a half frequency clock ¢12 an intermediate signal, applied
to a 8205 decoder. Outputs from the state
decoder include T1, Tl1i, T2, T3, T4, T5, WAIT and STOP
The T2 and 31; signals connected to a D-type produce T2L

signal which is used to generate T3A and T3A signals. The

T3A signal gated is used during I/O operations.

The first part of every machine cycle is an instruction
ferch cycle (PCI). Memory address requires 14 bits, two
passes are needed to output memory address. The lower
eight bits of the referenced location are transmitted
during Tl. This byte is sent out on the eight lines of
the main data bus and presented to the low order address
latch. During T2 the CPU sends out the six I
high orAer bits of the referenced address, plus the two
cycle bits, in similar fashion. The high order address

latch (Intel 8212) is strobed by T2 output of the state

73 =

- - |

ot A

we3lsAg x0sse00xdoaoT ay3z Jo ueabetq mQﬁEﬁB.

(s1)

(22)

b

d.um

nn*

.

Nmﬂ

d«ﬁ

el

ney,

94

_ VINRS

_IJ INKS

z§s"
A
8003
°f
A2073.

- AN

decoder. The fourteen low order bits held in the address
latches indicate the location of the instruction that the
processor intends to fetch. The two remaining bits indicate

that a PCI sub-cycle is in progress.

The PCC, PCW, PCI outputs are furnished to circuitry
on the CPU module. itself permitting the modules control
logic to generate R/W and DBIN control signals. The 8212
latches are also used to multiplex the data from memory
used as a memory buffer. During T3 the CPU reads this
bus and the information on this bus is transferred to

the CPU's instruction register.

A PCR or a PCW signal will be broadcasted by the
CPU chip during T2, If a PCR sub-cycle is indicated,
external conditions are exactly the same as for an
instruction fetch from memory. If a PCW is indicated
the cycle decoder activates the PCW line.which, with
T3 generates the R/W command line. The write signal
indicates to the memory that data are to be stored in

an address location.

If the instruction that the processor fetches from
memory is an I/O instruction. That instruction contains
a five bit field which specifies one of the 32 peripherals.
In order to distinguish an input from an output
instruction, the lower eight addresses are reserved for

input devices and the upper 24 for outputs. The address

of the object I/O device is sent in the SELECT inputs

o+

of a 8205 decoder.and the two signals produced in the
outputs of the decoder. PORTO and PORT1l are used to

strobe the Input/Output and control »nort latches.

A 'bus driver' latch 8212 was used as a 'follower'
between the CPU data and bus and the i/p's of L0 and
Hl address latches. For reasons explained in another
section INTERRUPTS were not used. One input and two

output ports were used.

One part of the memory included on the CPU module
is made up of eight Intel C8702A erasable programmable
lead-only-memory chips, each having a capacity of 256
eight-bit words. The outputs of the PROMS are connected
to the DATA OUT lines of the RAM memory module to the
DATA bus of the memory latch on through that to the 8008
data bus. An 8205 decoder is used to enable the selected

block of the PROM addressed by the CPU,

In order to obtain data from a memory location, it
is necessary to perform a Memory Read Operation. This
operation includes two phases. The Address phase in
which the desired memory address is sent to the PROM section,
where it is decoded and used to enable the specific memory
location which is accessed. The Data phase, where the data
is sent out from the PROM. A memory (PROM-RAM) read

operation is initiated by the CPU chip which sends 14 bit

o

memory address to the address decoding circuits to select
one particular memory location. The contents of the
specific memory location are then available to the memory

data latch whence sent on the CPU chip.

A memory module functional diagram is shown in Fig.

5.7.

The other part of the memory consists of eight INTEL
P2102 chips having a capacity of 1024 one bit words. The
DATA IN lines on the RAM memory are connected to the inputs

of the LO and Hl order address latches.

RAM's DATA OUT lines connected to the PROM's outputs
lines and to the bus driver data bus to be processed to
the CPU data bus. The RAM memory is selected by one
output of an 8205 decoder. The addressing for the PROMs
module is designed to have an order address which starts
from the location 00:000 up to 07:256 (decimal - 2K) or
00:000 to 07:377 (octal - 2K). The RAM module starts
from location 08:000 up to 11:256 (decimal - 1K) or

10:000 up to 13:377 (octal - 1K).

The processor also sends signal R/W to the RAm memory.
In its false states this signal dictates a write operation,
therefore, during a read operation it will be true. If
the signal is a write operation signal, data available
on the input lines will be written into the selected

memory location by the write pulse. If the signal is

77

L°S D14

WYHOVIA TYNOTLLONNA HTNAOW AYOWHW

SSHdaav

TYNOIS] SSHIAAY AYOWIAW
w|o T0dINO0D z\wﬁ.
| o
Q|4
= >
3 ¥e TOALNOD TOYLNOD
<! NOILYYEdO SSHIAav
oy
O
&t
FTIYNT
N ADOTd
F sydadand J
Y.LYd : MARY(S| WYd AT
KdOWHAW SudgIIng Wodd M¢
ALTIM/avad KXIOWAW

read operation signal, data of the selected location will

be appeared on the data output lines.

The timing diagram for the Read/Write operations is

shown in Fig. 5.8.

The operation and decoding for an I/O instruction has
been explained earlier in this section. An input operation
after the selection of the input port has been obtained, is
performed in order to get data from an external source
and to present it back to the CPU. 1In an output operation
data from memory and the CPU are sent for use by an

eXternal device.

After the construction of the two CPU boards checking
on its operations, I/0 memory, was performed with different
peripheral devices. Peripheral devices may differ in
transmission characteristics. The VDU and teletype
asynchronous serial bit stream, consist of data bits that
are preceded by a start bit and followed by one stop bit.
The start and stop elements do not contain information,
but they do establish bit and character synchronisation

at the receiving device,

In the transmission of data, a clock signal is not
transmitted along with the data, and gaps (idling) between
the characters may result. Therefore, the receiving device
must generate a clock that is synchronised to the data

for the purpose of data sampling.

T S
Suotjexadp o3TaM/peay U3 3O ureaberqg buturtg,

M/

N Wiy
JLvapm

1/! 9vN3 diny

—

mmwdoof

— e H.A(lae wiug
lllllllllll e W_J-‘zw &:_U
SLEY P |

D e L

$533%Qqy

viL

C: BT s o) o 2 =4 Wwesis ik
e i L] 1 J B J r ,.‘nozz
g Pt L BRI e 1
U tr—uwr s 1A

The interface board between the microprocessors and
the VDU used, a MOS/LSI data communication device, the
UART (Universal Asynchronous Receiver/Transmitter) which
performs serial/parallel data conversions, timing and

synchronising circuitry.

Different programs used for checking the operations

of the CPU boards are given in APPENDIX C .

The PROM chips were programmed on the INTELLECT 8

development system.

The microprocessor CPUs board, the separate memory
board, the VDU interface and power supplies were housed
in a rack. Layouts of the two CPU boards and the separate
shared memory board are given in APPENDIX E. Microprocessors
are shared memory back connections on the rack are given

in APPENDIX F .

5.4 DESIGN AND CONSTRUCTION OF THE SHARED MEMORY

The shared memory board module consists of 1K RAM
memory, accessible by both microprocessors and all the
necessary control circuitry for both microprocessors to
ensure equal accessibility and servicing. The design is
a symmetrical one as each processor uses its own control
circuitry to access the memory. An important design

issue was to ensure accessibility to the memory of one

=i

processor at a time on the first requested first

served basis. If one of the processors is requesting
access to the shared memory while the second processor

is using it, the first goes to a WAIT state (idles) until
the second one has been served and then the first one

can access it. A WAIT state signal may be of indefinite
length but the actual WAIT interval is always an even
multiple of the processors clock period. In order to
guarantee an exit from the WAIT state the processors
READY line must go high at least 350 ns prior to the
trailing edge of ¢22. When this condition is fulfilled
the processor proceeds to the T3 state, begining with the

next ¢, clock pulse.

The complete circuit diagram of the shared memory

module is shown in Fig. 5.9.

In the previous section we mentioned that output of
the 8205 H1 address decoder can decode 1K of RAM. Thus

the O, output of this decoder from both processor is

3
connected to the €E of the shared memory. The R/W signal
of the memory is connected to the PCW. T3 siynal for both

processors.

The RAM addresses A -+ B, are connected with the output
of the low address latches (8212) of each processor.
through a low address latch (8212) one for each.processor

and when enabled it accesses memory. The DATA IN signals

6°S *bra

—
u_m.W sTnpoW AIowsy pareys oy3 Jo weiberq 3ITNOITD RO
154 e}
¥ Haliyy 1L f .-I_‘Uu“”“
sty LA FFLY | § Alowdly
hiewyw:
- T e oy T
15e ase . * e .F..uw:.
= wnd 1 HIAVY
W24V A e
e ¥ NSnTe 1 _ lw".w“.
s
ng IIV
g T R P ! = ?
v Y i§9 xug ¥
1se ...:wﬂ..o Ol LIVYM H2iv? :
4347 + $59Iady
'J ssyveow | § ; IR _ o1
. C ~‘ -:‘l’ 15 |..A.. < Jn.
- — 1 b
b “Z Ly
~ zTd\l H v <e® |Thva " __’
. (318 2 | <
7 Y37 -] "
| T e . =
2 T —to| L
— avy
EPTeN - N =21
gV i sTh=l® 9 -
ViAW I_Ij <Frt] e
Al+ 9 IS 1) u.l _
L
/ > : \AU::. ¥24°1%4
K ﬁ.ﬁ& _Iwgdyﬂ.l_ A ! —— —
3 k%) -ﬂ“ r .

_ - __\ Ia W & P
__] Wwy 3V < g Simdg
" 35 NS
_ "o . ks = <0ld T | pe—

[S 1
|

- 83 =

of the RAM, memory are connected to each processor's
BUS DRIVER through a BUS DRIVER LATCH (8212). The RAM
DATA OUT are connected through memory buffer latches to
the outputs of the corresponding memory buffers for each
processor. The Agr Ag addresses of the RAM afe connected
to the Aa, Ag high latch addresses of the two processors.
The enable signal for the low address latches in that
separate board is the same with the enable of the BUS

DRIVER latch. 1In fact signals from each processor PO4,

PCW. T3, PCI.PCR, DBIN the last two enabling the memory
buffer latch, and AS, Ag address lines, pass through a
three-state buffer (74125). The output of this gate is
disabled when the enable of the buffer is high. The
enables of all the above mentioned signals are connected
to the output of a NAND gate with inputs the WAIT of
the individual processor, trying to access the shared
memory and the PO, signal. If the WAIT signal is high
the processor is not waiting, and when 555 goes high,
that particular low processor requests access to the
memory. Thus when both go H1 the output of the NAND
goes LOW and all the signals are then enabled allowing
the processor to access memory. If at the time that
the first processor is requesting access to the shared
memory, the other processor is accessing it, then the

first processors WAIT line goes LOW thus disabling access.

A D-type flip-flop was used to produce the WAIT

signal for the processor that is trying to access memory,

while the other one is already accessing.

The D input of the flip-flop is connected to the PO,
signals of the processors. The clock input is connected
to the PO, signal of the other processor (D input PlOB,

CLK input §203).

The output Q of the flip-flop will follow the data
input D while the clock is high. Latching will occur
when the clock returns to low. Thus the Q output is
connected to the WAIT line of the other processor. The
PR line for each flip-flop is connected to the Tl signal
of each processor. This logic provides the idling of one
of the two processors when they both try to access memory

at the same time.
The timing diagram is given in Fig. 5.10.

The layout of the shared memory board is given in

APPENDIX E .

Programs on the operation of the two microprocessors
with the shared memory are written in INTEL 8008
microprocessor language. Debugging the programs was made
easier by presenting and programming the lgnguage instructions

set in HEXADECIMAL machine codes.

Two sets of different programs for both microprocessors

examine the capabilities of communication between the two

O1°S bt

wo3sds x0sse00xd-T3 1NN 93 JO wexbetq buTtuwity

85

—— — ——

— — | — —— — — —— — S— —

TI%wN>

Y 379wn3
T Lup

1Y Lwm

coty

T b1

¢o¥d
P ver

microprocessors through the shared memory.

These programs produce a slow and a fast count with
very fast access from both microprocessors to a common
location in the shared memory. The purpose is to establish
the performance of the two microprocessors, when executing
individual tasks, both attempt to access memory

simultaneously, APPENDIX C .

As new components such as memory devices and
nicroprocessor support chips are continuously appearing
on the market, no detailed circuit specifications of
such items will be given in this report. For information
on such devices one éhould consult the latest microprocessor
support components literature, and new devices

specifications.

CHAPTER 6

OPERATION OF THE INTEL 8008 MULTI-PROCESSOR

SYSTEM WITH EXTERNAL COMPUTING DEVICES

Introduction

Task Allocation

Communication Functions

Intel 8008 Multi-Processor System and 9900/4
Microprocessor Interface: Design and Construction

Multi-Task System: Operational Simulation

S

CHAPTER 6

OPERATION OF THE INTEL 8008 MULTI-PROCESSOR

SYSTEM WITH EXTERNAL COMPUTING DEVICES

6.1 INTRODUCTION

Typical multi-processor architectures implement a
parallel or symmetric multi-processor architecture in
which every processor is equally capable of picking up
any task. The advantage of this approach is thatiany
number of processors from 1 to a maximum physical limit
can be used, thus yielding a nodular machine whose power
can be tailored to nodal regquirements. We chose instead
a multi-processor architecture which dedicates each
processor to a certain subset of the tasks that have to
be performed. By logical distribution of tasks we mean
the relationships between the various tasks that the
processor system is expected to perofrm. In our case
where the hardware is fixed, the distribution of these
tasks affects only the structure of the software.
Specifically it affects the execution sequence of the
various processes. In this system, in effect, we replace
the multi-processing software of earlier computer systems
with hardware. The fact that the tasks now can be done
at the same time compensates for the lower performance

characteristics of the components.

6.2 TASK ALLOCATION

Several approaches have been suggested for allocating
processors to processes, On one hand, the low cost of
microprocessors makes it feasible to assign a processor
to each task. For example, a multi-processor network
for machine tool control.has been proposed(zgl consisting
of three microprocessors, Two of the processors control
for axes of the machine tool while the third acts as an
executive. In addition to this an alternative approach
allocates processors dynamically. This requires that
the processors are in close proximity and that they have

common mode of access to I/0 signals(BO).

The nature of these tasks in our approach is that
they are short or at least divisible into short segments
and they are mostly independent of one another. Our
system is mainly dedicated to localised monitoring control.
In that capacity local memory for each processor was
essential to keep the programs executed more freguently
and since the processor configuration was on a master-
master basis the concept of the shared memory was
extremely useful on interprocessor communication and data

exchange,

6.3 ' COMMUNICATION FUNCTIONS

The existence of separate I/0 facilities by each

processor offers flexibility to our approach as it maintains

the independence of each processor to communicate with
external devices and at the same time offers a rigid
modularity to the whole system. Each processor controls
a portion of the overall process, with the necessary
co-ordination between the control strategies effected
through the processor intercommunication means. Both
processors are of equal importance in maintaining control
of the process and both must be operating to obtain

optimum performance.

The reliability of the network depends on the
reliability of the nodes and the reliability of the

communications system.

Thus the use of local memories to each processor as
well as shared memory, although not unique in conception,
we felt that it is superior in our system from the
concept of global memory as many memory accesses could
be serviced by the local memories and thus accesses to
shared memory could be reduced and bus bandwidth

requirements could be eased.

All interprocessor communications via the shared
memory are done over the system bus. The bus operates
synchronously with processors, memories and I/O. There
is no priority system on accessing the shared memory
and when one processor is trying to access and the other

one is accessing,the first processor goes to a WAIT state

)

until the job of the second one terminates. In case of
a tie, there is an arbitrary priority order. We found
that this non-sophisticated approach for our applications
guarantees independence and flexibility of the processor

and there is no bus contention problems as well as speed.

Our system could easily be used as an ON-LINE control

or as a REAL-TIME system, Fig. 6.1.

6.4 INTEL 8008 MULTI-PROCESSOR SYSTEM AND 9900/4

MICROPROCESSOR INTERFACE: DESIGN AND CONSTRUCTION

The system designed and constructed, as described
in the previous chapter, was tested and operated on its
own using the VDU terminal to verify the results of the
simulation and operation of different programs applied

to the system.

The sysetm was then connected to the new T.I. 9900
microprocessor available in the department to perform

a particular operational task.

An interface between the 8008 system and the T.I.

microprocessor system was designed and built.

The circuit diagram for that interface is shown

indfdas 6.2

The design of that interface was concentrated on

the communication of the 8-bit 8008 with the 1l6-bit

91

dOVIIHLNT
NOTI LYDINNWWOD

dOSSHDOddOYDIN

0/1

4

wa3sAs TOI3U0) I0SS800IdOIDTW-TITNW ¥

40

$sADOUd
/ANTHOVIW

snd

dddvHS
AHOWHNW

1°9 "big

T

sndga

JOSSHDOUJOEDINW

0/1

™

HOVIIHLNT

NOI.LVYDINNWHWOD

- - - = -
- == = - -

TYNTWIHL
HHLSVIN

92

> o ()
§e0g

it A g
L el A —p3
e 2y A (L b |
.._.M\ﬂ II”‘.HII ﬂ |_“Iu an d-‘h ——— .l_-.-- i
¥ o8 [|w = ©a Wi ol 00 wud
= W .5) ommntin 1359
SR It _ L
\ Cwsfialil]
C¥ %3 _‘ T
un;. | _: vl Gy
_ 4 e 141 e e S0
d.lﬁ. o 1 5% i ‘thus;w,
g — = LE _ ,iMHWbAmIIa
U Ill..— o € n.- -~ ..I.].l...n -..l‘n.nhr ..“wtltlu
i v - L e e
b h 2 1 &t ~
i 3 s e & S j & E
Qhu (") w A —————— - r N‘U IE "
3 28 am—p Fa WV oo b 23
l.|.!.|,|u.._i —Wﬂ - .-ﬁv N-.U ..r_. dﬂ -~ ﬂ\._
—3en e | o Lk ;
Gg - L,
li; :
. .
5 . | 9
—l iy v u_ | Ty
i S
T Rl 9 —= N .-] 24
u.... — Z . ﬂ-.ﬁ. aﬂ@ |-..m -
o C — e ” -_Nnhu ; v
08 .. e 1 i 3 A
wwcm i ig - i w~ ’ Yy 93 _ =
5|~ 215 1353 . B, 2% _. =
oy s | v/ ot S oh
} oo R LS S
L L8 ey
Jdeul - : oV

10SS2001dOIDTIH Q008 oyl

"9

*brg

90BJISUT p/066 pue
JO weabetqg 3rnoaTH

- 0% =

T. I. Microprocessor.

Four LSI38 memory decoders were used to decode the 16
memory address lines of the 9900 and to ensure data

transfers via the CRU.

Octal buffers and line drivers SL-241 were connected
to memory address lines M9 to M14 of the 9900 and to the
RESET and CRU OUT signals. A tri-state quad bus driver
"8 TO 9" was used to buffer the CRU IN signal. The Yo
¥, outputs of one decoder were used to enable two 8-bit
addressable latches (LS259). The DATA IN inputs of these
latches were connected to the CRU OUT signal from the 9900.
Inputs of these latches were connected to the Memory
Address of the 9900,. The 8-bit outputs of these two
latches were connected to the two output ports of the
8008 system (port 8 - port 9), Specific address locations
for these two latches with respect to the 9900 were
designed and handwired at 1000, and 1010. The DATA
SELECT inputs of the DATA selector SL251 chip were
connected to the 9900 memory address lines. The strobe
of the same chip was connected to the decoded CRU or
signal. The 8-bit output of this chip were connected to

the INPUT port of the B008 system.

6.5 MULTI-TASK SYSTEM: OPERATIONAL SIMULATION

Having established and tested the communication

between the 8008 system and the 9900 a problem task was

-0 -

implemented. The task has a military application. The
idea of this particular problem was presented to the

author when he was doing his military service in the Navy.

The problem is to compute quickly and accurately
the 'RANGE' and 'ELEVATION' settings of a gun, given the

distance of a particular target.

Different values of distances between targets are fed
by an operator via the key board of a VDU to the T.I.
9900 microprocessor system. The 9900 transfers the data
to the 8008 system which analyses it, with intercommunications
between the two 8008 microprocessors and their shared
memory and transfer back to the 9900 the values for the
'RANGE' and 'ELEVATION' and from there to the screen of

the VDU.

The I/O facilities of the 8008 microprocessor 1,
were connected to the 9900 system and the task of this
particular microprocessor was to compute the 'RANGE' given
the distance value, transferred from the CRU OUT of the
9900. When the 'RANGE' is computed it is stored in a
location in the shared memory. The 8008 microprocessor 2
is accessing this particular memory location fetches the
'RANGE' value and from that computes the corresponding
value for 'ELEVATION', Elevation values is the task
allocated to microprocessor 2. When the appropriate

'ELEVATION' value is calculated it is being stored in

OB

another location in the shared memory. Microprocessor 1
fetches the 'ELEVATION' value and outputs both the
'RANGE' and 'ELEVATION' values to the 9900 and from there

to the VDU screen.

The execution programs of the 8008 microprocessors
were in PROMs and the different values of 'RANGE' and
'ELEVATION' were stored in the private RAM memories of

these microprocessors.

The programs are written in INTEL 8008 microprocessor
language and the other one in T.I. 9900 microprocessor
language. The 8008 programs were programmed in PROM on
the INTELLEC 8 system available in the department. The
mnemonics code was presented in HEXADECIMAL instruction
machine code. Board connections between the two systems

are given in APPENDIX G .

In this particular application the I/0O facilities
of one of the 8008 microprocessors were used, but I/0
facilities of both 8008 microprocessors could be
connected to one terminal and a machine to complete the
purpose of the localised control system we built. Other
peripheral devices could also be connected as well as
facility for scanning memory banks from a disc or floppy
disc. The system also could be expanded by connecting
to it another set(s) of microprocessor system identical
to the one we built for different control purposes and

applications.

06 =

In this example, the message paths are direct. 1In
a more complex application the message paths need not be
sequential. As more processors or functions are added
to the system, the number of routing paths increases,but
does not become more complex for any given processor, in
the system. Therefore, each processing module may be
viewed as a distinct building block, and modular

development of the system is practical.

Basic flow diagrams of the multi-processor

communication are given in Figs. 6.3, 6.4.and 6.5.

START MICR
PROCESSOR L

IS IT
MESSAGE FROM

DELAY
990/4

GET "DISTANCE"

CALCULATE "RANGE'

PLACE "RANGE" DUTPUT "RANGE"|
IN SHARED TO TMS 990/4
MEMORY

IS
ELEVATION IN
SHARED
MO

DELAY

GET "ELEVATIONY

L

OUTPUT
"ELEVATION"

TO TMS

990/4

L

RETURN

Pig. 6.3 BASIC FLOW DIAGRAM OF MICROPROCESSOR 1 TASK

- G -

Start Micro
rocessor 2

"RANGE" IN SHARED

DELAY

GET "RANGE"

CALCULATE
CORRESPONDING
IIELE VATION"

PLACE
"ELEVATION"
IN SHARED

MEMORY

RETURN

Flg. 6.4 BASIC FLOW DIAGRAM OF MICROPROCESSOR 2 TASK

3 e

65

OUTPUT "DISTANCE"
TO MULTIPROCESSOR
SYSTEM

1

DELAY

PERFORM INPUT
OPERATION

DISPLAY INPUTS

ON VDU

L

RETURN

BASIC FLOW DIAGRAM OF TMS 990/4 TASK

=300 -

OPERATIONAL SIMULATION PROGRAMS

INTEL 8008 MICROPROCESSOR 1

Task Allocation = RANGE

XRA
LBA
LET 1
LCA
LDA
LATI 50D
LHI 10B
LLI 100B
LMA
LAT 100D
LHI 10B
LLT 110B
LMA
LAI 150D RANGES values
LHI 10B are stored in
LLT 120B RAM
LMA
LAT 200D
LHI 10B
LLI 130B
LMA
LATI 250D
LHI 10B
LLI 140B
LMA
LAI 0
KEY INP 3B Value of the
CRI) DISTANCE in
JTZ KEY microprocessor 1
LHI 10B

LLI 100B

. JOY =

LBM
CPB
JTC
JFC
LHI
LLI
LBM
CPB
JIC
JBE
LHI
LLTI
LBM
CPB
JPE
JFC
LHT
LLI
LBM
CPB
JTC
JFC
LHI
LLI
LBM
CPB
JFC
JTC

LEA

ouT
LCB
LBA

LAA!LAA

+2
LET
10B
110B

+2
LET
10B
120B

+2
LET
10B
130B

+2
LET
10B
140B

LET
LET

10B

Establishment
of the corresponding
RANGE values

OQutput the RANGE
value to 9900/4

system

STAR

DELAY

= g =

ouT

LHI

LLI

LMC
CALL
LHI

LLI

LAM

CPI

CTZ

CPT

JTZ

ouT
LAA!LAA
LAA!LAA

ouT
LHI
LLT
LMA
JMP
LDI
DCD
JFZ

10B
14B
100B

DELAY

14B
200B

DELAY

STAR
10B

10B
14B
200B

KEY'
300B

DELAY

Value of the
RANGE in shared

memory

Value of ELEVATION
in ACC from the
shared memory

Output the ELEVATION
value to 9900/4
system :

= kO3 =

INTEL 8008 MICROPROCESSOR 2

Task Allocation - ELEVATION

XRA
LBA
LCA
LDA
LET 1
LAT 70D
LET1 LHI 10B
LLT 100B
LMA
LAT 50D
LET2 LHI 10B
LLI 110B ELEVATION wvalues
LMA are stored in
LAI 40D RAM
LET3 LHI 10B
LLI 120B
LMA
LAI 20D
LET4 LHI 10B
LLT 130B
LMA
LAT 20D
LET5 LHI 10B
LLT 140B
LMA
LAI 0
KEY LHI 14B
LLI 100B Value of the RANGE
LAM in Acc. of Micro=-
CpPI 0 processor 2 from
CTZ DELAY shared memory

CPI ®)] Acc.=Accumulator

ELEV1

ELEVZ2

ELEV3

ELEV4

- 104

JTZ
LEA
LBA

LHT
LLI

LHI

KEY

14B
100B

50
ELEV1
100
ELEV2
150
ELEV3
200
ELEV4
250
ELEV5
10B
100B

SHARE

10B
110B

SHARE

10B
120B

SHARE
KEY
10B

Comparison with
RANGE values

Establishment of
the corresponding
ELEVATION value

SHARE

DELAY

=]0% =

LLI
LAM
CAL
JMP
LHI
LLI

LAA!LAA
RET
LDI
DCD
JFZ

140B
SHARE
KEY

14B
200B

300B

DELAY

Value of ELEVATION

in shared memory

= 106

LITL “FRSE RLLOC

53 0 1 Ay = 3
ZTARET LUWFI =

EL SFIMHINTL IHITIRLIZE URRT
HEXTO E %

EL SOUTET

IRTE =nhoR

TEXT “LIZTRMCE=-

EXYTE < “+38n

EL SFEEATMHO

I o FlE:s=1000

ZWFE RB& LIZTAMCE

LOCE R TO 2002

CLFE Eo FWMBEIT FOF REALY
TEET1I ETCR Ris& v ZIEMAL FROM

AEL TE=ZT1 H S0ns

HOF DELAY

HOF

ZTCR B2y & FRHZE FRCM 2002

CLP Ra

LTIICE F0.8 O-F FERDY TO =008
TESTE2 ESTCE ROsE sWRIT FOR

AHE TEETE FRCEROHLEGE
TESTER ETCPR RS FWAIT RERDY

JER TEETE ZIGHAL

HOP

HOR ;

ZTCR F2.2 ELEYATIGCH FROM &nn0s

EL FOLITHT

LRTR >0D0A

TEST “"ERMEE="

EYTE v 4389

B RO == ==

EL SR ITHO DIZFLAY FARHEE

Ei HOUTHT

IRTH =0D0R

TEXT “ELEWRTIOH=*

EY'TE © “+:20

MEY RIsRES

EL A EITHO DIZFLRY ELEVRTIOM

JMP HEETO EHDLEZZ LOOF

‘TIOH "DIZTRMCE"

HFUT HUMEER
OUTFUT

‘am mm caw gy

-+
4#1*####*#*¢¢*4*##**1**¢
E .
+ ROUTIME TO IMITIRLIZE LART
»
IMIWIN LI FiZs>1EB40 CRU EASE
=BE 31 FREZET
LI FEis >a200
LOCE Ri.32 CTFL
EBEZ 13 HO TIMER
LT Fia=34 ZFEED==&010
LIOCE RFOs12
E +£11

-
+ FOUTIHE TO
+

DUTHT mow
OUTHETL MOWE

™
i o'

MO E

3T

HES
HHDT
HEF
E

+»>

OUTFUT

FlisP1ii
oF 1+ o
FCLUTCHR
FSs s

OUTHT

Flo

F10:*FFFE

Fili
+E10

TERT

- 107 -
STRIMG

>AVE FET.
SET LCHEF
O-F
LARET?

HO. LCOF

P OYES,

i EWEH

H RIDRESS
P RETLIRM

* FOUTIHME TO IMPUT OME CHRR

-

INCHE LT
LR

IMCHR1 TE
AHE
ETLR

R
ot

E

-

¢ ROUTIME TO OUTFUT OHE

-

CUTCHR LI
ZED

OJTZHL TE
JHE
LIICR

ZEZ

E

-

= FOUTIME TO

+

RERDND mOY

FEEDO LI
CLF

FERTI1 EL
Cl
JER
ZFL
HI

HE T

[
JHE

: LR

[RI=RS
Fo
JHE
MO
H
dinie
JMP

FERDZ mOw
E

Fl2s=1540
f

=1

IMIZHF1
S 7
12

+R11

> 1R4AD

(e

M Ty e

S
(nx}

4 — T O
)
SR |
i
[y

AT
—
—

INFUT MUMEER

Fll.ES
Fes 10
7
HTHZHR
F'2a = 0000
FERII
FSe
RSy =220
EFRFEOR
F'9 RE
ERFEDR
F10
FEsRBE7
Sl =
EFFOF
Fas 7
= =
EFRFROR
FERD
EVsRE
+FE5

CEL BPRTE

CHAR REC D 7
HO. LOOF

YEZs PUT IN B2

CHAFR

CRL BRSE

RETZ0H

TH EBUFFEFR EMFTYT
HOs LODF

YEZs LOAD

IAYE RETURH
BRZE

IMFUT CHAFR

END IF CR
MOVE TO REHE

TOO ZMALL

TOO EIS
ZUM=Z1ImMe1 0
OVERFLDH
EUM=ZUM+DI5IT
OYERFLOW

GET HEST DIGIT

AMZWER IH R
FETLIRH

- 108 =~

EFROF EL FOUTHT i ERFOFR——
DATR = 0DGR ¢ DUTPUT
TEHT “"ERFDOFRsTEY RGRIMT 3 MESTRIGE
DYTE 00> 0R+>510 :
JMP RERLG P THRM LOOF
*
+« ROUTIHE TO CUTFUT HURMEER
+
WFITHO LI RS 2 MAHE. s BISITS
) -
WEITHL DEL RS
ALT FAMINER
BLE P

LDI% REWRT DIV BY 16
HI FiZe =20 RECII
ZWPER RS
FOWVE R2.3ELF SRS ZTORE IM ELFFER
MY RT.RE FEMATINDER '
GNP R LTHE LOOF
AHZWER LI FSe3
LI FEs BLUF FOIWT TO ELUFFER
HEXTICH MOYWE +RE+.F3 FET CHRFE
EL SOUTCHR g-p
BEC ES LOOF 3 TIMER
JHE MEHTCH
B +R11

+ DATH ARER

Lz EEE 22 WORKZPHRCE
ELIF BEZ & DECIMRL nMO. EUFFER

EnDN ZTRRT

CHAPTER 7

SYSTEM PERFORMANCE

7.1 System Feasibility Assessment

7.2 System Communication and Task Execution Performance

- 109 =~

CHAPTER 7

SYSTEM PERFORMANCE

7.1 ©SYSTEM FEASIBILITY ASSESSMENT

Based on our investigative study, in order to evaluate

the feasibility of a multi-processor system the most

important parameters that we studied were:

(a)

(b)

(c)

(d)

(e)
(£)

Bus utilisation as a function of the number of
processors in the system and the average processor
task time.

Independent I/O facilities.

The probability of simultaneous conflicting actions
(concurrent access of shared memory) .

Synchronising the actions of the various contrpllers
in the system.

The impact of interrupt control, and

The problem of deadlocks or infinite cycles within

the system.

Having studied these parameters we designed and

constructed the system as already explained. Processors

are given equal fixed tasks. Upon completion of the task,

the processor transmits a single data item to the shared

memory, for the other processor to select. Each processor

monitors the shared memory for each data that has been

assigned for.

= 110y -

Each processor makes sure that data assigned for
the other processor have been selected before producing
new ones. Thus the microprocessor chip is desirable for
microprocessor control should provide machine cycle states
information, a READY control unit which allows the
microprocessor to enter a WAIT state, a HOLD input, good
I/0 facilities and interrupt facilities. The 8008 is
characterised by a five state processor cycle, with each
state requiring 2.8 us. When the 8008 reads from memory,
to get the next instruction, it presents on its data bus
during state Tl the lower eight bits of the desired address.
Tt proceeds to state T2 where the upper six address bits
an indication that the 8008 wants to read appear on the
bus. If by the end of T2, the memory has not responded
READY, indicating that the desired byte is being presented
on the bus, the 8008 goes into the WAIT state, where it
remains for as many as four microsecond periods as are
needed for memory to respond- READY. In the event that
memory responds READY before the end of T2, T3 is entered.
and the byte brought into the CPU. If necessary states
T4 and possibly T5 are used to execute the instructions.
The maximum memory bandwidth capable of being utilised
by the processor is eight bits every twelve (l2)usecs .
The cycle time of the memory is about 700 n.s. that is
one fourth of the time required for a single processor

state.

= LT -

7.2 SYSTEM COMMUNICATION AND TASK EXECUTION PERFORMANCE

The communication and program execution between the
8008's system and the T,I, 9900 was satisfactory. The
program execution in particular of the task orientated
8008's with the more powexrful 9900 was good. The only
problem appeared in the switching on the 8008's which
caused jamming of the programs and the breakdown of the
systems operation. On the otherhand I/O operations,
private memory accessing, program execution, logic
operations were quite satisfactory. Operations for
accessing the shared memory were as expected. It appears
for this particular application, that the waiting of
one processor, when the other one was accessing the shared
was negligible. The processor's request for shared memory
access is completed in one memory cycle. The processor
remained in the same processor state for one more memory
time during which the other processor can access the

shared memory.

Generally the system operated as it was predicted

from the design stages.

Analysing the performance of our approach, that is
every other two processors per common memory, we feel
is ideal for localised control systems with efficient
I/0 facilities, task decentralisation becomes easy,

utilisation of individual processor performance is fully

=il =

exploited, and an easy monitor system for central control.

Our approach also provide system expandability as an
addition of 1 or 2 more processors to share the same
memory is feasible. We must though stress at this point
the hardware problems associated with it. At the same
time it must be realised that in a design of that form
some form of priority level to processors accessing the

shared memory is required.

Clearly our system provides the mechanism whereby
programs (the specialised application programs or any of
the stand-alone programming support aids) can be loaded
and run on the actual microprocessor hardware. Object
programs are normally written onto PROM, loaded and run
into RAM and the shared memory serves for inter-processor
communications of common data and information for

individual processor task completion.

The system also provides small physical size and power

consumption, as well as reliability.

CHAPTER 8

CONCLUSIONS

8.1 General

8.2 Suggestions for Future Development

8.3 Final Remarks

= 1

CHAPTER 8

CONCLUSTIONS

8.1 GENERAL

.

The microprocessor revolution has made possible the
economical decentralization of computing power. This has
been achieved not necessarily by making system with improved
price/performance, but by making computer control of many
functions economical and practical, relative to their
previous implementations. Multi-microprocessor structures,
we feel, are effective in situations where the tasks to be
performed can be effectively and efficiently partitioned.
This will give rise to improved I/O processing capability,
improved reliability, and a fail-soft feature where the
bulk of the system can keep operating, should any subsystem
fail. An additional benefit resulting from the effective
partitioning of tasks in a multi-CPU system is that the
software by being partitioned into several independent

packages, is much simpler and runs more efficiently.

Thus a step forward, we feel, in the direction of
releasing more of the potential capability of the micro-
processor is to provide processors with distributed
multiple tasks. When the control area of the microprocessor
increases, the engineer at present turns to the greater

sophistication of the minicomputer with its real time,

= 114 =

multi-programming executive. The difficulty in using a
microprocessor is that the single program may not have
sufficient processor time constraints when it has wasted
most of it in completing one part before proceeding to the
next. A multi-processor multi-task system, like the one
we advocate simplifies the problem considerably by
allowing the total job to be broken down into separately
identifiable activities. The non-time critical I/0 can
then be placed under task control rather than interrupt
control, obviating the need for a priority interrupt

structure in many cases.

One of the fundamental design decisions in a multi-
tank system, we found, is the determination of the

distribution of tasks. Generally there are two ways:

¥ i Task distribution is determined by external
interrupts, and
20 Task distribution is determined only by the tasks

themselves.

We adopted the second method, as it is suitable for
localised control in the manner in which it handles data
structure relationships, simplicity on interprocessor

communications, and I/O processing flexibility.

Our design was based on the application task that
some parts of a program are run more frequently than other

parts that run less frequently. This fact allows a

=8 L1 S0 =

significant advantage to be gained by the use of private
memory. With this configuration the ratio of accesses

to local versus shared memory, could be as high as 3-4

to 1. This not only reduces contention delays for access
to the shared memory, but also cuts the number of
accesses which suffer the delays. We designed all
processors to be identical and equal. As a consequence,
no single processor is of vital importance and a
processor could be changed easily in case of failure.
Apart from system flexibility an additional advantage

of multiple copies is reliability.

Until the processors interact, a multi-processor
is a number of independent single processor system. It
is the interaction wich poses the conceptual as well
as the practical challenge. If the various processors
spend their time waiting for each other, the system
degrades to a single processor equivalent. If they
can usefully run concurrently, maximizing at the same
time shared memory utilization, then the system's power

is being multiplied.

In any practical application of a multi-processor
system, we feel that we must keep the system running
in the case of module failure. The first problem in

doing this is making the processors run independently

= dle =

by allocation of runnable task to processors, so that the
full requisite power can be quickly brought to bear on
high priority tasks. We propose four ways of doing this

to help manage tasks queues:

(a) Break the job into small tasks
(b) Make the processors identical
(c) Keep a priority on tasks and

(d) Use interrupts where necessary

Critical to our approach is the fact that the private
memory of its processor could be used as a retreat to

local operation in the face of systems' problems.

Our system has a great application in localized
system control. The author visited the British Leyland
Longbridge plant, where they are trying to design a
similar system on localized monitor control on the
production lines, with each multiprocessor unit communicating
with a central control terminal, and they express great

interest in the possibilities of using our approach.

Our system offers flexibility of I/0 processing, it
is easy to expand, easy to install and offers a reliable
localized control. A set of identical processors sharing
every other two a common memory, executing individually
an identified task, intercommunicating and at the same
time communicating with a central control terminal, would

have great industrial control applications.

i L)

It is also feasible to expand the system by connecting
a third or fourth processor to the system still accessing
the same common memory. It must be realized that in a
design of that form some form of priority level to
processor accessing memory is required. On that basis
the processor would wait for access after the cémpletion of
access by the microprocessor with higher priority. The
microprocessor with the higher priority does not wait for
memory access. Thus the number of memory cycles that a
microprocess could have to wait to get hold of the memory
access bus, depends on the number of priority that particular
processor has, and the total number of microprocessors in

the system.

It is thought that the incremental growth objective
is realizable at least in terms of minimizing the effects
of memory contention in a network of microprocessors

sharing a memory.

8.2 SUGGESTIONS FOR FUTURE DEVELOPMENT

It is apparent that there is a need for further
research and development to be performed to assess and

develop a multi-processor, multi-task control system.

At this point we must stress the role of interrupts
in a multi-control system. It was explained in a previous
chapter why we did not use interrupts in our particular

system.

%= LE8 =

The problem here exists if any particular task,
event or data from external device has to be handled by
the system. This event or data could require attention
by the system at unpredictable timesl(asynchronous).
The problem is that, unless the system 'looks for' the
event that requires attention (our approach), then it
could quite easily 'miss' the event, particularly if it
only lasted for a short time. Interrupts is the answer

to this problem and could be either hardware or software.

Manufacturers of latest designs of microprocessors
have provided their micros with extended interrupts
facilities and that helps greatly the system designer

and user.

This is an area which must be investigated further

in the different applications of our system.

It must be =id, without underestimating the capabilities
and flexibility of the 8008, and having realized its weak
points, a system with more powerful microprocessor
(Motorola €800, Intel 8080), would be more suitable for
complicated applications, as tasks and problems in practical

industrial applications, tend to be more demanding.

As we have already pointed out, the problems to be
considered in the design of multiprocessor systems, would
depend on the applications, designer and user. For
example should the individual processors be dedicated to

totally independent programs or should they work

“ 319 =

co-operatively on a single large problem to reduce
execution time and promote reliability. In the former
case considerations are not limited to production
environments. One can visualize a situation in which
program development is performed by a user accessing a
set (s) of multiprocessors from a dedicated terminal. 1In
either case the problem of executive control to implement
inter-processor communication, memory protection, memory
mapping and shared data memories and buses are significant.
Should a single executive, control the total system, or
should the executive be partitioned in to global and

local executives ?

We feel that in less dynamic systems, in which the
same sets of code are executed repeatedly, private
memories should be dedicated to each processor to contain
procedure segments and the shared memory can be used to

contain data of both private and shared nature.

8.3 FINAL REMARKS

At present multiprocessor systems have started
appearing in all areas of applications in industrial and
organizational fields. Different specialized multi-user
systems and high bandwidth signal processing are being

used.

As improvements in integrated circuit technology
continue and processors and memories become cheaper, and

smaller multi-processor systems designs offer a

i el

revolutionary challenge to the foundations of industrial
production and organizational change, structure and

innovation, and to society as a whole.

I trust that the system we have designed and the
approach we have followed will be given the opportunity
to demonstrate its uses, and that it will contribute
to the future and further development and understanding

of multi-processor control systems.

= 121 =

LIST OF SYMBOLS

System throughput

Bus interference

Number of processors

Bus utilization

Distribution probability of bus reference
every i bus cycles

Ratio of throughput with maximum interference
to throughput with no interference

Ratio of the cost of the system

Cost of an individual microprocessor

"y
b

* -
.
e L t: -2 -
pol sl GESRRRT NSO NERU S T - SR g Lo T e
i o A e N ™ R e . - g 1
* - d y b) r
RS L g a2 . il
W, SN - 5 * PSR, . - L
' 4 = =
d i
s o
3
- A . . %
o

= 123 =

APPENDIX A

INTELS 8008 MICROPROCESSOR

Intel is a USA-based component manufacturer and
the 8008 processor is the central component of the MCS-8
Microprocessor Set. The 8008 can include up to 16K 8-bit
words of RAM or ROM and its a parallel processor with an
8-bit external bus for communication with memories and
I/0 devices. It is manufactured using Silicon Gate MOS

technology.

The 8008 processor is shown in Fig. Al. Two independent
dynamic memories are used to implement a stack of 8 1l4-bit
address registers and 7 8-bit scratch pad registers. The
address stack consists of the program counter and 7 address
registers for subroutine nesting to 7 levels. The CALL
instruction is used to store automatically the program
counter in the stack, and RETURN is used to restore the
program counter. The 1l4-bit program counter allows
direct addressing of 16K words of memory for program
instructions. Each 14-bit address is transmitted over
the I/O bus in two cycles, consisting of the 8 lower order

bits followed by the 6 higher order bits.

The scratch pad memory contains the accumulator used
for mathematical and logical operations and used as the

destination for data operations and never to store data.

- 124 -~

The next 4 registers are used for temporary storage and
to transfer data between program modules. The last two

registers (H , and L) are normally dedicated to addressing

external memory for data.

The arithmetic/logic unit performs full-parallel
8-bit operations. Four single bit indicators are set as
a result of each operation. These are carry, zero, sign,

and parity.

When the processor supply (VDD) and clocks are started,
a HALT instruction is automatically stored in the instruction
register and the system registersare reset in the following
16 clcock periods. Normal operation commences when the
INTERRUPT line is set from a source external to the

processor chip.

All communication between functional units in the
8008 processor occurs via a single-8-bit internal bus.
The processor controls the bus and sets the 3 status lines,
S, 0:2, according to the action occurring on the bus. The
status lines are available as o/p's to peripheral circuitry.
A typical cycle of processor operation consists of 5 states:
2 for addressing memor; 1 for fetching an instruction or
data, and 2 for instructing execution. For multiple cycle
instructions, which do not require the 2 execution states,
the processor operates asynchronously. One instruction

cycle takes 12.5 us to be executed. (See Fig.A2).

- 325 =~

The 8008 uses, 1, 2, and 3 byte formats for its
instructions. The 2 byte instructions perform the
operation specified by the first byte on the data specified
in the second byte (immediate mode). The 3-byte instructions
use 2 bytes to specify a l4-bit memory address for jumps
and calls. There are 5 basic groups of instructions, the
index register group, the accumulator group, the instruction
program counter and stack control group, I/0 group and 2

HALT instructions.

The 8008 communicates with external memories and I/O
device controllers via its 8-bit data bus, the 3 status
line, the SYNC line and the READY and INTERRUPT lines. The
READY line allows the processor to operate with any speed
of semiconductor memory. This is achieved by the processor

waiting on the READY line during an instruction cycle.

The I/0 data buffer on the 8008 chip is bi-directional
with low power TTL compatibility on the o/p and TTL

compatibility on the input.

General purpose software had been developed for the
8008 by Intel including loaders, teletype input, different
routines and FORTRAN IV assembler and simulator which

allowed the generation and testing of 8008 programs on

a large off-line computer.

As has been stressed before the 8008 belongs to
the first generation microprocessors and since then in
the last three years, the technology and capabilities

of the 3rd generation microprocessor have overpowered

127

wexbeTqg }o00Td NdD 8008

LeNyy3 N ACY3y

g ady INAS

Og s 25

- .)
B e e s el T UL FE—

LY P

L1

Lg% % PuSg 2 Yo

A
%
Og

i AL ©
_ 44 _ 44 .] 4 _.
B £ _ HOLlYHINTD = ‘
..l- i PRk T] w3019
vl 74 : Z SI¥KROIS
L b AR
_ A MO IVH 2439 oy SOLWLS
S 3 ONIWIL 31VLS ®
¢ X
* - J———— oy -
E_ = 21807 |
- NOILIoNDD ony | -
H31010. CuINOD o ki N
51418 vl *S0HOM B — 371040 - i (S D7) ST
HOviS INsvn N2LICNDD
HILNNOD mTEOLHA T 71e0T * .‘_. T v oA m
4 - A
CNY ®OVLIS SS3u00V — w e
.. ”..-. Y o Likn e
e . <
Cu3ANaNT * SILZNHLIEY
i . e = aTvevs ne-e
HE3u432 .
3 vannoaf
CNY E34370000N HS3u 434 N08INOD O/1 ACUINOD P
AuSrian 2 ¥200230
= . any 180
7 4 1LONMLSNI i = (sug 9)
i 5 L AHONIN NO 2wk 5 &
i “ T = MLIMHLINY e 50 i
1 . oo -
ﬂ - ! »
A o L h s L AvEYD s,
1 S118 8 7 S0UOMm 4 =5 CEFOLE 3
Lx ~—
AUUMIN ww» e G
Ove WD1YHIS ne L1yt SERRYYY! K ¥
z.._u_:,.._Mm (s19 g) TNIQ0D T0MINDD (512 g)
as
e 830y MILSIY NOIDAMLSN! 37040 AUONEH q ¥3L5103y
HOLIYINANIIY - ;
0 .w. Q.
‘— 2 - ¥ 15
2 -
: W §N9 wivad IWNEILNY
coouosss|
: €< 5
{ e $N9 vivo 118 @
ot
SNT vAVO IYNEILM

9104LD uoT3onNIISUI 8008

128

SL vl "EL “ZL CLL SIONTINI
37040 HOSSID0U IVIIdAL

s 8l
o viva | (WWNOILIO) 10HINOD | ino
NOLLINULSNI HO "HI134 AQvidy 10N sS3yaav Q3ILaNYUEILNG
40 NOILND3IX2 viVa U Adowan sLa-8 nad
NOLLINYLSNI IvhuILXI HIM0T
SL €L LA L L
N/ \ &
\ \ \L 's
/ %
\ \ \ 1 J onias

=129 =

APPENDIX B

THFE. TMS 9900 MICROPROCESSOR

The TMS 9900 microprocessof is a single-chip 1l6-bit
central processing unit (CPU), produced using N-channel
silicon-gate MOS technology. The CPU comes in a 64 pin

chip, and is driven by a 3 MHz four-phase clock.

The processor employs a memory-to-memory form of
architecture, whereby blocks of memory designated as
workspace registers, replace the more common internal
hardware registers. A total of 32 K words of memory
can be addressed by the processors 15-bit address bus,
which is separate from the 1l6-bit data bus, thus

simplifying the system design.

Within the processor there are three registers
which are accessible by the user. These are the program
counter (PC) which contains the address of the instruction
following the current instruction being executed, the
status register (ST) which contains the interrupt mask level
and status information relating to the instruction operation.
The third and final register is the workspace point (WP),
which contains the address of the first word in the current
active workspace area. A workspace area consists of 16

consecutive memory words in the general memory area.

Input and output data transfers to and from the

processor are performed by a direct command-driven I/O

- 130 -

interface designated as the communications-register unit
(CRU) . The CRU provides up to 4096 directly addressable
input and output bits. Both input and output bits can

be addressed individually or in fields of 1 to 16 bits. The
TMS 9900 uses four clock cycles (¢l—¢4) each of typical

duration of 83 ns.

The TMS 9900 microprocessor instruction set provides
the same capabilities as those offered by full minicomputers.
The instruction set provides 69 different instructions, which

includes unsigned multiply and divide instructions.

With a clock frequency of 3 MHz the average instruction

execution time is approximately 1O us.

L]

FOLDE —-—

fﬁ'ﬁ—rq'
L

RIRDY
nait

O, —

o8N
Lt

a0

CRUCLE

o1

w1 %L

woHicy
'

Al A4

W

INETMUCTIC
HEGSTIR

T coNTag,
-t LOGIC
—_——

—l

i

——

PEOLRAM COLNTER

FOR-“FON

WORREFACE REGIATLR

]

' 4
i it gEALET
RECISTER

N ———

=T

-

s1avus
PIGISIER

SHIFT
CouNTER

SHIRCE DATA
REGISILR

M[tA0uY
ADUKLES
HEGILTEH

o

S_Dll‘ TREGISTIR

Bl

e e

A

2

CHUIN

TMS 9900 Ar chitecture

cRuOUT

Bo

132 -

2

MEMORY
THMS 9900
AO-AlL
J CRUIN
N,
MULTIPL - AD%EE%aégLE CRUOUT
=5 i CRUCLK
'DATA INPUT - DATA OUTPUT

CRU Concept I/O Interface Logic

GENERAL

MEMORY

%133

PROGRAM A

TMS 8300

—1

VYJGF\I e “-\FL-
REGISTER O

WORKSPACE

P & A

PC ()
WP (A
ST (A

WCRKSPACE

FEGISTER 1

o

PROGRAM B

\ _\. \r\w/ |

WORKSPACE
B

BLS

Corresponding Workspace

Relationship between Workspace Pointer

and

ouTPUT
OPERATION

INPUT
OPERATION

= 134 =

5 TR ot R A e g

=
M &

- s i M M M vl) "

:
AD A15 UNKNOWN X CRUHIT ADDRESSn X CRU ADDRESS e 1 X A X__CRU ADDRESS m P

CRUCLK | I I | " YA

CRUOUT UNENDOWN x CRUDATAOUT A x CRUDATAGUT A+ X :- x UNKNOWN x

e R B R R KRR B2 e RN X

b 4 \

Ll
leur VALID
/ INPUTEITm

b4
CRU DUTPUT

B.4 TMS 9900 CRU Interface Timing

" 4
CRU INPUT

el

ol

MEMEN

DBIN

AD aNVe

READY

wanT

Do-D7

ag

|

= 135 ~

X VALID ADDRESS X _X_

ValID ADDRESS

X

DON'T CARE S XXX OO KXOCHT AR EXX T

/OO T care KAX

TRy eesiche s)

CPU DRIVEN i‘ INPUIT MODE

ynnx INPUT X cry c.-zr;t.-._x

CPU RITE DATA

k CHU OHIVEN

/ SHOWN ASSUMING THIS _

RD = READ DATA

B'5

CYCLE IS AN INSTRUCTION
ACOUISITION CYCLE

MEMORY READ CYCLE WITH NO WAITS -

TMS 9900 Memory Bus Timing

\

/

"/

MEMORY WRITE CYCLE WITH ONE WAIT

¥ S T

APPENDIX C

MULTI-PROCESSOR SHARED MEMORY TEST PROGRAMS

'SLOW COUNT' PROGRAM

MICROPROCESSOR 1

XRA
LBA
LOOP INB
LAB
LHI 14B
LLI 100B
IMA =
LCI 377B
LDI 100B
KEY DCC
JFZ KEY
- DCD
JFZ KEY

JMP LOOP

= L3

'SLOW COUNT' PROGRAM

MICROPROCESSOR 2

XRA

LAA

LHI 14B

LLI 100B
LAM

ouT 10B

XRI 377B
ouT 11B

RST 0

- 138 =

MULTI-PROCESSOR SHARE MEMORY TEST PROGRAM

"FAST COUNT" PROGRAM

MICROPROCESSOR 1

XRA
LAA
LHI 14B
LLI 200B
LCA
LAA

TOP LAM
NDA
JFZ TOP
INC
LAC
OuT 10B
XRI 377B
OUuT 11B
LMI 1

= L50N-

"FAST COUNT" PROGRAM

MICROPROCESSOR 2

ZRA

LHI 14B
LLI 200B
LMA
LBA

IO LAM
NDA
JTZ TOP
LMB

ouT 10B
XRI 377B
OouT 11B
RST 1

- 140 -

TEST PROGRAM FOR DECODING RAM AND PROM MEMORIES

TOP XRA
LAA
LCA
LDA
LHA
LLA
LAA!LAA
LOCK LCI 100B
KEY DCC
JFZ KEY
INL

ouT 10B

CPX 377B
JEZ LOCK
INH

OouT 10B
LAH

CEL 20B
JFZ LOCK

= 141 -

TEST VDU PROGRAM

XRA
LCcA
LDA
LBA
LOOP LAB
oUT 11B
LAT 60B
OUT 10B
XRA
ouUT 10B
INB
LCI 300B
LDI 100B
KEY DCC
JFZ KEY
DCD
JFZ KEY

JMP LOOP

- 142 -

TEST PROGRAM - I/0 BUSES AND VDU

XRA
LAA
LBA
LCA
TOP DCB
LAB
ouT 11B
LAT 50B
ouT 10B
LOOP INP 3B
NDI 100
JTZ LOOP
LAI 60B
ouT 10B
XRA
ouT 10B

JMP TOP

HEX Address

00:00
0l
02
04
05
06
08
OA
6])
oD
OF
i)
13
14
16
18

1B
1D
1F
21
22
24
26
28
29
2B
2C
2E
31
33
35
36
37
3A
3D
3F
41
42
43
46
49
4B

- J43 =

APPENDIX D

PROGRAM ASSEMBLY

ASSEMBLER - 8008 MICROPROCESSORS

MICROPROCESSOR 1

Program in HEX
A8
Cc8
26 - 01
DO
D8
06, =32
2E - 08
36 - 40
F8
06 - 64
2E -~ 08
36 - 48
F8
06 - 96
2E - 08
36 - 50
F8 — =
06 - C8
2E - 08
36 - 58
F8
06 - FA
2E - 08
36 - 60
F8
06 = 00
47
3C - 00
68 - 2B
2E - 08
36 - 40
CF
B9
60 - 3D
40 - 6D
2E - 08
36 - 48
CF
B9
60 - 49
40 - 6D
2E - 08
36 - 50

=4 00
=00

=00
=00

00:4D
4E
4F
52
55
5
59
5A
5B
5E
61
63
65
66
67
6A
6D
6E
6F
70
L
12
!
74
D>
77

79
7B
7D
7E
81
83
85
86

8B
8D
90

92
93
94
96

98
9A
9C
9D
AO
A2
A3
A6

- 144 =~

CH
B9
60
40
2E
36
CF
B9
60
40
2E
36
CF
B9
40
60
EO
ci
25
2
cs8
Cl
co
Cco
06
55
57
2E
36
FA

46 . -

2E
36
c7
3C
6A
3C
68
o
5
CO
Co
06
55
57
2E
36
F8
44
1E
19
48
07

35
6D
08
58

61
6D
08
60

6D
6D

00

oC
40

AQ
ocC
80

00
AO

00
81

00
oC
80

2B
BF

AO

- 00

= 00

- 00

eudh -

MICROPROCESSOR 2

HEX Address Program in HEX
00:00 A8

0l c8

02 DO

03 D8

04 26 = 01

06 06 - 46

08 2E - 08

OA 36 - 40

oC F8

oD 06 - 46

OF 2E - 08

Ll 36 - 48

i3 F8

14 06 ~ 28

16 2E - 08

18 36 -~ 50

1A F8

1B 06 - 1E

1D 2E - 08

1F 36 - 58

21 F8

e 06 - 14

24 2E -~ 08

26 36 = 60

28 F8

29 06 - 00

2B 2E - OC

2D 36 -~ 40

2F C7

30 3C - 00

32 6A -~ 9D -~ 00

35 3C - 00

37 68 = 2B = 00

3A EO

3B Cc8

3C 06 - 00

3E 2E - OC

40 36 - 40

42 F8

43 Cl

44 ; Cc4

45 3C - 32

47 68 - 5E =00

4a 30 =32

4C 68 = g9 - 00

4F 3C -~ 96

Sl 68 - 74 - 00

54 3C = C8

56 68 = 7F -~ 00

00:59

5E
60
62
63
66
69
6B
6D
6E
72
74
76
78
79
7€
7F
81
83
84
87
8A
8C
8E
8F
92
95
97
99
9A
9B
ac
9D
AO
Al
A4

= 146"~

3C
68
2E
36
C7
46
44
2E
36
c7
46
44
2E
36
C?
46
44
2E

C7
46

2E
36
c7
46
44
2E
36
F8
co
(6{0)
07
1E
1l
48
07

FA
8A
08
40

25
2B
08
48

95
2B
08
50

95
2B
08

95
2B
08
60

95
2B

ocC
80

BF

9D

00

00
00

00
00

00
00

00
00

00
00

00

ZTZMAC
HZCEST MRMEZD THELE

LB JECT ROCEDS
LIZTING RCCESS FFE
EFFDF BCCESS MEME=
OFTIOME=

MRCED LIBRARY FETHMAME=

THRD SLEMAC

anns

oo
(EARET!

nnos

000G

ooy

anns

o=
a0l

101

S
11z
14
LS
1 e
Hil e
115
014
GEn0
Bl

nae

¥ ALLOCATION "DISTANC

oanon
Oz
nang
Oooe

oons
anos
oo
DOOE
anoFE
0ot
THE |
AR e
0otz
0014
nnls
0o e
noeLs
ISR
0t FH
ool
O01E
OnEQ
nnze
za
00z
nuEs
D=
nnsc
IZE
Nz

[o

nozg =

LS E
000
gz
fnad

O2EDn
01ER-
DER D
el B
nonse
Oe/ 0
DOses
onn
g4
4o
0
S
41
4E
43
45
=0
RO
HEHT
OnEC

T

T

%

1000
1a0n

TEEE
1000
ioon

ZTRET

HEXT !

TEST

=4
m
£
ey
o

-4
m
£
_'
(I]

ity

2l
g

IDT
LEFT

EL

Ef

BL

IRTH
FEXT

EYTE
BL

LI

ZLPE
LLCR
CLE
ZTCR
JAED
HOF
HOF
SZTCR
CLF
L =
ITCR
JHE
ETLR
AEE
HOF
HOF
ETCR
EL

THI'”:_-_ _"‘:"F!"f'l j:if.||; 1,:" 1-:‘_|

* 1401543 THURZDAY. AL les (a7s,

FRSE
“TRD
W

FIHIYIL INITIALIZE URRT

fvad
e

FOUTHT

= 0D 0A
“DIZTRNCE=~

R =
FRERDMDO IMFUT MUMEER

FiZs=100n0 s OUTPUT
DIZTAMCE

D =oms
WRIT FOFR RERDY
ZIGHAL FrROM

Shns

F= :
Ry 2 H
R i
Fis s 5
TESTH H

DELAY
Fes FRMZE FROM S00E
B
F i
Fiie
TESTR
Fite s

TESTR

O-F RERDY TO S00s
SWAIT FOR
s HCKMHOWLEGE

PWRIT RERDY
ZIGHAL

LN |

— =% mw aa

FZa2
HOUTET

ELEV¥ATION FROM £ons

=t
fnss
ans=
anEd
OEs

TAT

THZE ALLOCATION "LIZTRMCE

a0dn

ooy
rdg=
0=
Ngg
s
0ede
angv

0
fngs

oosn
nosy

noszs

Onss
nos4
0SS
n0NSes
ansy
nonssE
nas

-t

e

EERES
Oz
e
oned

REES

OEe

¥ R
bng s
=
DngE
o4 E
I S
oodn
g E
DS
nass
005d
DO
ooss
TsA
OOsC
ONsEn
NNsE

OnsF

D0
O0sd
Ooes
HoeEs
[hsg
0ies
S
OOEE
IR =]
(RN
LOEE

0oy n
novrs
0074
07e
anye
OO7HA
oovc
OOTFE
aEn

LS

nhsg

nsg
=g
nose
ansg
RR T
nss

n=a

LA S LS o |
5
41
4E
47
45
2T
HI

ZE0g

HERAD

olns-

CEH D

O0se -

OL0H
45
1
e

S

ELEZMAC

1
54
43
GF
SE
=0
=L
B o

OeR0

0105

10Cc

oS nc
1E4n0
1T11F
GE 0
e 0n

=200

15FE
OS0H
N H
FFFE
asns
g5

.

4¢¢¢¢‘44¢4+6¢¢4+¢+¢++++¢

-

LHIRH = UDGH
TEXT “REHEE=-

EYTE <« “+%2n
MO RE2«RE
EL iR I THO

EL SOUTHT

DHTA > 000/

TEXT "ELEVYATION=-

2.1 - 1d: 151453

EYTE < ‘4320
MOY R3s R
EL #WRITHD

JHMP HEXTO

148 -

DIZPLAY RRBGE

THURZDAY: AUG 16, 1974,
PRI

DIZPLAY ELEWATION

EMILEZE LOOP

* ROUTINE TO IMITIALIZE URRT

*

INIVDL LI F1Z2s>1E40

-

+ ROUTIME TO OUTFUT TEHT

Es
CUT=T
OUTHET1

2ED 21

2T Fias=&200

LICR ROs5
SPe s e
e Fifta >34

LOCE FOs12
B +«F11

MOY R1isF10
MOWE #F10+.FS
EL ADUTCHRE

MOWE RES.FS

JET DOUFE~TH
MES F10

HHMII F10.>FFFE

HEGR Fi10
E *F10

CRU ERZE

FEZET

CTREL
NG TIMER
ZFEED=9c01n0

EZTRIMG

LHAYE FET.
GET CHAR
DfP

LAZT?T
MO« LOOF
YOYEZ.

EYEM

3 RTUTLREZS
“ FETLUFH

o
AR
10
0=

0oy n

nnys
s

=St
anss

'H|: =

[RD
TRZE

e
T
i

"
O T

[rj:l 00 00 00 00
i

o

kS RN I

AR

00as
MSE
Qusy

R=p=
Qs
alnn
1ol
ning
1 R
1104
11 N5
110
10y
oS
0

1

LR E
g
DOFRD

noAc
ORE
GIED
OnEs

one4g

e s
1E410
Lgise
iFETh
1FFE

T I

1Elg
I4SE

0z
1EB3 0
10i 0
1F1e
15FE

1%

RLLOCATIOH

OOER
DOES
OOER

COEC
R =
DO
nocE
noca
OaceE
ER N
0ocAH
nncec
HOCE
oonn
Gone
nang
OOne
0TS
OnnA
oonc
OnE
DOED
OnE:=
AR
NOES
noES
O0ER
OOEC

=)
[

AL
lE1D
N4k

C14E
D e,
oonA
N3y
DERAI
REE=T
=S
annn
1Z0E
oszs
azgs
FFDQ
1100
2129
140/
04iCA
P 0
s & e
108
cicE
HiC3
1503
10ED
CENy
0455

-

« ROUTINE TD
*
LHEHE T
CLE
TE
JHE
ETCR
ZEE

T

L

IHCHFT

-+

+ FOUTIHE TO
-

CUTCHP LI

SED
OUTZHI TE
IHE

AL 2.1
"DIZTHHCE"

LINCFR
ZEZ
E
-
+ FOUTIME TO
-
FERDMO MOW
FERLIIN LI

ZLF
FEARLIL EL
Z1

AED
ZRL
HI

ST
L

JAHE
CLE
PFY
Mo
JAHE
Moy
H

JEIE
JAME
MO
T

o

FERD

- 149
IMFUT OMHE CHARF

FlZs>1E40 CRL BRZE

CHRE FEC-
MO« LODP
YEZs FPUT

!
7 IH

$ =+ Tea MM
DN ST e

11
CUTF!T DMHE CHAR

RFi12yM1E4D CFl! BRZE

FTo0OM

T# EBUFFER EMPTYT
MOs LDOCF

— Moo

[R

UTCH1

Z THURZDAYs AUG 16, 19749

Fida 2
15
+F11

YEEs LOAD

INFLUT MUMEER

Fll.FS
Fes 11

ZHYE RETURH
ERZE

E7
FIHCHRE IMFUT CHARR
F2a x0T

FERIN
Fas =

RSPy =2

EHMIN IF CE

MOYE TO RHE
a0
ERROFR
Foa R
EFFOF
E10
FEYRT
S i
EREROF
RZ«ET
Fo.R7
EFROF
FEARID1
FEvs B3

+FE5S

TOO =ZMALL

TOO EIG
EUM:EUN*IU
OYERFL.OW
EUM=3UW+DIGIT
OWERFLOW

GET ME®T DISIT

AMIMER 1M F2
FETLIFH

L AL |
g4 =
fd &b
1=
0114

1115

N11e
2117
ni1s
nii=

1

=4

=
o
|--I.

3
Bl

e
2z
1124
1125
11ee

oy =]

T Ml

115
11 &
1=
1130
B

152

bt
L N
in S SR

L I R R Y

RS I M By

bbbk ek b ek b ek ek fed jea
UL

medh b
A

OnEE
DaFE
noFe
NnnFd
LE] o
DNFeE
O0Fv
noFs
OnF=
O0FH
OOFE
OOFC
OOFD
NNFE
OnFF
o100
o1
oins
nioz
010
010e

01ns
nioR
5 W e
01nE

niin
itz
niid
11e
115
Hi1R
BlLAC
N11E
a1
nizz
n1zg
(1125
nigs
n1igH
R
Q12E
ol
nize
ni1=4

T

NER
T

N n -I'A = 'l'
OO 30 T MG RO oOn 1[:l T

OO B IO VR

(S i N R R N
M oed = =) = =

an
B =
100E

az0s
annz
D=0
R

EFFOR

trl

L

{1

=TH
TEAT

EYTE >

AMP
+*

AU

=0T0R

“ERFOR TRY

FERDD

Oty = 0R+2 20

- 150 - ! ERFOR

! OUTPUT

HERIM: & MEST

i THEH

+ ROUTIME TO OUTFUT HUMEER

*

WEITHO LI

LT

SDEMALC 2.1
ALLOCRTIOHN

e s
1103
G Sy

o
n
T

I20s
anos
0E e

nisR~

-

eve
A =N
R
e 0SS
lEFE
O4SE

"DIZTRMCE"

WEITHI LEC
8§
CLF
DIy
Fil

=
MOYVE

MOy

AME
AMZWER LI

ok

HEMTCH MOWE
EL

DELC
JHE
B

+ IATH HFEA

L= EEZ&
ELIF B

EHII

FSa

i}

FeEa11d

+ 14:15:43

PS
HHZWER
R7

REsFT
Ry > 30

=

R FEUF (RS

ETsR2
WEITH1
FS3

FEs BELF

*FE+ e FS
OLITCHF

RS
MEXTCH
*F11

o o |
-
[

ZTRFT

MAX.Z DIGITS

HiGE

LOCF

THLEZDRYs AUG 18,

DIV BY 18
HECTII

ZTCRE IM EBUFFER

FEMRIMDER
LOCF

FOINT TO ELUFFER

RET CHAR
80 =

LOOF 2 TIMES:

WOFPKIFRCE
DECIMAL HO.

ELIFFEF

1972,

FREE

= 151 =

APPENDIX E

BOARD LAYOUTS

MICROPROCESSOR 1

Crysta @ NAND INVERTER NAND
: type o/p conival] |S/p pori Yo peek
wock Ritee cente p y
|N"EPTEP- IGEMERATOR ’ ¥ P LAYCH LATCH LATCL
8212 £212 8212
STATE Memory Bug low eapin) HicH
DECopen %00 b Bvffer Privew Aboiﬁt?s ‘:::2;“
A
gava tea | feaa | [GI] [50%
RAM | [RAM | kAM) RAM | |RAMT 2am] nasm] aaas
PEtopeL DE Copst
PROH PQOM PROM Pr‘aM szos Ea’s
PEcoden Deécorze
PRom Prom PReom PRom gra5 fios

= 352 =

MICROPROCESSOR 2

NARD NARN D Crystal
Teg (e
e o 2 e s s G5
Ra208 Qrog
ohlndt| |ofp pot Yr peck| [lemery | |Bus
PEonen povd < 'Zrz r?:n B\-{.ch Drivev
8205 212 g2 fz(2
Brm | [Ram| [Ram | RAm| [RAM| [RAM| [RAM| |RAM
tow 2
Apb2ess et
PROM PRom PReom PRrom LATCH 208
£z2
iy DEodER
A 5
PRom Ppom PRom PRrom ;ﬁ”,‘iﬁ g2e§
212

= LR =

SHARED _MEMORY BOARD LAYOQUT
a2 5 Fé\25 Mowesva
e-"(—??f-ﬂ" Couflave
bw davew Tus dvivew
'fP‘r 4 ‘.P«rz asa LA I L Y open
£ R Lye P
212 g2z e I e i o e i
|
RAam| [RAm R RAM RFr RAmM| |RAM RAM
Memery befoe] Pemewy buflee| [low avppess] [Lw Avpress
P 4 o LA TCH A
° ¥ KPe 4 pPv 2 tarzs
2iz g212 €212 2212 “flevs

= 154 -

APPENDIX F

SHARED MEMORY BOARD CONNECTIONS WITH THE

TWO PROCESSORS

MICROPROCESSOR 1

Connections 4 to 11 : Memory buffer o/p's
12 : WAIT 1
3. e AS address line from the high
address latch
14 to 21 : Bus driver o/p's
23 3 PlO3 line
24 : T3A line
254 & L
44 Ag address line from the high
address latch
59 : PCI.PCR line
60 : DBIN
61 : PCW.T3 line
62 to 69 : Low address latch o/p's

Connections

- 155 "=

SHARED MEMORY BOARD CONNECTIONS WITH THE

2 to

35, to

58 to

TWO PROCESSORS

MICROPROCESSOR 2

34
43
26
42
22
45
46
47
48
51
49
50

Bus driver o/p's
Ag address line

Ag addres line
Memory buffer o/p's
WAIT 2

P203 line
T3A

T1

PCW.T3

Low address latch o/p's
DBIN

PCI.PCR line

2 -

rpa eaaa

-
-
-

-
-
“w
-~
>
-4
~
b
-~
v
~
-
—n
=
b
R d
oy
-
-
e
-
-
T
]
Tw
b
bt
o
-0,
F
4
Lal
o™
e
<
b]
w

o| @lio|ixfra]iefig|asfanfxalas|2g|sa]s 3436 (3040 laz|as|ac|4ag|sofs2|salsclsg|ca]C2lsalce i<y
o =] -

-3 - - -] L] L]] -

CONNECTIONS

156

WITH THE TWO PROCESSORS

SHARED MEMORY BOARD PIN

°fr <
Memery Bus B c.m. M ewmo vy Won”.cktwgw ”M,Hﬁn.h
s
w? (. R e\m.-v E o P K o}vuw s 4 o\m_».v 5 5 eTum ks

VPe 4 pled p P2 «?p L Prd

- 157 -

APPENDIX ¢

INTERFACE CONNECTIONS BETWEEN THE 8008 AND THE 9900 PROCESSORS

9900 Connections

51 Memory Address O

50 Memory Address 1

49 Memory Address 2

48 : Memory Address 3

47 Memory Address 4

46 Memory Address 5

45 Memory Address 6

44 Memory Address 7

43 Memory Address 8

42 Memory Address 9

41 :. Memory Address 10O
40 Memory Address 1l
39 Memory Address 12
38 : Memory Address 13
33 Memory Address 14
58 : CRU CLK line

23 RESET line

56 CRU OUT 1line

57 CRU IN line

8008 Connections

62 to 69
14 o 2L
g ey Shl

-
b

Data o/p port 8.

Data o/p port 9.
Data 1/p port 3.

- 158 =

REFERENCES

F. Heart, S. Ornstein, W. Crawther and W. Barker.
"A new minicomputer/multiprocessor for the ARPA
network". Newnam Inc. Cambridge, Massachusetts, NCC

Proceedings, June 1973,

K. Ohmori, N. Koike, K. Nezu and S. Susuki.
"A multi-microprocessor system", COMPCON, September

1974,

L. Eaton and E. Page.
"An interprocessor communication scheme for multiple-
microprocessor systems", Clemson Univeristy, South

Carolina.

J. R. Pierce.
"How far can data loops go?", IEEE Transactions,

Comm - 20, June 1972,

J. May and L. Krakawer.

"The architecture of a multiple-microprocessor network

processor", Codex Corporation, Newton, Massachusetts.

M. Moore, Wright and Patterson,
"A distributed microprocessor system for avionics",

AFB, Ohio.

G. Reyling.
"Performance and control of multiple microprocessor

systems", Computer Design, March 1974,

10.

1l.

125

135

14,

= 159 =

S.Fuller, J. Ousterhort, L. Raskin, P. Rubinfield
and R. Swan.
"Multi-microprocessors: An overview and working example",

IEEE Proceedings, Vol. 66, February 1978.

S. Crowther, S. Ornstein, M. Kraley, R. Bressler and
F. Heart,
"Pluribus - A reliable multiprocessor", AFIDS Conference

Proceedings, Vol. 4, 1975.

J. E. Wirshing.
"Computer of the 80's - Is it a network of microprocessors?",

IEEE Proceedings, Compcon, 1975.

V. Ravindran.and T. Thomas,
"Characterisation of multiple-microprocessor networks",
Stanford University, California, IEEE Comp. Soc.

Int'l Conference, 1973.

C. W. Wiatrowski and C., R. Teeple.
"Add flexibility to your control system with distributed
data processing”, Instruments and Control Systems,

March 1976.

R. Nilsen.
"Distributed computer architectures", Hughes Aircraft

Company, California.

T. Burton.
"Multi-microprocessor systems comiine the efficiency",

Electronic Design, August 1977.

15,

16.

17.

18.

19,

20.

21,

22,

= 160 =

A. Weissberger.
"Analysis of multiple-microprocessor system

architecture", Computer Design, June, 1977.

A, J. Nichols.
"An overview of microprocessor applications", IEEE

Proceedings, Vol, 64, June 1976.

V. May and G. Forney.
"Application of LSI microprocessors in data network

hardware", Codex Corporation, Newton, Massachusetts.

M. Lewin.
"Integrated microprocessors", Transactions on Circuits

and Systems, No. 7, July, 1975,

M. Johnson.
"Microprocessors in unconventional architectures",

Honeywell Systems - Minneapolis, Minnesota.

P. Russo.
"Interprocessor communication for multi-microprocessor

systems", Computer, April 1977.

A. Weissberger.
"Distributed function microprocessor architectures”,

Computer Design, November 1974.

B. Parasuraman.
"High performance microprocessor architectures", IEEE

Proceedings, Vol. 64, No. 6, June 1976..

23,

24.

25.

26.

27

28.

29,

30.

= l6deo=

Intel Corporation, SBC 80/20 Hardware Reference

Manual, 1976.

Widdows.
"The minerva multi-microprocessor", Stanford Digital

Systems Lab., July 1975.

B. C. Searle and D. E, Freberg.
"Microprocessor application in multiple processor

systems", Computer, October 1975.

D. McAuliffe.and K. Hagstrom.
"Multi-processor application in communications

switching", North Electric.Company, Ohio.

Ford.
"Harware support for inter-process communication

and processor sharing", COMPCON Proceedings, 1976.

H. liorin.
"parallelism in hardware and software; real and

apparent concurrency", Prentice-Hall, 1972.

L. Anderson,
"The microcomputer as distributed intelligence", IEEE
International Symposium on Circuits and Systems,

April 1975,

D. Forney and J. V. May.
"8-bit microprocessors can control data networks",

Electronics, Vol, 49, No. 13, June 1975.

31.

32,

335

34.

3D,

36.

K 17 %

&1 1e2 -

A. Anden and A. Berenbourn.
"A multi-microprocessor computer system architecture",

Operating systems Review, Vol. 9, No. 5..

J. Harrison.
"Micros-minis and multiprocessing", Instrumentation

Technology, February 1978.

K. Hagstrom and B. Beizer.
"Communications processor system study", North Electric

Company, Ohio.

P, Jessel.
"Localised Microcomputer-processor based networks",
Massachusetts Institute of Technology, Cambridge,

Massachusetts.

K. Kerorbian.
"Microprocessors and LSI in stored program controlled

systems", Le Materiel Telephonique, France.

Baer -
"Multiprocessing systems", IEEE transactions on

Computers, December 1976.

J. W. Bowra and H. C. Torng.
"The modelling and design of multiple function unit

processors", IEEE Transactions on Computers, March 1976.

38.

a9,

40.

41.

42.

43,

44,

45,

= 163 =

B. N. Jordan and M. Gonzalez.
"Operation and control of multiple microcomputer

systems", Northmester University, Evanston, Illinois.

J. Bass.
"A peripheral-oriented microcomputer system", IEEE

Proceedings, Vol. 64, June 1976,

C. Ogden.
"Fundamentals of microcomputer systems", Mini-Micro

Systems, November 1977,

J. Nicoud,
"Peripheral interface standards for microprocessors",

IEEE Proceedings , Vol. 64, No. 6, June 1976.

R. Pond.
"Let microprocessors communicate", Electronic Design,

November 1977.

D. Larson.
"Microprocessor intertie and communication system",

Signal, April 1977.

D. Waddington.

"Microprocessors", Wireless World, 1974.

M. Helsig, D. Schueffler and C. Rose.
"Microprocessor based communication and instrument
control for distributed control systems", Systems

Research Center - Case Western Reserve University,

Cleveland.

46.

47.

48,

49,

50.

51,

92.

- 164 =

B. Kirk.

'Interrupts -- the tender trap", New Electronics, 1976.

B. Cook.
"Give flexibility to memory systems", Electronic

Design, September 1974,

H. Falk.
"Linking microprocessors to the real world", IEEE

Spectrum, September 1974,

G. Fishezx,
"Speed microprocessor responses", Electronic Design,

November 1975.

M. Gerla and L. Kleinrock.
"On the topological design of distributed computer
networks", IEEE Transactions on Communications, Vol.

COM-25, No. 1, January 1977.

J. Wakevly.
"Microcomputer reliability improvement using triple-
modular redundancy", IEEE Proceedings, Vol. 64, No. 6,

June 1976.

P. Enslow.

"What is distributed data processing systems",

Computer, Vol. 11, January 1978.

53,

54.

D

56.

D%

58.

59,

60.

61l.

= LGE

G. Reyling.
"Extend LSI-processor capabilities", Electronic

Design, October 1974,

C. Torrero.
"Focus on microprocessors", Electronic Design,

September 1974,

W. Farnback.
"Bring up your microprocessor bit-by-bit", Electronic:

Design, July 1976.

C. Bass and D. Brown.
"A perspective on microcomputer software", IEEE

Proceedings, Vol. 64, No. 6, June 1976.

"Microcomputer may answer a need in gour next design

project", Article. Product Engineering, 1976.

"Designers need and are getting plenty of help -

microprocessors", Article. Electronics, April 1976.

"Microprocessors - Designers gain new freedom on

options multiple", Article. Electronics, April 1976.

Intel MC8-8 User's Manual.

Texas Instruments - Assembly Language Programmer's

Guide.

62.

63,

64,

65.

- 166 -

A, Jones, R. Chansler, I. Duram and P. Feiler.
"Programming issues raised by a multiprocessor",

IEEE Proceedings, February 1978.

D. Melvin.
"Microcomputer applications in Telephony", IEEE

Proceedings, Vol. 66, No. 2, February 1978.

D. Stanzione.
"Microprocessors in Telecommunication Systems", IEEE

Proceedings,Vol. 66, February 1978.

Ve Klig.
"Biomedical applications of microprocessors", IEEE

Proceedings, February 1978.

