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SUMMARY 

A review of techniques for the calculation of deflection and stresses 
in circular plates has been made with the object of ascertaining the most 
suitable general approach for the analysis of plates under conditions of 
asymmetric loading. The semi-analytic finite element method was selected 
and has been successfully developed for use in this application. 

Computer programs are presented for the analysis of any annular or 
complete circular plate which is axi-symmetric in its geometric and 
material properties, but is leaded either symmetrically or asymmetrically. 
The programs have been applied to the analysis of several test cases and 
the results compared with those obtained by other means of analysis and, 
in some cases, from practical tests. Satisfactory correlation of the 
results indicates that the programs are sufficiently accurate for most 
practical purposes, and that they are computationally efficient when 

compared with other techniques. 

  

The problems associated with the analysis of plates stiffened by the 
use of radial ribs are discussed, together with the feasability of 

extending the semi-analytic finite element technique to handle this 
particular application. 
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A REVIEW OF ANALYTICAL TECHNIQUES AND PUBLISHED LITERATURR CN THE STRESS 
  

ANALYSIS OF CIRCULAR PLATES IN BENDING 

STATEMENT OF THE PROBLEM 

Many engineering structures make use of circular plates under 

various loading conditions. Common examples are the end plates of 

rotating machines, cover plates for apertures in pressure vessels, 

machine tool bedplates,and bulkheads in cylindrical tubes. The 

analysis of the deformation of circular plates is comprehensively 

presented by Timoshenko and Woinowsky-Krieger [3] and McFarland, 

Smith and Bernhardt [4] where it is shown that the general equation 

governing the bending of thin plates is a fourth order partial 

differential equation (the bi-harmonic equation). An analytical 

solution to this equation is readily available in simple cases such 

as when the loading is axi-symmetric and the plate is of constant 

thickness. In the case of asymmetric loading or variable plate 

geometry, however, an analytical solution is usually impossible due 

to the difficulty of finding functions which satisfy the governing 

equation within the plate and yet simltaneously fulfil all of the 

boundary conditions. Under these circumstances spproximate methods 

become essential. 

In many practical applications the loading on a particular 

ate may be of such magnitude that the deflection and stresses 

become unacceptably large if the plate is thin. The functional



requirements demanded of such a plate may be fulfilled by the use 

of a thick, plain plate but this may not be the most economical 

solution to the problem either in terms of cost or weight. A 

stiffened thin plate will often provide an acceptable design as it 

is lighter and may be less costly than a plain, thick plate and yet 

may be made sufficiently rigid by careful design of the stiffening. 

Plate stiffening is achieved in practice by the use of orthogonal, 

circumferential or radial ribs; the latter form probably being the 

most commonly used, though possibly the least well Ccocumented. 

The aim of the current investigation is therefore to attempt 

to develop a general method of analysis for asymmetrically loaded 

circular plates, with the secondary objective that the method 

should, if possible, be capable of future extension to incorporate the 

effects of radial stiffening. 

The following review of analytical techniques and published 

literature was carried out with the purpose of ascertaining the form 

of approach most likely to achieve the desired aims. 

ANALYTICAL TECHNIQUES FOR PLAIN PLATE PROBLEMS 

The general governing equation for the bending of thin plates 

is, as mentioned above, a fourth order partial differential 

equation. Circular plates are best defined in terms of cylindrical 

co-ordinates r, 9 and z in which case the governing equation is of 

the form 

Vow = 4 : y 

where V2 is the operator & ye eos oe ,.%) 
are r or r2 62 

p is the intensity of loading on the plate. 

w is the transverse deflection of the plate. 

D is the flexural rigidity of the plate. 

In general p,w and D are all functions of position on the plate.



Direct analytical solution of this equation is rarely 

possible; one exception being when the loading is axi-symmetric 

and the plate is homogeneous and of constant thickness, in which 

ease the equation reduces to a relatively simple ordinary 

differential equation where the loading and deflection are functions 

of radius only. In almost all other cases approximate methods of 

solution are required. Various approximate methods have been 

devised and the basic outline of some of these methods is discussed 

below. 

1.2.1 Galerkin's method 

This is a method of direct solution of the governing equaon 

based on the selection of an approximate displacement function W 

n 

w=) Gf; 
i iz 

where the Cj are constants to be determined 

in the form 

  

and the b; are co-ordinate functions that satisfy all the boundary 

conditions on the plate. 

A virtual displacement field may be defined by Sw, in 

which case, by consideration of both sides of the governing 

equation, ‘the virtual work done in moving through these virtual 

displacements is given by 

[(ovwsw ds or {,(piswas 

where the integral is the surface integral over the whole plate. 

As W is not the true displacement field these two expressions 

for virtual work are not automatically equal, however equality may be 

forced by suitable adjustment of the C;. 

The condition for equality is therefore 

{, (ovwig, Sc, ds = i, (p) SSC; 4s for (tise 

or 
five - 2 1GjdS= 0 for i=1,2,---.n



Application of this equation leads to a set of 

simultaneous equations from which the Cj may be evaluated 

This method is successfully used for the analysis of clamped 

plates in references [8] and [27] but the restriction that the 

assumed displacement function must satisfy all the boundary 

conditions (both kinematic and natural) makes the technique more 

difficult to use for plates with simply supported or free edges. 

1.2.2. The Ritz method 

Like the method of Galerkin, the Ritz technique also uses an 

assumed approximate displacement function. The Ritz method differs 

from Galerkin's approach however in that it is not a direct solution 

of the governing equation but relies on the existence of a functional 

which is to be minimised. In the case of plate bending the usual 

functional is the total potential energy of the system and the 

assumed displacement function need satisfy only the kinematic 

boundary constraints. The variational ideas associated with the 

functional and its minimisation imply that the Ritz method 

effectively generates a substitute finite degree of freedom problem 

from the original continuum problem. 

The Ritz and Galerkin methods can be shown to give identical 

results in many solid mechanics applications. The Galerkin 

approach is arguably the more fundamental as it is a direct 

solution of the governing equation and does net rely on the equation 

having a functional. The Ritz technique is often easier to apply 

however, due to the requirement that the assumed displacement 

function need not satisfy all the boundary constraints but only 

the kinematic ones. 

The detailed basis of the Ritz method and its application to 

circular plate problems are discussed extensively in appendices 

Band D.



1.2.5 The use of series 

The use of trigonometric series forms the basis of a direct 

method of solution to the governing equation by ussuming that the 

deflected shape of any circular plate may be represented by the 

co ea 
we din cosn8 + D_ sale sin n8 

n= n= 
where f£,(r) and By (r) are functions of radius only. 

infinite series 

This displacement function is substituted into the governing 

equation and the resulting expression is then made to satisfy all 

the boundary conditions, thus resulting in the evaluation. of the 

arbitrary constants which sre associated with f,(r) and én(x), and 

arise from the original substitution of the displacement function 

into the governing equation. 

The method is approximate because in practice only a finite 

number of terms can be handled and the accuracy of the solution 

depends on taking a suitable number of terms to give convergence 

of the series to the required degree of accuracy. 

A general description of solutions using series is given in 

references [3] and [4] whilst Sopenose C discusses an application 

to the particular problem of a clamped-free annular plate under 

concentrated edge loading. 

Coull and Das [18] have used the method in a slightly more 

sophisticated manner in the analysis of curved bridge slabs which 

are in the form of annular sectors with boundary conditions as 

shown in figure 1.1 below 

free 

Displacement function is :- 
s.s) Sr S. 

free we SR sin D8. 
AN x 5 + 

Ne a * 

or WA (R is a funtion of radius only) 
i) / 
Vay 
We



The general solution to the governing equation Vow = & 

is of the form 

We Wp + Wh 

where w, is the honogeneous ae and Wp the particular integral. 

The evaluation of Wp is very difficult for complex load patterns 

and the feature of their paper is that the loading on the slab is 

represented by circumferential line loads expreseed in the form of 

Fourier series. This makes the particular integral zero and the 

solution is given by the homogeneous part only, the load being 

represented by a discontinuity in shear force at the load line in a 

manner similar to that used in the step function method for the 

solution of beam problems. 

The method of solution by series gives a satisfactory means of 

analysis for many problems but has the disadvantage that it is a 

fairly lengthy technique to apply and every type of problem has to 

be treated as an individual case. 

1.2.4 Finite difference and finite element methods 

The main features and relative merits of these techniques are 

discussed in section 3.1. With respect to the current application, 

however, the rapid development of finite element techniques in the 

late 1960's and early 1970's, especially with the introduction of 

new elements with curved boundaries, has made this approach very 

attractive for handling circular plate problems. Contributions of 

note in the development of such elements are those of Olson, 

Lindberg and Tulloch [22] , Sawko and Merriman [23] and Singh and 

Ramaswamy [24] all of whom have developed annular sector elements 

with varying degrees of sophistication a discussed in more 

detail in section 3.5. These elements enable a satisfactory 

analysis to be made for most circular plate problems, and could 

possibly be extended to incorporate the effects of stiffening, but 

have the disadvantage of requiring considerable computer time and
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storage requirements. 

Many types of component and structure exist in which the 

geometrical properties are constant in one specified direction. In 

certain cases it may be possible to simplify the analysis of such 

components or structures by taking advantage of this geometrical 

characteristic. Zienkiewicz [13] describes the basis of a semi- 

analytic finite element method which takes advantage of such 

geometrical properties and which may result in considerable 

economies in computational effort. This approach is discussed in 

section 3.4. Zienkiewicz and Too [17] use the semi-analytic 

technique in the solution of bridge deck problems similar to that 

previously analysed by Coull and Das, but application of the 

technique to circular plate problems appears to be a valuable 

application that has not yet been explored in detail. 

ANALYTICAL TECHNIQUES FOR STIFFENED PLATE PROBLEMS 

A typical application of a stiffened plate is illustrated in 

figure 1.2a which shows the use of a radially ribbed plate in a 

crushing mill whilst figure 1.2b shows the effective loading on the 

plate. 
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FIG. 1.2 
One of the earliest references to the strength of radially 

ribbed plates was the discussion by Biezeno and Grammel [25]of a 

plate carrying a sealing gland as shown in figure 1.3
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FIG. 1.3 

Their solution to this particular problem was very approximate 

and intended only as a means of assessing the stresses in the flange 

ring carrying the seal. There was no real attempt to calculate 

stress distribution in the plate but their analysis did show, in 

very forceful terms, the adverse effect of the ribs in the form of 

stress concentrations in the flange ring. 

In the decade 1960-70 a considerable effort was made to analyse 

the vibrational behaviour of stiffened plates,of which the 

contributions by Kirk [26] for rectangular plates and Desiderati & 

Lavra [27] for elliptical and circular plates, were notable. The 

Rayleigh-Ritz method was widely used and gave satisfactory results 

provided that the ribs were small and closely spaced. Although the 

overall elasticity of the plate needed to be considered,the effect 

of the discontinuities in plate geometry on the stress distribution 

was ignored. The idea of incorporating the effect of the rib by means 

of using orthotropic plate theory was also introduced in this period. 

The characteristic of all of these papers however was that they only 

investigated plates with orthogonal ribs,and although they contained 

some useful principles they were only of limited direct use in the 

context of the present application. 

A paper by Harvey and Duncan [28] dealt directly with the 

problems of radially stiffened circular plates and was probably one



of the earliest comprehensive assessments of the problem. Their 

contribution was mainly in the form of experimental deflection 

results that were obtained by interferometry techniques. They 

pointed out the difficulties in theoretical analysis and used as 

their mathematical model a system of thin sectorial plates that 

served to collect the loading (in their case only internal pressure 

was considered) and transmit it to the ribs. Their theoretical 

predictions of deflection showed errors of at least fifty per cent 

and presumably any attempt to calculate stresses from deflections 

with this order of error would be virtually useless. The large 

errors in their results were due to the fact that the plate and ribs 

cannot be treated in isolation,as the plate stiffens the rib and 

therefore a portion of the plate should have been associated with 

each rib thus forming a T-beam. 

Independently of Harvey and Duncan,and apparently unknown to 

them probably because the paper was not available outside Russia at 

that time, Rubach [29] had been working on the problem of a radially 

ribbed plate with a point load at its centre. He introduced the vse 

of orthotropic plate theory in cylindrical co-ordinates as a means of 

representing the ribs although he particularised the ribs, for 

mathematical convenience, into the form where their circumferential 

width was proportional to radius. His work was followed by Mlotkowski 

[30] who studied the effect of a central moment on the plate and 

subsequently by Leyko et.al. [31] who attempted to further generalise 

the geometry of the plate considered. Although all of these authors 

claim to produce a satisfactory analysis, the use of orthotropic 

theory does not give a result that can be presented with conviction, 

especially if the ribs are not small and closely spaced. Some of 

the methods used, notably the latter, may be lengthy due to the plate



being represented by a series of annular rings and the need eae 

subsequent matching of the boundary conditions at common radii. 

This was not a finite element approach in the usual sense as it 

was not a variational technique although it did mean that final 

solution involved solving many simultaneous equations. 

10.
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INTRODUCTION TO THE CURRENT INVESTIGATION 

Zal 

2.2 

AIMS OF THE INVESTIGATION 

The main aim of the investigation was the development of a 

general technique for the analysis of deflection and stresses in 

annular and complete circular plates under the action of both 

axi-symmetric and asymmetric transverse loading systems of the type 

which commonly arise in practical applications. Attention was to be 

paid to the minimisation of any computational requirements both in 

terms of storage and processing time. 

Many applications of circular plates require the plate to be 

stiffened by the incorporation of radial ribs. The possibility of 

extending any proposed technique in order to include this configur- 

ation was a feature to be kept under review as development of the 

technique proceeded. 

SELECTION OCF THE METHOD OF ANALYSIS 

Some of the early researchers mentioned in chapter 1 had 

achieved a measure of success, especially in vibration problems, by 

using the Ritz method. This technique is attractive in its basic 

simplicity of approach and was therefore explored further in terms of 

its suitability for use in this particular application. Appendix D 

describes the work carried out using the Ritz method and shows that 

a limit of usefulness was reached at a stage somewhat short of that
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required due to the complexity of algebraic manipulation and the 

unsatisfactory accuracy of the stress calculations. It was 

accepted, however, that the method may still be useful in some 

limited applications. 

The use of Galerkin's method was discounted on the grounds that 

it would suffer from similar, but probably more severe restrictions 

than the Ritz method. Thiswasdue to the difficulty in defining an 

approximate displacement field in terms of a single expression 

which satisfied all boundary conditions and that did not result in 

extreme algebraic complexity in the subsequent calculations. 

Analytical solutions using trigonometric series for the 

description of the displacement field have proved very successful in 

many unstiffened plate applications,but the problems associated with 

applying this type of analysis to stiffened plates gave rise to some 

reservations as to its accuracy. The commonly used approach,whereby 

the effect of the ribs was introduced as an orthotropic property of 

the flexural rigidity of the plate,was of questionable validity for 

plates stiffened by the use of radial ribs due to the situation that 

with the relatively small number of ribs generally used in practice 

it was not acceptable to regard the ribs as being closely spaced. 

Even assuming that a satisfactory overall picture of deflection 

could be achieved by this technique it is doubtful whether the stress 

field in a stiffened plate could be calculated with sufficient 

accuracy to be of practical use. 

Finite element and finite difference methods were considered; 

the relative merits of the two techniques being discussed in 

section 3.1. On the basis of the points made in that discussion 

the finite difference method was discarded as being no easier to 

apply, and also unlikely to yield a more accurate solution than 

the finite element approach. The finite element approach was also 

attractive in that once a computer program had been developed a
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whole range of problems could be solved simply by specifying the 

plate and loading details as input data. 

One of the original aims was to minimise the demands made on 

computer time and storage. When the possibilities of a semi- 

analytic finite element analysis became apparent, this approach 

was selected in preference to conventional finite elements on the 

grounds that considerable savings in eonpue ener effort may be 

achieved. The investigation therefore developed into the application 

of the semi-analytic finite element method to the analysis of 

circular plate problems. 

AN OUTLINE OF THE DEVELOPMENT OF THE INVESTIGATION 

Any investigation of this nature must obviously make continual 

reference to the basic behaviour of thin plates in flexure. For 

this reason the basic theory and the resulting expressions describing 

this behaviour were studied and are presented in appendix A. 

All finite element methods have their foundations in variational 

principles and energy methods. Many formulations of the finite 

elenent method have been proposed, for example the displecement, 

force and hybrid formulations, but a common feature of them all is 

that they are based on the use of variational principles for 

investigating the existence of stationary values for some particular 

functional which is defined in terms of the energy quantities 

associated with the plate and its loading. A discussion of 

variational principles and energy methods with particular reference 

to plate bending is given in appendix B. : 

The displacement formulation of the finite element method is 

the formulation most commonly used, largely due to the fact that 

assumed displacement fields and inter-element continuity of 

displacements are a simpler concept to envisage than a formulation 

involving assumed stress fields and equilibrium criteria. A 

detailed discussion of the displacement formulation of the finite
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element method is given in chapter 3 together with a description 

of the principles involved in the use of the semi-analytic 

pechniguel Particular features associated with the displacement 

formulation in its application to problems of plete flexure are 

also discussed. 

As a first stage in the development of plate analysis, the 

problem of the flexure of plates under axi-symumetric loading was 

considered. The value of analysing this relatively simple problem 

was that it served to highlight those aspects of the analysis 

which were likely to produce further difficulties as development 

progressed. The basic problems of defining element shape functions, 

together with the computational aspects of element stiffness matrix 

generation,and assembly and solution of the final equations could all 

be overcome at this stage in an application where classical analytical 

solutions were available for comparison. This stage of the investig- 

ation is described in chapter 4 together with full documentation for 

use of the computer program 'SYMPLAT' which analyses the deflection 

and stresses in any axi~symmetrically loaded,complete or annular 

plate. This program is of considerable practical use in its own 

right as it enables an analysis to be made in cases where classical 

analysis may be extremely difficult. A typical example of this is in 

applications where there is a radial variation of either the plate 

thickness or the material properties. A feature of the axi-symmetric 

nature of the loading was that the problem was quasi-unidimensional, 

and a conventional finite element apvroach using annular elements 

was adequate and computationally efficient. The satisfactory 

development of 'SYMPLAT',and confirmation of its viability by 

comparison with classical solutions to several test cases,meant that 

the next stage in the investigation was to extend the analysis to 

accept asymmetric loading on the plate.



4 The immediate effect of considering asymmetric leads was that 

the problem became fully two-dimensional. Several authors have 

previously analysed the problem using conventional finite element 

techniques but in the case where the loading was asymmetric, 

provided that the plate geometry and material properties were 

axi-symmetric, it was apparent that the semi-analytic approach may 

be possible. The development of this semi-analytic approach is 

presented in chapter 5 together with documentation for use of the 

program 'ASYMPLAT'. This program analyses the deflection and 

stresses in axi-symmetric plates with asymmetric loading. A 

rigorous analytical solution for problems of this type is not 

generally possible but approximate, series solutions have been used 

extensively. A particular problem used as a test case for 'ASYMPLAT! 

was that of a clamped-free annular plate with a concentrated edge 

load. An analytical,series solution to this problem is presented in 

appendix C for purposes of comparison. This problem was investigated 

in some depth in that a test rig was also constructed in order to 

obtain experimental confirmation of the validity of the theoretical 

deflection and stress predictions. The design, construction and test 

procedures for this rig were all carried out under the direct 

supervision of the author and have been described in detail by 

Wilson [20]. An abridged description of this experimental work is 

presented in appendix C. The final form of 'ASYMPLAT' has been 

proved to give deflection and stress predictions of satisfactory 

accuracy for most practical purposes by comparison of its results 

with the solutions to several test cases which have been analysed 

previously using other techniques. The program is now in a 

condition where it can make a useful contribution to problems which 

fall within its range of application and would appear to be of such 

computational efficiency as to justify its use in preference to most 

other forms of analysis.
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The application of the semi-analytic finite element approach 

to the problem of radially stiffened plates has nct yet been 

explored in detail but some comments on the possibilities of this 

application are discussed in chapter 6. An introductory analysis 

of radially stiffened plates has been attempted by using the Ritz 

method in the case of a complete plate stiffened by a single 

diametral rib. The analysis of this plate’ is discussed in appendix 

D and again shows that the Ritz method is capable of producing 

adequate predictions of deflection but is seriously in error in its 

stress predictions. Since no other form of analysis was available 

against which the Ritz predictions could be compared, a program of 

experimental work was initiated on the measurement of deflection 

and strain in radially ribbed plates. The use of small scale metal 

models of stiffened structures often results in models which are too 

stiff to allow accurate measurement of the deflections under load. 

For this reason the application of thermoplastics for the manufacture 

of stress analysis models was investigated, the work being carried 

out by Leighton under the supervision of the author. The results of 

this investigation were published in reference[34] and are 

summarised in appendix E where it is proposed that Vybak is a 

suitable material,and guidance for its use in the current application 

is given. The experimental work on ribbed plates fabricated from 

Vybak sheet was performed by Edwards under the supervision of the 

author and the results have been published in reference [35] . A 

selection of these results for comparison with the theoretical 

predictions of the Ritz method is given in appendix D.



THE FINITE ELEMENT METHOD 

THE DEVELOPMENT OF NUMERICAL METHODS IN SOLID MECHANICS 

In the field of solid mechanics the description of deformation 

and equilibrium of simple systems can often be achieved in terms of 

relatively straightforward equations which have well established 

solutions. As systems become more complex, either in terns of 

their geometry or applied loading, the mathematical problems 

associated with an analytical solution may become very severe. 

Many common engineering structures are too complicated to be 

regarded as a simple collection of interconnected rigid bodies 

with a finite number of degrees of freedom. The study of 

continuue mechanics, with the implication of an infinite number of 

degrees of freedom, then becomes essential. The use of continuum 

theory does, however, lead to system behaviour being defined in 

the form of partial differential equations. The major problem is 

then that even if solutions to these equations are available, it 

is only in very few special cases that they will exactly satisfy 

the required boundary conditions of load or geometry. 

In the absence of analytical solutions to the majority of 

continuum problems the ap>roach is either: 

(a) to attempt to solve the describing equations of the actual 

system by approximate methods or 

Ay.
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(b) to devise an approximate system, the describing equations 

of which are known to be amenable to solution. 

The advent of high speed digital computers with large storage 

capacity has hastened the avnlication of numerical solutions to 

continuum problems. The two major techniques that have been 

developed are the finite difference ani finite element methods; 

corresponding to the above solutions of types (a) and (b) 

respectively. In recent years the finite element method appears 

to have established itself as the more important of the two and 

the outline of the techniques given below provides some 

indications es to the reasons for this popularity. 

Historically the finite difference method is the older of the 

two, having first been used in the solution of solid mechanics 

problems approximately seventy years ago, although one of the first 

successful applications to plate theory was not until that made by 

Marcus in 1919. The method, which is outlined in references [1],(3] &[4], 

provides an approximate numerical solution io the overall 

describing equation and is based on dividing the region over which 

the equation is applicable into a mesh. The derivatives or partial 

derivatives in the equation are then replaced by finite difference 

expressions which approximately relate the value of the derivatives 

at any given mesh point to the value of the field variable at the 

point in question, together with its value at neighbouring mesh 

points. The original equation is therefore replaced by a set of 

simultaneous finite difference equa tones the solution of which 

gives the values of the field variable at the mesh points. 

The finite element method is the subject of very extensive 

literature with references such as 13], (14), (15] and [16] being 

typical of the many books available. Martin and Carey [14] present 

a@ comprehensive history of the development of the finite element 

method from its initial use over thirty years ago, through its
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very rapid development in the 1960's as computer facilities 

advanced and up to the very sophisticated state of development 

that it has reached today. The finite element approach is a 

variational one based on sub-dividing a continuum into discrete 

elements,connected together only at nodal points, and then 

defining the behaviour of each element in terms of adjustable 

nodal parameters. The values of the nodal parameters are then 

adjusted so as to minimise a prescribed functional. The 

advantages of the finite element method over the finite difference 

method may be summarised as 

(a) a graded or irregular mesh generally presents few problems. 

(b) discontinuities can be handled relatively easily. 

(c) irregular boundaries are less of a problem. 

(a) the analysis of each element is an independent process,which 

is not the case with finite differences. 

Henshell [12] also claims that since the finite element method 

is a variational approach it is potentially more accurate than the 

finite difference method. This claim would appear to be difficult 

to substantiate however, as there is little reason to suppose that 

the mathematical modelling ideas used in the finite element 

approach are necessarily superior to those used in a finite 

difference analysis purely because they are based on variational 

principles. 

The main limitation on the use of the finite element method 

is the speed and storage limits of the computer. For this reason 

a considerable amount of effort must be directed at the efficiency 

of the elements and numerical processes. 

THE CONCEPT OF FINITE ELEMENTS AS A VARTATIONAL METHOD IN SOLID 
MECHANICS 

Any continuum may be regarded as an assembly of discrete 

elements of any desired shape and size. The most common fomof
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the finite element technique in solid mechanics is the so-called 

displacement or stiffness formation in which the displacement 

field within each element is approximately defined in terms of 

assumed degrees of freedom at a selected number ot nodal points, 

the elements being interconnected only at these points. The total 

potential energy for the element is then determined as a function 

of the nodal freedoms. The elements are assembled and the 

relative sizes of the nodal freedoms adjusted to minimise the total 

potential energy of the system hence, by the principle of stationary 

total potential energy, the equilibrium configuration is defined. 

This energy principle is discussed in detail in Appendix B and it 

becomes apparent that the displacement formulation of the finite 

element method is in effect a piecewise application of the Ritz 

method. 

THE DISPLACEMENT FORMULATION IN DETAIL 
  

3.3.1 Strain energy of an element in a solid continuum 

The displacement field within any element in a general three 

dimensional case can be described in terms of three orthogonal 

displacements of any point within the element. Each of these 

displacements will be a function of the three Cartesian 

co-ordinates that define the position of the point, i.e. 

where u, v and w are each functions 
fu 

Displacement field, {re} = {| of oY ends 

In a displacement formulation it is required that the 

displacement field within an element should be described in terms 

of adjustable nodal parameters. These parameters become the 

degrees of freedom that are allowed for e-ch element and are 

usually the displacements or derivatives of displacements at the 

nodes. If a continuous displacement field is to be descrived by 

the use of discrete nodal freedoms it is implicit that a set of
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co-ordinate functions needsto be devised thus:- 

ff} = [ing [Ng]-- £8 }--LNp] | i 

or §} a INI $$ #° (3.1) 

Where SSR"is a column vector of the nodal degrees of freedom 

for the element with p nodes and q degrees of freedom per node 

giving a total of r freedoms per element. [Note that r is not 

necessarily (px q) as q need not be the same for all nodes]. 

The [Nj] are, in general, fully populated (3 x q) matrices each 

element of which is a function of x, y and z and so chosen that if 

the nodal co-ordinates are inserted for x, y and z then ir} becomes 

the appropriate nodal displacement. The elements of (NjJ are called 

Shape functions and must be continuous functions within the region 

of the element. The accuracy of the whole solution is dependent on 

the degree of correspondence between the chosen shape functions and 

the true deformed shape of the element. 

If compatibility between strain and displacement within the 

element is analysed, the relationship between these two quantities 

may be summarised as 

fe }= [6] {f} (3.2) 

Where, in a general three dimensional situation, Se} is a 

(9 x 1) column vector consisting of three direct strains and six 

shear strains. Also in this general case [G] will be a (9 x 3)
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matrix whose elements are all partial derivatives with respect to 

the three co-ordinats directions. 

By combining (3.1) ana (3,2) 

Se }°= [GIIN] §S3° 

or fE%°= 1B] §S7° where (BJ=IG]IN] - (3.3) 

If the material from which the element is made behaves in @ 

linear, elastic manner under load then the internal element 

stresses may be related to the strains by the equation 

fox}®= 101 fEf® (3.4) 

Where fo}"consists of three direct stresses and six shear 

stresses. [D] is, in general, a (9 x 9) matrix, i.e. 81 elements of 

elastic constants. Due to symmetry of the stress and strain 

tensors only 21 of these constants need to be independent and if 

the material is isotropic these 21 can be reduced to 2. 

The total strain energy of the element can be shown to be 

given by 

uae fey" foleav (5.5) 
Note that in equation (3.5), if engineering shear strains v 

are used in place of the shear strains € , where U= 2€, then due 

to the symmetry of the stress and strain tensors, the size of x 

and fo may be reduced to (6 x 1) as each pair of shear components 

need be listed once only. 

Equations (3.3) and (3.4) may now be substituted in equation 

(3.5) to give ne 

ureb | is (B81 (D](B1 $6 feav 

Noting that in general [B] and [D] are now only (6 zx 3) and 

(6 x 6) respectively. 

us 
(§83 Fer fs} i) (3.6) a 

2 

Where rf, tel'(p If B)av (3.7)



23. 

{k] is called the element stiffness matrix. 

(Note the glen of form between equation (3.C) and the strain 

energy expression for a simple spring where U = hice? ] 

Strains and stresses due to initial values and temperature 

effects can also be incorporated if required but have not been 

included in the ‘Giscusston as they are not relevant to this 

investigation. 

3.3.2 Potential energy of the applied loading on an element 

The forces on an element arise from two sources, namely body 

forces and surface tractions. 

Body forces are defined in terms of a force per unit volume 

which may vary throughout the element and are produced by 

phenomena such as gravitational, electromagnetic and centrifugal 

effects. 

Surface forces are defined in terms of force per unit area and 

may vary over the surface of the element. These forces are caused 

by applied loads, fluid pressure, etc. 

In matrix form the body forces and surface tractions may be 

written as 

Ry Ty 
Body force §R} = Ry) and Surface traction $3 = yy 

Ry Ty, 

Where the elements of fry and $03 are all functions of x, y and z. 

The work done by these forces on any element in a virtual 

displacement afr? is given by 

Virtual work =f frSafrav + f frftafezas 

But from equation (3.1) d ff} = (N14 {$9° 

. . Virtual work = j, frst In 1afSkeav + 5, fr3t in 1afsieas
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The potential energy of the loading on the element, d0® is 

-(virtual work) 

Hence dQ°= - Sy, fg" INTd§Sfav — 5, gr}! inda{st*as (3.8) 

The volume integral for fhe body forces is taken over the 

whole volume of the element. 

The surface integral for the tractions is taken over the area 

for which the tractions are. prescribed. i 

It is convenient to express the potential energy of the 

loading in terms of a set of equivalent nodal forces moving through 

their respective virtual nodal displacements. 

or a. = — fp} afe}® (3.9) 

Where {3 is a colum vector of equivalent nodal loads which, by 

comparison with equation (3.8) are derived from 

{p} = J), ona fRtav e {, ind’ §tfas (3.10) 
3.3.3 Whe principle of stationary total potential energy 

If this principle is to be applied to the whole continuum it 

is necessary to collect together the energies for all the elements. 

From equation (3.6) the total strain energy for the continuum 

is given by 

Us a £Qs}° tk}, sy) 
k=1 

Where Soye and (k]. are respectively the nodal freedoms and 

the stiffness matrix for the kth element in a system consisting 

of m elements. 

This may be rewritten as 

u = T§sjet cre feje (3.11) 
Where $59 is now a list of the nodal freedoms for all the 

elements i.e. it is a [(x xm) x 1] column vector, and [K]® is 

a diagonal matrix of the individual element stiffness matrices as 

follows
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tke = Fok 

Uae oe ia s o by, Kink (3.12) 

Equation (3.10) defined the manner in which distributed loads 

on the elements may be apportioned to the nodes. If concentrated 

loads act on the continuum the simplest way to allow for their 

effect is to select the size and shape of the elements to ensure 

that the concentrated loads are positioned at nodes. The potential 

energy of the loading on the continuum is then given by 

o--[ SHE) + Gots) 
Where {a} are the concentrated loads acting at the nodes of 

the continuum which have displacements §54 «+ Both fa} and $y 

are therefore (n x 1) in size where n is the number of global 

nodal freedoms in the continuum. 

Contiguous elements are connected only at the nodes and hence 

any summation over all elements will, at any node, consist of 

contributions to the quantity being summed from all elements that 

meet at the node. The expression for the potential energy of the 

loading may therefore be written as 

0. =~ [f9'{s3 + fat] 
Where §'% is a vector of equivalent nodal loads on the continuum, 

the elements of which consist of the summation of the appropriate 

elements from the §r} vectors. 

ay 1022 fe ist (3.43)
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Where srt = §p + fa3 and is the total equivalent nodal 

loading on the continuum. 

From equations (3.11) and (3.13) the total potential energy 

of the continuum is 

Ve Us Qe L fst fsi" ~ fet {5} (3.14) 
The displacement of the continuum is defined in terms of the 

n global nodal freedoms. If the principle of stationary potential 

energy is to be applied it is now required that 

S(V)=0 

or no = abe st 3 = 0 since the § are arbitrary 

Considering the sth global nodal freedom, from equation 

(3.14), the contribution to §(v) from the potential energy of the 

loading is 

ae ak 
(3.15) S 

The strain energy contribution will consist of the derivatives 

  

2 
of terms of the form 46 kj for i=j and § Ski for is:j 

(due to the symmetry of [k] ). Since several elements may meet at 

the sth global node, au is given by 
dbs 

3/1 2 3 a es ci 5, 5k) (3.16) 
Where the summation is over all elements having one of its § 

  

equal to the global $5 

Collecting together the results from equations (3.15) and 

(3.16) for the gth node, the condition §(V)=0 for the continuum 

may be expressed in terms of n equations thus 

(K1{S3= fF} (3.17) 
Where the elements of the assembled system stiffness matrix [K] 

consist of the summation of the appropriate elements from the 

element stiffness matrices {k] . [K]) will be a symmetric, banded 

matrix whose bandwidth is dependent on the node numberin, system.
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For a given continuum under a specified load system equation 

(3.17) may now 6 solved to give the magnitude of the nodal 

freedoms. 

THE SEMI-ANALYTIC FINITE ELEMENT METHOD 

3.4.1 General Theory 

Many problems occur in practice in which the poometry, and 

material properties of a particular continuum are constant with 

respect to one of the chosen co-ordinate directions. In a few 

special cases, such as that for plane strain when there is no 

variation in transverse loading with respect to this particular 

co-ordinate direction, it may be possible to simplify the analysis 

of deformation and stress by considering a reduced problem using 

fewer co-ordinates. In general however even if the continuum has a 

direction with constant properties of geometry and material 

behaviour the transverse loading is often not so simply defined 

and a reduction in the dimensions of the problem is not possible. 

The semi-analytic finite element technique has been developed 

largely by Zienkiewicz [13] and [17] for solid mechanics applications 

and is a method which takes advantage of the directional properties 

of the continuum but represents the transverse loading in the form 

of a series of orthogonal functions. It will be shown that it then 

becomes possible to replace the original problem by 2 series of 

substitute problems of reduced size because they do not involve the 

particular co-ordinate along which the continuum properties do not 

vary. The complete behaviour of the continuum is then approximately 

described by the superposition of the results of the substitute 

problems. 

Consider a three dimensional continuum whose geometry and 

material properties are constant with respect to the z direction, 

the continuum being contained within the range 

O<z<c
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The displacement field within an element may be written as 

before fr} =(N] §5i° 

where the N are functions of x, y and 2 

a e 
But now tN1§s} may be expressed in such a form as to give 

L 4 

fr} oa (rodina gst?) ¢ (3.18) 
=1 . 

Where [N] = [IN,1, (Nj]--- tN, 1=== (0) as before but the elements 

of the [Nj] are functions of x and y only 

And re = pg o 860 

gt, gs and gs are functions of z only and satisfy at least the 

geometric boundary conditions on z = 0 and z= c. The summation of 

the ge must also represent a continuous function over the range of 2. 

The ie now become the contribution to the total displacement field 

due to each of the 'shapes' gt 

If equation (3.18) is now used in the formation of an element 

stiffness matrix following the same procedure that was used to 

derive equation (3.7), the following types of term may de 

generated :- 

Cc 

(at af 
Fat (aP iz Fist! AP az | 

Saf oP iz caf" of az , 
3.19 

Sati igh fez Fatitabvar oe) 
| J Gil i) 

C 

Seis" wy Yee 

Where the prime signifies the derivative with respect to z and 

i,j = 1,.2%0r 3 

Qh=1,2,----.L
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In the derivation of equivalent nodal loads if only the body 

force component is considered as an example then body force 

distribution on an element may now be written as 

le: 

frt- > rotate} (3.20) 
£=1 

where the elements of {re} are functions of x and y only. 

The virtual work done by forces {x} moving through displacements 

d fr} may now be calculated in the same way in which equation (3.10) 

was formed to give an equivalent nodal loading 

Le 

{ph} A ms Si 1 cata! rea {8 av (3.21) 
Ve21 hel 

The contribution to the nodal loading of surface tractions and 

other loads may be considered in a similar manner. 

£ h i r 
ae oF and go; are chosen to be orthogonal functions over the 

range of z then 
c 

j gt Braz = 0 for #h 
S #0 for £ Sh 

In many practical cases, and also due to the fact that sines 

and cosines are often used for the Bi, it will be found that for 

a Zz jand 4 #h the expressions (3.19) are either zero or do not 

appear during the element stiffness formation. The orthogonal 

nature of the B also ensures, by consideration of the nodal 

loading equations of the form (5.21), that the nodal loads 

are only associated with nodal freedoms §s%} 

The assembly of the complete system therefore reduces to the 

pita oO Tish) (é 
tk) f i 

(3.22) 
‘ 
t 

1 
| 
t 

1 

Oo ss : tki}] | {64 

The significance of this form is the complete decoupling of the 

general three dimensional problem into L separate two dimensional
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problems. Provided that the z variation in load and displacement 

can be adequately described by the summation of relatively few 

terms of the orthogenal series then this method may give a 

considerable reduction in both the time and storage required in 

computation. 

3.4.2 A note on orthogonal functions and generalised Fourier 
series 

(i) The concept of orthogonality applied to vectors 

(a) Two vectors A and B are said to be orthogonal if 

(b) 

(c) 

their scalar product is zero 

i.e. if A.B = |Al|Blcos@ =0 since @ is then zt 

Alternatively the vectors may be written as 

A= Aji + Apj + Azk and B= Bi + Boj + B3k 

where i, j and k are a set of mutually perpendicular 

unit vectors. 

Then for orthogonality of & and B 

AB : By + Ag Bo + Az Bs = 0 

or 2 As B, = 0 

A weston A is called a unit or normalised vector if 

Jal =1 

It follows from above that 

A.A =1 since |a| =1 ando=0 

Alternatively 

  i=1 
Extending these ideas into three dimensional space 

then any three vectors Bn (where n = i, 2 or 3) 

having components #,(r) (where r = 1, 2 or 3) are 

orthogonal if 

3 

Se By(r) =0) for myn = 1,2 or 5. 
r= 

but mAn
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The ec iote are also normal if 

>_[)l? = for n= 1, 2 or 3 

The Bau a both orthogonal and normal i.e. ORTHONORMAL 

if 3 

2 Bal) dy(2) = Sap (5.23) 
Where an = 1,2 or 3 and San is the Kronecker delta. 

(ii) Extension of vector concepts to functions 

Jn the same way that a vector in three dimensional space 

can be expressed in terms of an orthnormal set, it may be 

possible to express any function within a specified region by 

an orthonormal set of functions in an infinite number of 

dimensions within the same region. 

In mathematical terms, if a vector f has components 

f(r) that can be expressed as 

f(r) = CBn(r) where Nn=1, 2, 3 and Cyn is a 
rat constant coefficient 

Then it may be possible to express a function f(x) as 
oo 

f(x) = 2 CrBa(x) in the region a¢x<b (3.24) 

The By (x) are ted a set of orthonormal functions in the 

region agxgb and the series becomes an orthonormal series. 

The series is known as the generalised Fourier series. 

The practical problem in this analysis is to determine the 

coefficients Cy if a specified function f(x) is to be described 

in terms of any desired set of By(x). This problem may be over- 

come as follows - 

Provided the 'completeness' criterion is fulfilled, i.e. the 

series of equation (3.24) does actually converge to f(x), then if 
' 

each side of the equation is multiplied by 6,(x) and subsequently 

integrated over the region a to b we have 

b be ; 
{fog bdx = : on B(x) Falrddx
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But if the Br (x) are chosen to be an orthcnormal set of 

functions they mst satisfy the condition (obtained by extending 

the concept of equation (2.23) from vectors to functions) that 

I a ead = Smn 

This means that 
oS 

\ s CyG,%)Bnixldx is in fact simply Cm 
Snel 

Eence 
b 

oe [00 fink (3.25) 

The C,, are called the generalised Fourier coefficients. 

In practice it may be observed that provided f(x) and 

a[e(x)] /ax are at least piecewise continuous over the specified 

region then it is possible to represent f(x) by the use of an 

orthonormal series and the series will converge. Also in practice 

it is often found that trigonometric series provide an orthonormal 

set of functions that are both convenient to handle and at the same 

time ensure the disappearance of many of the terms of type (3.19). 

ASPECTS OF THE FINITE ELEMENT METHOD AS APPLIED TO PROBLEMS OF 
PILATE BENDING 

approximating function 
e 
vs 

Sed Characteristics’ required of th 

defining the e ent displac. 

  

      

  

Approximate displacement functions generally consist of a 

number of terms from a polynomial or trigonometric series, each 

term having associated with it an initially unknown coefficient. 

The accuracy of the final solution depends on the degree of 

correspondence between the approximating function and the true 

displacement of the element but the choice of terms used in the 

function is not completely arbitrary as certain requirements should 

be fulfilled as follows:- 

(a) There must be at least as many terms (coefficients) in the 

function as there are nodal degrees of freedom for the element.
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(b) The function should be such a3 to provide continuity between 

elements both at the nodes and along common boundaries. This 

compatibility condition is often difficult to attain if condition 

(a) is also to be satisfied. The result may be the formation of 

non-conforming elements but, as will be seen later, these elements 

are not necessarily discarded as useful results may still be 

obtained,although problems of lack of convergence may arise. 

(c) It is intuitively apparent that rigid body modes of element 

displacement may arise in practice and the approximating function 

must allow for their presence. Also, if the discretization of a 

continuum is progressively refined by an increase in number, and 

decrease in size of the elements it is to be expected that the 

general conditions of strain within any element will tend to become 

constant. The approximating function must therefore include terms 

defining a constant strain condition if convergence of the solution 

is to be achieved. 

(a) The approximating function must be continuous within the region 

of the element and be differentiable to at least an order equivalent 

to that which is present in the functional being used for the 

variational formulation of the problem. 

3.5.2 Illustration of the above characteristics in relation to 
Simple plate bending elements 

(a) Sim ie rectangular element 

Figure 3.1 below shows a rectangular element defined in 

a Cartesian co-ordinate system 
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The displacement of the element may be defined in terms of the 

geometrical conditions at the four nodes (1, 2, 3, 4). If continuity 

between contiguous elements is to be achieved at the nodes then the 

transverse deflection, w, and the slopes Ru and os must be 

specified as the degrees of freedom at each node; the element 

therefore having a total of twelve degrees of freedom. If a polynomiel 

in x and y is to be used for the approximating function it must 

therefore contain at least twelve terms. 

Possible rigid body modes of displacement consist of translation 

in the z direction and rotation with respect to the x and y axes. 

Linear terms in x and y, together with a constant term will atlow for 

the possibility of these displacements. 

The constant strain condition for a bent plate implies constant 

curvature, and curvature is defined in terms of the partial second 

derivatives of w. The approximating function must therefore contain 

quadratic terms in x and y. 

At this stage therefore, a polynomial may be formed thus:- 

W= a + aox + azy + agx? + agxy + agy2 

It is apparent that a further six terms are required. These 

extra terms may be selected from the general polynomial expression 

w= by (constant) 

+ box + b3y (linear) 

+ byx? + boxy + bey? (quadratic) 

22 b7x? + bex2y + boxy? + di oy? (cubic) 

a Bal + bjoxy + by3x°y+ bi4xy> + b15y4 (quartic) (3.26) 
etc. 

The selection of the cubic terms results in a further four terms 

and the remaining two must be chosen from the five available quartic 

terms. The two that are generally selected are the xy and xy? 

terms as it is found that use of the x+ and y? terms gives an even 

greater degree of nun-cornformability than that which will be shown to 

already exist.
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The finel approximating function is therefore 

W = aj + apx + asy + agxé + aoxy + agy? 

+ aqx? + agx’y + agxy@ + ayoy? + ay 4x°y + a4 oxy? (3327) 

If the form of the deflection and the normal and tangential 

slopes along any edge of the element are investigated it will be 

found that the deflection and tangential slopes are compatible 

between contiguous elements but that the normal slope is discontinuous. 

The element is therefore non-conforming. 

The fact that the element is non-conforming does not preclude 

its use however. Huebner [16] states that although conformability 

and completeness [as defined by compliance with conditions (c) and 

(a) of section 3.5,1.] are the only guarantee of convergence of the 

solution, it is still possible to have convergence with non- 

conforming elements and, in some cases, they may even be superior to 

conforming elements in terms of rate of convergence. 

The rectangular element discussed above is the simplest formul- 

ation available. Further refinement is possible by increasing the 

degrees of freedom; a common addition in this respect is the 

inclusion of it at each node thus giving the element a total of 

sixteen degrees of freedom. It may be shown that this element is 

fully conforming. 

(b) ®riangular elements 

Rectangular elements have been successfully used in 

practice but are somewhat restricted in their application due to 

difficulty in the discretization of plates of unusual shape. Most 

shapes may be represented with a reasonable degree of accuracy by 

sub-division into triangles. For this reason triangular elements 

have been extensively developed. The simplest form of triangular 

element is shown in figure 3.2 below
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FIG. 3.2 

If, as in the cace of the rectangular element, nodal freedoms 

Ww, Sw and +e are chosen, then the element has nine degrees of 

freedom. The general cubic of equation (3.26) has ten terms, which 

implies that one term must be deleted, and the polynomial is 

therefore incomplete. Deleting one of the cubic terms on an 

arbitrary basis would appear to be satisfactory, but in fact causes 

problems which range from a lack of convergence to a complete 

inability to provide a solution. A common refinement to this 

élement is to include the normal slope at the mid-point of each side 

as an additional freedom. It may be shown that this refinement 

results in a conforming element. 

3.5.3 Elements with curved boundaries 

Many plates exist in practice where the boundaries are in the 

form of circular arcs. Although discretization of such plates by 

the use of triangular elements is possible, a much more satisfactory 

solution results from the development of elements with circular 

boundaries. 

Olson, Lindberg and Tulloch [22] have developed an annular 

sector element which is, in effect, the cylindrical co-ordinate 

equivalent of the rectangular element described above in section 

3.5.2. They used the deflection and radial and circumferential 

slopes at each corner of the element as the nodal freedoms. The
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disnlacement function is equation (3.27) with x and y simply 

replaced by r and 0. The element is non-conforming but has the 

* advantage that it could be used in conjunction with rectangular 

elements to describe plates of unusual shape. Olson and Lindberg 

also developed a circular sector element in order to close the 

central space formed by the use of annular elements. This circular 

sector element presents considerable problems in its formulation 

which are discussed in detail in section 5.3. Their eventual 

solution to the problem resulted in an element which was non- 

conforming both with similar elements and with their annular 

element. They admit that their results using this element were 

disappointing but, rather surprisingly, did not try representing 

complete plates by the use of annular elements and leaving a very 

small central hole. 

Further refinement of the annular sector element has been made 

by Sawko and Merriman [23] and Singh and Ramaswamy [24] who 

successively introduced more degrees of freedom which made the 

element into a conforming type. ° (Further details of their elements 

are given in section 5.1).
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A FINITE ELEMENT ANALYSIS OF THE BENDING OF SYMMETRICALLY LOADED, 

UNSTIFFENED CIRCUZ 

4.1 

4.2 

R PLATES 

  

INTRODUCTION 

The purpose of this chapter is to explain the basic formulation 

of a finite element program to analyse the deformation and stress 

distribution in a symmetrically loaded unstiffened circular plate. 

The reason for choosing this particular problem is that it provides 

a means for developing the basic computational requirements in a 

finite element program whilst at the same time solving a problem 

with well known theoretical peeaite against which the validity of 

the computed results may be compared. 

Axial symmetry of both the plate and the loading means that 

the problem is quasi - unidimensional; the transverse deflection 

and in-plane stress distribution being functions of radius only. 

With this in mind the plate is discretized into elements that are 

either annular or complete central discs. The elements are fully 

conforming in terms of slopes and deflections. 

THE STIFFNESS MATRIX FOR AN ANNULAR ELEMENT 

4.2.1 Description of the displacement field and the development of 

shape functions 

Consider a complete plate in which the general annulus may be 

defined as in figure 4.1a. The inner and outer circumferences of
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the annulus become nodal lines and the transverse Jisplacement and 

radial slope at these lines become the nodal degrees of freedom as 

in figure 4.1b. 

es Neutral surface 
of annulus 

   
(a) (b) 

FIG. 4.1 

The initially straight radial line AB on the amulus is 

displaced to position A’ B' and it is now required that the 

displacement,w , of any point on the line be described in terms of 

the nodal freedoms & F &> 83 and &, . 

The displacement field may be expressed in terms of the nodal 

freedoms.as follows 

& 
{$= w =[Ny No Ng Nyl - (an) 

§, 
Where w and the shape functions N are functions of r only. 

The N may be derived by the process of interpolation to produce 

functions which satisfy specified geometric conditions at given 

boundaries. , 

4.2.2. A note on the process of interpolation in the generation of 

shape functions 

The basis of interpolation is to generate a set of functions, 

which for simplicity are often polynomials, that will approximate 

to an unknown function within a specified region and will satisfy 

given conditions as to the value of the function and/or its
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derivatives at selected points called tabular points. 

The books by Ralston (10) and Martin & Carey (14) are 

especially informative in this field; Ralston for his pure 

mathematical aspects and Martin & Carey for their application to 

finite element theory. 

Let £(x) be the unknown function, values of which, together with 

some of its derivatives, are known at the tabular points 

y(x) is a function we wish to generate in order to represent 

f(x) within a specified region. 

Define an error function E(x) such that 

E(x) = f(x) - y(x) 

It is required that E(x) be zero at the tabular points and as 

small as possible everywhere else. 

For ore Cr interpolation, y(x) may be written as 

y(x) = A, joe Mc) 
jaie0) 

Where 4s 5(x) are ae inx 

Also #(4) (x3 5) is the value of the ith derivative of f(x) at the 

jt) tabular point in an interpolation where there are n tabular 

points with derivatives of f(x) up to the nth order being known 

Hence Ek) = flx) - ry, wit! ss ) (4.2) 
2 jal 0! 

The simplest form of interpolation is that in which only the 

value of the function itself is specified at the tabular points. 

This is called Lagrangian interpolation and the Lagrange 

polynomials may be developed as follows - 

Using only the function itself implies that m= 0. The 405 

now become the Lagrange polynomials Ge) and equation (4.2) 

becomes 

n 

El) = fhe) =) Gx) og) 
jai
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Now E(x) must be zero at the tabular points, therefore when 

Sr a 

flx) = Dt) for et,2)--n, 

or filxy) = Six for j,k =1,2,----n, (Sis the Kronecker delta) 

A polynomial which fits this requirement is 

Doe one (xx 4 VO«-x544 )------- (x-x,) Cs) 

b- x) (xx 4 og Xa ) (x; -x,) 
  Sle) = 

Note the absence of the (x - x3) term. The Sx) are therefore 

polynomials of degree (n - 1). 

Lagrange polynomials find practical applications as shape 

functions for axial stiffness elements and plate stretching 

problems. Plate bending problems require definition of deflections 

and slopes at tabular points and therefore equation (4.2) with 

m=1 is used. 

The interpolation process with m= 1 is called Hermitian 

interpolation and Hermitian polynomials are generated as follows. 

Using m= 1, equation (4.2) may be re-written as 

n r a 

Elxl=flx) -| > ho telfle,) + ) hy. (x) fbx.) 
ia Jae ea j 
Ue Ue 

The interpretation of which is that there are n tabular points 

at which f(x) is known and at r of these n points the first 

derivative f! (x) is also known. The tabular points are at x = Xj 

and ho (x) and hy 5 (x) are the Hermitian polynomials. 

If E(x;)=0 for j=1, ..., n and B!(x;) 230 fore j= eee 

then the necessary conditions are:- 

  

For zero function error { ho5(x;,) = Sie Dak = Ws ooh (4.48) 

hy 5 (xy) ee Ay eat yells kD + 
ke 1,....0 (4.4) 

For zero first { 1 5 (2x) 2/0) QSi1y seat 
derivative error “ ice Ai clate i 

( By 5%) = Sie Haken ieser 4.44)



42. 

Noting that there are (n + r) conditions to satisfy,then the 

required function will be of degree (n + r - 1) 

In many practical instances, including the applications in 

this investigation, the first derivative is known at all of the 

tabular points hencen=r. If this is the case then a polynomial 

which may fulfil the required conditions for hg 3(x) is 

2 

hg; (x) = 400 [f00] 

Where £5(x) is ea Lagrange polynomial of degree n 

and t5(x) is a polynomial inserted for the purpose of making 

hg (x) of degree (2n - 1) 

This form of ho; will satisfy the requirement of equation 

(4.4a) if:- 

  tg) 24 for j=4,2-----n (4.5a) 

and that of equation(4.4c) ifs- 

bg) + 2g) = 0 for j=1.2-—--3n (4.5b) 

A form for t5(x) that satisfies equations (4.5a) and (4.5b) is 

ty) = 1 = 20x= x) G4) 
7 2 . Hence hg) = [1- 2x tt ]][ Gx] for j =1,2,----,n (4.6) 

In a similar manner, ay a form for hy 5(x) thus :- 

hy bx) : 59[ G00] 

This will satisfy equation (4.4) aa 

six; =0 for j =1,2-----,n (4.7a) 

and will also satisfy equation (4.44) if 

sil) 24 for jst 2-—----n (4.7) 

A form for s3(x) that satisfies equstions (4.7a) and (4.70) is 

sd =(x-x) 

Hence hylx)=(x-x)[Gba] for je12-—-n (4.8) 
Equations (4.6) and (4.8) thus make possible the formation 

of a set of polynomials which may be summed to give a polynomial 

that will represent the required function within the specified 

region and satisfy exactly the function and its first derivative
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at the tabular points. 

Applying these ideas to the subject of the current 

investigation and referring back to figure 4.1b there are two 

tabular points, therefore n = 2. The reauirements of the 

polynomials in r are:- 

At r =r, the function is §, and the first derivative is & 

At r= rg the function is 85 and the first derrvative is 54 

Now from equation (4.3) 

r- 
    for j=1, Alr) = hence Air) = 
i 0 . 2 

for j=2,  L{r) eee hence & (r} = _ 
Deh m4 

Therefore from equation (4.6) 

2 ror 
bolt) = [1 ate- q) fi alle 

| Be aan ihe Pearle : oan 3tr, nie (64 rr (r, 34 13| (4.9a) 

orate etree ee | : 
oa t (o=] cae 

tafe28 + ateyo4 1-16 lt +(3-4 18 | 

  

  

  

  

ite “5 (4.9b) 
And from Sea! (4.8) 

: f= 12 
halt) = traf aaa 

2 salt aaeni? + tol +2n )r - 4 (4.9c) 

rat 174 
fr) “tro | ee 

ee + 1 (2r, arair- Al (4.94) 

Thus giving the final interpolated shape wir) in the region 

q<r <5 as 

wir) = Rglr)& + hylr $5 + hyolr 5, + hyoir) 8, 
Comparing this form for wir) with that of equation (4.1) shows 

that the Hermitian polynomiais that have been generated are, in 

fact, the required shape functions. The 'shape' of the pelynomials
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is plotted in figure 4.2 

Unit slope          
Unit 
slope 2 

  

i hig el 
FIG, 4.2 

4.2.3 The stress-strain relationship 

The stress-strain relationship for a plate in bending is 

discussed in some detail in Appendix A, section A2.3. The 

relationship is summarised in equations (A4.2) and may be 

expressed in matrix form as follows: 

Go) eyo (ene 

ite a ent wom ven 
Tale el omeeon tevin ee 

Due to the symmetry of the plate with axisynmetric loading there 

are no in-plane shear effects and the relationship reduces to 

ie e 

& E ioe) € 
Oo ee ye a Es 

or fof? = [o] tau (4.10) 

4 y : were [o] « al) x = Eo [c] ae 

waere [c | ly | 

4.2.4 The strain-displacement relationship 

  
This also is discussed in Appendix A, section A2.2, The 

relationship is summarised in equations (A4.1) and may be expressed 

in matrix form thus:-
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e 2 
€ [ 

\ as €, all Ld SE, | fu} 
x oye a 
re L296 * r dae. 

Again, due to the symmetry of the loading, there is no 

variation in displacement with respect to 90 and the relationship 

    

duces + re aa tee lee 

f(a 
ic ee plewee (v4 

8 ror 

Bat {wg = [N] £63 . 
2 f82Ny  82Np 82Ng dN, | |S 

oa ele 2 Sr2 rz rz || 
rrr ed [ta 12N2 LeNa 1M |S 

*) hor f Oh hot oP on 5 
4 

If the Hermitian polynomials. of equations (4.9) are now substituted 

for the N and the eee differentiations performed we have 

  

cy ge 
or fe}- [e] §$ e (4.12) 

Where [e] = a ie [a] (4.13) 

[A] is (2 x 4) matrix whose elements are listed below 

Ay = 12r - 6p +m) 

Ag Bb snh 20 oS alos) 
Ayg =-12r + Olt +n) 

Agy = Gry -m Ir -2lry- mH Mto+2n ) 

w 6r-6(ro+%) + 6m 

22 = ty-m Ir - 2lr-n 2m +n) + (h- 5 Mey + 2m) 5° 

Ang =- 6r+ G(r +4) - bron 4 

Ag, = Uty- mh) er - 2h ~ 4 ry + 2n) +(ty-m 2m +n)5 

4.2.5 Formation of the element stiffness matrix 

From equation (3.7) the element stiffness matrix is given by 

[k] =f (effets)
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Expressions for [D] ané [B] are given in equations (4.11) 

and (4.13) respectively. 

The geometry of the element is described in cylindrical 

co-ordinates therefore the volume integral becomes a triple 

integral inr,8 and yy. 

ie. [x] =${9 2) P] iB] eo-a0.a3 
Since [B] and [D] are independent of @ and the element is 

a complete annulus the @ integral is simply 21 

The a integral consists of Vax from the product of [B]* 

o 
and [B] ,and -hegch therefore the integral becomes i 

I 
Hence 3 az t [x] = —2met? __. |" [alten aa) 2 i2(r, 4) (1-D*) ey 

But flexural rigidity, D = e 

° ano (2 F,4t feet fa} [e]fa] ear (4.44) 
‘ (r =r, ie ry 

It is possible to carry out this matrix manipulation and 

subsequent integration manually to give a general form for Ck] 

in terms of general values of r; and ro,but the algebra is 

extremely laborious and [k] is more conveniently formed numerically 

for each particular element as and when required in the final 

computer program. 

THE STIFFNESS MATRIX FOR A DISC ELEMENT 
  

If a complete plate is to be analysed a disc element is 

required in order to close the central hole in the annular 

elements. Due to the symmetry of the loading the slope at the 

centre of the disc must be zero and the number of nodal freedoms 

is consequently reduced to three as shown in figure 4.3
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Ss Neutral surface 
of disc 
es 

      

FIG. 4.3 ° 

If the initially straight radial line AB on the disc is 

displaced to A'B' the displacement w at radius r may be expressed 

in terms of the nodal freedoms as follows 

[6 ]e 

$2 
We [§ ) Ng Ng | $5 

84 
Where the N are the same Hermitian polynomials used for the 

annular element but with rj; = 0 hence 

Bale io 2 3 N, = iS fer 3nr + 3 

Ee ues Syed 2 N= sabe + 31, 73]   

  

From this stage the formulation of [ic] is an identical 

procedure to that for the annvlar element. It is possible to 

express [x] for the disc as a (3 x 3) matrix but it is convenient 

for assembly purposes to have [x] the same size for all elements. 

For this reason [x] for the disc has been preserved in (4 x 4) 

form by putting No = 0. 

Therefore by putting rj = 0 in equation (4.14), [x] for the 

dise is given by 

  

: 
[= 22)? (a) cli ew (4.15)
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Where [c] is the same as for the annulus but the elements of 

[a] are now 

Aj, = 12r - 6r. 
1 2 

ened 
Ay3 =-12r+ ry 

a 2 Ay, = 6rr -25 

A,, = 6r - 6r. 
21 2 

A77 = 0 
Aa3=7 6r + Sr, 

= De Aa, = 3ryr 2 5 

ASSEMBLY OF THE SYSTEM STIFFNESS MATRIX 
  

The application of the principle of stationary potential 

energy for a continuum demonstrated, in equation (3.16), the need 

to collect together at each global node the stiffness contributions 

from all elements meeting at that node. 

In this particular application the collecting together of 

the element contributions is relatively easy as the nodal 

freedoms at the outer circumference of one element must match the 

freedoms at the inner circumference of the adjoining element as 

shown in figure 4.4 which depicts a radial section through the 

plate and illustrates the correlation between the element and 

§ Global 4 a 
’ ein Freedoms 

global freedoms. 

85 Ds +2) 

  

  

  

      

ai) a §(2i +3) 
Tees —~“ 
----4 2 VP \ - Element 
ei ~ Freedoms wl 1p 

i Y . 8, 
He element " +i Melement 

FIG. 4.4
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The stiffness to be associated with, say, global freedom 

S05 +1) will be the sum of the stiffnesses associated with 

element freedoms 8, for the ab element and § for the (i + 4)* 

element. This process is achieved in practice simply by 'over- 

lapping' the element stiffness matrices and adding the individual 

stiffnesses within the overlaps thus:- 

Ik] 

  

The system stiffness matrix is therefore symmetric, 

relatively sparse and of half bandwidth 4, due to the [x] being 

(4 x 4), 

FORMATION OF THE SYSTEM FORCE VECTOR 

  

4.5.1 Concentrated forces and moments 

  

The treatment of concentrated forces and moments is straight- 

forward provided that the force or moment acts on a ring which is 

theachosen as one of the nodal rings. In this case the loading is 

not associated with any particular element but contributes 

directly to the global force vector. 

4.5.2 Distributed pressures 

The most effective way of treating distributed pressure on 

the plate would be to make use of equation (3.10) to form nodal 

loads which produce equivalent virtual work when moving through
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the assumed displacements. In this particular application there 

are no body forces and, due to symmetry, the surface traction 

vector $03 becomes simply the pressure, pr), which is acting on 

the plate and is a function of radius only. Equation (3.10) 

therefore becomes 

ft . JP Sees cc 

The elements of [N] are cubics in r which, even if p(r) is 

a constant pressure, results in the elements of {ptt being fifth 

order polynomials with considerable algebraic manipulation required 

for their evaluation. 

Gallagher [15] states that the replacement of distributed 

loads by statically equivalent nodal loads will normally give 

acceptable results in practice. This approach has been adopted 

in the current investigation due to the difficulties outlined 

above and does appear to give an acceptable solution even though 

it is not so theoretically satisfying. Equivalent nodal loads 

are therefore calculated as follows. 

Consider the distributed pressure on a typical element to 

vary linearly with radius as shown in figure 4.5 

Radial variation 
of pressure    

The pressure p at any radius r may be expressed as 

p=mre+c where m oo2 2 

ee 
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The total load on the element is therefore given by 

f 
total load = (2 p.2mr. dr 

o 
= 2m 2 (mis er)dr 

ao LS ac) See? 02 _ or fi Ele “| 

If the effect of this load is to be represented by nodal ring 

loads Py at r; and Pp at ro then 

eons ore EGS See Rok =2n [Me nl este 2] 

Op eo pireersi « 2 oz 'p, alr i) 3{p r, pf lle 5) 

  

= <[p (2r3-3r2r +13 3. 3r 12 +213 
oh oooh hk Wh SG 2h (4.16) 

Also by taking moments about the inner radius for a small sector 

subtending angle d@ at the centre. For static equivalence:- 

P. 
— 27 <n) = a a, '2 rd8(r, m) i prd8dr (r 4 

Bl alt -m ) = anf? (mr +c)(r - 5 )rdr 
4 

oil 4 re 3 bre 3 =5 [rie 43y q d+ clary 6rsr, + 2r; ] 

Substituting for m and c eventually gives 

Sieh eS 
Bae! tg t+) + 4 +n] (4.17) 

Substitution of equation (4.17) in equation (4.16) leads to the 

evaluation of force P, as 

R= Felty-n) [ppltg om) + alty + 94)] (4.18) 
4.5.3 Assembly of the system force vector 

The assembly of the force vector is simply the process of 

collecting together all the forces that act at each nodal ring. 

These forces are either the forces or moments that actually act 

at the ring together with the summation of the contributions from 

the pressure on adjacent elements as indicated by the forces 

evaluated in equations (4.17) and (4.18).
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SYSTEM CONSTRAINTS AND THE FINAL EVALUATION OF SYSTEM 
DIS >LACEMENTS 

4.6.1 The incorporation of system constraints 

The system stiffness matrix and force vector having 

previously been assembled, the problem may now be expressed as 

[k]}sJ= fF) 
In any given problem the support conditions for the plate 

require that some of the global freedoms, Se are zero. The 

formal incorporation of these constraints simply requires that 

these freedoms, together with the appropriate rows and columns 

in [x] and # be deleted. In practice the constrained freedoms 

are accounted for at the system assembly stage so that the 

unconstrained system matrices are never generated. This results 

in a saving of computational effort and will be discussed in more 

detail in the section dealing with the development of the computer 

program. 

4.6.2 Evaluation of the system displacements 

Following the imposition of the system constraints, the 

evaluation of the nodal displacements requires the solution of 

the reduced equations 

(cl{S}- ft 
The formal solution to this problem is simply 

{st [T'S 
The elements of $83 are the required nodal displacements 

but formal inversion of kk] is very lengthy and may be 

numerically inaccurate. In practice this is also very inefficient 

because [x] is symmetric and very sparse; properties which may be 

used to advantage if other methods are used. 

Commonly used techniques for solving the equations are:- 

(a) Direct methods such as Gaussian elimination or Cholesky's 

method.
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(v) Iterative methods, of which Gauss-Seidel is probably the 

one most often used. 

Direct methods are to be preferred in general as they give 

an exact solution whose only inaccuracy is rounding-off errors 

in computation, although iterative methods can be very valuable 

especially in non-linear problems. In applications such as this 

particular investigation where the stiffness matrix is symmetric 

and very sparse the Cholesky method is more economical than 

Gaussian elimination; Martin and Carey [14] claiming that it may 

need as little as one quarter the number of arithmetic operations. 

The basis of the Cholesky method is as follows:- 

Any symmetric, positive definite matrix may be decomposed 

into the product of a lower triangular matrix and its transpose 

thus 

[k] = Lh where [t] is a lower triangular 
matrix 

Hence [k] $s¢ = {Fy may be expressed as 

[LILI S52 fF3 

Plies et vere Uoeaieh is 

This set of equations is easily solved for {u3 by forward 

reduction, 

$83 is then found by back substitution in the equations 

Cul fu} 
CAICULATION OF BENDING STRESSES 

The use of cubic polynomials for the shape functions 

ensures continuity of the stress field within any given element 

and the choice of deflection and slope as the nodal freedoms 

ensures geometric continuity with adjacents elements. These 

specifications do not, however, guarantee continuity of stress 

between elements. The way that is used to overcome this problem
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is to calculate the stresses in contiguous elements at the common 

boundary and then take a nodal average. 

The calculation of stresses within any element is carried 

out thus:- 

From equations (4.10), (4.11), (4.12) and (4.13) 

fo}: is - £ tlic an 

oa fe - —E, (Algy 
fe fof — pete llilest® 

At any particular radius the maximum stress occurs at the plate 

surface where gob . These maximum stresses are therefore 

given by 

© - 8D ___. [ella] £53° of = - 82 _____ [lla] £3} 
is} Ut = Bh (4.19) 

The elements of [4] are functions of radius only and as £$2 

has previously been calculated, equation (4.19) can now be used to 

generate the stress field within the elements if required. If rj 

and ro are substituted for the general radius r, the stresses at 

the inner and outer radii of each element are formed, These 

values may then be averaged with the values from contiguous 

elements as indicated previously. 

DEVELOPMENT OF THE COMPUTER PROGRAM 'SYMPLAT! 

4.8.1 The main computational tasks 

The program is written in ALGOL and can be subdivided into 

five major sections. 

(a) the input of basic data, element details and loading details 

(b) generation of element stiffmess matrices 

(c) assembly of these matrices to give the system stiffness 

matrix together with the incorporation of constraints 

(a4) solution of the equilibrium equations to give the 

displacements
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(e) calculation of stresses. 

The computational aspects of these sections will now be 

discussed. ALGOL identifiers are introduced where convenient or 

different from symbols previously used. 

4.8.2 Input of basic data 

At the commencement of any analysis the basic decision must 

be taken as to the number of elements (NELEM) that are to be used 

to represent the plate. Since the elements are arranged 

consecutively along the plate radius they may be numbered as such 

by starting with the smallest radius and working outwards. It 

also follows that the number of nodal rings (NNODE) will be given 

by 

NNODE = NELEM + 1 

At each global nodal ring there are two degrees of freedom, 

namely the transverse deflection and radial slope, which means 

that the maximum possible total number of degrees of freedon 

(NDEGF) will be 

NDEGF = NNODE x 2 

The boundary conditions for the plate mean that some of 

these global freedoms will be constrained. The number and 

position of these constraints is known at the start of the 

analysis and the number (NCON) may be read in as initial data. 

This means that the actual number of degrees of freedom is 

given by 

NDEGF = (NNODE x 2) - NCON 

The relative sizes of the elements are left for the program 

user to decide. This means that an array of nodal radii 

(NopRAD) consisting of NNODE values must be read in. 

The information which must be supplied for each element is 

its modulus of elasticity (B), Poissons ratio (V) and thickness 

(t).
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The loading on the plate is read in directly as nodal loads 

if the loading is concentrated or as the values of pressure at 

the nodal radii if the loading is distributed, in which case 

equations (4.17) and (4.18) ne used to calculate equivalent 

nodal loads. These loadings are processed in 'procedures! 

(CONFOUT and DISFOUT) and then stored as an array of applied nodal 

forces (APFO). : : 

4.8.5 Generation of element stiffness matrices 

It has already béen shown in equation (4.14) that the stiffness 

matrix (ESTF) for an annular element bounded by nodal radii RI 

and R2 is given by 

ESTA == zn Tal eIAlrer 
The elements of (C¢] oe easily read in as they are either unity 

  

or Poissons ratio. The elements of [A] however are functions of 

Ri, R2 and r. The radii Ri and R2 are already available in NODRAD 

but the presence of the variable, r means that the elements of [A] 

fall under the effect of the integration. This integration may 

need to be done numerically in general,but is possible formally in 

this particular application by adopting the following steps:- 

Inspection of the elements of [4] shows that [a] may be 

re-written as 

fs] " [air + [az] + fas] 

where 

[At] = |12 6(R2-Ri1) -12 6(R2-Ri) 
6 3(R2-Ri1) = 6 3(R2-RI1) 

[A 2]= |-6(R2-R1) -2(R2-RiN2R2+R1)  6(R2+R1) = 2(R2-R1)(R2+2R1) 
~6(R2-R1) -2(R2-R1}(2R2+R1) 6(R2+R1) - 2(R2-R1)(R2+2R1) 

[A3] 0 0 0 ; 
6RIR2 (R2-R1)[R2+2R1)R2 -6,R1R2 (R2+R1)(2.R2+R1) R1 

Since Ri and R2 have already been read these matrices are easily 

formed. 

[A}'[G][A] is now evaluated firstly by forming 

[cll] = [ella + [cla2] + fefas]t-
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These separate matrix multiplications are done by the use of a 

‘procedure! (MATMULT) and the products stored in matrices [CA1], 

{[CA2] and [CA3]. 

Now (alt= tattr + tazits caayé 1 
Hence [AT‘ICIIA] -[tanktaateastt |] cane ‘ (caai+tcaat | 

= [tatttean] 2 + [fanticazs « 2ittcan]r 

+ [nt tcasd « taziticaz) - taal can] 

+ [taat cast + taaiticaza|t + [taasttcaay]—t- 

These matrix transpositions and multiplications are also done by 

the use of a ‘procedure! (TRMAMULT) and the results stored in 

matrices [Bi], [B2] etc. 

Thus (A)'(CHAl= (81Ir2 + [[a2i+ (Bair + [fB4) + (85) + Bel] 

+[[fe7] +(e, + Bas 

Noting that the matrices [Bi] ete are functions of R1 and R2 

only, the integration with respect to r is now easily performed 

to give 

2 4, 3 
(reat (cltAlndr = BRM fey . RERIIa2 «133i 

2 42 
+ R2ERT [ipa] -(85] +1661] 

+ (R2-R1) [[B71 +188i] + tn — 189] 

Multiplication of this final expression by 211D/(R2-RI 6 

thus gives the complete matrix[ESTF]. 

Since [A] is (2 x 4) then[BSTF]is a (4 x 4) symmetric matrix 

whose elements are functions of R1, kK2 and D. 

A similar, although slightly simpler procedure is used to 

generate [ESTF] for a disc element should the plate be a complete 

one.
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4.8.4 Formation of the system stiffness matrix and the 
incorporation of constraints 

Section 4.4 has already shown that the assemLly of the element 

stiffness matrices to give the system stiffness matrix (SSTF) ie 

relatively straightforward in this particular application. The 

process is best achieved by the use of a nodal connection matrix 

(NODC). This matrix forms the basis of a simple numerical coding 

technique whereby a local freedom at a given node of a particular 

element may be identified as being the same kind of freedom as 

others at the same global node but from contiguous elements. Once 

this identification is made then the quantities associated with 

this freedom such as the stiffness, loading etc may be combined 

with those from the other elements to give the total quantity to be 

associated with the global freedom. To avoid repetition, the 

exact details for the construction of [NODC] will be given later in 

the instructions for use of the program. During the formation of 

(NODC] the global freedoms that are to be constrained are identified 

and incorporated as zeros in [NODQ. 

As each element stiffness matrix is formed,reference is made 

to [NODC] and each element is then correctly located in[SSTFL If 

a zero is encountered in([NODC]it means that the particular freedom 

is corer ne? and any element stiffness contributions to it are 

discarded at this stage. The unconstrained [SSIF]is therefore never 

formed which results in a considerable saving of storage. The 

process whereby each[ESTF)is assembled into([SSTF]as it is formed 

means that the steps used in forming [ESTF] may be re-used and [ESTF] 

itself overwritten as successive elements are assembled. 

The program is also written so as to economise on the storage 

of [SSTF]. This matrix is symmetric and sparse. Considerable saving 

of space is possible if only half of the matrix is stored and that 

half is further condensed in the following way:
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(SSTF]= yy M49 Ag 4, | wl og 68 0 0: 44 

94,9943 as |p 90) 95455 
O54 Ay 9lA53 05 , A, 5936) Oa 33 

SHA 2/%3% 4745945) Sea *42%sa "an 

(953%54 55 956.957 5g] O53 951,555 
I963%64, [65 “66 67°61. nn 63 964 96566 

( ners 77 "78; S39! O55 976°%7 

Peses 8 87 "88789 “8,10) %85 “86 [87 “88 

“par 595550 0 Ag7 Agg gg 
\ ETC. ETC. 

. 1 1 1 1 ' 
1 ' iS 

[NODC]is also used to discard constrained freedoms from the 

applied load vector {APFO} and to form a vector of nett effective 

loads (FORCE). 

4.8.5 Solution of the equilibrium equations 

The principle behind the solution of these equations using the 

Cholesky method has been discussed in section 4.6.2. 

The programming of this method has been carried out by making 

direct use of the program BANDSOL devised by Wilkinson and 

described in detail in reference [11]. BANDSOL consists of the 

two 'procedures' CHOBANDDET AND CHOBANDSOL which must be used 

together and in that order. 

CHOBANDDET takes the uatrix[SSTH, which must have been 

previously condensed into the form shown in section 4.8.4, and 

decomposes it into a lower triangular form [L] including the 

diagonal such that 

(sstel= (uit 
If the elements of [SSTF] are designated Kj and those of 

L »4ij then the decomposition is carried out using the 

algorithm 

i-1 2 | 
= («ij & 2, fi \? for i =1,2,---- NDEGF 

j-1 
Q ith “Sid j) for m =U o1),---,NDEGF 
MN ey i = 1,2, ----,NDEGF
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The output matrix [L] is overwritten on [SSTF] and [ssTF] 

in its original form is therefore lost at this stage. It can be 

arranged for a failure message to be given if the determinant of 

(SSTF] is zero but this has not been included in this particular 

program. 

CHOBANDSOL now solves [SSTF] $$} = {rorce} which may now be 

expressed as [L][L]*{$}= {FORCE} firstly by solving 

tL fuz= {FORCE} to give fu} 

and then solving tL Es 3 = fu} to give {§? 

The global displacement vector §s3 is overwritten on frorce} 

which is therefore lost at this stage. 

4.8.6 Computation of stresses 

The stress field within any annular element is given by 

equation (4.19) as 

So % ieee © 1Aa1 £52° 

{5 thas not been ai until this stage of the calculations 

but [C] and [A] were generated, and successively overwritten, as 

each element stiffness matrix was formed. This implies that 

rather than regenerating [C] and [A] at this stage in the 

computation, it is preferable to make use of them at the point 

when(ESTF]was being formed and to store the information that is 

now required for the stress calculation. 

The stresses in each element at the nodal radii are required 

and, with this in view, after [C], [A1] , [A2] and [A3] have been 

formed for use in the computation of [ESTF] the radii R1 and R2 are 

substituted for r in [A] and matrices are formed of the product 

es (CILA3 

These products are identified as(CAINT] for r = R1 and [CAEXT] 

for r = R2. As each element is assembled the numbers in(SAINT]and 

[CAEXT] are stored as ‘layers' in a three dimensional array (LCA), 

{CAINT] and [CAEXT] themselves are then overwritten as each element
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is processed. The fact that the numbers from [CAINT] and [CAEXT) 

are stored is not too wasteful. of storage as they are only (2 x 4) 

matrices. 

The nodal displacements that have been calculated and 

subsequently overwritten on the matrix SFORCE} are only the 

unconstrained displacements. In the calculation of nodal stresses 

all the nodal freedoms must be considered ene not just the 

unconstrained ones. The displacements in frorcE} are therefore 

expanded, using[NODG, to form a matrix of element Gisplacenents 

(ELDISP) which includes both constrained and unconstrained 

freedoms. 

The appropriate elements of[ELCA] and[ELDISP] are now 

multiplied together to give the radial and tangential stresses at 

inner and outer radii of all the elements. These stresses are 

formed in[NODSTRESS] and are printed es part of the output. 

The stresses at the common nodal radii of contiguous eiements 

are averaged in[AVSTRESS] and then printed out. 

4.8.7 Program flow chart and listing 

  

The final form of the flow chart is shown on pages 73 & 74 

and the listing on pages 75 to 82 inclusive. 

DOCUMENTATION FOR USE OF THE COMPUTER PROGRAM 'SYMPLAT' 

4.9.1. Program specification 

The program analyses the bending of amular or complete 

eircular plates subjected to axi-symmetric loading and boundary 

conditions. S.I. units are used throughout. 

Radial variation of loading, plate thickness and material 

properties can be accommodated. 

The program outputs the radial variation of deflection, 

slope, radial stress and tangential stress due to the specified 

loading.
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4.9.2 Preparation and presentation of data 

Data mist be prepared for input to the program as follows 

and be presented strictly in this order: 

(a) The aumber of plates to be analysed in this particular run. 

There is an overall loop in the program for this 

purpose and each analysis requires its own complete set of data. 

(b) The number of elements to be used to represent the plate. 

In order to keep computing time and cost to a minimum it is 

‘important to use as few elements as possible, consistent with 

obtaining satisfactory accuracy of solution. (A Simple test 

program showed that doubling the number of elements resulted in 

the program run time being multiplied by approximately two and 

ahalf). Five elements appear to give results of sufficient 

accuracy for most practical purposes. 

(c) The number of constraintson the plate. 

This is required at this stage because it affects the array 

sizes in the program. Any imposed zero slope or deflection at 

any nodal radius is classified as a constraint. (Note that for 

the purposes of this program the zero slope at the centre of a 

complete plate is also classified as a constraint). 

(a) The nodal radii. 

These must be given in metres and in increasing order of 

magnitude. A zero radius must be input for the centre of a 

complete plate as this value is used to select the correct 

element stiffness subroutine. The choice of the values of the 

radii has ben left to the user. It should be noted however, 

that elements of equal radial width are not particularly 

satisfactory and an empirical scheme of making the radial width 

of the elements approximately proportional to their external 

radii appears to give better results. If any regions of severe



63. 

curvature are apparent a finer element mesh in this region will 

give higher accuracy, particularly in the stress calculations. 

(e) Details of exch element. 

The modulus of elasticity (N/mm2) and Poissons ratio for the 

material together with the plate thickness (mm) mst be entered 

as date for each element, commencing with the element nearest to 

the centre of the plate. In the case of continuous radial 

variation of any~ of these three quantities, a stepped approxin— 

ation must be used. 

(£) Phe nodal connection matrix 

This relates the element freedoms to the global freedoms and 

also defines the positions of the constraints. The matrix is 

formed as follows:- 

Evement ne | ELEMENT FREEDOMS 
oe with the TINTERNAL RADIUS | EXTERNAL RADIU 
ito thecentre. | Deft. | Slope 1 Defl. | Slope | 

  

  

  

  

  

w
e
 

—
 
—
 
—
—
 

Jw 
I
f
a
 

  

NELEM             
  

The matrix consists of the numbers in the spaces bounded by 

the solid lines. The first column consists of the element 

reference numbers. The designatory numbers of the global 

freedoms are then put into the other spaces after zeros have 
  

been inserted at any constrained freedoms. 

The designatory numbers for the global freedoms must be 

consecutive integers from 1 to NDEGF and should be fed into the 

spaces in the matrix from left to right and row by row.



64. 

Note that for continuity between elements, the numbers 

entered in the external radius colums for the nth element must 

be the same as those in the internal radius columns for the 

ares 1)* elenent where 1<n<(NELEM-1 ) 

The size of the matrix mst be (NELEM x 5). 

(g) Details of the loading on the plate. 

The program will accept any combination of constant force 

on a nodal circle, censtant radial moment per unit length along 

a nodal circle or distributed pressure over the plate, provided 

they are axisymmetric. A switch, operated by a load code number, 

is incorporated in order that the appropriate procedures may be 

called up to assemble the force vector, 

Load code number = 1 

This is for use when all the forces and moments on the 

plate are concentrated at the nodal radii. The code number 

should be followed by alist of the total force and moment per 

unit length at each nodal radius starting with the smallest 

radius. If no force or moment acts, a zero should be entered, 

i.e. the list should consist of (2 x NNODE) terms. Note that 

the program requires the force to be entered as the total load 

on the nodal circle, whilst any moment must be expressed as a 

moment per unit length measured along the circle. 

Load code number = 2 

This is for use when the loading is due to distributed 

pressure only. The code number should be followed by a list of 

the pressures at the internal and external radii of each 

element starting with the element nearest to the centre of the 

plate. If no pressure acts on any particular element, a pair 

of zero's should be entered i.e. the list should consist of 

(2x NELEM) terms.
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The distributed pressure procedure assumes a linear radial 

variation of pressure across the width of each element, computes 

statically equivalent concentrated nodal forces and then sums. 

these forces on each element z common radii. 

Load code number = 3 

This is for use when the loading is a combination of the 

above cases. The code number should be followed by lists of the 

loading as described above for when the code number was 1 & 2, and 

in that order. 

4.9.5. Summary of data presentation 

(a) The number of plates to be analysed. 

(b) The number of elements followed by the number of constraints. 

(c) A list of nodal radii (m) commencing with the smallest. 

(a) A list of the modulus of elasticity (/m2), Poisson's ratio. 

and plate thickness (mm) for each element commencing with the 

element nearest to the centre of the plate. 

(e) The nodal connection matrix. 

(£) ‘The load code number. 

(g) A list of forces (N) and moments (N/m) at each nodal radius 

commencing with the smallest radius, 

and/or 

A list of pressures (N/m2) at the boundaries of each element 

commencing with the element nearest to the centre of the plate. 

4.10 RESULTS AND DISCUSSION OF VARIOUS TEST PROGRAMS 

Several test cases have been analysed in order to prove the 

viability of the program and are shown in figure 4.6 on page 66 

These particular cases were chosen because they have known 

classical solutions and provide the range of loading and boundary 

conditions that most commonly occur in practice. All of the 

calculations were made for a Vybak plate 0.2 m radius end 3 mm 

thick as it was envisaged that any experimental work would be
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TEST CASES USED TO PROVE THE PROGRAM 'SYMPLAT’ 
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carried out on plates of this material and size. 

A summary of the results for the various test cases using five 

elements of varying width is given below and a typical input and 

printout of results, in this instance for case (gs), is shown on 

pages 83 to 86 inclusive. 

  

  

  

  

  

  

  

  

  

TEST| TYPE OF | MAXIMUM STRESS AT CENTRE | STRESS AT OUTER RAD 
CASE] SOLUTION| DEFL. OR INNER RAD. 5 

(mm) (kN/m?) (xn/n® ) 

RADIAL TANG. RADIAL TANG. 

(a) |cLASsIcaL| 0.2647 eS co 0 -32.9 
SYMPLAT | 0.2646 -353.8 -353.8 6 -32.3 

(v) |CLASsIcAL | 0.1081 cf co 53.0 20.1 
SYMPLAT | 0.1080 -300.8 -300.8 54.6 20.8 

(c) |CLASSICAL | 0.5398 -317.7 317.7 0 =T1.1 
SYMPLAT | 0.5378 -325.2 ~325.2 2.6 -69.8 

(a) |CLASSICAL | 1.2966 -478.8 ~478.8 0 -210.5 
SYMPLAT j 1.2963 -479.5 -479.5 24.4 -201.2 

(e) }CLASSICAL | 0.2396 -257.2 -97-7 | 297.0 112.9 
SYMPLAT | 0.2304 ~262.7 -99.8 | 296.8 112.8 

(f) |CLASSICAL] 3.6350 -6660.0 5571.0 | ~790.0 -300.2 
SYMPLAT | 3.6336 -5982.0 5829.8 | -778.7 -295.9 

(g) [CLASSICAL | 1.8358 -796.5 -796.5 0 -281.5 
SYMPLAT | 1.8340 -804.6 -804.6 26.9 -271 1                   

The classical results are calculated from expressions quoted 

in Roark: [2] and the comparison shows that in general the predictions 

by SYMPLAT of deflection are accurate to less than 4% and those of 

stress by 12%. The superior accuracy of the deflection predictions 

is to be expected from a displacement formulation of the finite 

element method, as the displacements are regarded as the primary 

variables and the stresses are then calculated in what is 

implicitly a differentiation process with all the accompanying 

magnification of error associated with differentation. 

Test cases (a) and (v} were analysed using a variety of 

numbers and sizes of elements. The results are illustrated in 

graphs 4.1 and 4.2 on pages 70 & 71 and would appear to indicate
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that the number and size of elements has little effect on the 

accuracy of the deflection but some effect on the stress 

prediction. Five elements gives a satisfactory estimate of 

stresses provided that various element widths are used; the 

basis being that of making the radial width of each element 

approximately proportional to its outside radius. Increasing 

the number of elements to ten did not significantly improve the 

results. 

SYMPLAT does not predict with accuracy the infinite stresses 

at the location of the point load in cases (a) and (b) or the zero 

radial stresses at the simply supported edges in cases (a), (c), 

(a) and (g). Of these discrepancies the former is not too 

important as the classical theory is also inaccurate in regions 

of concentrated loading due to the violation of the plate bending’ 

assumptions, and the latter could either be overcome by using a 

finer element mesh at the boundary or disregirded because the 

stress levels are so low. 

In order to demonstrate the practical usefulness of SYMPLAT, 

a problem has been solved in a situation that would present 

considerable difficulty if classical theory were used. The problem 

is that of a clamped plate of variable thickness with a rigid 

central boss, the plate carrying uniform pressure over its entire 

surface. The results of the analysis of this plate are shown in 

graph 4.3 on page 72. 

A possible improvement to SYMPLAT would be the use of more 

sophisticated shape functions that the Hermitian polynomials. 

Pardoen and Hagen [19] have derived such a set of functions that 

satisfy identically the governing equilibrivm equation for 

symmetrical bending. The use of these functions would undoubtedly 

give some improvement in the predictions of SYMPLAT but as this
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program has only been devised as a first stage in the solution of 

the asymmetric problem, the extra complexity of these shapes was not 

thought to be justifiable at this stage.
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GRAPH 4.1 

a) Simply supported plate - central point load 
Material - Vybak (E=2.8GN/m2 ; »=0-38) 
Radius = 0.2m ; Thickness = 3mm ; Load =1N . 
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GRAPH 4.2 

* TEST CASE (b Clamped plate — central point load 
Material-Vybak (E=2.8GN/m2 ; v= 0.38) 
Radius = 0.2m ; Thickness = 3mm_ ; Load =1N 

Central deflections - Classical theory — —- — — —-— —— 0,1081mm 
SYMPLAT 5 Elements (constant width)- 0.1076mm 
SYMPLAT 5 Elements (variable width)- 0.1080mm 
SYMPLAT 10 Elements (variable width)— 0.1080mm 
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( 2 ) NEXT PLATE 

PROGRAM FLOWCHART FOR 'SYMPLAT! 
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A LISTING OF THE PROGRAM ‘SYMPLAT’ 

"BEGIN''COMMENTIANALYSIS OF SYMMETRICALLY LOADED PLATES; 

VINTEGER'NELEM,NNODE, CON, DEGF,HBW, PROBNO,NOPROB, 

TrdakeNeGe bate We Ye Zeb Ce Ft, Fe, F 3a 
FIPSFORMATOCN(1SS$aD ,DDDDAaND!) Dy 
F2zSFORMATC H(t eaND DODD!) I)g 
F3sSFORMATCHCHSSND') I)? 
HBWesdy 
PROBNOZ=0) 
NOPROBgSREAN(60)y 

START: PROBNOZSPROBNO41? 
PAGE(390,1)9 
WRITETEXT (30; ' CYANALYSIS OF m@SYMMETRICALLYwLOADED wPLATESEYSK9) Vy 
WRITETEXT(S0p "CI PLATE NO eremmmmn arm minmnmmmmarmmwrrnce !) 6) 9 

WRITE (30, F3,PROBND) 9 
NEWLINE (30,.3)3 
NELEMsSREAD (60); 
NCON;SREAD(60); 

WRITETEXT (30) § CUNUMNBER wy OF py ELEMENT S pseu esr cov oot yo au 
WRITE(30;F3,NELEM)) 
NEWLINE (30,3)3 
NNODESSHELEMat, 

WRITEFEXTCS0 7  OUNUMBER BOF NODES hy cwmornminnimnmemnmmmt) 0) # 
WRITE(30,;F3,NNODE)) 
NEWLINE(30,3)2 

WRITETEXT(30,' CENUMBER MOF mCONSTRAINTS wmummemmmmme 2) 9 
WRITEC30;F3eNCOND) 
NEWLINE (30,3)5 
NDEGFZS2#*NNODESNCONG 

WRITETEXT (30, 1 CINUNBER WOE DEGREES mOF FREEDOM ime! D9 
WRITE(39,F3,NDEGF)y 
NEWLINE (30;3)3 

‘BEGIN! 
VINTEGERTYARRAYINODCC/1gNELEM,145/)y 
YARRAYINODRADC/TgNNODE/) FORCE C/TgNDEGF/) ySSTFC/TINDEGE,OSHBWal/), 

DEF Ly SLOPEC/14NNODE/) ,ELCAC/44NELEM(1345184/) 0 
EaVaTCZTgNELEM/), 
ELDISP,NODSTRESS(/134,1¢NELEM/) pAVSTRESS,APFO(/1¢2*NNODE/) 9 

ISWITCH' LOADCODE; =CONF, OTSF,COMBF) 
MPROCEDURE'CONFONT(NO, RAD, £03] 

VVALUENNO,RADY 
VARRAY'RAD, FO 
VINTEGERINO] 
"BEGIN! 
WRITETEXT(S0, 9 C' CONCENTRATED LOADS%Y 

NODAL wRADIUS CM) mermwAPPLIED.FORCE(N) 
momm APPLIES, MOMENTONM/M) 4X9) 9) y 

FORT SST ISTEP IT 'UNTILINO'DO! 
"BEGIN? 

SPACE(30,2)3 WRITE(30,F2,RADC/1/))4 
SPACE(30,5)) FOC/2Im1/) FEREAD (6904 

WRITECSO,FI,FOC/2eI181/))) 
SPACE(30,4) 7 FO(/241/) ¢=READ (60) pURITE(39, iat FO 

FOC/2ei/) psFOC/2e1/) be 2Bber D¢ 

wnt? 

  

(1280/03 
4/04 

NEWLINEC30,1)3 
TEND!) 

NEWLINE (50,2)) 
VENDIOF CONFOUT) 

VPROCEDURE'DISFOUT(NO,8AD,FO)y 

"VALUETNO,RADy



76. 

VARRAY'RAD, POY 
"INTEGERINO, 
"BEGIN! 
"REAL'IR, ER, 1P,EP,Q1,025 
WRITETEXT(30,* CI DISTRIBUTED, LGADSZXELEMENT NO wp ysnyoon 

TNT RAD CM) wrmmEXT RAD OM) nmenm INTs PRESS(N/SQ eM) 
mmmmEXT ePRESSC(N/SQ.M)%%1)!)y 

"PORN Pat tSTEPITFUNTILINOINO! 
"BEGIN? 

IRSSRAD(/T/)¢ ERPSRADC/T41/)9 
IP;=READ(60); EPs=READ(60)1 
O15 20,5235 (ERMIR) #(TPH(ERSSAIR) +EPHCERSIR) 
Q2,30,523G4(ERMIR) H(IPHCER*IR) EPH (3SHERSIR) Dy 

WRITEC30,F3,0)9 
SPACE(39,3); WRITE(30,F2,IR)4 
SPACE(30,6), WRITE(30,F2,ER), 
SPACE(30,2)) WRITEC(30,F1,3P)9 
SPACE(30,5)) WRITE(30,F1,EP)) 
FOC /24Te1/) gFSFOC (2141/9 4015 
FOC A241 44/) pSFOC/24141/) 4924 
NEWLINE(30,1)3 

TEND!; 
NEWLINE(S0,2)) 

YEND'OF DISFOUTS 
"PROCEDURE MATMULT(M1,RO1,M2,RO2,CO2,M3)y 

VARRAYIM4 H2—V3E 
NINTEGERIRO1, 202,092; 
"BEGIN! PORT] gat 'STEPTTIUNTILIRO1'DO! 

"BEGIN' MT FORM get ISTEPITIUNTIL'Co2tnot 
"BEGINOM3 C/T, J/) 420) 

"FORINGS4'STEPIAIUNTILIROZINOF 
MSC/T V/V paMB C/T I/D EMT C/T N/A) M2 C/N) a 

TEND YY 
VENDY) 

SEND!) 
"PROCEDURES TRMAMULT(M4,CO4,M5,RO5,CO5,MO)) 

VARRAYING NS, VO 
VINTEGER'CO4, 205,095, 
"BEGINU IF FORT] pat tSTEPITIUNTILICOGI0O! 

"BEGINUIFOR' J gat !STEPITIUNTILICOS'DO! 
VBEGINING(/1y9/) p80; 

"FORINGS4'STEP'4!UNTILIROS'DO! 
MOC/T ed /) paMOC/T I/D OMAC/N,IT/) MS CIN U/DE 

YEND SY 
"END') 

YEND') 
"PROCEDURE'CHOBANDDET(N,MyA)y 

VVALUE!N My 
VINTEGERIN, My 

VARRAY SAG 
‘BEGINS 
VINTEGERT Ty dake PeQeRy So 
"REALTY, 
VFOR'TyS1'STEPITIUNTILIN' DO! 

"BEGIN' 
PERCUTFITSYITHENTOVELSE Malady 
RysloMeP, 

  



we 

VRORVJ sePISTEPITIUNTELIMIDOT 
"BEGIN! 

Spadet) 
Qrsiel4Py 
YrRBAC/T ed) 

"ROR'K ;SPISTEPITIUNTILIS# DO! 
"BEGIN! 

YeRYmAC/TeK/)#AC/RiQ/) 9 
GpaQety 

VENDYy 
"LPIQS¥ITHENUAC/T,g/ 
TELSENAC/T Jd /) paYHA( 
RypaRety 

TEND; 
"END'; 

TEND!) 

'PROCEDURE'CHOBANDSOL(N;"%pRyAyB)y 
'VALUE'N, M, Re 
VINTEGER'N, My Ry 
VARRAY'A, By 
'BEGIN! 
VINTEGER Te Je KyPeQySs 
"REAL! Y) 
Spamheta 

"FORTY SST 'STEPITIUNTIL IR DO! 
‘BEGIN! 

"POR'T S47 'STEPITTUNTILING DO! 
‘BEGIN! 

PLACIIFUIDMITHENTOTELSE Mal od) y 

dpa /SORT(Y) 
(ReM/)e 

Qy2Oe0t; 
YuRVeAC/TeK/)*BC/Q/)9 

END Cy 
BO/T/)pBYRAC/TEM/)Y 

"END'; 
"FOR'ISENISTEP l a7 FUNTIL'4' DO! 

"BEGIN! 

PLEC(UIFINMIDSMITHENTOUELSE Mena), 
YuRBC/1/)9 
Orly 
"FOR'Ky=S'STEP'eTIUNTILIP! DO! 

"BEGIN! 
QpeQ41y 

YeBYeAC/O,K/)¥8(/9/)4 
TEND YY 

BO/T/) p3YeAC/IQM/)2 
TEND"; 

VENDING 
TEND YY 
VPOR'T STISTEPtTtUNTILINNODE'DO! 
NODRAD(/1/) y#READ(40)4 

VFOR'TGSTISTEP TIUNTILINELEMIDO! 
‘BEGIN! 

E(/1/)¢8READ(60))
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VO/1/) :SREAD(60)7 
TC/1/) G=READ(69)y 

YENDt) 

WRITETEXT (30,9 CIDETAILS OF WELEMENTS%%ID FD) 
WREITETEXT C30, PCH ELEMENT NO gman INT RAD CH) mene mEXT s RAD CM) sagwmnonl4O Dg OF og 

ELAST (1/304 Mmmm POTSSONSWRATL OmmumPLATEwTHICKNESS 
CUM RAN) N Dy 

HPORITGETISTEPHNUNTILINELEMIDON 
"BEGIN® 
WRITE(30,F3,1)3 SPACE(30,8)) 
WRITE(30,F2,NODRAD(/1/))7 SPACE(30,6)3 
WRITE(S0,F2,NODRAD(/141/))3 SPACE(30,2)2 

WRITECSO,FI,EC/T/))) SPACE(30,14)4 
WRITEC30,F2,V(/1/))y7 SPACE(30,14), 
WRITECSO¢F2,TC/1/))¢ SPACE( 30,15) TK/E/)g8TO/T/)/1900) 
NEWLINE(30,1); 
TEND!) 

NEWLINE(30,2)) 
WRITETEXT(39,'C*NODAL CONNECTION MATRIX%%") ")y 

VFOR'T Get 'STEPITIUNTILINELEM'DO! 
‘BEGIN! 

"FOR' I gS7'STEPITIUNTILIS' DOF 
"BEGIN! 

NODC(/T 4) /) ¢4READ(69)5 
WRITEC3O,F3,NODC(/I,u/))2 

‘END') 

NEWLINE (50,1)9 
VEND'y 
NEWLINE (30,2)5 

WRITETEXT(30,' CI DETAILS OF,LOADINGS%') I )y 
VFORVTGETPSTEPITIUNTILI2HNNODEIDOTAPFOC/I/) 

p30) 
LGpSREAD(60)) "GOTOTLOADESDE(/LO/)y 

CONF ;CONFOUT(NNODE, NODRAD,APFO)) 
'GOTO'LOCON, 

DISFZDISFOUT(NELEM, NODRAD,APFO), 
GOTO'LOCON; 

COMBF sCONFOUTCNNODE,NOORAD,APFO)] 
DISFOUTCNELEN,;NODRAD;APFO), 

LOCON|WRITETEXT (39, | (INET EFFECTIVE LOADSA% 
NODAL RADIUS (!) mmmmmnemn FORCE CN) 
smmermunemmtOMENTONMIAS') Uy 

IFORITZS1STEPITIUNTILINNGDES1 #00! 
"BEGIN? 

SPACE (39,2) dWRITEC BO, F2,NODRAD(/1/))7SPACE(3073)3 
VFORMY 384 9STEPITIUNTILI2!D08 
"BEGINS 

GEeNODC C/T 41/99 
SEPIGHOITHENTWRITETEXT (30, '(' pmmomammmCONSTRAINT!) 1) 

"ELSE! ' BEGIN! 
. FORCE(/G/)y2APFO(/2*1e2eJ/)y 

SPACE(39,3 )aWRITE(30,F1,FORCEC/G/))4 
tEND'y 

TEND!) 
NEWLINE (30,173 
TEND'; 

SPACE (30; 2) sURITEC30,F2,NODRAD(/NNODE/)) sSPACE(30,3)9 
SRORT J al (arene diunTiLi sie Qo}
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"BEGIN 
GpSNODC(/NELEN 
'TFIGEOITHEN'Y 

VELSE! 16 

z=
 

m
e
c
 

z 

n
o
 

‘ys 
TEXT C30, 1 Cl gmmmmam me CONSTRAINT!) 1) 
N 

YpBAPFO(/2*1a24i/)4 
3 DaWRITECSO,P1¢FORCEC/G/))y ~

~
 

TEND") 
NEWLINE(30,3)2 

"COMMENT!FORMATION AND ASSEMBLY OF STIFFNESS MATRIX) 
"BEGIN! 

"REAL'R1,R2,DR,RATR, Dy 
VARRAY'AT AZ, AS, CAT, CAZ, CAS, CAINT, CAEXTO/1324124/), 

COT G24 12/0, 
ESTE .B1,92,83,84,85,86,87, 838,990 /18401¢4/)5 

COAT T/D SCL /2y2/)p 310 
"FORITISTISTEPITTUNTILINDEGE' DOF 

VFOR' J :50ISTEP ITI UNTILIHB Ye 1 D0! 
SSTFC/T,d/) 5302 

VROR'K ST ISTEPIVEUNTILINELEM DO? 
'BEGINt 

DESCEC/K/Y*TC/K/) #39 / C12 (TeV C/K/ 92) D9 
R1iZSNODRADC/K/)y 
R2;RNOORADC/K41/)9 
"IFIRGD>O,U0TITHENTIGOTOIL 

VCOMMENTIFORM STIFFNESS MATRIX FOR DISC ELEMENT? 
CL/1 2/7) gaCC/eg1/ DG RVC/K/DE 

AI1(0/1,1/) 33121 
A1(/1,2/)450; 
A1(0/1,¢3/) gae427 
AV(/1,4/) (=64R27 
A1(/2¢1/)4=64 
AV(/2,2/)4%0) 
AV(/2,3/) 3260) 
A16/244/) 3 #R2y 
A2C/1 1/94 9420/2, 1/9 peaGaR2y 
A2(/14¢2/) 5426/2 42/03 
A2€/1¢3/235A20/2,3/ 
B20/144/) 4 342¢6/2,4/) 

MATMULT(C,2,410244,CA1)9 
MATMULT (Cy 2,A2 5244, 04209 
TRMAMULT(A1~4,CA1¢274781)2 
TRUAMULT(A1,4,0A2,2, 4,82) 4 
TRMAMULT(A2, 4,041 924478304 
TRMAMULTCA2¢ 446420214484) 

VFOR'T:STISTEPITIUNTILI2'90! 
VFORMGeTISTEPITIUNTILIGAH DO! 
"BEGIN! 

CAINTO/T ed /) GRO*DHCAZC/ Ted /)/ (CTU /K/) #82) #R2443) 7 
CAEXTC/T yd /) peOeO¥CCATC/T pd /)#R2eCAZC/T yd /))/ 

COT C/K /) #42) #R2043 D7 

   

  

"END') 
VFORIT ST ISTEPTTIUNTIL 4100! 

VFOR' J ced 'STEPITIUNTIL'G#DO! 
ESTFC/T pd /) abe 28440 (BIC /T pd /)/ C4 eR24e2)0 4 

CB2C/T I/+BS C/T I/D ACB eR2HH3) 
BAC/T IID /C24R24 44) 7



80. 

VEOTO'L2, 

"COMMENTIFORM STIFFNESS MATRIX FOR ANNULAR ELEMENT? 

LVGCC/1 52/7) 9500/2494) RVC /K/ D8 
A1(/1,1/)48129 
AV6/1¢2/) §3A10/144/) pu (R2eR1) 9 
A1(/1,3/) ;antey 
A1(/2,1/) 4565 
A10/242/) $341 0/2¢4/) F83e(R20R1) GE 

   A1(/2,3/);2™65 
A20/141/) 3 3A26/2,1/) pasbue(R24R1)¢ 
A2(/1 427) $2820 /2 427) pas2e(R20R1) ¥(2HRZERG) | 
A2(/143/) §2420/243/) pROe(R24R1)] 
A2C/1 4/7 FRA2C/2 44/1) pee 2a( R221) H(RZ42*RI)Y 
AB 0/1617) ¢2A3 0/1227) G43 0/1637) g5A3 (1104/7 5208 
A3B(/2,1/) ;RbwR1HeR2; 
A3(/242/) FaR2e(R2eR1) HC R2424R1) 9 
A3(6/243/) peG4R1 422; 
ABC12¢4/) FART eC RZCRI) HC QHRZGR1 DG 
MATMULT (Cp 2¢A1¢2,4,CA1)2 
MATMULT(Cy2eA2¢2,4eCA2)0 
MATMULT (Cp 2,43 ¢2,4,CA3)9 
TRMAMULTOCA1¢4,0A1 929498199 
TRMAMULTOCA1~4,CA2¢244,B2)3 
TREAMULT CAR) 4¢CA1 4 244 B37 
TRMAMULTOCA1,4,CA3 244,34) 4 
TRAMULT (A264) CA2,2,4485)¢ 
TRMAMULTOCA3,»4,0A1,2¢4,86)¢ 
TRMAMULTCA2;4,CA3,2)4¢87)2 
TRUAMULTCA3) 4) CAZ¢ 274,83) 5 
TRMAMULTCA3 (44 CAS ,2¢4,B9)9 

DRES(RZHR1) Hoy 
RATRESR2/R19 

"FORTT GSTISTEP TFUNTILI2IDO! 
SRORM gst STEPTTIUNTILI 4 DO! 
"BEGIN! 

CAINT O/T ed /) peOH DC CAT C/T eS /)HRISCALC/T eS /D HCAS C/T ed /)/R1) 
ACCT LK) #H2 dH CRZER1) 443) 

GAEXT C/T gS /) peOHDH (CAT C/T gd /) wRZ4CAZS C/T I/D +CAB C/T ed /)/R2) 
ACCT OAK) HZ dH CROORT) HHS) 

TEND! Y 
"FORT St ISTEP HTIUNTILI4 pot 

"FORTS S24 'STEPITIUNTIL' 4100! 
ESTFC/T,d/) p2b e284 ede ((R2tHheR1 HG) BTC /T 
CCR2*eSeR1 HHS) He CB2C/T I/D +83 C/T I /)/ 
CORZ#wZORTHHZ) CBS C/T 9/485 (0/1, d/) 48 
CCR22R1D CBZ C/T d/)4BB(/ Led /2)/0RD + 
CLNCRATRY*BI C/T I/D /0R) DG 

VCOMMENTYASSEMBLE ELEMENTS; 
Lez ' FORT gS19STEP TT IUNTILI2¢DO! 

TFORTJ pS 'STEPITMUNTILGGtpo! 
"BEGIN'ELCAC/K Ted /)gSCAINTO/T yd 

pcA Etec pe istremrrn. ni 

J/Y/C4#0R)) + 
3¥DR)) + 
C/T 0/227 (24DR) D4 

"ENDT, 
"FORIT S47 '9STEPITIUNTIL' 4100! 

"FORM p27 STEPITIUNTILIGt pO! 
"BEGIN 

GrSNODCC/KyI41/)3
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LESNQOCC/K,J44/)5 
"LFIGSO'THEN'T 'GOTOTL3, 
"TRILSOT THEN’ IGOTOILS, 
"TFIG> ali THEN? 

‘BEGIN! 

~ HESheGeHBWel? 
SSTPC/GyH/)GSSSTFC/GeH/D+ESTE C/T ed / da 

VEND' 
L3PPENDty 

HEND!? 
WRITETEXT(SO,'CUSYSTEMASTIFFNESS,MATRIX%E) "Dy 

UFORITSST'STEPITIUNTILINDEGFIDO! 
"BEGIN! 

NEWLINE (30,1) 
"FORT PBOISTEPITIEUNTILIHBWett Do? 
“WRITE(SO,F1,SSTFC/Ted/))0 

"END! ? 
VEND'? 

NEWLINE (39,3)9 
TCOMMENTISOLVE MATRIX EQUATIONS) 

CUOUAMDD ET UNDEGE(HGWa1 S87 Fi 
CHOBANDSOLCNDEGF, HE4=1,1,SSTF, FORCE); 

'COMMENTICALC, STRESSES, CORRECT UNITS THEN QUTPUT ALL RESULTS) 
ROR'Ky=1'S STEPITIUNTILINELEM TOON 

"BEGIN! 
NFORM J ;B2'STEPITITUNTILIS IDO! 

"BEGIN! GyeNODC(/K,J/)a 
VT EIGHO'THENTELDISP(/J#1,K/) 420 
VELSETELDISP(C/Jat,K/)g2FORCEC/G/ 3a 

YEND'? 
VFORSTSaTISTEPHTIUNTIL'4'DO! 

"BEGIN! NOOSTRESS(/1,K/)130) 
"FOR' J pR1ISTEPITIUNTIL'G'DO! 

NODSTRESS(/1,K/) g2NODSTRESSC/T yp K/)¥ELCAC/KyLed/) 
#ELOTSP(/J,K/)y 

"END"? 
TEND!) 

WRITETEXT(30,' CINODAL STRESS WMATRIXON/SQ MIKI DG 
FORT SST 'STEPITIUNTIL'GIDOF 

"BEGIN! 2 
NEWLINE(30,1)9 

VPORT ysSd4STEP'TIUNTILINELEMI OO! 
WRITEC3O, FI yNGDSTRESS(/Tyd/))9 

YEND'y 
et 

AVSTRESS(/1/) ¢3NODSTRESS(/1,1/)3 
AVSTRESS(/2/) $3NODSTRESS(/2.1/)3 
"PORN ST 'STEPITVUNTILINELEMa1 1001 
VRORIT m1 "STEP IAIUNTILI 2100! 
AVSTRESS(/24J3+1/) p=(NCDSTRESS(/142,J/)+ 

NODSTRESS(/Ted41/))/25 
AVSTRESS(/24NNODEW1/) sENOOSTRESSC/3,NELEM/) 4 
AVSTRESS(/2*NNODE/) :3NODSTRESS(/4,NELEM/) 9 

WREITETERT(S0¢ 1 CHNODAL RADIUS (CH) amommDEF LECTION (MM) eins en ne mt 
SLOPE (RAD) wmmmRADTAL STRESS (N/SQ 4) mumer 
TANG sw STRESSCN/SQaM)U%"D ND G 

TFORMWESTISTEPITIUNTILINNODE OOF



"BEGIN! 
YIFIWENELEM#1'THEN''GOTO'LG) 
YrSNODCC/W,2/)9 
ZpBNODCC/Wy3/)a 
'GOTO'LS; 

LOSYESNODCC/Wat 4/09 
Z_SNODCC/We1, 5/9 

LSgtIF'YSO'THEN'DEFL(/4/) s=O0'ELSE! 
DEFL(/W/) gS(FORCEC/Y/) #1000); 
"TFIZSQ'THEN'SLOPE(/W/) psO'ELSE! 
SLOPEC/W/) paFORCEC/Z/)9 
SPACE(30,2)) 
WRITEC30,F2,NOODRAD(/W/) 93 
SPACE(30,6)¢ 
WRITE(30,F1,DEFLO/W/) DE 
SPACE(30,4)5 
WRITEC30,F1,SLOPE(/W/))y 
SPACE(30,2)) 
WRITE C30, F1,AVSTRESS(/24Wm1/) 07 
SPACE(30,9)4 
WRITE (30; F1,;AVSTRESS(/2eW/))) 
NEWLINECSO,1)¢ 

TEND! ? 

TEND Ty 
NTF IPROBNO<NOPROBITHEN' !GOTO'START; 

‘eNO! 
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TYPICAL INPUT DATA FOR 'SYMPLAT’ 

This particular data is for test case (g) of figure 4.6 

Plate N° 

N@ of elements & i DATA A60 
N@ of constraints ——_____ 5h 

0 7040157%203794561041240520) ee ale ees ar 
Nodal radii ——— 2 989497003875.07 

2894970038 53507 
. 25804970,5873,07 

2 8549700387 3.08 
spl 141503253; Element details 212937485) 

244457687; 
446971859; 
54849707105 
34     Nodal connection matrix 

 070907079707070119707970 
= 2007200;200;200;200;200; 

Load code 

Concentrated loads 

Distributed loads 

, 
9501070; 

83.
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A SEMI-ANALYTIC FINITE ELEMENT ANALYSIS OF THR BENDING OF ASYMMETRICALLY 
LOADED , UNSTIFTENED CIRCULAR PLATES 

INTRODUCTION 

The previous chapter has shown how symmetrically loaded plates 

may be analysed by means of a fairly simple finite element program. 

Many practical problems however, result in asymmetry of loading 

which leads to asymmetry of displacement and stress distribution 

even though the geometry of the plate is still axisymmetric. 

Solution of the asymmetric loading problem was thought to be a 

necessary pre-requisite to the solution of the stiffened plate which 

introduces asymmetry of both geometry and loading, Even very Simple 

and easily defined asymmetry of loading makes classical analysis 

cumbersome in all but a few cases and approximate techniques become 

virtually essential. 

The simplest finite element approach that may be used for 

circular plate problems is probably the use of triangular plate 

bending elements. These are well documented in almost all of the 

basic finite element texts and are relatively simple to use but 

have the disadvantage in this application that the circuler plate 

boundaries must be represented by a series of straight line 

approximations. High accuracy will therefore necessitate a large 

number of elements with the consequent very great increase in 

program size.
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Several authors have investigated the use of annular sector 

elements such as that shown in figure 5.1 

  

FIG. 5.1 

Olson and Lindberg [22] have developed a twelve degree of 

freedom element using the transverse deflection and the radial and 

tangential slopes at each corner as the nodal freedoms. The 

displacement functions used are cubic in r for the radial variation 

and cubic in @ for the tangential variation. 

Sawko and Merriman [23] have used the same shape of element 

but increased the number of degrees of freedom to sixteen by including 

the twist at each corner. They used a cubic for the radial 

distribution of deflection and trigonometric functions for the 

tangential variation. 

The same type of element has been developed further still by 

Singh and Ramaswamy [24] who incorporated extra nodes at the mid 

point of both curved sides and used the deflection and radial slope 

as the freedoms at these additional nodes. The element therefore 

had twenty degrees of freedom. 

It is claimed that each of these elements gives successively more 

accurate results but the major criticism of their use is that even 

the simplest of them uses twelve degrees of freedom which means 

that the representation of a complete plate very quickly builds up 

into a problem involving several hundred degrees of freedom with
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the consequent computational problems of storage ani efficient 

solution of the equations. From the previous discussion of the 

semi-analytic finite element method in chapter 3 it is apparent 

that provided the geometry of an annular element remains constant 

in the circumferential direction then the application of this 

technique should be feasible provided that the circumferential 

variation of load and displacement can be adequately defined by 

the use of an orthogonal series. The great advantage of the method 

is the considerable saving in computational effort that can be 

achieved provided that sufficiently accurate results can be 

obtained by the use of a reasonably small number of terms in ‘the 

series. 

The development of the semi--analytic method for handling the 

asymmetrically loaded plate draws on many ideas already developed 

in chapter 4 but with the added complexity that the problem is now 

fully two dimensional and allowance must be made for incorporating 

a sufficient number of terms of the series. 

THE STIFFNESS MATRIX FOR AN ANNULAR ELEMENT 

5.2.1 Description of the displacement field 

Referring to figure 5.2 the displacement at any point on an 

annulus bounded by the nodal rings r = rj, and r = rp is a function 

of both r and 0. 

  

  
FIG. 5.2
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From equation (3.18) the displacement field within the 

element may be defined as 

(cs neon, any ratan,| {64 °) 

es N are the same Hermitian polynomials as used 

previously in the symmetric problem, and are functions of r only. 

poy is a function of @ only, where O< q eh 

The 5st te are the nodal displacements of the element 

appropriate to the £th term of the series, hence tor any given 

value of & ; Ae is a four element colum vector of the nodal 

deflection and slopes. 

In many practical applications the loading asymmétry is not 

completely general but evenly distributed about some particular 

diameter. If this not unreasonable restriction is accepted then 

ro) may be replaced by the single term cos@ which implies 

that the loading is symmetric with respect to 6 = 0 and that both 

the loading and displacement can be adequately represented by a 

cosine series of L terms. 

The final form of the assumed displacement function is 

therefore 

“-) cost@ Nocost8 Ngcost@ N,coste| § 544 7 (5.1) 

LS 
For Seen term of the series this function will ensure 

inter-element continuity of deflection and also the radial and 

tangential slopes. 

5.2.2 The stress-strain relationshi 

  

A plane stress condition is still assumed but as the loading 

is now asymmetric it is no longer permissible to delete the 

in-plane shear stresses and strains. The full relationship 

described in equations (A4.2) mst be used as follows



$1. 

  

  

aly i=. uno Ee, |° 
e E fol: 4o,}= Bee ae e. 

Tre 0 0 AN-d)| | Fre 

i. e 

a et = [D1 {é} (5.2) 

an) emo 
where E 1S D)= Si Meno = c (0) Bs oe! 

0 o du-y) 2 

Vo oO 
where [c)= |» 1 0 

o¢ 4i-y) 

5.2.5 The strain-displacement relationshi 

  

Again, due to asymmetry, the full form of the equations 

(A4.1) must be used thus:— 

a 
she aerate cg iG 2) 

ence ee 32 
r2 = r “8rd. 

Substitution of w from equation (5.1) gives 

  

2 e 
ony cosl@ c 
ar2 Three similar columns| | °1 

(1 (ON4 4 : 
R= y “a Mt -En,)coste operating on 2 

es ; 53 ts Ne 2 AN) costo NNg&N, in turn a 

Substitution for Nj, Np, Nz and Ny from equations (4.9) gives, 

after extensive manipulation, an expression of the form 

Us 

i cB) = ee (5.5) 
Where [#4] is a (3 x 4) matrix whose elements are functions of 

  

rj, 72,02, r and 0. 

For convenience the matrix rat is expanded and re-written as 

TA] = (Arde + tata] +Catait +(atait (5.4) 
r 

The elements of these matrices are listed in figure 5.3 on the 

following page.
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5.2.4 Formation of the stiffness matrix 

Equation (3.5) defines the strain energy of an element as 

t 
urs + i fel foftav 

If the expressions for So 8° ana sexe from equations (5.2) ana 

(5.3) are substituted we have 

jee eee \ 
Ee (peer yo 

204 og 

L U 
[prison rite [ zpoassha] rdrd® 

hal 2=1 

On expansion, the matrix multiplication will give terms containing 

the submultiple 

tadt toy tah) 

When mltiplied out and integrated over the range 0¢ 9< 27 

this submultiple produces terms such as:- 

21 

{ cos(?@) sin(h8)d@ ------- which is zero for all @ and h 

21 
\, cos(£6) cos(h@) de which are zero for 2 #h 
Be, ee ea 

( sin(£@) sin(ho)d8 | ena equal to Tf for 2 =h 

The consequence of these results is that the contribution 

to the total strain energy of the element from the separate terms 

of the series is such that no cross products occur and the energy 

decouples into the sum of the individual contributions from each 

2m ef ¢ 

Ss pk ( |’ tay! tc 1LAEI S889 ar a 
Wyetle Ba Ge ry 

t=1 
The element may therefore be regarded as having separate 

term thus 

  

stiffness matrices tx] that are associated with each of the 

displacements sie such that 

ti 

eg) feran tt 
g27,
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where 
21 et 

he 220 ost L kel [AS] [C][A*]r dr d8 (5.5) 
(ry - 4) lo oF 

It is not convenient to formulate the {k£] in general terns 

due to the complexity of the algebra and so they are formed 

numerically as and when required in the computer program. 

PROBLEMS ASSOCIATED WITH THE STIFFNESS MATRIX FOR A DISC ELEMENT 

Due to asymmetry, the slope at the centre of the disc is no 

longer zero as was the case for symmetrical deformation. 

It is still possible to describe the displacement of the 

disc in a form similar to equation(5.1) thus 

=O Nocost8 Ngcoste N,costo ] f5%4°) 
f= 

where the N are the same as those for the annular element but 

with rj; =0 

ae N,= Ai(} - SF. 2 « 213) 

az 

No= (deo 29? +r ) 

mele 2 3 Ng= "3 (ar -2r ) 

Note that the shape function associated with Sd is only N, 

and does not require a cosf{@ term as it is describing the 

effect of the displacement of a single point at the centre of 

the disc and therefore has no tangential variation. 

The problem that arises with this displacement function is 

that it gives rise to infinite bending moments at r = 0. 

Equations (A4.4), giving the expressions for bending 

moments Mp, Mg and M,g, show that these moments depend on the 

derivatives 

wy 1. dw 1 wy tw 1. d2w 
Regt Mme 52) 1 Oe years 

The shape functions Nj, Ngcosto and Ngcoslo are all well



564 

aS. 

behaved at r = O for all these derivatives, but the linear 

term in r of the function Nocos€0 causes infinite values of 

My, Mg and Mpg to be generated at r= 0. The explanation for 

this is that Nocost@ defines the displacement field caused by 

the central slope and unless the value of this function at 

angle @ is exactly equal in mgnitude but opposite in sign to 

its value at angle (@ +17) then there will be no continuity of 

slope along a diameter of the disc as it passes through the 

centre and a 'kink' is formed with the consequent infinite 

values of bending moment. 

Olson and Lindberg [22] overcame this problem in developing 

their central sector element by using only cos © or sin 9 for 

the tangential variation portion of the skape function,in which 

case the troublesome terms are self cancelling when bending 

moments are calculated. This is not however an acceptable 

solution to the problem here as the very nature of the semi- 

analytic solution requires the full series to be preserved. 

Sawko and Merriman [23] also refer to this problem but do 

not propose any specific solution other than that of representing 

any complete plate by a collection of annular sector elements and 

accepting a small hole at the centre. 

At the time of writing, no suitable shape function has been 

found for use with e disc element in the semi-analytic formulation 

of the problem. Complete plate problems are therefore analysed 

by using annular elements only, and leaving a small central hole 

surrounded by an annulus of small radial width but of high 

stiffness to ensure approximate continuity of slope along any 

diameter at the centre. 

COMPLETION OF THE ANALYSIS 
  

Previous discussion in section 3.4 has shown how the semi- 

analytic method results in a de-coupling of the contributions of
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the orthogonal series. Element stiffness matrices can be formed 

for the case when the orthogonal series is a simple cosine 

series, as has been demons trated in section 5.2. (It is possible 

to analyse a completely general problem by using a sine series in 

addition to the cosine series but this has not been done in this 

particular analysis) ‘ 

The complete analysis has therefore been reduced to the 

solution of L separate problems; one for each term of the 

series. The solution of each of the problems for the separate 

harmonics is similar in form to that previously discussed in the 

analysis of eyame Picea! bending in chapter 4. 

The procedure for each harmonic is therefore:—- 

(a) +o assemble the element stiffness matrices [k!] into a 

constrained system stiffmess matrix [K¢] 

(b) by the use of Fourier analysis, decompose the applied 

loading into a series of cosine components acting at the 

nodal rings. i.e. form the force vectors {rh 

(c) solve the set of equations [K2]{§*t = {Fl} to give 

the global nodal displacements $523 

(a) use $523 and the stress-displacement relationship to give 

the element boundary stresses fo%t 

After this procedure has been followed for each harmonic 

the 5st and §o% are summed for all L harmonics to give the total 

displacement and stress at each nodal ring. The size of L must 

be chosen such that the results are to the required degree of 

accuracy. 

THE COMPUTER PROGRAM 'ASYMPLAT! 

5.5.1 Basic program structure 

The general form of the program is, in effect, a looped 

version of the program SYMPLAT whereby the force vector is 

read, the stiffness matrix generated and the resulting equations
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s. The 

  

solved for each of the terms of the required seri 

program in its present form is less sophisticated than SYMPLAT 

in that the lording must be defined in terms of equivalent 

nodal forces as an external manual operation, but the generation 

of the element stiffness mitrices is done in a more efficient 

manner. The following paragraphs describe various aspects of 

the program, the discussion being confined to those parts that 

are substantially different from the equivalent parts of SYMPLAT. 

5.5.2 Formation of the element stiffness matrices 

Equation (5.5) has previously shown that the stiffness 

matrix (ESTFL) for the @th term of the series is given by 

ae gstrLE —D_. \ taut [e]1ALI r dre 
(R2-R1)° dy py 

where [AL] may be written, from equation (5.4) as 

[AL] = TALI + (AL2] + LALIT + (aL) —ty 
(Note that the Algol identifiers used in the program are now 

being incorporated where possible for ease of cross reference 

with the program). 

The matrix multiplication may be carried out and grouped 

in powers of r thus:- 

(ALIP(CIIAL] = (8L12r2 + [8.2] +(BL5 I}r + [[eL31+1BL6)+LaL9 J] 

+[[8L41+ (87) + (BL10 1 + (eL13 J] 

1 1 4 +fetel+(eLt) + tet] + fevsal- teu +{BLI6I— 

Where:~ 

(BL1] = (AL1}*(cItaut) , (Bus) = (ata) *tc Jani 

i (BL2) = (ani) *(c]taz2] , (BL6) = (ana) *tc yaze) 

(BL3) = (ant) *{c)tan3} , (BL7) = (ata) *tc iar) 

(BL4] = [ALi] *{c}tanq) , (era) = tane)*tc Ilana)
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(B19) = (atsl*tc han) , teu3) = tan4)*ic rani) 

[BLiol= (an3)*tc ana] , (Bia) = Cana) *tc taza} 

[BLA] = (aL) *(CIALS) , (BL15] = (Ata) "tc MALS) 

(BLi2}= (ar3)*tc tata] , (B16) = tana) *tc rata 

Hence 
2r 

Bsrryj- —? \, eee » @282 Jo 2ptersi]   

(R2-R1)> 

2. 2 
3 — (fe. 3)+1eL61+(8L9]] 

+ (R2-R1) [[8L4 }+{8L7] +{BL10] « [8113] 

+ in(B2) [fete +teLt) + taL1)] 

ees Meuse 2/4 2 (ee ~ ay) [ioua)- teL18) (an 2) 

At this stage it was realised that it may be possible to 

form a typical [BL] matrix and perform the subsequent 

integration with respect to 9 by the use of a simple algorithm 

rather than by the formal matrix multiplication and trans- 

position used in SYMPLAT. The relative simplicity of [C] and 

the fact that the matrix multiplication gives the 9 terms as 

27° 21 

either & sin2£0 do or fj cos?toas , both of which 

equal T, make a simple algorithm possible and this was 

therefore incorporated in the form of a 'procedure' (FORMKA). 

A slightly simpler'procedure' (FORMKS) was also developed for 

the special case where @=0. In the actual program the 

various matrices [BL1], [BL2] etc are all stored as layers in 

a three dimensional array identified as [BL].
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5.5.5 Calculation of stresses 

Combination of equations (5.2) and (5.3) shows that the 

surface stresses in the plate for each term of the series is 

given by 

fos e° = =e CC I{AL) sgepe 

The matrices [C] and [AL] are available at the time of 

formation of the stiffness matrix fur each element and it is 

therefore convenient to make use of them at that stage. The 

stresses are required only at the nodal radii and therefore 

for values of radius equal to Ri and then R2 the product 

eee [c]{AL} 

is calculated for each element and the result stored in the 

matrix[ELCAL]. This is a three dimensional array with the 

portion associated with any one element assigned to a 

particular layer. 

After the displacements $52? have been calculated, [ELCAL} 

is recalled and the two matrices multiplied together to give 

the nodal stresses (radial, tangential and shear) at the nodal 

radii for all of the elements, these results being stored in 

the matrix(NODSTRL), 

Continuity between elements is only guaranteed for 

deflection and slope, This means that the stresses at the 

outer radius of one element are not the same as those for the 

imer radius of the adjacent element. Nodal average stresses 

are therefore calculated and stored in the matrix[AVSTRL]. The 

numbers stored infAVSTRL]are the coefficients of each cosine 

term of the series. 

The final part of the program sums these contributions 

and associates them with the appropriate harmonic in order that 

the variation of stress with both radius and angle may be
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printod out. 

5.5.4 Program flowchart and listing 

The final flowchart is shown on page 120&121 and the listing 

on pages 122 - 129 inclusive. 

DOCUMENTATION FOR USE OF THE PROGRAM 'ASYMPLAT! 

5.6.1 Program specification 

The program analyses the bending of annular plates supported 

axi-symmetrically but the applied loading need only be symmetric 

about the radial line defining the position 0 = 0. 

Complete plates may be approximated by accepting the presence 

of a small central hole. 

Radial variation of plate thickness and material properties 

can be accommodated. 

The program outputs the radial and tangential variation of 

deflection and slope together with the radial, tangential and shear 

stresses at any specified points on the plate surface. 

S.I. units are used throughout. 

5.6.2 Preparation and presentation of data 

The data required for the operation of the program is very 

similar to that required for 'SYMPLAT', the major difference being 

in the form in which the loading is presented. 

The required data, in order, is:- 

(a) The number of plates to be analysed in this particular run. 

There is an overall loop in the program for this purpose and 

each plate requires its own complete set of data. 

(b) The number of elements to be used to represent the plate. 

Five elements appear to give results of sufficient accuracy 

for most practical purposes but a finer mesh may be advisable if 

regions of severe curvature or stress concentration are anticipated. 

(c) The number of constraints on the plate. 

Any imposed zero slope or deflection at any nodal radius is
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classified as a constraint. 

(a) The number of terms that are required in the cosine. series. 

This varies depending on the form of the loading. For 

example an axi-symmetric load requires only one term whereas a 

point load may require up to twenty or more before satisfactory 

convergence of the solution is obtained. 

(e) The number of values of @ that are to be used in the printout 

of the displacement and stress field. 

(f) The nodal radii. 

These must be given in metres and in increasing order of 

magnitude. The choice of values for the radii is left to the user 

although an empirical scheme of making the radial width of the 

elements approximately proportional to their external radii appears 

to produce generally satisfactory results. 

(g) Details of each element. 

The modulus of elasticity (N/m?) and Poissons ratio for the 

material together with the plate thickness (mm) must be entered as 

data for each element, commencing with the element nearest to the 

centre of the plate. In the case of continuous radial variation 

of any of these three quantities, a stepped approximation must be 

used. 

(h) The nodal connection matrix. 

This relates the element freedoms to the global freedoms and 

also defines the positions of the constraints. The matrix is 

formed as follows:-
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| ELEMENT N@ | 
1 Starting with the 
lelement nearest !NTERNAL RADIUS 
tothe centre | Deft, | Slope 
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The matrix consists of the numbers in the spaces bounded by 

the solid lines. The first column consists of the element 

reference numbers. The designatory numbers of the global freedoms 

are then put into the other spaces after zeros have been inserted 

at any constrained freedoms. 

The designatory numbers for the global freedoms must be 

consecutive integers from 1 up to the number of degrees of freedom 

and should be fed into the spaces in the matrix from left to right 

and row by row. 

Note that for continuity between elements, the numbers entered 

th element must be the same 

)th 

into the external radius columns for the n 

as those in the internal radius coluwms for the (n + 1 element, 

where 1<¢n<(N° of elements - 1) 

The size of the matrix must be (N° of elements x 5). 

(i) Details of the applied loading 

The applied loading must be capable of being expressed in the 

form of one or more a of the series 

BE gy cost8 

Where F is the force (or moment) per unit length that is to be 

allocated to a particular nodal circle. 

Point or ring loads can be expressed in this form using
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conventional Fourier analysis methods. Distributed loads must 

first be redefined in the form of statically equivalent nodal 

loads by using methods such as those described in section 4.5.2. 

The loading is then presented as a series of lists; each 

list quoting the order of the term followed by the loads 

allocated to each nodal circle (starting with the smallest 

radius ) and associated with that order of term. 

Examples of the way in which various types of loading may be 

presented are given in section 5.7 

(3) The values of © at which the displacement and stresses are 

required. 

5.6.3 Summary of data presentation 

(a) The number of plates to be analysed. 

(b) The canning of elements followed by the number of constraints. 

(c) The number of terms in the cosine series. 

(a) ‘The number of values of 9 that are to be used in the 

printout. 

(e) A list of nodal radii (m) commencing with the smallest. 

(£) A list of the modulus of elasticity (N/m?) , Poissons 

ratio and plate thickness (mm) for each element commencing 

with the element nearest to the centre of the plate. 

(g) The nodal connection matrix. 

(n) lists of term order and associated nodal loading. 

(4) The values of @ at which the displacement and stresses 

are required. 

5.7 RESULTS AND DISCUSSION OF VARIOUS TEST PROGRAMS 

5.7.1 Clamped~free annular plate with a point load on its free 
boundary 

The general arrangement of such a plate is shown in figure 5.4
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FIG. 5.4 

This particular case was chosen because it represents a 

severe test of the program due to the need to represent the 

point load by means of a cosine series. 

The Fourier analysis of the point load and its breaking down 

into equivalent nodal loads at the various harmonics is now 

discussed in detail. 

If the nodal ring at which the load W acts is ‘unwrapped' 

then the load may be represented by a distributed load of w/s 

per unit length over a total length § and defined in the range 

o<x<t as shown in figure 5.5 where § is smll and @ is the 

eircumference of the nodal ring. 

    

          

~ LL Wis wig 1... 
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i [eee 
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CSC: 

A half range cosine series is to be used and thus the required 

function is given by 

  

where
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: 2) 4 
« - forn =0 Qo = \ + MS 

for n     Ll} 1,2,--—0 n= 2M (fap + fin mp . ) 

“2 

is Qn = = 2, (sin ams + sinni’ - sin nir.cos ME + sinngs -osrff)   

put $is small 

5 2W 1 § TS 
On= hes (24 + a cos nr)   

= a (1 + cos n™ 

< 

Hence f(x) = + + > te + cos ny) cos ce 

n=1 

In terms of 0, x=b@ and f= 2fb 

oo 

~ (8) = wee > (1+ cos nt) cos-Be- 

n=1 

But (1 + cosni’) is zero for n odd,and 2 for n even 

  

  

oo 

>, f(8) = + > Be cos te 

n=2h6 

7 W. 
or (8) =e + ) pcos? (5.6) 

421,2,3 

Equation (5.6) indicates that the effect of a point load may 

be replaced by the sum of the effects due to a constant ring load 

of total value W together with the cosine distributions of the 

load in the infinite series. 

The ring load causes symmetrical deformation which has 

previously been discussed in chapter 4 and in this context will 

be seen to be handled by the simple device of putting the term 

order equal to zero in the data input,which then calls up the part 

of 'ASYMPLAT' concerned with symmetrical loading. 

Each term in the infinite series causes asymzetric 

deformation and before it can be used in the equation [K!]{5*} = fF*}
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the nodal force vector {F*{ must be formed, The most satisfactory 

way to do this is to use the equivalent virtual work ideas 

expressed in equation (3.10). With reference to equation (3.10), 

in this instance there are no body forces and the surface traction 

becomes simply the cosine distribution of load along the nodal 

circle. The integral of the surface traction therefore becomes a 

line integral along the nodal circle and the contribution to §Pey 

at a particular nodal circle becomes 

Fo = § Net eds 

where N¢ is the circumferential shape function, i.e. cos @e 

72 is the nodal circle loading, i.e. (w/ rb) cose per unit 

length 

29° 
Hence Fle 5 (cos to) (Ye cos £8) b d8) 

w 217 Fy 
aos i cos? £6 d@ 

caw 
Each harmonic of the asymmetric portion of the load may 

therefore be represented by a nodal force of value equal to the load 

itself. 

During the initial stages of development, 'ASYMPLAT' would 

predict only displacements and at that point some comparisons were 

made with the results of conventional finite element analysis in 

order to assess the viability of the semi-analytic approach. 

Olson and Lindberg [22] have analysed the particular case when 

b/a = 1.5 using various assemblages of their annular sector element 

and comparisons will be made with their results. The details of 

the problem are:- 

Steel plate (E = 200 cn/m’, Y= 0.3) of thickness 1 mm 

Internal radius 1 n, 

External radius 1.5 nm, 

Edge load 1 N.
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Five elements were used and graph 5.1 shows the effect on 

the deflection at the load point of taking various numbers of 

terms in the Fourier series representing the load. It can be 

seen that using only the first eleven terms brings the result 

within 5% of the exact answer whilst using 21 terms gives an 

accuracy of approximately 2%, Increasing the number of elements 

to ten gave no significant improvement in accuracy. 

Graph 5.2 shows the variation in dertection at various 

points on the plate. 

Direct comparisons with Olson and Lindberg's results are 

shown in figure 5.6. Their very simple 1 x 6 grid gives a very 

satisfactory resuit at the load point but is inaccurate over the 

rest of the plate. The results from ASYMPLAT using 5 elements 

and 21 terms compare very favourably with their analysis using a 

4 x 24 grid. The great advantage of ASYMPLAT in this latter 

comparison is that ASYMPLAT arrived at its solution by solving 

21 sets of 10 simultaneous equations which is considerably more 

economical in computational terms than the single set of 292 

equations that are solved in Olson and lindberg's analysis. This 

advantage can be expressed in quantitative terms firstly in terms 

of Eee locations for the system stiffness matrix where ASYMPLAT 

requires only 10? locations which are successively overwritten as 

each term in the series is processed, whereas Olson and Lindberg 

require 2922 locations. Secondly, the number of arithmetic 

operations in the solution of the equations using Cholesky's 

method is given by Martin and Carey [14] as 

  a + an? S Fine for a set of n equations 

On this basis the Olson and Lindberg solution requires 

approximately 600 times the number of operations required by 

ASYMPLAT for this particular analysis.
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GRAPH 5.1 

THE EFFECT OF THE NUMBER OF TERMS ON THE ACCURACY OF SOLUTION 

Clamped- free annular plate with point load at edge 

Five elements of varying width 

Load =1N 
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GRAPH_5.2 

CLAMPED-FREE ANNULAR PLATE WITH POINT LOAD 

Steel plate- 1mm thick 
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GRAPH 5.4 

CLAMPED-FREE ANNULAR PLATE WITH POINT LOAD 

PLATE AS SHOWN IN GRAPH 5.3 
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ASYMPLAT was further developed to include the analysis of 

plate stresses and at that stage it was thought desirable to 

obtain some practical test results with which to compare the 

theoretical analysis. Appendix C contains details of the 

construction of a suitable rig and its instrumentation. It also 

describes a classical analysis which was carried out using a 

method outlined by Timoshenko and Woinowski-Krieger {3] . Full 

details of the test results are given by Wilson [20] and a 

selection of these results is presented here for the purpose of 

comparison. Graph 5.3 shows the correlation between deflections 

and graph 5.4 between stresses. No major discrepancies are 

apparent; the largest deviations being in the values of the low 

measured stress at the inner boundary and the high measured stress 

at the load point. These deviations may be explained by lack of 

fixity at the clamp,and stress concentration in the region of the 

load respectively. 

A typical set of input data for the solution of this problem 

using 'ASYMPLAT' is given on page 130. 

5.7.2 Clamped circular plate with a point load 

The general arrangement of such a plate is shown in figure 5.7. 
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Details of the particular plate analysed are:— 

Steel plate (B = 200 GN/m@, y = 0.3) 

Radius = 1m, with load situated at 0.5m 

Thickness = 1 mm 

Load =a 

The analysis was performed using a 10 element representation 

of the plate, the elements being of varying radial width and the 

centre of the plate approximated by using a narrow annulus with a 

very small inner radius (0.1 mm) and a modulus of elasticity 1000 

times greater than that for the remainder of the plate. 

The results of the analysis are illustrated in graph 5.5 

on page 116. The displacements show very good agreement with 

‘exact' theory and compare favourably with Olson and Lindberg's 

solution. ASYMPLAT again has the advantage of using considerably 

less computational effort than Olson and Lindberg's approach. The 

graph also shows the stress distribution across the diameter on 

which the load acts, although no exact solution was available for 

comparison. 

5.7.3 Clamped annular plate with applied moment on central boss 

  

FIG. 3.8 

Details of the particular plate analysed are: 

Steel plate (E = 200 GN/m?, y = 0.3) 

Plate radius, b= 1.667 m 

Boss radius, a=1.0m 

Thickness = 1 mm 

Moment =1Nm
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In the finite element formulation, two representations of 

loading were used. The first formulation represented the moment 

by a point moment at the edge of the boss using an infinite series 

identical to that used for the point load in section 5.7.1. In 

the second formation the moment was represented by ring load 

W cos 9 around the edge of the boss where W was the renee: per unit 

length of circumference. The value of W was then adjusted such 

that the moment due to the ring load was statically equivalent to 

the applied moment M. 

The method of representation of the boss caused some difficulty 

in the interpretation of the computed stresses. The program 

calculates nodal average stresses, and is generally satisfactory, 

except that where a boss exists the averaging process at a thick 

poss - thin plate interface does not give a correct result for the 

plate stresses. This problem was overcome by representing the 

rigidity of the boss by an annulus with the same thickness as the 

plate, and with a small central hole, but with a very much increased 

modulus of elasticity. (108 times that of the plate). 

The two methods of representing the moment produced almost 

identical results but the use of the ring load, W cos 0, was 

computationally mich more economical as only one term was required 

in the series representation. The ring load form of representation 

was used, however, in the knowledge that a simple cosine wave was 

in fact the exact solution. Such knowledge is obviously not 

always available and the infinite series form of point moment 

representation should be regarded as a more general approach. 

The deflection and stress distribution is illustrated in 

graph 5.6 on page ‘17 and comparisons are made with exact results 

where available.
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GRAPH 5.6 

V7 

CLAMPED CIRCULAR PLATE WITH CENTRAL BOSS CARRYING A MOMENT 

Material - Steel 

E = 200GN/m 

Y= 0.3 
     

4mm 
Results obtained from ASYMPLAT (6 Elements 3 1 Term) 

VARIATION OF DEFLECTION WITH RADIUS 
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2 Method Slope STRESS (kN/m¢) 
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Analysis (rad.) G O Oo : 60 

Exact 1.7556 x 1074 411,57 123.47 270.66 81,20 

ASYMPLAT 4.7497 x10" 448,49 134,55 275.74 i 82.73    
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5.7.4 Variable thickness plate with distributed pressure and 
central moment 

This plate was analysed to illustrate the type of problem 

that is amenable to solution using 'ASYMPLAT' and which would be 

extremely difficult, if not impossible, to solve using exact 

methods. 

The plate is the same as the one previously shown in graph 

4.3 on page 72 but with the addition of a moment of 80kNm applied 

to the central boss. 

The distributed pressure was allocated to the nodal circles 

using equations (4.17) and (4.18) and then read into the program 

as zero order terms. 

The moment on the boss was represented by the ring load 

technique described in section 5.7.3 above and read into the 

program as a first order term. 

The deflection and stress distribution are illustrated in 

graph 5.7 on the following page.
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GRAPH 5.7 
VARIABLE THICKNESS PLATE CARRYING BOTH A MOMENT & UNIFORM PRESSURE 
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PROGRAM FLOWCHART FOR ‘ASYMPLAT’ 
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A LISTING OF THE PROGRAM 'ASYMPLAT’ 

PEGG EN DL COMMENT ZANALYS TS OF ASYMMETRICALLY LOADED PLATES; 
TREALTAS 

VINTEGERINELEM,NNODE,NCON,NDEGF,HBW,PROBNO,NPROByNTERM,NANGL, 
FrGrHolode Ke beens We Vo teFl Fee koe Fae 

FIpSPORMATC'N(1SSmD DDIDAEND!I DI )y 
F2gSFORMATCN(eND ODD!) ')5 
FSpSFORMATCICESSNOV) ND] 
F4gSFORMATCICINDD,O')')y 
HBWps4y 
PROBNOS 309 
NPROBZSREAD (GU); 

START PROBNO$=PROBNO+1] 
PAGE(30,1)3 

WRITETEXT(30,'CVANALYSIS,OF ASYMMETRICALLY LOADED wPLATES%SA%!) ! Dy 
WRITETEXT(SO, | CPLATERNOiqumwonneuannennntennnn!) Ot 

WRITE(30,F3,PROBNO)? 

NEWLINE (30¢3)9 
YCOMMENT! READ AND OUTPUT THE GENERAL PROBLEM DETAILS) 

NELEMZ=READ(60)) 

NCONZAREAD (60); 
WRITETEXT (S07 ' CEINUMBER MOF ELEMENTS winnmmenmmmmersmm! ) 0) 9 

WRITEC39,P3,NELEM) 9 
NEWLINE(39,3)3 
NNODESSNELEMe1y 

WRITETEXT (30, 'CENUMSER MOF NODES mmmmmmmmmmimurmmona! ) *) p 
WRITE(30,F3,NNODE)y 

_ NEWLINE(39,3)3 

WRITETEXT (30, CINUMBER WOR mCONSTRAINT Swmmmormmnmmen 28) 7 
WRITE(39,F3yNCON)y 
NEWLINE(39,3)9 
NDEGFeH2eNNODEMNCONS 

WRITETEXT (30, ' CINUMBER MOP mOEGREES yO Fa FREED OM!) 8) 9 

WRITE (39,F3,NDEGF) 3 
NEWLINE (30,3)9 
NTERMZ=READ(60), 

WRITETEXT (30, 'CINUMBER MOF Wy TERMS memereamangemenemoewentnn 1) | 
WRITE(39,F3,NTERM) 
NEWLINE(39,3)3 
NANGLZ#READ(60)3 

IBEGIN' 
HINTEGER'THARRAYVINOOCC/TINELEM,195/),TERMORD(/13NTERM/) 9 
VARRAYINODRAD(/14NNODE/) FORCE C/1gNDEGF/) sTHETAC/TENA'GL/) 4 

Eve T C/T NELEM/) ¢SSTEC/TINDEGE, OpHBWeat/), 
Mela 24NODE/) ,APLOLC/14 2uNNODE/), 
401961.116/)~_ NOOSTRLG/136,19NELEM/) » 

AVSTRL(/T ENTER) 1 PSHINODE/) y 
DEFLyRSLOPE, TSLOPE,RSTR,TSTR,SSTRU/1gNNODE, 1 gNANGL/) 9 

VCOMMENT' LIST THE PROCE DURES) 
PROCEDURE! FORMKS(449,P,A1,A2)2 

HARRAY'M,A4,A24 
TREAL'PY 
VINTEGERIO, 
"BEGIN! 'PORI Egat ISTEP TTIUNTIL'4*O0! 

"BEGIN' 'FORN psTISTEPTTIUNTIL'4'o0? 
IBEGIN! 

MO/T 9d 49/0 5894 
MCAT ede Q/)gaCA 

444 

  

FCAT T/A CA2] C/T SD +P HA2C/240/))) 
(72 Dy *(PHRZ C/T yd PD #AZC/2 4d) 01 

"END')
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"END'g 

TEND! OF RFORMKS; 
'PROCECURE' FORMKACH,QyP,A1,A2)5 

"ARRAY'M,AT,A2q 
"REAL'P) 
VINTEGERIO, 
"BEGIN' 'FORTT pst'STEPITtUNTIL IAI DOt 

"BEGINU'FOR' J pst'STEPITIUNTILIGHDO! 
‘BEGIN! 

MC/Te de Q/) 4390 
MOAT de Q/0gSCA1C/1,T/) #CA2C/ 1,31) 4PHA2(/2,0/))) 

HOATC/2,T/)#CPHALC/ 1 I/D 4420/2 ,4/7)) 
HCATC/B T/) a C4eP)HAZ(/3 0 /9/2)9 

VEND'? 
"END') 

TEND! OF FORMKAg 
'PROCEQURE'CHOBANDDET(N,M,A) 9 

'VALUEIN, My 
VINTEGER'N) My 

VARRAYSAG 
"BEGIN! 
"INTEGER Lede Ky Pe QeRy Sp 
'REAL'Y] 
"RORTT p81 'STEPITIUNTILINGDO! 

"BEGIN! 
PESCTLFITDMITHENTOLELSE Medal) 
Reatlem+P, 

"FOR'J;=PISTEPITFUNTILIMI DO! 
"BEGIN! 

Sredeot) 
QretmsaPy 
YssAC/Tyd/08 
TPORIKpSPISTEPITIUNTIL IS! D0! 

'BEGIN! 
YuRYeAC/T K/)#AC/RYQ/)3 
O;RQet; 

VEND') 
VTENJEMITHENTAC/ TQ d/)3 
VELSESAC/T yd /) 28 YHA (/R 
ReaRety 

"END 
VEND'y 

(END! OF CHOBANDDET, 
"PROCEDURENCHOSANDSOL (Ny Mp Re A,B) a 

"VALUETN  M)Ry 
VINTEGER'N M Ro 
VARRAY'A, By 
"BEGIN! 
VINTEGER' Ted e Ke Pe QeSp 
YREAL'Y) 
SeaMnt; 
"FORT pSTISTEPITIUNTILIR' DO? 

"BEGIN! 
SPOR'ITSS1'STEPIVIUNTILING DO! 

"BEGIN! 
PLra(UIFUTOM'THENTOVELSE Mol 41) 7 
Qisly 

#4 /SQRTC(Y) 

oM/)e
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YesB(/t/)a 
"FORT Kp aS'STEP Te "UNTIL IP EDOT 

'BEGIN' 
QpsOuly 

YeSVrAC/T,K/)¥B(/0/)5 
"END'y 

BO/T/) gSY¥AC/TGM/)E 
END"? 

"FOR'TZ=NISTEPM eT tUNTILIG! DON 
"BEGIN! 

PEA(IIFUN@TOMITHENTONELSE MaNel) 7 
Ys=BC/1/)3 
rely 

TROR'KpSSISTEP' 1 UNTILIP IDO! 
'BEGIN! 

QyaQe1s 

YeSYsAC/Q,K/)¥BC/0/)) 
TEND 

BC/T/) p8Y¥*AC/TGM/)a 
TEND!) 

"END! ) 
TEND! OF CHOBANDSOL, 

‘COMMENT! INPUT DETAILS OF ELEMENTS AND LOADING; 
"FORITye1'STEP IT UNTIL INNODENDO! 
NODRAD(/1/) sSREAD(60)2 
VFOR'Tpst'STEPITIUNTILINELEMI DO! 
"BEGIN! 

E(/1/)pSREAD(60)y 
VO/T/) GF SREAD(60)y 
TOC/1/) ¢SREAD(60)) 

VENO') 
WRITETEXT (30, "CUDETAILS wOFmELEMENTS%%!) ' D9 
WRITETEXT (30, CH ELEMENT NO g mmm tN Te RAD CH) mmm EXT © RAD CM) proven OD 9 OF my 

ELASTIN/SQ aM) mma POTSSONS RATIO mmmmP LATE THICKNESS 
CHM) NNN) 

VFOR'TpST'STEPHAUNTILINELEM'DO! 
"BEGIN! 
WRITE(30,F3,1)3 SPACE(30,3)) 
WRITEC(SO;,F2,NODRAD(/1/))) SPACEC30,7)3 
WRITE(30,F2,;NODRAD(/T41/))) SPACEC390,5)9 
WRITE(30,F1,E(/1/))4 SPACE(39,13)5 
WRITEC30,F2,V(/1/))y SPACE(30,13)) 
WRITEC3O,;F2¢TC/E/))a «9 TO/T/) aT 0/1/72 /1000) 
NEWLINE (30,1)3 
VENDT, 

NEWLINE (30,2)¢ 
WRITETEXT(30,' CINODAL CONNECTION, MATRIX%Z%!) ')y 

VFOR'TpStISTEPITIUNTILINELEM!DO! 
"BEGIN! 

VPOR' J p24 'STEPITIUNTILIS' DO! 
"BEGIN! 

NODC(/1,)/) =READ(69)3 
WRITEC(30,F3,NODC(/T,0/))9 

YEND'y 
NEWLINE(30,1)9 

YEND') 
NEWLINE (30,2)9 
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UFORIMPST9STEPITIUNTILINTERMIDO! 
"BEGIN! 

WRITETEXT(30,' CTORDERmMOFATERM umm!) 1) 9 
Le=READ (60); 

WRITEC30,F3,b)9 
TERMORD(/M/) gske 
NEWLINE (30,3) 
WRITETEXT(30, 1 CHAPPLIED NODAL, LOADINGS%') 1D) 

"FORMS ZS7*STEPITIUNTILI2*NNODENDO! APLOLC/J/),eREADC40), 
"FORM seq 'STEPIQNUNTILI2#NNODER1IDO! 
‘BEGIN! SPACE(30,5)3 

WRITEC30, F2,APLOL(/J Ye SPACE(30,5)3 
WRITEC30¢F2,APLOL(/U41/2)— NEWLINE(3S0,1); 

VEND') 
NEWLINE (50,3)3 
"PORT G24 *STEPITIUNTILINNODES41D0! 
"BEGIN! 

SPORM tat ISTEPITIUNTILI2' DOF 
"BEGIN' 

GeSNODC(/T,J#1/) 
VIENGSO'THEN FORE EC/G/)paAPLOL(/2*I6 2ed/)5 

YEND') 
"END'; 

"FOR Sts ISTEPITIUNTILI2' por 
"BEGIN! 

GreNODCC/NELEM,U43/)7 
"ITFIGSOUTHENTFORCE(/G/)gRAPLOL(/2a}a2ed/)3 

TEND!) 

"COMMENT! FORM ELEMENT STIFFNESS MATRICES; 
"BEGINUTREALIR4 ~R2,D0,DR,DRO,RATRINU? 

TARRAY'AL SALT ¢AL2,AL3,AL4(0/123,114/), 
BLC/1p4 et toe 1O/)eESTFLC/1E 4014/08 

'STEP'AtUNTILINDEGFIDO! 
"STEP'TIUNTIL'HBWe1! 00! 
Lys 
EPIGMUNTILINELEMI DO? m

e
o
w
 

RIGSNODRAD(/K/) 4 
R2ESNODRADC/Ka1/)) 
DREERZ2eR1,  ORGPEDRH*G) RATRESR2/R14 
DERCEC/K/)*TC/K/) #43) / (128 (1 9V0/K/) 442) D9 
NUPAV(/K/)G 

  

   

  

AL1(/1¢1/) ¢8125 
AL10/1¢2/) ¢2AL10/1,4/) paGHDdRy 
AL1C/1,3/) ¢3012) 
AL10/2,1/) p22* (Bal ead) 
AL1(/2 427) §2AL10/2,4/) a(BeLeu2) 4DRG 
AL16/2,3/) pRaeu (Soh eH2)y 
AL20/1,1/) peeow(R24R1)7 
AL2(/142/) geaze(2HR24R1) HOR, 
AL20/17.3/) 5 =6*(R24R1)9 
AL26/174/) pea2e(R2424R21) ORG 
AL20/271/) paa5#(2eLeH2) HC R24R1) 
AL20/2,2/) fee (2a ex2) #(2HeR24R1) HDR, 
AL2(/2¢3/) GR3*(2eL HH 2) *(R2ER1)g 
AL2(/2,4/) psu (2ub 42) #(R2424HR 4) 40Ry 
ALB (/1,1/) §5AL3(/1, 2/) pSAL3C/43/) ¢2AL3C/1, 4/V 4894
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AL3(/2¢1/) G26e (Thee) eR1WR2G 
AL3C/2,2/) 58 (Leb we2) HC RIH2#R1) HDR RZ 
AL3C/2,3/) gen6% (Tel eH2)eR1ER27 
ALS (/2,4/) G2 (Tab #e2) HC 2HR2ER1) HORER TY 

'TRILSO'ITHEN? 
"BEGIN! 
FORMKSCBL¢1¢NUpAL1,AL1) 9 
FORMKS(BLy2,NUsAL1,AL2)9 
FORMKS (BL, 3p NUsALT,AL3)9 
FORMKS (BL, 4)NUsAL2,AL1)3 
FORMKS (BL, SeNUeAL2yAL2)2 
PORMKS (BL y OyNUPAL2,AL3)a 
FORMKS CBLy 7pNUsALS~AL1)2 
FORMKS (BL, 3, NUpAL3yAL2) 4 
FORMKS (BL, 9 ¢NUeAL3,AL3) 7 

"FORT g 37 'STEPTTIUNTIL'GIOO! 
HROR' UST STEPITIUNTILIG!#DO! 

"BEGIN! 
ESTFL C/T ed /) p56 e2844Dk( ((R2eH4 aR HHA EBL O/T 9d ,1/9/4)% 

C(RQAwesaR IHS) HCBLC/ Tad ee /) 48 E/T 4d 94/99/39 4 
COR2HH2eR HHS ECBL C/T ede 3/2 HBL Lede SAD HBL C/T ede 7/) 2/208 
CDR¥CBLC/ Ted O/) FBLC / Ted 3/0004 
CUNCRATR)#BL G/T 4d 09/022 /DRG5 

YEND', 

    

"PORN gStISTEPITTUNTILI4*DO? 
'BEGIN! 

(FORTIPSIISTEPITIUNTILI2!908 
ALC/T a U/)ESORDHCALT C/T pd /Q#RIFALZ C/T ed /DHALS C/T ed /) 

IRAV/(TC/K/) HoH DReaS) 
ELCALC/Ky 1p J/)tBALC/1 ed /DHNURALC/2,I/)5 
ELCALC/Kp2ed/)GRNUMAL C/T J/DHALC/2yd/)1 
ELCALC/Ky3.d/) 329 

SFORIT ps1 'STEPITIUNTILI2100! 
ALC/T 101) paOHDSCALT C/T J /DFRAGALZC/ Td /D ALS C/T ,0/) 

ARAYA CTC /K/) 2k OR WHS) OD 
ELCALC/ Ki bed) TSALC/1 S/d #NURALC/2,5/)1 
ELCAL C/K Sad /) EaNUHAL C/T gd /DHALC/2eg/ 04 
 ELCALC/ Ky 6, 0/0 5897 

YEND') 
"GOTO! Lay 

"END 
AL1(/3,1/) p258#Ly ALIC/3,3/):834h7 
AL1(6/3,2/) L10/3,4/) psad* LaDy 
AL20/3,1/) 5% OxL¥(R24R1); 
AL2(/3,2/) Gs2¥Lx(2eR24R1) #OR 
AL2(/3,3/) 53 mo*Le(R24R1)5 
AL2(/3,4/) G22 Le (R242eR1) HOR, 
ALB 0/3,1/)35AL30/3,2/) ¢5AL30/3,3/) 2 5AL3 6/3,4/ 
ALS C/ 4417) GPALG C1127) GPALG (1103/7 SARS E/1,4/ 
ALG C/241/) Gen Chwn2) HC RAm3HRI)ER24425 
AL4(/2,2/) FEC LZ) HORHRTER2H HD, 
AL4(/2,3/) Fae CLae2) AC SHR2GR1T ERT HDG 
AL4(/244/) FEC L#H2) HDRER2 ERT HDD 
ALS (6/3417) FS24Le (R283 HR1)HR2%42] 
AL4(/342/) GeeZeLe2IeRIAR2Qwe2] 
ALG (/3,3/) GR2eLe(3HRImR1) HRA HH2Y 
ALG (/3,4/) Gaa2uLHDRERZER {way 

   

30) 

20) 
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FORMKACBL, 1p NUCAL4 ALI) 
FORMKACBL,2,NU;AL1,AL2)9 
FORMKACBL Sy NUsAL4~AL3)9 
FORMKACBL, 4, NUp SLT, AL4)2 
FORMKACBL, 5, NUpALZ,AL1) 2 
FORMKACBL  SpNUrAL2pAL2)e * 
FORMKACBL, 7pNUPAL2,AL35) 9 
FORMKACBL,3,NU;AL2,AL4) a 
FORMKACBL, 9, NUPAL3,AL1)2 
FORMKACBL,10,NU,AL3,AL2) 9 
FORMKA (BL, 11,NU,AL3,AL3) 9 
FORMKA CBRL ¢ 12pNUGAL3~AL4I7 
FORMKA(BLy13,NUAL4,AL1)9 
FORMKACBL» 14 ¢NU;AL4,AL2) 3 
FORMKACBL¢ 15 ¢NUpAL4,AL3) | 
FORMKACBL, 16, NUGALG ALG)? 

"PORT I paTISTEPTTFUNTILIG'DO! 
"FORTY STISTEPITIUNTILIAIDO! 

"BEGIN! 

ESTFLC/LyJ/) 
pad 014240 ( ((R2HHGmRIMEG HBL O/T, 

COR2HSeRTHHS ACBL C/T ede 2/04 BL C/T yd 0 5/)) 
CORZ eH 2a RA eH2DECBL C/T de 3/2 #8L C/T ede O/)+ 
CORWCBLC/ Ted eS/) HBL C/ Dede 7/) #BL C/T 9d 01 0/ 
CLNCRATRI#CBLO/T 

yd B/D *BL C/T ede 11/2 HBL C/ 
COCTAR2D@CT/R1) 

HC BL C/E pd 12/2 *BL G/L 
‘ CECT CARA 442) mCT/ (ZR HW2)) HBL C/T ode 1 
END'; 

O
u
e
~
 
c
r
e
 

TRORI J pSTISTEPITIUNTILIG'DO! 
"BEGIN! 

(FORVITpSTtSTEPITIUNTIL'S' DOF 
ALC/T ed /) psa Ow CALI C/T S/d #RIFALZC/Y, 

ARAFALS C/T ed //R1 ee 2) 1 (TC/ 
ELCALC/Kelad/) GEALC/1 ed /2#NUHALC/2,4/ 
ELCALC/ Ke 2yd/d gBNUKALC/1 ed / HAL C/o ed/ 
ELCALC/ Ke Sed/) ga 4NU) HAL C/3,5/9/23 

(FORINT ,s1ISTEPITIUNTILIZ! DG! 
ALC/T ad /) s 26H D*CALT C/T dS AR24AL20/ TU /) FALLS (C/T ad /) 

PRZHALA C/T ed /)/R2*H2) LCT K/K/) WHeHDR HES) y 
ELCALC/K yp Gad /) EAL C/T pS /DHNURALC/2, 0/02 
ELCALC/ Ke Sed /) geNUMAL C/T ed / HAL C/O ed / 08 
ELCALC/ Ke Sy d/) GaCTANU) HAL C/3 5/0/28 

"END') 
"COMMENT! ASSEMBLE ELEMENTS, 

L4p'FOR'TpsttSTEPITIUNTIL'4'DO! 
"FORM J pat'STEPITIUNTIL' 4100! 

"BEGIN! 

FrBNOOC(/K,141/)9 
GeSNODC(/Kyd41/)y 

"IPT FSOITHEN'IGOTOILS, 
TIFIGROITREN'IGOTOILS, 
"TRUFDSGITHEN! 

‘BEGIN! 
HpsGeFsHSWmty 
SSTFC/FAH/) sSSSTFC/FLH/DFESTEL C/T ed /) 5 

VEND', 
L3EVEND ty 

"END' OF K LOOP; 

J/VFALZ C/T V7) 
K/)we2eDRead) 7 
i 
”



128. 

. VEND' 

"COMMENT 'SOLVE MATRIX SOUATIONS) 
CHOBANDDET(NDEGE, HBWe1,SSTF)? 
CHOBANDSOL(NDEGF,HOW91,1,SSTF, FORCES, 
WRITETEXT(30,' (NODAL mOISPLACENENTSZ%!) 8 )y 
SFOR'WeSTESTEP'TIUNTILINNODE'DO! 
"BEGIN! 

VIFIUWANELEM4+1'THENUIGOTOILS) 
YeeNQOC(/Wy2/)y 
ZyaNOOC(/W 93/95 

'GOTO'L 6; 
LOGY gsNOOCC/M—e4, 4/92 

ZeeNOOC(/Wa1,5/)9 
LOPITFIYSO'THEN'DIGPL(/M,2*We1/) 750 

YELSE'DISPL(/M,24Weol/) s3FORCEC/Y/)3 
WRITEC3O,F1,DISPLC/M,2eWel/))y, SPACE(30,5)2 

VIFIZSOITHENIDISPLO/M,2#W/) 720 
"ELSE'DISPL(/M,24W/) sSFORCEC/Z/)3 
WRITECSO,FI,DISPLC/Mp2eW/) Dy 

NEWLINE(3O,1)2 
"END! 
NEWLINE(30,3), 

TCOMMENT! CALCULATE NODAL STRESSES; 
WRITETEXT(30,!C'NODALWSTRESSESS%!) "Dy 

"FORIK ET ISTEPTTIUNTILINELEMIDO! 
"BEGIN! 

"FOR? T pet 'STEPITIUNTIL'G'DO! 
'BEGIN' 
NODSTRL(/1,K/) 450; 

HFORM GET ISTEPITIUNTIL'G* DO! 
NOOSTRLG/TeK/) gSNODSTRUC/T K/)FELCALC/Ke led /)* 

DISPLC/M,2eKu24)/); 
WRITE(30,F1,NODSTRUC/1,K/))¢ SPACE(39,5)7 

YENDIy 
NEWLINE (30,1)9 

VENDYy 

NEWLINE(30,3)3 
AVSTRLO/Me1/) gaNODSTRLG/141/03 
AVSTRLG/Mp2/) peNOOSTREC/241/94 
AVSTRLG/¢3/) f=NODSTRLG/ 301/09 

"FOR'T; STISTEPI4IUNTILI3 100! 
"FORT psitSTEP TT TUNTILINELEM=1 100! 
AVSTRLC/M  S#J4T/) paCNODSTREC/T 43,9 /) 4NODSTRLE C/T yd 41/92/23 
AVSTRLUC/Mp S#NNODEw2/) FaNODSTRL(/4,NELEM/)3 
AVSTRL(/MpS#NNODEm1/) s=NODSTRLE(/S,NELEM/) 
AVSTRUC/43*#NNODE/) p=NODSTRUC/G,NELEM/) 4 

"PORT GaT'STEPISTUNTILISHNNODEW2'00! 
"BEGIN! 

WRITE(39,F1,AVSTRLC/M,1/))2 SPACE(39,5)3 
WRITE(3SO,F1,AVSTRLC/M, 1 41/)) 9 SPACE(30,5)) 

ie WRITE CSO, FT, AVSTREC/M,142/))0 NEWLINE(30,1)9 
Not, 

NEWLINE(30,3)1 
‘END! OF M LOOP; 

‘COMMENT! CALCULATE AND OUTPUT THE DISPL, AND STRESS FIELD, 
WRITETEXT (30, ! (VOTSPLACENENT WAND STRESSmFIELOSS!) ! Dy 

UROR'T PAT ISTEP TTIUNTILINANGL IDO!



129. 

THETAC/1/) gSREAD(E0)) 
TFORIWrST'STEPITIUNTILINNODE'DO! 
VFOR' J gST'STEP 'TIUNTILINANGL! DO? 
"BEGIN! 

DEFLC/Wed/) 308 
RSLOPEC/Wid/) 430) 
TSLOPE(/Wed/) 420g 
RSTRC/Wyd/) 720% 
TSTRO/Wed/) p303 
SSTRC/Wed/) G204 

YENDI? 

TFORIWSSTISTEPIATUNTILINNODE'DO! 
'BEGIN' 
WRITETEXT(30, 4 CINODAL w RADIUS (CM) wn!) 8) 9 
WRITE(30,F2,NODRAD(/W/))9 
NEWLINE(30,2)) 
WRITETEXT(S0,'CTANGLE'C'1OS!) I DEFLECTIONT('190St)! RAD SLOPE 

"CUOSU)ITANG pmSLOPENCH9ST) RAD, STRESSE( HOST)? 
TANG pw STRESS'(1BSH) ISHEARWSTRESS% 

CDEG)ICHASSI DE CMM) I CHTSS'DECRAD) PC84S5S1) 9 CRAD) 108135 

"JUCNASQIMYECTISSHDUCN/SOaMDICITAST)UCN/SQ SM) AKI) IDG 
"FORTS gS1'STEPITIUNTILINANGL 00! 
"BEGIN! 

WRITEC30,F4,THETAC/JU/))y 
"FORTH ps *STEPTTIUNTILINTERMI DO! 
"BEGIN! 

APSTERMORD(/M/) *THETAC/J/) 43 —142/1803 
DEFLC/Wed/)ESDEFLC/W yp J/)4DTSPLO/M,2eWet/) #COS (A) #19907 
RSLOPEC/Wed/)GSRSLOPEC/WpU/)4DESPLO/M, 24H /) ¥COSCA)? 

TSLOPE(/Wed/2 ESTSLOPEC/WyJ/)#DISPLE/Mp2*Wol/)#SIN(AD] 
RSTROAWed /DESRSTRO/ Wed /)HAYSTRLC/M, 3#Ws2/)#COS(A)y 
TSTR(/Wed /)EETSTRO/Wed/IAVSTRLC/M, S4We1/) #COS(A)y 
SSTRO/AWeJ/)ESSSTRO/W ed /)HAVSTREC/M,SHN/DHSINGADS 

VEND') 

SPACE(30,4)¢ WRITE(30,F1,DEFL(/Wyd/) 
SPACE(30,4)9 WRITE(30,F1,RSLOPE(/Wy¥ 
SPACE(30,4)3 WRITE(30,;F1,TSLOPEC/Wyd 
SPACE(30,4)p WRITE(3SO0,F1,RSTRO/Wyd/) 
SPACE(30,4)3 WRITE(30,F1,TSTRO/WeJd/) 
SPACE(30,4)2  WRITEC30,F1,SSTRO/Wed/) 
NEWLINE (S0,1)) 

   

” 
da 
4 

] 
om) 
oe] 

"END'| 
NEWLINE(39,2)3 

YEND'y 
VEND'; 

'TFIPROBNOCNPROBITHEN''GOTONSTART, 
TEND!
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TYPICAL INPUT DATA FOR ‘ASYMPLAT’ 

This data is for the plate shown in graph 5.3 using 5 elements and 21 terms 

N® of constraints 

N® of elements N® of terms 

Plate N® 

Nodal radii 

Element details 

Nodal connection matrix 

Term order & associated 
nodal forces 

Values of angles at which 
the output is required 

  = 
N®& of angles 

Vi5a25eii7i 
0007500115 0015300185 0e22rUe225) 
6989 0edS Ee C4E 
6939 30553740047 
6939:0.33 

69993003354, 
699970233; 
V0r0E1823 
2918 2e3R4G 
Se3R4e5Se 
455963 
5778BG 
070707079 
129707039 
270705079 

310707020 
4197105985 
$7080503050 

679707089 
74070593 
830701074 
9,080 080% 
10703970397079 
9120;029707 93° 
1250508030 
13203907050 
14703050305 979 
152030207030 
1610;93 
177030 
1810; 

41940; 
29703034 
0,0730.936u 

64s     
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DISCUSSION AND CONCLUSIONS = 

GENERAL DISCUSSION 

The satisfactory development of the semi-analytic finite 

element program 'ASYMPIAT' has justified the selection of this 

technique in preference to others. The solution of a wide range 

of practical problems has now been made possible with a considerable 

degree of computational efficiency. During the development of 

this program however, several points have arisen which are worthy 

of further discussion. 

The use of the conventional Ritz method has been shown to be 

of some value in the analysis of both plain and stiffened plates, 

particularly if estimates of deflection and not stresses are all 

that is required. The technique is of limited application, however, 

in that many types of plates and boundary conditions which occur in 

practice lead to calculations of the utmost algebraic complexity. 

The conventional finite element program 'SYMPLAT! which was 

developed at an interim stage for the analysis of plates which are 

axisymmetric in geometry, material properties,and loading now stands 

as a useful practical program in its own right. It is comprehensively 

documented, easy to use and computationally efficient. Many 

practical problems which would present considerable analytical
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difficulty if tackled by classical methods may be solved to a 

satisfactory order of accuracy for most practical purposes using 

only a few elements and, since the elements are compatible, it may 

reasonably be expected that increasing the number of elements 

should at least produce a degree of convergence towards the true 

solution. The one possible extension to this program which may be 

of some limited practical use would be the evaluation of the 

boundary forces required in order to produce specified non-zero 

geometrical constraints at the plate boundaries, although it must be 

remembered that these non-zero constraints could not be very large 

or the basic assumptions of plate bending theory would be violated. 

This aspect of extending 'SYMPLAT' has not been investigated in 

depth but may be possible by the use of some form of iterative 

overall loop in the program based on assumed applied boundary forces 

and the resulting boundary displacements as the zero constraints are 

released. 

The semi-analytic finite element program 'ASYMPLAT' has been 

developed to the stage where it provides a very useful contribution 

to the solution of problems which fall within its range of application. 

With the program in its present state, this range of application 

refers to annular or complete circular plates of axi-symmetric 

geometrical and material properties under the action of loads which 

may exhibit any form of radial variation but must at least be 

circumferentially symmetric with respect to some specified radial 

line. The program has been shown to produce satisfactory results 

when compared with solutions obtained by other forms of analysis and 

is computationally more efficient than the conventional finite 

element approach using annular sector elements. It is accepted 

however that this latter approach may have a wider range of 

application, for example in the analysis of plates with off-centre 

holes. The prediction of stresses by 'ASYMPLAT', particularly at
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sudden changes in plate section, requires a degree of care in 

interpretation,and from this point of view it is possible to argue 

that calculation of the stress levels at mid-element positions may 

have been more satisfactory than the use of the present nodal 

averaging technique,but this difficulty may be overcome by using 

elements of narrow radial width in regions of radial discontinuities 

of thickness. The incorporation of automatic mesh generation into 

the program was considered at one stage, but problems such as the 

one just mentioned led to the belief that the sub-division of the 

plate was best left to the user. The prediction of tangential 

stresses is generally more accurate than that of the radial stresses; 

a possible reason for this being the better representation of 

tangential moments within the elements due to the use of trigonometric 

circumferential shapes, whereas the cubic radial variation in shape 

gives a strict linear variation in radial bending moment which is 

obviously only an approximate statement of the truth in most cases. 

One source of inaccuracy in 'ASYMPLAT' was also traced to ill- 

conditioned terms in the generation of the element stiffness matrices. 

Much of the early computation was carried out on a computer using 

24 bit words and employing double word length for the storage of real 

numbers. This was equivalent to real numbers being rounded off to 

eleven significant figures and was the cause of a significant build 

up of error as the stiffness matrices were formed and assembled. 

Subsequent work was all performed on a computer using a 32 bit word 

length (equivalent to real numbers being represented by 16 significant 

figures) and the rounding off error was thereby reduced to an 

acceptable level. 

The application of 'ASYMPLAT' to the analysis of radially 

stiffened plates may be possible but it is doubtful whether the



6.2 

134. 

application will be as straightforward as was initially anticipated. 

The representation of the circumferential variation in displacement 

of a plate by the use of an infinite trigonometric series had 

originally raised hopes that the same type of series may also be 

acceptable for the ribbed plate. The problem which now arises is 

that of all the load forms that have been investigated, only the 

point load requires the use of an infinite series in its represent- 

ation and, due to the de-coupling of terms in the semi-analytic 

approach, an infinite series form for deflection will only be 

generated if an infinite series form for the loading is available. 

A logical development plan would have as its first stage an investig- 

ation of the behaviour of radially stiffened plates under the action 

of axi-symmetric loads. This type of loading requires only the zero 

order term of the trigonometric series for its representation, which 

immediately precludes direct application of the technique in its 

present form as a ribbed plate would intuitively be expected to 

exhibit some form of circumferential variation in deflection. A 

possible means of overcoming this problem may be to 'detach' the rib 

from the plate and represent its presence by the introduction of 

internal point reactions between the rib and the plate at the nodal 

radii; these point reactions could then be represented by infinite 

series thus allowing the semi-analytic approach to proceed. This method 

of analysis, although more complicated than that initially envisaged, 

may still prove more economical than conventional finite element methods. 

SUGGESTIONS FOR FURTHER WORK 

(a) A very brief numerical investigation into the process of 

element stiffness matrix generation demonstrated the ill-conditioning 

of some terms resulting in the rounding-off errors discussed in section 

6.1. No immediate ways of improving this situation were apparent but a 

deeper study of the whole process may indiczte some possible re- 

organisation of the arithmetic processes to give greater accuracy.
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(b) The program 'ASYMPLAT' in its current state only accepts 

loads that are axi-symmetric or circumferentially symmetric with 

respect to a given radial line. This is due to the fact that the 

program uses only the cosine terns in the infinite series used for 

load and deflection representation. It is a relatively straight- 

forward extension of the program to include sine terms in addition 

to the cosines and therefore to enable an analyeis with fully 

asymmetric loads to be made. This restriction in the present 

program is only of relatively minor practical importance as most 

loads occurring in practice exhibit the form of circumferential 

symmetry that is catered for by use of the cosine series only. 

(c) It is still thought to be possible to extend 'ASYMPLAT! 

to analyse radially stiffened plates along the lines indicated in 

section 6.1 above. This extension is not as simple as was initially 

anticipated but may well prove to be viable in terms of computational 

economy. 

CONCLUSIONS 

(a) The Ritz method is of limited use in the study of both 

stiffened and unstiffened plates where an analysis of deflection and 

not stress is required. 

(b) The program 'SYMPLAT' provides a simple and accurate method 

for analysing deflection and stresses in annular and complete circular 

plates in cases where the plate geometry, material properties and 

loading are all axi-symmetric. 

(c) The program 'ASYMPLAT' provides a denputati onanay efficient 

analysis for deflection and stresses in annular and complete circular 

plates where the plate geometry and material properties are axi- 

symmetric but the loading is symmetric only with respect to a 

specified radial line. 

(a) A satisfactory analysis of stiffened plates may prove 

possible along the lines suggested in section 6.1.
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BASIC RELATIONSHIPS FOR THE BENDING OF THIN PLATES 

At TRANSFORMATION FROM CARTESIAN TO CYLINDRICAL CO-ORDINATES 

Al.i Why the transformation is required and the definition of 
co-ordinates 

The basic theory of plate bending is generally derived in 

terms of Cartesian co-ordinates as a matter of convenience. The 

geometry and flexural behaviour of circular plates are, however, 

easier to define in terms of cylindrical co-ordinates. Basic 

theory is therefore derived in Cartesian co-ordinates,and then 

transformed into cylindrical co-ordinates for application to circular 

plate problems,in preference to working from first principles in 

cylindrical co-ordinates. 

Consider the thin plate shown in figure A1.1 

  

z 

FIG. At.1 

Cartesian and cylindrical co-ordinate systems may be defined such 

that:
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(a) they have a common origin. 

(b) the x-y and r-~9 planes coincide with the middie surface of 

the unloaded plate. 

(c) the © = 0 radius coincides with the x-axis. 

Under these conditions the transformation between the two 

co-ordinate systems is expressed by the relationships 

x =r cos 0 and y=rsing (A1 1a) 

or alternatively 

x24y2=r2 ana 2. tan 0 (A1.1b) 

Al.2 @ransformation of functions and their derivatives 

The displacement and stress fields within a thin plate are 

functions of position on the plate. Any function f(x,y) can be 

transformed into a function f(r,0) by direct substitution of 

equations (A1.1a). 

later work will show that the transformation of the first and 

second derivatives of functions is also required and these may be 

achieved as follows: 

(a) First derivatives. 

  

  

2f . 26.80 , df, 98 
ox dr 3x 88 8x 

But from equations (Alb) and subsequently (Ata) 

2 eee aa ole ae sine ox r Ox r2 r 

+. by substitution 

ot = $f. cose a $f. sing (A1.2a) 

Similarly 

Of ee, Pete f 8 Sy = an sin? + 24. cos (A1.2b) 

(b) Second derivatives. 
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we [a2e — 22f sind sine cos8 : + fs 12 cos@ 

  

  

  

>| Sr2 3r38 

la ofa; 2 f_, _ df.cos® _ _22f sine | sing 
[ ae Eee se or a ae r 

= Ufeoste -2 d2f sin8cos8 4 df. sin2e , 2 aft. sin@cose ee sin2@ (A1.2c) 
et. or2 orde Fr otek O90 “pe "W362 r2 

Similarly 

22 = Utsinte + 2a2t.sin@cos® , 2f.cos2e | 2#f.sinscos® 4 22f cos? (a1, 2a) 
dy2 ar2 ord on oat 302 2 

And 

Sef oat 32f cos20 _ df sinOcos® _ 3f cos29 _ 2f sinBcos® (a1 .2 Seay a eee ge a 30° 2 Nazir (At .2e) 

A2 

Full details of the transformations are presented in references 

(3] and [4]. 

BASIC THEORY OF PLATE BENDING 

A2.1 Introduction and assumptions 

In its most rigorous form,the theory of bending for plates of 

arbitrary shape, thickness and loading would necessitate the use of 

the complete theory of three-dimensional elasticity. The majority 

of cases that occur in practice neither justify nor require such a 

comprehensive approach,and for most engineering purposes an 

extension of ideas developed for the analysis of beams is adequate. 

A full discussion of plate bending theory is given in ref- 

erences [3] and [4]; the theory that is presented here being the 

framework of that which was considered to be the essential basis 

for work on thin plate problems. The theory is developed in terms 

of Cartesian co-ordinates and subsequently converted into 

cylindrical co-ordinates for application to circular plates by use 

of the transformations previously developed in Section Al. 

Beam theory is based on several assumptions that may be 

adapted for plate analysis as follows:- 

(a) The middle surface of the plate remains unstrained during 

bending. The restriction that this assumption imposes in
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(c) 

A2 

140. 

practice is that the transverse deflection of the plate 

should not exceed its thickness, otherwise the in-plane 

stresses that are induced may not be exclusively due to 

bending. 

Normals to the middle surface of the plate before bending 

remain straight and normal afterwards. This implies that 

transverse shear strains in the plate are negligible; a 

condition that is only satisfied if the plate is thin compared 

with its other major dimensions. 

Direct stresses perpendicular to the plane of the plate are 

small compared with other stresses. This assumption is only 

valid for thin plates and even then it does not hold in close 

proximity to concentrated loads. 

The plate material must be homogeneous, isotropic and linearly 

elastic. This assumption is made in order to simplify the 

introduction of the elastic constraints. 

+2 Compatibility between strain and displacement 

Consider a plate whose middle surface was originally flat 

and in the x-y plane, but that is now slightly bent as shown in 

figure A2s1a. 

% 

Original 
position 

  
Middle 
Surface 

(a) 

  

(b) 

FIG. A2.1 

Figure A2.1b shows a section through the plate at y=yie 

Provided that the displacement and slope are small, then in a
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plane parallel to the x-z plane it can be shown that to a first 

order of approximation:- 

ee 4A. — dfdw\_ _ 22w The curvature is given by Cua a (3a) = yd (A2.1a) 

The displacement of point P to P’ in the x direction is 

F 3 us- 3-4 (A2.1b) 

Similarly if a plane parallel to they-z plane is considered then 

z 4 3 (32) dw 
The curvature is TOR amet oe eae ee a2. 1c 

Py dy (dy, dy2 ( ) 

The displacement of point P to P in the y direction is 

: ven 5 (A2.14) 

Parallel to the x-y plane, a small element ABCD at distance % from 

the middle surface will undergo deformation to A’B‘C’D’ as shown in 

figure A2.2 

y 
x 
  

    
  

  
  

    dy| 

        

    

  

  
FIG. A2.2 

gt 

Now direct strain €,= AB Ae = 3s (A2.2a) 

Similarly & = AD AD 5 $e (A2.2b) 

Also the shear strain by =U + & 

- av = du But % = gx and %= a9) 

2 2 
es aye aie (A2. 2c) 

The strains on this surface in terms of the transverse deflection 

of the surface can be obtained by combining equations (A2.1) and 

(A2.2) thus:-
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  €,= fee - 5-40y (2.32) 

&= de mf Bes (A2.3b) 

dv , du Zw 
& x * dy * wc0! sahy 

It may be noticed that putting z= O gives the condition that the 

n   (A2.3c) 

middle surface is unstrained. This is in confirmation of compliance 

with the basic assumptions (a) and (b). 

A2.5 Stress-strain relationships and stress resultants 

In accordance with assumption (da) the general stress-strain 

relationships in three dimensions can be expressed in terms of two 

independent constants; the modulus of elasticity, E and Poissons 

ratio, Y. These relationships are:- 

& Pig - vy - ve) 

eee _ - VS €y = =O - VO, - YSZ) 

Ez= Ploy - 9% - Sy ) 

  

Yay Pao Txy 

2(1 +» 
Yyz= Sa E } Yz 

From assumptions (b) and (c), yz Sx and 6; are negligible 

therefore these relationships may be manipulated into the following 

form:- 

a El ex cy) (A2.4a) 

A \ 3 Potty - vey) (A2.4b) 

Taye on by (A2.4¢)
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Equations (A2.4) can be expressed in terms of the deflection 

of the middle surface by substitution of equations (42.3) 

Es d2w. = s- 5 (sow ftw - (a2. % oe be +» ie (A2.5a) 

Es (d2w = oe er eo (42.5) 
2 ee (% dx? 

o. Ey eae 
Tay® 1+D 9 dxdy {Ae no} 

The stresses given by equations (A2.5) act on an element of 

plate as shown in figure A2.3a and integration of the stress 

resultants on the element over the plate thickness gives the 

forces, bending moments and twisting moments per unit length shown 

in figure A2.3b. 

  

  

¥ a 

(b) 

FIG. A2.3 

h/2 2 2 
My = Oj xdz = -0(2u - » 2x) A2.6a) 

- Me «58 (2 dy2 ( 
h/2 

= = -p (tw 22w! My = Voy dy = -D ( + we ) (A260) 

h/2. 2 = oe E _y).d4w. Miye= Myy = 5 cb = DUT -vP ee (A2.6c) 

Q. = Q, =Q,y=O,=0 (A2.6a) 
3 

where D =—Eh" ___ 
12(1- D2) 

A2.4 Equilibrium conditions and the governing differential 
equation 

The conditions for equilibrium are examined by considering a 

differential element acted upon by a transverse load of intensity
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p(x,y)- The stress resultants due to this load are shown in 

figure A2.4. For convenience only the middle surface of the 

element, of thickness h, is shown. 

  

3a aQyz aMx Q 5+ =*Zdx 
Qy2* 3H dy My ae dx x2" x 

FIG. A2.4 

For equilibrium of forces in the z direction 

  

  

aQx7 8Qyz 
me a + p=0O0 (A2.7a) 

For equilibrium of moments about an edge parallel to the x axis 

OM oMxy 
See eee (42.7) 

For equilibrium of moments about an edge parallel to the y axis 

oMy Myx 
os ear -Qxz = 0 (A2.7¢) 

If equations (A2.7b) and (A2.7c) are substituted in equation 

(A2.7a) and noting that Myy = Myx then:- 
32Mx @Mxy | d2M 
ee esuay, c 3y2 sop) (42.8) 

f equations (A2.6a), (A2.6b) and (A2.6c) are now substituted into 

equation (42.8) the governing differential equation is produced 

  Oe ijt wee eo Wore ERE 
3x4 dx? dy2 dy4 D 

or Vow = - (42.9) 

2 
where V2 is the operator 3 + 35 

ox dy 
It is also convenient at this stage to substitute equations 

(A2.6) into equations (A2.7b) and (A2.7¢) in order to derive 

expressions for the transverse shear forces in terms of the



AS 

145. 

deflection of the middle surface thus:- 

eae a3w Bw) 8 (y2 Q,,=-D ae + 28 = -DX(V2w) (A2.10a) 

=-p (#w al = -p 2 (y2 A2.1 Qyz (33 + Y2dy Dayle ‘w) ( Ob) 

STRAIN ENERGY OF A THIN PLATE IN PURE BENDING 

In general terms, using indicial notation, the strain energy 

density Up is given by 

il 
Uys a Ty Fi (A3.1) 

Hooke's Law for isotropic materials states that 

= A Sy Ek? 2544 (a3.2) 

2 Ey = oe 
Were" Gey met 88 * ag 
Hence from equations i and (A3.2) 

+X Ey)e+ 6 ey Sj 

which, on expansion gives 

os 2 2 2 2 <2 Zee Up = EN(Es, + Eg + Eg) + G(E% + EG +E Gq) +26(E{p + EI, + €3)) 

Consider a thin plate with its neutral surface in the x-y 

plane of a Cartesian co-ordinate system. If the general co-ordinate 

system is now aligned with the plate system and ‘engineering 

strains' are substituted for the mathematical strains, the 

expression for Up becomes 

Ue SME, + €y* 2)” + ee * e+e +Lo(x2, oe ZY (A3.3) 

Provided that transverse deflections are small, a thin 

transversely loaded plate may be considered as a plane stress 

system in which 0,, Nz a lays ¥, yz and ey are all negligible. 

It may also be shown that under plane stress conditions 

cs vy oe qo 'Ex +€y) 

+ » by substitution into Sie (a3. os 

2 2 Ay ee 2 aes 2.23 die Ug= aN €, €y 1p (€,+€ yy + o[e% +e Tene te2veZ] + 7oky 

Substituting for A and G gives 

  Pee et ee 2 E Us ag [<2 €y + 29€,€,| by (43.4)
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To enable the most use to be made the expression (A3.4) for 

Uo, it is generally more convenient to work in terms of displace- 

ments rather than strains. Plate bending theory has already shown 

in section A2.2 that:- 

€y ia Nez 3 €y ye We $ Xy= EE ae oe 

Therefore:— 

y.2 —E— | (22w? ,/22w\? | oy (o2w.z2w pele | AY. 
0” Fi1-92) | (dx? dy2 Ox2 dy2 et oxoy) F 

To obtain the total strain energy for a plate, this expression 

for strain energy density must be integrated over the volume of 

the plate. 

Total strain energy, U = { voev = {S [vodras az = {J [Ju.dz] dx dy 

Vv 

For a plate of constant thickness both % and its limits are 

independent of x and y 

h/2 3 2% \2 f2,\2 ee 3 2 wi Ne s Unde seen ew 24w. + 2 2oW _o4w Eh s 

= 1 te 24(1-y2) (@ “Vay? dx? dy2/| © T2(1 +9) (ax ay, 

D {faa , 220]? Se aie es ? 2 \1ay2 yz Se ay2 

=D 2y  a2w 2 2a \2 

vB if{[ee S| pei - ay Joo (03.5) 

SUMMARY OF IMPORTANT RELATIONSHIPS FOR CIRCULAR PLATES 

Sections A2 and A3 gave an abbreviated derivation of the more 

important parts of the basic theory for the bending of thin plates 

defined in a Cartesian co-ordinate system. This section now makes 

use of the transformation equations developed in section Al to 

convert the results of the theory previously developed into 

equivalent expressions using a cylindrical co-ordinate system. 

The details of the transformation are not presented here 

but the results are quoted in concise form for ease of reference.
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where p is a function of r and 9 

Strain energy of the plate 

Wy > 
or 

w , Adwl*_ ory yyfd2w/ 4 
r we] att Fre 2 392 

22 bres 1 aw 
r ne 

Strains 

= o2w €; So} (A4.1a) 

So eet ew 
Eo * 3 (2 ona kd Bon Sp2 (A4.1b) 

dy Se 
Sre* 23 (3 38 r ee (A4.1¢) 

Stresses in terms of strains 

Ge = —E—(e, +¥€,) (A4.2a) 
4-2 

Seo age Ey (A4.2b) 

E 
Tre* aiat vre se 

Stresses in terms of deflection of the middle surface 

pene (Sev ee owery Seon Ores =~ a2 (a fT Pon a2 (A4.3a) 

Oe (A4.3b) 

Tee (A4.3¢) 

Stress resultants in terms of deflection of the middle surface 

A dw, Dow , » .d2w' 

= -p (y.d2w , 1.dw , 1. 22w' Mg = 0 (2s aia gree See (A4.4b) 

¢ fe sees 1h ow 
MrossaOtl #2) G ar 36 2 #) (44.40) 

Org = -DLIV2w) (44.4) 

Qgz =- 2102 wi (A4.4e) 
OWE peace, Seti 220g Where Ves 2 oer 2 jez 

The governing differential equation 

Vews B (4.5) 

ee afl re ir dé 

(A4.6 +6)
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VARIATIONAL PRINCIPLES AND ENERGY METHODS 

Bi INTRODUCTION 

The late 17th century saw the science of mechanics developing 

extensively on two separate fronts. 

Newton had formulated his equations of motion which were based 

on the study of the equilibrium of forces and moments in static 

systems, or on the changes in momentum of dynamic systems. Due to 

the vectorial nature of the quantities involved, this approach was 

also known as vector mechanics. 

During the same period, however, Liebnitz was proposing the 

basic principles of analytical mechanics whereby the state of any 

system was defined in terms of the scalar quantities of work and 

energy. The ideas of Liebnitz were extended very considerably in 

the 18th century by Euler and Lagrange who developed the calculus 

of variations. The application of these variational principles to 

the basic concepts of work and energy led to the mathematically 

elegant theories of analytical mechanics which form the background 

to many modern computational methods. 

The principles of analytical mechanics are very attractive in 

the study of the deformation of solid continua for the following 

reasons: 

* (a) the mathematics of the analytical approach are often simpler
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than those of the vectorial method; a complete system being 

described in one equation embodying a particular variational 

principle rather than the multiplicity of equations that are 

usually required in a vector mechanics formulation. 

(b) forces at rigid constraints are not involved in the analysis, 

thus reducing the size of the problem. . 

(c) the use of the principles of analytical mechanics leads 

directly to the formation of the governing equation for the 

system under consideration and at the same time automatically 

generates the natural boundary conditions. 

The general principles of analytical mechanics are discussed 

in detail in references [5], [6], [7], [8] and [9] whilst 

particular aspects pertinent to the present investigation are 

described in the following sections. 

THE PRINCIPLE OF VIRTUAL WORK 
  

  

B2.1 Statement of the Principle 

- "If a system is acted upon by a set of conservative forces 

that are in equilibrium,then the work done in any virtual displace- 

ment of the system is zero". 

Conservative forces are defined as forces that do not work in 

any closed loading cycle. 

Virtual displacements are defined as infinitesimal, arbitrary 

displacements away from the equilibrium configuration of a system 

which do not violate the geometric boundary constraints on the 

systen. 

The forces ave considered to have been applied before the 

virtual displacements are imposed and are assumed not to vary 

during the displacements.
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B2.2 Derivation of the principle and its application to 

deformable solids 
  

Figure B2.1 shows a set of concurrent forces Fy, F2, Fs and 

Fy acting at a point 0. FR is the resultant force. 

    

  

Lo 

--"—~Position of forces 
after displacement 

FIG. B2.1 

Let point O undergo a virtual displacement, ug along the line 

of action of Fp to a point 0’. The distances moved along their 

lines of action by the forces Fy, Fo, Fz and Fy are respectively 

Uy, Ug, Uz and ug. 

The virtual work done, §W , can be expressed as:- 

SW = Fp Up = Fu, + Fou, + Fuu3+ Fu, 

a Fe us 
tt 

Now if, and Le the system is in equilibrium then Fp is 

ZeTO. 

Hence gw= ) Fu; = 0 (32.1) 

It is important to note that neither the size nor the direction 

of the virtual displacement is of any consequence provided that it 

is a geometrically admissible displacement and that it does not 

seriously deform the system shape. 

The principle is easily applied to systems that consist of 

rigid links, as discrete displacements are easily defined and the 

forces are simply the external loads and reactions. For 4 system 

that contains deformable solids the force system needs more careful
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definition and classification as follows: 

(a) the externally applied loading. This may be further sub- 

divided into surface tractions and body forces. 

(b) the external reactions to the loading. 

(c) the internal forces within the solid. 

The concept of the internal forces can be readily understood 

if the deformable solid is considered to be made up of an infinite 

number of small ideal deformable elements interconnected at ideai 

mass points. As an illustration consider the solid shown in 

figure B2.2a which may be split into deformable elements and mass 

points as in figure B2.2b. (only three elements are shown for 

convenienc e) . 

     
    

Defcrmabie 
Element 

(a) 

(b) 

Fy is the external load 

Fp; and Fpp are the external reactions 

Py «+--+ Pyo are the internal forces 

Uy sees U5 are the virtual displacements of the mass points 

(note that there are no displacements at the 

supports) E 

The principle o* virtual work applied to the mass points 

(since it is at these points that equilibrium is defined) gives 

S(Wey + Wer + Wy) = 0
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Where Wpy, is the virtual work of the external loads 

Wp is the virtual work of the external reactions 

Wy is the virtual work of the internal forces at the 
mass points. 

It should be noted that the reason for including the effect 

of the forces P in the virtual work expression is that if any of 

the deformable elements is considered, the forces P acting on it 

all move through different distances and therefore give rise to 

a nett amount of work being done. 

The external reactions do no work in the virtual displacement 

of a system with rigid constraints since the displacements mst 

not violate the geometric boundary conditions. This means that 

Wap is zero. 

os §( Wey + Wz) =0 (B2.2) 

Provided that the solid is made of an ideal elastic material 

then the work done by the forces P in deforming the elements is 

stored as strain energy. This work done on the elements is equal 

but opposite to that done on the mass points. 

Wy = -U 

Substitution in equation (B2.2) and changing signs gives 

§(U - We_) = 0 (32.3) 

In conservative systems where the external loading has a 

potential 

Wp, = - fL 

Where (). is the potential energy of the external loading. 

Therefore §(U+M)=0 

(U +) is called the total potential energy, V, for the system. 

Hence Y= §(U +0) = 0 (B2.4)
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Equation (B2.4) is the mathematical statement of the 

principle of stationary total potential energy whereby in any 

virtual displacement of a system away from its equilibrium 

configuration, the first variation of the total potential energy 

is zero. 

The corollary to this statement is that of all the possible 

virtual displacements of a system, the one which makes the total 

potential energy stationary is the equilibrium configuration. 

It is possible to show that for stable equilibrium, the 

total potential energy is in fact a minimum and not just stationary. 

APPLICATION OF THE PRINCIPLE OF STATIONARY TOTAL POTENTIAL ENERGY 

B3.1 Rigid and simple deformable systems 

Elastic, 
Pin- jointed Links 

  

        Pin- jointed 
Links 

LD by 

A $x E 

(b) 

o 
Dotted lines show virtual displacements 

FIG, B3.1 

In figure B3.1(a) the potential energy of the system contains 

only the contribution from the external loads as the links are 

rigid 

In figure B3.1(b) the total potential energy contains terms 

from both the potential energy of the load and the strain energy 

of the links 

J, Sv= §(U+2)= 0 
In both cases however the first variation of the total 

potential energy of the system can be easily defined in terms of 

variations to the generalised co-ordinates; these variations being 

the virtual displacements of the system. Written mathematically



154. 

this statement becomes 

$V= SV(qi.a5, --- 19.) 

where the q are the discrete generalised co-ordinates defining 

the system configuration. 

For the total potential energy of the system to be- 

stationary 

0 Bn «=n = i+ 
The definition of virtual displacements insists that they 

are arbitrary. It therefore follows that 

CON 4 ee ee ee ee 
4, 245 aq, 

In simple rigid body systems the evaluation of these partial 

derivatives usually leads to a direct determination of G15 425 

etc. For a finite degree of freedom,linear elastic system the 

solution is more involved and leads to a set of equations of the 

form 

(K l{q} = §F} 

The solution of this set of equations then gives the values of 

415 42, etc., which define the equilibrium configuration 

B3.2 The variational problem in continuum mechanics 

For an elastic continuum it is impossible to describe 

virtual displacements in terms of discrete co-ordinates. 

Distributed co-ordinates are required and expressions such as 

polynomials or trigonometric series my be used as co-ordinate 

functions to describe a displacement field. In such cases the 

coefficients of the terms of the polynomial or series become the 

generalised co-ordinates of the system. 

In continuum problems it is not always necessary however to 

define the displacement field in such detail for the initial 

formation stage of the virtual work expressions. As an example
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consider the simple beam shown in figure B3.2 

Load intensit of YoP 

  
Saeco amnion eer 
fig ame =f Sere 

Rigidity, EI 
ELG Bar2 

2 
Strain energy, U = a(t dew) dx 

2 do \dx2 
£ 

Potential energy of the loading, Ds 5, pwdx 

  

e £ Qu\2 
ae Ve U+ Oo = ih [ es fa pw]ex 

Up to this stage a statement that w is a function of x is 

all that has been required and its specification in terms of 

generalised co-ordinates has not been necessary. x 

The total potential energy of any continuum is a functional 

that is an integral or mltiple integral, for example in the 

above problem , 

Ve [r (a 29) ax 

The principle of stationary total potential energy requires 

the first variation of V to be zero, which implies that an 

admissible form is sought for w that will extremise the 

functional for V. There are various ways of achieving this goal, 

two of which are discussed in the next section. 

SOLUTIONS TO THE VARIATIONAL PROBLEM FOR ELASTIC CONTINUA 

onal calculus 

  

B4.1 The use of vari 

B4.1.1 General principles of variational calculus 

It has already been shown in section B3.2 that the 

principle of stationary total potential energy for a continuum 

requires the extremization of a functional that, in general, is a 

multiple integral. The variational calculus approach to this 

problem is to generate a family of continuous admissible
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solutions by taking the true extremizing function and adding to 

it a single parameter variable. The effects on the value of the 

functional of changes in the single parameter variable are then 

investigated. 

The usefulness of this mathematically elegant process is 

that in one series of operations the ordinary or partial 

differential equation for equilibrium of the system is generated 

(the Euler-Lagrange equation) together with all of the natural 

boundary constraints on the system. 

The Euler-Lagrange equation may, in itself, however, be 

extremely difficult to solve. For example in plate theory the 

pi-harmonic equation is generated; direction solution of which 

may be impossible for peculiar plate shapes or unusual boundary 

conditions. Powerful numerical techniques, such as the Ritz 

method, can however be based on the variational principles in 

order to produce practically acceptable approximate solutions to 

Euler-Lagrange equation. 

The application of variational calculus to the plate bending 

problem is discussed in the next section, followed by a description 

of the Ritz method. 

B4.1.2 A variational approach to the bending of circular 

plates 

The expression for the total strain energy of a plate 

as given by equation (A4.6) may be written in functional form as:— 

Us (J £,( tM,» Wot Wer Woo Wee) dr d® 

Where subscripts are now used to mean partial differentiation 

with respect to the subscript 

Potential energy of the transverse loading is given by:- 

e- [ pwrdrds = - ff tplpsryw) drdo 

Hence the total potential energy of the system is



V=U+Q= []ftesrow Woo Wee Woe Wg) drde (P4.1) 

For the plate to be in equilibrium the value of V must be 

stationary for any virtual displacement of the plate, provided 

that any such displacement does not violate the geometric 

constraints that are put on the plate. 

Let w(r,8) be the equilibrium displacement and let 

W(r,@) be any other admissible displacement. 

Then wWi(r,6) = w(r,6)+€n(r,6) 

Where € is a variable parameter that is independent of r and 9, 

and n(r,8) is a function that (a) is zero on any boundary where 

geometric constraints Ere mposel and (b) has continuous 

derivatives up to third order. 

For V to become stationary as W(r,@) approaches w(r,®) 

then:- 

av Na must be zero when €=0 

aul ae . : ella: fy Mr) drcO=0 + 3€leo [[kov retin fuga * Ivete gees yard (B4.2) 
Since the values of the derivatives of n are not defined in 

general terms within the region of the integration, it is 

desirable to express equation (B4.2) in a form in which these 

derivatives are either not present or are only present in terms 

of their value at the boundary. This can be achieved by 

integrating each term by parts. Consider each term separately :- 

  

      

{(fu_nr drc@ -Sfuenfe} ee - {hn Ly ere (B4.3a) 

[Shayne drd@ = [Seugn Rar {ln SylfyJdr 48 (B4.3b) 

[Supers = Eiger fe In, al. Z de 

(B4.3c) 
={ffuerele - : Wer! c+ [nde Z fwe wa ort ao : 
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Sinilarly: 

69, 9 y 

\ oe : (Lupe - Bltyog!” 2 + fn ope (fygg)9} ar (34.34) 

And: 

fi drdo = t, nf 212 -{{na die, | a pjorae (B4.3e) 
Weatrest & = Wre'l ly 3, 4" 36! tule Nor VWirele ve noi . 2 

  

  

    

Back substitution into auccalt (B4.2) fod 

ae poe ao 22 Mnf Sr lf.) ly, )+ Bez ien) See tes We rel, )|drd8 + 

  

) ele 2 
(fl, . 36! Weg r by Jer t [fn Wee 4 | oe 

f r fy |e. e 2 2 cd (inl - ty.) 25g! fe : [inetd eter * twreth; fg = 2 (24-4)   

    

Since Y and hence 4r and Ne are arbitrary then each 

separate integral and the last term must all be zero. 

Hence 

i ~ 4p) - 2 22 22 a2 Gat Sr fw, ) 50'we )+ sane) 392 "We 0) 88! Neg 

This is the Euler-Lagrange partial differential equation 

)s0 (B4.5a) 

that must be satisfied within the region. 

(ii) Along the boundaries 9 = 0; and 0 = Qo 

Either wis prescribed or  fwe- Bifweel -2 srl Wre! = 0 (B4.5b) 

And either w, is prescribed or fWoo = 0 (B4.5¢) 

(aii)Along the boundaries r = r; and r = ro 

. . s A 2 we. as 
Either wis prescribed or fy, (f nr) 36'fv.g) = 0 (B4.5a) 

or Wy 

And either w, is prescribed or fWep = 0 (B4.5e) 

(iv) The last term refers to the corners of a sectorial plate 

where either wis prescribed or ‘Wee =0 (B4.5£) 

Equations (B4.5b to f) define either the geometric or natural 

boundary conditions.
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Now by expanding the expression for strain energy and combining 

it with the expression for the potential energy of the loading it 

can be shown that the functional f is of the form 

2 f =D liwe + 2wepWeg + 20WerW, + Aye + 3 Me0 +21 -viLw,% 

-4(1- D5 ¥reMo + tw? + 2h 42] - prw 

Hence:- 

f= 7 pr 

fw Blaow, + 400 + Bu] 

2 ar a 4 Be =e oe ae Bowere Po Weems Meg Gaara. t 3] 

tage BLA -Pbvhe + 41-9 ws 

i ear ofan. Vib Whos + 41-DIG Moo | 

D 20 fag? SL? Wer + Woe. * 20w,| 

wes D > 2” 2v 
coy wep! Ber wire + 2(1+9)Wer + Wree - 2 oe| 

+ 22 » » Ay 
a Pituge) Barrens 2129 Were Pree ~ ree + Be] 

2 2 
pane ng (oe * pain’ 

2 2 
tp tree © jaNecee * 3¥ro9} 

D 
NWeo® Phatr-vib ve = 4(1-vI-bw6] 

2 we Saltce! Plot V)LWirree - 8l1-vI4 Jywreo + 811 -¥) JiWee| 

Now by substitution, the Euler-Lagrange equation (B4.5a) 

becomes:— 

D 4 2 2 8 4 Aw, vee ce 
~ pet 20 Weree * Meer * er * 72 r * glee 7a"ree* 7 “rree* Breooelt 9
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This expression can easily be shown to be equivalent to 

Vow = + i.e. the differential equation for the 

deflected shape. 

2 56 he mos eel dn ge Sueno where V“ is the operator (ee apa 2 a2 

If use is made of equations (A4.4) relating the moments and 

shear forces to the derivatives of w,the boundary conditions of 

equations (B4.5b to f) can be shown to reduce to:- 

(i) Along the boundaries @ = 0, and © = 62 

Either w is prescribed or Qgz- 2(Myo) = 0 

And either jw is prescribed or M, = 0 

(4) Along the boundaries r = r, and r = rg 

1 1. dim) = 0 Either w is prescribed or Q,, - : 

And either gu is prescribed or M,= 0 

(4d: )At any corners 

Either w is prescribed or M,,= 0 

Where in the above conditions the subscripts have reverted to 

their normal meaning. 

B4.2 The Ritz Method 
  

This is an approximate method for the solution of the 

variational problem for continua. In describing the deformed 

shape of a system it has already been suggested that co-ordinate 

functions in the form of an infinite series may be used. For 

some very simple structures it may be possible to carry out a 

complete analysis, using the principle of stationary total 

potential energy, and maintaining the infinite series intact. 

Once the analysis is complete,sufficient terms of the series are 

then considered in order to produce the required degree of accuracy. 

For more complex problems, solutions which maintain an infinite 

series intact are generally not possible and only a finite number of 

terms may be conveniently handled.
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The Ritz method shows that satisfactory, although only 

approximate, solutions may be obtained by using only a finite 

number of terms. 

The basis of the method is to assume that the displacement 

field may be represented by a finite number of linearly 

independent co-ordinate functions. For example in circular plate 

problems 

w(r,8) = Polrs8) + Cyfq(r,8) + Cofolr,8) + ------+ C,8.lr,6) (B46)   

where the Bi are co-ordinate functions and the Cj are constants 

to be evaluated. The choice of the o3 is arbitrary within the 

restriction that they must be such that wlr,®) satisfies all 

of the geometric boundary conditions on the plate irrespective 

of the values of the constants Cj. 

If equation (B4.6) is now substituted into the functional for 

total potential energy which, in the case of a circular plate, is 

given by equation (B4.1) and the integration is carried out, the 

functional becomes a simple function of the constants, Cj. 

For the total potential energy to be stationary all that is 

now required is that 

ey = 0 for iet52,<-=,n 

since the variational problem has been replaced by a simple 

maximum and minimum problem. 

For a linear elastic plate material this set of partial 

derivatives leads to n simultaneous equations of the form 

(kK I{c} = {F? 

The solution of these equations thus evaluates the constants, 

It can be shown that if{n + 1) terms are used in the description 

of the displacement field then the solution obtained will be 

better, or at least no worse, than if only n terms are used. The 

values of Cj are not fixed however and will be readjusted each
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time a different number of terms is used in order to give the 

best solution possible for that number of terms. 

The practical application of the Ritz method may be 

described as a combination of art and science,as the judicious 

selection of the By based on experience ean result in considerable 

improvement in the accuracy of solution when compared with a 

purely arbitrary selection of the 63. 

The desvription of the finite element method given in 

chapter 3 shows that it may be regarded as a piecewise apphication 

of the Ritz technique. In the finite element method an approximate 

displacement field is defined only within each element and not for 

the whole plate,and the nodal freedoms replace the constants Cj 9s 

the adjustable parameters which minimise the total potential energy 

functional.
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ANALYSIS OF CLAMPED-FREE PLATES WITH CONCENTRATED EDGE LOADING 

Ci INTRODUCTION 

The general arrangement of the type of plate being considered 

is shown in figure C1.1 below: 

  

FIG. C11 

The reasons for investigating this particular plate in detail 

are 

(a) due to the severe conditions which are ae in the 

representation of a concentrated load by a limited number of terms 

from an infinite series, the problem is an extreme test for the 

viability of the semi-analytic finite element program 'ASYMPLAT'. 

(b) it is an asymmetrically loaded plate for which an ‘exact! 

theoretical solution is possible with a relatively small emount of 

computational effort.
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(c) it is one of the.test cases used by Olson and Lindberg [22] 

for proving their conventional finite element approach using 

annular sector elements. 

For the purposes of the current investigation the problem is 

therefore of great interest in that it is possible to obtain both 

‘exact' and conventional finite element solutions against which 

the results of the semi-analytic finite element approach may be 

compared, 

A test rig has also been constructed with the object of 

providing practical results for comparison with the theoretical 

predictions of deflections and stresses. 

THEORETICAL ANALYSIS 
  

C2.1 The general solution to the governing equation 

The original analysis of the problem was by Reissner [21] but the 

general form of solution to problems of this type is discussed in 

references [3] and [4] 

The governing equation for the bending of thin circular plates 

is given by equation (A4.5) as 

  where vee £34. + 1.2 + 

and p is the intensity of loading on the plate (in general a 

function of both r and 9) 

The solution to the governing equation may be assumed to be 

Wwe Wh + Wp 

where Wh is the homogeneous part, given by the solution to the 

equation 

and Wp is the particular part, given by the solution to the 

equation
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In this particular application the distributed loading is 

zero, hence the solution to the governing equation is given by the 

homogeneous part only. 

The homogeneous solution ist now assumed to take the form 

w “Yh (r)cos n8 + Ya rIsin no 

where the oye f, (x) and a are functions of radius only 

and are to be evaluated in such a way as a satisfy both the 

governing equation and the boundary conditions. 

For this particular plate the loading and hence the resulting 

deflection is symmetric with respect to © = 0, consequently only 

the cosine terms need to be considered and the solution becomes 
SS 

w= )_fplr)cos ne 
n=0 

If this assumed solution is substituted into the governing 

equation, the resulting equation is the fourth order, ordinary 

differential equation 

dhty | (2\d3 tn _ 1+ 2n2 din | 1+2n2\ dfn , 42 m=4\r 20 
dr4 r J ar3 r2 dr2 r3 dr re 

for n= 0,1,2, ----,0° 
The solution to this equation may be shown to be 

  

we Ag+ By r? + Colne + Dor2tnr 

+ (Ar + Byrds Crt + Dyr nr} cos n& 
£0 

+ > (Ane + Bareh + Cyrht2 + Dyr-n+2) cos n@ 

n=2 

where the constants An, By, Cp and Dy for n= 0, 1,--500 mst 

now be calculated in accordance with the boundary conditions on 

the plate. 

C2.2 Determination of boundary conditions 

  

Referring to figure C1.1 it is apparent that the boundary 

conditions at the inner radius are those of the geometrical 

constraints, that is 

Deflection = w=0 at r=a (c2.2a) 

Radial slope = ow. 0 at rea (c2.2b)
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At the outer radius where there is a geometrically free 

boundary, one condition will be that of zero radial bending 

moment, that is 

Bending moment = M, = 0 at r = bd (c2.2c) 

The remaining boundary condition at the outer radius is not 

immediately apparent but may be developed as follows. 

In the variational formulation of the plate bending equations 

given in section B4.1.2 the boundary conditions along a boundary 

of constant radius were derived as: 

i i i SER ae either w is prescribed or Q,, : Sp! Mre) = 0 

and either Wis prescribed or M, = 0 

At a geometrically free edge neither w nor fu are prescribed. 

The condition that M, = 0 has previously been stated in condition 

(c2.2c). The other condition refers to the quantity 

a — Torre! 

This quantity may be regarded as the nett plate reaction to the 

applied shear loading on the edge of the plate. For an edge that is 

geometrically free and unloaded, which was the general situation 

under discussion in section B4.1.2, this quantity therefore became 

ZETO. 

For. the plate of figure C1.1 however, the outer boundary is 

loaded by the force W which, by reference to equation (5.6), may 

be represented by the Fourier series 

we + we cos n8 

Hence the boundary cont tion may be stated as 

co. 

Nett shear load = Q,z — 1.2 (Myo) = eS ) Meosn@ (02.24) 
nai 

C2.3 Imposition of boundary conditions 

  

The general solution (c2.1) may now be substituted into each 

of the four boundary conditions (C2.2a,.b, ¢ and d) in turn, and



167. 

noting that the resulting equations must be valid for all values of 

@ between O and 277 we obtain:- 

Condition (C2.2a) 

w=0 at rea 

Hence Ap + (a2 )Bg + (Ina)Cy + (a2 Ina)Dg = 0 5 

(a)Ay + (a3 )B, + (art )Cy +(alna)D, = 0 + 

and (aA, + (a IB, + (a"*2)c, + (a?*?)0, = 0 for n=2,--~0 

Condition (C2,2b) 

dw.0 at rea 
or 

Hence (2a)By +(d")Cg + alZina+1)Dg=0 + 

A, +(3a7 IB, = (a7 7)Cy + (Ina +1)D, = 0 5 

and (nao A, - (nar! 1B, + (n+2 ed liere +(-ne2)an! D, = 0 
for n =2, -—--09 

Condition (C2.2c) 

Equation (A4.4a) defines M, in terms of w, rand 0. This condition 

therefore becomes 

Me = -0 (32 + 2ay ae at r= 
dr? ror r2 382 

lor
 

Hence 2(1+Y)By - (1-»)52Cp +[(3+y)+2(1+D)InbIDp = 0 + 

2(3+9)bB, + 20-yIB3C, + (1+yIb1D, =0 5 

and — nln-t)t1-v)E-2 Ap + nin st}(t -v)6"-2 By +in1)L (n+2)-pin-2)]B Cp 
+(n-1)0 (n-2)- y(n +2)]5"D, =0 for n= 2,----- 100 

Condition (C2.2d 

Equations (A4.4d) and (A4.4c) define Qrz and Meg in terms, of 

w, r and @ 

This condition therefore becomes, at r=b , 

- Lodi) --p/8w. 122w — 1aw _ Br) w , (22), 280). WF Weosn oe SM) =-0(F + 7 V2 naz ap) paige. FeNsoe) ae er ne 
ee eer Hence 8D maa aes 

213+) bBy + 21-VIE SC, + (9-3)b1D, =-M ;



  nln-1)t1-2)p-2 re (t-n)t1-»8-? 

and 

+n(n-1)[4 +n(1-y)}b"D, = - Ww 
"3D for 

168. 

Pt-nlit-yIS 2A, +n Meniit-vi52B, + ninAls -nlt-v) JBC, 

n=2,-----,00 

The equations that have resulted from the imposition of the four 

boundary conditions may be re-grouped 

ne 

2a 

2(1+) 

3a° 

2(3+D)b 

2(34V)b 

nlnst)(i-9) 59-2 

rttenlit-yb 2 

Ina 

rie 

-(1-») 52 

0 

a. 

bare 

ai-»)b 3 

2u-»)p? 

qnt2 

(na zian 

(n+4){(n+2)-»(n-2)]b” 

n(n t)[4-ni-vyb 

and expressed as follows 
4 

a7 tna 

al2Inag +1) 

(3 +9)+2(1+))Inb 

alna i 

(Ina +1) 

(14>)b7 

(y-3)p7! 

qin +2 

fen e2)ane! 

(n-1){{n-2)-»(n +2)]6" 

nin-1) £ 4 +n(1-y16"           

Ag 0 

Bg} | 0 

Col | 0 

Ww Do| i) 

A,| | 0 

B, 0 

e,/| azo 

Ww. Dy) Fa 

An} | 0 

Bn] | 0 

en Fo 

a 
Pn) . TO, 

Thus the evaluation of the constants reduces to the solution 

of a series of groups of four simultaneous equations. 

The number of groups of equations that need to be solved is 

governed by the number of constants that need to be evaluated in 

order to ensure adequate convergence of the deflection function
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given by equation (2.1). 

The calculation is easily adapted for computer solution as all 

that is basically required is a looped program which will form the 

coefficients of A,, By, C, and D,, then invert the resulting (4 x 4) 

coefficient matrix and mltiply by the right hand side column 

vector to evaluate A,, B,, C, and D,. This process is repeated for n 

n=0, 1, --- N,where N is the number of terms which ensures 

satisfactory convergence of the solution. The displacement field 

is then generated by feeding the coefficients into equation (C2. 

and performing the summation of the terms to give the total 

displacement for any desired values of r and 9. 

Once the constants, and hence the displacement field, have been 

evaluated it is a relatively simple matter tc compute the surface 

stresses in the plate by making use of equations (A4.3a, b and c) 

  

with %F h/2 to give 

-- 6D /2w , D.aw , wv. 2w 
Oise oe a irs dare “er S62 

2 6D howe eo ye, ot | co =-9R (yy be. aly 
9 h2 re fo Oe r2 902 

es OD 2a 1 ow mee im eu 
TWre=. 52 (3 Lema eal 

These equations, on substitution of the expression for w, 

give the stresses at any desired values of r and 0. 

The computer program and its documentation are discussed in 

detail by Wilson [20]. 

THE TEST RIG AND ITS INSTRUMENTATION 
  

A photograph of the assembled test rig is shown on page 172 

The majority of published theoretical work has analysed a plate of 

proportions b = 1.5a. From a practical point of view these 

proportions were not very satisfactory because insufficient space 

was available for the attachment of strain gauges to the plate
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unless the outside radius was made inconveniently large. A plate 

of proportions b = 3a was suitable for the attachment of the strain 

gauges whilst an outside diameter of 0.45 m was chosen as the 

maximum acceptable for ease of machining with the available lathes. 

The plate was made of bright rolled aluminium sheet. This material 

had an adequate surface finish for the attachment of strain 

gauges without further machining and was preferable to steel because 

its lower modulus of elasticity would give measurable deflections 

with relatively smaller loads. 

The final details of the plate were therefore 

Inside radius = 0.075 m 

Outside radius = 0.225 m 

Plate thickness = 4.64 mm 

Modulus of elasticity = 69 GN/m2 

Poissons ratio = 0.33 

The deflection of the loaded plate was measured using a 

sensitive dial gauge mounted on a rotating arm. Surface strains 

in the plate were measured using foil gauges attached to the plate 

at positions shown in the photograph on page 173 and detailed in 

figure C3.1 on page 174. The concentrated edge loading was 

applied by means of weights placed on a special hanger which 

ensured that the load was situated as near as possible to the 

edge of the plate. 

COMPARISON OF MEASURED AND COMPUTED DEFLECTIONS AND STRESSES 

Details of the measurements taken and the way in which they 

were processed are described by Wilson [20]. A selection of the 

more important measured values is tabulated in figure C4.1 on 

page'!75 where direct comparisons may be made with the computed 

theoretical values. The blank spaces in the table of measured 

values occur wherever the readings were so small as to make their 

accuracy questionable.
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In general it may be seen thet the correlation between 

measured and computed values is reasonable, with typical 

differences being in the order of 10%. The only major differences 

that occur are those inthe stress values at the load point,and at 

the inner boundary. The low value of computed stress at the load 

point is due to the theoretical assumption of plane stress in the 

plate not being valid in the region of the load point. At the 

inner boundary the actual degree of fixity may fall short of being 

perfect, which may result in a relaxation of the assumed zero 

slope condition and a consequent lowering of the measured stress 

values. 

The computed values were obtained by taking a series of 30 

terms which gave a degree of convergence such that the theoretical 

results were reliable to three significant figures.
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FIG. C3.4 

DETAILS OF STRAIN GAUGE POSITIONS 

0.225m 

174. 

  

  

Load Position      

          

| a9   

    

KEY 

(a) 4 Tangential gauge on underside of plate 

(b) —@— Radial gauge on topside of 

{c) — Gauges of type {a) and (b) 

plate



COMPARISON BETWEEN MEASURED AND COMPUTED DISPLACEMENT AND STRESS FIELDS 

LOAD = iN 

  

  

  

  

  

  

                

DEFLECTION(.001 mm)l| RAD. STRESS(kN/m2)| TANG. STRESS(kN/m°) 
RADIUS] ANGLE = 

(m) (deg) Measured} Computed Measured| Computed} Measured] Computed 

0.220 O | +8.95 +8.41 -26.0 | -14.65 | +175.0 | 4139.7 

30 | +5.05 +4.53 - 1.92) - 1.15 ] - 39.2 | - 43.4 
60 } +1.03 +0.827 - 0.25] - 0.50 | - 35.2 | - 34.6 

90 | -0.42 ~0.445 + 0625) + 0.05 | = 15.5 | — 12.7 
120 | -0.47 -0.402 - 0.10 + 0.91 

150 | -0.19 -0.109 + 0.14 + 2.d7 
180 | +0.02 +0.015 - 0.09 + 3.49 

0.185 0 +5295 +5.41 -52.8 52.5 + 32.2 + 34.0 

30 | +3.75 +3.16 -18.2 | -16.0 - 48.8 | - 45.9 
60 | +0.75 +0.63 - 6.02] - 4.65 | - 41.7 | - 37.5 
90 | -0.27 -0.29 - 0.80] - 0.50 | - 12.7 | - 12.4 

120 | -0.355 -0.28 - 0.48 + 0.55 

150 | -0.11 -0.08 + 0.36 + 3.135 

180 -0.02 +0.005 + 0.19 + 2.98 

0.150 O | +3.19 +2.91 -82.6 | -83.1 - 17.6 | - 18.2 

30 } +2.06 +1.79 -40.8 | -42.9 - 53.7 | - 52.4 

60 } +0.54 +0.38 12.6 | -12.7 = 37.0 | - 37.9 

90 -0.062 -0.167 - 0.34] - 0.43 - 8.4 - 10.8 

120 —0.082 -0.168 + 2.02 + 1.69 

150 | -0.043 | -0.049 + 1.14 + 3.40 
180 | -0.010 +0.001 + 9.52 + 2.88 

0.115 0 +1 .30 +1.01 -124.0 |-134.3 - 60.6 - 64.1 

30 +0.86 +0.64 - 62.0 -86.6 - 64.0 - 63.3 

60 } +0.21 +0.13 - 27.0 | -25.7 ~ 33.0 | - 32.6 

go | -0.064 | -0.067 + 1.92) + 2.16 | - 3.57] - 4.65 

120 | -0.082 | -0.064 + 4.40] + 6.17] + 1.46] + 4.19 

150 | -0.042 | -0.018 + 2.75 + 3.33 

180 | -0.020 | +0.001 + 0.86 + 2,05 

0.080 Oo +0.021 -242.0 |-277.5 ~- 94.0 | -106.3 

30 +0.013 -166.0 |-175.9 - 65.0 - 68.2 

60 +0.002 - 39.0 |- 33.1 - 13.2 | - 13.4 

90 -0.0018 + 17.0 |+ 21.5 + 5.6 | + 8.12 

120 -0.0014 + 18.8 + 7.24 

150 -0..0003 + 4.84 4+ 4.99 
180 +0.0001 - 0.82 - 0.26       
  

175;
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ANALYSIS OF PLAIN AND STIFFENED PLATES USING THE RITZ METHOD 

Dn DEFLECTION AND STRESS ANALYSIS OF UNSTIFFENED PLATES 

The analysis of an unstiffened circular plate was made with 

the dual purpose of testing the efficacy of both the Ritz 

theoretical method and the experimental Vybak model technique in 

an application where a rigorous theoretical solution was already 

known. (Appendix E gives reasons for the selection of Vybak as 

a material suitable for this purpose). 

The specific case considered was that of a circular, isotropic 

plate of constant thickness. The plate was simply supported at its 

circumference with a single concentrated, transverse load at its 

centre. The reasons for this choice were that it was considered 

that a simple support was easier to achieve in practice than a 

truly fixed edge, and that a point load is very easy to apply 

although it was appreciated that the theoretical analysis of stress 

in the vicinity of the load would be unreliable. 

A diametral section through the plate, defining the 

co-ordinate axes is shown in figure D1.1 

h 
load,P. 

  

  
FIG. D414
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The system is axisymmetric which implies that the transverse 

deflection of the plate is a function of radius only. A convenient 

set of co-ordinate functions to describe the deflected shape is a 

fourth order polynomial of the form 

w=a+br+ cr2+dr3 + eré 

The fourth order term was anticipated to be the highest order 

that could be handled without prohibitive algebraic complexity. 

The imposition of the necessary geometric boundary constraints 

gives:— 

(i) the deflection is zero at the support, i.e. w= 0 when r=R 

(ii) the slope is zero at the centre of the plate, 

i.e, We O when r =0 

Hence b = 0 and a = - (cR® + aR? + er?) 

An admissible displacement function suitable for use in the 

Ritz method is therefore 

we=c(r?-R°) + a(r>- RP) + e(r4 - Rt) (D1 .1) 

Due to the symmetry of the system, the expression for strain 

energy given by equation (A4.6) may be simplified to: 

2r,R 
2 BC 0 |(e2w . ta)? _ oy _y) td dw Ue Fh [(s + iaw 21-9) EG SW Ir drd8 (01.2) 

Substitution of equation (D1.1) into (D1.2) and evaluation of 

the double integral gives, after extensive algebraic complexity 

4 6 v= wo[ai-vinee? ‘ ASs4nlk q@ . 16 Ss301R e2 

5 +12(tev)RF cd + MAUZSPIR GS, i6tiyiRec | (01.3) 
The potential energy of the load, 1, is given by 

aCe =-P Wy where w, is the deflection at r = 0 

OL = P(cR2 + dR? + er* ) (1.4) 

Addition of equations (D1.3) and (D1.4) gives the total potential 

energy of the system, V. 

Where V = V (ce, d, e)



Hence for V to be stationary 

sie hy OV 
dc od | 

178. 

ov L and Sah 0 

If these partial derivatives are obtained and the resulting 

expressions re-arranged, three simultaneous equations are 

produced thus:- 

161+») 24174 SDIR 

12(1+9) 215+ 40IR 

8(1+)) 12(1+Y)R 

32.(5 + 3y)R? c 1 

24 2 Siege (7+ 5YIR? |) dps Pt 

16(1 +Y)R2 e 1 

Solution of these equations gives - 

ce = — (37+25¥)P 
96(1 +>)1D 

Seer 
o= FeroR 
  

ee 
64nDR2 

il 

Therefore the deflected shape is given by 

1.25) 2 
w RB zy [ te} i a [1- te] &f- cf] (01.5) 

and the maximum deflection is at the centre of the plate where 

r=0. 

Central deflection PR? 
1D 

B7225)\ 5) 50 
96(1 +) 18 64 

= PR2, (107+ 35» 
1rd 576(1+D) 

The expression for central deflection derived by classical methods 

as given by Timoshenko and Woinowski - Krieger [3] is 

Central deflection = ERS 
D 

(34+) 
16(1 +) 

The difference between these two results is only approximately 

1.1% for typical values of Poisson's ratio encountered in practice.
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A comparison between these theoretical results and practical 

test results is shown in graph D1.i on page 180 which presents the 

load against central deflection characteristics of a 400 mm 

diameter 'Vybak' plate. 

The stresses on the surface of the plate are determined by 

the use of the stress equations (A4.3a) and (A4.3b) and the 

substitution of the deformed shape from equation (D1.5). The 

stresses obtained are given by 

Z : . bP a Es Sig45) 1 Radial stress, = af. pyis7 25>) B (2-9) (=) 0g] 

i Pegg?) Sie (= wal 3 Sh oe ere Tangential stress, Og = EA, pglsm2sr)+ 3 (1429) (4) - (139) (2) 

L
t
 

The expressions produced by the classical analysis are 

o, = 3285 [11-01 m(8)] 

3P R Oa BE, [Horm (B)+1+ >| 

These theoretical stresses, together with practically measured 

values for the same 'Vybak' plate, are shown in graph D1.2 on 

page 181. 

The results show that the Ritz method is very satisfactory for 

the assessment of deflection but that the prediction of stresses is 

not so accurate. The reasons for the discrepancies in stress 

prediction are: 

(a) the assumption that stresses normal to the plane of the plate 

are negligible is violated in the region of the concentrated 

load. i 

(b) the assumed deformed shaped used in the Ritz method does not 

satisfy the condition of zero radial bending moment at the 

support. This bending moment boundary condition could easily 

be imposed but it results in considerable algebraic difficulty. 

(c) stresses are obtained by a process that involves double
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GRAPH _D1.1 

DEFLECTION OF A SIMPLY-SUPPORTED PLATE WITH CENTRAL POINT LOAD. 

Simply- supported edge 

Sk age Radius - 200 mm 

Thick ness 
3.021mm 

Material - Vybak 

Temperature - 19.5°C 

E = 2.88 GN/m2 (Temperature corrected ) 

y= 0.37 
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GRAPH D1.2 

IN_A SIMPLY-SUPPORTED PLATE WITH CENTRAL POINT LOAD 
PLATE AS IN GRAPH Di.1_ WITH LOAD = 1N 

  

  

at —— Classical theory 

\ === IRitz method 

® Experimental 
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differentiation of the deflection function for the plate. 

The deflection function is in itself only an approximation 

to the true displaced shape and each differentiation process 

tends to emphasize the difference between them, thus 

resulting in considerable inaccuracy of the stress field. 

The experimental results give satisfactory confirmation of 

the central deflection but only an indication as to the trend of 

the stress variation. The deviation between experimental and 

theoretical stress values tended to be larger at the edges of the 

plate than in the body of the plate. This may be explained by 

errors in the theoretical stresses due to the reasons discussed 

above or to practical difficulties of ensuring that the plate was 

originally perfectly flat and resting evenly on the knife-edge 

support at its boundary. 

DEFLECTION AND STRESS ANALYSIS OF STIFFENED PLATES 

The provision of radial stiffening on a circular plate has the 

effect of introducing geometric asymmetry. The displacement field 

has a tangential as well as a radial variation which must be 

allowed for in the assumed displacement function. 

The simplest case of radial stiffening is that of a single rib 

of constant depth as shown in figure D2.1 

  

FIG D2.1 

For the purposes of analysis, a simply supported plate with a 

central point load is considered in order that comparisons may be 

made with the previous analysis of the unstiffened plate.
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The assumed displacement function is similar to the one used 

for the unstiffened plate except for the addition of a further 

term to allow for tangential variation in displacement. This 

further term is required to give tangential variation without 

violation of the boundary constraints previously satisfied. One 

of the simplest functions to fulfil these requirements is 

fr2(r -R)cos 28 

The complete displacement function is therefore 

we c(r2-R2) + d(r3-R3)+ e(r4- R4)+ fr2(r -R)cos 28 (D2.1) 

Due to the plate asymmetry the complete expression for strain 

energy as given by equation (44.6) is now required,viz. 

‘ oft Cy 1 2y ,1.a0)? ayy) few (t.aw 432w) — (1 a2w — 1 wrarae 
Ddotgllsre 2 see. OF ar2 G or +) ( fe- 3%) Has 

Substitution of equation (D2.1) into equation (A4.6) and 

evaluation of the double integral gives the total strain energy for 

the plate as 

Up = Tat -91R20? + B(5+anrtd? + WissapRoe? « Li2i-min't? 

+121 +v)R3cd + ZHi7+5y)REde + 16(1-9)RMco] (02.2) 

Itshould be noted however that this stage is reached only 

after very extensive and complex algebraic manipulation. 

From simple beam theory, the strain energy for the rib is 

v=) CaP 
The deflection of the rib is given by putting 9 = 0 in 

given by 

equation D2.1 i.e. 

we clr2- R2) + d(r3- R3) + e(r4 -R4) + Fr2(r-R) 

Hence by substitution-and evaluation of the integral 

Up = E1[4Re? +12R3d? + WARS e2 + 4R9F2 4 12R2cd + 36R4de 

+ 20R4 ef + 4R2cf + 16R3ce + 2R3¢t] (D2.3)
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The potential energy of the loading, OS As given by 

O=- Pw, wherew, is the deflection at r= 0 

Hence 

OL = P(cR? + dR? + eR*) (p2.4) 

Addition of equations (D2.2), (D2.3) and (D2.4) gives the 

total potential energy of the system, V, where : 

V = V(c,d,e,f) 

Hence for V to the stationary 

av. ov 2 yy ave aa ’ soak” ' Sa ce and Bis” 

If these partial derivatives are obtained, four. simultaneous 

equations are produced thus:- 

161 Se K] rafkiro5v)« 3k]R 2 [4 tea Kh? 20KR c 1 

oft Sy K| 3[itseanis8KfR 12 [217.501 aK]? 12KR d 1 

alia») +] ft +) +K]R 16\(1 +) + k}R? 4KR e 1 

° 
S
o
 

4K : 42KR 20KR2 [plate anieakhk 

Where K = a 

The solution of this set of equations to give the constants 

ce, d, e and f is carried out using a small computer program. 

Following the evaluation of these constants, the deflection 

at any point on the plate can be determined from equation (D2.1 ). 

The surface stresses may be obtained by the use of equations 

(A4.3a) and (A4.3b) which, after substitution of equation (D2.1) 

gives 

O =~ 2Bfat-ve + 32 sdIrd + 43 Dre + [r(6-9) + 2RID-1 i] teos20} 

Oy =~ SBfot1-v}e + 3(1+20)rd + Alte ad}ee + [16-11 + 2R11-v}]tcos28} 

The numerical evaluation of these stresses was incorporated 

in the computer program that had been written for the calculation
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of the constants c, d, e and f. The program calculates the 

stresses for a range of radii and angles. 

The computer program was written in BASIC and is suitable 

for use on a small computer as only a small amount of storage is 

required and the most complicated operation is the inversion of 

a4x4 matrix. The program is listed on, page 192 and a typical 

output is shown on page 194. 

Experimental results were obtained from a series of tests 

on a simply supported 'Vybak' plate with a single diametral rib 

of constant depth. A drawing of the plate is shown in figure 

D2.2 on page 188 and a photograph of the plate under test on 

page 189 The plate was subjected to a range of central loads and 

measurements were recorded of the central deflection and the 

radial and tangential strains at various points on the plate. The 

tests were repeated after successive milling operations on the edge 

of the rib to give a range of rib depths. 

Graph D2.1 on page 190 shows the variation of central 

deflection with rib depth. The curve demonstrates that the Ritz 

method gives a very satisfactory prediction of deflection. The 

discrepancy between theory and practice for small rib depths is 

almost certainly due to unexpected behaviour of the experimental 

plate as a plain plate had already given good correlation, 

Possible reasons for the discrepancy are: 

(a) the fillet of adhesive between the rib and the plate give an 

additional second moment of area to the rib which was not allowed 

for. 

(b) ‘the adhesive may alter the properties of the material in the 

region of the joint. 

(c) the machining operations on the rib may affect the material 

properties. 

The effect of all these possibilities would become more
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pronounced as the rib depth was decreased. 

The' typical stress-radius curves for one particular rib 

depth shown in graph D2.2 on page 191 demonstrate that the Ritz 

method cannot be relied upon for a satisfactory prediction of 

stress levels. 

The reasons for this unreliability are that the calculation 

of stress levels involves double differentiation of the deflection 

function. The deflection function is itself only approximate and 

any error is magnified in the differentiation process. The 

deflection function that has been used is also in error in that it 

has only been made to satisfy the geometric boundary constraints 

and not those of shear force and bending moment. This automatically 

implies that the calculated stress values at the boundaries may not 

be correct. A further error in the theoretical predictions is that 

bending takes place about the middle surface of the plate. This is 

an inaccurate assumption in the region of the rib and may seriously 

affect the stress predictions near the rib. The effect on the 

calculated displacement field is not very significant as the assumption 

is generally valid except for the localized violation near the ribs. 

The experimental results quoted in this appendix are 

extracted from the extensive program of experimental work reported 

by Edwards [35] who made use of the expertise previously gained by 

Leighton [34] in the application of Vybak to stress analysis models. 

DISCUSSION AND CONCLUSIONS 
  

In the case of a plain plate or a simple stiffened plate the 

Ritz method has been shown to give satisfactory predictions of 

deflections but that the subsequent stress calculations are too 

unreliable for practical use. The accuracy of the results is
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related to the choice of the assumed deflection function, but 

improvements in this direction proved difficult to implement as 

indicated below. 

The method has the advantage that once a particular case has 

been analysed and computerised, the program is so simple that 

similar problems may then be solved at little cost. 

The disadvantages of the method are considerable, however, 

and include: 

(a) the unreliability of the stress calculations. In principle 

this may be alleviated to some extent by making the assumed 

deflection function conform to shear force and bending moment 

boundary conditions. In practice however this introduced even 

more complicated algebraic manipuletion than that already encountered 

and was therefore abandoned. 

(b) radial variation in plate thickness or rib depth, which often 

occur in practice, is not easy to incorporate. 

(c) multi-ribbed plates or the provision of a rigid central boss 

make the deflection function more complex and the consequent 

evaluation of the strain energy becomes a complicated procedure. 

In conclusion, the method appears to be attractive for simple 

plates if only a deflection analysis is required. For the more 

complicated plate configurations that occur in practice the method 

becomes extremely complex in its algebra and the stress predictions 

become unreliable.
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FIG D2.2 

DETAILS OF TEST PLATE SHOWING STRAIN GAUGE POSITIONS 

Dimensions in mm, 

=- Radial gauges 

— Tangential gauges 

  

  

  

    

                

    
  

  

Gauges on topside of plate 20, 
except at rib position 50 

90 

4140 

130 

205 

Pee ee a a 

3<¢Rib depth,s < 40       
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GRAPH 02.4 

DEFLECTION OF A PLATE WITH A SINGLE DIAMETRAL RIB 
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GRAPH D2,2 

STRESSES IN A PLATE WITH A SINGLE DIAMETRAL RIB 

PLATE AS IN GRAPH D2.1 WITH LOAD = 1N 
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TYPICAL OUTPUT FROM THE PROGRAM "RIBPLT 
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THE USE OF PLASTICS FOR STRESS ANALYSIS MODELS 
  

EI INTRODUCTION 

One of the most common applications of plastics in stress 

analysis, namely the use of thermosetting resins for the manufacture 

of photoelastic models, has been developed over many years. The 

technique has been used with a considerable amount of success, but 

in some applications the geometry of the structure to be analysed 

may not be amenable to photoelastic study. 

Modern instrumentation has made possible the processing of the 

results obtained from large numbers of electrical resistance strain 

gauges in a reasonable period of time. This, coupled with 

ore cuneate on of the gauges themselves, has made the use of strain 

gauge techniques on small scale models a practical proposition. 

The manufacture of small scale models in metal, however, presents 

its own problems. Firstly the fabrication of small models may be 

practically difficult and secondly, small models tend to be very 

rigid with the consequent problems of measuring deformation under 

load. 

The advent of thermoplastics in commercially available sheet, 

block and bar form has made the construction of very sophisticated 

models a relatively simple task,as fabrication using adhesives is 

fairly straightforward. The low elastic modulus of thermoplastics
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implies that easily measured deformations may be produced 

with relatively small loads which are consequently easy to react 

in a predictable manner. 

The properties required of a thermoplastic for use in strain 

gauged models are basically: 

(a) it must be possible to produce sound joints in a fabrication, 

together with the maintenance of consistent material 

properties across the joint. 

(b) it must be possible to attach strain gauges in a satisfactory 

manner. 

(c) a completed model should have high dimensional stability. 

(a) the material should have a linear stress-strain characteristic 

if possible and a low creep sensitivity. 

a considerable amount of work has already been carried out on 

the selection and characteristics of thermoplastics for model 

making. The most notable contributions are probably those of 

Wallace [32] and Swan [33] of the Naval Construction Research 

Establishment. They recommend Vybak as a suitable material and 

compare its properties with other thermoplastics. Further 

investigations have been made by Leighton [34] and Edwards [35] 

with a view to confirming the suitability of Vybak and developing 

a 'feel' for its use. 

A SURVEY OF SUITABLE THERMOPLASTICS 

Three thermoplastics are in common use for stress analysis 

models. These are marketed under the brand names of Vybak, 

Xylonite and Perspex. Brief comments on their suitability for 

this application are as follows:- 

Vybak - Humidity has little effect on its mechanical properties 

but temperature effects are large enough to warrant 

consideration. The creepbehaviour of this material is 

superior to the others, which is the main reason for
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its use. The ideal material for static stress analysis 

models would exhibit no creep characteristics at all. 

Vybak creeps considerably less than the other materials 

considered and even this can be kept under control with 

the precautions advocated in section E3 below. It hss 

high dimensional stability, is easily nasheed and 

fabricated,and has isotropic properties. It is 

commonly available only in sheet form. 

Xylonite - Dimensional stability is poor and its properties are 

very susceptible to changes in humidity. It is less 

sensitive to temperature changes than Vybak but its 

creep characteristics are inferior. This material is 

slightly anisotropic and also presents an element of 

fire risk. 

Perspex - This material is inferior to Vybak in both its 

temperature sensitivity and its creep characteristics. 

Its main advantage is in being readily available in 

east block form. 

On the basis of these comments, Vybak was selected as being 

the most suitable material for the modelling of stiffened plates. 

The properties of Vybak will now be described in greater detail, 

the observations being based on the work of Wallace, Leighton and 

Edwards [op.cit.] and manufacturers' literature [36] . 

THE PROPERTIES OF VYBAK 
  

Elastic - 2.8 GN/m* at 23°C 
Modulus 

For temperature fluctuations within the normal 

variations of room temperature, the modulus decreases 

by 0.85% for every degree Kelvin of temperature rise. 

The relationship between stress and strain is linear 

for stresses less than 20 MN/m? and strains less than 

0.7% 
Poissons Ratio - 0.37
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Creep - The effects of creep ave negligible provided the 

elastic strains are maintained below 0.5%. A five 

minute settling period after the application of load 

and before measurement of deformation is advisable 

however if great accuracy is desired. This five 

minute period is generally quite adequate as the 

elastic modulus is only 4% lower after four hours 

under load than its value after five minutes. 

The attachment of strain gauges to Vybak sheet presents no 

unusual problems and a satisfactory bond can be obtained using 

conventional methods. For models made of thin sheet it is 

preferable to use thin foil gauges. The stiffening effect due to 

the attachment of small, thin gauges is generally low and, in the 

case where bending strains are measured, the decrease in strain 

due to stiffening is compensated to some extent by the gauge 

being at an increased distance from the neutral surface of the 

model due to the thickness of the adhesive. 

One problem with the use of strain gauges on any thermoplastic 

is that, due to the low thermal conductivity of the plastic, the 

material aie the vicinity of the gauge will increase in temperature 

with the consequent lowering of the elastic modulus and increase in 

the strain recorded. For this reason the current flow in the strain 

bridge should be kept to a minimum. For stability of temperatures 

it is desirable that all gauges should be continuously energised. 

This erret the existence of a dummy gauge for every active one 

and hence a large number of gauges may be required for a relatively 

simple model. Satisfactory results may be obtained by having a 

limited number of dummy gauges which may be used with a selected 

equal numbers of active ones and then repeating the loading cycle 

as readings are taken from each set of active gauges in turn. Time 

must be allocated for temperature stabilisation as each set of 

auges is selected. Baug
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