THE PRACTICAL ULTIMATE STRENGTH

DESIGN OF REINFORCED CONCRETE FRAMEWORKS

by

VEDAT DEVECI

.\ ._\l 2. \’) _\_f‘ 0 ._—

y & SC E.h/
(A OH—QD

A Thesis submitted for the degree
of
MASTER OF PHILOSOPHY

NOVEMBER 1975



- £y -

CONTENTS
PAGE
SYNOPSIS T
ACKNOWLEDGEMENTS iii
CHAPTER 1 HISTORICAL REVIEW
1.1 INTRODUCTION 1

1.2 PLASTIC DESIGN IN REINFORCED CONCRETE 2
1.3.1 EARLY INVESTIGATIONS ON PLASTIC DESIGN 3
1.3.2 DEVELOPMENT ON OPTIMUM DESIGN 19

CHAPTER 2 A. L. L. BAKER (LIMIT DESIGN) METHOD

2.1 INTRODUCTION 21
2,2 FACTOR OF SAFETY 22
2.3 THE IDEALIZED PLASTIC BEHAVIOUR OF 24
MATERIALS
2.3.1 Resistance of Section to Bending 26
Only
2.3.2 Beam Design by the Use of 30
Computation Charts
2.3.3 Column Design by the Use of 30
Computation Charts
2.4 DESIGN CRITERIA FOR FRAMEWORKS 31
2.4.1 Selection of Hinge Position
and Bending Moment Values 31
2.4.2 Analysis 6f Inelastic Hyper-
statical Frames 32

2.5 DESIGN EXAMPLES
CHAPTER 3 CP 110 METHOD

3.1 INTRODUCTION 55
3.2 GENERAL PRINCIPLES OF CP 110 METHOD 55
3.2.1 Limit States 56
3.2.2 Safety factors 58
3.2.3 Bending Moment and Forces for 60
Beams
3.2.4 CP 110 Requirements for Frame- 61
structure
3.2.5 Design of Beam Section 62
3.3 REDISTRIBUTION OF MOMENTS 65

3.4 DESIGN EXAMPLES 68



- ()~

PAGE
CHAPTER 4 OPTIMUM DESIGN OF REINFORCED CONCRETE S5y

4.1 INTRODUCTION 106

4.2 ASSUMPTIONS 106

4,3 BASIC CONCEPTS OF OPTIMUM LIMIT DESIGN 107

4.4 OPTIMUM CRITERIA AND OLD PROCEDURES 110

FOR CONTINUOUS BEAMS
4,5 DESIGN OF FRAMES 114
4.6 DESIGN EXAMPLES
. 115
CHAPTER 5 INVESTIGATION OF THE EFFECTS OF 30% RULE ON CP 110
METHOD AND COMPARISON OF VARIOUS METHODS ON
ULTIMATE STRENGTH DESIGN

5.1 INTRODUCTION 129
5.2 STEP OF THE ANALYSIS 130

5.3 ANALYSIS OF THE BEAMS 131

5.4 ANALYSIS OF FRAMES 171
5.5 COMPARISION OF VARIOUS METHODS 178

FOR THE DESIGN OF CONTINUOUS BEAMS

5.6 CONCULSIONS 164

REFERENCES

APPENDIX I BEAM AND FRAME DESIGNS



ACKNOWLEDGEMENTS

The Author wishes to thank Mr. A, W. Astill
for his help and advice during the supervision of this project.
Grateful thanks are also to Professor M, Holmes, Head of Dep-
artment of Civil Engineering, for his advice, and to Miss D. Drew

for preparing the type script of this thesis.



SYNOPSIS

Practical ultimate design methods in finding bending
moment envelopes are explained and examples are given. An attempt
has been made to find the relation between the ratio of total load
to dead load with respect to cracking lengths, hyper-plastic moments,
support moments and efficencies of design. Graphs are plotted and
tables are presented to verify such relations.

A new method is developed by using the relation of
cracking length to span, hyper-plastic moment, support moment against
the total load to dead load ratio. It is found that standard curves
can be plotted from which bending moment values could be found easily
for frameworks, These charts can be used for the reinforced
concrete members in which redistribution up to 30% of moments can take
place. This method of analysis is found satisfactory when compared
with other methods in the analysis of five equal spaﬁ continuous

beam,



NOTATIONS

CP_110 Method

Ac Area of Concrete

Ats Area of Compression reinforcement

AS Area of tension reinforcement

As prov. Area of tension reinforcement provided

As req. Area of tension reinforcement required

a Deflection

a' Distance from compression face to the point at which

the crack width is being calculated
d. Distance from the point (crack) considered to the
surface of the nearest longitudinal bar
Width of the section
d Effective depth of tension reinforcement
d' Depth to compression reinforcement
E Static secant modulus of elasticity of concrete
E Modulus of elasticity of steel
e Eccentricity
F Ultimate load
f Characteristic concrete cube strength

f:u Characteristic strength
fy Characteristic strength of reinforcemgnt
G Shear modulus
Gy Dead load
g Distributed dead load
he thickness of flange
I Second moment of area
h Overall depth of section in plane of bending
Bending moment due to ultimate loads
M, Maximum initial moment in a column due to ultimate loads
Ht Total moment in a column due to ultimate loads
Mu Ultimate resistaqce moment
N Ultimate axial Toad at section considered
Noal Axial load on a column corresponding to the balanced

condition



Qk Characteristic imposed load

q Distributed live load
Ay Characteristic live load per unit area
Sy Spacing of links along the member
u Perimeter
v Shear force due to ultimate loads
¥ Shear stress
Wy Characteristic wind load
% Neutral axis depth
z Lever arm
fgb Ratio of beam moments with respect of service stress
in beams
P red Ratio of reduction in bending moment
X’f Partial safety factor for load
Xrn Partial safety factor for strength
3 StrainAin concrete at the level considered
5 S =50
2_Asv Area of shear reinforcement
2 s Sum of the effective parameters of the tension reinforcement
0 Bar size

A. L. L. Baker Method

Ac Area of Concrete

A Area of tension steel

A; Area of compression steel

b Width of rectangular section

br Breadth of rib of T - section

D Overall depth of section

d, Effective depth of section

dg Depth of flange in T - section

E %%%g%% generally

E. Value of E for concrete at limit-state of yield L,
Es: Value of E for steel at limit-state of yie]d L,
fs Stress in stge]

£ Stress in concrete



s
Ym

Maximum stress in compression steel
K = M/bd* fc, , in which fc, = Gb* in a balanced section
K

K -

Average Compression stress/max compression stress
Depth of compression resultant/depth to neutral axis
K fc /Uw

ﬁ*d, = Depth to centre of compression steel when tension

js developed across section

Depth to centre of compression steel when section is
subjected to compression only

Koo eC/ecI
Ky = fs/fs,
Adjustment factor to Yk
Limit - state of yield of material
Ultimate 1imit - state of material
Bending moment
Bending moment at limit state L and L, respectively
ordinates of bending moment diagrams plotted along frame
members
Depth to neutral axis
Depth to neutral axis at limit L, and L,
Characteristic Load
Design load
Mean unit strength of material
Characteristic unit strength of material
Design unit strength of material <* = &k ¥m
Displacement in direction of action of Xi, when any other
unknown Xk, assumed equal to unity, acts on frame made
statically determinate by the insertion of sufficient
number releases.
Partial adjustment factors influencing ¥k
Partial safety factors of lead.
Partial safety factors for strength of material.

Yk = ¥ ¥m.

Rotation at any section between Timit L1 and Fz



Optimum Design Method

f Degree of end fixity f = o free ends, f = 1 fixed ends
Subscript referring to possible mechanism i = 1,2,....p

-l

J Subscript referring to critical section
k Subscript referring to particular design solution
1 Equivalent length over which Mpj = constant
m Number of independent mechanisms (equilibrium) equations
MJ Elastic envelope moment at section j
Mmax Max elastic moment over all j
pj Plastic moment of section j
n Degree of static indeterminacy

N Number of spans of a continuous beam
p Total number of possible mechanisms
q Subscript referring to applied loads
r Total number of applied loads

S Number of critical sections

Ui Ultimate safety parameter of mechanism i, i/ o
Ik Efficency index of design k, Vk/UE
Vk Volume of flexural steel in limit design
Ve Volume of flexural steel in elastic design
W Dead to live load ratio,wd/wL
NDNL Dead and Tive load, respectively
W Applied service load
“3 Ultimate load of the structure
_ ’ . y _ Mpj
x 3 Yield safety parameter of section j, >n3/ fxo _T:%%E_
$ iq Kinematic displacement of loads Wg
N 0 Specified overall load factor of the structure

Sij Relative notation of plastic hinge j
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1.1. INTRODUCTION

In the last few years considerable developments have
taken place in the field of structural concrete, particularly on limit
state and optimum design. Inelastic behaviour of structural concrete
has played an important part in recent design recommendations both in
this country and abroad.

The purpose of design may, perhaps oversimply be stated
as the provision of a structure complying with the clients requirements.
In design appropriate attention must be paid to overall economy, the
safety and aesthetics of the structure. The economic factor implies
that the investment covering both first cost and maintanence should be
the minimum consistent with the fulfilment of the clients requirements.
The safety implies that the risk of failure of all parts of the
structure should be sufficently small during its specified life. The
aesthetic factor implies that the complete structure should be consonant
with its environment and generally pleasing to the eye. In this case
the economic aspect will be the most important one, but the design
process entails finding the cheapest solution which is capable of
satisfying the appropriate safety and serviceability considerations.

The application of plastic analysis in the design of
redundant concrete structures is limited by the need for the fulfilment
of safety conditions as well as serviceability condition. The main
safety condition is the effective formation of the plastic mechanism
which depends upon the rotation capacity of plastic hinges, (BAKER,

A. L. L.; 1951,(40)) The classical methods of plastic analysis and
design of structural frames assume moment-curvature relations of
unlimited ductility. The limited ductility of reinforced concrete
sections had led some authors to base ultimate load design methods on

such Timitations by imposing maximum values of plastic hinge angular



discontinuites and has led others to emphasize the imp]igd ductility
without explicitly calculating discontinuites at or near failure. A
more general approach has been éeveloped in which the structure is
reduced to a determinate form as a basis for both the statical and
kinematical analyses but without implying that the selected hinges are
the actual plastic hinges (COHN M.Z., 1962). The 1imit analysis
methods, the ductility methods, and the flexibility methods of elastic
analysis can all be regarded as special cases of this general method
which is called optimum design.

Nowadays in this country, limit state design and its
application by design charts as given in CP 110, part 2, is a very
popular and useful method. The code of practice (CP 110, 1972) accepts
a new limitation to redistribution design and new load factors depending
on the nature of the load and the type of materials. Reasonably
economical designs result.In this chapter papers on limit design

methods and practical design methods are discussed.

1.2. PLASTIC DESIGN IN REINFORCED CONCRETE

The development of reinforced concrete design by plastic
methods was based on the inelastic behaviour of redundant steel
structures and the fundamental principle that a structure will not
collapse until sufficient plastic hinges have developed to form a
mechanism. Each hinge is permitted to develop its full plastic moment
and any rotation of the members rotation of the members on either side
of the hinge is assumed to have no effect on the development of any
adjacent plastic hinges. Plastic stee1 design will be considered valid
when it satisfies the following conditions.

a) Equilibrium Condition: Bending moment distribution must be in

equilibrium with external loads.



b) Collapse Mechanism Condition: A sufficient number of plastic
hinges must exist to transform either the whole or part of the
structure into a mechanism.

c) The Yield Condition: Full plastic moment nowhere to be exceeded.

It is thg angular rotation which differentiates between
plastic theory applied to reinforced concrete and plastic theory applied
to steel. The permissible rotation value (& ) must be known in addition
to maximum moment which can be carried by the section. The reinforced
concrete designer when using plastic methods has therefore to restrict
not only the number of plastic hinges but also the rotation at each.

The ultimate strain in tension reinforcement varies from less than 0.5
to over 2 per cent. To avoid excessive flexural cracking, it is
desirable to 1Timit hinge rotation for structural concrete even when
considerable rotation capacity is present after extensive cracking.

The other important respect in which Timit design of
structural concrete differs is the distribution of moment of resistance.
By varying the amount and location of reinforcement, the positive and
negative resistancelof structural concrete members at ultimate load
capacity will be reasonably close to the moment distribution correspond-
ing to elastic behaviour. It is possible arbitrarilly to choose
locations and plastic moments for a number of hinges required to form
a mechanism in such a manner that the equilibrium conditions are
satisfied. The yield condition may then be satisfied by proportioning
reinforcement to avoid yielding between the chosen plastic hinges,

1.3.1. Early Investigations on Plastic Design

It is difficult to trace the origin of the concept of
plastic design but as early as 1914 KAZINCZY G. V. (41) sugggsted the
development of plastic hinges in continuous structure near ultimate load
for steel structure. He also conducted in 1933 the first extensive

test series demonstrating moment redistribution in reinforced concrete



structures He tested ten two-span continuous beams loaded at third
points (1) and he found that all beams failed when both span and
support sections reached their maximum moment capacity as eva]uated
by the ultimate strength theory of that period.

Glanville and Thomas (1935, (35)) conducted a test series
to verify and demonstrate the redistribution of moments in reinforced
concrete beams and frames as a result of yield in either the concrete
or steel. The beams tested were two-span continuous beams loaded with
concentrated load in each span;no relationship was found between the
amount of steel used and the degree of redistribution attained. For
experiments on frames, pin-ended single bay portals were chosen. It
was found for the former case that the columns fail first and it was
seen that further analytical and experimental work was evidently
necessary to enable design engineers to predict, with confidence, the
safe degree of redistribution in any one particular structure.

In 1949 A. L. L. Baker (3) put forward a trial and error
method of computing the amount of moment redistribution in continuous
beams (1949, (3)). -He showed that even in the elastic - plastic stage
the slope of a beam could be expressed as 4/1%%- if EI values for the
elastic and plastic stages are used appropriately. He also expressed

the moment of inertia in terms of the deformation of concreke ¥13(b1)

'3 o(\cué.&\b
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fig. 1.1.
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If the case of a two span continuous beam symmgtrical]y
loaded with a uniformly distributed load is considered, the moment
diagram for the beam is as shown in fig. (1.2.) where Mf and MF are
the free and redundant moments respectively. Applying the moment area

principle;

stops ot =g sa [ Meods-d | Prods io.ini(?)
4 £l ¢ | El
Me diagram
3 M¢ B =
F'x-—;‘
Lats
MF c\iq_qcu\‘ﬂ
fig (1.2.)

For a particular percentage of steel in the support
section, Ku could be computed for the various sections along the length
of the beam between the support and first yielding sections. The
appropriate EI value could then be determined. The correct Mf value
could be obtained by trial and error so that Equation (2) was satisfied.
It was shown by this experiment that redistribution of moments due to
primary crushing of concrete was Aot as effective as that due to primary
yield of steel.

Following the introduction of the "Plastic Hinge Theory"
of structural steel by J. F. Baker, A. L. L. Baker proposed the following
equations which provided that strains at critical sections were checked

(1951, (4)).



SOI =+ x[ g” +X28|q_ .......... +xn 6 'in = - 91
Son + Xl Sln +Xl SJ—-H ---------- +xn 8 nn = -gn (3)
where, Siri* A e gm are the influence coefficents for

hinge rotations of the framework when unit moment is applied at hinge
section 1,2, etc.
5,0, .. -6y are the plastic rotations at hinge 1,2, ....n
in rotations.

—_

X 3( 'xn are the unknown plastic moment magnitudes
Ty TONONE I

at plastic hinges.

In subsequent years A. L. L. Baker and his team developed
much analytical and experimental data to verify the validity of the
equations (5, 6, 7, 9, 17, 18, 56, 57). In 1953 A. L. L. Baker introduced
the trial and adjustment method and at the same time he established some
safe limiting©- values (1953 (5)). The fundamental principle of the
method is to assign arbitrary values to'—xhI > Sg_ .......... X_in Equ. (3)
and evaluate the values. If the© values so obtained are less than
the safe 1limiting ones, then the chosen'il s ?; .........:fg values can
be used, otherwise they are adjusted until the values are reduced to
their permissible magnitudes. Baker's fundamental equation is general
and applicable to all statically indeterminate reinforced concrete
structures neglecting fatigue. The main difference between elastic and
plastic analysis is that, elastic analysis in concerned with the
behaviour of the structure before elastic breakdown of the materials

whilst plastic analysis is concerned solely with the behaviour after

elastic breakdown in certain critical sections .



o I(EI) /(m (4)

where, ép = length of spread of plasticity along the longitudinal
axis of the member.
M = Moment at sections along yield length.
(EI)p (EI) ;a1ue after yield.
(EI)e (EI) value before yield.
A. L. L. Baker derived and recommended the following

expressions for & (1956 (8)).

{
S = -jéﬁﬁg~ (tensile hinges) (5a)
- &
o= (Eu 3 s)fp (compressive hinges) (5b)
where ép = length of yield.
€ u = plastic strain of concrete
&€ s = strain of reinforcement on least stressed edge
kud = the depth of neutral axis at the instant concrete is crushed.

d = effective depth of the section.

Bakef recommended £u = 0.001, (€u - &€s) = 0.001 and
ép = d as safe limiting values to be used in design which is based on
results obtained from tests of statically indeterminate members.

A. L. L. Baker and C. W. Yu demonstrated for rectangular
frame structures that further simplification could be achieved and simple
design formulas may also evolve (5, 6, 7, 57). A. L. L. Baker (1956 (20))
also suggested that hinges may conveniently be assumed at the intersections
of beams and columns and he also has shown how graphs can be plotted
to give ©&- values directly with respect to stiffness ratio between beams
and columns. The method proposed by A. L. L. Baker is a very lengthy
process and C. W. Yu (1954 (56, 57)) developed a "Block Relaxations"

procedure that converges more rapidly.



The actual deve]opmgnt of plasticity in thg hingg
sections as established by C. W. Yu was verified experimentally and
generalized analytically by Chan (1954/55 (17, 18)). Referring to
Equ. (4) it is evident that the length of yield is a function of
1) The moment - strain curve of the section.

2) The shape of the bending - moment diagram due to external load.

If the length of yield ( ﬂp) is determined from the
above relationship, then o is represented by the shaded area of the
curve as shown in fig. (1.3.c). Chan showed that the ultimate strain
of the concrete could be controlled by placing an appropriate quantity
of binders at the hinge section to increase the critical shaded area

in fig, (1.3.c)

Mom en‘f

- Skrain
‘:) t"\omﬂt\-—s-xrm'n c'J'rqgr‘qm_
=t

d) Bea émﬁ Momn’( D\u&tnm ’

"N

Mp/é,t)l.

Me

A kp

c) Curvature diagram
9. (1.34)



It has been shown that the concrete strain can bg

safely increased to as much as 0.01 when suitable binders are addgd.
With this high strain it is possible to accomnodate all practical and
economical modes of moment distribution in a redundant structure.
However cracks and deflections under working load conditions may often
limit the permissible strains. This analysis is very doubtful, especially
in a rigidly jointed structure where the sudden increase of rigidity near
the junction causes a very complex distribution of localized stresses.

L.H.N. Lee (1955, (43)) suggested that, by assuming a
stress - strain curve in concrete compression, a relationship could be
established between moment and curvature which could be used as follows:

By differentiating the general equation of equilibrium.

4 deg de, e
fc = PEs (ESa-é: + 26 de. + 9 ......... (6)
where

fc = strain in concrete

€s = tensile strain in steel

€c = compressive strain in concrete corresponding fc

By measuring ©c and €s from beam tests a curve for fc can be traced

with respect to e Strain - stress relationship could be approximated

co

by fc = He. - Be*, where H and B are constant and equal to (2 jEﬁL)
c c 3

and TEEETT respectively, fcm denotes the maximum compressive stress in
€cn .
concrete, and & its corresponding strain. The horizontal force

equilibrium can be written

k> (g- : 5’%—“1): pEs (1 - k) (7)
The moment of resistance can be expressed as
Mr = bd3k‘x[ﬁ6 (3 = k)-—]-g-;lckd(!l - k)] (8)

where k = depth of neutral axis

;]C= curvature.
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The relationship between Y and M can be derived from Equ. (7) and (8).
Then the distribution of moment due to plasticity for fixed-end beams,
continuous beam and other simple structures can be determined in the
conventional manner.

G. C. Ernst (1955 (32)) restated moment area theorems to
include the behaviour of structures in inelastic range. Accordingly, a
unit rotation diagram is used instead of the conventional M/EI diagram

for the elastic case (fig. 1.4.)

i

’[i\ TD

19, (1.4.)
For the equilibrium of forces
Pl =k fav~ (9)
and for linear strain disbribution

ek
oy | Tk (10)

The unit rotations at any section = qb = ( et + et)/d where d is the

effective depth. From Equ. (9) and equ. (10)

Pa-ee 420 - % Ty (11)
= inte
where, ©e = Unit rotation at yield stage
Su = Unit rotation at Ultimate stage
p = Percentage of steel
(i = Stress in steel



AT =

fav = Average concretp stress
k = Ratio of depth of neutral axis to thp effgctiye depth of
beam
e. = Strain of concrete at extreme fibre
ey = Strain of steel.

Evidently C?o and (ﬁu can be determined by substituting the
appropriate values of Bl veenens etc., in equation (11) and the magnit-
udes of all the plastic rotations can be determined.

G. C. Ernsk (1957) conducted a series of experiments to
investigate the amount of plastic rotation in simulated beam and
column connections for both slow and fast loading. The primary object
of the tests was the study of plastic deformation available at failure.
The principal conclusion derived was that the amount of plastic rotation
increases with decreasipg steel percentage confirming Baker's earlier
finding that primary crushing of the concrete gave very little redist-
ribution.

R. Gartner (1957 (34) recommended a more rigorous me thod
of estimating © values obtained by Baker's method. In the light of
Chan's finding he also assumed that the Tength of plastic yield is a
function of the external bending moment diagram ( gp = —Mg—ﬁ—EEL). He
defined a steel hinge as one in which the concrete commenced to yield ’
before the steel. The former ©-= Esﬂp/(l - ku)d while for the latter

© = Euﬂp/d. For a section reinforced with particular percentage of
steel maximum elastic moment(ME) and Maximum plastic moment (Mp)
evaluated by using the appropriate ku and < values (fig 1.1.) and hence
the © values can be checked. This evidently is a compromise between
Baker's and Chan's method.
W. T. Marshall (1957, (44)) introduced a formula to

evaluate © involving the elastic and plastic moment of section. He
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suggested

A M
= (1 -5F) (12)

G

I

where
Ay = Moment of the area of the free bending moment diagram

about support B
E = Modulus of concrete, assumed equal to 1/ntime551¢ modulus
elasticity of steel.
Mp = Plastic moment assigned to the hinge section.
ﬂ = The length of fixed end beam.
Me = Elastic moment

I = Moment of inertia of transformed section.
According to the formula the elastic distribution of moment must be known
first before © values can be assessed.

A. M. Mattock (1959 (45)) conducted two series of tests
on two span continuous beams designed by an arbitrary redistribution
method. He reported that, redistribution of design bending moments for
reinforced concrete continuous beam by amounts up to 25% does not appear
to affect adversely the performance of the beam either in the working-
load range or at failure. Cracking and deflections of beams with
redistributed design bending moments were Aok more severe thaa {\_m{ ot L"?‘““S
designed for the same load, but using distribution of bending moments
predicted by elastic theory. The factor of safety against failure of
reinforced concrete continuous beams is unaffected by redistribution of
the design bending moments.
In the early 1960's Commission XI of the European

Concrete Committee (C. E. B.) under Prof. A. L. L. Baker's chairmanship
initiated and co-ordinated a fa%r]y comprehensive experimgnta] programme
that was conducted at various research establishments in a number of

countries. On the basis of this work Baker suggested that (25, 26)



13 =

) - (Ecun;d Ece) ﬂp (13)
where ep = -—E-‘——E&- d

Expression (13) was recommended in the report on "Ultimate Design of
Reinforced Concrete Structures", published by Institution of Civil

Engineers (1962,(52))

S - | Ecu - Ece) ?-p (tension occur at

N ud critical section) (142)
p = (Eeu - Ece) ép (no tension)
d
where €ce = 0.002
Ecu = 0.0035  (unbound concrete)
Ecu = 0.012 (well bound concrete)
- 1
Qp K klksz (i) g d

kp = (1+ 0.5,5)

Pu = ultimate capacity of the member for axial load when
no bending moments act.

P = ultimate axial Toad for the member (allowing for the
bending moment when present.)

~
n

0.7 (mild steel) : k 0.9 (cold worked steel)

0.9 whenfCu = 13.8 N/mm%

~
n

0.6 when €, = 41.1 N/mm k3

After two years Baker and Amarakone (1964 (13)) suggested
the expression which gives a precise value for Ecu,then the expression

(14) becomes:

©p = —Eﬂ-;—-‘gﬂ x 0.8k k; (2) (15)

where 0.7< k, < 0.9 steel parameter
0.6 <,k3< 0.9 concrete parameter

Kor = (1+ 0.5 'p%) Axial forces paramter
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Amarakone in 1966 (14) gives a new expression for
permissible rotation in his research report which is derived from

expression (15). He proposed that;

Kk, = 0:5

Z L

£ =6

boce o g - i
a’f.j = 0.8k k.5 =0.8x0.5x6=2.4

then,
©p=08(&c -Ec)kk; ()
]

©p=2.4(¢tc -E) (16)

A. H. Mattock (1964 (33)pp. 143 - 183) tested thirty-seven
beams involving the following variables; concrete strength, depth of
beam, distance from point of maximum moment to point of zero moment,
and amount, and yield point of reinforcement. He proposed a method
whereby the rotational capacity of hinging region in a reinforced
concrete beam may be calculated.

Inelastic rotation = ©u = ( <}5m - QSy Mu/My)  (17a)

Siu _ 2 _ g~ g
. 3 d . S = d
where, Su="Yu = : y= Yy =

'*fu;*ry being the curvatures at ultimate and at yield

©tu = Total inelastic rotation at ultimate, occuring between the
section of maximum moment and an adjacent section of zero moment.
©u = Inelastic rotation at ultimate, occuring within a length d/2 to
one side of the section of maximum moment.
q = tension reinforcement index =P fy/fc
q' = Compression reinforcement index = p fy/fc’



N .

gb = tension reinforcement for balanced ultimate strgngth condition
Pbfy/fc’
Mu = ultimate moment resistance
My = Moment at yield of tension reinforcement.
p,p' = tension, compression steel ratio respectively —%%T —%%l
Ty, 5y = yield point stress of Compression and tension, reinforcement
respectively, and
€cu = 0.003 + 222

(17¢)

W. G. Corleys (1966 (30)) revised Mattock's original
expression (Equ. 17a,b) in 1966. He conducted a test series of
forty simply supported beams loaded at mid span at Portland Cement

association (P.C.A.). He presented a new equation by changing Equ. (17c)
I z
into €u =0.003 +0.02 2 + (ﬁz—o—ﬂ’—> (18a)

and total rotation <# occuring in length d/2 is given by the expression

(b = ﬂf %. He also revised the equation (17b) which was found by
Mattock to give a relation between the ratio €9%u/-€}u and the degree
of reinforcement (q - q' )/qb

= 0.4
= = 14y £ (18b)

This equation represents a family of curves that define the spread of
yielding as a function of the geometry of the member.
F. N. Panell etal (1966 (48)) proposed a new expression

from their test results:

Qim = 20012 , §.0085 - 0.59, forq <0.17  (19a)

Yo

O im = -0—'%0—‘?— ' §>0.17  (19b)

Asfy _ _ Asfy
bdcu - bdfc x1.2

!

0.833q ; Cu = 1.2 fc'

where qu =
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Cu = Compressive strength
q = pfy/fc’

qu = pfy/fcu

fc' = Compressive strength

E. F. Burnett (1969 (29)) analysed the rgsu]ts which
were obtained by Amarakone, Baker and Amarakone, Corley, Mattock and
Panell etal. He drew fig (1.5) and gave the following comments:

12 For non dimensionalized moment shear ratios (m/Vd or z/d) of more

than 3.0, at least two expressions those of Amarakone and Corley.

TBP"-I“ ?.: 1-18 -/a
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fig. (1.5.)

Influence of Amount of tension Reinforcement
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provide comparable values for ©im.

2° Neither the volumetric proportion of lateral reinforcemgnt, nor
the spacing of ties has a significant influence on© im.

3° 0n the basis of fig (1.5) it would appear that in a quantitekive

sense, Mattock's expression is either unacceptable or other
expressions are extremely conservative.

4° For z/d> 3 all indicate that the inelastic rotation capacity
is almost independant of the moment, shear force ratio.

52 For z/d € 3, it would appear that both Mattock's and Corley's
result conflict with those of Baker and Amarakone as well as
Chan and Bakers early theoretical expression.

The expression for values of z/d < 2.7 is therefore
questionable, the diversity of these trends is indicative of the
complications introduced by non-flexural effects such as shear and
strut or arch action.

Cranston and Reynolds (1970) come to the conclusion,
on the basis of their tests, that shear force has only a marginal
influence on rotation capacity provided members were designed in
accordance with the latest British code (CP 110) for structural

concrete, and they also proposed new expressions for £

3 E5=03fy= 8%y (20)

E, = KN
2250 ¥me A

\

The European Concrete Committee accepted 1imit state design in 1970

and also its relationship to the classical permissible working stress
approach which is still likely to be found useful. In this concept,
consideration is given to safety and sgrviceabi]ity at all stages of
structural behaviour. Normally three 1limit states are considered;

the limit state of ultimate strength, the serviceability limit state

of deflections and cracking under service loads. The chance of reaching

the 1imit state of ultimate strength is made very remote and much
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smaller than the chance of rgaching thg serviceability limit state of
cracking. The aim in 1imit design is to ensure that the chance qf gach
limit state being reached is substantially constant for all members in
a structure and is appropriate to that limit state and consequently
there is an adequate degree of safety against the structure becoming
unfit for use.

In 1972 the structural use of Concrete (CP 110) was
published by British Standard Institution which accepted limit state
design, two partial safety factors and a new development to redistrib-
ution design. Two safety factors were introduced instead of one overall
factor; enabling the uncertainties in assesing the loads and their
influence on the structure to be considered separately in design from
the uncertainties associated with the performance of the constructional
materials. A detailed method of calculation for cracking and deflection
was also given in CP 110. Limit state design is very easy to apply
with the design chacks = given in (CP 110. part 2).

Experimental investigations of the flexural rigidity of
T beams for frame conducted by C.S. Krishnamoorthy, and C. W. Yu,
(1973). The moment curvature relationships for various sections and
the distribution of flexural rigidity (EI) along the beam discussed
equivalent EI value for T beams to be used in limit design of reinforced

concrete frames are expressed in terms of critical section properties.

_ Mu,x: . My (d - x)
EI i ko : Es. ‘ (21)
where Mu, = Moment of resistance at limit L,
x = depth of neutral axis
x, = depth of neutral axis at limit e
€c, = strain at concrete at Limit L, » limiting value = 0.002

m
[
I

strain at steel at Limit l'
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1.3.2. DEYELOPMENT ON OPTIMUM DESIGN

The optimum redistribution principle proposgd by Valeriu
Petcu (1961 (49)) using the factor of optimum redistribution. The idga
of deriving such solutions in a simpler way has also been advanced by
M. Z. Cohn (1962 (31)) using the concept of yield safety instead of
redistribution factor. Early developments of the equilibrium methods
were given by M. Z. Cohn (1965 (21)) along with the classification of
1imit design methods and full redistribution design (F.R.D.) and 1limited
redistribution (L.R.D.) Solutions for continuous beams. A simple
approach to the compatibility of such solutions was suggested also by
M. Z. Cohn (1964 (33)). The effect of loading history and code
definitions were studied in 1967 (22).

Apparently the first paper on optimal design of reinforced
concrete beams and frames is due to Massonet and Save (1963 (45)).
Initial attempts to cast the design problem as a set of linear equations
and inequalities within the framework of the equilibrium (serviceability)
methods (1965 (21)) resulted in mathematical programming formulations by
M. Z. Cohn (1968 (23)). Cost, potential energy, material consumption
were some merit functions adopted by Massonet and Save (1963 (45)), and
by Kalisky (1965 (40)). The linearized merit function (single step
variation of member resistances) adopted by M. Z. Cohn Etal (1970 (25)).
Solutions by the kinematic approach were first given in (23). Computing
techniques were developed by Grierson and esmbinakions of (OLD) with
(F.R.D.) and ultimate strength design (U.S.D.) solutions were studied
in (1970 (25)). An extensive investigation on the application of
equilibrium methods to continuous beams by M. Z. Cohn and Grierson
(1968 (24)) extends previous results in (1965 (21)) clarifies the factor
affecting optimal solutions and examines the relationship between OLD

and FRD solutions. The kinematic approach was generalized in (1972 (47))
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to allow for all major design criteria; including both g]astic and
plastic compatibility.

A procedure that avoids the difficulties of determining
the complete set of active constraints in the kinematic approach by
iteratively identifying the component constraints in the set is due to
Ishikawa and Grierson (1972 (39)). The role of compatibility condition
in Timit design is still under discussion. An attempt to include it in
design process under assumption somewhat similar to (1970 (36)) is
presented by Munro, Krishnamoorthy and Yu (1972 (47)). Talwar and
thn (1972 (55)) demonstrates that the plastic compatibility criterion
is not a critical consideration for braced frames in current multi-
storey buildings, and therefore it need not be included in the initial
phase of the design.

More recently the techniques of mathematical programming
have successfully been applied in investigating optimal solutions for
continuous prestressed concrete structures, and including probabilistic
considerations in single and multi-stage optimal designs (1972 (27)).
Some possible code formulations and practical recommendations allowing
for inelastic effects in structural concrete were suggested in (1970 (29))
by M. Z. Cohn Etal. Further efforts are required in order to give
structural concrete designers full benefit of existing knowledge in

optimal 1imit design.
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A.L.L. BAKER METHOD
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2.1. INTRODUCTION

The 1imit design problem of reinforced concrete
structureﬁinvolves the derivation of design plastic moments for all its
critical sections when the ultimate load is known. Plastic
moments will be correct if they satugy  the basic condition of
a) Limit equilibrium
b) Rotation compatibility
c) Serviceability
Limit equilibrium and rotation compatibility assure the actual
occurrence of the mechanism and therefore represent the necessary and
sufficient conditions for plastic collapse of reinforced concrete
structures. Limit design methods may be divided into two broad
classes. Methods of the first class are based on limit equilibrium
and compatibility considerations with the serviceability conditions
to be investigated separately. These are called compahkﬂﬂg methods
(A.L.L. Baker, Y. Guxon, G. Macchi).

Methods of the second class are essentially based on
1imit equilibrium with serviceability conditions and compa¥d>\¥§
conditions being dealt with independently. These will be called
serviceability or optimum limit design methods.

The process of deriving a design solution requires
certain basic assumptions and a set of design criteria. Basic
assumptions define a) the loading pattern, b) the ultimate load and
Joading history, c) plastic moment design d) the idealized behaviour
of materials. Design criteria define a) limit criteria (nature of
ultimate conditions; configuration of structure at ultimate stage
and specific ultimate requirements), b) serviceability criteria.

In this chapter the most popular compat%bility method
which may be called the A.L.L. Baker Method is explained and examples

on beam and frame design are also given.



o

2.2 FACTOR OF SAFETY.

"Load-factor" has been introduced to get over the
difficulty which occurs when the load-stress relationship is not
linear and is defined as the ratio of the ultimate load to the work-
ing load. It thus has a different value from the "stress factor of
safety". A suitable factor of safety can be determined for structures
having redundant members or for structures subjected to buckling forces
by a process of judgement in which the influence of various factors
on the probability of failure is considered. Basic values of the
g]dba] factor 3k equal to (xk'=XL§M) 2 for failure due to the concrete
and 1.6 for failure due to steel may be assumed and adjusted to K.Sk,
the value of "K" being obtained by estimating appropriate values for
adjustment factors as given in Table 2.1. The values selected for the
"weights" of the adjustment factors should be between a minimum unity

and the maximum values given. Variations in the strengths of concrete

Adjustment Maximum ik
factor weights Description
¥, 5 Consequence of failure serious (human or
economic)
3 1 High-grade quality-control
-}
3, 2 Medium-grade quality-control
3* 2.5 No-warning of failure
35 3 No-transfer of load to stronger parts
J 2 Medium-grade maintenance
A g
3 2 No load control
Iy 5 Support conditions uncertain
&y 2 One simultaneous type of load

Table 2.1 Xk values by "weighted" factors.




e 23 =

and steel can be fully taken into account in determining values for

the characteristic strengths so that the value ofg}lcan be unity for

both materials and that the values of’})’S and Xk should be 2, unless a

reduction can be justified by estimating the weights for influential

factor and applying the expression of

gk = s Estimated weights N
32

The wvalve of ¥, for concrete or steel should be between 1.25 and

2.0 according to Table 2.2 in regard to safety. The full value of

weighting factor must be used unless conditions are entirely favourable.

{ Weighting factor
Factor for most unfavour-
able conditions

Seriousness of results of failure

(human or economic) 8
Workmanship 4
Loading conditions 4
Importance of member in structure 4
Warning of failure 3
Loss of strength due to deterioration 1

Table 2.2 Values of weight for different factors.

The following factors must be considered when

estimating the values of safety factors.

1)
2)

4)

Design strength = < = 4k/¥m‘

The value of < must be reduced when necessary to allow for fatigue
exceptional wear or corrosion.

The value of Qk must be incfeased, when necessary to allow for
vibration or dynamic effects, unless special calculations are made.

Additional stresses, when significant must be calculated and allowed
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for, such stresses may be due to
a) the ultimate eccentricity of loads or thrusts
b) the ultimate settlement of supports
c) internal displacements due to temperature, shrinkage, creep
and residual strains due to non-recovery of creep or cracking.
5) The influence of age, temperature and biaxial or triaxial
conditions of stress on the value of < for concrete must be
considered.
6) Compatibility of stress and deformation must be satisfied in

addition to the requirements of equilibrium.

2.3) THE IDEALIZED PLASTIC BEHAVIOUR OF MATERIALS

One spanofa beam, loaded as shown in fig.2.la.,
may be considered under increasing load until failure commences by
a hinging action at one or both supports. The behaviour thereafter
depends upon the rotational capacity of the section. If the
rotational capacity of the section is adequate as in a steel beam
then deflections increase until a third hinge occurs at or near the
middle of the span. If it is not adequate extensive crushing of the
concrete occurs accompanied by considerable loss of strength of the
hinging section and consequent failure of the beam.

In order to calculate these rotations it is necessary
to determine a suitable relationship between bending moment and
curvature. It has been shown by A.L.L. Baker that a suitable

relationship is the simple bilinear curve illustrated in fig 2.1d.

The line 0L1 shows a linear relationship between bending moment and
curvature gﬁwhich can be defined as the reciprocal of the radius
(Q‘= -‘l— . The equation of line OL1 may be written ¢= KM and, in

the simple theory of bending
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The Tine OL] implies a constant value for EI up to point L]. The
value of EI for the member in compat%bi]ity calculations with respect

to the ultimate 1imit state at L] is assumed;

Er =thnds o pp o M(iem)dy

= e
(& S,

From which it is seen that, the term EI has a new meaning which is
based not just on the properties of the materials and dimensions of
the section, but on the integrated curvature at a particular

condition EI, therefore depends on the stress in the concrete,

2.3.1) RESISTANCE OF SECTION TO BENDING ONLY.

Assumptions:

1) The strain in the concrete and the steel is proportional to the
distance from the neutral axis for all conditions.

2) The distribution of compressive stress in the concrete may be
assumed to be parabolic, rectangular parabolic or linear according
to the selected condition.

3) The tensile strength of concrete is zero.

4) When reinforcement is extended sufficiently beyond a section to
develop full bond strength, no slip takes place between the
concrete and steel. The same strain is therefore developed in
the reinforcement and in the surrounding concrete.

5) The coefficients of thermal expansion for steel and concrete
are equal for practical purposes.

6) Stress due tc shrinkage of the concrete during setting and hard-
ening are neglected except in special cases such as arches and

long members.
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The section design for reinforced concrete frame-
work is best carried out by a procedure of trial and adjustment with
the aid of a suitable computation diagram which is given in A.L.L.
Baker's book (1970). A practical method is to assume the dimensions
of concrete sections and to check their resistance to bending and
shear in terms of concrete strength or by reference to computation
charts.,
It is easy to obtain a safe limiting value of the lever arm from the
limiting values of strain. A safe value of the required area of
tension reinforcement can then be found.
Balanced sections have the limiting values of n, and n, and 1, and
1, « When a section contains less tension reinforcement than the
value required for a balanced section at 1, and L, it is said to be
under-reinforced for 1, or 1_l . When it contains tension reinforcement
in excess of this value and which is stressed below the design values

it is said to be over-reinforced. fig. (2.2)

e JTTI PbD s’

~
:—-
D

- e,
;LJ'FM gq v, PBOf,
: F i
/ | /
Undec - ra\ngo"ﬂu\ O ver - rciqfqu
a) strain b) stress c) strain d) stress

fig. 2.2.
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The equations governing the preparation

of computation charts such

as those given in A.L.L. Baker's book (1970; fig 2.26 - 2.30 and

fig. 2.33 - 2.48) are tabulated in table 2.3. for beam design and in

table 2.4. for column design.

Section Formulae No.
Rectangular moagl o .eC
beam A1 where kb = e (1)
ké c, 4
bd <" bdxp* kg ec!
M__ = k,n(1 - kyn) 3
barE !
f‘
k
P legl* =Lk'n (4)
7
T Secti B =k ald-k.m)k? /ﬂﬂ"w' 1-k,"
ection ba b - , N '_.1")' , (n-s)-k =5/ |(1-kzn)-s(1-k, ") (5)
f L i br
s = _1 1k n-k," (n-s) (--—-—j_l 6)
p—a)L k-; I I b (
1
For k% betweenl.0 and 1.75
i (1‘-’—5) s (1%)+ 2L K, n(1-kyn) (7)
ba <5
p T LG%”) s+ Kyn (8)
b 1

Table 2.3.
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Formulae No.
Limit L~ is similar to Limit L, by replacing < a, for <a‘
gg and fs;l for fs,
— U ?
- TR, R [ O TR TR
8o bdsb* 17 ¢ b* Z A% < b* 9
gf:
00 O R, i - [ | 2 (K= 1) (fs', +fs, ) a,* 10
5§ bar<pF raF e T 7 Ky By Farn s o
g [is
=
His = fo. (s, +fs;) <a*
BDUb* 4b* (fc fc, ) +<b + .l{‘a =1 e 11
= o
o
= N
wn O
—
Q O
i
O T 1
] da¥ o v (3-Ky) o da*e (3-Ke
< DDA b* Qb*(fct fc, ) (3K, =K, K )+p4b* ) éa':r qu*f ldda';* 12
=
G-
o
@
gm EI Minld\ M'I (.i > nl)_l
© e e
[ feu = P-c.‘ 1
= o+ ?J ebdits | 7 Ksﬂ_*
es| kﬂ.ntl es|
nAl k b"|él?ﬂ-l
d, D D
W T R T .')H, al
c
25
¥ Z . rbdibe P e KSEI: X
lh‘c\; |
e — '.f
S : 1y
a) Strain b) Stress % cpnnin
when tension developed when no tension developed

Table 2.4,
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2:3:

2)

f)
g)

BEAM DESIGN BY THE USE OF COMPUTATION CHARTS.

Specify value of <b* concrete stress
Calculate M, from structure

Assume b and d,

M

il ITE
bd‘.]. < b*

Calculate

Find p:%?t_ from graphs given by A.L.L' Baker's book (1970;

Tig. 2.22 - 2.25.)

Calculate Ast from values of Ast

Alternatively try La/d, = 0.8 and find A, from M and < b*

by using chart. If the resulting value of <b* is less than

the specified value, the design is safe and the section is

under-reinforced. Differing values of €a may be tried until

the resulting value of < b* is equal to the specified value.
The same curves apply to "T" sections, but the

limiting values of ds/d,, must be observed or compression steel

used,

COLUMN DESIGN BY THE USE OF COMPUTATION CHARTS

Assume b and d (or b and D)

Specified<gb
Calculate -——M—-—-and el
bd *<&* ™ bd, <\

*
Find p {%%;- from charts given in A.L. Baker's book

Find AS from p

The reference strength < a* should be substituted in pf%%—h

to give M, at 1, in the charts fig. 2.43. to fig. 2.46 which
is published in A.L.L. Baker's book (1970)
Values of EI for rectangular and "T" beams may be

Obtained by using fig 2.52 (A.L.L. Baker's book 1970). By
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rgading of f EI/bd,hﬁb corresponding to the values of p-f%EL—

obtained from fig 2.26 and 2.27 (A.L.L. Baker's book 1970).
Permissible crack-widths due to bending should be

limited to® 0.1 mm in corrosive working condition and to $ 0.3 mm

in well protected condition.

2.4. DESIGN CRITERIA FOR FRAMEWORKS

The theory of plastic hinges may be applied for many
times statically indeterminate structures by establishing simple
design formulae for a wide range of structures subject to both vertical
aﬁd horizontal loads. The procedure is first to assume the Tocation
of plastic hinges and values of plastic moments which appear to
provide the best distribution of ultimate bending moments. A trial
and adjustment process is then followed until conditions which indicate
a correct choice of hinge positions is obtained and under working
load excessive strain and deflection is avoided. The method provides
a means of establishing simple design formulae for ultimate wind and

vertical load bending moments for building frames.

2.4.1) SELECTION OF HINGE POSITION AND BENDING MOMENT VALUES.

When a set of hinges to be chosen for the calculation.
of ultimate load and hinge rotaticn; it is best to assume these n
hinges to be situated at the junctions of members. In an ordinary
frame, the hinges would be assumed with the experience of elastic
theory at places shown in fig 2.3. Hinges should be assumed to
develop at sections at which maximum bending moments occur under elastic
conditions and, to have plastiC~Lcndth1ngnﬁenivalues which produce an
economic moment distribution. The assumed positions, plastic bending

moments and deformability values of hinges are satisfactory if:
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£ig 2.3,

1) The sum of rotations at each hinge due to loads and all plastic
hinge moments is negative in value.

2) Sections between the plastic hinges are within the elastic range.

3) The value of the rotation at each hinge does not exceed an
appropriate safe value for that hinge in order to avoid premature
crushing of the concrete.

4) At working Toad an elastic condition is obtained at all hinges and
the strains are small enough to avoid wide cracks and large

deflexions.

2.4.2) ANALYSIS OF INELASTIC HYPERSTATICAL FRAMES

The analysis of elastic hyperstatical frames may be

carried out by the use of the Miiller-Breslau general elastic equations

Sto +2 XkSik = 0
where §ik = fﬁé¥& ds and Xk is the kth redundant. If in a
hyperstatic frame with n redundants are chosen n moments at the n hinge
positions and the rest of frame stays elastic then;

Sio +2XSik + 07 = o
when 9 is the rotation at the iwm hinge. Strictly in a frame of n

redundants n+l hinges should form for collapse. The Mo condition can
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be chosen to give the (n+1)th hinge. For example the beam with built-
in ends shown in fig 2.4 has two redundants (three if axial force is
taken into account). It may be made determinate by inserting plastic
hinges at position 1 and 2. If the values of hinge moments are X, and
Xy the bending moment diagram will be as shown in fig 2.4.b. The

third plastic hinge value M3 forms at a distance x from {he sup,for{-

1 ; w 2
7 Z
f 2 y

(<)
X, X2
(L)
™, bt
=~ X %
(<)
fig 2.4.
position as shown in fig (2.4c). Then
M, (€-X) + Max + M3 = My where My is the
& 4

free bending moment at point X .
In deriving the general elastic equations for a

frame n times statically indeterminate, n frictionless hinges are
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assumed to be inserted in the frame and n unknown equal and opposite
bending moments X;.ee0ieenn. Xn are assumed to act on members on either
side of the hinges. For the elastic condition the rotation of each
hinge due to external load and all unknown moments acting is zero.
Hence for each of the hinges an equation is derived giving n equations

from which the hinge raiwhbn may be found. For example

10 + X8y # Y3 8in, F cuveiens =
620 + X85 * Xy, * oenenen. =0

MiMk ds
where éik = E » ds being a short increment of length

a_long member of frame and éok = f% ds

In a frame n times stafical]y indeterminate which has
been loaded until n plastic hinges have formed; the rotations ¢; e,
are the sum of the rotations due to external loads and plastic moments

acting at each hinge, so that the general elastic equations are

e BB B0 Wb e B et = - &
S0 H Xl KgSy « vonenes B 05
from which values of © and €, .......... etc., may be determined.

For economical design the cross-section of the concrete
would be uniform throughout the beam and the resultant ultimate
bending moment at mid-span equal to the bending moment at the support,
so that the area of reinforcement at the support is slightly greater
than at mid-span in order to avoid excessive rotation of the hinge.

The required sign and safe value of € for each hinge
can also generally be obtained with a few adjustments if the following
rules are observed
1) Adjust values of ©-in order of magnitude error starting with the

largest which is generally the maximum value of €-
2) Adjust values of ©at each hinge by adjusting the assumed bending

moment at that hinge, so causing the least disturbance to other

hinge rotations.
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4)
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Repeat the process until all values of € are positive and sufficiently
small.
If the frame has several stories it is best to complete the
adjustments one storey at a time starting from the top.
The resultant bending moment of any section of the
frame is obtained finally by superimposing the bending moments
due to the external load and the adjusted values of the plastic
hinge moment. That is the final value of X which is needed for

bending moment diagrams of the structure.
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2.5. DESIGN EXAMPLES

EXAMPLE 1.
The dimensions of the beam considered, and the assumed

sections are given in fig 2.5
Gk:lc.o‘nﬂ!m
Q= 3-50 ke

23.50 kpllm

—_— p__|

8.0 8.0 1 8.0

X ) Mo
)
///’SI‘I-/\ ﬂi

D

S00 mm

Beam 5&c£1 on

j—200m .
719 2.5,

By using tables which gives the f(bﬁMkds values, we can write
=]

Miller-Breslau equations for beam.

dol + X6 + X, 61 =-€i (1)
2 ML . _Xoal gerg
g e T B

2 (2)
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If it is desired, for economy, to use a uniform section

throughout most of the beam, a suitable distribution of bending moments

would be resultant inside moments at mid-span equal to moments at the

kv WA Mo

support. So that X] = X2 S
Substituting in (1) and (2) respectively ¢
ME -
€ =7 and  €;%4E]

A11 values of © are positive, the position of the hinges
has therefore, been correctly chosen. If the rotations are too great,
the assumed values of R], Xz must be increased, so that when the
ultimate load acts the moments at the supports are slightly greater than

the moments at mid-span
: 2

Gk + Qk = 23.50 kn/m Mo =428 . 188 kun.
Ec = 25 x 105 N/mm?
Es = 200 x 105 N/mm?

I concrete = 5458 X 106 mm4

oM __188x10°x8x10°

(for section chosen)

“IET = Tax25x10°x5458x10v - 0-0027
Design strength of Materials:
Concrete: <b = 23.5 N/mml
Steel:  <a =410 N/mn™

ot 188x10 »
bd<b* = 300x450 x23.5 - 0-131

from fig.(2.28)* (Given in A.L.L. Baker Books)*

< *a, .. 0.138

qu* = 0-138 _H p _'1?‘5 = 0.078
: Sl - N
from fig(2.52)* bd 3ab* - 72

bd34b™ = 300x450 x23.5 = 6423x10°
El = 72x6423x10° = 4624x10'° N.mm™

(sy* A.L.L. Baker Limit Design of Reinforced Concrete (1970)
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N, =0.192 then from fig(3.1)* p = 0.0162
€5 = 0.0162 Dbrequired = 0.0027
Then Design will be satisfactory
p =-%§fL $ Ast = p.bd, = 1053 mm”
Ast provided:1257 mm® 4920

EI design value 5458x10&x25x103 = 136.45}(]0'2 N-mm 2

I

EI calculated

46.24x107 N-mm?

then Elprovided ”> Elcalculated

(s) * A.L.L. Baker Limit Design of reinforced concrete (1970)
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EXAMPLE 2.

Frame design

The dimensions of the frame considered, and the assumed

sections are given in fig (2.6)

K00 kn §o0kN ke i
30 kn > 24.0 1‘J‘\,].ri"\ b [

J & o Qo b

>

q 65 m 5 B,o m-. 3 (,.5\11 A

I ¥ - 1

(a)
£
£ 3
S °
o N
—— 300mm 360
Beam section Column section
(b)

fig. 2.6. Design Values

Trial values of X

X, = 280.0 knm
X; = 320.0 kwi
X; = 120.0 knm
X, = 37.5 kum
'5 = 37.5 kwm

Vertical reactions on columns

Left-hand external column:
from fig 2-%b
Total load

n

400+260.0-2,310-0.154X, + 0X,+ 0.154Xy+ 0.154X,, +.0.154X,
400+260.0-2,31- 0.154(280,0) + 0.154(120 + 2 x 37.5)
623.9 kN
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Left-hand internal column

from fig 2.3b

Total load

400 +58(J+23-1+0.2?92l-0.]25X2 -0.15423 -0.27'92‘f -0.15425

L

1002.440.279(280.0) - 0.125(320.0) - 0.154(120.0) +
375(-0.279 - 0.154)
1006. 5KN

Right-hand internal column

from fig 21k

Total Toad = 400.0+580.0+0-0.125X, +0.279X, -0.154%;+0.125%, -0.154% ;-

1014, 6KN

Right-hand external column

from fig ¢.1.b-
Total load = 400+26040+0 ( %,)-0.154%,+0.154%, +0X,, +0.154% -

= 63.5KN
Total vertical reaction = 623,9 + 1006,5 +1014,6 +635.0 = 3280KN
Total vertical load acting = [é + (2x6.5)] 800+4x400 = 3280KN
HORIZONTAL REACTIONS

Left-hand external fo]umn

- 304040 - 0.2%; -0.2%, - 0.2%_= -9.0KN = Total load

Left-hand internal column

total load = 0°2i& = 7,5KN

Right-hand internal column

total load = 0.2X. = 7,5KN

s

Right-hand external column

total load = 0.2§3= 24, 0KN

Total vertical reaction = -9.0 + 7,5 + 7,5 + 24 = 30KN

30KN

Total applied load



AR

x=
xpN
Tw

0} Hssurnccl Pos\-"cians of-‘ Lainjes

220 ;,;z.o
64o-0
2600 & 2600 %-fg & 2600
220.0
% T a0k 0 & e0kal T T

b) FG'E?.\:Q:\A':I‘I& moman\.s nn& reqt_k.'\on A.ue. Lo Verl'\cnl. ‘.omls

{5.0 kn Im

30.0kn o1 A )

T lent : S J_\
T 2.5k Tz.al

(_) Y‘w ‘(mnc\ir\g momen'LS unJ ;gqr_‘".t'orl clme.]ro Luri-.r.onlccd [oqc‘_

figgz.?)
Resultant final distribution of moments for first trial

Moment at junction of left-hand external column

Moment = -150.0+23+X&+i, = -1504120+37,5+37,5 = 45,0 knm
Check from horizontal reaction:

Moment = -9x5 = -45,0 knm.

Moment at junction of right-hand internal column

Moment = 320-37,5 = 282,5 knm
Max'span moment (approximate) in left-hand span:

Moment = 422,0 - 3(2€0Q r45) = 422 - 162,5 = 259,5 kwum.
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Max span moment (approximate) incentral span:
Moment = 640 - 3(320+242,50) = 358,75 knn.
Max span monment (approximate) in right-hand span:

Moment = 422. - 1(282,504120) = 220,75 km.

X|::'.l x
o |4 =0.279 $ ib
.61_.5=o.15q I} '™ 0425
’ a) moments and reaction due X,
Xzl
S .
™~ l\* b "~
3 S
o
30-’415 ?“'11‘5 ?,o-lsq
b) moments and reaction due X,
5{3:!
]
! R = N (
> * \a ¥
0.2 JJ é 4_0‘ 2
10.1511 Lboisy .15t o154

c) moments and reaction due is

R

p

125=0.279 Yoa28
?O.ISH “ 0.154+0.125 o\

d) moments and reaction due X,
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e) moments and reaction due X,-

fig 2.8 Moments and reactions due X, , X,, X,, X, and X
Sections to be designed at limit [,
Beam sections:

X, moment = 280.0 kwm

Xymoment = 320.0 knm

Xsmoment = 120.0 knm
Column sections:

X and iﬁMoment = 37,5 kgm N = 101 4,60KN
Sections to be designed at limit L,
Left-hand external column:

Bending moment = 120 ,0ksm N = 63,5 kn
Right-hand external column:
Bending moment = 45 knm N = 623,9 ku

External spans:

Bending moment = 259,50 kym
Internal span:
Bending moment = 358,75 kmm

The first trial result of bending moment are drawn in fig 2.9
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Strength of Material to be used

concrete for beams:

Design strength: < b* = 23.5 N/mm”
concrete for columns:
< b* = 14.7 N/nm?

Cold-worked reinforcement for beams
Design strength: < ay = 410 N/mml
Mild steel reinforcement for column:

Design strength: <a, = 210 N/mm

17.5 for beams

Thus <a,*/Gb*
Ga,*

_EI__E{

14.0 for columns

Design of sections at {, and calculation of EI values

Note: Design figures (15 )* are taken from A.L.L. Bakers Book (1970)

Hinge X,
M = 280.0kMm d, = 450 mm b = 300 mm
Mz _ : LR
bd3Gb* - 0.192 then from fig(2.28)* p--—4—-—<‘b* = 0.195
therefore p = 0.011
" &a,* : % EI =
with “2’—’;';— = 0.195 from f]g(2.52) B—a'l—._;—z'ﬁ}- = 43

then EI = 28,20 x 10'° Nmm?
and with M,/bd,*{ b* = 0192 from fig(2.29)* n, = 0.28

Hinge Xy
M = 320knm d, = 450 mm b = 300 mm
M i &a*
m—t’; = 0.219 from fig(2.28)* ‘di;* = 0,23
therefore p =0.013

with pS3_ 32,10 x 10 Num 2

< b*
and fig(2.29)* n, = 0.3

0.23 from fig(2.52)* EI
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Hinge X3
= 120. knm d, = 450 mm b = 300 mm
Mar
bdl3¢:lb i 0-0806
from fig(2.28)* péfﬁﬁ—-- 0.076 and p = 0.0043
from fig(2.52)*  EI = 13,10 x 10'* Nmm?
from fig(2.29)* n, = 0.14
Internal columns:
M = 3.75 kNm N = 101.46 KN b = 300 mm D = 300 mm
No tension to be likely developed.
Therefore < b* = 0.8 x 14.7 = 11.76 N/mm?
- ; s
g = 1.0 5 bDZZ,b* = 0.116
La,*

and from fig(2.43)* p*::t;“ 0.2 and n, = 1.025

use fig(2.40)* which is corresponding chart for Timit L , with a
corresponding ratio of characteristic strength values.

pdoir= 0.2 x B> < 0153

Then a line joining the origin and the point the co-ordinates of which are:

et . '
bD<, b* bD 24 b*

*
curve for p 5%§ﬁ;— = 0.153 at a value of n, = 1.08

= 1.0 and = 0.116 intersects the

At this intersection

M, = 0.105 bD*<* = 0.105 x 300 x 3002 x 14.7 = 510 x 10"*Nmm
_ M¢n.D _ 510x10%x 1.08x300 _ 12 2
El = e 5Th02 = 8,25x10"° Nmm

Design of sections at L¥ and calculation of EI values.

External columns:

= 120 knm N = 63.5 KN b = 300 mm D = 300 mm (d,=250mm)
p A
4b* = 14,7 N/mm

ol B
bd,?4 b*

= 0.35

R (0
bd,<b

and from fig(2.33)* p

= 0.563 5

Ga,x*
< b*

= 0.425
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To calculate the value of EI first adjust the

*
p~—-———<<at;* ratio for characteristic strength values thus

R 145 =
pcpr= 0.35 75, = 0.268

Now following the procedure described in the foregoing

1555 x 10% Nmm

n, = 0.65 M, =
A T M,(l—n‘ . 1555x(1)o;6<%o._35 250 - 13560, x 00 Him
S y

External span:

M = 259,50 knm b = 300 mm d, = 450 mm
e
5d.23b ° 0.178
: * 4a,%*
from fig(2.27) P mF © 0.205
from fig(2.25)* EI/bdf{,b = 45 therefore EI = 29,50x10"™ Nmm*

Internal spda:

M,=358,75 knm b = 300 mm d|= 450 mm
-k PR : Gagk
bd, 4 b* = 0.246 from fig(2.27)* »p bF 0.31

. EI
from fig(2.52)* 54, 4B = 60

therefore EI = 39,20 x 10'% Nmm %

Values of EI for frame

' 0
1]
21320510 3210510 131010
2950%10° v / ) 3920x10° A v/
LAY ™ ] 7%
2aibx iy
9‘“ ) lasbxfﬂ»
* 82640 §asxib
9
a
3 5

fig.2.10 EI values for frame in N.mm~




- 48 -

Values of §ik

(§01)M = -(0.0313+0.0531) § s

(507)m = - 0.00575 ; 01= 0.0313 - 0.0531 - 0.00575 = 0.09015
)

S02 = -0.1226 513 = 3.83x10"° 024 = 4.15x10"°

$03 = -0.13165 $14 = 4.48x107° §25 = -16.3x1072

& 04 = -0.00905 515 = 3.83x107° $31 »:dy3

605 = +0.00735 $21. = 812 5328 023

$11 = 16.0x107° $ 22 = 24.8x107° S 33 = 48.7x107°

512 = 4.15x10°° § 23 = 8.3x107° & 34 = 19.9x10°°

§ 35 = 11.65x107° 55 =915

$41= 014 &52 =825

Sa2 = 943 §53 =635

§43 = 43 S54 =851

S 44 = 48.5x107° $55 = 56.9x107 >

& 45 = 19.9x107°

General Comments regarding adjustment of values of -&-

The values of & for the various hinges are shown
in table 2.5. It is evident that for GE. and {?5 to be positive,
the values of X, and Xs must be reduced. However, if only the
values of X, and is are adjusted, it is evident from the two
internal junctions that the moment at 1, would exceed that at 1,
at the same section.

If X, and X, are reduced to, say, 20 knm then
according to the left-hand external span, the support section
should be reinforced for a moment of 280 knm. at Timit 1,
(fig.2.11 a) but according to the right-hand external span should
be reinforced for a moment of 320 - 20.0 = 300 knm. at limit L,

(fig.2.11 b) and this is not possible. Hence the following adjustments
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are made to the values of the moments.

A X, = 50 kwmm

AXy= 20 kNm

AX,= 17.5 kn m

AX5= 17.5 knrm ’

The resultant values of & are given in table 2.5 second trial

Checking Rotations:

for design purposes it is sufficient to use fig(3.1)*

The neutral-axis depth ratios at limit 1, are as follows:

section 1 n =0,28
section 2 n =0.30
section 3 n =0.14
section 4 n =1.02
section 5 n =1.02

On examining the rotations given in table A, it is
evident that, the rotations at section 1, 2 and 3 are excessive.

To reduce these values X, , X, and X. must be increased.

&
However as before X, and )(‘2 must be increased simultaneously and
proportionately in order to avoid sections requiring higher values
of M at Timit L, than at limit L, . Therefore the following

modifications are made

AX, = +30 knm
AX, = +20 knm
AX; = +15 khm

The corresponding ajustments to the rotations are

given in table 2.5 c as well as in the final rotations:
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Using fig(3.1)* the final results are as tabulated

in the following:

Section [ n, *Efp © req.
1 0.28 0.0120 [+0.0123
2 0.30 0.0105 |+0.01098
3 0.14 0.0190 [+0.01582
4 1.02 0.0025 [-0.00037
(without
binders)
5 1.02 0.0025 |+0.00646
(without
binders)

Sections 1,2,3 and 4 are satisfactory; in the case of section 5 the
provision of a small amount of binders will readily increase the

é}p to required value.

From table 2.5, the moments of various hinges are as
follows:

X =280 + 50 + 30 = 360 knm

X =320 + 20 + 20 = 360 knm

X =120 + 0 + 15 = 135 kwm

X =37.5-17.5+ 0 = 20 knm

\
The final distribution is shown in fig (Z.ilJ
It is necessary to check the EI values to ensure that

the values which have been used are approximately correct.

Hinge Assumed Value | Used Value | Comparis on

Section EI EI
1 35.5 x 10 28.2 x 10 25% smaller
2 35.5 x 10 32.:0 % 10 10% smaller
3 14.0 x 10 I35l 10 7% smaller
4,5 6.4 x 10 8.25 x 10 20% bigger
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It was seen from result that EI values for columns
are 20% larger. Because of large difference between the magnitudes
of the beam and column moments the effect on the column rotation

of a 20 per cent.
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3.1. INTRODUCTION

;tructuraT design is largely controlled by regulations
or codes but, even within such bounds, the designers must exercise
Judgement in their interpretation of the requirements, attempting
to grasp the spirit of the requirements rather than to design to
the minimum allowed by the letter of a clause. In the United Kingdom,
the structural use of concrete is Targely based on CP 110 (1972)
which was prepared by a Code Drafting Committee of the B.S.I.

In the code of practice (CP 110), certain changes in
the procedure for designing reinforced concrete were made from CP 114.
New developments on Timit state theory and adoption of safety factors
and international recommendations, which were published by the
European Concrete Committee (C.E.B. June 1970), were also accepted
by the Code Drafting Committee.

In this chapter, limit state design methods, the
concepts of partial safety factors, characteristic loads and strengths

are considered and examples on beam and frame design are also given.

3.2. GENERAL PRINCIPLES OF CP 110 METHOD

Satisfactory design must ensure the achievement of an
acceptable probability that the specified life of a structure is not
curtailed prematurely due to the attainment of an unsatisfactory
condition or Timit state. For reinforced concrete structure the most
critical Timit state is often the ultimate limit state.

According #o the code of practice every limit state should
be considered in the design so as to ensure an adequate degree of
safety and serviceability. The usual approach will be to design on
the basis of the most critical limit state and then to check that the

remaining Timit states will not be reached.
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3.2.1) LIMIT STATES

Limit state design setsoustto achieve an acceptable
probability thaf the structure which will not become unserviceable
in its lifetime. The condition which causes a structure to become
unserviceable is called a "1imit state". The most important of
these Timit states are:-

1) Ultimate Timit state: The usual collapse 1imit states, collapse
due to fire explosive, pressure, etc.
2) Serviceability limit states: Local damage and deflection,

durability, vibration, fire resistance, fatigue and lightning.

Limit state of collapse

The strength of the structure should be sufficient to
resist the design loads taking due account of the possibility of
overturning or buckling. The collapse may be caused by elastic or
plastic instability, 1nc1udiné the effects of sway. The structure
should be designed in such a way that the probability of any limit
state being attained is substantially constant, for all component

members or the structure as a whole.

Limit state of impact resistance

It is necessary to consider the effects of impact,
explosions or earthquakes (inertia forces) on the structure when
considering the structural collapse. The exceptional events to be
considered can vary considerably and include accidental impacts and

accidental explosions.
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Limit State of deflection

Certain deformation limits must not be exceeded to
ensure normal performance under working loads. The safety margins
clearly need not be as great as for the ultimate state. The designer
must ensure that deflections are not excessive to preserve the appearance
of the structure and to ensure that damage to finishes or partitions
does not occur. As a guide suitable empirical procedures are
explained in CP 110. To undertake a full theoretical analysis for every

section would be time-consuming as well as being unnecessary.

Limit state of local damage

Cracks are caused not only be flexure but by shrinkage
and temperature effects as well. Cracks due to shrinkage and temp-
erature effects are more variable than those caused by flexure. All
cracks allow the entry of water which causes corrosion of the reinforcement.
In aggressive environments the attaﬁk can be rapid. It may be necessary
to take special steps to limit these effects. CP110 givesa reasonable

1limit for cracking in clause (2. 2, 3. 2.)

Limit state of vibration

Excessive vibration causes discomfort, alarm or actual
damage, or interferes with the proper function of the structure.
Acceptable 1imits to the level of vibration vary according to usage.

It may be necessary to isolate the source of vibration.

Limit state of fatigue

The effects of fatigue should be considered if the
jmposed load on a structure, or part of a structure is predominantly

cyclic in character. Particular attention should be given to the
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deflections which would occur under repetions of load, to ensure
that these are within acceptable Timits.
CP 110 also gives rules to ensure adequate durability

and fire resistance(clause 2.2.4.2 - 3)

3.2.2) SAFETY FACTORS

An acceptable probability that the structure will not
reach an ﬁltimate limit state throughout its specified 1ife can only
be provided by employing various partial safety factors for loads
and strengths.

Some details of partial factors of safety specified in CP 110

and their application are set out in table 3.1. It will be seen

from this table that two partial safety factors are involved for

each limit state considered. The characteristic loads are multiplied
by a partial safety factor Xf'to obtain the design loads, thus
enabling the bending moments and shearing forces to be obtained which
the members must be designed to carry. Thus if the characteristic
loads are multiplied by the value of ¥f corresponding to the
ultimate 1imit state, the moments and forces subsequently determined
will represent those occuring at failure, and the section must be
designed accordingly. Similarly, if the value of Xf corresponding
to the limit state of serviceability is used, the moment and forces
under service loads will be obtained. In a similar manner,
characteristic strengths of materials used are divided by partial
safety factors for materials (K m) to obtain appropriate design
strengths for each material. Although serviceability limit state
calculations, to ensure the avoidance of excessive cracking or
deflection may be undertaken, and suitable procedures are outlined in

CP 110; it would be too time-consuming, and unnecessary to undertake
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such a full analysis for every section. CP 110 specifies certain
limits relating to bar spacing, slenderness, etc., and if these
criteria are met, more detailed calculations are unnecessary.

Since, apart from the partial factor of safety for
(dead + imposed + wind) load, all the partial safety factors relating
to the serviceability Timit state are equal to unity, the calculation
of bending moments and shearing forces by using unfactored dead and
imposed laods, as undertaken with modular-ratio and load factor
design, may conveniently be thought of as an analysis under service
loading, using limiting permissible service stresses that have been

determined by applying overall safety factors to the materials strengths.

3.2.3) BENDING MOMENT AND FORCES FOR BEAMS

By considering the actual conditions at collapse, the
distribution of moments throughout the structure and the moment of
resistance of each section can be predicted. The structure must be
designed so as not to collapse. The design resistance to bending
shear, torsion and axial load at every section should not be less
than the maximum at that section produced by the most severe arrange-
ment of design loads on the structure. The values of the bending
moments at the support and in the span depend upon the incidence
of imposed load, and for equal spans or spans approximately equal the
dispositions of imposed load illustrated in table 3.2. give the maximum
positive moment at midspan and maximum negatiye moment at a support.

When undertaking limit state design according to CP 110,
the spans carrying the maximum load to produce the critical condition
at the section under consideration should support a total load of
(1.4Gk + 1.6Qk), while the spans carrying the minimum load should

support a load of only 1.0Gk overall spans and for imposed load of
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(0.46k + 1.6Qk) acting only on those spans that will cause the
maximum moment to be induced at the section being considered. As
required by CP 110, for maximum support moments the spans on each
side of the support only, and for maximum span moment, the span under

consideration and all alternate spans will be loaded.
TABLE 3.2. Critical Loading

incidence of imposed load
To produce max. bending
moment at span CD 1 s ™ e )
0y - 5 [aY 5 &

B c D E F
To produce max. negative rgg{1ona1 opt1on§1.“
moment at support D /iy Ay piy IS L

B C D E F

* 5cc0rding to CP110 Toads on spans CD and DE only need be taken
into account for the second loading condition.

**  For service - load design, consider a dead service load of 9y
and an imposed load Gy

***  For ultimate 1imit state design, consider a dead load of Gy and
and an "imposed ultimate load" of (0.4G, + 1.60k)

Table 3.2, Critical loading

3.2.4) CP 110 REQUIREMENTS FOR FRAMED STRUCTURE

It is unnecessary to carry out a full structural
analysis of the entire frame as a single unit. Each floor may be
considered as a separate sub-frame formed from the beams at that
floor level together with the columns above and below, these columns
being assumed to be fully fixed in position and direction at their
further ends. The loading condition can be adopted by choosing a
dead load of 1.0Gk and variable load of 0.4Gk + 1.6Qk. The individual
beam may be considered separately by analysing a sub-frame consisting

of the beam concerned together with the upper and lower columns and




adjacent beams at each end. These beams and columns are assumed
to be fixed at their further ends and the stiffness of two outer
beams is taken to be only one-half of their true values. The
sub-frame should be then analysed for the combihation of loading
previously described.

If the frame also provides lateral stability the
following two-stage method of analysis is recommended by CP 110,
unless the columns provided are slender. Firstly, each floor is
considered as a separate sub-frame formed from the beams comprising
that floor together with columns above and below these columns
being assumed to be fixed at their further ends. Each sub-frame
is subjected to a single vertical ultimate Toading of 1.2(Gk + Qk)
acting on all beams, simultaneously with no lateral load applied.
Next, the complete structural frame should be analysed as a single
structure when subjected to a separate ultimate lateral wind load
of 1.2Wk only. In certain cases, the combination of dead and wind
Toad should also be considered when lateral loading occurs. The
code handbook suggests that this is only necessary where it is
possible thaftkas¥fuchmesnay overturn as for buildings that are

tall and narrow or cantilevered.

3.2.5) DESIGN OF THE BEAM SECTION

After drawing the bending moment envelope for the
ultimate 1imit state the section properties, namely breadth, depth
and quantity of steel reinforcement have to be determined. CP 110
gives formulae and graphs from which beam and column sections may
be designed, The values obtained by design graphs will be more
accurate than by the simple method, since the parabolic stress

distribution in the concrete has been used, and the stress in the
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Fig 3.2.

To use the graphs it is necessary

1) Estimate (b) and (d) to determine M/bd*

2) Choose fcu, fy and d'/d and find the graph from CP 110 part II.

3) Read the total area of tension steel 100As/bd from the graph
which depends on choice of 100As ' /bd.

4) For (T) and (L) beam check that gghf



- 65 -

3.3) REDISTRIBUTION OF MOMENTS

An extension of the elastic analysis method which is
permitted by CP 110 is the "Redistribution Method". It is
permissible to redistribute the elastic bending moments provided
certain conditions are satisfied. The arbitrary reduction of the
elastic bending moments at the supports, initially calculated using
the elastic theory leads to a reduction in the congestion of
reinforcement at the support sections; this in turn makes better
compaction of the concrete possible and enables detailing of
reinforcement to be simplified.

Redistribution usually means "Reduction", so if
the calculated elastic moments at the support are reduced by
10% - 30%, then this means providing a resistance moment at that
position which will be capable of resisting less than the total
elastic moment it can get. So at this position the member will
become plastic and yield with resultant rotations. After
reduction at the support, the other values of the bending moment
diagram will be re-established according to the new support moments.

If we consider the behaviour of a beam which has
fixed ends carrying a total uniformly distributed load W at the
ultimate state. (fig.3.3)

It should be noted from the elastic analysis of the
bending moment diagram that the total depth of the bending moment
diagram is J%}-and that the bending moment at the support is exactly
twice the bending moment at the centre of the span. As we know the
design would be better if the bending moment at the support and at
the centre were more nearly eqda]. This is permitted and the effect
of 30% redistribution is shown at fig(3.3.b) The support moment now

becomes 0.7*%%— and moment at the centre of span becomes-E%-- Q%%El—
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The percentage by which a moment is meal from the

elastic value is a measure of the rotation of the hinge.

When the

elastic bending moments amz;lmzsthe points of contraflexure in the

member change position fig(3.3.c).

If the bending moment diagram

after redistribution is used to curtail bars, there would be a

sagging moment in length X in the elastic stage, at the service-

ability limit state length X is a hogging moment.

section must cover both eventualities.

The design of the

Ultimate load conditions

require no reinforcement in this region and very wide cracks would

develop here.

Supplying reinforcement to carry at least 70% of the

maximum elastic moment means that the structural response will

remain roughly elastic at loads equal to or less than 70% of the

total ultimate load.

The loading corresponding to the service-

ability limit state is always less than this and thus the possibility
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of wide cracking is ruled out.

Earlier it was stated that if we make some reduction
in moment at a section we will get rotation and the section design
must cater for this. The amount of rotation which any section can
undergo depends on how under-reinforced it is. If the reinforcement
reaches its yield stress at the same time as the concrete reaches
its ultimate strain, little rotation can take place. If the rein-
forcement reaches it yield stress long before the concrete fails,
then considerable rotation can take place. The depth of neutral
axis at failure gives a reasonable estimate of the rotation capacity.
With a large neutral axis depth, the concrete will fail before the
reinforcement yields, whereas with a small neutral axis depth, the
reinforcement yields first. The code states that where the resistance
moment at a section is reduced the neutral axis depth X, should not
be greater than

X = (0.6 -.ﬁred)d
where f3red is the ratio of the reduction in resistance moment to
the numerically largest moment given anywhere by the elastic maximum
moment diagram for that particular member, covering all appropriate
combinations of loads.

The condition concerning the neutral axis depth will
rule out the possibility of reduction in moments in a column unless
the axial load is very small. The plasticity occursina beam rather
than in the column. From that reason we have the singular position
in frame structures that if we redistribute the beam moments at the
junction with a column we can not adjust the column moments and in
consequence we shall not get balance of moment at the junction. Where
structural frames provides stability for a building, we are restricted

to a 10% reduction in moments if the frame is more than four storeys

in height.
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EXAMPLE 1: DESIGN OF THREE SPAN BEAM USING CP 110 METHOD

Loadings:

Dead Load (Gk) 20.0 kn/m

Imposed Load (Qk) = 3.75 ky/m
0.4 Gk + ].GQk = 8.0 + 6.0 = 14.0 knm

Variable Load

Total Load 34.0 kN/m

Material Properties:

Concrete: Characteristic strength = (fcu) = 20 N/mm2

Reinforcement: Characteristic strength = (fy) = 410 N/mnz
Section of the beam chosen
r 1420 mm =
+
¥
.;_3.Q_Q_mm-_._
Effective flangebreadth= ¢ x 0.7L + b = 2.7 X 8000 , 300

= 1420 mm
d =500 -25-10 - 15 = 450 mm

Elastic Design of the Beam

Structural analysis of the beam is done by use of a

computer programme for different loading conditions and the results are
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tabulated on table (3.3), a graph qf the e]astic and rgdistributgd
bending moment envelope (10% at midspan, 30% at support) is drawn on
graph (3.1)

BEAM DESIGN WITHOUT REDISTRIBUTION

SPAN AB
Mmax = MAB = 193.0 kam (Load case 1)
- 2
fcu = 25.0 N/mm
d = 450 mm
b = 1420 mm
he 150, . =6
M, =0.4f bhc(d-)=0.4x25x 1420 x 150 (450- —=) x 10
= 798.75 knn
Mu = 798.75 > 193.0 knm
.'. Comp. zone 0.K.
M- TR0 R 00T o
bd* 1420 x 450 ;
CP 110; design Chart 2.
- 0.19 x 1420 x 450 2
100 As by As = = 1214 mm
——b—d—--— = 0.19 —— 100
As provided = As = 1257 mm? 4Y20

by equating compressive force to tensile force

_ Asfy
R TR L
o 1257 x 410 = 31.85

T420 X 0.4 X 25 x 1.15
x = 31.55 (hf = 150 mm.

SPAN BC

6
M 99.75 x 10 .
Mmax = 99.8%wm; i = Trl>—fE— = 0.347 from design chart 2

19%H£5-~ = o), 10 5 As = 639 mm2



=

As . proy = 981.7 mm = 3020

and use 3(20 at mid span
Max. support Moment is at B in load case 3.

Mg = 231.40 kam

6
N w
e 3.80 ; From chart 2 (CP 110)
100 As _ _ _ '1.36 x 300 x 450 _ 2
b = 186 5 Ast = 160 = 1836 mm

2

As provided = 1964 mm~ - 4p25

BAR CURTAILMENT (C1.3.11.7.1) _
SPAN AB : if we curtail 4020 to 2020
Max shear at A = 114.44 kn

3
= 5 Vv _ 114.44 x 10 < 2
flexural bond stress = fbs = Twmd - Txemdn T 2.02 N/mm

Assuming deformed bars, type 2; allowable stress is = 2.8 x 1.2 = 3.36 N/mm2

So 2020 bars are satisfactory for local bond (2.02 < 3.36)

Moment of resistance of beam with 4020 can be calculated by using Chart 2

(CP 110)

As = 1257 m? (4p20)

Rt . 00 wTeE L. M o
—bd - T420 x 450 s =

Mu = 201.28 knm

Moment resistance provided by two bars

s 2 . 1D Asg _ Mu _
As = 628.3 nm~ ; - e 0.098 from chart 2 Bk © 0.35

Mu = 100.64 kwm.

The theoretical curtailment point occurs where the maximum elastic
bending moment is 100.64 kwm. Examination of the elastic enve10pe
shows this to occur at 1.05m from A and 2.2m from B. In both cases
the curtailed bars must be continued beyond this point the absolute

minimum continuation ‘must be the greater of the effective depth, 0.45m,

or twelve bar diameters, 12 x 20 mm = 0.24 m. Therefore the bars must
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be continued to 1.05 - 0.45 = 0.60 m. from A and 2.20 - 0.45 = 1.?5 m.
ffom B. If, however, these points fall within tension zone further
check must be made.
These are:
(1) The bending moment capacity of the continuing bars must be twice
the maximum bending moment which can occur at that section. The
bending moment capacity of the section with continuing bars is
100.64 kam. Therefore, the four bars should continue to the point
at which the maximum bending moment is 50.32 knm which occurs at
0.45 from A and 1.60 m from B. This rule gives a longer extension thay
that above and this position will be used unless one of the following
checks gives a more economical result.
(2) The shear capacity of the section with the continuing bars must be
at least twice the maximum shear force where the bars are curtailed.

Shear capacity is given by

h 0.87 fys Astd
Ve = vcbd ¥ Su

100 As _ 100 x 628.3

B - 300 x 450 0.505

from table 5 (CP 110) ¥ = 0.50

stirrups are 10mm at 270 mm pitch .°. Asw = 157 mm2

v = 0.50 x 300 x 450 ' 0.87 x 410 x 157 x 450
) 10* 270 x 103

V= 67.5+093.34 = 160.84 KkN. Ve fo = 8ouz kA

c

n

Max shear force at A = 114.44 kN. for load case 1

Max shear force at B 162.93 kN. for load case 3.

for load case 1 shear force 80.42 occurs at

114.44 - 80.42
34.0

= 1,00 m.‘ from A.

for load casef) shear force 80.42 ky occurs at

162.93 - 80.42

305 = 2.42 wm. from B.
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This rule cannot improve economy because shear force increases
towards the end of the bar.
(3) The bar may be extended by a bond length beyond the theoretical

curtailment point.
0.87 x 410 x 20

bond Tength = e e W 0.72 m.
bars to end at 1.05 - 0.72 = 0.33m from A.
and at 2.20 - 0.72 = 1.48m from B.

The bending moment rule therefore gives the best answer
i.e,
Curtail bars marked II at a distance 0.45 from A and 1.60 from B
in AB Span.
From bending envelope extreme point of contraflexure is 1.20m

from B and extend bars marked I Until the support centre.

SPAN AB - HOGGING SIDE

Curtail 4025 to 2p25

Moment resistance provided by two bars
2

As = 982 mm 100As  _ 100 x 982 _ 0.727
bd PRS0 T
.. from chart 2 Euz = 2.25
Mu = 137.7 knm,

Examination of the elastic envelope shows this will occur at a distance
0.65m from B. 12d = 12 x 25 £ 0.45 m,

Then the bars must continue 0.65 + 0.45 = 1.10 m from B.

(1) Apply bending moment rule.

-”-;- = 68.85 knm will occur at 1.25 m from B. This rule gives a

Tonger extension than the above, and this position will be checked

by applying the other two rules.



(2)

(3)

(1)

(2)

S T

Shear rule.

Shear capacity is given by
0.87 fyu. Asud

VC = 9cbd + o
100 As _ 100 x 982 _ 0.727 .
bd— ~ 300 x 450 ; . . from table 5 (CP 110)
vc = 0.57, s = 270, Asw = 157mi~ for 10mm stirrups
< 0.57 x 300 %450 0.87 x 410 x 157 x 450 o
N % B + R = 170.0 kn.
Yoo : ; 162.93 - 85.0 _
- = 85 kn. whjch will occur at 37 = 2.29 m,

from B. which is not an ewnomic result.

Bond rule.

0.87 x 410 x 25
XX 1.3

extend bars beyond the theoretical curtailment point

bond length = = 0.902 m.

0.65 + 0.90 = 1.55 m.
Therefore bending moment rules give the best answer, and

curtail bars marked 5 at a distance 1.25 m from B,

Contraflexure point occur at 2.15 m from B and extend bars marked
4 at a distance 2.15 + 0.45 = 2.60 m from B.

If top tension steel is reduced to 2016 and compression concrete is

ignored, lever arm Z = 450.50 = 400 mm.
Wi = 02X 0.8¥0x 410 x 400 _ 57.4 ki,
_Mu. .

= 57.4 kvm occurs at 1.40 m from B.
1.40 + 0.45 = 1.85m < 2.60 m.

Moment rule,

%E-= 28.7 knm occurs at 1.70 m from B.
Shear criterion

100 As  _ 100 x 402 _ :
for 2016 Tl T i S . from table 5(CP 110)
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0.37 x 300 x 450 157 x 0.87 x 410 x 450 _

Uc = 0.37 then Vc = 03 + : 570
V, = 49.95 + 93.32 = 143.27 kn.
Ve/2 = 71.61 kn occurs at 192:93 - 71.61 _ 5 o9 1 feom B.

34
‘then stop 2025 at 2.60 m from B.

Lap length for 2016 bars = 1.25 x 52.5 x 16 = 1050 mn
Lap #16 1.05 m.
SPAN BC - BOTTOM SIDE
Curtail 3p20 to 2020
& 100 As  _
As = 628.3 —pg— = 0.098 from chart 2 %%1= 0.35

Mu = 100.64 keam
From the elastic envelope 100.64 will not occur on bending moment
envelope, but max moment will occur at centre of span, which is equal to
99.80 knm. Therefore the bars must be continued to 4.0 - 0.45 = 3.65 m
from B and C respectively.
(1) Bending moment rule:
M
2
extension than above.

50.32 occur at 2.20 m from B. This rule gives a longer

(2) The shear rule:
Asye + 0.87 fyw

Vc = = + Vcbd
100 As
e 0.505 from table 5 (CP 110) U c = 0.50
10 mm stirrups at 270 mm pitch .*. Asw = 157 mm2
Vel = 160.84 kn.
v
GO
A 80.42
Vmax = 145.19 knN. (Load case 3)
)
C 145.19 - 80.42

|

80.42 occurs at 34 = 1.90 m. from B.
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Bond rule:

0.87 x 410 x 20
&% T X 1.3

Bond length = 0.72 m

bars will be stopped at 4.0 - 0.72 = 3.28 m from B.

3.28 € 3.65m and 3.65 not satisfactory, then curtail 3020 to

2020 at 2.20 m from B.

TOPSIDE - (HOGGING SIDE)

Mu
Mu

(0.45 > 12 x 0.025) from that point.

137.7 kun for 2025 as calculated before.

137.7 kum occurs at 1.55 m from B. The bars must extend 0.45 m

= 2.0 m from B,
(1)

(2)

(3)

Apply bending moment rule.

M - 68.85 kum will not occur on diagram. °

Apply shear rule.

Ve

V¢
=

17.00 kam as calculated for support B.

145.19 - 85.0
34

85.0 ka occur at = 1.77 m from B.

Bond rule.

0.87 x 410 x 25

Tx T.OXT.3 0.902 m.

Bond length =

Curtail bars at 1.55 + 0.90 = 2.45 m from B.

Then curtail 2025 at 2.20 m from B.

[ .60 i B 220 1

2 dlL—M3 ]_LD_L} T L

285

Then bars must stop at 1.55 + 0.45

/ %
2425 -Mky 4 2425 - His b

T
2 rL s

2625 - Mg

I
s

|

[ 2025~ MkS
l
I

L
_2¢ﬂkﬂkl ) % i
2§20~ M2

20 -mML?

Curtail Diagram

| _ 2¢20-Meé

>
I
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SHEAR

Min. area of effective reinforcement is 2020 at support A

100A
= 130X028.3 - 0.465 ; from table 5 Vc = 0.45

Minimum area of Tinks: ﬁ% = 0.0012 bt = 0.0612 x 300 = 0.36 mm/mm

Maximum spacing of links: 0.75d = 0.75 x 450 = 337.5 mm
3 Iy Asv _ » 2
Says s = 275 mm then, Asu = S¢ X s 275 z 0.36 = 99.0 mm

Use § (Ass = 10/mm°)

: . _ Asv _ 0.87 fyv _ 101 0.87 x 410
Shear stress resistance of links = ST X 3 = e X T

= 0.436 N/mm’
shear stress at which reinforcement needed is 0.436 + 0.45 =V

& = 0.886 N/mmz; so V =uybd = 0.986 x 300 x 450 = 119,61

SPAN AB.
Max V = 16293 kn.
X = 162.93" ]]9.6]1 = ].2? m fl"Oﬂ] B
34
SPAN BC
Max V = 145,19 Kw
17145.19 = 119,61
X = 0 = 0.75 m from B.
SPAN AB
3
c62:83 ' x 10" 2
Max shear stress at B = 00 %450 = 1,20 N/mm

2025  As = 981.7mp ]g_b%f\s_ = 0.727

from table 5 Yc = 0.56 ¥ ¥e = 120 - 0.56 = 0.64
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Using ¢8 links St = Ase x 0.87fyu _ 101x0.97x910

Bliuc) - J00x0.54 - 167.6
S = 198 mm
Use ¢8 at 196 mm pitch stirrups
SPAN BC
3
_ 1451910 _ 2
Max.shear stress at B = 0050 — 1.07 N/mm
Vc = 0.56 (same as above)
V-Vc = 1.07 - 0.36 = 0.51
_ Asux0.87fyw _ 101x0.87x410  _
s i B e 7y e L
¢8 of 235 mm centres stirrups
’ ':-21 0.15 'O-}S
o P8 al =
_ ( It};mmutm_l [5a
..||_ Boc0mm I, ¢ ooomm l]
I
Serviceability 1imit state
L - 26 (basic)
a
100As _ 100x1259 _ 0.196
Bebd T420x450 .
_ 0.58 fy Areq :
fs = W (E]ast'l(:)
_ 0.58x910x1182 _ 2
fs = 757 = 223.62 N/mm
from table 10 multiplying factor = 1.67
X = e = 0BV multiplying factor = 0.8



i A 8000 5
Minimum depth = AT URTAR = 230.3 mm
CRACKING
for fy = 410 and zero redistribution

Max: distance between bars = 185 mm

Max cover = lgi = 92 mm (0.K.)
DPesian of Redistributed beams (30% at supports)

SPAN AB
Mmax = 197.0 kem

6
M= BIxT10 . 0485  Fromichaka R = 1257 m? = 4920
bd 1420x450
Support B
Max support moment = 162.0 knm
Aoz
3= 0.3
6
M 162.0x10 100As
= ———=2.55 From chart 2 = 0.82
bd®  300x450° bd
As: = 1107 mm® As provided = 1257m’° 4020
SPAN BC
Mmax = 110.0 knm
6
M 110x10 100As
= = 0.382 from chart 2 = 0.105
bd®  300x450° bd
As . = 670.95 mm2 As .provided = 981.7 - 3§20

BAR CURTAILMENT [claSsdiR /]
SPAN AB
If we curtail 4920 to 2020 we will have 2020 at section A.

Max shear force at A = 120,92 kN.
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flexural bond stress = fbs = EE!E = %%gégéﬁjﬁsU = 2.138NXmm2

s
Assuming deformed bars, type 2, allowable stress is = 2.8x1.2=3.35 N/mm2
So 2020 is satisfactory for local bond (2.138<3.36 N/mmz)
Moment resistance provided by two bars = 110.67 kam (same as elastic curve)
It will be seen from the bending envelope that there is not any difference

between two diagrams. Curtail bars same as elastic case.

Hogging Side
Curtail 4920 to 2020

Moment of resistance of 2@20

100 As. _ 100x628.3 _ Mu _
i Wl = 0.415 From chart 2 5 1.55

1.55 x 300 x 4502 x 107° = 94.16 knm.

My
Mu

04.16 knm will occur at 0.65m from B,extend bars 0.45m from
B. Then stopped bars marked 4 of a distance 0.65 +0.45 = 1.10m from B.
1. Bending moment rule

Mu/2 = 47.16 knm occur at 1.20m from B.

120>1.10m 1.20 satisfactory

2. Shear rule
0.87xfyuxAsw.d

Vc = uchd + ST
' " 100 Ast _
Vc = 0.50 from table 5 for o o i 0.505
Sw = 270, Asw = 257 mm2 for 10mm stirrups,
Ve = 160.84 Vmax = 156.24 for load case 3.
Ve _ g 156.24 - 80.42 _
g 80.42 will be occur at v = 2.23m

from B.
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3 Bond rule

bond Tength = 237XVOXER -~ 0,72

Then curtail 2¢20 at 1.20m from B

Contra-flexure point occursal 2.08m from B and extend bars marked 4
at a distance 2.08+0.45 = 2,53 2.55 m from B.
Lap length = 1.05m for 2§16 which will satisfy.

Moment resistance required on hogging side.

SPAN BC
Sagging Side:
Curtail 3020 to 2§20

Ast = 528.3; lggaﬂi = 0.098 Mu = 100.64 from chart 2.

from bending envelope 100.64 will occur at 3.10m from B.
extend bars 0.45m = effective depth (0.457>12d)
3.10 - 0.45 = 2.65 m from B

1. Bending moment rule

%g = 50.32 kam occurs at 1.90m from B.

2. Shear rule.

100 As 100x628.3

s e 0.505 from table 5, wc = 0.50
Asu = 15?mm2; Sw = 270 for 10mm stirrups at 270mm pitches.
Vereiweh = 0.87 fyw+Asud

Sw
Vc = 160.84knN 3 Vmax = 142.93 kN.
%; = 80.42 kn will occur at 142‘32_80‘42 = 1.84m
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35 Bond rule

Bond Tlength = Q;%%?ﬂ%%?ﬁ% = 0.72m

3.10 - 0.72 = 2,38m

then curtail bars at 1.90 m from B.

Hogging Side
Mu = 94,32 for 2020 will occur at 0.85m from B.
0.85x0.45 = 1.30m. Curtail 2020 at 1.30m from B.

1. Bending moment rule.

%? = 47.16knm which occur at 1.80m from B. This rule gives a

longer extension that above this position will be used unless one of the

following checks give more economical results.

2. Shear rule.
Vc = 160.84 Kn for 2020 + ¢10mm stirrups at 2.70 mm pitches.
Vmax = 142.93 Kn

Vo _ ; 142.93-80.42 _
o 80.42 will occur at it = 1.84m from B.

3. Bond rule

bond lengths = 2;%%%&%%?3% = 4.72 m

0.72 + 0.85 = 1.57m

Then curtail bars at 1.80m from B.
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C v )tu\\m e.nsg Diagram

g-uc = 0.675 N/mn® using ¢8 links Asw = 104.0 mm2.

S

_ 0.87 fyw.Asw
v-ac

101x0.87x910

n
! E’_ 2 §ro—mkly .
| 20~ M5 . l
5 : 3 M5 2$20-Mk5
! e ;_ms_,%—;‘i = T 2fzortik 6 I
| "'"Lm"’i e
kY MY G4 ! 2 Y I
| | |
220 - M| ) I
,J * [ 2¢10- MEZ 5t i 3 /3 }5
f1ey o 16O 90 g I
|_2pzo-Mke I
SHEAR: i T fZo-Mu 7
I
SPAN AB:
Min.area of reinforcement 2(120; lggéi = 0.465 ve = 0.465 (from Table 5)
3
_ 156.24x10 ) 2
shear stress at B = —weoroen— = 1.14 N/nm

2

= 177.90

shear resistance of links (¢8) = 0.436 N/mmz

0.436 # 0.45 = 0.886
V = sbd = 0.886x300x450x10™° = 119.61 kN
156,28 .~ 11961 "
X = T = 1.07m
in span BC
Vmax = 142,93 KN
] 142.933119.51 - oBes 59
142.93x10°
§ w alE % 1.06
X
e« 1,06 5. 0.465 (¥c = 0.465 for 2020)
= 0.585 N/mm’
0.87xfywxAsw _ 0.87x101x410  _ ya¢ g5 oo

39 = “F(¢-vc) =~ I50x0.5%5
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¢ B

170 mn -'mdmfn’
b8 of 275 l = dgal 25 oo mm,

Bz [fos

-t

00 g M. | HfooOomm l

SERVICEABILITY LIMIT STATE

Deflection:

Basic span

Effective depth = <0

for mid span

_ 0.58xfyxAsreqg.

fs As prov.

oo
c‘l—'

RC IO
Bb iy ® 0.93

As .req. = 1342 As .prov. 1443.8

fs = 0:58x410x1342
T443.8x0.93

237.66 N/mm’

by interpolation from table 10

100 As _ 100x1443.8 _ oo
R TR :

n
—

Modification factor for tension steel .50

n
=
o

i % " flanged beam

8000

Minimum effective depth = T 50508 256 mm
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CRACKING (3.3.9 and 3.11,8.2)

From table 24 max clear distance between bars = 185 mm.

Actual clear distance = %—(300-2x35—2x25-2x16) = 74 mm

Max.distance from corner = l%i = 92 mm

]

Actual distance (35+12,5)V2-12,5 = 55 mm

Note: 1In this design fire resistance has been ignored but, if a 4 hour
resistance were required; the minimum concrete cover would be 65mm
the actual distance for the corner is now (65t 12,5)Y2-12,5=96
mm. 96mm>92nm
check cracking using Appendix A3.2 for service load.

For service load

Msmax = 145,92 kum

from table 1 E, = 26k /mm’ ; E, = 2002 ket /mm°

o
o(e"'E'E = el = 15.38

pias As = =
bd [420x450

o<eP = 0.0022x15.38 = 0.034

2

(P)° = 0.00115
%. = ~%eP + V (O(ep)2+2«'ep

= -0.034 +\0.0011 + 0.068
R
3= 0.228
X =102.6mm < 150mm

X = 103 mm



-

x 10°

z 1,% 1
'a' = ] - g(a-) =0T -3-(0.228)
=1 -0.074 = 0.926
Z = 450x0.926 = 416.7 mm
M 6
fseat = JTRIEXID - o2a2sn < 087 fy
. .
fs 242.54
ole= = : = 00012
s " Eg " 200x10°
at corner of beam
_ h-x _ 500-103.0
€h=ax & = 150-1030 0.0012
Eh = 0.0013
1.20+h 1.2x300x5.60
= € - = - >
Eh = € - p=E= = 0.0013 - e
= 0.0013 - 0.000304
mh = 0.0010
crack width = 3actmh =
acr-cmin
1.2 )
a. = 96.5
Cmin= 65 mm

_ 3x96.5x0.0010

96.5-65 0,289
B e Ll M = 0.25
(500-10%> . T58

W

0.25 <€ 0.3 mm

then cracking will be 0.K.
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Example 2 Design of frame by CP110 Method

a)

b)

b)

5m.

4 — 657 | 8.0 m. | £.5™

Loadings

Limit state of collapse (1.4G,+ 1.6Q;)
Dead load (Gk) = 36.65 kn/m

Imposed load (Qy) = 30.00 kN/m

Variable load (F) = 62.66 kK/m (0.4G,+1.60Qy)
Total load = 99.32 kti/m

Crane load on each column = 533.28 kN

Serviceability Design I.2(Qk+Gk+Wk)
1.26k + 1.20Qk

80.0 kn/m
1.2 Wind load

30.0 kN
Crane Toad on each column 400.0knN

Strength of Materials

Beams:
Steel design strength fy = 410 N/mm2
25 N/mn’

Concrete fqy
Columrs:

Steel fy = 250 N/mm°

Concrete fcu = 25 NXmm2
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Section chosen

5
Bov M
Boomm
=X
;_3_0@*1. .|__.§°_°_M.f.n+
Beam Column

BEAM DESIGN WITH 30% Redistribution at supports.

SPAN AB
Mnax = 319.0 kNn; = 500-=5-10-15=450mm; b = 300 mm
M 3190508 e
% g
bd®  300x450
from chart 21
100858 _ 1 g 1008500 .
ey o B
As .req. = 2.565 mn’ As = 3217 mi° - 4932
As .req. = 675 mm® As ! = 981.7 m® - 2025
SPAN BC
Mmax = 407 kwm
No redistribution at midspan
6 _
M 407x10 Y ABORSE 5 s
EEE- = SUUEEBUQ = 6.70 from chart 2L-153~ TR
100 AsE! . o
. .50
_ 2.22x300x450 . _ 1.5x300x450 _ 2
As: = 00 As ' = e e 2025 mm
As .req. = 2997mm%; As ' = 2025 mm®
4 req.

2 2

As  provided = 3127 mm~ - 4§32 As ' = 2032+725 = 2098.7 mm
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SUPPORT B
T =0.3 (30% redistribution)
Mmax = 388.0 knm
M 388x10°
= =638 from chart 21

bd®  300x450°

g 100 As’* _ * 2
2862 mm";  —p - = 1.50 As ' = 1687.5mm

As .prov. = 3217mn’ - 4932; AS "oy, = 2336 mn? (2032+2020)

232 + 2032 2032+ 2020

BAR CURTATLMENT (CL 3.11.71)
SPAN AB

Bottom side
Curtail 4432 to 2§32

Max shear at A = 296.42 kN (Load case 2)

V

flexural bond stress = fbs = TEY 3
usa
Z us = 2x100.5 = 201 mm* (Bottom bars are in tension)

3
Fhis = %g%iﬁgglg_ = 3.27 N/mm®

Allowable shear stress for deformed bars type 2 = 2.8x1.2=3.36N/mm2
3.2/K3.36 so 2032 are satisfactory for local bend.
Moment resistance of As = 1608mm2 and As ' = 981.8 mm2 can be calculated
by using chart 21 (CP110)
100 As _ 100x1608 _ 1.19
S e 300x450

X
Mp
| -—-2'- = 3.65
100 As-' _ 100x981.8 _ ) 407 bd

RGO S
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Mu = 221.73 knm and Mu/

at 1.20m from A and 2.00m from B, in redistributed envelope

5 = 110.86 knm, My = 221.73 will occur

12d = 12x32 = 384mm<450mm (effective depth)
extend bars 0.45m from theoretical cut-off point then curtail bars
marked II at a distance 2.00 - 0.45 = 1.55 m from B. and
1.20 - 0.45 = 0.75 m from A.

1. Use full bond length rule:

_0.37x@fy _ 32x0.87x410x107°
= TibsxT.3 TXT.O%T.3.

full bond Tlength =1.154

Bars to end at 2.00 - 1.154 = 0.845 m from B

1.25 - 1.154 = 0.096 m from A.

2. Use shear rule:
Shear resistance of 2¢32 and 10mm stirrups with 270mm pitches can be

calculated by using equation 3(CP110) to form
Aswx0. 87 fyud

Vc = wcbhd +

S

Uc = 0.688 for 122LAS. = 1,19 (from table 5 CP110)

Asw = 157 mm2 sy = 270 mm

Ve - 0:68813004450 IS70.87410 383 4 92.88
10 270x10

Vc = 186.21 kN; Vmax = 375.82 (Load case 2)

Ve 95 100 will sotumat S2:800 .10 2.84 from B

99.3¢2
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3 ,Bending moment rule

D4 =110.86 kum will occur at 0.55m from A and at 1.3m from B.

Then curtail bars at 0.55m from A & 1.35m from B respectively

SPAN AB (Hogging side)
Curtail 4032 to 2032 and 2013242020 to 2032 respectively.

As = 1608.5mn’ As'' = 1608.5 mn®
LB R and % =0.3
UL S T
from chases 1S = Mu = 218.70 knm

bd?

Mu = 218.70 knm occur at 1.00m from B in span AB

12d = 0.032x12 = 0.384m<0.45m. Then extend bars 1.0+0.45 = 1.45m from B.

1. Bending moment rule:

%? = 109.35 knm occur at 1.95m from B. which gives a longer extensfion .

2, Bond rule

bond Tength = %{Jg. = 1.154 for ¢32.

stops bar at 1.1041.154 = 2.254m from B.

3. Shear rule:

0.688 for 2032

100 As . _
e 1.19 and from table 5 (CP110) Vc

10mm stirrups with 270mm pitches arranged.



= 0b =

157x0. 97x410x450
Ve = 20 TXN0XA0 , 0.688x300x450

Ve

186.21 ko 3 Vmax = 375.84 load case 2.

Ve
L

375.82x83.10

93.10 kN will occur at Y

= 2.84m from B.

Then curtail bars at 1.95m from B.

Extreme point of contraflexure will occur at a distance 3.185m from B.

and stopped bars marked (4,4') at 3.185+0.45 3.65m from B.

SPAN BC (Sagging side)
Curtail 4¢32 to 2032 and 2032 + (25 to 2032

100 As.  _ 100x1608 _ 1.19
57 = I0E < -
100 As L 100x1608 = 1.19
bd X45 :
from chart 21 Mu 336
bd?

Mu = 218.70 will occur at 1.70m from B and C respectively.
12d = 0.032 x 1= = 0.30m<0.45m (effective depth). Then curtail
bars at 1.70 - 0.45 = 1.25 m from B.

1. Bending moment rule:

%? 109.35 knm will occur at 1.30m from B and C respectively.

2, Shear rule:

100 As _ 100x1603 _ b
e B 1.19 from table 5 Vc = 0.688.
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270 and Asw= 157.0 mm2 for 10mm stirrups with 270mm pitches.

S =
Vo = ygbd + A;g.ﬁyu&O.B? _ 0.98x§00x450 i 157x0.87x410x45%
10 270 x 10
Vc = 186.21kN
= ki
Vmax 397.28 kN %? = 93.10 will occur at
397.28 - 93,10
037 3.06m from B.

3 Bond rule:

bond length = §§$Z§§}9§§3 = T160E =91 150

bars stopped at 1.70 - 1.15 = 0.55m from B and C respectively.

Then curtailed bars at 1.30m from B and C respectively

SPAN BC (Hogging side).
Mu = 218.70 kam which calculated occur at 1.50m from B.

1.5040.45 = 1.95m. Then curtail bars at 1.95m from B.

1. Bending moment rule:

L= 109.35km will occur at 3.20m from B. and C respectively.

2. Shear rule:
Vc = 186.21 ko as calculated for 2032 + 10mm stirrups with 270m
pitches.

_ 397.28 - 93.10
Vmax = 93.10 kN occurs at SRR,

3 Bond rule:

= 3.06m from B.

bond length = 1.154m for @32
curtailed bars at 1.154 + 1.50 = 2.654m from B

Curtailed bars at 3.20m from B.
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Curtailment Diagram
SHEAR

shear stress resistance of links

Min.area of reinforcement in span AB is at Support A is
As = 1608mm (2032).
100 As _ 100x1608 _ 1.19
bd 300x450 z
from table 5 Vc = 0.70

Min.area of links = §%¥'= 0.0012bt = 0.0012x300 = 0.36

Max. space of links = 0.75 d = 0.75x450 = 337.5 say 275 mm.

Asw = 0.86x275=99.0mm>

Use ¢10 (Asy = 157.8mm2) stirrups.

Asw . 0.87 fyvr _ 157x0.97x410

Sw b 775%300

= 0.68N/mm?
= 0.7040.68 = 1.38

3

V = vbd = 1.38x300x450x10" 186.3 kN

Vmax = 375.82 kN (in span AB Load case 3)

_ 375.82-186.3
93 .3¢

in span BC

X = 1.90m
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_ 411.47 - 190.35

Y= Y] = 2.22m

SPAN AB
Shear stress at B:

Max shear (lLoad case 3) = 375.82 kN

3

Shear stress = 30oX0. "= 2,70 N /mm®

: g 2100 As. _ 100x3217
tension steel at B 4032 As' = 3217mm"; reppe = %
AL 2.8 (table 5) ¢ = 0.87

b-¥t = 2.78-0.87=1.91

157 ,28x0.87x410
300x1 .21

using ¢10 Tinks Sw = = 97.90 100 mm

Using ¢10 at 100m céntres

SPAN BC:
Max shear at B = 411.47 kN (Load case 3)

3
shear stress = v = g%%ig%éJEL— = 3.04 N/mm2
Ve = 0.87 w-ve = 3,04-0.87 = 2.17N/mm°
_ Asux0.87 fy _ 157.28x0.87x410 _
Su = bx{v-1C) i 300x2. 17 = 86.17
Se = 90 mm

Using ¢10 at 90 mm centers.
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A B c
qbrd c{‘ 295 ] ¢;a— Jio mm 96-"0‘ -~ qumm , PO - 270men l ﬁlp 90 mn
Ll ko mo , f9eem | 33120 me ’ 35(0 mm f 2220mm
] £ 500mm y 8000 mm
1 1

SERVICEABILITY DESIGN
1. Deflection (3.3.8)

Basic span = 96
effective depth

for mid span

_ 0.58x fy xAsreq. 1
15 & iz prov. * By
_ max.moment = 47530 _ (.93

Bb resistance moment = 531.56

0.58x410x3591

L 2
3845%0. 03 = 238.80 N/mm

fs =

100 As _ 100x3845 - 2.80
“bd 7 J00ASD - ¢

Modification factor for tension steel = 0.78 ('CPnu table 10 )

Modification factor compressed steel
100 As® _ 100x3217  _ , 4o
bd X445 :

Modification factor = 1.44 (compression) (*“L\ﬂ‘o)

Min effective depth = werp 000 = 273.94

effective depth 0.K.
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CRACKING (3.3.9 and 3.11.8.2)

From table 24 max.clear distance between bars = 185 mm.
Actual clear distance = 5 (300-2x35-4x32-2x30) = 31 mm

Max.distance from a corner = lgi = 92 mm

Actual distance = (351 %;-) Y2 - %%- = 56 mm.

In this design fire resistance for four hours is required the min.cover
(“min) would be 65 mm, the actual distance to corner is now (65+16) V2-16

= 98.5 mm 92mm

Check cracking using appendix A32. in CP 110 for service load

Msmax = 285.43 knm
from table 1 for feu = 25 N/mm’ Ec = 26.0 kv /mm?
Es = 2x200kn/mm®
Bl v 2x200 . d' . 50 =
e—-E-E = —2'6"—" 15.3 3 "a' ‘ZI'S'G' 0"]]
/
peft o300 =0.028 5 p' =B = grbl = 0.028

For double reinforcement beam section

% = -[xept(~e-1)p']+ \/[*ep+(*€-1)p'12 + 2[“2p+(“e-T)p'-%r ]

X _ : \/ 2 :
X = - [0.43+0.324] + |/ [0.43+0.329]° + 2[0.43+(0.329)0.11]

% = 0.465, x = 0.465x450 209 mm

Z.1.-3 %) =1 - % (0.465) = 0.845

z = 380.25
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Average surface stress at bottom of the beam

6
i . 28803 x10° | joc or a2

fa= s - X

feu 10535
L = 0.00097
ES  200x10°

at corner of the beam

€ =X £ e ggg;;gg. 0.00097 =

h = d-x S

1.2bt.} 1.2x300x500 14

0.00117

E‘mh =Eh = _T—_'F—— = 0.00]]7 “3m1-0—

s Ty
€mh = 00.00105

at corner of the beam

a, = 96.5 mm

3acEmh 3 08 540.00705

=X

crack width (wcr) = A
Acr-Cminy gg.
1+2é—ﬁ—~w—) 1+2(

= 0,252 < 0.3.

0.K.

Design of Columns :

yookN ookt

9-06

\500-209,

ook

300k | [ [ <

2 g.om 6-57

5.0m.

3
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Limit state of collapse

b =300 mm

d = 300 mm

7 2t bh° _ 67.5x10%mm?

el o2 *

Column stiffness = I _ 675x10° i3
I =S X

beam stiffness

3 3
I =%- =§92’|‘-g% = 3125x10°
beam stiffness
6

beam stiffness =-§7 = % - 480,76923:(103 (external beams)

6
I _ 3126x10 _ 3
-R- = -—B-OU—— = 390.625x10
ceilo Equation 21 %e = 20 (0.85 + 0.05 cmin) < %o
s
O(C-l = 31-2-5 = [.216
omin = 0.216
5 1.0
2

Le = %0 (0.851+0.05x0.21)
= 0-860820 = 0.8608x4500 = 3873mm

B8 L0 S T slender column.

Le = 3878 mm.
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Column Reactions for Limitstate of Collapse and Limit staleogServiceability

Support  Reactions End Moment
Load Member N Kb
Case No. +X +Z Left Right
CASE 1. - 2.1 .55 595.17 2.74 0.0
4.3 10.59 1106.85 5.29 0.0
= CASE 2 2.1 15.98 818.36 79.94 0.0
g g
G LR 4.3 18.88 1040.32 44.12 0.0
vy v+
o & S
y ~tamil CASE 3 2.1 10.44 780.27 5222 0.0
38 & .
4.3 1.18 1349.35 9.04 0.0
CASE 4 8.7 -19.51 635.48 -97.58 0.0
4.3 -13.86 846.60 -69.33 0.0
CASE 5 8.7 -0.439 892.63 -44.19 0.0
& e
A - 4.3 -8.83 481.11 -2.19 0.0
2 - +
o .0 e
+2 =
L CASE 6 8.7 -6.51 1060. 35 «32.55 0.0
P O
EE & 4.3 -9.97 485.57 | -49.84 | 0.0
-l -
External column
Max total axial load = N = 1060 kn (CASE 6)
Moment into column: Mmax = -97.58 kam
a) Bending moment
Nominal eccentricity B.M. = 0.05 h,,. N = 0.05x3.00x1060 = 15.9 kwm.
15.9 £. 97.58
M] =0 M2 = 97.58
Mi = 0.4M] + 0.6 M2 = 0.6x97.58 = 58.54
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M, = Mi + ngﬁ'(%g)z (1-0.0035 £€)
M, = 58.54 + 1959300 (12.01)% (1-0.0035 x (12.91) x 107
M, = 58.54 + 20.07 = 87.61 knn
Mt = 87.61 Knm
Reinforcement

Ll
AR

3

fcu = 25.0 Nlont B eI s 177 St
I BT Mo_87.61x10° _ 4 5
ERs i e T
Asc _ I 2 2
Adopt 100 o 4.75 Asc = 4,75 x 300" = 4275 mm

Provided 6Y32  Asc = 4825 mn’s Asc,, = 2412 mm

K = NUZ e N
Nuz=Nbal

Nuz = 0.45 fcu Ac + 0.75 fy As'

= (0.45x25x300x300 + 0.75x250x2412)/300x300
Nuz = 11.25 + 5.02
=16.27 N/mm’ N Balance = 7.5 Nfmmn®

N
By B

= 16:27 = MV 71
L H0.2T = @5

K = 0.51 €£1.0
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Design of internal column:

N = 1349.0 kN
2 KNm-
M =69.33 Kim
d _ 240 _
e N
K T390 BI0e L e
bR 300°
M _ 63.33 x 10° S
bhT 300°
fow=25 N/ 100 Asc _ ¢ 79
fy = 250
Asc = 5130 mm
4940 = 5026
2020 = 628
Asc = 5.654




CHAPTER 4.

OPTIMUM DESIGN OF REINFORCED CONCRETE
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4.1. INTRODUCTION

Optimum Timit design (OLD) methods aim at structural
solutions that minimize or maximize a chosen merit function (the
optimality criterion) and satisfy the criteria of limit equilibrium,
compatability, and serviceability. The method is presented here by
first deriving solutions that comply with equilibrium serviceability
and optimal criteria and subsequently verifying the satisfaction of
the compatibility requirements.

It has been shown that it is possible to formulate
the 1imit design problem so that the solution can be truly optimal
in a mathematical sense i.e., the solution minimises the chosen merit
function which relates to the cost of the structure or the amount of
material used.

It is now possible theoretically to formulate problems
that satisfy simultaneously the condition of Timit equilibrium
serviceability and rotation compatability, along with an optimality
criterion and elastic continuity conditions. However practical
design applications appear simpler when limit equilibrium and
serviceability conditions are only considered initially. Recent
investigations already show that the economy of such solutions compares
favourably with that of truly optimal design. In this chapter,
optimum design solutions of reinforced concrete frameworks by

M. Z. COHN etal (1968) are described and examples are also given.

4.2. ASSUMPTIONS.
a) Reinforced concrete can be idealized as an elastic-plastic material

with limited ductility, fig. (4.1.)
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fig 4.1
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b) Members resist forces by bending. Axial and shear forces as
well as instability phenomena are of no concern.
c)- Live loads may have any possible location, so that the worst
combination could be taken into account for a particular section.
d) Each critical section may be the first to yield for a particular

arrangement of the live loads.

e) Dead and live loads vary proportionally between first yield and
QO“F!?SQ for any loading arrangement. fig.(4.2)

avlp

L5 W
Awe |
]
Ao g

JWu

I"‘IWL

1-8 Wi

L Nrw = s

l

fig 4.2,

4.3, BASIC CONCEPTS OF OPTIMUM LIMIT DESIGN.

The complete design of a reinforced concrete structure

involves the derivation of the plastic moment for all its critical
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sections. A critical section is located at each support and in gach

span. The total number pf critical sections iss=m+n=N+n;

where m is the number of the elementary mechanisms which is equal to

the number of spans N. The number of the redundangies is n. The

problem is to derive a distribution of plastic moments that fulfils
simultanously the optimum criteria accepted. The Timit criteriaizxpressed
with m = N available. Limit equilibrium conditions and n additional
serviceability criteria equations. The number of the equations to be
determined (s) can be expressed in terms of N and the number of

fixed ends (f), s =2N + f - 1, for symetrical beams s = N + f/2,

4,3.1. GENERAL EXPRESSION OF PLASTIC MOMENTS.

If we consider bending moments of any critical
section (j)unacrnparticular arrangement of load causing the first
yield of section j,

a) In the working range the elastic moment is

MJ - aiGL + bij (1)
b) At first yield section j, only the live load increasing from
Ptod,. P
N
Mp, = 256L + bjr!i] PL (2)
c) At the collapse of the span the ultimate 1ive load being ~oP
Mp; = a;6L + b; eloPL (3)
which
G and P = dead and live load respectively
L = length of span
aj,Qj = absolute values of constants defining the max elastic

moment at section j under action of G and P respectively.
yield load factor.
Ultimate load factor.

Aij

2
o
0

SiﬂCEtM&Othﬂ to assumption (a) the plastic moment is
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invariable from first yield to collapse, from equation (2) and (3)
it follows that:
lhr\ -"-E-Ao or . b: =-t;- A.LJ.. = b.x; (4)
. S ¥ 3} i
X being called yield safety parameter. Therefore the plastic
momentata critical section can be written as

-

MDJ = }:J = aJ-GL i be_‘AbwL (5)

It can also be defined as
Mp; = xJ'AOMyJ. (6)
where MPJ.is the elastic envelope momentdue {o service load for

section J.

4.3, OPTIMUM CRITERIA AND OLD PROCEDURES FOR CONTINOUS BEAMS.

The best Timit criterion for continous beams is to
ensure the same ultimate safety for all possible elementary
mechanisms. Ideally the best serviceability criterion is that all
critical sections of the beam are provided with the same yield safety.

Limit equilibrium condition.

In this condition no collapse mechanism may form prior
to the specified ultimate load for the structure. For a structure anth
+he possible modes of collapse and r applied loads, this condition
may be expressed as: .
ij_j’\c“_§95>2¢r‘xog{"]“’i 0 = 1D e p;a = 1,2....1) (7)
where, @ij is the inelastic rotation of critical section j in the
mechanism j in the direction of the collapse load f\owq.

Serviceability.

Serviceability conditions -require. that, plasticity
will not occur and defleckions andl crack widthswill remain within
allowable limitation. These requirements are satisfied if the yield
load factor for each critical section is less than a specified lower

Timit Al
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X
i.e. Aij>Ad, Therefore as x; = lg and this condition becomes

X, z,.%§% =20 s) (8)

Assumption (e) places an upper limit of Ao on the yield load factor
for each critical section J or:

T (d R Bt s) (9)

FIRST OPTIMUM PROCEDURE (full redistribution design)

This particular approach to the equilibrium method yields
designs for which all possible mechanismsmay form at the specified
ultimate Toad. The object of the equilibrium method is to find the set
of X; values for the s critical sections of the structure that satisfy,
equations (7) , (8) , and (9). To do this, s independant design
conditions must be specified. The ultimate safety is the same for all
mechanisms, the corresponding 1imit equilibrium equation having {hecynddt
form:

T Yik Tj= ¢, (6L +AopL) (10)

where § ik is a parameter defining the location and contribution of
the plastic hinge j of mechanism k, and dikiéa dimensionless parameter
defining the max. free bending moment of the span corresponding to
mechanism k. Substitution of ?fj values from equation (5) result in

Z (3§ ik 6L + by FikAoPL) = Gk(BL +AoPL) " (11)
Dead loads and live loads may be considered separately in any equilibrium
relationship and considering the live loads only

$o; Bik 6L = ¢yl (12)
and equation (11) simplifies finally to:

o
f_bj?:j. ik = ¢k (13)

which is the basic limit equilibrium equation for kth mechanism. The

limit equilibrium condition, equation 7 becomes:
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EJ-——XJ.: A‘_’Mjei_j = ?Ao“ééiq (i =1,2 L 1,2 'Tfr)

Two full redistribution (FRD) approaches may be formulated depending
on the serviceability criteria adopted to establish the remaining

n=s -mconditions which are necessary for solution.

FRD - Equal Minimum Yield Safety for Support Critical Sections

This criterion results in designs for which all support
critical sections have equal and minimum #j. To determine this minimum
value set the X; values equal in each of the equations (14) in turn.

Take the minimum X | value thus obtained from the equations:

] min[g%—ml (15a)

- min =AY By g
3 = min 2)}?’1.]’(—3-1'3 <4 = "1 8 e R (15b)

b
n

or

i
I

FRD - Equal Minimum Design Plastic Moment for Support Critical Sections

As Mpj = xjr\oMj = constant is provided for all
support critical sections, the minimum Mpj is to be found. To determine
this value assign the minimum xj value permitted by serviceability to
the support section having the largest elastic envelope moment Mj max;
Y0 fori xj =%-

o
and Mpj = jAoMj then:

Mpj = ’\‘”‘jmax (16)
By assigning Mpj values from expression (16) to support critical
sections n additional conditions are provided. The resulting xJ

values are

Xj = (,\o M3,y / M3 (17)

The following steps are involved in practical derivation of the design

plastic moments based on the first OLD procedure.

(14



= 112 -

a) Derive a5 b; for all spans and support critical schiqns:

b) Select thg support yield safety parameter igfrom tables according
to the specific data of the problem.

c) Sehck g convenient span yield safety parameter.

d) Apply equation (7) to find required plastic moment for all

critical sections.

SECOND OPTIMUM PROCEDURE (1imited redistribution design)

In this pﬁbcedure equal yield safety for all critical
sections of the beam is acceptedas®éserviceability criterion.

XJj = X0 = constant (18)
Accordingly the 1limit equilibrium equation (13) becomes a set of

inequalities of the form:

;o .
- byx; Sik> ¢ (19)
Obviously the solution of the set (equation 19) verifying the
serviceability conditions (Equation ZDjis_given by
it d ¢k
30 = max Xk = max [:3—_:-3,—1@ (20)

Criterion (20) must be considered only ideally, since to have better
service conditions which will be preferable to provide larger Jﬁ
values for span than for support critical sections. It will be seen,
however, that providing X; (Equ.18) separately for span and support
sections along with 1imit condition (Equ.19) yields a most simple and
efficient solution for design of reinforced concrete beams with equal

spans.

OPTIMUM LIMIT DESIGN (OLD)

This particular approach to the equilibrium method results

in designs for which the material consumption is minimized, subject to
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the 1imit equilibrium and serviceability constraints. A suitable
economic criterion for design of reinforced concretg continous beams
is to minimize the vo]ume of f]gxura] reinforcement. This critgriqn
implies that the concrete cross-sectjon is constant and that the
Tongitudinal reinforcement alone is varied to provide the required
moment capacities. Under this condition a linear objective function
can be formulated as

Vk = Fupsils = ?rjiorajfj (1 =928 (21

where Vk is the total volume of longitudinal reinforcement for the

structure, fE is the equivalent Tength over which the flexural rein-

forcement for section j prevails constant and subscript k refers to the

particular design considered.
Relations (7), (8),(9) and (21) enable the (OLD)

problem to be stated as follows:

Minimize:

Vk = %25 Aojly (1 = 1,2 caith (212)
subject to _

Z ¥jAMi€ig> AN Siq (3= 1,2 .59 = 1,2 ..
and

AT Lxj L 10 i =

o Sxig U (3 =1,2 ....5) (21c)

OLD - Equal yield safety for support critical sections

Because xj = Aij/Ao, this criterion implies that equa
Xxj is to be provided for all support sections. This can be achieved
by adding the following constraints to the general (OLD) formulation:
xj =xj +2 (22)

where now subscript j refers to all support critical section.

1)

1

(21b
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OLD - Equal design, plastic moment for support critical sections

The criterion Mpj = xjAoMj = constant for all critical
sections can be satisfied by adding the following constraints to the

general OLD formulation:

iy Mj =)('.i¢2_( AOMCL-?-) (23)

Efficency of 1imit design solutions

A measure of the relative economy of a Timit design and
the elastic design is the efficency index ¢ which is defined as the
ratio of the volume of the flexural reinforcement resulting for limit

design and elastic design from equation (21)

o Voo B Cmed LM § el
W =VE = ZA0Mj1j (= 125...5)  (25)

where Vk is the steel volume for the 1imit design by the approach k

and Vg is the steel volume for the elastic case.

4.5. DESIGN OF FRAMES

Reinforced concrete frame design for maximum economy
depends on an initially selected elastic design. Against the plastic
collapse of the structure and for the first yield of the sectionrgzhe
load factors are used. It is assumed that in bending action inelastic
rotations are concentrated at critical sections as in simple plastic
theory. Furthermore inelastic rotations remain within permissible
limits to take the advantage of the inelastic strength to simplify the
optimum design for concrete frames.

General Design

A design solution for the frame is found when a set of
Ij, + Mpj, - MpJj is assigned to all critical sections of the frame such

that the following conditions are satisfied.
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A) LIMIT EQUILIBRIUM
The frame will resist any load combination of less

intensity than the prescribed ultimate load Wu and will collapse
plastically for a * load +W 2 Wh
B) SERVICEABILITY

The critical sections of the frame will remain well
within the elastic range for any combination of the service loads and
hence will have a safety factor against first yield above a specified
value
C) OPTIMUM

The design will result in the largest possible overall
moment reduction versus an initially selected elastic design.

A design solution is feasible when it is safe and
serviceable and it is optimal when it is safe, serviceable and
economical at the same time. The plastic moment for critical section
J can be shown to be

Mpj = XJ f\OMj = X jbjWuL (25)

The value of the yield safety parameter > Jj implies
better serviceability when it is large, and small XJj values correspond
to better economy. Optimal solutions will place the design plastic
moments and Xj values at levels consistent with both requirements.

The serviceability condition requiring that no
plastic hinges form at working load implies r\ij)] or xj>;'\- for
s G R AR S s. Moreover, for the yield Toad factor or any
critical section to be no less than the specified minimum value A. .

: e ; X
It is necessary that 4ij>Ay or xj= "Ac - Also because a structure

can not collapse prior to yield at its critical sections Ao )Aij

or xj <€1. Hence XJj is bounded from above and below

é% L 1 (26)
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A limit equilibrium cqndition is asspciated with each
possible mode of collapse of the framg. Energy dissiptxted by the
plastic hinges (Ui) will be bigger than external work (Ei) done by
the ultimate load corresponding to the mode of collapse

53 (27)

Let, angular displacement (-©-j) = Mij-©, Linear displacement

( Bij) = aijfref and loads doing active work in the ith mechanism
= NjW, where

—E%} = an arbitrary rotation.

M, ©ij and nij are constants.

Uy = SMp30-g = “g—ijj-\owwijﬁ and B = ZAMISH =

Z anm vijel

so that after substitution and simplifications, Equation (27) becomes:
R (28)

In which aij = bj Mij and c = JZ‘lj 5]

The optimum criterion requires the over-all moment
reductions over the elastic design to be maximum, i.e., the area
between the elastic moment envelope and the design solution to be as
large as possible. If Y, is this area it is required that:

Y = jj.( Athh *~b¥l)d ;; j)ds = f‘ hL/g (1 ~%j)ds = Ma
(29)

or alternatively if Y, is the design plastic moment area.
Y, =f~‘ (ds = Ao fr’xdn-\jﬂ.j xds = Min  (30)
in both expressions the integrais are extended over the whole frame.
If we summarize the optimal design problem within the
accepted assumption and limitations consist of determining the °5j
values for s critical sections of the frame to satisfy the optimum

criterion (Equ. 29 - 30), the limit equilibrium conditions (Equ. 28)
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and serviceability conditions (Equ. 26) with 9ij > 0 and €j > 0.

This is a typical linear and non-linear programming
problem depending on the nature of function Y, and Y, . The general
problem is complex because the merit function Y, (%j) or Y, (*j) must
be expressed analytically.

Feasible solutions can be obtained by using the
kinematic theorem of plastic analysis which states that the collapse
mode corresponds to the smallest kinematically admissible multiplier
(Equ. 26). Application of the theorem to equation (28) indicates that
the actual collapse corresponds to the particular mode satisfying the
condition
g win & J3 . (31)

: i (,_i
While the number p of the 1imit equilibrium conditions Equation (28)
is usually very large, only a limited number of collapse modes are

critical, in the sense that many modes can not occur for any

combination of design values <j or Z;— x.j-cﬂlij/c1->1.

Frames with equal yield safety:

A particular but important solution can be obtained
by assuming that Xj =X = Constant for all critical sections. In
this case as %j = I%%g- = Constant a design is achieved in which the
elastic moment envelope for the ultimate load is reduced by the same
amount for all critical sections of the frame. The solution for this

particular case follows from Equation (31)

J

The design value (Equ. 32) is obtained by equalizing all 2j(Equ.28)
in turn to get Xj = Ci/ ZJ'."H'J' and then by selecting the largest -x__"
thus obtained overall possible mechanism, Obviously this corresponds

to a safe upper bound Mpj values because U.?E in all but the critical
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Mechanism associated with Equation (32).

A more efficient solution may be found by trying to
obtain Xj<X for critical sections not involved in the critical
mechanism, Substitute wherever appropriate the value of X in the
limit equilibrium equations and find again the largest X obtained by
equalizing the yield safety parameters for sections not entering in
the critical collapse mode. The process can be continued until each
critical section of the frame enters at least once into the limit
equilibrium equation.

Partially Elastic Design:

The design problem can be considerably simplified in
cases in which *j values are specified for various classes of
sections, If we assume same yield safety parameter at beam support
sections and Z, = the corresponding yie1d safety parameter. Similarly
the span sections have the same yield safety parameter and column
sections are designed for the same yield safety parameter 2;3.

It was shown by M. Z. COHN (1968) that, the problem can

be reduced to a bidimensional one for the particular conditions.

1) Elastic span sections Z 1. No redistribution of moments

permitted for span sections.

2) Elastic column section Z, = 1. No redistribution of moments

permitted for span sections.

3) Elastic column section Z3 1. No redistribution is allowed for
the column moment (similarly to the strong column-weak beam design
in steel), j
Design solutions based on the serviceability methods
should be checked for the satisfaction of rotation compatability. This
condition is satisfied and the design is correct if the inelastic
rotations ©ij at any critical section j under any loading conditions

(collapse model) does not exceed the rotation capacity -©pj of the section,
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©ij 4 Bpj

Determination of ©-pj is object of extensive

experimental research and determination of ©1ij can be done by

A.L.L. Baker approaches.

Example 1)

A five-span reinforced concrete continuous beam with equal
spans under the action of uniformly distributed load with

reference to fig. (4.3.):

s=9,n=4,m=s -n=25, i.,e., number of span.

Because of symetry s reduces to 5 and n to 2 and thus m = 3.

1) ELASTIC

BEHAVIOUR.

M = ajGl* + b APL=

Values of a, and b--can be found from handbooks or by calculation

3 3
(fig. 3: 1§ = vii)
The uniform dead load = Wp
The uniform live Tload = f\NL
and V = G/P = Hp/W
Critical
Sections ! e ? * ;
aj 0.0?8 0.105 0.035 0.079 0.046
fig.(4.3) (vi) (vi) (vi) (vi) (vi)
_bj 0.098 0.120 0.079 0.111 0.079
fig.(4.3) (i) (iv) (iii) (v) (v)

NOTE: a)

b)

for the live loads it is assumed that the critical section
occurs at midspan for convenience finding values for ﬁ(
The actual load distribution for the first hinge to form at
any critical section depends on the Wp/WL ratio, which is

usually known, and also the moment of resistance of the
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various sections which are not known.

The plastic moments are (as per eqn. 5)

-X, = (0.078 W + 0.098 %Mok ) L
X, = (0.105 W+ 0.120 x AN L
~Xs = (0.033 Wyt 0.079xAML) L
Xy = (0.079 Uy+ 0.111 ML) £
X5 = (0.046 Hy+ 0.079xA ) L

COLLAPSE CONDITION:

Consider the equilibrium of each elementary mechanism,
itlbeing assumed that each mechanism has the same collapse bound
applying the principle of virtual work to small motion of the
appropriate mechanism.

1 2% 4%, = (w +AONL)L
I X+ 2x3+ ><,i = E (W +XoM, )L
12X+ % = 7 (Hy+hok )L
and only con§idering the contribution from the 1ive loads, the work
equation will be
(note: in this work equation all the terms have positive sign)
I 2x0.098%, + 0.120%;, = 0.25
II 0.120%, + 2 x 0.079% + 0.117=, = 0.25
III 2 x 0.111%, + 2 x 0.079%5= 0.25

To find % consider the equalisation of all X; in each mechanism

in turn

1 X = 223 = 0.79]
11 Rl 8= 0.643
3 S5y = 0.658

The minimum value ‘_JF’C:: 0.643 -"—_il= §3=25. n =2 therefore

n+1=23and it so happens that for this particular case three equal
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values are obtained from mechanism I1I and the remaining s = (n+1)
values for Xj are obtained directly by substitution.

0.885

0.678

BN

and =, =X, = 0.643

The values for X may be calculated using these values

for Xi

1
n

(0.078V + 0.098 x 0.885 Ao)H, L

-—

le
n

(0.105V + 0.120 x 0.643Ao)H, L

l

\
>
W
1

= (0,033V + 0.079 x 0.643 o)W, L

><|
n

(0.079V + 0.111 X 0.643 Xo)W, L

!

n

(0.046Y + 0.079 x 0.678 Ao)W,L
Consider the case when at working loads the dead and

live loads are equal and ,\°= e

X, = (0.078 + 0,0865 x 2)W L = 0.251U,L
X, = (0.105 + 0.077 x 2)W, L = 0.259W L
Xs = (0.033 + 0.051 x 2)W L = 0.135HL
X, = (0.079 +0.071 x 2)W L = 0.2214 L
“Xg = (0.046 + 0.0535 x 2)W L = 0.153W,L

and the bending moment can be plotted (fig 4.4)

@- 25 Wy - (o 'ZZOWLL

g

(o135) Wil (oWl

( o 2.5‘.) WLL

fig (4.4)
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Note: For Ao =2 and %4 2%\’%_ , the lowest value for r\”. =

2 x 0.643 = 1.286 which is greater than 1 and the working load
behaviour is always elastic. If a value of A <. 1.56 (i.e. fié%f§)

is used the working load criteria will not be satisfied, which means
that the total increase in lqad from working load, i.e., 2NL, to
collapse load, which equals 2.56HL or less, is too small to allow both
the collapse mechanism to form and the working load conditions to be
satisfied; to design a beam for these conditions would be an
uneconomic or non-optimum solution.

USING SECOND OPTIMUM APPROACH
substituting X = —‘i\r‘g— in Eqn.19

S Vi bi dig D> Pkdo (a)

Mechanism 1 2 x 0.098A;, +0.120Ar, > 1Ay
Mechanism II 0.120Xn_ + 2 X 0.07911«13 + 0'1”>\1L\> -]1-(\,,

Mechanism 111 2 x 0,111,
Ams s A ad Aps Noad A

for each mechanism Eqn (a)
/ I ! {
obo Ay + Yooy + ¥a, N> %
% 2 7 1
Yo b, Aqp 4 ¥ b3(\13 b Xl,bq Arg >VP Ao

i

]

k
Xk b b .\‘1‘-}“ i (\m_-m‘l' ¥:1+z })ﬂ-ﬂ_f\az_jﬂ>/¢ Ab

2] 12J + X?-JH 2jtl

Since Ajg = A5 = Agy;

and X” = A13 = ’\12j+1 a safe solution if givgn by:
K k
Noage = mied od®h, o Yo I:,ljﬂ,\‘ (b)
 H e T (S
4 ;j 2y 232
J
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reference to equation (b)
0.25 X o - 0.196Ar,

I Ay 2 0,120

, 0.25 No - 0.158%y,
I: Ajp ¥~ 072000

; 0.25 Mo - 0.158 Ay,
HI: Ay, > 0.222 :

Au== 2 and choosing a value for >I|= 1.766 (which will give

a value for An/ Ao = 0.883, which was the value for ; in the other

approach).

e LAy o T.2686 8 Na/Ao D 0.643  i.e. maximum
It Aqp > 0.95 or Au/), > 0.478

III: Ny, > 0.996 or Mz/ No > 0.498

N1p = Aqq = 1.286
N1 = By = Agg = 1766

Applying Equation 5 (ajGL + bjxjekoPL) and V =<g = |

l

=X, = (0.078V +0.098 x 1.766)H, x L = 0.251W, x L
X = (0.105V + 0.120 x 1.286)W, x L = o.259uL x L
-X, = (0.033V + 0.079 x 1.766)W x L = 0.1720_x L
X, = (0.079V + 0.111 x 1.286)W_ x L = 0.221H_x L
“X, = (0.046V + 0.079 x 1.766)W, x L = 0.185H x L

the results are drawn on fi§ (4.5)

Example: Optimum design of 3 span frame which was shown on fig (4.5)
For simplicity it will be accepted that the load factor
applies to the total load as in A.L.L. Baker example. The optimum
design applies as the dead load would be negligible versus the live
load. However, all the possible partial loadings will be considered.

The maximum (minimum) elastic moments are first derived
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(mmzovaL

( 0.2 51) w b (o-m-) wi L

\
fig (4.4.a)
second optimum design

and the moment constants are tabulated on table (4.1) for five cases
(fig &4.5. a,b,c,d,e) The elastic moment for the factored load are
AVUHAQA by 10* knm and from the loading combinations indicated in the
parantheses the moments were found to be:

M, =-0.736 (b)

Mg = 4.47 (b+e)

My = 4.79 (d+e)

M, = 4.63 (d)

Mg = 6.40 (c)

M¢ = 2.68 (d+e)

M, =1.94 (d)

Mg = 4.47 (b)

Mg = 1.08 (bte)

M, = 0.98 (b+e)

My = 1.03 (cte)

These are the envelope moments used in elastic design if selection are
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proportioned according to the ultimate strength theory and illustrated

on fig (4.6)

Moment /102 k.

ioAD

Lae ) AB | BC CB CD CE EC EF 1 EG GE GH

a D.486 -0.486 (4.114 pD,052 ~4,164 |4.166-0.054-4.114 (0.486+0.486
b P.736 }-0.73¢ |[1.738 F0.593-1.145 |1.1450.593 |-1,738 {0.736+0.736
¢ r0.249 0.24% |2.375 P.645 -3.021 3.021-0.649-2.373 10.249(0.249
d pP.382 |-0.38% |4.545 P.085 1-4.630 |2.556-0,614-1.944 10.124|0.124
e t0.3550.35% [0.258 [-0.395{0.13¢4 |0.136-0.394 O.éSE 0.35410.354

TABLE (4.1)
For 1imit equilibrium equations can be written, corresponding to the
three beam mechanism and to the panel mechanism available. With

X = 0.5 (since span plastic hinged assumed at mid spans). Equation

2 K5t My = Mok are:

I 0.5 x 0.735%; + 4.47%, + 0.5 x 4.79%3 = 4,22
II 0.5 x 4.63%; + 6.40%g + 0.5 X 2.68=¢ = 6,40
I11 0.5 x 1.94 X3 + 4.47%4 + 0.5 x 1.08xq = 4,22
IV -0.735%, + 1.08xg + 0.98%;, + 1.03x, = 1.50

Balancing in turns the unknown equation results in X = 0,583,
X;=0.631, X =0.735and Xg=0.636. Substitution of minimum

value X = X3 = X;= 0.583 result in

I %, = 0.585
1T Xs = 0,667
111 g = 0,747 :
Iy Xy = X, = 0.646 |

A11 x values are smaller than 1 than design will be

successful. The final plastic moments Xji = °¢jﬁ; and
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The

= 0.736 X

= 4. 79 - X
= 4,63 X
= 6.40 X
= 2.68 X
= 1.94 x
= 4,47 X
= 1.08 x

final moments are

0.583 = 0.
0.585 = 2.
0.583 = 2.
0.583 = 2.
0.667 = 4.
0.583 = 1
0.583 =1
0.747 = 3
0.583 = 0
0.646 = 0
0.646 = 0

= 127 ~

429
627
792
699
268

. 562
. 131
2339
.629
.633
.665

(a)

(<)

20KN

also specified in fig.4.8. by dotted line.

(d)

(e)

fig (49

5.0m.
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CCHARTER "B,

INVESTIGATION OF THE EFFECTS OF VARIATION

OF STRENGTH OF MATERIAL AND 30% RULE IN CP 110
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INTRODUCTION

Redistribution of design bending moments in continqus
reinforced structuresis widely recognized as a most useful tool in the
hands of reinforced concrete designers. The arbitrary reduction of
bending moments at supports, initially calculated using the elastic
theory leads to a reduction in congestion of reinforcement at support
sections. This in turn makes better compaction of the concrete possible
and enables detailing of reinforcement to be simplified.

The code (CP 110) requires that the ultimate moment of
resistance provided at any section shall be not less than 70% of the
bending moment at that section taken from the elastic bending moment
énveTope. Reinforcement must therefore be checked at every place where
the 30% redistributed bending moment envelope givesa lower value than
70% of the elastic bending moment envelope. This rule affects the
curtailment of bars in some places. The difference between the red-
istributed bending moment and modified elastic bending moment is
slight but, can be critical particularly near the points of contraflexure.
It is obvious that ff elastic behaviour continues beyond the loads at
which the design method indicates plasticitiy; tension can occur in
sections which are not designed for it and large cracks possibly leading
to failure can result. The length over which cracks can occur is very
critical in design and can be called the cracking length. In this
chapter, cracking length, Hyper plastic moment and efficiency of design
relations are discussed, and a new method for redistributed
bending envelope is proposed and a comparison of various methods is done

by giving examples.
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Definitions:

“ﬂ # ut-‘ <
Hirnend

Crackin
- l-jeng\k

] ﬂy«q? it \u\s“'

Elashic ‘Enr;\!\j T"‘omqk
———— Reddobuled B8.M.
—— o 0% Clashic B.WA-

|
|

fig.s1.

Hyper-plastic Moment: At the critical points 70% of elastic moment is

numerically bigger than the plastic moment; the moment which occurs at this
stage is called Hyper-plastic moment and the length over which that
moment occurs is called the Hyper-plastic length.

‘Cracking length: The length between contrdflexure points of the plastic

and elastic moment. i.e., the length over wnich the hyper-plastic
moment may have o sigopposite to that indicated by plastic analysis.
Notalions:

A

Ratio of Max. hyper-plastic moment to max plastic moment

B = Rotio of Min. hyper-plastic moment to min plastic moment
C = Ratio of hyper-plastic length to span
D = Ratio of cracking length to span

'STEPSOF THE ANALYSIS

Limit state design calculations wen cacried oot For three,

four and five equal 8m spans for continuous beams and frames which were
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subjected to uniform loading (fig. 2 - 3). Three ratios of impgsgd
load to dead load namely %% = 0.75, 1.0 and 1.5 are considgr;d.

Ist. Step: Beams and frames were loaded by %, %Q %3 1.0 variab1e.
Loads with dead Toads 20 KN/m. and the ratio of total load to dead

load (F/Gk) was taken 1.4, 1.5, 1.?, 1.8, 2.0, 202,089, 2.5, 2.6 3.05
3.1 and 3.8 respectively.

2nd, Step: Elastic end moments of the beams were calculated by using
a computer programme for the likely critical loading conditions.

3rd. Step: Elastic moment, 70% Elastic reduced moment, and redistrib-
uted moment were calculated by using the computer programme written by
A. W. Astill. This reduction was taken as 30% of thg max, elastic support
moment.

4th, Step: Elastic and plastic bending envelopes were drawn and
effective points of 70% elastic bending moment envelope were plotted
on graphs (Appendix 1 - 72)

5th. Step: From the drawn graph hyper-plastic moment/Max plastic
moment,cracking length/span for sagging and hogging side and hyper-
plastic length/span with design efficiencies are tabulated on table

(1.- 3). Span moment/L/ 8, support momentfL/8 for both sides are
tabulated on table (5 - 8).

5.3. ANALYSIS OF BEAMS

Investigation of the CP 110 method for beams and frames
show that the differences between the redistributed bending moments and
modified g]astic bending moments are critical near points of contra-
f]gxure. From the elastic and redistributed bending moment envelopes
which are given in appendix I the following attempts were made to find

a relationship.
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‘Cracking Length:

Cracking length is tabu]atgd from elastic and rgdist—
ributed bending moment envelopes by dividing it by span length on
tables (1 - 3) Column D. It can be seen from table 4 that, the critical
cracking length/span values are within (0.0) to (-0.03) for 3,4 and 5
span beams at end span beam and (0.0) to (-0.08) for five span beam
on sagging side. It can also be seen from table (4) that these values
for the hogging side are within (0.0) to (-0.03) for three span (0.00)
to (0.04) for four span and (0.0) to (0.045) for 5 span beams at end
spans.

For interior span at hogging side (0.0) to (-0.10) for
three span beams, (0.0) to (-0.07) for four span beams and (0.0) to
(-0.07) for five span beam respectively.

In the second part of the study cracking length/span
relation are traced against F/G, ratio on figures (5.4), (5.5), (5.6)
for 3 spans, 4 spans and 5 span beams for sagging and hogging side.

It was found that; there is a relation between cracking length/span
ratio with F/Gk ratio which gives a curve for sagging and hogging side
as shown in figures (5.4) - (5.6). It will also be seen from the result
that cracking length is bigger at inner spans than End span at sagging
side. Cracking length increases with F/Gk ratio on sagging side but
decreases on hogging side, It will also be seen from figures

that curve is flatter at high F/Gk ratio for sagging side.

Hyper=plastic Moment

From the same bending moment envelopes, the values of
the ratio of maximum hyper-plastic moment to maximum plastic moment
are tabulated in columns A and B of tables 1 to 3. Column A contains

the figures for sagging side and Column B contains the figures for the

hogging side. Hyper-plastic momenB/FL/S values also tabulated on
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TABLE 1. 3 Span Beam
e 313 5

== | 22| 23| 22 i I PR e

58 |83) 2 | ®° | BlE| &
2-5R |20.0 | 8.00 28.0 1.4 0.862 < 0.786 0.23] -0.03
5-8R h . J . 0.797 - 0.356 0.40 | -0.10
2-5R 20,0 | 10.0 30.0 1.5 0.856 - 0.420 0.18| -0.02
5-8R i " ; : 0.786 - - - -
2-5R |20.0 | 14.0 34,0 1.7 0.846 - 0.106 0.05] =0.01
5-8R / " i 8 0.772 - - - -
2-5R |20.0 | 16.0 36.0 1.8 0.340 - 0.56 0.03] -0.01
5-8R " N 2 : 0.764 - - = .
2-5R  [20.0 | 20.0 40.0 2.0 0.834 - ] 0.00 0.00| 0.00
5-8R W . g s 0.754 0.0 - 0.00| 0.00
2-5R [20.0 | 24.0 44.0 2.2 0.829 0.0 - 0.0 | 0.0
5-8R . g " ! 0.744 0.150] - 0.04| -0.01
2-5R [20.0 | 28.0 48.0 2.4 0.325 0.090 - 0.03| -0.01
5-8R ; ! - i 0.739 0.231] - 0.06| -0.02
2-5R |20.0 | 30.0 50.0 2.5 0.822 0,125 - 0.04| -0.01
5-8R ; X # i 0.729 0.243] - 0.06| -0.03
2-5R _[20.0 | 32.0 52.0 2.6 0.823 0,133 - 0.03]| -0.01
5-8R " g . 1 0.730 0.261 - 0.06] -0.03
2-5R [20.0 | 40.0 60.0 3.0 0.813 0.207] - 0.07]| -0.02
5-8R : \ . 4 0.722 0.354 - 0.09| -0.04
2-5R  20.0 | 42.0 62.0 3.1 0.811 0.213 - 0.07| -0.02
5-8R A n H ; 0.721 0.544 - 0.14| -0.05
[2-5R _ [20.0 | 56.0 76.0 3.8 0.817 0.284 - 0.10] -0.03
5-8R . ; 8 " 0.711 0.73 - 0.14| -0.06
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Table 2 4 Span Beam
No.of| Dead [Variable Total |[Tot.load |Effici-
span | Load | Load Load d'd load| €"%Y A B ¢ D
(6,) (V) (F)

2-5 R |20.0 | 8.00 28.0 1.4 0.856 - 0.840 0.21 [-0.04
5-8 L " ? - - 0.815 - 0.376 0.20 [-0.07
2-5 R |20.0 [10.0 30.0 1.5 0.853 - 0.116 0.05 [-0.015
5-8 L " : i 4 0.812 - 0.26/ 0.17 |-0.065
2-5 R [20.0 |14.0 34.0 1.7 0.842 - 0.0 0.0 0.0
5-8 L 3 2 % ¥ {0.798} - 0.094 0.11 |[-0.05

“R - g f : 0.091 - 0.13 [-0.015
2-5 R |20.0 |16.0 36.0 1.8 0.838 - - - -
5-8 L " i " « {0.787) - 0.00 0.00 | 0.00

%R " £ ¥ " 0.177 - 0.04 {-0.01
2-5 R |20.0 [20.0 40.0 2.0 0.833 - - - -
5.8 R | " " ; i 0.782 | 0.272 - 0.08 |-0.03
2-5 R [20.0 |?24.0 44.0 2.2 0.823 0.0 - 0.0 0.0
5-8 R | " 4 o 0.752 | 0.421 - 0.12 |-0.05
2-5 R [20.0 |28.0 48.0 2.4 0.822 0.062 - 0.03 |-0.01
5;8 R " i " ™ 0.772 0.456 - 0.14 |-0.05
2-5 R |20.0 | 30.0 30.0 25 0.821 0.100 - 0.04 |-0.02
5-8 R . i " = 0.776 0.442 - 0.14 |-0,06
2-5 R |20.0 | 32.0 52.0 2.6 0.819 0.105 - 0.b4 -0.02
5-8 R - s " f 0.765 0.475 - 0.15 | -0.06
2-5 R |20.0 | 40.0 60.0 3.0 0.815 0.189 - 0.06 |-0,02
5-8 R - f 3 3 0./57 0.555 - 0.18 | -0.07
2-5 R |20.0 | 42.0 62.0 de 0.809 0.189 - 0.09 | -0.02
5-8 R ¢ 4 " " 0.753 0,558 - 0.21 | -0.07
2-5 R |20.0 | 56.0 76.0 3.8 0.804 0.263 - 0.09 | -0.03
5-8 R n “ . 8 0.746 0.657 - 0.22 | -0.08
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TABLE 3. 5 Span Beam,

il i e R R IR I B

Span (Gk) F
2-5R |20.0 | 8.0 28.0 1.4 0.894 - 0.78 | 0.26 |=-0.045
5-8L . . : . 0.818 - 0.377 |-0.14 |-0.07
8-11R | " g » . 0.797 - 0.221 | 0.09 |=-0.03
2-5R {20.0 [10.0 30.0 315 0.855 - 0.260 | 0.10 |-0.04
5-8L " " ¥ : 0.784 - 0.272 | 0.13 | 0.065
8-11 . g 4 . 0.787 - - - -
2-5R {20.0 [14.0 34.0 57 0.843 - 0.130 | 0.07 |-0.025
5-8L " " " J (0.768) | - 0.033 | 0.07 |-0.04
5-8R § 5 : 2 - 0.02 | 0.005
8-11R | " J " o 0.770 |0.102 - 0.03 |=-0.01
2-5R  [20.0 [16.0 26.0 1.8 0.838 - 0.081 - -0.020
5-8L = 4 ¥ y - 0.00 0.00 |=-0.00
5-8R [20.0 | " : N 0.762 |0.125 - 0.04 |=-0.015
8-11R (20.0 | " ¥ . 0.763 |0.165 - 0.04 |-0.02
2-5R 20,0 [20.0 40.0 2.0 0.834 - 0.063 | 0.01 0.00
5-8R " " x . 0.751 |0.226 - 0.07 |(=0.075
8-11R | * " " . 0.751 |0.250 - 0.07 |-0.030
2-5R  [20.0 [24.0 44,0 2.2 0.827 |0.00 < 0.00 | 0.00
5-8R " " ¥ ' 0.741 |0.358 - 0.11 |-0.04
8-11R | " X » " 0.739 [0.370 - 0.12 |-0.0425
2-5R  [20.0 [28.0 48.0 2.4 0.824 |0.070 - 0.03 |=-0.01
5-8R " " 4 . 0.734 |0.45] - 0.13 |-0.04
8-11 . . 5 N 0.732 |0.471 - 0.13 |-0.04
2-5R  [20.0 {30.0 50.0 2.5 0.821 |0.107 - 0.04 |-0.01
5-8R " . . . 0.730 |0.495 - 0.13 |-0.05
g8-11R | " " . . 0.729 |0.510 - 0.14 |-0.055
2-5R  [20.0 |[32.0 52.0 2.6 0.820 |0.119 - 0.04 |[-0.01
5-8R . X X " 0.729 |0.531 - 0.16 |-0.06
8-11R | " 8 " . 0.726 | 0.572 - 0.16 |-0.05
2-5  [20.0 |40.0 60.0 3.0 0.813 |0.190 - 0.07 |-0.02
5-8 X " " . 0.719 |0.684 - 0.20 |-0.065
8-11 . " " E 0.716 |0.720 - 0.21 |-0.07
2-5 W 4Z.0 62.0 5.1 0.812 |0.194 - 0.07 |-0.02
5-8 : . " " 0.718 |0.714 - 0.22 |-0.070
8-11 u " " " 0.715 |0.742 - 0.22 |-0.075
2-5 “ 156,00 [76.0 3.8 0.806 |0.276 - 0.09 |-0.03
5I_-8 by 2 2 s 0.707 0.884 - 0.28 -0.075
5-11 u “ i a 0.704 | 0.927 0.28 | -0.08
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TABLE 4

SAGGING SIDE

Cra}a'u‘ICr:wL-ﬂﬁlw'sU/ Span Valves

HOGGING SIDE

Canbicad C foking l\en&q{ < ‘;F"‘- n Velves X

{s3) (s-%)
NUMBER END SPAN(2-5) |[INTERIOR SPAN | END SPAN(2-5)INTERIOR SPAN
OF SPAN
Min. | Max. Min, Max. Min, | Max. Min. Max.
3 Span 0.0 | -0.03]{ 0.0 -0,06] 0.0 | -0.031| 0.0 -0.10
4 Span 0.0 [=0.031] 0.0 ~0,08] 0.0 | -0.04] 0.0 -0,07
5 Span 0.0 |-0.0310.0 -0,07| 0,0 |-0.045( 0.0 -0,07
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tables 5 to 7. These results are then p]otted against F/Gk ratiqs

in figures 5.7 to 5.12. The variation of the points at which the

maximum and mimimum values of hyper-plastic moment are also tabul-

ated in table (8). It may be seen from these graphs that:

a) Hyper-plastic moment is bigger for inner span than end span at
sagging side.

b) By increasing load hyper-plastic moment decrease at hogging side
and increase at sagging side.

c) Maximum hyper-plastic moment at sagging side gives nearly the
same result for end span. (0.205 FL/8 for 3 span, 0,185 FL/8 for
4 span and 0,195 FL/8 for 5 span.) and they will be equal to
zero at F/Gk = 2.2

Efficency of Design:

Relative economy can be measured by an efficency index
for elastic and redistributed design. Efficency can be defined as the
ratio of the volume of flexural reinforcement resulting from elastic
and redistributed design. It was suggested by M. Z. Cohn (1970) that

the volume of flexural reinforcement for plastic case (Vk) can be

formulated by Vk = MpjLj and similarly for elastic case
Ve = MEjL;j' And efficency index will be Vk = %‘E :Z_%]]%
where ME = Elastic bending moment
Mp Mp = Plastic moment
Lj = Span length

That equation may be applied by taking redistributed
values of bending moments instead of plastic values. Then efficency

index of redistributed design will be;

u o pdt



= 14c =

For example: Efficency index of the beam shown on figure (5.13) can

be calculated by applying the equation above. Efficency indgx =

287 % 8 + 287.0 x 8+ 218 X 8.0 0. 750
397.0 x 8 + 397.0 x 8.0 + 289 x 8.0 :

Efficencies of the redistributed bending moment designs
are calculated by applying the same way for all loading conditions and
tabulated on tables 1 to 3 and on table 9. Reciprocal of efficencies
against F/Gk are plotted in figure 14, It may be seen from these
results that:

é) There is a relation betweeh EE— ratio and 1/Efficency. This is
due to thg fact that an increase in Fka generates an increase in
1/Efficency and its maximum value occur at maximum F/Gk ratio.

b) Reciprocal of efficencies is bigger for inner span than end span.

c) Maximum reciprocal of efficencies nearly equal at end spans for
3 spans (1.223), 4 span (1.243), 5 span (1.240) respectively.

d) For 5 span beam, reciprocal of efficencies are nearly the same for

the centre span and inner span.

390 S5

2¢3.0 A

1
1218.0 (R-8-)
1

289.0 (elashic 8-1)

fig. 5.13
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Table 5 3 span Beam

Span |[Total| E ﬁ?ﬁ?ng. M.HTB?H. PLASHIC Gk piimiil

No. |load Gk H1 f'8 F1 ,fa E-E‘—'I;-T%— E—E?E E;%)rn:{ra—%m%i
2.5 R | 28.01.40 - lo.as9 |0.838 |0.687 | 0.588 p.727
5-8 R | " |1.40 - |0.356 " 0.316 " .45
2-5 R | 34.01.70 - 0.063 |0.849 [0.709 | 0.595 [p.725
Bgi | w oo - 2 u 0.366 " 0,404
2-5 R | 36,0 1.80 - 0.039 |0.854 |0.715 | 0.597 [0.724
-5 R | ™ | ® - - u 0.379 " J0.402
2-5 R | 40.0] 2.0 . 0.0 0.868 [0.721 | 0.609 [0.718
5-8R | " | ® 0.00 | - . 0.396 " 10,390
2-5 R | 44.0| 2.2 0.00 | - 0.869 |0.730 | 0.613 [0.717
BB R § & | ® 0.058 | - " 0.420 " 10,349
2-5 R | 48.0| 2.4 0.060 | - - |o0.736 | 0.872 [0.716
5-8 R w | o 0.08/ | = - |o0.435 v 10,388
2-5 R | 50.0]| 2.5 0.000 | - 0.882 |0.736 | 0.617 [0.715
s<s R | " | G120 | - - " 0.437 " 0,382
2-5 R | 52.0] 2.6 0.095 | - 0.887 |0:742 | 0.877 [0.716
5-8 R “ | o 0.140 | - " v.448 " 10,381
-5 R | 60.0] 3.0 0.140 | - 0.891 |0.891 | 0.622 [0./12
58 R f ] v.190 | - " 0.464 JR R
-5 R | 62.0] 3.1 0.152 | - 0.890 | 0.754 | 0.623 |0.712
g v | 0.207 | - " 0.472 v 10.376
p-5 R | 76.0| 3.8 0.205 | - 0.893 | 0.763 | 0.625 [0.710
5-8 R 71 &% 0.276 | - " 0.496 0.375
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TABLE 6. 4 Span Beam
Boxtom Tgp Elastic Case Redistributed
SPAN |Total} T ﬁfﬂ?p.m. ﬁiﬂ?p.m.

N0. |load | G~ T |TFr7E | pbemean | SRR el
2-5R | 28.0 1.40 - 0.517 {0.883 0.669 | 0.616 |0.714
5-8R " » - 0.231 |0.656 0.343 | 0.459 |0.464
2-5R | 30.0|1.50 - 0.072 |0.887 0.675 | 0.620 |0.712
5-8R ¥ X 0.00 0.166 | 0.666 0.352 | 0.466 |0.458
2-5R | 34.0]1.70 - 0.0 0.893 0.691 | 0.625 |0.709
5-8R ® : 0.041 | 0.059 |0.687 0.367 | 0.481 |0.448
2-5R | 36.0{ 1.8 - - 0.899 0.694 | 0.628 |0.710
5-8R . 8 0.078 | 0.0 0.697 0.375 | 0.489 | 0.440
2-5R | 40.0| 2.0 - - 0.903 0.706 | 0.631 | 0.709
5-8R . ; 0.118 - 0.712 0.384 | 0,50 |0.434
2-5R | 44,0 2.2 0.00 - 0.909 0.713 | 0.636 | 0.707
5-8R " " 0.151 0.724 0.390 | 0.508 | 0.427
2-5 50.0 | 2.5 0.07 - 0.915 0.722 | 0.640 | 0.705
5-8R . . 0.186 - 0.740 0.405 | 0.517 | 0.422
2-5R | 52.0| 2.6 0.074 - 0.918 0.729 | 0.642 | 0.705
5-8R " . 0.200 - 0.749 0.491 | 0.523 | 0.418
2-5R | 60.0] 3.0 0.129 - 0.920 0.735| 0.645 | 0.704
5-8R 8 . 0.229 - 0.758 0.418 | 0.531 | 0.412
2-5R | 62.0] 3.1 0.136 - 0.921 0.737 | 0.645 | 0.699
5-8R : v 0.230 - 0.762 0.419 | 0.534 | 0.411
2-5R | 76.0] 3.8 0.185 - 0.929 0.748 | 0.649 | 0.700
5-8R . " 0.264 - 0.777 0.432

0.544 | 0,402
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TABLE 7. 5 Span Beam
Bokuan = Top ELASTIC REDISTRIBUTED
soan | £ | Frs, M'Eipig' aﬁf'?éM'
NO. Supp.Mom] Span ML Supp.Monj SpanM.
FUE FilE EJE ‘#%E,
2-5 [28.0 | 1.4 L 0.477 | 0.870 0.611]. 0.607 | 0.718
58 | * n e 0.229 |0.705 0.371| 0.491 | 0.450
811 | n & 0.108 - 0.457] - 0.508
2-gy 1300 | 1.5 - 0.161 |0.875 0.679] 0.612 | 0.716
5-8 | " * 0.166 |0.716 0.389| 0.50 |0.441
811 | e " - . % 0.472 - 0.500
2-5. 1340 11.7 - 0.081 |0.882 0.694| 0.617 | 0.713
5-8 | " " 0.015 |0.064 |0.735 0.419| 0.514 | 0.433
‘811 | ® " 0.049 - - 0.498| - |0.485
“2-5 |36.0 | 1.8 = 0.050 |0.888 0.701| 0.621 | 0.71
'5-8 | * ! 0.054 |0.00 |0.743 0.430| 0.520 | 0.430
‘e | o " 0.078 - - 0.507| - |0.479
'2-5 40.0 | 2.0 - 0.0052 |0.893 0.709| 0.625 | 0.712
'5-8 | u 0.090 - 0.756 0.450| 0.531 | 0.421
8-11 . g 0.129 - - 0.525| - 0.468
2-5 hao |22 9.0 - 0.897 0.718| 0.627 | 0.710
58 | * | " |o.49 | - |o.769 | 0.465 0.536 | 0.417
811 || o " 0.161 - - 0.539] - |0.463
2-5 k8.0 | 2.4 |0.049 - 0.903 0.723| 0.632] 0.708
58 | " " 0.185 = 0.778 0.481| 0.544 | 0.411
811 | ® n 0.205 - 5 0.551] - 0.455
.2-5 [50.0 | 2.5 | 0.063 - 0.905 0.727| 0.633| 0.707
7 n 0.198 - 0.782 0.487| 0.547| 0.410
105§ N u 0.231 = = 0.557] - 0.452
.2-5 52.0 |2.6 |o0.084 - 0.906 0.730| 0.634] 0.709
lpeg | @ u 0.218 0.786 0.492| 0.550| 0.408
811 | v " 0.257 - 0.562| - 0.449
2.5 kil 13,0 0,138 . 0.912 0.739| 0.637 0.706
5ag " 0.275 s 0.797 0.510| 0.558| 0.402
811 | » " 0.290 < - 0.579| - |o0.4m
2-5 b2.0 | 3.1 0.137 ’ 0.914 0.743| 0.639| 0.709
5-8 | * " 0.286 = 0.803 0.517| 0.564 | 0.400
o | B " 0..300 - 5 0.580| - 0.439
2.5 6.0 | 3.8 |0.194 - 0.919 0.751] 0.643| 0.703
|s-8 | ® " 0.345 4 0.815 0.536| 0.570| 0.393
R R n 0.398 3 - 0.600 0.429
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TABLE 9
F 1/Efficency
E-FT End Span [Inner sparCentre span

3 Span 1.4 1.160 1.254 e
4 Span 1.168 1.226 ——

Span 1.157 1.257 1.254
3 Span 1.5 | 1.168 | 1.272 i
4 Span P 1.231 e
5 Span 1.169 1.275 1.270

Span 1.7 1.182 1.295 —
4 Span 1.187 1.253 ———

Span 1.186 1.302 1.298
3 Span 2.0 1.199 1.326 —
4 Span 1.200 1.278 e
5 Span 1.199 1.331 1.331
3 Span s 1.206 1.344 e
4 Span 1.215 1.307 —_

Span 1.209 1.349 1,383

Span 2.5 1.216 ¥.371 ——
4 Span 1.218 1.305 ———

Span 1.218 1.369 1.371

Span 3.0 1.230 1.366 e
4 Span 1.226 1,321 ———

Span 1.230 1.390 1.396

Span 3.8 1.223 1.406 e
4 Span 1.243 1.340 ———
5 Span 1.240 1.414 1.420
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Span and Support Moments:

Span and support moments are obtaingd frqm g]astic and
redistributed bending moment envelopes (Appendix 1) and the ratios of
Mg/?L/B and HR/?Lxs are tabulated in tables 5 to 7. These results
are also plotted in figures (15 to 20) against F/Gk ratio. It can be
seen from these values that
a) Support moments are bigger at penultimate support than inner support.
b) Support moment increases when F/Gk-increase but there is not a big

difference between minimum and maximum values.
¢) Span moment is bigger at end span than inner span.
d) Elastic span moment increase and redistributed span moment decrease

by increasing Fka ratio, and they will also intersect each other.

PROPOSED METHOD

A new method can be developed by using the relation of
cracking length/span, hyper-moment/FL/8, support moment/FL/8 against
the F/Gk ratio. It can be seen from figure 17 for the 5 span cases that
redistributed support moments are within the range (0.610)FL/8 - 0,65
FL/8 for penultimate supports and within (0,49 )FL/8 - (0.570)FL/8 for
inner supports respectively. If the fixed bending moment values of
0.65FL/8 is adopted for penultimate support and (0.57)FL/8 for
inner supports so that 30% reduction from elastic moment is not exceeded
for every value of F/Gk from 1.4 to 3.8, Redistributed bending moment
envelopes can be drawn using the following procedure based on the method
outlined by A. W. Astill (1973).

First dealing with the maximum load case set up the
fixed end moment values for thg two supports of the éﬁan being considered
i.e. for the penultimate span of the 5 span beam 0.65 and 0.57. From

these two points draw the parabolic bending moment diagram for maximum
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load F so that at the mid-span the sagging bending moment is ]70 - %
(0.65 + 0.57) = 0.39 as shown on figure 5.26. From figurg 5.6 thg
maximum cracking length is 0.075L and from fig. 5.12 maximum value of
hyper-plastic moment/FL/8 is 0.35FL/8. Using these two values the
limiting line for 70% elastic bending moment can be drawn for the
sagging side as shown on figure 5.25. The outer line shown is for
F/Gk = 3.8 and if it is used to determine the bending moment envelope
for lesser values of F/Gk a conservative, oversafe design will result.
Other lines for other values of F/Gk are also shown, It may be noted
at this stage that, the 70% line does not occur for values of F/Gk £)16
approx. At this stage the design envelope for the sagging side is
complete., The remainder of the diagram for the hogging side is drawn
in a similar way but separate lines must be drawn for each value of

F/G In this case the 70% line does not occur for the values of

K
F/Gk;> 1.8. These envelopes are drawn for 3,4 and 5 span beam, by
following the same procedure on figures 5.21 - to 5.27.

Example Using charts

A beam of five equal 8m spans is loaded with Gk = 20.0
and F = 60.kN/m, Draw the bending moment envelopes for end, inner and
centre span respectively and design the reinforcement to CP 110.

Procedure of the Design

a) Trace the Gk = _§U curve for end span, inner and centre span,
Figures (5.25, 5.26, 5.27)
b) Calculate the end moments and span moments from formulated values

End moments:

0 65%‘1 = 0.65 x 60.0 x %9 = 372.0 kN/m.
T 8.0 _
0.57 5= = 0.57 x 60.0 x $:5 = 273.6 ky/n.
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Span moments:

o.?oégh = o.mzxsox% = | 337 it
L 8-

0.390 F= = 0.390 x 60 x § = 187.2 knm.

0.43 -E-L- £ .0.43.% BD x.g. = 206.6 kNM.

c) Trace the redistributed curve by using the ratio of the distance
for contraflexure points from support to span, and maximum moment
values (figures 5.28 to 5.30).

d) Plot the 70% Tength and figure 5.12 for hyper-plastic moment values

for top and bottom of the beam,

5.4. ANALYSIS OF FRAMES

The same method which was used for beam analysis was
extended to frameworks by including columns above and below the beams
used., If we considmﬂéaspan frame which has end beams loaded with
total load to collapse and middle span loaded with dead load only
fig. 31,a). The unloaded span with its column may be considered as
separately as shown on figure 31,b). It can now be seen that the
tendency for the unloaded span to hog is reduced because the columns
will assist in resisting the ultimate moments Mu and Mu  from adjacent
spans. When analysing the subframe shown on figure 30b); it must be
remembered that the beams at levels above and below may be loaded
differently. The worst case for hogging of unloaded beam would be
when the loads were placed so that the centre span of the three was
carrying total load (F) and the two sides were carrying (Gk) as shown
on figure (32.)

The difference between the redistributed bending moments
and modified elastic bending moments are also critical near points of
contraflexure, Cracking length, hyper-plastic moment, design efficiencies

are tabulated from the elastic and redistributed bending moment diagrams
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TABLE 10, 3 Span frame analysis

NO. | Dead |Vari- | Total F Effic-
of Load |able Load "T;:' ency A B C D
Span Gk Load\fk F
2-5 20.0 | 8.0 28.0 1.4 0.869 - 1.0 0.24 | -0.02
5~8 20.0 | 8.0 ? " 0.842 - 1.0 0.25 | -0.03
2-5 20.0 | 10.0 30.0 1.5 0.865 - 0.131 | 0.04 | -0.01
5-8 - " 4 " 0.839 - 0.069 | 0.06 | =~-0.02
2-5 20,0 [ 14.0 34,0 ¥.7 0.860 . = = =
5-8 20.0 | 14,0 § 2 0.832 - 0.024 | 0.02 | -0.01
2-5 20.0 {16.0 36.0 1.8 0.857 - - - -
5-8 = " R 5 0.825 - - - -
2-5 : 20.0 40.0 2.0 0.856 - - - -
5-8 ¥ e % 5 0.820 - - - -
2-5 . 24.0 44,0 2.2 0.852 - - - -
5-8 y 4 # 2 0.816 = = = .
2-5 = 28.0 48.0 2.4 0.851 - - - -
5-8 > B 2 " 0.813 - - - -
2-5 = 30.0 50.0 2.5 0.850 - - - -
5-8 . » % 2 0.807 - - - -
2-5 - 32.0 52.0 2.6 0.849 - - - -
5-8 2 F o » 0.806 - - - -
2-5 . 40.0 60.0 3.0 0.847 - - - -
5-8 y " . = 0.803 |- -~ - - -
2-5 N 42,0 62.0 3.1 0.845 - - - -
5-8 & . 3 u 0.802 - - - -
2-5 p 56.0 76.0 3.8 0.842 - - - -
5-8 " . . . 0.797 - - - -
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TABLE 11. 4 . Span frame.
Span |Dead Nariabl¢ Total F Effic- B C D
No. |Load |.oad Load _q ency
2-5 120.0 8.0 28.0 1.4 0.861 1.00 0.19 | -0.01
5.8 | " " ! 0.844 - - -
2-5 = 10.0 30.0 15 0.860 0.004 0.01] -0.01
5-8 2 - 0.842 - - -
2-5 " 14.0 34.0 | 0.859 - - -
5-8 - 14.0 2 1.7 0.841 - - -
2-5 " 16.0 36.0 1.8 0.848 - - -
5-8 " y " 0.838 - - -
2=5 » 40.0 2.0 0.856 - - -
5-8 o . 0.833 - - -
2-5 . 44,0 2.2 0.841 - - -
5-8 : 3 . 0.817 - - -
2-5 9 50,0 2.5 0.848 - - -
5-8 . " - 0.825 - - -
2-5 " 52.0 2.6 0.836 - - -
5-8 " s : 0.809 - - -
2-5 y 60.0 3.0 0.843 - - -
5-8 » . - 0.819 - - -
2-5 - 62.0 3.1 0.842 - - -
5-8 . . 5 0.818 - - -
2=5 “ 76.0 3.8 0.841 - - -
5-8 " 1 " 0.817 - - -
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TABLE 12. 5 Span Frame

NO. |Dead [Varia- | Total Effic-

of Load |ble Load F/Gk ency B 5 D

Span. Load

2-5 20.0| 8.0 28.0 1.4 0.870 1.00 | 0.25 |}-0.03
5-8 “ : . -y 0.841 0.106| 0.05 |-0.02
2-5 20,0f 10.0 30.0 1.5 0.864 0.337] 0.11 |=0,03
5-8 = g y * 0.836 - - -
2-5 20.0| 14.0 34.0 Vg 0.860 - - -
5-8 @ . & e 0.829 - - -
2-5 20.0| 16.0 36.0 1.8 0.859 - - -
5-8 4 . . J 0.826 - - -
2-5 20.0! 20.0 40.0 2.0 0.856 - - -
5-8 = s 5 * 0.820 - - -
2-5 20.0{ 24.0 44,0 Zol 0.852 - - -
5-8 2 3 " - 0.813 - - -
2-5 20.0| 28.0 48,0 2.4 0.850 -
5-8 , . ’ » 0.805 -
2=5 20.0f 32.0 52.0 2.6 0.848 -

5-8 ¥ : . V4 0.808 -

2-5 “1 40.0 60.0 3.0 0.844 -

5-8 " b = « 0.800 -

2-5 “1 42.0 62.0 3.1 0.843 -

5-8 c ¥ 2 " 0.800 -

2-5 * 1 56,0 76.0 3.8 0.840 -

5-8 o o " " 0.793 -
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TABLE 13
Number of F 1/Efficency
Span G End spans Inner spans
Span 1.4 1.150 1.187
4 Span & 1.161 1.184
Span . 1.149 1.189
Span 1.5 1.156 1.194
4 Span ¥ 1.162 1.187
Span “ 1157 1.196
Span 1.7 1.162 1.201
4 Span " 1.164 1.189
Span = 1.162 1.206
Span 2.0 1.160 1.219
4 Span " 1.168 1.200
Span " 1.168 1.219
3 Span 2.2 1.173 15225
4 Span . 1.170 1211
5 Span " 1. 173 1.230
3 Span 2.5 1.176 1.239
4 Span g 1.179 1.212
Span " 1.177 1.231
Span 3.0 1.180 1.245
4 Span " 1.186 1221
Span -2 1.184 1.250
Span 3.8 1.187 1.254
4 Span . 1.189 1.223
Span - 1.190 1.261
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given in Appendix I figures (A33 - A72) on tables (10 - 12). It
will be seen from figures and tables that:

a) Critical points appear only for small variable loads (i.e. %E 1g

0.5, 0.6, 0.7 for 3 span frame; :éé‘ = 0,4, 0.5 for 4 span and
5 span frame),

b) There are no / critical points = fer: the bottom side of the
frame.

c) Maximum cracking length/span is equal to (-0.02) for 3 span frame,
(-0.01) for 4 span frame and (-0.03) for 5 span frame on the top-
side for end spans.

d) Maximum cracking length for inner span is equal to (-0.03) for 3
span and 5 span frame (-0.01) for 4 span frame.

e) Design efficency is bigger at the end span than the inner span.

_¥he number of spans also influence the efficency of the design.

g) Efficency has 'q. relation with F/Gk ratio because ET??%EHE?

increase proportionally against F/G, ratio (fig. 3.6, table 13).

5.5. COMPARISON OF VARIOUS METHODS-FOR THE DESIGN OF CONTINUOUS BEAMS

For the purposes of illustration the example of a 5
span continuous beam will be considered in Fig. (38a) but the discussion
will be kept as general as possible.
a) Elastic Design (Limit State Design)
Limit state method was employed to find the bending moments of 5
span beam, Bending moment envelope (fig. 38b) as drawn from the
bending moment values of elastic design (Table 14).
b) A. L. L. BAKER METHOD (Limit design method)
It is assumed that, the beam has constant flexural rigidity and

the total load of (Gk + f\Qk) which equals (W + A u)p = 3W
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in the example. The compatibility equations at sections 2 and 4 are

as follows:

At 2 : —%—Mo +§)‘< +-%->'< = =0 o
At 4: —%Ho +%5‘< ,',%53 +%>’< = O El

©, must have the same sign as 21 (i.e. positive here). In
order to obtain small values for ©; obviously large values of Xi should be
used and maximum allowable ©; may be obtained by using the min. value of X;
A. L. L. BAKER recommended the following rule which states
that "in coninuous beams of approximately equal span supporting uniformly
distributed load the support moments (except penultimate) may be assumed
equal to the mid-span moments provided the permissible value of © for

the support section is greater than legTﬁEH and for external span

QngTﬂg- ". i.e. at all support sections and internal

span sections the moment of resistance equals Ho and at external
T

does not exceed

span the moments of resistance is equal to %Mo, and for these values:
o, - %‘-ETE and € = %‘g% ©,and ©;

are assumed to be < Opi

R T
e 6 R el e -
o= oios 9 (2
1 "I -3‘2'-%'

Redistribution method: The example which is shown on fig. 38a also

designed by this method and results are tabulated on table (14) by

using the computer programming.

Optimum Method

Values have been determined for both the moment of

resistance at each critical section as well as the minimum working load
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moments possible at each section. These values are tabu]atgd in
table (13 - 14) with the results of the other methods.
" COMPARISON

It is seen from table (13 - 14) that elastic solutions
are very conservative. Apart from the external spans the values are
at least 27% greater thah redistributed values and 33% greater than the
equivalent optimum vales. For the external spans this is down to 5%
for redistributed vales and to 9% for optimum values. This elastic
solution satisfies both working load and ultimate Toad conditions. How-
ever it is seen that the A. L. L. BAKER method solution, although
satisfying all the ultimate load criteria does not comply with the
condition that at working loads the behaviour should be elastic every-
where refering to fig. 38 not only at section 2 but also at section 4
(i.e. at all support ﬁections). Plastic hinges will occur according
to the plastic theory of structures.

The optimum solution satisfies all the criteria of both
working and ultimate load conditions. The essential difference between
those two methods is that:- the optimum solution considers all loading
conditions (i.e. Working, first yield at all hinges and ultimate load)
and the rotation compatibility is finally checked. The A. L. L. Baker
method depends purely on ultimate load criteria and an independant
rotation condition the working load criteria being checked finally.

The A, L. L. Baker method has the advantage that the variation in
maximum hogging and sagging moments may be reduced to a minimum so
that a uniform section may be designed, In reinforced concrete this
advantage is not very important, however, without varying the concrete
section, quite a range of moments may be coy'ered by varying the steel,

The disparity in sectional properties is such that at

supports the moment of resistance varies between 10% to 21% less than
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TABLE 14, Comparison with Redistributed Method
[ Sections

Design Method 1 2 3 4 5
Limit State Design| 0.277 0.342 0.191 0.299 0.217
(Elastic Design) (5%) (43%) (27%) (43%) (31%)
A. L. L. BAKER 0.281 0.1875 0.1875 0.1875 0.1875
METHOD (6%) (-21%) (24%) (-10%) (+13%)

0.251 0.259 0.135 0.221 0.153
Redistribution
Method 0.264 0.239 0.150 0.209 0.165
Proposed 0.263 0.243 0.146 0.213 0.161
Method (=0.3%) (+1.6%) (-2%) (+#1.9%) (=2%)

Gk = 20 kN/m L=28.0m
& (Momﬁnt values were divided by
GkL"™ in tables)
TABLE 15. Comparison with optimum design method
. Sections

Design Method 1 > 3 4 5
Limit State Design| 0.277 0.342 0.191 0.299 0.217
(Elastic Design) (9%) (33%) (41%) (36%) 33%)
A. L. L. BAKER 0.281 0.1875 0.1875 0.1875 0.1875
METHOD (12%) (~28%) (39%) (=15%) (23%)
OPTIMUM DESIGN 0.251 0.259 0.135 0.221 0.153
Redistributed 0.264 0.239 0.150 0.209 0.165
Method (5%) (-8%) (10%) (-5%) (+7.8%)
Proposed 0.263 0.243 0.146 0,213 0.161
Method (+4.7%) (-6.1%) (+8%) (=3.6%) (+5.2%)
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redistributed values and 12 to 39% greater than optimum valugsT
However, the plastic rotation criterion for optimum design at thg
support section may be less than the maximum permissible va]ue and it
will also be much Tless than the A. L. L. Baker method values. As
regards economy there will be Tittle to choose between them. The fact
that the greater bending moment values occur at the support section
where as the change of moment is greater at mid-span is advantageous;
overall rotations and deformations are less which is a point in favour
of optimum design. It will be seen from table 14 that Redistributed
support moment values are smaller than optimum design values (5 to 8%)
and the redistributed span moment is 4 to 10% larger than optimum
design values. This is a point in favour of redistributed design, It
was also shown by A, W. Astill (1973) that redistributed design is
quicker than others. It was also shown in tables (14 - 15) that there
is a small difference between redistributed values and the proposed
method values 6—2,0) to (+1.9) percem). This is reasonable in
application as the proposed method may be quicker and simpler by

using the given charts,
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CONCLUSIONS

(1)

(iii)

(iv)

(v)

(vi)

Cracking length, hyper-plastic momgnt is dgpgndant on thg

F/Gk ratio. Cracking length and hyper-plastic moment 1ncrease
at sagging side but decrease at hogging side by increasing F/Gk.
It was also seen that cracking length and hyper-plastic moment
is bigger for inner span than end span at sagging side.

Support momeng/?L /8 values for different F/Gk nearly gives a
straight line, and there is not a big difference between the
minimum and maximum value which can be accepted as constant
depending on support section (penultimate, inner) and number of
spans (3 span, 4 span, 5 span).

Elastic and redistributed span moment/%L /8 also gives a
relation against F/Gk. Elastic moment/%L /8 increase and
redistributed bending moment/%L /8 decrease by increasing F/Gko
Reciprocal of efficency index will be increased when F/Gk
increase and it is give a curve against F/Gk

Cracking length and hyper-plastic moment was not very critical
for frame design for the ratio of beam to column stiffness
considered. Reciprocal of efficencies gives a curve against
F/Gk.
Using the information obtained the standard Bending moment
curves of Fig. (bﬁl““ 5l?) can be plotted so that for normal
values of F/Gk ratios and 3 span or greater are full structural
analysis is not necessary for each case. The standard charts
can be used for the design of reinforced concrete beams with

up to 30% redistribution of moments thus achieving the economies

of materials without the eccessive costs of a full analysis.
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