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SUMMARY

A review of techniques for the calculation of deflection and stresses
in eircular plates has been made with the object of ascertaining the most
suitable general approach for the analysis of plates under ccnditions of
asymmetric loading. The semi-analytic finite element method was selected
and has been successfully developed for use in this application.

Computer programs are presented for the analysis of any annular or
complete circular plate which is axi-symmetric in its geometric and
material properties, but is loaded either symmetrically or asymmetrically.
The programs have been appliesd te the analysis of several test cases and
the results compared with those obtained by other means of analysis and,
in some cases, from practical tests. Satisfactory correlation of the
results indicates that the programs are sufficiently accurate for most
practical purposes, and that they are computationally efficient when
compared with other techniques.

The problems associated with the analysis of plates stiffened by the
use of radial ribs are discussed, together with the feasability of
extending the semi-analytic finite element technique to handle this
particular application.
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LIST OF SYMBOLS

This list is intended as a reference to the most ccmmonly used
symbols contained herein. Symbols may be found in the text which are
not feferred to here, in which case they are defined on introduction.

Subscripts are normally used to identify the component of a
variable in the co-ordinate direction indicated by the subscript.
Subscripts having meanings other than this are defined as and when
required.

Matrix quantities are defined by a letter within the symbols [ ]
for a rectangular matrix, P\J for a diagonal matrix and { f for a

column vector. The transpose of a matrix is indicated by the superscript,t.

X,y o a2y S Cartesian co-ordinates

r, 9, z Cylindrical - co-ordinates

u, v, w Displacements in directions x, y, z respectively
€ Radius of curvature

5 Distance from neutral surface
h Plate thickness

o Direct stress

= Shear stress

€ Direct strain

¥ Engineering shear strain

E Modulus of elasticity

Y Poissons ratio

D Flexural rigidity of a plate
G Modulus of rigidity

A Lamés constant

M Moment

Q, P, W, F Force



(k]
[K]

viii

Intensity of load.ng

Strain energy

Potential energy of loading
Total potential energy

Shape functions

Strain - displacement relatiorship
Stress - strain relationship
Nodal displacements

Element stiffness matrix
System stiffness matrix
Force vector

Surface integral over area S

Volume integral over volume V



REVIEW OF ANALYTTCAL TECHNIQUES AND PUBLISHED LITERATURFR CN THE STRESS

A
A

NALYSIS OF CIRCULAR PLATES IN BENDING

1.1

STATEMENT OF THE PROBLEM

Many engineering structures make use of circular plates under
various loading conditions. Common examples are the end plates of
rotating machines, cover plates for apertures in pressure vessels,
machine tool bedplates,and bulkheads in cylindrical tubes. The
analysis of the deformation of circular plates is comprehensively
presented by Timoshenko and Woinowsky-Krieger [3] and McFarlend,
Smith and Bernhardt [4] where it is shown that the general equation
governing the bending of thin plates is a fourth order partial
differential equation (the bi-harmonic equation). An analytical
solution to this equation\is readily available in simple cases such
as when the loading is axi-symmetric and the plate is of constant
thickness. In the case of asymmetric loading or varisble plate
geometry, however, an analytical solution is usually impossible due
to the difficulty of finding functions which satisfy the éoverning
equation within the plate and yet simultaneously fulfil all of the
boundary conditions. Under these circumstances upproximate methods
become essential,

In many practical applications the loading on a particular

late may be of such magnitude that the deflection and stresses

become unacceptably large if the plate is thin. The functional



requirements demanded of such a plate may be fulfilled by the use
of a thick, plain plate but this may not be the most economical
solution to the probtlem either in terms of cost or weight. A
stiffened thin plate will often.provide an acceptable design as it
is lighter and may be less costly than a plain, thick plate and yet
may be made sufficiently rigid by careful design of the stiffening.
Plate stiffening is achieved in practice by'the use of orthogonal,
circumferential or radial ribs; the latter form probably being the
most commonly used, though possibly the least well Cocumented.

The aim of the current investigation is therefcre to attempt
to develop a general method of analysis for asymmetrically loaded
circular plates, with the secondary objective that the method
should, if possible, be capable of future extension to incorporate the
effects of radial stiffening.

The following review of analytical techniques and published
literature was carried out with the purpose of ascertaining the form
of approach most likely to achieve the desired aims.

ANAL?TICAL TECHNIQUES FOR PLAIN PLATE PROBLEMS

The general governing equation for the bending of thin plates
is, as mentioned above, a fourth order partial differential
equation. Circular plates are best defined in terms of cylindrical
co-ordinates r, © and z in which case the governing equation is of

the form
Vhw = P

2 2
where V2 is the operator (Lé— - - T —1—-—§—;>
p is the intensity of loading on the plate.
w is the transverse deflection of the plate.

D is the flexural rigidity of the plate.

In general p,w and D are all functions of position on the plate.



Direct analytical solution of this equation is rarely
possible; one exception being when the loading is axi-symmetric
and the plate is homogeneous and of constant thickness, in which
case the equation reduces to a relatively simple ordinary
differential equation where the loading and deflection are functions
of radius only. In almost all other cases apprcximate methods of
solution are required. Various approximate methods have been
devised and the basic outline of some of these methods is discussed
below.

1.2.1 Galerkin's method

This is a method of direct solution of the governing equation

based on the selection of an approximate displacement function W

W= iciﬁ,-
=]

in the form

where the Cj are constants to be determined
and the ﬁi are co-ordinate functions that satisfy all the boundary
conditions on the plate.

A virtual displacement field may be defined by §W, in
which case, by consideration of both sides of the governing
equation, the virtual work done in moving through these virtual

displacements is given by
[(ovmswas o gs(plSWdS

where the integral is the surface integral over the whole plate.

As W is not the true displacement field these two expressions
for virtual work are not automatically equal, however equality may be
forced by suitable adjustment of the Cj.

The condition for equality is therefore
SS (DVew)g; 6C; ds = Ss (p)2;5C; ds for i=1,2,----,n

or
bwm -2 )ghds = © R
SS{V w-35 )% dS = O forii=1,2; .n



Application of this equation leads to a set of
simultaneous equations from which the C; may be evaluated

This method is successfully used for the analysis of clamped
plates in references [8] and [27] but the restriction that the
assumed displacement fuhction must satisfy all the boundary
conditions (both kinematic and natural) makes the technique more
difficult to use for plates with simply supported or free edges.

1.2.2 The Ritz method

Like the method of Galerkin, the Ritz technique also uses an
assumed approximate displacement function. The Ritz method differs
from Galerkin's approach however in that it is not a direct solution
of the éoverning equation but relies on the existence of a functional
which is to be minimised. In the case of plate bending the wusual
functional is the total potential energy of the system and the
assumed displacement function need satisfy only the kinematic
boundary constraints. The variational ideas associated with the
functional and its minimisation imply that the Ritz method
effectively generates a substitute finite degree of freedom problem
from the original continuum problem.

The Ritz and Galerkin methods can be shown to give identical
results in many solid mechanics applications. The Galerkin
approach is arguably the more fundamental as it is a direct
solution of the governing equation and does nct rely on the equation
having a functional. The Ritz technique is often easier to apply
however, due to the requirement that the assumed displacement
function need not satisfy all the boundary constraints but only
the kinematic ones.

The detailed basis of the Ritz method and its application to
circular plate problems are discussed extensively in appendices

B and D.



1.2,5 The use of geries

The use of trigonomeiric series forms the basis of a direct
method of solution to the governing equation by ussuming that the

deflected shape of any circular plate may be represented by the

(= (=]
W = Zofn{r} cosnB + Z.; gnlr) sin nB
n= N=

whera fn(r) and gh(r) are functions of radius only.

infinite series

This displacement function is substituted into the governing
equation and the resulting expression is then made to satisfy all
the boundary conditions, thus resulting in the evaluation of the
arbitrary constants which sre associated with fn(r) and gn(r), and
arise from the original substitution of the displacement function
into the governing equation.

The method is approximate because in practice only a finite
number of terms can be handled and the accuracy of the solution
depends on taking a suitable number of terms to give convergence
of the series to the reguired degree of accuracy.

A general description of solutions using series is given in
references [3] and [4] whilst apﬁendix C discusses an application
to the particular problem of a clamped-free annular plate under
concentrgted edge loading.

‘Coull and Das [18] have used the method in a slightly more
sophisticated manner in the analysis of curved bridge slabs which
are in the form of annular sectors with boundary conditions as

shown in figure 1.1 below

free
Displacement function is :-
s.s. 9)\ s
\
free W= iR sin nré
\ / = 2
NEA / n=
‘\‘\ A (R is a funtion of radius only)
LY /
\»‘iy

F16. 1.1



The general solution to the governing equation Vb w =%}

is of the form
W= Wy o+ Wy

where wy, is the hcmogeneous pa;t and wb the particular integral.
The evaluation of wp is very difficult for complex load patterns
and the feature of their paper is that the loading on the slab is
represented by circumferential line loads éxpressed in the form of
Fourier series. This makes the particular integral zero and the
solution is given by the homogeneous part only, the load being
represented by a discontinuity in shear force at the load line in a
manner similar to that used in the step function method for the
solution of beam problems.

The method of solution by series gives a satisfactory means of
analysis for many problems but has the disadvantage that it is a
fairly lengthy technique to apply and every type of problem has to

be treated as an individual case.

1.2.4 Finite difference and finite element methcds

The main features and relative merits of these techriques are
discussed in section %.1. With respect to the current application,
however, the rapid development of finite element techniques in the
late 1960's and early 1970's, especially with the introduction of
new elements with curved boundaries, has made this approach very
attractive for handling circular plate problems. Contributions of
note in the development of such elements are those of Olson,
Lindberg and Tulloch [22] , Sawko and Merrimaﬁ (23] and-Singh and
Ramaswamy [24] all of whom have developed annular sector elements
with varying degrees of sophistication a%gtg}e discussed in more
detail in section 3.5. These elements enable a satisfactory
analysis to be made for most circular plate problems, and could

possibly be extended to incorporate the effects of stiffening, butl

have the disadvantage of requiring considerable computer time and



1.3

Storage requirements.

Many types of component and structure exict in which the
geometrical properties are constant in one specified direction. In
certain cases it may be possible to simplify the analysis of such
components or structures by taking advantage of this geometrical
characteristic. Zienkiewicz [13] describes the basis of a semi-
analytic finite element method which takes advantage of such
geometrical properties and which may result in considerable
economies in computational effort. This approach is discussed in
section 3.4. Zienkiewicz and Too [17] use the semi-analytic
technique in the solution of bridge deck problems similar to that
previously analysed by Coull and Das, but application of the
technique to circular plate problems appears to be a valuable
applicatiou that has not yet been explored in detail.

ANALYTICAL TECHNIQUES FOR STIFFENED PLATE PROBLEMS

A typical application of a stiffened plate is illustrated in
figure 1.2a which shows the use of a radially ribbed plate in a

crushing mill whilst figure 1.2b shows the effective loading on the

plate.

Force

W
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— [nternal
Moment Pressure

!
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One of the earliest references to the strength of radially
ribbed plates was the discussion by Biezeno and Grammel (25]of a

plate carrying a sealing gland as shown in figure 1.3



' Flange ring
Rib

SSIRERE T ISss

Pressure

1

W\\\_/
FIG.1.3

Their solution to this particular problem was very approximate

and intended only as a means of assessing the stresses in the flange
ring carrying the seal. There was no real attempt to calculate
stress distribution in the plate but their analysis did show, in
very forceful termé, the adverse effect of the ribs in the form of
stress concentrations in the flange ring.

In the decade 1960-70 a considerable effort was made to analyse
the vibrational behaviour of stiffened plates,of which the
contributions by Kirk [26] for reztangular plates and Desiderati &
Laura [27]) for elliptical and circular plates, were notable. The
Rayleigh-Ritz method was widely used and gave satisfactory results
provided that the ribs were small and closely spaced. Although the
overall elasticity of the plate needed to be considered,the effect
of the discontinuities in plate geometry on the stress distribution
was ignored. The idea of incorporating the effect of the rib by means
of using orthotropic plate theory was also introduced in this period.
The charact?ristic of all of these papers however was that they only
investigated plates with orthogonal ribs,and although they contained
some useful principles they were only of limited direct use in the
context of the present applicaticn.

A paper by.Harvey and Tuncan [28] dealt directly with the

problems of radially stiffened circular plates and was probably one



cof the earliest comprehensive assessments of the problem. Their
contribution was mainly in the form of experimental deflection
results that were obtained by interferometry techniques. They
pointed out the difficulties in theoretical analysis and used as
their mathematical model a system of thin sectorial plates that
served to collect the loading (in their case conly internal pressure
was considered) and transmit it to the ribs. Their theoretical
predictions of deflection showed errors of at least fifty per cent
and presumably any attempt to calculate stresses from deflections
with this order of error would be virtually useless. The large
errors in their results were due to the fact that the plate and ribs
cannot be treated in isolation,as the plate stiffens the rib and
therefore a portion of the plate should have been associated with
each rib thus forming a T-beam.

Independently of Harvey and Duncan,and apparently unknown to
them probably because the paper was not available outside Russia at
that time, Rubach [29] had been working on the problem of a radially
ribbed plate with a point load at its centre. He introduced the vse
of orthotropic plate theory in cylindrical co-ordinates as a means of
representihg the ribs although he particularised the ribs, for
mathematical convenience, into the form where their circumferential
width was proportional to radius. His work was followed by Mlotkowski
[30] who studied the effect of a central moment on the plate and
subsequently by Leyko et.al. [31] who attempted to further generalise
the geometry of the plate considered. Although all of these authors
claim to produce a satisfactory analysis, the use of orthotropic
theory does not give a result that can be presented with conviction,
especially if the ribs are not small and closely spaced. Some of

the methods used, notably the latter, may be lengthy due to the plate



being represented by a series of annular rings 2nd the need fo£
subsequent matching of the boundary conditions at common radii.
This was not a finite element approach in the usual sense as it
was not a variational technique although it did mean that final

solution involved solving many simultaneous equations.

10.
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INTRODUCTION TO THE CURRENT INVESTIGATION

2.1

2.2

ATIMS OF THE INVESTIGATION

The main aim of the investigation was the development of a
general technique for the analysis of deflection and stresses in
annular and complete circular plates under the action of both
axi-symmetric and asymmetric transverse loading systems of the type
which commonly arise in practical applications. Attention was to be
raid to the minimisation of any computational requirements both in
terms of storage and processing time.

Many applications of circular plates require the plate to be
gtiffened by the incorporation of radial ribs. The possibility of
extendiné’any proposed technique in order to include this configur-
ation was a feature to be kept under review as development of the
technique proceeded.

SELECTION CF THE METHOD OF ANALYSIS

Some of the early researchers mentioned in chapter 1 had
achieved a measure of success, especially in vibration problems, by
using the Ritz method. This technique is attractive in its basic
simplicity of approach and was therefore explored further in terms of
its suitability for use in this particular application. Appendix D
describes the work carried out using the Ritz method and shows that

a limit of usefulness was reached at a stage somewhat short of that
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required due to the complexity of algebraic manipulafion and thé
unsatisfactory accuracy of the stress calculations. It was
accepted, however, that the method may still be useful in some
limited applications.

The use of Galerkin's method was discounted on the grounds that
it would suffer from similar, but probebly more severe restrictions
than the Ritz method. Thiswasdue to the difficulty in defining an
approximate displacement field in terms of a single expression
which satisfied all boundéry conditions and that did not result in
extreme algebraic complexity in the subseguent calculations.

Analytical solutions using trigonometric series for the
description of the displacement field have proved very successful in
many unstiffened plate applications,but the problems associated with
applying this type of analysis to stiffened plates gave rise to some
reservations as to its accuracy. The commonly used approach,whereby
the effect of the ribs was introduced as an orthotropic property of
the flexural rigidity of the plate,was of questionable validity for
plates stiffened by the use of radial ribs due to the situation that
with the relatively small number of ribs generally used in practice
it was not acceptable to regard the ribs as being closely spaced.
Even assuming that a satisfactory overall picture of deflection
could be achieved by this technique it is doubtful whether the stress
field in a stiffened plate could be calculated with sufficient
accuracy to be of practical use.

Finite element and finite difference methods were considered;
the relative merits of the two techniques being discussed in
section 3.1. On the basis of the points made in that discussion
the finite difference method was discarded as being no easier to
apply, and also unlikely to yield a more accurate solution than
the finite element approach. The finite element approach was also

attractive in that once a computer program had been developed a
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13.
whole range of problems could be colved simply by specifying the
plate and loading details as input data.

One of the original aims was to minimise the demands made on
computer time and storage. Whén the possibilities of a semi-
analytic finite element analysis became apparent, this approach
was selected in preference to conventional finite elements on the
grounds that considerable savings in compu;ational effort may be
achieved. The investigation therefore developed into the applicaiion
of the semi-analytic finite element method to the analysis of
circular plate problems.

AN OUTLINE OF THE DEVELOPMENT OF THE INVESTIGATION

Any investigation of this nature must obviously make continual
reference to the basic behaviour of thin plates in flexure. For
this reason the basic theory and the resulting expressions describing
this behaviour were studied and are presented in appendix A.

A1l finite element methods have their foundations in variational
principles and energy methods. Many formulations of the finite
eleﬁent method have been proposed, for example the displacement,
force and hybrid formulations, but a common feature of them all is
that they are based on the use of variational principles for
investigating the existence of stationary values for some particular
functional which is defined in terms of the energy quantities
associated with the plate and its loading. A discussion of
variational principles and energy methods with particular reference
to plate bending is given in appendix B. ‘

The displacement formulation of the finite element method is
the formulation most commonly used, largely due to the fact that
assumed displacement fields and inter-element continuity of
displacements are a simpler concept to envisage than a formulation
involving assumed stress fields and equilibrium criteria. A

detailed discussion of the displacement formuiation of the finite
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element method is given in chaptef 3 together with a description
of the principles involved in the use of the gemi-analytic
technique. Particular features associated with the displacement
formulation in its application to problems of plete flexure are
also discussed.

As a first stage in the development of plate analysis, the
problem of the flexure of plates under axi-syumetric loading was
considered. The value of analysing this relatively simple problem
was that it served to highlight those aspects of the analysis
which were likely to produce further difficulties as development
progressed. The basic problems of defining element shape functions,
together with the computational aspects of element stiffness matrix
generation,and aésembly and solution of the final equations could all
be overcome at this stage in an application where classical analytical
solutions were available for comparison. This stage of the investig-
ation is described in chapter 4 together with full documentation for
use of the computer program 'SYMPLAT' which analyses the deflection
and stresses in any axi-symmetrically loaded,complete or annular
plate. This program is of considerable practical use in its own
right as it enables an analysis to be made in cases where classical
analysis may be extremely difficult. A typical example of this is in
applications where there is a radial variation of either the plate
thickness or the material properties. A feature of the axi-symmetric
nature of the loading was that the problem was quasi-unidimensional,
and a conventional finite element apnroach using annular elements
was adequate and computationally efficient. The satisfactory
development of 'SYMPLAT',and confirmation of its viability by
comparison with classical solutions to several test cases,meant that
the next stage in the investigation was to extend the analysis to

accept asymmetric loading on the plate.



The immediate effect of considering asymmetric lcads was that
the problem became fully two-dimensional. Several authors have
previously analysed the problem using conventional finite element
techniques but in the case where the loading was asyumetric,
provided that the plate geometry and material properties were
axi-symmetric, it was apparent that the semi-anzlytic approach may
be possible. The development of this semi-anslytic approach is
presented in chapter 5 together with documentation for use of the
program 'ASYMPLAT'. This program analyses the deflection and
stresses in axi-symmetric plates with asymmetric loading. A
rigorous analytical solution for problems of this type is not
generally possible but approximate, series solutions have been used
extensively. A ﬁarticular problem used as a test case for 'ASYMPLAT'
was that of a clamped-free annular plate with a concentrated edge
load. An analytical,series solution to this problem is presented in
appendix C for purposes of comparison. This problem was investigated
in some depth in that a test rig was also constructed in order to
obtain experimental confirmation of the validity of the theoretical
deflection and stress predictions. The design, construction and test
procedurss for this rig were all carried out under the direét
supervision of the author and have been described in detail by
Wilson [20]. An abridged description of this experimental work is
presented in appendix C. The final form of 'ASYMPLAT' has been
proved to give deflection and stress predictions of satisfactory
accuracy for most practical purposes by comparison of its results
with the solutions to several test cases which have been analysed
previously using other techniques. The program is now in a
condition where it can make a useful contribution to problems which
fall within its range of application and would appear to be of such
computational efficiency as to justify its use in preference to most

~other forms of analysis.



16.

The application of the semi-analytic finite element approach
to the problem of radially stiifened plates has nct yet been
explofed in detail but some comments on the possibilities of this
application are discussed in chapter 6. An introductory analysis
of radially stiffened plates has been attempted by using the Ritz
method in the case of a complete plate stiffened by a single
diametral rib. The analysis of this plate is discussedlin appendix
D and again shows that the Ritz method is capable of producing
adequate predictions of deflection but is seriously in error in itis
stress predictions. Since no other form of analysis was available
against whieh the Ritz predictions could be compared, a program of
experimental work was initiated on the measurement of deflection
and strain in radially ribbed plates. The use of small scale metal
models of stiffened structures often results in mudels which are too
stiff to allow accurate measurement of the deflections under load.
For this reason the application of thermoplastics for the manufacture
of stress analysis models was investigzated, the work being carried
out by Leighton under the supervision of the author. The results of
this investigation were published in reference[34] and are
summarised in appendix E where it is proposed that Vybak is a
suitable material,and guidance for its use in the current application
is given. The experimental work on ribbed plates fabricated from
Vybak sheet was performed by Edwards under the supervision of the
author and the results have been published in reference [35] . A
selection of these results for comparisocn with the theoretical

predictions of the Ritz method is given in appendix D.



THE FINITE ELEMENT METHOD

3.1

THE DEVELOPMENT OF NUMERICAL METHODS IN SOLID MECHANICS

In the field of solid mechanics the description of deformation
and equilibrium of simple systems can often be achieved in terms of
relatively straightforward equations which have well established
solutions. As systems become more complex, either in terms of
their geometry or applied loading, the mathematical protlems
associated with an analytical solution may become very severe.

Many common engineering structures are too complicated to be
regarded as a simple collection of interconnected rigid bodies
with a finite number of degrees of freedom. The study of
continuwe mechanics, with the implication of an infinite number of
degrees of freedom, then becomes essential, The use of continuum
theory does, however, lead to system behaviour being defined in
the form of partial differential equations. The major problen is
then that even if solutions to these equations are available, it
is only in very few special cases that they will exactly satisfy
the required boundary conditions of load or geometry,

In the absence of analytical solutions to the majority of
continuum problems the ap-roach is either:

() to attempt to solve the describing equations of the actual

system by approximate methods or

1
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(b) to devise an aporoximate system, the desciibing equations

of which are known to be amenable to solution.

The advent of high speed digital computers with large storage
capacity has hastened the avnlication of numerical solutions to
continuum problems. The two major techniques that have been
developed are the finite difference and finite element methods;
corresponding to the above solutions of types (a) and (b)
respectively. In recent years the finite element method appears
to have established itself as the more important of the two and
the outline of the techniques given below provides some
indications as to the reazons for this populari ty.

Historically the finite difference method is the older of the
two, having first been used in the solution of solid mechanics
problems approximately seventy years ago, although one of the first
successful applications to plate theory was not until that made by
Marcus in 1919. The method, which is outlined in references [1],(3] &[4),
provides an approximate numerical solution io the overall
describing equation and is based on dividing the region over which
the equation is applicable into a mesh. The derivatives or partizl
derivatives in the equation are then replaced by finite difference
expressions which approximately relate the value of the derivatives
at any given mesh point to the value of the field variable at the
point in question, together with its value at neighbouring mesh
points. The original equation is therefore replaced by a set of
simultaneous finite difference eqﬁations, the solution of which
gives the values of the field variable at the mesh points.

The finite element method is the subject of very extensive
literature with references such as (131, (141, [15] and [16) being
typical of the many books available. Martin and Carey [14]present
& comprehensive history of the development of the finite element

method from its initial use over thirty years ago, through its
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very rapid development in the 1960's as computer facilities
advanced and up to the very sophisticated state of development
that it has reached today. The finite element approach is a
variational one based on sub-dividing a continuum into discrete
elements,connected together only at nodal points, and then
defining the behaviour of each element in terme of adjustable
nodal parameters. The values of the nodal parameters are then
adjusted so as to minimise a prescribed functional. The
advantages of the finite element method over the finite difference
method may be summarised as
(a) a graded or irregular mesh generally presents few problens.
(b) discontinuities can be handled relatively easily.
(c) irregular boﬁndaries are less of a problem.
(d) fhe analysis of each element is an independent process,which
is not the case with finite differences.

Henshell [12] also claims that since the finite element method
is a variational approach it is votentially more accurate than the
finite difference method. This claim would appear to be difficult
to substantiate however, as there is little reason to suppose that
the mathematical modelling ideas used in the finite element
approach are necessarily superior to those used in a finite
difference analysis purely because they are based on variational
principles,

The main limitation on the use of the finite element method
is the speed and storage limits of the computer. TFor this reason
a considerable amount of effort must be directed at the efficiency
of the elements and numerical processes.

THE CONCEPT OF FINITE ELEMENTS AS A VARTATIONAL METHOD IN SOLID

MECHANICS

Any continuum may be regarded as an assembly of discrete

elements of any desired shape and size. The most common Yom of
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the finite element technigque in solid mechanics is the so-ecalled
displacement or stiffness formulation in which the displacement
field within each element is approximately defined in terms of
assumed degrees of freedom at a selected number ot nodal points,
the elements being interconnected only at these points. The total
potential energy for the element is then determined as a function
of the nodal freedoms. The elements are assembled and the

relative sizes of the nodal freedoms adjusied to minimise the total
potential energy of the system hence, by the principle of stationary
total potential energy, the equilibrium configuration is defined.
This energy principle is discussed in detail in Appendix B ané it
becomes apparent that the displacement formulation of the finite
element method is.in effect a piecewise application of the Ritz
method.

THE DISPLACEMENT FORMULATION IN DETAIL

3.5.1 Strain energy of an element in a solid contimuum

The displacement field within any element in a general three
dimensionai case can be described in terms of three orthogonal
displacements of any point within the element. Bach of these
displacements will be a function of the three Cartesian

co-ordinates that define the position of the point, i.e.

(

u .
Pisnlacement fistd., {f} N 1.v where u, v and w are each functions

e of x, ¥ and z

In a displacement formulation it is required that the
displacement field within an element should be described in terms
of adjustable nodal parameters. These parameters become the
degrees of freedom that are allowed for e-ch element and are
usually the displacements or derivatives of displacements at the
nodes. If a continuous displacement field is to be descrited by

the use of discrete nodal freedoms it is implicit that a set of
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co-ordinate functions needsto be devised thus:-
Sy A

&3 = [ing (N1 1y 1IN %1 P
2
|

nod
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A th
node

pth
‘f,,node
| : )

or §f§ = [N {gfe (3.1)

Where {S}eis a column vector of the nodal degrees of freedom

for the element with p nodes and q degrees of freedom per node
giving a total of r freedoms per element. [ Note that r is not
necessarily (px q} as q need not be the same for all nodes].

The [N;j] are, in general, fully populated (3 x q) matrices each
elemént of which is a function of x, y and z and so chosen that if
the nodal co-ordinates are inserted for x, y and z then {f} becomnes
the appropriate nodal displacement. The elements of [N;]ars called

shape functions and must be continuous functions within the region

of the element. The accuracy of the whole solution is dependent on
the degree of correspondence between the chosen shape functions and
the true deformed shape of the element.

If compatibility between strain and displacement within the
element is analysed, the relationship between these two quantities

may be summarised as
{e}ez (GI§f} (3.2)
Where, in a general three dimensional situation, {e:} ig 3
(9 x 1) column vector consisting of three direct strains and six

shear strains. Also in this general case [¢] will be a (9 » 3)



matrix whose elements are all partial derivatives with respect to
the three co-ordinatz directious.

By combining (3.1) and (3,2)

{€}e=[G][N]§S}e
or  {€¥=1B1§SE®  where [BI=[G)IN] .  (3.3)
If the material from which the element is made behaves in o

linear, elastic manner under load then the internal element

stresses may be related to the strains by the equation

fo¥- (01 feie 5.4

Where ﬁsieconSists of three direct stresses and six shear
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stresses. [D] is, in general, a (9 x 9) matrix, i.e. 81 elements of

elastic constants. Due to symmetry of the stress and strain
tensors only 21 of these constants need to be independent and if
the material is isotropic these 21 can be reduced to 2.

The total strain energy of the e;ement can be shown to be
given by

uE‘=%.5\.‘F {e}et §o3edv (3.5)

Note that in equation (3.5), if engineering shear sirains ¥
are used in place of the shear strains € , where U= 2¢€, then due
to the symmetry of the stress and strain tensors, the size of &539
and.{d}emay be reduced to (6 x 1) as each pair of shear components
need be listed once only.

Equations (3.3) and (3.4) may now be substituted in equation

(3.5) to give g b
U9=-;—§V{S}e (81" [DI(B] §§{eav

Noting that in general [B] and [D] are now only (6 z 3) and

(6 x 6) respectively.

sLoV=g (Z&fetfkl{ﬂfe) (3.6)

1-
2
Where [k] =S
vV

(et o1rBIAv (3.7)
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[k) is callzd the element stiffness ma‘rix.
[Note the-sindlarity of form between equation (S.C) and the strain
energy expression for a simple spring where U = %kx2 ]

Strains and stresses due to initial values and temperature
effects can also be incorporated if required but have not been
included in the.discussion as they are not relevant to this
investigation.

3.3.2 Potential energy of the applied loading on an element

The forces on an element arise from two sources, namely body
forces and surface tractions.

Body forces are defined in terms of a force per unit volume
which may vary throughout the element and are produced by
phenomena such as gravitational, electromagnetic and centrifugal
effects.

Surface forces are defined in terms of force per unit area and
may vary over the surface of the element. These forces are caused
by applied loads, fluid pressure, etc.

In matrix form the body forces and surface tractions may be

written as

Ry P

Body force §R} = {Ry} and Surface traction {2} = (T,
T

Z VA

Where the elements of {R} and {Ti are all functions of x, y and z.
The work done by these forces on any element in a virtual
displacement dif} is given by

Virtual work =jv R}'afav + js ET}td{f}dS

But from equation (3.1) d{f}= [N]d{S}e

. . Virtual work = jv RN afs3%av » js {73t (N 10f83%ds
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The potential energy of the loading on the element, d0Ff is
—(virtual work)
Hence  dQ°= - jv {R}t [N1d§53°av — ES {T}t[N]diSiedS (3.8)

The volume integral for tﬁe body forces is taken over the
whole volume of the element.

The surface integral for the tractions is taken over the area
for which the tractions are prescribed. .

It is corvenient to express the potential energy of the
loading in lerms of a set of equivalent nodal forces moving through
their respective virtual nodal displacements.

or dQ°- —-{P}tdggze (3.9)
Where fP} is a column vector of equivalent nodal loads which, by

comparison with equation (3.8) are derived from

fP} = SvaJt{REdV + gs (N1 $Tdds (3.10)

3.3.3 [ZThe principle of stationary total potential energy

If this principle is to be applied to the whole continuum it
is necessary to collect together the energies for all the elerents.

From equation (3.6) the total sirain energy for the continuum
is given by

0= S 1o, 151)

k=1
Where Eg}: and [k]k are respectively the nodal freedems and

the stiffness matrix for the kB element in a system consisting
of m elements.
This may be rewritten as
U= Josietkiegsye (5.11)
Where gS}eis now a list of the nodal freedoms for all the
elements i.e. it is a [r xm x 1] colum vector, and [K]® is
a diagonal matrix of the individual element stiffness matrices as

follows
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[KI®= [k,

If equation (3.14) is multiplied out it may be expressed as

m r r
U*%‘ 21 >-=1 >j=‘l 8”‘ Sjkkijk (3.12)

Equation (3.10) defined the mammer in which distributed loads

on the elements may be apportioned to the nodes. If concentrated
loads act on the continuum the simplest way to allow for their
effect is to select the size and shape of the elements to ensure
that the concentrated loads are positioned at nodes. The potential

ensrgy of the loading on the continuum is then given by

a--[ i) + (alis)]

|
Where {Q} are the concentrated loads acting at the nodes of

the continuum which have displacements féi . Both {Qi and 52}
are therefore (n x 1) in size where n is the number of global
nodal freedoms in the continuum.

Contiguous elements are connected only at the nodes and hence
any summation over all elements will, at any node, consist of
contributions to the quantity being summed from all elements that
meet at the node. The expression for the potential energy of the
Joading may therefore be written as

0 =~ [t . @i

Where gP’g is a vector of equivalent nodal loads on the continuum,

the elements of which consist of the summation of the appropriate

elements from the EPE vectors.

- 0w i (3.13)
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Where FI iP_; + {k} and is the total equivaleat nodal
loading on the continuum.
From equaticns (3.11) and (3.13) the total potential energy

of the continuum is

et e
VeUe0= 1563k - ¥ 1 g5 (3.14)
The displacsment of the continuum is defined in terms of the
n global nodal freedoms. If the principle of stationary potential

energy is to be applied it is now required that

§(V)=0
PN AN v, N S - ) i
or Eﬁ;_ = 68 3¢ O since the Sl are arbitrary

Considering the sth global nodal freedom, from equation
(3.14), the contribution to §(V) from the potential energy of the
loading is

d
- F (3'15)
A Egun e

The strain energy contribution will consist of the derivatives

of terms of the form 2 5 ki for i=j and § Sij for' iz |
(due to the symmetry of [k] ). Since several elements may meet at

the gth global node, -%%; is given by

y_ . *B— 1_ z + =
%TS“ZASS(Z & Kii 55%";}) 3.16)

Where the summation is over all elements having one of its &
equal to the global £s

Collecting together the results from equations (3.15) and
(3.16) for the s®® node, the condition §(V)=0 for the continuum

may be expressed in terms of n equations thus

[k1{63= {F} (3.17)
Where the elements of the assembled system stiffness matrix (K]
consist of the summation of the appropriate elements from the
element stiffness matrices {k] . [K] will be a symmetric, banded

matrix whose bandwidth is dependent on the node numberin system.
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For a given continuum under a specified load system equation
(3.17) may now be solved to give the magnitude of the nodal
freedoms.

THE SEMI-ANALYTIC FINITE ELEMENT METHOD

%3.4.1 General Theory

Many problems occur in practice in whi?h the geometr& and
material properties of a particular continuum are constant with
respect to cne of the chosen co-ordinate directions. In a few
special cases, such as that for plane strain when there is no
variation in transverse loading with respect to this particular
co-ordinate direction, it may be possible to simplify the analysis
of deformation and stress by considering a reduced problem using
fewer co-ordinates. In general however even if the continuum has a
direction with constant properties of geometry and material
behaviour the transverse loading is often not so simply defined
and a reduction in the dimensions-of the problem is not possible.

The semi-analytic finite element technique has been developed
largely by Zienkiewicz [13] and [17] for solid mechanics applications
and is a method which takes advantage of the directional properties
of the continuum but represents the transverse loading in the form
of a series of orthogonal functions. It will be shown that it then
becomes possible to replace the original problem by a serizs of
substitute problems of reduced size because they do not involve the
particular co-ordinate along which the continuum properties do not
vary. The complete behaviour of the continuum is then approximately
described by the superposition of the results of the substitute
problems.

Consider a three dimensional continuum whose geometry and
material properties are constant with respect to the z direction,

the continuum being contained within the range

0Lz e
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The displacement field within an element may be written as

before if] = [N) ES}Q

where the N are functions of x, y and z

4 e
But now [N]ES} may be expressed in such a form as to give

L

i} =Z([‘D’§]INJES£IQ) ! - (3.18)

=1
Where [N] = BN 1, [Nz]-——[N J-——IN ]] as before but the elements
of the [N;] are functions of x and y only

ma - | 0 o

ﬂ#, éﬁ and ﬁg are functions of z only and satisfy at least the
geometric boundary conditions on z = 0 and z = ¢. The summation of
the ﬁe must also represent a continuous function over the range of z.
The 8{ now become the contribution to the total displacement field
due to each of the 'shapes' ﬁ{

If equation (3.18) is now used in the formation of an element
stiffness matrix following the same procedure that was used to
derive equation (3.7), the following types of term may be

generated |-
c
S ﬁ.‘f ﬁ.h dz
0! J
Sot 1ahiaz Eogt g o

7' 18]z e =
2 > (3.19)
Slﬁi (g ez j g dz
gl e
/

Where the prime signifies the derivative with respect to z and

Lij=t1.200 3
4,h=12,---—=,L
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In the derivation of equivalent nodal loads if only the hedy
force component ic considered as an example then body force

distribution on an element may now be written as

4=
fR}= > retifrY (3.20)
£ =1
vhere the elements of &5} are functions of x and y only.

L]
The virtual work done by forces {Bﬂ;nmving through displacements
d {f} nay now be calculated in the same way in which equation (3.10)

was formed to give an equivalent nodal loading

L
t t
{Ph}=S‘ }_ im] ta)’ tgh {RY av (3.21)
V=1 h=1 _
The contribution to the nodal loading of surface tractions and

other loads may be considered in a similar manner.
{ h ] i
If di and ﬁi are chosen to be orthogonal functions over the

range of z then

o
S ﬁf Ej?dz: 0 for 4#h
= #£0 dor L=h

In many practical cases, and also due to the fact that sines

and cosines are often used for the ﬁi, it will be found that for
ot £ jand 4 £ h the expressions (3.19) are either zero or do not
appear during the element stiffness formation. The orthogonal
nature o;_the ﬁi also ensures, by consideration of the nodal
loading equations of the form (3.21), that the nodal loads

are only associated with nodal freedoms fs{}

The assembly of the complete system therefore reduces to the

form - e ; -
[k2) i3 z‘_FIzi
\“\ . ! -
=~ g | : | ) : [ (3.22)
3y | i
) W) (6 )

The significance of this form is the complete decoupling of the

general three dimensional problem into L separate two dimensional
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problems. Provided that the z variation in load and displacement
can be adeguately described by the summation of relatively few
terms of the orthogcnal series _then this method msy give a
considerable reduction in both the time and storage required in
computation.

5.4.2 A note on orthogonal functions and generalised Fourier
series i

(i) The concept of orthogonality applied to vectors

(a) Two vectors A and B are said to be orthogonal if
their scalar product is gzero
i.e. if A.B = |AllBlcos® =0 since 6 is then %
Alternatively the vectors may be written as
A=Al + Apj + Ask and B = Bji + Bpj + Bzk
where i, j and k are a set of mutually perpendicular
unit vectors.
Then for orthogonality of A and B
A.B =A33 By + A2 Bp + A3 B3 = 0
or %;;Ai B; =0

(b) & vectoénz is called a unit or normalised vector if
(Al =1

It follows from above that

=1
=1

A=1 since |A| =1 and 6 =0
Alternatively
I.I:A12+A22+A32=|
or A?: 1
i=1
(e) Extending these ideas into three dimensional space
then any three vectors ﬁn (where n = i, 2 or %)

having components ﬁn(r) (where r = 1, 2 or 3) are

orthogonal if

3
Eijﬁm(r) ﬁn(r) =0 for mn=1,2or 3
r=1

but m ?é n
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The veﬁfors are alse normal if

foin(r)]2 =1 forn=1, 2 or 3
The seifls both orthogonal and normal i.e. ORTHONORMAL
if 3 |

D bals) o) = S (5.29)
Where LT; =1,2 or 3 and Smn is the Kronecker delta.

(ii) Extension of vector concepts to functions

Tn the same way that a vector in three dimensional space
can be expressed in terms of an orthnormal set, it may be
possible to express any function within a specified region by
an orthonormal set of functions in an infinite number of
dimensions within the same region.

In mathematical terms, if a vector f has components
f(r) that can be expressed as

f(r) = Cpfn(r) where n=1, 2, 3 and Cp is a
rai constant coefficient

Then it may be possible to express a function f(x) as
()
f(x) = chﬂn(x) in the region ag(xgb (3.24)

The ﬁn(x) are g;w a set of orthonormal functions in the
region ag{xgb and the series becomes an orthonormal series.

The series is known as the generalised Fourier series.

The practical problem in this analysis is to determine the
coefficients Cn if a specified function f(x) is to be described
in terms of any desired set of ﬁn(x). This problem may be over-—
come as follows -

Provided the 'completeness' criterion is fulfilled, i.e. the
series of equation (3.24) does actually comverge to f(x), then if

each side of the equation is multiplied by ﬂn(x) and subsequently

integrated over the region a to b we have

b b
gaf{xlﬁfn{x}dx - SQ n=1Cn g (x) 7 (xldx
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But if the ﬁn(x) are chosen to be an orthcnormal set of
functions they mcst satisfy the condition (obtained by extending

the concept of equation (2.23) from vectors to functions) that

j: Q’m()(] ﬁnlx)dx = Smn

This means that
b =2
Sq %Cnﬁn{x)ﬂm(x)dx is in fact simply Cp :
Eence
b
B = Suf(x)ﬁmwdx (3.25)

ThekSm are called the generalised Fourier coefficients.

In practice it may be observed that provided f(x) and
d[f(xi]/dx are at least piecewise continuous over the specified
region then it is possible to represent f(x) by the use of an
orthonormal series and the series will converge. Also in practice
it is often found that trigonometric series provide an orthonormal
set of functions that are both convenient to handle and at the same
time ensure the disappearance of many of the terms of type (3.19).

ASPECTS OF THE FINITE ELEMENT METHOD AS APPLIED TO PROBLEMS OF
PIATE BENDING

Sl Characteristics’ required of the approximating function
definings the element displacements

Approximate displacement functions generally consist of a
number of terms from a polynomial or trigonometric series, each
term having associated with it an initially unknown coefficient.
The accuracy of the final solution depends on the degree of
correspendence between the approximating function and the true
displacement of the element but the choice of terms used in the
function is not completely arbitrary as certain requirements should
be fulfilled as follows:-

(2) There must be at least as many terms (coefficients) in the

function as there are nodal degrees of freedom for the element.
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-

(b) The function should be such a3 to provide continuity between
elements foth at the nodes and along common boundaries. This
compat:bility condition ié often difficult to attain if condition
(a) is also to be satisfied. The result may be the formation of
non-conforming elements but, as will be seen later, these elements
are not necessarily discarded as useful results may still be
obtained,although problems of lack of convergence may arise,

(¢) It is intuitively apparent that rigid body modes of element
displacement may arise in practice and the approximating function
mist allow for their presence. Also, if the discretization of a
continuum is progressively refined by an increase in number, and
decrease in size of the elements it is to be expected that the
generallconditions of strain within any element will terd toc become
constant. The approximating function must therefore include terms
defining a constant strain condition if convergence of the solution
is to be achieved.

(d) The approximating function must be continuous within the region
of the element and be differentiable to at least an order equivelent
to that which is present in the functional teing used for the
variational formulaticn of the problem.

3.5.2 Illustration of the above characteristics in relation to
gimple plate bending elements

(a) Simple rectangular element

Figure 5.1 below shows a rectangular element defined in

a Cartesian co-ordinate system
z y




The displacement of the element may te defined in terms of the
geometrical conditions at the four nodes (1, 2, 3, 4). If continuity

between contiguous elements is to be achieved at the nodes then the

transverse deflection, w, and the slopes ‘%f and %? mst be
specified as the degrees of freedom at each node; the element
therefore having a total of twelve degrees of freedom. If a polynomial
in x and y is to be used for the approximating function it must
therefore contain at least twelve terms.

Possible rigid body modes of displacemert consist of translation
in the z direction and rotation with respect to the x and y axes.
Linear terms in x and y, together with a constant term will ailow for
the possibility of these displacements.

The constant strain condition for a bent plate implies constant
curvature, and curvature is defined in terms of the partial second
derivatives of w. The approximating function must therefore contain
quadratic terms in x and y.

At this stage therefore, a polynomial may be formed thus:-—

W =a) + apx + azy + a4x2 + agXy + agy2
It is apparent that a further six terms are required. These

extra terms may be selected from the general polynomial expression

W = by (constant)
+ box + bjy (linear)
+ b4x2 + bgxy + b5y2 (quadratic)
+ b7x3 + b8x2y + ngy2 + b19y3 (cubic)
+tb11x4 + b12x3y 4 b13x232+ b14xy3 + b15y4 (quartic)(3.26)
etc.

The selection of the cubic terms results in a further four terms
and the remaining two must be chosen from the five available quartic
terms. The two that are generally selected are the x3y and xy3
terms as it is found that use of the x4 and y4 terms gives an even
greater degree of nun-corformability than that which will be shown to

already exist.
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The finsl approximating function is therefore

W =a| + apx + azy + a4:{2 + agxy + agyz
+ &733 + 38x2y + agxy2 + a10y3 + a11x3y + a12xy3 (3.27)

If the form of the deflection and the normal and tangential
slopes along any edge of the element are investigated it will be
found that the deflection and tangential slcpes are compatible
between contiguous elements but that the normal slope is discontinuous.
flhe element is therefore non-conforming.

The fact that the element is non-conforming does not preclude
its use however. Huebner [16] states that ﬁlthough conformability
and completeness [ as defined by compliance with conditions (c) and
() of section 3.5.1.] are the only guarantee of convergence of the
solution, it is still possible to have convergence with non-
conforming elements and, in some cases, they may even be superior to
conforming elements in terms of rate of convergence.

The rectangular element discussed above is the simplest formul-
ation available. Further refinement is possible by increasing the

degrees of freedom; a common addition in this respect is the

inclusion of g;g; at each node thus giving the element a total of
sixteen degrees of freedom. It may be shown that this element is
fully conforming.

(b) Triangular elements

Rectangular elements have been successfully used in
practice but are somewhat restricted in their application due to
difficulty in the discretization of plates of unusual shape. MNost
shapes may be represented with a reasonable degree of accuracy by
sub-division into triangles. For this reason triangular elements
have been extensively developed. The simplest form of triangular

element is shown in figure 3.2 below
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F16. 3.2

If, as in the cace of the rectangular elemenit, nodal freedoms
W, %x& and %—k;;'- are chosen, then the element has nine degrees of
freedom. The general cubic of equation (3.26) has ten terms, which
implies that one term must be deleted, and the polynomial is
therefore inCOmpiete. Deleting onelof the cubic terms on an
arbifrary basis would appear to be satisfactory, but in fact causes
problems which range from a lack of convergence to a complete
inability to provide a solution. A common refinement to this
élement is to include the normal slope at the mid-point of each side
as an additional freedom. It may be shown that this refinement

results in a conforming element.

3.5.3 Elements with curved b»oundaries

Many plates exist in practice where the boundaries are in the
form of circular arcs. Although discretization of such plates by
the use of triangular elements is possible, a much more satisfactory
solution results from the development of elements with circular
boundaries.

Olson, Lindberg and Tulloch [22] have developed an annular
sector element which is, in effect, the cylindrical co-ordinate
equivalent of the rectangular element described above in section
5.5.2, They used the deflection and radial and circumferential

slopes at each ccrmer of the element as the nodal freedoms. The
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dienlacement function is equation (3.27) with x and y simply
replaced by r and ©. The element is non-conforming but has the

* advantage that it could be used in conjunction with rectangular
elements to describe plates of unusual shape. Olson and Lindberg
also developed a circular sector element in order to close the
central space formed by the use of annular elements. This circular
sector element presents considerable problems in its formulation
which are discussed in detail in section 5.3. Their eventual
éolution to the problem resulted in an element which was non-
conforming both with similar elements and with their annular
element. They admit that their results using this element were
disappointing but, rather surprisingly, did not try representing
complete plates by the use of annular elements and leaving a very
small central hole.

Further refinement of the annular sector element has been made
by Sawko and Merriman (23] and Singh and Ramaswamy [24] who
successively introduced more degrees of freedom which made the
element into a conforming type.  (Further details of their elementz

are given in section 5.1).
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A FINITE ELENENT ANALYSIS OF THE BENDING OF SYMMETRICALLY LOADED,

UNSTIFFENED CIRCULAR PLATES

4.1

4.2

INTRODUCTION

The purpose of this chapter is to explain the basic formulation
of a finite element program to analyse the deformation and stress
distribution in a symmetrically loaded unstiffened circular plate.
The reason for choosing this particular problem is that it provides
a means for developing the basic computational requirements in a
finite element program whilst at the same time solving a problem
with well known theoretical resulté against which the validity of
the computed results may be compared.

Axial symmetry of both the plate and the loading means that
the problem is quasi - unidimensional; the transverse deflection
and in-plane stress distribution being functions of radius only.
With this in mind the plate is discretized into elements that are
either annular or complete central discs. The elements are fully
conforming in terms of slopes and deflections.

THE STIFFNESS MATRIX FOR AN ANNULAR ELEMENT

4.2.1 Description of the displacement field and the development of

shape functions

Consider a complete plate in which the general annulus may be

defined as in figure 4.1a. The inner and outer circumferences of



the annulus become nodal lines and the transverse displacement and
radial slope at these lines become the nodal degrees of freedom as

in figure 4.1b.

= Neutral surface
of annulus

(a) (b)
FIG. 4.1

The initially straight radial line AB on the annulus is
displaced to position A'B' and it is now required that the
displacement,w , of any point on the line be described in terms of
the nodal freedoms $;, §,, &3 and SL y

The displacement field may be expressed in terms of the nodal

freedoms asfollows

3

2
f13=w =[Ny Ny Ng NI 53 ()
4

Where w and the shape functions N are functions of r only.

The N may be derived by the process of interpolation to produce
functions which satisfy specified geometric conditions at given
boundaries,

4.2.2. A note on the process of interpolation in the generation of

shape functions

The basis of interpolation is to generate a set of functions,
which for simplicitiy are often polynomials, that will approximate
to an unknown function within a specified region and will satisfy

given conditions as to the value of the function and/or its

39.
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derivatives at selected points called tabular points.

The books by Raiston (16 and Martin & Carey (14) are
especially informative in this field; Ralston for his pure
mathematical aspects and Martin & Carey for their application to
finite element théory.

Let f(x) be the unknown function,values of which, together with
sore of its derivatives, are known at the tabular points

y(x) is & function we wish to generate in order to represent

f(x) within a specified region.

Define an error function E(x) such that
E(x) = £(x) - y(x)

It is required that E(x) be zero at the tabular points and as

small as possible everywhere else,

For general polynominl interpolation, y(x) may be written as

ylx) = ZZA {x}i('}tx

j=li=0
Where Alj(x) are polynomlals in x

Also f<1)(XlJ) is the value of the i'P derivative of f(x) at the
it tabular point in an interpolation where there are n tabular
points with derivatives of f(x) up to the nth order being known

Hence  Ei) = fix) - ZZA b ( (4.2)
> == 0"

The simplest form of interpolation is that in which only the
value of the function itself is specified at the tabular points.
This is called Lagrangian interpolation and the Lagrange
polynomials may be developed as follows -

Using only the function itself implies that m = O. The AOj
now become the Lagrange polynomials fﬂx) and equation (4.2)

becomes

n
Elx) = flx) - ij{x) ;)
j=1



Now E(x) must be zero at the tabular points, therefore when

X = Xpi- 2
flxk} = g{J{kax]} ~ for k=1,2,-----n,
or ‘fj{xk) = Sjk for j.k=12-==-n, (Sjk is the Krone cker deltql

A polynomial which fits this requirement is
(edty | e {x—xj_1 }(x-xjﬂ e )

(4.3)
(x—" -\1) (XJ'XJ-_1 )(XJ -Xj"’1 ) (XJ 'xn}

fj{)(]z

Note the absence of the (x - xj) term. The %(x} are therefore
polynomials of degree (n - 1).

Lagrange polynomials find practical applications as shape
functions for axial stiffness elements and plate stretching
problems. Plate bending problems require definition of deflections
and slopes at tabular points and therefore equation (4.2) with
m=1 is used.

The interpolation process with m = 1 is called Hermitian
interpolation and Hermitian polynomials are generated as follows.

Using m = 1, equation (4.2) may be re-written as

n r ]
[}
E(x)=f(x) - }i1hqﬂx]ﬂxj)* ‘élhﬁ(x}f{xﬂj

The interpretation of which is that there are r tabular points
at which f(x) is known and at r of these n points the first
derivative f’(x) is also known. The tabular pcints are at x = xj
and hoj(x) and h1j(x) are the Hermitian polynomials.

If E(x;)=0 for j=1, ..., n and E‘(xj) 20 Por 3 =T ynrmy b

then the necessary conditions are:-

For zero function error E hgj(xk) = Sjk ey wieann (4.4a)
h1j(xk)=0 Fom e 3
k=1,000,n (4.4p)
For zero first E hgj(xk) =0 § =, et
derivative error ’ k=1,.00.n ) &4.40)
( h1j(}fk) = SJk— J,k: T,o..,I 404[1)

41.



Noting that there are (n + r) conditions to satisfy,then tﬂe
required function will be of degree (n + r — 1)

In many practical instances, including the applications in
this investigation, the first derivative is known at all of the
tabular points hence n = r. If this‘is the case then a polynomial

which may fulfil the required conditions for hOj(x) is

2
hojlxl= tj{xl[fj{x)]

Where fj{x) is & Lagrange polynomizl of degree n
aﬁd tj(x) is a polynomial inserted for the purpose of making
hoj(x) of degree (2n - 1)
This form of hOj will satisfy the requirement of equation
(4.42) if:-
lxl=1  forj=12+---n (4.52)

and that of equation(4.4c) ifi—
tj(le . 22}(le 50 ' for jel2p-—sh (4.5b)

A form for tj(x) that satisfies equations (4.5a) and (4.5b) is
!
tJ{X) i R Z(X-XJ)ZJ[XJ}

' 2 .
Hence hoj[x] = |:1- le—le{j[xjﬂ [Ej(x}] | for j =1,2,-—--.n (4.6)

In a similar manner, ;ry a form for h1j(x) thus :-

h‘j(x} = sjlx)[fjix}]
This will satisfy equation (4.4b) g

six;) =0 for j=1.27~--=n (4.7a)
and will also satisfy equation (4.4d) if

sjftxj} 3 U T T o .n (4.70)
A form for sj(x) that satisfies equations (4.7a) and (4.7b) is

sj(x} =(x—xj)
Hence h1j{><) = [x—xj) [ﬁj{x}] for j=1.2;--—-n (4.8)

Equations (4.6) and (4.8) thus make possible the formation
of a set of polynomials which may be summed to give a polynomial
that will represent the required function within the specified

region and satisfy exactly the function and its first derivative

4L2.



at the tabular points.

Applying these ideas to the subject of the current
investigation and referring back to figure 4.1b there are two

tabular points, therefore n = 2. The requirements of the

polynomials in r are:-

At r

At r

]

Now from equation (4.3)

for j=1, 1'1{1'] 2a 2 hence 'f(r}
L-r Ear
1 2 2
P-F

for j=2, lzirl = i hence P'ZIr] il
54 27"

Therefore from equation (4 6)

h (r}-[‘l-zlr ﬁl(r"’zﬂ[: %]2

4 ST LR
= }B%r 3hé q]r IGHE}F {5 3q}5]

(

rz r1 y | r=r 2
Pt 1

[r) [ 2ir r2}(2"'1):“: = ,J

3,[2r3+3{r2+r13r:2 r21r +(3r2—r:=]l:12]

{r —r

And from_equatlon (4.8)

: r-ry]2
hy(r) = ir—rﬂ{ﬁ]

R4 3 e
_{rz—r}z[r —[?.:-2+r.l}r2 +r2[r2+2r1)r r,}rz:|
%

t=ry 12
"&2“) =(F—F2)|jr2 r‘]_l

AR (e . b ne
_{r _r1}2|:r {r2+2r1]r +r12r +r]r r21]

Thus giving the final interpolated shape wir) in the region

c‘<r<r2 as
w(r) = hbﬁr}51+ hﬁ(r]52+ h02[r}53 + h12[r]54

rq the function is 81 and the first derivative is 82

ro the function is 53 and the first derivative is 54

(4.9a)

(4.9v)

(4.9c)

(4.94d)

Comparing this form for wir) with that of equation (4.1) shows

that the Hermitian polynomials that have been generated are, in

fact, the required chape functions. The 'shape' of the pelynomials

43,



igs plotted in figure 4.2

hir) A

-
1

Unit slope

h .
12 Unit r
i FIG, 4.2 “slope 2

4.2.3 The stress—-strain relationship

The stress-strain relationship for a plate in bending is
discussed in some detail in Appendix A, section A2.3. The
relationship is summarised in equations (A4.2) and may be

expressed in matrix form as follows:

o | O T T A O

Gg = —-—E—"z— y 1 0 69
(1 -9 il X

Tre 0 0 3(1-Y) re

Due to the symmetry of the plate with axisymmetric loading there

are no in-plane shear effects and the reiationshir reduces to

ol ._e [+ ] [e&f
o T T R T
or foi® = o] Ee}e (4.10)
Where [D] bl e G g B —E —[c] (2.11)
[1=94 ¥ 9 [4-3%) : '

Where [c] =[; :}]

4.2.4 The strain-displacement relationship

This also is discussed in Appendix A, section A2.2. The
relationship is summarised in equations (A4.1) and may be expressed

in matrix form thus:-

N
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e 2
& ai—

_ 1 1
€ot=-3| b by fu]
¥ 23,2 ¥

re | 28 r dris

Again, due to the symmetry of the loading, there is no

variation in displacement with respect to © and the relationship

d t
reduces 609 l— £
i 1 or2
% ]
1.4
€ [T'?

F AZN; a%:% AL’N% azwé, §1
r or2 or ar ar
Therefore =-% 2 {2}
e T 1an 1ang 1oy |
rdr r A r ar  t af § J
Gt

If the Hermitian polynomials of equations (4.9) are now substituted

for the N and the appreopriate differentiations performed we have

fe}°- —F— [a1485°

(r, -1 )3
or  fef’- [B] 5§ (4.12)
Whare [B] - -5——3- [A] (4.13)
{r2 - 1}

[A] is (2 x 4) matrix whose eleménts are listed below

r
—
|

= 12[‘ = 5{r2+n}]
Ay = Blr-nlr - 2(rp-nl(2r+ )

A13 :'12r + 6{]"2 +I‘1]'

P
i 4
=~

|

=6(r)-nflr -2(ry-n ]lr2+2r,i )

It

6r-6(rysry) + ryry -

p =
!

1

22—3[r2—r11r —Ztrz—nf}l2r2+r,|] - {rz—r1 }[r2+2r1]r2-7
1
A23:"‘6r"‘ 5[!‘2+F'1)—5r2l'1 “—r—'

A24=3{r2-r1]r -2(r2 —c‘l(r2+2r1] +{i'2-r11{2r2+r1!r1 e

4,2,5 Formation of the elemsnt stiffness matrix

From equation (3.7) the element stiffness matrix is given by



4.3

Expressions for [D] and [B] are given in equations (4.11)
and (4.13) respectively.

The geometry of the element is described in cylindrical
co-ordinates ther=fore the volume integral becomes a triple
integral in r, 8 and Z.
ie. [k] _SSS (8] [0][8] r.dr.de.az

Since [B] and [D] are independent of © and the element is
a complete annulus the 8 integral is simply 21

The % integral consists of 552d5 from the product of [B]t

3
and [E] ,and ‘Q_QSQ% therefore the integral becomes -%—-
r.
Hence 3 2 ¢
[k] - —2mER S [AT[c][a]r.ar
[ 6 2
12(5 -ﬁ} (1=} f
But flexural rigidity,D = ;51%%1557_
. owp__ (2t
A L e S W LY I LY R B re

P

(, - P° <
It is possible to carry out this matrix manipulation and

subsequent integration manually to give a.general form for'[k]

in terms of general values of r; and rp,but the algebra is

46.

extremely laborious and [K] is more conveniently formed numerically

for each particular element as and when required in the final
computer program.

THE STIFFNESS MATRIX FOR A DISC ELEMENT

If a complete plate is to be analysed a disc element is
required in order to close the central hole in the annular
elements. Due to the symmetry of the loading the slope at the
centre of the disc must be zero and the number of nodal freedoms

is consequently reduced to three as shown in figure 4.3
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S Neutral surface
of disc

ElG:. 423
If the initially straight radial line AB on the disc is'

L

displaced to A'B' the displacement w at radius r may be expressed

in terms of the nodal freedoms as follows

[§ e

£2
w o= [N1 0 Ny Nz,] 63
&
Where the N are the same Hermitian polynomials used for the

annular element but with ry = 0 hence

e e e 2 2
N1 = r23 I:zr 3r2r +r2]

Ny o= [—2r3+ 3r2r2]

3

s T 2
N4 = =3 [r T ]

From this stage the formulation of [k] is an identical

N“l

procedure to that for the annular element. It is possible to
exXpress [k} for the disc as a (3 x 3) matrix but it is convenient
for assembly purposes to have [k] the same size for all elements,
For this reason [k] for the disc has been preserved in (4 x 4)
form by putting Np = 0.

Therefore by putting r{ = O in equation (4.14), [k] for the

disc is given by

r.
(K] = 278§ (o] K] rer (4.15)
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Where [C] is the same as for the annulus but the elements of
[A] are now

A = 12r =561

1 2

App =10

o 2

A21 = 6r - 6r2

Ayp=0
e o
AZA_ 3r2r 2r2
ASSEMBLY OF THE SYSTEM STIFFNESS MATRIX

The application of the principle of stationary potential
energy for a continuum demonstrated, in equation (3.16), the need
to collect together at each global node the stiffness contributions
from all elements meeting at that node.

In this particular application the collecting together of
the element contributions is relatively easy as the nodal
freedoms at the outer circumference of one element must match the
freedoms at the inner circumference of the adjoining element as
shown in figure 4.4 which depicts a radial section through the
plate and illustrates the correlation between the element and

global freedoms.

S2i ;Dgug +2) :‘DS{ZI i globul
reedoms

&(2i-1) 8(2i +1) §(2i +3)

————n \I2 ’){, _I_\n'_'" F)‘ m————- Element
e N o e DA e T e il s e reedoms
¥

63 51

element (i+1

“] element

FIG. 4.4
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The stiffness to be associated with, say, global freedom
8(2f+1} will be the sum of the stiffnesses associated with
element freedoms 83 for the iFh element and.81 for the (i + 1)t
element. This process is achieved in practice simply by 'over-

lapping' the element stiffness matrices and adding the individual

stiffnesses within the overlaps thus:-

[x]

The system stiffness matrix is therefore symmetric,
relatively sparse and of half bandwidth 4, due to the [k] being
(4 X 4),

FORMATION OF THE SYSTEM FORCE VECTOR

4.5.1 Concentrated forces and moments

The treatment of concentrated forces and moments is straight-
forward provided that the force or moment acts c¢n a ring which is
thenchosen as one of the nodal rings. In this case the loading is
not associated with any particular element but contributes
directly to the global force vector.

4.5.2 Distributed pressures

The most effective way of treating distributed pressure on
the plate would be to make use of equation (3.10) to form nodal

loads which produce equivalent viriual work when moving through



the assumed displacements. In this

50.

particular application there

are no body forces and, due to symmetry, the surface traction

vector %T} becomes simply the pressure, p(r), which is acting on

the plate and is a function of radius only. Equation (3.70)

therefore becomes
t 2r
{P} =S Srzp(r}[N]r.dr.dB
0q
The elements of [N] are cubics
a constant pressure, results in the
order polynomials with considerable
for their evaluation.

Gallagher [15] states that the

in r which, even if p(r) is
elements of {P}t being fifth

algebraic manipulation required

replacement of distributed

loads by statically equivalent nodal loads will normally give

acceptable results in practice. This approach has been adopted

in the current investigation due to

the difficulties outlined

above and does appear to give an acceptable solution even though

it is not so theoretically satisfying. Equivalent nodal loads

are therefore calculated as follows.

Consider the distributed pressure on a typical element to

vary linearly with radius as shown in figure 4.5

Radial variation
of pressure

The pressure p at any radius r may be expressed as

p=mrs+c where LR e
27

B Ry

p, - P&
and ¢ = b et

e

9
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The total load on the element is therefore given by

r.

total load = Sz

; p.21/r.dr

r
=-21:"52(mr2- cr)dr
i

" -3 o3 L2 P
..2‘.f7‘|:3lr2 r l+2(r2 " )]

If the effect of this load is to be represented by nodal ring

loads Py at ry and P, at rp then

b 3 .3 Llrd o2
q %211[3“2 Ay r1}:]

ar 3.4 2 2
= 2 - - S0 - re -
3051 B A ND R SR S L
EPRETr Bl 213 —3r%r +13) » 3_3r r2 4+ 2¢3
3{r2_r1)|§2{ I 900 HIph R HGP S 80 0 S0 (4.16)

Also by taking moments about the inner radius for a small sector
subtending angle dB8 at the centre. For static eguivalence:-

P r.
_2_ - — 2 -
2n?'éd8[5 ﬁ] S prd8dr (r ﬁ}

2 g

7

(mr+cHr—ﬁ)rm
g

i ook 3 e 3
&(&é &gq ’%}*Q‘% 55% +2qﬂ

E i -n )= 2TT5

2 2

oR

Substituting for m and ¢ eventually gives

% 1 T
R = 3 {r2 r1][p2[3r2+r1] . p1{r2 - r1I| (4.17)
Substitution of equation (4.17) in equation (4.16) leads to the

evaluation of force P1 as

F% =-—6TI-(r2—r1][p2{f‘2 +r1) + p,l{l”2 + 3r1 ]] (4-18)

4.5.3 Assembly of the system force vector

The assembly of the force vector is simply the process of
collecting together all the forces that act at each nodal ring.
These forces are either the forces or moments that actually act
at the ring together with the summation of the contributions from
the pressure on adjacent elements as indicated by the forces

evaluated in equations (4.17) and (4.18).
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SYSTEM CONSTRATNTS AND THE FINAL EVALUATION OF SYSTEM
DIS LACENENTS

4.6.1 The incorporaticn of avstem constraints

The system siiffness matrix and force vector having

previously been assembled, the problem may now be expressed as

[x]3sf= {73

In any given problem the support conditions for the plate
require that some of the global freedoms, S, are zero., The
formal incorporation of these constraints simply requires that
fhese freedoms, together with the appropriate rows and columns
in [K] and {F} be deleted. 1In practice the constrained freedoms
are accounted for at the system assembly stage so that the
unconstrained system matrices are never generated. This results
in a saving of computational effort and will be discussed in more
detail in the section dealing with the development of the computer
program.

4.6.2 Evaluation of the system displacements

Following the imposition of the system constraints, the
evaluation of the nodal displacements requires the solution of

the reduced equations

[k]{85 - i}

The formal solution to this problem is simply
HRORG

The elements of igf are the required nodal displacements
but formal inversion of EK] is very lengthy and may be
numerically inaccurate. In practice.this is also very inefficient
because [K] is symmetric and very sparse; properties which may be
used to advantage if other methods are used.

Commonly used technigues for solving the equations are:-
(a) Direct methods such ss Gaussian elimination or Cholesky's

method.
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(b) Iterative methods, of which Gauss-Seidel is probably the

one most often used.

Direct methods are to be preferred in general as they give
an exact solution whose only inaccuracy is rounding-off errors
in computation, although iterative methods can be very valuable
especially in non-linear problems. In applications such as this
particular investigation where the stiffness matrix is symmetric
and very sparse the Cholesky method is more economical than
Gaussian elimination; Martin and Carey [(14] claiming that it may
need as little as one quarter the number of arithmetic operations.

The basis of the Cholesky method is as follows:-

Any symmetric, positive definite matrix may be decomposed
into the producf of a lower triangular matrix and itis transpose

thus

[K] £ hjhjt where [L] is a lower triangular
matrix
Hence [K]ES;: {F} may be expressed as

L)) $62- e
or [LH@} =EF§ where §u§ = [L]tfgi

This set of equations is easily solved for {uf by forward
reduction.
ZSEis then found by back substitution in the equations

('8 £}

CAICULATION OF BENDING STRESSES

The use of cubic polynomials for the shape functions
ensures continuity of the stress field within any given element
and the choice of deflection and slope as the nodal freedoms
ensures geometric continuity with adjacents elements. These
specifications do not, however, guarantee continuity of stress

between elements. The way that is used to overcome this problem
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is to calculate the stresses in contiguous elements at the common
boundary and then take a nodal average.
The calculation of stresses within any element is carried
out thus:-
From equations (4.10), (4.11), (4.12) and (4.13)
SOCCIN ey E e
fol =45 = === [c]fe}
Wl 1-VF
Tr s g il ¥
and ZGJ- {1‘2-E|13 [A]{S}
e E =
i = — CllA

At any particular radius the maximum stress occurs at the plate

h

surface where %n:ir . These maximum stresses are therefore

given by
S el (4.19)
2 3

The elements of [A] are functions of radius only and as Eg}
has previously been calculated, equation (4.19) can now be used to
generate the stress field within the elements if required. If Ty
and r> are substituted for the general radius r, the stresses at
the inner and outer radii of each element are formed., These
values may then be averaged with the values from centiguous
elements as indicated previously.

DEVELOPMENT OF THE COMPUTER PROGRAM 'SYMPLAT'

4,8.,1 The main computational tasks

The program is written in ALGOL and can be subdivided into
five major sections.
(a) the input of basic data, element details and loading details
(b) generation of element stiffness matrices
(e) assembly of these matrices to give the system stiffness
matrix together with the incorporation of constraints
(d) solution of the equilibrium equations to give the

displacements
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(e) calculaticn of stresses.

The computational aspects of these sections will now be
discussed. ALGOL identifierg are introduced where convenient or
different from symbols previously used.

4,8.2 Input of basic data

At the commencement of any analysis.the basic decision must
be taken as to the number of elements (NELEM) that are to be used
to represent the plate. Since the elements are arianged
consecutively along the plate radius they may be numbered as such
by starting with the smallest radius and working outwards. It
also follows that the number of nodal rings (NNODE) will be given
by

NNODE = NELEM + 1

At each global nodal ring there are two degrees of freedom,
namely the transverse deflection and radial slope, which means
that the maximum possible total number of degrees of freedon
(NDEGF) will be

NDEGF = NNODE x 2

The boundary conditions for the plate mean that some of
these global freedoms will be constrained. The number and
position of these constraints is known at the start of the
analysis and the number (NCON) mey be read in as initial data.
This means that the actual number of degrees of freedom is
given by

NDEGF = (NNODE x 2) - NCON

The relative sizes of the elements are left for the progranm
user to decide. This means that an array of nodal radii
(NODRAD) consisting of NNODE values must be read in.

The information which must be supplied for each element is

its modulus of elasticity (E), Poissons ratio (V) and thickness

(7).



The loading on the plate is read in directly as nodal loads

if the loading is concentrated or as the values of pressure at

the nodal radii if the loading is distributed, in which case

equations (4.17) and (4.18) are used to calculate equivalent

nodal loads, These loadings are processed in 'procedures'

(CONFOUT and DISFOUT) and then stored as an array of applhied nodal

forces (APFO).

4.8.3 Generation of element stiffness matrices

56.

It has already béen shown in equation (4.14) that the stiffness

matrix (ESTF) for an annular element bounded by nodal radii RI

and R2 is given by

R2
‘EsTE =—210__$ A1t
(ESTF) =210, SR; 1'EIAlrar

The elements of [C] are easily read in as they are either unity

or Poissons ratio. The elements of [A] however are functions of

Rl, R2 and r . The radii Rl and R2 are already available in NODRAD

but the presence of the variable, r means that the elements of [A]

fall under the effect of the integration. This integration may

need to be done numerically in general,but is possible formally in

this particular application by adopting the following steps:-

Inspection of the elements of ['1:] shows that [A] may be

re-written as

(4]

n

[af]r + [A2] + [a3]1

where
(A1 =112 6(R2-R1) -12
6 3(R2-R1) -6
[A2]= | -6(R2-R1) -2(R2-R1)(2ZR2+R1) 6(R2+R1)
-6(R2-R1) -2(R2-R1)(2R2+R1) 6(R2+R1)
[A3]=]|0 0 0
6R1.R2 (R2-R1)(R2+2R1)R2 -6,R1.R2

6(R2-R1)
3(R2-R1)

- 2(R2-R1)(R2:2K1) |
- 2(R2-R1)(R2+2R1) |

-y

0
(R2+R1)(2.R2+R1) R'l_

Since Rl and R2 have already been read these matrices are easily

formed.

[A}[CI[A] is now evaluated firstly by forming

[clla] = [c]addr + [c]a2] + [Jas]d-
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These separate matrix multiplications are done by the use cf a

'procedure’ (MATMULT) and the products stored in matrices [CA1],
[CA2) and [CA3].

Now [Al=rafe  ta2)t. (a3t L

Hence [A1'ICIA) =[[A1]tr+[A2]t+[A3]tjr—][[ler ' [CA2]+[CA3]1?]

- [rattican] 2 o [tanticazl « ta21tican]r
*Em]tzcml « atcazs - [A:«]]tICAﬂ:I

+faatcas « alteaz)|4- - e A3ﬂ%
These matrix transpositions and multiplications are also done by
the use of a 'procedure' (TRMAMULT) and the results stored in
matrices [B1l, [B2] etec.
Thus (A ICIAT = (8112 + [(B2]1 + (B3] r + [[B4] + [85) « (B6]]

+[(B71 + (BB} {BQJ%

Noting that the matrices [B1] etc are functions of R1 and R2
only, the integration with respect to r is now easily performed

to give

2 : 3
Egmt Cltalrar = BZ=RT(n . RZRU(g;) (3]
25,2

R2ZR1
» RZERY [iB4] + (851 +(B6]]

R2
+ R2-R1) [B7) +(88]] + In (ﬁ B9]

Multiplication of this final expression by 27rD/(R2-Ri ¥
thus gives the complete matrix[ESTF],

since [A] is (2 x 4) then[ESTFlis a (4 x 4) symmetric matrix
whose elements are functions of R1, H2 and D.

A similar, although slightly simpler procedure is used to
generate [ESTF] for a disc element should the plate be a complete

One -
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4.8.4 PFormation of the system stiffness matrix and the
incorporation of constraints

Section 4.4 has alrcady shown that the assenlly of the element
stiffness matricec to give the system stiffness matrix (sSTF) is
relatively straightforward in this particular application. The
process is best achieved by the use of a nodal connection matrix
(NODC). This matrix forms the basis of a simple numerical coding
technique whereby a local freedom at a given node of a particular
e;ement may be identified as being the same kind of freedom as
others at the same global node but from contiguous elements. Once
this identification is made then the quantities associated with
this freedom such as the stiffness, loading etc may be combined
with those from the other elements to give the total quantity to be
associated with the global freedem. To avoid repetition, the
exact details for the construction of [NODC]will be given later in
the instructions for use of the program. During the formation of
[NODC] the global freedoms that are to be constrained are identified
and incorporated as zeros in [NODC.

As each element stiffness matrix is formed,reference is made
to [NODC] and each element is then correctly located in [SSTFL If
a zero is encountered in[NODC]it means that the particular freedom
is const;ained and any element stiffness contributions to it are
discarded at this stage. The unconstrained [SSTFlis therefore never
formed which results in a considerable saving of storage. The
process whereby each [ESTF])is assembled into [SSTFlas it is formed
means that the steps used in forming [ESTF]may be re-used and [ESTF]
itself overwriiten as successive elements are assembled.

The program is also written so as to economise on the storage
of [SSTF). This matrix is symmetric and sparse. Considerable saving
of space is possible if only hslf of the matrix is stored and that

half is further condensed in the following way:



(SSTFi= [ay ey ap3ay, | g st:')sreda 0 0 ay]
821 %92 %23 as {0 9 andy,
Oy Og,la3503, 56 36:{ 0 d31 95505,
K3 “agfzﬁazﬁ%z._sﬂisi_ % %1 942%3%¢
%53 %u %5 %56 757 Agg| 0 6530, ag
1963%. %65 %6 %67 %8 ! %3 %4, %5 %66
| 75“75] 77 %7879 7,.0' 0 G069,
Fas“ss %87 %88 789 CI510' 985 %6 %87 “88
|“97h 59§|°99 09,15! 0 ag;dgg Agq
| ETC. 90,

[NODC]is also used to discard constrained freedoms from the
applied load vectorfAPFO}and to form a vector of nett effective

loads (FORCE).

4,8,5 Solution of the equilibrium eguations

The principle behind the solution of these equations using the
Cholesky method has been discussed in section 4.6.2.

The programming of this method has been carried out by making
direct use of the program BANDSOL devised by Wilkinson and
described in detail in reference [11] . BANDSOL consists of the
two 'procedures' CHOBANDDET AND CHOBANDSOL which must be used
together and in that order.

CHOBANDDET takes the uatrix [SSTH, which must have been
previously condensed into the form shown in section 4.8.4, and
decomposes it into a lower triangular form [L] including the

diagonal such that

(ssTFl = WLt

If the elements of [SSTF] are designated k; 4 and those of

L ,EU then the decomposition is carried out using the

algorithm
i-1 2 ;%_
‘Eii i (kii 3 ;Z-‘ij ) X for i=12,--—- NDEGF

.{._ ij

f e -.EL (ml %E Emj) for m =(i +1),---,NDEGF
i=1 i =12, -—-—,NDEGF



60.

The output matrix [L] is overwritten on [SSTF] and [SSTF]
in its original form is therefore lost at this stage. It can be
arranged for a failure message to be given if the determinant of
[SSTF] is zero but this has not been included in this particular
program,

CHOBANDSOL now solves [SSTF] §§} = {FORCE} which may now be
expressed as [L][LTt{S}= {FORCE} firstly by =olving

[L1{u}= {FORCE} to give §u}
and then solving [L}t{S} ={u} to give §§§

The global displacement vector ig}is overwritten on ZFORCE}

which is therefore lost at this stage.

4.8.6 Computation of stresses

The stress field within any annular element is given by

equafion (4.19) as
$oi= - —B80_— rcia1{s3*
(R2-R1)°T

{S}%as not been available until this stage of the calculations
but [C] and [A] were generated, and successively overwritten, as
each element stiffness matrix was formed. This implies that
rather than regenerating [C] and [A) at this stage in the
computation, it is preferable to make use of them at the point
when [(ESTFlwas being formed and to store the information that is
now required for the stress calculation.

The stresses in each element at the nodal radii are required
and, with this in view, after [C], [A1] , [A2] and [A3] have been

formed for use in the computation of [ESTF] the radii R1 and R2 are

substituted for r in [A) and matrices are formed of the product

6D
(R2-R1)3 T2
These products are identified as([CAINT] for » = R1 and [CAEXT)

(CI[A]

for r = R2. As each element is assembled the numbers in [CAINT)and
[CAEXT] are stored as 'layers' in a three dimensional array{ELCA).

[CAINT] and [CAEXT] themselves are then overwritten as each element
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is processed. The fact that the numbers from [CAINT] and [CAEXT]
are stored is not too wasteful of storage as they are only (2 x 4)
matrices.

The nodal displacements that have been calculated and
subsequently overwritten on the matrixiFORCEEare only the
unconstrained displacements. In the calculation of nodal stresses
all the nodal freedoms must be considered.and not just the
unconstrained ones. The displacements iniFORCE}are therefore
expanded, using[NODCO, to form a matrix of element displacements
(ELDISP) which includes both constrained and unconstrained
freedoms.

The appropriate elements of[ELCA]and [ELDISP] are now
multiplied together to give the radial and tangential stresses at
inner and outer radii of all the elements. These stresses are
formed in[NODSTRESS]and are printed as part of the output.

The stresses at the common nodal radii of contiguous eiements
are averaged in[AVSTRESS]and then printed out.

4.8.7 Program flow chart and listing

The final form of the flow chart is shown on pages 75 & T4
and the listing on pages 75 to 82 inclusive.

DOCUMENTATION ¥OR USE OF THE COMPUTER PROGRAM 'SYMPLAT'

4.9,1. Program specification

The program analyses the bending of annular or complete
circular plates subjected to axi-symmetiric loading and boundary
conditions. S.I. units are used throughout.

Radial variation of loading, plate thickness and material
properties can be accommodated.

The program outputs the radial variation of deflection,
slope, radial stress and tangential stress due to the specified

loading.



4.9.2 Preparation snd presentation of data

Data must be prepared for input to the program as follows
and be presented strictly in this order:

(a) The aumber of plates to be analysed in this particular run.
There is an overall loop in the program for this

purpose and each analysis requires its own complete set of data.

(b) The number of elements to be used to represent the plate.

In order to keep computing time and cost to a minimum it is
‘important to use as few elements as possible, consistent with
obtaining sétisfactory accuracy of solution. (A simple test
program showed that doubling the number of elements resulted in
the program run time being multiplied by approximately two and
a half). Five elemente appear to give results of sufficient
accuracy for most practical purposes.

(c) The number of constraintson the plate,

This is required at this stage because it affects the array
sizes in the program. Any imposed zero slope or deflection at
any nodal radius is classified as a constraint. (Note that for
the purposes of this program the zero slope at the centre of a
complete plate is also classified as a constraint).

(d) The nodal radii.

These must be given in metres and in increasing order of
magnitude. A zero radius must be input for the centre of a
complete plate as this value is used to select the correct
element stiffness subroutine. The choice of the values of the
radii has be'n left to the user. It should be noted hovever,
that elements of equal radial width are not particularly
satisfactory and an empirical scheme of making the radial width
of the elements approximately proportional to their external

radii appears to give bet ter results. If any regions of severe
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curvature are apparent a finer element mesh in this region will
give higher accuracy, particularly in the stress calculations.
(e) Details of esch element.

The modulus of elasticity (N/mm°®) and Poissons ratio for the
material together with the plate thickness (mm) must be entered
as data for each element, commencing with the element n:eares’c to
the centre of the plate. In the case of continuous radial
variation of any of these three quantities, a stepped approxium-

ation must be used.

(f) The nodal connection matrix

This relates the element freedoms to the global freedoms and
also defines the positions of the constraints. The matrix is

formed as follows:-

{"ELEmEHT_N? 3 1;_ "ELEMENT FREEDOMS —J
Starting with the FEOEL BARITE e ST DT
| element nearest &TEN& iA%JS_E_ EiTEF_zNiL_R%EfUmS_l
i to the centre. | Defl. ! Slope | Defl. | Slope |

1

2

3

|

|

|

I

|

|

Y

NELEM

The matrix consists of the numbers in the spaces bounded by
the solid lines. The first column consists of the element
reference numbers. The designatory numbers of the global
freedoms are then put into the other spaces after zeros havs
been inserted at any constrained freedoms.

The designatory numbers for the global freedoms must be
consecutive integers from 1 to NDEGF and should be fed into the

spaces in the matrix from left to right and row by row.



Note that for continuity between elements, the numbers
entered in the external radius columns for the n! slement must
be the same as those in the internal radius columns for the
(n + 1)th élement where 1<;n4;(NELEM-1}

The size of the matrix must be (NEIEM x5).

(g) Details of the loading on the plate.

The program will accept any combination of constant force
on a nodal circle, ccnstant radial moment per unit length along
a nodal circle or distributed pressure over the plate, provided
they are axisymmetric. A switch, operated by a load code number,
is incorporated in order that the appropriate procedures may be
called up to assemble the force vector.,

Load code number = 1

This is for use when all the forces and moments on the
plate are concentrated at the nodal radii. The code number
should be followed by alist of the total force and moment per
unit length at each nodal radius starting with the smallest
radius. If no force or mement acts, a zero should be entered,
i.e. the list should consist of (2 x NNODE) terms. Note that
the program requires the force to be entered as the total load
on the nodal circle, whilst any moment must be expressed as a
moment per unit length measured along the circle.

Load code number = 2

This is for use when the loading is due to distributed
pressure only. The code number should be followed by a list of
the pressures at the internal and external radii of each
element starting with the element nearest to the centre of the
plate. If no pressure acts on any particular element, a pair
of zero's should be entered i.e. the list should consiet of

(2 x NELEM) terms.

64.
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The distributed pressure procedure assumes 2 linear radial
variation of pressure across the width of each element, computes
statically equivalent concentrated nodal forces and then sums
these forces on each element aé common radii.,

Load code number = 3

This is for use when the loading is a combination of the
above cases. The code number should be followed by lists of the
loading as deseribed above for when the code number was 1 & 2, and
in that order.

4.9.3 Summary of data presentation

(a) The number of plates to be analysed.

(b) The number of elements followed by the number of constraints.

(c) A list of nodal radii (m) commencing with the smallest.

(d) A list of the modulus of elasticity (I/m2), Poisson's ratio.
and plate thickness (mm) for each element commencing with the
element nearest to the centre of the plate.

(e) The nodal connection matrix.

() ‘The load code number.

(g) A list of forces (N) and moments (Nm/m) at each nodal radius
commencing with the smallest radius,

and/or
A list of pressures (N/mg) at the boundaries of each element

commencing with the element nearest to the centre of the plate,

4.10 RESULTS AND DISCUSSION OF VARIOUS TEST PROGRANS

Several test cases have been analysed in order to prove the
viability of the program and are shown in figure 4.6 on page 66
These particular cases were chosen because they have known
classical solutions and provide the range of loading and boundary
conditions that most commonly occur in practice. All of the
calculations were made for a Vybak plate 0.2 m radius snd 3 mm

thick as it was envisaged that any experimental work would be
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TEST CASES USED TO PROVE THE PROCGRM 'SYMFLAT'
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carried out on plates of this material and size.

A summary of the results for the various test cases using five
elements of varying width is given below and a typical input and
printout of resulis, in this instance for case (g), is shown on

pages 85 to 86 inclusive.

TEST| TYPE OF | MAXIMUM STRESS AT CENTRE | STRESS AT OUTER RAD
CASE| SOLUTION| DEFL. OR INNER RAD. -
(mm) (kN/m?) (x/n°)
RADIAL TANG. RADIAL TANG.
(a) |crAssIiCcAL| 0.2647 e e 0 -32.9
SEMPIAT 0.2646 _353-8 "353 n8 1 .6 "32¢3
(b) |CLASSICAL| 0.1081 o oo 5340 20.1
SYMPLAT | @.1080 -300.8 -300.8 54 .6 20.8
(c) |cLAsSICAL| C.5398 BYTT ~317.7 0 ~T1 .1
SYMPIAT | 0.53%78 -325.2 -325,2 2.6 -69.8
(d) |CLASSICAL | 1.2966 -478.8 -478.8 0 -210.5
SYMPLAT | 1.2963 -479.5 -479.5 24 .4 -201.2
(e) |CLASSICAL| 0.2%96 -257.2 -97.7 297.0 112.9
SYMPLAT | 0.2304 -262.7 -99.8 296.8 112.8
(f) |CLASSICAL| 3.6350 -6660.0 5571.0 | ~790.0 -300.2
SYMPIAT | 3.6336 -5982.0 5829.8 | -778.7 -295.9
(g) |cLassICAL| 1.8%58 -796.5 -796.5 0 -281.5
SYMPIAT | 1.8340 -804.6 -804 .6 26.9 =271 .1

The clasaical results are calculated from expressions quoted
in Roark:[2] and the comparison shows that in general the predictions
by SYMPIAT of deflection are accurate to less than 4% and those of
stress by 12%. The superior accuracy of the deflectiéﬁ predictions
is to be expected from a displacement formulation of the finite
element method, as the displacements are regarded as the primary
variables and the stresses are then calculated in what is
implicitly a differentiation process with all the accompanying
magnification of error associated with differentation.

Test cases (a) and (b) were analysed using a variety of

numbers and sizes of elements. The results are illustrated in

graphs 4.1 and 4.2 on pages 70 & 7! and would appear to indicate
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that the number and size of elements has little effect on the
accuracy of the deflection but some effect on the stress
prediction. Five elements gives a satisfactory estimate of
stresses provided that various element widths are used; the
basis being that of making the radial width of each element
épproximately proportional to its outside radius. Increaéing
the number of elements to ten did not significantly improve the
results.

SYMPIAT does not predict with accuracy the infinite stresses
at the location of the point load in cases (a) and (b) or the zero
radial stresses at the simply supported edges in cases (a), (c),
(a) and (g). Of these discrepancies the former is not too
important as the classical theory is also inaccurate in regions
of concentrated loading due to the violation of the plate bending’
assumptions, and the latter could either be overcome by using a
finer element mesh at the boundary or disreg:rded because the
stress levels are so low.

-In order to demonstrate the practical usefulness of SYMPILAT,
a problem has been solved in a situation that would present
considerable difficulty if classical theory were used. The problem
is that of a clamped plate of variable thickness with a rigid
central boss, the plate carrying uniform pressure over its entire
surface. The results of the analysis of this plate are shown in
graph 4.3 on page T72.

A possible improvement to SYMPLAT would be the use of more
sophisticated shape functions that the Hermitian polynomials.
Pardoen and Hagen [19] have derived such a set of functicns that
satisfy identically the governing equilibrivm equation for
symmetrical bending. The use of these functions would undoubtedly

give some improvement in the predictions of SYMPLAT but as this
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program has only been devised as a first stage in the solution of
the asymmetric problem, the extra complexity of these shapes was not

thought to be justifiable at this stage.
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GRAPH 4.1

© TEST CASE (a)  Simply supported plate - central point load
Material - Vybak (E =2.8G6N/m2 ; Vv =0.38)
Radius = 0.2m ; Thickness = 3mm ; Load = 1N .
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GRAPH 4.2

TEST CASE (b) Clamped plate — central point load
Material- Vybak ( E = 2.8 GN/m2 ; Y= 0.33)
Radius = 0.2m ; Thickness =3mm ; Load =1N

Central deflections -  Classical theory — — — — — — — _ 0.1081 mm
SYMPLAT 5 Elements (constant width)— 0.1076 mm
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PROGRAM FLOWCHART FOR 'SYMPLAT'
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A LISTING OF THE PROGRAM ‘'SYMPLAT'

'"BEGIN''COMMENTYANALYSIS OF SYMMETRICALLY LOADED PLATES;
VINTEGER'"NELEM, NNODE,NCON,""DEGF,HBW,PROBNO,NOPROB,
Ted o KelogGoLoHoWoeYoZoLCyF1,F2,F3
F1{=FORMAT('('55=D,D0DCa+NDY) '),y
F2;=FORMAT('('aND,DDDD") 1)
F3;=FORMAT(!('S5SNDY)Y )
HBW =4y
PROBNO ;=0
NOPROR;=REAND(EDN),
START:PROBNO;3PROBNO+1}
PAGE(30,1)4
WRITETEXT(30,"(*ANALYSIS,OF WSYMMETRICALLYwLOADED,PLATESH%%%') ")
NRITET‘ XT(SOl ! (1! pLATEmnoumum W10 B mulmmmmmmmmmm.um') | )‘
WRITE(30,F3,pPROBND)}
NENLINEC3O 3)!
NELEM§=READ(60);
NCON3=READ(&0);
HR:TETEXTCSOI ! {‘NUMBERI‘IOFNELEMENTslllmnlmmmmmn—mmm;:-' ) ! )’
wRITECS()' F3|N&LEM}I
NEWLINE(30,3)
NNODEs=!HELEM«1y .
MRITETEXTLS0 ) CYNUMBERLOF A NDDES uinuinnmnnniensmal 75)2
WRITE(30,F3,NNODE))
NEWLINE(30,3):
WRITETEXT(30,' (*NUMBERmOF 4CONSTRAINTS wmummmmmmme ') )1
WRITE(30,F3,NCON)
NEHLINE{30,3);
NDEGF j=2#NNODE=NCON}
WRITETEXT(30,'¢('NUMBERWNFLDEGREES,OF .FREEDOM puw') ¥)
NRITE(SD,F3 NDEGF)}
NEWLINE(30,3)s
TBEGIN!
VINTEGERYTARRAY'NODCC /13 NELEM,135/)
YARRAYINODRAD( /93 NNQDE/) ,F“RCr(/1;JDEJF/) SSTF(/T1yNDEGF,08HBU=1/),

DEFL,SLOPE(/1§NNODE/), FL(*(/1:N¢LEH 1:4;114/),

EeVy T(/1 Wch"f?,

ELDISP, NODSTRESS(/134,1¢NELEM/) AVSTRESS,APFO(/1§2*NNODE/)
'SHITCH'LQADCDuE- CONF,DISF,COMBF,
'PnOCEDURE'CONFWUT(NO,RAD,FO}:

IVALUE'MNO,RADy
"ARRAY'RAD,FQy
VINTEGERIND;
"BEGIN!
WRITETEXT(30,"'"('CONCENTRATED, LNADSYY
NODALWRADIUSIM) mummuwAPPLIEDLFORCE(N)
mmmmBPPLIES MOMENT (NM/M) %X 1)t
ORYII=11STEPYIYUNTIL'NOIDY?
'BEGIND
SPACE(32,2) WRITE{30,F2,RAD(/1/));
SPACE(30,860 FO(/2%1m1/);=READ(6D)
NRITE(30,F1,FO(/2+1Im1/))
SPACE(30,4)1F0(/2%1/)34=READ(ED) I WRITE(3D, F' Fo
FO(/2«1/)1=FQ(/2%1/)*b, 21at D¢

(/2%17));
11/)14
NEWLINE(30,1)
YENDY,

NEWLINE(30,2)

VENDYOF CONFOUT)
"PROCEDURE'DISFOUT(NQ,%AD,F0);

'WALUE'YNQ,RAD}
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VARR.Y'RAD,FOy
VINTEGERINO;
'BEGIN!
"REAL'IR,ER,IP,EP,Q1,02;
WRITETEXT(30,'('DISTRIBUTED LGADSUYELEMENT . NO 3 pwpem
INT«RAD (M) jwuem EXT g RAD (M) o INT PRESS(N/SQ M)
mwmu EXT G PRESS (N/SQ M)%%1) 1),
VFORYI1=1'STEPI1YUNTILINOIDD!
1BEGING
IR;=RAD(/1/)) ERy=RAD(/I+1/)y
IP;=READ(60); EP;=READ(60)
Q1;20,5236#(ERmIR)*(IP*(ER+34IR)+EP*(ERWIR)Y);
Q2330452364 (ERmIR)#(IPW(ER¥IR)SEP#(3%ER+]R) )y
WRITE(C30,F3,1)
SPACE(30,8)y WRITE(30,F2,1IR)}
GPACE(3C,6)7  WRITE(30,F2,ER);
SPACE(30,2) WRITE(30,F1,1P)y
SPACE(30,5%)) WRITE(30,F1,EP)
FOC(/2%1=1/)1=2F0(/2+]=1/)+Q1
FO(/2¢1+1/)imF0C/2+1+1/)4Q2y
NEWLINE(30,1))
VENDY,;
NEWLINE(S0,2))
YEND'OF DISFCUT
'PROCEDURE'YMATMULT (MT1,R01,M2,R0N2,C02,M3)
VARRAY M1 ,M2,V3y
"INTEGER'RO1,R02,€02;
YPBEGIN''FOR'I 43T 'STEPYTTUNTIL'ROT'YDO?
'"BEGIN''FOR"J;=1'STEPITIYUNTIL'CO2'DO!
YBEGINIM3(/1,40/)3=20)
'"FOR'Ny=1'STERPI{TUNTILIRO2'DO!
ME3C/Tod /) 1a3MB3C/T g d/)+MUICIT N/YRM2CINI L)
TEND !
FEND V)
YENDYy
"PROCEDUREYTRMAMULT(M4,C04,M5,R05,C05,M6);
TARRAY M4 M5 ,V61
VINTEGER'CO4,%05,C05;
VBEGIN''FOR'I1=m1'STEPYTIUNTILICO400!
'BEGIN''FORYJ¢=1'STEPITI'UNTIL!ICOSIDO!
IBEGINING( /Y, u/)120;
"FORYNy=1'STEP'{'UNTIL'ROS!DO!
MEC/T o d /) 1aMOC/ T J7)eMEC/IN T/ )Y*MSCINd/)
TEND )
VEND Y
TENDY)
"PROCEDURE'CHOBANDDET(N ,M,A) g
VWALUE'H, M)
VINTEGER'N Mg
TARRAY YAy
TBEGINT
VINTEGER'I ;0K P,QR,57
'REAL'Yy
TFOR'J§=1'STEPITIYUNTIL'N'DO!
'YBEGIN!
PyR(VIFYIDVITHENYOVELSE Malal)y
RisTuMeD,y



VEORV ) gmPISTEPYTYUNTILYMIDO!
'BEGIN!

Siadn1y

Ql'-"”w,j*l?’

YiaA(/1:d7 )

'"FOR'Ky=PISTEP'TYUNTIL'SIDO!

PBEGIN!

YiSYmA(/ I, K/)*A(/R,Q/)
C330Q+1;

VENDY)
YIFPISYITHENYAL/T,0/)321/S0RT(Y)
YELSEYA(/T,J/)13Y*A(/R, M/)

Ri=Re1y
‘END'}
VEND';
IEHDI’
'PROCEDURE'CHOBANDSOL(N,",R,A,B);
IVALUE'N M, R}
PINTEGER'N,M, Ry
TARRAY'A,By
TBEGIN!
'INTEGER'IQJ;K[F’[Q'SI
'REAL'Y;
SiaM=1
TFOR'J ;=1 'STERPYIUNTIL'R'DO!
YBEGIN!
YFOR'YI ;=1 'STEPYTTUNTIL'NIDO!
IBEGIN!
Pta('IF"IDMITHENTOTELSE ' Muls1)y
QiI=ly
Yi=B(/1/)y
"POR'K{=ST!STEP'=17UNTIL'P'DO!

PBEGIN!

Q;ﬂf}q'}' :
YisYeA(/1K/)*B(/Q/)

VEND Yy
BC/L/)p=Y*A(/1,M/) )y

fEND!,
VFOR!'T y=NISTEP!'=T'UNTIL'1'DO!
'"BEGIN!

PI=( IF'NaIDMITHEN'Q'ELSE'MeNe]);

Yi=B(/1/)
Qi=1y
YFOR'Ky=S'STEP'=1'UNTIL'P!DO!
1BEGIN!
Q;=0+1y
YieY=A(/Q,K/)*B(/Q/)}
TENDY
BC/1/)33Y*AC/T M)
tENDl’
TEND !,
TEND Yy
TFOR'I§=1"STEPY{IUNTIL'NNODEIDO!
NODRADC/I/) 1=READ(A0);,
'FOR'1131'ST[P'1'UWTIL'WELEH‘DD'
'BEGIN?
E(/1/)i=READ(60)y

7.
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V(/1/):sREAD(60);
TC/1/);=READ(GD);
|E_‘{Dl’
WRITETEXT(30,"('DETAILS, OF LELEMENTS%%1) 1))
WRITETEXT(30; ' CVELEMENT W NO g monim INT o RAD €M) memsssEXT ¢ RAD (M) mpermmMOD ¢ OF
ELAST(J/:Q M) mmmw POTSSONSwRAT I OpmmmwP LATE ,THICKNESS
AM)A Y1)y
'FOR'I§=1'STEP'1IUNT! L'NELEH'DD'
'BEGIN!
WRITE(30,F3,1)s SPACE(30,8),
WRITE(30,F2,M00RAR(/1/))s SPACE(30,6);
WRITE(30,F2,NODRAD(/I+1/))3 SPACE(30,2);
WRITEC30,F1,E(/1/))1 SPACE(30,14);
WRITEC30,F2,V(/1/)); SPACE(30,14);
WRITE(30,F2,T(/1/)); SPACE(30,15); T(/1/):=T(/1/)/1000;
NEWLINE(30,1)
TEND '
NEWLINE(30,2)
WRITETEXT(30, '{'NDDALMCONNECTIONHWQTRIX%%')')J
TFOR'YI3=1'STEP'"1'UNTIL'NELEMIDO?
'BEGIN!
PFOR'J§=4'STEPITYUNTIL!S'DO!
I1BEGIN!
NODC(/T,0/)s=READ{6D)
WRITE(30,F3,NODC(/T,4/));
VEND 'y
NEWLINE(30,1);
1END V)
NEWLINE(30,2)
WRITETEXT(30,'C('DETAILS,OF, LOADINGY.%!) ),
PFORVI ;=1 STEPYIVUNTIL 2% NNODEIDOVARPFO(/1/) 320
LCSREADCEO) 1GOTO'LOADCODE(/LL/)
CONF;CONFOUT (NNODE,NODRAD,APFQ);
1GOTO!LNCONy
DISF;DISFOUT(HELE” NODRAD, APFO)!
GOTO'LOCON;
CGHBF;CONFOUT(NNODE,HOQRAD,APFO)J
DISFOUT(NELEY,NODRAD ,APFOQ);
LOtﬂN;VRITETEXTCSJI'('NETMEFFFCTIVE LOADS %%
NOD&LNR QDIUJ‘ ‘).«mmmm......qFQDCE(WJ
mmmDNummu u”o *ENT(N“)J’DZ' ) l)’
IFOR'I34=1'STEpr 1! U”TIL'NNUDE91 Do
IBEGIN?
SPACE(30, ?)stITE(SJ,FB NODRAD(C/1/))ISPACE(30,3);
'FUR'J:=1 STEP'ITUNTIL!2'DO!
'"BEGIN?
G;=NODC(/T, 4170
VIFYGHOt THEN'WRITETEXT (30, " (! mmmmmemmma CONSTRAINTI) 1)
TELSE'TBEGIN
: FORCE(/G/)1=APFO(/2%1«2+)/)}
SPACE(30,3 )sWRITE(30,F1,FCRCE(/G/))

TEND ',
TEND')
NEWLINEC3C 1)
TEND';
SPACE(30, Z)JARITE(S Qo NODRAD(/NNQDE/))JSPACE(30,3)

'FUR'J,'1 STEP' 11 U{TIL'E' Qi



VBEGIN'
Gy=NODC(/NELEM, J+3/)3
PIF'G=0 ' THEN'URITETEXT (30, ! (' mmmmmuwmmu CONSTRAINT 1) 1)
N
g

VELSEYBEGINY
FORCE(/G/) j=APFO(/2%1a2+i/)}
SPACE(30,3 )pukITE(30,F1+FORCE(/G/))
YEND!y

YEND '
NEWLINE(30,3):
YCOMMENT'FORMATION AND ASSEMBLY OF STIFFNESS MATRIX

IBEGIN?

"REAL'R1,R2,DR,RATR, D)
'ARRA?'A1,AZ,JS,CA1,CA2,£A3;CA[NT,ChEXT(/1;2,1;&[),
C¢/71:2¢112/7),
ESTF,BY,82,83,84,85,86,87,88,B89(/114¢134/)
CC/1,1/7)3=C0/2,2/)321)
YFORYI =1 'STEPIMYUNTILYNDEGF'DO!
VFORYJ s uRVSTEPYTYUNTIL!HEY=11DO!?
SSTF(/1,47)3=0y
TFOR'K =21 'STEPY1YUNTIL'NELEMDQ!
IBEGIN! :
DyS(EC/K/Z)RT(/K/)**3)/(12%(Tuy(/K/Y¥%2) )}
R1;=NODRAD(/K/)
R23=NODRAD(/K+1/);
TIF'RIS0,UQTYTHENYIGOTO L1
VCOMMENT'FORM STIFFNESS MATRIX FOR DISC ELEMENT)
C{/1027)0=CC/2,417)38VC/K/ )

A1C/1,17)3212)

A1¢/142/7)3=0;

AV C/1,37) iamt2y

AV (/1,47) ;=6%R2

A1 (/2,2/7) 420,

AV(/2,3/)32=09

A1(/244/):=3+R2;

A2C/1,1/7)3=2820/2,11) 12=6%R2,

A2(/1,27):mA2C12,2)) ;=03

A2(/143/):i=A2¢/12,3/) ;56*R2)

A2(/144/)32A2¢/2,4)) 1u=2«R2#%2,

MATMULT(C,2,41¢244,C01)
MATMULT(C,2,8242,4,842))
TRMAMULT (A1,4,CA1,2,4,81);
TRMAMULT (A1 ,4,CA2,2,4,B2)
TRMAMULT(A2,4,CA1,2,4,83);
TRUAMULTCAR,4,C0A2,2,4,B4);

PFOR!J3s1'STEPI1IUNTIL'2' DO

PFORYJ§=1'STEPYIVUNTIL YA DO!

'BEGIN'
CAINTC/T,d/) qmb6%DwCA2C/ T4 J/)/((T(/K/)+42)%R24%3),
CAEXTC/T,d/) 1=6*Dw(CAT(/T,d/)*R2+CA2(/1,4/))/
(CTC/K/)#%2)%R2%w3)
VEND Y,
TFOR'YI§4=1F7STEP 1 UNTIL 400!
TFORTJ =1 'STEPITTVUNTILYS DO
ESTFC/T,d/7) 156428405 (B1(/1,d/)/7(4%R24%2)4
(B2C/1,0/73+83C/1,407))/(3¢R2+%+3)
BAC/ 1, J7)/(24R242b) )y
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'GOTO'L2)
'COMMENTYFORM STIFFNESS MATRIX FGR ANNULAR ELEMENT)
L13CC/1,27)1=C(/2417)3=V(/K/)
A1(/1,1/7)12123
A1C/1427)3=2210/1,47) 126%(R2=R1)
A1(/1,3/);8=12;
AV1(/2417) 336,
A1(/242/)43A1(/2,4/) 323w (R2=mR1)
A1C/2,3/) 13~61
ARC/1417)313AR2(/2,1/7) 12=6%(R2+R1)}
A2(/142/)32A2(/2,2/) ;m=2%(R2=R1)%(2%R2+R1)}
A2(/1,43/);=2R2€/2,37) 126%(R2+R1);
A2C/1,047)32R20/2,4)) ;1224 {R2=R1) ¥ (R242%R1)
ASC/1417)42A30/1,2/7)30A3(/1,37)1=A3(/1,4/7)3=209
A3(/2,17);26%R1%R2;
A3(/2,42/)}2R2%(R2=RT)*(R242%R1)
AS(/2,3/);==6%R1#%R2;
A3(/2¢4/);3R1%(R2eRT) % (2%R24R1)
MATHULT(C,2,A1¢2,4,CA1)
MATMULT(C,2,A242,4,CA2) 9
MATHULT(C,2,3342,4,CA3)
TRMAMULTCA1,4,CA1,2,4,81)
TRMAMULTCAT,4,CA2,2,4,82);
TRI ALIIILT(AZ;-{":A“'2'4‘83)]
TRMAMULTCAT,4,CA3,2,4,84)
TRHAMULTcAE,a,CA2,2,4,55>;
TRMAMULTCAS ,4,CA1,2,4,B6)
TRMAMULT (A2,4,CA3,2,4,87)
TRMAMULTCAS,4,CA2,2,4,88);
TRMAMULT (A3, 4,0A%,2,4,89);
DRys(RZmRT)*%n;
RATR;=R2/R1)
LFORTI 42113 TEPYIrUNTIL2 DD
VFORYY ;=1 ISTERPYTIUNTIL'4 DO
TBEGIN!
CAINTC/T4d/)1mb%0%(CATC/ T J/I%RTIHCA(/ T J/)+CAB(/T,.d/)/RY)
JCCTC/K/)#%2) % (R2=RT1)¢%3)
CAEXTC(/T1,J/)3ub¥De(CAT(/ 1, J/)xRZ4CA2¢(/1, Jf)+CA3{/laJ/)/R2>
/t(T(/K/)**Z!*(R2 ?1}**3);

B 4 an

TEND !
TFORY] 4=1'STEPY1YUNTILYADOY
VFOR'J3=11STEP!TIUNTIL 400!
ESTF(/T,0/)126,284%De(((R2*¥%baRT#%4)%B](
((R2w#3wRT¥*3) % (B2(/1,J/)+83(/1,47)
((R2*%2=RT*%2)%(B4&(/1,4/)+85(/1,4/)
((RZHR1)*(B?(/I.J/)*BB(/I;JX)J/DR)+
(LNCRATR)*B2C/1,d/)/DR));
"COMMENT'ASSEMBLE FELEMENTS;
L2§'FOR'T;=1"STEP 1 IUNTI| Y2100
VFORVJ§=1 1 STERPYIYUNTILYSG'DO!
YBEGIN'ELCAC/K, 1 ,d/)s=CAINTC/T,d/)8
ELCAC/K, 1#2,0/)1=CAEXT(/1,d7)
TENDY,
"FOR'] §=1'STERP'T'UNTIL'4'DOY
"FOR'J§=1'STEPYTIUNTIL'4' DO
"BEGIN?
Gy=NODC(/K 141/

/14J/7)7¢4%DRY)
Y/ (3+DR) )%
+B86(/1,4/))/(2+DR) )+
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Li=NODC(/K,d+1/)
VIF1G=0'THEN1GOTOILY,;
VIFIL=0FTHEN'1GOTO'LS,

VIFIGO=L s THEN?
'BEGIN!
- Hy=|=G+HBUW=1,
SSTFC/G N/)§=SSTF(/GyH/I+ESTEC/ T4/ )4
TEND Y,
L3gTENDY,
TEND !
WRITETEXT(S0, " CISYSTEM,STIFFNESS MATRIX%V) ')
VFORYI§=1'STEPI1'UNTIL'NDEGF'DO!
'BEGIN!
NEWLINE(S0,1)
TFOR'G1=0!STEDPITIUNTIL'HBYm11DO!
CWRITE(SO0,F1,SSTF(/1,4/))1
'END '
TEND'Yy
NEWLINE(3D,3)
VCOMMENT'SOLVE MATRIX EQUATINNS
CHOBANDDET(NDEGF, N5W=1,8STF);
CHOBANDSOL(NDEGF,4EW=~1,1,5STF,FORCE);
VCOMMENT ' CALC, STRESSES,CORRECT UNITS THEN QUTPUT ALL RESULTS;
PFOR'K=1'STEPVIIUNTIL'NELEM DO
IBEGIN?
VEORT ) ;=20 STEPIIUNTILISIDDY
VBEGIN' Gy=NODEC(/K,J/)1
VIF'GaOYTHEN'ELDISP(/J=1,K/) =0
VELSE'ELDISP(/Jel,K/) i 2FORCE(/G/ )
TEND
TEORY T ;=1 ISTEPYITUNTIL'4'DO!
"BEGIN' NODSTEESS(/I,K/)1=20;

YFOR!J3=1'STEPT1TUNTIL'4'DO!
NODSTRESS(/1,K/)1=NODSTRESS(/T K/ )+ELEAC/K,1,d/)

*ELODISP(/J 4K/

'END']
TEND Y,
WRITETEXT(30,'(*NODAL,STRESS MATRIX(N/SQ MI%')1)
TFORYI3=1"STEPTTIUNTIL'4 00!
YBEGIN! »
NEWLINE(3C,1)
VFORY y1=11STEP'1'UNTILINELENM'DN!
WRITEC30,F1,NODSTRESS(/1,4/))y
TEND Y,
NEWLINE(30,3),
AVSTRESS(/1/)4=NODSTRESS(/1,1/)
AYSTRESS(/2/):=NODSTRESS(/2,1/)4
"FORY'J 3= 1ISTEPYTIUNTIL'NELEVYa11DOY
PFORYI ym1tSTEPYAYUNTIL'2'DQ!
AVSTRESS(/2%J+1/) 3=(NCDSTRESS(/1¢2,J/)+
NODSTRESS(/1,d+1/))72;
AVSTRESS(/2+¢NNONEm1/) ¢=NODSTRESS(/3,NELEM/),
AVSTRESS(/2*NNODE/) 1=NODSTRESS(/4,NELEM/ )}
WRITETEXT(30, " (' NODALmRADIUSIM) e PCEFLECTTON (MM o owre v arems ey
SLOPE(RAD ) wwsmmRADIAL. STRESSIN/SQeM) mmars
TANG ywSTRESS(H/5QeMI%%Y V)
TFORIWi=1"STEP' 1Y UNTI|'NNODE 50!



1BEGIN!
VIF'WeNELEM+1 ' THEN''GOTO L4y
Yi=NODCC/W,2/)
2;=NODCC/W,3/)1
1GOTO'LYSy

LosY;=NODCC/WmT ,4/)
Zi=NODC(/Wm1,5/)

LSs'IF'Y=Q'THEN'DEFL(/W/)§=0VELSE!
DEFL(/W/);=(FORCEC/Y/)*1000);
VIF'2=0 ' THEN'SLOPE(/W/)y=01ELSE!
SLOPE(/W/)3=FORCE(/2/)1
SPACE(30,2)
WRITE(30,F2,NODRAD(/W/));
SPACE(30,6)
WRITE(3U,F1,DEFLC/W/))¢
SPACE(30,4)
WRITEC30,F1,SLOPE(/Y/))
SPACE(30,2)1
WRITEC30,F1,AVSTRESS(/2%W=1/))
SPACE(30,9) ¢
WRITEC30,F1,AVSTRESS(/2%U/)),
NEWLINE(30,1)7

VEND';

TEND 'Yy
TIF'PROBNOSKNOPROB'THEN''GOTO'START
TEND!

82.
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TYPICAL INFUT DATA FOR 'SYMPLAT'

This particular data is for test case (g) of figure 4.6

Plate N@

No of elements & 4; DATA A6Q

Ne of constraints
consir %——_______._5’2'

/ Uf0|015l0|03lsi336l031210l201
( 2:80+497063313.01¢

Nodal radii — 2yB84910,3813,01

| 2:884970,38;3,07
: 24804930:38;3,01
2[551'9’0'38’3!3'

e MO ((1i1103213;
Element details 212131415,
1 3143151647,
bi61718;9
\ 51859;0:10,
51
0;0509010;0303;0110;0;010
200;200;200;20045200;200;

f

Nodal connection matrix

}
0303040

Load code
Concentrated loads

Distributed loads
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A SEMI-ANALYTIC FINITE TE ELEMENT ANALYSIS OF THE BENDING OF ASYMMETRICALLY
LOADED! UNSTIF "ENED uIYCJL%R PLATES

9.1

INTRODUCTION

The previous chapter has shown how symmetrically loaded plates
may be analysed by means of a fairly simple finite element program.
Many practical problems however, result in asymmetry of loading
which leads to asymmetry of displacement and stress distribution
even though the geometry of the plate is still axisymmetric.
Solution of the asymmetric loading problem was thought to be a
necessary pre-requisite to the solution of the stiffened plate which
introduces asymmetry of both geometry and loading. Even very simple
and easily defined asymmetry of loading makes classical analysis
cumbersome in all but a few cases and approximate techniques become
virtually essential,

The simplest finite element approach that may be used for
circular plate problems is probably the use of triangular plate
bending elements. These are well documented in almost all of the
basic finite element texts and are relatively simple to use but
have the disadvantage in this application that the circular plate
boundaries must be represented by a series of straight line
approximations. High accuracy will therefore necessitate a large
number of elements with the consequent very great increase in

program sige,
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Several authors have investigated the use of annular secior

elements such as that shown in figure 5.1

FiG. 51

Olson and Lindberg [22] have developed a twelve degree of
freedom element using the transverse deflection and the radial and
tangential slopes at each corner as the nodal freedoms. The
displacement functions used are cubic in r for the radial variation
and cubic in © for the tangential variation.

Sawko and Merriman [23] have used the same shape of element
but increased the number of degrees of freedom to sixteen by including
the twist at each corner. They used a cubic for the radial
distribution of deflection and trigonomeiric functions for the
tangentidl variation.

The same type of element has been developed further still by
Singh and Ramaswamy [24] who incorporated extra nodes at the mid
point of both curved sides and used the deflection and radial slope
as the freedoms at these additional nodes. The element therefore
had twenty degrees of freedom.

It is claimed that each of these elements gives successively more
accurate results but the major criticism of their use is that even
the simplest of them uses twelve degrees of freedom which means
that the representation of a complete plate very quickly builds up

into a problem involving several hundred degrees of freedom with
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the consequent computational problems of storage and efficient
solution of the equations. From the previous discussion of th_e
semi-analytic finite element method in chapter 3 it is apparent
that provided the geometry of an annular element remains constant
in the circumferential direction then the application of this
technique should be feasible provided that the circumferential
variation of load and displacement can be adequately defined by
the use of an orthogonal series. The great advantage of the method
is the considerable saving in computational effort that can be
achieved provided that sufficiently accurate results can be
obtained by the use of a reasonably small number of terms in the
series.

The develoPﬁent of the semiuanalytip method for handling the
asymmetrically loaded plate draws on many ideas already developed
in chapter 4 but with £he added complexity that the problem is now
fully two dimensional and allowance must be made for incorporating
a sufficient number of terms of the series.,

THE STIFFNESS MATRIX FOR AN ANNULAR ELEMENT

5.2,1 Description of the displacement field

Referring tc figure 5.2 the displacement at any point on an
annulus bounded by the nodal rings r = ry, and r = rp is a function

of both r and ©.

El6.5.2



From equation (3.18) the displacement field within the

element may be defined as

@‘ﬂ{] AT S IV ST TS e)
=1

Where the N are the same Hermitian polynomials as used

previously in the symmetric problem, and are functions of r only.
f‘.ﬁ-] is a function of © only, where 0 0 L2

The S f are the nodal displacements of the element
appropriate to the 2th term of the series, hence for any given
value of £ - iglfe is a four element column vector of the ncdal
deflection and slopes.

In many practical applications the loading asymmeétry is not
completely general but evenly distributed about some particular
diameter., If this not unreasonable restriction is accepted then
Pﬁf] may be replaced by the single term cosl@ which implies
that the loading is symmetric with respect to ® = 0 and that both
the loading and displacement can be adequately represented by a
cosine series of L terms.

The final form of the assumed displacement function is

therefore

EE:II~1C05{8 Nocost® N3c0599 N4c°S£Ea g ) (5.1

For each term of the series this function will ensure
inter-element continuity of deflection and also the radial and
tangential slopes.

5.2.2 The stress—strain relationship

A plane stress condition is still assumed but as the loading
is now asymmetric it is no longer permissible to delete the
in-plane shear stresses and strains. The full relationship

described in equations (A4.2) mst be used as follows

90.
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2
1 Y 0
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5.2.3 The strain-displacement relationship

Again, due to asymmetry, the full form of the equations

(A4.1) must be used thus:-

2

o dr2
fef - -3 L8+ 1254w

S0 4 e
rzﬁ% r 3rd

Substitution of w from equation (5.1) gives

= = e
2
N1 cosl@ S’D'
L r2 2 Three similar columns 11
{g}e-_—g - (_:_ .Y“..__Nocgs{g operating on E’E b
1=l i
(2% b 5"‘):;05129 N,Na& N, in turn 7
4 )

Substitution for Ny, Np, Nz and N, from equations (4.9) gives,
after extensive manipulation, an expression of the form
L

féi‘%Z% _‘rj;;mf]{sf}‘-’ ‘ (5.3)
1=

Where [AE]“is a (3 X 4) matrix whose elements are functions of

r1,r2,f,, r and O.

For convenience the matrix [A}) is e xpanded and re-written as

(A] = (Aldr + [A2) + [AT3)L o (AT]L (5.4)
¢
The elements of these matrices are listed in figure 5.3 on the

following page.
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5.2.4 Formation of the stiffness matrix

Equation (3.5) defines the strain energy of an element as
t
Ue = & Sv §ei® fofeav

If the expressions for Eozeand gége from equations (5.2) and

(5.3) are substituted we have

27 ot
pebst D_g 52

P 6
-4 % ry \L2=1

L L
[ZES‘* Zeti:aﬂ}*} [C] [[[Ahm gh }e] r dr do
h=1

On expansion, the matrix multiplication will give terms containing

the submultiple

(alit tcarah;g

When multiplied out and integrated over the range 0 927

this submultiple produces terms such as:-

21
SU cosi8) sin(h8)d8 - - —- - -- which is zero for all & and h
21

SD cos(f8) cos(h€)ds which are zero for £ #£nh

N R B

SU sin(£8) sin(hB)d® l and equal to M for € =h

The consequence of these results is that the contribution
to the total strain energy of the element from the separate terms
of the series is such that no cross products occur and the energy
decouples into the sum of the individual contributions from each
term thus

2':7’1‘2 4 "
u® = %-0—6 S jésf} (b1t rcaratifsier dr de
(B ~u ) o &
£=1

The element may therefore be regarded as having separate

stiffness matrices [kE] that are associated with each of the

displacements 55%9 such that

1
o g S
2=1
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where

21 I ¢
(kb= o g S (Al1 [cI1AYr drde (5.5)
[r—') f
It is not conveqlent to formulate the (k%) in general terms
due to the complexity of the algebra and so they are formed

numerically as and when required in the computer program.

PROBLEMS ASSOCTATED WITH THE STIFFNESS MATRIX FOR A DISC ELEMENT

Due to asymmetry, the slope at the centre of the disc is no
longer zero as was the case for symmetrical deformation.

It is still possible to describe the displacement of the

disc in a form similar to equation(S.ﬂ thus

=i([N1 Npcos{8 Ngcosl® Nf.“sw]%sﬁ}e)
7=

where the N are the same as those for the annular element but

with ry =0
.-- N1= '-1“'?'(r23 7 2r )
5
N2: —%(rzzr r + rg)
b
LT _ 9
%_.33(m§r Zr)
ot e e 2 %
Nl.ﬁ 2( r2r *T )

Note that the shape function associated with Sf is only N,
and does not require a cosd{8 term as it is describing the
effect of the displacement of a single point at the centre of
the disc and therefore has no tangential variation.

The problem that arises with this displacement function is
that it gives rise to infinite bending moments at r = O.

Equations (A4.4), giving the expressions for bending
moments Mp, Mg and Mg, show that these moments depend on the

derivatives

_az_.w.._ 9 1___5_1\'_ ’ .1_.& ' L.ﬂ and l._b_%_ﬂ.
Vel A E r2 Ng2 2 88 r or)g

The shape functions Njp, Njcas%@ and N4c0599 are sll well
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behaved at r = 0 for all these derivatives, but the linear
term in r of the function Nycosl® causes infinite values of
Mp, Mg and Mg to be generated at r = O. The explanation for
this is that Npcosl@ defines the displacement field caused by
the central slope and unless the value of this function at
angle @ is exactly equal in magnitude but opposite in sign to
its value at angle (6 +1r) then there will be no continuity of
slope along a diameter of the disc as it passes through the
centre and a 'kink' is formed with the consequent infinite
values of bending moment.

Olson and Lindberg [22] overcame this problem in devefoping
their central sector element by using only cos © or sin € for
the tangential variation portion of the skape function,in which
case the troublesome terms are self cancelling when bending
moments are calculated. This is not however an acceptable
solution to the problem here as the very nature of the semi-
analytic solution requires the full series to be preserved,

Sawko and Merriman [23] also refer to this problem but do
not propose any specific solution other than that of representing
any comﬁlete plate by a collection of annular sector elements and
accepting a small hole at the centre.

At the time of writing, no suitable shape function has been
found for use with & disc element in the semi-analytic formulation
of the problem. Complete plate problems are therefore analysed
by using annular elements only, and leaving a small central hole
surrounded by an annulus of small radial width but of high
stiffness to ensure approximate continuity of slope along any
diameter at the centre.

COMPLETION OF THE ANALYSIS

Previous discussion in section 3.4 has shown how the semi-

analytic method resultis in a de-coupling of the contributions of
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the orthogonal series. Element stiffness matrices can be formed

for the case when the orthogonal series is a simple cosine

series, as has been demonst?ated in section 5.2. (It is possible
to analyse a completely general problem by using a sine series in
addition to the cosine series but this has not been done in this
particular analysis).

The complete analysis has therefore been reduced to the
solution of L separate problems; one for each term of the
series. The solution of each of the problems for the separate
harmonics is similar in form to that previously discussed in the
analysis of symmetrical'bending in chapter 4.

The procedure for each harmonic is therefore:-

(a) +to assemble the element stiffness matrices [k!] info a
constrained system stiffness matrix [KZ]

(b) by the use of Fourier analysis, decompose the applied
loading into a series of cosine components acting at the
nodal rings. i.e. form the force vectors EFfI

(c) solve the set of equations [K£]§S£§={F1} to give
the global nodal displacements 582}

(d) use §gﬂ} and the stress-displacement relationship fo give
the element boundary stresses ECYEE
After this procedure has been followed for each harmonic

the §§% and §o¥ are summed for all L harmonics to give the total

displacement and stress at each nodal ring. The size of L must

be chosen such that the results are to the required degree of
accuracy.

THE COMPUTER PROGRAM 'ASYMPLAT'

5.5.1 Basic program structure

The general form of the program is, in effect, a locped
version of the program SYMPLAT whereby the force vector is

read, the stiffness matrix generated and the resulting equations
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solved for each of the terms of the required series. "The
program in its present form is less sophisticated than SYMPLAT
in that the le~ding must be defined in terms of equivalent

nodal forces as an external manual operation, but the generation
of the element stiffness matrices is done in a more efficient
manner. The following paragraphs describe various aspects of
the program, the discussion being confined to those parts that
are substantially different from the equivalent parts of SYMPLAT.

5.5.2 TYormation of the element stiffness matrices

Equation (5.5) has previously shown that the stiffness

matrix (ESTFL) for the {th term of the series is given by

t

2% sR2
S [AL] [CI[AL]rdrde

Esthl —D S

6
(R2-R1) 0 °R1

where [AL] may be written, from equation (5.4) as
(AU = [AUIr + [AL2) + [ALS-- .+ (AL4)-L5
(Note that the Algol identifiers used in the program are now
being incorporated where possible for ease of cross reference
with the program).
The matrix multiplication may be carried out and grouped

in powers of r thus:-

(AL (CIIALY = [BL1Ir2 + [[BL2] +(BLS J]r + [(BL31+(BL6]+(BLY ]
J[(BL4T+ (BL7] + [BL10] + [BL13 |-

1 1 1
+[(BLB] + 1)+ [BL14]|— + [[BL12]+ [BLIS)|—5 +[BL16]1—
[eLel~(aLim . (BL1])- « [BLr2)+ 1BLIS]- ol =

Where:--

[BL1) = (AL1)Y(CIAL1) , [BIS] = [AI2] %[cC IALY)
(BL2) = [AL4] ¥[CI(AL2) , [(BL6] = [AL2])%[C )AL2)
(B13) = (aL1]Y¥(ciaL3l , (BL7] = (az21b1C )ALz

(BL4] = [(AL11%(CI(AL4} , [BI8) = (ar2)(C)lAL4)



[BT
(BL10)= [aL3)%1C)aL2) , [BL14)

[BL11] = (AL3)¥(CI[AL3] , (BLIS5]

[

9) = (a131%1cuaL1) , (BLi3) = (ana)¥rc AL

It

[Am]t[ CJlAL2]

(4141 %1 ¢ J1AL3)

BL12)= (A131%(C )(AL4) , [BL16] = [AL4]°[CIAL4]

il

Hence

Esrr-

(R2-R1)®

212
. (‘*——2-5-3—1———) [BL3)«1BLG+[BLY]]

+ (R2-R1) [IBL4 1+ [BL7 ] +[BL10] « [BL13]]
2
< 1n(B2) [teL8 1+ 1L ) + (BLI]

e - o Al | ___.1_
(R2 ar)[1BL21 + (eLss] 2(R22 — IBL16]:I

At this stage it was realised that it may be possible to
form a typical [BL] matrix and perform the subsequent
integration with respect to © by the use of a simple algorithm
rather than by the formal matrix multiplication and trans-
position used in SYMPLAT. The relative simplicity of [C]) and
the fact that the matrix multiplication gives the © terms as

21 VAd
either S;swgfedg or Socoszfede , both of which
equal T, make a simple algorithm possible and this was
therefore incorporated in the form of a 'procedure' (FORMKA).
A slightly simpler 'procedure' (FORMKS) was also developed for
the special case where €= 0. In the actual program the

various matrices [BL1), [BL2] etc are all stored as layers in

a three dimensional array identified as [BL].

S8.

2
—5 [(Bzfz'ji)taul " CZ&R—)[BLZL[BLS]]
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2.5.3 Calculation of stresses

Combination of equations (5.2) and (5.3) shows that the
surface stresses in the plate for each term of the series is

given by

2@ 6D c L ne
6% ez O EEY

The matrices [C] and [AL] are available at the time of
formatiorn of the stiffness matrix for each element and it is
therefore convenient to make use of them at that stage. The
stresses are required only at the nodal radii and therefore

for values of radius equal to R1 and then R2 the product

6D
EE;EGT§;§ [ CI[AL]

is calculated for each element and the result stored in the
matrix[ELCAL], This is a three dimensional array with the
portion associated with any one element assigned to a
particular layer.

After the displacements ngghave been calculated,[ELCAL]
is recalled and the two matrices multiplied together to give
the nodal stresses (radial, tangential and shear) at the nodal
radii for all of the elements, these results being stored in
the matrix(NODSTRLI,

Continuity between elements is only guaranteed for
deflection and slope. This means that the stresses at the
outer radius of one element are not the same as those for the
inner radius of the adjacent element. Nodal average stresses
are therefore calculated and stored in the matrix [AVSTRL]. The
numbers stored in[AVSTRL]are the coefficients of each cosine
term of the series.

The final part of the program sums these contributions
and associates them with the appropriate harmonic in order that

the variation of stress with both radius and angle may be
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printed out.

5.5.4 Program flowchart and listing

The final flowchart is shown on page 120&121 and the listing
on pages 122 - 129 inclusive.

DOCUMENTATION FOR USE OF THE PROGRAM 'ASYMPIAT!

5.6.1 Program speciication

The program analyses the bending of annular plates supported
axi-symmetrically but the applied loading need only be symmetric
aboﬁt the radial line defining the position 6 = 0.

Complete plates may be approximated by accepting the presence
of a small central hole.

Radial variation of plate thickness and material properties
can be accommodated.

The program outputs the radial and tangential variation of
deflection and slope together with the radial, tangential and shear
stresses at any specified points on the plate surface.

S.I. units are used throughout.

5.6.2 Preparation and presentation of data

The data required for the operation of the program is very
similar to that required for 'SYMPLAT', the major difference being
in the form in which the loading is presented.

The required data, in order, is:-

(a) The number of plates to be analysed in this particular run.

There is an overall loop in the program for this purpose and
each plate requires its own complete set of data.

(b) The number of elements to be used to represent the plate.

Five elements appear to give results of sufficient accuracy
for most practical purposes but a finer mesh may be advisable if
regions of severe curvature or stress concentration are anticipated.
(¢c) The number of constraints on the plate.

Any imposed zero slope or deflection at any nodal radius is
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classified as a constraint.
(d) The number of terms that are required in the cosine'series.

This varies depending on the form of the loading. TFor
example an axi-symmetric load requires only one term whereas a
point load may require up to twenty or more before satisfactory
convergence of the solution is obitained.

(e) The number of values of © that are to be used in the printout
of the displacement and stress field.
(f) The nodal radii.

These must be given in metres and in increasing order of
magnitude. The choice of values for the radii is left to the ﬁser
although an empirical scheme of making the radisl width of the
elements approximately proportional to their external radii appears
to produce generally satisfactory results.

(g) Details of each element.

The modulus of elasticity (N/m2) and Poissons ratio for fhe
material together with the plate thickness (mm) must be entered as
data for each element, commencing with the element nearest to the
centre of the plate. In the case of continuous radial variation
of any of these three quantities, a stepped approximation must be
used.

(h) The nodal connection matrix.

This relates the element freedoms to the global freedoms and

also defines the positions of the constraints. The matrix is

formed as follows:-
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| ELEMENT No | _ _ELEMENT FREEDOMS _ _ _ }
| g Wi ine INTERNAL RADIUSIEXTERNAL RADIUS !
| to the centre Dati Slope | Defl. . Siope !

1

2z

3

|

|

|

|

|

I

|

f

NELEM

The matrix consists of the numbers in the spaces bounded by
the solid lines. The first column consists of the element
reference numbers. The designatory numbers of the global freedoms
are tﬂen put into the other spaces after zeros have been inserted
at any constrained freedoms.

The designatory numbers for the global freedoms must be
consecutive integers from 1 up to the number of degrees of freedom
and should be fed into the spaces in the matrix from left to right
and row by row.

Note that for continuity between elements, the numbers entered
into the external radius columns for the n'P element must be the same
as those in the internal radius colums for the (n + 1)th element,
where 1< n (N2 of elements ~ 1)

The size of the matrix must be (N® of elements x 5).

(i) Detaills of the applied loading

The applied loading must be capable of being expressed in the

form of one or more terms of the series
F=F + ngcos:’lB
Where F is the force (or moment) per unit length that is to be

allocated to a particular nodal circle.

Point or ring loads can be expressed in this form using
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conventional Fourier analysis methods. Distributed loads must

first be redefined in the form of statically equivalent nodal

loads by using metheds such as those described in section 4.5.2.

The loading is then presented as a series of lists; each

list quoting the order of the term followed by the loads

allocated to each nodal circle (starting with the smalles%

radius ) and associated with that order of term.

Examples of the way in which various types of lcading may be

presented are given in section 5.7

(j) The values of © at which the displacement and stresses are

required,

5.6.% Summary of data presentation

(a)
(b)
(c)

(a)

(o)
(£)

(&)
(h)
(i)

The number of plates to be analysed.

The éumber of elements followed by the number of constraints.
The number of terms in the cosine series.

The number of values of © that are to be used in the
printout.

A list of nodal radii (m) commencing with the smallest.

A list of the modulus of elasticity (N/m2), Poissons

ratio and plate thickness (mm) for each element commencing
with the element nearest to the centre of the plate.

The nodal connection matrix.

Lists of term order and associated nodal loading.

The values of © at which the displacement and stresses

are required.

5.7 RESULTS AND DISCUSSION OF VARTOUS TEST PROGRAMS

5.7.1 Clamped-=free annulsr plate with a point load on its free

boundary '

The general arrangement of such a plate is shown in figure 5.4
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FIG. 5.4

This particular case was chosen because it represents a
severe test of the program due to the need to represent the
point load by means of a cozine series.

The Fourier analysis of the point load and its breaking down
into equivalent nodal loads at the various harmonics is now
discussed in detail.

If the nodal ring at which the load W acts is 'unwrapped'
then the load may be represented by a distributed load of W/§
per unit length over a total length § and defined in the range
0 x4 as shown in figure 5.5 where § is small and € is the

circumference of the nodal ring.

WIS wis _|...
! |
! |
F Llgs € |
T2 2 |
: S
0 2
FiG. 5.5

A half range cosine series is to be used and thus the required

function is given by

a v
. % S nTrx
Pixlz ¢ » Ap €0S =

where h=d
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& 1
: for n = Q s = Sﬁx + W S dx
. . = o = ST

2%%
. 0 -k
=20 e
t
for n = 1,2,--—¢0 . 21\;er [Smﬂ%p_(_]% E‘in nifg‘xjr )
0 .[_§2_
,,, ap = 7(smm—jé§ + sinniT’ - sin nM.cos ng’g +stn”:;_TE8 cos’ﬂ')

but Sis small

; 2W i ms

= —%ﬂ— (1 + cosnir)
oD
: . E w nwx_
Hence flx) = F TH + cos n¥)cos 7
n=1
In terms of O, x=b8 and {£=2mb
(= =]
. fle) = -2%-5 + E ?Tb“ + COS r:Tﬂr:t:vs,-nz9
n=1

But (1 + cosn®r) is zero for n odd,and 2 for n even

(ele]
. f(8) = Zﬂ’b + Z;’rv cos-%g—
n-—-?ﬁﬁ
or i f(6) + ; W cosdo (5.6)

. ?m: /. __Tb
123

Equation (5.6) indicates that the effect of a point load may
be replaced by the sum of the effects due to a constant ring load
of total value W together with the cosine distributions of the
load in the infinite series.

The ring load causes symmetrical deformation which has
previously been discussed in chapter 4 and in this context will
be seen to be handled by the simple device of putting the term
order equal to zero in the data input,which then calls up the part
of '"ASYMPIAT' concerned with symmetrical loading.

Each term in the infinite series causes asymzetric

‘deformation and before it can be used in the eguation [K!{§'} = §F¥
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the nodal force vector {Flz must be formed. The most satisfadtory
way to do this is to use the equivalent virtual work ideas
expressed in equation (3.10). With reference to equation (3.10),
in this instance there are no body forces and the surface traction
becomes simply the cosine distribution of load along the nodal
circle. The integral of the surface traction thererore ﬂecomes a
line integral along the nodal circle and the contribution to {Fﬂg
at a particular nodal circle becomes

F2 = T as
where N¢ is the circumferential shape function, i.e. cos €0

T is the nodal circle loading, i.e. (W/ 7rb)cosf8 per unit
length

21
Hence Fe_ 50 (cos fBJ{‘%costI{ b d8)

W a 2
- FS{] cos< {08 de

LE =W

BEach harmonic of the asymmetric portion of the load may
therefore be representedby a nodal force of value equal to the load
itself.

During the initial stages of development, 'ASYMPLAT' would
predict only displacements and at that point some comparisons were
made with the results of conventional finite element analysis in
order to assess the viability of the semi-analytic approach.

Olson and Lindberg [22] have analysed the particular case when

b/a = 1.5 using various assemblages of their annular sector element
and comparisons will be made with their results. The details of
the problem are:-

Steel plate (E = 200 GN/n°, » = 0.3) of thickness 1 mm
Internal radius 1 m,

External radius 1.5 m,

Edge load 1 N.
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Five elements were used and graph 5.1 shows the effect on
the deflection at the load point of taking various numbers of
terms in the PFourier series representing the load. It can be
seen that using only the first eleven terms brings the result
within 5% of the exact answer whilst using 21 terms gives an
accuracy of approximately 2%, Increasing the number of elements
to ten gave no significant improvement in accuracy.

Graph 5.2 shows the variation in deflection at various
points on the plate.

Direct comparisons with Olson and Lindberg's results are
shown in figure 5.6. Their very simple 1 x 6 grid gives a very
satisfactory resuit at the load point but is inaccurate over the
rest of the plate. The results from ASYMPIAT using 5 elements
and 21 terms compare very favourably with their analysis using a
4 x 24 grid. The great advantage of ASYMPLAT in this latter
comparison is that ASYMPLAT arrived at its solution by solving
21 sets of 10 simultaneous equations which is considerably more
economical in computational terms than the single set of 292
equations that are solved in Olson and Lindberg's analysis. This
advantage can be expressed in quantitative terms firstly in terms
of stor;ée locations for the system stiffness matrix where ASYMPLAT
requires only 102 locations which are successively overwritten as
each term in the series is processed, whereas Olson and Lindberg
require 2922 locations. Secondly, the number of arithmetic
operations in the solution of the equations using Cholesky's

method is given by Martin and Carey [14] as

n3 + 3n? # Z; for a set of n equations

On this basis the Olson and Lindberg solution requires
approximately 600 times the number of operations required by

ASYMPLAT for this particular analysis.
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GRAPH 5.1
THE EFFECT OF THE NUMBER OF TERMS AN THE ACCURACY OF SOLUTION
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GRAPH 5.2

CLAMPED-FREE ANNULAR PLATE WITH POINT LOAD
Steel plate- 1mm thick
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o9y GRAPH 5.3
E : CLAMPED-FREE ANNULAR PLATE WITH POINT LCAD
n
(]
=
2 8-
o
W
3
2 7=
6 Material - Aluminium
E = 69 CN/m?2
)): 0031
5_
z VARIATION OF DEFLECTION WITH ANGLE
(RADIUS = 220mm )
3 —— 'Exact’ solution
@ 'ASYMPLAT' (10 Elements ; 21 Terms)
2 4 0] Experimental
1<
0 T I 1 I _q
0 30 60 90 120 ' 180
ANGLE ©°
D10_' :
m VARIATION OF DEFLECTION WITH RADIUS - 8
sl (ANGLE,® = 0°)
(@]
=
o 6
o
o b
)
3
Sy
0 o# T T T
75 125 175 225

RADIUS [mm)



[ZW/NY ] SS341S

(ZWINA) SS3HLS

3004
250;

2001

112.

GRAPH 5.4
CLAMPED-FREE ANNULAR PLATE WITH POINT LOAD

PLATE AS SHOWN IN GRAPH 5.3
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ASYMPLAT was further developed to include the analysis of
plate stresses and at that stage it was thought desirable to
obtain some practical test results with which to compare the
theoretical analysis. Appendix C contains details of the
construction of a suitable rig and its instrumentation. It also
describes a classical analysis which was cgrried out usiﬁg a
method outlined by Timoshenko and Woinowski-Krieger {3] . Full
details of the test results are given by Wilson [20] and a
selection of these results is presented here for the purpose of
comparison., Graph 5.3 shows the correlation between deflections
and graph 5.4 between stresses. No major discrepancies are
apparent; the largest deviations being in the values of the low
measured stress at the inner boundary and the high measured stress
at the load point. These deviations may be explained by lack of
fixity at the clamp,and stress concentration in the region of the
load respectively.

A typical set of input data for the solution of this problem
using 'ASYMPLAT' is given on page 130.

5.7.2 Clamped circular plate with a point load

The general arrangement of such a plate is shown in figure 5.7.
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Details of the particular plate analysed are:-

Steel plate (E = 200 GN/m?, Y = 0.3)

Radius =1 m, with load situated at 0.5 m
Thickness =1 mm
Load =1 N

The analysis was performed using a 10 element representation
of the plate, the elements being of varying radial width and the
centre of the plate approximated by using a narrow annulus with a
very small inner radius (0.1 mm) and a modulus of elasticity 1000
times greater than that for the remainder of the plate.

The results of the analysis are illustrated in graph 5.5
on page 116, The displacements show very good agreement with
'exact' theory and compare favourably with Olson and Lindberg's
golution. ASYMPLAT again has the advantage of using considerably
legs computational effort than Olson and Lindberg's approach. The
graph also shows the stress distribution across the diameter on
which the load acts, although no_exact solution was available for
comparison.

573 Clamped annular plate with applied moment on central boss

ElG. 5.8

Details of the particular plate analysed are:

Steel plate (B = 200 6N/n°, Y= 0.3)
Plate radius, P =1.667 2

Boss radius, a=1.0mn

Thickness =1 mm

Moment =1 Nm
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In the finite element formulation, two representations of
loading were used. The first formulation represented the moment
by a point moment at the edge of the boss using an infinite series
identical to that used for the point load in section 5.7.1. In
the second formulation the moment was represented by ring load
W cos © around the edge of the boss where W was the forcé-per unit
length of circumference. The value of W was then adjusted such
that the moment due to the ring load was statically equivalent to
the applied moment M.

The method of representation of the boss caused some difficulty
in the interpretation of the computed stresses. The program
calculates nodal average stresses, and is generally satisfactory,
except that where a boss exists the averaging process at a thick
boss - thin plate interface does not give a correct result for the
plate stresses. This problem was overcome by representing the
rigidity of the boss by an annulus with the same thickness as the
plate, and with a small central hole, but with a very much increased
modulus of elasticity. (10° times that of the plate).

The two methods of representing the moment produced almost
identical results but the use of the ring load, W cos O, was
computationally much more economical as only one term was required
in the series representation. The ring load form of representation
was used, however, in the knowledge that a simple cosine wave was
in fact the exact solution. Such knowledge is obviously not
always available and the infinite series form of point moment
representation should be regarded as a more general approach.

The deflection and stress distribution is illustrated in
graph 5.6 on page '17 and comparisons are made with exact rezults

where available.
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GRAPH 5.6
AMPED CIRCULAR PLATE WITH CENTRAL BOSS CARRYING A MOMENT
Material - Steel
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5.T7T.4 Variable thickness plate w’th distributed pressure and
central moment

This plate was analysed to illustrate the type of problem
that is amenable to solution using 'ASYMPLAT' and which would be
extremely difficult, if not impossible, to solve using exact
methods.

The plate is the same as the one previously shown in graph
4.3 on page 72 but with the addition of a moment of 80 klNm applied
to the central boss.

The distributed pressure was allocated to the nodal circles
using equations (4.17) and (4.18) and then read into the program
as zero order terms.

The moment én the boss was represented by the ring load
technique described in section 5.7.3 above and read into the
program as a first order term.

The deflection and stress distribution are illustrated in

graph 5.7 on the following page.
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GRAPH 5.7
VARIABLE THICKNESS PLATE CARRYING BOTH A MOMENT & UNIFORM PRESSURE

Material - Steel
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A LISTING OF THE PROGRAM 'ASYMPLAT'

'BEGIN''COMMENT'ANALYSIS OF ASYMMETRICALLY LOADED PLATES,
TREAL'TA;
'IWTEGER'NELFI,NlUDE:iCON NDEGF,4BW,PROBNO,NPROB,NTERM ,NANGY,
FoGoHolod o Kol oMeNyW, Y'&[F1 F2,F3, FQ}
F1|=FOR“AT(‘(‘ SmD, DBODA4NDI) 1)}
FEI-FGRﬂﬂT('(‘-ND.DDD')'JJ
F3;2FORMAT(I('SSNDI) 1)y
F4s=FORMAT (' ('NDD,D') ")y
HBW =4y
PROBNO3=0y
NPROB3=READ(HV);
STARTIPROBNO;=PROBND+1
PAGE(30,1)
WRITETEXT(30,'('ANALYSIS, OF ,ASYMMETRICALLY, LOADED, PLATES%%Z%) 1)y
HRITETEXT (30l ' ( ! pLATEm ‘Io'nm Hm*‘mmmmlnmmwmlﬂmmmmuumm' ) ! "
WRITE(30,F3,PROBND)}
hENLINE(3U 3)1
) COMMENT! READ AND OUTPUT THE GENERAL PROBLEM DETAILS)
NELEM;=READ(60) )
NCON§aREAD(60)
WRITETEXT (30, ' CINUMBERmOF wE LEMENTS pooewronmommmommmunase ! 3 197
NEWLINE(30,3);
NNODE ;s =NELEMT
NRITETEKT (30| ! ( 'NUI'EBERWOFNNDDESHlmm“'lI“m.nlummmmmmmml ) ! }’
WRITE(3Q,F3,NNODE)
 NEWLINE(39,3)
]\&IRITETEXT (30 ' e NUWBERWOFNCOHSTRA I ‘l'ITSumtmmunmmumu.' ) ! )J
NEWLINEC(39,3),
NDEGF ;=2+NNODE=MNCON}
WRITETEXT(20, " ('NUMBERWOFWDEGREES 42FFREEDOM ') 1}y
WRITE(3D,F3,NDEGF)
NEWLINE(3C,3),
NTERMi=READ(60)
WRITETEXT(30, "{ *NUMBERWOFGTERMS viwwmmmmpsrenmvmme’ ) V21
WRITE(30,F3,NTERM),
NEWLINE(30,3)9
NANGL §=READ(40);

TBEGIN!
VINTEGERYYARRAY'NODC(/TINELEM,135/),TERMORD(/13NTERM/ )y
YARRAY'NODRAD (/71 §NNODE/) 4FORCEC/T1¢NDEGF/) ,THETA(/1INA"GL/)

EeVoTC/1GNELEM/) ySSTF(/1jNDEGF,CiHBW=1/),
DISPLCU/T1;NTERM, 13 Zi“VODE/).APLOL(fl 2+NNQDE/),
ELCALC/V g NELEM,136,114/7), NODSTRL(/1: 6 1T4NELEM/),
AVSTRL(/1:1TE?#,1|3*WN0”E/),
DEFL,RSLOPE, TSLOPE,RSTR, TSTR,SSTR(/1;NNODE, 1 {NANGL/)}
VCOMMENT Y LIST THE PRDCEUURES)
IPROCECURE! FQRMKS(4sQ,P,A1,A2))

VARRAY '™, A1,A2;

TREAL'Py

VINTEGER1 O,

'1BEGIN'TFORYI§=T1"STEPYITUNTILY4DO!

PBEGIN''FARV Y ¢=1'STEPITIUNTILADO!

'I'SEGIHI
MC/T,de07) 50y
MC/TodoQ/7)asCAT(/ 1, 7)%CA2C 1 ,0/)4P*A2(/2,4/)))
+(R1(/2, /}*QP*AcCK1,Jf}+A2(/? (5 i

YENC 1y
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IENDI'
PEND' OF FORMKS;
'"PROCEDURE" FORMKA(M)Q,P,A1,A2)}
'ARRAY'M,n1,A2;
'REAL'P)
TINTEGER'Q;
'BEGIN'VFOR' I 4=1"STEPY1'UNTIL'4'DND!
"BEGINVIFOR'Jy=1'STEPIT'UNTIL'4 DO
PREGIN!
MO/T,d,eQ/7)1209

MCO/ZT o0 0Q/)3=CATC/ 1,17 )% (A0 T, 0/ )*P*A2(/2,47)))
(AT (/2, 17 )% (P*A2(/1,0/)4A2(/2,4/)))
+(AT(/3, 1700 1=P)*A2(/3,0/)/2)1
TEND ' ¢
TEND Y

TEND' OF FORMKA;
FPROCEDURE'CHOBANDDET(N,M,A);
PVALUETIN, My
VINTEGER'N, My
I1ARRAY!A;
'BEGIN!
VINTEGER'I,J,K,P,Q4R,$)
'REAL'Y
VFORTI;=1'STEPITIUNTIL'N'DO!
'"BEGIN!
Py3( IRV IDMITHENIQELSE ' Mulal))
Ri=2ImM+P,
FORYJ s =PISTERYIYUNTILIMIDG!
TBEGIN!
Si=le1y
Qi=MmJ4Py
Yi=AC/T 0700
"FORVK3=sPISTEPITIUNTIL!S!DO?
IBEGIN!
Yi=YeA(/L K/)*AC/RQ/)
QimQ+ty
TEND 1
VIFVJ=MITHENYAC/T,0/7)3=21/8QRT(Y)
VELSEYA(/TJ/)t=Y*A(/R, M/)
Rr=eR+1g
'END'I
VENDY;
TEND' OF CHOBANDDET,
"PROCEDURE'CHOBANDSOL(N M ReA,B)
PWALUE'N, M, Ry
VINTEGER'N,M, Ry
VARRAY'A, B8y
TBEGIN!
VINTEGER'I ,J KePeQ,$2
TREAL'Yy
SiuMmly
TFORYJy=1'STEP'1'UNTIL'R'DQ!
IBEGIN?
VFORVI ;= 'STEPYIIUNTILINIDO!Y
'BEGIN!
PIS(YIFYIDM'THENYQ'ELSE"M=l4+1),
QI=Iy
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YisB(/1/0
VFOR'K =S 'STEP e 'UNTIL'P!DO!

1BEGIN?
Q;=0=1,
Yi=Y=A(/1,K/)*B(/Q/)
YENDYV
BC/I/)i3Y*A(/T M/ )
YEND';
PFOR'T;=N'STEP =] 'UNTIL'1'DO!
'"BEGIN'
Pi=2( 'IF'Nel>M'THEN'O'YELSE'MalN+1)
Yi=B(/1/)
Q=1
TFOR'Ky=S'STEP'=1'UNTIL'P'DO!
'BEGIN!
Qi=0+11
YiSY=A(/Q,K/)*B(C/Q/ )
TEND Yy
BC/I/)geY*A(/I M/ )
TEND ")

TEND!;
TENDY OF CHOBANDSOL;
'COMMENTY INPUT DETAILS OF ELEMENTS AND LOADING;
TFOR'T y=1tSTEPY1'UNTILYNNQODEIDO?
NODRADC/I/) y=READ(60)
VFOR'J §g=1'STEPY1IUNTILINELEMIDO?

IBEGIN!
EC/1/)§sREAD(60);
V(/1/)3=2READ(60);
TC/1/) §=READ(60)

TEND!;

WRITETEXT(30, '('DETAILS,0F ,ELEVENTS%%Y) 1)
WRITETEXT(30, "CVELEMENT uNO0 grumrsmINToRAD (M) mommen EXT o RADUM) oo MOD  OF o
ELAST(N/SQ eM) wmmmPOISSONSHRATI D mmumP LATE THICKNESS
(MM)%%Z') ')
VFORVI3=1'STEPY1'UNTIL"NELEMDO!
'BEGIN!
WRITE(30,F3,1); SPACE(30,8),
WRITE(30,F2,NODPRAD(/1/))) SPACE(30,7)
WRITE(30,F2,MODRAD(/I+1/))) SPACE(30,5)
WRITE(30,F1,E(/71/))1 SPACE(30,13)y
WRITE(30,F2,V(71/)); SPACE(30,13)y
WRITE(30,F2,T(/1/)) TC/1/YgaT(/1/7)/71000,
NEWLINE(30,1);,
VENDY;
NEWLINE(30,2)
WRITETEXT (30, '('NODAL. CONNECTION MATRIXZ%')'),
'TFORY[§=11STEP'1 'UNTIL'NELEMIDO!
'BEGIN!
"FOR'J3=1'STEP'TIUNTIL!S'DO!
'BEGIN!
NODC(/1,J/) 1=READ(6D)
WRITE(3O,F3,N0DC(/T,u/))
VENDYy
NEWLINE(30,1)
'E'-}Dl,
NEWLINE(3D,2)4
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LFOR'Ms=1'STEP*1TUNTIL'NTERMIDO?Y
'BEGIN!

WRITETEXT(30," ('ORDERWOFLTERMumw!) 1)}
Li=READ(60)
WRITE(30,F3,L)}
TERMORD(/M/) =Ly
NEWLINE(30,3)
HRITETEX1(30.'('APPLIEDMHODAL LOADING%%*) "),
"FOR'J3=1'STERPVTYUNTIL'2+NNODEIDO!  APLOLC/J/)1=READCA0)
'FOR'J'=1'ST: 12TUNTIL'2*NNODE=1tDO!
IBEGIN! SPACE(30,5)

WRITE (30, FZ’HPLOL(/ )i SPACE(30,5)
HRITE(SO,F2|hPLOL(/ 1/))1 NEWLINE(30,1);
YEND!y
NEWLINE(30,3);
TFOR'I§=1'STEP'1'UNTIL'NNODE=1DO!
'BEGIN!
'FOR! J1=a1VSTEP'1'UNTIL2'DOY
'BEGIN?
Gy=NODCC/T,J+1/)
'IF'G>0'THE= FORC (/G/):=APLOL(/2*I 2+J /)
TEND Y,
YEND';
TFOR'J1=1'STEPY1'UNTIL'2'DOY
'BEGIN?!

" Gy=NODC(/MNELEM,J+3/)
YIFTGHO'THEN'FORCE(/G/) 1 =APLOL(/2%1m24J/);
lENDl'
"COMMENT' FORM ELEMENT STIFFNESS MATRICES;
'"BEGINV'REAL'R1,R2,D,DR,DR6,RATR NU;
PARRAY'AL AL AL2,AL3,ALLC/113,114),
BLC/1364,1104,1316/)ESTFL(/114,1347)

1'STEPY U JTIL'WDFGF‘DG'
OYSTERTT'UNTIL'HBW=11DO!
J/7) |=0;
E

1
TFOR'Y
/
ISTEPYIPUNTILINELEMIDOY

SSTF(
'FOR'K=1
TBEGIN!

R1;aNODRAS(/K/) g

R2¢=NODRAD(/K+1/},

DR;=R2=R1y DROy=DR¥*4) RATRy=R2/R1,
DISCEC/K/)*T(/K/)ww3) /(124 (1aV(/K/)**2))y
NUgaV(/K/);

&
)
1,
ST

ALTC/1¢2/7) 3=ALT(/1,4/7) 3u64DRy
AL1C/1,3/) 12212
AL1C/2,1/) =2+ (3ml#+2))
AL1C/2,27)3=AL1(/2,47) 3=(3=L*«2)%DRy
AL1C/2,3/)jum2% (3 ¥%2);

AL2(/141/) 1=a6%(R24R1)}
AL2(/1,2/)3=n2%(24R2+4R1)#DR;
AL2C/143/);=6*(R2+4R1)

AL2C/144/) 1==2%(R242%R1) DRy
AL2C/241/) ;5nlS# (2=l *«2)*(R24R1)}
AL2C/2,2/) == (2=L%x2)*(2%R2+R1)*DRy
AL2(/2,3/) ;u3%(2=L+%2)% (R2+R1),
ALR(C/2¢4/) jmm(2m|¥%x2) *(R242%R1)*DRy
ALBC/117) 3=AL3(/1,27) §=AL3¢/71,3/7):=AL3(/1,4/)3%9;
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AL3(/2¢1/) j=26%(1al**2)*R1%R2;
AL3(/2,2/)i=(1mlw%2) *»(R242*R1)%*D3 R2y
AL3C/2,3/)i==6%(1al**2)*R1*R2
AL3(/2,4/) ;=( 1=l #%x2)*(24R2+RT1)*DR*R1}
VIF'L=0'THEN!
TBEGIN?
FORMKSC(BL,1,NU ALT,ALT)
FORMKS(BL,2,NU,ALT,AL2)
FORMKS(BL,3,NUsALT,AL3)}
FORMKS(BL,4,NUJAL2,ALT1)}
FORMKS(BL,S5 NUsALZ2,AL2)
FORMKS(BL,6,NUsAL2,AL3) )
FORMKS(3L,7,NUJAL3,ALT)Y;
FORMKS (BL,8,NUsAL3,AL2);
FORMKSCBL,?,NUsAL3,AL3)Y;
TFOR!'I¢=1'STELY1UNTIL'4DO!
TFORYJ;=1'STEPITIUNTILYS!IDO!
TBEGIN!
ESTFLC/14J/)156284+D%(((R2¥w4mRT**4)%BL(/1,0,1/)/4)+
((RR¥*JmRI**I)H(BL(/T,J,2/)+BLC/T1,0,4/))/3)+
CCR2¥ 2w RIWN2)* (BL(/T,Jo3/)#BLC/T,J5/)#BLC/T,Je7/))/2)%
(DR (BLC/T¢do6/)+BLC/T4d83/)))+
(LN(RATR)*BL(/1,J,49/)))/DRG;
YEND 'y
TFORVJ3=1YSTEPYTYUNTILYL'DO!?
TBEGIN!
LFORY I p=11STEPYTVUNTIL'2T20!
ALC/Tod/)126%D%(ALTC/T, /) *RTAL2U/ T,/ )+AL3C/1,47)
IRAY/(T(/K/)*%2%DR%23)
ELCALC/K;1,Jd/)1=ALC/10d/)+NURALC/2,0/7)
ELCALC/K, 2,d/)saNURALC/1,J0/)+ALC/2,0/)1
ELCALC/Ky3,4/)301
"FOR'YI =1 'STEP'1TUNTIL'27D0!
CALC/ L J/) g mbeD s (ALY, U/ ) *R2eAL28/ T, 07 )Y+AL3(/ L,/
IR2YJUT(/K/)«*2%DR»%3)
ELCALC/K 4, 0/7)1=AL /14070 4NURALC/2,0/)1
ELCALC/K S, d/)iaNU*ALC/ 1007 +ALC/2,07 )0
. ELCALC/K,6,4/) ;38D
TENDY
16070 L4,

TENDYy
AL1(/3|1/)5 B} AL1(/:§,3(’>]=3“'LI
ALTC/3,2/7)3=AL1(/3,4/7) i=mb* %DRy
AL2(/3,1/) 3= 6x| ¥ (R2+R1);

AL2(/3,2/) =2+*L%(2+R2+R1)»DRy

AL2C/3,3/)3= mé=*(R24R1)}
AL2(/3,4/) j=2% L »(R2«2%R1)*DRy
AL3C/3,1/)3=AL3(/3,2/);3AL3¢/3,3/)1=AL3(0/3,47)3130
ALGC/ 101 7)=AL4(/1,2/)3=AL0(C/1,37)3=2AL6021,4/7) 320
ALGC/2,1/)i=m(Lex2)«(R2u3¢R1)«R24%2

AL4(/2,2/) i=(L*%2)+DR*R14R2u+2)

ALG(/2,3/) j3=(Lu*2)%(3%R2=R1)&RT#%2;

ALGC/2,47) 3=(L#%2)*DR4B24RTw%2,
ALGC/3,1/) 1824 L% (R2=3%R1)*R2*+2)
ALGC/3,2/) ;5al2* | #23+#RT4R24%2

ALGC/3,3/) ju2%L»(34R2mR1)+R1*42
ALG(/3,4/7) j3=2% *0R*R2+R 1w *2;

PO LI |
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FORMKA(BL ,3,NU,ALT,AL3);
FORMKAcﬂL'&"';'J|51L1|AL!0),
FORMKACBL,5,NU)AL2,AL1)
FORMKALBL, 6 )NU AL2,AL2) T -
FORMKACBL,B3,NUsAL2,ALL)
FORMKACBL,?,NU+AL3,ALT),
FDRHKACBL.10,.‘1'f-T|AL3,»"|L2);
FORMKA(BL,11,NU,AL3,AL3)
FORMKA(BL, 13, NU,AL4,ALTY)
FORMKA(BL 14, NULALL,AL2)
FORMKA(BL, 15, N ALG,AL3),
FORMKA(BL, 16, NUALL,ALL)

'FORYI;=T1'STEPYIPUNTIL'4'DO!

TFORY ;=1 'STEPT1YUNTIL 4! DO!Y
I'BEG[N!

ESTFLC/T4d/) 335414240 % (((R2%wb4mRINK4I«BL(/T,J,1/)/4)+
(‘RZ**B"R1**3)*(BL(/I;J|2/)*5L(/I:Jl5/>)/3)*
((R2¥w2mRI*N2)*(BLC/T ) d ¢ 3/7)4BLC/ Y0 de6/)%BLC/T,009/7))72)4
(ORW(BLC/T9do4/7)+BLC/Tpd e 7/7)4BLC/T,0010/7)4BLC/14d413/)) )
(LNCRATRY#(BL(/T,Jd8/7)#BL(/T,d11/)4BLC/T,d,14/)))m
(CCT1/R2)=(1/R1) )% (BL(/T,d,12/)+BL(/1,0¢15/)))m
(CC17(2¥R2%%2))m(1/(2*#RTww2)))*BL(/T1,J¢16/)))/0RGy

TEND';
PFORYJ3=11STEPITTUNTILY4'DO!
'BEGIM!
VEORI I y=1tSTEPIIIUNTIL'3'OD!
ALC/Ted /) psbeDw(ALIC/1 J/)*R14AL2C/ L, J/)4AL3(/T,01)
IRIEALGC/ T J/)IRT#w2) /(T (/K/)wal2xDR*%3)
ELCALC/Ko1¢d/)§sALC/1¢d/)+NUSALC/2,07)1
ELCALC/K 2,d/) 3uNURALC/T 0/ 4ALC/2,4/)0
ELCALC/K 3 ,d/) i=(1mNU) *ALC/3,0/)/2;
LFORVI¢=1VSTERPYTYUNTIL'3 DO
ALC/Ted/)126%D*(ALT (/T J/)*R2+AL2(/T,J/7)+AL3(/1,47)
JR24ALGC/T /)Y /IR2%w2) /(T (/K/)wsk2%DR*23);
ELCALC/ZK 4 0/ a=ALC/10d/)+NURALC/2,4/ )2
ELCALC/K S /) s=NURAL(/ 13/ )+AL(/2 07 )0
ELCALC/K 6,0 /)in( 1) «ALC/3,0/)/2
YEND ',
TCOMMENT! ASSEMBLE ELEMENTS)
L4p"FOR'I = T1ISTERPYTIUNTILY4'DO!
YFORYJ =1 'STEPYTYUNTIL'4'DOY
IBEGIN?
Fi=NODC(/K, 141/
GesNADCC/K,d+1/)
VIF'F=0!THEN''GOTOILY;
VIF'G=O'THEN'1GOTO! LS,
VIFYF =G THEN!
IBEGIN!
Hi=GeF+HBWm1y
SSTF(/F H/)s=SSTF(/F,H/)+ESTFL(/1,J/) 3
YEND !,
L3g'END Yy
YEND' OF K L00OP;
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. VENDY
TCOMMENT 'SOLVE MATRIX EQUATICMNS,
CHOBANDDET(NDEGF ,HBWw1,SSTF)}
CHOBANDSOL(NDEGF,HBW=1,1,5STF,FORCE;
WRITETEXT(30,"("NODALLODISPLACEMENTSX.%) ),
TFOR'Wi=1!STEPY{YUNTIL"NNOQDEIDOQ!
'BEGIN!
PIFYWINELEM+1'THENYI'GOTOILS)
YsaNODC(/ YW, 2700
2;3NODCC/YW,3/)3
'GOTOL6;
L5gY;=NODC(/W=1,4/)
z_iKNODC(fl'_I-91'Sf)'
LOF'IF'YSQ 'THEN'DISPL(/HM,2%Wm1/) 150
VELSE'DISPL(/M,2%WeT/)3ssFORCEC/Y/ )
WRITE(30,F1,DISPL{/M,2%Ue1/))y; SPACE(30,5):
VIFYZaOVTHENIDISPL(/M,2%W/) =0
YELSE'DISPL(/M,2+W/) 3=5FORCEC(/Z/);
WRITE(SC,F1,DISPL(/M,2%U/))}
NEWLINE(3C,1)) :

TENDYy

NEWLINE(30,3),
TCOMMENT' CALCULATE NODAL STRESSES)
WRITETEXT(30,'("NODAL,STRESSES%%')'),
TFORYK;=1'STEPT1YUNTIL'NELEMIDO!
VBEGIN!
'FORVIg=1'STEP'1'UNTIL'E'DO!
IBEGINY
NODSTRLC/T,K/)1=0y
TFOQRIJ =1 1STERYIUNTILYS4'DO!
NODSTRLC/T,K/)3=NODSTRLC/ZI K/ISELCALL/K, 1, d/)*
DISPL(/M,2%Kw2+)/)
WRITE(30,F1,NODSTRL(/1.,K/))1 SPACE(32,5)1
VEND1}
NEWLINE(30|1)J
'END‘!
NEWLINE(30,;3),
AVSTRLC/M,1/7) 34=NADSTRLC/141/7 00
AVSTRL(/M,2/7) 3=NODSTRL(/2,1/)
AVSTRL(/1¢3/) §=MODSTRL(/3,1/)2

"FOR'];=1'STEPI1'UNTIL'3'DO?

YFOR'Jg=1'STEPYI'UNTIL'NELEM=11D0"

AVSTRL(/M 32J+1/) ¢=(NCDSTRL(/T+3,J)/)+NODSTRL(/1,J+1/))/2}
AVSTRL( /11 3#NNODEw2/) {SNODSTRL(/4,NELEM/);
AVSTRL(/My3«NNODE=1/) §=NODSTRL(/S,NELEM/ )y
AVSTRL(/4 3*NNODE/) 1 =NODSTRL(/ 6, NELEM/)
TFOR'1;=1'STEPIZTUNTIL'3*NNODEw2'DD!

YBEGIN!
WRITE(3O,F1,AVSTRL(/M,1/))1 SPACE(30,5);
WRITE(30,F1,AVSTRL(/M,1+1/)) SPACE(3C,5)
WRITE(ZD,F1,AVSTRL(/M,142/))4 NEWLINE(30,1)
VEND Y,

NEWLINE(30,3);
TEND' OF M LOOP;
VCOMMENT! CALCULATE AND OUTPUT THE D18PL, AND STRESS FIELD;,
MRITETEXT(30,'('0D1SPLACEMENT AND,STRESS,FIELOS%) 1))
PFOR'13=1'STEPY1TUNTIL'NANGLIDO!
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YFOR'Wy=1'STEP' 1 'UNTIL'NNODE'DOQ!
TFOR'Js=1"STEPYTYUNTILYNANGL'DO!

'BEGIN!
DEFLC/W,yJd7) 150y
RSLOPEC(/Wed/) =0y
TSLOPE(/W,d/) 120,
RSTR(/W,u7)3120)
TSTRC/W,J/) 120y
SSTR(/Wed/7) =0y

TEND?

"FOR'Wy=1'STEP'1'UNTIL!NNODE'DO!

'BEGIN!

WRITETEXT(30,' ("NODAL,RADIUS(M) mumm') )}
WRITE(30,F2,NODRADC(/W/) )y

NEWLINE(30,2)

WRITETEXT(S0,'('ANGLE'('10S")'DEFLECTION'('10St)*RAD,,SLOPE
V(19SS )Y TANG ¢ ySLOPEY (1981) VRAD, ,STRESSI(1981)
TANG,,STRESS'(1351) 'SHEAR,STRESSY
CDEG) P (11335 1) P (MM)Y (VYIS )P (RAD) (Y1551 ) " (RAD) (1135
PYVNANZSQeMY T (YI3SI)VAIN/SOaM) (Y128 ) I (N/SQMI%%YYI V)

"FOR'J§21'STEPYTTUNTILINANGL'DO!

'"BEGINY

WRITE(30,F4, THETAC/J/) )}
'FOR'Mys1'STEPTT'UNTIL'NTERM!DO!

'BEGIN?

ApETERMORD (/M/)*THETA(/J/)#3,142/180;
DEFL(/WoJ/)ISDERLC/ W,/ )4DISPLL/ M, 24We1/)«C0SCA)*1000,
RSLOPEC/Wyd /) §SRESLOPE(/ W, J/)+DISPL(/MC*W/)%COSCA)
TSLOPE(/W,d/) §=TSLOPE(/ W, J/)+DISPLL/M, 2%Wa1/)%SINCA)
RSTR(/H, d/)iBRSTRC/ W, J/)2AYSTRLC/M,3#W=2/)%CO0S(A);
TSTR(/WeJ/)i=2TSTRE/Wod/)eAYSTRL(/M,3+W=1/)*C05(A)
SSTR(/Wed /) i=SSTRU/ W J/)#AVSTRL(/M,34W/I¥SINCAY

VEND'y
SPACE(30,4)¢
SPACE(30,4);
SPACE(30,4);
SPACE(30,4)
SPACE(30C,4)
SPACE(3D,40
NEWLINE(3Q,1),

YEND 'y
NEWLINEC(30,2)
END!)

VEND Yy
'IF'PROBNOSNPROBITHENY'GOTO!'START;

VEND!

WRITE(S0,F1,DEFL(/W,4d/)
WRITE(30,F1,RSLOPE(/W,
WRITE(30,F1,TSLOPE(/VW,J
WRITE(30,F1,RSTRC/W,J/)
uR1T£c30,51,T$TR<!u.J!;

by
/1))
/1))
)i
)i
WRITEC30,F1,SSTR(/W,d/));
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TYPICAL INPUT DATA FOR 'ASYMPLAT'

This data is for the plate shown in graph 5.3 using S elements and 21 terms

Ne of constraints

N° of elements N° of terms

Plate N° i Ne of angles

Y35 12:21573
Nodal radii 0.,07530,11520.153041853;042200,225)

[ 69293043314.64;
6929;0,3374,04
Element details 1 693910,33;34.64;
692093 0.33:4,064
\ 69@93(.).33.“-’1-7“:;
[ 1305081323
231323384;
Nodal connection matrix ——7 3;3:4;:5:16;
4:5a6:7:3:
\ }?!a:9i]bt’
[ 0302080303 030:03030307140301
120;02030303;02C3930307140109
2201050205022 230303021:0307
33108030303030322050;010142303
6203030301020 0:0:0508 12190
5305030305030 23030303140:03
6302030030303 239300001,001
T:0;0703030003013930301140200
8305030503000 030:8081,%307
Term order & associated < ?’?:}E”}?i. ”’:’;"]f"‘l:;ﬁ:
e W - '8 ‘ I ) » . ’
Bocol Jafses 1120008030333 25290303 149482
12000020202 70:0323010303214037
1220303050300 U32103314050;
149C30302052580; 3030393153030
15:0 ;ﬂ:‘-wafslz 10501031020
1670;020;032307 239808031 ¢%:17;
1730030302030 90802314037
1890000307033 3 193210114237
1900000020803 0503220815050 3
LZJ;(":D:J;L.::"-s':?:";"z‘.“:“z
Values of angles at which —————0,0730,0380¢0:9 . ¢23120,03150,0;140,

the output is required
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DISCUSSION AND CONCLUSIONS ' -

6.1 GENERAL DISCUSSION

The satisfactory development of the semi-analytic finite
element program 'ASYMPLAT' has justified the selection of this
technique in preference to others. The solution of a wide range
of practical problems has now been made possible with a considerable
degree of computational efficiency. During the development of
this program however, several points have arisen which are worthy
of further discussion.

The use of the conventional Ritz method has been shown to be
of some value in the analysis of both plain and stiffened plates,
particularly if estimates of deflection and not stresses are all
that is required. The technique is of limited application, however,
in that many types of plates and boundary conditions which occur in
practice lead to calculations of the utmost algebraic complexity.

The conventional finite element program 'SYMPLAT' which was
developed at an interim stage for the analysis of plates which are
axisymmetric in geometry, material properties,and loading now stands
as a useful practical program in its own right. It is comprehensively
documented, easy to use and computationally efficient. Many

practical problems which would present considerable analytical
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difficulty if tackled by classical methods may be solved to a
satisfactory order of accuracy for most practical vurposes using
only a few elements and, since the elements are compatible, it may
reasonably be expected that increasing the number of elements

should at least produce a degree of convergence towards the true
solution. The one possible extension to this program which may be
of some limited practical use would be the evaluation of the
boundary forces required in order to produce specified non-zero
geﬁmetrical constraints at the plate boundaries, although it must be
remembered that these non-zero constraints could not be very large
or the basic assumptions of plate bending theory would be violated.
This aspect of extending 'SYMPLAT' has not been investigated in
depth but may be possible by the use of some form of iterative
overall loop in the program based on assumed applied boundary forces
and the resulting boundary displacements as the zero constraints are
released.,

The semi-analytic finite element program 'ASYMPLAT' has been
developed to the stage where it provides a very useful contribution
to the solution of problems which fall within its range of application.
With the program in its present state, this range of application
refers to annular or complete circular plates of axi-symmetric
geometrical and material properties under the action of loads which
may exhibit any form of radial variation but must at least be
circumferentially symmetric with respect to some specified radial
line. The program has been shown to produce satisfactory results
when compared with solutions obtained by other forms of analysis and
is computationally more efficient than the conventional finite
element approéch using annular sector elements. It is accepted
however that this latter approach may have a wider range of

application, for example in the analysis of plates with off-centre

holes. The prediction of siresses by 'ASYMPLAT', particularly at
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sudden changes in plate section, requires a degree of care in
interpretation,and from this point of view it is possible to argue
that calculation of the stress levels at mid-element positions may
have been more satisfactory than the use of the present nodal
averaging technique,but this difficulty may be overcome by using
elements of narrow radial width in regions of radial discontinuities
of thickness. The incorporation of automatic mesh generation into
the program was considered at one stage, but problems such as the
one just mentioned led to the belief that the sub-division of the
plate was best left to the user. The prediction of tangential
stresses is generally more accurate than that of the radial stiesses;
a possible reason for this being the better representation of
tangential mOmentslwithin the elements due to the use of trigonometric
circumferential shapes, whereas the cubic radial variaticn in shape
gives a strict linear variation in radial bending moment which is
obviously only an approximate statement of the truth in most cases.
One source of inaccuracy in 'ASYMPLAT' was also traced to ill-
conditioned terms in the generation of the element stiffness matrices.
Much of the early coumputation was carried out on a computer using
24 bit words and employing double word length for the storage of real
numbers. This was equivalent to real numbers being rounded off to
eleven significant figures and was the cause of a significant build
up of error as the stiffness matrices were formed and assembled.
Subsequent work was all performed on a computer using a 32 bit word
length (equivalent to real numbers being represented by 16 significant
figures) and the rounding off error was thereby reduced to an
acceptable level,

The application of 'ASYMPLAT' to the analysis of radially

stiffened plates may be possible but it is doubtful whether the



134.

application will be as straightforward as was initially anticipated.
The representation of the circumferential variation in displacem.nt
of a plate by the use of an infinite trigonometric series had
originally raised hopes that the same type of series may also be
acceptable for the ribbed plate. The problem which now arises is
that of a2ll the load forms that have been investigated, only the
point load requires the use of an infinite series in its represent-
ation and, due to the de-coupling of terms in the semi-analytic
approach, an infinite series form for deflection will only be
generated if an infinite series form for the loading is available.

A logical development plan would have as its first stage an investig-
ation of the behaviour of radially stiffened plates under the action
of axi-symmetric loads. This type of loading requires only the zero
order term of the trigonometric series for its representation, which
immediately precludes direct application of the technique in its
present form as a ribbed plate would intuitively be expected to
exhibit some form of circumferential variation in deflection. A
possible means of overcoming this problem may be to 'detach' the rib
from the plate and represent its presence by the introduction of
internal point reactions between the rib and the plate at the nodal
radii; these point reactions could then be represented by infinite
series thus allowing the semi-analytic approach to proceed. This method
of analysis, although more complicated than that initially envisaged,
may still prove more economical than conventional finite element methods.

SUGGESTIONS FOR FURTHER WORK

(a) A very brief numerical investigation into the process of
element stiffness matrix generation demonstrated the ill-conditioning
of some terms resulting in the rounding-off errors discussed in section
6.1. No immediate ways of improving this situation were apparent but a
deeper study of the whole process may indicate some possibles re-

organisation of the arithmetic processes to give greater accuracy.
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(b) The program 'ASYMPLAT' in its current state only accepts
loads that are axi-symmetric or circumferentially symmetric with
respect to a given radial line. This is due to the fact that the
program uses only the cosine te?ms in the infinite series used for
load and deflection representation. It is a relatively straight-
forward extension of the program to include sine terms in addition
to the cosines and thercfore to enable an aﬁalysis with fully
asymmetric loads to be made. This restriction in the present
program is only of relatively minor practical importance as most
loads occurring in practice exhibit the form of circumferential
symmetry that is catered for by use of the cosine series only.

(¢) It is still thought to be possible to extend 'ASYMPLAT!
to analyse radially stiffened plates along the lines indicated in
section 6.1 above. This extension is not as simple as was initially
anticipated but may well prove to be viable in terms of computational

economy .

CONCLUSIONS

(a) The Ritz method is of limited use in the study of both
stiffened and unstiffened plates where an analysis of deflection and
not stress is required.

(b) The program 'SYMPLAT' provides a simple and accurate method
for analysing deflection and stresses in annular and complete circular
plates in cases where the plate geometry, material properties and
loading are all axi-symmetric.

(¢) The program 'ASYMPIAT' provides a coméutationally efficient
analysis for deflection and stresses in annular and complete circular
plates where the plate geometry and material properties are axi-
symmetric but the loading is symmetric only with respect to a
specified radial line.

(a) & satisfactory analysis of stiffened plates may prove

possible along the lines suggested in section 6.1.
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APPENDICES
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BASIC RELATIONSHIPS FOR THE BENDING OF THIN PLATES

Al

TRANSFORMATION FROM CARTESTAN TO CYLINDRICAL CO-ORDINATES

Al,1 Why the transformation is required and the definition of
co~ordinates

The basic theory of plate bending is generally derived in
terms of Cartesian co-ordinates as a matter of convenience. The
geometry and flexural behaviour of circular plates are, however,
easier to define in terms of cylindrical co-ordinates. Basic
theorf is therefore derived in Cartesian co-ordinates,and then
transformed into cylindrical co-ordinates for application to circular
plate problems,in preference to working from first principles in
cylindrical co-ordinates.

Consider the thin plate shown in figure Al.1

4

FIG. A11

Cartesian and cylindrical co-ordinate systems may be defined such

that:
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(a) +they have a common origin.

(b) the X-=y ard r-0 planes coincide with the middie surface of
the unloaded plate.

(c) the © = 0 radius coincides with the x-axis.
Under these conditions the transformation between the two

co-ordinate systems is expressed by the relationships

X =T cos © and y = r sin 6 (A1.1a)
or alternatively
‘ y
%2 + y2 =12 and % = tan © (A1.1D)

A1.2 DTransformation of functions and their derivatives

The displacement and stress fields within a thin plate are
functions of position on the plate. Any function f(x,y) can be
transformed into a function f(r,0) by direct substitution of
equations (A1.Ta).

Later work will show that the transformation of the first and
second derivatives of functions is also required and these may be
achieved as follows:

(a) First derivatives.

ot LS e of 28
% © AndxrT 88 “ex
But from equations (A1b) and subsequently (Ala)
8Ly M epmb ond Q28 o ¥ . . 8inG
X r X r r
« « Dby substitution
S "kt _ Of sin8
el e A s T - (A1.2a)
Similarly
of 5 af f cosB
3y  or ag éﬁf r (A1.2Db)

(b) Second derivatives.




139.

'-b-—— rz’—-t:os.B — Q2f sin®_ < '§L .I_G:| cos0

Lér 3rd8 v
il et 32f _ Af cos® __ 32 sin® | sin®
i [ or S0 *‘arae°°58 88 r ABE BT r
A__ 3% 2 52f sinBcosB , f sin?® 3f sinBcosB azf sin@ (a1.2
e sl v YTt Yt Y igt el (. 20)
Similarly
;u_ ol ginZe 2_..f_ sinfcost of .cos?8 23 sinfcos® _tgmos 8 (a1.24)
dy2  dr2 ard torr r2 382 r2
And
32 . 32 52f c0520 _ f sinBcos@ _ >f c0s29 _  32f sinBcosh (a1.2
Xy ar25|n8C058+ér68 i or r B 2 02 L§2 (8 .26)
Full details of the transformations are presented in references
[3] and [4].
A2 BASIC THEORY OF PLATE BENDING

A2.1 introduction and assumptions

In its most rigorous form,the theory of bending for plates of
arbitrary shape, thickness and loading would necessitate the use of
the complete theory of three-dimensional elasticity. The majority
of cases that occur in practice neither justify nor require such a
comprehensive approach,and for most engineering purposes an
extension of ideas developed for the analysis of beams is adequate.

A full discussion of plate bending theory is given in ref-
erences [3] and [4] ; the theory that is presented here being the
framework of that which was considered to be the essential basis
for work on thin plate problems. The theory is developed in terms
of Cartesian co-ordinates and subsequently converted into
cylindrical co-ordinates for application to circular plates by use
of the transformations previously developed in Section Al.

Beam theory is based on several assumptions that may be
adapted for plate analysis as follows:-

(a) The middle surface of the plate remains unstrained during

bending. The restriction that this assumption imposes in
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practice is that the transverse deflection of the plate
should not exceed its thickness,otherwise the in-plane
stresses that are induced may not be exclusively due to
bending.

(b) Normals to the middle surface of the plate before bending
remain straight and normal afterwards. This implies that
transverse shear strains in the plate are negligible; a
condition that is only satisfied if the plate is thin compared
with its other major dimensions.

(c) Direct stresses perpendicular to the plane of the plate are
small compared with other stresses. This assumption is only
valid for thin plates and even then it does not hold in close
proximity to-concentrated loads.

(a) fhe plate material must be homogeneous, isotropic and linearly
elastic. This assumption is made in order to simplify the
introduction of the elastic constraints.

A2.2 Compatibility between strain and displacement

Consider a plate whose middle surface was originally flat
and in the x-y plane, but that is now slightly bent as shown in

figure A2.1a. Q
X

I =%
Original
position

Middle
Surface

(b)

Figure A2.1b shows a section through the plate at Y = Vi

Provided that the displacement and slope are small, then in a
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plane parallel to the x-z plane it can be shown that to a firet

order of approximation:-

The curvature is given by %( = — _abf(%\;f_) = — -‘g‘%‘% (A2.1a)
The displacement of point P to P' in the x direction is
. 3
Us=- 3.8% (A2.1p)
Similarly if a plane parallel to they-z plane is considered then
, 1 w. (aw) 32w
The curvature is e e e e e A2 e
Py 3y \dy dy2 ( )

The displacement of point P to P. in the y direction is

vz_‘vj.é&_\; (a2.14)
Parallel to the x-y plane, a small element ABCD at distance z from
the middle surface will undergo deformation to A'B'C’D’ as shown in

figure A2.2

i
!
dy
4
dv,
v+aydy
sl
Now direct strain €x=-’9%-——ﬁ = % (A2.22)
Pt
Similarly €y - .&E:ﬁ& . ‘%‘;‘ (A2.2b)
Also the shear strain a’xy =4+ 0

But X.lz-g—:— and h’2=—§;;~

. nyz—-)z-+-—— (A2.2¢c)
The strains on this surface in terms of the transverse deflection
of the surface can be obtained by combining equations (A2.1) and

(A2.2) thus:-
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2,
€ = "”“b:f- = 5-3,5 (42.3a)
32w
€y = % = _S'ay2 (h2:50)
AY 2
X =g_;+g;i= -23.% (A2.3c)

It may be noticed that putting Z = 0 gives the condition that the
middle surface is unstrained. This is in confirmation of compliance
with the basic assumptions (a) and (b).

A2.3 Stress-strain relationships and stress resultants

In accordance with assumption (d) the general stress-strain
relationships in three dimensions can be expressed in terms of two

independent constants; the modulus of elasticity, E and Poissons

ratio, ) . These relationships are:-
€x=-é—(crx_vcry_vc§}
Cpe U

€z=-110z - vy - V5 )

XXY: 211{-&- ))] ] 'T;(y
2(1 +Y
ny = E+ : 'T;az

From assumptions (b) and (c),ﬁyz, ¥,x and 03 are negligible
therefore these relationships may be manipulated into the following

form:-

Gy =ty -EvZ (€y - VE) (A2.4a)

n

_ E
—=—(Ey - VE,) A2.4b
G 4T ey X (42.4b)

Txy:: "2_[{E_+v_] ny (k2.4c)



143.

Bquations (A2.4) can be expressed in terms of the deflection

of the middle surface by substitution of equations (A2.3)

oo Bl {3 32w _
E% 32w aZW)
oy =- SN, o 30 (A2.5b)
y 1_v2 (Ayz sz
A B2 iy - > 2w
Ty gt s (A2.5¢)

The stresses given by equations (A2.5) act on an element of
plate as shown in figure A2.3a and integration of the stress
resultants on the element over the plate thickness gives the

forces, bending moments and twisting moments per unit length shown

in figure A2.3b.

FiG. A2.3
h/2 2 2
My = O, zdz = -D[SEN 4 ypAw (A2.62)
i S-hfz x 78 (3X2 dy?
h/2
32w 32w
M O, d = =D[|=— + — A2.6Db
y I_m y 5% (ayZ vax:’) ( )
hl2 2
I s _y1.04w
My My e j_hfz’i;ygdg = D(1-y)p§e (A2.6¢)
Q, =Q, =0,,=0Q, =0 (A2.6a)
e
whore Dbl .
12(1-»2)
A2,4 Eguilibrium conditions and the governing differential

equation

The conditions for equilibrium are examined by considering a

differential element scted upon by a transverse load of intensity
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p(x,y). The stress resultants due to this load are shown in
figure A2.4. For convenience only the middle surface of the

element, of thickness h, is shown.

_ FIG. A2.4

For equilibrium of forces in the z direction
+

X oy ¥ P28 (A2.7a)
For equilibrium of moments about an edge parallel to the x axis

-yl el (42.7b)
For equilibrium of moments about an edge parallel to the y axis

dMy dMyx

3% af ~fez =8 (A2.7c)

If egquations (A2.7b) and (A2.7c) are substituted in equation

(A2.7a) and noting that My = Myy then:-
52My 22Myy  02My
e E o A e hedbl

f equations (A2.6a), (A2.6b) and (A2.6c) are now substituted into

equation (A2.8) the governing differential equation is produced

dhw + 2 24w + & w ¥ S
dxl dx 2 dy2 dyh 0
or Véw = %} (A2.9)

2 2
where V2 is the operator -115 + 32
OX dy
It is also convenient at this stage to substitute equations
(A2.6) into equations (A2.7b) and (A2.7c) in order to derive

expressions for the transverse shear forces in terms of the
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deflection of the middle surface thus:-

SR R - T R
sz- D (ax3 axbyz) = DX)?[‘J w) (A2.10a)
Qur=-D _‘M} + LBV‘L) = _Dl vzw A2.10b
% (ay3 dx2dy 5Y( ] ( )

STRAIN ENERGY OF A THIN PLATE IN PURE BENDING

In general terms, using indicial notation, the strain energy

density Uy is given by

1
Uo= 5 j €j (A3.1)
Hooke's Law for isotropic materials states that
- Ev ol
ere A% mruile- T N Bty

Hence from equations (A3.1) and (A3.2)
1 2
Up = 7 )\( ekkJ + G €ij Eij
which, on expansion gives
e 2 2 2 Z -2 2 ~2
Consider a thin plate with its neutral surface in the x-y
plane of a Cartesian co-ordinate system. If the general co-ordinate
system is now aligned with the plate system and 'engineering
strains' are substituted for the mathematical strains, the

expression for Uy becomes

2 2
y x# €y

Provided that transverse deflections are small, a thin

Ug= ‘%‘A(Ex+ € +€z)2 + G(€. + €§) *%‘G(b’fy * K}(22 * h'.ZZX) (43.3)

transversely loaded plate may be considered as a plane stress

system in which Gy, T, , Tpy » 8y, and %y are all negligible.

It may also be shown that under plane stress conditions

L
Ez- T—3 (éx +€y)

. . by substitution into equation (A3.3)

2 2 2
% P E i e L &' e L o F 2.¢c2 135
Ugy= 2,\[ex €, = o5 & E‘yﬂ + Gl:éx €y o2 (€ eyﬂ + 568,y

Substituting for A and G gives

_ E 2 2 e AR
U I:E.x + 6){ + 2))€x6),:| A s 7 e ny (A3.4)

°" 2(1-92)



A4

146.

To enabtle the most use to be made the expression (43.4) for
Uop, it is generally more convenient to work in terms of displace-
ments rather than strains. Plate bending theory has already shown

in section A2.2 that:-

B 2w s g . 2y » 0 v
€x= '5’3}%‘ i€y=-% 'gj% e Xxyf % Xy

Therefore:-

o B 2w 2 [22w)2 2w 2w\ .2 , _E_ (2w)?.2
" 2093 {(éxz) *(éyz) *zp(axz 32)| 8 T (éx&y) g

To obtain the total strain energy for a plate, this expression

for strain energy density must be integrated over the volume of

the plate.

Total strain energy, U = S‘UOCN = IS SUodxdydz = H [ondz] dx dy
v

For a plate of constant thickness both g and its limits are

independent of x and y

. SNZUOdZ— Eh3 [(Bzw)z f(azw)za,z &_&_zﬂﬂ : el et R

2h/2 24(1-32) [\ ox? dy? 12(1 +9] \3x2y)

20l e

o .?‘2_W+.52_W2 o 32w 32w mfazwz
U=-3 H_ﬂ:éxz 3):2] 2(1 V][sz " \bxay dxdy  (A3.5)

SUMMARY OF IMPORTANT RELATIONSHIPS FOR CIRCULAR PLATES

D {[az_w . J\gﬂz Lo [Eﬂﬁw g 2]J

Sections A2 and A3 gave an abbreviated derivation of the more
important parts of the basic theory for the bending of thin plates
defined in a Cartesian co-ordinate system. This section now makes
use of the transformation equations developed in section Al to
convert the results of the theory previously developed into
equivalent expressions using a cylindrical co-ordinate system.

The details of the transformation are not presented here

but the results are quoted in concise form for ease of reference,
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Strains
o _x.92%w
€y m=g:E (A4.1a)
cmz (1.3 , 1 32y
Cos—3 (0t <Ay (14.1%)
I TR 32
- 23 (2 b _ 1 ﬁ”‘rae) (A4.1¢)
Stresses in terms of strains
< = ﬁ(er +VE,) (A4.2a)
Ce = +DE,) (A4.2p)
1-Y
Tro = 2!‘F+v) %o (A4.2¢)
Stresses in terms of deflection of the middle surface
c__EF [(w ,» 3w ., » 3%
Cr = 1p2 -(3[‘2 e 3t i Jak (A4.3%a)
o EF (9% , 1 3w , 1 324
Ce 1-»2 ())br rdr 2 g2 (44:30)
o BE F L 0w 4 0%
?}a- T+v (r2 6 r aras) (A4.3¢)
Stress resultants in terms of deflection of the middle surface
1 2w . vow , » . 2w
Mr = -D (arz + r ar + r2 aez (A-4.48.)
G 2w 1 dw 1 %w
v s ())3,.2 s T e (A4.4p)
A A.9%w 1 3w
Mg = D1 +D) (r T = 9) (A4.4¢)
Qrz = -D&-(V2w) (A4.40)
Qg =- D& (V2 w) (A4.4e)
RS L TR NS Tl LN Y
Where V<= 2 = 5 17
The governing differential equation
Vhy = g- (44.5)

where p is a function of r and ©

Strain energy of the plate

2w, 12w, 1w [2y(1 dw, 1.32w)_[1 2w
ﬁ[[&rz r2 382 T Ar] =4 vJ|_ 3r2 (r or 2 o8 ) (1‘ ardd r2 JQT &

_____ (r4.6)
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VARTATIONAL PRINCIPLES AND ENERGY METHODS

Bl INTRODUCTION

The late 17th century saw the science of mechanics developing
extensively on two separate fronts. h

Newton had formulated his equations of motion which were based
on the study of the equilibrium of forces and moments in static
systems, or on the changes in momentum of dynamic systems. Due to
the vectorial nature of the quantities involved, this approach was
also known as vector mechanics.

During the same period, however, Liebnitz was proposing the
basic priﬁciples of analytical mechanics whereby the state of any
system was defined in terms of the scalar quantities of work and
energy. The ideas of Liebnitz were extended very considerably in
the 18th century by Euler and Lagrange who developed the calculus
of variations. The application of these variational principles to
the basic concepts of work and energy led to the mathematically
elegant theories of analytical mechanics which form the background
to many modern computational methods.

The principles of analytical mechanics are very attractive in
the study of the deformation of solid continua for the following
reasons:

* (a) the mathematics of the analytical approach are often simpler
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than those of the vectorial method; a complete system being
described in one equation embodying a particular variational
principle rather than the multiplicity of equations that are
usually required in a vector mechanics formulation.

(b) forces at rigid constraints are not involved in the analysis,
thus reducing the size of the problem. .

(¢) the use of the principles of analytical mechanics leads
directly to the formation of the governing equation for the
system under consideration and at the same time automatically
generates the natural boundary conditions.

The general principles of analytical mechanics are discussed
in detail in references [5], [6], [7], [8] and [9] whilst
particular aspects pertinent to the present investigation are
described in the following sections.

THE PRINCIPLE OF VIRTUAL WORK

B2.1 Statement of the Principle

- "If a system is acted upon by a set of congervative forces
that are in equilibrium,then the work done in any virtual displace-
ment of the system is zero".

Conservative forces are defined as forces that do not work in
any closed loading cycle.

Virtual displacements are defined as infinitesimal, arbitrary
displacements away from the equilibrium configuration of a system

. which do not violate the geometric boundary constraints on the

system.

The forces are considered to have been applied before the
virtual displacements are imposed and are assumed not to vary

during the displacements.
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B2.2 Derivation of the principle and its application to
deformable solids

Figure B2.1 shows a set of concurrent forces Fy, ¥F2, F3 and

Fy acting at a point O. FR is the resultant force.
F
i B
\
\

,/
... -~ ~Pposition of forces

a“:waiihmhhhﬁfﬁterdisplucement
— \‘M\ F‘1
R
FIG. B2.1

Let point O undergo a virtual displacement, up along the line
of action of Fp to a point O'. The distances moved along their
lines of action by the forces Fy, Fo, F3 and Fy are respectively

uq, up, uz and ug4.

The virtual work done, §W , can be expressed as:-

EW FR Up = F1U‘I + F2U2 + F3u3 + F}'U{'

n

-

. Fh
i=1

Now if, and only if, the system is in equilibrium then Fp is
zZero.

Hence §W = ) Fu =0 (B2.1)

It is important to note that neither the size nor the direction
of the virtual displacement is of any consequence provided that it
is a geometrically admissible displacement and that it does not
seriously deform the system shape.

The principle is easily applied to systems that consist of
rigid links, as discrete displacements are easily defined and the

forces are simply the extermal loads and reactions. For 2 system

that contains deformable solids the force system needs more careful
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definition and classification as follows:

(a) the externally applied loading. This may be further sub-
divided into surface tractions and body forces.

(b) the external reactions to the loading.

(¢) the internal forces within‘the solid.

The concept of the internal forces can be readily nnderstood
if the deformable solid is considered to be made up of an infinite
number of small ideal deformable elements interconnected at ideal
mass points. As an illustration consider the solid shown in
figure B2.2a which may be split into deformable elements and mass
points as in figure B2.2b. (only three elements are shown for

convenience).

Defermabie
Element

{a)

FIG: B2.2

Fp is the external load

FRr4 and Fpp are the external reactions

Py .... Pyp are the internal forces

W .... ug are the virtual displacements of the mass points
(note that there are no displacements at the
supports) .

The principle of virtual work applied to the mass points

(since it is at these points that equilibrium is defined) gives
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Where Wgp, is the virtual work of the external loade
Wgg is the virtual work of the external reactions

Wi is the virtual work of the internal forces at the
mass points.

It should be noted that the reason for including the effect
of the forces P in the virtual work expression is that if any of
the deformable elements is considered, the forces P acting on it
all move through different distances and therefore give rise to
a nett amount of work being done.

The external reactions do no work in the virtual displacement
of a system with rigid constraints since the displacements must
not violate the geometric boundary conditions. This means that

WER is zero.,

e §(Wg + Wp) =0 (B2.2)
Provided that the solid is made of an ideal elastic material

then the work done by the forces P in deforming the elements is

stored as strain energy. This work done on the elements is equal

but opposite to that done on the mass points.

Wi s =\

Substitution in equation {B2.2) and changing signs gives
§(U-wg) =0 (B2.3)
In conservative systems where the external loading has a

potential
Ve, = - L
Wwhere () is the potential energy of the external loading.
Therefore S(U'vjl): 0
(U +Q) is called the total potential energy, V; for the system.

Hence gy =§(U+Q)=0 (82.4)



Equation (B2.4) is the mathematical statement of the
principle of stationary total potential energy whereby in any
virtual displacement of a system away from its equilibrium
configuration, the first variation of the total potential energy
is zero.

The corollary to this statement is that of all the possible
virtual displacements of a system, the one which makes the total
potential energy stationary is the equilibrium configuration.

It is possible to show that for stable equilibrium, the
total potential energy is in fact a minimum and not just stationary.

APPLICATION OF THE PRINCIPLE OF STATTONARY TOTAL POTERTIAL ENERGY

B3.1 Rigid and simple deformable systems

Elastic,
Pin- jointed Links

Pin- jointed
Links

/
L by
F, & &
(b)
R
Dotted lines show virtual displacements
FIG, B3.1

In.figure B3.1(a) the potential energy of the system contains
only the contribution from the external loads as the links are
rigid

L, §V=§0=0

In figure B3.1(b) the total potential energy contains terms

from both the potential energy of the load and the strain energy

of the links
Sofv=§u+n)=0

In both cases however the first variation of the total
potential energy of the system can be easily defined in terms of
variations to the generalised co-ordinates; these variaticns being

the virtual displacements of the system. Written mathematically
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this statement becomes

SV= svtqal'lqz! et lqn)
where the q are the discrete generalised co-ordinates defining
the system configuration.

For the total potential energy of the system to be

S‘ba‘tionary
- .)_'_ __av _.w s

The definition of virtual displacements insists that they

are arbitrary. It therefore follows that

AV _ dV . 3% .9
aq1 dqn

aq2
In simple rigid body systems the evaluation of these partial
derivatives usually leads to a direct determination of d1s 92,
etc. For a finite degree of freedom,linear elastic system the
solution is more involved and leads to a set of equations of the

form

[K){q} = {F}
The solution of this set of equations then gives the values of

41, 9o, etc., which define the equilibrium configuration

B3.2 The variational problem in continuum mechanics

For an elastic continuum it is impossible to describe
virtual displacements in terms of discrete co-ordinates.
Distributed co-ordinates are required and expressions such as
polynomials or trigonometric series may be used as co-ordinate
functions to describe a displacement field. In such cases the
coefficients of the terms of the polynomial or series become the
generalised co-ordinates of the system.

In continuum problems it is not always necessary however to
define the displacement field in such detail for the initial

formation stage of the virtual work expressions. As an example



consider the simple beam shown in figure B3.2

Load intensity,p
. =

£ o

Lo |

Rigidity,EI

b T W .

Fio, B3,.2

Strain energy, U = -Ei-S! ézji-zdx
2 dp \dx2

0
Potential energy of the loading, X 5 50 pwdx

‘ { 7 A
‘v V= Us+ O = So [%_L(j’x‘;) - Pw]dx

Up to this stage a statement that w is a function of x is
all that has been required and its specification in terms of
generalised co-ordinates has not been necessary. .
The total potential energy of any continuum is a functional

that is an integral or miltiple integral, for example in the

above problem

{
o »2
Nig=s IO f (D,W; ‘é‘;%) dx

The principle of stationary total potential energy requires
the first variation of V to be zero, which implies that an
admissible form is sought for w that will extremise the
functional for V. There are various ways of achieving this goal,
two of which are discussed in the next section.

SOLUTIONS TO THE VARTATIONAL PROBLEM FOR ELASTIC CONTINUA

B4.1 The use of variational calculus

B4.1.1 General principles of variational calculus

It has already been shown in section B3.2 that the
principle of stationary total potential energy for a continuum
requires the extremization of a functional that, in general, is a
maltiple integral. The variational calculus approach to this

problem is to generate a family of continuous admissible

165.
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solutions by taking the true extremizing function and sdding to
it a single parameter variable. The effects on the value of the
functional of changes in the single parameter variable are then
investigated.

The usefulness of this mathematically elegant process is
that in one series of operations the ordinary or partial
differential equation for equilibrium of the system is generated
(the Euler-Lagrange equation) together with all of the natural
boundary constrainte on the system.

The Euler-Lagrange equation may, in itself, however, be
extremely difficult to solve. For example in plate theory the
bi-harmonic equation is generated; direction solution of which
may be impossiﬁle for peculiar plate shapes or unusual boundary
conditions. Powerful numerical techniques, such as the Ritz
method, can however be based on the variational principles in
order to produce practically acceptable approximate solutions to
Buler-Lagrange equation.

The application of variational calculus to the plate bending
problem is discussed in the next section, followed by a description
of the Ritz method.

B4.1.2 A variational approach to the bending of circular
plates

The expression for the total strain energy of a plate

as given by equation (A4.6) may be written in functional form as:-
U-= gj £ (T W W o Wep s Wo o s W ) dr B

Where subscripts are now used to mean partial differentiation
with respect to the subscript

Potential energy of the transverse loading is given by:-

AlL=~ Ipwrdrda s -Hfzip,r,w}drde

Hence the total potential cnergy of the system is



V=U+Q= Hf(p,r,w W W g s Wp oW o sWpg ) dr dB (21.1)

For the plate to be in equilibrium the value of V must be
stationary for any virtual displacement of the plate, provided
that any such displacement does not violate the geometric
constraints that are put on the plate.

Let w(r,8) be the equilibrium displacement and let
w(r,8) Dbe any other admissible displacement.

Then W(r,8) = w(r,9}+€."1ll‘,9)
Where € is a variable parameter that is independent of r and O,
and rl(r,e} is a function that (a) is zero on any bound-ry where
geometric constraints are.imposed and (b) has continuous
derivatives up to third order.

For V to become stationary as W(r,0) approaches wl(r,8)

then:-

oV
€

must be zero when &€=0

ox §—E e % H(fw'l * R e * fgnie * fwe e Hfwg oo wrérlre)drd(gjo 2
Since the values of the derivatives of q.are nogua;fined*in
genefal terms within the region of the integration, it is
desirable to express equation (B4.2) in a form in which these
derivatives are either not prezent or are only present in terms

of their value at the boundary. This can be achieved by

integrating each term by parts. Consider each term separately :-

ngqu,.drde =S{fqu:12} de - SSV\ 3 fy)drae W inE 28)
fronres [l [ g o
ISRWTqrrdrdS ] j{&qur 5%' “Wﬁd"}
(B4.3c)
Sifwrr r1 . SaTT{ er‘q S"]b(*z"{fwrr '.‘} de6
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Sinilarly:
ng ddB-—Sf 2 _ X, |2 5 !
Woo 1oedr a0 = 11 Twg Mele, = 5F ' 'Wee' e, * Y(agztfweeldejdr (B4.3d)
And:

r, e

2|% ¢f d

ijw Vlredr dé = fWreY\q ] -517'[ §§th I SEV} tt“'ra) fd“ﬁ’lams ldrdG (B4.3e)
Back substitution into equation (B4.2) gives:—

i, Wl e )i 2 32
S jw é“ﬂﬂj bBLW ) + arz[ﬁ%r) ae2{h%e}*ar69{%#9] drd8 «

- : 5 e, o,
S{ _fws &Qlfwee) ar(fwrg}_ 91 }dr + S{Yle fwee 3 E ars
[ iy It r, e
el - s 2 2 2
S{ __fWr %lfwrr} 39”Wre}_‘ﬂl Ede + qufwrrdde + fWre']ﬁ o * (B4.4)

Since Y] and hence qr and qa are arbitrary then each
separate integral and the last term must all be zero.

Hence
; 1T e A rE 32 -
(1) % a.”w} g | * 32ty * 352 Moo “ara8! g = O (B4.5a)

Thig is the Euler—Lagrange partial differential equation
that must be satisfied within the region.

(ii) Along the boundaries & = ©1 and © = 95

Bither w is prescribed or fWe"f%HWba}_fF““Talz 0 (B4.5b)
And either wy is prescribed or m@e= 0 (B4.5c)

(iii)Along the boundaries r = rq and r = Ty

Either w is prescribed or fy - &(f, )-gif, 1=0 (B4.5d)

ar
And either w, is prescribed or ﬂ”rr= 0 (B4.5¢e)
(iv) The last term refers to the corners of a sectorial plate
where either w is prescribed or f“?e = 0 (B4.57)
Equations (B4.5b to f) define either the geometric or natural

boundary conditions.
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Now by expanding the expression for strain ensrgy and combiiing
it with the expression for the potential energy of the loading it

can be shown that the functional f is of the form

f "'Q'[“i‘r - v“’rr“’ee + 2DWer W + ;1‘3'“"9% ¥ ;Z;_Twr“'ee + 201 'w'l‘wrze
‘4-{1 1)} ‘Izwrawg + -:—Wrz + 2[1 _v]}jﬁwez] - prw
Hence:-
fw= - pr

v.g- Z[Z”Wrr ¥ }%Wee * %wr]

g o 4, - b i A
'éaF”Wr} i Z[va”_r * r;_»\*"ree l_3"'“'69 et rzwr]

™ 2 ~4(1- m"“'wre s 411-9) L w%

o D 1
ool = ?[m V)L + A1V ae]

—
n
=]
I N
-
=
3
&
SR

Woo * 22)wr:|
' D 2y 2y
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Now by substitution, the Euler-Lagrange equation (B4.5a)

becomes:—

D 4 2 8 4 4 2 L
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This expression can easily be shown to be equivalent o

vhw =‘%} i.e. the differential equation for the
deflected shape.

b the - S B
is thec operator (arz T T m

If use is made of equations (A4.4) relating the moments and

where V2

shear forces to the derivatives of w,the boundary conditions of
equations (B4.5b to f) can be shown to reduce to:-
(i) Along the boundaries © = 6y and © = 62
Either w is prescribed or ng-f%(Mre} =0
And either %g is prescribed or Mg = 0
(ii) Along the boundaries r = ry and r = Tp
g

Either w is prescribed or Qp, - 77“§§4Mr9]= 0

And either —3—‘:—' is prescribed or M = 0
(iii)At any corners
Either w is prescribed or M, = 0
Where in the above conditions the subscripts have reverted to
their normal meaning.

B4.2 The Ritz Method

This is an approximate method for the solution of the
variational problem for continua. In describing the deformed
shape o% a system it has already been suggested that co-ordinate
functions in the form of an infinite series may be used. For
some very simple structures it may be possible to carry out a
complete analysis, using the principle of stationary total
potential energy, and maintaining the infinite series intact.
Once the analysis is complete,sufficient terms of the series are
then considered in order to produce the required degree of accuracy.
For more complex problems, solutions which maintain an infinite
series intact are generally not possible and only a finite number of

terms may be conveniently handled.
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The Ritz method shows that satisfactory, although only
approximate, solutions may be obtained by using only a finite
number of terms.

The basis of the method is to assume that the displacement
field may be represented by a finite number of linearly
independent co-ordinate functions. For example in circular plate
problems

wir,8) = Zo(r,8) « Cyfq(r,8) + Coff(r,8) + ———--- + C H\r,8)  (B4.6)
where the di are co-ordinate functions and the Ci are constants
to be evaluated. The choice of the ﬁi is arbitrary within the
restriction that they must be such that w(r,8) satisfies éll
of the geometric boundary conditions on the'plate irrespective
of the values of the constants Ci.

If equation (B4.6) is now substituted into the functional for
total potential energy which, in the case of a circular plate, is
given by equation (B4.1) and the integration is carried out, the
functional becomes a simple function of the constants, Cj.

For the total potential ensrgy to be stationary all that is
now required is that

%g? =t for 121,2,===4n
since the variational problem has been replaced by a siﬁple
maximum and minimum problem.

For a linear elastic plate material this set of partial
derivatives leads to n simultaneous equations of the form

[K1fc} = {F}

The solution of these equations thus evaluates the constants,

It can be shown that if{n + 1) terms are used in the description
of the displacement field then the solution obtained will be
better, or at least no worse, than if only n terms are used. The

values of C; are not fixed however and will be readjusted each
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time a different number of terms is used in order to give the
best solution possible for that number of terms.
The practical application of the Ritz method may be
described as a combination of art and science,as the judicious
selection of the ﬁi based on expefience can result in considerable
improvement in the accuracy of solution when compared with a
purely arbitrary selection of the}ﬁi.
The description of the finite element method given in
chapter 3 shows that it may be regarded as a piecewise application
of the Ritz technique. In the finite element method an approximate
displacement field is defined only within eech element and not for
the whole plate,and the nodal freedoms replace the constants Ci zs

the adjustable parameters which minimise the total potential energy

functional.
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ANALYSIS OF CLAMPED-FREE PIATES WITH CONCENTRATED EDGE IOADING

C1 INTRODUCTION

The general arrangement of the type of plate being considered

is shown in figure C1.1 below:

FIG. C1.1

The reasons for investigating this particular plate in detail
are
(a) due to the severe conditions which are imposed in the
representation of a concentrated load by a limited number of terms
from an infinite series, the problem is an extreme test for the
viability of the semi-analytic finite element program 'ASYMPLAT'.
(b) it is an asymmetrically loaded plate for which an 'exact!
theoretical solution is possible with a relatively small amount of

computational effort.
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(c) it is one of the.test cases used by Olson and Lindberg [22]
for proving their conventional finite element approach using
annular sector elements.

For the purposes of the current investigation the problem is
therefore of great interest in that it is possible to obtain both
'exact' and conventional finite element solutions against which
the results of the semi-analytic finite element approach may be
compared.

A test rig has also been constructed with the object of
providing practical results for comparison with the theoretical

predictions of deflections and stresses.

THEORETICAL ANALYSIS

C2.1 The general sclution to the governing equation

The original analysis of the problem was by Reissner [21] but the
general form of solution to problems of this type is discussed in
references [3) and [ 4]

The governing equation for the bending of thin circular plates

is given by equation (A4.5) as

Vew = 2
. w D
where V2= _?a% 3 1_.33_ 4 12._%_
ar Lok r< e

and p is the intensity of loading on the plate (in general a
function of both r and 9)
The solution to the governing equation may be assumed to be

W=Wh+Wp
where Y is the homogeneous part, given by the solution to the
equation

?Lwh =0

and_wp is the particular part, given by the solution to the
equation

Rend Vs SBS
Vi & -
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In this particular application the distributed loading is
zero, hence the solution to the governing equation is given by the
homogeneous part only.

The homogenggus solution iswnow assumed to take the form
W = an(r)cos ng + E gnlr)sin nd
n=0 n=1

where the functions fn(r) and gn(r) are functions of radius only
and are to be evaluated in such a way as to satisfy both the
governing equation and the boundary conditions.

For this particular plate the loading and hence the resulting
deflection is symmetric with respect to ® = O, consequently only

the cosine terms need to be considered and the solution becomes

oo
W = an{ r)cos nd
n=0
If this assumed solution is substituted into the governing

equation, the resulting equation is the fourth order, ordinary
differential equation
a4t (2\83 M _ (1e202) 9% | (12202 dfn+n2(n2-l. oo
for h= 05152y —— 0%
The solution to this equation may be shown to be

W = AO" Bor2 + Colnr + Dorzlnr
+ (A1r + B1r3 + C1r“1 + D1rlnr] cosn8

+ (A tN s Bor=N & CrN*2 Dnr'“"z)cosnﬁ
i 5 n n n
n=

where the constants A, By, Ch and Dy for n=2C, 1,-—00 must

now be calculated in accordance with the boundary conditions on
the plate.

2.2 Determination of boundary conditions

Referring to figure C1.1 it is apparent that the boundary
conditions at the inner radius are those of the geometrical
constraints, that is

Deflection = w =0 at r=a (c2.2a)

Radis) slops = =0 ot r=a (c2.2b)
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At the outer radius where there is a geometrically free
boundary, one condition will be that of zero radial bending
moment, that is

Bending moment = M, = 0 at r = b (c2.2¢)

The remaining boundary condition at the outer radius is not
immediately apparent but may be developed as follows.

In the variational formulation of the plate bending equations
given in section B4.1.2 the boundary conditions along a boundary

of constant radius were derived as:

. . : e 18
either w is prescribed or Q,, r Br{Mrg)z 0
and either %%—is prescribed or M. = 0
At a geometrically free edge neither w nor %H? are prescribed.

The condition that M, = O has previously been stated in condition

(C2.2c). The other condition refers to the quantity

1 78
Qrz = T 37 Mre)

r

This quantity may be regarded as the nett plate reaction to the
applied shear loading on the edge of the plate. For an edge that is
geome trically free and unloaded, which was the general situation
under discussion in section B4.1.2, this quantity therefore became
Zero.

For. the plate of figure C1.1 however, the outer boundary is
loaded by the force W which, by reference to equation (5.6), may
be represented by the Fourier series

% + i% cos nB
n=1

Hence the boundary condition may be stated as

oo

Nett Shear lOad — Orz e %'%(Mre} = "2% + E 1':r'WB'COS ne (C2¢2d)
n=1

C2.3 Imposition of boundary conditions

The general solution (C2.1) may now be substituted into each

of the four boundary conditions (C2.2a, b, ¢ and d) in turn, and
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noting that the resulting equations must be valid for all values of
© between 0 and 27" we obtain:-

Condition (C2.22a)

w=0 wat r=aqa

Hence Ag + (a? 1By + (Ina)Cq + (a2 Ina)Dg = 0 3
(a)Aq + (a3 1By + (a-1 ICqy +(alnalDy =0 ;
and  (aMA_ + (@ MB + (a"*2)C, «(@"*2)D, = for ne 2, @0

Condition (CZ2.2b)

2’—‘“"i=i3 at pisa
ar

Hence (2a)By + (0‘1)00 + al2lna +1)0g=0 3
A +(3a2 1By - la'2}01 + (lna+1)D; = 0 3

and (nan-! )AL, - (na™n-" B, +(n+2 }an”Cn +(-n+2)gh* D=0

for n =2, —-09
Condition (02.20)

Equation (A4.4a) defines M, in terms of w, r and 6. This condition

therefore becomes

£
B .
n

ar2 082

Hence 2(1+9)Bgy - l1-vlb‘2% +[(3+2)+2(1+2)Inb]Dg = 0 3

(a2 | DI l.éﬁxf_) =0 at r=b
r r r2

2(3+9)bBy + 20-2)53C, + (142I51D, =0
and  nln-1)(1-y)8 An + nin+1)(1-)B"" 2Bn+(r'|+1)[(n+2]-)J{n--IZ)]bn Cn

«(n-1)[(n-2)-»(n+2)16"D, =0 for n= 2, ==mm- 00

Condition (C2.24)

Equations (A4.4d4) and (A4.4c) define Q,, and Mr'e in terms of
w, r and @

This condition therefore becomes, at r=b ,

g Bw 1..32_w s (3-2) 2w , (2-2). 3w _W_
Q7 3 (Mpe) = D(&r 2 , g;r- 3392 i gy i b+ cosnB

el
Hence BDO M 3

2(34Y)bBy + 200-9)573Cq + (»-3)5 Dal_-W['] ;
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and 2 (1-n)(1-PI2A, +n 1en)1-2i5"" 2B, + nina)l4 -n(1-y) I8 C,,

+nln-1)04 +n(1 -»))6" "D, RSN, . 2 for

D e Lt

The equations that have resulted from the imposition of the four

boundary conditions may be re-grouped and expressed as follows

_1 - a? Ina alna 0 erq ’ O‘
0 2a o al2lna +1) By 0
4 ) = ¢ L
0 2(1+) -(1-v)52 (3+p)+2(1+»)nb |co| | 0
0 0 0 8 D ..
=l Josi q L1Tq
=, g A
a 3 a’ alna -l Ay 0
1 3a2 Lo (Ina +1) B, |o
ﬁ y=4 )
0 2(3 +2)b 21-9)57° (1+9)p7" Cy 0
-3 -1 W
0 2(3 V)b 201 -Y)b (V- 3)b 0y |-
i -t X 7 \ f,
— - y
an an an+2 u—n+2 hnj 01
na"! -ng M [rvin 28R Y W Tt Bn 0
{ r=1 4
nln—‘l){‘i—:)]l;)n'2 n{n+1}(1—>l}b“n'2 (n+1)[(n+2)-y(n-2)1b" (n-1){{n-2)-»(n +2))5" Ch 0
2 (1-nl1 =982 2ieal1 ™2 nin )4 -nt1-Y0 nin-1)1 & «nli-yB" onf |-
— - A \

Thus the evaluation of the constants reduces to the solution
of a series of groups of four simultaneous equations.

The number of groups of equations that need to be solved is
governed by the number of constants that need to be evaluated in

order to ensure adequate convergence of the deflection function
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given by equation (C€2.1).

The calculation is easily adapted for computer sclution as all
that is basically required is a looped program which will form the
coefficients of A,, By, C, and D,, then invert the resulting (4 x 4)
coefficient matrix and multiply by the right hand side column

vector to evaluate Ans Byy Cp and Dy, This process is repeated for

ne
n=0,1, —— N,vhere N is the number of terms which ensures
satisfactory convergence of the solution. The displacement field
is then generated by feeding the coefficients into equation (C€2.1),
and performing the summation of the terms to give the total
displacement for any desired values of r and ©.

Once the constznts, and hence the displacement field, have been
evaluated it is a relatively simple matter tc compute the surface

stresses in the plate by making use of equations (A4.%a, b and c)

with %= h12 to give

o Pt 6D sz LD WL Y 22w
d h 3r2 roar r2 302
¥ 6D d 2w 1 . 3w 1 zw)
Ge- 5 (V. e .y
- h? orf T 8r 2 42

Vg -2 (.1_. SEL e B FQEELJ
h r2 o8 r oraeé
These equations, on substitution of the expression for w,
give the stresses at any desired values of r and O.
The computer program and its documentation are discussed in
detail by Wilson [20].

THE TEST RIG AND ITS INSTRUMENTATION

A photograph of the assembled test rig is shown on page 172
The majority of published theoretical work has analysed a plate of
proportions b = 1.5a. From a practical point of view these
proportions were not very satisfactory because insufficient space

was available for the attachment of strain gauges to the plate
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unless the outside radius was made inconveniently large. A plate
of proportions b = 3a was suitable for the attachment of the strain
gauges whilst an outside diameﬁer of 0.45 m was chosen as the
maximum acceptable for ease of machining with the available lathes.
The plate was made of bright rolled aluminium sheet, This material
had an adequate surface finish for the attachment of stréin

gauges without further machining and was preferable to steel because
its lower modulus of elasticity would give measurable deflecticns
with relatively smaller loads.

The final details of the plate were therefore

Inside radius = 0.075 m
Outside radius = 0. 225 m
Plate thickness = 4.64 mm

Modulus of elasticity = 69 GN/m2
Poissons ratio = 0335
The deflection of the loaded plate was measured using a

sensitive dial gauge mounted on a rotating arm. Surface strains
in the plate were measured using foil gauges attached to the plate
at positions shown in the photograph on page 173 and detailed in
figure C3.1 on page 174. The concentrated edge loading was
applied by means of weights placed on a special hanger which
ensured that the load was situated as near as possible to the

edge of the plate.

COMPARISON OF MEASURED AND COMPUTED DEFLECTIONS AND STRESSES
Details of the measurements taken and the way in which they
were processed are described by Wilson [20] . A selection of the
more important measured values is tabuléted in figure C4.1 on
page 175 where direct comparisons may be made with the computed
theoretical values. The blank spaces in the table of measured
values occur wherever the readings were so small as te make their

accuracy questionable.
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In general it may be seen thet the correlation between
measured and computed values is reasonable, with typical
differences being in the order of 10%. The only major differences
that occur are those in the stress values at the load point,and at
the inner boundary. The low value of computed stress at the load
point is due to the theoretical assumption of plane stress in the
plate not being valid in the region of the load point. At the
inner boundary the actual degree of fixity may fall short of being
perfect, which may result in a relaxation of the assumed zero
slope condition and a consequent lowering of the measured stress
values.

The computed values were obtained by taking a series of 30
terms which gave a degree of convergence such that the theoretical

results were reliable to three significant figures.
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1B, (€31
DETAILS OF STRAIN GAUGE POSITIONS

0.225m

0.07 Sm,

180°

Load Position

=
m
e

E

(a) + Tangential gauge on underside of plate
(b) —é— Radial gauge on topside of plate
{c) ’—-#--— Gauges of type la) and (b)



COMPARISON BETWEEN MEASURED AND COMPUTED DISPLACEMENT AND STRESS FIELDS

LOAD = 1N

DEFLECTTON(.001 mm)| RAD.STRESS (1t/u2)] TANG . STRESS(1i/02)
RADIUS|ANGLE :
(m) (deg) |Measured|Computed | Measured|Computed|Measured|Computed
0.220 0] +8.95 +8.41 -26.0 | -14.65 | +175.0 | #1397
30 | +5.05 +4 .53 -1.92| -=1.15 ]| - 39.2 | - 43.4
60 | +1.03 +0.827 - 0.26] - 0.50 ] = 35.2 | = 34.6
90 | -0.42 ~0.445 + 0.23] +0.03 | -13.3 | - 12.7
120 | -0.47 -0.402 = 0.10 + 0.9
150 | -0.19 -0.109 + 0.14 4+ 2.7
180 | +0.02 +0.015 - 0.09 + 3.49
0.185 0 | +5.95 +5.41 -52.8 | -52.5 + 32.2 | +34.0
S0 +35.7h 135.16 ~18.2 | =16.0 - 48.8 | - 45.9
60 | +0.7 +0.63 - 6.02] -4.65 | - 41.7 | = 37.5
9 | -0.27 -0.29 =08 -0.50 ] - 12.7 | -~ 12.4
120 | -0.35 -0.28 - 0.48 + 0.55
150 | -0.11 -0.08 + 0.36 + 3.13
180 | -0.02 +0.005 + 0.19 + 2.98
0.150 0l +3.19 +2,91 -82.6 | -83.1 - 17.6 | - 18,2
30 | +2.06 +1.79 -40.8 | -42.9 - 53.7 | - 52.4
60 | +0.54 +0.38 -12.6 | -12.7 -37.0 | - 37.9
90 | -0.062 | -0.167 - 0.34] - 0.43] - 8.4 | - 10.8
120 | -0.082 | -0.168 + 2.02 + 1.69
150 | -0.043 | -0.049 + 1.14 + 3.40
180 | -0.010 | +0.001 + 0.52 + 2.88
0.115 o | +1.30 +1.01 -124.0 |-134.3 060,61 = 640
30 | +0.86 +0.64 - 62.0 | -86.6 - 64,0 | = 63.3
60 | +0.21 +0.13 = 27.0 | -25.7 - 33,0 | = 32.6
90 | -0.064 | -0.067 & 4,920 4+ 2.6 1 = 3.57] = 4.65
120 | -0.082 | -0.064 + 4.40] + 6,17 | + 1.46] + 4.19
150 | -0.042 | -0.018 + 2.75 e £
180 | -0.020 | +0.001 + 0.86 4 12,05
0.080 0 +0.021 -242.0 |-277.5 - 94,0 | -106.3
30 40,013 -166.0 |-175.9 - 65.0 | - 68.2
60 +0.002 - 39.0 [~ 33.1 - 13,2 | =134
90 -0.0018 + 17:0 |+ 21.5 4 5.6 L £ 8:F2
120 -0.0014 + 18.8 + T.24
150 -0,000% + 4.84 + 1,95
180 +0.0001 - 0.82 - 0:26

S,
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ANALYSIS OF PIAIN AND STIFVENED PLATES USING THE RITZ METHOD

D1 DEFLECTION AND STRESS ANALYSIS OF UNSTIFFENED PLATES

The analysis of an unstiffened circular plate was made with
the dual purpose of testing the efficacy of both the Ritz
theoretical method and the experimental Vybak model technique in
an application where a rigorous theoretical solution was already
known. (Appendix B gives reasons for the selection of Vybak as
a material suitable for this purpose).

The specific case considered was that of a circular, isotropic
plate of constant thickness. The plate was simply supported at its
circumference with a single concentrated, transverse load at its
centre. The reasons for this choice were that it was considered
that a simple support was easier to achieve in practice than a
truly fixed edge, and that a point load is very easy to apply
.although it was appreciated that the theoretical analysis.of stress
in the vicinity of the load would be unreliable.

A diametral section through the plate, defining the

co-ordinate axes is shown in figure D1.1
h load,P

t s AR

e R T
HE - M
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The system is axisymmetric which implies that the transverse
deflection of the plate is a function of radius only. A convenient
set of co-ordinate functions to describe the deflected shape is a
fourth order polynomial of the form

w=a+br+cr? +dr3 4+ erk
The fourth order term was anticipated to be the highest order
that could be handled without prohibitive algebraic complexity.

The imposition of the necessary geometric boundary constraints

gives:-
(1)  the deflection is zero at the support, i.e. w= O when r = R
(ii) the slope is zero at the centre of the plate,
. i.e.c‘}—:‘i: O when r = 0
Hence_b =0 and a = - (cR2 + de + eR4)
An admissible displacement function suitable for use in the

Ritz method is therefore

w=c(r? - R%) + a(ed - R’) + e(rd - r) (p1.1)

Due to the symmefry of the system, the expression for strain

energy given by equation (A4.6) may be simplified to:

Z?r(,R 5 5 ”
“..D_K gew b gw i -y)l.dw dew
U = 5 id [(er s 2(1 v)r - drz} drde (p1.2)

Substitution of equation (D1.1) into (D1.2) and evaluation of

the double integral gives, after extensive algebraic complexity

4 6
U=7D [m-vmzc’-' . 95‘}"’” B 42 1§L__l_5+33>> R” 2

5
+ 1201+9)R3 cd +2—"1~"-’¢§5—“’13de v 16{1+)})R('ec:| (D1.3)

The potential energy of the load, (), is given by
.fl.:JDub where wy is the deflection at r = 0
0 =P(cR? +dR + eR*) (p1.4)

Addition of equations (D1.3) and (D1.4) gives the total potential
energy of the system, V.

Where' V = ¥ (c, a, e)
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Hence for V to be stationary

i 0 ) Sd 0 and = 0

If these partial derivatives are obtained and the resulting
expressions re-arranged, three simultaneous equations are

produced thus:-

16(1+) 2h(7. VR 32(5+ MIR? || ¢ 1
S 24 2 sk !

12(14+Y) 2(5+ LY)R 5(7-&51‘}9 $ dp= o 1

| 8(14Y) 12(1+Y)R 16(1+VIR? || e 5

Solution of these equations gives -

c - _ [37+25)P
96(1 +»)wD

- 2,
e 18TDR

) i

Q= ——
64DR 2

Therefore the deflected shape is given by

bR2 TR S L
e EQG{M»]I} (R):| 18 [1 (R)J* sz.E (R) (p1.5)
and the maximum deflection is at the centre of the plate where

I'=0-

2 :
; Lo (37 +25D) 5 5
Central deflection = D [:96“ ) ¥ T + L

_ PRZ . (107+35Y)
"D S76(1+ D)

The expression for central deflection derived by classical methods

as given by Timoshenko and Woinowski - Krieger [3] is

PRZ . (34Y)

Central deflection = 7D 16(1 +)

The difference between these two results is only approximately

1.1% for typical values of Poisson's ratio encountered in practice.
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A comparison between these theoretical results and practical
test results is shown in graph D1.1 on page 180 which presents the
load against central deflection characteristics of a 400 mm
diameter 'Vybak' plate.

The stresses on the surface of the plate are determiyed by
the use of the stress equations (A4.3a) and (A4.3b) and the
substitution of the deformed shape from equation (D?.B). The

stresses cbtained are given by

2
: L 8P oes . S el S .gibe
Radial stress, -Op = Trhz[ 48(37 25Y) 6{2 ?}(R) ‘16(3 J}(R)]

2
. & P be 1 fan o LY e %
Tangential stress, Gg = 'n'hz[ 48{37 25Y) e (1+2)J](RJ % (1 3»](1?)]

The expressions produced by the classical analysis are

o, = %Ehﬂ} 1n(§-n

O, = i—’;?[mmln (%) o :[

These theoretical stresses, together with practically measured
values for the same 'Vybak' plate, are shown in graph D1.2 on
page 181.

The results show that the Ritz method is very satisfactory for
the assessment of deflection but that the prediction of stresses is
not so accurate. The reasons for the discrepancies in siress
prediction are:

(a) the assumption that stresses normal to the plane of the plate
are negligible is violated in the region of the concentrated
load. ‘

(b) the assumed deformed shaped used in the Ritz method does not
satisfy the condition of zerc radial bending moment at the
support. This bendinz moment boundary condition could easily
be imposed but it results in considerable algebraic difficulty.

(¢) stresses are obtained by a process that involves double
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GRAPH D1.1
DEFLECTION OF A SIMPLY-SUPPORTED PLATE WITH CENTRAL POINT LOAD

Simply- supported edge

Radius - 200 mm

Thickness
3.021mm

Material - Vybak
Temperature - 19.5°C

E = 2.88 GN/m2 ( Temperature corrected)
Y= 0.37

5 =t i
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GRAPH D1.2

. STRESSES IN A SIMPLY-SUPPORTED PLATE WITH CENTRAL POINT LOAD

PLATE AS IN GRAPH D1 WITH LOAD = 1IN
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differentiation of the deflection function for the plate.

The deflection function is in itself only an approximation

to the trie displaced shape and each differentiation process

tends to emphasize the difference between thcm, thus

resulting in considerable inaccuracy of the stress field.

The experimental results give satisfactory confirmation of
the central deflection but only an indication as to the trend of
the stress variation. The deviation between experimental and
theoretical stress values tended to be larger at the edges of the
plate than in the body of the plate. This may be explained by
errors in the theoretical stresses due to the reasons discussed
above or to practical difficulties of ensuring that the plate was
originally perfectly flat‘and resting evenly on the knife-edge
suppo?t at its boundary.

DEFLECTION AND STRESS ANALYSIS OF STIFFENED PIATES

The provision of radial stiffening on a circular plate has the
effect of introducing geometric asymmetry. The displacement field
has a tangéntial as well as a radial variation which must be
allowed for in the assumed displacement function.

The simplest case of radial stiffening is that of a single rib

of constant depth as shown in figure D2.1

FIG D2.1
For the purposes of analysis, a simply supported plate with a

central point load is considered in order that comparisons may be

made with the previous analysis of the unstiffened plate.
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The assumed displacement function is similar to the one used

for the unstiffened plate except for the addition of a further

term to allow for tangential variation in displacement. This

further term is required to give tangential variation without

violation of the boundary constraints previously satisfied.
of the simplest functions to fulfil these requirements is

fr2(r - R)cos 20

The complele displacement function is therefore

W = c(rz- R2) + dir3 - R3)+ e(r{’- Rz’)+ fr2(r -R)cos 28

One

(p2.1)

Due to the plate asymmetry the complete expression for strain

energy as given by equation (A4.6) is now required,viz.

ar r aroB

2rpR
Q_I f {[?ﬁw ,,ji.az_w ,_‘g_.ﬁ.w:lz_zn —m[&g (,L.am _L.aZw) - (.L.aZw -
£

0

ollar2 12 g2 32 \T dr 2,92

—12- -gﬁ‘ﬂgrdrd 8
r

Substitution of equation (D2.1) into equation (A4.6) and

evaluation of the double integral gives the total strain energy for

the plate as
UpsﬁDl}(‘l-})}chz g -%—(5+4))}R£'d2 5 l§{5+3)>}R5e2 . Jgtzwmrz"

+ 1200 9IR3cd + Z(7:59)R%de + 16(1+))3R1'c€|
It should be noted however that this stage is reached o

after very extensive and complex algebraic manipulation.

§2

(p2.2)

nly

From simple beam theory, the strain energy for the rib is

given by
oo = 2 ()L () o
The deflection of the rib is given by putting 6 = 0 in
equation D2.1 i.e.
w= clr2- R2) +dir3-R3) + elr® -R4) 4 fr2(r-R)
Hence by substitution and evaluation of the integral

Up = EI[4Rc? + 2R3 + 14RO €2 4 4R3F2 + 12R%cd « 36R%de

+ 20R% ef + 4R2cf + 16R3ce + 12R3dfj

(p2.3)
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The potential energy of the loading, L), is given by
j)_:-Pmb wherew, is the deflection at r = 0O

Hence
0 = P(cR% +dR3 + eR) (D2.4)
Addition of equations (D2.2), (D2.3) and (D2.4) gives the
total potential energy of the system, V, where .
vV = V(e,d,e,f)
Hence for V to the stationary

2L -0 oV = g V.0 and -0

Y 7 g 3e ' Qe of ©
If these partial derivatives are obtained, four simultaneous

equations are produced thus:-

= =3 3 rn
15E1 s K 12|§m5m+ 3K:]R 2 B—{5+3)J]+%I€IR2 20KR c 1
12{1 S K]. 3E‘(5+4‘D]+8K:|R 12 [35—{7+5m+3}<:]R2 12KR g i
4 y= —T?Eij-{ >
slem k] ueviex]r 1ef1) o kR2 4kr e 1
LK 12KR 20 KR2 [it21+z.m+8}<]ﬂ f 0
[l _ 4 & e, \ J
A3 U
Yhere X = TOR

The solution of this set of equations to give the constants
c, d, e and f is carried out using a small computer program.

Following the evaluation of these constants, the deflection
at any point on the plate can be determined from equation (p2.1).

The surface stresses may be obtained by the use of equations
(A4.%a) and (A4.3b) which, after substitution of equation (D2.1)

gives
Op =- —E’I—?gﬁ‘lamc + 32 V)rd + 4(3 +1)]r29 + [r(G—ﬁ} + 2R(V-1 [IfcosZQ}

Op =- fg{zn-mc © 311+29)rd + 4(1+30Ir2e + [r(69-1)+ 2R(1 -V)]fcos26

The numerical evaluation of theze stresses was incorporated
P

in the computer program that had been written for the calculation
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of the constants ¢, d, e and f. The program calculates the
stresses for a range of radii and angles.

The computer program was written in BASIC and is suitable
for use on a small computer as only a small amount of storage is
required and the most complicated 0perétion is the inversion of
a 4 x 4 matrix. The program is listed on page 192 and a typical
output is shown on page 194.

Experimental results were obtained from a series of tests
on g simply supported 'Vybak' plate with a single diametral-rib
of constant depth. A drawing of the plate is shown in figure
D2.2 on page 188 and a photograph of the plate under test on
page 189, The plate was subjected to a range of central loads and
measurements were recorded of the central deflection and the
radial and tangential strains at various points on the plate. The
tests were repeated after successive milling operations on the edge
of the rib to give a range of rib depths.

Graph D2.1 on page 190 shows the variation of central
deflection with rib depth. The curve demonstrates that the Ritz
method gives a very satisfactory prediction of deflection. The
discrepancy between theory and practice for small rib depths is
almost certainly due to unexpected behaviour of the experimental
plate as a plain plate had already given good correlation,
Possible reasons for the discrepancy are:

(a) the fillet of adhesive between the rib and the plate give an
additional second moment of area to the rib which was ﬁot allowed
for.

(b) the adhesive may alter the properties of the material in the
region of the joint.

(¢) the machining operations on the rib may affect the material
properties.

The effect of all these possibilities would becovme more
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pronounced as the rib depth was decreased.

The'typical stress-radius curves for one particular rib
depth shown in graph D2.2 on page 191 demonstrate that the Ritz
method camnot be relied upon for a satisfactory orediction of
stress levels,

The reasons for this unreliability are that the calculation
of stress levels involves double differentiation of the deflection
function. The deflection function is itself only approximate and
any error is magnified in the differentiation process. The
deflection function that has been used is also in error in that it
has only been made to satisfy the geometric boundary constraints
and not those of shear force and bending moment. This automatically
implies that the calculated stress values at the boundaries may not
be correct. A further error in the theoretical predictions is that
bending takes place about the middle surface of the plate. This is
an inaccurate assumption in the region of the rib and may seriously
affect the stress predictions near the rib. The effect on the
calculated displacement field is not very significant as the assumption
is generally valid except for the localized violation near the ribs.

The ekperimental results quoted in this appendix are
extracted from the extensive program of experimental work reported
by Edwards [35] who made use of the expertise previously gained by
Leighton [34] in the application of Vybak to stress analysis models.

DISCUSSION AND CONCLUSIONS

In the case of a plain plate or a simple stiffened plate the
Ritz method has been shown to give satisfactory predictions of
deflections but that the subsequent stress calculations are too

unreliable for practical use. The accuracy of the results is
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related to the choice of the assumed deflection function,but
improvements in this direction proved difficult %o implement as
indicated below.

The method has the advantage that once a pzarticular case has
been analysed and computerised, the program is so simple that
similar problems may then be solved at little cost.

The disadvantages of the method are considerable, however,
and include:

(a) the unreliability of the stress calculations. 1In principle
this may be alleviated to some extent by making the assumed
deflection function conform to shear force and bending moment
boundary conditions. In practice however this introduced even
more complicated algebraic manipul~tion than that already encountered
and was therefore abandoned.

(b) radial variation in plate thickness or rib depth, which often
occur in practice, is not easy to incorporate.

(c) multi-ribbed plates or the provision of a rigid central boss
make the deflection function more complex and the consequent
evaluation of the strain energy becomes a complicated procedure.

In conclusion, the method appears to be attractive for simple
plates if only a deflection analysis is required. For the more
complicated plate coufigurations that occur in practice the method
becomes extremely complex in its algebra and the stress predictions

become unreliable.
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FIG D2.2
DETAILS OF TEST PLATE SHOWING STRAIN GAUGE POSITIONS

Dimensions in mm,
—+— Radial gauges
—+— Tangential gauges

o

Gauges on topside of plate 20,
except at rib position 50

200 A

I 3
3<Rib depth,s < 40
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GRAPH D2.]
DEFLECTION OF A PLATE WITH A SINGLE DIAMETRAL RIB
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GRAPH D2,2
STRESSES IN A PLATE WITH A SINGLE DIAMETRAL RIB
PLATE AS IN GRAPH D2.1 WITH LOAD = 1N
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THE USE OF PLASTICS FOR STRESS ANALYSIS MODELS

E1

INTRODUCTION

One of the most common applications of plastics in stress
analysis, namely the use cf thermosetting resins for the manufacture
of photoelastic models, has been developed over many years. The
technique has been used with a considerable amount of success, but
in some applications the geometry of the structure to be analysed
may not be amenable to photoelastic study.

Modern instrumentation has made possible the processing of the

results obtained from large numbers of electrical resistance strain
gauges in a reasonable period of time. This, coupled with
miniaturization of the gauges themselves, has made the use of strain
gauge techniques on small scale models a practical proposition.
The manufacture of small scale models in metal, however, presents
its own problems. Firstly the fabrication of small models may be
practically difficult and secondly, small models tend %o be very
rigid with the consequent problems of measuring deformation under
load.

The advent of thermoplastics in commercially available sheet,
block and bar form has made the construction of very sophisticated
models a relatively simple task,as fabrication using adhesives is

fairly straightforward. The low elastic modulus of thermoplastics
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implies that easily measured deformations may be produced

with relatively small loads which are consequently easy to react

in a predictable manner.

The properties required of a thermoplastic for use in strain
gauged models are basically:

(a) it must be possible to produce sound joints in a fabrication,
together with the maintenance of consistent material
properties across the joint,

(b) it must be possible to attach strain gauges in a satisfactory
manner.

(c) a completed model should have high dimensional stability.

(d) the material should have a linear stress-strain characteristic
if possible and a low creep sensitivity.

‘A considerable amount of work has already been carried out on
the selection and characteristics of thermoplastics for model
making. The most notable contributions are probably those of
Wallace [32] and Swan [33] of the Naval Construction Research
Establishﬁent. They recommend Vybsk as a suitable material and
compare its properties with other thermoplastics. Further
investigations have been made by Leighton [34] and Edwarda.[351
with a view to confirming the suitability of Vybak and developing
g 'feel'! for its use.

A SURVEY OF SUITABLE THERMOPIASTICS

Three thermoplastics are in common use for stress analysis
models. These are marketed under the brand names of Vybak,
Xylonite and Perspex. Brief comments on their suitability for
this application are as follows:-

Vybak - Humidity has little effect on its mechanical properties
but temperature effects are large enough to warrant
consideration. The creepbehaviour of this material is

superior to the others, which is the main reason for



E3

Xylonite

Perspex

-—

197.

its use. The ideal material for static stress analysis
models would exhibit no creep characteristics at all.
Vybak creeps considerably less than the other materials
considered and even this can be kept under control with
the precautions advocated in section E3 below. It has
high dimensional stability, is easily machiged and
fabricated,and has isotropic properties. It is
commonly available only in sheet form.

Dimensional stability is poor and its properties are
very susceptible to changes in humidity. It is less
sensitive to temperature changes than Vybak but its
creep characteristics are inferior. This material is
slightly anisotropic and also presents an element of
fire risk.

This material is inferior to Vybak in both its
temperature sensitivity and its creep characteristics.
Its main advantage is in being readily available in

cast block form.

On the basis of these comments, Vybak was selected as being

the most suitable material for the modelling of stiffened plates.

The properties of Vybak will now be described in greater detail,

the observations being based on the work of Wallace, Leighton and

Edwards [op.cit.] and manufacturers' literature [36] .

THE PROPERTIES OF VYBAK

Blastic
Modulus

2.8 GN/m® at 23°C

For temperature fluctuations within the normal
variations of room temperature, the modulus decreases
by 0.85% for every degree Kelvin of temperature rise.
The relationship between stress and strain is linear

for stresses less than 20 MN/m2 and strains less than

0.7%

Poissons Ratio - 0.37
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Creep - The effects of creep ave negligible provided the
elastic strains are maintained below 0.5%. A five
minute settling period after the application of load
and before measurement of deformation is advisable
however if great accuracy is desired. This five
minute period is generally quite adequate as the
elastic modulus is only 4% lower after four hours
under load than its value after five minutes.

The attachment of strain gauges to Vybak sheet presents no
unusual problems and a satisfactory bond can be obtained using
conventional methods. For models made of thin sheet it is
preferable to use thin foil gauges. The stiffening effect due to
the attachment of small, thin gauges is generally low and, in the
case where bending strains are measured, the decrease in strain
due to stiffening is coumpensated to some extent by the gauge
being at an increased distance from the neutral surface of the
model due to the thickness of the adhesive.

One problem with the use of strain gauges on any thermoplastic
is that; due to the low thermal conductivity of the plastic, the
material iﬁ the vicinity of the gauge will increase in temperature
with the consequent lowering of the elastic modulus and increase in
the strain recorded. For this reason thé current flow in the strain
bridge should be kept to a minimum. For stability of temperatures
it is desirable that all gauges should be continuously energised.
This implies the existence of a dummy gauge for every active one
and hence a large number of gauges may be required for a relatively
simple model., Satisfactory results may be obtained by having a
limited number of dummy gauges which may be used with a selected
equal number of active ones and then repeating the loading cyecle
as readings are taken from each set of active gauges in turn. Time

must be allocated for temperature stabilisation as each set of

gauges is selected.
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